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Abstract

Traditional radial lens distortion models are based on the physical construction

of lenses. However, manufacturing defects and physical shock often cause the actual

observed distortion to be different from what can be modeled by the physically

motivated models.

In this work, we initially propose a Gaussian process radial distortion model

as an alternative to the physically motivated models. The non-parametric nature of

this model helps implicitly select the right model complexity, whereas for traditional

distortion models one must perform explicit model selection to decide the right

parametric complexity.

Next, we forego the radial distortion assumption and present a completely non-

parametric, mathematically motivated distortion model based on locally-weighted

homographies. The separation from an underlying physical model allows this model

to capture arbitrary sources of distortion. We then apply this fully non-parametric

distortion model to a zoom lens, where the distortion complexity can vary across

zoom levels and the lens exhibits noticeable non-radial distortion.

Through our experiments and evaluation, we show that the proposed models are

as accurate as the traditional parametric models at characterizing radial distortion

while flexibly capturing non-radial distortion if present in the imaging system.

vi



Chapter 1

Introduction

To extract metric information such as object size or depth from images one requires

a calibrated camera model. Thus, a calibrated camera model is the corner stone

of algorithms used for image registration and image-based spatial reasoning. At a

high-level, the camera calibration procedure optimizes a parametric camera model

to best explain a set of observed correspondences between world and image points.

For applications in computer vision and photogrammetry, it is common to use

the projective pinhole camera model to model the camera as a system of rays. This

simple pinhole model, however, does not account for the distortion caused by the

camera lens. Lens distortion is predominantly radial and hence camera models are

augmented with a radial lens distortion model to compensate for lens effects. The

calibration procedure for the augmented camera is then modified to estimate the

parameters of the lens distortion along with the other camera parameters.

Usually, lens distortion is assumed to be well modeled by a parametric family

of functions. Examples of parametric distortion models are described in [9] and

include polynomial, field-of-view, rational function, and division models. The par-

ticular choice of parametric family used is based on the type of lens being modeled.

In reality, lenses may not conform to any one of the proposed parametric distor-

tion models. In this situation, a rigorous approach for choosing the best parametric

model is to perform model selection on multiple calibrated lens distortion models

as done, for example, by Melegy and Farag in [13].

In some cases, even for lenses with the usual axis aligned construction, the

radial model is insufficient. Manufacturing errors can cause deviations from the

intended distortion. Physical shock can disrupt the alignment of lens components

and produce distortions that are not radial, as explained by Brown in [6]. Thus,

a radial distortion model that is motivated by the physical construction of lenses
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cannot capture non-radial sources of distortion that often arise in practice.

In this work, we propose non-parametric models of lens-distortion as alterna-

tives to parametric distortion models. Unlike parametric models, non-parametric

models are flexible because they can automatically expand or simplify model com-

plexity to explain the observed distortion.

The first non-parametric model that we describe is a Gaussian process (GP)

model of radial distortion. The traditional camera calibration procedure is a non-

linear least-squares model fitting procedure and uses a parametric description of

lens distortion. It is not immediately obvious as to how one can incorporate a

GP, which has no explicit parameters, into a framework that optimizes parametric

models. To achieve this, we show how the non-linear least-squares model fitting

can be viewed as maximum-likelihood inference in a factor graph with Gaussian

factor potentials and then incorporate a GP model into this factor graph inference

framework. This method adds great flexibility to the factor graph optimization

formulation, while preserving much of its computational efficiency.

This non-parametric GP radial distortion model can automatically choose the

most appropriate radial distortion model; but it is still limited by the physically

motivated assumption of radial distortion. Our next model removes this radial

distortion assumption and produces a truly flexible lens distortion model.

Our second non-parametric model of lens distortion is based on locally-weighted

homographies. A locally-weighted homography is a novel, non-parametric, non-

linear homography formulation that can map lines on the source plane to arbitrary

smooth curves on the target plane. We adapt this non-linear homography to build

a model of lens distortion by characterizing lens distortion as deviation from the

homography at the center of the image. We use this estimate of lens distortion to

bootstrap camera calibration and show that it improves the stability of the classic

camera calibration.

In our experiments, we also propose a rigorous evaluation strategy that evalu-

ates the performance of camera models on a set of test images. The use of separate

training and testing datasets might seem obvious to readers with a machine learning

background. Nonetheless, this has not been a standard practice in camera modeling

tasks1.

We structure the remainder of this work as follows: In the next chapter, we re-

view other related work before presenting relevant technical background in Chap. 3.

1However, literature in the related field of optics and optical modeling report testing errors when
evaluating camera models. For example see [27].
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Next, we present our Gaussian process radial distortion model in Chap. 4 and the

locally-weighted homography based lens distortion model in Chap. 5. We then ap-

ply the locally-weighted homography distortion model to characterize the distortion

across zoom levels of a zoom lens in Chap. 6 and conclude with a discussion of our

contributions in Chap. 7.
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Chapter 2

Related work

Camera calibration techniques generally fall into two broad categories: photogram-
metric calibration and self-calibration. Photogrammetric calibration uses a calibra-

tion target with a precisely known 3D structure like in the work of Heikkilä [18].

Frahm and Koch describe an alternative procedure that uses a planar target under-

going controlled motion in [14]. In contrast, self-calibration methods, such as the

work of Maybank et al., [20], use multiple views of the same scene and exploit the

rigidity of the scene to calibrate the camera parameters.

Photogrammetric and self-calibration methods use the same lens distortion mod-

els; only the calibration procedures are different. In our work, we choose to imple-

ment photogrammetric calibration since it is the more mature technique. A classic

reference for the reader interested in the history of camera calibration methods is

the work by Clarke and Fryer [8].

Zhang, in his landmark paper [32], was the first to present a technique that

used multiple views of a single planar calibration target to calibrate a camera. This

technique is very popular because it requires only a planar calibration target that

is easily manufactured. Many popular open-source calibration toolkits, such as the

OpenCV calibration toolkit [5] and Bouguet’s Matlab calibration toolkit [19], are

based on this technique.

Calibrating a lens distortion model in a photogrammetric or self-calibration set-

ting falls under the technique of metric lens calibration. Alternatively, one can ex-

ploit the fact that straight lines in the scene must project to straight lines, in order

to correct lens distortion in a non-metric fashion, as done in [12, 26]. In our work,

we use metric lens calibration, since it is the natural choice for photogrammetric

calibration methods.
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Non-parametric lens distortion models: Prior to our work, other non-parametric

models have been proposed in the literature. Hartley and Kang use a locally aver-

aged estimate of observed distortion to build a non-parametric distortion model

in [16]. In their work [26], Ricolfe-Viala and Sanchez-Salmeron explore the use of

model-free distortion estimation in a non-metric lens calibration setting. Our work

differs from these approaches in that we use a GP as the non-parametric distortion

model. This gives our method the advantage that the smoothness of the resulting

distortion function is well determined. It also gives our model the ability to capture

the uncertainty in the distortion function estimate.

Non-linear homography models: The technique of a lifted homography has been

used to model non-linearity in cameras by Claus and Fitzgibbon in [10], Barreto

et al., in [2], and Gasparini et al., in [15]. This formulation projects the input

coordinates into a higher-dimensional feature space (lifting) and then constructs a

homography in this higher-dimensional space, thus producing a non-linear map-

ping. By construction, lifted homographies are parametric with respect to the size

of the higher-dimensional space, and they are geometrically unintuitive.

In contrast, the non-linear locally-weighted homography proposed in this work

is non-parametric. The technique retains geometric intuition because its mapping

action can be interpreted in terms of a local linear homography. This formulation

of a non-parametric non-linear homography is a novel idea to the best of the au-

thor’s knowledge. Its ability is not limited by a choice of parametric model for lens

distortion, and it has the capability to model arbitrary sources of distortion. More

interestingly, it produces an independent estimate of the distortion without relying

on any prior knowledge of the intrinsics or extrinsics of the camera used to acquire

the image.

In essence, the non-metric straight lines are straight rectification procedure as

described by Devernay and Faugeras in [12] serves a similar purpose to our method.

However, our method operates in terms of homographies; therefore, it implicitly

encodes projective constraints.

Distortion models for zoom lenses: In Chap. 6 of this work, we extend the

locally-weighted homography base lens distortion model to characterize distortion

in a zoom lens. Compared to the use of fixed focal-length lenses, zoom lenses are

seldom mentioned in the research literature. This is because zoom lenses offer

no inherent advantage for most traditional vision tasks, where prior knowledge of
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the task allows one to select a single appropriate focal-length. However, they are

indispensable in applications such as depth from defocus and surveillance.

Agapito, Hayman and Reid provide a solution to the problem of calibrating a

camera with varying intrinsics in [1]. Their method extends the self-calibration

method of Hartley [17] to zoom cameras. However, they do not model any lens-

distortion in their work.

The straightforward approach of calibrating a zoom camera at a few fixed set-

tings and then using interpolation to predict camera parameters at intermediate

settings is first mentioned and evaluated in [30] by Wilson. Later work in zoom

camera calibration adapts this technique to pan-tilt-zoom camera calibration, like

the work of Sinha and Pollefeys [28], or explores the use of a different radial dis-

tortion model to capture lens distortion across zoom levels, as in the work of Wu

and Radke [31].

Our work is motivated primarily by the requirements of a calibration procedure

for zoom lenses used on a robot, where the assumption of radially symmetrical

distortion is seldom true. As mentioned previously, lenses used on robots are subject

to physical shock that introduces non-radial distortion. The model for zoom-lens

distortion proposed in this paper is flexible enough to capture both the radial and

non-radial components of lens distortion.
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Chapter 3

Preliminaries

In this chapter we introduce the technical background required to understand the

material in subsequent chapters. We briefly review the perspective camera model,

lens distortion models and the camera calibration procedure. We also describe the

non-parametric regression techniques used in this work while comparing them to

traditional parametric regression.

3.1 The Perspective Pin-hole Camera Model

Consider an object imaged by a pin-hole camera as shown in Figure 3.1.1. The rays

from the object pass through the pin-hole and form an image on the sensor. All rays

imaged by the camera must pass through this pin-hole and hence the pin-hole is

the center of projection. The sensor is the imaging plane, the plane on which the

points from the object are projected.

The line through the pinhole and perpendicular to the sensor plane is the prin-
cipal axis of the camera. By convention, the principal axis of the camera coincides

with the z-axis of the system. The point at which the principal axis meets the imag-

ing plane is the principal point or image center. Once again, by convention, the

imaging plane coincides with the xy-plane and the principal point coincides with

the origin of the camera coordinate system. The perpendicular distance between

the imaging plane and the pin-hole is the focal length f .

It is useful to note that in practice a separate 2D pixel coordinate system (not

shown in Fig. 3.1.1) is assigned to the imaging plane, where the origin, pixel loca-

tion (0, 0), is at the top-left of the imaging plane; the positive x-axis is oriented left

to right, and the positive y-axis is oriented top to bottom. The process of calibrating
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Figure 3.1.1: The perspective pin-hole camera model. This figure shows an object
being imaged by a pin-hole camera. Also shown, are the plan (top-down) and elevation
(sideways) views of the imaging setup. The camera is placed with its principal point or
image center, (cx, cy), at the origin of the 3D space. The principal axis of the camera
lies along the z-axis and the imaging plane lies along the xy-plane. The directional
focal-lengths fx and fy are labeled in the projected 2D views.
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Figure 3.2.1: Planar perspective homography. The two perspective views of the tile are
related by a homography. Note how the homography mapping preserves the straight-
ness of lines: the straight-line alphabets in one view are mapped onto straight-line
alphabets in the other view.

a camera model defines a mapping between 3D world coordinates and the 2D pixel

coordinates of the image plane.

3.2 Planar Perspective Homography

The term homography means similar drawing and it describes the transformation

between two perspective views of the same scene. Mathematically, it is an invertible

linear transformation between two perspective planes. If a point p on one perspec-

tive plane is mapped by a homography H onto a point q on another perspective

plane, we write

q ∼ Hp (3.2.1)

where p and q are homogeneous points and H is a matrix. In homogeneous 3D

space

m ,

 mx

my

1

 ∼
 λmx

λmy

λ

 , λ 6= 0

That is, points in homogeneous 3D space are determined up to scale: a point m

represents the same point as λm. Thus, in Eq. 3.2.1 the point q is similar, and not

equal, to Hp.
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Figure 3.3.1: Examples of lens distortion. The use of a lens system in a camera
produces distortions where straight-lines are rendered as curves. By construction, the
distortion produced by the lenses are dominated by a radially symmetric component .

3.3 Lens distortion

Unlike a pinhole camera, a practical camera must use a large enough aperture to

capture a sufficient amount of light within a specified amount of time. This large

aperture requires the use of a lens system to focus incoming light rays onto the

imaging plane. However, the use of a lens system distorts the straight-line path of

incoming light-rays and produces a distorted image, as show in Fig. 3.3.1.

These lens systems consist of one or more lenses aligned along the principal axis

of the camera. This alignment causes the distortion produced by the lens system

to be radially-symmetric about the image center, with the amount of distortion in-

creasing in magnitude as we move away from the image center. Thus, the distortion

produced by lenses is predominantly radial. However, out-of-plane misalignments

of the lens components can produce a small but significant distortion component

that does not exhibit radial symmetry. This component is called tangential distortion
and is described by Brown in [6].
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3.4 Camera Calibration

In many tasks such as registering images and visual surveillance, we are interested

in the relation between an object’s size in pixels and its size in the real world. The

process of camera calibration quantifies this relationship between pixel size and

object size by finding optimal values for the parameters of the perspective pin-hole

camera model. Once we have a calibrated model for a camera, and given an image

of an object obtained with that camera, we can use the model to reason about how

the object was placed relative to the camera.

Camera calibration is a model-fitting problem, where we have a set of ground-

truth observations and we require model parameter settings that best explain these

observations. At a high-level, the camera calibration procedure is as follows:

1. First, we obtain images of a planar printed target with known dimensions.

These images will serve as our set of ground truth observations.

2. The points on the planar target, with coordinates expressed in meters, are

related to the corresponding camera image points by a planar perspective

homography. Hence, for each image we can estimate a homography that best

relates image points to world points.

3. The homography between each image and the world can be interpreted as

the composition of rigid body transformation and a projective transformation.

The matrices representing this rigid body transform and projection transform

are called the extrinsic matrix and intrinsic matrix respectively. This interpre-

tation is physically motivated – we take the projective pin-hole camera model

and apply a rigid body transform to account for the object’s position relative

to the camera in 3D world space.

4. From the last three steps, we have: a set of ground-truth observations relat-

ing world points to image points, a homography for each image that models

observations for that image and a decomposition for each of these homogra-

phies into intrinsic and extrinsic matrices. Also, each of these intrinsic matri-

ces must be the same because the same camera was used to obtain all object

images. We then setup a non-linear least-squares optimization to estimate

the rigid body transformations and camera matrix that explain the observed

world-image correspondences.

11



Figure 3.4.1: The planar calibration target. This calibration target uses a mosaic of
visual fiducials, where each fiducial marker occupies an area of one sq.inch. The visual
fiducials are described in [23].

In the following sub-sections we explain each of the above steps with mathematical

detail.

3.4.1 Ground-truth observations

Ground-truth observations for camera calibration are obtained by acquiring multi-

ple images of a printed planar target with the camera. The planar target is printed

on a flat surface and has easily detected features with known positions and dimen-

sions. In our experiments we use the planar target shown in Fig. 3.4.1.

Calibration target images that are pure translations or pure rotations of each

other produce redundant constraints for model estimation. Hence, the image aqui-

sition process should be such that one image is not a pure translation or rotation of

another image.

3.4.2 Homography estimation using the direct linear transform

Given a set of correspondences between 3D world points of a planar target and

points on its 2D image, a homography can be computed using the Direct Linear

Transform procedure, as follows. Let p =
[
x1 y1 z1 1

]>
be a 3D homogeneous

world point that corresponds to an image point q =
[
u v w

]>
; let p and q be

12



related by a homography H ∈ R3×4. Plugging these into Eq. 3.2.1 gives

 u

v

1


︸ ︷︷ ︸

= 1
w

 x2

y2

w

 =

 h1a h1b h1c h1d

h2a h2b h2c h2d

h3a h3b h3c h3d


︸ ︷︷ ︸


x1

y1

z1

1


︸ ︷︷ ︸

q H p

Without loss of generality, we can assume that the 3D position of the planar target

is along the xy-plane, and hence the z-coordinate of all points on the plane are zero.

Setting z1 = 0 gives us: u

v

1

 =
1

w

 x2

y2

w

 =

 h1a h1b h1d

h2a h2b h2d

h3a h3b h3d


 x1

y1

1

 (3.4.1)

We then obtain expressions for u and v by multiplying out the matrix entries:

u =
x2
w

=
h1ax1 + h1by1 + h1d
h3ax1 + h3by1 + h3d

v =
y2
w

=
h2ax1 + h2by1 + h2d
h3ax1 + h3by1 + h3d

After rearranging terms, we obtain two linear equations:

h3a ux1 + h3b uy1 + h3d u− h1a x1 − h1b y1 − h1d = 0

h3a vx1 + h3b vy1 + h3d v − h2a x1 − h2b y1 − h2d = 0

The above equations can be written as[
c>1

c>2

]
h = 0

where

h = [ h1a h1b h1d h2a h2b h2d h3a h3b h3d ]>

c1 = [ −x1 −y1 −1 0 0 0 ux1 uy1 u ]>

c2 = [ 0 0 0 −x1 −y1 −1 vx1 vy1 v ]>

Thus, each correspondence between a world point p and an image point q gives

13



us two constraints on the elements of H. With multiple correspondences, we can

collect the constrain coefficients into a matrix A and write

Ah = 0 (3.4.2)

and then solve for h. The solution for h is the right-most singular vector of A, which

is found by computing the singular-value decomposition of A.

3.4.3 Homography Decomposition

The homography transformation of a homogeneous point can be decomposed as

the action of a rigid body transform, E =
[

r1 r2 r3 t
]
∈ R3×4, followed by a

projection or camera matrix K ∈ R3×3. The camera matrix K has the general form:

K =

 fx κ cx

0 fy cy

0 0 1


where fx, fy are the focal-lengths in the x and y directions respectively, cx, cy are

the coordinates of the principal point and κ is the aspect ratio or skew-factor of the

camera. For most modern cameras the skew-factor κ = 0, and the values of fx, fy
are very close, though they might not be exactly equal. Since we assume that the

source points p lie on the plane z = 0, we get E =
[

r1 r2 t
]
. Then the relation

between the source point p and target point q is given by

q = λK
[

r1 r2 t
]

p (3.4.3)

By comparing Eq. 3.4.3 and Eq. 3.4.1, we write[
ha hb hd

]
= λK

[
r1 r2 t

]
Now, using the knowledge that r1 and r2 are orthonormal we get

h>a Ω hb = 0 (3.4.4)

h>a Ω ha = h>b Ω hb (3.4.5)

where Ω = K−>K−1. Using the above constraints, and the fact that we have mul-

tiple homographies in our ground-truth observations, we find a least-squares es-
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timate of the elements of Ω, and obtain K through the Cholesky decomposition

of Ω−1. Zhang provides alternative analytical formulas for recovering K from Ω

in [32]. Once we have K, we compute E as follows:

E =
[

r′1 r′2 t′
]

= K−1
[

ha hb hd

]
The resulting r′1, r′2 are not unit-norm; we force this by scaling the matrix E by

λ =
(√
‖r′1‖ ‖r′2‖

)−1
. Finally, r′3 is simply the cross-product: r′1 × r′2. Because

of noise in the observations, the matrix R′ =
[

r′1 r′2 r′3

]
does not in general

conform to the properties of a rotation matrix. Hence, we find the closest rotation

matrix to R′ through a polar decomposition as follows. Let USV> be the singular-

value decomposition of R′. Then the closest rotation matrix to R′ is

R = UV>

3.4.4 Non-linear refinement

The estimates of E and K obtained previously were obtained by minimizing con-

straint errors that are not directly related to re-projection error. In practice we

require estimates that minimize re-projection error. Hence, we directly optimize

re-projection error via non-linear optimization using our initial values of E and K

as starting points for the optimization.

Furthermore, the use of non-linear optimization allows us to incorporate a model

for lens distortion. For example, the dominant radial component of distortion is of-

ten modeled as a symmetric polynomial function of pixel radius

d

([
u

v

])
=

[
r′(u, v) cos (θ(u, v))

r′(u, v) sin (θ(u, v))

]
(3.4.6)
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where

r′(u, v) = r(u, v) + ∆r(u, v)

θ(u, v) = arctan (v − cy, u− cx)

r(u, v) =

∥∥∥∥∥
[
u

v

]
−

[
cx

cy

]∥∥∥∥∥
∆r(u, v) =


m1

m2

...

mn


> 

r2(u, v)

r4(u, v)
...

r2n(u, v)


The function d(·) distorts an image point [ u v ]> by ∆r(u, v) along the radius.

Thus, the function ∆r(u, v) is the underlying symmetric polynomial distortion func-

tion that acts along the radius of the image. The projection of the source point p

onto a target point q is now given by the equation

q = λ d (K E p) (3.4.7)

It is useful to compare Eq. 3.4.3 and Eq. 3.4.7 in order to understand how distor-

tion is incorporated into the projective pin-hole camera model. Optimal estimates of

K, E and m = [ m1 m2 · · · mn ]> are obtained by non-linear least-squares opti-

mization of Eq. 3.4.7. The method of choice for solving the non-linear optimization

problem is the Levenberg-Marquadt algorithm [21, 22].

3.4.4.1 Adding a tangential distortion model

When the planes of individual lens components are misaligned with respect to each

other (decentering), a radial distortion model cannot capture the distortion com-

pletely. In such cases, the recommended solution is to augment the radial distortion

model with a tangential distortion model. The mathematical form of the tangential

distortion model is

τ

([
u

v

])
= ρ

(
1 + p3r

2(u, v) + p4r
4(u, v) + · · ·+ pnr

2(n−2)(u, v)
)

where ρ =

[
2uv r2(u, v) + 2u2

r2(u, v) + 2v2 2uv

][
p1

p2

]
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The distortion in a system with both radial and tangential distortion is then

d

([
u

v

])
=

[
r′(u, v) cos (θ(u, v))

r′(u, v) sin (θ(u, v))

]
+ τ

([
u

v

])

with the functions d, r′ and θ as defined in Sec. 3.4.4. When using a tangential

distortion model, the non-linear refinement procedure of Sec. 3.4.4 is modified to

jointly optimize p = [ p1 p2 · · · pn ]> along with K, E and m.

3.5 Statistical Models

A statistical model describes the relationships among a set of random variables.

Unlike a deterministic mathematical model, a statistical model encodes stochastic

relationships between variables. An example of a stochastic model that is often

encountered in practice is the standard linear regression model:

y = w1x+ w0 + ε, (3.5.1)

where the random variable ε ∼ N (0, σ2) is the additive error term. This stochastic

model describes a relationship between the independent variable x and the depen-

dent variable y. The random variable ε makes the relationship between y and x

stochastic. In the absence of explicit information about the noise distribution, it is

common to invoke the central limit theorem and assume that errors are normally

distributed.

3.5.1 Parametric Statistical Models

The statistical model described by Eq. 3.5.1 is a parametric statistical model with

parameters w1, w0 and noise variance σ2. When modeling a set of observations with

this model, the modeling task reduces to the problem of determining optimal values

for these parameters.

This parametric modeling scheme is better explained with the use of an example.

Consider the set of observations for Eq. 3.5.1 shown in Fig. 3.5.1.

It can be shown that, under a Gaussian additive noise assumption, the most

likely settings of θ = {w1, w0, σ } are those that maximize the log-likelihood of

observations

L(y|θ) =
∑
i

(yi − (w1xi + w0))
2 (3.5.2)
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Figure 3.5.1: Linear regression on noisy data. The y-coordinate of each point is
linearly related to the x-coordinate, with the actual observation of the y-coordinate
corrupted by additive Gaussian noise.

The optimal values of the parameter set θ are estimated by gradient-descent on

the negative log-likelihood function −L(y|θ)1.

Sometimes we might conclude (based on intuition or prior knowledge), that a

quadratic relationship is a better model of the observed data. We must then expand

our parametric model to account for the additional model complexity: we now set

θ = {w2, w1, w0, σ }

y = w2x
2 + w1x+ w0 + ε (3.5.3)

L(y|θ) =
∑
i

(
yi − (w2x

2 + w1xi + w0)
)2 (3.5.4)

Once again, the optimal parameter set θ is obtained by gradient-descent on the

negative log-likelihood −L(y|θ).

3.5.2 Model misspecification

In the general case (and especially for high-dimensional data), it is hard to make

valid prior assumptions about the complexity of the statistical model. This causes

the risk of model misspecification: using a model that is too simple or too complex

1For the particular case of least-squares linear regression, the optimal values of the parameter
set θ can be determined in closed-form (see [4]). However, we choose to mention gradient-descent
here, as it is applicable to a wider variety of models.
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to model the observed data. A model that is too simple might not fit the observa-

tions correctly; a model that is too complex might over-fit to noise in the observa-

tions. It is also possible that the functional form of the model itself is misspecified,

resulting in inconsistent and biased predictions.

The parametric modeling paradigm offers a variety of tools to address this prob-

lem of determining an appropriate complexity for the model. One can assume a very

complex model and avoid over-fitting by regularizing the model. Alternatively, one

can perform model selection among a set of possible models using cross-validation,
or by using information criterion such as the Akaike Information Criterion (AIC) or

Bayesian Information Criterion (BIC).

3.5.3 Non-parametric models

In contrast to parametric statistical models, non-parametric statistical models auto-

matically adjust the number of model parameters to the complexity of the observed

data. Because of their name, it is tempting to think of non-parametric methods

as those that involve no parameters; on the contrary, non-parametric models have

parameters but choose the number of modeling parameters automatically. Thus,

non-parametric models perform automatic model selection.

It is also important to note that parametric and non-parametric modeling are

not diametrically opposite approaches – both methods involve some modeling as-

sumptions and some flavor of model selection. Parametric approaches assume a

functional form for the data being modeled, while non-parametric approaches make

more global assumptions, like model smoothness. As we will show in this work, the

kind of the assumptions made by non-parametric modeling techniques are better

suited for modeling distortion in imaging systems.

In the following sub-sections we review locally-weighted regression and Gaus-

sian process regression, two non-parametric approaches that we use in our work.
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3.5.3.1 Locally-weighted regression

Figure 3.5.2: Local regression on a non-linear data-set

Consider the plot in Fig. 3.5.2. The data in this figure is an obvious candidate for

non-linear regression. However, in a sufficiently small window, shaded gray, a linear

model provides a good fit as shown by the red line.

By systematically sliding this small window W over the entire data set, we can

compute local linear estimates at each window location. For example, we get an-

other locally-valid linear model for a different window position at the other set

of red points. Combining the prediction of these local linear models gives us the

non-linear regressor shown in blue.

To enforce smoothness in the resulting non-linear regressor, it is typical to weight

the regression problem such that points near the prediction location are weighted

higher than those further away. This technique is called locally-weighted linear re-
gression2 and was first described by Cleveland in [11]. Locally-weighted regression

is a non-parametric technique that automatically adapts to the amount of non-

linearity present in the data being modeled. It has hyper-parameters that corre-

spond to the parameters of the weighting function, but the total number of hyper-

parameters remain the same for any amount of non-linearity in the data. For effec-

tive regression, optimal values for the hyper-parameters are found by minimizing

error on a held-out validation subset.
2This process is similar to the computation of a convolution or a moving average.
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3.5.3.2 Gaussian process regression

The use of Gaussian processes (GP) for regression is an extensive topic; we present

a practical definition of the technique here in the context of non-parametric regres-

sion, and refer the reader to [25] for a thorough mathematical treatment of the

subject.

To predict using a GP on a set of observations t ∈ RN×1, observed at a set of

input locations x ∈ RN×1, we assume that the data was obtained from a GP prior

with covariance function k(xn, xm). Let CN ∈ RN×N be the covariance matrix with

elements Cnm = k(xn, xm). When we require a prediction for a new input xN+1, we

first construct the covariance matrix CN+1, which has the form

CN+1 =

[
CN k

k> c

]

in other words

c = k(xN+1, xN+1)

k> =
[
k(x1, xN+1) k(x2, xN+1) · · · k(xN , xN+1)

]
Then the mean and variance of a prediction at the new location xN+1 are given

by

m(xN+1) = k>C−1N t (3.5.5)

σ2(xN+1) = c− k>C−1N k (3.5.6)

When the matrix product in equation (3.5.5) is expanded, it has the form

m(xN+1) =
N∑
i=0

wit

This shows us that GP regression (non-parametrically) predicts new outputs as a

weighted sum of training target values. However, the weighting scheme is not

simple, as in the case of locally-weighted regression, and may not have a closed

form expression. The relationship between a kernel function and its equivalent

weighting function is explored by Sollich in [29].

A common choice for the covariance function is the squared exponential (SE)
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kernel

k(xm, xn) = θ21 exp

{
−0.5

(xm − xn)2

θ20

}
+ β−1δij (3.5.7)

Here β is the input noise precision and δ is the delta function

δij =

0 i 6= j

1 i = j

This covariance function captures the correlation between GP outputs at different

input locations. It produces regression curves that are very smooth. Informally, one

can think of the SE covariance function parameters, which are the hyper-parameters
of the GP, as controlling the smoothness of the resulting regression curve. It is

reasonable to assume that lens distortions are smooth differentiable functions and

hence it is appropriate to model such distortions using the SE covariance function.

For effective regression, one has to determine appropriate settings for the hyper-

parameters β, θ0 and θ1. Optimal values of the hyper-parameters are usually found

by optimizing the marginal likelihood of observed data given the hyper-parameters.

In this work however, we also use cross-validation on data-folds to find good set-

tings for the hyper-parameters. Rasmussen and Williams provide a detailed descrip-

tion of hyper-parameter selection for GPs in [25].
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Chapter 4

Gaussian process radial distortion
models

The traditional approach for calibrating a camera with noticeable lens distortion

is the non-linear least squares procedure described in Sec. 3.4. However, there is

no simple way to decide the degree of polynomial required to model distortion in

the camera model. A principled approach is to try multiple settings for the de-

gree of polynomial and choose a setting that minimizes validation error: a set of

observations is set aside as a validation set, and optimized models with different

polynomial degree settings are used to predict distortion on the held-out validation

set. The model that produces the least amount of error on the validation set is

chosen as the most appropriate.

In this chapter we present a Gaussian process (GP) model of radial distortion.

Instead of training multiple parametric models and then choosing the most appro-

priate model, we directly model lens distortion using a non-parametric GP model.

To achieve this, we first describe how the camera calibration procedure can be

viewed as performing maximum-likelihood inference on a factor graph. We then

show how a non-parametric GP radial distortion model can be made a part of this

inference.

4.1 Camera calibration as maximum likelihood fac-

tor graph inference

Consider a world point p projected onto an image point q by a camera with in-

trinsic parameters K, extrinsic parameters E and lens distortion function d(·) with
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Figure 4.1.1: Factor graph representation of camera calibration. This figure shows
a factor graph representation of the constraint induced by an observation between a
world point p and image point q̃.

parameters m. The model for this projection is given by Eq. 3.4.7, repeated below

for convenience

q = λ d (K E p)

Now, if we observe a correspondence between a world point p and an image point

q̃, we would like to set K, E and m to minimize (q− q̃)2. In other words, we

want our prediction q to be as close to the observed point q̃ as possible. Thus, the

possible settings for K, E, m, p and q are constrained by the factor φ = (q− q̃)2.

We express this relationship as a factor graph, as show in Fig. 4.1.1. The nodes

representing the observed variables p and q̃ are shaded, implying that their values

are fixed to their observed values.

Since we obtain ground-truth observations at different poses Ej, we have mul-

tiple corresponding pij and q̃ij at each Ej as described in Sec. 3.4.1. This is repre-

sented using the plate notation shown in Fig. 4.1.1, where there are Nj pose plates

and each pose plate contains Ni nested observation plates. The values of K and m

are common for all observations and hence appear outside of all plates. A factor φj,

which is the φ corresponding to pose Ej, connects K and m with the corresponding

Ej, pij and q̃ij for all i.

The most likely values of K, m and Ej are computed using iterated least-squares

as follows. Each factor constraint φj is linearized to obtain a linear constraint at the

current values of K, Ej, m, pij and qij. The least-squares solution to this set of

linear constraints gives us the new values for K, m and Ej. This process is iterated

until convergence. As mentioned in Sec. 3.4.4, it is preferable to use a damped

Levenberg-Marquadt update instead of the standard least-squares update.

24



This description of camera calibration is just another view of the optimization

process. It not fundamentally different from the description of the calibration pro-

cedure in Sec. 3.4.4.

4.2 Gaussian process factors

It is not immediately obvious as to how one can incorporate an infinite dimensional

object like a GP into a factor graph. To achieve this, we make use of the fact that a

finite set of outputs of the GP, at input locations g, have the following exploitable

structure. By definition, for a zero mean GP with covariance function k(xm, xn),

the values f(g) at a finite set of input locations g have a multi-variate Gaussian

distribution

f(g) ∼ N (0,C)

where the covariance matrix entries are Cij , k(xi, xj).

Thus, to create a Gaussian process factor, we assume a finite set of input loca-

tions g ∈ RN×1 and constrain the function values f(g) ∈ RN×1 to conform to the

mean and covariance structure of a GP. The factor potential for a particular setting

of f(g) is given by

φ = f(g)>C−1f(g)

This factor potential constrains the values f(g) to vary smoothly according to the

parameters of the kernel function k (see Sec. 3.5.3.2), and the resulting Gaussian

process factor node captures a non-parametric representation of a smooth function.

To evaluate this function at a new input location, we make use of Eq. 3.5.5, by

setting t = f(g).

In comparison with the camera calibration optimization described in the Sec. 3.4.4

and in the previous section, the only change here is the use of a non-parametric ra-

dial distortion function. The distortion function is evaluated similar to Eq. 3.4.6,

but uses an alternate definition of r′:

r′(u, v) = k>C−1f(g)

where k> =
[
k(g1, gN+1) k(g2, gN+1) · · · k(gN , gN+1)

]
, gN+1 = r(u, v). The

above is basically an evaluation of the GP mean prediction at gN+1 = r(u, v), given

the values f(g) of the GP at input locations g.

In other words, we try to infer the distortion function values at a set of pre-
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(a) (b)

Figure 4.2.1: Control point analogy for Gaussian process models. (a) The set of
function evaluations f(g) at input locations g in a GP factor node act as control point
that induce a function based on their position. (b) Inference on the GP node can then
be visualized as positioning these points so that they induce the required function. This
is analogous to the use of control points for manipulating Bézier and spline curves in
graphic modeling software.

specified pixel radii. Intuitively, these distortion function values induce a mean

function that is used to predict distortion values for new input pixel radii. One

way of visualizing this technique is to see these distortion function values as control
points that control a smooth curve, as explained in Fig. 4.2.1. Thus, with the GP

distortion model, the factor graph inference procedure infers a function indirectly

by inferring the position of these control points.

4.2.1 Hyper-parameter optimization

In a fully Bayesian setting, a rigorous way of optimizing hyper-parameters is to op-

timize the marginal likelihood of the data given the hyper-parameters. However in

our case, the GP is embedded inside a factor graph and calculating the marginal

likelihood of the observed data given the hyper-parameters would involve integrat-

ing out the matrices K and E.

Instead, we set the hyper-parameters using a method based on cross-validation.

First, we set aside a subset of the observations as a validation set. Then, we perform

a grid-search over the domain of hyper-parameter values and infer a camera model

at each of these hyper-parameter settings. Finally, we choose the hyper-parameter

setting that produced the least error on the validation set.

4.3 Experiments

When integrating a GP model into the factor graph, one has to decide the number

of input locations used in the GP node. A large number of samples makes the opti-
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mization process computationally expensive. However, since the distortion function

being modeled is smooth, a relatively small number of samples should suffice. In

our implementation, we perform inference on 25 equally spaced function values.

For the calibration procedure, we used a training set of 14 images. An average

of 40 world-image correspondences were extracted from each image. In order to

find hyper-parameter settings, we chose to further divide the training set into a

development set consisting of 11 images and a validation set of 3 images. By ran-

dom shuffling, 30 different development/validation partitions were created from

the same training set.

As mentioned in Sec. 4.2.1, We perform a grid search over the space of hyper-

parameter settings and evaluate the validation error of each hyper-parameter set-

ting on the 30 different training set partitions. We then choose the hyper-parameter

settings that gave the lowest validation error as the best estimate of the hyper-

parameters.

We evaluate prediction error on a testing/validation image as follows:

1. We first undistort the test image using the lens distortion model that was

estimated. World-image point correspondences are then obtained from this

undistorted image.

2. Then, an initial estimate of the calibration target extrinsics is obtained using

the DLT method. This estimate is further refined by non-linear optimization

of the reprojection error, with the camera model and lens distortion held con-

stant.

3. The reprojection error after convergence of the non-linear optimization is re-

ported as the prediction error.

We evaluated the performance of our method on two wide field-of-view camera

lenses: a Tamron lens with a focal length of 2.2 mm and another Tamron lens with a

focal length of 2.8 mm; the 2.2 mm lens produces more distortion than the 2.8 mm

lens. We report test errors as a rigorous assessment of model predictive perfor-

mance.

For both lenses, we use an independent calibration sequence of 10 images as the

test set. We present the results of this evaluation in Fig. 4.3.1. From our plots, we

conclude that the GP distortion model is capable of capturing a suitable distortion

function. Also, the performance of the GP distortion model is comparable to the

performance of the best polynomial lens distortion models.
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Figure 4.3.1: Performance comparison of distortion models for two Tamron lenses.
Here, we plot the test pixel reprojection errors obtained when using the GP model (red
bar) and polynomial models of orders 3,4,· · · 8 (blue segments). We observe that the
GP model performs on par with the best polynomial distortion models.

We also study the variation in test-error with training set size and present results

in Fig. 4.3.2. We use the results from this study to decide that the optimal size of

training set is 11 images.

The lens distortion model estimated for the lenses and images rectified using

the distortion model are shown in Fig. 4.3.3. The estimated models suggest a barrel

distortion for both lenses. Visual inspection of the acquired camera images confirms

the presence of predominant barrel distortion and thus confirms the validity of the

estimated model.

4.4 Summary

In this chapter, we proposed the use of a GP model for lens distortion. This model

of lens distortion is an alternative to performing explicit model selection amongst

multiple parametric models.

To model lens distortion non-parametrically using a GP, we first expressed the

camera calibration procedure as maximum likelihood inference on a factor graph

and then showed how Gaussian process nodes can be embedded into this factor

graph.

Finally, we presented results confirming the suitability this GP lens distortion

model for modeling the distortion of real world lenses. Our results confirmed that

the GP distortion model performed on par with polynomial lens distortion models.
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Figure 4.3.2: Variation in test error as a function of training set size. This plot shows
that the that variation in test error reduces with increasing training set size. However,
the test error stabilizes around a training set size of 12. Hence, for our experiments,
we choose a training (development when performing validation) set size of 11 images.
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(a) Estimated GP distortion functions

(b) Tamron 2.2 mm distorted (c) Tamron 2.2 mm rectified

(d) Tamron 2.8 mm distorted (e) Tamron 2.8 mm rectified

Figure 4.3.3: Images rectified with the GP distortion model. The models shown in
(a) were estimated using the factor graph inference method of Sec. 4.1. The estimated
distorted models were then used to rectify the acquired images (b) and (d). The lenses
have a predominant barrel type distortion. The 2.2 mm focal length lens has a wider
field-of-view and hence produces more distortion than the 2.8 mm lens.
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Chapter 5

Locally-weighted Homographies

In the previous chapter, we presented a non-parametric model of lens distortion.

This model simplified the process of choosing the right model complexity for de-

scribing lens distortion. However, the model is still limited by its physical assump-

tions: it assumes that the imaging components are optically aligned. Hence, it can

only model distortions that are radially symmetric.

Here, we will describe an alternative non-parametric description of lens distor-

tion that provides a pure mathematical description of lens distortion. Since it is not

based on an underlying physical model, it is capable of modeling arbitrary sources

of lens distortion.

In the following sections, we first introduce the concept of a locally-weighted

homography, which is a type of a non-parametric non-linear homography. We then

show how lens distortion can be modeled using this locally-weighted homography.

We then evaluate this method on real lenses and also show how this method can be

used to rectify arbitrary sources of image distortion.

5.1 Non-linear homographies

The idea of locally-weighted linear models, described in Sec. 3.5.3.1, can be ex-

tended to the problem of homography estimation by considering the weighted ver-

sion of the regression problem Eq. 3.4.2. This gives us

(
A>WA

)
h = 0

where W is a diagonal matrix of weights. The weights themselves are computed

using the squared exponential weighting function
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Figure 5.1.1: Locally-weighted homography estimation. Left-most image is the cam-
era image of the planar target. The following figures show the mapping of lines
through row-centers on the target onto the image plane, for weighting bandwidth
τ = 1,0.005 and 0.0005, respectively. Note how the line mappings are progressively
more curved. At τ = 0.0005, the mapping is accurate to within 0.1 pixels.

w(q,xi) = ν2 exp

{
−‖q− xi‖2

2τ 2

}
+ λ2 (5.1.1)

where xi are the data points on the source plane and q is the query location on

the source plane where a local homography is being estimated. The weighting

function is such that the xi closer to the query point q are weighted higher than the

xi that are far away. The parameter τ controls the spatial extent of the weighting

function: larger values of τ correspond to computing local estimates over larger

neighborhoods, thereby producing smoother regressors. The parameters ν and λ

control the magnitude of the weights and thus regularize the underlying regression

problem.

When the weighting parameters ν, τ and λ are set to their optimal values, the

locally-weighted homographies computed over the domain of the planar target can

map straight lines on the target onto curves in its image as shown in Fig. 5.1.1. This

is in contrast to a conventional planar homography that can only map straight lines

onto straight lines.

5.2 Distortion observations and interpolation

A locally-weighted homography, by itself, is just a tool for producing a non-linear

mapping between source and target planes. In this section we show how a locally-

weighted homography can be used to estimate lens distortion in an image.

Let us denote the center of an image by c0 and consider the local homography at

c0. Because of distortion in the image, this homography is accurate only over a small

region near c0. If there was no distortion, this homography would accurately match

world-image correspondences everywhere on the image. This observation leads us

to an alternative definition of distortion in an image: distortion is the deviation
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from the homography at the center of the image. Given a set of correspondences

between world points and image points, xi 
 ui, we estimate lens distortion as

follows:

1. Estimate a locally-weighted homography H0 from world to image coordinates

at the center of the image.

2. Project the world points xi through the homography H0 to obtain the points

u′i.

3. The distortion estimate at the image point ui is then di = (u′i − ui).

4. As a result, the undistortion needed to rectify the point ui is then d̄i = −di =

−(u′i − ui).

This alternative definition of distortion provides a very flexible way of modeling

lens distortion without making assumptions about symmetry or parametric form.

The above-mentioned procedure provides us with distortion/undistortion observa-

tions at the image points ui. To predict the undistortion at any other point we use

interpolation.

To continue with our goal of not making any radial or tangential assumptions,

we interpolate undistortion as a direct 2D function of pixel coordinates. A reason-

able choice is to use a 2D polynomial mapping to model the undistortion. Instead,

we chose to model the undistortion using a 2D GP. This implicitly takes care of

regularization and model selection with the additional advantage of making the

distortion function non-parametric.

The 2D GP consists of two independent GPs, one d̄x modeling the undistortion in

the x-direction and the other d̄y modeling undistortion in the y-direction. The undis-

tortion components can be modeled separately because, given the pixel coordinates

s and t, d̄x(s, t) is conditionally independent of d̄y(s, t). This GP interpolation model

uses a 2D squared exponential covariance function

k(xm,xn) = θ21 exp

{
−1

2
xT
mΣ−1xn

}
+ δmnβ

−1

which has the hyper-parameters θ1, β and the matrix Σ ∈ R2×2. The 2D func-

tion squared exponential function has six hyper-parameters, while the 1D function,

shown in Eq. 3.5.7, has only three. Distortion observations and an interpolating

undistortion model for the image in Fig. 5.1.1 are show in Fig. 5.2.1.
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Figure 5.2.1: Distortion observations and interpolated distortion model. The quiver
plot on the left shows the distortion observations obtained for the image in Fig. 5.1.1.
On the right is a quiver plot of the GP undistortion model inferred from these observa-
tions.

The completely non-parametric nature of this lens distortion model allows us to

rectify arbitrary sources of image distortion as show in Fig. 5.2.2.

5.2.1 Estimating the local homography at the center

We have previously glossed over details about tuning the parameters of the weight-

ing function used to compute the local homography estimates. We explain this

process in detail here. To obtain an optimal local homography at the center H0, we

tune the parameters τ , ν and λ of the weighting function, Eq. 5.1.1, as follows:

1. We choose nine correspondences closest to the center of the image.

2. We construct nine folds of this data by leaving out one correspondence at a

time. Each left-out correspondence is the validation correspondence for its

respective fold.

3. For a given τ , ν and λ, we construct locally-weighted homographies for each

fold and compute prediction error on the validation sample for that fold. The

average prediction error across folds gives us the error for the given value of

τ , ν and λ.

4. We find the optimal values τ̂ , ν̂ and λ̂ by minimizing the error mentioned in

the previous step.

In other words, we restrict our attention to a dataset consisting of the nine cor-

respondences closest to the image center. We find the optimal parameters of the
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Figure 5.2.2: Rectifying arbitrary sources of distortion. Original distorted image
and undistorted image from an ad hoc setup involving a camera and an automotive
blind-spot mirror. The proposed distortion model can non-parametrically estimate and
correct arbitrary distortion from just a single image of a planar target. Single image
calibration is described later in Sec. 5.3.1.

locally-weighted homography for these nine correspondences by minimizing the

leave-out-one cross-validation (LOO-CV) error across folds of the dataset. Since we

have not analyzed the differentiability of the LOO-CV error objective used here,

we use Powell’s method, described in [24], to perform direct minimization without

computing derivatives.

5.2.2 Accuracy of the distortion model

As an evaluation of the local homography-based undistortion technique, we undis-

tort correspondences from three real-world lenses and report pixel deviation from

straightness in Table 5.1. Overall, we observe deviations of less than one pixel.

However, for the set of lenses used in our evaluation, there is no significant dif-

ference in the performance of the polynomial (up to fifth order) and GP models.

Fig. 5.2.3 has some examples of images undistorted using a non-parametric GP

model.
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(a) Tamron 2.2 mm lens (b) Tamron 2.8 mm lens (c) Tokina 3.3 mm lens

Figure 5.2.3: Images undistorted using a GP model estimated from a single image.

5.3 Extensions and Implementation

In this section, we describe two extensions to the method of estimating lens distor-

tion with locally-weighted homographies. First, we describe how an initial camera

calibration along with distortion can be obtained from a single image of a planar

target. Next, we show how this initial estimate can be used to bootstrap a classic

camera calibration.

5.3.1 Single image calibration

Combining the technique of Sec. 5.2 with camera intrinsics estimation using orthog-

onal vanishing points, as described by Beardsley in [3] or Cippola in [7], one can

obtain useful estimates of both the camera intrinsics and lens distortion simultane-

ously. This can be done with just one calibration image as follows:

1. Obtain an image of the planar target, such that the target covers most of the

image plane while producing two vanishing points. A target that covers the

image plane helps in a confident distortion estimate and at least two vanishing

points are required for recovering the camera matrix K.

2. Estimate the undistortion as described in Sec. 5.2, and undistort the image.

3. Estimate vanishing points from the undistorted image and use the technique

of Beardsley [3] to estimate the camera matrix. Note that with only two

vanishing points, we must assume that the principal point (cx, cy) is at the

center of the image.

This estimate of camera intrinsics and distortion from a single image can be further

refined by non-linear optimization.
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5.3.2 Augmented camera calibration

The lens distortion estimate obtained using the single image calibration method of

Sec. 5.3.1 can be used to simplify classic camera calibration. This is done by first

undistorting the calibration images and then optimizing just the camera intrinsics

and extrinsics, resulting in an optimization that optimizes a smaller set of parame-

ters.

However, we must note that by undistorting calibration images, we are commit-

ting to a single point-estimate of the undistortion and ignoring any uncertainty. As

an empirical approximation, we can integrate out the uncertainty parameters from

the optimization by sampling from the GP lens distortion estimate and then using

these samples to expand the calibration image set. We list out the steps in this

augmented camera calibration algorithm below:

1. Obtain a model of undistortion using the technique listed in section 5.2.

2. Obtain a set of calibration images.

3. For each image in the calibration set, sample the GP undistortion model mul-

tiple times, and undistort the image using the obtained samples. This results

in an expanded calibration set that empirically accounts for the uncertainty in

the distortion estimate.

4. Perform non-linear least-squares optimization of the camera intrinsic and ex-

trinsic parameters on the undistorted images, as in the classic calibration

method.

5.4 Experiments

In Fig. 5.4.1, we compare the performance of the classic and augmented calibration

methods and present histograms of errors obtained on multiple testing datasets.

We report both the RMSE and max pixel errors and find that the classic calibration

method has significantly more outliers.

In Fig. 5.4.2, we compare the convergence of classic non-linear least-squares-

based camera calibration with augmented camera calibration. The augmented cali-

bration results in an optimization problem that has a smaller number of parameters

and hence has more consistent convergence.
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Figure 5.4.1: Distribution of testing errors for the classic and augmented calibration
methods. We observe that both the classic and augmented methods have a very similar
distribution of errors except for a significant tail of outliers for the classic method. This
tail of outliers suggests that the classic method is prone to over-fitting.
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Figure 5.4.2: Convergence of classic camera calibration vs. augmented camera cal-
ibration. Results are reported for three different lenses. The augmented calibration
method uses the non-parametric undistortion model estimate to undistort the image
before calibrating camera intrinsics and extrinsics. The x-axis and y-axis are the val-
ues of the focal lengths fx and fy used to initialize the optimization. The principal point
(cx, cy) was initialized to the pixel image center. The color-mapped value at each point
corresponds to the Euclidean distance of the final calibration from a nominal reference
calibration. We find that the augmented camera calibration is very flat showing that
it is more consistent. For reference, the range of values for the augmented calibration
plots are [2.0, 6.9], [3.3, 44.8] and [2.12, 12.9], top to bottom. This improvement in
convergence suggests that the augmented method results in a more stable optimization.
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5.5 Summary

In this chapter, we described a novel non-parametric non-linear homography tech-

nique. Unlike a planar homography, it is capable of mapping lines from a source

plane onto arbitrary smooth curves in the target plane. We then adapted this non-

linear homography technique to estimate lens distortion by computing observed

deviation from the homography at the image center.

Classic camera calibration involves simultaneous estimation of lens distortion

and camera intrinsic parameters. We show that this classic calibration technique

can be augmented with our independent lens distortion estimation technique to

improve the stability of camera calibration.

Our technique can be visualized as building a continuous mosaic of homogra-

phies from the source plane to the target plane. As an extension, we can decompose

the homographies on the mosaic and interpret the resulting image as the result of

multiple appropriately placed pinhole cameras. This lets us interpret this technique

as building a non-parametric, non-linear mapping from 2D image points to rays in

3D.

41



Chapter 6

Distortion models for zoom-lenses

Zoom lenses are widely used in modern surveillance systems because they allow the

user to quickly switch between surveying an entire scene and examining an object

in detail. When tracking or inspecting an object, it is faster to zoom-in than to move

closer. This convenience afforded by zooming instead of moving makes zoom lenses

an important tool in robotic surveillance. Zoom cameras are a standard component

in military surveillance drones as well as commercially available aerial vehicles used

for photography.

The availability of an accurate calibration for a zoom lens enables good pho-

togrammetric registration of video frames from a zoom camera, since such video is

often acquired with continuously changing zoom. Zoom lenses have peculiar dis-

tortion characteristics that make classic radial distortion models insufficient. In this

chapter, we study the peculiar distortion characteristics of zoom lenses and adapt

the non-parametric distortion model of Chap. 5 to model the distortion in zoom

lenses.

6.1 The model selection problem for zoom-lenses

A straightforward extension of classic camera calibration to zoom camera calibra-

tion is possible by simply calibrating a different model at a discrete set of zoom

levels, and then interpolating the model parameters to intermediate zoom levels.

The problem with this approach arises from the fact that classic camera calibration

assumes a fixed complexity polynomial model, while the complexity of distortion in

a zoom lens varies across its zoom levels.

A more pressing issue is the presence of non-radial distortion in zoom lenses.
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The distortion of most conventional lenses is predominantly radial: dominated by

a component that is along the radius of the image and symmetric about the optical

center. Hence, it is common to assume a radial model for lens-distortion. However,

zoom lenses have multiple optical elements and any misalignment in these elements

manifests in distortions that are orthogonal to the radial component. This is a real

concern with lenses used in robotic applications because they are often subject to

physical shock.

From a calibration perspective, it is useful to model, or at least detect, these

non-radial distortions before deeming a lens suitable for use. Fig. 6.1.1 depicts the

typical deficiencies of radial polynomial distortion models when used to model the

distortion of zoom lenses.

The conventional solution to deal with these non-radial distortions is to com-

plement the radial distortion model with a tangential distortion model, as described

in [6]. However, in the case of zoom lens-distortion calibration, this additional dis-

tortion model just exacerbates our primary problem: we now have to choose models

of appropriate complexity for both radial and tangential distortion at different zoom

levels.

As an alternative, in this chapter we adapt the method of Sec. 5.2 to estimate

a non-parametric model of distortion in a zoom lens. In our experiments, we also

show that simple linear interpolation of this non-parametric distortion across zoom

levels produces an accurate characterization of lens distortion in a zoom lens.
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Figure 6.1.1: Deficiencies of radial polynomial distortion models. The three plots show
distortion observations (black points) from three different zoom levels in a Nikon 18-
200 mm zoom lens. Camera models with three different degrees of radial polynomial
distortion were calibrated at each zoom level. In the first two plots, the degree-2
polynomial model produces biased results, but shows good performance in the last
plot. In the second plot, the degree-5 polynomial has low bias, but extrapolates badly
in areas with sparse data. Thus, a different complexity of polynomial is appropriate
at each zoom level. Also, the second plot exhibits correlations that group observations
at higher radii into two distinct clusters. This non-Gaussian error profile suggests
that some aspect of the underlying distortion is not completely captured by the radial
distortion model.
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6.2 Modeling distortion across zoom levels

The initial step in our method for building a zoom lens distortion model is to capture

a model of distortion at a fixed set of zoom levels. We use technique of Sec. 5.2 for

capturing lens distortion at a fixed zoom level. The important piece of information

captured, at each zoom level, by this model is H0 the homography at the center of

the image.

Once we have an estimate of H0 at each zoom level for the camera, we can

obtain camera intrinsics as well as distortion for each zoom level as explained in

Sec. 5.3.1. However, we can obtain a better estimate if we perform a joint calibra-

tion using multiple images, as explained below.

6.2.1 Non-linear refinement

To perform a joint calibration, we begin by acquiring multiple planar target images

at each zoom level, while following to the guidelines of Sec. 3.4.1. Given the lo-

cal homography at the center for each image, H0, the camera intrinsics matrix K

and the extrinsics matrix E can be approximately recovered using the homography

decomposition described in Sec. 3.4.3. Let

H′ = KE

Ideally, H0 = H′. But this is generally not the case because the homography

decomposition is approximate. As a consequence, the re-projection error of world

points through K and E has significant errors. To remove these errors, we mini-

mize the re-projection error using the Levenberg-Marquadt optimization [22]. This

optimization is structured such that the set of images acquired at one zoom level

have the same intrinsics but different extrinsics corresponding to different poses of

the calibration target.

In this non-linear refinement step, we essentially perform classic calibration at

each zoom level with the following modifications:

1. We use the local homography, H0, to get initial estimates of intrinsics and

extrinsics. In classic camera calibration, the initial estimates are obtained

from a homography that is fit to all correspondences in the image.

2. We ignore the role of distortion. Instead, we weight re-projection errors ac-

cording to the weighting function of the locally-weighted homography H0.
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The use of weighted re-projection errors implicitly compensates for distortion. This

is because, by construction, the weights of H0 were optimized to produce a lo-

cally optimal model while compensating for distortion in the neighboring corre-

spondences.

6.2.2 Interpolating distortion across zoom levels

At each zoom level, we obtain distortion observations and build a predictive Gaus-

sian Process model as explained in Section 5.2. The Gaussian Process model allows

us to predict distortion within a calibrated zoom level. To predict the distortion at

an intermediate zoom level, we linearly interpolate between the GP predictions of

the two bracketing calibrated zoom levels.

As a concrete example, let dz(x, y) be the predictive model of distortion at pixel

(x, y) for zoom level z. Suppose we require the distortion at zoom level 24mm,

but we only have calibrated models at 20mm and 26mm. We obtain a distortion

prediction for 24mm by linearly interpolating between d20(x, y) and d26(x, y)

d24(x, y) = α d20(x, y) + (1− α) d26(x, y)

where α = (26−24)
(26−20) = 1

3
is the interpolation ratio

6.3 Experiments

We use a Nikon 18-200 mm auto-focus zoom lens mounted on a Nikon D7100 cam-

era for our experiments. We calibrate the zoom lens at thirteen different zoom

levels between the nominal focal-lengths of 18 mm and 70 mm.

The nominal focal-length used while acquiring an image is available from the

EXIF meta-data for that image. This focal-length, expressed in millimeters, corre-

sponds to a zoom level setting and varies with the focal-length in pixels. However,

the exact relationship between zoom level and focal-length in pixels needs to be

estimated as part of the calibration.

6.3.1 Intrinsics model

With the chosen lens, we proceed with our method as described in the previous sec-

tion. This gives us point-estimates of the focal-lengths fx and fy, and the principal

point (cx, cy) at each zoom level, shown in Fig. 6.3.1.
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For the zoom camera, we are interested in a model of how the intrinsic param-

eters vary over a continuous range of zoom levels. We have point-estimates of the

parameters, but information about the distribution of these parameters will help

us make an informed decision about the quality of calibration and choose a good

interpolating model. To obtain the distribution of these intrinsic parameters, we

perform bootstrap sampling by estimating multiple models using subsets of the cali-

bration images. The resulting distribution for the intrinsics parameters is shown in

Fig. 6.3.1.

Also shown in Fig. 6.3.1 are the interpolation models for the intrinsics parame-

ters. Since we have a large number of samples of the intrinsic parameters, we can

potentially fit high-degree polynomials to this data. But we observed that modeling

accuracy does not improve beyond a fourth-degree polynomial for fx and fy, and a

sixth-degree polynomial for cx and cy.

6.3.2 Distortion model

Our method also gives us a Gaussian process model of the lens-distortion at each

zoom level. There are two aspects of this distortion model that need to be evalu-

ated: how good the distortion model is at a calibrated zoom level, and how good

the distortion model is at interpolating distortion to intermediate zoom levels.

First, to present a qualitative evaluation of the distortion model at a calibrated

zoom level, we plot the model residuals at three different zoom levels in Fig. 6.3.2.

We observe that the residuals conform to an uncorrelated 2D Gaussian distribution,

suggesting good modeling performance. In contrast, the residuals of the radial

polynomial model in Fig. 6.1.1 present a clear non-Gaussian profile, where they

cluster into two groups on either size of the regressor. The residual distribution at

other zoom levels is similarly Gaussian, though we do not show results for every

level due to space constraints.

For a quantitative evaluation of the lens-distortion model, we make use of the

fact that a good distortion model should rectify an image such that known straight

lines map to straight lines in the image. Any image of the planar calibration tar-

get contains a number of straight lines corresponding to the rows and columns of

fiducials, allowing us to evaluate the straight-line rectification performance. As a

quantitative measure of rectification, we report mean residual errors for the lines

fit to the rectified row and column centers and compare rectification performance

of the proposed model with the rectification performance of a sixth degree radial
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polynomial model.

First, to evaluate the distortion rectification at a calibrated zoom level, we ob-

tain a separate set of test images at the calibrated zoom levels. We then use the

distortion model to rectify the image and plot residual error statistics from the line

fit in Fig. 6.3.4 (a).

Next, to evaluate the distortion rectification at intermediate zoom levels, we

obtain test images at a set of intermediate zoom levels. We then use the interpolated

model described in Section 6.2.2 to rectify the test image. We plot residual error

statistics from the line fit in Fig. 6.3.4 (b). In both cases, we observe less than

one pixel of error, confirming good performance for the distortion model. Also, the

proposed distortion model produces residual errors that are significantly lower than

the residual error of the radial polynomial model.

6.3.3 Discussion

From the data in Fig. 6.3.1, we see that the variation in focal length is well behaved

and exhibits a smooth trend across zoom levels. However, the same cannot be said

for the variation in the principal point: the trend is mostly smooth till a zoom level

of 35, after which the trend exhibits a significant change in smoothness. It is hard

to reason about this behavior without explicit knowledge about the internal optics

of the lens used in our experiments. Nevertheless, our non-parametric distortion

model shows good modeling performance and is able to rectify distortions across

the calibrated zoom range.

The Nikon 18-200 mm lens used in this evaluation is primarily targeted for use in

photography. It exhibits minimal distortion near the nominal focal length of 30 mm,

which is taken as the normal focal length in photography, where the field-of-view is

closest to the field-of-view of the human eye.

This is depicted in Fig. 6.3.3, where we plot the mean and maximum distortion

magnitudes across zoom levels, as estimated using our distortion model.

6.4 Summary

In this chapter, we adapted the non-parametric distortion model of Chap. 5 to model

distortion in a zoom lens. This model is suitable for a zoom lens because it captures

both the radial and non-radial components of distortion. We applied the proposed

method to a Nikon 18-200 mm auto-focus zoom lens and evaluated its accuracy by
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quantifying its straight-line rectification performance. Our results showed that the

non-parametric model can accurately rectify distortion across the calibrated zoom

range.
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Figure 6.3.1: Variation in camera parameters across zoom levels. Point estimates of
parameters obtained after non-linear refinement are shown with a + marker. Boot-
strap samples showing the distribution of parameter values are shown as points along
the y-axis. The interpolating polynomials are drawn in blue. The top plot shows the
variation in the focal-length parameters. Values of fx and fy are almost equal and
are indistinguishable in the plot. The bottom plot shows the variation in the princi-
pal point. In general, we observe that the parameter estimates are less confident with
increasing zoom.
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Figure 6.3.2: Distortion model residuals at different zoom levels. In this figure we
show distortion model residual distributions at zoom levels of 20 mm, 40 mm and
55 mm. In contrast to the residuals in Fig. 6.1.1, the residuals conform to uncorrelated
Gaussians. Samples are sparser with increasing zoom level because we observe fewer
correspondences with increasing zoom.

Figure 6.3.3: Variation in distortion magnitude with zoom for a Nikon 18-200 mm
zoom lens. The lens distortion is minimal near the nominal focal length of 30 mm.
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(a) Straight line rectification error for calibrated zoom levels

(b) Straight line rectification error for interpolated zoom levels

Figure 6.3.4: Straight line rectification residual errors. First, test images containing
known straight lines were rectified using both the proposed distortion model and a
sixth degree radial polynomial model. Next, we fit straight lines to the points that
must lie on a straight line after rectification. The residual error statistics from the line
fit are plotted here. Plot (a) shows error statistics at calibrated zoom levels. Plot (b)
shows error statistics for interpolated zoom levels. In both cases we observe that the
residual error of the proposed model is significantly lower than the residual error of
the radial polynomial model.
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Chapter 7

Conclusion

Cameras are commonly used to capture pictures of objects and scenes. However,

once the transformation from image pixels to object sizes is identified using a pro-

cess termed camera calibration, a camera can also be used to measure distances and

sizes. When a calibrated camera is used for surveying or surveillance, the accuracy

of its calibration greatly affects the quality of image registration. Often, cameras

used for surveying and surveillance capture a wide field-of-view and employ lenses

with significant distortion. Accurate calibration of these cameras also requires ac-

curate calibration of lens distortion.

Traditional models of lens distortion are motivated by the physical construction

of lenses. It is common to use a radially-symmetric polynomial model of lens dis-

tortion when calibrating a camera because the distortion of lenses is predominantly

radial. However compound lens systems might exhibit lens distortions that are sig-

nificantly non-radial or exhibit symmetry about a point that is not the center of the

image. In these cases, the practitioner seeking to calibrate the lens distortion must

try out different augmentations to the standard model.

In this dissertation, we proposed alternative non-parametric models of lens dis-

tortion. Unlike conventional parametric descriptions of lens distortion, these non-

parametric methods flexibly and automatically capture the various sources of dis-

tortion in a lens system.

We began in Chap. 4 by proposing a Gaussian Process model of radial distortion

that automatically adjusted the complexity of the lens distortion model. First, we

showed how the non-linear least squares camera calibration problem can be viewed

as maximum likelihood inference in a factor graph. Next, we extended this formu-

lation by showing how a Gaussian process node and factor can be embedded in

this factor graph to non-parametrically describe distortion in the camera lens. We
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then compared the performance of classic polynomial models and Gaussian pro-

cess distortion models on camera calibration tasks by reporting a principled test

error metric. Our evaluation showed that the Gaussian process distortion models

performed on par with the best polynomial models while automatically performing

model selection.

Next, in Chap. 5, we introduced the concept of a locally-weighted homography.

Then, we formulated a non-parametric definition of lens-distortion by analyzing

the difference between correspondence predictions by the local homography at the

center of the image and the actual observed point correspondences. We showed

that this non-parametric definition of lens-distortion can correct arbitrary sources of

distortion in an imaging system. Furthermore, we showed that augmenting classic

camera calibration using this non-parametric model of distortion produced better

convergence of the optimization and reduced the overall probability of errors.

Finally, in Chap. 6, we used the locally-weighted homography based distortion

model on a zoom lens. We showed that this model is suitable for a zoom lens

because it captures both the radial and non-radial components of lens distortion.

We applied the proposed method to a Nikon 18-200 mm auto-focus zoom lens and

showed that the non-parametric model accurately rectifies distortion across the cal-

ibrated zoom range.

Software for the different models described in this dissertation has been made

publicly available at https://github.com/memorydump85/zoomcalib. As an exten-

sion to the work in this dissertation, the method of local homographies described

here may be extended to analyze the distortion in a catadioptric system. Catadiop-

tric systems use both reflective and refractive elements to focus light rays on an

imaging plane. The distortion in a catadioptric system is best described by a cam-

era that undergoes motion to capture the image. The method of locally-weighted

homographies describes the distortion as a continuous mosaic of homographies.

Therefore, it is well suited for explaining distortion as motion in the imaging sys-

tem.
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