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ABSTRACT

Statistical Analysis of Complex Data:
Bayesian Model Selection and Functional Data Depth

by

Naveen Naidu Narisetty

Chairs: Xuming He and Vijayan N. Nair

Big data of the modern era exhibit different types of complex structures. This disser-

tation addresses two important problems that arise in this context. Consider high-

dimensional data where the number of variables is much larger than the sample size.

For model selection in a Bayesian framework, a novel approach using sample size de-

pendent spike and slab priors is proposed. It is shown that the corresponding posterior

has strong variable selection consistency even when the number of covariates grows

nearly exponentially with the sample size, and that the posterior induces shrinkage

similar to the shrinkage due to the L0 penalty. A new computational algorithm for

posterior computation is proposed, which is much more scalable in memory and in

computational efficiency than existing Markov chain Monte Carlo algorithms. For

the analysis of functional data, a new notion of data depth is devised which possesses

desirable properties, and is especially well suited for obtaining central regions. In

particular, the central regions achieve desired simultaneous coverage probability and

are useful in a wide range of applications including boxplots and outlier detection for

functional data, and simultaneous confidence bands in regression problems.
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CHAPTER I

Introduction

The rapid developments in collecting, storing, transmitting, and managing mas-

sive amounts of data have led to unique opportunities and challenges in Statistics and

the emerging field of Data Science. This thesis deals with statistical models, meth-

ods, theory, and algorithms for analyzing complex data structures including high

dimensional data and functional data.

Variable selection is a fundamentally important problem in high-dimensional set-

tings as the number of variables being considered could be even much larger than

the sample size, which, for example, is a common feature of modern gene expression

data sets. In Chapter II, a novel variable selection approach called “Bayesian Vari-

able Selection with Shrinking and Diffusing priors” (BASAD) is investigated, which

uses spike and slab priors with a distinct feature: the prior parameters depend on

the sample size and the number of variables. It is showed that the shrinkage due

to BASAD is similar to the shrinkage due to L0 penalty, and that BASAD possesses

strong variable selection consistency even when the number of covariates grows nearly

exponentially with sample size. This filled a theoretical gap by providing the first for-

mal justification for using spike and slab priors for high dimensional Bayesian variable

selection.

Efficient computation is a crucial component of any statistical procedure in the
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Big Data era. In Chapter III, a fast and scalable algorithm called Skinny Gibbs is de-

veloped, which only requires linear order computations in the number of variables. In

contrast with the standard Gibbs sampling algorithm, Skinny Gibbs does not require

large matrix operations and is much more scalable to high-dimensional problems both

in memory and in computational efficiency while retaining all the strong theoretical

properties previously shown for BASAD.

Chapter IV concerns with analyzing functional data using the data depth con-

cept. A given notion of data depth provides an ordering of observations in terms of

their closeness to the center of the data cloud. Different notions of data depth have

been creatively used to obtain robust nonparametric statistical methods for analyz-

ing multivariate data. The situation for functional data is more complex due to their

infinite dimensionality. A new depth measure for functional data called Extremal

Depth (ED) is proposed which extends the notions such as ranks and order statistics

to functional data, and can be used for summarizing and analyzing functional data.

ED is based on an extreme tail-ordering. ED possesses many desired properties, is

particularly well-suited for obtaining central regions of functional data. The perfor-

mance and usefulness of ED is demonstrated on two applications: (i) to construct

functional boxplots and to detect outliers, and (ii) to obtain simultaneous confidence

bands in regression problems.
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CHAPTER II

Bayesian Variable Selection with Shrinking and

Diffusing Priors

2.1 Introduction

We consider the linear regression setup with high dimensional covariates where

the number of covariates p can be large relative to the sample size n. When p > n,

the estimation problem is ill-posed without performing variable selection. A nat-

ural assumption to limit the number of parameters in high dimensional settings is

that the regression function (i.e., the conditional mean) is sparse in the sense that

only a small number of covariates (called active covariates) have non-zero coefficients.

We aim to develop a new Bayesian methodology for selecting the active covariates

that is asymptotically consistent and computationally convenient. A large number of

methods have been proposed for variable selection in the literature from both frequen-

tist and Bayesian viewpoints. Many frequentist methods based on penalization have

been proposed following the well-known least absolute shrinkage and selection opera-

tor (LASSO, Tibshirani (1996a)). We mention the smoothly clipped absolute devia-

tion (SCAD, Fan and Li (2001)), adaptive LASSO (Zou (2006)), octagonal shrinkage

and clustering algorithm for regression (OSCAR, Bondell and Reich (2008)) and the

Dantzig selector (Candes and Tao (2007); James et al. (2009)) just to name a few.
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Fan and Lv (2010) provided a selective overview of high dimensional variable selection

methods. Various authors reported inconsistency of LASSO and its poor performance

for variable selection under high dimensional settings; see Zou (2006) and Johnson

and Rossell (2012). On the other hand, several penalization based methods were

shown to have the oracle property (Fan and Li (2001)) under some restrictions on

p. For example, Fan and Peng (2004) and Huang and Xie (2007) showed the oracle

property for some nonconcave penalized likelihood methods when p = O(n1/3) and

p = o(n), respectively. Shen et al. (2012) showed that L0 penalized likelihood method

has the oracle property under exponentially large p = eo(n).

Many Bayesian methods have also been proposed for variable selection including

the stochastic search variable selection (George and McCulloch (1993)), empirical

Bayes variable selection (George and Foster (2000)), spike and slab selection method

(Ishwaran and Rao (2005)), penalized credible regions (Bondell and Reich (2012)),

non-local prior method (Johnson and Rossell (2012)), among others. We shall describe

the typical framework used for Bayesian variable selection methods before discussing

their theoretical properties.

We use the standard notation Yn×1 = Xn×pβp×1 + εn×1 to represent the linear

regression model. Bayesian variable selection methods usually introduce latent binary

variables for each of the covariates to be denoted by Z = (Z1, · · · , Zp). The idea is

that each Zi would indicate whether the ith covariate is active in the model or not.

For this reason, the prior distribution on the regression coefficient βi under Zi = 0 is

usually a point mass at zero, but a diffused (non-informative) prior under Zi = 1. The

concentrated prior of βi under Zi = 0 is referred to as the spike prior, and the diffused

prior under Zi = 1 is called the slab prior. Further, a prior distribution on the binary

random vector Z is assumed, which can be interpreted as a prior distribution on the

space of models. A Bayesian variable selection method then selects the model with

the highest posterior probability. Various selection procedures with this structure

4



have been proposed; they essentially differ in the form of the spike and slab priors,

or in the form of the prior on the model space.

Mitchell and Beauchamp (1988) considered a uniform distribution for the slab

prior. George and McCulloch (1993) used the Gaussian distribution with a zero

mean and a small but fixed variance as the spike prior, and another Gaussian dis-

tribution with a large variance as the slab prior. This allowed the use of a Gibbs

sampler to explore the posterior distribution of Z. However, as we argue in Sec-

tion 2.3, this prior specification does not guarantee model selection consistency at

any fixed prior. Ishwaran and Rao (2005) also used Gaussian spike and slab priors,

but with continuous bimodal priors for the variance of β to alleviate the difficulty

of choosing specific prior parameters. More recently, Ishwaran and Rao (2011) es-

tablished the oracle property for the posterior mean as n converges to infinity (but

p is fixed) under certain conditions on the prior variances. They noted that in the

orthogonal design case, a uniform complexity prior leads to correct complexity recov-

ery (i.e., the expected size of the posterior model size converges to the true model

size) under weaker conditions on the prior variances. In another development, Yang

and He (2012) used shrinking priors to explore commonality across quantiles in the

context of Bayesian quantile regression, but the use of such priors for achieving model

selection consistency has not been explored. In this paper, we continue to work with

the framework where both the spike and slab priors are Gaussian, but our prior pa-

rameters depend explicitly on the sample size through which appropriate shrinkage is

achieved. We shall establish model selection consistency properties for general design

matrices while allowing p to grow with n at a nearly exponential rate. In particular,

the strong selection consistency property we establish is a stronger result for model

selection than complexity recovery.

One of the most commonly used priors on the model space is the independent

prior given by P [Z = z] =
∏p

i=1 w
zi
i (1 − wi)zi , where the marginal probabilities wi

5



are usually taken to be the same constant. However, when p is diverging, this implies

that the prior probability on models with sizes of order less than p goes to zero, which

is against model sparsity. We consider marginal probabilities wi in the order of p−1,

which will impose vanishing prior probability on models of diverging size. Yuan and

Lin (2005) used a prior that depends on the Gram matrix to penalize models with

unnecessary covariates at the prior level. The vanishing prior probability in our case

achieves similar prior penalization.

A common notion of consistency for Bayesian variable selection is defined in terms

of pairwise Bayes factors, i.e., the Bayes factor of any under- or over-fitted model with

respect to the true model goes to zero. Moreno et al. (2010) proved that intrinsic pri-

ors give pairwise consistency when p = O(n), and similar consistency of the Bayesian

information criterion (BIC, Schwarz (1978)) when p = O(nα), α < 1. Another notion

of consistency for both frequentist and Bayesian methods is that the selected model

equals the true model with probability converging to one. We refer to this as selec-

tion consistency. Bondell and Reich (2012) proposed a method based on penalized

credible regions that is shown to be selection consistent when log p = O(nc), c < 1.

Johnson and Rossell (2012) proposed a stronger consistency for Bayesian methods

under which the posterior probability of the true model converges to one, which we

shall refer to as strong selection consistency. The authors used non local distributions

(distributions with small probability mass close to zero) as slab priors, and proved

strong selection consistency when p < n. However, apart from the limitation p < n,

their method involves approximations of the posterior distributions and an applica-

tion of MCMC methods, which are computationally intensive if at all feasible for

modest size problems.

We make the following contributions to variable selection in this article. We

introduce shrinking and diffusing priors as spike and slab priors, and establish strong

selection consistency of the approach for p = eo(n). This approach is computationally

6



advantageous because a standard Gibbs sampler can be used to sample from the

posterior. In addition, we find that the resultant selection on the model space is

closely related to the L0 penalized likelihood function. The merits of the L0 penalty

for variable selection have been discussed by many authors including Schwarz (1978),

Liu and Wu (2007), Dicker et al. (2013), Kim et al. (2012) and Shen et al. (2012).

We now outline the remaining sections of the paper as follows. The first part of

Section 2.2 describes the model, conditions on the prior parameters and motivation

for these conditions. The later part describes our proposed methodology for variable

selection based on the proposed model. Section 2.3 motivates the use of sample size

dependent prior parameters by considering orthogonal design matrices, and provides

insight into the variable selection mechanism using those priors. Section 2.4 presents

our main results on the convergence of the posterior distribution of the latent vector

Z, and the strong selection consistency of our model selection methodology. Sec-

tion 2.5 provides an asymptotic connection between the proposed method and the L0

penalization. Section 2.6 provides a discussion on the conditions assumed for proving

the results of Section 2.4. Some computational aspects of the proposed method are

noted in Section 3.2.2. We present simulation studies in Section 2.8 to illustrate how

the proposed method compares with some existing methods. Application to a gene

expression data set is given in Section 2.9, followed by a conclusion in Section 2.10.

Section 2.11 provides proofs of some results not given in the earlier sections.

2.2 The model

From now on, we use pn to denote the number of covariates to indicate that it

grows with n. Consider the n × 1 response vector Y , and the n × pn design matrix

X corresponding to the pn covariates of interest. Let β be the regression vector, i.e.,

the conditional mean of Y given X is given by Xβ. We assume that β is sparse in

the sense that only a few components of β are non-zero; this sparsity assumption can
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be relaxed as in Condition 2.4.3. Our goal is to identify the non-zero coefficients to

learn about the active covariates. We describe our working model as follows

Y | (X, β, σ2) ∼ N(Xβ, σ2I),

βi |
(
σ2, Zi = 0

)
∼ N(0, σ2τ 2

0,n),

βi |
(
σ2, Zi = 1

)
∼ N(0, σ2τ 2

1,n), (2.1)

P (Zi = 1) = 1− P (Zi = 0) = qn,

σ2 ∼ IG(α1, α2),

where i runs from 1 to pn, qn, τ0,n, τ1,n are constants that depend on n, and IG(α1, α2)

is the Inverse Gamma distribution with shape parameter α1 and scale parameter α2.

The intuition behind this set-up is that the covariates with zero or very small

coefficients will be identified with zero Z values, and the active covariates will be

classified as Z = 1. We use the posterior probabilities of the latent variables Z to

identify the active covariates.

Notation: We now introduce the following notation to be used throughout the paper.

Rates: For sequences an and bn, an ∼ bn means an
bn
→ c for some constant c > 0,

an � bn (or bn � an) means bn = O(an), and an � bn (or bn ≺ an) means bn = o(an).

Convergence: Convergence in probability is denoted by
P−→, and equivalence in

distribution is denoted by
d
= .

Models: We use k to index an arbitrary model which is viewed as a pn × 1 binary

vector. The ith entry ki of k indicates whether the ith covariate is active (1) or not

(0). We use Xk as the design matrix corresponding to the model k, and βk to denote

the corresponding regression coefficients. In addition, t is used to represent the true

model.
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Model operations: We use |k| to represent the size of the model k. For two models

k and j, the operations k ∨ j and k ∧ j denote entry-wise maximum and minimum,

respectively. Similarly, kc = 1−k is entrywise operation, where 1 is the vector of 1’s.

We also use the notation k ⊃ j (or k ≥ j) to denote that the model k includes all the

covariates in model j, and k 6⊃ j otherwise.

Eigenvalues: We use φmin(A) and φmax(A) to denote the minimum and maximum

eigenvalues, respectively, and φ#
min(A) to denote the minimum nonzero eigenvalue

(MNEV) of the matrix A. Moreover, we use λnM to be the maximum eigenvalue of

the Gram matrix X ′X/n, and for ν > 0, we define

mn(ν) = pn ∧ n
(2+ν) log pn

, and λnm(ν) := inf |k|≤mn(ν) φ
#
min

(
X′kXk
n

)
.

Matrix inequalities: For square matrices A and B of the same order, A ≥ B or

(A−B) ≥ 0 means that (A−B) is positive semidefinite.

Residual sum of squares: We define R̃k = Y ′(I − X(Dk + X ′X)−1X ′)Y , where

Dk = Diag (kτ−2
1n + (1− k)τ−2

0n ). R̃k approximates the usual residual sum of squares

R∗k = Y ′ (I − Pk)Y , where Pk is the projection matrix corresponding to the model k.

Generic constants: We use c′ and w′ to denote generic positive constants that can

take different values each time they appear.

2.2.1 Prior parameters

We consider τ 2
0,n → 0 and τ 2

1,n →∞ as n goes to∞, where the rates of convergence

depend on n and pn. To be specific, we assume that for some ν > 0, and δ > 0,

nτ 2
0nλ

n
M = o(1), and nτ 2

1nλ
n
m(ν) ∼

(
n ∨ p2+2δ

n

)
.

As will be seen later, these rates ensure desired model selection consistency for any

δ > 0, where larger values of δ will correspond to higher penalization and vice versa.
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Note that the variance τ 2
0n depends on the sample size n and the scale of the

Gram matrix. Since the prior distribution of a coefficient under Z = 0 is mostly

concentrated in (
− 3σ√

nλnM
, 3σ√

nλnM

)
,

one can view this as the shrinking neighborhood around 0 that is being treated as

the region of inactive coefficients. The variance τ 2
1n increases to ∞, where the rate

depends on pn. However, when pn ≺
√
n, τ 2

1n can be of constant order (if λnm(ν) is

bounded away from zero).

Now consider the prior probability that a coefficient is nonzero (denoted by qn).

The following calculation gives insight into the choice of qn. Let Kn be a sequence

going to ∞, then

P

(
pn∑
i=1

Zi > Kn

)
≈ 1− Φ

(
Kn−pnqn√
pnqn(1−qn)

)
−→ 0,

if pnqn is bounded. Therefore, we typically choose qn such that qn ∼ p−1
n . This can

be viewed as apriori penalization of the models with large size in the sense that the

prior probability on models with diverging number of covariates goes to zero. To

this respect, if K is an initial upper bound for the size of the model t, by choosing

qn = c/pn such that Φ ((K − c)/
√
c) ≈ 1 − α, our prior probability on the models

with sizes greater than K will be α.

We would like to note that the hierarchical model considered by George and

McCulloch (1993) is similar to our model (2.1), but their prior parameters are fixed

and therefore do not satisfy our conditions. In Section 2.3, we give an example

illustrating model selection inconsistency under fixed prior parameters.
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2.2.2 Methodology for variable selection

We use the posterior distribution of the latent variables Zi to select the active

covariates. Note that the sample space of Z, denoted by M , has 2pn points, each of

which corresponds to a model. For this reason, we call M the model space. To find

the model with the highest posterior probability is computationally challenging for

large pn. In this paper, we use a simpler alternative, that is, we use the pn marginal

posterior probabilities P (Zi = 1|Y,X), and select the covariates with the correspond-

ing probability more than a fixed threshold p ∈ (0, 1). A threshold probability of 0.5

is a natural choice for p. This corresponds to what Barbieri and Berger (2004) call

the median probability model. In the orthogonal design case, Barbieri and Berger

(2004) showed that the median probability model is an optimal predictive model. The

median probability model may not be the same as the maximum a posteriori (MAP)

model in general, but the two models are the same with probability converging to one

under strong selection consistency.

On the other hand, Dey et al. (2008) argued that the median probability model

tends to underfit in finite samples. We also consider an alternative by first ranking

the variables based on the marginal posterior probabilities and then using BIC to

choose among different model sizes. This option avoids the need to specify a thresh-

old. In either case, it is computationally advantageous to use the marginal posterior

probabilities, because we need fewer Gibbs iterations to estimate only pn of them.

The proposed methods based on marginal posteriors achieve model selection consis-

tency because the results in Section 2.4 assure that (i) the posterior probability of

the true model converges to 1, and (ii) the marginal posterior based variable selection

selects the true model with probability going to 1. We now motivate these results and

the necessity of sample size dependent priors in a simple but illustrative case with

orthogonal designs.
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2.3 Orthogonal design

In this section, we consider the case where the number of covariates pn < n, and

assume that the design matrix X is orthogonal, i.e., X ′X = nI. We also assume σ2

to be known. Though this may not be a realistic set-up, this simple case provides

motivation for the necessity of sample size dependent prior parameters as well as an

insight into the mechanism of model selection using these priors. At this moment,

we do not impose any assumptions on the prior parameters. All the probabilities

used in the rest of the paper are conditional on X. Under this simple set-up,

the joint posterior of β and Z can be written as:

P (β, Z | σ2, Y )

∝ exp
{
− 1

2σ2‖Y −Xβ‖2
2

}∏pn
i=1 ((1− qn)π0(βi))

1−Zi (qnπ1(βi))
Zi

∝ exp
{
− 1

2σ2 (β′X ′Xβ − β′X ′Y )
}∏pn

i=1 ((1− qn)π0(βi))
1−Zi (qnπ1(βi))

Zi

∝ exp

{
− n

2σ2

p∑
i=1

(βi − β̂i)2

}∏pn
i=1 ((1− qn)π0(βi))

1−Zi (qnπ1(βi))
Zi ,

where for k = 0, 1, πk(x) = φ(x, 0, σ2τ 2
k,n) is the probability density function (pdf) of

the normal distribution with mean zero and variance σ2τ 2
k,n evaluated at x, and β̂i is

the OLS estimator of βi, i.e., β̂i = X ′iY/n.

The product form of the joint posterior of (Zi, βi) implies that (Zi, βi) and {(Zj, βj), j 6=

i} are independent given data. Hence the marginal posterior of Zi is given by

P (Zi | σ2, Y ) ∝
∫

exp
{
− n

2σ2
(b− β̂i)2

}
((1− qn)π0(b))1−Zi (qnπ1(b))Zi db.

Therefore,

P (Zi = 0 | σ2, Y ) =
(1− qn)Eβ̂i(π0(B))

(1− qn)Eβ̂i(π0(B)) + qnEβ̂i(π1(B))
, (2.2)

where Eβ̂i is the expectation under B following the normal distribution with mean β̂i

12



and variance σ2/n. These expectations can be calculated explicitly, that is, for k = 0

and 1,

Eβ̂i (πk(B)) =

√
n

2πστk,n

∫
exp

{
− n

2σ2
(b− β̂i)2 − b2

2τ 2
k,n

}
db

=
1√

2πak,n
exp

{
− β̂2

i

2a2
k,n

}
,

where ak,n =
√
σ2/n+ τ 2

k,n.

This simple calculation gives much insight into the role of our priors and the

influence of the prior parameters on variable selection, which we explain in some detail

below. In the following subsections, we assume that the ith covariate is identified as

active if and only if P (Zi = 1 | σ2, Y ) > 0.5 for simplicity, and similar arguments can

be produced for threshold values other than 0.5.

2.3.1 Fixed parameters

Let us first consider the case of fixed parameters τ 2
0n = τ 2

0 < τ 2
1n = τ 2

1 and

qn = q = 0.5. We then have for k = 0, 1,

Eβ̂i (πk(B))
P−→ 1

τk
exp

{
− β2

i

2τ2k

}
as n→∞ for βi 6= 0. (2.3)

Now for βi = τ0 6= 0, we have exp {−β2
i /2τ

2
0 } /τ0 > exp {−β2

i /2τ
2
1 } /τ1 for any τ1 6= τ0.

Therefore, the limiting value of P (Zi = 1 | σ2, Y ) will be less than 0.5 (with high

probability) as n → ∞. This implies that even as n → ∞, we would not be able to

identify the active coefficient in this case.

2.3.2 Shrinking τ 2
0,n, fixed τ 2

1,n & qn

Now consider the prior parameters such that τ 2
1,n & qn are fixed, but τ 2

0,n goes to 0

with n. If βi = 0,
√
nβ̂i converges in distribution to the standard normal distribution,
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and we have, for k = 0, 1,

exp
{
− β̂2

i

2(σ2/n)+2τ2k,n

}
= OP (1).

In this case, (2.3) will imply that Eβ̂i(π1(B)) = Op(1), while Eβ̂i(π0(B))
P−→ ∞.

Therefore, from (2.2), we have P (Zi = 0 | σ2, Y )
P−→ 1. For βi 6= 0, using β̂2

i
P−→ β2

i

and the fact that xe−rx
2 → 0 as x→∞ (for fixed r > 0), we obtain Eβ̂i(π0(B))→ 0.

As Eβ̂i(π1(B)) ∼ c′, for some c′ > 0, we have P (Zi = 1 | σ2, Y )
P−→ 1.

To summarize, we have argued that P (Zi = 0 | σ2, Y )
P−→ I(βi = 0), where

I(.) is the indicator function. That is, for orthogonal design matrices, the marginal

posterior probability of including an active covariate or excluding an inactive covariate

converges to one under shrinking prior parameter τ 2
0,n, with fixed parameters τ 2

1,n and

qn. However, it should be noted that this statement is restricted to the convergence

of marginals of Z, and does not assure consistency of overall model selection. To

achieve this, we will need to allow τ 2
1,n, qn to depend on the sample size too.

2.3.3 Shrinking and diffusing priors

Note that the ith covariate is identified as active if and only if

P (Zi = 1 | σ2, Y ) > 0.5

⇔ qnEβ̂i(π1(B)) > (1− qn)Eβ̂i(π0(B))

⇔ β̂2
i

(
a−2

0,n − a−2
1,n

)
> 2 (log(1− qn)a1,n − log qna0,n)

⇔ β̂2
i > 2 (log(1− qn)a1,n − log qna0,n) /(a−2

0,n − a−2
1,n) := ϕn.

In particular, when τ 2
0,n = o(1/n), but the other parameters τ 2

1,n and qn are fixed,

we have ϕn ∼ σ2 log n/n. Without loss of generality, assume that the first |t| coeffi-
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cients of β are non-zero. For i > |t|, βi = 0 which implies that nβ̂2
i

d
= χ2

1. Therefore,

P [β̂2
i >

σ2 logn
n

] = P [χ2
1 > log n]

≥ ( 1√
logn
− 1√

logn
3 )e−

logn
2

≥ n−1/2−ε,

for ε > 0 and sufficiently large n. Therefore, we have

P [Z = t|σ2, Y ] ≤ P
[
β̂2
i ≤

σ2 logn
n

,∀i > |t|
]

≤ (1− n−1/2−ε)pn−|t|

→ 0, if pn > n1/2+2ε.

The above argument shows that having τ 2
1,n and qn fixed leads to inconsistency of

selection if the number of covariates is much greater than
√
n. In this case, the

threshold ϕn should be larger to bound the magnitude of all the inactive covariates

simultaneously. By using the diffusing prior parameters Section 2.2.1, the threshold

will be (2 + δ)σ2 log pn/n in place of σ2 log n/n. Model selection consistency with this

threshold can be proved using similar arguments in the orthogonal design case. We

will defer the rigorous arguments to the next section.

2.4 Main results

In this section we consider our model given by (2.1) and general design matrices.

Because the model selection consistency holds easily with pn = O(1), we assume

throughout the paper that pn →∞ as n→∞.

2.4.1 Conditions

We first state the main conditions we use.
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Condition 2.4.1 (On dimension pn). pn = endn for some dn → 0 as n → ∞, i.e.,

log pn = o(n).

Condition 2.4.2 (Prior parameters). nτ 2
0n = o(1), nτ 2

1n ∼
(
n ∨ p2+3δ

n

)
, for some

δ > 0, and qn ∼ p−1
n .

Condition 2.4.3 (On true model). Y |X ∼ N(Xtβt + Xtcβtc , σ
2I) where the size of

the true model |t| is fixed. The coefficients corresponding to the inactive covariates

can be nonzero but satisfy b0 := ‖Xtcβtc‖2 = O(1).

For any fixed K, define

∆n(K) := inf
{k:|k|<K|t|,k 6⊃t}

‖(I − Pk)Xtβt‖2
2,

where Pk is the projection matrix onto the column space of Xk.

Condition 2.4.4 (Identifiability). There is K > 1 + 8/δ such that ∆n(K) > γn :=

5σ2|t|(1 + δ) log (
√
n ∨ pn) .

Condition 2.4.5 (Regularity of the Design). For some ν < δ, κ < (K − 1)δ/2,

λnM ≺ ((nτ 2
0n)−1 ∧ nτ 2

1n) ; and λnm(ν) �
(
n∨p2+2δ

n

nτ21n
∨ p−κn

)
.

The moderateness of these conditions will be examined in some detail in Sec-

tion 2.6.

2.4.2 Results for fixed σ2

We suppress ν and K from the notation of λnm(ν), mn(ν) and ∆n(K) for stating

the results for convenience. In addition, we introduce the following notation. The

Bayes factor of model k with respect to the true model t is defined as

BF (k, t) := P (Z = k | Y, σ2)/P (Z = t | Y, σ2).
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The following lemma gives an upper bound on the Bayes factors.

Lemma 2.4.1. Under Conditions 3.3.4 & 3.3.2, for any model k 6= t we have

BF (k, t) = Qk
Qt
s
|k|−|t|
n exp

{
− 1

2σ2 (R̃k − R̃t)
}

≤ w′ (nτ 2
1nλ

n
m(1− φn))

− 1
2

(r∗k−rt) (λnm)−
1
2
|t∧kc| s

|k|−|t|
n

× exp
{
− 1

2σ2 (R̃k − R̃t)
}
,

where Qk = |I + XD−1
k X ′|−1/2, sn = qn/(1 − qn) ∼ p−1

n , w′ > 0 is a constant,

rk = rank(Xk), r∗k = rk ∧mn, φn = o(1), R̃k = Y ′(I − X(Dk + X ′X)−1X ′)Y , and

Dk = Diag (kτ−2
1n + (1− k)τ−2

0n ).

The following arguments give some heuristics for the convergence of pair-wise

Bayes factors. Note that R̃k is the residual sum of squares from a shrinkage estimator

of β, and the term LRn := exp{−(R̃k − R̃t)/2σ
2} corresponds to the usual likelihood

ratio of the two models k and t. Consider a model k that does not include one or more

active covariates, then (R̃k − R̃t) goes to ∞ at the same rate as n, because it is (ap-

proximately) the difference in the residual sums of squares of model k and model t. We

then have the Bayes factor converging to zero since LRn ∼ e−cn for some c > 0, and

due to Conditions 3.3.1–3.3.2, Pn := (nτ 2
1nλ

n
m(1− φn))

(rt−r∗k)/2
(λnm)−|t∧k

c|/2 s
|k|−|t|
n (1−

φn)−|t|/2 = o(ecn). On the other hand, if the model k includes all the active covariates

and one or more inactive covariates, we have |k| > |t|, but (R̃k − R̃t) is probabilisti-

cally bounded. The Bayes factor in this case also converges to zero because Pn goes to

zero. Note that when rk > rt, larger values of τ 2
1n will imply smaller Pn. That is, the

Bayes factors for large sized models go to zero faster for larger values of τ 2
1n. A similar

observation is made by Ishwaran and Rao (2011). To state our main result, we first

consider the posterior distributions of the models Z, assuming the variance parameter

σ2 to be known. We consider the case with the prior on σ2 in Theorem 2.4.2.

Theorem 2.4.1. Assume Conditions 3.3.1- 3.3.2. Under Model (2.1), we have
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P (Z = t | Y, σ2)
P−→ 1 as n → ∞, i.e., the posterior probability of the true model

goes to 1 as the sample size increases to ∞.

Remark 1. The statement of Theorem 2.4.1 is equivalent to

1−P (Z=t|Y, σ2)
P (Z=t|Y, σ2)

=
∑
k 6=t

BF (k, t)
P−→ 0. (2.4)

Remark 2. It is worth noting that for Theorem 2.4.1 to hold, we do not actually need

the true σ2 to be known. Even for a misspecified σ̃2 6= σ2, P (Z = t | Y, σ̃2)
P−→ 1

under the conditions ∆n > σ̃2γn/σ
2 and 2(1 + δ)σ̃2 > (2 + δ)σ2. The same proof for

Theorem 2.4.1 works.

To see why (2.4) holds, we provide specific rates of convergence of individual

Bayes factors summed over subsets of the model space. We divide the set of models

(excluding the model t) into the following subsets

1. Unrealistically large models: M1 = {k : rk > mn}, all the models with dimen-

sion (i.e., the rank) greater than mn.

2. Over-fitted models: M2 = {k : k ⊃ t, rk ≤ mn}, i.e., the models of dimension

smaller than mn which include all the active covariates plus one or more inactive

covariates.

3. Large models: M3 = {k : k 6⊃ t,K|t| < rk ≤ mn}, the models which do not

include one or more active covariates, and dimension greater than K|t| but

smaller than mn.

4. Under-fitted models: M4 = {k : k 6⊃ t, rk ≤ K|t|}, the models of moderate

dimension which miss an active covariate.

The proof of Theorem 4.1 shows the following results.

Lemma 2.4.2 (Rates of convergence). For some constants c′, w′ > 0 (which may

depend on δ), we have
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1. The sum of Bayes factors
∑
k∈M1

BF (k, t) � exp{−w′n}, with probability at least

1− 2 exp{−c′n}.

2. The sum
∑
k∈M2

BF (k, t) � vn :=
(
p
−δ/2
n ∧ p

1+δ/2
n√
n

)
, with probability greater than

1− exp{−c′ log pn}.

3. The sum
∑
k∈M3

BF (k, t) � ν
(K−1)|t|/2+1
n , with probability greater than 1−exp{−c′K|t| log pn}.

4. For some w′′ < 1, we have
∑
k∈M4

BF (k, t) � exp{−w′(∆n − w′′γn)}, with proba-

bility greater than 1− exp{−c′∆n}.

2.4.3 Results with prior on σ2

We now consider the case with the Inverse Gamma prior on the variance parameter

σ2. Define the constant w as w := δ/8(1 + δ)2 in the rest of the section.

Theorem 2.4.2. Under the same conditions as in Theorem 2.4.1, if we only consider

models of dimension at most |t|+w n/ log pn, we have P (Z = t | Y )
P−→ 1 as n→∞.

Remark 3. Note that the dimension of the models that need to be excluded for The-

orem 2.4.2 to hold is in the order of n/ log pn. These are unrealistically large models

that are uninteresting to us. From now on, we implicitly assume this restriction when

a prior distribution is used for σ2.

The following corollary ensures that the variable selection procedure based on the

marginal posterior probabilities finds the right model with probability tending to 1.

It is a direct consequence of Theorems 2.4.1 and 2.4.2, but is particularly useful for

computations because it ensures that the marginal posterior probabilities can be used

for selecting the active covariates.

Corollary 2.4.1. Under the conditions of Theorem 2.4.2, we have for any 0 < p < 1,

P
[
P (Zi = ti | Y ) > p for all i = 1, · · · , pn

]
→ 1 as n→∞ .
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Proof. Let Ei be the event that the marginal posterior probability of ith covariate

P (Zi = ti | Y ) > p. We shall show that P [∪pni=1E
c
i ] → 0 as n → ∞. For each

i = 1, · · · , pn, we have

P (Zi 6= ti | Y ) =
∑

k:ki 6=ti
P (Z = k | Y )

≤
∑
k 6=t

P (Z = k | Y )

= 1− P (Z = t|Y ).

Then, P [∪pni=1E
c
i ] = P

[
P (Zi = ti | Y ) ≤ p for some i = 1, · · · , pn

]
≤ P

[
P (Z =

t|Y ) ≤ p
]
→ 0, due to Theorem 2.4.2.

2.5 Connection with penalization methods

Due to Lemma 2.4.1, the maximum aposteriori (MAP) estimate of the model

using our Bayesian set-up is equivalent to minimizing the objective function

B(k) := R̃k + 2σ2 (−(|k| − |t|) log sn − log(Qk/Qt))

= R̃k + (|k| − |t|)ψn,k,
(2.5)

where

ψn,k = 2σ2
(
− log sn − log(Qk/Qt)

(|k|−|t|)

)
.

Lemma 2.4.2 implies that with exponentially small probability, the sum of Bayes

factors of the models with dimension greater than mn goes to zero (exponentially)

for the fixed σ case. We therefore focus on all the models with dimension less than

mn in this section. In addition, assume that the maximum and minimum non-zero

eigenvalues of models of size 2|t| are bounded away from∞ and 0, respectively. Then,
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due to Condition 3.3.2 and the proof of Lemma 2.11.1 (iii), we have

c log(n ∨ pn) ≤ − log(Qk/Qt)
(rk−rt)

≤ C log(n ∨ pn), (2.6)

for some 0 < c ≤ C <∞.

In particular, if the models with dimension less than mn are of full rank, i.e.,

|k| = rk, then due to (2.6), we have

2σ2c′ log(n ∨ pn) ≤ ψn,k ≤ 2σ2C ′ log(n ∨ pn), (2.7)

where 0 < c′ ≤ C ′ <∞. As nτ 2
0nλ

n
M → 0, and nτ 2

1nλ
n
m →∞ ,

R̃k ∼ Y ′(I −X(1/τ 2
1n +X ′X)−1X ′)Y = ‖Y − Ŷk‖2 +O(1).

Therefore, the MAP estimate can be (asymptotically) described as the model corre-

sponding to minimizing the following objective function.

m(β) := ‖Y −Xβ‖2
2 + ψn,k (‖β‖0 − |t|). (2.8)

Due to the bounds (2.7) on ψn,k, any inactive covariate will be penalized in the order

of log(n ∨ pn) irrespective of the size of the coeffecient. This is however not the

case with the L1 penalty or SCAD penalty, which are directly proportional to the

magnitude of the coeffecient in some interval around zero.

The commonly used model selection criteria AIC and BIC are special cases of L0

penalization. The objective functions of AIC and BIC are similar to m(β), which

have the quotient of penalty equal to 2 and log n in place of ψn,k. Due to the results

in Section 2.4 and the above arguments, selection properties of our proposed method

are similar to those of the L0 penalty. In particular, it attempts to find the model
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with the least possible size that could explain the conditional mean of the response

variable. A salient feature of our approach is that the L0-type penalization is implied

by the hierarchical model. The tuning parameters are more transparent than those in

penalization methods. Another feature to note is that our model allows high (or even

perfect) correlations among inactive covariates. This is practically very useful in high

dimensional problems because the number of inactive covariates is often large and

the singularity of the design matrix is a common occurrence. Also, high correlations

between active and inactive covariates is not as harmful to the proposed method

as they are to the L1-type penalties. This point is illustrated in Table 2.4 of our

simulation studies in Section 2.8.

2.6 Discussion of the conditions

The purpose of this section is to demonstrate that Conditions 3.3.1–3.3.2 that we

use in Section 2.4 are quite mild. Condition 3.3.1 restricts the number of covariates to

be no greater than exponential in n, and Condition 3.3.4 provides the shrinking and

diffusing rates for the spike and slab priors, respectively. We note that Conditions

2.4.3–3.3.2 allow β to depend on n. For instance, consider pn < n and the design

matrix X with X ′X/n → D, where D is a positive definite matrix. Ishwaran and

Rao (2005), Zou (2006), Bondell and Reich (2012) and Johnson and Rossell (2012)

assumed this condition on the design under which Conditions 2.4.3 & 3.3.3 only

require β to be such that

‖βtc‖2
2 = O

(
1
n

)
and ‖βt‖2

2 > c′ logn
n
,

for some c′ > 0. Condition 3.3.2 is also satisfied in this case, so Conditions 2.4.3–3.3.2

allow a wider class of design matrices.

In general, Condition 3.3.3 is a mild regularity condition that allows us to identify
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the true model. It serves to restrict the magnitude of the correlation between active

and inactive covariates, and also to bound the signal to noise ratio from below. The

following two remarks provide some insight into the role of Condition 3.3.3 in these

aspects.

Remark 4. Consider the case where the active coefficients βt are fixed. We then have

some w′ > 0, such that

∆n(K) ≥ ‖βt‖2
2 inf{k:|k|<K|t|,k 6⊃t} φmin (X ′t(I − Pk)Xt)

≥ w′n inf{k:|k|<K|t|,k 6⊃t} φmin

(
X′k∨tXk∨t

n

)
,

where we have used the fact that φmin (X ′k∨tXk∨t) ≤ φmin (X ′t(I − Pk)Xt) . To see this,

we just need to consider the cases where Xk∨t is of full rank. Then, it follows from

the observation that (X ′t(I − Pk)Xt)
−1 is a submatrix of (X ′k∨tXk∨t)

−1 . Therefore,

Condition 3.3.3 is satisfied if the minimum eigenvalues of the submatrices of X ′X/n

with size smaller than (K + 1)|t| are uniformly larger than c′ log(n ∨ pn)/n. In the

other end of the spectrum, where the inactive covariates can be perfectly correlated,

Condition 3.3.3 could still hold.

Remark 5. If the infimum of φmin (X ′t(I − Pk)Xt/n) is uniformly bounded away from

zero, then ∆n(K) ≥ w′n‖βt‖2
2. Then Condition 3.3.3 is satisfied if

∥∥∥∥βtσ
∥∥∥∥2

2

≥ c′ log(n ∨ pn)

n
.

Condition 3.3.2 provides conditions on the eigenvalues of the Gram matrix in

terms of the prior parameters. The condition is weaker than the assumption that

the maximum and minimum non-zero eigenvalues of the Gram matrix are bounded

away from infinity and zero, respectively. In Condition 3.3.2, λnM ≺ (nτ 2
0n)−1 will be

satisfied if τ 2
0n is small enough. However, the assumption on λnm(ν) is non-trivial as

it needs to be greater than p−κn . We now show that this requirement is satisfied with
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high probability if the design matrix consists of independent sub-Gaussian rows.

Lemma 2.6.1 (MNEV for sub-Gaussian random matrices). Suppose that the rows

of Xn×pn are independent isotropic sub-Gaussian random vectors in Rpn. Then, there

exists a ν > 0 such that, with probability greater than 1− exp(−w′n),

inf
|k|≤mn(ν)

φmin

(
X′kXk
n

)
> 0.

A proof of Lemma 2.6.1 is provided in Section 2.11. Lemma 2.6.1 implies that

the Gram matrix of a sub-Gaussian design matrix has the minimum eigenvalues of all

the mn(ν) dimensional submatrices to be uniformly bounded away from zero. This

clearly is stronger than Condition 3.3.2, which only requires the minimum non-zero

eigenvalues to be uniformly greater than p−κn . In particular, unlike the restricted

isometry conditions which control the minimum eigenvalue, Condition 3.3.2 allows

the minimum eigenvalue to be exactly zero to allow even perfect correlation among

inactive (or active) covariates.

2.7 Computation

The implementation of our proposed method involves using the Gibbs sampler to

draw samples from the posterior of Z. The full conditionals are standard distributions

due to the use of conjugate priors. The conditional distribution of β is given by,

f(β | Z, σ2, Y ) ∝ exp
{
− 1

2σ2‖Y −Xβ‖2
2

}∏pn
i=1 φ

(
βi, 0, σ

2τ 2
Zi,n

)
,

where φ(x, 0, τ 2) is the pdf of the normal distribution with mean zero, and variance

τ 2 evaluated at x. This can be rewritten as

f(β | Z = k, σ2, Y ) ∝ exp
{
− 1

2σ2 (β′X ′Xβ − 2β′X ′Y )
}

exp
{
− 1

2σ2β
′Dkβ

}
,
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where Dk = Diag (τ−2
ki,n

). Hence, the conditional distribution of β is given by β ∼

N(m,σ2V ), where V = (X ′X +Dk)
−1, and m = V X ′Y. Furthermore, the conditionl

distribution of Zi is

P (Zi = 1 | β, σ2) =
qnφ(βi, 0, σ

2τ 2
1,n)

qnφ(βi, 0, σ2τ 2
1,n) + (1− qn)φ(βi, 0, σ2τ 2

0,n)
.

The conditional of σ2 is the Inverse Gamma distribution IG(a, b) with a = α1 +n/2+

pn/2, and b = α2 + β′Dkβ/2 + (Y −Xβ)′(Y −Xβ)/2.

The only possible computational difficulty in the Gibbs sampling algorithm is the

step of drawing from the conditional distribution of β, which is a high dimensional

normal distribution for large values of pn. However, due to the structure of the

covariance matrix (X ′X + Dk)
−1, it can be efficiently sampled using block updating

that only requires drawing from smaller dimensional normal distributions. Details of

the block updating can be found in Ishwaran and Rao (2005).

2.8 Simulation study

In this section, we study performance of the proposed method in several experi-

mental settings, and compare it with some existing variable selection methods. We

will refer to the proposed method as BASAD for BAyesian Shrinking And Diffusing

priors.

The proposed BASAD method has three tuning parameters. In all our empirical

work, we use

τ 2
0n = σ̂2

10n
, τ 2

1n = σ̂2 max
(
p2.1n
100n

, log n
)
,

where σ̂2 is the sample variance of Y , and we choose qn = P [Zi = 1] such that

P [
∑pn

i=1 Zi = 1 > K] = 0.1, for a pre-specified value of K. Our default value is

K = max(10, log(n)), unless otherwise specified in anticipation of a less sparse model.

The purpose of using σ̂2 is to provide appropriate scaling. If a preliminary model is
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available, it is better to use as σ̂2 the residual variance from such a model. It is clear

that those choices are not optimized for any given problem, but they provide a reason-

able assessment on how well BASAD can do. In the simulations, we use 1000 burn-in

iterations for the Gibbs sampler followed by 5000 updates for estimating the posterior

probabilities. As mentioned in Section 2.2, we consider both the median probability

model (denoted by BASAD) and the BIC-based model (denoted by BASAD.BIC)

where the threshold for marginal posterior probability is chosen by the BIC.

In this paper, we report our simulation results for six cases under several (n, p)

combinations, varied correlations, signal strengths and sparsity levels.

• Case 1: In the first case, we use the set-up of Johnson and Rossell (2012) with

p = n. Two sample sizes, n = 100 and n = 200, are considered, and the

covariates are generated from the multivariate normal distributions with zero

mean and unit variance. The compound symmetric covariance with pairwise

covariance of ρ = 0.25 is used to represent correlation between covariates. Five

covariates are taken active with coefficients βt = (0.6, 1.2, 1.8, 2.4, 3.0). This is a

simple setting with moderate correlation between covariates and strong signal

strength.

• Case 2: We consider the p > n scenario with (n, p) = (100, 500) and (n, p) =

(200, 1000), but the other parameters are same as in Case 1.

For the next three cases (Cases 3-5), we keep (n, p) = (100, 500) but vary model

sparsity, signal strength, and correlation among covariates.

• Case 3: We keep ρ = 0.25 and |t| = 5 but have low signals βt = (0.6, 0.6, 0.6, 0.6, 0.6).

• Case 4: We consider a block covariance setting where the active covariates have

common correlation (ρ1) equal to 0.25, the inactive covariates have common
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correlation (ρ3) equal to 0.75 and each pair of active and inactive covariate has

correlation (ρ2) 0.50. The other aspects of the model are the same as in Case

1.

• Case 5: We consider a less sparse true model with |t| = 25 and βt is the vector

containing 25 equally spaced values between 1 and 3 (inclusive of 1 and 3).

• Case 6: We consider the more classical case of n > p with (n, p) = (100, 50)

and (n, p) = (200, 50). Following Bondell and Reich (2012), the covariates are

drawn from a normal distribution with the covariance matrix distributed as the

Wishart distribution centered at the identity matrix with p degrees of freedom.

Three of the 50 covariates are taken to be active with their coefficients drawn

from the uniform distribution U(0, 3) to imply a mix of weak and strong signals.

Table 2.1: Performance of BASAD for Case 1: n = p

(n, p) = (100, 100); ρ = 0.25; |t| = 5

pp0 pp1 Z = t Z ⊃ t FDR MSPE
BASAD 0.016 0.985 0.866 0.954 0.015 1.092
BASAD.BIC 0.016 0.985 0.066 0.996 0.256 1.203
piMOM 0.012 0.991 0.836 0.982 0.030 1.083
BCR.Joint 0.442 0.940 0.157 1.165
SpikeSlab 0.005 0.216 0.502 1.660
Lasso.BIC 0.010 0.992 0.430 1.195
EN.BIC 0.398 0.982 0.154 1.134
SCAD.BIC 0.356 0.990 0.160 1.157

(n, p) = (200, 200); ρ = 0.25; |t| = 5

pp0 pp1 Z = t Z ⊃ t FDR MSPE
BASAD 0.002 1.000 0.944 1.000 0.009 1.037
BASAD.BIC 0.002 1.000 0.090 1.000 0.187 1.087
piMOM 0.003 1.000 0.900 1.000 0.018 1.038
BCR.Joint 0.594 0.994 0.102 1.064
SpikeSlab 0.008 0.236 0.501 1.530
Lasso.BIC 0.014 1.000 0.422 1.101
EN.BIC 0.492 1.000 0.113 1.056
SCAD.BIC 0.844 1.000 0.029 1.040
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Table 2.2: Performance of BASAD for Case 2: p > n

(n, p) = (100, 500); ρ = 0.25; |t| = 5

pp0 pp1 Z = t Z ⊃ t FDR MSPE
BASAD 0.001 0.948 0.730 0.775 0.011 1.130
BASAD.BIC 0.001 0.948 0.190 0.915 0.146 1.168
BCR.Joint 0.070 0.305 0.268 1.592
SpikeSlab 0.000 0.040 0.626 3.351
Lasso.BIC 0.005 0.845 0.466 1.280
EN.BIC 0.135 0.835 0.283 1.223
SCAD.BIC 0.045 0.980 0.328 1.260

(n, p) = (200, 1000); ρ = 0.25; |t| = 5

pp0 pp1 Z = t Z ⊃ t FDR MSPE
BASAD 0.000 0.986 0.930 0.950 0.000 1.054
BASAD.BIC 0.000 0.986 0.720 0.990 0.046 1.060
BCR.Joint 0.090 0.250 0.176 1.324
SpikeSlab 0.000 0.050 0.574 1.933
Lasso.BIC 0.020 1.000 0.430 1.127
EN.BIC 0.325 1.000 0.177 1.077
SCAD.BIC 0.650 1.000 0.091 1.063

The summary of our results are presented in Tables 2.1- 2.6. In those tables,

BASAD denotes the median probability model, BASAD.BIC denotes the model

obtained by using the threshold probability chosen by the BIC. Three competing

Bayesian model selection methods are: (1) piMOM, the non-local prior method pro-

posed by Johnson and Rossell (2012) but only when p ≤ n; (2) BCR.Joint, the

Bayesian joint credible region method of Bondell and Reich (2012) (using the default

priors followed by an application of BIC); (3) SpikeSlab, the generalized elastic net

model obtained using the R package spikeslab (Ishwaran et al., 2010) for the spike

and slab method of Ishwaran and Rao (2005). Three penalization methods under

consideration are: (1) LASSO; (2) Elastic Net (EN); and (3) SCAD, all tuned by the

BIC. Our simulation experiment used 500 data sets from each model when n ≥ p,

but used 200 data sets when p > n to aggregate the results.

The columns of the tables show the average marginal posterior probability assigned

to inactive covariates and active covariates (pp0 and pp1, respectively), proportion of
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Table 2.3: Performance of BASAD for Case 3: (n, p) = (100, 500)

ρ = 0.25; |t| = 5; βt = (0.6, 0.6, 0.6, 0.6, 0.6)

pp0 pp1 Z = t Z ⊃ t FDR MSPE
BASAD 0.002 0.622 0.185 0.195 0.066 2.319
BASAD.BIC 0.002 0.622 0.160 0.375 0.193 1.521
BCR.Joint 0.030 0.315 0.447 1.501
SpikeSlab 0.000 0.000 0.857 2.466
Lasso.BIC 0.000 0.520 0.561 1.555
EN.BIC 0.040 0.345 0.478 1.552
SCAD.BIC 0.045 0.340 0.464 1.561

Table 2.4: Performance of BASAD for Case 4: (n, p) = (100, 500)

ρ1 = 0.25, ρ2 = 0.50, ρ3 = 0.75

pp0 pp1 Z = t Z ⊃ t FDR MSPE
BASAD 0.002 0.908 0.505 0.530 0.012 1.199
BASAD.BIC 0.002 0.908 0.165 0.815 0.179 1.210
BCR.Joint 0.000 0.000 0.515 2.212
SpikeSlab 0.000 0.000 0.995 10.297
Lasso.BIC 0.000 0.015 0.869 8.579
EN.BIC 0.000 0.000 0.898 8.360
SCAD.BIC 0.000 0.000 0.899 8.739

choosing the true model (Z = t), proportion of including the true model (Z ⊃ t)

and false discovery rate (FDR). The last column (MSPE) gives the average test

mean squared prediction error based on n new observations as testing data. From

our simulation experiment, we have the following findings.

(i) The Bayesian model selection methods BASAD and piMOM (whenever avail-

able) tend to perform better than the other methods in terms of selecting the true

model and controlling the false discovery rate in variable selection, and our proposed

BASAD stands out in this regard. The penalization methods often have higher prob-

abilities of selecting all the active covariates at the cost of overfitting and false discov-

eries. In terms of the prediction error however, BASAD does not always outperform

its competitors, but remains competitive.

(ii) When the signals are low (Case 3), all the methods under consideration have
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Table 2.5: Performance of BASAD for Case 5: (n, p) = (100, 500). In this case, two
versions of BASAD are included, where BASAD.K10 uses our default value of K = 10, and
BASAD.K50 uses a less sparse specification of K = 50.

ρ = 0.25; |t| = 25

pp0 pp1 Z = t Z ⊃ t FDR MSPE
BASAD.K50 0.020 0.988 0.650 0.950 0.036 3.397
BASAD.BIC.K50 0.020 0.988 0.005 0.960 0.283 4.019
BASAD.K10 0.003 0.548 0.405 0.420 0.011 170.862
BASAD.BIC.K10 0.003 0.548 0.035 0.430 0.076 88.881
BCR.Joint 0.000 0.000 0.622 49.299
SpikeSlab 0.000 0.000 0.816 111.911
Lasso.BIC 0.000 0.005 0.685 58.664
EN.BIC 0.000 0.000 0.693 59.058
SCAD.BIC 0.000 0.000 0.666 72.122

ρ = 0.75; |t| = 25

pp0 pp1 Exact Include FDR MSPE
BASAD.K50 0.048 0.914 0.005 0.355 0.289 6.103
BASAD.BIC.K50 0.048 0.914 0.000 0.445 0.498 6.611
BASAD.K10 0.003 0.298 0.025 0.030 0.018 349.992
BASAD.BIC.K10 0.003 0.298 0.000 0.060 0.087 61.709
BCR.Joint 0.000 0.000 0.772 34.113
SpikeSlab 0.000 0.000 0.899 48.880
Lasso.BIC 0.000 0.000 0.734 24.310
EN.BIC 0.000 0.000 0.754 29.171
SCAD.BIC 0.000 0.000 0.736 27.236

trouble finding the right model, and BASAD.BIC results in lower prediction error

than BASAD with 0.5 as the threshold for posterior probabilities.

(iii) In Case 4, there is a moderate level of correlation among inactive covariates

and some level of correlation between active and inactive covariates. This is where

BASAD outperforms the other methods under consideration because BASAD is sim-

ilar to the L0 penalty and is able to accommodate such correlations well. Please refer

to our discussion in Sections 2.5 and 2.6.

(iv) When the true model is not so sparse and has |t| = 25 active covariates

(Case 5), our default choice of K = 10 in BASAD did not perform well, which is

not surprising. In fact, no other methods under consideration did well in this case,
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Table 2.6: Performance of BASAD for Case 6: n > p

(n, p) = (100, 50)

pp0 pp1 Z = t Z ⊃ t FDR MSPE
BASAD 0.037 0.899 0.654 0.714 0.026 1.086
BASAD.BIC 0.037 0.899 0.208 0.778 0.267 1.151
piMOM 0.011 0.892 0.656 0.708 0.021 1.066
SpikeSlab 0.064 0.846 0.567 1.226
BCR.Joint 0.336 0.650 0.216 1.124
Lasso.BIC 0.076 0.744 0.397 1.152
EN.BIC 0.378 0.742 0.194 1.110
SCAD.BIC 0.186 0.772 0.284 1.147

(n, p) = (200, 50)

pp0 pp1 Z = t Z ⊃ t FDR MSPE
BASAD 0.026 0.926 0.738 0.784 0.017 1.029
BASAD.BIC 0.026 0.926 0.338 0.842 0.193 1.055
piMOM 0.005 0.908 0.694 0.740 0.020 1.036
BCR.Joint 0.484 0.770 0.133 1.045
SpikeSlab 0.038 0.900 0.629 1.121
Lasso.BIC 0.082 0.752 0.378 1.059
EN.BIC 0.428 0.748 0.165 1.039
SCAD.BIC 0.358 0.812 0.193 1.046

highlighting the difficulty of finding a non-sparse model with a limited sample size.

On the other hand, there is some promising news. If we anticipate a less sparse model

with K = 50, the proposed method BASAD improved the performance considerably.

Our empirical experience suggests that if we are uncertain about the level of sparsity

of our model, we may use a generous choice of K or use BIC to choose between

different values of K.

2.9 Real data example

In this section, we apply our variable selection method to a real data set to ex-

amine how it works in practice. We consider the data from an experiment conducted

by Lan et al. (2006) to study the genetics of two inbred mouse populations (B6

and BTBR). The data include expression levels of 22,575 genes of 31 female and
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29 male mice resulting in a total of 60 arrays. Some physiological phenotypes, in-

cluding the numbers of phosphoenopyruvate carboxykinase (PEPCK) and glycerol-

3-phosphate acyltransferase (GPAT) were also measured by quantitative real-time

PCR. The gene expression data and the phenotypic data are available at GEO

(http://www.ncbi.nlm.nih.gov/geo; accession number GSE3330). Zhang et al. (2009)

used orthogonal components regression to predict each phenotype based on the gene

expression data. Bondell and Reich (2012) used the Bayesian credible region method

for variable selection on the same data.

Because this is an ultra-high dimensional problem with pn = 22, 575, we prefer

to perform simple screenings of the genes first based on the magnitude of marginal

correlations with the response. The power of marginal screening has been recognized

by Fan and Lv (2008). After the screening, the dataset for each of the responses

consisted of p = 200 and 400 predictors (including the intercept and gender) by taking

198 and 398 genes based on marginal screening. We performed variable selection with

BASAD along with LASSO, SCAD and the BCR method. Following Bondell and

Reich (2012), we randomly split the sample into a training set of 55 observations and

a test set with the remaining five observations. The fitted models using the training

set were used to predict the response in the test set. This process was repeated 100

times to estimate the prediction error.

In Figure 2.1, we plot the average mean square prediction error (MSPE) for models

of various sizes chosen by BASAD, BCR and SCAD methods for the two responses

PEPCK and GPAT. We find that the MSPE of BASAD is mostly smaller than that

for other methods across different model sizes. In particular, BASAD chooses less

correlated variables and achieves low MSPE with fewer predictive genes than the

other methods. We also note that the 10-covariate models chosen by BASAD is very

different (with the overlap of just one covariate for PEPCK and three covariates for

GPAT) from those of SCAD which chose mostly the same covariates as LASSO. There

32



Figure 2.1: Mean squared prediction error (MSPE) versus model size for analyzing PEPCK
and GPAT in the upper and lower panel, respectively, (a) p = 200 and (b) p = 400

are four common covariates identified by both BASAD and BCR methods. When we

perform a linear regression by including the covariates chosen by BASAD and SCAD,

we noticed that majority of the covariates chosen by BASAD are significant, which

indicates that those genes chosen by BASAD are significant in explaining the response

even in the presence of those chosen using SCAD. Most of the genes selected by SCAD

however are not significant in the presence of those chosen by BASAD. Despite the

evidence in favor of the genes selected by BASAD in this example, we must add

that the ultimate assessment of a chosen model would need to be made by additional

information from the subject matter science and/or additional experiment.
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2.10 Conclusion

In this paper, We consider a Bayesian variable selection method for high dimen-

sional data based on the spike and slab priors with shrinking and diffusing priors. We

show under mild conditions that this approach achieves strong selection consistency

in the sense that the posterior probability of the true model converges to one. The

tuning parameters needed for the prior specifications are transparent, and a standard

Gibbs sampler can be used for posterior sampling. We also provide the asymptotic

relationship between the proposed approach and the L0 penalty for model selection.

Simulation studies in Section 2.8 and real data example in Section 2.9 show evidence

that the method performs well in a variety of settings even though we do not attempt

to optimize the tuning parameters in the proposed method.

The strong selection consistency of Bayesian methods has not been established

in the cases of p > n until very recently. For higher dimensional cases, we just be-

came aware of Liang et al. (2013), which provided the strong selection consistency for

Bayesian subset selection based on the theory developed by Jiang (2007) for posterior

density consistency. However, to translate density consistency into selection consis-

tency, Liang et al. (2013) imposed a condition on the posterior distribution itself,

which is not verifiable directly. The techniques we use in this paper might also be

used to complete the development of their theory on strong selection consistency.

Throughout the paper, we assume Gaussian errors in the regression model, but this

assumption is not necessary to obtain selection consistency. For proving Lemma 2.4.1,

we did not need assumptions on the error distribution, and to prove Theorem 2.4.2,

we just need deviation inequalities of the quadratic forms ε′Pkε, which follow the chi-

squared distribution for normal errors. Similar proofs with an application of deviation

inequalities for other error distributions would work. For instance, Hsu et al. (2012)

provide deviation inequalities for quadratic forms of sub-Gaussian random variables.

The primary focus of our paper is model selection consistency. The model is
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selected by averaging over the latent indicator variables drawn from the posterior

distributions. The strengths of different model selection methods need to be eval-

uated differently if prediction accuracy is the goal. In our empirical work, we have

included comparisons of the mean squared prediction errors, and found that our pro-

posed method based on default tuning parameters is highly competitive in terms of

prediction. However, improvements are possible, mainly in the cases of low signals,

if the parameters are tuned by BIC or cross-validation, or if model-averaging is used

instead of the predictions from a single model.

2.11 Proofs

In this section, we prove all the theoretical results.

Proof of Lemma 2.4.1 . The joint posterior of β, σ2, Z under model (2.1) is given

by

P (β, Z = k, σ2 | Y ) ∝

exp

{
− 1

2σ2

(
‖Y −Xβ‖2

2 − β′Dkβ − 2α2

)}
σ−2(n2 + pn

2
+α1+1)|Dk|

1
2 s|k|n , (2.9)

where Dk = Diag (kτ−2
1n + (1− k)τ−2

0n ), sn = qn/(1− qn), α1, α2 are the parameters of

IG prior, and |k| is the size of the model k. By a simple rearrangement of terms in

the above expression, we obtain

P (β, Z = k | Y, σ2) ∝

exp

{
− 1

2σ2

(
(β − β̃)′(Dk +X ′X)(β − β̃)− β̃′(Dk +X ′X)β̃

)}
|Dk|

1
2 s|k|n ,

where β̃ = (Dk +X ′X)−1X ′Y. Note that β̃ is a shrinkage estimator of the regression

vector β. Shrinkage of β̃ depends on Dk, which is the precision matrix of β given
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Z = k. The components of β̃i corresponding to ki = 0 are shrunk towards zero while

the shrinkage of coefficients corresponding to ki = 1 is negligible (as τ−2
1n is small).

P (Z = k | Y, σ2) ∝ Qk s
|k|
n exp

{
− 1

2σ2

(
Y ′Y − β̃′(Dk +X ′X)β̃

)}
= Qk s

|k|
n exp

{
− 1

2σ2 (Y ′Y − Y ′X(Dk +X ′X)−1X ′Y )
}

= Qk s
|k|
n exp

{
− 1

2σ2 R̃k

}
,

(2.10)

where Qk = |Dk +X ′X|− 1
2 |Dk|

1
2 . Next, we obtain bounds on Qk.

Lemma 2.11.1. Let A be an invertible matrix, and B be any matrix with appropriate

dimension. Further, let k and j be any pair of models. Then,

(i) |(A+B′B)−1A| = |I +BA−1B′|−1,

(ii)
(
I + τ 2

1nXkX
′
k + τ 2

0nXjX
′
j

)−1 ≥ (I + τ 2
1nXkX

′
k)
−1

(1− ξn), where ξn = nτ 2
0nλ

n
M =

o(1), and

(iii) Qk ≤ w′ (nτ 2
1nλ

n
m(1− φn))

− 1
2

(r∗k−rt) (λnm)−
1
2
|t∧kc|Qt, where w′ > 0, rk = rank(Xk),

r∗k = rk ∧mn, and φn = o(1).

Proof. (i) We use the Sylvester’s determinant theorem, and the multiplicative prop-

erty of the determinant to obtain

|(A+B′B)−1A| = |I + A−
1
2B′BA−

1
2 |−1

= |I +BA−1B′|−1.

(ii) By the Sherman-Morrison-Woodbury (SMW) identity, assuming A,C and (C−1 +

DA−1B) to be non-singular,

(A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1, (2.11)
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we have, for for any vector a,

a′(I + τ 2
1nXkX

′
k + τ 2

0nXjX
′
j)
−1a = a′G−1a− τ 2

0nH,

where G = I + τ 2
1nXkX

′
k, and H = a′G−1Xj(I + τ 2

0nX
′
jG
−1Xj)

−1X ′jG
−1a. Note that

0 ≤ τ 2
0nH ≤ τ 2

0na
′G−1XjX

′
jG
−1a

≤ nτ 2
0nλ

n
Ma
′G−1a,

(2.12)

where λnM is the maximum eigenvalue of the Gram matrix X ′X/n. Therefore,

a′(I + τ 2
1nXkX

′
k)
−1a(1− nτ 2

0nλ
n
M) ≤ a′(I + τ 2

1nXkX
′
k + τ 2

0nXjX
′
j)
−1a,

and hence (ii) is proved.

(iii) From part (i) of the lemma, we have

Qk = |I +XD−1
k X ′|− 1

2

= |I + τ 2
1nXkX

′
k + τ 2

0nXkcX
′
kc|−

1
2 .

(2.13)

Define A = I + τ 2
1nXk∧tX

′
k∧t + τ 2

0nXkc∨tcX
′
kc∨tc . Then, by (ii) we have

(1− ξn)(I + τ 2
1nXk∧tX

′−1
k∧t) ≤ A−1 ≤ (I + τ 2

1nXk∧tX
′
k∧t)

−1.
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This, along with Condition 3.3.2 implies

Qk
Qk∧t

= |I + τ 2
1nXkX

′
k + τ 2

0nXkcX
′
kc |−

1
2 |A| 12

= |A+ (τ 2
1n − τ 2

0n)Xk∧tcX
′
k∧tc|−

1
2 |A| 12

= |I + (τ 2
1n − τ 2

0n)X ′k∧tcA
−1Xk∧tc |−

1
2

≤ |I + (τ 2
1n − τ 2

0n)(1− ξn)X ′k∧tc(I + τ 2
1nXk∧tX

′
k∧t)

−1Xk∧tc |−
1
2

= |I + τ 2
1nXtX

′
t + τ 2

1n(1− φn)Xk∧tcX
′
k∧tc |−

1
2 |I + τ 2

1nXk∧tX
′
k∧t|

1
2

≤ |I + τ 2
1n(1− φn)XkX

′
k|−

1
2 |I + τ 2

1nXk∧tX
′
k∧t|

1
2

≤ (nτ 2
1nλ

n
m(1− φn))−(r∗k−rt∧k)/2(1− φn)−|t∧k|/2,

where (1−φn) = (τ 2
1n−τ 2

0n)(1−ξn)/τ 2
1n → 1. Similarly, let A = I+τ 2

1nXtX
′
t+τ

2
0nXtcX

′
tc

to obtain

Qk∧t
Qt

= |A− (τ 2
1n − τ 2

0n)Xk∧tcX
′
k∧tc |−

1
2 |A| 12

≤ |I + τ 2
1nXk∧tX

′
k∧t|−

1
2 |I + τ 2

1nXtX
′
t|

1
2

≤ |I + τ 2
1nXt∧kcX

′
t∧kc|

1
2

≤ (nτ 2
1nc
′)|t∧k

c|/2.

The above two inequalities give

Qk
Qt
≤ w′(nτ 2

1nλ
n
m(1− φn))−(r∗k−rt)/2(λnm)−|t∧k

c|/2.

Due to (2.10), we have

BF (k, t) = Qk
Qt
s
|k|−|t|
n exp

{
− 1

2σ2 (R̃k − R̃t)
}

.

Therefore, Lemma 2.11.1(iii) implies Lemma 2.4.1.
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2.11.1 Preliminary Results:

To prove Theorem 2.4.1 & Lemma 2.4.2, we first prove some preliminary results

in this section. We define

Rk = Y ′
(
I −Xk(I/τ

2
1n +X ′kXk)

−1)X ′k
)
Y. (2.14)

As the Bayes factors provided by Lemma 2.4.1 involve the quantities R̃k − R̃t, we

shall show that (R̃k − R̃t) approximates (Rk −Rt), which is easier to work with.

Lemma 2.11.2. Let A be any matrix such that A ≥ I, and let j and k be models

such that j ⊂ k, we then have

(i) R̃k = Y ′(I + τ 2
1nXkX

′
k + τ 2

0nXkcX
′
kc)
−1Y,

(ii) (A+ τ 2
0nXkX

′
k)
−1− (A+ τ 2

1nXkX
′
k)
−1 ≥ (A−1 − (A+ τ 2

1nXkX
′
k)
−1) (1−wn), and

(iii) (Rj −Rk)(1−wn)(1− ξn)2 ≤ R̃j − R̃k ≤ (Rj −Rk)(1− ξn)−1, where wn = o(1)

uniformly in k, and ξn is as defined in Lemma 2.11.1.

Proof. (i) Due to (2.11), we have

X(Dk +X ′X)−1X ′ = XDk
−1X ′ −XDk

−1X ′(I +XDk
−1X ′)−1XDk

−1X ′

= XDk
−1X ′ −XDk

−1X ′(I − (I +XDk
−1X ′)−1)

= XDk
−1X ′(I +XDk

−1X ′)−1

= I − (I +XDk
−1X ′)−1,

which implies

R̃k = Y ′Y − Y ′X(Dk +X ′X)−1X ′Y

= Y ′(I +XDk
−1X ′)−1Y

= Y ′(I + τ 2
1nXkX

′
k + τ 2

0nXkcX
′
kc)
−1Y.
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(ii)

LHS := (A+ τ 2
1nXkX

′
k)
−1 − (A+ τ 2

0nXkX
′
k)
−1

= A−1Xk(τ
−2
0n I +X ′kA

−1Xk)
−1X ′kA

−1 − A−1Xk(τ
−2
1n I +X ′kA

−1Xk)
−1X ′kA

−1

= A−1XkU
(
(τ−2

0n I +D)−1 − (τ−2
1n I +D)−1

)
U ′X ′kA

−1,

where UDU ′ is the eigen decomposition of X ′kA
−1Xk, and the diagonal entries of

D are denoted by di, which are bounded by nλnM . Hence, the ith diagonal entry of

(τ−2
1n I +D)−1 − (τ−2

0n I +D)−1 is given by

1
τ−2
1n +di

− 1
τ−2
0n +di

=
τ21n−τ20n

(1+τ21ndi)(1+τ20ndi)

≥ 1−τ20n/τ21n
(τ−2

1n +di)(1+nτ20nλ
n
M )

= 1−wn
τ−2
1n +di

,

where wn = 1− (1−τ20n/τ21n)

(1+nτ20nλ
n
M )
→ 0. Therefore,

LHS ≥ A−1XkU(I/τ 2
1n +D)−1U ′X ′kA

−1(1− wn)

= (A−1 − (A+ τ 2
1nXkX

′
k)
−1) (1− wn).

(iii) DefineA = (I+τ 2
1nXjX

′
j+τ

2
0nXkcX

′
kc), andB = (I+τ 2

1nXjX
′
j). By Lemma 2.11.1 (ii),
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we have (1− ξn)B−1 ≤ A−1. On one hand, due to part (i) of the lemma, we have

R̃j − R̃k = Y ′(A+ τ 2
0nXk∧jcX

′
k∧jc)

−1Y − Y ′(A+ τ 2
1nXk∧jcX

′
k∧jc)

−1Y

≤ Y ′A−1Y − Y ′(A+ τ 2
1nXk∧jcX

′
k∧jc)

−1Y

= Y ′A−1Xk∧jc(τ
−2
1n I +X ′k∧jcA

−1Xk∧jc)
−1X ′k∧jcA

−1Y

≤ Y ′B−1Xk∧jc(τ
−2
1n I +X ′k∧jcB

−1(1− ξn)Xk∧jc)
−1X ′k∧jcB

−1Y

= Y ′B−1Xk∧jc(τ
−2
1n (1− ξn)−1I +X ′k∧jcB

−1Xk∧jc)
−1X ′k∧jcB

−1Y (1− ξn)−1

=
(
Y ′B−1Y − Y ′(B + τ 2

1n(1− ξn)Xk∧jcX
′
k∧jc)

−1Y
)

(1− ξn)−1

≤ (Rj −Rk)(1− ξn)−1.

On the other hand, part (ii) of the lemma implies

R̃j − R̃k ≥
(
Y ′A−1Y − Y ′(A+ τ 2

1nXk∧jcX
′
k∧jc)

−1Y
)

(1− wn)

= Y ′A−1Xk∧jc(τ
−2
1n I +X ′k∧jcA

−1Xk∧jc)
−1X ′k∧jcA

−1Y (1− wn)

≥ Y ′B−1Xk∧jc(τ
−2
1n I +X ′k∧jcB

−1Xk∧jc)
−1X ′k∧jcB

−1Y (1− wn)(1− ξn)2

=
(
Y ′B−1Y − Y ′(B + τ 2

1n(1− ξn)Xk∧jcX
′
k∧jc)

−1Y
)

(1− wn)(1− ξn)2

= (Rj −Rk)(1− wn)(1− ξn)2.

We use R∗k to denote the residual sum of squares obtained by OLS for model k, i.e.,

R∗k = Y ′ (I − Pk)Y , where Pk is the projection matrix corresponding to the model k.

The following remark relates R̃k, Rk and R∗k.

Remark 6. For any model k, R̃k ≤ Rk by definitions, and R∗k ≤ Rk because if

Xk = UkΛkV
′
k is the SVD of Xk, Pk = UkU

′
k whereas Xk(I/τ

2
1n + X ′kXk)

−1)X ′k =

UkΛk(τ
−2
1n I + Λ2

k)
−1ΛkU

′
k.

The following lemma bounds the difference between Rt and R∗t .
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Lemma 2.11.3. For any sequence gn →∞, and ε > 0, we have

(i) P [Rt −R∗t > gn] ≤ exp{−c′nτ 2
1ngn}, and

(ii) P
[∣∣∣ R∗tnσ2 − 1

∣∣∣ > ε
]
≤ exp{−c′n}, for some c′ > 0.

Proof. (i) Due to (2.11), we have

0 ≤ Rt −R∗t = Y ′Xt ((X ′tXt)
−1 − (I/τ 2

1n +X ′tXt)
−1))X ′tY

= Y ′Xt(X
′
tXt)

−1(τ 2
1nI + (X ′tXt)

−1)−1(X ′tXt)
−1X ′tY

= (nτ 2
1n)−1Y ′MY,

where M = nXt(X
′
tXt)

−2X ′t has rank |t| and bounded eigenvalues. Therefore,

P [Rt −R∗t > gn] ≤ P [Y ′MY > nτ 2
1ngn]

≤ exp{−c′nτ 2
1ngn}.

(ii) Note that R∗t /σ
2 follows the χ2

n−|t| distribution. By Lemma 1 of Laurent and

Massart (2000), we have

P
[∣∣∣R∗tσ2 − (n− |t|)

∣∣∣ ≥ 2(n− |t|)(
√
x+ 2x)

]
≤ 2 exp(−(n− |t|)x).

Therefore, we obtain P [|R∗t /nσ2 − 1| > ε] ≤ exp{−c′n}.

2.11.2 Proof of Theorem 2.4.1

To prove Theorem 2.4.1, we divide the set of possible incorrect models into four

subsets M1, · · · ,M4 as defined in Section 2.4. We shall prove
∑

k∈Mu
BF (k, t)

P−→ 0

for each u = 1, 2, 3, 4.
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2.11.2.1 Unrealistically Large models

We first consider the models in M1, which correspond to all the models containing

at least mn linearly independent covariates. Note that M1 is empty if pn � n/ log n.

Owing to the penalization of such large models, we shall show that the sum of the

Bayes factors of such models converges to zero exponentially fast. First note that for

any s > 0,

P
[
∪k∈M1

{
R̃t − R̃k > n(1 + 2s)σ2

}]
≤ P

[
R̃t > n(1 + 2s)σ2

]
≤ P [Rt > n(1 + 2s)σ2]

≤ P [R∗t > (1 + s)nσ2] + P [Rt −R∗t > snσ2]

≤ 2 e−c
′n,

uniformly for all k, due to Lemma 2.11.3.

Consider the term nτ 2
1nλ

n
m(1− φn). Conditions 3.3.4 & 3.3.2 imply that

(
p2+2δ
n ∨ n

)
� nτ 2

1nλ
n
m(1− φn) �

(
p2+3δ
n ∨ n

)
. (2.15)

Restricting to the high probability event {R̃t − R̃k ≤ n(1 + 2s)σ2}, Lemma 2.4.1

and (2.15) give

∑
k∈M1

BF (k, t) �
∑
k∈M1

p
−(1+δ)(mn−|t|)
n s

(|k|−|t|)
n (λnm)−|t|/2 en(1+2s)/2

�
∑
k∈M1

e−n(1+δ)/(2+δ)s
(|k|−|t|)
n (λnm)−|t|/2 en(1+2s)/2,

because for k ∈ M1, r∗k = mn > n/ log(p2+ν
n ) ≥ n/ log(p2+δ

n ). Therefore, due to
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Condition 3.3.2, and sn ∼ p−1
n , we have

∑
k∈M1

BF (k, t) � e−n(1+δ)/(2+δ)en(1+2s)/2 p
κ|t|
n

∑
k∈M1

s
(|k|−|t|)
n

� e−n(1+δ)/(2+δ)en(1+2s)/2 p
c′|t|
n

pn∑
|k|=mn

(
pn
|k|

)
s
|k|
n

� e−n(1+δ)/(2+δ)en(1+2s)/2 p
c′|t|
n (1 + sn)pn

� e−w
′n → 0 as n→∞,

for some w′ > 0, if s satisfies 1 + 2s < 2(1 + δ)/(2 + δ), i.e., s < δ/2(2 + δ). Therefore,

we have ∑
k∈M1

BF (k, t)
P−→ 0. (2.16)

2.11.2.2 Over-fitted models

We use deviation inequalities of the chi-squared distribution to simultaneously

bound (R̃t − R̃k) over all the models in M2. For k ∈M2, we have

R∗t −R∗k = ‖ (Pk − Pt)Y ‖2
2

≤
(
‖ (Pk − Pt)X−tβ−t‖2 + ‖ (Pk − Pt) ε‖2

)2

≤
(
‖X−tβ−t‖2 +

√
ε′Pk∧tcε

)2

=
(
b0 +

√
ε′Pk∧tcε

)2

,

where b0 = ‖X−tβ−t‖2 = O(1) due to Condition 2.4.3. Since ε′Pk∧tcε follows the

chi-squared distribution with rk − rt degrees of freedom, for any x > 0, and for some
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√
2/3 < w < 1, we have

P [R∗t −R∗k > σ2(2 + 3x)(rk − rt) log pn]

≤ P [ε′Pk∧tcε > σ2 (2 + 3wx) (rk − rt) log pn]

≤ P
[
χ2
rk−rt − (rk − rt) > (2 + 3w2x)(rk − rt) log pn

]
≤ c′ exp{−(1 + x)(rk − rt) log pn}

= c′p
−(1+x)(rk−rt)
n .

(2.17)

Consider 0 < s ≤ δ/8, a sequence ζn such that ζn = o(1), and define the event

A(k) :=
{
R̃t − R̃k > 2σ2(1 + 4s)(rk − rt)(1− ζn) log pn

}
⊂ {Rt −Rk > 2σ2(1 + 4s)(rk − rt)(1− ξn)(1− ζn) log pn}

⊂ {Rt −Rk > 2σ2(1 + 2s)(rk − rt) log pn} ,

by Lemma 2.11.2 (iii). For a fixed dimension d > rt, consider the event U(d) :=

∪{k:rk=d}A(k). Since Rk ≥ R∗k, we have

P [ U(d) ] ≤ P
[
∪{k:rk=d} {Rt −R∗k > 2σ2(1 + 2s)(rk − rt) log pn}

]
≤ P

[
∪{k:rk=d} {R∗t −R∗k > σ2(2 + 3s)(d− rt) log pn}

]
+P [Rt −R∗t > sσ2(d− rt) log pn] .

(2.18)

The event {R∗t −R∗k > σ2(2 + 3s)(d− rt) log pn} depends only on the projection

matrix Pk∧tc , so the union ∪{k:rk=d} can be written as a smaller set of events indexed

by Pk∧tc . Note that the cardinality of such projections is at most pd−rtn because there

are at most pmn subspaces of rank m, and any projection matrix Pk∧tc corresponds to

a subspace of rank (d− rt). Then, (2.17), (2.18) & Lemma 2.11.3 (i) lead to

P [ U(d) ] ≤ c′p
−(1+s)(d−rt)
n p

(d−rt)
n + exp{−c′n log pn}

≤ 2c′ p
−s(d−rt)
n .

(2.19)
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Next, we consider the union of all such events U(d), that is,

P
[
∪{d>rt}U(d)

]
≤

∑
{d>rt} P [U(d)]

≤ 2c′
∑

d>rt
p
−s (d−rt)
n

≤ 2c′p−sn
1

1−p−sn

= 2c′

psn−1
→ 0 as n→∞.

(2.20)

Restricting our attention to the high probability event ∩{d>rt}U(d)c, due to Lemma 2.4.1

and (2.15), we have

∑
k∈M2

BF (k, t) �
∑
k∈M2

(nτ 2
1nλ

n
m(1− φn))

−(rk−rt) s
(|k|−|t|)
n exp

{
− 1

2σ2 (R̃k − R̃t)
}

�
∑
k∈M2

(
p1+δ
n ∨

√
n
)−(rk−rt) s

(|k|−|t|)
n p

(1+4s)(rk−rt)
n

�
∑
k∈M2

(
pδ−4s
n ∨

√
np−1−4s

n

)−(rk−rt) s
(|k|−|t|)
n

�
(
p
−δ/2
n ∧ p

1+δ/2
n√
n

) pn∑
|k|=|t|+1

(
pn
|k|−|t|

)
s

(|k|−|t|)
n

∼ νn → 0, as n→∞,

where νn = p
−δ/2
n ∧ (p

1+δ/2
n /

√
n)→ 0. Note that, r∗k = rk as rk < mn for k ∈M2, and

(1 + sn)pn ∼ 1, because sn ∼ p−1
n . Therefore, we have

∑
k∈M2

BF (k, t)
P−→ 0. (2.21)
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2.11.2.3 Large models

Models in M3 do not contain one or more active covariates with dimension at least

K|t|. Similar to the proof in Section 2.11.2.2, we define the event

B(k) :=
{
R̃t − R̃k > 2σ2(1 + 4s)(rk − rt)(1− ζn) log pn

}
⊂

{
R̃t − R̃k∨t > 2σ2(1 + 4s)(rk − rt)(1− ζn) log pn

}
⊂ {Rt −Rk∨t > 2σ2(1 + 2s)(rk − rt) log pn} ,

and consider the union of such events V (d) := ∪{k:rk=d,k∈M3}B(k). Similar to (2.19),

for d > K|t|, and s = δ/8, we have

P [ V (d) ] ≤ P
[
∪{k:rk=d} {Rt −Rk∨t > 2σ2(1 + 2s)(rk − rt) log pn}

]
≤ c′p

−(1+s)(d−rt)
n pdn

≤ c′p
−(1+w′)d
n pdn = c′ p−w

′d
n ,

where the inequality (1 + s)(d − rt) > (1 + w′)rk holds for some w′ > 0, because

(d− rt)/d > (K− 1)/K > 1/(1 + δ/8), which implies that (1 + s)(d− rt) > rk. Then,

P
[
∪{d>K|t|}V (d)

]
≤ p

−w′K|t|
n → 0, as n→∞.
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Restricting our attention to the high probability event ∩{d>rt}V (d)c, with probability

at least 1− exp{−w′K|t| log pn} → 1, we have

∑
k∈M3

BF (k, t) �
∑
k∈M3

(
p1+δ
n ∨

√
n
)−(rk−rt) (λnm)−|t∧k

c|/2s
(|k|−|t|)
n p

(1+4s)(rk−rt)
n

�
∑
k∈M3

(
pδ−4s
n ∨

√
np−1−4s

n

)−(rk−rt) (λnm)−|t|/2 s
(|k|−|t|)
n

�
(
p
−δ/2
n ∧ p1+2s

n√
n

)(K−1)rt+1

p
κ|t|/2
n

∑
k∈M3

s
(|k|−|t|)
n

� ν
(K−1)rt+1
n p

δ(K−1)|t|/4
n (1 + sn)pn

∼ ν
(K−1)|t|/2
n

→ 0, as n→∞.

Hence, ∑
k∈M3

BF (k, t)
P−→ 0. (2.22)

2.11.2.4 Under-fitted models

We shall first prove that, if c ∈ (0, 1),

P
[
∪k∈M4{R̃k − R̃t < ∆n(1− c)}

]
→ 0, (2.23)

where ∆n is as defined in Condition 3.3.3. Because

R∗k −R∗k∨t = ‖(PXk∨t − PXk)Y ‖2
2

= ‖(PXk∨t − PXk)Xtβt + (PXk∨t − PXk)ε‖2
2

≥
(
‖(PXk∨t − PXk)Xtβt‖2 − ‖(PXk∨t − PXk)ε‖2

)2

,
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and by Condition 3.3.3, ‖(PXk∨t − PXk)Xtβt‖2 = ‖(I − PXk)Xtβt‖2 ≥
√

∆n, we have

for any w′ ∈ (0, 1),

P
[
∪k∈M4 {R∗k −R∗k∨t < (1− w′)2 ∆n}

]
≤ P

[
∪k∈M4 {‖(PXk∨t − PXk)ε‖2 > w′

√
∆n}

]
≤ P

[
‖Ptε‖2 > w′

√
∆n

]
≤ exp{−c′∆n}.

Since Rk ≥ R∗k, this implies that for w ∈ (0, 1), we have

P [∪k∈M4{Rk −Rk∨t < ∆n(1− w)}]

≤ P [∪k∈M4{R∗k −R∗k∨t < ∆n(1− w/2)]

+ P [∪k∈M4{R∗k∨t −Rk∨t < ∆nw/2}]

≤ 2 exp{−c′∆n} → 0.

(2.24)

For the last inequality, we use the fact that nτ 2
1nλ

n
m(R∗k∨t −Rk∨t) has exponential

tails, similar to (2.11.1). To see this, let Xk∨t = Un×rΛr×rV
′
r×|k∨t| be the SVD of Xk∨t,

where r = rank(Xk∨t). Then, Pk∨t = UU ′ is the projection matrix onto the column

space of Xk∨t, and hence

0 ≤ R∗k∨t −Rk∨t = Y ′U
(
Λ2(τ−2

1n I + Λ2)−1 − I
)
U ′Y

= τ−2
1n Y

′U(τ−2
1n I + Λ2)−1U ′Y

≤ (nτ 2
1nλ

n
m)−1Y ′UU ′Y.

Since U is a unitary matrix with rank at most (K + 1)|t|, we have

P [∪k∈M4{R∗k∨t −Rk∨t < −∆nw/2}] � exp{−w′nτ 2
1nλ

n
m∆n} p(K+1)|t|

n

� exp{−p2+δ
n ∆n + (K + 1)|t| log pn}

� exp{−c′∆n}.
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Due to (2.24), Lemma 2.11.2 & 2.11.3, for 0 < c = 3w < 1, we have

P
[
∪k∈M4{R̃k − R̃t < ∆n(1− c)}

]
≤ P

[
∪k∈M4{R̃k − R̃k∨t < ∆n(1− 2w)}

]
+ P

[
∪k∈M4{R̃k∨t − R̃t < −∆nw}

]
≤ P [∪k∈M4{Rk −Rk∨t < ∆n(1− w)}] + P

[
∪k∈M4{Rt −Rk∨t > w2∆n}

]
≤ exp{−c′∆n}+ P

[
∪k∈M4R

∗
t −R∗k∨t > w2∆n

]
+ P

[
Rt −R∗t > w2∆n

]
≤ P

[
χ2
K|t| > w2∆n

]
+ 2 exp{−c′∆n}

≤ 3 exp{−c′∆n} → 0, uniformly in k ∈M4.

By restricting to the event Cn :=
{
R̃k − R̃t ≥ ∆n(1− c),∀k ∈M4

}
, which has

P (Cn) ≥ 1− 3 exp{−c′∆n}, we have due to Condition 3.3.3,

∑
k∈M4

BF (k, t) �
∑
k∈M4

(nτ 2
1nλ

n
m)|t|/2 (λnm)−|t|/2 s|k|−|t|n exp

{
− 1

2σ2
(R̃k − R̃t)

}
�
∑
k∈M4

(
p2+3δ
n ∨ n

)|t|/2
p
δ|t|/2
n s

|k|−|t|
n exp {−∆n(1− c)/2σ2}

� exp
{
− 1

2σ2

(
∆n(1− c)− σ2|t| log

(
p2+3δ
n ∨ n

)
− σ2|t|(2 + δ) log pn

)}
� exp

{
− 1

2σ2 (∆n(1− c)− w′γn)
}
→ 0,

where w′ ∈ (0, 1), and c < 1− w′. Therefore, we have

∑
k∈M4

BF (k, t)
P−→ 0. (2.25)

Now, by combining (2.16), (2.21), (2.22) and (2.25), we get
∑

k 6=tBF (k, t)
P−→ 0,

which implies Theorem 2.4.1.
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2.11.3 Proof of Theorem 2.4.2

The posterior of Z in this case is obtained by integrating out σ2 along with β from

the joint posterior in (2.9), that is,

P (Z | Y ) ∝ Qks
|k|
n

(
Y ′Y − β̃′(Dk +X ′X)β̃ + α2

)−(n2 +α1)
. (2.26)

Due to Lemmas 2.11.1 & 2.11.2, we obtain

P (Z=k|Y )
P (Z=t|Y )

� (nτ 2
1nλ

n
m(1− φn))

−(r∗k−rt)/2 (λnm)−|t|/2 s
|k|−|t|
n

(
R̃k+α2

R̃t+α2

)−(n2 +α1)
.

Next define

ρn := R̃t+α2

nσ2 − 1.

We shall now show that ρn = oP (1). Due to Lemmas 2.11.2 & 2.11.3, we have

R∗t (1−ξn)+α2

nσ2 − 1 ≤ ρn ≤ R∗t+α2

nσ2 +
Rt−R∗t
nσ2 − 1.

Therefore, for ε > 2ξn → 0,

P (|ρn| > 2ε) ≤ P
[∣∣∣ R∗tnσ2 − 1

∣∣∣ > ε
]

+ P [Rt −R∗t ≥ εnσ2]

≤ 2 exp(−c′n),

(2.27)

due to Lemma 2.11.3. This implies

P (Z=k|Y )
P (Z=t|Y )

� (nτ 2
1nλ

n
m(1− φn))

−(r∗k−rt)/2 (λnm)−|t∧k
c|/2 s

|k|−|t|
n(

1 + (R̃k − R̃t)/n(1 + ρn)σ2
)−(n2 +α1)

,
(2.28)

where ρn satisfies (2.27).

We will now consider only the models of dimension at most m∗n = |t|+wn/ log pn,

with w = δ/8(1 + δ)2, and consider the subsets of models M∗
u := Mu ∩{k : rk ≤ m∗n},
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for u = 2, 3, 4. We first define xn := (rk − rt) log pn/n < δ/8(1 + δ)2, and note that

for s < δ/4,

tn := − log(1− 2(1 + s)xn) < 2(1+s)xn
1−2(1+s)xn

< 2(1 + δ/2)xn.
(2.29)

Consider ε̃ small such that (1+2s)(1− ε̃) > (1+s). Restricting to the high probability

event {∪{d>rt}U(d)} ∩ {|ρn| < ε̃}, and proceeding in the similar way as in Section

2.11.2.2, we obtain due to (2.28) & (2.29),

∑
k∈M∗2

P (Z=k|Y )
P (Z=t|Y )

≤
∑
k∈M∗2

(p1+δ
n ∨

√
n)−(rk−rt) s

(|k|−|t|)
n exp

{(
n
2

+ α1

)
tn
}

�
∑
k∈M∗2

(p1+δ
n ∨

√
n)−(rk−rt) s

(|k|−|t|)
n p

−(1+δ/2)(rk−rt)
n

∼ νn → 0, as n→∞.

This, together with the proof for large models in Section 2.11.2.3, imply

∑
k∈M∗2∪M∗3

P (Z=k|Y )
P (Z=t|Y )

P−→ 0.

Now, we consider the models in M4. If ∆n = o(n), similar to the proof in Sec-

tion 2.11.2.4, we have

∑
k∈M∗4

P (Z=k|Y )
P (Z=t|Y )

�
∑
k∈M∗4

(
p2+3δ
n ∨ n

)|t|/2
p
δ|t|/2
n s

(|k|−|t|)
n

(
1 + R̃k−R̃t

n(1+ρn)σ2

)−(n2 +α1)

�
(
p2+3δ
n ∨ n

)|t|/2
p
|t|(1+δ/2)
n exp

{
− (1−c)∆n

2σ2(1+ε̃)

}
� exp

{
− 1

2σ2 (∆n(1− c′)− γn)
}

→ 0, as n→∞.

Also, if ∆n ∼ n, by taking ε̃ < 1/2, we have

∑
k∈M∗4

P (Z=k|Y )
P (Z=t|Y )

�
(
p2+3δ
n ∨ n

)|t|/2
p

(1+δ)|t|
n

(
1 + ∆n(1−c′)

4nσ2

)−(n2 +α1)

� (pn ∨ n)(2+3δ)|t| e−w
′n → 0.
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Hence Theorem 2.4.2 is proved.

2.11.4 Proof of Lemma 2.6.1

Proof. The rows of Xk are n independent sub-Gaussian random isotropic random

vectors in R|k|. Note that |k| ≤ mn implies |k| = o(n). Due to Theorem 5.39 of

Vershynin (2012), with probability at least 1− 2 exp(−c s), we have

φmin

(
X′kXk
n

)
>

(
1− C

√
|k|
n
−
√

s
n

)2

, (2.30)

where c and C are absolute constants that depend only on the sub-Gaussian norms

of the rows of the matrix Xk.

Let us fix s = n(1 − φ) for some φ > 0, and define the event given by Equa-

tion (2.30) as Ak. We then have P [Ack] < 2 exp(−c(1 − φ)n) for all k. By taking an

union bound over {k : |k| ≤ mn}, we obtain

P [∪|k|≤mnAck] ≤ pmnn exp(−c(1− φ)n)

= exp
{

n
2+ν
− c(1− φ)n

}
→ 0,

if ν > ( 1
c(1−φ)

− 2). Therefore, in the event ∩|k|≤mnAk, whose probability goes to 1,

we have φmin (X ′kXk/n) ≥ φ2/4−O(
√
mn/n) > 0, for all k.
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CHAPTER III

Scalable and Consistent Variable Selection for

High Dimensional Logistic Regression

3.1 Introduction

With the increased ability to collect and store large amounts of data, we have

the opportunities and challenges to analyze data with a large number of covariates

or features per subject. When the number of covariates in a regression model is

greater than the sample size, the parameter estimation problem becomes ill posed,

and variable selection is usually a natural first-step. There have been extensive studies

on variable selection in high dimensional settings, especially since the advent of Lasso

Tibshirani (1996b), an L1 regularized regression method for variable selection. Other

penalization methods for sparse model selection include smoothly clipped absolute

deviation (SCAD) Fan and Li (2001), adaptive Lasso Zou (2006), minimum concave

penalty (MCP) Zhang (2010), and many variations of such methods. Though many of

these methods are first introduced in the context of linear regression, their theoretical

properties and optimization methods for logistic regression and other generalized

linear models (GLM) have also been studied. van de Geer S. A. (2008) proved oracle

inequalities for L1 penalized high dimensional GLM, whereas the oracle properties

of Fan and Peng (2004) also hold for GLM. Friedman et al. (2008) and Breheny
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and Huang (2011) proposed coordinate descent algorithms for convex and nonconvex

penalized regression methods, respectively. Park and Hastie (2007) and Huang and

Zhang (2012) studied other optimization approaches for L1 penalized GLM. The

computational complexity of these algorithms typically grows linearly in p.

The literature on high dimensional Bayesian variable selection has been focus-

ing mostly on linear models, but most techniques generalize, with some efforts, to

logistic regression. It has been understood that most penalization methods have

Bayesian interpretations, because all the methods share the basic desire of shrinkage

towards sparse models. We refer to Bhattacharya et al. (2014); Johnson and Rossell

(2012); Park and Casella (2008); Ročková and George (2014) for some recent work on

Bayesian shrinkage. An advantage of Bayesian methods for variable selection is that

Markov Chain Monte Carlo (MCMC) techniques can be used to explore the posterior

distributions, which often offer a more informative approach to model selection than

the corresponding penalization method with a highly non-convex optimization prob-

lem. For instance, the methods proposed recently by Liang et al. (2013), Narisetty

and He (2014), and Shen et al. (2012) are similar to the L0 penalty, which is generally

considered to be desirable for model selection consistency.

It is of great importance to address the following two issues related to Bayesian

model selection methods. The first one is theoretical ability in handling high dimen-

sional covariates, especially when p is greater than n. The Bayesian model selection

consistency has been examined only very recently in the cases of p > n. The other

issue is its computational complexity for large p problems. While optimization algo-

rithms with the complexity that is linear in p are usually available to solve the pe-

nalization problems, many of the existing Bayesian methods that use non-degenrate

priors require repeated sampling of a p-dimensional variate. Drawing from a p-variate

normal distribution with a non-sparse covariance matrix requires operations in the

order of at least p2. In this paper we attempt to cross both hurdles by developing
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a new pseudo-Bayesian model selection method that has strong selection consistency

when p grows sub-exponentially with n but avoids the needs to use operations of

order p2 in each iteration of an MCMC algorithm. Sampling a p-dimensional variate

may not be required if one uses a point mass spike prior similar to what is used by

Hans et al. (2007) and Liang et al. (2013). The sampling methods for these methods

are analogous to stepwise selection, but our proposed method in this paper allows for

a more general move in its MCMC iterations. We defer further discussion to Section

3.3.2.

We adopt the well-known spike and slab priors on the regression coefficients. Gaus-

sian spike and slab priors have a special place in linear models because of the con-

jugacy of these priors George and McCulloch (1993). Even though the conjugacy is

not preserved for logistic regression, we find that the t approximation to the logistic

function proposed in Albert and Chib (1993) and the normal scale-mixture repre-

sentation of the t distribution make the standard Gibbs sampler computationally

convenient. The Gibbs sampler however requires sampling from a p-variate normal

distribution with a non-sparse covariance matrix, which is not so scalable for large p.

A major contribution of this paper is our proposal to replace the covariance matrix in

the Gibbs sampler by a sparse one so that no sampling of high dimensional variates

will be required. The resulting algorithm is called Skinny Gibbs, because we use a

skinny covariance matrix in the Gibbs algorithm. We might view Skinny Gibbs as

an approximation to the usual Gibbs sampler, but more importantly, we show that

Skinny Gibbs is indeed a Gibbs sampler on its own with a different stationary dis-

tribution, but there is no sacrifice on the strong model selection consistency that we

would expect from the usual Gibbs sampler. Before we move on, we would like to

mention that the proposed model selection method is strictly speaking not a Bayesian

method, because we are using priors that depend on the sample size and the number

of variables. For the lack of better terminology, we continue to use the misnomer in
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this article. For a discussion of the Bayesian viewpoint on model selection, we refer

to Kass and Raftery (1995); O’hara and Sillanpaa (2009).

The rest of the paper is organized as follows. In Section 3.2, we describe our model

setup, including the prior distributions and the standard Gibbs sampler, and then

propose Skinny Gibbs as a new model selection algorithm. In Section 3.3, we present

the strong selection consistency results for the proposed method. In Section 3.4,

we compare the proposed Skinny Gibbs approach to model selection with a number

of leading penalization methods in simulated settings. In Section 3.5, we present

empirical studies on two examples to demonstrate how the proposed methodology

works with real data. We provide a conclusion in Section 3.9. In Section 3.8, proofs for

all the theoretical results are given. In the supplementary materials, we demonstrate

stability and convergence of the Skinny Gibbs chain, and provide a small study to

show time improvement of Skinny Gibbs from the standard Gibbs sampler.

3.2 Variable selection for logistic regression

Our data contains an n× 1 binary response vector denoted by E = (E1, · · · , En)T

and an n× pn design matrix X. We use pn for the model dimension to emphasize its

dependence on the sample size n. We assume that the columns of X are standardized

to have zero mean and unit variance. We use xi to denote the ith row of X, which

contains covariates for the ith response Ei. Moreover, XA will be used to denote the

n × |A| dimensional submatrix of X containing the columns indexed by A, and |A|

is the cardinality of A. Logistic regression models the conditional distribution of E

given X with the logit link, that is,

P [Ei = 1|xi] =
exiβ

1 + exiβ
, i = 1, · · · , n, (3.1)
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for some unknown parameter β ∈ Rpn . The logistic model is one of the most widely

used statistical models for binary outcomes. This paper attempts to address the

problem of variable selection when the number of predictors pn is large. If pn is

large relative to n, even the estimation problem is ill posed without any further

assumptions on the model parameters. We work under the assumption that there is

a true parameter vector β that is sparse in the sense that it has only a small number

of non-zero components. Even under this assumption, it is a challenge to find the

active predictors in the model.

In the Bayesian variable selection literature, spike and slab priors on β are com-

monly used. The idea is to introduce binary latent variables Zj for the j-th compo-

nent of β, which indicates whether the jth covariate is active (i.e., having a nonzero

coefficient). Then, priors on βj given Zj are specified as

βj | Zj = 0 ∼ π0(βj); βj | Zj = 1 ∼ π1(βj), (3.2)

where π0 and π1 are called the spike and slab priors, respectively. We refer to Mitchell

and Beauchamp (1988), George and McCulloch (1993), Ishwaran and Rao (2005) and

Narisetty and He (2014) for further details. For linear regression with Gaussian errors,

both the spike and slab priors are often taken to be Gaussian with a small and a large

variance, respectively. An advantage of this approach for linear regression is that

the conditionals of the Gibbs sampler are standard distributions due to conjugacy of

those priors. Though they are not conjugate for the logistic model, the well-known

normal scale mixture representation of the logistic distribution due to Stefanski (1991)

enables us to derive the conditional distributions used in the Gibbs sampler. More

specifically, let Yi follow the logistic distribution with location parameter xiβ, and

Ei = 1{Yi>0} in distribution. Then, Yi can be equivalently represented as

Yi|si ∼ N(xiβ, s
2
i ), si/2 ∼ FKS,
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where FKS is the Kolomogorov-Smirnov distribution whose CDF is given by

G(σ) = 1− 2
∞∑
n=1

(−1)n+1 exp(−2n2σ2). (3.3)

By introducing the latent variables Yi, we can implement the usual Gibbs sampler for

logistic regression with simple conditionals. We will however need to draw si’s from

their conditional distributions, which we shall discuss in Section 3.2.2.

To achieve appropriate shrinkage and ensure model selection consistency, we con-

sider the priors in Equation (3.2) to be sample-size dependent and a prior on Zj to

induce sparsity on the model space.

3.2.1 Shrinking and diffusing priors

The priors on the binary latent variables Zj and the corresponding regression

coefficients βj are given by

βj | Zj = 0 ∼ N(0, τ 2
0,n), βj | Zj = 1 ∼ N(0, τ 2

1,n)

P (Zj = 1) = 1− P (Zj = 0) = qn,
(3.4)

for j = 1, · · · , pn (with independence across different j), where the constants τ 2
0,n, τ

2
1,n

and qn are further specified below. Broadly speaking, we consider the settings where

τ 2
0,n → 0 , and τ 2

1,n → ∞ as n → ∞. The specific rates for τ 2
0,n, τ 2

1,n are given by

Condition 3.3.4. The intuition behind such choices is that the inactive covariates

will be identified with zero Zj values, where small values of βj relative to τ 2
0n are

truncated to zero. The diverging parameter τ 2
1,n forces the inactive covariates to be

classified under Zj = 0 because the prior probability around zero becomes negligible

as n→∞. Finally, we shall use qn ∼ p−1
n to encourage the models to be sparse, i.e.,

it bounds the apriori size of |Z| :=
∑pn

j=1 Zj to be small, where Z denotes the vector

of Zj. The posterior probabilities of the binary variables Zj will be used to select the
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active covariates.

In the linear regression case, Narisetty and He (2014) argued that the prior spec-

ification similar to (3.4) implies a posterior that is asymptotically similar to the L0

penalized likelihood. More specifically, when nτ 2
0,n = o(1), the prior parameters imply

a penalty in the order of log(
√
nτ1,nq

−1
n ) for each additional covariate added in the

model. This is the reason for allowing these prior parameters to change with the

sample size n so as to obtain the appropriate amount of penalization. In this paper,

we propose a fast and scalable Gibbs sampler that preserves the similarity to the L0

penalty and achieves the strong selection consistency (see Section 3.3).

3.2.2 Gibbs sampler

As a prelude to our proposed Skinny Gibbs sampler, we first present the usual

Gibbs sampler corresponding to (3.4), which will provide motivation for our proposal

of Skinny Gibbs. In the rest of the paper, all the distributions are conditional

on X but we suppress it in the notations for convenience. By considering

Ei =

 1 if Yi ≥ 0

0 if Yi < 0
(3.5)

Yi
ind∼ N(xiβ, s

2
i ), si/2

ind∼ FKS,

together with the priors in (3.4), the joint posterior of β, Z, Y and

W = Diag (s−2
1 , ..., s−2

pn ) (3.6)

is given by

f(β,W, Y, Z | E) ∝
∏n

i=1 φ (Yi, xiβ, s
2
i )1{Ei = 1{Yi ≥ 0}} g(si)

×
∏pn

j=1 ((1− qn)π0(βj))
1−Zj (qnπ1(βj))

Zj ,
(3.7)
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where π0(x) = φ(x, 0, τ 2
0,n), π1(x) = φ(x, 0, τ 2

1,n), φ(x, µ, σ2) is the normal density

function with mean µ and variance σ2 evaluated at x, and g(σ) = (d/dσ)FKS(σ/2) is

the density function of two times the KS variable.

The conditional distributions of the Gibbs sampler can be derived from (3.7) as

follows. The conditional distribution of β is

f(β | W,Y, Z,E) ∝ exp

{
−1

2
(β′X ′WXβ − 2β′X ′WY )

}
exp

{
−1

2
β′Dzβ

}
,

where Dz = Diag(Zτ−2
1,n + (1− Z)τ−2

0,n). That is,

β | (W,Y, Z,E) ∼ N
(
(X ′WX +Dz)

−1X ′WY, (X ′WX +Dz)
−1
)
. (3.8)

The conditional distributions of Yi are independent with the marginals given by

f(Yi | β,W,Z,E) ∝


φ (Yi, xiβ, s

2
i )1{Yi > 0} if Ei = 1,

φ (Yi, xiβ, s
2
i )1{Yi < 0} if Ei = 0,

(3.9)

where 1{·} denotes the indicator function. The conditional distributions of Zj are

independent (across j) and given by

P (Zj = 1 | β,W, Y,E) =
qnφ(βj, 0, τ

2
1,n)

(1− qn)φ(βj, 0, τ 2
0,n) + qnφ(βj, 0, τ 2

1,n)
. (3.10)

The conditional distribution of W is described in terms of the independent distri-

butions of si as

f(si | β, Y, Z,E) ∝ φ(Yi, xiβ, s
2
i ) g(si). (3.11)

In this Gibbs sampler, sampling from the distribution (3.11) is not as straightfor-

ward as the others. Holmes and Held (2006) proposed a rejection sampling algorithm.

Albert and Chib (1993) noted that the univariate logistic density can be approximated
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well by a t-density. O’Brien and Dunson (2004) later used the t-approximation of the

logistic density for multivariate logistic regression. We simply adopt those ideas to

proceed as follows.

Let us denote the t-distribution that approximates the KS distribution by T =

w tν , i.e., t with ν degrees of freedom and scale parameter w. Due to the Gaussian

scale mixture representation of the t-distribution, it can be equivalently represented

as

T |φ ∼ N(0, φ2), φ2 ∼ w2IG (ν/2, ν/2) , (3.12)

where IG is the inverse gamma distribution. Following O’Brien and Dunson (2004),

we take w2 = π2(ν−2)/3ν and ν = 7.3 so that the resulting distribution of T is nearly

indistinguishable from the KS distribution. Using this approximation, the sampling

of (3.11) can be done using an inverse Gamma distribution.

However, when pn is large, the real bottleneck with the usual Gibbs sampler

lies in its need to sample from the pn-variate normal distribution for β given by

(3.8). For linear regression, Guan and Stephens (2011) avoided such sampling by

integrating β out and devise an MCMC method that samples Z directly. However,

this technique does not seem to generalize easily to logistic regression. A direct

sampling scheme would require handling a pn×pn covariance matrix of general forms,

which is expensive in both CPU and memory. Even if this task is decomposed into

componentwise sampling by a further Gibbs iteration, it requires operations in the

order of p2
n, making Bayesian model selection algorithm less competitive with the

penalty based optimization methods. Moreover, the complexity of this computation

is not reduced even if the model size (|Z|) in each iteration is small.

3.2.3 Skinny Gibbs algorithm

We propose the Skinny Gibbs algorithm as a simple yet effective modification of

the Gibbs sampler to avoid the computational complexity in the case of large pn. The
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idea is to split β into two parts in each Gibbs iteration, corresponding to the “active”

(with the current Zj = 1) and “inactive” (with the current Zj = 0) sub-vectors.

The active part has a low dimension, and is sampled from the multivariate normal

distribution. The inactive part has a high dimension, but we simply sample it from a

normal distribution with independent marginals. More specifically, the Skinny Gibbs

sampler proceeds as follows, after an initialization.

(a) Decompose β = (βA, βI), where βA and βI contain the components of β corre-

sponding to Zj = 1 and Zj = 0, respectively. Similarly let X = [XA, XI ]. Then,

generate

βA | (W,Y, Z,E) ∼ N(mA, V
−1
A ), βI | (W,Y, Z,E) ∼ N(0, V −1

I ),

where VA = (X ′AWXA + τ−2
1n I), mA = V −1

A X ′AWY , and VI = Diag (X ′IXI +

τ−2
0n I) = (n+ τ−2

0n )I. Note that the dimension of VA is only |Z| .

(b) Generate Zj (j = 1, · · · , pn) sequentially based on

P [Zj = 1 | Z−j, β,W, Y,E]

P [Zj = 0 | Z−j, β,W, Y,E]

=
qnφ(βj, 0, τ

2
1,n)

(1− qn)φ(βj, 0, τ 2
0,n)
× exp

{
βjX

′
jW (Y −XCjβCj) +

1

2
X ′j(I −W )Xjβ

2
j )

}
,

where Z−j is the Z vector without the jth component, and Cj is the index set

corresponding to the active components of Z−j, i.e., Cj = {k : k 6= j, Zk = 1}.

(c) The conditional distribution of Y is changed to

f(Yi | β,W,Z,E) ∝


φ (Yi, xAiβA, s

2
i )1{Yi > 0} if Ei = 1,

φ (Yi, xAiβA, s
2
i )1{Yi < 0} if Ei = 0,

63



(d) The conditional distribution of si is

f(si | β, Y, Z,E) ∝ φ(Yi, xAiβA, s
2
i ) g(si).

In (a), the update of β is changed such that the coefficients corresponding to Zj = 1

(denoted by βA) and those corresponding to Zj = 0 (denoted by βI ) are sampled

independently. Furthermore, the components of βI are updated independently. This

is in contrast with the usual Gibbs, where the entire β is updated jointly. It is

worth noting that the precision matrix of βA is just the corresponding sub-matrix of

the precision matrix of β, which is Vz = (X ′WX + Dz). Essentially, Skinny Gibbs

sparsifies the precision matrix Vz as
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Vz =

X ′AWXA + τ−2
1n I X ′AWXI

X ′IWXA X ′IWXI + τ−2
0n I


ww�X ′AWXA + τ−2

1n I 0

0 (n+ τ−2
0n )I

 .

This modification in step (a) alters the Gibbs sampler in such a non-trivial way that

the correlation structure among the coefficients βj is lost. Without any compensation,

the modified sampler would not converge to the right stationary distribution. The

step (b) of the proposed Skinny Gibbs is designed to compensate for the loss in step

(a), but the computational complexity in step (b) is minimal. In the next section, we

provide theoretical justification for the Skinny Gibbs sampler.

3.3 Theoretical results

In this section, we provide theoretical results about the asymptotic properties of

Skinny Gibbs. We show that Skinny Gibbs has a stationary posterior distribution

that preserves the strong model selection consistency. We first introduce the following

notations.

Notations: We use k (and s) to denote a generic model and t to denote the true

model. A model is treated both as a pn × 1 binary vector similar to Z and as the

set containing the active covariates, but this will be clear depending on the context.

The size of the model k is denoted by |k|. For any pn × 1 vector v, v(k) is used to

denote the |k| × 1 vector containing the components of v corresponding to model k.

We denote the true regression vector as β0(t), and for any k ⊃ t, β0(k) denotes the

|k|×1 vector having β0(t) for t and zeroes for k∩ tc. For sequences an and bn, an ∼ bn
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means an
bn
→ c for some c > 0, bn � an (or an � bn) means bn = O(an), and bn � an

(or an ≺ bn) means bn = o(an).

The log-likelihood for a model k is

Ln(β(k)) :=
n∑
i=1

Ei logF (xiβ(k)) + (1− Ei) log(1− F (xiβ(k))), (3.13)

where F (.) is the cdf of the logistic distribution. Let

sn(β(k)) =
∂Ln(β(k))

∂β(k)
=

n∑
i=1

(Ei − µi(β(k)))xi, (3.14)

with µi(β(k)) = exp{xiβ(k)}
1+exp{xiβ(k)} . The negative Hessian of Ln(β(k)) is

Hn(β(k)) = − ∂2Ln(β(k))

∂β(k)∂β(k)′
=

n∑
i=1

σ2
i (β(k))xix

′
i, (3.15)

where σ2
i (·) = µi(·)(1 − µi(·). Note that in our notations, xi and X are restricted

to the model under consideration, even though it is not explicitly displayed. That

is, xi in Equations (3.14) and (3.15) is a |k| × 1 vector containing the components

corresponding to model k. Therefore, the dimension of sn(β(k)) is |k|× 1 and that of

Hn(β(k)) is |k| × |k|. We shall also use µi and σ2
i in place of µi(β0(t)) and σ2

i (β0(t)),

respectively, for the sake of simplicity.

We first prove the following to provide the posterior that corresponds to the Skinny

Gibbs sampler.

Theorem 3.3.1. The joint posterior of β, Z, Y and W corresponding to the Skinny
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Gibbs algorithm is given by

f(β,W, Y, Z = k | E)

∝ |W |1/2 exp
{
−1

2
(Y −Xβ(k))′W (Y −Xβ(k))

}
v
−|k|
n

×
∏
i

g(si) exp
{
−1

2
(β′Dkβ + nβ(kc)′β(kc))

}
1{Ei = 1{Yi ≥ 0}},

(3.16)

where W = Diag (s−2
1 , ..., s−2

pn ), Dk = Diag(kτ−2
1n + (1 − k)τ−2

0n ) and vn = τ1n(1 −

qn)/(qnτ0n).

Remark 7. The posterior (3.16) suggests that with everything else the same, a unit in-

crease in the model size (|k|) reduces the posterior by a multiple of v−1
n = (qnτ0n)/τ1n(1−

qn). This hints at the following: (a) the similarity of the posterior to L0 penalty as

discussed in Subsection 3.3.1, and (b) the reason for allowing the prior parameters

to depend on n (see Condition 3.3.4) so that the shrinkage implied by v−1
n is at an

appropriate level.

We now provide the conditions assumed for proving strong selection consistency

property of Skinny Gibbs. By strong selection consistency, we mean that the posterior

probability of the true model converges to one as sample size increases to infinity, as

used in Johnson and Rossell (2012) and Narisetty and He (2014).

Condition 3.3.1 (On Dimension pn). pn →∞ and log pn = o(n) as n→∞.

Condition 3.3.2 (On Regularity of the Design).

(a) The predictors are bounded, that is, max{|xij|, 1 ≤ i ≤ n, 1 ≤ j ≤ pn} ≤ C, for

some 0 < C <∞;

(b) for some fixed 0 ≤ d < d′ ≤ 1,

0 < λ ≤ min
k:|k|≤mn+|t|

λmin (n−1Hn(β0(k)))

≤ max
k:|k|≤mn+|t|

λmax (n−1X ′kXk)) ≤ C2
(

n
log pn

)d (3.17)
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where, λmin(·), λmax(·) are the minimum and maximum eigenvalues of their ar-

guments respectively,

mn =

( n

log pn

) 1−d′
2

∧ pn

 ,

and

(c) for any possible model k with |k| ≤ mn + |t| and any u ∈ Rn in the space spanned

by the columns of Σ1/2Xk, there exists δ∗ > 0 and N(δ∗) such that

E

[
exp{u′Σ−

1
2 (E− µ)}

]
≤ exp

{
(1 + δ∗)u′u

2

}
,

for any n ≥ N(δ∗), where E denotes expectation over E (conditional on the

design).

Condition 3.3.3 (On True Model and Signal Strength). We assume that there exists

constant c > 1 such that

c|t| ≤ mn, and min
1≤i≤|t|

|β0i(t)| ≥
√
c|t|Λc|t| log pn

n
,

where β0(t) = (β0i(t))
|t|
i=1 is the nonzero coefficients of β under the true model, and

Λc|t| := max
k:|k|≤c|t|

λmax (n−1X ′kXk).

Condition 3.3.4 (Prior Parameters). The prior parameters τ 2
0n, τ 2

1n and qn are such

that for some δ > δ∗,

nτ 2
0n = o(1), nτ 2

1n ∼ (n ∨ p2+2δ
n ), qn ∼ p−1

n .

Remark 8. The upper bound on the maximum eigenvalue in Condition 3.3.2 (b) is al-

ways satisfied if 1/3 < d < d′. This is because, λmax (n−1X ′kXk) ≤ Trace (n−1X ′kXk) ≤

C2|k| ≤ C2(n/ log pn)d holds for any |k| ≤ mn+ |t| when 1/3 < d < d′. This condition

is of course weaker than the bounded maximum eigenvalue condition as assumed in
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Bondell and Reich (2012). If the maximum eigenvalue here is bounded, we have the

case d = 0, and mn can be almost as large as (n/log pn)1/2.

The lower bound in Condition 3.3.2 (b) is essentially a restricted eigenvalue con-

dition for L0−sparse vectors. Restricted eigenvalue (RE) conditions are routinely

assumed in high-dimensional theory to guarantee some level of curvature of the ob-

jective function in lower dimensions. The RE condition with L1−sparse vectors is as-

sumed for L1 penalized problems for estimation consistency (see Bickel et al. (2009),

Section 6.2.3 of Bühlmann and van de Geer (2011)). The intuition behind the L0-

sparse eigenvalue condition for Skinny Gibbs is attributable to the similarity between

Skinny Gibbs and the L0 type penalization as discussed in Section 3.3.1. The lower

bound in Condition 3.3.2 (b) is satisfied by sub-Gaussian random design matrices

with high probability. A formal statement about this is stated below and the proof

is given in Section 3.8.

Lemma 3.3.1. Let Xn×p be a random design matrix with rows i.i.d. from a sub-

Gaussian distribution with covariance matrix Σ. Let the principal submatrices of

Σ of order mn + |t| have minimum eigenvalues bounded (away from zero). Also, as-

sume that β0(t) is a |t| × 1 vector satisfying P [|x′iβ0(t)| ≥ M ] ≤ w < 1, for some

M > 0, where xi is the ith row of X (this is a weaker version of the condition that all

the log-odds are bounded as assumed in Bühlmann and van de Geer (2011)). Then,

we have

0 < λ ≤ min
k:|k|≤mn+|t|

λmin
(
n−1Hn(β0(k))

)
.

Proof. Proof is given in the Appendix.

Condition 3.3.2 (c) is not really a restriction, because such a δ∗ > 0 always exists

due to the sub-Gaussianity of Σ−
1
2 (E−µ). Also note that for typical random designs,

the variable u′Σ−
1
2 (E−µ)/||u|| is asymptotically distributed as N(0, 1), so Condition

3.3.2 (c) is expected to hold for a small positive constant δ∗. In Condition 3.3.3, the
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upper bound on the true model size, and the minimal signal strength match with

those for penalized methods such as Lasso when d = 0, but impose slightly stronger

conditions when d > 0. For the screening property of Lasso to hold, Corollary 7.6 of

Bühlmann and van de Geer (2011) assumes the minimum signal to be at least in the

order of
√
|t| log pn/n and the true model size |t| = O(

√
n/ log pn).

Theorem 3.3.2. Under Conditions 3.3.1 – 3.3.4, we have

P [Z = t | (E, and |Z| ≤ mn)]
P−→ 1, as n→∞. Moreover,

∑
k 6=t;|k|≤mn

P [Z = k | E]

P [Z = t | E]
≤ C exp{−ε log pn} → 0, for some C, ε > 0.

The strong selection consistency is a stronger property than the usual Bayes factor

consistency for large pn. As Johnson and Rossell (2012) argued (see proof of Theorem

2 there) that for large pn > n1/2+ε, the posterior of the true model relative to models

of a fixed size may also be very small, i.e., it is possible that
∑

k 6=t;|k|=|t|+1

P [Z=k|E]
P [Z=t|E]

→∞,

even under the Bayes factor consistency. This will make it difficult to identify the

active predictors based on a finite chain, because the posterior probability of the true

model can be close to zero, so that the ratios P [Z = k | E]/P [Z = t | E] are difficult

to estimate.

Remark 9. For the sake of convenience, we assume that the true model representation

t is unique. If multiple representations of the true model are available (due to the

existence of linearly dependent predictors) the result of Theorem 3.3.2 holds if t

represents the union of the true models representations.

Remark 10. Theorem 3.3.2 justifies the use of marginal posterior probabilities P [Zj |

E] for selecting the variables as long as our search of models is restricted to model

size of mn. This is useful in practice because we only need to estimate and store pn
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marginal posterior probabilities as opposed to dealing with posterior probabilities of(
pn
mn

)
models.

3.3.1 Connection with L0 penalization

In this section, we provide a discussion about the connection between L0 penal-

ization and the variable selection from Skinny Gibbs. Due to Theorem 3.3.1 and

Equation (3.54) in Section 3.8, the maximum a posteriori (MAP) estimate of the

model corresponding to Skinny Gibbs is equivalent to minimizing the following ob-

jective function.

B(k) := log

∫
β(k)

exp {Ln(β(k))} exp
{
− 1

2τ21n
β(k)′β(k)

}
dβ(k) + log (Qn,k/Qn,t) ,

(3.18)

where Qn,k = (n+ τ−2
0n )|k|/2 v

−|k|
n , where vn = τ1n(1− qn)/(qnτ0n) as before.

Following the proof of Theorem 3.3.2 (see Equation (3.57) and a similar argument

for the reverse inequality), we have the following inequality

c′(|k| − |t|) log(
√
nτ1,nq

−1
n ) ≤ B(k)− Ln(β̂(k)) ≤ C ′(|k| − |t|) log(

√
nτ1,nq

−1
n ),

for some 0 < c′ ≤ C ′ <∞. Therefore, we have

B(k) = Ln(β̂(k)) + ψn,k(|k| − |t|), (3.19)

where c′ log(n ∨ pn) ≤ ψn,k ≤ C ′ log(n ∨ pn), due to Condition 3.3.4 on τ1n and qn.

This implies that the MAP estimate can be (asymptotically) described as the model

corresponding to minimizing the following L0-like penalized objective function.

m(β) := Ln(β) + ψn,k (‖β‖0 − |t|), for β ∈ Rpn .
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Due to the bounds on ψn,k, any inactive covariate will be penalized in the order of

log(n ∨ pn) irrespective of the size of the coefficient, which is in the same spirit as

the L0 penalty. This is however not the case with the L1 penalty or SCAD penalty,

which are directly proportional to the magnitude of the coefficient in some interval

around zero.

3.3.2 Comparisons with existing Bayesian methods

Chen and Chen (2012) proposed the extended Bayesian Information Criterion

(EBIC)

EBIC(k) = −2Ln(β̂(k)) + |k|(log n+ 2γ log pn) (3.20)

for model selection, which is similar to the penalized log-likelihood given by (3.19).

The model selection consistency under EBIC is established by Chen and Chen (2012)

for γ > (1− 1
2κ

), where pn = O(nκ). For high dimensional problems, such an objective

function cannot be applied to all possible models. Even if we restrict ourselves to a

model of size m for a relatively small m, the number of possible models
(
p
m

)
could

be too large. The EBIC is typically used to choose models among a much smaller

number of candidate models. In the simulation comparisons in the next section, we

include the use of EBIC using an initial Lasso path as done in Chen and Chen (2012).

An alternative approach to Gaussian spike priors used in this paper is to take

point mass spike priors, i.e., βj | Zj = 0 ∼ δ0, the point-mass distribution at zero.

An apparent attraction of the point mass prior is that we no longer have to deal

with pn× pn matrix computations, if we can sample from the posterior of Zj without

βj. This can indeed be done in linear regression models, as shown in Guan and

Stephens (2011). Unfortunately, the posterior P (Z = k | E) does not have a closed

form for logistic regression, and approximations have to be used for sampling from

the posterior. In this direction, Hans et al. (2007) proposed a shotgun stochastic

search (SSS) algorithm based on a Laplace approximation to the posterior. Liang
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et al. (2013) proposed Bayesian subset regression (BSR) modeling using a stochastic

approximation Monte Carlo (SAMC) algorithm Liang et al. (2007) that aims to avoid

the potential local-trap problem for SSS by sampling a specified sub-regions of the

model space uniformly. Like Skinny Gibbs, these algorithms avoid p2
n operations

in each step of the iteration, but they are analogous to stepwise variable selection

whereas Skinny Gibbs allows more general updates of the model in every iteration.

For the SAMC algorithm to be competitive, the number of sub-regions used in the

method needs to increase with pn, making it less computationally competitive. Some

empirical comparisons of various methods are given in Section 3.4.

For the strong selection consistency we established here, the spike prior variance

τ 2
0n can be arbitrarily close to zero making the limiting case of τ 2

0n = 0 the same as the

point-mass prior for βj | Zj = 0. We note that Liang et al. (2013) used a point-mass

spike prior and a slab prior whose variance depends on the size of the model, and

showed strong selection consistency. However, the consistency result of Liang et al.

(2013) relied on a condition on the posterior distribution itself, which makes their

result indicative rather than confirmatory. In this sense, we hope that our theoretical

treatment also completes the strong selection consistency theory on point-mass priors

in high dimensional models.

3.3.3 Unbiasedness of Skinny Gibbs

Even though the posteriors of Z for both the usual Gibbs and Skinny Gibbs

algorithms concentrate at the true model asymptotically in a similar fashion, the

posteriors of β are different for these algorithms. For simplicity, let us consider

the linear regression case. Skinny Gibbs for linear regression would be obtained by

treating Y as observed and taking W to be equal to identity matrix in the Skinny

Gibbs algorithm of Section 3.2.3. Then, from the proof of Theorem 3.3.2, the posterior
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of β from Skinny Gibbs converges to

βt | Y ∼ N(mt, V
−1
t1 ), βtc | Y ∼ N(0, V −1

t0 ), (3.21)

where Vt1 = (X ′tXt + τ−2
1n I), mt = V −1

t1 X ′tY , and Vt0 = Diag (X ′tcXtc + τ−2
0n I). On the

other hand, for the usual Gibbs it is given by

β | Y ∼ N
(
(X ′X +Dt)

−1X ′Y, (X ′X +Dt)
−1
)
, (3.22)

where Dt = Diag(Zτ−2
1,n + (1 − Z)τ−2

0,n) as defined in Equation (3.2.2), with Z corre-

sponding to the true model. From the above equations, we can see that the posterior

of βt from Skinny Gibbs is (almost) equal to the distribution of the OLS estimator

given the covariates Xt (because τ−2
1n is negligible) and hence is (nearly) unbiased.

Moreover, βtc is also unbiased for zero. On the other hand, a stronger condition is

needed (such as τ 2
0nλmax(X

′X) = o(1)) for the posterior of usual Gibbs to have the un-

biasedness property. For this reason, for small samples we expect that Skinny Gibbs

would be more effective in identifying the true covariates whereas the usual Gibbs

would be slightly better in controlling the false positives. Our simulation results in

Section 3.4 also suggest the same.

3.4 Simulation study

In this section, we study the performance of the proposed method and compare

them with several existing methods by simulation studies. Let X denote the design

matrix whose first p1 columns correspond to the active covariates for which we have

nonzero coefficients, while the rest correspond to the inactive ones with zero coeffi-

cients. In all the simulations, we generate each row of X independently from a normal

distribution with a p-dimensional covariance matrix such that the correlation between
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any pair of active covariates is equal to ρ1, the correlation between an active covariate

and an inactive covariate is ρ2, and the correlation between any pair of inactive covari-

ates is ρ3. Given X, we sample Y from a logistic model P (Yi = 1|xi) = exiβ/(1+exiβ),

for i = 1, . . . , n. We fix n = 100, p1 = 4, and β = (1.5, 2, 2.5, 3, 0, 0, · · · , 0) in all our

simulations. We will specify the number of covariates p and the correlations ρ1, ρ2,

and ρ3 in the tables.

We report the results from the usual Gibbs sampler described in Subsection 3.2.2

(BASAD), and Skinny Gibbs (as a simplified version of BASAD), along with the

results from EBIC, Bayesian Subset Regression (BSR, Liang et al. (2013)) Adaptive

Lasso, SCAD, as well as MCP. For EBIC, we use the penalty coefficient γ = 1 and

initial path obtained using the package “glmpath” as suggested in Chen et al. (2008).

For BSR as well, we set the hyperparameter γ = 1. We use the R package “glmnet”

for Adaptive Lasso, and the package “ncvreg” for SCAD and MCP. For Adaptive

Lasso, the initial estimate of β is obtained from Lasso with the penalty parameter

of λ = 10−4. For all the penalization methods, BIC is used to select the tuning

parameters. For the BASAD and Skinny Gibbs, we have three parameters to choose:

τ 2
0n, τ 2

1n and qn. In all our empirical work, we use

τ 2
0n = 1

n
, τ 2

1n = max
(
p2.1n
100n

, 1
)
,

and we choose qn = P [Zi = 1] such that P [
∑pn

i=1 Zi = 1 > K] = 0.1, for a pre-

specified value of K. Our default value is K = max(10, log(n)). These choices are

very similar to the implementation of BASAD for linear models in Narisetty and He

(2014). The models for these methods are obtained by thresholding the marginal

posterior probabilities by 0.5. This model is referred to as the median probability

model by Barbieri and Berger (2004). The choice of 0.5 is a natural choice for the

threshold especially when the true model is unique. For the real data examples of
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Section 3.5, we investigate models of different sizes.

We will present the following model selection performance measures using 200

randomly generated datasets. Average True Positive (TP) is the average number

of active covariates chosen; Average False Positive (FP) is the average number of

inactive covariates chosen; The column Z = t gives the proportion of choosing the

true model exactly, while Z ⊃ t is the proportion of times the true model is included

in the chosen model; Finally, the column Z4 = t gives the proportion of times the

chosen model of size four is the true model, which gives an idea about how well a

method can order the active covariates ahead of the inactive ones.

In Table 3.1, we have four cases corresponding to the number of covariates p = 50

or 250, with a common correlation of ρ1 = ρ2 = ρ3 = 0 or 0.25. The results from

these cases show that BASAD and Skinny Gibbs, like other Bayesian model selection

methods, have much smaller false positives than non-Bayesian methods, and do not

lose much in terms of true positives. Overall, our proposed methods have higher

exact identification rate (Z = t) but none of the methods dominate others in all the

measures.

In our next simulation settings, we consider different values for ρ1, ρ2 and ρ3. We

consider (ρ1, ρ2, ρ3) = (0.10, 0.25, 0.50) and (ρ1, ρ2, ρ3) = (0.20, 0.40, 0.60) to see the

effects of higher correlations among inactive variables and between inactive and active

variables. From these results shown in Table 3.2, we observe that the performance of

all the methods deteriorates in comparison to the independent covariates case (Table

3.1) as expected. However, the effects of higher correlations on our methods are less

substantial in comparison to the other methods. For example, in Table 3.2, Z = t and

Z4 = t rates are clearly higher for BASAD and Skinny Gibbs than for the competing

methods. This can be attributed to the similarity of our methods with the L0 penalty,

whose performance would be less affected by the correlations between covariates, and

to the ability of Skinny Gibbs to perform broader search of the model space than
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EBIC.

In Figure 3.1, we plot the proportion of active covariates (out of the four active

ones) that are selected as a function of model sizes. Note that this plot does not

depend on tuning in the penalization methods and shows that Skinny Gibbs has the

largest proportion of active covariates across settings for model sizes less than or equal

to four. Adaptive Lasso and BSR are close competitors according to this measure. In

some cases, Adaptive Lasso and MCP have higher proportions for larger models but

Skinny Gibbs remains competitive. Though the average numbers of correctly chosen

covariates are similar for Skinny Gibbs and Adaptive Lasso, Skinny Gibbs has higher

values of Z4 = t, indicating higher chance of selecting the true model. We exclude

BASAD in Figure 3.1 simply because its performance is almost identical to that of

Skinny Gibbs but with much more computational time involved. In the supplementary

materials, we provide several plots of the marginal posterior probabilities along the

Skinny Gibbs iterates for some simulated data to demonstrate the stability in the

convergence of the Skinny Gibbs chains.
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Table 3.1: Simulation results with low and moderate correlations among predictors:
TP → True Positive; FP → False Positive; Z = t → Proportion of choosing the true
model; Z ⊃ t → Proportion of the times true model is included in the chosen model;
Z4 = t → Proportion of times the chosen model of size p1 = 4 is the true model.

(a) n = 100, p = 50; ρ1 = ρ2 = ρ3 = 0

TP FP Z = t Z ⊃ t Z4 = t
BASAD 3.77 0.16 0.70 0.78 0.86
Skinny Gibbs 3.87 0.36 0.64 0.86 0.88
EBIC 3.55 0.20 0.58 0.75 0.91
BSR 3.57 0.15 0.54 0.62 0.79
Alasso 3.93 3.00 0.10 0.93 0.79
SCAD 3.90 2.38 0.13 0.90 0.69
MCP 3.94 4.96 0.00 0.94 0.79

(b) n = 100, p = 50; ρ1 = ρ2 = ρ3 = 0.25

TP FP Z = t Z ⊃ t Z4 = t
BASAD 3.39 0.22 0.40 0.47 0.58
Skinny Gibbs 3.54 0.50 0.34 0.58 0.58
EBIC 3.17 0.28 0.39 0.57 0.67
BSR 3.02 0.13 0.26 0.31 0.56
Alasso 3.80 3.07 0.07 0.80 0.53
SCAD 3.68 2.85 0.05 0.68 0.32
MCP 3.83 4.32 0.01 0.84 0.45

(c) n = 100, p = 250 ρ1 = ρ2 = ρ3 = 0

TP FP Z = t Z ⊃ t Z4 = t
BASAD 3.59 0.49 0.43 0.63 0.64
Skinny Gibbs 3.64 1.19 0.26 0.67 0.61
EBIC 2.02 0.03 0.18 0.20 0.84
BSR 3.17 0.23 0.25 0.33 0.58
Alasso 3.76 4.00 0.01 0.78 0.48
SCAD 3.72 3.26 0.02 0.74 0.35
MCP 3.84 4.90 0.00 0.85 0.49

(d) n = 100, p = 250; ρ1 = ρ2 = ρ3 = 0.25

TP FP Z = t Z ⊃ t Z4 = t
BASAD 2.92 0.84 0.16 0.22 0.26
Skinny Gibbs 2.92 1.40 0.12 0.24 0.23
EBIC 1.54 0.02 0.03 0.04 0.44
BSR 2.59 0.15 0.05 0.05 0.23
Alasso 3.43 4.04 0.01 0.52 0.23
SCAD 3.15 3.30 0.04 0.34 0.12
MCP 3.58 5.26 0.01 0.64 0.20
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Table 3.2: Simulation results with high correlations among predictors: TP → True
Positive; FP→ False Positive; Z = t→ Proportion of choosing the true model; Z ⊃ t
→ Proportion of the times true model is included in the chosen model; Z4 = t →
Proportion of times the chosen model of size p1 = 4 is the true model.

(a) n = 100, p = 50; ρ1 = 0.10, ρ2 = 0.25, ρ3 = 0.50

TP FP Z = t Z ⊃ t Z4 = t
BASAD 3.51 0.15 0.48 0.55 0.72
Skinny Gibbs 3.65 0.32 0.49 0.66 0.71
EBIC 3.01 0.51 0.26 0.57 0.55
BSR 3.31 0.22 0.37 0.45 0.64
Alasso 3.88 3.18 0.09 0.89 0.52
SCAD 3.86 2.79 0.04 0.89 0.14
MCP 3.93 4.36 0.00 0.93 0.34

(b) n = 100, p = 50; ρ1 = 0.2, ρ2 = 0.4, ρ3 = 0.60

TP FP Z = t Z ⊃ t Z4 = t
BASAD 3.07 0.29 0.25 0.29 0.43
Skinny Gibbs 3.22 0.51 0.26 0.36 0.43
EBIC 2.60 0.72 0.08 0.40 0.23
BSR 2.56 0.29 0.10 0.13 0.27
Alasso 3.67 3.43 0.04 0.71 0.33
SCAD 3.57 3.18 0.03 0.75 0.03
MCP 3.79 4.15 0.01 0.81 0.10
(c) n = 100, p = 250; ρ1 = 0.10, ρ2 = 0.25, ρ3 = 0.50

TP FP Z = t Z ⊃ t Z4 = t
BASAD 3.31 0.99 0.31 0.46 0.44
Skinny Gibbs 3.41 1.17 0.24 0.52 0.44
EBIC 1.70 0.03 0.09 0.11 0.28
BSR 2.70 0.44 0.18 0.21 0.44
Alasso 3.66 4.03 0.02 0.70 0.30
SCAD 3.40 3.33 0.01 0.56 0.03
MCP 3.68 4.18 0.01 0.71 0.11

(d) n = 100, p = 250; ρ1 = 0.2, ρ2 = 0.4, ρ3 = 0.60
TP FP Z = t Z ⊃ t Z4 = t

BASAD 2.69 0.98 0.12 0.19 0.18
Skinny Gibbs 2.75 1.43 0.08 0.21 0.21
EBIC 1.31 0.04 0.02 0.03 0.08
BSR 1.47 0.80 0.01 0.01 0.03
Alasso 3.25 4.23 0.02 0.42 0.15
SCAD 3.18 3.52 0.00 0.56 0.00
MCP 3.46 4.20 0.00 0.56 0.02
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Figure 3.1: Proportion of True Covariates included versus Model Size under the same
settings of Table 3.2. The two curves that stay consistently on the top correspond to
Skinny Gibbs (SG) and Adaptive Lasso (AL).

3.5 Real data examples

3.5.1 PCR dataset

We consider the data from an experiment by Lan et al. (2006) to study the ge-

netics of two inbred mouse populations B6 and BTBR. The data include expression

levels of 22,575 genes from 31 female and 29 male mice, resulting in a total of 60

arrays. The physiological phenotype glycerol-3-phosphate acyltransferase (GPAT)

was also measured by quantitative real-time PCR. The gene expression data and the

phenotypic data are publicly available at GEO (http://www.ncbi.nlm.nih.gov/geo;

accession number GSE3330). It is of importance to learn which genes are associated
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with low levels of GPAT as low levels of GPAT are found to diminish Hepatic Steato-

sis, a disease commonly caused by obesity Wendel et al. (2010). For illustration, we

obtain a binary response based on the variable GPAT as E = I(GPAT < Q(0.4)),

where Q(0.4) is the 0.4th quantile of GPAT. The subsequent analysis will be made

on the response variable E. Due to the very large number of genes, we first perform

a screening in this example but a larger p is considered in the Lymph dataset in

Subsection 3.5.2. We use p-values obtained from the simple logistic regression of the

response E against individual genes to select 99 marginally most significant genes,

which along with the gender variable form p = 100 covariates. We apply Skinny

Gibbs along the Bayesian Subset Regression method (BSR) of Liang et al. (2013)),

Lasso, SCAD and MCP for selecting the covariates. The results for Skinny Gibbs are

based on a chain of length 4 × 104 obtained after a burn-in of length 2 × 104. The

initial value for β is the zero vector and the initialization of Z contains ones for the

K = 10 marginally most significant covariates. For BSR, the results are based on an

MCMC chain of length 2× 105 after a burn-in chain of length 5× 104.

In the real data applications, we consider 10-fold cross-validated prediction errors

as a measure of performance of the variable selection methods. For obtaining these

cross-validated errors, we divide the data D into 10 folds D1, · · · , D10. For each

Dk, {k ∈ 1, 2, · · · , 10}, we perform variable selection using the data from D \ Dk to

obtain predicted probabilities for the responses in Dk. The cross validation error for

the fold k is defined as CVk =
∑
i∈Dk

(π̂i−Ei)2, where π̂i is the predicted probability for

the ith observation. The overall CV error is CV =
∑10

k=1 CVk/n, where n =
10∑
k=1

|Dk|.

Figure 4.1 shows the 10-fold cross validation errors for different methods given

the number of covariates chosen. The X-axis represents different model sizes, and

the Y-axis shows CV-errors for different methods considered. We note that Skinny

Gibbs performs well along with MCP. In particular, the CV error is the smallest

for Skinny Gibbs if we use smaller model sizes. In Figure 3.3, we plot the marginal
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Figure 3.2: PCR Dataset: Cross Validated Prediction Error versus Model Size for
several model selection methods

posterior probabilities using the entire data D for two different Gibbs chains. We see

that the top three genes from both the chains are the same and have higher inclusion

probabilities than the rest. This is also consistent with Figure 4.1, which shows largest

decrease in CV error for the first three covarites. The Affymetrix IDs of the top genes

in descending order of marginal posterior probabilities are 1432002-at, 1441569-at,

and 1438936-s-at. The genes 1438936-s-at and 1438937-x-at (which is among the top

five genes in both the Gibbs chains) belong to the Angiogenin gene family, which is

previously found to be associated with obesity (see Imai et al. (2008), Silha et al.

(2005)).

3.5.2 Lymph data

We now consider the gene expression data set considered in Hans et al. (2007), and

Liang et al. (2013). The dataset contains gene expressions of n = 148 individuals.

The response of interest is positive (high risk) or negative (low risk) status of the

lymph node that is related to human breast cancer. There are 100 low risk cases and

48 high risk cases. After prescreening in Hans et al. (2007), a total of 4512 genes

are selected showing a variation above the noise levels. In addition, there are two
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Figure 3.3: PCR Dataset: Marginal posterior probabilities from two different chains
of Skinny Gibbs. The Affymetrix IDs of the top genes are given in the legend.

Figure 3.4: Lymph Dataset: Cross Validated Prediction Error versus Model Size for
several model selection methods

clinical variables, including the tumor size in centimeters as well as the protein assay-

based estrogen receptor status (coded as binary). Hence we have p = 4514 candidate

covariates with a sample size of n = 148. Due to the large p in this example, the

results for Skinny Gibbs are based on combining ten different chains with the length

and initialization described in Subsection 3.5.1.

As in Subsection 3.5.1, we present the 10-fold cross validated prediction errors for

the methods considered, see Figure 3.4. We reported the errors for the models of size

smaller than or equal to seven as the larger models often lead to complete separation
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Figure 3.5: Lymph Dataset: Marginal Posterior Probabilities from two different
chains of Skinny Gibbs. The labels on the top six points correspond to the column
numbers of the genes.

when the model is fit to the estimation data leading to unstable prediction for the

testing data. All the methods considered have similar performance in terms of CV

errors, with Skinny Gibbs having slightly lower errors. The CV errors from Skinny

Gibbs suggest that the top six genes are important. Figure 3.5 shows the largest 100

posterior probabilities of Zj = 1 from two different chains of Skinny Gibbs. The two

chains lead to slightly different ordering of the top six genes, but there is only one non-

overlapping gene in the two sets indicating the stability of the results. It is comforting

to note that a few variables have substantially higher marginal probabilities than the

rest in both the chains. However, some of the top variables do not have the marginal

posterior probabilities close to 1, which can be attributed to the phenomenon that

multiple sets of predictors in this problem can represent the model nearly equally

well. In the supplementary materials, plots of the marginal posterior probabilities

along the Skinny Gibbs iterates are provided for the two real data sets considered in

this section.
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3.6 Skinny Gibbs Chains

3.6.1 Simulated data settings

We shall look at the chains generated by Skinny Gibbs to check its stability and

convergence. For this purpose, we used data from the simulation settings of Table 1

(c), (d) and Table 2 (c), (d) having n = 100; p = 250. We recall these correlation

settings in Table 3.3.

Table 3.3: Correlation settings for the chains in Figure 3.6. ρ1: correlation between
a pair of active covariates; ρ2: correlation between a pair of active and inactive
covariates; ρ3: correlation between a pair of inactive covariates.

ρ1 ρ2 ρ3

Table 1 (c) 0.00 0.00 0.00
Table 1 (d) 0.25 0.25 0.25
Table 2 (c) 0.10 0.25 0.50
Table 2 (d) 0.20 0.40 0.60

For obtaining the Skinny Gibbs chains for each setting, we start from the null

model (all Zj are 0) and obtain marginal posterior probabilities computed at regular

intervals of 5000 along the Skinny Gibbs chain. In Figure 3.6, the marginal posterior

probabilities (averaged based on 10 datasets) of the four active covariates and a few

inactive covarites are plotted along the chain.

It can be seen from Figure 3.6 that the Gibbs chains are stable and behaves

well in general even in the settings with high correlations between covariates. The

magnitudes of the posterior probabilities for the four active ones correspond to the

magnitudes of their true coeffiecients. We note that the active coefficient with the

least magnitude is difficult to identify explaining why the average number of true

positives is closer to 3 than to 4 (Table 3.2).
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Figure 3.6: Log odds of the posterior probabilities along the Skinny Gibbs chains for
n = 100; p = 250 and different settings described in Table 3.3. The chains for the
active variables are labelled with ‘x’ and those for inactive ones are labelled with ‘o’.

3.6.2 Real data examples

We now consider the Skinny Gibbs chains for PCR and Lymph data examples

considered in Section 3.5 of the paper. We start with the null model and obtain the

marginal posterior probabilities at multiples of 5000 iterations as before In Figure

3.7, we plot the log odds of the marginal posterior probabilities (averaged using 10

different chains) for some of the covariates. These covariates include five covariates

having the highest marginal posterior probabilities which are labelled with ‘x’ and

a few other covariates having low marginal posterior probabilities which are labelled

with ‘o’. It can be seen that the marginal posterior probabilities are stable overall
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but the chain for Lymph data set takes more number of iterations to stabilize. This

is reasonable given the size of the data set (n, p) = (148, 4514). Nevertheless, the

ordering of these variables remains mostly the same irrespective of where we stop the

chain.

Figure 3.7: Log odds of the marginal posterior probabilities along the Skinny Gibbs
chains for PCR data and Lymph data examples

3.7 Time Improvement of Skinny Gibbs

We perform a small study for time comparison between BASAD and Skinny Gibbs.

We present the CPU time for different methods based on 10 data sets with sample

size n = 100 and varying number of variables as p = 50, 100, . . . , 1000. We generate

data using one of our simulation settings (as in Table 1 of the paper with ρ1 =

ρ2 = ρ3 = 0). That is, we generate each row of X independently from a normal

distribution with a p-dimensional identity matrix Ip. Given X, we sample E from

a logistic model P (Ei = 1|xi) = exiβ/(1 + exiβ), for i = 1, . . . , n. We use p1 =

4, and β = (1.5, 2, 2.5, 3, 0, 0, · · · , 0). We use thinkpad s230u Twist with Intel(R)

Core(TM) i7-3537U CPU@ 2.00GHz, 8.00GB memory, and Windows7 64bit. For

both the methods, we use a burn-in of size 2000 and additional iteration 5000.

In Figure 3.8, we plot the time for BASAD and Skinny Gibbs. It can be seen that
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the time for BASAD grows at a higher rate than Skinny Gibbs and look quadratic in

p whereas the time for Skinny grows linearly in p.

Figure 3.8: CPU time (in seconds) for BASAD and Skinny on 10 data sets with
n = 100 and p varies. (a) shows Time as a function of p, and (b) shows log (1+Time)
as a function of log p.

3.8 Proofs

Proof of Theorem 3.3.1:

We prove the theorem by checking that the conditionals corresponding to the posterior

in Equation (3.16) are the same as those of Skinny Gibbs. Then the posterior of Z can

be computed by integrating out the other variables, i.e., W ,Y , and β. The conditional

distribution of β under (3.16) is given by

P (β | W,Y, Z = k)

∝ exp
{
−1

2

(
(β(k)− β̃(k))′Vk1(β(k)− β̃(k)) + β(kc)′Vk0β(kc)

)}
,

(3.23)

where Vk1 = (X ′kWXk + τ−2
1n I), β̃(k) = V −1

k1 X
′
kWY, and Vk0 = (n + τ−2

0n )I. Now, the

conditional distribution of Z under (3.16) is given by

P (Z = k | β,W, Y )

∝ exp
{
−1

2
(β(k)′Vk1β(k)− 2β(k)′X ′kWY + β(kc)′Vk0β(kc))

}
v
−|k|
n ,

(3.24)
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where vn = (1 − qn)τ1n/(qnτ0n). Furthermore, the conditionals of each Zj based on

(3.45) can be derived as:

R :=
P (Zj = 1 | β, Z−j = u,W, Y )

P (Zj = 0 | β, Z−j = u,W, Y )
=

P (Zj = 1, Z−j = u | β,W, Y )

P (Zj = 0, Z−j = u | β,W, Y )
.

where Z−j represents the components of Z excluding Zj. Denote the model corre-

sponding to (Z−j = u, Zj = 0) by u. Then, due to (3.45), we have

−2 logR− 2 log vn

= (β(u)′, βj)

 τ−2
1n I +X ′uWXu X ′uWXj

X ′jWXu τ−2
1n I +X ′jWXj

 β(u)

βj


−β(u)′(τ−2

1n I +X ′uWXu)β(u)− (n+ τ−2
0n )β2

j

−2
(
β(u)′X ′u + βjX

′
j

)
WY + 2β(u)′X ′uWY

= 2(β(u)′X ′u − Y ′)WXjβj + (τ−2
1n I +X ′jWXj)β

2
j − (n+ τ−2

0n )β2
j

= 2(β(u)′X ′u − Y ′)WXjβj +X ′j(W − I)Xjβ
2
j + (τ−2

1n I − τ−2
0n )β2

j .

Therefore,

R =
P (Zj = 1 | Y,W, β, Z−j)
P (Zj = 0 | Y,W, β, Z−j)

= exp
{
−1

2

(
2(β(u)′X ′u − Y ′)WXjβj +X ′j(W − I)Xjβ

2
j + (τ−2

1n I − τ−2
0n )β2

j

)}
v−1
n

=
qnφ(βj, 0, τ

2
1,n)

(1− qn)φ(βj, 0, τ 2
0,n)

exp

{
(Y ′ − β(u)′X ′u)WXjβj +

1

2
X ′j(I −W )Xjβ

2
j

}
.

From (3.16), the conditionals of W and Y are clearly the same as those of Skinny

Gibbs, which proves the theorem.

Proof of Theorem 3.3.2:

We first define the ratio of posterior of models k and t as

PR(k, t) =
P [Z = k | E]

P [Z = t | E]
.
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We shall prove the theorem by showing that
∑

k 6=t;|k|≤mn
PR(k, t)

P−→ 1. For a given

K > 1 (to be chosen later), we divide the set of candidate models into

1. Over-fitted models: M1 = {k : k ⊃ t, k 6= t, |k| ≤ mn}, i.e., the models of

dimension smaller than mn which include all the active covariates plus one or

more inactive covariates.

2. Large models: M2 = {k : K|t| < |k| ≤ mn}, the models with dimension greater

than K|t| but smaller than mn.

3. Under-fitted models: M3 = {k : k 6⊃ t, |k| ≤ K|t|}, the models of moderate

dimension which miss an active covariate.

We shall prove that
∑

k∈Mu
PR(k, t)

P−→ 1 for u = 1, 2, 3.

Some preliminaries

We use the following additional notations. For any model k, β̂(k) denotes the

maximum likelihood estimator (MLE) of β(k) under the model k. Recall that β0(t)

denotes the true regression vector (defined in Condition 3.3.3). For any model k ⊃ t,

we use β0(k), to denote the |k| × 1 vector including β0(t) for t and zeroes for k ∩ tc.

We first prove the following lemma, which would be useful for the rest of the proof.

We use c, c′, c∗ as generic constants that can take different values depending on the

context.

Lemma 3.8.1. Let c > 0 be any fixed constant. Under Conditions 3.3.1– 3.3.4, there

exists εn → 0 such that

(1− εn)Hn(β0(s)) ≤ Hn(β(s)) ≤ (1 + εn)Hn(β0(s)), (3.25)

for any model s ∈M1, and for all β(s) such that ‖β(s)−β0(s)‖ ≤
√
c|s|Λ|s| log pn/n,
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where

Λm := max
k:|k|≤m

λmax
(
n−1X ′kXk

)
. (3.26)

Proof: Recall that Hn(β(s)) = X ′sΣ (β(s))Xs. Therefore, to prove the lemma, it is

sufficient to show that

(1− εn)σ2
i (β0(s)) ≤ σ2

i (β(s)) ≤ (1 + εn)σ2
i (β0(s)),

for each i = 1, · · · , n. By the fact that (1 + ea)/(1 + eb) ≤ e|a−b|, we have

σ2
i (β(s))σ−2

i (β0(s)) =
exp {xi(β(s)− β0(s))} (1 + exiβ0(s))2

(1 + exiβ(s))2
,

≤ exp {3|xi(β(s)− β0(s))|}

→ 1, as n→∞.

because un = |xi(β(s) − β0(s))| ≤ ‖xi‖‖β(s) − β0(s)‖ ≤ C
√
c|s|2Λ|s| log pn/n �√

m2
nΛ|s| log pn/n = o(1) by Condition 3.3.2. By interchanging σ2

i (β(s)) and σ2
i (β0(s)),

we would obtain the reverse inequality.

Remark 11. Since we have εn → 0, we henceforth denote it by ε and treat it to be

small enough.

For proving Theorem 3.3.2, we require deviation bounds of quadratic forms involv-

ing the logistic response vector E. We obtain them by using the following inequality

for subgaussian random vectors.

Theorem 3.8.1 (Hsu, Kakade and Zhang (2012)). Suppose U = (U1, · · · , Un) is a

random vector such that for some σ > 0,

E [exp(α′U)] ≤ exp

{
1

2
‖α‖2σ2

}
, (3.27)
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for all α ∈ Rn. Then, for any positive semidefinite matrix Q, we have

P
[
U ′QU > σ2(tr(Q) + 2

√
tr(Q2)c+ 2‖Q‖c)

]
≤ e−c,

where tr(·) denotes the trace of the matrix argument.

Proof: We refer to Theorem 2.1 of Hsu et al. (2012).

We apply the above theorem for U = E− µ. Let θi = log(µi)− log(1− µi), which

implies µi = eθi/(1 + eθi). Also, define b(θ) = log(1 + eθ), which implies b′(θi) = µi

and b′′(θi) = σ2
i . To check that the subgaussian inequality (3.51) holds, note that

E [exp {α′(E− µ)}] = exp

{
n∑
i=1

[b(θi + αi)− b(θi)− αiµi]
}

= exp

[
1
2

n∑
i=1

α2
i b
′′(θi + α̃i)

]
≤ exp

[
1
8

n∑
i=1

α2
i

]
,

(3.28)

where |α̃i| ≤ |αi| and b′′(·) = µ(·)(1 − µ(·)) ≤ 1/4. Therefore, (3.51) holds with

σ2 = 1/4. The following lemma provides an inequality for quadratic forms involving

the projection matrices onto the column space of (scaled) design matrices.

Lemma 3.8.2. Let Ũ = Σ−1/2(E−µ) and Pk be the projection matrix onto the column

space of Σ1/2Xk, where k is such that |k| ≤ mn. Then, we have

P
[
Ũ ′PkŨ > (1 + δ∗)(tr(Pk) + 2

√
tr(Pk)t+ 2t)

]
≤ e−t,

for δ∗ defined in Condition 3.3.2.

Proof: The proof is similar to that for Theorem 3.8.2 in Hsu et al. (2012), using

Condition 3.3.2 (c).
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Lemma 3.8.3. Under Conditions 3.3.1– 3.3.4, we have

sup
k⊃t:|k|=m

∥∥∥β̂(k)− β0(k)
∥∥∥ = OP

(√
mΛm log pn

n

)
,

uniformly for all m ≤ mn, where Λm is as defined in (3.50).

Proof: Let β(k) = β0(k) + cnu, where u ∈ R|k| and u′u = 1, cn =
√

5mΛm log pn
nλ2(1−ε)2 and

m = |k|. Then, for some β̃(k) such that ‖β̃(k)− β0(k)‖ ≤ cn, we have

Ln(β(k))− Ln(β0(k))

= (β(k)− β0(k))′sn(β0(k))− 1
2
(β(k)− β0(k))′Hn(β̃(k))(β(k)− β0(k))

= cnu
′sn(β0(k))− 1

2
c2
nu
′Hn(β̃(k))u

≤ cnu
′sn(β0(k))− 1

2
c2
n(1− ε)nλ,

due to Lemma 3.8.4 and Condition 3.3.2. We obtain

P [Ln(β(k))− Ln(β0(k)) > 0 for some u]

≤ P
[
u′sn(β0(k)) ≥ 1−ε

2
cnnλ for some u

]
≤ P

[
‖sn(β0(k))‖ ≥ 1

2

√
5mΛmn log pn

]
= P

[
‖X ′k(E − µ)‖ ≥ 1

2

√
5mΛmn log pn

]
≤ exp{−2m log pn} = p−2m

n ,

where we used that sn(β0(k)) = X ′k(E − µ), and applied Theorem 3.8.2 to the

quadratic form (E − µ)′XkX
′
k(E − µ). This implies that with probability at least

1 − p−2m
n , we have Ln(β(k)) − Ln(β0(k)) < 0. The concavity of Ln implies that∥∥∥β̂(k)− β0(k)

∥∥∥ ≤ cn with probability at least 1 − p−2m
n . By taking a union bound

over all models k ⊃ t with size at most mn, we have

P

[
sup

k⊃t:|k|=m

∥∥∥β̂(k)− β0(k)
∥∥∥ > cn, for any m ≤ mn

]
≤

∑
|t|≤m≤mn

p−2m
n pmn → 0,
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which proves the lemma.

We are now ready to prove that
∑

k∈Mu
PR(k, t)

P−→ 1 for u = 1, 2, 3. Using the

joint posterior given by Theorem 3.3.1, we obtain the posterior of Z by integrating

out the other variables. That is,

P (Z = k | E) = C∗Qn,k

∫
β(k)

exp {Ln(β(k))} exp
{
− 1

2τ21n
β(k)′β(k)

}
dβ(k), (3.29)

where Qn,k = (n+ τ−2
0n )|k|/2 v

−|k|
n and C∗ is the normalizing constant.

For Overfitted models:

By Taylor’s expansion of Ln(β(k)) around β̂(k) (the MLE of β(k) under model

k), we have

Ln(β(k)) = Ln(β̂(k))− 1

2
(β(k)− β̂(k))′Hn(β̃(k))(β(k)− β̂(k)), (3.30)

for some β̃(k) such that ‖β̃(k)− β̂(k)‖ ≤ ‖β(k)− β̂(k)‖. Note that β̃(k) may depend

on β(k). However, due to Lemmas 3.8.4 & 3.8.6, for any k ∈M1, we have

Ln(β(k))− Ln(β̂(k)) ≤ −(1− ε)
2

(β(k)− β̂(k))′Hn(β0(k))(β(k)− β̂(k)),

for all β(k) such that ‖β(k)− β0(k)‖ < c
√
|k|Λ|k| log pn/n := cwn. Note that for β(k)

such that ‖β(k)− β̂(k)‖ = cwn/2,

Ln(β(k))− Ln(β̂(k)) ≤ −(1− ε)nλc2w2
n/4 = −(1− ε)c2λ|k|Λ|k| log pn/4→ −∞.

(3.31)

By concavity of Ln(·) and the fact that β̂(k) maximizes Ln(β(k)), (3.56) also holds

for any ‖β(k) − β̂(k)‖ > cwn/2. Now due to Lemma 3.8.6, we have B := {β(k) :

‖β(k)− β̂(k)‖ ≤ cwn/2} ⊂ {β(k) : ‖β(k)− β0(k)‖ ≤ cwn} with probability going to
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one uniformly in M1 (for c large enough). Therefore, we have for any k ⊂M1,

P (Z = k | E)

≤ C∗ Qn,k exp{Ln(β̂(k))}

×
(∫
B

exp
{
−1

2
(1− ε)(β(k)− β̂(k))′Hn(β0(k))(β(k)− β̂(k))− 1

2τ21n
β(k)′β(k)

}
dβ(k)

+ exp(−c2(1− ε)λΛ|k||k| log pn/4)
∫
Bc

exp{− 1
2τ21n

β(k)′β(k)}dβ(k)
)

≤ w′ Qn,k exp{Ln(β̂(k))} τ |k|1n |Hn(β0(k))(1− ε)τ 2
1n + I|−1/2(1 + o(1)),

(3.32)

where w′ is a constant. We used that for A = (1− ε)Hn(β0(k)),

∫
B

exp
{
−1

2
(β(k)− β̂(k))′A(β(k)− β̂(k))− 1

2τ21n
β(k)′β(k)

}
dβ(k)

=
∫
B

exp
{
−1

2

(
(β(k)− β∗(k))′(A+ τ−2

1n I)(β(k)− β∗(k))
)}
dβ(k)

× exp
{
−1

2
β̂(k)′

(
A− A(A+ τ−2

1n )−1A
)
β̂(k)

}
≤ w′|Hn(β0(k))(1− ε) + τ−2

1n I|−1/2 exp
{
−1

2
β̂(k)′

(
A− A(A+ τ−2

1n )−1A
)
β̂(k)

}
≤ w′|A+ τ−2

1n I|−1/2,

where β∗(k) = (A + τ−2
1n I)−1Aβ̂(k). Following similar arguments, we obtain a lower

bound for P [Z = t | E], i.e.,

P (Z = t | E) ≥ w exp{Ln(β̂(t))}Qn,t(τ1n)|t||Hn(β0(t))(1 + ε)τ 2
1n + I|−1/2, (3.33)

for some constant w. Therefore, we have

PR(k, t)

� Qn,k
Qn,t
|Hn(β0(t))(1 + ε) + τ−2

1n |1/2|Hn(β0(k)(1− ε) + τ−2
1n |−1/2

× exp
{
Ln(β̂(k))− Ln(β̂(t))

}
� q

(|k|−|t|)
n (nτ 2

1n)−(|k|−|t|)/2(nτ 2
0n + 1)(|k|−|t|)/2 exp

{
Ln(β̂(k))− Ln(β̂(t))

}
� p

−(2+δ)(|k|−|t|)
n exp

{
Ln(β̂(k))− Ln(β̂(t))

}
,

(3.34)
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where δ is from Condition 3.3.4. By applying Taylor’s expansion for Ln(β(k)) about

β0(k) and evaluating at β̂(k), we would obtain

Ln(β̂(k)) = Ln(β0(k)) + (β̂(k)− β0(k))′sn(β0(k))

−1
2
(β̂(k)− β0(k))′Hn(β̃(k))(β̂(k)− β0(k)),

(3.35)

such that ‖β̃(k)− β0(k)‖ ≤ ‖β̂(k)− β0(k)‖. Then due to Lemmas 3.8.4 & 3.8.6,

Ln(β̂(k))− Ln(β̂(t))

≤ Ln(β̂(k))− Ln(β0(k))

≤ (β̂(k)− β0(k))′sn(β0(k))− 1−ε
2

(β̂(k)− β0(k))′Hn(β0(k))(β̂(k)− β0(k))

≤ 1
2(1−ε)sn(β0(k))′Hn(β0(k))−1sn(β0(k))

= 1
2(1−ε)(E− µ)′XkHn(β0(k))−1X ′k(E− µ)

= 1
2(1−ε) Ũ

′PkŨ ,

(3.36)

where Σ = Diag(σ2
1, · · · , σ2

n), Ũ = Σ−1/2(E−µ), and Pk = Σ1/2XkHn(β0(k))−1X ′kΣ
1/2

is the projection matrix onto the column space of Σ1/2Xk.

We now use Lemma 3.8.5 to obtain a probability bound on the quadratic form

obtained in Equation (3.61). Consider bn = (1 + δ∗)(1 + 2w) log pn, where w is small

such that (1 + δ∗)(1 + 2w) < (1 + δ) (this is possible due to Condition 3.3.4) and ε is

small such that ψ = (1− ε)(1 + w)− 1 > 0. Then, we have

P
[∣∣∣Ln(β̂(k))− Ln(β̂(t))

∣∣∣ > bn(|k| − |t|)
]

≤ P
[
Ũ ′PkŨ > 2(1− ε)bn(|k| − |t|)

]
≤ exp {−(1− ε)(1 + w)(|k| − |t|) log pn} = p

−(1+ψ)(|k|−|t|)
n .

(3.37)
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Now, by taking a union bound we obtain

P [|Ln(β̂(k))− Ln(β̂(t))| > bn(|k| − |t|) for any k ∈M1]

≤
mn∑

|k|=|t|+1

p
−(1+ψ)(|k|−|t|)
n p

−(|k|−|t|)
n → 0.

By restricting to the complement of the above small probability event, and using

Equation (3.59), we have

∑
k∈M1

PR(k, t)

�
∑
k∈M1

p
−(2+δ)(|k|−|t|)
n exp {(1 + δ∗)(1 + 2w)(|k| − |t|) log pn}

�
mn∑

d=|t|+1

p
(d−|t|)
n p

−(2+δ)(d−|t|)
n exp {(1 + δ∗)(1 + 2w)(d− |t|) log pn}

� p
−(1+δ−(1+δ∗)(1+2w))
n = oP (1).

(3.38)

Large models

The proof for large models is similar to the overfitted ones. We only need to

note that for a large underfitted model, we shall work with k∗ = k ∪ t. Similar

to the previous case, consider Taylor’s expansion (3.55) of Ln(β(k∗)) evaluated at

β(k∗) = (β(k) ∪ 0)|k∗|×1. As before, we then have

Ln(β(k∗)) = Ln(β̂(k∗))− 1
2
(β(k∗)− β̂(k∗))′Hn(β̃(k∗))((β(k∗)− β̂(k∗))

≤ Ln(β̂(k∗))− n(1−ε)λ
2

(β(k∗)− β̂(k∗))′(β(k∗)− β̂(k∗)),

for all β(k∗) such that ‖β(k∗) − β0(k∗)‖ < c
√
|k∗|Λ|k∗| log pn/n. Then, following the

arguments in the previous case, we have

P (Z = k | E) ≤ w′ Qn,k exp{Ln(β̂(k∗))} τ |k|1n (nλ(1− ε)τ 2
1n)−|k|/2(1 + o(1)),
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which implies that

PR(k, t) � p
−(2+δ)(|k|−|t|)
n exp

{
Ln(β̂(k∗))− Ln(β̂(t))

}
. (3.39)

Now, similar to Equation (3.62) we have

P
[
∪k:|k|=d

∣∣∣Ln(β̂(k∗))− Ln(β̂(t))
∣∣∣ > bn(|k| − |t|)

]
≤ p

−(1+ψ)(d−|t|)
n pdn,

which implies that

P [
∣∣∣Ln(β̂(k∗))− Ln(β̂(t))

∣∣∣ > bn(|k| − |t|) for any k ∈M2]

≤
mn∑

d=K|t|+1

p
−(1+ψ)(d−|t|)
n pdn

� p
−ψK|t|
n p

(1+ψ)|t|
n → 0.

if we take K > (1 +ψ)/ψ, in the definition of M2. Hence, we have the result for large

models by observing that
∑
k∈M2

PR(k, t) = oP (1), as in the case of Equation (3.63).

Underfitted models

Now, we shall prove the same for under-fitted models, i.e., for models in M3. From

Equation (3.54), we have

P (Z = k | E) ≤ C∗ exp{Ln(β̂(k))} Qn,k

∫
β(k)

exp
{
− 1

2τ21n
β(k)′β(k)

}
dβ(k)

� exp{Ln(β̂(k))}Qn,k(τ1n)|k|.

(3.40)

We shall now show that

|Ln(β̂(k))− Ln(β̂(t))| � −|t|Λ(K+1)|t| log pn,
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with probability going to one, uniformly over models in M3. To see this, for any

k ∈ M3, let k∗ = k ∪ t. Consider β(k∗) such that ‖β(k∗) − β0(k∗)‖ = an, where

an = min
1≤i≤|t|

|β0i(t)| ≥
√
c|t|Λ(K+1)|t| log pn/n, for a large enough constant c due to

Condition 3.3.3. Then, we have

Ln(β(k∗))− Ln(β0(k∗))

≤ (β(k∗)− β0(k∗))′sn(β0(k∗))− 1
2
(β(k∗)− β0(k∗))′Hn(β̃(k∗))(β(k∗)− β0(k∗))

≤ (β(k∗)− β0(k∗))′sn(β0(k∗))− 1
2
nλ‖β(k∗)− β0(k∗)‖2

≤ an‖sn(β0(k∗))‖ − 1
2
nλa2

n.

(3.41)

Next, we shall obtain a bound for ‖sn(β0(k∗))‖. Note that, β0(k∗) is the true

β0(t) appended with zeroes for k ∩ tc. From the proof of Lemma 3.8.6, we have

‖sn(β0(k∗))‖ = OP (
√
n|t|Λ(K+1)|t| log pn) uniformly in k∗ = {k ∪ t : k ∈ M3} as |k∗|

is bounded by (K + 1)|t|. Therefore, from (3.66), we have

Ln(β(k∗))− Ln(β0(k∗)) ≤ w′an
√
n|t|Λ(K+1)|t| log pn − 1

2
nλa2

n � −1
2
nλa2

n,

Let β̃(k∗) be the |k∗| × 1 vector including β̂(k) for k and zeroes for k ∩ tc. Then, we

have Ln(β̃(k∗)) = Ln(β̂(k)) and ‖β̃(k∗) − β0(k∗)‖ ≥ an. By the concavity of Ln(·),

we obtain

Ln(β̃(k∗))− Ln(β0(k∗)) ≤ Ln(β(k∗))− Ln(β0(k∗)) � −1

2
nλa2

n. (3.42)

On the other hand, we have

Qn,k(τ1n)|k|

Qn,t(τ1n)|t|(nτ 2
1n)−|t|/2

≤ wpc
′|t|
n ,
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which implies that

∑
k∈M3

PR(k, t) �
∑
k∈M3

p
c′|t|
n exp{Ln(β̂(k))− Ln(β̂(t))}

≤
∑
k∈M3

p
c′|t|
n exp{Ln(β̃(k∗))− Ln(β0(k∗))}

� p
c′|t|
n p

(K+1)|t|
n exp

{
−1

2
nλa2

n

}
= exp

{
(K + c′ + 1)|t| log pn − 1

2
nλa2

n

}
→ 0, as n→∞,

with probability going to one. Therefore, we have
∑

k:k 6=t;|k|≤mn

P [Z=k|E]
P [Z=t|E]

P−→ 0. This

implies that
∑

k:k 6=t;|k|≤mn

P [Z=k||Z|≤mn,E]
P [Z=t||Z|≤mn,E]

P−→ 0, which in turn implies that P [Z = t |

|Z| ≤ mn,E]
P−→ 1.

Proof of Lemma 3.8.7: Due to Theorem 5.39 of Vershynin (2012) and following

the proof of Lemma 6.1 of Narisetty and He (2014), we have with probability going

to one 0 < c′ ≤ min
k:|k|≤mn+|t|

λmin
(
n−1X ′kΣ

−1
k Xk

)
, where Σk is the |k|× |k| submatrix of

Σ = Cov(xi) corresponding to the covariates in model |k|. As the minimum eigenvalue

of Σk is bounded away from zero, we also have 0 < min
k:|k|≤mn+|t|

λmin (n−1X ′kXk) for some

c > 0. Now, as β0(t) satisfies P [|x′iβ0(t)| ≥ M ] ≤ w < 1, for some M > 0, the set of

indices I = {i : |X ′iβ0(t)| ≤ M} satisfies |I| ≥ n(1 − w)/2 with exponentially large

probability. Then, with probability gping to one, we have

λmin (n−1Hn(β0(k))) = λmin (n−1X ′kDiag (σ2
i (β0(k))Xk)

≥ λmin (n−1X∗k
′D∗X∗k)

≥ dMλmin (n−1X∗k
′X∗k)

≥ (1− w)cdM/2 > 0,

(3.43)

whereX∗ is the |I|×pmatrix with rows fromX indexed by I, D∗ = Diag (σ2
i (β0(k)) : i ∈ I),

and dM = exp{M}/(1 + exp{M})2.
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3.8.1 Proof of Theorem 3.3.1:

We prove the theorem by checking that the conditionals corresponding to the

posterior in Equation (3.16) are the same as those of Skinny Gibbs. Then the posterior

of Z can be computed by integrating out the other variables, i.e., W ,Y , and β. The

conditional distribution of β under (3.16) is given by

P (β | W,Y, Z = k)

∝ exp
{
−1

2

(
(β(k)− β̃(k))′Vk1(β(k)− β̃(k)) + β(kc)′Vk0β(kc)

)}
,

(3.44)

where Vk1 = (X ′kWXk + τ−2
1n I), β̃(k) = V −1

k1 X
′
kWY, and Vk0 = (n + τ−2

0n )I. Now, the

conditional distribution of Z under (3.16) is given by

P (Z = k | β,W, Y )

∝ exp
{
−1

2
(β(k)′Vk1β(k)− 2β(k)′X ′kWY + β(kc)′Vk0β(kc))

}
v
−|k|
n ,

(3.45)

where vn = (1 − qn)τ1n/(qnτ0n). Furthermore, the conditionals of each Zj based on

(3.45) can be derived as:

R :=
P (Zj = 1 | β, Z−j = u,W, Y )

P (Zj = 0 | β, Z−j = u,W, Y )
=

P (Zj = 1, Z−j = u | β,W, Y )

P (Zj = 0, Z−j = u | β,W, Y )
.

(3.46)
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where Z−j represents the components of Z excluding Zj. Denote the model corre-

sponding to (Z−j = u, Zj = 0) by u. Then, due to (3.45), we have

−2 logR− 2 log vn

= (β(u)′, βj)

 τ−2
1n I +X ′uWXu X ′uWXj

X ′jWXu τ−2
1n I +X ′jWXj

 β(u)

βj


−β(u)′(τ−2

1n I +X ′uWXu)β(u)− (n+ τ−2
0n )β2

j

−2
(
β(u)′X ′u + βjX

′
j

)
WY + 2β(u)′X ′uWY

= 2(β(u)′X ′u − Y ′)WXjβj + (τ−2
1n I +X ′jWXj)β

2
j − (n+ τ−2

0n )β2
j

= 2(β(u)′X ′u − Y ′)WXjβj +X ′j(W − I)Xjβ
2
j + (τ−2

1n I − τ−2
0n )β2

j .

(3.47)

Therefore,

R =
P (Zj = 1 | Y,W, β, Z−j)
P (Zj = 0 | Y,W, β, Z−j)

= exp
{
−1

2

(
2(β(u)′X ′u − Y ′)WXjβj +X ′j(W − I)Xjβ

2
j + (τ−2

1n I − τ−2
0n )β2

j

)}
v−1
n

=
qnφ(βj, 0, τ

2
1,n)

(1− qn)φ(βj, 0, τ 2
0,n)

exp

{
(Y ′ − β(u)′X ′u)WXjβj +

1

2
X ′j(I −W )Xjβ

2
j

}
.

(3.48)

From (3.16), the conditionals of W and Y are clearly the same as those of Skinny

Gibbs, which proves the theorem. �

Proof of Theorem 3.3.2:

We first define the ratio of posterior of models k and t as

PR(k, t) =
P [Z = k | E]

P [Z = t | E]
.

We shall prove the theorem by showing that
∑

k 6=t;|k|≤mn
PR(k, t)

P−→ 1. For a given

K > 1 (to be chosen later), we divide the set of candidate models into

1. Over-fitted models: M1 = {k : k ⊃ t, k 6= t, |k| ≤ mn}, i.e., the models of

dimension smaller than mn which include all the active covariates plus one or
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more inactive covariates.

2. Large models: M2 = {k : K|t| < |k| ≤ mn}, the models with dimension greater

than K|t| but smaller than mn.

3. Under-fitted models: M3 = {k : k 6⊃ t, |k| ≤ K|t|}, the models of moderate

dimension which miss an active covariate.

We shall prove that
∑

k∈Mu
PR(k, t)

P−→ 1 for u = 1, 2, 3.

Some preliminaries

We use the following additional notations. For any model k, β̂(k) denotes the

maximum likelihood estimator (MLE) of β(k) under the model k. Recall that β0(t)

denotes the true regression vector (defined in Condition 3.3.3). For any model k ⊃ t,

we use β0(k), to denote the |k| × 1 vector including β0(t) for t and zeroes for k ∩ tc.

We first prove the following lemma, which would be useful for the rest of the proof.

We use c, c′, c∗ as generic constants that can take different values depending on the

context.

Lemma 3.8.4. Let c > 0 be any fixed constant. Under Conditions 3.3.1– 3.3.4, there

exists εn → 0 such that

(1− εn)Hn(β0(s)) ≤ Hn(β(s)) ≤ (1 + εn)Hn(β0(s)), (3.49)

for any model s ∈M1, and for all β(s) such that ‖β(s)−β0(s)‖ ≤
√
c|s|Λ|s| log pn/n,

where

Λm := max
k:|k|≤m

λmax
(
n−1X ′kXk

)
. (3.50)

Proof: Recall that Hn(β(s)) = X ′sΣ (β(s))Xs. Therefore, to prove the lemma, it is
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sufficient to show that

(1− εn)σ2
i (β0(s)) ≤ σ2

i (β(s)) ≤ (1 + εn)σ2
i (β0(s)),

for each i = 1, · · · , n. By the fact that (1 + ea)/(1 + eb) ≤ e|a−b|, we have

σ2
i (β(s))σ−2

i (β0(s)) =
exp {xi(β(s)− β0(s))} (1 + exiβ0(s))2

(1 + exiβ(s))2
,

≤ exp {3|xi(β(s)− β0(s))|}

→ 1, as n→∞.

because un = |xi(β(s) − β0(s))| ≤ ‖xi‖‖β(s) − β0(s)‖ ≤ C
√
c|s|2Λ|s| log pn/n �√

m2
nΛ|s| log pn/n = o(1) by Condition 3.3.2. By interchanging σ2

i (β(s)) and σ2
i (β0(s)),

we would obtain the reverse inequality. �

Remark 12. Since we have εn → 0, we henceforth denote it by ε and treat it to be

small enough.

For proving Theorem 3.3.2, we require deviation bounds of quadratic forms involv-

ing the logistic response vector E. We obtain them by using the following inequality

for subgaussian random vectors.

Theorem 3.8.2 (Hsu, Kakade and Zhang (2012)). Suppose U = (U1, · · · , Un) is a

random vector such that for some σ > 0,

E [exp(α′U)] ≤ exp

{
1

2
‖α‖2σ2

}
, (3.51)

for all α ∈ Rn. Then, for any positive semidefinite matrix Q, we have

P
[
U ′QU > σ2(tr(Q) + 2

√
tr(Q2)c+ 2‖Q‖c)

]
≤ e−c,

where tr(·) denotes the trace of the matrix argument.
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Proof: We refer to Theorem 2.1 of Hsu et al. (2012).

We apply the above theorem for U = E− µ. Let θi = log(µi)− log(1− µi), which

implies µi = eθi/(1 + eθi). Also, define b(θ) = log(1 + eθ), which implies b′(θi) = µi

and b′′(θi) = σ2
i . To check that the subgaussian inequality (3.51) holds, note that

E [exp {α′(E− µ)}] = exp

{
n∑
i=1

[b(θi + αi)− b(θi)− αiµi]
}

= exp

[
1
2

n∑
i=1

α2
i b
′′(θi + α̃i)

]
≤ exp

[
1
8

n∑
i=1

α2
i

]
,

(3.52)

where |α̃i| ≤ |αi| and b′′(·) = µ(·)(1 − µ(·)) ≤ 1/4. Therefore, (3.51) holds with

σ2 = 1/4. The following lemma provides an inequality for quadratic forms involving

the projection matrices onto the column space of (scaled) design matrices.

Lemma 3.8.5. Let Ũ = Σ−1/2(E−µ) and Pk be the projection matrix onto the column

space of Σ1/2Xk, where k is such that |k| ≤ mn. Then, we have

P
[
Ũ ′PkŨ > (1 + δ∗)(tr(Pk) + 2

√
tr(Pk)t+ 2t)

]
≤ e−t,

for δ∗ defined in Condition 3.3.2.

Proof: The proof is similar to that for Theorem 3.8.2 in Hsu et al. (2012), using

Condition 3.3.2 (c). �

Lemma 3.8.6. Under Conditions 3.3.1– 3.3.4, we have

sup
k⊃t:|k|=m

∥∥∥β̂(k)− β0(k)
∥∥∥ = OP

(√
mΛm log pn

n

)
,

uniformly for all m ≤ mn, where Λm is as defined in (3.50).

Proof: Let β(k) = β0(k) + cnu, where u ∈ R|k| and u′u = 1, cn =
√

5mΛm log pn
nλ2(1−ε)2 and
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m = |k|. Then, for some β̃(k) such that ‖β̃(k)− β0(k)‖ ≤ cn, we have

Ln(β(k))− Ln(β0(k))

= (β(k)− β0(k))′sn(β0(k))− 1
2
(β(k)− β0(k))′Hn(β̃(k))(β(k)− β0(k))

= cnu
′sn(β0(k))− 1

2
c2
nu
′Hn(β̃(k))u

≤ cnu
′sn(β0(k))− 1

2
c2
n(1− ε)nλ,

(3.53)

due to Lemma 3.8.4 and Condition 3.3.2. We obtain

P [Ln(β(k))− Ln(β0(k)) > 0 for some u]

≤ P
[
u′sn(β0(k)) ≥ 1−ε

2
cnnλ for some u

]
≤ P

[
‖sn(β0(k))‖ ≥ 1

2

√
5mΛmn log pn

]
= P

[
‖X ′k(E − µ)‖ ≥ 1

2

√
5mΛmn log pn

]
≤ exp{−2m log pn} = p−2m

n ,

where we used that sn(β0(k)) = X ′k(E − µ), and applied Theorem 3.8.2 to the

quadratic form (E − µ)′XkX
′
k(E − µ). This implies that with probability at least

1 − p−2m
n , we have Ln(β(k)) − Ln(β0(k)) < 0. The concavity of Ln implies that∥∥∥β̂(k)− β0(k)

∥∥∥ ≤ cn with probability at least 1 − p−2m
n . By taking a union bound

over all models k ⊃ t with size at most mn, we have

P

[
sup

k⊃t:|k|=m

∥∥∥β̂(k)− β0(k)
∥∥∥ > cn, for any m ≤ mn

]
≤

∑
|t|≤m≤mn

p−2m
n pmn → 0,

which proves the lemma. �

We are now ready to prove that
∑

k∈Mu
PR(k, t)

P−→ 1 for u = 1, 2, 3. Using the

joint posterior given by Theorem 3.3.1, we obtain the posterior of Z by integrating
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out the other variables. That is,

P (Z = k | E) = C∗Qn,k

∫
β(k)

exp {Ln(β(k))} exp
{
− 1

2τ21n
β(k)′β(k)

}
dβ(k), (3.54)

where Qn,k = (n+ τ−2
0n )|k|/2 v

−|k|
n and C∗ is the normalizing constant.

For Overfitted models:

By Taylor’s expansion of Ln(β(k)) around β̂(k) (the MLE of β(k) under model

k), we have

Ln(β(k)) = Ln(β̂(k))− 1

2
(β(k)− β̂(k))′Hn(β̃(k))(β(k)− β̂(k)), (3.55)

for some β̃(k) such that ‖β̃(k)− β̂(k)‖ ≤ ‖β(k)− β̂(k)‖. Note that β̃(k) may depend

on β(k). However, due to Lemmas 3.8.4 & 3.8.6, for any k ∈M1, we have

Ln(β(k))− Ln(β̂(k)) ≤ −(1− ε)
2

(β(k)− β̂(k))′Hn(β0(k))(β(k)− β̂(k)),

for all β(k) such that ‖β(k)− β0(k)‖ < c
√
|k|Λ|k| log pn/n := cwn. Note that for β(k)

such that ‖β(k)− β̂(k)‖ = cwn/2,

Ln(β(k))− Ln(β̂(k)) ≤ −(1− ε)nλc2w2
n/4 = −(1− ε)c2λ|k|Λ|k| log pn/4→ −∞.

(3.56)

By concavity of Ln(·) and the fact that β̂(k) maximizes Ln(β(k)), (3.56) also holds

for any ‖β(k) − β̂(k)‖ > cwn/2. Now due to Lemma 3.8.6, we have B := {β(k) :

‖β(k)− β̂(k)‖ ≤ cwn/2} ⊂ {β(k) : ‖β(k)− β0(k)‖ ≤ cwn} with probability going to
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one uniformly in M1 (for c large enough). Therefore, we have for any k ⊂M1,

P (Z = k | E)

≤ C∗ Qn,k exp{Ln(β̂(k))}

×
(∫
B

exp
{
−1

2
(1− ε)(β(k)− β̂(k))′Hn(β0(k))(β(k)− β̂(k))− 1

2τ21n
β(k)′β(k)

}
dβ(k)

+ exp(−c2(1− ε)λΛ|k||k| log pn/4)
∫
Bc

exp{− 1
2τ21n

β(k)′β(k)}dβ(k)
)

≤ w′ Qn,k exp{Ln(β̂(k))} τ |k|1n |Hn(β0(k))(1− ε)τ 2
1n + I|−1/2(1 + o(1)),

(3.57)

where w′ is a constant. We used that for A = (1− ε)Hn(β0(k)),

∫
B

exp
{
−1

2
(β(k)− β̂(k))′A(β(k)− β̂(k))− 1

2τ21n
β(k)′β(k)

}
dβ(k)

=
∫
B

exp
{
−1

2

(
(β(k)− β∗(k))′(A+ τ−2

1n I)(β(k)− β∗(k))
)}
dβ(k)

× exp
{
−1

2
β̂(k)′

(
A− A(A+ τ−2

1n )−1A
)
β̂(k)

}
≤ w′|Hn(β0(k))(1− ε) + τ−2

1n I|−1/2 exp
{
−1

2
β̂(k)′

(
A− A(A+ τ−2

1n )−1A
)
β̂(k)

}
≤ w′|A+ τ−2

1n I|−1/2,

where β∗(k) = (A + τ−2
1n I)−1Aβ̂(k). Following similar arguments, we obtain a lower

bound for P [Z = t | E], i.e.,

P (Z = t | E) ≥ w exp{Ln(β̂(t))}Qn,t(τ1n)|t||Hn(β0(t))(1 + ε)τ 2
1n + I|−1/2, (3.58)

for some constant w. Therefore, we have

PR(k, t)

� Qn,k
Qn,t
|Hn(β0(t))(1 + ε) + τ−2

1n |1/2|Hn(β0(k)(1− ε) + τ−2
1n |−1/2

× exp
{
Ln(β̂(k))− Ln(β̂(t))

}
� q

(|k|−|t|)
n (nτ 2

1n)−(|k|−|t|)/2(nτ 2
0n + 1)(|k|−|t|)/2 exp

{
Ln(β̂(k))− Ln(β̂(t))

}
� p

−(2+δ)(|k|−|t|)
n exp

{
Ln(β̂(k))− Ln(β̂(t))

}
,

(3.59)
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where δ is from Condition 3.3.4. By applying Taylor’s expansion for Ln(β(k)) about

β0(k) and evaluating at β̂(k), we would obtain

Ln(β̂(k)) = Ln(β0(k)) + (β̂(k)− β0(k))′sn(β0(k))

−1
2
(β̂(k)− β0(k))′Hn(β̃(k))(β̂(k)− β0(k)),

(3.60)

such that ‖β̃(k) − β0(k)‖ ≤ ‖β̂(k) − β0(k)‖. Then due to Lemmas 3.8.4 & 3.8.6, we

have

Ln(β̂(k))− Ln(β̂(t))

≤ Ln(β̂(k))− Ln(β0(k))

≤ (β̂(k)− β0(k))′sn(β0(k))− 1−ε
2

(β̂(k)− β0(k))′Hn(β0(k))(β̂(k)− β0(k))

≤ 1
2(1−ε)sn(β0(k))′Hn(β0(k))−1sn(β0(k))

= 1
2(1−ε)(E− µ)′XkHn(β0(k))−1X ′k(E− µ)

= 1
2(1−ε) Ũ

′PkŨ ,

(3.61)

where Σ = Diag(σ2
1, · · · , σ2

n), Ũ = Σ−1/2(E−µ), and Pk = Σ1/2XkHn(β0(k))−1X ′kΣ
1/2

is the projection matrix onto the column space of Σ1/2Xk.

We now use Lemma 3.8.5 to obtain a probability bound on the quadratic form

obtained in Equation (3.61). Consider bn = (1 + δ∗)(1 + 2w) log pn, where w is small

such that (1 + δ∗)(1 + 2w) < (1 + δ) (this is possible due to Condition 3.3.4) and ε is

small such that ψ = (1− ε)(1 + w)− 1 > 0. Then, we have

P
[∣∣∣Ln(β̂(k))− Ln(β̂(t))

∣∣∣ > bn(|k| − |t|)
]

≤ P
[
Ũ ′PkŨ > 2(1− ε)bn(|k| − |t|)

]
≤ exp {−(1− ε)(1 + w)(|k| − |t|) log pn} ,

= p
−(1+ψ)(|k|−|t|)
n .

(3.62)
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Now, by taking a union bound we obtain

P [|Ln(β̂(k))− Ln(β̂(t))| > bn(|k| − |t|) for any k ∈M1]

≤
mn∑

|k|=|t|+1

p
−(1+ψ)(|k|−|t|)
n p

−(|k|−|t|)
n → 0.

By restricting to the complement of the above small probability event, and using

Equation (3.59), we have

∑
k∈M1

PR(k, t)

�
∑
k∈M1

p
−(2+δ)(|k|−|t|)
n exp {(1 + δ∗)(1 + 2w)(|k| − |t|) log pn}

�
mn∑

d=|t|+1

p
(d−|t|)
n p

−(2+δ)(d−|t|)
n exp {(1 + δ∗)(1 + 2w)(d− |t|) log pn}

� p
−(1+δ−(1+δ∗)(1+2w))
n = oP (1).

(3.63)

Large models

The proof for large models is similar to the overfitted ones. We only need to

note that for a large underfitted model, we shall work with k∗ = k ∪ t. Similar

to the previous case, consider Taylor’s expansion (3.55) of Ln(β(k∗)) evaluated at

β(k∗) = (β(k) ∪ 0)|k∗|×1. As before, we then have

Ln(β(k∗)) = Ln(β̂(k∗))− 1
2
(β(k∗)− β̂(k∗))′Hn(β̃(k∗))((β(k∗)− β̂(k∗))

≤ Ln(β̂(k∗))− n(1−ε)λ
2

(β(k∗)− β̂(k∗))′(β(k∗)− β̂(k∗)),

for all β(k∗) such that ‖β(k∗) − β0(k∗)‖ < c
√
|k∗|Λ|k∗| log pn/n. Then, following the

arguments in the previous case, we have

P (Z = k | E) ≤ w′ Qn,k exp{Ln(β̂(k∗))} τ |k|1n (nλ(1− ε)τ 2
1n)−|k|/2(1 + o(1)),
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which implies that

PR(k, t) � p
−(2+δ)(|k|−|t|)
n exp

{
Ln(β̂(k∗))− Ln(β̂(t))

}
. (3.64)

Now, similar to Equation (3.62) we have

P
[
∪k:|k|=d

∣∣∣Ln(β̂(k∗))− Ln(β̂(t))
∣∣∣ > bn(|k| − |t|)

]
≤ p

−(1+ψ)(d−|t|)
n pdn,

which implies that

P [
∣∣∣Ln(β̂(k∗))− Ln(β̂(t))

∣∣∣ > bn(|k| − |t|) for any k ∈M2]

≤
mn∑

d=K|t|+1

p
−(1+ψ)(d−|t|)
n pdn

� p
−ψK|t|
n p

(1+ψ)|t|
n → 0.

if we take K > (1 +ψ)/ψ, in the definition of M2. Hence, we have the result for large

models by observing that
∑
k∈M2

PR(k, t) = oP (1), as in the case of Equation (3.63).

Underfitted models

Now, we shall prove the same for under-fitted models, i.e., for models in M3. From

Equation (3.54), we have

P (Z = k | E) ≤ C∗ exp{Ln(β̂(k))} Qn,k

∫
β(k)

exp
{
− 1

2τ21n
β(k)′β(k)

}
dβ(k)

� exp{Ln(β̂(k))}Qn,k(τ1n)|k|.

(3.65)

We shall now show that

|Ln(β̂(k))− Ln(β̂(t))| � −|t|Λ(K+1)|t| log pn,
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with probability going to one, uniformly over models in M3. To see this, for any

k ∈ M3, let k∗ = k ∪ t. Consider β(k∗) such that ‖β(k∗) − β0(k∗)‖ = an, where

an = min
1≤i≤|t|

|β0i(t)| ≥
√
c|t|Λ(K+1)|t| log pn/n, for a large enough constant c due to

Condition 3.3.3. Then, we have

Ln(β(k∗))− Ln(β0(k∗))

≤ (β(k∗)− β0(k∗))′sn(β0(k∗))− 1
2
(β(k∗)− β0(k∗))′Hn(β̃(k∗))(β(k∗)− β0(k∗))

≤ (β(k∗)− β0(k∗))′sn(β0(k∗))− 1
2
nλ‖β(k∗)− β0(k∗)‖2

≤ an‖sn(β0(k∗))‖ − 1
2
nλa2

n.

(3.66)

Next, we shall obtain a bound for ‖sn(β0(k∗))‖. Note that, β0(k∗) is the true

β0(t) appended with zeroes for k ∩ tc. From the proof of Lemma 3.8.6, we have

‖sn(β0(k∗))‖ = OP (
√
n|t|Λ(K+1)|t| log pn) uniformly in k∗ = {k ∪ t : k ∈ M3} as |k∗|

is bounded by (K + 1)|t|. Therefore, from (3.66), we have

Ln(β(k∗))− Ln(β0(k∗)) ≤ w′an
√
n|t|Λ(K+1)|t| log pn − 1

2
nλa2

n � −1
2
nλa2

n,

Let β̃(k∗) be the |k∗| × 1 vector including β̂(k) for k and zeroes for k ∩ tc. Then, we

have Ln(β̃(k∗)) = Ln(β̂(k)) and ‖β̃(k∗) − β0(k∗)‖ ≥ an. By the concavity of Ln(·),

we obtain

Ln(β̃(k∗))− Ln(β0(k∗)) ≤ Ln(β(k∗))− Ln(β0(k∗)) � −1

2
nλa2

n. (3.67)

On the other hand, we have

Qn,k(τ1n)|k|

Qn,t(τ1n)|t|(nτ 2
1n)−|t|/2

≤ wpc
′|t|
n ,
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which implies that

∑
k∈M3

PR(k, t) �
∑
k∈M3

p
c′|t|
n exp{Ln(β̂(k))− Ln(β̂(t))}

≤
∑
k∈M3

p
c′|t|
n exp{Ln(β̃(k∗))− Ln(β0(k∗))}

� p
c′|t|
n p

(K+1)|t|
n exp

{
−1

2
nλa2

n

}
= exp

{
(K + c′ + 1)|t| log pn − 1

2
nλa2

n

}
→ 0, as n→∞,

with probability going to one. Therefore, we have
∑

k:k 6=t;|k|≤mn

P [Z=k|E]
P [Z=t|E]

P−→ 0. This

implies that
∑

k:k 6=t;|k|≤mn

P [Z=k||Z|≤mn,E]
P [Z=t||Z|≤mn,E]

P−→ 0, which in turn implies that P [Z = t |

|Z| ≤ mn,E]
P−→ 1. �

Lemma 3.8.7. Let Xn×p be a random design matrix with rows i.i.d. from a sub-

Gaussian distribution with covariance matrix Σ. Let the principal submatrices of Σ

of order mn+ |t| have minimum eigenvalues bounded (away from zero). Also, assume

that β0(t) is a |t| × 1 vector satisfying P [|x′iβ0(t)| ≥ M ] ≤ w < 1, for some M > 0,

where xi is the ith row of X (this is a weaker version of the condition that all the

log-odds are bounded as assumed in Bühlmann and van de Geer (2011)). Then, we

have

0 < λ ≤ min
k:|k|≤mn+|t|

λmin
(
n−1Hn(β0(k))

)
.

Proof:

Due to Theorem 5.39 of Vershynin (2012) and following the proof of Lemma 6.1

of Narisetty and He (2014), we have with probability going to one

0 < c′ ≤ min
k:|k|≤mn+|t|

λmin
(
n−1X ′kΣ

−1
k Xk

)
,

where Σk is the |k|× |k| submatrix of Σ = Cov(xi) corresponding to the covariates in
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model |k|. As the minimum eigenvalue of Σk is bounded away from zero, we further

have

0 < c ≤ min
k:|k|≤mn+|t|

λmin
(
n−1X ′kXk

)
. (3.68)

for some c > 0. Now, as β0(t) satisfies P [|x′iβ0(t)| ≥ M ] ≤ w < 1, for some M > 0,

the set of indices I = {i : |X ′iβ0(t)| ≤M} satisfies |I| ≥ n(1−w)/2 with exponentially

large probability. Then, with probability gping to one, we have

λmin (n−1Hn(β0(k))) = λmin (n−1X ′kDiag (σ2
i (β0(k))Xk)

≥ λmin (n−1X∗k
′D∗X∗k)

≥ dMλmin (n−1X∗k
′X∗k)

≥ (1− w)cdM/2 > 0,

(3.69)

were, X∗ is the |I|×pmatrix with rows fromX indexed by I, D∗ = Diag (σ2
i (β0(k)) : i ∈ I),

and dM = exp{M}/(1 + exp{M})2. We have applied Inequality (3.68) to X∗ to get

the last inequality in (3.69), which proves the lemma.

3.9 Discussion and Conclusion

In this chapter, a novel Gibbs sampler is proposed for variable selection in logis-

tic regression. The proposed Skinny Gibbs has desired theoretical and computational

properties. The strong selection consistency of the Gibbs sampler is established, which

guarantees that the posterior probability of the true model goes to one. Computa-

tionally, each iteration of Skinny Gibbs requires complexity linear in pn. Empirical

results presented in the paper illustrate the good performance of this approach for

variable selection.

The theoretical and computational techniques developed in the paper can be ex-

tended to other models that have normal scale mixture representations. Skinny Gibbs

can also be applicable to the case where the prior distribution has a normal scale
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mixture representation such as the conjugate priors of Chen et al. (2008). Other

extensions to cases such as fixed and random effects selection (Kinney and Dunson

(2007)) under high dimensional covariates are potential future research directions.

There has been some recent advances on theory and computation for Bayesian

high dimensional model selection. Ročková and George (2014) proposed an EM al-

gorithm for identifying the posterior mode in the context of Gaussian spike and slab

variable selection. Other recent approaches include Approximate Bayesian Compu-

tation (Bonassi and West, 2015), and Approximate Message Passing (Bonassi et al.,

2015). There has been recent advances in understanding the computational com-

plexity of Bayesian model selection algorithms including Román and Hobert (2012,

2015); Khare and Hobert (2013); Yang et al. (2016). Further research to understand

the computational complexity and mixing properties of Skinny Gibbs remains to be

an important futurre research direction.
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CHAPTER IV

Extremal Notion of Depth for Functional Data and

Applications

4.1 Introduction

Ranks, order-statistics, and quantiles have been used extensively for statistical

inference with univariate data. Many authors have studied their generalizations for

multivariate data using notions of “data depth”. The classical measure based on

Mahalanobis distance (Mahalanobis, 1936) is ideally suited for multivariate normal

(or more generally elliptical) distributions. Tukey’s half-space depth (Tukey, 1975)

appears to be the first new notion for the multivariate case, and there has been a

lot of work since then. Brown (1983) defined a ‘median’ for multivariate data using

the L1 metric, and Vardi and Zhang (2000) extended this to obtain a notion of

multivariate depth. Other concepts include simplicial depth (Liu, 1990), geometric

notion of quantiles (Chaudhuri, 1996), projection depth (Zuo and Serfling, 2000;

Zuo, 2003), and spatial depth (Vardi and Zhang, 2000; Serfling, 2002). See Zuo

and Serfling (2000) for a review. Various types of statistical inference have also

been based on multivariate depth notions, including classification (Jörnsten, 2004;

Ghosh and Chaudhuri, 2005; Li et al., 2012), outlier detection (Donoho and Gasko,

1992; Mosler, 2002), and hypothesis testing (Liu and Singh, 1997). Liu et al. (1999)
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studied the use of depth-based methods for inference on distributional quantities such

as location, scale, bias, skewness and kurtosis.

In comparison, there has been limited work on depth for functional data. Fraiman

and Muniz (2001) proposed integrated data depth (ID); Lopéz-Pintado and Romo

(2009) introduced band depth (BD) and modified band depth (MBD); and Lopéz-

Pintado and Romo (2011) proposed a half-region depth (HRD) which was intended

to be a generalization of the half-space depth for multivariate data. Several other no-

tions of depth for multivariate data have also been extended to functional data. For

instance, Chakraborty and Chaudhuri (2014a) developed spatial depth (SD) for func-

tional data. One can also extend Zuo (2003)’s projection-based depth functions and

multivariate medians to functional data. However, several of these notions and exten-

sions suffer from a “degeneracy” problem pointed out in Chakraborty and Chaudhuri

(2014a). Specifically, in infinite-dimensional function spaces, with probability one, all

the functions will have zero depth (Chakraborty and Chaudhuri, 2014a,b).

As with multivariate data, functional depth can be used for many applications.

Fraiman and Muniz (2001) used ID for constructing trimmed functional mean. Lopéz-

Pintado and Romo (2006) used BD for classification of functional data, Sun and

Genton (2011) proposed functional boxplots based on MBD, and Hubert et al. (2015)

considered functional outlier detection based on some measures of depth and outly-

ingness. Depth notions can also be used to obtain central regions of data which, for

instance, form the basis for constructing boxplots.

Both ID and MBD, which appear to be the most common, are based on some

form of averaging of the depth at different points in the domain and, as a result, their

depth level sets are not convex. This has important implications for corresponding

central regions as discussed in later sections. In addition, they may not be resistant

to functions that are outlying in small regions of the domain.

This paper develops a new notion called Extremal Depth (ED) for functional
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data. We will show that ED and associated central regions possess several attractive

features including:

• ED central regions achieve their nominal coverage exactly due to the convexity

of the depth contours;

• There is a direct correspondence between the (simultaneous) ED central regions

and the usual pointwise central regions based on quantiles; as a consequence, the

width of the ED simultaneous central regions is, roughly speaking, proportional

to a measure of variation at each point; and

• ED central regions are resistant to functions that are ‘outlying’ even in a small

region of the domain.

These features lead to desirable properties for corresponding functional boxplots,

simultaneous confidence regions for function estimation, and outlier detection.

The rest of the article is organized as follows. Section 4.2 introduces ED for a

sample of functional data and illustrates it on a real dataset. Section 4.3 defines ED

for general probability distributions and discusses its theoretical properties. Section

4.4 deals with construction of central regions of functional data and develops several

results including exact coverage and correspondence to pointwise regions. Section 4.5

describes applications to functional boxplots and outlier detection, and the advantages

of ED-based methods over others. Section 4.6 demonstrates how ED can be used to

construct simultaneous confidence bands for functional parameters.

4.2 Extremal Depth

4.2.1 Depth distribution

Let S := {f1(t), f2(t), · · · , fn(t)} be a collection of n functional observations with

t ∈ T . For ease of exposition, we assume throughout that the functions are continuous

and infinite-dimensional and, without loss of generality, we take the domain T to be

[0, 1]. However, as with other notions, ED can also be used for functional observations

observed at a finite number of points.
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Let g(t) be a given function that may or may not be a member of S. For each

fixed t ∈ [0, 1], define the pointwise depth of g(t) with respect to S as

Dg(t, S) := 1− |
∑n

i=1[1{fi(t) < g(t)} − 1{fi(t) > g(t)}]|
n

.
(4.1)

Thus, any given function g(·) is mapped into the pointwise depth function Dg(·, S)

whose range is Dg ⊂ {0, 1/n, 2/n, · · · , 1}. Let D be the union of Dg over all functions

g. We call D the set of depth values.

Let Φg(·) be the cumulative distributions function (CDF) of the distinct values

taken by Dg(t, S) as t varies in [0, 1]. This will be called the depth CDF or d-CDF

and defined formally as

Φg(r) =

1∫
0

1{Dg(t, S) ≤ r}dt, (4.2)

for each fixed r ∈ D. Note that if Φg has most of its mass close to zero (or one), then

g is away from (or close to) the center of the data. (See the illustrative example in

Figure 4.1 for computation of d-CDFs.)

We need an appropriate way to order these d-CDFs (distributions) to get a one-

dimensional notion of depth. (Clearly, there is no single approach that will dominate

all others, so one has to decide on the appropriate one by examining its performance

under different situations.) First-order stochastic dominance may appear to be the

most natural way to order distributions, but it is not useful here except in the trivial

case where the functions do not cross. Alternatively, one can use a simple functional

of the d-CDFs such as the mean or median. In fact, the integrated depth (or ID)

by Fraiman and Muniz (2001) is given (approximately) by ID(g) =
∫ 1

0
Dg(t, S) dt.

(It is approximate because, in the definition of ID, Dg(t, S) is based on the term∑n
i=1{1{fi(t) ≤ g(t)} rather than

∑n
i=1{1{fi(t) < g(t)} which appears in equation

4.1.) The other notions, such as Band Depth (BD) or Modified Band Depth (MBD),

do not depend directly on the d-CDFs. We will provide a comparison of various
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functional depths in Section 4.3.

4.2.2 Definition of Extremal Depth

Our notion of extremal depth will be based on a comparison of Φg(r), the d-CDFs,

for r near zero. It focuses on the left tail of the distribution and can be viewed as left-

tail stochastic ordering. The idea can be explained simply as follows. Consider two

functions g and h with corresponding d-CDFs Φg and Φh. Let 0 ≤ d1 < d2 < · · · <

dM ≤ 1 be the ordered elements of their combined depth levels. If Φh(d1) > Φg(d1),

then h ≺ g (or equivalently g � h, and is read as h is more extreme then g); if

Φg(d1) > Φh(d1), then h � g. If Φg(d1) = Φh(d1), we move to d2 and make a similar

comparison based on their values at d2. The comparison is repeated until the tie

is broken. If Φg(di) = Φh(di) for all i = 1, ...M , the two functions are equivalent

in terms of depth and are denoted as g ∼ h. (This ordering is defined formally in

Section 4.3 when we consider a more general context with arbitrary function spaces

S and distributions.)

The extremal depth (ED) of a function g with respect to the sample S = {f1, · · · , fn}

can now be defined as

ED(g, S) =
#{i : g � fi}

n
, (4.3)

where g � fi if either g � fi or g ∼ fi. If g ∈ S, then this is just the normalized

rank of g; i.e., ED(g, S) = R(g, S)/n where R(g, S) = {i : g � fi} is the rank of g.

This relationship between ED and its rank is similar to corresponding relationships

of normalized rank functions for some other depth notions in the literature (Liu and

Singh, 1993; Lopéz-Pintado and Romo, 2009). The distinguishing feature of ED is

the nature of the ordering, i.e., left-tail stochastic ordering of the depth distributions.

The ED median of a set of functional observations S can be defined (in an obvious

manner) as the function (or functions) in S that has (or have) the largest depth. ED

median also has the following min-max interpretation. For a function g ∈ S, let
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dmin(g) = inft∈[0,1] Dg(t, S), the pointwise depth in Equation (4.1). Then, if g is an

ED median, dmin(g) attains the maximum: dmin(g) = max1≤k≤n dmin(fk); i.e., an ED

median maximizes the minimum pointwise depth over t ∈ [0, 1].

Figure 4.1: An illustrative example: (a) eight sample functions and (b) their depth
CDF’s. The columns correspond to each of four depth levels {1/8, 3/8, 5/8, 7/8} and
the rows correspond to different sample functions.

We now consider the illustrative example in Figure 4.1 (a) with eight sample

functions. The d-CDF’s of all the functions are shown as a table in Figure 4.1 (b).

ED gives the ordering f8 ≺ f1 ≺ f4 ≺ f5 ≺ f2 ≺ f7 ≺ f3 ≺ f6. So f8 is the

most extreme observation and f6 is the deepest (median). Note that the ordering

f8 ≺ f1 ≺ f4 ≺ f5 is based on a comparison of the d-CDF values at r = 1/8 (these

values are in bold); the ordering f2 ≺ f7 is based on their d-CDF values at r = 3/8;

and the ordering f3 ≺ f6 is based on their values at r = 5/8. From this, we get the

extremal depths of these functions as: ED(f8) = 1/8, ED(f1) = 2/8 and so on.

We now use the orthosis dataset (Cahouet et al., 2002) to illustrate ED and visually

compare its performance with ID and MBD. This dataset consists of moment of force

measured at the knee under four different experimental conditions, measured at 256

equally-spaced time points for seven subjects with ten replications per subject. Figure

4.2 shows the results for 240 functional observations from six subjects who have similar

range of moment of force values. The x-axis represents time when the measurement
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is taken and the y-axis shows the resultant moment of force at the knee. The sample

functions are plotted in gray, while the deepest function is in blue and the two least

deep functions are in red.

The three panels in Figure 4.2 correspond to ED, ID and MBD respectively. We

restrict attention to ID and MBD in our empirical comparisons because these no-

tions are commonly used, non-degenerate and invariant to monotone-transformations.

(These properties are discussed in Section 4.3.2). The medians for all three notions

are qualitatively similar. However, the two extreme functions based on ID and MBD

fall well within the boundaries of the entire data cloud while the two for ED are most

extreme in at least some part of the domain. As we shall see, this is due to the

non-convexity of the depth level sets of ID and MBD.

Figure 4.2: Orthosis data example: The three panels show the 240 functional ob-
servations (in gray) along with their two most outlying functions (in red) and the
median (in blue) using ED, ID and MBD, respectively.

4.3 ED for Theoretical (Population) Distributions and Its

Properties

There has been discussion of the desirable properties for depth notions in the

literature (Liu, 1990; Zuo and Serfling, 2000; Mosler and Polyakov, 2012). We will
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examine the performance of ED with respect to these properties and compare it with

existing notions. To do this, we first have to extend the notion of ED from sample

data to theoretical (population) distributions.

4.3.1 Definition

Let P be a distribution on C[0, 1] and X ∼ P be a random function. We denote Ft

to be the CDF of the random variable X(t), and F̄t(·) = 1− Ft(·). For any function

g, define the depth of g at t as

Dg(t,X) := 1− |P [X(t) > g(t)]− P [X(t) < g(t)]|

= 1− |F̄t(g(t))− Ft(g(t)−)|.
(4.4)

When the univariate distributions Ft are continuous, Dg(t,X) = 1− |1− 2Ft(g(t))|.

The d-CDF of the function g is defined, similar to the finite-sample case, as

Φg(r) =

∫
[0,1]

1{Dg(t,X) ≤ r} dt, (4.5)

for r ∈ [0, 1]. Note that, if necessary, one can replace the uniform weight distribution

in the definition of Φg(r) by a weighted measure to give higher or lower importance

to certain regions of the domain.

As in the finite-sample case, we use the d-CDFs to obtain an ordering of func-

tions. Because the d-CDFs now can be continuous, we need a slightly more general

definition. Consider a pair of functions g, h ∈ C[0, 1], and define

r∗ = inf{r ∈ [0, 1] : Φg(r) 6= Φh(r)}, (4.6)

the infimum of values at which d-CDFs of g and h differ. Then, we say h ≺ g (h more

extreme than g) if there exists δ > 0 such that Φh(r) > Φg(r) for all r ∈ (r∗, r∗ + δ).

If r∗ < 1, such a δ exists as long as Φg and Φh have finitely many crossings. If r∗ = 1,

we say that g ∼ h.

Extremal depth of a function g w.r.t. the distribution P is now defined as
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ED(g,P) := 1− P [g ≺ X] = P [g � X] , where X ∼ P. (4.7)

4.3.2 Properties

Liu (1990); Zuo and Serfling (2000) proposed several desirable properties for mul-

tivariate depth notions, and Mosler and Polyakov (2012) extended them for functional

depth. The first four properties below are satisfied by ED, ID, BD and MBD but

not by some others. The next two concepts discussed below, convexity and ‘null at

the boundary’ (NAB), are satisfied by ED but not by ID and MBD. The convexity

property leads to desirable shapes for central regions as shown in the next section.

The NAB property is also important and is related to being resistant to outliers.

Transitivity (if f1 ≺ f2 and f2 ≺ f3, then f1 ≺ f3) and invariance under mono-

tone transformations (order preserving as well as order reversing) are two well-known

properties. It can be easily shown that ED satisfies them, as do ID, BD and MBD

(where the ordering f1 ≺ f2 for ID and MBD is interpreted as f2 deeper than f1).

However, spatial depth (SD) (Chakraborty and Chaudhuri, 2014a) does not satisfy

the invariance property. The details are omitted.

Maximality of the center property requires that if there exists a natural center

for the distribution of interest, such as a center of symmetry, then it should have the

highest depth. This holds for ED and that point is the ED median. When a center of

symmetry exists, it has the highest depth for ED, ID and MBD; this is not necessarily

true for SD. While BD also has the center of symmetry as its median under some

conditions (Lopéz-Pintado and Romo (2009)), Chakraborty and Chaudhuri (2014c)

showed that, for many common stochastic processes, BD assigns a depth of zero to

the center of symmetry, making it not deeper than any other function.
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Monotonicity from the center requires that, if m is a median and two functions

f and g are such that either m(t) ≤ g(t) ≤ f(t) or m(t) ≥ g(t) ≥ f(t) for all t, then g

should be at least as deep as f . ED, ID, BD and MBD all satisfy monotonicity from

the center of symmetry, when it exists. The proof is omitted.

Convex depth level sets: For a given function h and fixed α ∈ (0, 1), define the

ED level set as {h : ED(h,P) ≥ α}.

Proposition 4.3.1. Under a mild condition (Condition 4.7.1(b) in Appendix), the

ED level sets are convex for each α ∈ (0, 1).

This property is highly desirable for constructing central regions of a desired cov-

erage (1− α) (developed in the next section). Neither ID nor MBD is guaranteed to

have convex depth level sets, which was already suggested by Figure 4.2. The proof

is provided in the Appendix.

Null at the Boundary: (Mosler and Polyakov, 2012) considered a depth notion to

satisfy the‘null at infinity’ (NAI) property if D(h,P)→ 0 as ‖h‖ → ∞. It is shown in

the Appendix that ED satisfies the NAI property. Neither ID nor MBD satisfies the

NAI property. This can be seen, for instance, by taking functions that go to infinity

in a small interval but are near the center in the rest of the domain.

The NAI notion is not very informative if ‖h‖ is bounded with P−probability one.

Therefore, we generalize it to the concept of ‘null at the boundary’ (NAB) which is

defined in terms of quantiles rather than norms of the functional observations. The

formal definition is given in Appendix where it is also shown that ED satisfies NAB

property. Although BD may satisfy convexity and NAB properties, it may do so

trivially due to the degeneracy problem noted earlier. ID and MBD do not satisfy

NAB, since they do not satisfy the weaker NAI property.
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4.3.3 Convergence of Sample ED

Fraiman and Muniz (2001) showed that, under suitable regularity conditions, the

finite-sample versions of ID converge to the population quantity. The following propo-

sition establishes the analogous consistency result for ED under suitable regularity

conditions. The conditions and proof are given in the Appendix.

Proposition 4.3.2. Let P be a stochastic process satisfying the regularity conditions

4.7.1 - 4.7.3 in the Appendix. Let Pn be the empirical distribution based on n samples

from P. Then,
lim
n→∞

sup
f∈C[0,1]

|ED(f,Pn)− ED(f,P)| → 0,

4.3.4 Non-Degeneracy of ED

Chakraborty and Chaudhuri (2014a) showed that several existing notions of func-

tional depth suffer from the following degeneracy problem. For a general class of

continuous time Gaussian processes, with probability one, the depth of every func-

tion is zero. This is true for BD and the extensions of projection depth and half-region

depth to functional data in the literature. ID, MBD, and SD do not suffer from these

problems. Proposition 4.3.3 shows that extremal depth is non-degenerate for a general

class of stochastic processes.

Consider X = {h(t, Yt)}, t ∈ [0, 1], where: i) Yt is a mean zero Gaussian process

having continuous sample paths, bounded variance function 0 < σ2(t) := E(Y 2(t)) <

∞, and sup{Yt/σ(t), t ∈ [0, 1]} has a continuous distribution, ii) the function h :

[0, 1] × R is continuous, and iii) h(t, .) is strictly increasing with h(t, s) → ∞ as

s→∞ for each t ∈ [0, 1]. Let X ∼ P, and define the range of ED for X as R := {α ∈

[0, 1] : ED(f,P) = α, for some f ∈ C[0, 1]}. Then:

Proposition 4.3.3. The range of ED for X is (0, 1].

The result is proved in the Appendix.
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4.4 Central Regions Based on ED

This section deals with construction of ED-based central regions, their theoretical

properties and comparison with central regions based on other depth notions.

4.4.1 Definition and Properties

Consider a function space S of interest (such as C[0, 1] or a sample of n functional

observations), and let P be the associated distribution of interest. Let (1− α) be the

desired coverage level. Define the lower and upper α−envelope functions as

fL(t) := inf{f(t) : f ∈ S, ED(f,P) > α},

fU(t) := sup{f(t) : f ∈ S, ED(f,P) > α},
(4.8)

respectively. Then, the (1− α) ED central region is given by

C1−α = {f ∈ S : fL(t) ≤ f(t) ≤ fU(t),∀t ∈ [0, 1]}. (4.9)

When S is a finite set of functions and P is the empirical distribution, then C1−α is

just the convex hull formed by all the sample functions having depth larger than α.

When S is C[0, 1], and the marginal distribution of P at t has zero mass to the right

of fL(t) or to the left of fU(t), we take fL(t) and fU(t) to be the largest and smallest

possible values (which retain the marginal probability of the interval [fL(t), fU(t)]),

respectively.

The following proposition shows that the central region of level α contains at least

the desired amount of coverage (1 − α). Further, when the boundary of the central

region does not have any mass, the actual coverage equals the desired coverage exactly.

This property is not shared by ID or MBD, and they often tend to have over-coverage

problem. The proof is provided in the Appendix.

Fix α in the range of ED. Define the boundary set of C1−α as ∂C1−α = {f ∈

C1−α : f(t) = fL(t) or fU(t) for some t ∈ [0, 1]}. Then:

Proposition 4.4.1. We have
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1− α ≤ P [f ∈ C1−α] ≤ (1− α) + P [f ∈ ∂C1−α] . (4.10)

In particular, if P [f ∈ ∂C1−α] = 0, we have P [C1−α] = 1− α.

As we shall see in Section 4.6, this property is very useful in achieving desired

coverage in simultaneous inference problems. When S is the set of n sample functions,

the boundary set ∂C1−α is the same as the set of functions in C1−α that equal fL or fU

(defined in Equation (4.9)) for a part of the domain. The probability P [f ∈ ∂C1−α]

may not be exactly zero in finite samples if there are one or more functions fi(t)

which coincide with the upper or lower envelopes of the central region over an interval.

However, in most situations of interest, this probability goes to zero as n→∞.

ED central regions have another interesting and attractive property: there is a

close relationship between the ED (simultaneous) regions and the usual pointwise

central regions. Specifically, for a fixed γ ∈ (0, 1), let Q1−γ be the (1− γ)- pointwise

central region given by

Q1−γ = {f ∈ S : qγ/2(t) ≤ f(t) ≤ q1−γ/2(t),∀t ∈ [0, 1]. (4.11)

Here qη(t) is the η−th quantile of the univariate distribution of P at t. Then, it is

shown below that for every γ ∈ [0, 1], Q1−γ corresponds to an ED central region for

some α. Thus, every pointwise central region is an ED central region.

Proposition 4.4.2. Let P be the stochastic process of interest. For any γ ∈ [0, 1],

there exists an ED central region C1−α for some α such that P [Q1−γ ∆ C1−α] = 0,

where ∆ denotes set difference. That is, up to a set of P−measure zero, the two sets

are the same.

Note that while Q1−γ corresponds to an ED central region for each γ, the converse

may not be true in general. However, there is indeed a one-to-one correspondence

for most continuous stochastic processes. For example, let X = {h(t, Yt)}, t ∈ [0, 1],

where Yt and h(·, ·) satisfy the conditions in Proposition 4.3.3.
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Corollary 4.4.1. For every ED central region C1−α of X, there exists γ ∈ [0, 1] such

that P [C1−α ∆ Q1−γ] = 0. In particular, all the ED central regions for Y := {Yt, t ∈

[0, 1]} take the form {f : −wσ(t) ≤ f(t) ≤ wσ(t),∀t ∈ [0, 1]}, for some w > 0.

The last statement of Corollary 4.4.1 implies that ED central regions for the

Gaussian process Y have width proportional to the standard deviation, which are

perhaps the most natural central regions.

4.4.2 Comparison of Central Regions

We examine the central regions formed by ED for a simulated dataset and the

orthosis dataset considered earlier.

We consider a simple set-up where the functions are random quadratic functions

with coefficients drawn from i.i.d. standard normal distributions. That is, each

function is randomly generated as f(t) = c0 + c1t + c2t
2, where c0, c1, c2 ∼ N(0, 1).

We generate n = 200 functions at p = 100 equally spaced points in [0, 1]. The central

90% and 50% regions formed by ED, ID and BD are shown in Figure 4.3. Figure

4.4 shows the widths of these regions as function of the pointwise standard deviation.

We can see from these figures that the central regions formed by ED represent the

central part of the data more appropriately. More specifically, ED central regions are

central in the entire domain and more importantly represent the pointwise variability

well. The ID and BD central regions however tend to be wider in less variable parts

of the domain.

We use the orthosis dataset considered earlier to compare the central regions

formed by ED with those from other functional depths. Figure 4.5 compares the 90%

(upper panel) and 50% (lower panel) regions formed by ED, ID and MBD. The ID

and MBD central regions are defined in a similar way as the ED central regions: the

convex hull formed by the deepest (1− α)× 100% of the sample functions.

In the upper panel, both ID and MBD regions include the peak (at the top) at
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Figure 4.3: Central 90 % and 50 % central regions for the quadratic functions setting

around the value of 180 on x-axis while ED does not. The ID region in the lower

panel (50%) also includes some of this peak. Of course, one does not know the “right”

answer in this case. However, the connection with pointwise intervals would suggest

that behavior of the ED regions is more reasonable.

Figure 4.6 is a plot of the widths of the ED, ID, and MBD central regions against

the pointwise standard deviations of the data. We see that the ED central regions

scale (approximately) proportionally to the pointwise standard deviations. This is

not the case for the regions based on ID or MBD.
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Figure 4.4: Central 90 % and 50 % central regions for the quadratic functions setting

4.5 Functional Boxplots and Outlier Detection

4.5.1 Boxplots

Central regions can be readily used to construct functional boxplots that provide

a summary of the data. Sun and Genton (2011) used MBD to develop functional

boxplots that are analogous to classical boxplots for univariate data. The plot includes

middle 50% central region (the ‘box’) and an envelope obtained by inflating the

central 50% central region by 1.5 times its pointwise range, the boundaries of which

are referred to as ‘whiskers’. Functions outside this envelope are considered potential

candidates for outliers.

We use a simulation study to compare the performance of ED-based functional

boxplots to those based on MBD (Sun and Genton (2011)) and ID. The models con-

sidered below in our analysis are the same as those in Sun and Genton (2011).

Model 1: Baseline: Xi(t) = 4t + ei(t), 1 ≤ i ≤ n, where ei(t) is a Gaussian process

with mean zero and covariance function γ(s, t) = exp{−|t− s|}. This is the baseline
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Figure 4.5: Central regions of Orthosis data set: 90 % and 50 % central regions in
the upper and lowe panels, respectively.

model for the subsequent models.

Models 2 − 5 include outliers. Here {ci, i = 1 ≤ i ≤ n} are indicator functions of

outliers and are i.i.d Bernoulli with p = 0.1. That is, on average 10% of the observa-

tions are outliers. {σi, i = 1 ≤ i ≤ n} are variables that take on values ±1 with equal

probability and indicate the direction of the outliers; K = 6 is the magnitude of the

outlier.

Model 2: Symmetric contamination: Yi(t) = Xi(t) + ciσiK.

Model 3: Partial contamination: Let Ti be randomly generated from uniform dis-

tribution on [0, 1]. Then, Yi(t) = Xi(t)+ciσiK, if t ≥ Ti , and Yi(t) = Xi(t), if t < Ti.
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Figure 4.6: Width of the 90 % and 50 % central regions using different approaches:
The blue dots are the widths versus standard deviation and the solid black line is the
least squares line. It can be seen that the ED has width mostly proportional to the
standard deviation while having relatively smaller or comparable width.

Model 4: Contaminated by peaks: Let Ti be randomly generated from uniform dis-

tribution on [0, 1−`]. Then, Yi(t) = Xi(t)+ciσiK, if Ti ≤ t ≤ Ti+`, and Yi(t) = Xi(t)

otherwise. In the simulation, we fixed ` = 0.08.

Model 5: Shape contamination with different parameters in the covariance func-

tion: Yi(t) = 4t + ẽi(t), where ẽi is a mean zero Gaussian process with covariance

γ(s, t) = k exp{−|t− s|µ}, with k = 8, µ = 0.1.

For the simulation, we generated n = 100 functional observations from the above

models and evaluated them on a grid of size 50. Only a summary of the results is given

here. For the baseline model with no outliers, all of the depths lead to ‘well-behaved’
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boxplots. With outliers, ID and MBD-based boxplots exhibited undesirable features,

and this was most evident for Models 3 and 4. Figure 4.7 shows a sample dataset.

For Model 3 (upper panel), the middle 50% of the central region is affected by the

10% contamination. The problem is less so for MBD but it is still evident. The issue

is more serious for Model 4 where the performances of both ID and MBD are badly

affected. As noted, part of the reason is that both ID and MBD rely on some type of

averaging. The ED plots, which rely on the extremal property, are unaffected by the

outliers in these examples.

Figure 4.7: Functional boxplots: The top and bottom panels correspond to data from
Models 3 and 4, respectively. In each plot, the region in blue is the central 50% region
and the lines in red are the whiskers.
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4.5.2 Outlier Detection

This section provides a formal comparison of the performance of boxplots as

outlier-detection tools. We use the same measures in Sun and Genton (2011) for

comparison:

i) pc: percentage of correctly identified outliers, and

ii) pf : percentage of incorrectly detected outliers (equals the number of incorrectly

identified outliers divided by total number of non-outlying functions). The standard

errors of the percentages are given in parenthesis.

Table 4.1 shows the results based on 100 data sets simulated using the Models

1-5 described above. We see that pf−values of ED are much lower across all models.

The values of pc are generally similar for the different depth notions except for model

4, where ED outperforms by a clear margin. This is not surprising as model 4 is

contaminated by peaks; ID and MBD fail to find the outliers due to their “averaging”

property as was evident in Figure 4.7.

These results suggest that when the outlying functions are consistently outlying

in the whole domain, all three notions – ED, ID and MBD – perform well. However,

when there are functions that are outlying in a subset of the domain as in Models 3

and 4, ED performs better while ID and MBD can do poorly.

Table 4.1: Outlier detection using Functional Box-Plots: pc is the percentage of
correctly identified outliers; pf is the proportion of incorrectly identified outliers.
Numbers in brackets indicate their standard errors.

ED ID MBD
Model 1 pf 0.03 (0.17) 0.06 (0.25) 0.07 (0.27)

Model 2
pc 98.52(4.42) 98.89(3.49) 99.15(3.03)
pf 0.01 (0.10) 0.03 (0.20) 0.04 (0.21)

Model 3
pc 86.43(13.64) 77.24 (16.72) 83.17(13.77)
pf 0.01 (0.12) 0.03 (0.18) 0.03 (0.21)

Model 4
pc 84.42 (13.29) 41.06 (18.90) 45.94(18.99)
pf 0.01 (0.17) 0.04 (0.21) 0.04 (0.22)

Model 5
pc 75.74(16.15) 74.97 (16.91) 78.17 (15.79)
pf 0.01 (0.11) 0.03 (0.19) 0.04 (0.24)
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The above discussion indicates that the corresponding estimators, such as func-

tional trimmed means, based on ED will be more resistant to outliers. Specifically,

let m(α) is the trimmed mean based on the sample functions in (1 − α) ED central

region. Then, the simulation results suggest that m(α) may remain bounded even

as the outliers increase in magnitude while the corresponding trimmed means for ID

and MBD can be unbounded. This result can be established formally and we plan to

pursue this in the future.

4.6 Simultaneous Inference

In problems involving functional inference, such as regression and density esti-

mation, it is often difficult to obtain exact simultaneous confidence bands. In such

cases, one can combine resampling methods, such as the bootstrap (Efron, 1979), with

central regions using functional depth to obtain simultaneous confidence regions. Un-

der the asymptotic validity of the resampling technique, we can get approximate

simultaneous confidence regions of desired coverage. This section demonstrates the

application for the case of polynomial regression and compares it with other methods.

4.6.1 Polynomial and Other Parametric Regression

Consider the polynomial regression problem Y (xi) = µ(xi) + εi with µ(xi) =

θ0 + θ1xi + · · · + θqx
q
i . The covariates xi’s are fixed and the error terms εi’s are

i.i.d with the standard regression assumptions. The goal is to get a simultaneous

confidence region for µ(x) for all x.

It is known that there is no ‘exact’ method for this general problem. Scheffe’s

method (Scheffe, 1959) leads to conservative regions since a polynomial of a variable

x of degree q does not span the full (q+1)−dimensional Euclidean space. The level of

conservatism gets higher as the degree q increases. Exact methods have been devel-

oped in special cases. Piegorsch (1986) considered quadratic regression and provided
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confidence bands sharper than Scheffe’s bands. Liu et al. (2014) proposed exact bands

for quadratic and cubic polynomial regressions. Wynn (1984) developed exact bands

when the errors are normally distributed using special properties of normality. We

describe here a general re-sampling based approach using ED central regions.

Let θ = (θ0, θ1, ...θq) denote the vector of parameters, θ̂ denote the usual least-

squares estimator, and µ̂(x) be the corresponding predictor. Consider the residuals

ri = Y (xi)− µ̂(xi) and ŝ, the residual standard error. Generate B bootstrap samples

from the residuals to obtain bootstrap estimates θ̂∗1, θ̂
∗
2, · · · , θ̂∗B of θ, and ŝ∗1, ŝ

∗
2, · · · , ŝ∗B,

of σ. Define an estimate of the polynomial mean function µ̂(x|θ̂∗) in the obvious

manner and the normalized (centered and scaled) version of this function as

m∗j(x) =
µ̂(x|θ̂∗j )− µ̂(x|θ̂)

ŝ∗j
, (4.12)

for j = 1, 2, · · ·B. These are pivotal quantities: their distribution is free of θ and

σ. The set of normalized bootstrapped functions S∗ := {m∗1,m∗2, · · · ,m∗B} can now

be treated as our functional data, and they can be used to construct the ED central

region. Specifically, let f ∗L(x) and f ∗U(x) be the lower and upper envelopes of this

region. Then, the (1− α)−level simultaneous confidence band for µ(x) is given by

Cα
n = {µ(x) : µ̂(x) + ŝf ∗L(x) ≤ µ(x) ≤ µ̂(x) + ŝf ∗U(x),∀x}. (4.13)

Based on the results in Section 4.4, and the bootstrap validity for parametric regres-

sion models (Freedman, 1981), we get P [µ(x) ∈ Cα
n ∀ x]→ (1− α) as n→∞.

We use a limited simulation study to examine the finite sample performance of

this band and compare it with bands based on Scheffe’s method and a Kolmogorov-

like sup-norm statistic. The sup-norm statistic is K∗j = supx(|µ̂∗j(x)− µ̂(x)|)/ŝ∗j . The

Scheffe’s band is obtained in the usual manner assuming normality. The simulation

was done for a degree five polynomial µ(x) = 192(x − 0.5)5; the coefficient 192 was

chosen so that the absolute mean function integrates to one. This is the dashed
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function in the right panel of Figure 4.8. We simulated n = 100 observations with

i.i.d. normal error terms having standard deviation 5; the covariate x was randomly

generated from U [0, 1]. We used B = 2000 bootsrap samples for obtain ED confidence

bands.

Figure 4.8 shows the confidence bands and the true mean function (dashed line)

for one data set. The confidence band based on ED are tighter than both Scheffe’s

and K- bands (the band using K∗j ’s). Table 4.2 gives the numerical results from the

Figure 4.8: Simultaneous confidence bands: The figure on the left plots all the boot-
strapped functions along with 90 % ED central region and the plot on the right gives
confidence bands from the three different methods

simulation study. The first row is the coverage probability and the next five rows show

the power values for five different alternative polynomials. The first two alternatives

are given by Pk = Ck sign(x−0.5) (x−0.5)k for degrees k = 4, 6, and Ck is a constant

such that |Pk| integrates to one. The next three alternatives are additive shifts from

the original mean function P5.

As expected, the Scheffe-band is very conservative (actual coverage is 99% while

the nominal coverage is only 90%). The ED-band has coverage very close to 90% as

desired. The coverage proportion of the K-band is close to the nominal. However, the

band is wide in the middle and narrow in the tails. This leads to lower power than the

ED-band for a large class of alternatives which have shift in the middle of the domain.
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This can be seen in last three rows of Table 4.2, where K-band has substantially lower

power for the three shift alternatives. Power of ED-bands for the P4, P6 alternatives,

which mostly differ from K-band at the tails, also remains competitive.

Table 4.2: Level (row 1) and Power (rows 2 - 6) for 90 % simultaneous confidence
bands using different methods

Scheffe K-band ED
Level (P5) 0.01 0.10 0.10

P4 0.02 0.14 0.16
P6 0.03 0.17 0.19

0.2 + P5 0.08 0.21 0.32
0.2 + 0.2x+ P5 0.31 0.32 0.66

0.2 sign(x− 0.5) + P5 0.09 0.22 0.38

This application to polynomial regression can be readily extended to more general

models of the form Yi = θ0 +φ1(xi)θ1 + · · ·+φq(xi)θq+εi, where φ1, · · · , φq are splines

or other known basis functions. The covariates can also be multidimensional in this

framework.

4.6.2 Other applications to testing for a distribution, acceptance bands

for Q-Q plots and confidence bands for empirical CDF

In this section, we provide a short outline of some potnetial applications of ED in

general settings. Extensive studies of these ideas will be considered elsewhere due to

space limitation. We first consider another application for obtaining confidence bands

for cumulative distribution functions (CDFs). Inference for cumulative distribution

functions (CDFs) has a long history. For complete data (no censoring), there are good

methods for obtaining simultaneous confidence bands for the CDF in the literature.

The ED approach, however, can be useful in situations with complex censoring, and

this topic is pursued elsewhere. Our primary goal in this section is to establish the

relationship between ED bands for this problem and a class of weighted Kolmogorov

bands.
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As the distribution of the Kolmogorov statistic K = supt∈R1 |FN(t)−F (t)|, under

the distribution F (t) does not depend on the underlying distribution and that it

can be easily inverted to obtain simultaneous (1− α)− level confidence bands of the

following form for F :

(FN(t)− cN(t), FN(t) + CN(t)) ∀ t ∈ R1.

Here CN(t) is the upper α−level quantile of the Kolmogorov statistic. The values of

CN(t) have been extensively tabulated in the literature and they can also be obtained

through simulation due to the distribution-free property of the statistic. Often, one

uses the asymptotic approximation that is also well studied.

The Kolmogorov band has constant width ±CN(t) while the variance of the FN(t)

is proportional to
√
F (t)(1− F (t)). So alternative statistics based the use of weighted

Kolmogorov statistics have been studied in the literature. These are of the form

K∗ = supt∈Eδ |FN(t)−F (t)|ψ(F (t)) for some wight function psi(·). The most common

examples are: i) ψ(t) = 1√
t(1−t)

, which corresponds to the standard deviation and has

been called the Equal Precision (EP) band in the context of censored data by Nair

(1984); and ii) ψ(t) = 1/
√
t or 1/

√
(1− t) are called Renyi bands and give more

weight to the lower and upper tails respectively. For technical reasons, Eδ, the set

over which the supremum is taken, has to be restricted. For example, for the Equal

Precision band with weight 1/
√
t(1− t), in general, the range has to be restricted to

E = t : δ < F (t) < 1− δ for some δ > 0. This condition is needed in general to ensure

the asymptotic convergence of the statistic. The restriction of E at the tails implies

that the statistic is not strictly distribution-free. In practice, it is implemented by

applying it to the empirical region EN = t : δ < FN(t) < 1− δ, i.e., one clips a small

proportion of the extreme observations and computes the statistic on the remaining

region.
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The EP band is attractive because its width is proportional to the pointwise stan-

dard error and hence is structurally similar to the pointwise intervals. In this section,

we discuss the connections between the EP-band and our ED band based on boot-

strapped data. Specifically, let FN(t) be the empirical CDF (ECDFs) based on N iid

observations X1, ...XN and let PN denote the corresponding distribution. Generate

B bootstrap samples from PN and denote the estimated ECDFs as F ∗N,j, j = 1, ..., B.

We now treat the bootstrapped ECDFs as functional data and obtain the (1−α)−level

ED central region. Let C∗N,α denote this central region based on bootstrapped data.

Then, from our results, we have that PN(C∗N,α) ≥ 1 − α. But we are interested in

coverage probability for the underlying CDF F (t). The following lemma shows that

it asymptotically has the desired coverage.

Lemma 4.6.1. We have that P [F (t) ∈ Ĉα(t),∀t ∈ [t0, t1]]→ (1− α), as n→∞.

Proof. We first denote the lower and upper boundaries of Ĉα(t) by Ln and Un. Due to

Theorem 4.4.2 and the fact that conditional on X1, · · · , Xn, for t ∈ [1/n < t < 1−1/n]

the pointwise distribution of the bootstrap CDF is normal with mean Fn(t) and

variance nFn(t)(1 − Fn(t)), the ED central region of the bootstrap distribution for

t ∈ [t0, t1] is given by Ĉα = {F ∗n : sup
t∈[t0,t1]

|F ∗n−Fn|√
Fn(1−Fn)

≤ cn(Fn)}, which has coverage

equal to (1− α). Therefore, we have

P ∗

[
Ĉα = sup

t∈[t0,t1]

|F ∗n − Fn|√
Fn(1− Fn)

≤ cn(Fn) | X1, · · · , Xn

]
= 1− α. (4.14)

Then following Bickel and Freedman (1981), we also have that

P

[
sup

t∈[t0,t1]

|Fn − F |√
Fn(1− Fn)

≤ cn(Fn)

]
→ 1− α, as n→∞.

Therefore, the region Fn∓cn(Fn)
√
Fn(1− Fn) is an asymptotically valid simultaneous

confidence band for F in t ∈ [t0, t1]. Let us now consider the width function of the ED
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central region constructed using the bootsrap distribution, i.e., wn(t) = Un − Ln. By

the equal precision lemma, we have that for some βm(α), w(t) = Qβ(α)(t)−Q−β(α)(t).

Therefore, for any fixed t, we have w(t) → Qβ(α) − Q−β(α) = c(β(α))
√
Fn(1− Fn).

Therefore, the Bootstrap central region provides β(α) that satisfies Equation (4.14).

and hence the above argument yields its asymptotic validity.

Recently Wang et al (2013) proved uniform closeness of a smooth estimator F̃N to

the true CDF. This result together with the previous arguments provide the validity

of bootstrap based on such estimators as well. In future work, we plan to perform

extensive empirical studies to understand the finite sample properties of confidence

bands using depth based approaches.

We now consider the problem of testing for a distribution of interest. In practice,

when it is common to assume a parametric distribution for the data such as the normal

distribution. On the other hand, Quantile-Quantile plots are very commonly used as

a visual tool to check for deviations from the distributional assumptions. However,

Q-Q plots have been used joined with a subjective decision of whether the plot “looks”

linear or not. We here propose a quantitative approach for making such a decision

using the proposed extremal notion of depth. The idea is to use the central region of

level (1−α) from the distribution of Q-Q plots of the hypothesized distribution. The

complement of this central region would serve as the critical region with level α, i.e.,

if a Q-Q plot lies outside this region, we would reject the hypothesized distributional

assumption. To obtain this central region for a given sample size n , we would generate

B independent data sets of size n from the normal distribution to obtain B Q-Q plots

under the null hypothesis. We then use the extremal depth to obtain the B(1 − α)

deepest functions to form the central region of level (1 − α). In the following table,

we show the actual level of a 90% acceptance band for normal and GIG distributions

using ED and ID based on 100 data sets each with n = 100 observations based on

boostrap sizes of B = 2000. We do not consider BD here as it is computationally
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slow if at all infeasible for such problems.

Table 4.3: Level for 90 % Acceptance Bands for Normal Q-Q plot

n = 100

EP ED DID SD
Level 0.101 0.099 0.007 0.022

Table 4.4: Power for 90 % Acceptance Bands under different alternatives

n = 100

EP ED DID SD
t2 0.982 0.982 0.919 0.950
t5 0.508 0.516 0.192 0.276
Laplace 0.803 0.809 0.462 0.622
Uniform 0.942 0.958 0.498 0.587

As can be seen from Table 4.3, ED achieves desired level whereas ID has level

much smaller than the nominal level. ED provides an alternative to the classical

Kolmogorov test, which can be viewed as having a constant width acceptance re-

gion based on the empirical CDF. As we argued earlier, ED acceptance regions will

have width depending on the pointwise variation. For this reason, we see that ED

based bands have better performance in terms of having higher power compared to

alternative methods.

In summary, we have developed a new notion of functional depth, studied its

properties, and demonstrated its usefulness through several applications. While no

single notion of functional depth will do uniformly better than others, we hope that the

results here suggest that the extremal-depth concept has many attractive properties

and is a useful tool for exploratory analysis of functional data and has potential for

applications in many problems including estimation and simultaneous inference for

functional parameters.
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4.7 Proofs

Condition and proof for Proposition 4.3.1:

Condition 4.7.1. Assume that (a) P[df = 0] = 0, and (b) P[df = dg, f 6= g] = 0,

where f, g are independent random functions from P and df := inf{r ∈ [0, 1] : Φf (r) >

0}.

Proof of Proposition 4.3.1: We shall show that, if ED(f1,P), ED(f2,P) ≥ α,

and f1(t) ≤ f(t) ≤ f2(t) ∀t ∈ [0, 1], then ED(f,P) ≥ α. Note that ∀t, Df (t,P) ≥

min(Df1(t,P), Df2(t,P)), and hence df ≥ min(df1 , df2). Therefore either f � f1 or

f � f2 w.p.1 and f ∈ Cα due to Condition 4.7.1 (b).

Condition 4.7.1 is a mild condition on P. For instance, this holds if P is the

distribution of X in Proposition 4.3.3.

NAB property:

Denote the pointwise quantile functions of P as qα, i.e., for each t, P[X(t) <

qα(t)] ≤ α, and P[X(t) ≤ qα(t)] ≥ α (for uniqueness we take the smallest one). Let

for αn ↓ 0, fn(t) ≤ qαn(t),∀t ∈ U , and for βn ↑ 1, gn(t) ≥ qβn(t),∀t ∈ U , where U is

some open interval in [0, 1]. Then we say the depth notion D to have NAB property

if D(fn, X)→ 0 and D(gn, X)→ 0.

We now show that ED satisfies NAB under Condition 4.7.1 (a). Since fn(t) ≤

qαn(t),∀t ∈ U , we have ∀n ≥ N ,

P[fn+1 � X] ≤ 1− P[qαn < X < q1−αn ]

= 1− P[∪k≤n{qαk < X < q1−αk}].

Therefore, lim supP[fn+1 � X] ≤ 1− P[Ω := ∪1<k<∞{qαk < X < q1−αk}] = 0, as the

set Ω has probability one due to Condition 4.7.1 (a). Therefore, D(fn, X) → 0 and

similarly D(gn, X)→ 0.

Conditions and proof of Proposition 4.3.2:
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Condition 4.7.2. Let Cn be the total number of functional crossings by any pair

of functions, where n is the number of sample functions. We assume that Cn =

exp{oP (n)}.

Condition 4.7.3. Let P be a stochastic process on C[0, 1] whose univariate CDF at

t ∈ [0, 1] is denoted by Ft. Define R(δ, u) = sup
|t−s|<δ

|Ft(u) − Fs(u)|. Then we assume

that for any u0, there is a neighborhood B(u0, ε) such that R(δn, u) → 0 uniformly

in u ∈ B(u0, ε) as δn → 0. Further, we assume P to have Glivenko-Cantelli (GC)

property uniformly over convex sets.

Condition 4.7.2 assumes the number of crossings is at most exponential in sample

size, and is related to the smoothness of the process. Condition 4.7.3 assumes that

the CDF’s of neighboring points in the domain are close. The GC property of P

requires that the empirical distributions corresponding to P converge uniformly over

convex sets. GC property for convex sets holds under general conditions for finite

dimensional distributions (Eddy and Hartigan, 1977). Chakraborty and Chaudhuri

(2014b) provides a GC type result for spatial distributions of infinite-dimensional

spaces. For our result, we assume this as a technical condition.

Let f �n g and f � g denote that f is deeper than or equal to g using ED w.r.t.

the empirical distribution Pn and the true distribution P, respectively. Then,

sup
f∈C[0,1]

|ED(f,Pn)− ED(f,P)| = sup
f∈C[0,1]

|Pn [f �n Xn]− P [f � X] |

= sup
f∈C[0,1]

|Pn [f �n Xn]− P [f �n X] |

+ sup
f∈C[0,1]

|P [f �n X]− P [f � X] |,
(4.15)

where Xn ∼ Pn and X ∼ P.

The first term in RHS of (4.15) can be shown to go to zero because of the Glivenko-

Cantelli (GC) property assumed by Condition 4.7.3. That is because the sets {f �n

X} are convex and the GC type result holds over all convex subsets. We then only

need to show that supf |P [f �n X]− P [f � X] | → 0.
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We will now show that the second term in RHS of (4.15) goes to zero. Define

df := inf
y∈[0,1]

{Φf (y,P) > 0}, and dnf := inf
y∈[0,1]

{Φf (y,Pn) > 0}. We shall first show that

supf |dnf − df |
P−→ 0 as n→∞.

Due to the rate of Glivenko-Cantelli of empirical distributions (Pollard, 1991), we

have for any t,
P
[
sup
u
|F n
t (u)− Ft(u)| > ε

]
≤ exp{−cε2n}. (4.16)

Let D = {d1, d2, · · · , } be a countable dense subset of [0, 1]. Define Tn = {t1, · · · , tkn}

be the set containg all the points in [0, 1] where n sample functions cross and along

with {d1, d2, · · · , dn}. As n→∞ we have T := ∪nTn is the union of all the crossing

points and D. Due to Condition 4.7.2, we have log |kn| = oP (n).

Due to Equation (4.16), we have

P
[

sup
t∈Tn

sup
u
|F n
t (u)− Ft(u)| > ε

]
≤ exp{−c′ε2n+ log kn}. (4.17)

Now, note that dnf = inf
t∈[0,1]

Df (t,Pn) = min
t∈Tn

Df (t,Pn), because the univariate

depths in Tn have the same range as that of the whole interval [0, 1]. We shall

first show that
df = inf

t∈T
Df (t,P) = lim

n
inf
t∈Tn

Df (t,P), (4.18)

using the facts that ∪nTn = T , T is dense and Condition 4.7.3. To see this, first

note that df ≤ inf
t∈T

Df (t,P). For the reverse inequality, consider a y0 such that

Dy0(f,P) = df (this exists due to continuity of Ft in t). Since T is dense, we have a

sequence yn ∈ T such that yn → y0. Due to continuity of F and Condition 4.7.3, we

have

|Dyn(f,P)−Dy0(f,P)| = ||1− 2Fyn(f(yn))| − |1− 2Fy0(f(y0))||

≤ 2|Fyn(f(yn))− Fy0(f(y0))|

≤ 2|Fyn(f(yn))− Fy0(f(yn))|+ 2|Fy0(f(yn))− Fy0(f(y0))| → 0,

which implies (4.18). Now, using (4.17), we have

P[sup
f
|dnf − df | > εn] ≤ P

[
sup
t∈Tn

sup
u
|F n
t (u)− Ft(u)| > εn/4

]
→ 0,

146



if εn → 0 and c′ε2nn−log kn →∞. In particular, when εn = 4 max((3 log kn/c
′n)1/2 , 1/

√
log n),

P[sup
f
|dnf − df | > εn] < Cn−1−ε, for some C, ε > 0. Then using Borel-Cantelli lemma,

we obtain sup
f
|dnf − df | → 0 almost surely. Now, consider the events An = {dnf ≥ dng}

and Bm = {df < dg − δm}, where δm → 0 as m→∞. Note that An and Bm depend

on the functions f and g. Then, P[∪f,gAn ∩ Bm] ≤ P[sup
h
|dnh − dh| > εm] → 0 as

n→∞. Therefore, we have

lim supn supf |P [f �n X]− P [f � X] | ≤ lim supn P [∪f{f �n X}∆{f � X}]

≤ lim supn limm P [∪f,gAn ∩Bm]

≤ limm lim supn P [∪f,gAn ∩Bm] = 0.

Proof of Proposition 4.3.3:

As the process Y = {Yt}, t ∈ [0, 1] has continuous sample paths, the sample paths

of the process X = {Xt}, t ∈ [0, 1] also lie in C[0, 1] almost surely. Due to the

monotone invariance property of ED, we only need to show that ED of Y takes all

the values in [0, 1]. Consider the sets Q1−γ := {f : qγ/2(t) ≤ f(t) ≤ q1−γ/2(t),∀t},

for γ ∈ [0, 1], where qα is the α-th pointwise quantile of Y . Note that qγ/2 � f, for

any f ∈ Q1−γ and qγ/2 � g, for g ∈ Qc
1−γ. Therefore, ED(qγ/2,P) = P[Q1−γ]. By

noting that Q1−γ = {f : sup
t
|f(t)/σ(t)| ≤ c} and that sup

t
|f(t)/σ(t)| has a continuous

distribution, P[Q1−γ] takes all the values in (0, 1].

Proof of Proposition 4.4.1:

To prove the lower bound, consider a function g having ED equal to α. Then,

f � g, for g ∈ CC
1−α with P-probability one.This implies that α = P[X : g � X] ≥

P[CC
1−α], and hence P[C1−α] ≥ (1− α).

To prove the upper bound, we first note that the set {f : g � f} is contained in

the union of the sets CC
1−α and ∂C1−α. This is because, for any function h ∈ C1−α −

∂C1−α, dmin(h,P) > dmin(g,P), where dmin(h,P) = inft∈[0,1] Dh(t,P) as in Section 4.2.

Otherwise, we have a function f with ED larger than α but dmin(f,P) < dmin(g,P),

which is a contradiction. Therefore, α = P[X : g � X] ≤ P[CC
1−α ∪ ∂C1−α]. This
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implies that P[C1−α − ∂C1−α] ≤ (1− α) and P[C1−α] ≤ (1− α) + P[∂C1−α], and the

result follows.

Proof of Proposition 4.4.2 & Corollary 4.4.1:

We shall show that the ED central region C∗ formed by the functions {f :

ED(f,P) ≥ ED(qγ/2,P)} proves the proposition. Although this central region is

not in the form defined by Equation (4.8) (due to “≥” instead of a “>”), this

does not make a difference when P is a continuous stochastic process, and this

same set can be written with a “>” when P is an empirical distribution. We have

f � qγ/2 ∼ q1−γ/2 � g, for any f ∈ Q1−γ, and g ∈ QC
1−γ. Therefore, Q1−γ ⊂ C∗

and it remains to show that P[C∗ − Q1−γ] = 0. However, C∗ − Q1−γ ⊂ B := {f 6∈

Q1−γ : ED(f,P) = ED(qγ/2,P)}. As all the functions in B have the same ED,

P[f ∈ B] = P[f ∈ B : f ∼ qγ/2] = 0. Therefore, P[C∗∆Q1−γ] = 0. The corollary

follows directly because ED is a decreasing function of sup
t
|f(t)|/σ(t).
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CHAPTER V

Future Work

5.1 Future Work on Bayesian Methods, Computation, and

Inference for High Dimensional Data

In spite of the rapid developments in statistical methods for high dimensional

data, some fundamental questions still remain open, particularly in the understand-

ing of Bayesian methods and algorithms. A few topics of future interest are:

(i) inference on model parameters after selection is a much needed step ahead for high

dimensional data. Although a Bayesian method gives a posterior distribution that

may in principle be used for inference, coverage properties of such posterior intervals

need to be studied together with new methods to deal with potential incorrect cov-

erage issues.

(ii) optimal prior choice: the results from this thesis also suggest that model selection

consistency holds for a large class of prior distributions if the prior parameters are

sample size dependent. However, the mixing properties and complexity of the corre-

sponding sampling algorithms depend on the prior choice. This motivates study of

computational complexity of sampling algorithms, and optimal prior choices in the

sense of minimizing statistical and sampling error together in the context of Bayesian

modeling.
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(iiii) nonconvex objective function: when the objective function under consideration

is non-convex, optimization methods tend to have severe difficulties where sampling

approaches in the Bayesian framework have a natural advantage. As an example, non-

vexity of the objective function occurs in censored quantile regression using Powell’s

(Powell, 1984, 1986) objective function. Although conceptually appealing, quantile

regression for censored data is challenging due to both computational and theoretical

difficulties arising from non-convexity of the objective function involved. By consider-

ing exponentiated Powell’s objective function as a working likelihood, the theoretical

and computational strategies proposed in the current thesis have the potential to

provide a better alternative in this case and more broadly for dealing with nonconvex

objective functions.

5.2 Future Work on Applications of Extremal Depth to Si-

multaneous Inference for Functional Data

Functional depth notions can be very useful for estimation and inference of func-

tional parameters. More specifically, extremal depth approach can be used to obtain

simultaneous confidence bands together with resampling methods in problems such as

density estimation, survival function estimation, and regression. However, the justi-

fication of the ED-based regions in general function estimation problems will depend

on the limiting distributions of the functional estimators and the asymptotic validity

of the bootstrap. Simulation results in finite samples suggest that the convergence

of the actual level to the nominal one might be slow in fully nonparametric infer-

ence problems. A more extensive study is needed to understand the behavior, both

theoretically and empirically.

This approach of data depth together with resampling can be also extended to

other problems. These include the goodness-of-fit testing problem where one wants to
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determine if the generative model belongs to a certain parametric family of distribu-

tions. One can combine the bootstrapping technique (parametric or nonparametric)

with ED central regions to construct acceptance or confidence regions. (See Cuevas

et al. (2006), Yeh (1996) and Yeh and Singh (1997) for some related discussion.) While

this is a classical problem, our initial studies suggest that the ED-based approach has

some advantages over methods based on weighted Kolmogorov statistics.

Another important class of problems deal with the case where the underlying

functions of interest are observed with error. In other words, instead of observing

random functions Xi(t) from a generative model of interest, we observe Yi(t) = Xi(t)+

εi(t), i = 1, · · · , n. A natural approach is to use some type of smoother to ‘recover’

Xi(t) and then use the techniques discussed so far. If there is some information of

the error structure in ε(t), this can be used to guide the smoothing algorithm or

the ‘reconstruction’ methods for Xi(t). We plan to conduct further research in these

directions.
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