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ABSTRACT

Simultaneous Multislice Functional Magnetic Resonance Imaging

by

Alan Chu

Chair: Douglas C. Noll

Functional magnetic resonance imaging (fMRI) is a valuable tool for mapping brain

activity in many fields. Since functional activity is determined by temporal signal

changes, undesired fluctuations from physiological motion are problematic. Simul-

taneous multislice (SMS) imaging can alleviate these issues by accelerating image

acquisition, increasing the temporal resolution. Furthermore, some applications re-

quire a temporal resolution higher than what conventional fMRI will allow. Current

research in SMS has focused on Cartesian readouts due to their ease in analysis and

reconstruction. However, non-Cartesian readouts such as spirals have shorter readout

times and better signal recovery.

This work explores the acquisition and reconstruction of both spiral and concentric

ring readouts in parallel SMS. The concentric ring readout retains most of the bene-

fits of spirals, but also increases the usability of alternative reconstruction techniques

for non-Cartesian SMS such as generalized autocalibrating partially parallel acquisi-

tions (GRAPPA). To date, non-Cartesian SMS imaging has only been reconstructed

with sensitivity encoding (SENSE), but results in this work indicate GRAPPA-based
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reconstructions have reduced root-mean-square-error compared to SENSE and good

subjective image quality as well. Furthermore, using point spread function analysis,

the concentric ring trajectory is found to have superior slice separation properties

compared to a spiral one.

Since parallel imaging greatly magnifies the amount of data used for reconstruc-

tion, a novel coil compression method is developed, which outperforms conventional

coil compression in fMRI, substantially decreasing the amount of reconstruction time

needed for sufficient detection of functional activation. Results indicate that the pro-

posed method can compress 3 simultaneous slice data using a 32-channel coil down

to only 10 virtual coils without any adverse effects in functional activation, noise, or

image artifacts. Competing methods require substantially more coils for preservation

of the data, resulting in large reconstruction time savings for the proposed method.

This work also explores the use of Hadamard-encoded fMRI for increased tempo-

ral resolution. Because Hadamard-encoded SMS uses data from multiple time frames

to separate slices, physiological noise correction is critical. However, even with phys-

iological noise correction, results indicate Hadamard-encoded fMRI is not as reliable

as conventional fMRI due to undesired temporal fluctuations, most notably from

uncorrected physiological noise.
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CHAPTER 1

Introduction

Functional magnetic resonance imaging (fMRI) has become the prevailing method

for non-invasively mapping human brain activity. The technology is widely used in

neuroscience and psychology to evaluate models of cognition and in clinical medicine

to develop biomarkers for neurological and psychiatric diseases. In neurosurgery,

fMRI has been increasingly used to help identify critical brain regions in patients

prior to brain tumor or seizure foci resection.

In fMRI, standard clinical magnetic resonance imaging (MRI) scanners are used to

repetitively acquire images of the brain over an interval of time lasting several minutes.

These images track small changes in the brain that correlate with a stimulus or task

the subject is instructed to perform during the scan. The majority of fMRI scans

use blood oxygenation level dependent (BOLD) contrast, which uses the content of

deoxyhemoglobin in the blood as the contrast agent [1]. As the subject performs

the task or is exposed to the stimulus, active regions of the brain will have increased

blood flow [2, 3], which decreases the concentration of deoxygenated hemoglobin in

that region [4]. Deoxygenated hemoglobin causes transverse dephasing in the signal

relative to oxygenated hemoglobin, so a decrease in deoxygenated hemoglobin results

in decreased dephasing and an increased signal intensity. In other words, increased

blood flow to active brain regions causes a decrease in deoxygenated hemoglobin,

which changes the magnetic susceptibility of the blood, leading to a signal intensity

change in the resulting images [5, 6, 7].
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Since functional activity in fMRI is determined by temporal changes in the signal,

cardiac pulsations and respiratory motion can corrupt the resulting functional activity

maps because they also cause significant temporal fluctuations in the acquired fMRI

signal [8, 9, 10, 11, 12]. In a typical fMRI scan, one whole-brain volume is acquired in

approximately 2 seconds, resulting in a frame rate of around 0.5 Hz. This sampling

rate is high enough for typical task-based fMRI experiments responsible for capturing

functional paradigms occurring at around 0.02 to 0.06 Hz. However, human resting

heart rates are usually around 1.0 to 1.6 Hz, and the resulting noise can alias down

into the frequency of interest. In addition, motion from respiration can also create

noise at 0.2 to 0.3 Hz. Similar to task-based fMRI, signal fluctuations occurring at

frequencies less than 0.1 Hz are of interest in resting state fMRI. However, in resting

state fMRI, the paradigm waveform is not known a priori; the acquired data is itself

used to determine correlations between regions of the brain. Thus, physiological

noise present in the data can spuriously increase or decrease the apparent correlation

between two time courses. Methods have been developed to correct for physiological

noise in fMRI including post-processing methods [13, 14, 15, 16] and navigator-based

methods [12, 17]. More recently, work has been done to model respiration and cardiac

fluctuations by developing impulse response functions [18, 19]. Regardless of the

method used, accelerated fMRI acquisitions with a higher temporal resolution can

increase the effectiveness of physiological noise correction. In addition, the increase

in time points provides for greater statistical power in the data [20], and more options

for bulk head motion correction.

Simultaneous multislice (SMS) imaging, also called multiband imaging, is a

method that can be used to accelerate fMRI by acquiring multiple slices simulta-

neously, thereby covering the same region as a conventional acquisition in a smaller

amount of time. Because the slices are acquired simultaneously, the raw data contains

overlapped or aliased images, which must be separated during the image reconstruc-
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tion process.

1.1 Aims

In Chapter 2, basic principles behind MRI are introduced in order to understand how

SMS imaging works and why SMS imaging is potentially an excellent technique for

accelerating fMRI. Existing methods for SMS imaging are covered, including both

non-parallel and parallel SMS imaging methods.

In Chapter 3, Hadamard-encoded SMS fMRI is explored. Hadamard-encoded

imaging is an SMS imaging method that does not require multiple coils in order

to separate the simultaneous slices. This work aims to further develop Hadamard-

encoded imaging for fMRI by evaluating the temporal resolution and SNR benefits

in human subject scans.

Chapter 4 investigates parallel SMS fMRI using non-Cartesian readout trajec-

tories. Spiral parallel SMS imaging is improved by further optimizing the readout

z-gradient waveform along with the kx-ky trajectory, by developing improved recon-

struction techniques in both the image and k-space domains, and by demonstrating

practical utility in fMRI studies.

In parallel SMS imaging, the amount of acquired data is multiplied by the number

of receive coils used, which represents a significant increase in the computational

load during reconstruction. In Chapter 5, a novel SMS coil compression method is

developed to reduce the time needed for reconstruction while preserving functional

activation and image quality. The method is compared with existing methods in SMS

imaging as well as with conventional non-SMS imaging.

Final remarks regarding the work presented in this dissertation are included in

Chapter 6, along with a description of the contributions made and potential avenues

for future work.
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CHAPTER 2

Background

2.1 Two-dimensional and Three-dimensional MRI

In MRI, the complex signal acquired in coil u is

su(t) =

∫ ∫ ∫ [
cu(x, y, z)m(x, y, z)e−t/T2(x,y,z)

e−i2π(kx(t)x+ky(t)y+kz(t)z+∆f0(x,y,z)t)
]

dx dy dz,

(2.1)

where m(x, y, z) is the three-dimensional object as a function of spatial position

(x, y, z), cu(x, y, z) is the sensitivity of coil u to location (x, y, z), T2(x, y, z) is

the transverse relaxation time constant of the object, ∆f0(x, y, z) is the spatially-

dependent B0 inhomogeneity, t is time, and k(t) = γ
2π

∫ t
0
g(τ) dτ , where γ is the

gyromagnetic ratio, and g(t) is the spatially-dependent magnetic field gradient as a

function of time. For the sake of simplicity in this dissertation, we will ignore the

relaxation term e−t/T2(x,y,z) in Equation (2.1).

In conventional multislice imaging, a single two-dimensional slice is acquired with

each excitation and no z-gradient is used during readout. Setting kz(t) = 0, assum-

ing infinitely thin slices, and arbitrarily assigning x and y to denote the in-plane

dimensions, the signal equation becomes

su(t) =

∫ ∫
cu(x, y)m(x, y)e−i2π(kx(t)x+ky(t)y+∆f0(x,y)t) dx dy (2.2)
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for two-dimensional MRI. In reality, however, slices cannot be infinitely thin, so the

summation over z in Equation (2.1) still occurs. This can lead to signal loss from

through-plane dephasing.

Standard fMRI typically uses a single-shot, two-dimensional approach, where in-

dividual slices are acquired sequentially to provide whole-brain coverage in approxi-

mately 2 seconds. Given a desired spatial resolution, the minimum repetition time

(TR) is limited by the number of slices. Conventional parallel imaging [21, 22, 23] has

been demonstrated to successfully accelerate multislice MRI scans in-plane. These

methods all use multiple receive coils to allow for undersampling of k-space within

each slice. However, the amount of acceleration is limited with conventional parallel

imaging in fMRI because of the need for an appropriate echo time (TE) for sufficient

T ∗2 contrast. Three-dimensional acquisitions are another approach for acceleration

in fMRI [24, 25, 26]. However, three-dimensional acquisitions require much longer

readout times, which increases its vulnerability to magnetic field inhomogeneities. In

addition, the readout times can stretch well beyond the TE for gray matter, depending

on the desired spatial resolution and coverage.

2.2 Simultaneous Multislice MRI

Simultaneous multislice (SMS) acquisitions are yet another approach to acceleration.

In SMS imaging, multiple two-dimensional slices are both excited and acquired simul-

taneously, and the reconstruction process is used to separate the slices and transform

the data into the image domain. If l is the number of simultaneous slices with each

acquisition, and again assuming infinitely thin slices, Equation (2.1) becomes

su(t) =
l∑

v=1

∫ ∫
cu,v(x, y)mv(x, y)e−i2π(kx(t)x+ky(t)y+∆f0,v(x,y)t) dx dy, (2.3)
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where mv(x, y) is one simultaneous slice as a function of spatial position (x, y) and

cu,v(x, y) is the sensitivity of coil u to simultaneous slice v. Note that SMS imaging

does not necessarily require multiple receive coils. When only one coil is used, the coil

index u is removed from Equation (2.3) and the coil sensitivity cv(x, y) is assumed to

be 1.

The simultaneous slices are excited using a radio frequency (RF) pulse that se-

lectively tips down spins in certain planes along one particular imaging axis, usually

the z-axis by convention. Using the small-tip regime[27][28], the SMS RF pulse can

be implemented as a sum of l frequency-offset, Hamming-windowed sinc functions

RF(t) =
l∑

v=1

ei2πf̃vt sinc(fRFt)[0.54 + 0.46 cos(2πt/T )], (2.4)

where T is the duration of the pulse, fRF is the bandwidth of the sinc, and f̃v is

the frequency-offset for simultaneous slice v. The value of f̃v controls how far the

simultaneous slices are from each other, and a conventional constant slice-select z-

gradient with rewinder is applied during the RF pulse. Figure 2.1 shows the SMS RF

pulse created for a 3 simultaneous slice acquisition.
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Figure 2.1: Example RF pulse for a 3 simultaneous slice acquisition created from a
6.4 ms Hamming-windowed sinc with 4 zero-crossings.
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When SMS is applied to fMRI, multiple simultaneous-slice acquisitions are per-

formed per TR to provide whole-brain coverage. Therefore, SMS imaging can be

viewed as a combination of two-dimensional and three-dimensional imaging. SMS

acquisitions provide an excellent avenue for acceleration in fMRI because the TE

requirement does not limit the amount of acceleration as it does in conventional

two-dimensional parallel imaging, and SMS does not suffer from the excessively long

readout times of three-dimensional fMRI.

2.2.1 Non-parallel SMS Imaging

The earliest SMS methods did not require multiple receive coils. Souza et al. [29]

developed an SMS method using Hadamard-encoded excitation as an alternative to

3-dimensional Fourier transform (3DFT) imaging. The aim was not acceleration, but

to provide for more flexible slice placement over 3DFT imaging, and also to avoid the

3DFT Gibbs artifacts in the slice direction.

In Hadamard-encoded imaging of l simultaneous slices, l separate excitations are

needed, each using a different RF pulse. During each excitation, the RF pulse imparts

either a positive (1) or negative (-1) sign on each simultaneous slice according to a

row of Hl, a Hadamard matrix of order l. For example, with an l = 2 simultaneous

slice acquisition, l = 2 different RF pulses are needed to excite the slices according

to the Hadamard matrix of order 2,

H2 =

1 1

1 −1

 . (2.5)

In this case, one RF pulse would need to excite both slice 1 and slice 2 with

positive signs. The equation for this RF pulse is just Equation (2.4) with l = 2. The

other RF pulse needs to excite one slice with a positive sign and the other one with
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a negative sign. The equation of this RF pulse is

RF(t) = [ei2πf̃1t sinc(fRFt)− ei2πf̃2t sinc(fRFt)][0.54 + 0.46 cos(2πt/T )], (2.6)

where slice 2 is the one with a negative sign. Therefore, one excitation gives a signal

s̄1(t) = s̃1(t) + s̃2(t), and the other excitation gives a signal s̄2(t) = s̃1(t) − s̃2(t),

where s̃1(t) is the signal from slice 1 and s̃2(t) is the signal from slice 2. Putting these

together in a 2-element vector, we have

s̄1(t)

s̄2(t)

 =

s̃1(t) + s̃2(t)

s̃1(t)− s̃2(t)

 = H2

s̃1(t)

s̃2(t)

 =

1 1

1 −1


s̃1(t)

s̃2(t)

 . (2.7)

With l = 4 simultaneous slices, 4 different RF pulses are used to produce 4 different

excitations described by



s̄1(t)

s̄2(t)

s̄3(t)

s̄4(t)


= H4



s̃1(t)

s̃2(t)

s̃3(t)

s̃4(t)


=



1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1





s̃1(t)

s̃2(t)

s̃3(t)

s̃4(t)


. (2.8)

For any Hadamard matrix, (1
l
)H∗l Hl = Il. Therefore, to separate the slices, simply

perform the matrix multiplication



s̃1(t)

s̃2(t)

s̃3(t)

s̃4(t)

...


=

(
1

l

)
H∗l



s̄1(t)

s̄2(t)

s̄3(t)

s̄4(t)

...


. (2.9)

Once the k-space data s̄v(t) is recovered for each separate slice v, a standard trans-
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formation into the image domain can be performed, ideally with B0 inhomogeneity

correction. It is also possible to perform the transformation into the image domain

first, then add and subtract the aliased slices using the Hadamard matrix to separate

them.

Hadamard-encoded SMS was later extended to fMRI for the purposes of reduced

signal dropout from susceptibility-induced gradients [30]. In that work, 2 simulta-

neous “subslices” were acquired using Hadamard-encoding and compared to a con-

ventional acquisition consisting of a non-SMS acquisition with slice thickness twice

that of each individual Hadamard subslice. The idea is that the thinner subslices us-

ing Hadamard-encoding will have reduced signal dropout from susceptibility-induced

field gradients, but since 2 subslices are excited simultaneously, the accompanying

SNR loss from the thinner subslices is avoided. However, this is done at the expense

of temporal resolution.

In Ref. [30], instead of encoding each subslice with a +1 or −1 sign, every other

subslice is encoded with a ±1 or ±i multiplication. For example, with 4 simultaneous

subslices, the Hadamard-encoding matrix is

H4 =



1 i 1 i

1 −i 1 −i

1 i −1 −i

1 −i −1 i


.

This is done so that the transition zones of the slice profiles do not vary from time

frame to time frame, as shown in Figure 1 of Ref. [30], which results in more uniform

slice profiles after reconstruction. For 2 simultaneous subslices, the encoding would

just alternate between 1 + i and 1 − i from frame to frame, as shown in the slice

profiles plotted in Figure 2.2.
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Figure 2.2: Slice profiles for Hadamard-encoded fMRI with 2 simultaneous slices.

In Ref. [30], simultaneously acquired subslices are modeled as

In = eiφ
M∑
m=1

Sm,ne
iθm , (2.10)

where n is the time frame number, Sm,n is the magnitude of the mth subslice, θm

is the phase difference between subslices arising from the susceptibility-induced field

gradients, and φ is an overall phase shift. For 2 simultaneous subslices, a conventional

acquisition is just

Iconv
n = eiφ(S1,n + S2,ne

i∆θ),

where ∆θ is the phase difference between subslices. The magnitude of the signal is

|Iconv
n | =

√
S2

1,n + S2
2,n + 2S1,nS2,n cos ∆θ. (2.11)

The Hadamard-encoded signal is modeled as

IHada
n = eiφ(S1,n + i(−1)nS2,ne

i∆θ), (2.12)
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making the magnitude

|IHada
n | =

√
S2

1,n + S2
2,n − 2(−1)nS1,nS2,n sin ∆θ. (2.13)

Since the goal is to reduce signal dropout and not necessarily to recover the individual

subslices, the authors propose the reconstruction process of low-pass filtering |IHadan |2

to get the time series

xn =
√
F−1{WnF(|IHadan |2)}, (2.14)

where F is the Fourier transform operator, and Wn is the spectrum of the low-pass

filter. The low-pass filter removes the −2(−1)nS1,nS2,n sin ∆θ term in Equation (2.13)

to obtain

xn =
√
S2

1,n + S2
2,n. (2.15)

Numerous other non-parallel methods have been created for SMS imaging.

Ref. [31] introduced a method that uses a constant slice-select gradient during read-

out to shift simultaneously excited slices in the readout direction so that they are no

longer overlapped in the final reconstruction. However, the readout slice-select gra-

dient creates a skewing of the voxels, which manifests as an in-plane blur and tilted

voxels. Ref. [32] developed phase-offset multiplanar (POMP) imaging, a method that

also shifts simultaneously acquired slices so that they are not overlapped. Instead

of using a gradient, the images are shifted in the phase encode direction using RF

pulses that introduce a linear phase modulation across the phase encode direction.

For each different phase encode line, a different RF pulse is used to add the appro-

priate amount of phase to each simultaneous slice to shift them apart. Both methods

require a field of view large enough to accommodate multiple non-overlapping slices

to prevent aliasing.

Ref. [33] proposed simultaneous multislice acquisition using rosette trajectories

(SMART), an SMS method that uses rosette trajectories along with a readout slice-
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select gradient that modulates each simultaneous slice to a different resonance fre-

quency. This method took advantage of the tendency for rosette trajectories to de-

stroy signal at off-resonance frequencies. Each slice is extracted by demodulating

the data to the appropriate frequency such that the signal from the other slices is

reduced. However, the signal from off-resonance slices is not entirely destroyed with

this method, resulting in image artifacts and a decrease in SNR.

Simultaneous echo refocusing (SER) is yet another SMS method [34]. For 2 si-

multaneous slices, SER uses 2 consecutive RF pulses for each slice with an x-gradient

blip in between. A single readout is then used to acquired echoes from both slices.

The echoes are shifted in time due to the x-gradient blip applied between the RF

pulses. While providing faster imaging than non-SMS EPI due to a reduced number

of gradient switchings, SER still requires a longer readout to accommodate echoes

from multiple slices staggered in time, as well as multiple consecutive RF pulses before

each readout.

2.2.2 Parallel SMS Imaging

As parallel imaging became more widespread, differences in sensitivities from multiple

receive coils were used to help separate the slices. For example, Equation (2.3) can

be discretized to a sum of matrix vector products su =
∑l

v=1 QvCu,vxv, where su

is the discretized signal for coil u, xv is the lexicographically-ordered 2-dimensional

discretized simultaneous slice v, Cu,v is a diagonal matrix containing the sensitivity

of coil u to simultaneous slice v, and Qv is the 2-dimensional Fourier transform

operator, including B0 inhomogeneity correction for slice v. For arbitrary readouts,

Qv can be implemented by a non-uniform fast Fourier transform (NUFFT) [35] with

B0 inhomogeneity correction [36]. Combining the equations for all coils into one, we
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have 

s1

s2

...

sd


=



Q1C1,1 Q2C1,2 · · · QlC1,l

Q1C2,1 Q2C2,2 · · · QlC2,l

...
...

. . .
...

Q1Cd,1 Q2Cd,2 · · · QlCd,l





x1

x2

...

xl


, (2.16)

for d coils. Reconstruction of each slice becomes a matter of solving this linear

equation for the xv vector with an iterative algorithm such as Conjugate Gradient.

Larkman et al. [37] introduced a parallel imaging SMS method that separates

slices entirely in the image domain. Aliased images for each coil are first transformed

into the image domain, then the slices are separated using a simple matrix inversion.

With their method, inhomogeneity correction is not performed, so that Qv = Q for

all slices v. The problem is modeled as



Q̃s1

Q̃s2

...

Q̃sd


=



C1,1 C1,2 · · · C1,l

C2,1 C2,2 · · · C2,l

...
...

. . .
...

Cd,1 Cd,2 · · · Cd,l





x1

x2

...

xl


, (2.17)

where Q̃ describes a non-specific transformation of k-space data into the object do-

main. The method is heavily dependent on coil geometry relative to slice orientation;

if a coil has similar sensitivities to each simultaneous slice, the method is unable to

separate the slices. Another problem is that B0 inhomogeneity correction is not easily

performed since the slice separation happens in the object domain.

The original formulation of parallel SMS imaging in Equation (2.16) also suffers

from a heavy reliance on coil sensitivity differences between simultaneous slices. If

the physical arrangement of the receive coils and slice prescription is such that the

sensitivity for each coil is not sufficiently different between slices, then the problem

in Equation (2.16) becomes very ill-conditioned. In this case, Cu,v ≈ Cu,w for v 6= w.
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Note that Qv is usually somewhat similar to Qw for v 6= w since the only difference

between them is a different B0 inhomogeneity correction for differing slices. Thus

the system matrix in Equation (2.16) contains column-blocks that are similar to each

other. This situation arises in a typical 8-channel head coil setup, where the coils are

arranged around the head so that their sensitivities are very similar to different axial

slices. From a sensitivity encoding (SENSE) [21] viewpoint, the coil sensitivities do

not provide enough information to de-alias the simultaneously acquired images, and

the resulting g-factor is too high.

The controlled aliasing in parallel imaging results in higher acceleration (CAIPIR-

INHA) [38] method addresses this issue by using RF pulses to modulate phase encode

lines for certain slices, thereby shifting them relative to each other in the image do-

main for easier separation, very similar to POMP imaging. However, because multiple

receive coils are used in CAIPIRINHA, a large FOV is not required as it is in POMP

imaging. Nunes et al. [39] then extended SMS CAIPIRINHA to single-shot Cartesian

trajectories by using a blipped z-gradient during readout instead of using the RF

pulse for an interslice image shift. Their method is modeled as

su(t) =
l∑

v=1

e−i2πkz(t)zv

∫ ∫
cu,v(x, y)mv(x, y)e−i2π(kx(t)x+ky(t)y+∆f0,v(x,y)t) dx dy,

(2.18)

which is discretized to



s1

s2

...

sd


=



M1Q1C1,1 M2Q2C1,2 · · · MlQlC1,l

M1Q1C2,1 M2Q2C2,2 · · · MlQlC2,l

...
...

. . .
...

M1Q1Cd,1 M2Q2Cd,2 · · · MlQlCd,l





x1

x2

...

xl


, (2.19)

where each Mv is a diagonal matrix representing the z-gradient modulation to slice

v. In other words, if the diagonal entries of Mv are represented by a discrete function
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mv[n], then

diag{Mv} = mv[n] = e−i2πkz [n]zv , (2.20)

where kz[n] is a discretized kz(t). Compared to Equation (2.3), the only difference in

Equation (2.18) is the e−i2πkz(t)zv term, which adds time-varying phase represented by

each Mv in Equation (2.19). Similarly, the only difference between Equation (2.19)

and Equation (2.16) is the Mv matrices. For a given z-gradient, the modulation

will add γzv
∫ t

0
gz(τ) dτ amount of phase to slice v at readout time t, where zv is the

distance of slice v to the z-gradient isocenter, and gz(t) is the z-gradient as a function

of time. The reliance of the phase modulation on zv causes the modulation to differ

from slice to slice, so that Mv 6= Mw, for v 6= w.

The z-gradient modulation can be arbitrary, as long as slew rate and gradient

amplitude limits are not breached. However, it is advantageous to choose a gz(t)

function that makes the condition number of the system matrix in Equation (2.19)

as low as possible. It may also be important to have the running integral of gz(t)

periodically go to 0 to minimize through-plane intravoxel dephasing. In other words,

the z-gradient should contain rewinders to ensure that too much phase does not ac-

cumulate along the z-direction. The method by Nunes et al. [39] did not use such

rewinders, causing significant through-plane dephasing of the finite-thick slices. Set-

sompop et al. [40] then developed the blipped-CAIPI method, which uses alternating

gz(t) blips to overcome this issue.

The closely related methods by Nunes et al. and Setsompop et al. can be described

by Figure 2.3, which gives a more intuitive explanation as to why the readout z-

gradient modulation is beneficial for SMS imaging. Figure 2.3 shows a 2 simultaneous

slice acquisition with no readout z-gradient in the top row, and a 2 simultaneous slice

acquisition with a blipped z-gradient in the bottom row. The individual slices are

shown in the left and center columns; the left column shows the slice that occurs at z-

isocenter, and the middle column shows the slice that occurs some distance away. The

15
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Figure 2.3: Two simultaneous slice acquisitions with no readout z-gradient (top row),
and a blipped-CAIPI readout z-gradient (bottom row). The SMS acquisition is shown
in the right column, which is simply the sum of the individual slices shown in the left
and middle columns.

resulting aliased simultaneous slice acquisition is shown in the right column. With

no z-gradient, the simultaneously acquired slices are perfectly overlapped, making it

difficult to separate them unless their sensitivities are very different. For blipped-

CAIPI, the z-gradient shifts the non-isocenter slice, resulting in less overlap in the

SMS acquisition. This results in easier slice separation.

The phases of the Mv matrices in Equation (2.19) differ from each other only by

the scalar multiple zv, so in order to make each Mv as different as possible to improve

conditioning, the simultaneous slices should be separated at even distances from each

other. This way, the additional phase that each simultaneous slice experiences from

the z-gradient modulation is spread out as much as possible in the z-direction. Fur-

thermore, it is desirable to separate the simultaneous slices by the maximum distance

possible in order to fully use the coil sensitivity information as part of the slice sepa-

ration process; in general, slices further apart will have more differences in sensitivity
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than slices that are nearby. An RF pulse that creates such a configuration can be

written in the form of Equation (2.4), with f̃v = fRF(v − 1)∆z/ζ, where ∆z is the

distance between the simultaneous slices, and ζ is the slice thickness. An example

slice profile for 3 simultaneous slices acquired in this manner is given in Figure 2.4.

The full brain volume is covered by imaging consecutive slices with each successive
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Figure 2.4: Slice profile for a 3 simultaneous slice acquisition created from the 6.4 ms
Hamming-windowed sinc with 4 zero-crossings shown in Figure 2.1.

TR, while keeping the distance between the simultaneous slices the same. Using the

previous expression for f̃v with consecutive slices located right next to each other,

there would be ∆z/ζ acquisitions for a total of l∆z/ζ slices for the whole volume.

However, one must be careful of phase wraps; if the magnitude of gz(t) is enough

to cause any number of phase wraps across the z-axis, the phase modulation for each

simultaneous slice could end up being very similar even if the slices are all separated

from each other by some even distance. For example, if z1, z2, and z3 are 0, 1, and

2, respectively, and γz3

∫ t
0
gz(τ) dτ = 4π, then slice 2 experiences a phase modulation

of 2π, and slice 1 experiences a modulation of 0. However, if z1, z2, and z3 are 0,
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1/3, and 2/3, respectively, then the modulation for slices 1, 2, and 3 are 0, 2π/3,

and 4π/3, respectively, which is the maximum phase spread possible. From a Fourier

perspective, this means that for simultaneous slices that are closer together, a higher

kz value is needed, which means we need to use a larger gz(t) to go out further in

kz-space. This also means that for a given simultaneous slice separation distance,

a larger z-gradient is not necessarily better for reconstruction, even when ignoring

through-plane dephasing effects.

To better understand the effect of the readout z-gradient, Zahneisen et al. [41]

introduced a general framework for SMS using a 3-dimensional Fourier viewpoint.

They note that the simultaneous slices create a field of view (FOV) with accompanying

resolution in the z-direction. The FOV is just

FOVz = l∆z, (2.21)

where l is the number of simultaneously acquired slices and ∆z is the distance between

simultaneous slices. Therefore, the necessary distance between k-space samples in the

z-direction is

∆kz =
1

FOVz

=
1

l∆z
. (2.22)

The distance between simultaneous slices, ∆z, specifies the resolution δz in the z-

direction. The maximum extent of kz-space is then

kmax
z =

1

2δz

=
l

2FOVz

=
1

2∆z

=
l∆kz

2
.

(2.23)

A SENSE [21] reconstruction of the simultaneous slice data is done by solving
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Equation (2.19) for the xv vector. This problem is typically overdetermined since the

number of coils is greater than the number of simultaneous slices, and the number of

k-space samples for each readout is comparable to the number of pixels in each slice

for spiral imaging. In addition, noise from Eddy currents and hardware imperfections

will be present in the raw data. Therefore, it can be beneficial to use the following

regularized least squares problem for reconstruction:

x̂ = arg min
x

{
‖Ax− s‖2

2 + β ‖Rx‖2
2

}
, (2.24)

where A, x, and s are the system matrix, xv vector, and su vector in Equation (2.19),

respectively. R is a finite differencing matrix, and β is the regularization parameter

that controls the tradeoff between spatial resolution and noise reduction in the recon-

struction x̂. The least squares solution to (2.24) is x̂ = (A′A + βR′R)−1A′s, which

can be computed using the Conjugate Gradient algorithm [42] and implemented using

Jeffrey A. Fessler’s Image Reconstruction Toolbox [43].

Although x is 3-dimensional since it contains multiple 2-dimensional slices, R

cannot be a 3-dimensional finite differencing matrix because differences would be

computed between pixels that are in different slices separated from each other by

a relatively large distance. Since x consists of l separate slices, R should perform

the operation of a block diagonal matrix with each block performing a 2-dimensional

finite difference computation on a single slice. In other words, R can be implemented

as

R =



D1 0 0 0

0 D2
. . . 0

0
. . . . . . 0

0 0 0 Dl


, (2.25)

where D1 = D2 = . . . = Dl is a 2-dimensional finite differencing matrix for one

slice with differences in the horizontal, vertical and diagonal in-plane directions. This
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construction ensures that differences are not computed between pixels that are in

different slices.

The value of β can be chosen using resolution analysis of the system point spread

function (PSF). The system PSF is defined as (A′A + βR′R)−1A′Aej, where ej is

the jth unit vector or “point.” After computing this value using Conjugate Gradient,

the full-width-at-half-maximum (FWHM) of the PSF can be measured along each

of the three physical dimensions of the image. In this dissertation, a FWHM in the

slice plane of around 1.3 pixels was found to work well by inspection, which yielded

a value of β = 273 for all the experiments.

In this dissertation, B0 inhomogeneity field maps are computed using an angle

measurement method [44] from two scans with different TEs: one with a TE of 30

ms, and one of 32 ms. First, the images themselves are reconstructed for each coil

by effectively computing an inverse NUFFT of the k-space data for each coil using

Conjugate Gradient. Then, the field map ∠(x0∗
w,ux

1
w,u)/∆t is calculated, where x0

w,u

is the wth pixel of coil u of one scan, x1
w,u is the wth pixel of coil u of the other

scan, and ∆t is the difference in TEs between the two scans, which is 2 ms in this

case. The field maps are then summed across coils and smoothed by convolving with

a 7-by-7 constant kernel. Finally, the original 2 scans are reconstructed again with

inhomogeneity correction using the new field map, and the process is repeated to

obtain a better estimate of the field map.

Coil sensitivities can be obtained by directly computing

ĉu,v = arg min
cu,v

{
‖xu,v −Bvcu,v‖2

2 + λ ‖Dcu,v‖2
2

}
, (2.26)

using ĉu,v = (B′vBv + λD′D)−1B′vxu,v, where cu,v is the sensitivity of coil u to slice

v, xu,v is the inhomogeneity-corrected reconstruction for coil u and slice v, Bv is a

diagonal matrix containing the square-root-sum-of-squares of images from all coils,
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and D is a 2-dimensional finite differencing matrix. Coil sensitivities can also be

computed using more recent techniques such as ESPIRiT [45].

Note that the B0 inhomogeneity field maps and coil sensitivity maps must be

computed from a non-SMS acquisition that has at least the same number of slices per

volume as the reconstructed SMS scan, and with individual slices at the same locations

as those for the SMS scan. For all the SENSE experiments in this dissertation, a

separate non-SMS acquisition with matching slice locations was performed before

each SMS scan.

Along with blipped-CAIPI, Setsompop et al. [40] also developed slice-GRAPPA,

a k-space reconstruction scheme for slice separation. Slice-GRAPPA uses a different

convolution kernel to construct the k-space data for each coil of each separated slice.

Figure 2.5 illustrates the kernel operation for one coil of one separated slice. EachNon-Cartesian parallel SMS: Background 

coils 
SMS k-space 

k-space of 
1 coil of 
separated slice 

Figure 2.5: Slice-GRAPPA kernel operation to compute the k-space data for one coil
of one separated slice. Each kernel operates on all coils of the SMS k-space data.
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kernel operates on all coils of the SMS k-space data. A different kernel is needed

to compute a different coil of that same slice in Figure 2.5. Finally, a whole set of

additional kernels are needed to compute all the coils of another separated slice.

Moeller et al. [46] demonstrated the use of Cartesian SMS imaging in fMRI at 7 T,

but did not use a CAIPI approach to improve the g-factor. Their demonstration used

coronal slices to improve the g-factor because this orientation, along with a sagittal

orientation, provided the most differences in coil sensitivity from slice to slice. They

used the SENSE/GRAPPA [47] reconstruction method to separate the slices.

Recently, Zahneisen et al. [48] adapted blipped-CAIPI to single-shot spirals and

demonstrated SMS imaging with a blipped spiral-in readout. An example of a blipped

spiral trajectory for a 3 simultaneous slice acquisition is shown in Figure 2.6. In fMRI,

spiral-in readouts have advantages over Cartesian-based ones like echo planar imaging

(EPI) such as better signal recovery [49] and shorter readout times [17, 50], which

reduces off-resonance distortion and also increases the maximum number of slices

acquired per unit time. Furthermore, spiral trajectories have reduced sensitivity to

motion when compared with EPI [51].
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Figure 2.6: Three-dimensional blipped spiral k-space trajectory for a 3 simultaneous
slice acquisition.
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CHAPTER 3

Hadamard-encoded Simultaneous

Multislice fMRI1

3.1 Hadamard-encoding for Reduced Signal

Dropout

Hadamard-encoded SMS can be used to acquire thinner slices in order to reduce

the signal dropout from through-plane dephasing. In Ref. [30], a method involving

an incoherent addition of subslices, described by Equation (2.14), was proposed. In

this section, it is shown that there is a signal recovery benefit to reconstructing the

individual subslices first, then combining them afterwards. Similar to what was done

in Ref. [30], two simultaneous subslices are acquired with each acquisition in this

section. The conventional non-SMS comparison has individually acquired slices, each

with width equal to the combined width of two simultaneous Hadamard-encoded

subslices. In other words, the width of each Hadamard subslice is one-half that of a

conventional slice.

3.1.1 Separation of Slices for Reduced Signal Dropout

In Ref. [30], Hadamard-encoded SMS images were reconstructed by filtering the

squared magnitude of the signal as described by Equation (2.14), which results in

1Parts of this chapter are based on Refs. [52] and [53].

24



the magnitude combination of subslices given by Equation (2.15). However, this is

not an optimal slice combination in terms of reducing signal dropout.

For example, assume that a conventional acquisition is performed with no

susceptibility-induced field gradients. Substituting ∆θ = 0 in Equation (2.11), we

have

|Iconv
n | =

√
S2

1,n + S2
2,n + 2S1,nS2,nθ

=
√

(S1,n + S2,n)2

= S1,n + S2,n,

which is just the sum of the magnitudes of each subslice. However, with the recon-

struction of Hadamard-encoded SMS proposed by Ref. [30], the resulting data has

magnitude
√
S2

1,n + S2
2,n, as given by Equation (2.15). This is equivalent to the signal

obtained with a conventional acquisition where there is a ∆θ = π/2 phase difference

between subslices, seen by substituting ∆θ = π/2 in Equation (2.11). In fact, since

0 < cos ∆θ < 1 for −π/2 < ∆θ < π/2, a conventional acquisition has better sig-

nal recovery compared to a Hadamard acquisition when the phase difference between

subslices is less than π/2. Only when the phase difference between subslices is greater

than π/2 does Hadamard-encoded SMS have better signal recovery using the method

proposed by Ref. [30].

For the purposes of reduced signal dropout, it is better to reconstruct the individ-

ual Hadamard-encoded subslices, then combine the subslices. In other words, filter

the complex Hadamard-encoded signal IHada
n given by Equation (2.12) to obtain

S1,ne
iφ = F−1{WnF(IHadan )}, (3.1)

where Wn is the spectrum of the low-pass filter. For the other subslice, first modulate
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the complex time series, then low-pass filter to obtain

S2,ne
i(φ+∆θ) = F−1{WnF(i(−1)n+1IHadan )}. (3.2)

For sufficiently large S1,n and S2,n, ∆θ can be estimated by taking the difference of

the phases of S1,ne
iφ and S2,ne

i(φ+∆θ), then S1,ne
iφ and S2,ne

iφ can be summed and

transformed into the object domain. Alternatively, if the global phase φ is not needed,

the magnitudes S1,n and S2,n can be simply summed and transformed. In this case,

the magnitude of the signal will be S1,n+S2,n regardless of the value of ∆θ, equivalent

to a conventional acquisition with no susceptibility-induced field gradients.

3.1.2 SNR Analysis

Ref. [30] also makes the claim that using a low-pass filter Wn with cutoff one-half

the Nyquist frequency, their proposed Hadamard-encoding has an SNR advantage

over conventional acquisitions. Assuming equal magnitudes of 1 in each subslice and

uncorrelated thermal noise with standard deviation σ0 in each acquisition, the SNR

for a conventional acquisition due to thermal noise is

SNRconv
0 =

√
2 + 2 cos ∆θ

σ0

, (3.3)

since the signal magnitude given by substituting S1,n = S2,n = 1 into Equation (2.11)

is just Sconv =
√

2 + 2 cos ∆θ.

For their proposed Hadamard-encoded SMS, the signal magnitude from Equa-

tion (2.15) is SHada =
√

12 + 12 =
√

2, assuming that the low-pass filter Wn behaves

perfectly. To compute the effects of the low-pass filter Wn, they use Parseval’s the-

orem, which states that the variance of the signal is reduced by the area under Wn.

In other words, σ2
0 is reduced to cσ2

0, where c = 1
N

∑N−1
n=0 W

2
n , making 0 ≤ c ≤ 1.
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Therefore, the SNR for a Hadamard-encoded acquisition due to thermal noise is

SNRHada
0 =

√
2

σ0

√
c
. (3.4)

Rewriting Equation (3.4), we have

SNRHada
0 =

(
1√
c

)( √
2√

2 + 2 cos ∆θ

)(√
2 + 2 cos ∆θ

σ0

)

=

( √
2

√
c
√

2 + 2 cos ∆θ

)(√
2 + 2 cos ∆θ

σ0

)

=

(
1√

c(1 + cos ∆θ)

)
SNRconv

0 .

(3.5)

Assuming no susceptibility-induced field gradients so that ∆θ = 0, when the low-pass

filter cutoff is half the Nyquist frequency, then c = 1
2
, making SNRHada

0 = SNRconv
0 .

With no filtering, c = 1 so that Equation (3.5) becomes SNRHada
0 =

(
1√
2

)
SNRconv

0 ,

which makes sense since with no through-plane dephasing, Sconv = 2 and SHada =

Sconv/
√

2, so SNRHada
0 = SHada/σ0 = Sconv/(σ0

√
2) =

(
1√
2

)
SNRconv

0 .

From Ref. [54], the SNR of a signal S with total image noise standard deviation

σ is

SNR =
S

σ

=
S√

σ2
0 + σ2

p

=
S√

σ2
0 + λ2S2

,

=
S

σ0

√
1 + λ2S2/σ2

0

,

=
SNR0√

1 + (λSNR0)2
,

(3.6)

where σ2 = σ2
0 +σ2

p, σ
2
p is the variance from physiological noise, and σp = λS, where λ

is a constant that represents the decrease in SNR from signal-dependent fluctuations.
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Using Equations 3.5 and 3.6,

SNRHada

SNRconv =
SNRHada

0√
1 + (λSNRHada

0 )2

√
1 + (λSNRconv

0 )2

SNRconv
0

=
SNRconv

0√
c(1 + cos ∆θ)

√
1 + (λSNRconv

0 )2/(c(1 + cos ∆θ))

√
1 + (λSNRconv

0 )2

SNRconv
0

=

√
1 + (λSNRconv

0 )2√
c(1 + cos ∆θ) + (λSNRconv

0 )2
.

(3.7)

Assuming ∆θ = 0 and c = 1
2
, the SNR for Hadamard-encoding and conventional

acquisitions is the same. In order for Hadamard-encoding to have an SNR advantage,

a low-pass filter with cutoff lower than half the Nyquist frequency must be used so

that c < 1
2

and SNRHada/SNRconv > 1. Note that there is a tradeoff with temporal

resolution; the degrees of freedom in the Hadamard scan is multiplied by the factor c

so that even with c = 1
2
, the temporal resolution is cut in half.

However, as long as there is some through-plane dephasing, ∆θ > 0 mak-

ing SNRHada/SNRconv > 1 even with a low-pass filter with cutoff exactly at half

the Nyquist frequency. Therefore, there is an SNR benefit even with c = 1
2

be-

cause of the susceptibility-induced gradients. When c ≥ 1
2
, from Equation (3.7),

SNRHada/SNRconv > 1 when

c(1 + cos ∆θ) < 1

∆θ > arccos

(
1

c
− 1

)
.

(3.8)

When c < 1
2
, there will always be an SNR benefit since (1 + cos ∆θ) < 2. If a higher

low-pass filter cutoff is used to preserve temporal resolution, then there is only an

SNR benefit at larger angles of ∆θ. For example, with c = 2
3
, SNRHada/SNRconv > 1

only when ∆θ > π
3
.

This SNR analysis can be extended to the reconstruction of individual subslices
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as proposed with Equations 3.1 and 3.2. If the subslice separation is performed

before combining them, then the magnitude signal is SHada = |1 + 1| = 2 after

combining. Assuming the noise is uncorrelated between subslices, the variance sums

to cσ2
0 + cσ2

0 = 2cσ2
0 so that

SNRHada
0 =

2√
2cσ2

0

=

√
2

σ0

√
c

=

(
1√

c(1 + cos ∆θ)

)
SNRconv

0 ,

(3.9)

which is the same as Equations 3.4 and 3.5, which both characterize the SNR us-

ing the incoherent sum method from Ref. [30]. Again, it’s important to note that

this assumes perfect subslice separation from the low-pass filter Wn. It follows that

SNRHada/SNRconv is the same as in Equation (3.7), with all the same conclusions

drawn above. For typical values of λ = 0.008 and SNR0 = 100 from Ref. [54],

Figure 3.1 plots SNRHada/SNRconv as a function of c and ∆θ for either Hadamard

reconstruction method.

3.1.3 Conclusions

In summary, for reconstruction of Hadamard-encoded fMRI, there is a signal recovery

advantage in reconstructing individual subslices first, then combining them, as de-

scribed by Equation (3.1) and Equation (3.2). For the incoherent sum method from

Ref. [30] described by Equation (2.14), Hadamard-encoded fMRI has better signal

recovery than conventional non-SMS fMRI only when the phase difference between

subslices, ∆θ, is greater than π/2. When reconstructing subslices first, the signal re-

covery is maximal regardless of ∆θ, assuming clean subslice separation. The obvious

disadvantage of reconstructing subslices first is that twice the number of slices need to
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Figure 3.1: SNRHada/SNRconv described by Equation (3.7) when reconstructing the
slices by filtering the squared magnitude of the data. Assuming no noise correlation
between subslices, this is also the SNR ratio when reconstructing slices by separating
subslices first, then combining. Typical values of λ = 0.008 and SNR0 = 100 from
Ref. [54] are used. The plane at SNRHada/SNRconv = 1 is shown for illustration.
A significant portion of the plot is below 1, indicating an SNR disadvantage for
Hadamard-encoding for those values of c and ∆θ.

be transformed into the image domain, which could amount to a significant amount

of computational time, especially if an iterative algorithm is used.

As for the SNR, several assumptions need to be made, but in general, the in-

coherent sum method of Ref. [30] has comparable SNR to reconstructing individual

subslices, then combining them. In either case, the SNR depends on the temporal

filter cutoff c, and the phase difference between subslices ∆θ, as shown in Figure 3.1.
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There, it is seen that for cutoffs less than 50% of the Nyquist frequency, the SNR

is always better than a conventional scan, but for cutoffs greater than 50%, there is

only an SNR benefit with greater values of ∆θ.

3.2 Hadamard-encoding for Accelerated Image

Acquisition

Hadamard-encoding can also be used to accelerated image acquisition. Similarly to

what was done previously, two simultaneous Hadamard-encoded slices are acquired

per TR in this section. However, because the aim is acceleration, the width of each

Hadamard slice is set to the width of a conventional, non-SMS acquisition. This

results in a two-fold acceleration, covering the same brain region as a conventional

non-SMS scan while requiring only half the TR. Note the change in terminology from

Section 3.1; in this section, what was previously called a subslice is now called a slice

since it now has the desired thickness of a conventional non-SMS slice.

3.2.1 Image Acquisition and Slice Separation

Simultaneously acquired slices can still be modeled using Equation (2.10), where Sm,n

is the magnitude of the mth slice at time frame number n. However, in this case,

φ and θm are of no importance since we want the magnitude of each separated slice

and not a combination or sum of slices as before. The Hadamard-encoded signal for

2 simultaneous slices can also be modeled as Equation (2.12). In order to encode the

slices, two different RF pulses are alternated from frame to frame. In this work, the

two RF pulses were created by summing two frequency-modulated Hamming-weighted

sinc functions to obtain

RF(t) =
(
e−iπf0t sinc(f0t) + i(−1)neiπf0t sinc(f0t)

)
[0.54 + 0.46 cos(2πt/T )] , (3.10)
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where T is the duration of the pulse, |t| < T/2, f0 is the bandwidth of the sinc, and

n = 0, 1, . . . , N − 1 is the time frame of the pulse for N frames. The resulting slice

profiles are shown in Figure 2.2. To extract or separate the slices, the magnitude of

Equation (3.1) and 3.2 are computed to obtain S1,n and S2,n, respectively, since image

magnitudes are typically used to determine activation in fMRI. Taking the magnitude

removes the effect of φ and ∆θ.

3.2.2 Importance of Physiological Noise

Although image magnitudes are used to determine activation in Hadamard-encoded

fMRI, the time series phase is of great importance for clean slice separation and hence

accurate image magnitudes. Note that the only difference between the excitation for

each slice is the i(−1)n term in the RF pulse in Equation (3.10), which offsets the

phase for that slice by π/2 or −π/2, depending on the time frame. The temporal

filtering used for slice extraction is entirely dependent on this phase change from

frame to frame. If the phase change varies, the temporal filter will not separate the

slices as cleanly.

Physiological noise causes variations in not only the magnitude of the data, but

also the phase [55]. Since the temporal filter Wn operates on complex data for slice

separation, signal variations from physiological motion can potentially have a greater

effect on Hadamard-encoded fMRI when compared to a conventional scan, where

variations in the phase do not introduce additional errors in the reconstruction. In

addition, during the separation of Hadamard-encoded slices, each slice requires data

from at least two excitations, which can occur at different positions in a physiological

motion cycle. Therefore, physiological noise correction is a crucial part of Hadamard-

encoded fMRI, and it is important to perform the correction before slice separation.
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3.2.3 Methods

In this work, four different methods were compared using fMRI scans: Hadamard-

encoded SMS imaging with physiological noise correction (HDP), Hadamard-encoded

SMS imaging without correction (HD), conventional non-SMS imaging with physio-

logical noise correction (CNP), and conventional imaging without correction (CN).

For the conventional methods, a TR of 2 s was used, and for the Hadamard-encoded

scans, a TR of 1 s was used.

3.2.3.1 Physiological Noise Correction

The RETROICOR-based [16] physiological noise correction procedure used in this

work models the physiological noise using

y(t) =
2∑

m=1

acm cos(mφc) + bcm sin(mφc) + arm cos(mφr) + brm sin(mφr) (3.11)

as in Ref. [16], but computes the coefficients axm and bxm using a linear regression with

cos(mφx) and sin(mφx) as regressors, along with four additional regressors consisting

of a constant, linear, quadratic, and cubic trend, where x is c or r. In Equation (3.11),

φc and φr are the cardiac and respiratory phases, respectively, computed from the

subject’s pulse and abdominal motion, and the c and r superscripts and subscripts

refer to cardiac and respiratory noise, respectively. Noise and trends are corrected by

simply subtracting the estimated noise and trends from the time series data for each

voxel.

Hadamard-encoding with two simultaneous slices introduces a phase change in

the data with every time frame, resulting in a phase time series pattern similar to

what is shown in Figure 3.2, which can be challenging for linear regression to handle

appropriately. For example, cardiac pulsation at 88 beats per minute produces noise

at 1.47 Hz, which aliases to 0.47 Hz, very close to the Nyquist frequency of 0.5 Hz.
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Figure 3.2: Example phase time series for one non-separated voxel of a Hadamard-
encoded fMRI scan with two simultaneously acquired slices.

Since the i(−1)n Hadamard-encoding occurs at the Nyquist frequency, the regression

will mistake the Hadamard-encoding for cardiac noise and much of the encoding will

then be removed. Therefore, for the Hadamard scans, the RETROICOR-based noise

correction was performed on the odd-numbered time frames, and separately on the

even-numbered time frames. In addition, the process was done on the magnitude and

the phase of the data. Consequently, four noise correction processes were performed

on each voxel time series: on each of the magnitude and phase of the odd-numbered

time frames, and on each of the magnitude and phase of the even-numbered frames.

Before the physiological noise correction was done on each of the odd and even

phase time series, the original, full phase time series was unwrapped by adding or sub-

tracting multiples of 2π to each time frame so that the difference between consecutive

frames is less than π. This same phase unwrapping procedure was then performed

again, separately on each of the odd and even time series to make the entire procedure

more robust to phase jumps.
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3.2.3.2 Hadamard-encoding with Physiological Noise Correction

For HDP, a non-iterative Fast Fourier Transform reconstruction was first performed

on gridded spiral-in data to produce non-separated complex Hadamard-encoded slices

in the image domain. Inhomogeneity correction was not performed in this step. Next,

the RETROICOR-based physiological noise correction procedure was performed on

each of the magnitude and phase of the odd time frames (i.e. n = 1, 3, 5, . . .), then

on each of the magnitude and phase of the even time frames (i.e. n = 0, 2, 4, . . .).

For HDP, after physiological noise and trend correction, the data was temporally

filtered with a low-pass Parks-McClellan [56] finite impulse response (FIR) filter to

extract the non-alternating slices S1,n, a process which can be represented by Equa-

tion (3.1), although in this case the filtering was not done in the Fourier domain.

Given an fMRI time series sampling frequency of Fs = 1/TR, equal to 1 Hz in

this work, a desired passband edge of 0.5
(
Fs

2

)
, stopband edge of 0.82

(
Fs

2

)
, passband

amplitude deviation of 1%, and stopband amplitude deviation of 0.1% were used to

produce a 17 tap FIR filter with frequency and step response given in Figure 3.3. This

resulted in a frequency of approximately 0.633
(
Fs

2

)
at 50% magnitude. After filter-

ing, the first 8 time frames were thrown out due to ringing, as portrayed in the step

response plot in Figure 3.3, and also to compensate for the group delay introduced

by the filter.

By using a temporal filter with cutoff greater than 0.5
(
Fs

2

)
, the temporal resolu-

tion of Hadamard-encoded fMRI with two simultaneous slices is increased compared

to a conventional non-SMS fMRI scan. In general, this does not remove desired fre-

quency components in the time series. As seen in Figure 3.4, which shows the mag-

nitude spectrum of a Hadamard-encoded voxel time series, the majority of the signal

energy for each slice is concentrated in a relatively narrow band around 0 and 0.5Fs.

In this work, a sampling frequency of Fs = 1 Hz was used for the Hadamard scans,

so the typical frequency band of brain activation that occurs around 0 to 0.06 Hz is

35



0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Frequency (× 0.5 F
s
)

M
a

g
n

it
u

d
e

 (
A

rb
it

ra
ry

 U
n

it
s

)

Frequency Response

 

 

0.5 magnitude line

Frequency at 0.5 magnitude

0 0.2 0.4 0.6 0.8 1
10

−6

10
−4

10
−2

10
0

10
2

Frequency Response: Log Plot

Frequency (× 0.5 F
s
)

M
a
g

n
it

u
d

e
 (

A
rb

it
ra

ry
 U

n
it

s
)

 

 

0.5 magnitude line

Frequency at 0.5 magnitude

180 190 200 210 220
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time Frame Number

M
a
g

n
it

u
d

e
 (

A
rb

it
ra

ry
 U

n
it

s
)

Step Response

 

 

Step

Step Response

Figure 3.3: Frequency and step response of the low-pass Parks-McClellan FIR filter
used to extract the simultaneous slices in Hadamard-encoded fMRI. The filter is 17
taps long, and the sampling frequency of the fMRI scan is Fs = 1 Hz.

very close to each of the two peaks in Figure 3.4. Depending on the sharpness of the

filter transitions, filters with cutoffs up to 0.8
(
Fs

2

)
can potentially be used for even

greater temporal resolution.

To extract the alternating slice S2,n, the time series data was first modulated by

i(−1)n+1, then low-pass filtered using the same Parks-McClellan FIR filter described

above. Again, this process can be described using Equation (3.2), except that the

filtering was not done in the frequency domain.
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Figure 3.4: Example magnitude spectrum of a non-separated voxel time series in
Hadamard-encoded fMRI with two simultaneous slices. In this work, the sampling
frequency of the Hadamard-encoded fMRI scan is Fs = 1 Hz.

3.2.3.3 Hadamard-encoding without Physiological Noise Correction

In order to examine the effect of physiological noise removal on Hadamard-encoded

fMRI, the same Hadamard-encoded SMS data was processed without physiological

noise correction (HD). For HD, the raw k-space data was again gridded and Fast

Fourier Transformed without B0 inhomogeneity correction. Next, linear, quadratic,

and cubic trends were removed from the time series data using linear regression and

subtraction. Similar to what was described above in Section 3.2.3.2, this detrending

process was performed on each of the magnitude and phase of the odd and even-

numbered time frames. For the phase time series, the same phase unwrapping proce-

dure was done before detrending on the phase as described above in Section 3.2.3.2.

Finally, the same Parks-McClellan FIR filter was used to extract the slices.
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3.2.3.4 Conventional Non-SMS Comparison

For the conventional non-SMS fMRI comparison, the data was processed with (CNP)

and without (CN) physiological noise correction. Like the Hadamard-encoded data,

the non-SMS spiral-in data was first transformed using gridding and Fast Fourier

Transforms without B0 inhomogeneity correction. For CNP, the same physiological

noise correction and trend removal process described in Section 3.2.3.2 was performed,

except only on the magnitude and on all time frames at once. For CN, only magnitude

detrending was performed.

3.2.3.5 Scan Parameters

Scans of 10 subjects were acquired with a 3 Tesla GE magnet using a visual stimu-

lus and finger tapping block paradigm consisting of repeating cycles of 20 s of rest

followed by 20 s of stimulus and tapping. Each subject was scanned once using

Hadamard-encoding and once without, which served as the conventional comparison.

For the Hadamard-encoded scans, twenty pairs of 3 mm slices were acquired per TR

of 1 s using T = 8 ms RF pulses composed of summed sincs, each with f0 = 1 kHz

bandwidth and 8 zero-crossings. The Hadamard scans had N = 490 time frames and

used a spiral-in readout. In addition, the Ernst [57] angle of 62° for a gray matter

T1 of 1.33 s at 3 Tesla was used for the flip angle. For the conventional scans, forty

3 mm slices were acquired per TR of 2 s using a Hamming-weighted sinc pulse with

duration 8 ms and bandwidth 1 kHz. The conventional scans had N = 245 time

frames, used the same spiral-in readout as the Hadamard scans, and used the Ernst

flip angle of 77°. For both Hadamard and conventional scans, cardiac pulsations were

monitored using a pulse oximeter, and respiration was monitored using an expandable

belt around the subject’s abdomen. In addition, an in-plane FOV of 22 cm was used

with a 64× 64 resolution for all scans.
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3.2.3.6 fMRI Experiment Analysis

A standard general linear model (GLM) was used to compute task activation [58].

Since the temporal resolution of the processed data from the Hadamard-encoded

scans is greater than that of the conventional scans, a comparison of single-threshold

activation would not be fair. Furthermore, it is difficult to accurately estimate the

true degrees of freedom in the time series data after the processing steps described

above have been performed, especially since many steps involve regression on each

of the magnitude and phase of each of the odd and even frames of the voxel time

series. Ref. [59] revisits the work in Ref. [58], resulting in a method to compute

t-scores without an explicit value for the effective degrees of freedom in the data.

However, in order to compare t-scores from Hadamard-encoded fMRI with those

from conventional fMRI, the degrees of freedom is needed to either convert to z-scores

or determine different t-score thresholds with equivalent p-value. Results from any

analysis involving individual thresholds will be heavily dependent on the particular

threshold chosen.

3.2.3.7 Test-retest Reliability

Therefore, in order to avoid dependence on particular t-score thresholds and perform

a fair comparison, the test-retest reliability [60, 61] for each of the four methods de-

scribed above was determined. Because the test-retest method requires at least three

replications of a scan, each of the Hadamard and conventional scans was segmented

into three runs with equal length. These three segments or runs served as the repli-

cations. Activated voxel counts were calculated using t-score thresholds from 0 to 7

in increments of 0.5 on brain-like regions of interest. All slices were used, even those

without regions in the visual or motor cortex. Maximum likelihood estimation was

used to compute a probability of true detection pA and a probability of false detection

pI for each threshold. The dependent likelihood function given in the Appendix of
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Ref. [60] was used. Because HD and HDP both used the same data, the probabilities

were jointly computed with the same proportion of truly active voxels λ. This was

similarly done with CN and CNP. The dependent likelihood function was maximized

using MATLAB’s nonlinear program solver “fmincon” [62] with the “sqp” algorithm

described in Chapter 18 of Ref. [63].

The probabilities pA and pI at the 15 different t-score thresholds were used to

plot a receiver operating characteristic (ROC) curve for each method. In order to

compare the ROC curves between methods, the area under each ROC curve for a pI

range of 4.8× 10−5 to 0.04 was computed. In practice, fMRI analysis would not use

a threshold resulting in a pI > 0.04 due to too many false activations. The areas

were approximated by linearly interpolating each ROC curve to pI steps of 1× 10−6,

then summing the rectangular areas for each step. Finally, a two-way analysis of

variance (ANOVA) of the areas was performed, along with paired Tukey [64] multiple

comparisons between methods.

3.2.4 Results

3.2.4.1 Activation Maps Using Hadamard-encoding for Acceleration

Figure 3.5 shows the whole-brain activation map for run 1 of the Hadamard-encoded

fMRI scan of subject 3. The top set of images have had physiological noise correction

applied to them (HDP), while the bottom set of images have not (HD). Both sets

used the same data. The t-scores are mapped in color and thresholded at a value of

4. The underlying grayscale brain image is the actual reconstruction result from one

time frame in the middle of the scan. The same time frame is portrayed in both the

upper and lower set of images for HDP and HD, respectively.

Figure 3.6 shows the analogous set of activation maps for run 1 of the conventional

non-SMS fMRI scan of subject 3. The color t-score maps are again thresholded at 4,
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Figure 3.5: Activation maps over reconstructed images for run 1 of a Hadamard-
encoded scan of subject 3, with (top) and without (bottom) physiological noise cor-
rection. A visual and motor block paradigm was used. The underlying background
image is the actual result using the Hadamard reconstruction process described in
Section 3.2. A t-score threshold of 4 was used.
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Figure 3.6: Activation maps over reconstructed images for run 1 of a conventional non-
SMS scan of subject 3, with (top) and without (bottom) physiological noise correction.
A visual and motor block paradigm was used. The underlying background image is
the actual result using the non-SMS reconstruction process described in Section 3.2.
A t-score threshold of 4 was used.
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and the reconstruction result from the same time frame, located near the midpoint of

the conventional scan, is portrayed as the underlying grayscale image for both CNP

and CN. The t-score colorbar for Figure 3.5 and Figure 3.6 have the same scale. Due

to the differences in signal intensity from different flip angles and different acquisition

volumes, the grayscale bar in Figure 3.6 was adjusted to portray the brain with the

same mean image brightness as in Figure 3.5.

Comparing HDP and HD in Figure 3.5, the activation areas in both the visual

and motor cortices for HDP appear larger with more voxels with higher t-scores than

for HD. Although the results for only one subject are shown, in general, this behavior

was present in the Hadamard scans of the rest of the 9 subjects. In addition, the

location of the activation areas using HDP is very similar to that using HD. The

underlying brain images are very similar when comparing HDP and HD.

Comparing CNP and CN in Figure 3.6, the activation areas do not necessarily

appear larger or more bright in CNP versus CN. The same can be said of the other

subjects; in some subjects, the areas using CNP actually appeared smaller and less

intense than in CN. However, like the Hadamard images, the underlying images using

CNP appear very similar to the ones using CN.

Comparing the Hadamard images and the conventional images, the activation

areas appear to be in similar locations, confirming the ability for Hadamard-encoded

fMRI to localize brain activation accurately. However, the difference in activation

between HDP and HD is much larger than the difference in activation between CNP

and CN, suggesting that Hadamard-encoded fMRI benefited more from physiological

noise correction than conventional fMRI did.

The activation is not the only visible difference between the Hadamard and con-

ventional images; the underlying brain images look slightly different in Figure 3.5

compared to Figure 3.6. The Hadamard images in Figure 3.5 seem to have lost some

of their T2-weighted contrast between cerebral spinal fluid (CSF) and brain matter. In
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the conventional images in Figure 3.6, the outline of the gyri are more visible, which

is more apparent in the mid to superior slices. In general, this trend was present in

the images obtained from the other subjects as well.

3.2.4.2 Test-retest Reliability of Hadamard-encoding for Acceleration

Figure 3.7 and Figure 3.8 show the mean interpolated ROC curve for each of the four

methods across all 10 subjects. Figure 3.8 is the same as Figure 3.7, except with
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Figure 3.7: Mean ROC curve across all 10 subjects for each method. ROC curves were
generated with t thresholds from 0 to 7 in increments of 0.5, then linearly interpolated
to false detection probability steps of 1× 10−6, then averaged across subjects.

a range of false detection probabilities from 4.8 × 10−5 to 0.04, which was also the
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range used to compute the areas under the curves. Qualitatively, there is not much

of a difference between the two conventional methods, suggesting that conventional

fMRI did not benefit much from physiological noise correction in terms of test-retest

reliability. The curves for both Hadamard methods are clearly lower than the those

for the conventional methods, suggesting less reliability than conventional scanning.

However, the curve for HDP is higher and looks more different from HD than CNP

looks compared to CN.
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Figure 3.8: Mean ROC curve across all 10 subjects for each method. This plot is the
same as Figure 3.7, except zoomed-in to a more practical range of 4.8×10−5 to 0.04 for
the probability of false detection. ROC curves were generated with t thresholds from
0 to 7 in increments of 0.5, then linearly interpolated to false detection probability
steps of 1× 10−3, then averaged across subjects.
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In order to more quantitatively compare the ROC curves between methods, the

areas under the curves for a false detection probability range of 4.8 × 10−5 to 0.04

were computed and shown in Table 3.1. The means in this table confirm what was

Method

Hada Hada Physio Conv Conv Physio

Subject 1 1.8797× 10−2 1.9619× 10−2 1.9958× 10−2 1.9069× 10−2

Subject 2 1.7068× 10−2 1.6008× 10−2 1.3743× 10−2 1.3939× 10−2

Subject 3 2.5302× 10−2 2.8582× 10−2 2.9562× 10−2 2.7414× 10−2

Subject 4 1.7831× 10−2 1.7023× 10−2 1.8226× 10−2 1.8423× 10−2

Subject 5 2.1257× 10−2 2.0544× 10−2 2.0050× 10−2 1.9572× 10−2

Subject 6 1.9514× 10−2 1.9635× 10−2 2.5779× 10−2 2.5537× 10−2

Subject 7 1.7619× 10−2 1.7148× 10−2 1.7913× 10−2 1.7760× 10−2

Subject 8 0.4749× 10−2 1.0133× 10−2 1.6920× 10−2 1.6885× 10−2

Subject 9 1.0043× 10−2 1.2975× 10−2 2.0261× 10−2 2.0092× 10−2

Subject 10 1.8439× 10−2 1.9884× 10−2 2.6684× 10−2 2.6371× 10−2

Mean 1.7062× 10−2 1.8155× 10−2 2.0910× 10−2 2.0506× 10−2

Table 3.1: Area under the ROC curve for false detection probabilities ranging from
4.8×10−5 to 0.04 for each subject and method. “Hada” indicates Hadamard-encoded
fMRI, “Hada Physio” indicates Hadamard-encoding with physiological noise correc-
tion, and similarly for “Conv” and “Conv Physio” for conventional, non-SMS fMRI.

visually apparent in Figure 3.7 and Figure 3.8. However, in order to validate differ-

ences between the mean for each method, the variance across subjects needs to be

determined.

Table 3.2 displays the p-values of paired Tukey [64] multiple comparisons of a

two-way ANOVA of areas under the ROC curves for false detection probabilities

ranging from 4.8× 10−5 to 0.04. Figure 3.9 displays the results of the paired multiple

comparisons in a different manner. The mean areas are plotted for each method with

ranges equivalent to one-half the 95% confidence interval for the difference between

estimated group means computed from the Tukey multiple comparison procedure.

In other words, if the ranges between two methods do not overlap, then the means

are significantly different with p < 0.05, and if the ranges do overlap, then the null

hypothesis is not rejected. In Figure 3.9, the difference in means can easily be seen
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p-value
Method Pair

Hada Hada Physio 0.80
Hada Conv 0.017
Hada Conv Physio 0.037

Hada Physio Conv 0.12
Hada Physio Conv Physio 0.23

Conv Conv Physio 0.99

Table 3.2: This table displays p-values using paired Tukey multiple comparisons of a
two-way ANOVA of areas under the ROC curves displayed in Table 3.1.

along with their relative positions. Larger pairwise differences between means result

in a smaller p-value and conversely for smaller pairwise differences.

Using a significance of p < 0.05, two pairs of methods have significantly different

means: HD paired with CN, as well as HD paired with CNP, with the mean for HD

lower than that for either CN or CNP. This indicates that HD is significantly less

reliable, or equivalently, a significantly less powerful test for a given type I error rate

than either CN or CNP. However, with physiological noise correction, the reliability

improves. While HDP is not significantly more reliable than HD, it is not significantly

less reliable than CN or CNP since the ranges between HDP and either CN or CNP

overlap in Figure 3.9. While there is a trend towards a lower p-value with the HDP

and CN or CNP pairs in Table 3.2, the values are still well above 0.05. Therefore,

the data suggests that with Hadamard-encoded fMRI, physiological noise correction is

needed for equivalent reliability as conventional non-SMS fMRI for task based studies.

Although neither HD paired with HDP nor CN paired with CNP have mean areas

that were significantly different, the p-value for HD paired with HDP is smaller than

that for CN paired with CNP. Equivalently, the two conventional methods have ranges

that overlap with each other more than the two Hadamard methods do in Figure 3.9.

This suggests that physiological noise correction was more of a benefit for Hadamard-

encoded fMRI than for conventional fMRI, which corroborates what is qualitatively
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Figure 3.9: For each method, this figure plots the mean area under the ROC curve
across all 10 subjects for false detection probabilities ranging from 4.8× 10−5 to 0.04.
A range around each mean is also plotted, where each range is equivalent to one-
half the 95% confidence interval for the difference between estimated group means
computed from the Tukey multiple comparison procedure. If the ranges for two
methods overlap, there is no significant difference in mean areas, and equivalently,
the p-value is greater than 0.05. If the ranges for two methods do not overlap, there is
a significant difference in mean areas, and equivalently, the p-value is less than 0.05.

seen with the ROC curves in Figures 3.7 and 3.8.

3.2.5 Discussion and Conclusions

In Hadamard-encoded fMRI, simultaneous slices are distinguished from each other

in the temporal frequency domain using the RF pulses, and a temporal filter is used
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to extract the slices. From Ref. [65], the thermal SNR for spoiled gradient echo

sequences with matching voxel volume and measurement time is given by

SNR0 =
C√
TR

√
1− e−TR/T1

1 + e−TR/T1
, (3.12)

where the flip angle is assumed to be the Ernst angle, T1 is approximately 1.33 s

for gray matter, and C is a scaling constant. Assuming perfect slice separation, the

Hadamard acquisition has approximately the same measurement time as a conven-

tional non-SMS acquisition because at least two Hadamard excitations are needed to

extract one slice. Substituting TRHada = 1 s and TRconv = 2 s into Equation (3.12),

the ratio SNRHada
0 /SNRconv

0 is approximately 1.06. Using a Monte Carlo simulation

where the Parks-McClellan filter described in Section 3.2.3.2 was used for slice sep-

aration, SNRHada
0 /SNRconv

0 is approximately 1.05, which is slightly lower than the

predicted value of 1.06. This is expected since the filter cutoff is 0.633
(
Fs

2

)
, slightly

greater than 0.5
(
Fs

2

)
. Therefore, assuming perfect slice separation, Hadamard-

encoded fMRI should perform at least as well as conventional non-SMS fMRI based

on analysis of the thermal SNR.

However, the quality of the separation depends heavily on the temporal frequency

content of each slice, as well as the behavior of the filter. Even with an ideal filter

with sharp transitions and absolute suppression of stopband frequencies, physiological

noise can corrupt the slice separation process if its frequency is high enough to make

it into the filter’s passband.

For example, respiration can cause fluctuations in the B0 field [10, 11, 13], leading

to phase variations along time. From Ref. [66], respiration-induced B0 modulation

of around 0.01 ppm at 3 Tesla, equivalent to 1.28 Hz, has been observed. For a TE

of 30 ms, this results in a phase change of approximately 21.6°, a significant phase

variation. A typical respiratory rate of 12 breaths per minute causes fluctuations at
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a frequency of 0.2 Hz. From Figure 3.3, the frequency response still has a magnitude

of around 0.6 at 0.5− 0.2 = 0.3 Hz, which is where 0.2 Hz fluctuations would occur if

the noise was present in the alternating slice. Therefore, without physiological noise

correction, respiratory noise in the alternating slice causes significant slice leakage

into the non-alternating slice.

This behavior is one reason why physiological noise correction improved the relia-

bility of Hadamard-encoded fMRI more than it did for conventional non-SMS fMRI.

Although physiological noise can spuriously affect activation in conventional fMRI, it

doesn’t introduce additional errors of large intensity image signals leaking from one

slice to another as it does in Hadamard-encoded fMRI. In addition, cardiac pulsations

occur in the range of 1 to 1.6 Hz, which can alias from one slice into the frequency

band of the other slice in each pair.

While physiological noise removal in Hadamard-encoded fMRI increased the mean

area under the ROC curve into a range not significantly different from either conven-

tional method, there is a slight trend towards significance with p-values of 0.12 and

0.23 when compared to CN and CNP, respectively. Visually, the range for HDP in

Figure 3.9 is closer to HD than it is to either CN or CNP. The RETROICOR-based

noise removal is certainly not perfect and cannot remove the entirety of all physiolog-

ical noise fluctuations from the data. For example, if the subject breathes irregularly

with occasional breaths deeper than normal, a low order Fourier series may not model

this accurately enough for sufficient removal. The leftover respiratory fluctuation goes

into a time-varying phase term in the data, corrupting the slice separation. Further-

more, even with the accelerated acquisition, the temporal sampling rate is still just

1 Hz with Hadamard-encoded fMRI, which is not typically high enough to prevent

aliasing of cardiac fluctuations.

Another issue is that the stopband of the filter might not be low enough. As

seen in Figure 3.3, the frequency response still has a magnitude of 0.001 at the
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Nyquist frequency, which means 0.1% of the signal is leaking through. These issues

could be minimized by choosing a more ideal filter with sharper transitions and lower

stopband, but at the cost of increasing the length of the filter. As the length of the

filter increases, additional time frames must be discarded, otherwise temporal ringing

artifacts can potentially corrupt or imitate activation. Throwing away time frames

reduces the degrees of freedom in the data, which is at direct odds with the goal of

improving temporal resolution in fMRI. On the other hand, filtering in the frequency

domain typically introduces a non-constant group delay, which can be problematic to

analyze for activation.

For B0 inhomogeneity correction, it is easier to temporally filter the k-space data,

separating the slices first before transforming them into the object domain. That

way a conventional non-SMS field map can be used on the separated slices in the

typical manner. However, the RETROICOR-based noise correction used in this work

operates in the object domain. From previously in this discussion, physiological noise

has a large effect on the slice separation process, so for that reason, it was decided to

transform first, perform physiological noise correction, then separate the slices in the

object domain.

In order to perform B0 inhomogeneity correction with this ordering, one could

perform the initial transformation with the field map for the non-alternating slice,

then perform the identical transformation with the field map for the alternating slice.

Then, to extract the non-alternating slice, use only the first set of data corrected with

the non-alternating slice field map, and use only the second set of data corrected with

the alternating slice field map to extract the alternating slice. The disadvantage of

this is that the transformation work is increased by a factor of two. However, what

one would not want to do is obtain two sets of Hadamard-encoded field maps, one for

the +i encoding and one for −i, and alternate the field maps from frame to frame.

This process could introduce unwanted temporal modulation on the data, corrupting
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the slice separation.

Another option is to use a physiological noise correction method that operates in

the k-space domain such as the method described in Ref. [13]. However, Ref. [16] has

shown that retrospective corrections in k-space cannot as effectively localize physio-

logical noise since they must operate on k-space data with high enough SNR, which

involves only data from near the center of k-space. Therefore, they can undercorrect

image areas with high amounts of noise such as vessels, and overcorrect areas with

low physiological noise, potentially introducing spurious temporal fluctuations in the

data.

However, image-based physiological noise correction is not without its own prob-

lems, especially for Hadamard-encoded fMRI. If performed on all time frames of the

original data, the +i and −i fluctuation occurring at Nyquist frequency can be er-

roneously removed from the data using a noise model of aliased cardiac fluctuations.

For example, with a sampling rate of Fs = 1/TR = 1 Hz, cardiac noise at 88 beats

per minute (1.47 Hz) can alias to 0.47 Hz, very close to the Nyquist frequency. The

+i and −i fluctuation would correlate well with the modeled cardiac noise and be

removed from the data. For this reason, the physiological noise correction was per-

formed separately on each of the odd numbered time frames and even ones. However,

doing this removes the benefit of increased temporal resolution for noise correction

since the odd (or even) numbered frames have a TR of 2 s, which is the same as for

conventional fMRI. Furthermore, since the noise correction operates on non-separated

data, it cannot localize the correction to one particular slice in the pair.

One option to mitigate some of these issues is to initially perform respiratory

noise correction on the full set of frames, separate the slices, then perform cardiac

noise correction on the separated slices. The upper limit for a normal respiratory rate

is 18 breaths per minute, which equates to 0.3 Hz. This is likely far away enough

from the Nyquist frequency so that the Hadamard modulation is not removed from
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the data. Although slice separation does not benefit from cardiac noise correction,

diffuse phase variations are more attributed to respiratory motion [10, 11, 13] and

phase fluctuations are likely the most important for slice separation. After separation,

the +i and −i modulation is removed, and the cardiac noise can be corrected from

higher temporal resolution data as well.

In conclusion, Hadamard-encoded fMRI involves distinguishing simultaneous

slices from each other in the temporal frequency domain, which can be problem-

atic because of the numerous factors in fMRI that cause undesired temporal fluctu-

ations. The temporal resolution benefit is limited since a low-pass filter is used to

separate the slices. Furthermore, the slice separation process involves alterations to

the time series data, which can affect how well the underlying activation is detected.

Finally, physiological noise correction on Hadamard-encoded data is not straightfor-

ward because of the need to preserve data at the Nyquist frequency. Consequently, in

spite of not reaching significance, the test-retest results for Hadamard-encoded fMRI

indicate that it underperforms conventional non-SMS fMRI. Based on these issues,

Hadamard-encoded fMRI proved not to be a beneficial method for accelerating fMRI.
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CHAPTER 4

Non-Cartesian Parallel Simultaneous

Multislice fMRI1

The use of multiple receive coils in MRI, termed parallel imaging, has enabled high

acceleration factors in SMS fMRI by taking advantage of the spatial differences be-

tween simultaneous slices in order to distinguish them. Most parallel SMS methods

currently use Cartesian readouts such as EPI, partly due to the reduced complexity

of the reconstruction compared to non-Cartesian readouts. However, non-Cartesian

readouts such as spirals have advantages such as better signal recovery, reduced off-

resonance distortion, and an increased maximum number of slices acquired per unit

time. In addition, Ref. [48] has demonstrated good performance in SENSE recon-

structions of blipped spiral SMS fMRI, although they did not compare it to Carte-

sian fMRI. This chapter explores the use of an alternative readout z-gradient in spiral

SMS, an enhancement to SENSE reconstruction of SMS data, and reconstructions of

non-Cartesian SMS imaging based on generalized autocalibrating partially parallel

acquisitions (GRAPPA) [22].

In this chapter and the next, the term “SMS imaging” by itself will refer to

parallel SMS imaging for the sake of brevity. In addition, all methods have in-plane

parameters sufficient to produce a FOV of 22 cm with a resolution of 64× 64 voxels.

All SMS methods acquire three simultaneous slices, each 3 mm thick, using an RF

1Parts of this chapter are based on Refs. [67], [68], and [69].
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pulse created by Equation (2.4) with l = 3. Finally, whenever an SMS method is

compared with conventional non-SMS imaging, the non-SMS images are produced

with a sinc RF pulse with the same bandwidth and duration as each of the summed

sincs used in the SMS RF pulse. Furthermore, the non-SMS comparison has slice

locations that match the slice locations of the corresponding SMS scan.

4.1 Methods

4.1.1 Spiral SMS with Sine Wave Modulation

Although the Fourier analysis described by Equations 2.21, 2.22, and 2.23 certainly

helped in designing the blipped spiral SMS acquisition in Figure 2.6, it is not clear

whether that particular blipped gz(t) scheme is optimal for slice separation using

spirals. Perhaps some other blipping scheme has better performance, or maybe a

different waveform altogether is optimal. Because our in-plane trajectories are spirals,

which come from gx(t) and gy(t) that are “sinusoid-like,” we decided to explore the

use of a sinusoid for gz(t) as well, instead of the Cartesian blipping scheme done

previously. Therefore, a sine wave phase modulation was implemented using a cosine

gz(t) = 0.2994 cos(2π1582t) G/cm, where t is in seconds. This gz(t) completes around

32 cycles over the spiral readout period of 20.224 ms. The amplitude of gz(t) was

chosen to achieve a kz trajectory that goes to ±kmax
z ≈ ±12.821 m-1, which was

the maximum needed according to the Fourier analysis of the blipped spiral. The

3-dimensional k-space trajectory using this sinusoid z-gradient along with a spiral-in

readout is shown in Figure 4.1. Figure 4.2 shows the same trajectory as Figure 4.1,

except at different viewing angles. The top left image shows a “top-down” view,

which is simply a spiral in the kx-ky plane. The middle image in the top row shows

the view angled slightly more “downwards” so that the kz variations from the sinusoid

begin to become apparent. The other images have progressively lower viewing angles.
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Figure 4.1: Sine wave gz(t) modulated spiral k-space trajectory used for 3 simultane-
ous slices.
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Figure 4.2: Different views of the trajectory in Figure 4.1.
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4.1.2 SENSE Reconstruction

The discretized SENSE [21] reconstruction model for one acquisition of one time

frame is given by



s1

s2

...

sncoil


=



M1Q1C1,1 M2Q2C1,2 · · · Mnslc
Qnslc

C1,nslc

M1Q1C2,1 M2Q2C2,2 · · · Mnslc
Qnslc

C2,nslc

...
...

. . .
...

M1Q1Cncoil,1 M2Q2Cncoil,2 · · · Mnslc
Qnslc

Cncoil,nslc





x1

x2

...

xnslc


, (4.1)

where su is k-space data from coil u, xv is simultaneous slice v, Cu,v contains the

sensitivity of coil u to simultaneous slice v, Qv is the 2-dimensional Fourier trans-

form operator with B0 inhomogeneity correction for slice v, Mv contains the phase

imparted by the z-gradient modulation to slice v and is given by Equation (2.20), and

nslc is the number of simultaneously acquired slices for each SMS acquisition. For re-

construction, the xv vector was solved for in Equation (4.1) using conjugate gradient

with finite difference regularization. Because xv contains multiple slices, the finite

difference operator was constructed to only take differences within each slice and not

across simultaneous slices. The Qv matrices were implemented by a NUFFT [35, 43]

with B0 inhomogeneity correction [36]. For the spiral SMS imaging in this work,

sensitivity maps were calculated using Equation (2.26).

4.1.3 Alternative Regularization Method

Instead of using the standard SENSE reconstruction described in Equation (2.24), a

different way to regularize the least squares reconstruction problem is to compute

x̂ = arg min
x

{
‖Ax− s‖2

2 + β1 ‖D1x1‖2
2 + β2 ‖D2x2‖2

2 + . . .+ βl ‖Dlxl‖2
2

}
, (4.2)
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so that each simultaneous slice, xv has its own regularization parameter βv. Equa-

tion (4.2) can be written in the form of (2.24) by setting β = 1 and constructing an

R to perform the equivalent operation of the regularization terms in Equation (4.2).

In addition, Equation (2.24) is exactly the same as Equation (4.2) if β1, β2, . . ., βl

in Equation (4.2) are all set to the value of β in Equation (2.24). The aim behind

the reconstruction in Equation (4.2) is to improve the noise reduction performance

without necessarily decreasing the spatial resolution. This is done by solving for each

simultaneous slice xv separately with different βv values for each reconstruction. For

example, to reconstruct slice 2, we set β2 to a value that would be appropriate for β

in Equation (2.24), and set the rest of the parameters β1 = β3 = β4 = . . . = βl to

be a relatively low value closer to 0. Experiments in this dissertation used values of

273 and 5 for this framework. The idea is that noise in the raw data or errors from

model mismatch will end up in slices other than slice 2. The obvious tradeoff of this

approach is that reconstruction computation is increased l-fold.

4.1.4 Spiral SMS Simulations

Non-SMS data with no readout z-gradient was acquired using a 3 Tesla General Elec-

tric MRI scanner for use in simulations of SMS data. The non-SMS scan consisted of

thirty-nine 3 mm thick slices of a structured, American College of Radiology phan-

tom, with consecutive acquisitions right next to each other. An 8-channel Invivo head

coil was used for data reception, and a single-shot spiral-in readout was performed

with a TE of 30 ms.

To simulate acquisitions with 3 simultaneous slices, k-space data from the appro-

priate individual slices were modulated with the appropriate phase from the readout

z-gradient, and then simply summed together. For example, if the non-SMS acqui-

sition has consecutive slices numbered 1 through 39, the first SMS acquisition was

simulated by modulating, then summing individual slices 1, 14, and 27, the second
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acquisition by modulating and summing individual slices 2, 15, and 28, and so on.

Note that this process increases the amount of noise in the data compared to an

actual SMS acquisition.

To illustrate the effect the z-gradient has on slice separation, an SMS simulation

was performed without modulating the non-SMS k-space data before summation. In

this situation, the coil sensitivities are solely responsible for slice separation.

Using the Fourier viewpoint of [41], a blipped z-gradient scheme was created

so that an adequate FOV and resolution in the z-direction was attained. In this

framework, FOVz = l∆z = 3(39) mm = 117 mm, ∆kz = 1/FOVz ≈ 8.547 m-1,

and kmax
z = ∆kzl/2 ≈ 12.821 m-1. The 3-dimensional k-space trajectory is shown in

Figure 2.6.

4.1.5 Spiral SMS Experiments

A true SMS scan was acquired with 3 simultaneous slices using a 3 Tesla General

Electric MRI scanner. The slice thickness was 3 mm, and the scan consisted of

13 acquisitions of a structured, American College of Radiology phantom, with con-

secutive acquisitions right next to each other. An 8-channel Invivo head coil was

used for data reception, and a single-shot spiral-in readout was performed with a

TE of 30 ms. The same blipping scheme shown in Figure 2.6 and described in Sec-

tion 4.1.4 was used during readout. A 39-slice non-SMS scan with matching slice

locations was also acquired to obtain sensitivity and field maps. In addition to the

blipped spiral scan, another experiment was performed using the sinusoid z-gradient

of gz(t) = 0.2994 cos(2π1582t) G/cm during readout, and using the same parameters

as the previous experiment.
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4.1.6 Concentric Ring SMS

In fMRI, efficient single-shot kx-ky trajectories such as a spiral-in have been recom-

mended for fMRI due to their shorter readout times and improved signal recovery in

the presence of susceptibility-induced gradients [70, 49]. However, spiral-in SMS is not

well-suited for GRAPPA because of the irregularity of the sampling pattern in both

the angular and radial directions. In addition, the use of a readout z-gradient [40]

in SMS imaging further disrupts the regularity in a spiral readout, as shown in Fig-

ure 2.6, Figure 5b of Ref. [41], and Figure 2d of Ref. [48]. These figures show that

the z-gradient blips create large gaps in each spiral platter. We propose an out-to-in

concentric ring trajectory that has good sampling regularity for a GRAPPA kernel,

but still retains most of the susceptibility benefits of the more established spiral-in.

The concentric ring trajectory requires more samples than a spiral-in, but is still

more efficient than Cartesian patterns such as EPI. In this chapter, we present a

blipped, concentric-ring-in k-space trajectory with the sampling regularity necessary

for implementation of slice-GRAPPA.

The out-to-in concentric ring trajectory was developed using a numerical algo-

rithm based on Ref. [71]. As shown in Figure 4.3a, the kx-ky trajectory follows the

path of multiple centered, concentric circles with radii spread evenly along the radial

direction, along with a sample at the k-space origin. Transitions between circles fol-

low a path created using 2 quarter-circles tangent to the main concentric rings, as

shown in Figure 4.3b. All reconstruction and coil compression operations, including

ones for GRAPPA, SENSE, non-simultaneous multislice imaging, and their associ-

ated field maps and calibration scans, used data obtained only in the concentric rings

and origin, ignoring data sampled during all transitions. In order to provide better

sampling regularity for GRAPPA, the transition paths were not started until each

concentric circle was entirely complete. The numerical algorithm samples points along

the k-space path with step sizes that are as a large as possible, while still satisfying
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Figure 4.3: (a) kx-ky components of the concentric ring k-space trajectory used in
this work. Boundaries of angular sectors for GRAPPA are shown with dash-dotted
blue lines. (b) Close-up of ring transitions with “x” markers indicating where samples
were acquired.

maximum gradient amplitude and slew rate hardware constraints. It does this by

using the maximum slew rate at each step until the curvature of the path is too

great. When this happens, the algorithm re-samples a previous point with a smaller

step size, equivalent to backing up and slowing down the trajectory. The result is an

efficient and accurate trajectory that is consistent with hardware limits.

In order to decrease the geometry factor in SMS imaging [40], z-gradient blips

were used during the concentric ring readout. Using a more complicated z-gradient

such as a sine wave would be problematic due to the irregularity it introduces. The z

blips were timed to occur only during the kx-ky transitions between rings so that the

entirety of each concentric ring remained in a single kz plane, as shown in Figure 4.4.

The readout z-gradient consisted of a repeating set of (nslc−1) positive blips followed

by a rewinder negative blip and were designed according to the necessary Fourier

requirements for nslc simultaneously acquired slices (multiband factor), each separated

by a distance of nacqdslc, where nacq is the number of SMS acquisitions per TR, and
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Figure 4.4: Three-dimensional concentric ring k-space trajectory for a nslc = 3 simul-
taneous slice acquisition.

dslc is the distance between adjacent individual slices [41]. Figure 4.5 shows the

actual gradient waveforms used during readout to produce the trajectory shown in

Figure 4.4. The use of tangent quarter-circles for the transition paths may not be

optimal in terms of speed, but because it was desired to have the z blips entirely within

each transition, the quarter-circle transitions were more than adequate to achieve the

minimum time needed for each z blip.

The specifics of the concentric ring trajectory parameters used in this chapter are

described in Section 5.1.6. In addition, the SMS concentric ring scans used a TR of

663 ms and a TE of 31 ms. The non-SMS concentric ring used for comparison in this
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Figure 4.5: Readout gradient waveforms used to produce a nslc = 3 simultaneous
slice concentric-ring-in trajectory. The x and y gradients were designed using the
numerical algorithm described in Section 4.1.6.

chapter also used a TE of 31 ms, but used a TR of 1989 ms. The specifics regarding

the RF pulses used and the calibration scan are given in Sections 5.1.5 and 5.1.9.

For concentric ring SMS imaging in this work, ESPIRiT [45] was used to gener-

ate sensitivity maps from data acquired during the non-delayed field map acquisi-

tion. First, individual coil images were reconstructed with conjugate gradient using

NUFFTs, inhomogeneity correction, and finite difference regularization. Then, a

2-dimensional Fourier transform was done on each coil image to obtain Cartesian

k-space data. ESPIRiT was then used on this field-corrected k-space data to obtain

sensitivity maps. Only the primary set of ncoil maps from ESPIRiT was used for all
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SENSE reconstructions of concentric ring SMS imaging.

4.1.7 Slice-GRAPPA and Split Slice-GRAPPA Reconstruc-
tion

For each SMS fMRI run, a calibration scan was necessarily acquired for slice sepa-

ration and reconstruction. The calibration scan consisted of non-simultaneous slices

acquired at the same z locations as the SMS acquisitions. The calibration acquisitions

used exactly the same kx-ky-kz trajectory as the SMS acquisitions did, but with a

conventional non-simultaneous RF pulse. The calibration scan used the same TR as

the SMS fMRI scan to preserve image contrast and was acquired shortly before each

fMRI run.

In addition to the calibration scan, field maps were obtained by acquiring non-

simultaneous slices at the same z locations as the SMS acquisitions, with the same

kx-ky concentric ring trajectory. No readout z-gradient was used for the field maps.

The brain volume was acquired two times, with one time frame having an echo time

delayed by 2 ms with respect to the other so that the phase difference could be used

for a standard field map computation.

Prior to reconstruction, SMS data acquired at non-z-isocenter slice locations need

to be demodulated so that they have the same phase modulation from the z-gradient

as the isocenter SMS acquisition. For example, with an nslc = 3 simultaneous slice

acquisition taken at z-isocenter with 39 mm between simultaneous slices, a given

readout z-gradient will add γzv
∫ t

0
gz(τ) dτ amount of phase to each of the 3 slices,

where z1 = −39, z2 = 0, and z3 = 39 mm. Assuming no space between contiguous

acquisitions, the adjacent set of 3 slices will be taken at z1 = −36, z2 = 3, and

z3 = 42 mm. For this non-isocenter acquisition, the data need to be modulated by

eiγ(−3)
∫ t
0 gz(τ) dτ prior to reconstruction. This is done to ensure that all acquisitions

uniformly benefit from the improved g-factor caused by the readout z-gradient.
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A slice-GRAPPA (SG) reconstruction process based on Refs. [72] and [40] was

developed to separate and reconstruct the SMS data. First, all acquired data from all

coils were linearly interpolated to a constant angular velocity trajectory. Next, the

interpolated data were divided into angular sectors as depicted in both Figure 4.3a

and the lower part of Figure 4.6. Interpolated data from each angular sector were
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Figure 4.6: Non-Cartesian slice-GRAPPA using blipped concentric rings. The tra-
jectory is unwinded into a Cartesian grid and divided into sectors before kernel op-
erations are performed.

unwrapped and arranged into a Cartesian grid according to the radial and angular

location of each sample as shown in the top part of Figure 4.6. SG was then applied

separately to each sector according to the equation

SsrcW = Strg, (4.3)
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where Ssrc is a “source” matrix containing interpolated data from all coils for one

SMS acquisition, W is a matrix of GRAPPA kernels, and Strg is a “target” matrix

containing interpolated non-simultaneous calibration data, acquired at the same z

locations as the SMS acquisition, and from all coils. The matrix Ssrc is constructed

so that each row corresponds to a different GRAPPA kernel position or repetition, and

the data from all coils is lexicographically ordered across the columns. Similarly, each

row of Strg corresponds to the matching kernel position for the same row in Ssrc, and

the calibration data from all coils is arranged across the columns for each simultaneous

slice. Each column of W is a GRAPPA kernel containing weights for all coils for the

corresponding column in Strg. The dimensions of Ssrc are nrep-by-nkernncoil, those for

Strg are nrep-by-nslcncoil, and those for W are nkernncoil-by-nslcncoil, where nrep is the

number of GRAPPA kernel repetitions, nkern is the number of weights in the kernel

for a single coil, ncoil is the full number of coils in the receive array, and nslc is the

number of simultaneously acquired slices for each SMS acquisition.

For example, using an SG kernel consisting of nkern = 4 weights with nslc = 2

simultaneous slices,
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Ssrc =



coil 1︷ ︸︸ ︷
s1,1,1 s1,2,1 s1,3,1 s1,4,1

coil 2︷ ︸︸ ︷
s2,1,1 s2,2,1 s2,3,1 s2,4,1 · · ·

s1,1,2 s1,2,2 s1,3,2 s1,4,2 s2,1,2 s2,2,2 s2,3,2 s2,4,2 · · ·

s1,1,3 s1,2,3 s1,3,3 s1,4,3 s2,1,3 s2,2,3 s2,3,3 s2,4,3 · · ·
...

...
...

...
...

...
...

...
...



← rep 1

← rep 2

← rep 3

... ,

W =



simultaneous slice 1︷ ︸︸ ︷
w1,1,1,1 w1,1,2,1 w1,1,3,1 · · ·

simultaneous slice 2︷ ︸︸ ︷
w1,1,1,2 w1,1,2,2 w1,1,3,2 · · ·

w1,2,1,1 w1,2,2,1 w1,2,3,1 · · · w1,2,1,2 w1,2,2,2 w1,2,3,2 · · ·

w1,3,1,1 w1,3,2,1 w1,3,3,1 · · · w1,3,1,2 w1,3,2,2 w1,3,3,2 · · ·

w1,4,1,1 w1,4,2,1 w1,4,3,1 · · · w1,4,1,2 w1,4,2,2 w1,4,3,2 · · ·

w2,1,1,1 w2,1,2,1 w2,1,3,1 · · · w2,1,1,2 w2,1,2,2 w2,1,3,2 · · ·

w2,2,1,1 w2,2,2,1 w2,2,3,1 · · · w2,2,1,2 w2,2,2,2 w2,2,3,2 · · ·

w2,3,1,1 w2,3,2,1 w2,3,3,1 · · · w2,3,1,2 w2,3,2,2 w2,3,3,2 · · ·

w2,4,1,1 w2,4,2,1 w2,4,3,1 · · · w2,4,1,2 w2,4,2,2 w2,4,3,2 · · ·
...

...
...

. . .
...

...
...

. . .




source coil 1


source coil 2

... ,

and Strg =



simultaneous slice 1︷ ︸︸ ︷
t1,1,1 t2,1,1 t3,1,1 · · ·

simultaneous slice 2︷ ︸︸ ︷
t1,2,1 t2,2,1 t3,2,1 · · ·

t1,1,2 t2,1,2 t3,1,2 · · · t1,2,2 t2,2,2 t3,2,2 · · ·

t1,1,3 t2,1,3 t3,1,3 · · · t1,2,3 t2,2,3 t3,2,3 · · ·
...

...
...

. . .
...

...
...

. . .



← rep 1

← rep 2

← rep 3

... ,

where sa,b,c is the complex value of the SMS acquisition source from coil a, kernel

position number b, and repetition c, wa,b,c,d is the complex kernel weight of source

coil a, kernel position number b, target coil c, and simultaneous slice d, and ta,b,c is

the complex value of the non-simultaneous calibration target data from coil a, slice

b, and repetition c.

For each SMS fMRI run reconstructed using SG, a simulated SMS acquisition

was generated for Ssrc by summing calibration slices, and the original, non-summed

calibration slices were used for Strg. The kernels in W were then computed from Ssrc
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and Strg in Equation (4.3) using least squares. To separate the simultaneous slices in

the SMS fMRI run, the acquired data from each time frame was used for Ssrc, and

Equation (4.3) was used again, this time to compute k-space data for each separate

slice in Strg.

Split slice-GRAPPA (SP-SG) [73] was also implemented and applied to each in-

terpolated and unwrapped sector according to Equation (4.3). When computing the

kernel matrix W with SP-SG, the dimensions of Ssrc and Strg are different from what

they were using SG. In SP-SG, the W matrix is of identical dimensions and con-

struction as it is with SG. However, in contrast to SG, data from the non-summed

calibration slices was used for Ssrc. The Ssrc matrix was constructed similarly to

how it was with SG, where each row corresponds to a different GRAPPA kernel po-

sition or repetition, and the data from all coils is lexicographically ordered across the

columns. Calibration data from each slice were then stacked on top of each other to

create a larger Ssrc matrix with dimensions nrepnslc-by-nkernncoil. The Strg matrix was

also constructed similarly to how it was with SG, where each row corresponds to the

matching kernel position for the same row in Ssrc, and the calibration data from all

coils is arranged across the columns for each simultaneous slice. However, this matrix

was then replicated and stacked to match the number of rows of Ssrc, and appropriate

entries of this larger matrix were then zeroed out so that kernel operations on slice

a from Ssrc resulted in 0 for slice b in Strg, for a 6= b. The dimensions of Strg using

SP-SG were nrepnslc-by-nslcncoil.

For example, when computing an SP-SG kernel consisting of nkern = 4 weights
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with nslc = 3 simultaneous slices,

Ssrc =



coil 1︷ ︸︸ ︷
s1,1,1,1 s1,2,1,1 s1,3,1,1 s1,4,1,1

coil 2︷ ︸︸ ︷
s2,1,1,1 s2,2,1,1 s2,3,1,1 s2,4,1,1 · · ·

s1,1,2,1 s1,2,2,1 s1,3,2,1 s1,4,2,1 s2,1,2,1 s2,2,2,1 s2,3,2,1 s2,4,2,1 · · ·

s1,1,3,1 s1,2,3,1 s1,3,3,1 s1,4,3,1 s2,1,3,1 s2,2,3,1 s2,3,3,1 s2,4,3,1 · · ·
...

...
...

...
...

...
...

...
...

s1,1,1,2 s1,2,1,2 s1,3,1,2 s1,4,1,2 s2,1,1,2 s2,2,1,2 s2,3,1,2 s2,4,1,2 · · ·

s1,1,2,2 s1,2,2,2 s1,3,2,2 s1,4,2,2 s2,1,2,2 s2,2,2,2 s2,3,2,2 s2,4,2,2 · · ·

s1,1,3,2 s1,2,3,2 s1,3,3,2 s1,4,3,2 s2,1,3,2 s2,2,3,2 s2,3,3,2 s2,4,3,2 · · ·
...

...
...

...
...

...
...

...
...

s1,1,1,3 s1,2,1,3 s1,3,1,3 s1,4,1,3 s2,1,1,3 s2,2,1,3 s2,3,1,3 s2,4,1,3 · · ·

s1,1,2,3 s1,2,2,3 s1,3,2,3 s1,4,2,3 s2,1,2,3 s2,2,2,3 s2,3,2,3 s2,4,2,3 · · ·

s1,1,3,3 s1,2,3,3 s1,3,3,3 s1,4,3,3 s2,1,3,3 s2,2,3,3 s2,3,3,3 s2,4,3,3 · · ·
...

...
...

...
...

...
...

...
...



← rep 1

← rep 2

← rep 3

...


slice 1

← rep 1

← rep 2

← rep 3

...


slice 2

← rep 1

← rep 2

← rep 3

...


slice 3,

Strg =



slice 1︷ ︸︸ ︷
t1,1,1 t2,1,1 t3,1,1 · · ·

slice 2︷ ︸︸ ︷
0t1,2,1 0t2,2,1 0t3,2,1 · · ·

slice 3︷ ︸︸ ︷
0t1,3,1 0t2,3,1 0t3,3,1 · · ·

t1,1,2 t2,1,2 t3,1,2 · · · 0t1,2,2 0t2,2,2 0t3,2,2 · · · 0t1,3,2 0t2,3,2 0t3,3,2 · · ·

t1,1,3 t2,1,3 t3,1,3 · · · 0t1,2,3 0t2,2,3 0t3,2,3 · · · 0t1,3,3 0t2,3,3 0t3,3,3 · · ·
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .

0 0 0 · · · t1,2,1 t2,2,1 t3,2,1 · · · 0 0 0 · · ·

0 0 0 · · · t1,2,2 t2,2,2 t3,2,2 · · · 0 0 0 · · ·

0 0 0 · · · t1,2,3 t2,2,3 t3,2,3 · · · 0 0 0 · · ·
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .

0 0 0 · · · 0 0 0 · · · t1,3,1 t2,3,1 t3,3,1 · · ·

0 0 0 · · · 0 0 0 · · · t1,3,2 t2,3,2 t3,3,2 · · ·

0 0 0 · · · 0 0 0 · · · t1,3,3 t2,3,3 t3,3,3 · · ·
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .



← rep 1

← rep 2

← rep 3

...


slice 1

← rep 1

← rep 2

← rep 3

...


slice 2

← rep 1

← rep 2

← rep 3

...


slice 3,
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where sa,b,c,d is the complex value of the non-simultaneous calibration data from coil

a, kernel position number b, repetition c, and slice d, and ta,b,c is the complex value

of the non-simultaneous calibration data from coil a, slice b, and repetition c. Note

that for slice separation, Equation (4.3) is used with the original SG dimensions of

Ssrc and Strg, with the acquired SMS data used in Ssrc.

For both SG and SP-SG, data from each k-space sector were then reassembled

back into their original interpolated concentric ring locations and demodulated with

the negative of the phase imparted by the blipped readout z-gradient. Finally, conju-

gate gradient using a non-uniform fast Fourier transform (NUFFT) [35, 43] with B0

inhomogeneity correction [36] and finite difference regularization was used to trans-

form k-space data into coil images, and the coil images were combined using the

standard square-root-sum-of-squares method. The specifics of the SG and SP-SG

parameters used in this chapter are described in Section 5.1.7.

4.2 Results

4.2.1 Spiral SMS Simulation Results

Figure 4.7(a) shows the resulting SENSE reconstruction of 3 non-simultaneous slices

using Equation (2.16) as a model with l = 1 and d = 8. The resulting reconstruction

for one set of 3 simultaneous slices with no readout z-gradient modulation and using

l = 3 and d = 8 in Equation (2.16) is shown in Figure 4.7(b). The artifacts are

quite prominent when compared to the non-SMS reconstruction in Figure 4.7(a), and

the absolute difference image in Figure 4.7(g) has relatively large magnitudes. The

sensitivities of the 8-channel head coil shown in Figure 4.8 make it clear why the

performance is so poor: the coils are physically arranged so that different axial slices

have very similar coil sensitivities.

Figure 4.7(c) shows the SENSE reconstruction of blipped spiral SMS imaging. The
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Figure 4.7: Spiral SMS simulations: SENSE method reconstructions of 3 different
slices of a phantom. Non-SMS SENSE reconstruction shown in (a). SMS reconstruc-
tion without gz(t) modulation shown in (b), with blipped gz(t) modulation shown
in (c), with regularization using Equation (4.2) and blipped gz(t) modulation shown
in (d), with sine wave gz(t) modulation shown in (e), and with regularization us-
ing Equation (4.2) and sine wave gz(t) modulation shown in (f). On the right, (g),
(h), (i), (j), and (k) are the absolute difference images of (b), (c), (d), (e), and (f),
respectively, with (a).

image quality is much improved over the reconstruction without any gz(t) modulation

in (b), but there are still artifacts present. In addition, there is still some residual

signal in the Figure 4.7(h) difference image. These artifacts are not the result of
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Non-Cartesian parallel SMS: Simulation 

Spiral data: 

•  single-slice scan of 39 
three-mm thick slices. 

•  8-ch coil. 

•  spiral-in, TE = 30 ms. 

 
3 SMS simulation: 

•  Modulate k-space data from single slices 1, 14, and 27, then sum 
together for first SMS acquisition. 

•  Modulate k-space data from single slices 2, 15, and 28, then sum 
together for second SMS acquisition. 

•  And so on. 

Coil 1: 

Coil 4: 

Coil 7: 

Slice 7 Slice 20 Slice 33 

Figure 4.8: Coil sensitivities of the 8-channel Invivo head coil used for the spiral
SMS simulations and experiments. Top row shows coil 1, middle row shows coil 4,
and bottom row shows coil 7. Three different slices corresponding to the slices in
Figure 4.7 are shown across the columns.

under-regularization because increasing β to 1500 does not remove the artifacts, and

increasing β even further results in over-smoothing. Using this same simulation data,

but with the reconstruction approach in Equation (4.2), the artifacts are reduced as

shown in Figure 4.7(d), and the results look similar to the non-SMS images in (a).

However, there does appear to be some signal loss, especially in the lower right edge

of the object in each of the leftmost and rightmost slices in (d), seen more clearly in

the difference image in (i). Ignoring those areas, the rest of the object seems to have

errors no bigger than the ones shown in (h) for traditional regularization of blipped

SMS. Any SMS reconstruction will never perfectly match the non-SMS results in

(a) because there must be a penalty for the SMS acceleration. The hope is that

the benefits of an increase in temporal resolution will outweigh the SNR loss for the

purposes of detecting activation in fMRI.

Note that the images in Figure 4.7(d) are the result of choosing the appropriate

slice out of 3 different reconstructions. The full results of all 3 reconstructions are
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shown in Figure 4.9 for each of the different β combinations. The images suggest that
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Figure 4.9: All reconstructions using all β combinations for the blipped spiral SMS
simulation with regularization in Equation (4.2). (a) shows the reconstruction using
β1 = 273, β2 = 5, and β3 = 5, where slice 1 refers to the image on the left, slice 2 is
the center image, and slice 3 is the image on the right. (b) shows the reconstruction
using β1 = 5, β2 = 273, and β3 = 5. (c) shows the reconstruction using β1 = 5,
β2 = 5, and β3 = 273. (e), (f), and (g) are the absolute difference images of (a),
(b), and (c), respectively, with the original non-SMS slices used in the simulation,
which are shown in Figure 4.7(a). (d) shows the reconstruction for the blipped spiral
SMS simulation using traditional regularization with a single β, and is the same as
the image in Figure 4.7(c). (h) is the difference image of (d), and is the same as the
image in Figure 4.7(h).

the noise has been “pushed out” to the 2 slices with small β values in each case. This

behavior is seen more clearly in the absolute difference images in (d), (e), and (f). In

each of those images, the slices corresponding to βv = 5 have much larger errors than

the slice with βv = 273.

The result using a spiral readout z-gradient is shown in Figure 4.7(e). The recon-

struction does not work as well as the previous blipping scheme. There are significant
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artifacts over all 3 slices, also seen in the difference image in Figure 4.7(j). The reg-

ularization scheme in Equation (4.2) removes some of these artifacts, as shown in

Figure 4.7(f), especially for the inherently smooth center slice, but the reconstruction

does not look as accurate as even the single-β reconstruction with the blipped spiral

in Figure 4.7(c). However, both reconstructions in (e) and (f) are still better than

the one in (b), which had no z-gradient modulation.

For each of the acquisition and reconstruction methods presented in this section,

Table 4.1 shows the root-mean-square-error (RMSE) for each of the individual slices

and for all 3 slices combined. A mask extending approximately 4 pixels from the edge

of the object in each slice was used. The RMSE of all 3 slices was slightly higher using

Method Slice 1 Slice 2 Slice 3 All 3 Slices

No Modulation 28.158 24.014 28.730 27.295
Blipped 6.246 5.989 5.641 5.960

Blipped with different βs 6.887 4.253 6.822 6.245
Sinusoid 13.467 15.719 15.036 14.690

Sinusoid with different βs 16.888 16.187 24.866 20.004
Blipped with β1 = 273 6.887 13.491 18.577 13.894
Blipped with β2 = 273 12.985 4.253 15.341 12.302
Blipped with β3 = 273 16.259 15.014 6.822 13.200

Table 4.1: For each method, this table shows the RMSE for each of the individual
slices, as well as the combined RMSE for all 3 slices in the spiral SMS simulation.
The SENSE reconstruction of the non-SMS image in Figure 4.7(a) is used as the true
image.

Equation (4.2) on blipped spiral SMS data compared to traditional regularization on

blipped spiral data. This is likely due to the increased error in the lower right edge

of the object in Figure 4.7(i). However, Equation (4.2) works quite a bit better on

slice 2 of the blipped spirals as seen by the RMSE reduction in Table 4.1. Slice 2, as

shown in Figure 4.7(a), has fewer sharp edges than either of slice 1 or slice 3, and is

likely more similar to a slice of the brain. Although further investigation is needed,

this suggests that Equation (4.2) has the potential to improve SENSE reconstruction

of fMRI.
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Table 4.1 also corroborates the visual appearance of the difference images in Fig-

ure 4.9; for the Equation (4.2) reconstructions of blipped spiral SMS data, slices with

βv = 5 have much higher RMSE than the slice with βv = 273 in each case. The error

in slices with βv = 5 have RMSE that is two to three times higher than the RMSE

for the corresponding slice when using traditional regularization.

Although the quantitative RMSE results indicate more errors in the reconstruction

using Equation (4.2), it is worth noting that the visual results using Equation (4.2)

appear subjectively better and closer to the original images in Figure 4.7(a) when com-

pared to using traditional regularization with a single β. RMSE is only one method

for quantifying image quality; a slightly higher RMSE does not always indicate that

an image has worse quality.

There is another notion of the PSF, called the modulation PSF in this work. The

modulation PSF is defined as the q such that Qq = MQej, which describes how the

z-gradient perturbs a point in the image domain. Here, Q is a 2-dimensional NUFFT

matrix, M is a diagonal matrix containing the phase modulation enacted by gz(t),

and ej is the jth unit vector or “point.” For a slice at the z-gradient isocenter, M is

the identity matrix, so q = ej.

In order to help separate simultaneous slices, the other slices should have a mod-

ulation PSF q that has energy at a different in-plane location than ej. This way, the

coil sensitivities will have a greater difference from slice to slice. For example, in [40],

the blipped-CAIPI scheme effectively did a clean shift of the slices. Their q would be

just a shifted ej, as shown in Figure 4.10.

For spirals, Figure 4.11 shows the modulation PSF for a slice 39 mm away from

isocenter using a blipped gz(t) in (b), and using the sine wave gz(t) in (c). Fig-

ure 4.11(a) is the point used as ej to compute the modulation PSFs and has a mag-

nitude of 90. The other two images indicate that the blipped gz(t) has better perfor-

mance because its modulation PSF has a maximum magnitude of only around 10.09

75



Non-Cartesian parallel SMS: Background 

Blipped-CAIPI PSF 
(for non-isocenter slice): 
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Figure 4.10: Modulation PSF using blipped-CAIPI.Non-Cartesian parallel SMS 
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Figure 4.11: Spiral SMS: modulation PSF for a slice 39 mm away from isocenter using
a blipped gz(t) in (b), and using the sine wave gz(t) in (c). The point used to computed
the modulation PSFs is shown in (a) and has a magnitude of 90. The maximum
magnitude in the center of (b) and (c) is approximately 10.09 and 47.1, respectively.
The modulation waveforms are specified in Section 4.1.1 and Section 4.1.4.
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at the jth pixel position, whereas the sine wave gz(t) has a modulation PSF with

maximum magnitude 47.1 at the jth position. The blipped gz(t) modulation PSF is

more “spread out” than the one for the sine wave gz(t), enabling the coil sensitivities

to work better during slice separation. Figure 4.12 shows the same blipped spiral

and sinusoid-modulated spiral modulation patterns using a brain image instead of a

point.Non-Cartesian parallel SMS 

(a): 

(b): (c): 
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Figure 4.12: Spiral SMS: modulation pattern for a brain slice 39 mm away from
isocenter using a blipped gz(t) in (b), and using the sine wave gz(t) in (c). Instead
of a point, the brain image shown in (a) was used to compute the images in (b) and
(c). The modulation waveforms are specified in Section 4.1.1 and Section 4.1.4.

4.2.2 Spiral SMS Experiment Results

Figure 4.13(a) shows the resulting SENSE reconstruction of the non-SMS scan using

Equation (2.16) as a model with l = 1 and d = 8. The blipped spiral SMS recon-

struction is shown in Figure 4.13(b), with the reconstruction using Equation (4.2) in
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Figure 4.13: Spiral SMS experiments: SENSE method reconstructions of 3 different
slices of a phantom. Non-SMS reference for blipped gz(t) shown in (a). SMS re-
construction with blipped gz(t) modulation shown in (b), with regularization using
Equation (4.2) and blipped gz(t) modulation shown in (c). Non-SMS reference for sine
wave gz(t) shown in (d). SMS reconstruction with sine wave gz(t) modulation shown
in (e), and with regularization using Equation (4.2) and sine wave gz(t) modulation
shown in (f).

Figure 4.13(c). Although the images in (c) are quite comparable to (a), there are

still noticeable differences. In particular, the lower right-hand part of the slices in

Figure 4.13(b) and (c) seem slightly more deformed than the other parts. This de-

fect may have something to do with the location in kx-ky-space where the z-gradient

blips. As seen in Figure 2.6, each of the 3 platters have a “piece” missing where the

trajectory blips to another plane. Experiments using a different kx-ky location for

z-gradient blipping resulted in similar defects, but in other parts of the images.

Figure 4.13(e) shows reconstruction results for the SMS scan with sinusoid readout

z-gradient. Figure 4.13(d) shows the SENSE reconstruction of the non-SMS scan that

was used to compute sensitivity and field maps for the SMS scan. Figure 4.13(f) shows

results using Equation (4.2) for regularization. Much the same as the simulations,

the results are not as good as those using blipped spirals; there is significant high
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spatial frequency distortion throughout all three slices.

It is worth noting that, similar to the simulations, the regularization scheme in

Equation (4.2) seemed to denoise the slices better than just using the same β value

for all three slices. Figure 4.14 shows the full results of all three reconstructions

needed to obtain the images in Figure 4.13(c). Again, it seems that in each case,

noise gravitated towards slices with lower β values.

Figure 4.14: All reconstructions using all β combinations for blipped spiral SMS
experiment with regularization in Equation (4.2). Top row shows the reconstruction
using β1 = 273, β2 = 5, and β3 = 5. Middle row shows the reconstruction using
β1 = 5, β2 = 273, and β3 = 5. Bottom row shows the reconstruction using β1 = 5,
β2 = 5, and β3 = 273. The images in the left column are slice 1, the images in the
center column are slice 2, and the ones on the right column are slice 3.

4.2.3 Concentric Ring SMS Results

Figure 4.15 shows the sensitivity maps of the isocenter slice using the 32-channel coil

used in the concentric ring SMS scans. Unlike the 8-channel coils shown in Figure 4.8,
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there is significant variation along the through-plane direction, which should help with

slice separation in SMS reconstruction. Therefore, much better performance should

be expected using this 32-channel coil compared to the previous 8-channel coil.
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Figure 4.15: Sensitivity maps of the isocenter slice using the Nova Medical 32-channel
receive head coil used for the concentric ring scans in this work.

Reconstruction of simulated concentric ring SMS imaging was performed similar

to what was described in Section 4.1.4 for spiral data. However, instead of a phantom,

brain images were used, as well as a blipped readout z-gradient. Figure 4.16 shows

the reconstruction results using SENSE, SG, and SP-SG. Each column contains im-

ages that were acquired simultaneously; for example, the first column in Figure 4.16

contains slice 1 for the top set of images, slice 14 for the middle set, and slice 27 for

the bottom. For each method, these 3 slices were acquired simultaneously. Qualita-

tively, the images are comparable across methods, with the SENSE images perhaps

exhibiting slightly more ringing than SG or SP-SG. In addition, the more inferior

slices seem to have more noise than the superior slices. The field maps used in these

reconstructions are shown in Figure 4.19.

Figure 4.17 shows the corresponding absolute difference images for the images

in Figure 4.16. Similar to Figure 4.16, the slice numbers are labeled at the top of
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the columns, and each overall column contains slices acquired simultaneously in the

simulation. Note that the errors are not distributed evenly throughout the brain;

inferior slices clearly have larger errors than more superior ones. In addition, the

distribution of errors within each slice varies between methods. The SENSE images

contain errors in the center of the slice, whereas the SG and SP-SG images have larger

areas that are cleaner. The SG and SP-SG images have trouble with specific areas

such as the eyes or areas near the sinuses.

Figure 4.18 contains plots of the RMSE for the images in Figure 4.16. Within-

brain masks were used for the calculation. The lowermost plot in Figure 4.18 plots

the RMSE for each acquisition of 3 simultaneous slices, where acquisition 1 is defined

as slices 1, 14, and 27, acquisition 3 has slices 3, 16, and 29, and so on. The results

here indicate that the inferior slices do contain larger errors than the more superior

ones. Interestingly, as the RMSE in the top two plots trends down, the RMSE in the

third plot, for slices 27 through 39, trends up for the most part (note that slice 39

contains essentially no signal). It is unclear whether these trends are associated with

each other or if the RMSE merely depends on the object shape. In other words, if

one slice in a set of simultaneous slices is more difficult to reconstruct, perhaps that

can affect the quality of the reconstructions of the other slices. Finally, note that the

RMSE here is much smaller than the RMSE shown in Table 4.1, which is expected

given the better sensitivity properties of the 32-channel coil versus the 8-channel coil.

Figure 4.20(c) shows the modulation PSF, defined in Section 4.2.1, for the blipped

concentric rings. Compared to the modulation PSF of the blipped spirals shown in

Figure 4.20(b), the modulation PSF for concentric rings has lower signal at the cen-

ter location, indicating less overlap of simultaneous slices and better slice separation.

Figure 4.21 shows the same modulation PSFs windowed lower for clarity. The mod-

ulation PSF for blipped spirals has a maximum magnitude of approximately 10.09

at the center, whereas the modulation PSF for blipped concentric rings has a maxi-
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mum magnitude of 4.28 at the center. In addition, the modulation PSF for blipped

concentric rings is more circularly symmetric than that for blipped spirals.

Figure 4.22 shows the modulation pattern produced by the blipped concentric ring

trajectory for a nslc = 3 simultaneous slice acquisition. Figure 4.23 shows all acqui-

sitions in the entire volume. The modulation pattern for these figures was created

in essentially the same manner as the modulation PSF described in Section 4.2.1.

However, instead of using a point for ej, the images shown in Figures 4.22 and 4.23

are the q such that Qq = MQx, where x is the original, non-modulated brain slice.

The middle slice, labeled slice 20 in Figures 4.22 and 4.23, is located at z-isocenter

and therefore has no modulation applied to it.

Figure 4.24 shows the activation map for an SP-SG reconstruction of a visual stim-

ulus and motor task SMS scan. All 39 slices are shown. The underlying grayscale

image is the actual reconstruction result using SP-SG on one time frame. Areas in

the visual and motor cortices show strong activation through multiple slices, demon-

strating the feasibility of accelerated fMRI using non-Cartesian GRAPPA-based re-

construction of SMS imaging.

4.3 Discussion and Conclusions

The 3-dimensional k-space trajectory for the sine wave gz(t) is shown in Figure 4.1.

The trajectory looks almost random since gz(t) is going up and down at a regular

frequency, whereas gx(t) and gy(t) are going up and down faster and faster as the

spiral goes in. Using the Fourier viewpoint of [41], the proper z-axis resolution is

achieved since kz goes to ±kmax
z ≈ ±12.821 m-1. However, a closer examination of the

kx and ky sampling pattern that is achieved at kz ≈ 12.821 m-1, shown in Figure 4.25,

reveals that the in-plane spatial frequencies are sampled almost at random in this

kz plane and also very sparsely. It is important to obtain enough data in this kz
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plane for adequate z-axis resolution, but the sampling density is very low, especially

compared to the top platter in Figure 2.6. Also, in Figure 2.6 the k-space sampling

is concentrated in 3 distinct platters, which define the FOVz, since FOVz = 1/∆kz.

For the sine wave trajectory in Figure 4.1, much of k-space is sampled in between

where the platters in Figure 2.6 would be located. This behavior is problematic in

two viewpoints: the FOVz is much too large than is necessary for the actual distance

between the simultaneous slices, and the kz plane at kz = 0 is inadequately sampled,

similar to the situation in Figure 4.25. The larger FOVz is not strictly a problem per

se, but it contributes to the issue of undersampling in kx and ky at the kz planes that

would benefit from denser sampling. In other words, the unnecessarily large FOVz

came at the expense of undersampling in-plane, so that much of the data is wasted.

Many of the issues with the sine wave modulation come from the fact that the

SMS signal is inherently Cartesian in the z direction. In other words, a y-z plot of

the SMS images would show 3 lines at 3 separate z locations corresponding to the

3 simultaneous slices. This scheme demands a distinct z resolution and FOVz, and

an increase in either would be unnecessary and would certainly come at the expense

of something else. The reason why spiral sampling in the kx-ky plane is not inferior

to Cartesian sampling in the kx-ky plane is because the sampling densities for the 2

patterns are comparable. The spiral pattern can easily be gridded to the Cartesian lo-

cations that have the appropriate in-plane resolution and FOV. However, the pattern

in Figure 4.1 cannot be easily gridded to the distinct kz platters in Figure 2.6 be-

cause the platters are so few and far away from each other, making the two sampling

densities in kz very different.

Equation (4.2) has the potential to improve SENSE reconstruction of SMS data by

redistributing errors between simultaneous slices. The idea is that the reconstruction

can be tailored to an individual slice by using different combinations of regulariza-

tion parameters. Note that this method only works because of the nature of SMS
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imaging; with SMS reconstruction, we have the luxury of moving errors into slices we

don’t care about. However, one drawback is that computation for reconstruction is

increased by a factor of l for an l simultaneous slice acquisition. Given the increasing

number of coils used in modern imaging, this can add a significant amount of time

for reconstruction.

It is also important to note that the reconstruction using Equation (4.2) should

theoretically not be a result of oversmoothing in the slice with βv = 273. The tradi-

tional regularization method of Equation (2.24) is exactly the same as Equation (4.2)

when all the regularization parameters in Equation (4.2) are set to the value of the

single β = 273 in Equation (2.24). For each of the reconstructions using different

βv values, two of the slices used a value of βv = 5, and only one used a value of

βv = 273. No slices used a value greater than 273, which suggests that no slices

should be smoothed more than they would be using 273 for all slices.

The blipped concentric ring SMS results clearly outperformed the blipped spiral

results, but the concentric ring data was acquired using a 32-channel coil, whereas

the spiral SMS data used an 8-channel coil. Furthermore, the 8-channel coil has poor

sensitivity differences in the through-plane direction. A direct comparison of blipped

concentric rings versus blipped spirals would need to use the same receive hardware,

along with the same amount of acceleration. However, the modulation PSF results

shown in Figures 4.20 and 4.21 indicate that blipped concentric rings should have

better slice separation due to less overlap between simultaneous slices. The reason

why the modulation PSF for blipped spirals resulted in a larger amount of signal at

the center is likely because of how the transitions between kz planes create a gap

in each spiral platter, as shown in Figure 2.6. These gaps create a block of k-space

where the data is not appropriately modulated, and likely also created the slight

asymmetry in the modulation PSF shown in the lower right corner of Figure 4.21(b).

Also interesting is that in the blipped spiral simulation results in Figures 4.7(d)
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and 4.7(i), the lower right edge of the object had the most errors. Whether this is

due to the behavior of the modulation PSF remains to be determined.

An alternative reconstruction approach is to use a one-dimensional inverse Fourier

transform in the through-plane direction to separate slices instead of SENSE or slice-

GRAPPA. This can be done for blipped concentric ring SMS data because the simul-

taneous slices are fully sampled in the through-plane direction.

For a SENSE-based reconstruction using this method, in-plane SENSE is per-

formed on each of the undersampled kz platters in the three-dimensional k-space

displayed in Figure 4.4 to produce a hybrid (x, y, kz) space. Then, a simple l-point

inverse Fourier transform is performed to separate the slices, where l is the number

of simultaneously acquired slices.

For a GRAPPA-based reconstruction, in-plane GRAPPA is performed on each of

the undersampled kz platters to produce a fully sampled (kx, ky, kz) space. Then,

the l-point inverse Fourier transform is performed to separate the slices into a hybrid

(kx, ky, z) space. The k-space data for each slice is then transformed into the object

domain using any method the user desires. Ref. [74] presents a similar idea for 3-

dimensional imaging.

However, the sensitivity maps, or calibration data in the GRAPPA case, need to

be carefully prepared in order for this method to work. For SENSE, conventional

non-SMS maps can be acquired and computed. However, each appropriate set of l

maps corresponding to simultaneously acquired slices needs to be Fourier transformed

in the through-plane direction to produce sensitivity maps in a hybrid (x, y, kz) space.

In-plane SENSE needs to use these hybrid domain (object in x and y, and frequency

in z) maps in order to work. Similarly, for in-plane GRAPPA, k-space data from

l calibration slices needs to be Fourier transformed in the through-plane direction

into (kx, ky, kz) space before it can be used to calibrate the kernel. This technique

introduces an additional factor of complexity for the GRAPPA kernels since each kz
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platter has a different set of undersampled rings.
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Figure 4.16: Concentric ring simulations: reconstruction results for SENSE, SG, and
SP-SG, as well as the non-SMS slices used to create SMS data in the simulations.
The separated, non-SMS slices are numbered consecutively from 1 to 39 starting most
inferiorly and going superiorly. The number at the top of each column of images
indicates the slice number for that column.
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Figure 4.17: Concentric ring simulations: absolute difference images between each
reconstruction method labeled on the left and the non-SMS slices used to simulate
the SMS acquisition. The non-SMS slices used as the “truth” are the ones shown
in Figure 4.16 labeled “non-SMS.” The number at the top of each column of images
indicates the slice number for that column.
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Figure 4.18: Concentric ring simulations: using each method, the top 3 plots show
the RMSE within individual slices. The bottommost plot shows the RMSE for each
acquisition of 3 simultaneous slices shown directly above it in the upper 3 plots.

89



 

 1 3 5 7 9 11 13

−60

−40

−20

0

20

40

60

 

 14 16 18 20 22 24 26

 

 27 29 31 33 35 37 39

Figure 4.19: Concentric ring simulations: field maps used for the reconstructions.
The number at the top of each column of images indicates the slice number for that
column. The colormap is in units of Hertz.
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Figure 4.20: (a) Point used to calculate the modulation PSF using blipped spirals
(b), and using blipped concentric rings (c). The magnitude of the point in (a) is 90.
The maximum magnitude at the center in (b) and (c) is approximately 10.09 and
4.28, respectively.
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Figure 4.21: Same modulation PSFs shown in Figure 4.20, except windowed lower to
portray the differences at the center more clearly. Image (a) shows the point used to
calculate the modulation PSF using blipped spirals (b), and using blipped concentric
rings (c). The magnitude of the point in (a) is 90. The maximum magnitude at the
center in (b) and (c) is approximately 10.09 and 4.28, respectively.
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Figure 4.22: Modulation pattern resulting from a blipped concentric ring trajectory
for 3 simultaneous slices. The numbers at the top indicate the slice number, where
contiguous slices in the volume are numbered 1 through 39. The 20th slice is ac-
quired at z-isocenter, assuming an axial acquisition. The top row shows the original,
non-modulated, 3 simultaneous slices. The bottom row shows what the blipped mod-
ulation does to the various slices. Slice 20 is unaffected because it is acquired at
z-isocenter. The blipped EPI equivalent of slices 7 and 33 would be a simple FOV
shift. The modulation pattern for all acquisitions in the volume are shown in Fig-
ure 4.23.
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Figure 4.23: Modulation pattern resulting from a blipped concentric ring trajectory
for 3 simultaneous slices. The numbers at the top indicate the slice number, where
contiguous slices in the volume are numbered 1 through 39. The 20th slice is acquired
at z-isocenter, assuming an axial acquisition. The top row in each of (a), (b), and
(c) shows the original, non-modulated slices. The bottom row in each of (a), (b),
and (c) shows what the blipped modulation does to the various slices. Each column
of images in (a), (b), and (c) form the set of images acquired simultaneously in a 3
simultaneous slice acquisition. The acquisition consisting of slices 7, 20, and 33 is
shown in Figure 4.22.
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Figure 4.24: Activation map of a 3 simultaneous slice concentric ring fMRI scan with
a visual stimulus and motor task. The underlying grayscale image is the SP-SG
reconstruction result for one time frame in the middle of the scan. The colormap is
the t-score.

Figure 4.25: Sine wave gz(t) sampling pattern in the kx-ky plane at kz = kmax
z ≈ 12.821

m-1. This plot is essentially a slice through the top edge of Figure 4.1.
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CHAPTER 5

Coil Compression in Parallel

Simultaneous Multislice fMRI1

When multiple coils are used for slice separation in SMS imaging, the computational

load increases by several factors during reconstruction. Coil compression reduces the

amount of data used in processing by exploiting the redundancy of the acquired sig-

nal from different coils. By combining the original coil data into a new, reduced set

of virtual coils, the amount of data is decreased by several factors, which reduces

the computational burden for reconstruction. In this chapter, we propose generalized

autocalibrating partially parallel acquisitions-based simultaneous-multislice-acquired

coil compression (GRABSMACC), a method that uses the slice-separation kernel to

simultaneously compress the k-space data before it is transformed into the image

domain. Similarly to GRAPPA [22], GRABSMACC does not rely on accurate sen-

sitivity maps for reconstruction, which is an advantage over SENSE [21] in parallel

imaging. In this work, GRABSMACC is demonstrated with the non-Cartesian con-

centric ring sampling pattern, but should also work with Cartesian trajectories such

as EPI.

King et al. [76, 77] implemented coil compression in hardware by changing the

image signal basis to one composed of the eigenvectors of the noise covariance matrix.

The hardware implementation has SNR benefits, but lacks the flexibility of software

1This chapter is based on Refs. [75] and [69].
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coil compression, especially with varying levels of acceleration in different directions.

On the software side, Buehrer et al. [78] developed a method that reduces image noise

in parallel MRI by taking advantage of coil noise covariance and the coil sensitivities

for aliased voxels. Not only does this method rely on sensitivities and the issues that

go along with the acquisition and accuracy of sensitivity maps, but it requires the

undersampling to produce a simple point spread function for it to be practical. Huang

et al. [79] used Principal Component Analysis in the k-domain, circumventing the need

for coil sensitivities and noise covariance. More recently, Zhang et al. [74] reduced

the number of required virtual coils by performing a Singular Value Decomposition

(SVD) to compress data in a hybrid image-k-domain. This method was implemented

by Cauley et al. and shown to work well with a blipped EPI trajectory in SMS [80].

However, the method relies on a Fourier transform in a fully sampled direction to

obtain hybrid space, which is not possible for many non-Cartesian trajectories, such

as our implementation of a concentric ring readout. Beatty et al. [81] have proposed a

new method that combines the k-space reconstruction kernel with a coil compression

kernel. This method is similar to GRABSMACC in that the unaliasing process is

also responsible for coil compression. However, in the current work, we extend this

general idea to SMS imaging with non-Cartesian trajectories.

Because GRABSMACC uses the slice-separation kernel to simultaneously com-

press k-space data, the kernel convolution step for slice separation uses a larger

dataset when compared to standard SVD coil compression, which only operates on

pre-compressed data. Although this comes at an increased computation cost when

compared to standard SVD compression, we show that GRABSMACC preserves func-

tional activation better at higher levels of compression, thus enabling a fewer number

of virtual coils to be used when compared to standard compression. Furthermore,

the main computational burden in SMS reconstruction lies not in the slice separation

process, but in the transformation of unaliased k-space data for each coil into the
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image domain prior to coil combination. Therefore, the reduction in the number of

required coils for GRABSMACC results in significant computational time savings,

especially when reconstructing multiple fMRI studies.

This chapter provides the following novel contributions: (a) the development and

evaluation of GRABSMACC, a practical method for coil compression and recon-

struction of both Cartesian and non-Cartesian SMS fMRI, and (b) the analysis of

coil compression performance and computation time in fMRI with both non-SMS

and SMS imaging. With coil compression in fMRI, care must be taken to ensure that

the functional activation in an fMRI scan is not reduced in exchange for data com-

pression. In this chapter, we present the methodology of GRABSMACC and analyze

concentric-ring-in fMRI scans of several subjects to compare activation performance,

image artifacts, SNR, and reconstruction speed for different levels of coil compres-

sion using GRABSMACC, standard coil compression in GRAPPA-based and SENSE-

based SMS reconstruction, and coil compression in traditional, non-SMS imaging. In

addition, data from a separate spiral-in scan is used to compare image artifacts and

SNR with those from the concentric ring data.

5.1 Methods

Along with GRABSMACC, all algorithms, reconstruction methods, and coil compres-

sion methods described in this section are available at https://github.com/alcu/sms.

5.1.1 Standard Coil Compression in Slice-GRAPPA and
Split Slice-GRAPPA

Standard coil compression in SG and SP-SG compresses the SMS k-space data before

the entire GRAPPA process described previously. Each acquisition in a time frame is

compressed separately, resulting in nacq compression matrices. First, nstack number of
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time frames, located in the middle of the fMRI run, are stacked into a matrix Sstack,

with data from each coil arranged along a single column of Sstack. The dimensions

of Sstack are nstackndat-by-ncoil, where ndat is the number of samples located only in

the concentric rings, and ncoil is the full number of coils in the receive array. The

compression matrix, Vcomp, is calculated by computing the SVD of Sstack, described

by

Sstack = UΣV ∗, (5.1)

and using the first nvcoil columns of V as Vcomp, where nvcoil is the number of virtual

coils to which the data should be compressed. Since each acquisition in a time frame

is compressed separately, there will be nacq compression matrices, where nacq is the

number of acquisitions in a single time frame of an SMS scan.

To compress each fMRI time frame, each SMS acquisition from that frame is

assembled into a matrix Sfull and multiplied by the corresponding Vcomp for that

SMS acquisition to obtain

Scomp = SfullVcomp, (5.2)

where Scomp contains the compressed SMS acquisition and has dimensions ndat-by-

nvcoil. The matrix Sfull is constructed in the same manner as Sstack, except with

data from only one time frame, and therefore has dimensions ndat-by-ncoil. Before

calculating W in Equation (4.3), the calibration data must be compressed with the

same Vcomp matrices before being interpolated and arranged into Strg. Specifically,

the calibration scan has ntot = nslcnacq acquisitions, and the nslc non-simultaneous

calibration acquisitions that match the excitation locations of a single SMS acquisition

should each use the same Vcomp as that single SMS acquisition. Once the SMS and

calibration data are compressed, the previously described SG or SP-SG process is

performed with a reduced coil dimension of nvcoil for all matrices in Equation (4.3).

99



5.1.2 GRABSMACC

In contrast, our proposed method for coil compression, GRABSMACC, only com-

presses the “target” data and not the “source” data, and uses the GRAPPA kernel

for both slice separation and coil compression. In this method, the non-simultaneous

acquisitions from the calibration scan are used to compute the compression matrices

Vcomp. Specifically, the calibration data is used for Sstack in Equation (5.1), and the

first nvcoil columns of V are used to construct Vcomp. Since there are ntot = nslcnacq

calibration acquisitions, or equivalently, slices, there are ntot number of Vcomp matri-

ces, one for each slice. Each slice of the calibration scan is arranged into an Sfull, and

each Sfull is then compressed using Equation (5.2).

Once the calibration data is compressed to nvcoil coils, it is used in Equation (4.3)

as Strg for computation of W . No coil compression is done on data used for Ssrc.

Therefore, in GRABSMACC, the source data matrix has full coil dimensions, the

target matrix has compressed coil dimensions, and the kernel has both. Specifically, in

SG the dimensions of Ssrc are nrep-by-nkernncoil, those for Strg are nrep-by-nslcnvcoil, and

those for W are nkernncoil-by-nslcnvcoil, where nrep is the number of GRAPPA kernel

repetitions, nkern is the number of weights in the kernel for a single coil, ncoil is the full

number of coils in the receive array, and nslc is the number of simultaneously acquired

slices for each SMS acquisition. In SP-SG, the dimensions of Ssrc are nrepnslc-by-

nkernncoil, those for Strg are nrepnslc-by-nslcnvcoil, and those for W remain unchanged

from SG.

To separate the slices in GRABSMACC, uncompressed k-space data from each

acquisition of each time frame is used for Ssrc, and Equation (4.3) is used to compute

the compressed, separated slices in Strg. Hence, multiplication by W performs a

simultaneous slice separation and compression of k-space data. Finally, the slice-

separated data can be transformed into images by the same conjugate gradient and

square-root-sum-of-squares process described previously.
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5.1.3 Standard Coil Compression in SENSE

Standard coil compression for SENSE was done exactly the same as for standard coil

compression in SG and SP-SG, described previously. However, a new set of virtual

coil sensitivities need to be computed for use in Equation (4.1). This was done by first

compressing the k-space data from the non-delayed field map acquisition before per-

forming the previously-described ESPIRiT process to generate nvcoil sensitivity maps.

Similar to the GRAPPA calibration data, nacq number of Vcomp matrices must be used

appropriately for ntot = nslcnacq non-simultaneous slices. Finally, Equation (4.1) with

ncoil = nvcoil is used to reconstruct the separated slices by using the compressed SMS

acquisitions for su and the virtual coil sensitivities for Cu,v.

5.1.4 fMRI Experiment Design and Analysis

For each of five healthy subjects, both a concentric ring SMS fMRI scan and a non-

simultaneous multislice (non-SMS) concentric ring fMRI scan were performed in ac-

cordance with the University of Michigan Institutional Review Board using a GE

Discovery MR750 3.0 Tesla MRI scanner and a Nova Medical 32-channel receive head

coil. The SMS and non-SMS scans each had a total acquisition time of 240 s for the

entire run. Each fMRI scan had 20-second blocks of both visual and motor stimuli

alternating with 20-second blocks of rest. The visual stimulus consisted of a flashing

checkerboard pattern, and subjects were instructed to tap the fingers on only their

right hand while the visual stimulus was present.

Functional activation for all scans was computed using the General Linear Model

on detrended magnitude data using a paradigm model waveform based on SPM’s

canonical hemodynamic response function [82]. Maps of t-scores were computed us-

ing Ref. [59], which accounts for degrees of freedom in the time-series data, and a

threshold of t > 6 was used to determine voxel activation in all scans. Counts of
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activated voxels were performed by manually masking visual and left motor cortex

areas, then counting the number of activated voxels within those masked regions. A

different mask was created for each subject, but all methods performed on data from

one subject used the same mask for that subject.

5.1.5 SMS Scan Parameters

Each SMS fMRI time frame consisted of nacq = 13 acquisitions per TR of nslc = 3

simultaneous slices, each of which were 3 mm thick and acquired nacqdslc = 39 mm

apart with no space between contiguous acquisitions. The SMS TR and TE were

663 ms and 31 ms, respectively. The SMS RF pulse was created using a sum of

3 Hamming-windowed sincs, each of which was frequency-modulated to create the

39 mm gap between simultaneous slices. The SMS RF pulses for all 5 subjects were

6.4 ms in length, and the Ernst angle for gray matter was used for the flip angle.

The calibration TR and TE in all cases were 663 ms and 31 ms, respectively. To

match the SMS scans, each calibration time frame had ntot = nslcnacq = 39 slices.

Because the SMS scans used the minimum TR for 13 acquisitions, only 13 slices of

the entire volume could be acquired per TR in the calibration scans. Therefore, a

total of nslc = 3 TRs were needed for the calibration data. The RF pulse used for the

calibration scan for each subject was the corresponding single non-modulated sinc

used for the SMS scan for that subject. The calibration RF pulses for all 5 subjects

were 6.4 ms in length.

5.1.6 Trajectory Parameters

The out-to-in concentric ring kx-ky trajectory was designed to produce a 64-by-64

image with a 22 cm FOV, and consisted of 32 equally spaced concentric circles with a

sample at the k-space origin, as shown in Figure 4.3a. All gradients were designed to
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use 150 mT/m/ms for the maximum slew rate and 40 mT/m for the maximum am-

plitude. The blipped z-gradient consisted of a repeating pattern of positive-negative-

positive blips to obtain a kz trajectory that starts out at 1/FOVz for the outermost

kx-ky ring, goes to −1/FOVz for the next ring, then 0 for the next ring, and contin-

ues with that pattern until the kx-ky-kz origin is reached, where FOVz = ntotdslc is

the SMS field of view in the through-plane direction. The scanner gradient sampling

interval was 4 µs, resulting in 6612 samples for the entire concentric ring trajectory,

including the initial path from the origin to the outermost ring and the final origin

sample. The number of samples located only in the concentric rings was ndat = 5892.

The separate non-SMS spiral-in scan, which was only used to compute image

artifacts and SNR, also had a trajectory designed to produce a 64-by-64 image with a

22 cm FOV. A blipped z-gradient was simulated by adding to the spiral k-space data

the appropriate amount of phase generated from blips with the same areas as those

used for the concentric ring trajectory. For the spiral data, the simulated z-blips were

timed to occur at one particular angular location, resulting in the trajectory shown

in Figure 2.6. The gradient sampling interval was also the same as that for concentric

rings, and resulted in ndat = 5056 total samples for each spiral.

5.1.7 GRAPPA Reconstruction Parameters

For all the GRAPPA-based reconstructions, each concentric ring was interpolated to

a constant angular velocity trajectory of 208 samples, then separated into 8 angular

sectors, as depicted in Figure 4.3a. The spiral scan was not reconstructed using

GRAPPA. The GRAPPA kernel for each sector of each coil consisted of a 3-by-3

grid that weights 3 consecutive rings and 3 consecutive interpolated points in the

angular direction, resulting in nkern = 9. For each sector of each coil, an additional

asymmetric kernel was computed for the outermost and innermost rings, respectively.

Instead of computing additional asymmetric kernels for the angular edges, each sector
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was created with an overlap of 1 point along both angular edges so that the original,

non-asymmetric kernel could be used to compute all data points up to the non-

overlapped angular edge. Finally, for the sample at the k-space origin, another kernel

was constructed that uses 8 evenly spread data points from each of the innermost 3

rings. Coil compression for SG and SP-SG used nstack = 10. For GRABSMACC, only

the calibration frame was used to compute coil compression matrices, so nstack = 1.

Conjugate gradient with 5 iterations and finite difference regularization was used

to transform k-space data into the image domain. Theory from Ref. [83] was used

to choose the regularization parameter in terms of the desired spatial resolution in

the reconstruction. The regularization parameter for a point spread function with a

full width at half maximum of 1.35 was determined, which results in a slight degree

of smoothing. However, the same regularization parameter was used for all meth-

ods including all the GRAPPA-based, SENSE, and non-SMS reconstructions, so all

methods should have the same degree of smoothing from regularization.

5.1.8 SENSE Reconstruction Parameters

Each concentric ring SMS scan and the spiral scan were reconstructed using SENSE.

Conjugate gradient with 10 iterations was used, along with the same field map, regu-

larization parameter, and NUFFT parameters used in the SG and SP-SG conjugate

gradient computation. The number of iterations was determined by examining the

change in the solution with each iteration and using the number that resulted in a

change similar to using 5 iterations with non-SMS reconstruction. The ESPIRiT pro-

cess used a kernel of size 3-by-3 on only the central 32-by-32 region of the 64-by-64

Cartesian k-space, a threshold of 0.02 times the largest singular value to determine

the ESPIRiT calibration matrix null space, and an eigenvalue threshold of 0.95 for

the final eigenvector sensitivity maps. Coil compression in SENSE was done with

nstack = 10.
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5.1.9 Non-SMS Scan Parameters

The non-SMS fMRI scans had ntot = nslcnacq = 39 slices per time frame to match

the SMS scans. However, the non-SMS scans used a TR of 1989 ms and a TE of

31 ms. The same RF pulse used for the SMS calibration scans was used for the

non-SMS scans, but with a different Ernst flip angle for gray matter because of the

longer TR. A separate field map acquisition was also acquired. Conjugate gradient

using NUFFTs with inhomogeneity correction and finite difference regularization was

used for reconstruction, and the coil images were combined using square-root-sum-

of-squares. The same regularization parameter and NUFFT parameters used in SG

and SP-SG were used with 5 iterations. It was found that further iterations did

not produce significant changes in the solution for non-SMS data. The non-SMS

scans were also coil-compressed before reconstruction for comparison with the SMS

reconstructions. Specifically, nstack = 10 time frames from the middle of the scan were

used in a similar manner as in standard coil compression of SG and SP-SG, with the

only difference being that there were ntot = 39 different Vcomp matrices, one for each

slice.

5.1.10 Field Maps

The field map acquisitions for SMS scans used a TR of 663 ms, whereas those for the

non-SMS scans used a TR of 1989 ms. The field map acquisitions for the non-SMS

scans were relatively straightforward; two whole-volume time frames were captured

with one frame having a slightly delayed TE. The SMS field maps were necessarily

acquired in a similar manner to the SMS calibration scans since a TR of 663 ms was

only long enough to acquire 13 slices. In other words, a total of 2nslc = 6 TRs were

needed to acquire 2 whole-volume frames, with nslc of the TRs using a delayed TE.

Field map data was reconstructed in 2 passes using conjugate gradient with NUFFTs,
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inhomogeneity correction, and the same regularization parameter as all the rest of

the methods.

5.1.11 Image Artifacts

The interslice leakage artifact and intraslice artifact using the Linear System Leak-

age Approach [73] were computed for all SMS reconstruction methods by taking

the concentric ring non-SMS data consisting of only the middle nacq = 13 slices

of the non-SMS scan of subject 5 and reconstructing them with each of the var-

ious SMS methods. Additionally, a spiral non-SMS scan was used in a similar

manner to compute the same interslice leakage and intraslice artifacts for compar-

ison. In the notation of Ref. [73], the interslice leakage metric of (L2→1 + L2→3)

was computed, along with the intraslice artifact of (I2→2 − I2). Figure 5.1 il-

lustrates how these artifacts were computed. The interslice leakage artifact met-

ric is defined as
∑

w (|pw,1|2 + |pw,3|2) /
∑

w (|pw,1|2 + |pw,2|2 + |pw,3|2), where pw,v is

the complex value of pixel w in slice v of the 3 simultaneous slice reconstruction,

and w ranges through the number of pixels in each slice. Here, v = 1 indicates

all of the 13 inferior slices in the 39 total slices, v = 2 indicates the middle 13

slices, and v = 3 indicates the superior 13 slices. The intraslice artifact met-

ric is defined as
∑

w (|pw,2|2 − |qw,2|2) /
∑

w (|pw,1|2 + |pw,2|2 + |pw,3|2), where qw,v is

the complex value of the ground truth (non-SMS) voxel. The total image arti-

fact of (L1→2 + I2→2 + L3→2 − I2) was computed by synthesizing SMS data from

all 39 slices of the non-SMS scan, then reconstructing and comparing the SMS re-

construction with the original, ground truth non-SMS slices. Figure 5.1 also il-

lustrates how this artifact was computed. The total image artifact is defined as∑
w (|pw,2|2 − |qw,2|2) /

∑
w (|qw,2|2). For the concentric ring data, all artifact compu-

tations were performed on 10 time frames of the non-SMS scan of subject 5, and the

resulting metrics and maps were computed on the average of those 10 frames.
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Figure 5.1: Illustration showing the concept of interslice leakage artifacts (top two
rows), intraslice artifacts (third row), and total image artifacts (bottom row). In this
figure, wv indicates the kernel that computes k-space data of (one coil of) separated
slice v.

5.1.12 Retained SNR

The Pseudo Multiple Replica method [84] was used to compute the retained SNR,

which is equivalently defined as 1/g, where g is the geometry factor in SMS recon-
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structions. In order to use this method, a single non-SMS concentric ring volume

and a noise-only scan were performed on one subject. The noise-only scan was used

to construct a noise covariance matrix for each slice. To compute pseudo multiple

replicas for a non-SMS acquisition, an instance of correlated noise was generated for

each slice of each replica by multiplying an instance of complex standard normal noise

by the square root of the noise covariance matrix for that slice. This correlated noise

was then added to a non-SMS concentric ring slice to obtain k-space data for one

slice of one replica. A total of 250 replicas were generated by repeating this process.

To compute replicas for an SMS acquisition, slices of the non-SMS volume were

appropriately modulated and summed to simulate SMS acquisitions, and only the first

nacq noise covariance matrices were used to generated replicas as above. An additional

single non-SMS spiral volume and spiral noise-only scan were performed on the same

subject to generate replicas for both non-SMS and SMS spiral acquisitions. Finally,

these pseudo multiple replicas were reconstructed with various different methods and

coil compression as described previously.

The temporal SNR of the non-SMS pseudo multiple replicas reconstructed without

coil compression was calculated by taking the temporal mean divided by the temporal

standard deviation. The same computation was done to calculate the temporal SNR

for each reconstruction method and coil compression level used on either SMS or non-

SMS replicas. The retained SNR map for each method and compression level was

calculated by dividing the SNR for that method by the SNR of the non-compressed

non-SMS replica reconstructions. The average retained SNR for each method was

computed by taking the average value within a manually-created within-brain region.
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5.2 Results

5.2.1 Activated Voxel Counts

Figure 5.2a shows the mean of activated voxel counts across all 5 subjects in the

visual and motor cortex ROIs for different acquisition and reconstruction methods

versus number of virtual coils. Since ncoil = 32 for all experiments, 32 indicates

no coil compression. In the Results section and in all the Figures, the terms “SG”

and “SP-SG” by themselves refer to standard coil compression in SG and SP-SG,

respectively. The terms “GRABSMACC-SG” and “GRABSMACC-SP-SG” refer to

the use of GRABSMACC in SG and SP-SG, respectively. Looking at Figure 5.2a,

the activated count for both GRABSMACC-SG and GRABSMACC-SP-SG remains

unaffected until the number of virtual coils is reduced to around 5. The count for

SP-SG initially tracks that of GRABSMACC-SP-SG, but has a drop at just 14 virtual

coils and quickly drops far lower than the GRABSMACC-SP-SG count. The count

for SG increases towards the count for SP-SG as the number of virtual coils decreases

and similarly drops back down at 14 virtual coils. The SENSE count also begins

to decrease at 14 virtual coils. Coil compression in non-SMS imaging performed

similarly to both GRABSMACC-SG and GRABSMACC-SP-SG, with a decrease in

count starting at around 4 virtual coils.

The counts for each method were also normalized by dividing by the count using

all 32 coils. Figure 5.2b shows the mean across subjects of the normalized counts for

each method, along with error bars indicating 95% confidence intervals for each mean.

The normalized counts for all four methods exhibit similar trends as they do in Fig-

ure 5.2a. Of note, the error bars around the normalized counts for GRABSMACC-SG,

GRABSMACC-SP-SG, and non-SMS are very small, especially for 10 to 32 virtual

coils, indicating excellent reproducibility between subjects. The error bars around

the counts for SENSE are also small, but for a reduced range of 20 to 32 virtual coils.
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Figure 5.2: (a) Activated voxel counts: mean across all 5 subjects. (b) Normalized
activated voxel counts: mean across all 5 subjects with error bars indicating 95%
confidence intervals. Before taking the mean across subjects, the count for each
method was normalized by the count using all 32 coils. (c) Falsely activated voxel
counts: mean across all 5 subjects. Falsely activated voxels are defined as active brain
voxels that are outside the visual and motor cortex areas used for the activated voxel
counts in (a) and (b). A t-score threshold of 6 was used for all methods.

For SG and SP-SG, the error bars are relatively large below 20 virtual coils.

Figure 5.2c shows the mean of “falsely” activated voxel counts across all 5 sub-

jects in the visual and motor cortex areas for different acquisition and reconstruction

methods versus number of virtual coils. Falsely activated voxels are defined as active

brain voxels that are outside the visual and motor cortex ROIs used for the activated
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voxel counts in Figures 5.2a and 5.2b. The most striking feature of Figure 5.2c is that

SG and SP-SG exhibit increased false activation with just a small amount of com-

pression. SENSE does as well, but to a lesser extent. However, the false activation

level does not change appreciably for GRABSMACC-SG, GRABSMACC-SP-SG, and

non-SMS until approximately 5 virtual coils.

Table 5.1 contains p-values of paired Dunnett [85] multiple comparisons of a two-

way analysis of variance (ANOVA) of activated voxel counts. For each method, the

control used in Dunnett’s multiple comparison method is the activated voxel count

using all 32 coils. This control is then paired with and compared to the voxel count

using different numbers of virtual coils for each method. In other words, each entry in

the table corresponds to a test between the counts for the number of virtual coils listed

at the top, and the counts for all 32 coils using the same method. Using a p-value

threshold of 0.05 for rejecting the null hypothesis, the largest number of virtual coils

with a count that significantly differs from the count using all 32 coils is indicated in

bold for each method in Table 5.1. Non-SMS has the best compression performance

with a significant difference in counts only when the number of virtual coils is all

the way down to 2. GRABSMACC-SG and GRABSMACC-SP-SG do almost as well,

with a difference when there are only 3 virtual coils. SG and SP-SG do slightly worse,

with a significant change at 5 virtual coils. However, SG and SP-SG still perform

better than SENSE, which does the worst with a significant count difference when

compressing down to 10 virtual coils.

5.2.2 Activation Maps and Reconstructed Images

Figure 5.3a shows the quantitative t-score activation map for one visual cortex slice of

subject 5 for different combinations of method (listed at the left) and number of virtual

coils (listed at the top). The same visual cortex slice from the same fMRI time frame

was reconstructed using the indicated combination of method and virtual coils, and
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Number of virtual coils

Method 1 2 3 4 5 10 14 20 26

GRABSMACC-SG <0.001 <0.001 0.0078 0.13 0.74 1.0 1.0
SG <0.001 0.47 0.94 0.67 0.94

GRABSMACC-SP-SG <0.001 <0.001 0.011 0.17 0.89 1.0 1.0
SP-SG <0.001 0.11 0.99 1.0 1.0

SENSE <0.001 0.013 0.54 1.0 1.0
non-SMS <0.001 0.016 0.46 0.94 1.0 1.0 1.0

Table 5.1: For each method, this table displays p-values using paired Dunnett multiple
comparisons of a two-way ANOVA of activated voxel counts. The count for each
number of virtual coils is compared pairwise with the count using all 32 coils using
the same method. For each method, the value in bold corresponds to the largest
number of virtual coils with a p-value less than 0.05, or equivalently, the largest
number of virtual coils with an activation count that differs significantly from the
non-compressed reconstruction.

is shown underneath the activation map in each entry. In other words, the underlying

background image is the actual result using the indicated reconstruction method. The

non-SMS images are from a different fMRI run and are intensity windowed differently

from the SMS images due to the differing TR. Figure 5.3b shows the same data as 5.3a,

but for one motor cortex slice of subject 5.

The visual and motor cortex activation maps are very similar between all the SMS

methods, which is expected since they are all reconstructed using the same data. The

non-SMS activation pattern, however, is still quite similar to the SMS reconstruction

results, indicating good functional reproducibility in SMS fMRI. Comparing between

different numbers of virtual coils, the activation map for each method does not change

much in terms of shape or location; the only noticeable difference is a smaller activa-

tion size when the number of virtual coils becomes very small. In this regard, these

results corroborate those in Figures 5.2a and 5.2b.

Figure 5.4 shows the virtual coil sensitivities for the z-isocenter slice when com-

puting Vcomp from non-SMS k-space data and from SMS k-space data for 10 virtual

coils. The original uncompressed coil sensitivities are shown in Figure 4.15. Qualita-
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Figure 5.3: (a) Visual and (b) motor cortex activation maps over reconstructed im-
ages for subject 5. The underlying background image is the actual result using the
indicated reconstruction method. A t-score threshold of 6 was used for all methods.
The top of each column lists the number of virtual coils for that column. For each
of (a) and (b), the same visual or motor cortex slice is pictured for all methods and
number of virtual coils. The activated voxel color scale is the t-score.

tively, the non-SMS virtual coil sensitivity patterns and shading seemed to vary less

between subjects than the SMS virtual sensitivity patterns did.
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Figure 5.4: Virtual coil sensitivities for slice 20, the z-isocenter slice, when computing
the compression matrices from (a) the non-SMS data and (b) the SMS data for 10
virtual coils.

5.2.3 Image Artifacts

Figure 5.5 shows the interslice leakage (L2→1 + L2→3), intraslice (I2→2 − I2), and

total image artifact (L1→2 + I2→2 + L3→2 − I2) metrics for different acquisition and

reconstruction methods versus number of virtual coils. The formulas for these metrics

are given in Section 5.1.11. The metrics were computed using the full set of 39 slices in

each time frame. From Figure 5.5a, it is clear that GRABSMACC-SP-SG has the least

interslice leakage out of all the methods. The intraslice artifact shown in Figure 5.5b

has approximately the same behavior in all methods, except for a differing baseline
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level for each method. In Figure 5.5c, GRABSMACC-SG and GRABSMACC-SP-SG

are the best performing SMS methods in terms of total image artifact. For all three

artifact metrics, SENSE reconstruction of spiral SMS data had values reasonably

similar to the ones for SENSE reconstruction of concentric ring data.
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Figure 5.5: (a) Interslice leakage artifact metric (L2→1 +L2→3), (b) intraslice artifact
metric (I2→2 − I2), and (c) total image artifact metric (L1→2 + I2→2 + L3→2 − I2) for
the middle slices of a 3-simultaneous-slice-acquired volume of 39 total axial slices. All
methods used a concentric ring trajectory except for the “Spiral SENSE” method.

Figure 5.6 shows the actual interslice leakage and intraslice artifact maps for the

3 simultaneously acquired slices labeled as “Truth” on the right side. These images

parallel the results in Figure 5.5; GRABSMACC-SP-SG has the least overall interslice

115



leakage, with similar intraslice artifact behavior in all SMS methods. The intraslice

artifact in GRABSMACC-SP-SG is larger than in SENSE, but the intraslice artifact in

GRABSMACC-SP-SG is mostly near the eyes and not as much in the brain, which is

the area that matters the most in fMRI. The artifact maps for SENSE reconstruction

of spiral data were visually very similar to the SENSE reconstruction of concentric

ring data.
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Figure 5.6: (a) Interslice leakage artifact for the inferior slice (L2→1), (b) intraslice
artifact for the middle slice (I2→2 − I2), and (c) interslice leakage artifact for the
superior slice (L2→3) from the middle slice of a 3 simultaneous slice acquisition. The
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In Figure 5.5a, SP-SG exhibits less interslice leakage when compared to SG, con-

firming the results of Ref. [73], while SENSE falls somewhere between SG and SP-SG.

Figure 5.5a clearly shows the benefit of GRABSMACC on both SG and SP-SG in

terms of reduced interslice leakage artifacts with larger amounts of compression. In

particular, GRABSMACC-SG and GRABSMACC-SP-SG are the only SMS recon-

struction methods that do not have increased interslice leakage with larger amounts of

compression. In Figures 5.6a and 5.6c, both GRABSMACC-SG and GRABSMACC-

SP-SG reduce the amount of interslice leakage compared to SG and SP-SG, respec-

tively. GRABSMACC-SP-SG does particularly well with almost no visible interslice

leakage signal, especially when compared to the other 4 methods shown. In addition,

Figures 5.6a and 5.6c illustrate the importance of interslice leakage on functional ac-

tivation; for all methods, the leakage signal tends to concentrate more in the center of

the image where brain matter is likely to be present, potentially affecting activation

in the areas of most interest.

The intraslice artifact, shown in Figures 5.5b and 5.6b, is very similar between all

5 SMS reconstruction methods, and particularly so between SG and GRABSMACC-

SG and between SP-SG and GRABSMACC-SP-SG. Using 20 to 32 coils, there is

very little difference between SG and GRABSMACC-SG and between SP-SG and

GRABSMACC-SP-SG. When going below 20 virtual coils, the GRABSMACC meth-

ods have slightly less intraslice artifact than their non-GRABSMACC counterparts.

The intraslice artifact results again mirror the results in Ref. [73] in that SP-SG has

reduced intraslice artifact compared to SG.

All the GRAPPA-based methods have similar total image artifact with all 32

coils, as shown in Figure 5.5c. However, SG has slightly less total image artifact com-

pared to SP-SG, again consistent with Ref. [73], which explains that SP-SG trades off

higher total image artifact for reduced leakage. Using GRABSMACC for compression

reduces the total image artifact to very similar levels for both SG and SP-SG.
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5.2.4 Retained SNR

Figure 5.7 shows the average retained SNR, or equivalently, average 1/g-factor within

a brain ROI that covers all 39 slices in each time frame. The GRABSMACC-SG and

GRABSMACC-SP-SG plots behave the most similarly to the non-SMS plot; all three

have constant SNR until around 5 virtual coils. The SNR using all 32 coils for SENSE

starts out at a higher level than non-SMS, but begins to fall earlier around 14 virtual

coils. The SNR for SENSE reconstruction of spiral data behaves almost identically

to the SENSE reconstruction of concentric ring data. The plots for SG and SP-

SG are almost the same, with an increase in SNR with 20 and 14 virtual coils. In

general, the GRAPPA-based methods have a baseline retained SNR of around 0.8 to

0.85. Figure 5.8 shows retained SNR maps of the same 3 simultaneous slices used in

Figure 5.6.

As mentioned in Section 4.1.7, for both SG and SP-SG, SMS acquisitions taken

at non-z-isocenter locations need to be demodulated prior to the entire slice separa-

tion and reconstruction process. If this demodulation is not performed, acquisitions

further away from z-isocenter will suffer an SNR loss compared to the isocenter ac-

quisition. Figure 5.9a shows the retained SNR using SP-SG without demodulating

the phase of the non-isocenter acquisitions prior to reconstruction. Each column of

3 images is a retained SNR map of the simultaneously acquired set of 3 slices from a

single acquisition, and the number at the top of the images in Figure 5.9 indicates the

acquisition number for that column, where acquisition 7 is at z-isocenter and acqui-

sitions 1 and 13 are the furthest from isocenter. Figure 5.9b shows the retained SNR

using SP-SG with demodulation prior to reconstruction. Note the roll-off or decrease

in retained SNR in Figure 5.9a as the acquisitions move further away from isocenter.

In Figure 5.9b, this does not happen and the retained SNR is more uniform; acqui-

sitions taken at slice locations far away from isocenter still have SNR similar to the

isocenter acquisition.

118



0 5 10 15 20 25 30

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of virtual coils

Retained SNR

 

 

GRABSMACC−SG

SG

GRABSMACC−SP−SG

SP−SG

SENSE

Spiral SENSE

Non−SMS

Figure 5.7: Average retained SNR, or equivalently, average 1/g-factor within brain
voxels. All methods used a concentric ring trajectory except for the “Spiral SENSE”
method.

5.2.5 Computational Speed

Figure 5.10 shows the time needed for a single computer with an Intel Xeon E3-1230

3.20 GHz processor to reconstruct the first time frame of fMRI runs of subject 5, and

includes the time needed for coil compression. The times for SG and SP-SG were

virtually identical, as were the times for GRABSMACC-SG and GRABSMACC-SP-

SG, so each of the pairs were combined into a single plot, as shown in the legend

of Figure 5.10. Construction of field maps, sensitivity maps, and GRAPPA kernels
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Figure 5.8: Maps of retained SNR, or equivalently, 1/g-factor of the same slices used
in Figure 5.6. (a) Inferior slice, (b) middle slice, and (c) superior slice. All methods
used a concentric ring trajectory except for the “Spiral SENSE” method.

are only done once per fMRI scan, so they were not included in the times. While

not insignificant, the time needed for them does not contribute as much relative to

the overall time needed for reconstruction of the entire fMRI scan. In all methods,
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Figure 5.9: (a) Maps of retained SNR, or equivalently, 1/g-factor without demodulat-
ing non-z-isocenter acquisitions prior to SP-SG reconstruction (with no coil compres-
sion). Each column of 3 images is the retained SNR map for a single acquisition of 3
simultaneous slices. The number at the top of each column indicates the acquisition
number, where acquisition 7 is at z-isocenter and acquisition 1 and 13 are the furthest
from isocenter. (b) Maps of retained SNR with appropriate demodulation prior to
SP-SG reconstruction (with no coil compression).

the reconstruction time increases linearly with the number of virtual coils used. The

time needed for kernel computation was around 100 seconds and 256 seconds for

GRABSMACC-SG and GRABSMACC-SP-SG, respectively, regardless of the number

of virtual coils used. The time needed for kernel computation ranged linearly from 4

to 100 seconds in SG, and linearly from 11 to 256 seconds in SP-SG as the number

of virtual coils increased from 1 to 32.
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Figure 5.10: Reconstruction times of the first time frame of fMRI scans of subject 5.
The time needed for field map, sensitivity map, and GRAPPA kernel generation is
not included in these reconstruction times. The time needed for coil compression is
included.

5.3 Discussion

5.3.1 Image Acquisition and Reconstruction

The concentric ring trajectory provides better sampling regularity for GRAPPA than

a spiral, but is longer: the readout length for the same FOV and image size using

a typical spiral-in is around 20.224 ms, whereas the readout length of the proposed

concentric ring trajectory was 26.044 ms. The increase in length is mainly caused by

the need to sample k-space with shorter intervals along the trajectory right before
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and after the ring transitions, as shown in Figure 4.3b, in order to satisfy maximum

gradient slew rate constraints. In addition, each ring is sampled fully along the entire

circle before transitioning to the next smaller ring. Potential time savings could be

had if one were to start the transition before reaching the end of the full circle,

although at decrease in sampling regularity for the GRAPPA kernel. However, this

readout time increase does not prevent the use of a suitable TE for BOLD imaging.

Unlike a simple FOV shift obtained with blipped-CAIPI EPI, blips using concen-

tric rings result in a blur, as shown in Figure 4.22. Qualitatively, when compared with

blipped-CAIPI, there is potentially less signal overlap of simultaneous slices because

the signal is blurred throughout the entire FOV, whereas in blipped-CAIPI, there is

a discrete shift. Less overlap potentially results in a better g-factor. However, using

GRAPPA with non-Cartesian trajectories inevitably introduces certain distortions in

the reconstruction due to the Cartesian approximation of a non-Cartesian trajectory

that occurs when unwrapping the constant angular velocity rings into Cartesian grids.

In Ref. [40], the 1/g maps for blipped-CAIPI spin-echo-EPI with 3 simultaneous slices

averaged around 0.997, whereas the non-blipped version averaged around 0.68. Us-

ing our blipped concentric rings, GRABSMACC-SP-SG resulted in an average 1/g

of around 0.85, which is not as high as the blipped-CAIPI results in Ref. [40], but

still higher than non-blipped SMS. Using SENSE resulted in an average 1/g of over 1

using our blipped concentric rings, possibly because the conjugate gradient algorithm

was not run quite to convergence, which could result in slight smoothing not obvious

visually. Thus, it is likely that the Cartesian approximation in the GRAPPA-based

methods reduced the retained SNR. The retained SNR, a measure of thermal noise,

is not the only metric that should be considered when evaluating a method for fMRI.

While the decrease in 1/g is not insignificant, Ref. [54] argues that physiological

noise and not thermal noise dominates in many studies. As shown in Figure 5.5a,

GRABSMACC-SP-SG results in less interslice leakage compared to SENSE, with
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fewer false activations in neighboring simultaneous slices. In addition, signal recov-

ery in the presence of in-plane susceptibility-induced gradients may show that the

concentric-ring-in trajectory may have utility when imaging in inferior regions of the

brain.

In this work, a concentric ring trajectory was chosen to enhance sampling regu-

larity for GRAPPA compared to non-Cartesian trajectories such as spirals. Another

benefit of concentric rings is that they are amenable to in-plane acceleration using

GRAPPA. Single-shot acquisitions can easily be constructed for higher sampling den-

sity, while multishot acquisitions would better match B0 phase evolution. If multiple

interleaves are acquired, gross movement or physiological motion between excitations

can easily degrade the quality of the calibration, although recent work has reduced

the sensitivity losses from these issues in accelerated parallel EPI [86].

5.3.2 Functional Activation and Image Artifacts

Comparing the activation counts of SG and GRABSMACC-SG in Figure 5.2a, SG

appears to outperform GRABSMACC-SG since the count for SG increases as the

number of virtual coils is decreased from 32. One explanation is that autocorrelation

in the data for SG increased as the number of virtual coils initially decreased from

32, resulting in a reduction in the effective degrees of freedom and a difference in

the actual t-score significance threshold. Since the threshold was fixed at t > 6, this

resulted in an artificially increased number of activated voxels for SG. Comparing

SP-SG and GRABSMACC-SP-SG in Figure 5.2a and 5.2c, GRABSMACC-SP-SG

is clearly superior to SP-SG in both true and false activation counts. The false

activation behavior seems to be strongly related to the interslice leakage artifact

results in Figures 5.5a, 5.6a, and 5.6c, since activation from one slice can leak into

another.

Although interslice leakage can affect the false activation, intraslice artifacts also
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contribute. For example, in Figure 5.2c, GRABSMACC-SG exhibits less false activa-

tion than SP-SG at all levels of compression, while in Figure 5.5a, GRABSMACC-SG

has a higher amount of interslice leakage than SP-SG for ≥ 10 virtual coils. However,

the total image artifact shown in Figure 5.5c, which contains both interslice and in-

traslice artifacts, shows that GRABSMACC-SG has less total artifact than SP-SG for

all levels of compression, similar to the false activation results. It should also be men-

tioned that the false activation in Figure 5.2c is computed from all 39 slices, whereas

the artifact results in Figure 5.5 are not computed from all the slices; in Figure 5.5a

the interslice leakage is from the middle block of 13 slices out to the superior and

inferior blocks of 13, Figure 5.5b displays the intraslice leakage for just the middle

block of 13 slices, and Figure 5.5c contains interslice leakage from the superior and

inferior blocks into the middle block of 13, along with intraslice leakage for the middle

block.

Also of importance is the general trend of false activation for each method in Fig-

ure 5.2c. With GRABSMACC-SG and GRABSMACC-SP-SG, it is reassuring that

activation results will likely not be falsely elevated with coil compression. Exces-

sive amounts of compression will likely hinder GRABSMACC’s ability to detect true

activation, but it does not seem to cause false activation and lead to false positive

conclusions on brain function. On the other hand, SG, SP-SG, and SENSE all result

in increased false activation with increasing compression. Also interesting is how sim-

ilar the shape of the curves for GRABSMACC-SG and GRABSMACC-SP-SG are to

the shape of the curve for non-SMS in Figures 5.2a and 5.2c. In this respect, GRAB-

SMACC mimics the non-SMS ideal much better than the other SMS reconstruction

methods.

In Figure 5.5a, the interslice leakage mostly increases with a decreasing number of

virtual coils, but this is not the case for GRABSMACC-SG and GRABSMACC-SP-

SG, both of which exhibit a very slight decrease in interslice leakage when the number
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of virtual coils is very low. As explained by Ref. [73], there is a trade off between

interslice and intraslice artifacts for SMS imaging. Compared to SP-SG, SG trades off

higher interslice error for lower total artifact error, whereas SP-SG trades off higher

total artifact error for lower interslice error. Furthermore, the interslice and intraslice

error trade off can be tuned with weighting parameters in SP-SG. In Figure 5.5a,

the very slight decrease in interslice leakage with lower numbers of virtual coils in

GRABSMACC-SG and GRABSMACC-SP-SG are likely coming at the expense of

increased intraslice error. The monotonically increasing total image artifact with

decreasing coils shown in Figure 5.5c confirms this effect for all methods. Perhaps

the virtual coil sensitivities created by the GRABSMACC methods at low numbers

of virtual coils exhibit very good variation in the through-plane direction, but not

as adequately in-plane, which generates better slice separation but worse intraslice

artifact.

5.3.3 SNR

In general, the SNR plots in Figure 5.7 behave similarly to the activation count plots

in Figure 5.2a. Perhaps the most surprising feature of the SNR plots is that the SNR

for SG and SP-SG is higher at 14 and 20 virtual coils when compared to using all

32 coils. The SNR for SENSE also increases slightly at 20 virtual coils, although

to a lesser extent than SG and SP-SG. This behavior is perhaps explained by the

interslice leakage of these methods. It is possible that the increased interslice leakage

artifact for these methods creates an artificial, “stationary” signal in the images,

resulting in a higher signal with the same level of standard deviation and hence a

higher calculated SNR. However, once the number of virtual coils is reduced below

14, the overall degradation in the underlying image begins to outweigh any of the

artificial changes that the interslice leakage produced. Notice that GRABSMACC-

SG and GRABSMACC-SP-SG exhibit no increases in interslice leakage from 32 to
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5 coils, and so the SNR remains almost constant from 32 to 5 coils. In particular,

note that non-SMS has absolutely no interslice leakage, and the shape of the SNR

plot for non-SMS in Figure 5.7 is very similar to the shape of the SNR plots for

GRABSMACC-SG and GRABSMACC-SP-SG.

5.3.4 Demodulation of Non-isocenter Slices

The retained SNR behavior shown in Figure 5.9a can be explained by examining the

phase imparted by the readout blipped z-gradient for both isocenter and non-isocenter

SMS acquisitions. For illustration, assume that each ring has a total magnitude of

1, and that the phase of each ring is solely dependent on the readout z-gradient and

the slice location. The phase imparted by the z-gradient is just 2πzvkz(t), where

zv is the distance of the slice to z-isocenter and kz(t) = γ
2π

∫ t
0
gz(τ) dτ . For nslc = 3

simultaneous slices, kz(t) for each ring cycles through ∆kz = 1
FOVz

= 1
nslcnacqdslc

, −∆kz,

0, then back through again. Numbering consecutive slices in the nslcnacq = 39 slice

volume 1 through 39, the isocenter SMS acquisition includes slices 7, 20, and 33,

where slice 20 is at isocenter. For slice 7, the outermost ring has a complex value of

ei2πzv/(nslcnacqdslc) = ei2π(20−7)/(3·13) = ei2π
1
3 . The next consecutive ring has a complex

value of ei2π(−1)(20−7)/(3·13) = e−i2π
1
3 . Finally, the third ring from the outside has a

value of ei0 = 1 since kz(t) = 0 for the third ring. Slice 20 is at z-isocenter, so

the value for each ring is just 1. For slice 33, the outer ring is ei2πzv/(nslcnacqdslc) =

ei2π(20−33)/(3·13) = e−i2π
1
3 , the next ring is ei2π(−1)(20−33)/(3·13) = ei2π

1
3 , and the third

ring is again 1. The sum across the 3 rings is 0, 3, and 0 for slices 7, 20, and 33,

respectively. Therefore, for the isocenter acquisition, there is substantial cancellation

of signals from the outer slices, making it easier to suppress these slices. Table 5.2

shows the same calculation for acquisition 1, which consists of slices 1, 14, and 27.

With this non-isocenter acquisition, there is much less cancellation in the outer slices,

making the slice separation process more poorly conditioned.
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Slice 1 Slice 14 Slice 27

Ring 1: ei2π19/39 ei2π6/39 e−i2π7/39

Ring 2: e−i2π19/39 e−i2π6/39 ei2π7/39

Ring 3: ei0 ei0 ei0

Sum: -0.994 2.136 1.857

Table 5.2: Assuming that each ring has a total magnitude of 1, and that the phase for
each ring is only dependent on gz and the slice location, this table plots the complex
value for each ring and slice for acquisition 1, which is the furthest away from z-
isocenter and consists of slices 1, 14, and 27. The sum across the 3 rings is also shown
for each slice.

Figure 5.11 plots the complex sum across rings for all nacq = 13 acquisitions.

For acquisition 7 at isocenter, the sum for the middle slice is 3 and the inferior and

superior slices are both 0. As the acquisition moves away from isocenter, one of

either the inferior or superior slices has a value much closer to that for the middle

slice. This makes it more difficult to separate the middle slice from the closer of the

other 2 slices, which causes errors in the slice separation process, leading to lower

SNR. As the acquisitions move further and further away from isocenter, the value

between the middle slice and either the inferior or superior slice gets closer, which is

why the retained SNR decreases as the acquisitions move further away from isocenter

in Figure 5.9a. In addition, the signal cancellation in the outer slices becomes less as

the acquisitions move further away from isocenter, which makes the conditioning for

separation worse and worse.

Note that both the inferior and superior slices are 0 for the isocenter acquisition,

which could potentially imply that it would be difficult to separate them. However,

the inferior and superior slices are twice as far apart from each other as they are to

the middle slice, which enables the difference in coil sensitivities to cleanly separate

them, even if they have very similar values. Because of the coil configuration, the

difference in value between the middle and either the inferior or superior slice is more

important for separation.
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Figure 5.11: This plot displays the complex sum across nslc = 3 consecutive rings,
assuming each ring has a total magnitude of 1 and the phase of each ring only depends
on the blipped readout z-gradient and the slice location. Acquisition 7 occurs with
the middle slice at z-isocenter, and acquisitions 1 and 13 are the furthest away from
isocenter. For each acquisition, the sum across the nslc = 3 simultaneous slices is also
plotted and is equal to 3. Note that for acquisition 7 at z-isocenter, the middle slice
has a value the furthest away from the inferior and superior slices.

Fortunately, there is an easy fix for this behavior. Simply demodulate the k-

space data prior to kernel weight computation and reconstruction as described in

Section 4.1.7, and the complex value of the middle slice will be maximally different

from the other 2 slices for all acquisitions. After demodulating the non-isocenter

data, all nacq = 13 acquisitions will have a similar complex sum as acquisition 7 in

Figure 5.11. This preserves the retained SNR for non-isocenter locations, as shown

in Figure 5.9b.
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5.3.5 Enhanced Compression Performance with GRABS-
MACC

The results in Table 5.1 indicate a significant improvement in coil compression ac-

tivation performance with GRABSMACC when compared to either SENSE, SG,

or SP-SG. SENSE requires at least 2 to 3 times as many virtual coils as either

GRABSMACC-SG or GRABSMACC-SP-SG for an equivalent activated voxel count

degradation. Although SG and SP-SG perform better than SENSE, the addition

of GRABSMACC to these methods further increases their performance. The better

preservation of activation using GRABSMACC allows higher levels of compression to

be used, which significantly decreases the reconstruction time.

Taking into account all the results, GRABSMACC-SP-SG likely has the best

preservation of activation out of all the SMS reconstruction methods for the purposes

of most fMRI studies. SG, SP-SG, and SENSE exhibit worrying false activation

and increased interslice leakage with compression. GRABSMACC-SP-SG has the

least interslice leakage, which is perhaps the most important out of all the artifacts

since it has the most potential for generating erroneous activation. In terms of SNR,

SENSE comes out on top. However, the amount of SNR that GRABSMACC-SP-

SG does possess is clearly enough to detect activation in a normal functional study.

Furthermore, the SNR is better preserved with higher amounts of compression when

compared to SENSE.

The better compression for GRABSMACC and non-SMS can be explained from

the Vcomp matrices. With these two methods, a different Vcomp matrix is computed

for each of the ntot = nslcnacq number of individual slices. The SVD selects the best

possible set of linear combinations of coils to use for each individual slice, in fact

tailoring the compression for each target solution. However, with SENSE, SG, and

SP-SG, only nacq number of Vcomp matrices are used, which amounts to one Vcomp

matrix for each set of nslc = 3 individual slices. The Vcomp matrices are computed
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from “source” data consisting of the sum of 3 slices, which may not result in the best

set of linear combinations to use for the individual target slices. In SMS imaging,

the nslc = 3 simultaneously acquired slices are separated from each other by some

distance in the through-plane direction for decreased geometry factor. This separation

in space results in an SMS signal that is the sum of 3 very different objects, as shown

in Figure 5.12.Coil compression in SMS 

 

 

 

 

 

 

 

 

+ + 

SMS k-space: 

Non-SMS 
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Figure 5.12: In conventional coil compression, Vcomp is computed from the SMS k-
space data, which is the sum of 3 slices spatially separated far apart from each other.
Before sensitivity maps are computed or kernel calibration is performed, each non-
SMS slice is compressed using the same Vcomp. In GRABSMACC, Vcomp is computed
from the non-SMS k-space data. For sensitivity maps or kernel calibration, each
non-SMS slice is compressed using a different Vcomp that is tailored for that specific
slice.
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5.3.6 Data Storage

Although GRABSMACC outperforms standard coil compression in SMS reconstruc-

tion, it does not decrease the amount of storage needed for raw data archival, if

desired. The full set of original 32 coils are used in GRABSMACC to reconstruct

images in a virtual coil basis, so the raw k-space data cannot be compressed and

saved at a smaller size for later reconstruction. On the other hand, with standard

coil compression, raw data can be compressed and saved, but the standard process is

still a form of lossy compression. If enough of the signal of interest is not maintained,

it cannot be recovered once the original data is deleted.

5.3.7 Reconstruction Speed

The reconstruction times for GRABSMACC shown in Figure 5.10 do not differ much

from SG and SP-SG at 26 and 32 coils, and actually increase slightly above the times

needed for SG and SP-SG as the number of virtual coils is reduced below 26. This is

because the W matrix has bigger dimensions in GRABSMACC than in standard coil

compression, resulting in slightly slower k-space separation. However, the W matrix

only needs to be determined once per fMRI run or once for the entire fMRI study.

The main bottleneck for image reconstruction in GRABSMACC, SG, and SP-SG is

the iterative conjugate gradient routine that transforms separated k-space data into

the image domain, and not the k-space domain slice separation process using the

kernels in W , which is just a simple matrix vector multiplication. For example, in

GRABSMACC-SP-SG with all 32 coils using a single computer with an Intel Xeon

E3-1230 3.20 GHz processor, the kernel convolution step takes a total of around 21

seconds for 1 time frame, and the remaining 370 seconds is used for multiple conju-

gate gradient routines transforming k-space data for each coil into the image domain.

Therefore, at each matching virtual coil position in Figure 5.10, GRABSMACC takes
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longer than SG and SP-SG, but not by much compared to the total time needed. On

the other hand, unlike the GRAPPA-based methods, SENSE uses conjugate gradient

once, albeit on a larger problem, to separate the slices directly into the image do-

main. For this reason, GRABSMACC becomes ever so slightly slower than SENSE

at 14 virtual coils and below. We also note that while non-Cartesian SENSE most

likely requires the use of an iterative reconstruction, GRABSMACC can easily be

implemented with a non-iterative reconstruction like the conjugate phase reconstruc-

tion [87], which would substantially decrease the reconstruction time even further.

The main benefit of GRABSMACC over standard coil compression in SG, SP-

SG, and SENSE is better preservation of activation with the reduction in number of

virtual coils. Since activation is preserved so much better in GRABSMACC versus the

other methods, a much smaller number of virtual coils can be used in GRABSMACC

with equivalent activation performance but less computational burden. For example,

GRABSMACC-SP-SG with 10 virtual coils results in essentially the same activation

as with all 32 coils, no increase in false activation, no increase in interslice leakage,

no decrease in SNR and negligible increase in intraslice and total image artifact. For

SENSE, one would need 20 virtual coils for activation and SNR to remain unaffected

compared to using all 32 coils, although the interslice leakage is increased. From

Figure 5.10, GRABSMACC-SP-SG with 10 virtual coils takes about 54% as long as

SENSE with 20 virtual coils, which translates to time savings on the order of several

hours when reconstructing multiple fMRI studies. A similar argument can be made

when comparing GRABSMACC-SP-SG to SP-SG, with the added fact that SP-SG

has even more interslice leakage when compared to using 32 coils, and likely more

false activation as well.
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5.4 Conclusions

Coil compression is frequently used to reduce the computational time and memory re-

quired to reconstruct parallel imaging data and becomes increasingly beneficial as the

number of coils increases. GRABSMACC is a practical method for coil compression

in SMS fMRI and retains functional activation better than standard coil compres-

sion techniques used with SMS imaging and reconstruction. Experiments presented

indicate that SMS fMRI scans using 32 receive coils and 3 simultaneous slices can be

compressed down to approximately 31% of their original size without any significant

loss of functional activity.
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CHAPTER 6

Conclusions

SMS imaging can be an effective method to accelerate fMRI and improve the temporal

or spatial resolution of the data. Once the data is acquired, the problem becomes

one of separating the slices. In this work, both non-parallel SMS fMRI and parallel

SMS fMRI was explored using efficient non-Cartesian k-space trajectories. These

methods use different techniques to distinguish simultaneous slices so that subsequent

separation is easier. Hadamard-encoding, the non-parallel method examined in this

work, distinguishes simultaneous slices in the temporal frequency domain. Parallel

SMS imaging methods distinguish slices spatially. Each of these methods has their

advantages and disadvantages.

6.1 Hadamard-encoded fMRI

In fMRI, activation is detected using temporal fluctuations in the images. Hadamard-

encoding introduces an additional temporal fluctuation into the data as the sole means

of differentiating one slice from another. This can be problematic since there are many

sources, both known and unknown, of undesired temporal fluctuations during fMRI.

Physiological noise is one such source that can be monitored during scanning and po-

tentially removed. However, no physiological noise correction method is guaranteed

to remove the noise entirely, and the leftover fluctuations not only corrupt the activa-

tion as in conventional fMRI, but also produce errors during slice separation. It does
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show some potential benefit as a way to reduce signal dropout from through-plane

dephasing, but as an acceleration method for increased temporal resolution, the gains

are modest since a temporal low-pass filter is required for slice separation. In fact,

the temporal resolution gain can never be greater than a factor of two, no matter

how many slices are acquired simultaneously. For these reasons, Hadamard-encoded

fMRI did not show much benefit over conventional non-SMS fMRI in this work.

6.2 Non-Cartesian Parallel SMS fMRI

Parallel SMS imaging, on the other hand, distinguishes between slices by taking ad-

vantage of their differences in location. This group of methods relies heavily on the

coil configuration since the difference in sensitivity profiles is the only thing differen-

tiating one simultaneous slice from another. For this reason, a readout z-gradient is

typically used to provide additional encoding in the through-plane direction. How-

ever, this merely converts the through-plane undersampling problem into an in-plane

one; even with a readout z-gradient, there still needs to be sensitivity variation in-

plane for clean slice separation. The temporal resolution increase is much greater

than what is possible with Hadamard-encoding since data from only a single time

frame is used for reconstruction of that frame. However, the expense and availability

of parallel receive hardware is obviously needed. In addition, parallel SMS imaging

also suffers from increasing RF energy deposition with larger acceleration factors.

This is currently an area of active research and deserves future work.

6.3 GRABSMACC

Another disadvantage of parallel SMS fMRI over non-parallel ones such as Hadamard-

encoding is the factor of d increase in computational effort, where d is the number of

receive coils used. Although computation has become less expensive, the factor of 32
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increase in data from the concentric ring SMS fMRI scans done in this work is not

trivial. Depending on the acceleration factor used, not all 32 coils may be required for

good slice separation. For this reason, coil compression methods can greatly improve

the efficiency of reconstruction. In this work, GRABSMACC was presented. GRAB-

SMACC does not reduce the number of coils in the raw data used in reconstruction,

but only reduces the number of coils in the separated k-space slices. Although this

may not seem like it would reduce computational efficiency, it was shown that GRAB-

SMACC was able to retain activation performance at larger compression factors than

conventional coil compression used in either SENSE or GRAPPA-based methods. As

the benefits of iterative algorithms have become more widely known, the k-space to

object domain transformation process has become the bulk of the computational ef-

fort during reconstruction. Therefore, a reduction in coils of separated k-space data

has the potential to greatly accelerate reconstruction, especially if a fewer number of

coils are needed to preserve activation when compared to conventional compression

methods.

6.4 Contributions

6.4.1 Hadamard-encoded fMRI

This work explored the use of Hadamard-encoded SMS as a method for reduced signal

dropout. It was determined that separating subslices first, then recombining them

afterwards results in more recovered signal in regions with through-plane dephasing

when compared to the incoherent sum method from Ref. [30]. An SNR analysis

was performed using both thermal and physiologic noise sources and determined to

depend on both the temporal low-pass filter cutoff and the amount of through-plane

dephasing, which was not accounted for in Ref. [30].

The possibility of using Hadamard-encoded SMS as a non-parallel method for
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accelerating fMRI and providing an increased temporal resolution was also explored.

Since Hadamard-encoding introduces a temporal fluctuation in the time series data

occurring at the Nyquist frequency, a RETROICOR-based method was developed to

correct for physiological noise while preserving the desired Hadamard-encoding. An

objective comparison of activation test-retest reliability between Hadamard-encoded

SMS fMRI and conventional non-SMS fMRI was provided. Although Hadamard-

encoded fMRI proved not to be a reliable way to increase temporal resolution, it was

important to establish this to prevent future misuse.

6.4.2 Non-Cartesian Parallel SMS fMRI

This work developed a novel blipped concentric ring trajectory that increases the

usability of GRAPPA-based reconstruction methods for non-Cartesian SMS fMRI.

Due to the similarity between concentric ring and spiral trajectories, the concentric

ring trajectory shares many of the same benefits that spirals have over Cartesian

single-shot imaging such as EPI. A numerical algorithm based on ideas in Ref. [71] was

created to generate the gradient waveforms for the blipped concentric ring trajectory

and provides the flexibility of designing blipped concentric ring trajectories for an

arbitrary number of simultaneous slices and in-plane resolution.

This work developed the concept of a modulation PSF, which is an objective

way to determine the performance of the readout z-gradient waveform used in SMS

imaging. This concept provides an intuitive way to understand why some waveforms,

such as the sinusoid used in this work for spiral SMS imaging, do not work as well

as others, such as a properly blipped waveform. The novel blipped concentric ring

trajectory was also shown to have a superior modulation PSF when compared to

blipped spirals, which results in less image overlap with SMS acquisitions and better

slice separation.

A novel non-Cartesian slice-GRAPPA method based on Ref. [72] was also de-
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veloped and shown to provide low RMSE compared to SENSE, along with good

subjective visual appearance in the reconstructed images. The feasibility of acceler-

ated fMRI using non-Cartesian GRAPPA-based reconstruction of SMS imaging was

also demonstrated.

For SENSE reconstructions of SMS imaging, a novel regularization method was

introduced that uses different regularization parameters for different slices, redis-

tributing noise in the reconstruction and providing better subjective image quality.

6.4.3 Coil Compression in Parallel SMS fMRI

GRABSMACC, a novel coil compression method for either non-Cartesian or Cartesian

SMS fMRI, was developed and shown to be a practical method that has better perfor-

mance with greater amounts of compression compared to conventional coil compres-

sion methods in SMS imaging. Detailed statistical analysis of activation performance

on multiple subjects was performed and compared with the activation performance

using conventional coil compression in SMS imaging. In addition, the interslice leak-

age, intraslice, and total image artifacts were examined using GRABSMACC and all

competing methods with numerous levels of compression. The better performance of

GRABSMACC also illustrates the importance of being able to use GRAPPA-based

reconstruction on non-Cartesian SMS imaging and therefore increases the importance

of blipped concentric rings for high quality SMS imaging with fast reconstruction.

The coil compression performance in conventional, non-SMS fMRI was also exam-

ined and compared with GRABSMACC and conventional coil compression in SMS

fMRI. Therefore, in addition to validating GRABSMACC, this work provides useful

information for the vast majority of fMRI practitioners who continue to use conven-

tional non-SMS imaging.
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6.5 Future Work

6.5.1 Readout z-gradient Optimization in SMS Imaging

The modulation PSF concept developed in Section 4.2.1 provides a powerful way to

evaluate and perhaps design readout z-gradient waveforms for use in SMS imaging.

In Section 4.2.1, the modulation PSF was defined as the q such that

Qq = MQej, (6.1)

where Q is the Fourier transform operator, M is a diagonal matrix containing the

phase modulation imparted by the z-gradient, and ej is the point. Since M is

diagonal, Equation (6.1) can be written as

Qq = diag{Qej}m, (6.2)

where diag{x} is a function that creates a diagonal matrix using the entries of the

vector x as the diagonal entries, and m is a vector consisting of the diagonal entries

in M . Solving for m, we have

m = diag{Qej}−1Qq. (6.3)

Note that diag{Qej} is easily invertible since it is diagonal. From Equation (2.20),

m = exp(−i2πγzvLg∆t), (6.4)

where L is a lower triangular matrix of ones that performs a cumulative sum, g

is a vector containing the discretized readout z-gradient, ∆t is the time between

each discrete z-gradient sample, and zv is the distance between the slice in q and
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z-isocenter. Using Equations (6.3) and (6.4), we have

− i2πγzv∆tLg = log(diag{Qej}−1Qq). (6.5)

Therefore, for 3 simultaneous slices located at positions z1, z2, and z3 away from

isocenter, we have the relation

− i2πγ∆t


z1L

z2L

z3L

 g =


log(diag{Qej}−1Qq1)

log(diag{Qej}−1Qq2)

log(diag{Qej}−1Qq3)

 (6.6)

for modulation PSFs q1, q2, and q3, respectively.

To design a suitable z-gradient waveform given desired modulation PSFs q1, q2,

and q3, one simply solves Equation (6.6) for g subject to max{g} ≤ the scanner’s

maximum gradient amplitude, Dg ≤ the maximum slew rate, sum{g} = 0 to have the

trajectory end at the k-space origin, and a constraint forcing the cumulative running

sum of the entries in g to periodically go to 0 to reduce through-plane dephasing.

Here, D is a matrix that computes the difference of neighboring entries in a vector.

Of course, the difficulty with this approach is making sure a solution g satisfies all

the previously mentioned constraints.

Instead of using a point for ej, one could optimize the z-gradient for brain images

by using a brain object for ej. Furthermore, since each slice in a 3 simultaneous slice

acquisition has a different size as shown in Figure 4.22 for example, each of these

different slices could be used for the separate positions z1, z2, and z3. Equation (6.6)

becomes

− i2πγ∆t


z1L

z2L

z3L

 g =


log(diag{Qx1}−1Qq1)

log(diag{Qx2}−1Qq2)

log(diag{Qx3}−1Qq3)

 , (6.7)
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where slices 7, 20, and 33 in Figure 4.22 are used for x1, x2, and x3, respectively.

6.5.2 Alternative Regularization Method in SENSE Recon-
struction

The alternative regularization method for SENSE reconstruction of SMS data given

by Equation (4.2) showed promise with blipped spiral SMS imaging. It would be

interesting and informative to perform this type of SENSE reconstruction on the

concentric ring fMRI data used in Chapter 5 and compare not only the image quality,

but the activation performance, image artifact behavior, and SNR with that for the

other SMS reconstruction methods. In addition, it would be useful to perform a PSF

analysis similar to what was done in Section 2.2.2 to determine a proper value for

the regularization parameter. This would verify claims that the subjectively better

appearance of the resulting images is not a result of oversmoothing.

6.5.3 GRABSMACC

Buehrer et al. [78] proposed a coil compression method that uses Principle Com-

ponent Analysis on coil sensitivities to compute compression matrices that reduce

reconstructed image noise. Their method requires the formation of coil sensitivities

for superimposed voxels, which is easily done for undersampled Cartesian trajectories.

However, with a concentric ring and blipped z-gradient readout, the aliasing pattern

is not a trivial shift in some direction, but a blur in many directions. This makes

it impractical to use their method to reduce image noise in our case. On the other

hand, GRABSMACC can be easily used with Cartesian SMS fMRI. Future work may

involve comparing the activation performance of GRABSMACC with other noise re-

ducing compression methods, as well as investigating the compression performance of

GRABSMACC using different numbers of simultaneous slices.

The general reason why GRABSMACC performs better at greater coil reduction
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factors is because the problem has been set up to allow the SVD to tailor the com-

pression matrices for the individual slices instead of the combined, slice-aliased data.

In addition to optimizing the compression for slices, tailoring the compression for coil

geometry could also be done to potentially further increase the performance. One pos-

sible way is to compress groups of coils which are closest together in physical location

so that each virtual coil is a representation of a different physical area. For example,

using the 32-channel sensitivities shown in Figure 4.15, compression matrices for each

set of 4 consecutive coils can be computed since each of these sets is closely related in

profile. This would result in 8 virtual coils sensitivities each representing a different

area in the volume. It remains as future work as to whether this approach would

outperform an SVD on all 32 coils at once.

GRABSMACC clearly benefited from the use of non-SMS calibration data for

compression matrix computation. With the way SENSE reconstruction is formulated

in Equation (4.1), it is impossible to use distinct compression matrices for each of the

separated slices in SENSE. However, a slight alteration to the k-space trajectory can

potentially allow this to happen.

At the end of Section 4.3, an alternative reconstruction method was proposed that

uses a one-dimensional inverse Fourier transform in the through-plane direction to

separate slices. This one-dimensional transform was performed after either in-plane

SENSE or in-plane GRAPPA. However, if it was possible to perform the inverse

Fourier transform before SENSE, distinct compression matrices computed from non-

SMS data could be used.

For example, if the one-dimensional inverse transform is performed first, the SMS

k-space data would be separated into a hybrid (kx, ky, z) space. Each kx-ky platter in

this hybrid space is for a distinct z-location matching the z-locations of the non-SMS

calibration data used to compute coil sensitivities. Therefore, each kx-ky platter in

this hybrid (kx, ky, z) space can be compressed using a distinct compression matrix
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computed from the corresponding non-SMS slice. Once the data is compressed, in-

plane SENSE is performed on the (kx, ky, z) space to produce the final images.

The reason why the inverse Fourier transform could not be performed first with the

blipped concentric ring trajectory in Figure 4.4 created by the waveforms depicted in

Figure 4.5 is because each kx-ky platter has a different set of undersampled rings. This

happens because the radius of the rings decreases with each z-gradient blip. Therefore,

the solution is to create a similar blipped concentric ring trajectory that has the same

set of undersampled rings in each kx-ky platter. This is done for a 3 simultaneous slice

acquisition by tracing out 3 rings with the same radius, transitioning past the two

consecutively smaller ring positions, and tracing out another 3 rings with the same

radius, and so on. This creates a factor of 3 undersampling in each kx-ky platter with

the same set of ring locations for each platter.

One drawback of this approach, however, is that the timing of the concentric ring

acquisitions for all kx-ky platters will not match up exactly with the timing of the

non-SMS scan used to compute field maps or sensitivity maps. For a 3 simultaneous

slice acquisition, one of the platters will match up, but the other 2 will not. However,

the timing differences may be minimal enough so that reconstruction quality is not

affected.

The alternative to this modified-trajectory approach is of course to reformulate

Equation (4.1) into something that allows the use of distinct compression matrices

computed from non-SMS data. However, one needs to be careful not to create a

matrix equation with dimensions so large that the computational speed benefit of

coil compression is negated by the larger problem.
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6.5.4 Further Comparisons with Conventional Non-SMS
fMRI

Overall, SMS imaging is a promising method to accelerate fMRI since a minimum

bound on the TE is required for adequate contrast in fMRI. However, as with any

method, the acceleration comes at a price; slices can easily be corrupted in the slice

separation process, transferring or corrupting areas of activation. There is a clear

temporal resolution benefit in SMS fMRI, but this advantage needs to be carefully

considered against slice leakage and SNR issues in fMRI. Before widespread adoption

occurs, detailed comparisons with conventional, non-accelerated fMRI need to be

performed to determine which applications benefit from SMS imaging and which

do not. If, for example, it is desired to measure lag times of the hemodynamic

response function in different areas of the brain, SMS is helpful since conventional

non-accelerated fMRI may not be able to provide a high enough temporal resolution

for a given spatial coverage. On the other hand, if the objective is just to map out

activation using simple block paradigm task scans on healthy volunteers, there may

not be much benefit when using SMS imaging over conventional imaging. As with

any advanced tool, it is essential that SMS imaging is used in the proper application

in order to realize its benefits.
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