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Chapter 1 

Introduction 

 

1.1 Ultrashort Pulse – Matter Interactions and CPA Technology 

In 1985, Strickland and Mourou demonstrated chirped pulse amplification (CPA) as a 

practical technique for generating high-energy ultrashort optical pulses [1]. The technique 

involved stretching a transform-limited optical pulse by applying a linear chirp to the pulse, 

amplifying the chirped pulse, and compressing the amplified pulse back into a transform-limited 

pulse. In the demonstration, the compressed, amplified pulse had 1 mJ of energy in a 1.5 ps pulse 

duration, which corresponds to a peak power much higher than what could be achieved by direct 

amplification of the transform-limited pulse. CPA was a simple, compact alternative to the dye 

lasers of the time [2], and it was first demonstrated using the dispersion of 1.4 km of fiber to 

stretch pulses and using diffraction gratings to compress amplified pulses.  

 

1.2 Compact CPA Technology: Chirped Bragg Gratings 

To make CPA systems more compact, the chirped Bragg grating (CBG) was 

demonstrated in 1987 [3] and proposed as an alternative pulse compressor [4] (Figure 1.1).  
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Figure 1.1. Principle operation of CBG. For a CPA system, a chirped Bragg grating (CBG) 

was an alternative pulse compressor to the diffraction-grating based system. The CBG could 

also be used to stretch pulses when acting on transform-limited input pulses.  

 

CBGs offered several advantages in performance over the original diffraction-grating 

based pulse compressors. One advantage was how simple they were to use: a stretched pulse 

with a positive chirp could be sent into the CBG to acquire a negative chirp and be compressed 

into a transform-limited pulse. Conversely, a stretched pulse with negative chirp could also be 

compressed into a transform-limited pulse. Moreover, the CBG could stretch a transform-limited 

pulse.  

Another advantage that the CBG offered was compactness, for the CBG needed to be 

only a few centimeters long to compress a pulse, whereas the diffraction-grating based pulse 

compressor needed 10s of centimeters [1] or even meters, depending on the bandwidth. Other 

advantages included the ability to be integrated into a completely monolithic system [3] and 

polarization-independent performance. The CBG could also stretch pulses if acting on a 

transform-limited pulse, whereas a diffraction-grating based pulse stretcher required an 

additional two lenses in a 4f-system to provide normal dispersion. The CBG was also more 

robust, providing repeatable performance with only minor variation with temperature or stress, 

whereas a diffraction-grating based pulse stretcher or compressor could introduce significant 

pulse distortions if the system were to become misaligned because of temperature or stress [5]. 
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As a Bragg grating, the CBG used a series of interfaces of alternating refractive indices to 

define its reflection and transmission, where the spacing of two interfaces was a quarter of the 

incident wave, or λ/4, for a reflective Bragg grating. This spacing was determined by the Bragg 

condition, in which each reflection interfered constructively with subsequent reflections. The 

unit Bragg cell (Figure 1.2) was the λ/2 region that contributed to two reflections of the incident 

wave and repeated along the length of the grating.  

 
Figure 1.2. CBG unit Bragg cell. The CBG is a Bragg grating, where each unit Bragg cell 

(shown above) is designed to reflect a particular wavelength λ. To do this, the unit cell is 

composed of closely spaced interfaces, where each interface comes from the difference in 

refractive index in the material. The variation in length of each unit cell along the CBG allows 

it to reflect different wavelengths at each point, thereby compressing a stretched pulse.  

 

The difference of nH-nL, known as the depth of modulation of the refractive index, was on 

the order of 10
-4

–10
-3

 [6], but because the reflections interfered constructively, the overall 

reflectivity could be greater than 99%. For a chirped grating, the thickness of the unit Bragg cells 

varied linearly along the length of the CBG so that each unit cell was designed to reflect a 

different wavelength. The result was that each wavelength would reflect from a unique point 

along the CBG, and a stretched pulse could be compressed into a transform-limited pulse. To be 

more precise, each unit cell contributed to the phase of the reflection, but most unit cells 

contributed incoherently, with only a few unit cells near the effective plane of reflection 

contributing coherently to the reflection. The rate at which the thickness of the unit cells varied, 
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known as the chirp rate, and the length of the CBG defined the bandwidth that could be reflected 

from the grating.  

The CBG had some limitations, however. For highly reflective CBGs, where reflectivity 

was above 70-80%, these gratings introduced distortions to the pulse. This limited the overall 

efficiency of a CPA system. These distortions arose because of the reflectivity of the individual 

unit cells in the CBG; for high reflectivity, the unit cells at the front of the grating provided a 

reflection that was strong enough to interfere with the reflection from the unit cells in the bulk of 

the grating. As a result, the reflection of each wavelength acquired a phase from these unit cells 

in addition to the phase from the main point of reflection, and the compressed pulse was 

distorted. Figure 1.3 shows how a 99% reflective, 3 cm long, 4 nm bandwidth CBG would 

introduce distortions from the ideal performance.  

 

 

a)  b)  
Figure 1.3. Nonlinear GVD in CBG. Although the CBG had certain advantages over a 

diffraction-grating based pulse compressor, its reflectivity somewhat limited its practical 

application. For highly reflective CBGs, such as the 99% reflective CBG shown above (3 cm 

length, 4 nm bandwidth with central wavelength of 1064 nm), a) the actual group delay that 

the CBG imprinted on the stretched pulse (blue) included strong pulse distortion compared to 

the ideal, purely linear chirp (red). Pulse compression with the CBG introduced further 

distortions (green) rather than compensating for distortions introduced by stretching. The total 

group delay (black) in the recompressed pulse resulted in pulse distortion, as could be seen in 

b) the recompressed pulse (black), which deviated substantially from its transform-limit (red). 

This degradation arose from reflectivity at the incident end of the CBG, which interfered with 

pulse compression for all wavelengths.  
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To diminish this effect, it was possible to apodize the depth of modulation of the 

refractive index. Apodization was a mathematical technique of applying a smooth edge to a 

function, and when it was applied to the refractive index profile of a CBG, the depth of 

modulation at the edge of the CBG was reduced while the depth of modulation for the rest of the 

CBG remained constant (Figure 1.4). During the CBG fabrication process, this was done with 

amplitude or phase masks. As a result of apodizing the CBG, the reflectivity of the unit cells at 

the incident edge of the CBG was diminished and did not contribute significantly to the overall 

phase of the pulse [7]. This improved the quality of the recompressed pulse, although it also 

reduced the overall bandwidth of the reflectivity spectrum by reducing reflectivity of the 

wavelengths reflected at the edges of the CBG. Given this trade-off, the apodization of the CBG 

needed to be chosen based on the desired pulse quality and compression efficiency in a CPA 

system. Using our understanding of the underlying physics of CBGs, we could explore this trade-

off in more detail, particularly to know how to optimize apodization for high-reflectivity CBGs, 

such as CBGs with reflectivity of 95% and above. It would also be interesting to know if a CBG 

could be made with a sufficiently high reflectivity that apodization no longer mitigated the pulse 

distortions in the compressed pulse.  
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a)   

b) c)  
Figure 1.4. Apodization of a CBG. a) One way to improve the performance of a CBG was 

to apodize the depth of modulation, which reduced the reflectivity from the front of the CBG 

that interfered with pulse compression. Here, a super Gaussian apodization function of exp{-

x
6
} was imposed on the CBG. b) The reduced depth of modulation at the edges of the CBG 

resulted in a reduced reflectivity at the wings of the spectrum, and the apodized CBG had a 

reduced bandwidth compared to that of an unapodized CBG. c) The resulting compressed 

pulse from the apodized CBG had less phase distortion than the compressed pulse from the 

unapodized CBG. Here, the pulses were normalized in energy, so one could see that the 

apodized CBG compressed more energy into the main pulse, even though the reduced 

bandwidth of the CBG necessarily broadened the pulse.  

 

1.3 Chirped Volume Bragg Gratings in High Average Power Systems 

Two types of CBGs have been developed: the chirped fiber Bragg grating (CFBG), which 

was developed for fiber-based CPA systems, such as those used in fiber optic communication; 

and the chirped volume Bragg grating (CVBG), a free-space CBG, []. These two types of CBGs 

differed both in size and in material. The CFBG was several micrometers in size, typically 6-

10 μm in diameter, because it was written into a fused silica fiber that had a germanium-doped 

(Ge-doped) core. The process of writing a CFBG involved using a UV beam, such as a 334 nm 

beam from an argon-ion laser [8], to induce a quasi-periodic change to the refractive index. The 

CVBG, however, had a rectangular cross-section and was much larger, typically 5-10 mm in one 

direction and up to 20 mm in the other. It was written holographically into photo-thermo-
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refractive (PTR) glass instead of fused silica because the process of writing a grating into PTR 

glass required hundreds of mJ/cm
2
 [6], whereas a comparable refractive index change in Ge-

doped fused silica required hundreds of kJ/cm
2
 [8]. This high fluence, combined with the high 

absorption of a 334 nm beam in Ge-doped fused silica (0.3 cm
-1

) [8], made fused silica an 

unsuitable material for CVBGs.  

Each type of CBG had advantages over the other. For example, the CFBG could be 

integrated into a completely monolithic CPA system, such as an all-fiber laser, that was 

insensitive to perturbations in alignment so that stress or temperature did not significantly affect 

its performance. The CVBG, by contrast, needed to be properly aligned with additional free-

space components. The CVBG, however, had certain advantages over the CFBG. One advantage 

was that the quality of stretched and compressed pulses was insensitive to errors in fabrication of 

the device [9]. The problem for the CFBG came from the fact that in a CPA system, feedback in 

the amplifier destabilized the system and could have damaged it. To prevent this, the beam from 

the source must be separated from the amplified stretched pulse by distance or angle in the 

device. This was not a problem with a diffraction-grating based CPA system or with a CVBG-

based CPA system because they were free-space components, so the beam used for stretching 

pulses could be spatially separated from the beam used for compressing pulses, and in a CVBG-

based CPA system, the beams could be at a slight angle to each other instead. Because the CFBG 

was fiber-based, it was built into a waveguide that did not allow for spatial or angular separation, 

so CFBG-based CPA systems always required two gratings, one for stretching pulses and the 

other for compressing them. The quality of the recompressed pulse was highly sensitive to 

differences in dispersion between these two gratings, so any mismatch in fabricating the CFBGs 

distorted the recompressed pulse.  
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Moreover, because the CFBG was fiber technology, the maximum peak power of the 

compressed pulses in a CFBG-based CPA system was limited by self-phase modulation (SPM) 

in the fiber [10]. SPM was the modulation of the phase of the pulse as a result of the nonlinear 

refractive index of the medium through which the pulse propagated. It depended on the peak 

irradiance of the pulse, the nonlinear refractive index of the medium, and the length of the 

medium, as given in Eq. 1.1:  

 

 𝜙𝑁𝐿(𝑡) =  −
𝑛2𝑃(𝑡)𝜔0𝐿

𝑐(𝜋𝑤0
2/2)

 (1.1) 

 

Here, ϕNL(t) was the nonlinear phase, n2 was the nonlinear refractive index, P(t) was the 

peak power of the pulse, ω0 was the central frequency of the pulse, L was the length of the 

material, c was the speed of light, and w0 was the 1/e
2
 radius of the beam.  

Typically, a pulse was not noticeably distorted when the total SPM was limited to 

π/10 radians. For the case of a standard single-mode fiber, the nonlinear refractive index was 

about 3*10
-20

 m
2
/W [11] and the core diameter was 6-10 μm. For a fiber with a length of 10 cm, 

a pulse at a central wavelength of 1 μm would have experienced a phase shift of π/10 radians 

through SPM for a peak power of about 250-700 W. This especially limited the energy in an 

ultrashort pulse; for a Gaussian pulse with a 1 ps FWHM, this limit would be about 0.5-1.4 nJ.  

The CVBG had a much larger cross-sectional area than the CFBG, however, typically on 

the order of mm
2
. This allowed the CVBG to handle a beam with an area about 10

6
 times larger 

than the beam in a CFBG. The nonlinear refractive index of PTR glass was comparable to that of 

fused silica [12], so the SPM limit for the CVBG was about 10
6
 higher than the SPM limit for the 

CFBG, with the SPM limit of the CVBG being on the order of 1 mJ.  
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This made the CVBG suitable for CPA systems that required ultrashort pulses with high 

energy. There were many applications of these systems, such as the generation of THz pulses, 

which had many useful applications of their own, including material inspection, medical 

imaging, and astronomy [13-15]. Ultrashort pulses were also used to generate X-ray pulses, 

which were useful for investigating chemical reactions, phase transitions, and so forth [16-17]. A 

third application of ultrashort pulses was material processing, such as for micromachining or 

writing fiber Bragg gratings [19].  

All of these applications have been demonstrated with ultrashort pulses from Ti:sapphire 

lasers, which operated at a kHz repetition rate and provided a few Watts of average power. The 

repetition rates of these lasers were limited by the thermal loading capabilities of the Ti:sapphire 

crystal amplifiers, which distorted the beams via thermal lensing when the average power of the 

laser reached a few Watts [19]. These lasers provided sufficient energy for their applications at 

the expense of providing pulses at only 1 kHz repetition rates. In contrast, fiber amplifiers have 

been shown to handle average powers on the order of 100 W while providing diffraction-limited 

beam quality and preserving polarization [20-21]. For the ~1 mJ ultrashort pulses that these 

applications required, this allowed for pulses at a repetition rate on the order of 100 kHz. Fiber 

amplifiers could also be more compact than other amplifier systems, such as Ti:sapphire and 

photonic crystal rods [22], because several meters of a fiber amplifier could be coiled into a 

0.1 m
2
 area.  

The performance of the CVBG in a high average power system had not been 

characterized, however. In particular, it would be important to determine what performance 

limitations the CVBG would have in a high average power system, particularly regarding beam 

quality and pulse quality. This performance would depend on the absorption of the incident 
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beam, which would induce a thermal load on the CVBG. The absorption of the PTR glass 

substrate for 1 μm was 5*10
-5

 cm
-1

, and recent developments in the process of CVBG fabrication 

have yielded CVBGs with absorption values of 2*10
-4

 cm
-1

 [6]. These low absorption values 

allowed the CVBG to operate in high average power systems. Experimentation and an 

understanding of the physics involved would enable us to identify the power-scaling limits of the 

CVBG. To that end, two students worked to characterize the spatial and temporal properties of 

the CVBG: I characterized the thermal loading and spatial fidelity of the CVBG, as described in 

sections 3.3 and 3.4, and Matt Rever characterized the quality of pulses recompressed with the 

CVBG, as described in section 3.5.  

To quantify the quality of the beam reflected from the CVBG in a high average power 

system and thereby compare beam quality with varying average power, we used a Gaussian 

beam, the radius of which changed as described by Eq. 1.2 [23].  

 

 𝑤(𝑧) = 𝑤0√1 + (
𝑧

𝑧𝑅
)

2

 (1.2) 

 where 𝑧𝑅 =
𝜋𝑤0

2

𝜆
 (1.3) 

 

Here, w was the 1/e
2
 spot size at the propagation distance z, w0 was the spot size at focus, 

and zR was the Rayleigh range, which was the area of the beam (πw0
2
/2) divided by half the 

wavelength λ.  

When the beam was distorted, beam quality degraded and the relationship in Eq. 1.3 no 

longer held. Instead, the beam diverged faster than ideal and zR decreased by the multiplicative 

factor M
2
 (see Eq. 1.4) [24]. 
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 𝑧𝑅′ =
𝑧𝑅

𝑀2
 (1.4) 

 

To measure beam quality, we moved a razor blade into the beam path perpendicular to 

the direction of propagation, similar to the technique described in the introduction of [25]. The 

position of the razor blade required to attenuate the beam by 10% and 90%, measured by a power 

meter, gave a diameter that was 1.28 times larger than the radius of the beam at that location z 

along the axis of propagation (Figure 1.5). After repeating this procedure for several different 

points along the axis of propagation, we fit the data to Eq. 1.2 to determine the Rayleigh range of 

the beam, and we used Eq. 1.4 to determine the M
2
 of the beam.  

 

 
Figure 1.5. Measuring spot size of propagating beam. Beam quality was measured by 

attenuating the beam with a clean razor blade at 90% and 10% of the power for each point and 

fitting the data to Eq. 1.2. The beam is depicted in blue, and the integral (red) was the power 

attenuated as the razor blade as it passed through the beam. When measuring the position for 

10% and 90% attenuation, the distance was 1.28 times larger than the radius of the beam.  

 

1.4 High Repetition Rate Laser to Induce Laser-Induced Periodic Surface Structures on Si 

Ultrashort pulses have found a wide variety of applications in material processing [29]. 

One possible application of ultrashort pulses was machining, where ultrashort pulses offered 
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several advantages over the nanosecond pulses currently used for machining [30-33]. Another 

application for material processing was the fabrication of coronary stents, which were used to 

keep coronary arteries open [34-35]. A third application was the bulk modification of transparent 

materials [36-46], which could be used to fabricate microfluidic channels in fibers [38] or novel 

telecommunication waveguides [42], among others.  

Recently, the discovery of laser-induced periodic surface structures (LIPSS) has triggered 

immense interest for its applications in semiconductors, such as Si and GaAs [47-50], as well as 

metals such as Ti [51]. For semiconductors, LIPSS have been shown to alter the electro-optical 

properties of the material, resulting in higher photoconductivity for solar cell applications [52].  

LIPSS are classified by the LIPSS period relative to the central wavelength of the 

incident pulses λ0, where low spatial frequency LIPSS (LSFL) have periods between 0.4*λ0 and 

λ0 but high spatial frequency LIPSS (HSFL) have periods of 0.3*λ0 or less [53]. The formation 

of both types of LIPSS was described in detail in section 2.4 of [53], and while the underlying 

physics guiding the formation of LSFL were generally well understood, many researchers 

debated the underlying physics guiding the formation of HSFL. The theory presented in [53] 

related HSFL formation to the ability for atomic bonds to soften and for atoms to move to other 

lattice sites in the crystalline structure; the atoms and the vacancies they left behind formed 

Frenkel pairs. If the material were undisturbed for a sufficient period of time, atoms would move 

into vacancies and Frenkel pairs would be annihilated, but if Frenkel pairs remained when 

subsequent laser pulses arrived, the roughened surface would have allowed for the generation of 

a surface plasmon polariton (SPP) that guided the formation of HSFL. This period of time was a 

material-dependent property: in GaAs, for example, Frenkel pairs lasted for at least 1 s [author of 

53, private conversations]; in Si, by contrast, the Frenkel pairs did not last for 1 ms.  
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HSFL have been made on Si with a laser with a 80-90 MHz repetition rate [47-48], which 

demonstrated that creating HSFL on Si required a laser with a repetition rate between 1 kHz and 

90 MHz. To determine more accurately the recombination time for Frenkel pairs in Si, and thus 

the repetition rate necessary for the formation of HSFL on Si, a femtosecond laser would have 

needed a variable repetition rate with a comparable range.  

To meet this need, a novel fiber laser has been built. It provided femtosecond pulses with 

a 600 fs full width half maximum (FWHM) pulse duration at a variable repetition rate up to 

49 MHz. The laser provided pulses with energy up to 10 μJ at an average power of up to 50 W. 

This laser was used to irradiate Si to study the dependence of the formation of HSFL on the 

repetition rate of the laser, as described in detail in Chapter 4.  

The HSFL on Si were observed with a scanning electron microscope (SEM). The electron 

beam from a scanning electron microscope (SEM) could interact with the material in a number 

of ways, as some detectors in the SEM picked up electrons from the beam that bounced off 

nuclei in the material (back-scattered electrons) and other detectors picked up electrons from the 

material that were ejected by the incident beam (secondary electrons). The secondary electrons 

had less energy than the back-scattered electrons and were more useful for detecting surface 

features, whereas back-scattered electrons were more useful for distinguishing between atoms of 

different atomic weights. The electron beam could also excite electrons in the material, which 

emitted X-rays when they returned to their original state. Because the emitted X-ray energy 

depended on the atom, energy dispersive X-ray spectroscopy (EDS) revealed the atomic 

composition of material on the order of 1 μm below the surface [54].  

 

1.5 Ultrashort Pulses in Eye Surgery 
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Ultrashort pulses have also been useful for many applications in biomedical engineering. 

One example was laser iridotomy, whereby angle-closure glaucoma was treated as pulses opened 

drainage canals through which ocular fluids flowed from the interior of the eye to the surface, 

thus reducing intraocular pressure [54]. Another use of ultrashort pulses in medical applications 

was in optical coherence tomography (OCT), used for non-invasive imaging of tissue samples 

[56]. A third example was the use of ultrashort pulses to treat cataracts [57-58], which obscured 

vision by making the lens opaque.  

Perhaps the best-known example of the application of ultrashort pulses in biomedical 

engineering was the laser eye surgery known as laser-assisted in situ keratomileusis (LASIK). In 

LASIK, ultrashort pulses were used to incise the patient’s cornea so that a flap could be removed 

to expose the middle of the cornea. Ultraviolet pulses were then used to reshape the cornea, and 

the flap was returned to its original position [59]. The end result for more than 95% of patients 

was that his vision was improved [60].  

It was worth noting that while surgeons used ultrashort pulses to make subsurface 

incisions in the cornea, there was not an equivalent form of surgery in the sclera. Such a 

treatment would have allowed for treatment for presbyopia or glaucoma by allowing for 

subsurface drainage channels or mid-scleral drug delivery implants.  

 

Figure 1.6. Proposed eye surgery in sclera. Eye surgery with ultrashort pulses can currently 

be performed in the cornea. It is difficult to translate this procedure to the sclera.  
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There were several challenges to implementing this kind of surgery. One challenge was 

that the damage threshold of the bulk of the sclera was not known, and this would have made it 

impossible for an ophthalmologist to select the appropriate pulse energy for a subsurface 

incision. Another challenge to implementing subsurface scleral surgery came from the fact that 

the sclera was highly scattering for near infrared (NIR) pulses, and scattering varied strongly 

between samples. For example, it had been measured to be as low as 10 cm
-1

 for λ = 1064 nm for 

one sample [62] and as high as 25 cm
-1

 for another sample [63]. The scattering attenuated 

incident pulses exponentially, as described in Eq. 1.5, where I was the pulse irradiance, z was the 

distance of propagation, I0 was the initial pulse irradiance, and μs was the scattering coefficient.  

 

 𝐼(𝑧) = 𝐼0𝑒−(𝜇𝑎+𝜇𝑠)𝑧 (1.5) 

 

To be more accurate, absorption also attenuated incident pulses, and so Eq. 1.5 included 

the absorption coefficient μa, but the absorption of NIR pulses in human sclera was ~0.5 cm
-1

 and 

so was negligible when compared to scattering [63]. Further analysis, therefore, needed to 

account only for attenuation from scattering.  

To compound this problem, strong scattering had been shown to change the size of the 

beam. Specifically, a 1060 nm beam was transmitted through 500 μm of scleral tissue, and the 

beam radius increased by an order of magnitude [64]. Clearly, if one were to implement surgery 

in the sclera using ultrashort pulses, it would have been necessary to measure the scattering 

coefficient in the patient’s sclera and find additional information to determine the damage 

threshold at the focal region targeted for a subsurface incision.  
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One way to probe the sclera was to use backward-propagating second harmonic 

generation (B-SHG). Second harmonic generation (SHG) could be understood from the 

polarization of a material, described in Eq. 1.6, where P was the polarization, t was time, ϵ0 was 

dielectric permittivity, χ
(m)

 was the optical susceptibility of order m, and E(t) was an incident 

electric field.  

 

 𝑃(𝑡) = 𝜖0[𝜒(1)𝐸(𝑡) + 𝜒(2)𝐸(𝑡)𝐸(𝑡) + 𝜒(3)𝐸(𝑡)𝐸(𝑡)𝐸(𝑡) + ⋯ ] (1.6) 

 

SHG was the second order term in the equation, and it could have occurred in any non-

centrosymmetric medium. The sclera naturally produced SHG because the collagen that formed 

the sclera was a non-centrosymmetric triple helix [65]. The process of SHG was highly sensitive 

to scattering of the incident pulses because the generation of the second harmonic depended on 

the square of the incident electric field. Moreover, the sclera satisfied the phase-matching 

conditions that allowed for a portion of the SHG to propagate backward [66]. As it propagated 

backward, the B-SHG also scattered, thereby introducing a second scattering variable to the 

measurement. This would have been a disadvantage to using SHG as a scleral probe unless one 

could separate the scattering coefficients of the two wavelengths.  

The SHG also depended on the second-order nonlinear susceptibility of the material, χ
(2)

. 

Although the magnitude of χ
(2)

 in the sclera was not known, its origin was the non-

centrosymmetric nature of the collagen that forms the sclera. This might have been the additional 

information necessary to select the incident pulse energy for scleral surgery because higher χ
(2)

 

could have indicated a higher concentration of collagen in the focal volume. A pure collagen 

structure had a damage threshold of 0.062 Jcm
-2

±0.06 Jcm
-2

 at 800 nm [67], whereas water, 
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which was the main component of the intraocular fluids that filled gaps between collagen fibrils, 

had an femtosecond laser induced breakdown threshold of 0.2 μJ in a 1 μm spot, which 

corresponded to a fluence of about 10 Jcm
-2

 [68-69].  

It remained to be seen if B-SHG would provide sufficient information for an 

ophthalmologist to determine the energy needed for subsurface scleral incisions.  
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Chapter 2 

Temporal Reciprocity of Chirped Volume Bragg Grating Pulse Stretchers and Compressors 

 

2.1 Introduction 

Chirped pulse amplification (CPA) is necessary for any applications of ultrashort-pulses 

that requires high energy pulses, such as micromachining, THz generation, X-ray generation, and 

so forth [1-3]. The emergence of fiber laser technology has enabled compact, monolithic, and 

robust laser systems that can lead to practical CPA systems. To realize fully the potential for 

practical CPA systems, the pulse stretchers and compressors need to be compact, and so the 

conventional diffraction-grating based pulse stretchers and compressors, which are large and not 

robust, should be replaced with a more practical alternative. Chirped volume Bragg gratings 

(CVBGs) offer such an alternative because they are compact pulse stretchers and compressors 

[4] that are only a few centimeters long. Additionally, a CVBG can serve as both pulse stretcher 

and compressor by virtue of its symmetric geometry.  

This practical technology has some trade-offs, however. One trade-off is the degradation 

of temporal reciprocity with increasing reflectivity of a CVBG. Perfect temporal reciprocity 

would yield complete reproducibility of the initial pulse profile after it is stretched and 

recompressed in the same CVBG. Reciprocity is broken by the abrupt change in depth of 

modulation at the edges of the grating [6-7], and so the dispersion of the CVBG acquires a  

non-reciprocal ripple that distorts the recompressed pulse. This ripple increases with increasing 
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reflectivity of the CVBG, and so the maximum grating reflectivity for practical applications is 

limited to approximately 80% [6]. This is comparable to the typical diffraction-grating based 

pulse compressor efficiency of about 60-80%, which is limited by the fact that four grating 

reflections are needed for pulse compression. Nevertheless, it would be beneficial to access the 

CVBG reflectivities of more than 95%, which are achievable by the volume grating fabrication 

technology.  

One could anticipate that it would be possible to mitigate or even eliminate the temporal 

non-reciprocity effects by removing this abrupt change in depth of modulation at the edge of the 

grating through apodization [7-9]. Our analysis shows that the temporal non-reciprocity can 

never be completely removed through apodization. We also show, however, that the  

non-reciprocity can be significantly reduced for a certain optimized apodization profile, to a 

degree that practically useful CVBG pulse stretchers and compressors with efficiencies 

exceeding 95% can be achieved.  

 

2.2 Numerical Modeling and Apodization Functions  

In the presented analysis, the performance of apodized and unapodized CVBG is 

modeled with transfer-matrix calculations of the complex reflectivity spectrum, as described in 

[10]. The transfer matrix of a unit Bragg cell, Munit cell, is repeated below [Eq. 2.1], where the 

meaning of each symbol is identical to the meaning presented in [10]. Transfer-matrix 

calculations agree well with direct integration of coupled-mode equations [10], and also were 

shown to agree well with experimental results [6].  

 

 𝑀𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙 =
1

1−𝑟2
[
eiϕ − 𝑟2𝑒−𝑖Δϕ 2𝑖𝑟𝑠𝑖𝑛(𝜙ℎ)

−2𝑖𝑟𝑠𝑖𝑛(𝜙ℎ) e−iϕ − 𝑟2𝑒𝑖Δ𝜙
] (2.1) 
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To quantify the effect of apodization on performance of a CVBG, the same form of 

apodization is used throughout the analysis, specifically the super Gaussian function. The order p 

of the super Gaussian function in Eq. 2.2 is the quantification of the apodization [Eq. 2.2]:  

 

 Δn(λ) = Δ𝑛0 exp {− (
𝜆−𝜆0

𝐶𝑅∗
𝐿

2

) 𝑝/|𝑙𝑛(0.01)|} (2.2) 

 

Here, the maximum depth of modulation Δn0 is multiplied to a super Gaussian of order p. 

The CVBG has a central wavelength λ0, a chirp rate CR, and a length L, and reflectivity at the 

edges of the CVBG is 1% of Δn0. Figure 2.1 schematically illustrates few examples of 

apodization.  

 



 

26 

 

 
Figure 2.1 Schematic illustration of apodization functions of various orders: no apodization 

(upper left), p = 16 (upper right), p = 6 (lower left), and p = 2 (lower right).  

 

To explore the reciprocity of a CVBG, we adopt the following procedure. To discount 

any effects associated with the spectral shape of an input signal, we take the input signal to be 

bandwidth-limited at the input of the CVBG stretcher, and with a “flat-top” bandwidth 

significantly exceeding the CVBG bandwidth, i.e. signal spectrum completely filling the 

reflectivity spectrum of the CVBG. Pulse stretching is simulated by launching the input signal 
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into one side of the CVBG, and pulse recompression is simulated by launching the stretched 

pulse into the opposite side of the CVBG.  

For quantifying the magnitude of pulse distortions after the pulse recompression, we 

introduce the effective pulse duration τ [Eq. 2.3], defined in a manner analogous to the effective 

mode area of a fiber. This definition captures the spread of energy in time, accounting for pre-

pulses and post-pulses, which usually is not well-captured just by using the full-width at half-

maximum (FWHM) pulse duration.  

 

 𝜏 =
(∫ 𝑃(𝑡)𝑑𝑡

∞
−∞ )

2

∫ 𝑃(𝑡)2𝑑𝑡
∞

−∞

 (2.3) 

 

Here, P(t) is the recompressed pulse power temporal profile. Furthermore, we introduce 

pulse quality Q, which is defined as the ratio of effective pulse durations of a recompressed pulse 

and of its transform-limit [Eq. 2.4]. This quality factor effectively characterizes the degradation 

of the distribution of pulse energy after the recompression.  

 

 𝑄 =
𝜏𝑟𝑒𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑

𝜏𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚−𝑙𝑖𝑚𝑖𝑡𝑒𝑑
 (2.4) 

 

Using this figure of merit, the ideal value of Q is 1, which occurs when a recompressed 

pulse is transform-limited and there are no dispersion-induced pulse distortions. Increasing 

values of Q indicate the amount of CVBG-induced distortions on the recompressed pulse, i.e. for 

any finite amount of CVBG non-reciprocity Q-value of the recompressed pulse will be higher 

than 1. Figure 2.2 illustrates how distortions to the recompressed pulse appear for two specific 
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Q values: Q = 2.3 (in (a)) and Q = 1.18 (in (b)). Because some of the energy being “shifted” to 

pulse power, peak power of the recompressed pulses degrades: it is ~60% for Q = 2.3, and ~90% 

for Q = 1.18 compared to the undistorted pulse. The maximum acceptable Q value should be 

defined based on the particular application of ultrashort pulses. However, based on the results 

presented in this illustration, we can assume that for Q < 1.2, recompressed pulses are of 

practically acceptable quality.  

 

(a)  (b)  

Figure 2.2 Apodizing a CVBG greatly improves pulse quality. Comparing the recompressed pulses 

from an unapodized CVBG to those from a CVBG apodized with a super Gaussian apodization 

function of the order p = 8 (from Eq. 2.2), it is clear that apodizing a CVBG greatly suppresses 

pulse distortion. Both CVBGs are 3 cm long with 99% reflectivity and a 0.9 nm bandwidth. (a) 

Recompressed pulses (solid) from an unapodized CVBG are strongly distorted compared to their 

transform-limit (dashed), and Q = 2.30 (Eq. 2.4). (b) Recompressed pulses (solid) from an 

apodized CVBG are nearly transform-limited, and Q = 1.18.  

 

2.3 Results and Discussion  

Distortions in the recompressed pulses due to the non-reciprocity of unapodized CVBGs 

have been demonstrated both theoretically and experimentally [6]. The degree of non-reciprocity 

increases with increasing grating reflectivity, so the reflectivity of a practically useful, 

unapodized CVBG cannot exceed about 80%. The non-reciprocity is associated with the abrupt 

edges of the grating structure, which lead to spurious weak reflections from the front and the 
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back of the grating that interfere with the strong main signal reflected from the reflection band of 

the grating. This interference leads to dispersion ripples, which are asymmetric with respect to 

the wavelengths reflected at the “front” and the “back” end of the grating (Figure 2.3). For a 

pulse stretched and compressed with the same grating, the ripples would add for each 

propagation direction, thus producing a non-reciprocal dispersion contribution onto the phase of 

the recompressed pulse.  

 

 

Figure 2.3 Dispersion ripples in the group delay of the CVBG. CVBG bandwidth is 10 nm. Because 

the group delay of the stretched and recompressed pulses are not opposite with respect to each 

other, the CVBG is non-reciprocal.  

 

One could anticipate that if a grating is apodized, the smooth transitions of the modulated 

reflectivity at the grating edges would reduce these spurious reflections, and thus reduce the  
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non-reciprocal dispersion contribution of the grating. Indeed, apodization improves the pulse 

quality of a CVBG (Figure 2.2). In this figure, recompressed pulses from an unapodized CVBG 

and a CVBG apodized with a super Gaussian of the order p = 8 are shown and compared to the 

corresponding bandwidth-limited pulses. The improvement of the recompressed pulse quality is 

apparent. For the unapodized CVBG, the recompressed pulse peak power is only about 60% of 

the peak power of the bandwidth-limited pulse, and Q = 2.3, indicating significant pulse energy 

outside the main pulse. For the apodized CVBG, the peak power is about 90% of the peak power 

of the bandwidth-limited pulse, and Q = 1.18, corresponding to a pulse with significantly smaller 

temporal distortions.  

It is instructive to compare the residual dispersion of unapodized and apodized CVBGs. 

The residual dispersion is calculated after the pulse stretching and recompressing with the same 

grating. The group delay ripple (GDR) of the unapodized CVBG consists of a combination of 

high and low spectral frequency oscillations (Figure 2.4). These oscillations have been shown to 

distort compressed pulses [12]. In contrast, the GDR of the apodized CVBG consists mainly of 

low spectral frequency oscillations, thus reducing pulse distortions.  
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(a)   

 

 

 

(b)   
Figure 2.4 Applying super Gaussian apodization to a CVBG greatly suppresses group delay 

ripple (GDR). Using the same parameters as in Figure 2.2, (a) the unapodized CVBG shows 

more phase distortion than (b) the apodized CVBG.  
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It is worth exploring the possibility of completely eliminating non-reciprocal dispersion 

by using a particular apodization profile. The results presented in Figure 2.5 show that the  

non-reciprocal dispersion can be minimized but not eliminated. The figure shows the dependence 

of pulse quality on varying super Gaussian apodization profiles for different narrow and 

broadband CVBGs. This dependence varies with the CVBG bandwidth, but the optimum always 

occurs for the range of orders of super Gaussian apodization p ≈ 6–8, where pulse quality 

reaches Q ≈ 1.1 - 1.2.  

 

 
Figure 2.5 By varying the order of apodization, pulse distortions can be minimized but not 

eliminated. The optimal pulse quality is achieved for p ≈ 6-8. The CVBGs are 99% reflective 

and 3 cm long, and the bandwidth is listed at the top of each plot. The order of apodization p 

is listed next to each point.  

 

It is interesting to note that recompressed pulse quality appears to degrade for very 

“smooth” apodization profiles, and becomes most pronounced for the Gaussian profile. We also 

explored how these apodization-shape dependencies are affected by different CBG reflectivity 
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magnitudes (Figure 2.6-Figure 2.7). As anticipated, distortions of the recompressed pulse shape 

increase with increasing CBG reflectivity for all apodization profiles. 

 

 
Figure 2.6 The quality of recompressed pulses degrades with reflectivity. The CVBG is 

3 cm long, and the bandwidth of the CVBG is listed at the top of each plot. The order p of 

apodization is listed in the legend, which applies to all figures.  
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Figure 2.7 The quality of recompressed pulses degrades with reflectivity. The CBG is 3 cm 

long with a 0.9 nm bandwidth. 

 

One interesting observation is that non-reciprocity of a CBG is completely determined by 

its length-bandwidth product. In other words, two different gratings with different lengths and 

bandwidths will produce exactly the same distortion if their length-bandwidth product is the 

same. This is illustrated in Figure 2.9. This allows us to universally plot the recompressed pulse 

quality Q as a function of this length-bandwidth product, as shown in Figure 2.9. This plot 

reveals that for the apodization factors in the middle range pulse quality Q is not much affected 

by grating length and bandwidth, but at the edges of this range (i.e. for unapodized and 

Gaussian-apodized profiles) it exhibits some distinct dependence on the CBG bandwidth and 

length. 
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Figure 2.8 Performance of a CVBG can be analyzed using a length-bandwidth product.  
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Figure 2.9 Pulse quality varies with the length-bandwidth product of a 99% reflective CBG.  

 

2.4 Conclusion  

We have shown that it is possible to increase practically useful CBG reflectivity from 

approximately 80% in an unapodized grating to approximately 95% (and higher) in a suitably 

apodized grating. This is much higher than typical compressor efficiencies achievable with 

diffraction-grating based systems.  
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Chapter 3 

Thermal Loading Effects on Chirped Volume Bragg Grating Stretcher/Compressor Systems  

 

3.1 Introduction 

Ultrafast high-power fiber chirped pulse amplification (CPA) lasers are promising for a 

wide range of applications including material processing and inspection, THz imaging, and EUV 

and X-ray generation. Fiber lasers are particularly attractive over conventional bulk solid-state 

lasers because they can be made compact by coiling the amplifiers, they are monolithic, and they 

can be spliced together, thereby removing the need to align components. Moreover, fiber lasers 

can produce diffraction-limited beams even at high power because of the lack of thermal 

aberration.  

In order for a fiber-CPA system to reach its potential for compactness and robustness, the 

bulk diffraction grating stretcher and compressor systems currently in use need to be replaced. 

Chirped-volume-Bragg-gratings (CVBGs) are compact and robust devices that can be used to 

stretch and recompress pulses for CPA lasers and offer substantial benefits over their bulk 

diffraction grating alternatives. First and foremost, they are small; with only a few centimeters of 

length, a CVBG can stretch a transform-limited femtosecond or few-picosecond pulse to 

hundreds of picoseconds (the chirp rate is 100 ps/cm-length) and recompress the pulse back. This 

greatly reduces the overall size of a CPA system, and is essential for preserving the advantages 

of a fiber-laser system. Moreover, they are simple to use; all that must be done is to send a pulse 
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into one end of the grating, and a stretched or recompressed pulse will be reflected back, 

depending on the orientation of the CVBG. This makes them suitable for monolithic systems in 

which free-space components with complex alignment are unusable. Furthermore, these devices 

are polarization independent, and have been shown to withstand high average power and energy 

without damage because they are made of photo-thermo-refractive (PTR) glass.  

Although CVBG stretchers and compressors are not presently limited by damage, what 

has remained unknown is how they perform when used in high average-power systems. Namely, 

the effects of thermal loading on the qualities of the reflected beam and recompressed pulse have 

not been explored. In this work, a CVBG-based fiber-CPA system is demonstrated and 

characterized up to an average power of 200 W uncompressed to reveal limitations on the spatial 

and temporal fidelity of the CVBG. The spatial fidelity of the CVBG is shown to be its limiting 

factor, for it can provide nearly diffraction-limited beam quality up to 100 W, and this power 

limitation is determined primarily by residual absorption in the CVBG. The temporal fidelity of 

the CVBG, however, is not limited to 200 W. The reason for these limits is well explained by the 

physics of thermal loading on the dielectric structure, and an understanding of this phenomenon 

allows us to identify paths toward increasing the power scalability of CVBGs.  

 

3.2 200 W CVBG based Fiber CPA system 

A CVBG-based FCPA setup is shown in Figure 3.1. It is an ytterbium (Yb) fiber-CPA 

system with which up to 200 W of average power incident and 130 W reflected (compressed) 

from a CVBG with pulse durations of ~350 fs has been demonstrated. The system is seeded with 

a Nd:Glass oscillator generating 180 fs pulses at a repetition rate of 72 MHz with a central 

wavelength of 1064 nm. The pulses are sent into the broadband, 3 cm long CVBG stretcher, after 
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which they have an edge-to-edge pulse duration of ~300 ps. Next, a negative dispersion device is 

used to cancel out the residual fiber dispersion, since the stretcher and compressor are 

intrinsically reciprocal. In this experiment, a miniature 2-grating Treacy compressor is used. 

However, this is merely for experimental convenience. In a production system, an appropriate 

length of anomalous dispersion fiber, such as properly engineered photonic band-gap fiber, 

would be used in order to avoid using free-space components.  

 

 
Figure 3.1 Experimental setup of high-power CVBG/CCC based fiber-CPA laser.  

 

A series of amplifiers increased the average power to 200 W. All amplifiers were diode-

pumped at 975 nm and operated in a counter-propagating configuration. The first amplifier was a 

3 m long, 35 μm core/250 μm cladding chirally-coupled core (CCC) amplifier fiber that brought 

the power to 2 W. An amplified spontaneous emission (ASE) filter suppressed ASE from this 
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amplifier. The final amplifier was a 6 m long, 35 μm core/250 μm cladding CCC fiber amplifier, 

which boosted the power to its final level. The amplifier fibers were robustly single-mode and 

required only simple alignment to maximize the power throughput.  

The same CVBG used to stretch the pulse was used for compression to ensure exact 

reciprocity of the stretcher and compressor. The beam was sent in at a small angle (~3°) to 

prevent crosstalk and to avoid the need for isolators or other transmission components that could 

burn at high power. Though the compressed beam was at a small angle, it roughly overlapped the 

stretched beam so that they would experience the same thermal load. A pair of water-cooled 

copper plates further reduced the thermal effects.  

To isolate the spatial fidelity of the CVBG from that of the output beam, the output of the 

second amplifier was fixed at 200 W. This ensured that there was no change in the spatial quality 

of the output beam caused by varying thermal loading conditions on the amplifier. The power 

load on the CVBG was controlled with polarization components inserted after the second 

amplifier; a half-wave plate controlled the polarization of the amplified pulses and a polarizing 

beam splitter controlled the incident power, and hence the thermal load, onto the CVBG.  

 

3.3 Volumetric temperature distribution in thermally-loaded high power CVBGs 

The spatial and temporal fidelity of a CVBG depend on the thermal loading conditions in 

the CVBG, which occur because of residual absorption in the substrate at the operation 

wavelengths. An incident high-power beam thus deposits a fraction of its power into the 

substrate, yielding a volumetric temperature distribution in the grating. This distribution, which 

depends on the average power, spatial profile, and spectrum of the incident beam, then 
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determines distortions imprinted onto the temporal and spatial profiles of the reflected 

compressed-signal beam. 

The dominant thermal-loading effect that primarily defines both the spatial and temporal 

fidelity of the CVBG is associated with the longitudinal optical power distribution in a chirped 

grating. This power distribution is caused by the grating’s spectral reflection characteristics, 

which is to say that the local Bragg condition will distribute the power longitudinally depending 

on the relation of the input spectrum to the reflectivity spectrum (Figure 3.2).  
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Figure 3.2 Illustrated dependence of optical power distribution along CVBG on relation of 

reflectivity spectrum to incident spectrum 
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This power distribution can be computed analytically at each point as the sum of the 

power reflected after the point with the power transmitted to the point (see Figure 3.2). The 

reflected power is the sum of the reflections for all wavelengths between the wavelength 

reflected at the point of interest and the end of the reflectivity spectrum of the CVBG, as 

described in Eq 3.1 below. Here, Sλ(λ) is the input pulse spectrum, α is the material absorption, 

R(λ) is the grating reflectivity, and L is the grating length.  

 

 𝑃𝑟(𝑧0) = ∫ 𝑒−𝛼(2𝑧𝑟𝑒𝑓𝑙−𝑧)𝑆𝜆(𝜆)𝑅(𝜆)𝑑𝜆
𝜆𝑧𝑚𝑎𝑥

𝜆𝑧0
 (3.1) 

 with 𝑧𝑟𝑒𝑓𝑙 =
𝜆−𝜆𝑧𝑚𝑖𝑛

𝜆𝑧𝑚𝑎𝑥−𝜆𝑧𝑚𝑖𝑛

𝐿 (3.2) 

 

The transmitted power is the sum of the power transmitted from all wavelengths in the 

reflectivity spectrum before that point and the power of all wavelengths after that point, as 

described below:  

 

 𝑃𝑡(𝑧0) =  ∫ 𝑒−𝛼𝑧𝑆𝜆(𝜆)(1 − 𝑅(𝜆))𝑑𝜆
𝜆𝑧0

−∞
+  ∫ 𝑒−𝛼𝑧𝑆𝜆(𝜆)𝑑𝜆

∞

𝜆𝑧0
  (3.3) 

 

The power distribution in the CVBG is the sum of these two terms, as given in 

Equation 3.4:  

 

 𝑃𝑡𝑜𝑡𝑎𝑙(𝑧0) =

∫ 𝑒−𝛼(2𝑧𝑟𝑒𝑓𝑙−𝑧)𝑆𝜆(𝜆)𝑅(𝜆)𝑑𝜆
𝜆𝑧𝑚𝑎𝑥

𝜆𝑧0
+ ∫ 𝑒−𝛼𝑧𝑆𝜆(𝜆)(1 − 𝑅(𝜆))𝑑𝜆 + ∫ 𝑒−𝛼𝑧𝑆𝜆(𝜆)𝑑𝜆

∞

𝜆𝑧0

𝜆𝑧0

−∞
 (3.4) 
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For comparison, and to show that the longitudinal power distribution is caused by the 

grating effect rather than by absorption, which is 10
-3

 cm
-1 

or less for the current generation of 

gratings, Figure 3.3 shows a sample calculation for both the above equation and the power 

distribution due only to exponential absorption in a blank slab of PTR glass (with 10
-3

 cm
-1

 

absorption). As can be seen, the grating effect is dominant.  

 

 
 

 

Figure 3.3 Comparison of optical power distribution along CVBG and PTR glass samples 

for normalized incident power  

 

Given the longitudinal power distribution, the 3D temperature in the CVBG can be 

computed using finite-element analysis (FEA) to solve the steady-state heat transfer equation: 

 

 ∇ ∙ (−𝑘∇T) = 𝑄 (3.5) 

 with 𝑄(𝑟, 𝑧) = 𝑃(𝑧) ∗ 𝛼 exp{−2𝑟2/𝑤0
2} (3.6) 
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The numerical model used for the calculations in this work is based on COMSOL 

Multiphysics. Using numerical methods allows for generalizing the model to include cooling 

conditions as well as spatial overlapping of the stretched and compressed beams (so they 

encounter the same thermal distortion) in the gratings, whether complete, partial, or not at all due 

to angle and displacement. This made it possible to simulate accurately the experimental 

conditions. 

The boundary conditions are set according to the cooling system in the experimental 

setup, with all four sides of the CVBG placed in direct contact with a water-cooled copper 

mount. The water flows through 4 mm wide pipes in the mount at a constant temperature of 8°C 

and at a rate of 0.3 gal/min. The remaining surfaces were taken to be insulated. Though 

convection cooling from the air can be taken into account, it is found to be negligible and 

therefore needlessly increases computation time. The heat source Q in Eq. 3.6 is obtained by 

multiplying the power at position z from Eq. 3.4 by the absorption coefficient and distributing 

the power over the Gaussian beam area. Figure 3.4 shows a simulated volumetric temperature 

distribution from the model for a CVBG corresponding to the specifications of the CVBG 

presented experimentally in this study: the sample has the dimensions 5 mm X 6 mm X 27 mm 

as well as a 10 nm bandwidth centered at 1064 nm, and an absorption coefficient of 6.9*10
-4

 cm
-

1
. The remaining material properties are taken to be the same as those of silica glass, which is a 

stock material in COMSOL, because the material properties of PTR glass are very similar to 

those of silica glass [4]. The input pulse is a 200 W Gaussian beam with a 2 mm (1/e
2
) diameter 

and a Gaussian spectrum with a 10 nm FWHM so that the profile of the input fills the reflectivity 

spectrum of the CVBG.  

 



 

47 

 

 

 
Figure 3.4 Numerically simulated 3D temperature distribution in CVBG. An example of a 

numerically simulated 3D temperature distribution in a CVBG. In this example, a 2 mm 

diameter beam of 200 W average power enters the grating in the center of the left facet. The 

input signal spectrum fills the CVBG spectrum. The temperature of the water cooling the 

heat-sink in this calculation is assumed to be 8°C, and the simulated temperature of the heat-

sink itself is 23°C. Beam incidence and reflection are along the z-axis. A color-coded bar on 

the right indicates the temperature in °C, and longitudinal and transverse distributions of 

thermal load on CVBG are plotted beneath. The longitudinal distribution was taken along the 

center of the CVBG, and the transverse distributions were taken along the front of the CVBG.  

 

This thermal load was found to be separable into longitudinal and transverse components, 

as shown in Figure 3.4. One can see from this figure that the longitudinal temperature 

distribution is consistent with the analytical result of the longitudinal optical power distribution 

from Eq. 3.1, shown in Figure 3.3, when the input spectrum of the pulse and reflectivity 

spectrum of the CVBG are matched. The transverse thermal distribution was determined by the 

transverse shape of the input beam. In this case, the Gaussian beam produced nearly Gaussian 
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thermal distributions laterally, each with the same width but a different peak temperature at 

every cross-section of the sample.  

The transverse thermal distribution would change if the size of the input beam were 

changed. Figure 3.5 shows the distribution of the thermal load across the front of the CVBG for 

input beams that are 1 mm and 2 mm wide.  

 

 
Figure 3.5 Size of incident beam determined transverse temperature distribution across the 

front of the CVBG. Transverse thermal distribution across the front of the CVBG for input 

beams of 1 mm and 2 mm width.  

 

We compared numerical predictions with actual CVBG measurements, performed with a 

thermal-imaging camera. A thermal image of the CVBG at 150 W of input power is shown in 

Figure 3.6. The peak temperature in the center of the front of the CVBG was measured to be 
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77.5°C and was simulated to be 71.3°C. The simulated value is higher than would be seen for a 

fixed temperature of the mount because the mount heats slightly when a thermal load is applied 

to the CVBG; this is also seen experimentally. The difference between the measured and 

simulated temperatures is partially attributable to an increase in temperature of the water flowing 

though the mount, which was simulated at a fixed temperature of 8°C, and it is partially 

attributable to numerical error in the experimental measurement.  

 

 
Figure 3.6 Thermal image of temperature distribution at the input 5 mm X 6 mm facet of 

the CVBG with 150 W input beam, whose spectrum fills the CVBG spectrum. Scale bar is 

10 mm.  
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The measured dependence of peak temperature at the center of the input facet of the 

CVBG as a function of incident power is shown in Figure 3.7. The slope of this curve is 

0.3527°C/W, which is close to the numerically predicted slope of 0.3463°C/W. The difference 

between these slopes indicates the margin of error in the experimental and simulated results.  

 

 
Figure 3.7 A comparison of simulated peak temperature at the entrance facet of the CVBG 

to experimental peak temperature as functions of incident power.  

 

This temperature distribution translates into a corresponding modulation of refractive 

index in the CVBG via the thermo-optic effect, which is 5*10
-7/K in PTR glass [4]. Based on the 

thermal load calculated earlier in this section, the corresponding modulation of refractive index is 

the product of the localized thermal load with the thermo-optic coefficient, as shown in Figure 

3.8.  
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Figure 3.8 Modulation of refractive index in CVBG caused by distribution of thermal load 

as presented in Figure 3.4.  

 

This non-uniform modulation of refractive index affects both the spatial and temporal 

fidelity of the CVBG, as described in detail in the subsequent sections. The spatial fidelity of the 

CVBG is affected both by the transverse and longitudinal profiles of the refractive index; the 

transverse profile yields a relatively weak gradient-index (GRIN) lens, and the longitudinal 

profile determines the varying focusing power along the CVBG. The relative focusing power of 

the GRIN lenses is illustrated in Figure 3.9. The chirped nature of the CVBG provides for each 

spectral component to reflect from a unique point in the CVBG, thus experiencing a unique 

focusing power that results in spatial distortion of the beam. 

The temporal fidelity of the CVBG is affected primarily by the longitudinal profile, 

which modulates the dispersion relation in the CVBG by changing the local Bragg condition. 

This can be largely negated, however, by overlapping the stretched and recompressed signal 

beams in the CVBG.  

 

3.4 CVBG spatial fidelity at high average powers 
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The volumetric modulation of refractive index determines the spatial fidelity of the 

CVBG. The transverse profile yields a gradient-index (GRIN) lens with relatively weak focal 

power, and the longitudinal profile determines the focal power as a function of position along the 

CVBG. The relative focal power of the GRIN lenses is illustrated in Figure 3.9. 

 

 
Figure 3.9 Thermally induced modulation of refractive index in CVBG, both longitudinally 

and laterally, yields a GRIN lens that causes the reflected beam to focus. The focal length feff 

is wavelength dependent because each wavelength λ reflects from a different point z(λ). 

Wavelengths reflected from the incident end of the CVBG (blue, λB) focus far away from the 

CVBG, whereas wavelengths reflected at the far end of the CVBG (red, λR) focus close to the 

CVBG.  

 

To determine the effective focal length of the CVBG for each wavelength in the reflected 

spectrum, the general formula for a GRIN lens can be applied to the gradient index determined 

by the profile of the incident beam at each point along the CVBG. Note that this assumes that the 
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refractive index does not vary longitudinally, which is valid for a sufficiently small Δs, and that 

|∇2n| is constant laterally, which is valid for a parabolic approximation of the refractive index 

profile (n(r) = nmax-ar
2
).  

 

 𝑓 =
𝑟

tan (sin−1(𝑛0∗sin (tan−1(Δ𝑠∗|∇𝑛|/𝑛0))))
 → 𝑓(𝑧0) =

1

2aΔ𝑠
, where 𝑎 =

2αP(z)

𝑘w0
2

𝑑𝑛

𝑑𝑇
 (3.7) 

 

From this, the effective focal length of the CVBG can be calculated using the formula for 

a series of lenses back-to-back. The integral is doubled because each wavelength travels to its 

point of reflection and back to the input facet.  

 

 
1

𝑓𝑒𝑓𝑓(𝜆)
= 2 ∗ ∫

1

𝑓(𝑧)
𝑑𝑧

𝑧(𝜆)

0
 → 𝑓𝑒𝑓𝑓(𝜆) =

𝑘𝜋𝑤0
2

2α
𝑑𝑛

𝑑𝑇
∫ 𝑃(𝑧)𝑑𝑧

𝑧(𝜆)
0

 (3.8) 

 

In this equation, feff is the overall effective focal length of the CVBG, w0 is the 1/e
2
 radius 

of the incident beam, α is the absorption coefficient, P(z) is the longitudinal power distribution, 

dn/dT is the thermo-optic coefficient, k is the coefficient of heat conduction of the material, and 

z(λ) is the point in the CVBG at which λ is reflected. Figure 3.10 shows the dependence of 

effective focal length and beam divergence on wavelength and input power. The variation in 

focal length and beam divergence induces a longitudinal spatial chirp, essentially chromatic 

aberration, in the reflected compressed-signal beam that degrades the spatial fidelity of the 

CVBG with increasing input power.  

 

 

 



 

54 

 

 

(a)  (b)  

Figure 3.10 Spectrally dependent focal length (and beam divergence) of a thermally-loaded 

CVBG. (a) Calculated dependence of focal length vs. wavelength due to the thermally-

induced longitudinally-varying GRIN lens in CVBG at different incident power levels. High-

power beam is incident on blue end (1.059 μm) of grating. (b) Beam divergence introduced by 

the same phenomenon. Distortions arise because the convergence of the reflection is 

wavelength-dependent. 

 

The relation of this wavelength-dependent focal length to the overall beam quality is 

given in Eq. 3.9 below, where we determine the 1/e
2
 radius of the beam by integrating the beam 

propagation across the spectrum [9], where feff(λ) is the effective focal length of the CVBG at λ 

and zR(λ) is the Rayleigh range. The M
2
 of the beam is the square of the ratio of the focused spot 

size to the input spot size. Simulation results in Figure 3.11 show that the spatial quality of the 

CVBG degrades rather linearly across much of the power range.  

 

 
1

𝑒2 ∫
1

1+(
𝑓𝑒𝑓𝑓(𝜆)

𝑧𝑅(𝜆)
)

2

𝐵𝑊/𝐶𝑅

−𝐵𝑊/𝐶𝑅
𝑑𝑠 = ∫

e

−(w/w0(λ))2

(1+𝑓𝑒𝑓𝑓(𝜆)2/𝑧𝑅
2 (𝜆))

1+(
𝑓𝑒𝑓𝑓(𝜆)

𝑧𝑅(𝜆)
)

2

𝐵𝑊/𝐶𝑅

−𝐵𝑊/𝐶𝑅
𝑑𝑠 (3.9) 

 with 𝑤0(𝜆) =
𝑤𝑖𝑛𝑓𝑒𝑓𝑓(𝜆)

(𝑓𝑒𝑓𝑓(𝜆)+𝑧𝑅,𝑖𝑛)
 and 𝑧𝑅(𝜆) =

𝑓𝑒𝑓𝑓(𝜆)2𝑧𝑅,𝑖𝑛

(𝑓𝑒𝑓𝑓(𝜆)+𝑧𝑅,𝑖𝑛)
2 (3.10) 
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Figure 3.11 Calculated M

2
 vs. input power for 2.7 cm long and 10 nm bandwidth CVBG.  

 

To determine the effect of thermal loading on the spatial fidelity of the CVBG, we used 

an incident beam that was relatively free of spatial distortion. At 200 W, we measured the M
2
 of 

the incident beam to be 1.1 in both directions, as shown in Figure 3.12.  
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Figure 3.12 Measured M

2
 and CCD image of input beam used in experimental setup  

 

Experimental results show degradation of beam quality at incident powers much lower 

than predicted by this model. Figure 3.13 shows near-field images of the reflected beam for 

increasing incident power, and it demonstrates a visual degradation of the spatial beam fidelity 

gradually with increasing incident power up to 200 W. Because we maintain a constant power 

output from the fiber amplifier system, this degradation of the beam depends only on the thermal 

load of the CVBG. We include the corresponding M
2
 values for this beam degradation and 

compare them to our calculations (Figure 3.14).  

 

     
 50W 100W 150W 200W 

Figure 3.13 Experimental reflected beam near-field images at different powers incident into 

the CVBG. Gradual beam degradation with increasing power is seen here. Scale bar for all 

images is 200 μm.  
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Figure 3.14 Measured and calculated M

2
 vs. input power for 2.7 cm long, 10 nm bandwidth 

CVBG. Blue dots represent the measured vertical M
2
, red dots represent the measured 

horizontal M
2
, and the green curve represents the simulated M

2
 values.  

 

The discrepancy between the experimental and simulated results comes from the 

tendency of the CVBG to bend under a thermal load. While the reason for this bending is a topic 

of ongoing research, the mechanics to control it require that the water-cooled copper plates in 

which it is mounted (Figure 3.15a) provide sufficient force on all sides to compensate for the 

thermally-induced bending. When the CVBG is freely mounted, this bending dominates the 

performance of the CVBG. Figure 3.15b compares the M
2
 values of reflected beams from the 

CVBG as measured above with the M
2
 values of reflected beams from a freely mounted CVBG.  
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(a)  

(b)  
Figure 3.15 The CVBG bends under a thermal load unless the mounting configuration 

suppresses the bending. (a) The copper cooling mount for the CVBG (illustrated with CVBG 

in middle) needs to provide sufficient pressure on all sides of the CVBG to suppress thermally 

induced beam distortions. Pressure is controlled by applying torque to the bolts in the mount. 

Low torque (2 in.-oz.) is needed to suppress thermally induced bending of the CVBG, which 

is evident when the mount applies no pressure (e.g. the top mount makes no contact with the 

CVBG). (b) Measured and calculated M
2
 vs. input power for CVBG. Red dots are the 

measured M
2
 for a CVBG when the top block of the cooling mount makes no contact with the 

CVBG, which can then bend freely with thermal load. Blue dots are the measured M
2
 for the 

same CVBG when a small torque (2 in.-oz.) is applied to each bolt in the copper cooling 

mount to suppress thermally-induced bending of the CVBG. Scale bars are 200 μm.  

 

With the CVBG mounted with no top plate, it bends under a thermal load and the 

reflected beam exhibits spatial chirp. As shown in Figure 3.16, where the CVBG rests on a 
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copper mount with no pressure applied by the mount to suppress thermally-induced bending, 

spatial chirp is evident in the reflected beam for an incident power of 20 W.  

 

(a)  

(b)    
 10 W 20 W 30 W 40 W 50 W 

Figure 3.16 Beam distortion is evident in images of beam reflected from a CVBG that has no 

top mount to suppress thermally induced bending. (a) With the CVBG mounted freely, it 

bends under a thermal load, and the compressed pulses experience spatial chirp. (b) CCD 

images of reflected beam near-field images at different powers incident into the CVBG (10 W 

to 50 W) resting on a copper plate. Rapid beam degradation with increasing power is apparent 

here. Scale bar is 200 μm for all images.  

 

We note that the CVBG bent in only one direction for such a mounting configuration. 

The copper mount underneath the CVBG acts as a heat-sink, inducing a thermal gradient that 

resulted in spatial chirp in the reflected beam. To test this idea, we rotated the CVBG 90° and 

measured the spatial chirp of the reflection CVBG for an incident power of 50 W (Figure 3.17). 

In this configuration, spatial chirp is evident in two directions, which implies that the spatial 

chirp is the result of both the thermal gradient as well as a thermally activated internal stress 

field, which we believe was residual from the writing process of the CVBG.  

 

200 μm 
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(a)   

(b)   
Figure 3.17 Spatial chirp of a CVBG with 50 W incident power and mounted on a copper 

plate. The bending of the CVBG is exaggerated for emphasis. (a) With the CVBG mounted 

upright, the reflection has 2.39 mrad of spatial chirp in one direction. Both a thermal gradient 

and a thermally activated internal stress field contribute to the spatial chirp. (b) With the 

CVBG mounted at a 90° angle, the reflection has 1.05 mrad of spatial chirp horizontally, 

where only the internal stress field contributes to the spatial chirp. Simultaneously, the 

reflection has 2.92 mrad spatial chirp vertically, which arises from only the thermal gradient. 

This indicates how each force affects spatial chirp. Because the spatial chirp in (a) was closer 

to the difference of the two measurements in (b) rather than to the sum of the measurements, 

we suspect that the two forces were competing in (a) and not combining constructively. 

 

3.5 CVBG temporal fidelity at high average powers  

I would like to thank Matt Rever for characterizing the quality of pulses recompressed 

with the CVBG, as described in this section.  

-2

-1

0

1

2

1060 1064 1068

 [nm]

A
n

g
le

 [
m

ra
d

]

-2

-1

0

1

2

1060 1064 1068

 [nm]

A
n

g
le

 [
m

ra
d

]

-2

-1

0

1

2

1060 1064 1068

 [nm]

A
n

g
le

 [
m

ra
d

]

-2

-1

0

1

2

10601062106410661068

 [nm]

A
n

g
le

 [
m

ra
d

]



 

61 

 

The longitudinal temperature distribution described in section 3.3 also affects the 

temporal fidelity of the recompressed pulse. This temperature distribution produces a 

corresponding refractive-index modulation, which affects the local Bragg condition. In effect, 

this modifies dispersion characteristics of the CVBG with increasing thermal load. This effect 

can be compensated, however, if the CVBG is operated in a reciprocal configuration, such that 

both stretched-signal beam and compressed-signal beam are spatially overlapped (albeit 

propagating in opposite directions in the CVBG). This ensures that any dispersion modification 

induced by thermal loading produces phase contributions into stretched and recompressed pulses 

that are equal in magnitude but opposite in sign, resulting in complete cancellation of the net 

effect in the recompressed pulse. 

To facilitate comparison to experiment, the thermo-optic coefficient is 8.6e-6 K
-1

.  

The plot shows good agreement between the model and the experiment. Also, the data 

shows that overlapping the beams is essential in obtaining high-fidelity recompressed pulses. 

Note that the optimal case of perfectly overlapping the beams results in transform-limited pulses, 

however, to avoid crosstalk and damage to the system, the compressed beam must be at a small 

angle with respect to the grating (and the stretched beam). Hence there will always be some 

temporal distortion that is in proportion to the incident laser power but inversely proportional to 

the CVBG absorption coefficient. Figure 3.18 illustrates the effect that the non-ideal overlapping 

has on the recompressed pulses for an 80% efficient, 3 cm long CVBG with 10 nm bandwidth 

for up to 200 W of input power at an absorption of 0.01 cm
-1

. Transfer matrices were used to 

compute the effect of grating dispersion on the recompressed pulses.  
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a. Computed recompressed autocorrelations for various input powers  

 
b.  Recompressed FWHM pulse duration vs. input power for 10 nm CVBG 

Figure 3.18 Computed recompressed autocorrelations and recompressed FWHM pulse 

duration vs. input power for 80% efficient, 3 cm long, CVBG with 10 nm bandwidth 

 

Figure 3.18a shows the recompressed pulse autocorrelations as a function of input power, 

and Figure 3.18b shows the FWHM duration power dependence. As can be seen, the thermal 

effects have a much more profound effect on the wings than on the main pulse peak.  

To verify the efficacy of the model, the autocorrelations computed at various powers and 

overlap conditions are compared to measurements. At low power (<10 W), the resulting pulses 

are found to be transform-limited (computed from the zero-phase FFT of the measured 

compressed spectrum) both in theory and measurement. At a moderate power of 50 W, a 

deviation from the transform-limit is observed, as shown in Figure 3.19. 
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Figure 3.19 50 W autocorrelations, theoretical and measured 

 

The plot shows good agreement between the model and the experiment. Also, the data 

shows that overlapping the beams is essential to obtain high-fidelity recompressed pulses. Note 

that the small angle at which the beam is sent into the CVBG implies that there will always be 

some temporal distortion that is proportional to the incident laser power but inversely 

proportional to the CVBG absorption coefficient.  

Good agreement between the analysis and the measured data is also seen at higher 

powers, shown in Figure 3.20 and Figure 3.21, corresponding to 100 W of incident power and 

150 W of incident power, respectively.  

 

 
Figure 3.20 100 W autocorrelations, theoretical and measured 
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Figure 3.21 150 W autocorrelations, theoretical and measured 

 

These plots indicate that the 3D model captures the power effects on the grating 

dispersion. Therefore, the performance at higher powers can be extrapolated.  

The main result is that the longitudinal temperature distribution in the CVBG produces 

significant dispersion change at the power range from 100 W to ~200 W. However, because the 

effect of this longitudinal distribution can be compensated by overlapping counter-propagating 

beams in the same grating for stretching and recompression, temporal dispersion can be largely 

eliminated in this power range.  

 

3.6 Generalized Results  

Assuming that the optimal mounting conditions can be met, the spatial fidelity of the 

CVBG would be limited by the residual absorption, which could only be improved by reducing 

the absorbed power. Therefore, to generalize our simulation results for cases of different 

absorption coefficients, we recalculated them for a normalized product of power and absorption 

coefficient (measured in W/cm). This captures the fact that CVBG thermal loading depends not 

only on the incident optical power but also on its residual absorption. By decreasing this 

absorption, the thermal loading is reduced at fixed optical powers. Figure 3.22 shows reflected 

beam M
2
 as a function of this normalized parameter.  
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Figure 3.22 Spatial quality of the reflected beam as a function of incident power and CVBG 

substrate absorption coefficient. 

 

In order for the CVBG to achieve better spatial fidelity under a high thermal load than 

that presented in this paper under the ideal mounting conditions, it is necessary to reduce the 

material absorption in the PTR substrate of the CVBG. Changes to the manufacturing techniques 

for CVBGs have reduced this absorption by an order of magnitude in the past, and it is possible 

for the next generation of CVBGs to have even less absorption.  

To quantify the degradation of the recompressed pulse quality in a general way, a metric 

for the pulse duration that captures the various effects must be introduced. In analogy to the 

effective mode area commonly used to quantify the beam size exiting a fiber, an effective pulse 

duration is introduced as described in Eq. 3.11.  
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Here, P(t) is the temporal power signal and τeff is the pulse duration. This metric allows 

us to introduce a metric for the broadening that is independent of the bandwidth and transform-

limited duration, as given in Eq. 3.12. 

 

 Qt = τeff(recompressed) / τeff(transform-limited) (3.12) 

 

 

Figure 3.23 Recompressed pulse quality factor Qt (left plot) and temporal Strehl ratio (right 

plot) as a function of thermal loading of CVBGs. Overlap between stretched and compressed 

beams in the same grating is assumed. 

 

3.7 Conclusion  

In summary, the main finding is that the power-scaling limits of the current generation of 

CVBGs is limited to somewhat below 200 W of average power at 1064 nm. Both experimental 

results and numerical modeling demonstrate that the main limiting factor is the transverse beam 

distortion, whereas temporal beam distortions can be compensated by overlapping stretched and 

recompressed beams in the CVBG. While numerical modeling suggests that the power limit for 

these transverse distortions would be closer to 1 kW, primarily because of the residual absorption 

in the PTR-glass substrate, experimental results show that the main limitation in CVBG 

performance is bending of the CVBG structure as induced by a high thermal load. From this, we 

can extrapolate how to improve the power-scaling performance of CVBGs, both by optimizing 
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the mounting conditions of the CVBG and by reducing the residual absorption of the PTR glass 

substrate.  
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Chapter 4 

Polarization dependence of high spatial frequency laser-induced periodic surface structures on 

silicon  

 

4.1 Introduction 

The discovery of laser-induced periodic surface structures (LIPSS) has been very 

intriguing because they present the ability to define structures on laser-irradiated surfaces with 

features well below the wavelength of the incident light, which means that features can be made 

smaller than the minimum achievable spot size. LIPSS have been studied on semiconductors 

such as silicon (Si) [1-10] and gallium arsenide (GaAs) [11-12], where LIPSS can change 

electro-optical properties, yielding an increase in optical absorption and photocurrent [12].  

Although the physics guiding the formation of low spatial frequency LIPSS (LSFL) is 

fairly well understood, the physics guiding the formation of high spatial frequency LIPSS 

(HSFL) remains a topic of ongoing research with several competing models [11, 13-18]. One 

model [11] describes the evolution of HSFL through multiple surface morphologies. Initially, 

incident pulses excite valence electrons and soften inter-atomic bonds. Ions have a room 

temperature velocity distribution, and a small fraction can move away from their lattice site, 

drifting ¼ unit cell in about 1-2 ps before electrons relax and restore atomic bonds. Ions that 

move to interstitial sites significantly strain the lattice, and diffusion of these interstitials to the 

surface relieves this strain. Once adatoms reach the surface they coalesce into epitaxial islands 
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that are initially one or two atomic layers thick. Islands continue to grow with subsequent pulses. 

When islands reach a certain height, sets of islands begin to support a surface plasmon polariton 

(SPP) capable of inducing alignment of surface morphology because they are driven by 

preferential absorption at the crests of the SPP. Eventually, a LIPSS population forms with a 

period determined by the SPP wavelength. Strain accumulates in the LIPSS, and relaxation of the 

strain accumulation leads to bifurcation of the LIPSS. Experimental results of HSFL on GaAs 

are consistent with this model [11].  

Of the many groups studying LIPSS on Si, one reported HSFL with an 80 MHz laser [1], 

while others reported LSFL with 1 kHz CPA systems [2-10]. Based on the aforementioned 

model, the formation of HSFL requires that incident pulses build a defect population faster than 

defects annihilate, and the recombination time of defects in Si might be much less than 1 ms. We 

show that a 49 MHz CPA system can be used to irradiate Si to form HSFL and to grow a thermal 

oxide. Moreover, the incident polarization defines the orientation of HSFL, which is consistent 

with the evolutionary model of HSFL.  

 

4.2 Experimental Setup 

The experimental setup is a chirped volume Bragg grating (CVBG) based fiber chirped 

pulse amplification (CPA) system that can provide 50 W average power and 10 μJ pulse energy 

at a variable repetition rate (Figure 4.1).  
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Figure 4.1 Experimental CVBG-based CPA system. The source is a mode-locked oscillator 

[20-21], and an acousto-optic modulator (AOM) sets the repetition rate for the system. A 

series of four amplifiers increase pulse energy to 10 μJ and average power to 50 W.  

 

The source is a mode-locked oscillator with a 49 MHz repetition rate [20-21], and an 

acousto-optic modulator (AOM) downcounts the pulse train to set the repetition rate of the CPA 

system. The output Gaussian beam is linearly polarized and nearly diffraction-limited, with the 

measured M
2
 = 1.0 in both directions (Figure 4.2a). The output pulses have a central wavelength 

of 1062 nm, and autocorrelations have a FWHM duration of 900 fs, corresponding to a FWHM 

pulse duration of 600 fs (Figure 4.2b).  
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(a)   

(b)  
Figure 4.2 Experimental beam and pulse quality. (a) The output beam quality is  

diffraction-limited, and M
2
 = 1.0 in both directions. (b) Autocorrelations of output pulses are 

900 fs FWHM, corresponding to a FWHM pulse duration of 600 fs.  

 

Before irradiation, 500 μm thick n-type (100) Si samples are cleaned with acetone, 

isopropanol, and ethanol, which is blown off with compressed dry nitrogen. Samples are 

irradiated in air in regions 40 μm wide by 1 mm long (Figure 4.3). Each region is irradiated with 

bi-directional raster-scanning, where a motorized translation stage translates the sample 1 mm to 

irradiate a track, and each subsequent track is irradiated in the opposite direction 2 μm below the 

previous track. The process is repeated until the entire region is irradiated.  

Although scan direction reportedly influences the orientation of LSFL [5], it does not 

influence the orientation of HSFL on (100) Si. To demonstrate this, one sample is irradiated with 
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the incident polarization perpendicular to the scan direction, while another sample is irradiated 

parallel to the scan direction. In both cases, the orientation of HSFL is perpendicular to the 

incident polarization.  

 

 
Figure 4.3 Raster scanning pattern used for HSFL formation on (100) Si. To irradiate a 

40 μm X 1 mm region, a translation stage translates the sample 1 mm. An adjacent track is 

irradiated 2 μm away and is formed by scanning the sample anti-parallel to the initial scan 

direction. This pattern is repeated until the entire region is irradiated.  

 

A halfwave plate and polarizing beam splitter control the fluence on target. HSFL form at 

fluences below the ultrafast melt threshold [22], which we estimate to be 0.33 J/cm
2
 based on the 

ablation threshold of 0.38 J/cm
2
 [23] and on the fact that the melt threshold is 15% lower than 

the ablation threshold for pulses centered at 780 nm [24].  

We examine irradiated samples with a variety of techniques. Surface morphology is 

imaged with scanning electron microscopy (SEM, FEI Nova SEM/FIB) in secondary electron 

mode, and composition is measured with X-ray energy dispersive spectroscopy (EDS) from 

SEM. A laser confocal microscope (Olympus OLS 4000 LEXT) measures the height of 
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irradiated regions with a depth resolution of 12 nm. Samples are etched in buffered HF for 

10 minutes to remove the thermal oxide that forms during irradiation, after which surface 

morphology is imaged with SEM.  

 

4.3 Results and Discussion 

Before etching, samples irradiated below melt threshold have aperiodic surface features 

(Figure 4.4a-b). An EDS measurement suggests the surface structure is SiO2, which reaches a 

height of 850 ± 150 nm over the irradiated region (Figure 4.4c-d).  

 

(a)  (b)  

(c)  (d)  

Figure 4.4 SEM image of irradiated Si surface before etching. The sample is irradiated at a 

fluence of 0.17 J/cm
2
 at 49 MHz for 8*10

5
 exposures per spot. (a-b) Aperiodic surface 
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features, about 1 μm in diameter, form on the irradiated region. (c) EDS suggests the 

existence of SiO2, and (d) the structure reaches a height of 850 nm ± 150 nm. The scale bars 

on the last the image are 10 μm parallel to the surface and 2 μm in height.  

 

The Si peak is higher than the O peak in the EDS measurement. Because EDS reveals the 

atomic composition of a material on the order of 1-10 μm below the surface [25], where 

penetration depth is a function of both the material and the accelerating voltage of the electron 

beam [26], the stronger Si peak suggests that the oxide is thinner than the penetration depth of 

the EDS.  

LIPSS formations can be seen on the Si surface (Figure 4.5). The LIPSS period is 

192 ± 19 nm, which is 0.18 ± 0.02 times the central wavelength of the incident pulses, and so 

they are HSFL [27]. We speculate that refraction at the air-oxide interface changes the fluence at 

the Si surface, although this might not influence the formation of HSFL. The growth of the oxide 

is governed by ultrafast absorption in Si, which is 6*10
5
 m

-1
 [28]. The thermal conductivity of Si 

decreases substantially with temperature [29], allowing heat to accumulate with subsequent 

pulses. If the pulse period is sufficiently long, heat accumulation would be negligible as the 

material would cool between pulses. If the pulse period is short enough, however, the thermal 

conductivity would decrease with each pulse. The time-dependent heat equation describes this 

more accurately [Eq. 4.1].  

 

 𝜌𝐶𝑝
𝑑𝑇

𝑑𝑡
+ ∇ ∙ (−𝑘(𝒓, 𝑡)∇𝑇(𝒓, 𝑡)) = 𝑄(𝒓, 𝑡) 4.1 

𝑄(𝒓, 𝑡) = 𝛼𝐼(𝒓, 𝑡) 

 

In this equation, ρ is the mass density, Cp is the specific heat capacity, k is the thermal 

conductivity, T is the temperature, Q is the heat source, r is the spatial coordinate, and t is time. 



 

76 

 

The heat source is the absorption of the incident pulse train, where α is absorption and I is 

irradiance.  

As the oxide grows, the air-glass interface takes on submicron surface features, as seen in 

the final formation in Figure 4.4Error! Reference source not found.b. Refraction at this 

interface distorts the wavefront of the incident pulses. The fluence at the Si surface is determined 

by wave propagation through the oxide, so an oxide with a thickness much less than the 

wavelength of the incident pulses will not substantially affect the fluence at the Si surface. 

Because thermal conductivity is temperature dependent and the temperature distribution depends 

on thermal conductivity, we expect the oxide to grow exponentially.  

One consequence of this growth pattern is that the thickness of the oxide could be 

submicron until the final moments of irradiation, when the number of exposures far exceeds the 

number needed to form HSFL. The thermal oxidation would then be consuming the LIPSS. More 

precisely, if the Si near the interface melts and solidifies, it can solidify into amorphous-Si. 

Amorphous-Si has a thermal conductivity two orders of magnitude less than crystalline Si [30], 

although the α-Si layer may be too thin to store any significant amount of thermal energy. As a 

result, the temperature at the surface of the Si would still be determined primarily by the thermal 

conductivity of the (100) Si.  
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Figure 4.5 SEM of HSFL on (100) Si after etching off oxide. The sample is irradiated at a 

fluence of 0.17 J/cm
2
 at 49 MHz with 8*10

5
 exposures per spot. LIPSS formations have a 

period of 192 nm ± 19 nm, making them HSFL.  

 

To demonstrate that the incident polarization defines the orientation of the HSFL, another 

sample is irradiated with the incident polarization parallel to the scan direction. Again, the HSFL 

formations are perpendicular to the incident polarization (Figure 4.6), revealing that it defines the 

orientation of HSFL, which is consistent with the model for the evolution of HSFL [11]. 

Moreover, the LIPSS period is 176 ± 14 nm, which is within one standard deviation of the LIPSS 

period for the first sample.  
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Figure 4.6 SEM of HSFL on Si, demonstrating that HSFL form perpendicular to incident 

polarization. The sample is irradiated at a fluence of 0.18 J/cm
2
 at 49 MHz for 10

5
 exposures. 

The LIPSS period is 176 nm ± 14 nm.  

 

These results indicate that scan direction does not influence the orientation of HSFL on 

(100) Si, in contrast to a model showing that scan direction influences the orientation of LSFL on 

Si [5]. Instead, the orientation of the HSFL depends on the incident polarization, which is 

consistent with the model for the evolution of HSFL on semiconductors [11]. According to this 

model, the orientation of the HSFL is determined by SPP coupling at the surface of the 

semiconductor, and the SPP propagates along the direction of the incident polarization. The 

3 μm 
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polarization-dependence of HSFL formations on GaAs has already been shown [11]. Several 

other models exist to explain the polarization dependence of HSFL on semiconductors [13-18].  

 

4.4 Conclusion 

We have demonstrated that irradiation of (100) Si with a 49 MHz repetition rate CPA 

system can result in thermal oxidation and the formation of HSFL on the Si surface. Speculation 

about the thermal oxide suggests that it grows exponentially, and so it may not inhibit the 

formation of HSFL. Additionally, the orientation of the HSFL depends on the incident 

polarization and not on the scan direction. One explanation for this is that the model for the 

evolution of HSFL on GaAs, described in [11], applies to Si.  
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Chapter 5 

Second-Harmonic Generation in Scleral Collagen as a Guide for Controlled Subsurface 

Photodisruption 

 

5.1 Introduction  

Various proposed treatments of ocular infirmities, such as presbyopia and glaucoma, 

have involved the creation of subsurface channels in the sclera at precise depths [1, 2]. 

Femtosecond lasers are suitable to make these channels in a procedure similar to that of laser-

assisted in situ keratomileusis (LASIK) surgery, which applies femtosecond lasers to corneal 

tissue. Channels form when focused laser pulses induce highly localized subsurface 

photodisruption that leaves minimal damage to the surrounding tissue [3].  

Femtosecond lasers are not yet used in clinical settings to perform scleral surgery because 

clinical femtosecond lasers operate with a central wavelength around 1 μm, for which the sclera 

strongly attenuates the incident beam, primarily because of scattering [4]. Overcoming this 

attenuation has been difficult because the scattering coefficient varies strongly between samples, 

for which there could be several reasons, including hydration levels, intraocular pressure and 

tissue mechanical properties. One proposed solution involves optically clearing the sclera [5], 

although it may not be viable for in vivo applications. Another proposed solution is to use a 

central wavelength of 1.7 μm, for which scleral tissue is minimally scattering. Precise channel 

formation in sclera has been demonstrated in vivo for this wavelength [2], but this involves the 
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use of optical parametric amplification, which increases the complexity and reduces the 

reliability of a clinical system.  

Performing precise scleral surgery with clinical femtosecond lasers requires knowing the 

optical properties of the tissue so as to predict the pulse energy needed for subsurface incisions. 

Without this measurement, excessive pulse energy would produce shallow incisions while 

insufficient energy would yield no incision.  

This challenge inhibits the application of clinical femtosecond lasers to scleral surgery. 

Having a non-invasive probe that can make preliminary measurements to determine the 

scattering coefficient of the sample could make possible new treatments that require making 

subsurface incisions in the sclera. Because scleral tissue produces substantial second harmonic 

generation (SHG) [6], we investigate the use of SHG in scleral collagen as a probe that can 

measure the local optical properties of the tissue and determine the pulse energy needed for a 

subsurface incision.  

 

5.2 Theoretical Model: Second Harmonic Generation  

Tissues rich in type-I collagen are efficient media for SHG because of the  

non-centrosymmetric triple helical structure of the collagen molecules [6]. Sclera is composed of 

~50% type-I collagen by weight and is known to emit a strong SHG signal in both the forward 

and backward direction when excited by a focused femtosecond laser pulse [7, 8]. For an in vivo 

application, an external detector can measure the backward-propagating SHG (B-SHG), whereas 

the forward-propagating SHG (F-SHG) will penetrate into the posterior sclera towards the 

vitreous chamber of the eye globe, where it is difficult to measure. Our analysis, therefore, 

focuses on the B-SHG that escapes the tissue, which depends on the tissue optical properties, 



 

84 

 

including the attenuation of the incident beam as it focuses in the tissue, the nonlinear 

susceptibility of the tissue around the focal plane, and the attenuation of the B-SHG signal 

emitted from the focal volume. The attenuation of the incident beam is assumed to be 

exponential with propagation depth z in the tissue, characterized primarily by μs,ω, the scattering 

coefficient of the frequency of the incident beam, which is much greater than the absorption 

coefficient [4]; the attenuation of the B-SHG is characterized similarly with μs,2ω. 

Given the highly irregular structure of the lamellar collagen fibrils [9], the nonlinear 

susceptibility deff is expressed simply as a scalar quantity independent of the incident field 

polarization. The irradiance of the B-SHG I2ω at the focal depth z0 relates to the irradiance of the 

incident beam Iω as follows:  

 

 𝐼𝑆𝐻𝐺(𝑧0) = (𝜉𝐵(𝑧0)
𝜂𝑑𝑒𝑓𝑓

2 (𝑧0)

𝐴(𝑧0)
) exp{−2𝜇𝑠,𝜔𝑧0} ∗ 𝐼𝜔

2 (𝑧0) (5.1) 

 

where ξB is the fraction of total SHG emitted backward, η is the characteristic impedance of the 

tissue, and A is the area of the beam, which presumably increases with depth because of 

scattering. Although B-SHG efficiency has been observed to decrease with depth [10-11], its 

behavior is not clearly defined, so experimental results were needed to determine the depth 

dependence of ξB, deff, and A, the factors that contribute to the B-SHG conversion efficiency. 

Taking the attenuation of the B-SHG signal into account as it propagates to the surface of the 

tissue, the measured signal by a detector is:  

 

 𝑈𝑚𝑒𝑎𝑠 = 𝜁𝑒𝑥𝑝 (
𝜉𝐵(𝑧0)𝑑𝑒𝑓𝑓

2 (𝑧0)η

𝐴(𝑧0)𝜏
) exp{−(2𝜇𝑠,𝜔 + 𝜇𝑠,2𝜔)𝑧0} ∗ 𝑈0

2 (5.2) 
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where U0 is the incident energy, τ is the pulse duration, and ζexp is a constant that combines 

various experimental parameters, including detector gain and quantum efficiency, lens collection 

angle, and filter transmission. This simple model ignores the contributions of any F-SHG 

photons that are backscattered.  

The terms in Eq. 5.2 can be systematically combined to understand their physical 

meaning. One term, the exponential term 2μs,ω + μs,2ω, represents the total scattering in the tissue, 

which we define as the compound scattering coefficient of the tissue. The amplitude in 

parenthesis is the B-SHG conversion rate of the tissue, which gives the B-SHG conversion 

efficiency for an arbitrary input energy. For our experiments, we normalize the B-SHG 

conversion efficiency for each sample to the highest measured conversion efficiency. We expect 

the B-SHG conversion efficiency to change with depth because of the irregular structure and 

composition of the sclera, which is primarily a mixture of collagen molecules and intraocular 

fluid [9].  

Both tissue properties, the compound scattering coefficient and the B-SHG conversion 

efficiency, can be experimentally extracted by measuring the B-SHG signal at different focal 

depths and fitting an exponential curve to the data. The curve fit gives the amplitude and the 

exponential decay of the data, where the amplitude corresponds directly to the B-SHG 

conversion efficiency at the surface of the tissue but the exponential decay does not correspond 

directly to the compound scattering coefficient. Because we need to determine the functional 

form of B-SHG conversion efficiency with depth, it was necessary to measure data at multiple 

lateral locations and to relate the amplitude to the exponential decay μmeasure with Eq. 5.3:  

 

 𝜇𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = (2𝜇𝑠,𝜔 + 𝜇𝑠,2𝜔) + 𝛾 ln (
𝜉𝐵(0)𝑑𝑒𝑓𝑓

2 (0)𝜂

𝐴(0)𝜏
) (5.3) 



 

86 

 

 

Experimental data from all samples verified that the form of Eq. 5.3 is appropriate and 

quantified γ for each sample.  

 

5.3 Experimental Setup and Method  

To test this model, full porcine ocular globes were acquired on ice from a slaughterhouse 

and processed them less than 24 hours after extraction. After each specimen was brought to room 

temperature, the extra-ocular muscles and conjunctiva were carefully removed with surgical 

scissors without damaging the scleral surface. To control for variations in intra-ocular pressure in 

globes that deflated during transport, balanced salt solution was injected through the optic nerve 

to maintain a pressure closer to physiological levels (~15 mmHg [12]). The globe was then 

positioned in a customized screw mount to applanate the treatment region against a glass window 

through which the laser pulses were delivered. Care was taken to ensure that the applanated 

scleral region was free of naturally-occurring pigmentation to minimize any effects of local 

absorption on laser attenuation.  

Both probe pulses and subsurface cavitation pulses were delivered to the samples with a 

femtosecond fiber laser (Amplitude Systèmes, Satsuma) (Figure 5.1a) that provided ~400 fs 

pulses at a central wavelength of 1030 nm and a repetition rate of 40 kHz. A motorized  

half-wave plate and polarizer controlled incident pulse energy, up to a maximum of 6.5 μJ. An 

aspheric lens (Thorlabs, C230TMD-B) with an effective numerical aperture (NA) of 0.35 

focused the laser beam into the porcine samples, which were mounted on an XY motorized 

stage. Moreover, galvanometric scanners (Thorlabs, GVSM002) were used to sweep the laser 

focus laterally across the sample.  
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Our experimental method consisted of two consecutive stages. First, single low-energy 

probe pulses were delivered at several depths and many different lateral locations across a 

0.5 mm X 1 mm region of the tissue to stimulate the B-SHG signal and extract the local optical 

properties with Eq. 5.2. The area of the region was similar to an area suitable for scleral implants 

and was large enough to resolve with an optical coherence tomography (OCT) scanner. Care was 

taken to ensure that the pulse energy was kept well below energy levels where molecular or 

mechanical damage was suspected. The incident pulses were focused at several depths below the 

surface, from 200 μm to the target depth of 300 μm where the incision was later attempted, to 

extract experimentally the local optical properties by fitting the data to Eq. 5.2. The amplitude 

and exponential decay from the curve fits at each lateral location were later processed with 

Eq. 5.3 to determine the rate γ at which conversion efficiency changed with depth. The B-SHG 

signal from each pulse was collected through the focusing lens and spectrally isolated from 

reflections at the fundamental wavelength using a dichroic mirror (532/1064 nm) and a pair of 

spectral filters (a narrow-band 515 nm filter as well as a Schott low pass color filter). A 

photomultiplier tube detector (Hamamatsu) collected the B-SHG signal, and a USB-connected 

oscilloscope (Rigol) digitized and recorded the amplified signal.  

After collecting B-SHG over the entire 0.5 mm X 1 mm region, we attempted to perform 

femtosecond laser disruption in the same area in the tissue at a depth of 300 μm. To this end, the 

laser pulse energy was incrementally adjusted until a disruption layer was observed using an 

OCT (Zeiss Visante). To form each disruption layer, high-energy (μJ) pulses were delivered at a 

40 kHz repetition rate while galvanometric scanners swept the beam ±40 μm to either side of 

focus (10 mrad) and a motorized translation stage translated the sample at 0.05 mm/s until a 

1 mm long region was irradiated. This process was repeated six times to irradiate the entire 
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0.5 mm X 1 mm region. After the area was irradiated, the sample was imaged with an OCT to 

determine the minimum energy needed for subsurface damage. Figure 5.1b is an OCT image 

showing a 3 mm long incision at 260 μm depth below the scleral surface. Note that the dark area 

below the incision plane is an OCT artifact produced by losses in the OCT signal due to strong 

scattering along that plane. 
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(a)  

(b)  
Figure 5.1 (a) Experimental setup for B-SHG measurements and femtosecond laser 

microsurgery. Pulses from a femtosecond fiber laser were focused using a 0.35 NA aspherical 

lens into unpigmented regions of sclera in whole ex vivo porcine ocular globes. A half-wave 

plate and polarizer controlled the incident pulse energy to alternate between low-energy  

B-SHG probe pulses and high energy (μJ) surgery pulses. B-SHG signal generated in the 

sclera was collected by the focusing lens, spectrally filtered using a dichroic mirror (DM) and 

2 bandpass filters (BPFs), and detected with a photo-multiplying tube (PMT). When applying 

high-energy pulses, the tissue was translated 1 mm along the X direction using a motorized 

stage while the laser focus was swept ±40 μm across the Y direction with the galvo scanners 

to create 2D subsurface incisions parallel to the scleral surface. Several parallel adjoining 

tracks were made serially to form incisions 0.5 mm in Y by 1 mm in X. (b) After an incision 

was attempted, an OCT revealed if the attempt was successful. In this image, a 3 mm long 

subsurface incision was made successfully at a depth of 260 μm.  
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5.4 Results and Discussion  

For 26 porcine globes, we collected B-SHG data, namely the compound scattering 

coefficient and the normalized B-SHG conversion efficiency, as well as the minimum pulse 

energy required for an incision. Each globe was sampled at multiple sites, each the same size 

(0.5 mm X 1 mm, 200-300 μm range of depths for B-SHG measurements), and for each site, the 

B-SHG signal was obtained from single laser pulses focused at various depths. The focal depth 

was measured relative to the anterior scleral surface, which was determined accurately by 

translating the objective lens along the direction of propagation while monitoring the B-SHG 

signal, which peaked as the focus of the beam crossed the glass-tissue interface (Figure 5.2a).  

We then measured the B-SHG signal at several different focal depths, and by fitting the 

results for each lateral location to the exponential form in Eq. 5.2, we extracted the normalized 

B-SHG conversion efficiency at the surface and the exponential decay of the signal (Figure 

5.2b). The values for all lateral locations in the sample were also averaged to obtain an average 

and standard deviation of the B-SHG conversion efficiency across the region where a subsurface 

incision was attempted.  
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(a)   

(b)  
Figure 5.2 (a) B-SHG was used to determine the surface of the tissue so as to focus 

accurately at the target depth. Measured B-SHG signal (green dots) from the center of the 

region of interest in a single porcine scleral sample peaked at the surface of the tissue and 

decayed exponentially with focal depth. (b) Measured B-SHG signal (green dots) sampled 

with the laser focused at depths ranging from 200 to 300 μm below the surface. The 

corresponding exponential fit of this data to Eq. 5.2 (dashed line) yielded the averaged  

B-SHG conversion efficiency (0.26 a.u.) and exponential decay (168 cm
-1

). A curve fit for 

each lateral location yielded the B-SHG conversion efficiency and exponential decay for each 

lateral location in the probed region.  
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With this data from the sample, we were able to determine how the B-SHG conversion 

efficiency changed with depth. The B-SHG conversion efficiency and exponential decay were 

compared for all lateral locations, which revealed a highly logarithmic relation between the 

exponential decay and the B-SHG conversion efficiency (Figure 5.3). It is worth noting that all 

26 porcine ocular globes showed this relation. Based on Eq. 5.2, the compound scattering 

coefficient would not be strongly related to the B-SHG conversion efficiency, so we determined 

that the B-SHG conversion efficiency was decreasing exponentially with depth at a rate γ and 

that the constant in the logarithmic relation in the data must be the average compound scattering 

coefficient in the sample. From this, we were also able to determine the average and standard 

deviation of the compound scattering coefficient for each region of the ocular globe.  

 



 

93 

 

  

Figure 5.3 Measured B-SHG signal from Figure 5.2 plotted by lateral location. At each 

lateral location, the corresponding B-SHG conversion efficiency and exponential decay 

(blue dots) were strongly correlated, revealing the relation of the exponential decay in the 

measurement to the change in B-SHG conversion efficiency with depth. The linear curve fit 

of this data could then be interpreted with Eq. 5.3 (dashed line) to determine the measured γ, 

assumed to be uniform in the region, as well as the compound scattering coefficient for each 

lateral location in the sample.  

 

Averaging over all 26 ocular globes, we obtained a mean compound scattering coefficient 

of 201
 
± 25 cm

-1
, which was in excellent agreement with previously published results that 

measured the porcine sclera optical properties using a conventional integrating sphere [4].  

To relate the local optical properties of the sclera to the energy needed to create 

subsurface incisions, high-energy incident pulses were focused at a depth of 300 μm and a 

subsurface incision was attempted with increasing pulse energy until a distinct photodisruption 
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layer was observed in OCT images. The OCT revealed the photodisruption layer with a shadow 

beneath the layer; this shadow was attributed to scattering of the OCT signal by cavitation 

bubbles produced during irradiation from high-energy pulses.  

For each scleral sample from which we collected B-SHG data, pulse energy was 

increased incrementally until subsurface damage was achieved. In Figure 5.4, which is the OCT 

scan of the sample shown in Figure 5.2 and in Figure 5.3, 3 adjacent subsurface incisions were 

attempted at a 300 μm depth with pulse energy of 4.6 μJ, 5.2 μJ, and 5.9 μJ. While the lowest 

two energy levels did not result in strong contrast in the OCT image about the focal plane, the 

highest energy resulted in a distinct shadow. We determined the threshold for photodisruption to 

be the lowest energy at which we observed a clear OCT shadow (5.9 μJ in this case), and we 

repeated this process of determining the damage threshold for all 26 samples after measuring the 

optical properties for each sample. 

 

 
Figure 5.4 For the same globe as in Figure 5.2 and Figure 5.3, photodisruption was 

attempted at a target penetration depth of 300 μm with a range of incident pulse energy, 

specifically 4.6 μJ, 5.2 μJ, and 5.9 μJ. The OCT resolved damage at 300 μm for the incident 

pulse energy of 5.9 μJ.  

 

For practical applications, it is necessary to find a correlation between the tissue optical 

properties and the energy threshold for photodisruption so that B-SHG can be used as a non-
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invasive probe to predict this energy. The data collected from all 26 ocular globes reveals a 

moderate negative correlation between the normalized B-SHG conversion efficiency and the 

energy threshold for photodisruption (ρ=-0.614) (Figure 5.5a). To explain this, we assume that 

the B-SHG conversion efficiency depended mostly on the collagen molecules and negligibly on 

the interfaces between the intraocular fluid of the sclera and the collagen fibrils, which might 

have generated weak SHG signals [13]. Because a pure collagen scaffold has a considerably 

lower damage threshold [14] than water [15], we speculate that a higher density of collagen 

molecules yields a higher B-SHG conversion efficiency and a lower damage threshold, hence the 

negative correlation.  

We would also expect the data to reveal that the energy threshold for photodisruption 

would depend exponentially on the scattering coefficient, albeit on the scattering coefficient of 

the fundamental wavelength rather than the compound scattering coefficient. Comparing the 

compound scattering coefficient to the energy threshold for photodisruption for the same data set 

(Figure 5.5b), the best fit reveals an exponential dependence of the energy threshold on the 

compound scattering coefficient after applying a correction factor to reduce the compound 

scattering coefficient to μs,ω, the scattering coefficient of the incident beam. This correction 

factor was 4.4, and based on previously published results, we expect this correction factor to be 

slightly greater than 4 [16].  
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(a)   

(b)  
Figure 5.5 Energy needed for subsurface damage relates to the B-SHG conversion 

efficiency and the scattering coefficient of the incident beam. For 26 porcine ocular globes, 

the pulse energy needed for subsurface damage was compared to (a) the B-SHG conversion 

efficiency and (b) the compound scattering coefficient (2μs,ω + μs,2ω) of the B-SHG probe. (a) 

A moderate negative correlation (ρ = -0.614) was observed between B-SHG conversion 

efficiency and the minimum pulse energy needed for photodisruption at a penetration depth of 

300 μm. (b) An exponential dependence of the minimum pulse energy needed for cavitation 

on (2μs,ω + μs,2ω) indicated the correction factor of 4.4 to reduce (2μs,ω + μs,2ω) to μs,ω, where 

previously published results indicate a correction factor slightly larger than 4 [16].  
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Based on these results, we see that we can use B-SHG as a non-invasive probe to 

determine the scattering coefficient for the tissue at the wavelength of the incident beam. We 

also introduce a relation between the B-SHG conversion efficiency and the energy needed for 

subsurface damage. These relations could be used, with some error, to determine the energy 

needed for subsurface cavitation in ex vivo porcine sclera.  

 

5.5 Conclusion  

We demonstrate that it is possible to use B-SHG in collagen-rich tissues, such as the 

sclera, to measure the tissue optical properties. Local measurements of these properties could 

then be used to estimate the laser parameters needed for subsurface disruption in the tissue, 

leading to more precise subsurface surgical incisions. This technique offers new modalities for 

the treatment of various ocular infirmities like glaucoma and presbyopia.  
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Chapter 6 

Conclusions and Future Work 

 

Since the first demonstration of CPA [1], ultrashort pulses have found many applications, 

and the CBG has served as a compact pulse stretcher-compressor for CPA systems [2]. We 

explored the limitations in the reciprocity of a CBG as well as the power-handling capabilities of 

a CVBG in a high average power system.  

We have demonstrated that the reciprocity of a CBG could be optimized to provide high 

efficiency pulse compression. Apodization has been known to compromise bandwidth and 

improve pulse quality, and we show that the degree of apodization could be carefully selected to 

meet design criteria for the efficiency, bandwidth, and pulse quality of a CBG-based CPA 

system. The degree of apodization was measured here as the power of the super Gaussian used as 

the apodization function.  

We have also explored the use of a CVBG in a high average power system to determine 

limitations in its performance. The primary limitation was the spatial quality of the compressed 

signal beam, and this was the primary limitation because the CVBG was found to bend under a 

thermal load. This bending could be suppressed mechanically, namely by the mounting 

conditions of the CVBG. In the case where the bending of the CVBG was fully suppressed, the 

beam quality remained the primary limitation in the performance of the CVBG, where absorption 
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of the incident beam transformed the CVBG into a GRIN lens with substantial chromatic 

aberration, resulting in spatial distortions to the reflected beam.  

Understanding the performance limitations of the CVBG in a high average power CPA 

system, we were able to apply the CVBG to a 50 W average power CPA system with a variable 

repetition rate. With this system, we studied the formation of HSFL on (100) Si with 600 fs 

pulses centered at 1060 nm at a repetition rate of 49 MHz, and we found that the average 

irradiance heated the Si locally, thereby growing a thermal oxide that competed with HSFL 

formation. HSFL formation was the dominant mechanism defining Si morphology when the 

average irradiance was minimized. Moreover, the variable repetition rate of the CPA system has 

made it possible to explore the dependence of HSFL formations on the lifetime of Frenkel 

defects in Si.  

Finally, we have demonstrated that compact fiber CPA system could be used in 

ophthalmology, where B-SHG could be used as a non-invasive probe in sclera to measure local 

properties of the tissue. These tissue properties could then be used to approximate the energy 

needed for subsurface damage. This opened the door to achieving subsurface scleral surgery with 

femtosecond lasers at a precise depth for treating infirmities such as glaucoma and presbyopia. 

 

6.1 Unanswered questions  

The work presented here left open a number of questions that could be addressed with 

additional work.  

One question involved the fluence at focus as (100) Si samples were irradiated with the 

50 W laser. The fluences reported for the formations described in Chapter 4 were the fluences at 

the focus of an unscattered beam. Because of thermal oxidation, however, the air-SiO2 interface 
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would have provided a weak reflection that reduced fluence at the Si-SiO2 interface. Moreover, 

images taken after irradiation showed that the oxide broke at some point during irradiation, and 

the rough air-SiO2 interface would have scattered the incident beam during irradiation and 

distorted the wavefront of the beam at the surface of the Si, further reducing the fluence at the Si 

surface. Moreover, when the thickness of the oxide became comparable to the Rayleigh range of 

the incident beam, as in the case when the reported fluence was 0.34 J/cm
2
, the beam probably 

started to diffract by the time it reached the surface of the Si, and fluence would have been 

reduced further. The actual fluence at the Si interface was not well characterized, however. With 

a more thorough understanding of the scattering and wavefront distortions of the incident beam 

by the rapidly expanding thermal oxide, we could have properly characterized the fluence at the 

Si surface in these experiments.  

Explaining the thermal oxidation more thoroughly would involve modeling rapid thermal 

oxidation on irradiated Si. Because the SiO2 formations formed on the millisecond time scale, 

this model could not ignore the time-dependent term of the heat equation, which was ignored in 

Chapter 3. Moreover, the thermal conductivity of Si [4] and of SiO2 [5 for thin layers up to 

2.3 μm thick, 6 for bulk] was temperature dependent, and the temperature distribution changed as 

the SiO2 layer grew, adding further complexity to the model. Another factor to consider would 

be the temperature dependence of the refractive index of SiO2, which would affect the scattering 

of incident pulses off the air-SiO2 interface. These might not comprise all the factors needed for 

such a model, but understanding the thermal oxidation during irradiation would allow us to 

explain more fully the conditions under which HSFL formed.  

One of the more interesting questions involved the absence of LIPSS on Si when samples 

were irradiated with a stationary beam. Within one beam diameter, the local Si atoms were 
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irradiated for an exposure time on the order of 10 ms. When a single region of Si was irradiated, 

however, no LIPSS could be seen, in contrast to experiments performed on GaAs [3]. To 

demonstrate this, a sample was irradiated with a beam that remained stationary for a given dwell 

time. To control the dwell time, galvanometric scanners (Cambridge Technologies, 1064 nm 

dielectric mirrors) positioned the beam on the sample, then moved the beam away to a beam 

dump after the desired dwell time had elapsed. Because single irradiated regions were difficult to 

find with an SEM, we used the largest spot size (1/e
2
 diameter: 33 μm) for which we could make 

markers at a fluence of 0.5 J/cm
2
 with the 50 W laser. To achieve this spot size, a 10 cm lens 

focused the beam, and the galvos operated between the lens and the sample.  

To cool the Si when irradiating at such a high average power, the sample was mounted on 

a cooper cooling block that had 8 °C process water flowing through it. The copper mount was 

meant to remove heat from the back of the sample, where heat was conducted through the 

sample at a rate determined by the thermal conductivity of Si [4]. The region was exposed under 

similar conditions for which LIPSS were made (0.22 J/cm
2
, 49 MHz, 20 ms exposure time for 

10
6
 pulses), (Figure 6.1). EDS measurements confirmed that the region did not have a thick 

oxide on the surface.  
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(a)  (b)   

(c)  
Figure 6.1 When Si was irradiated under conditions where HSFL had formed (0.22 J/cm

2
, 

10
6
 pulses, 23.4 W average power) but with a stationary beam instead of a translated beam, a 

mound of Si formed on the surface. (a) A mound formed on top to a thickness of 0.5 μm 

(measured with the LEXT; this false color image indicated the height of the mound, where 

color represented height (colorbar on left)). After etching, (b) LEXT measurements showed 

no change in surface morphology (false color image, same colorbar in (a) applied to this 

image). (c) An EDS measurement confirmed that only Si remained after etching. The region 

was irradiated with a 23.4 W average power beam at a repetition rate of 49 MHz (pulse 

energy was 0.48 μJ) for 20 ms (10
6
 pulses), and 1/e

2
 spot diameter was 33 μm (target fluence 

was 0.22 J/cm
2
). The sample was fixed to a copper cooling mount. Although SiO2 formed 

above HSFL for a fluence around 0.2 J/cm
2
 on Si, it did not form for a stationary beam.  

 

Analyzing the region with an SEM (Figure 6.2) revealed that no LIPSS had formed on 

the surface.  

 

0

10000

20000

0 100 200 300

Si

Energy [eV]

N
u
m

b
e
r 

o
f 

C
o
u
n
ts

40 μm 40 μm 

Before Etch After Etch 

irradiated 

region 

galvos swept the beam 

up into position and 

down out of position 



 

105 

 

(a)  (b)  

 
Figure 6.2 No LIPSS formed when Si was irradiated with a stationary beam (0.22 J/cm

2
, 

10
6
 pulses, 23.4 W average power). (a) The irradiated region was difficult to see in an SEM 

on a 30 μm scale, and (b) closer examination revealed no LIPSS formation on the surface. For 

the sample above, parameters and experimental conditions were the same as in Figure 6.1. 

Although HSFL formed for fluences around 0.2 J/cm
2
 on Si, they did not form for a stationary 

beam.  

 

If the sample were irradiated further, however, a crater formed in the region. As shown 

below (Figure 6.3), Si was irradiated under the same experimental conditions as shown above 

(Figure 6.2) but for 50 ms and 100 ms.  

 

30 μm 3 μm 
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(a)  (b)   

(c)  (d)  
Figure 6.3 Crater formation on Si. When Si was irradiated for too long, a crater formed in 

the surface. For the sample above, parameters were the same as in Figure 6.2 except that the 

exposure time varied. (a) An SEM image of exposure for 50 ms (2.5*10
6
 pulses) shows a 

hole, and (b) 3D LEXT measurements show the hole to be 11.0 μm deep (scale bars: 20 μm 

laterally and 2 μm deep). (c) An SEM image for 100 ms (5*10
6
 pulses) exposure, for which 

(d) it was impossible to measure the depth (3D LEXT measurement estimated the depth to be 

34.2 ± 9.8 μm) (scale bars: 20 μm laterally and 10 μm deep). Images were taken after etching 

the sample. We saw here that the thermal load limited the exposure time for a given region of 

the sample.  

 

Given that irradiation conditions were similar to those for which HSFL formed, it was 

very interesting to see this Si morphology, especially without a thick oxide layer, as shown by 

the EDS measurement. The samples had been cooled from behind, and because of the high 

thermal conductivity of Si (156 W/mK at 300 °K [4]), enough heat may have been removed to 

prevent the rapid thermal oxidation reported in Chapter 4. If that were so, the Si morphology 
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observed above remains a mystery, as does the fact that we did not see any LIPSS when 

irradiating Si with a stationary beam.  

Another interesting question involved the shape of the focused beam used to form LIPSS 

here. The Gaussian beams used for these experiments provided variable fluence to the samples, 

where the fluence in the wings was much lower than that of the peak. Consequently, when the 

pulses irradiated samples, the target fluence for the experiment was in center of the beam, but 

lower fluences affected the periphery of the region. A flat-top beam would provide uniform 

fluence over a given region rather than this variable fluence. Because of the tight requirements in 

the beam delivery system described in chapter 4, the pulses needed to be delivered as Gaussian 

beams to minimize beam expansion along the beam path and thereby minimize clipping on the 

optics. If the beam were to be reshaped, it would need to happen shortly before focusing the 

beam on target.  

As for the prospect of scleral surgery, the most pressing question was how the results 

from ex vivo porcine scleral samples would have translated into in vivo human sclera. Obtaining 

the answer to this question would have required several steps, each answering a lesser question. 

For example, one could ask if the results taken ex vivo could be applied to tissue in vivo, and the 

answer would involve experimentation in sedated animals, which were usually rabbits. For both 

porcine and rabbit tissue, scattering values for infrared light in sclera differ from those of humans 

[7], and so results from in vivo rabbits would not directly translate to human sclera. If such 

experiments were to reveal enough information that a clear understanding of the surgical 

procedure could be developed for people, then ex vivo experiments in humans would probably be 

enough to verify that understanding. Otherwise, there would be no way to avoid experimentation 
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in in vivo human sclera. To establish a novel surgical procedure in human sclera, meeting 

guidelines from the Food and Drug Administration (FDA) would also be necessary.  
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Appendix:  

Analytical Model of Beam Distortions in Thermally Loaded Azimuthally-Symmetric Reflective 

CVBG 

 

A1. Analytical Model  

A high-power beam incident on a CVBG induces a thermal load on the CVBG via 

absorption of the beam, which results in a volumetric temperature distribution determined both 

by the shape of the beam and by the power distribution along the CVBG. This temperature 

distribution, in turn, alters the refractive index by the thermo-optic effect, which transforms the 

CVBG into a graded-index (GRIN) lens. Because each spectral component reflects from a 

unique longitudinal position in the CVBG, it encounters a GRIN lens of a unique thickness and, 

therefore, a unique focal length. The result is that when compressing an amplified stretched 

pulse, the beam becomes chromatically aberrated.  

To understand this phenomenon more completely, we begin by analyzing the volumetric 

temperature distribution. The temperature distribution is a solution to the steady-state heat 

transfer equation, given in Eq. 3.5 and repeated below [A1.1]. In this equation, T(r,z) is the 

volumetric temperature distribution, k is the coefficient of heat conduction, and Q(r,z) is the heat 

source. In the case of a high average power Gaussian beam incident on a CVBG, heat is 

generated by absorption of the incident beam, where α is the absorption coefficient (in W/m), 

P(z) is the peak power at longitudinal point z, and w0 is the 1/e
2
 beam width.  
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 ∇ ∙ (−k∇T(r, z)) = 𝑄(𝑟, 𝑧) (A1.1) 

 𝑄(𝑟, 𝑧) =
𝛼𝑃(𝑧)

(𝜋𝑤0
2/2)

exp {−
2𝑟2

𝑤0
2 } (A1.2) 

 ∇ ∙ (−k∇T(r, z)) =
2𝛼𝑃(𝑧)

𝜋𝑤0
2 exp {−

2𝑟2

𝑤0
2 } (A1.3) 

 ∇ ∙ {−k (
𝑑𝑇

𝑑𝑟
𝒓 +

1

𝑟

𝑑𝑇

𝑑𝜃
𝜽 +

𝑑𝑇

𝑑𝑧
𝒛)} =

2𝛼𝑃(𝑧)

𝜋𝑤0
2 exp {−

2𝑟2

𝑤0
2 }  (A1.4) 

 −𝑘 (
𝑑2𝑇

𝑑𝑟2 +
1

𝑟

𝑑𝑇

𝑑𝑟
+

1

𝑟2

𝑑2𝑇

𝑑𝜃2 +
𝑑2𝑇

𝑑𝑧2) =
2𝛼𝑃(𝑧)

𝜋𝑤0
2 exp {−

2𝑟2

𝑤0
2 } (A1.5) 

 

We can solve this equation by assuming that the temperature distribution takes the form 

T(r, θ, z) = Tr(r)*Tθ(θ)*Tz(z)+T0. Because the heat source here depends both on r and z, this 

assumption would hold if conduction were primarily in one direction, so that terms on the left-

hand side vary along only one coordinate and the temperature distribution in the other 

coordinates would closely follow the heat source (e.g. so that P(z)/Tz(z) would be constant 

(Figure 1A)). We find that conduction would be primarily radial under certain cooling conditions 

and for a particular incident spectrum. To eliminate the azimuthal component of the conduction, 

the CVBG would need to be cooled uniformly on all its sides, which would be nearly equidistant 

from the center, and the heat source would need to have no azimuthal dependence. To minimize 

the longitudinal component of the conduction, the length of the CVBG would need to be much 

greater than its width, it would need to be insulated at its front and back facets, and the 

longitudinal components of the heat source would need to be linear (which comes from matching 

the spectrum of the incident beam to the reflectivity spectrum of the CVBG).  
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Figure 1A Longitudinal power distribution and temperature distribution along CVBG. 

Longitudinal power distribution Qz(z) compared to temperature distribution Tz(z) in center of 

CVBG for a CVBG (5 mm wide, 6 mm high, 27 mm long) insulated at the front and back 

facets but conductively cooled on its edges, with an incident beam of 2 mm (1/e
2
 diameter). 

The temperature and power distributions match almost perfectly, indicating that conduction 

longitudinally along the CVBG is proportional to the power distribution (i.e. radial 

conduction is the primary form of conduction). The approximation fails marginally at the ends 

of the CVBG.  

 

This reduces the heat transfer equation to an ordinary differential equation with respect to 

radius. Here, each component of the temperature distribution and the heat source is written in a 

short-hand form (e.g. Tr(r)→Tr, Tθ(θ)→Tθ, etc.) and ' denotes differentiation.  

 

 𝑇𝜃𝑇𝑧 (𝑇𝑟
′′ +

𝑇𝑟
′

𝑟
) =

𝑄𝑟𝑄𝑧

−𝑘
=

2𝛼𝑃(𝑧)

−𝑘𝜋𝑤0
2 exp {−

2𝑟2

𝑤0
2 } (A1.6) 

 𝑇𝜃𝑇𝑧(𝑟𝑇𝑟
′′ + 𝑇𝑟

′) =
2𝛼𝑃(𝑧)

−𝑘𝜋𝑤0
2 𝑟 exp {−

2𝑟2

𝑤0
2 } (A1.7) 

 𝑇𝜃𝑇𝑧(∫ 𝑟𝑇𝑟
′′𝑑𝑟 + 𝑇𝑟) = 𝐶1(𝜃, 𝑧) −

2𝛼𝑃(𝑧)

𝑘𝜋𝑤0
2 ∫ 𝑟 exp {−

2𝑟2

𝑤0
2 } 𝑑𝑟 (A1.8) 
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 𝑇𝜃𝑇𝑧(𝑟𝑇𝑟
′ − ∫ 𝑇𝑟

′𝑑𝑟 + 𝑇𝑟) = 𝐶1(𝜃, 𝑧) +
𝛼𝑃(𝑧)

2𝜋𝑘
exp {−

2𝑟2

𝑤0
2 } (A1.9) 

 𝑇𝜃𝑇𝑧(𝑟𝑇𝑟
′ − 𝑇𝑟 + 𝑇𝑟) = 𝐶1(𝜃, 𝑧) +

𝛼𝑃(𝑧)

2𝜋𝑘
exp {−

2𝑟2

𝑤0
2 } (A1.10) 

 𝑟𝑇𝜃𝑇𝑧𝑇𝑟
′ = 𝐶1(𝜃, 𝑧) +

𝛼𝑃(𝑧)

2𝜋𝑘
exp {−

2𝑟2

𝑤0
2 } (A1.11) 

 𝑇𝜃𝑇𝑧𝑇𝑟
′ =

𝐶1(𝜃,𝑧)

𝑟
+

𝛼𝑃(𝑧)

2𝜋𝑘

1

𝑟
exp {−

2𝑟2

𝑤0
2 } (A1.12) 

 𝑇𝜃𝑇𝑧𝑇𝑟 = 𝐶0(𝜃, 𝑧) + 𝐶1(𝜃, 𝑧) ln(𝑟) +
𝛼𝑃(𝑧)

2𝜋𝑘
∫

1

𝑟
exp {−

2𝑟2

𝑤0
2 } 𝑑𝑟 (A1.13) 

 𝑇𝜃𝑇𝑧𝑇𝑟 = 𝐶0(𝜃, 𝑧) + 𝐶1(𝜃, 𝑧) ln(𝑟) +
𝛼𝑃(𝑧)

4𝜋𝑘
𝐸𝑖 (−

2𝑟2

𝑤0
2 ) (A1.13a) 

 

To solve for C1, we use the initial condition that dT/dr = 0 at r = 0 [A1.16], which is to say 

that the temperature distribution is radially symmetric about the middle of the CVBG.  

 

 𝑇′(0, 𝜃, 𝑧) = lim
𝑟→0

𝑇′(𝑟, 𝜃, 𝑧) = 0 (A1.14) 

 lim
𝑟→0

1

𝑟
[𝐶1(𝜃, 𝑧) +

𝛼𝑃(𝑧)

2𝜋𝑘
exp {−

2𝑟2

𝑤0
2 }] = 0 (A1.15) 

 𝐶1(𝜃, 𝑧) = −
𝛼𝑃(𝑧)

2𝜋𝑘
 (A1.16) 

 

The other initial condition is that the temperature at the boundary r0 is known to be 

Tr(r0) = Tb [A1.17].  

 

 𝑇(𝑟0, 𝜃, 𝑧) = 𝑇𝑏 = 𝐶0(𝜃, 𝑧) +
𝛼𝑃(𝑧)

2𝜋𝑘
[

1

2
𝐸𝑖 (−

2𝑟0
2

𝑤0
2 ) − ln(𝑟0)] (A1.17) 

 𝐶0(𝜃, 𝑧) = 𝑇𝑏 +
𝛼𝑃(𝑧)

2𝜋𝑘
[ln(𝑟0) −

1

2
𝐸𝑖 (−

2𝑟0
2

𝑤0
2 )] (A1.18) 
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This is the full temperature distribution [A1.19]. Note that it is identical to the 

temperature distribution for a cylindrical rod heated with a Gaussian beam [1].  

 

 𝑇(𝑟, 𝜃, 𝑧) = 𝑇𝑏 +
𝛼𝑃(𝑧)

2𝜋𝑘
[ln (

𝑟0

𝑟
) +

1

2
𝐸𝑖 (−

2𝑟2

𝑤0
2 ) −

1

2
𝐸𝑖 (−

2𝑟0
2

𝑤0
2 )] (A1.19) 

 

The parabolic approximation of T(r, θ, z) is important because it will simplify the 

calculations of the spatial distortions in the reflected beam that arise indirectly from the 

temperature distribution. More precisely, the gradient of the temperature distribution [Eq. A1.20] 

will affect the reflected beam.  

 

 ∇𝑇(𝑟, 𝜃, 𝑧) =
𝛼𝑃(𝑧)

2𝜋𝑘
∗

1

𝑟
exp (−

2𝑟2

𝑤0
2 ) (A1.20) 

 

Writing the first few terms of the Taylor expansion of this gradient shows more clearly where 

the parabolic approximation fails with respect to beam radius.  

 

 ∇𝑇(𝑟, 𝜃, 𝑧) =
𝛼𝑃(𝑧)

2𝜋𝑘𝑤0
[−2 (

𝑟

𝑤0
) + 2 (

𝑟

𝑤0
)

3

−
4

3
(

𝑟

𝑤0
)

5

+ ⋯ ] (A1.21) 

 

From this, we see that the parabolic approximation holds for the same diameter of the 

beam regardless of the beam radius.  
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This temperature gradient induces a localized change in refractive index (by the thermo-

optic effect), as described in Eq. A2.1, which causes the reflected beam to focus as it exits the 

CVBG. Here, 
𝑑𝑛

𝑑𝑇
 is the thermo-optic coefficient.  

 

 n = n0 +
𝑑𝑛

𝑑𝑇
Δ𝑇 + (

𝑑2𝑛

𝑑𝑇2) Δ𝑇2 + ⋯ (A2.1) 

 

Where nonlinear terms in Eq. A2.1 were insignificant (≥ 500 °C, [2]), the change in 

refractive index depended only on the linear term.  

 

 n = n0 +
𝑑𝑛

𝑑𝑇
Δ𝑇 (A2.2) 

 

This gradient index transforms the CVBG into a GRIN lens, which causes light to refract 

as it propagates through the lens (Figure 2A). A common GRIN lens is the SELFOC lens, which 

has a graded refractive index characterized by the parabolic profile given in Eq. A3.1, where 

n0γ
2
r is the gradient of the refractive index [3, 4].  

 

(a)  (b)  

Figure 2A Fundamental operation of GRIN lens. (a) Collimated light incident on a graded-

index lens refracts inside the lens and comes to a focus on the opposite side. The lens has 

thickness d, and collimated rays (θ0=0) incident at r0 away from the optical axis refract inside 
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the lens and emerge at radial distance r(d) and at angle θ(d). These rays intersect the optical 

axis at a distance f from the lens. (b) The refractive index profile is typically parabolic with 

respect to radius and is characterized by n=n0(1-½γ
2
r

2
).  

 

 𝑛(𝑟) = 𝑛0(1 −
1

2
𝛾2𝑟2) (A3.1) 

 

The behavior of the SELFOC lens has been characterized before [4], and its behavior 

describes that of the thermally-loaded CVBG when the parabolic approximation of the refractive 

index holds in the CVBG. To make this approximation, we must find that all higher-order terms 

in Eq. A1.19 are negligible.  

 

 𝑇(𝑟, 𝜃, 𝑧) ≈ 𝑇(0, 𝜃, 𝑧) −
𝛼𝑃(𝑧)

2𝜋𝑘

𝑟2

𝑤0
2 (A4.1) 

 

For a SELFOC lens of thickness d, incident rays follow a sinusoidal path with a periodic 

length of 2π/γ [5]. The radial position and angle of each ray at distance d, therefore, are 

characterized by Eq. A5.1 and Eq. A5.2.  

 

 𝑟(𝑑) = 𝑟0 cos(𝛾𝑑) +
𝜃0

𝛾
sin (𝛾𝑑) (A5.1) 

 𝜃(𝑑) =
𝑑𝑟

𝑑𝑧
= −𝛾𝑟0 sin(𝛾𝑑) + 𝜃0cos (𝛾𝑑) (A5.2) 

 

This can be represented in matrix form, as shown in Eq. A5.3.  

 

 𝑀 [
𝑟0

𝜃0
] = [

cos (𝛾𝑑)
sin(𝛾𝑑)

𝛾

−𝛾sin (𝛾𝑑) cos (𝛾𝑑)
] [

𝑟0

𝜃0
] = [

𝑟(𝑑)
𝜃(𝑑)

] (A5.3) 
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The focal length of this GRIN lens is given by Eq. A5.4, where n1 is the refractive index 

outside the lens [1].  

 

 𝑓 =
(𝑛1/𝑛0)

𝛾𝑠𝑖𝑛(𝛾𝑑) 
 (A5.4) 

 

When γd is small enough that sin(γd) ≈ γd (and cos(γd) ≈ 1), the focal length and matrix 

representation of the lens can be simplified.  

 

 𝑓 =
(𝑛1/𝑛0)

𝛾2𝑑
 (A5.5) 

 𝑀 = [
1 𝑑

−𝛾2𝑑 1
] (A5.6) 

 

To model the thermally-loaded CVBG, we use a series of GRIN lenses of small 

thickness d, for which we denote the matrix of the i
th

 lens as shown [Eq. A5.7].  

 

 𝑀𝑖 = [
1 𝑑

−𝛾𝑖
2𝑑 1

] (A5.7) 

 

The CVBG can then be modeled as a series of N GRIN lenses placed back-to-back, for 

which the matrix of the system can be calculated with Eq. A5.7. Here, we assume that terms of 

d
4
 and higher are negligible.  
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 𝑀𝑁 =  ∏ 𝑀𝑖
𝑁
𝑖=1 ≈

[
1 − ∑ (𝑖 − 1)𝛾𝑖

2𝑑2𝑁
𝑖=1 𝑁𝑑 − ∑ ((𝑖 − 1)𝑁 − 𝑖(𝑖 + 1))𝛾𝑖

2𝑑3𝑁
𝑖=1

− ∑ 𝛾𝑖
2𝑑𝑁

𝑖=1 + ∑ ∑ (𝑗 − 𝑖 − 1)𝛾𝑖
2𝛾𝑗

2𝑑3𝑁
𝑗=𝑖+2

𝑁
𝑖=1 1 − ∑ (𝑁 − 𝑖)𝛾𝑖

2𝑑2𝑁
𝑖=1

] (A5.8) 

 

The effective focal length of the system can be determined with a collimated input. The 

exiting position and angle can be calculated from Eq. A5.8 to determine where the rays cross the 

axis of propagation [A5.9].  

 

 𝑀𝑁 [
𝑟0

0
] = [

𝑟𝑜𝑢𝑡

𝜃𝑜𝑢𝑡
] = [

𝑟0(1 − ∑ (𝑖 − 1)𝛾𝑖
2𝑑2𝑁

𝑖=1 )

𝑟0(− ∑ 𝛾𝑖
2𝑑𝑁

𝑖=1 + ∑ ∑ (𝑗 − 𝑖 − 1)𝛾𝑖
2𝛾𝑗

2𝑑3𝑁
𝑗=𝑖+2

𝑁
𝑖=1 )

] (A5.9) 

 

The output angle will change according to Snell’s law.  

 

 𝑛0 sin[𝜃𝑜𝑢𝑡] = 𝑠𝑖𝑛𝜃𝑎𝑖𝑟 (A5.10) 

 

From this, we can calculate where the rays will come to focus for the system of GRIN 

lenses.  

 

 𝑡𝑎𝑛𝜃𝑎𝑖𝑟 = −
𝑟𝑜𝑢𝑡

𝑓𝑠𝑦𝑠𝑡𝑒𝑚
 (A5.11) 

 

Combining Eq. A5.9-A5.11, we find the focal length of the system [A5.12].  

 

 𝑓𝑠𝑦𝑠𝑡𝑒𝑚 =  
𝑟0(1−∑ (𝑖−1)𝛾𝑖

2𝑑2𝑁
𝑖=1 )

tan(𝑠𝑖𝑛−1{𝑛0 𝑠𝑖𝑛[𝑟0(∑ 𝛾𝑖
2𝑑𝑁

𝑖=1 −∑ ∑ (𝑗−𝑖−1)𝛾𝑖
2𝛾𝑗

2𝑑3𝑁
𝑗=𝑖+2

𝑁
𝑖=1 )]})

 (A5.12) 
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In the limit at thickness d→0, the focal length of the system takes the form of integration, 

where LG is the finite length of the entire set of GRIN lenses.  

 

 lim𝑑→0 𝑓𝑠𝑦𝑠𝑡𝑒𝑚 =
𝑟0(1−∫ 𝛾2(𝑧)𝑧𝑑𝑧

𝐿𝐺
0 )

tan(𝑠𝑖𝑛−1{𝑛0 𝑠𝑖𝑛[𝑟0(∫ 𝛾2(𝑧)𝑑𝑧
𝐿𝐺

0 −∫ [∫ (𝑧′−𝑧)𝛾(𝑧′)2𝑑𝑧′𝐿𝐺
𝑧 ]𝛾(𝑧)2𝑑𝑧

𝐿𝐺
0 )]})

 (A5.13) 

 

Assuming that the output angle is small, the trigonometric functions can be removed with 

the approximations that tanθ ≈ θ and sinθ ≈ θ.  

 

 lim𝑑→0 𝑓𝑠𝑦𝑠𝑡𝑒𝑚 =
1−∫ 𝛾(𝑧)2𝑧𝑑𝑧

𝐿𝐺
0

𝑛0(∫ 𝛾(𝑧)2𝑑𝑧
𝐿𝐺

0 −∫ [∫ (𝑧′−𝑧)(𝛾(𝑧′)2)𝑑𝑧′𝐿𝐺
𝑧 ]𝛾(𝑧)2𝑑𝑧

𝐿𝐺
0 )

 (A5.14) 

 

The equation may be simplified further when the second term in the denominator is very 

small. The second term accounts for changes in refraction as each ray of the beam changes in 

angle. As the beam changes in angle, the refraction of the beam is more than the sum of angles 

from individual components in the system, and the second term in the denominator is the first-

order approximation of that. If the overall output angle is small enough to ignore this first-order 

approximation, the second term in the denominator may be ignored [Eq. A5.15]. For reference, 

the error in the first approximation (tanθ ≈ θ) is < 1% for up to 170 mrad.  

 

 [∫ (𝑧′ − 𝑧)(𝛾(𝑧′)2)𝑑𝑧′𝐿𝐺

𝑧
] ≪ 1 ⇒ 𝑓𝑠𝑦𝑠𝑡𝑒𝑚 ≈

1−∫ 𝛾(𝑧)2𝑧𝑑𝑧
𝐿𝐺

0

𝑛0 ∫ 𝛾(𝑧)2𝑑𝑧
𝐿𝐺

0

 (A5.15) 
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We also observe that for the second term in the numerator, we can replace z with LG to 

identify a lower bound for the equation and thereby find a minimum focal length of the system.  

 

 ∫ 𝛾(𝑧)2𝐿𝐺𝑑𝑧
𝐿𝐺

0
> ∫ 𝛾(𝑧)2𝑧𝑑𝑧

𝐿𝐺

0
⇒ 𝑓𝑠𝑦𝑠𝑡𝑒𝑚 >

1−∫ 𝛾(𝑧)2𝐿𝐺𝑑𝑧
𝐿𝐺

0

𝑛0 ∫ 𝛾(𝑧)2𝑑𝑧
𝐿𝐺

0

=
1

𝑛0 ∫ 𝛾(𝑧)2𝑑𝑧
𝐿𝐺

0

−
𝐿𝐺

𝑛0
 (A5.16) 

 

We can eliminate the second term in Eq. A5.16 if the physical length of the entire GRIN 

lens system is very small when compared to the focal length of the system [Eq. A5.17].  

 

 𝑓𝑠𝑦𝑠𝑡𝑒𝑚 ≈
1

𝑛0 ∫ 𝛾(𝑧)2𝑑𝑧
𝐿𝐺

0

 (A5.17) 

 

This focal length applies to any system of SELFOC GRIN lenses placed back-to-back for 

which the aforementioned assumptions apply. For the case of a thermally-loaded CVBG, we can 

compare the gradient of the parabolic refractive index given in Eq. A3.1 with the gradient of the 

parabolic approximation of the thermally-loaded CVBG described in Eq. A4.1.  

 

 |∇𝑛(𝑟)| = 𝑛0𝛾2𝑟 ≈
𝑑𝑛

𝑑𝑇

𝛼𝑃(𝑧)

𝜋𝑘𝑤0
2 𝑟 (A6.1) 

 

We can now rewrite Eq. A5.17 in terms of parameters related to the temperature 

distribution in the CVBG. Because of the assumptions made here, the result is nearly identical to 

that of [1], with the exception that we do not assume a specific longitudinal power distribution 

P(z) and so leave the integration of P(z) in the denominator.  
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 𝑓𝑠𝑦𝑠𝑡𝑒𝑚 ≈
1

∫
𝑑𝑛

𝑑𝑇
(

α𝑃(𝑧)

𝑘𝜋𝑤0
2)𝑑𝑧

𝐿𝐺
0

=
𝑘𝜋𝑤0

2

𝛼
𝑑𝑛

𝑑𝑇
∫ 𝑃(𝑧)𝑑𝑧

𝐿𝐺
0

 (A6.2) 

 

The effective focal length of a thermally-loaded CVBG must take this focal length into 

account twice because each spectral component in the incident beam travels to a point of 

reflection, represented by z(λ) in Eq. A6.3, and back to the front of the CVBG. Using the 

imaging equation, we find that the focal length of the CVBG is half that of Eq. A6.2.  

 

 
1

𝑓𝑒𝑓𝑓(𝜆)
=

1

𝑓𝑠𝑦𝑠𝑡𝑒𝑚
+

1

𝑓𝑠𝑦𝑠𝑡𝑒𝑚
⇒ 𝑓𝑒𝑓𝑓(𝜆) =

𝑘𝜋𝑤0
2

2𝛼
𝑑𝑛

𝑑𝑇
∫ 𝑃(𝑧)𝑑𝑧

𝑧(𝜆)
0

 (A6.3) 

 

Each spectral component focuses at a different location outside the CVBG. This results in 

longitudinal spatial distortions to the beam. The full effect of these distortions can be determined 

by calculating the spatial profile of each wavelength of the reflected beam and integrating across 

the spectrum. In general, the irradiance of the beam along the optical axis for any given 

transverse position is given by Eq. A7.1, where r is the radial distance from the optical axis, BW 

is the bandwidth of the CVBG, w0 is the beam waist, zR is the Rayleigh range, and s is the shift 

in focus relative to the focus of the central wavelength.  

 

 𝐼(𝑟) = ∫
exp{−(

r

w0(𝜆)
)

2
/(1+

s(λ)2

zR
2 (𝜆)

)}

1+
𝑠(𝜆)2

𝑧𝑅
2 (𝜆)

𝐵𝑊

−𝐵𝑊
𝑑𝜆 (A7.1) 
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Because the focal length of the CVBG is wavelength-dependent, it changes the shift in 

focus, the spot size, and the Rayleigh range of each wavelength. The shift in focus of each 

wavelength is feff(λ) away from the plane of reflection for λ [Eq. A7.2].  

 

 𝑠(𝜆) = 𝑓𝑒𝑓𝑓(𝜆)(𝜆 − 𝜆0)
𝐿

𝐵𝑊
 (A7.2) 

 

Using the imaging equation for paraxial rays [Eq. A7.3], we can determine where the 

beam would focus based on the Rayleigh range of the incident beam. From this, we can calculate 

the changes to the spot size [Eq. A7.6] and Rayleigh range [Eq. A7.8] of the beam for each 

wavelength.  

 

 
1

𝑓
=

1

𝑠0
+

1

𝑠1
 (A7.3) 

 (𝑓𝑟𝑒𝑎𝑙)
−1 = (𝑓𝑒𝑓𝑓(𝜆))

−1

+ (𝑧𝑅,𝑖𝑛)
−1

 (A7.4) 

 𝑁𝐴 =
𝜆

𝜋𝑤0
= 𝑤𝑖𝑛/𝑓𝑟𝑒𝑎𝑙 (A7.5) 

 𝑤0(𝜆) = 𝑤0,𝑖𝑛𝑓𝑒𝑓𝑓(𝜆)/(𝑓𝑒𝑓𝑓(𝜆) + 𝑧𝑅,𝑖𝑛) (A7.6) 

 𝑧𝑅(𝜆) = 𝜋𝑤0,𝑖𝑛
2 /𝜆 (A7.7) 

 𝑧𝑅(𝜆) = 𝑧𝑅,𝑖𝑛𝑓𝑒𝑓𝑓
2 (𝜆)/(𝑓𝑒𝑓𝑓(𝜆) + 𝑧𝑅,𝑖𝑛)

2
 (A7.8) 

 

To calculate the spatial distortion to the beam based on these wavelength dependent 

parameters, we integrate the irradiance of the beam across the spectrum. The maximum 

irradiance is found along the optical axis (z = 0) [A7.9], and the radial point at which the 

irradiance is 1/e
2
 of the maximum is the 1/e

2
 radius of the beam (w0,total) [A7.10].  
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 𝐼𝑚𝑎𝑥 = ∫
1

1+
𝑓𝑒𝑓𝑓(𝜆)2

𝑧𝑅
2 (𝜆)

𝐵𝑊

−𝐵𝑊
𝑑𝜆 (A7.9) 

 𝐼(𝑤0,𝑡𝑜𝑡𝑎𝑙) = ∫
exp{−M2/(1+

feff(λ)2

zR
2 (𝜆)

)}

1+
𝑠(𝜆)2

𝑧𝑅
2 (𝜆)

𝐵𝑊

−𝐵𝑊
𝑑𝜆 (A7.10) 

 

By setting I(w0,total) = Imax/e
2
, we solve for the M

2
 value of the beam using numerical 

integration.  
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