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ABSTRACT

Developments in Estimation and Control for Cloud-Enabled
Automotive Vehicles

by

Zhaojian Li

Co-Chairs: Ella M. Atkins and Ilya V. Kolmanovsky

Cloud computing is revolutionizing access to distributed information and com-

puting resources that can facilitate future data and computation intensive vehicular

control functions and improve vehicle driving comfort and safety. This dissertation

investigates several potential Vehicle-to-Cloud-to-Vehicle (V2C2V) applications that

can enhance vehicle control and enable additional functionalities by integrating on-

board and cloud resources.

Firstly, this thesis demonstrates that onboard vehicle sensors can be used to sense

road profiles and detect anomalies. This information can be shared with other vehicles

and transportation authorities within a V2C2V framework. The response of hitting

a pothole is characterized by a multi-phase dynamic model which is validated by

comparing simulation results with a higher-fidelity commercial modeling package. A

novel framework of simultaneous road profile estimation and anomaly detection is

developed by combining a jump diffusion process (JDP)-based estimator and a multi-

input observer. The performance of this scheme is evaluated in an experimental

vehicle. In addition, a new clustering algorithm is developed to compress anomaly

information by processing anomaly report streams.

Secondly, a cloud-aided semi-active suspension control problem is studied demon-

strating for the first time that road profile information and noise statistics from the

cloud can be used to enhance suspension control. The problem of selecting an optimal

xv



damping mode from a finite set of damping modes is considered and the best mode

is selected based on performance prediction on the cloud.

Finally, a cloud-aided multi-metric route planner is investigated in which safety

and comfort metrics augment traditional planning metrics such as time, distance, and

fuel economy. The safety metric is developed by processing a comprehensive road and

crash database while the comfort metric integrates road roughness and anomalies.

These metrics and a planning algorithm can be implemented on the cloud to realize

the multi-metric route planning. Real-world case studies are presented. The main

contribution of this part of the dissertation is in demonstrating the feasibility and

benefits of enhancing the existing route planning algorithms with safety and comfort

metrics.
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CHAPTER 1

Introduction

1.1 Motivation

Cloud computing has become an indispensable part of our everyday life. Gmail,

Google Drive, iCloud and Facebook are all examples of cloud computing applica-

tions. Unlike traditional desktop computing that runs software and stores documents

locally, cloud computing is an internet-based service that runs programs and stores

data on a shared pool of resources connected to the global network. This pervasive

network provides ubiquitous, convenient, on-demand network access to a shared pool

of configurable computing resources that can be rapidly provisioned and released with

minimal management effort or service provider interaction [3].

Three cloud computing service models are defined by the National Institute of

Standards and Technology (NIST): Software as a Service (SaaS), Platform as a Service

(PaaS), and Infrastructure as a Service (Baas) [3]. SaaS refers to application-based

services that are accessible from client devices such as a web browser or a program

interface. PaaS provides customers the capability to develop and deploy applications

using programming languages, libraries, and tools, but customers do not control or

manage the underlying cloud infrastructure. Baas provides consumers the ability to

provision processing, storage, and network resources for the consumer to deploy and

run arbitrary software.

Interest in employing cloud computing for automotive applications is growing to

support computation and data intensive tasks [4, 5, 6, 7, 8]. The cloud can provide

access to “big data” as well as real-time crowd-sourced information. Smart utilization

of on-demand cloud resources can increase situation awareness and provide additional

functionality. In addition, computation and data intensive tasks can be outsourced

to the cloud, enabling advanced and high-fidelity algorithms to be implemented in
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real time. While embedded vehicle processors remain essential for time-critical appli-

cations, cloud computing can extend current control functionalities with additional

functions to enhance performance [4].

The modern automobile hosts a large number of embedded Electronic Control

Units (ECUs) for control and diagnostic functions [9]. The main ECUs in an au-

tomobile are shown in Figure 1.1. These ECUs include sophisticated sensors and

micro-controllers that can be used not only for traditional engine, transmission, and

vehicle electronic stability control but also for road and environmental sensing in real

time, e.g., traffic density estimation [10], road friction coefficient estimation [11] and

pothole detection [12]. Cloud-enabled vehicles can thus be used as mobile sensors to

crowd-source road and environment data that can be shared in real time [7].

Engine Transmission Suspension Braking Battery 

CAN bus 

Figure 1.1: Main ECUs in a modern automobile

Cloud-aided automobile applications have been limited to-date. Insurance com-

panies, specifically Progressive and StateFarm, use, with permission, MyRate and

In-drive driving-monitoring devices, respectively, to determine driver insurance pre-

mium [13, 14]. MyFord Mobile utilizes cloud services to provide infotainment and

telematics features [15]. In [16], cloud-based driving speed optimization is studied to

improve fuel efficiency for everyday driving. An agent-based urban traffic manage-

ment system is proposed in [17]. A cloud-based adaptive fleet vehicle routing system

is proposed in [18, 19]. A system to complement vehicle sensor measurements with

weather station data is considered in [20].

This thesis investigates several potential cloud-aided automotive applications that

can enhance vehicle control and enrich vehicle functionality by integrating cloud and

onboard resources. These applications are proposed within a Vehicle-to-Cloud-to-

Vehicle (V2C2V) [4] framework.
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1.2 Overview of V2C2V

A schematic diagram of the V2C2V architecture is illustrated in Figure 1.2. Cloud

resources including computation, storage, and web services are pooled and managed

by a cloud infrastructure managing system, enabling V2C2V applications to access

these resources and augment onboard ECU capabilities. Onboard ECUs support

real-time sensing, control, and diagnostic functions for time and safety critical appli-

cations.

Cloud Resource Manager Cloud Infrastructure Cloud Applications 

App 

App 

App 

Computation 

Storage 

Web services 

Engine Transmission Battery Engine Transmission Battery Engine Transmission Battery 

Figure 1.2: A schematic V2C2V architecture diagram

Onboard sensors and software provide the real-time data and processing neces-

sary for safe vehicle control. Onboard sensors can also be used to sense real-time

road and environment information [10, 11, 12]. Raw and processed data can be

transmitted from the vehicle to the cloud to populate and update databases that ag-

gregate information about vehicles, roads and drivers. Data fusion between onboard

and cloud-based sources allows control computations to be performed at the opti-

mal location (onboard vs. cloud) and maximizes situational awareness onboard and

across the connected vehicle network. Real-time updates to cloud databases ensure

3



environment information (e.g., road, weather) stays current.

Wireless networks support the communication between vehicles and cloud. Cloud-

enabled vehicles can access web services for enhanced infotainment as well as travel

planning and driving tasks. While the cloud can in principle provide unlimited data

access and computing power, its use is limited by network availability, bandwidth,

and cost. Network-induced imperfections such as time delays and packet dropouts

must be carefully considered [21, 22] to ensure V2C2V systems do not reduce safety

when the cloud is unavailable.

The main benefits of the V2C2V framework are summarized as follows:

• Computation outsourcing. The V2C2V framework enables vehicles to access

powerful computing resources on the cloud to execute computation-intensive al-

gorithms. For instance, the cloud implementation can facilitate optimal multi-

objective route planning with route segment dependent mode or speed opti-

mization. Onboard real-time controllers can display or in the case of future

autonomous vehicles follow prescribed routes based on cloud data.

• Information enrichment. Cloud-enabled vehicles can access “big data” and real-

time information through web services. These data can enhance situational

awareness, improve controller performance, and enhance occupant infotaiment.

• Data crowd-sourcing. Modern vehicles are embedded with a suite of sophis-

ticated sensors that can be exploited to characterize road, driver and envi-

ronmental properties. Sensed information can be transmitted to the cloud to

populate and update databases. Crowd-sourced data can then be shared with

other vehicles and interested parties.

• Connected vehicle. The V2C2V-implemented vehicles are connected via the

cloud. They can communicate useful information with each other in real-time,

using the cloud as a media. The in-vehicle communication can be used to

enhance cruise control and fleet management.

• Diagnostics and prognostics. Cloud-based diagnostic and prognostic prediction

models can be used to infer vehicle degradation trends from onboard sensors.

This enables vehicles to optimally schedule maintenance actions.
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1.3 Comparison with Vehicle-to-Vehicle (V2V) and Vehicle-

to-Infrastructure (V2I)

Complementary architectures to V2C2V have been developed, including V2V and

V2I. V2V refers to a wireless network where automobiles can communicate with

neighboring vehicles as shown in Figure 1.3. V2V communications exploit Dedicate

Short-Range Communications (DSRC) with a link range up to 300 meters [23]. Ve-

hicles share data including location, speed, steering and braking to nearby vehicles

to warn drivers and enhance vehicle functions such as adaptive cruise control [24].

Figure 1.3: A schematic V2V diagram [1]

Similar to V2C2V, V2V enables vehicles data to be shared. However, there are

defining differences. First, the main goals of V2V are to enable real-time and safety-

critical warning and control functions while V2C2V has to-date focused on non-safety-

critical applications due to communication reliability limitations. Second, vehicles

with V2V technology are locally connected while V2C2V can connect vehicles globally

via cloud media. Third, V2V-equipped vehicles typically share direct measurements

from the CAN bus such as speed, steering and braking signals while V2C2V can

employ onboard algorithms to process CAN bus data then send the processed data

to the cloud. Finally, V2C2V offers access to significant computation and storage

resources on the cloud.

Another vehicular communication framework is Vehicle-to-Infrastructure (V2I),

where vehicles can communicate with roadway infrastructures such as traffic lights
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to improve traffic safety and efficiency. V2I also relies on DSRC for communication.

V2C2V can be seen as an augmented form of V2I with the cloud as an infrastructure.

1.4 Research Objectives and Approach

This thesis investigates potential automotive applications that can exploit the ben-

efits of V2C2V. The fist application is motivated by the idea of crowd-sourcing mobile

vehicle sensor data to characterize and update road condition information database on

the cloud. Specifically, the problem of road profile estimation and anomaly detection

from onboard sensors is studied.

Road anomalies such as potholes and bumps can cause discomfort for occupants

and even vehicle damage. If available, road anomaly information can be used to warn

drivers, enhance route planning, and notify road maintenance crews. This thesis pro-

poses the exploitation of onboard vehicle sensors to detect anomalies autonomously.

A multi-phase dynamic model is developed to characterize the response of hitting a

pothole. This complex response is empirically decomposed into several phases, each

of which corresponds to a simplified model. The developed model is validated by

comparing simulation results with FTire, a commercial simulation package that sup-

ports tire-anomaly interaction analysis. This work has been published in a conference

paper [25].

Based on a multi-phase model, a pothole detection algorithm is developed which

combines an Unscented Kalman Filter (UKF) and Bayesian estimation. A simulation-

based analysis demonstrates algorithm performance. The proposed detection scheme

requires high-bandwidth sensors that are not commonly available in vehicles. To

resolve this issue, a systematic framework of simultaneous road profile estimation and

anomaly detection is developed in this thesis. A jump diffusion process (JDP)-based

estimator is used to determine system states; the JDP-based estimator is compared

with a Kalman filter when anomalies are present. A multi-input observer is used along

with the JDP-based estimator to estimate the road profile. An anomaly detection

algorithm is further developed to detect and label the anomalies (pothole, bump, road

joints, etc.). The algorithm is implemented in a test vehicle to enable experimental

validation. This work has appeared in [26].

With GPS and anomaly detection, cloud-enabled vehicles can report anomaly

location data to the cloud. To aggregate reports, the cloud must convert the raw

data stream into concise anomaly information that can be shared with other vehicles

and road agencies. This thesis develops a clustering algorithm to achieve this goal.
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The anomaly reports are processed in a single-pass fashion. Two cluster types, a main

cluster and an outlier cluster, are defined to deal with outliers due to false alarms,

as well as capture the evolving nature of road anomalies. Each cluster is defined by

a feature vector and is maintained online. A simulation is presented to demonstrate

the efficacy of the proposed algorithm. This work has appeared in [27].

The automotive suspension system is critical to ride comfort and road handling.

A cloud-aided semi-active suspension control system is proposed to optimally select

the best damping modes by exploiting the road information on the cloud as a preview.

Road disturbance is modeled as a combination of a known road profile, an unmeasured

stochastic road profile and potholes. Stochastic evaluation is conducted to select the

best damping mode based on road profile and anomaly information from the cloud.

This work has been published in conference papers [28, 21].

While modern vehicle navigation systems are able to generate optimal routes

in terms of travel time, distance or fuel economy, this thesis next augments these

traditional cost terms with safety and comfort metrics. A road and accident database

from the Highway Safety Information System (HSIS) is mined to predict road risk

indices (RRIs). Real-time factors such as time of day, day of the week and weather are

also considered. A comfort metric is developed by integrating road roughness, road

anomalies and intersections. Multi-metric route planning is formulated as a multi-

objective network flow problem and further reduced to a Mixed Integer Programming

(MIP) problem. A V2C2V implementation is proposed to facilitate access to real-

time information and computing resources. Real world case studies are investigated.

This work has appeared in [29, 30, 31].

1.5 Contributions and dissertation outline

This dissertation is divided into two parts. Part I investigates the use of vehicles

to crowd-source road profile and anomaly data. Part II studies several cloud-aided

automotive route planning and control applications. Individual contributions are

listed below in the order of their corresponding chapters.

• A multi-phase dynamic model is developed to capture the complex response of

hitting a pothole. A pothole detection algorithm is developed and demonstrated

based on the multi-phase model using an Unscented Kalman Filter (UKF) and

Bayesian estimation. These contributions are presented in Chapter 2 [25].

• A systematic framework of simultaneous road profile estimation and anomaly
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detection is developed. The theory of JDP-based estimation is extended to the

vector disturbance case as well as the case where the jump diffusion disturbance

also impacts measurement data. The JDP-based estimation is applied to the

road anomaly detection problem and evaluated in comparison to the Kalman

Filter. The road profile estimation and anomaly detection algorithm is im-

plemented and evaluated on an experimental vehicle. These contributions are

detailed in Chapter 3 [26].

• An evolving clustering algorithm is developed to process aggregated anomaly

reports. The scheme of o-cluster and m-cluster is exploited to reject outliers

and handle the road anomaly changes over time. The developed algorithm can

accurately determine isolated anomaly locations and can compress clustered

anomaly information by processing pothole report stream. These contributions

are presented in Chapter 4 [27].

• A cloud-aided semi-active suspension control system is developed by exploiting

road profile data as a preview. The response of hitting potholes is explicitly

considered, demonstrating how crowd-sourced road data and cloud computing

can be used in an automotive control application. These contributions are

detailed in Chapter 5 [28, 21].

• A cloud-aided safety-based route planner is investigated. A crash rate predic-

tion model is developed with a hybrid Artificial Neural Network (ANN) and

compared with existing models. Real-time factors such as weather, time of day

and day of the week are incorporated as correction factors to a static road risk

index. Real-world case studies are explored to demonstrate the applicability of

the proposed route planning framework. These contributions are presented in

Chapter 6 [29, 30].

• A cloud-aided comfort-based route planning problem is formulated as an exten-

sion or alternative to safety-based route planning. Objective comfort-related

metrics are developed and applied in route planning, demonstrating how the

crowd-sourced road profile and anomaly information can be used to improve

information for drivers as well as enhancing control system performance. Real-

world case studies are presented to demonstrate the efficacy of the proposed

route planning framework. These contributions are detailed in Chapter 7 [31].
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1.6 Innovations

Key innovations of this work include:

• A novel multi-phase dynamic model formulation to capture the complex re-

sponse of hitting a pothole. Previous tire-anomaly interaction models such as

Finite Element Analysis models are too computationally expensive for onboard

algorithms.

• Simultaneous road profile estimation and anomaly detection using a JDP-based

estimator and a multi-input observer. Previous methods focused on either road

profile estimation or pothole detection. The existing anomaly detection algo-

rithms exploited machine learning techniques.

• Use of road information from the cloud as a preview in semi-active suspension

control. The effects of potholes are for the first time explicitly considered in the

suspension control system. Previously the driver manually adjusted suspension

or the road profile was assumed to be a Gaussian process.

• Use of a novel road risk index in safety-based route planning. Traditional route

planner only considers time, distance or fuel economy.

• Development and use of comfort metrics including roughness weighted time,

road anomaly cost, and intersection-induced cost. These comfort-related costs

have not been considered in existing route planning framework.
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Part I

Road profile and anomaly

information crowdsourcing

CHAPTER 2

Pothole response modeling and detection

2.1 Introduction

Potholes can lead to passenger discomfort due to sudden acceleration change as

well as vehicle damage such as tire puncture, suspension fatigue, and wheel misalign-

ment. Pothole location information, if available, can be exploited to warn drivers and

plan road maintenance by transportation authorities. It can also be exploited by sus-

pension control systems as will be investigated in Chapter 5. This chapter analyzes

the response of hitting a pothole and proposes an onboard pothole detector that is

able to detect potholes with onboard sensors such as the speedometer and accelerom-

eters. With a robust detector, pothole locations (e.g., Global Positioning System

(GPS) coordinates) can then be transmitted, processed and later shared through a

Vehicle-to-Cloud-to-Vehicle (V2C2V) architecture [28, 29].

Recent studies have focused on pothole detection with mobile agents. Artis et

al. [32] developed a mobile pothole detector with accelerometers embedded in An-

droid smartphones. Four detection algorithms were proposed which exploited signal

processing techniques and had an average true positive rate of around 80 percent.

Jakob et al. [12] developed a pothole detector with three external accelerometers

using machine learning techniques. The detector was implemented in seven taxis in

metropolitan Boston and 39 out of 48 detected potholes were true potholes. Recently,
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Jaguar and Land Rover has launched a “Pothole Alert” project to use onboard sensors

to detect potholes [33].

In this chapter, we first develop a dynamic model to characterize the responses

of hitting a pothole. Unlike previous approaches based on Finite Element Analy-

sis (FEA) [34] which is computationally complex for onboard use, in this study, a

novel multi-phase dynamic model is developed that represents a multi-mode switch-

ing system. Responses are empirically broken down into phases and each phase is

represented by a simpler dynamic model. A pothole detection algorithm is then

proposed based on the developed model which exploits Bayesian estimation and the

Unscented Kalman Filter (UKF).

This chapter is organised as follows. The pothole characterization and a multi-

phase dynamic model are discussed in Section 2.2. Section 2.3 presents model val-

idation with FTire. A model-based pothole detection algorithm is developed and

simulation results are reported in Section 2.4. Section 2.5 concludes the chapter.

2.2 Pothole analysis and a multi-phase dynamic model

In the literature on vehicle control with road disturbances, road inputs are often

modeled as either deterministic (e.g., given by sinusoids) or stochastic (e.g., given by

white noise) without an explicit representation for hitting a pothole [35, 36, 37]. In

this chapter, we explicitly consider the response of hitting a pothole by exploiting a

multi-phase dynamic model.

2.2.1 Pothole characterization

Before we develop the dynamic model, we first analyze pothole geometries on

which the dynamic model is based. In this work, potholes are characterized as small

or large based on whether the tire touches the bottom of the pothole when the vehicle

runs over it. For small potholes the tire does not touch the bottom of the pothole.

Geometry of the interaction between a wheel and a small pothole at the instant of

hitting the rear edge is illustrated in Figure 2.1. According to the direction of motion

(left to right), w1 and w2 are defined as the front and rear edges, respectively. The

two main parameters for a small pothole are the diameter of the pothole l and the

vertical difference between the rear and front edges of the pothole r. Note that in

Figure 2.1 the height of the rear edge (right) is higher than that of the front edge.

Similar analysis can be performed if the front edge is higher than the rear edge. Given
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the wheel effective radius R, the following equations are satisfied:

l = l1 + l2,

r =
√
R2 − l21 −

√
R2 − l22.

(2.1)

.
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Figure 2.1: Small pothole geometry

From (2.1), l1, l2 can be determined if l, r and R are known. Then the angle ϕ0

in Figure 2.1 can be computed as:

ϕ0 = sin−1
l1
R
. (2.2)

Angle θ0 in Figure 2.1 can be represented as:

θ0 = sin−1
l2
R
. (2.3)

Note that if the vertical difference between the front and rear edges r is zero, then

l1 = l2 =
l

2
.

By large potholes we refer to those with a large diameter such that the wheel hits

the bottom of the pothole when running over it. As illustrated in Figure 2.2, the

pothole is sufficiently wide that the wheel will touch the bottom of the pothole. In

Figure 2.2, w1, w2, l, θ0 and ϕ0 are defined the same as for the small pothole; r1 and

r2 are the heights relative to the bottom of the front and rear edges, respectively; d

is the distance of the wheel travelling on the bottom of the pothole. These variables
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Figure 2.2: Large pothole geometry

are related as follows:

ϕ0 = cos−1
R− r1
R

, (2.4a)

θ0 = cos−1
R− r2
R

, (2.4b)

d = l − sinϕ0 ·R− sin θ0·R. (2.4c)

With the above variable descriptions, we next develop a dynamic model to represent

the responses of a quarter car running over a pothole.

2.2.2 Multi-phase dynamic model

In this study, the overall response is empirically decomposed into four phases and

each phase is modeled as a simple dynamic system. The phases are as follows:

1. Rolling on flat ground. The vehicle rolls on flat ground before hitting a pothole.

2. Rolling about front edge w1. The wheel starts to hit the pothole by rolling about

the front edge w1 as in Figure 2.1. The wheel drops and w1 is the only contact

point in this phase. During this phase, the angle between Ow1 and the reference

vertical line changes from 0 to ϕ0, which is represented in (2.2).

3. Rolling about rear edge w2. The second phase ends when the wheel hits the

rear edge of the pothole w2. w2 then becomes the only contact point and the

wheel rolls about that point. During this phase, the angle between Ow2 and

the reference vertical line changes from θ0 to 0.
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4. Rolling on flat ground. After phase 3, the wheel rolls out of the pothole and

proceeds on flat ground.

The responses of hitting a large pothole are similar to hitting a small one except

that the wheel hits and rolls on the bottom after rolling about w1 before hitting w2

in the large pothole case. The response is also composed of the above basic phases.

Since phase 1 and 4 are the same, there are 3 modes (rolling on flat ground, rolling

about front edge and hitting and rolling about rear edge) corresponding to the distinct

phases. The dynamic models are illustrated in Figures 2.3 and 2.5.

Figure 2.3: Dynamic model of running on flat ground

Since most pothole impacts involve only one wheel at a time, a quarter car model

is used. The body of a quarter car is modeled as a rigid body with mass mb. Vehicle

suspension is modeled as a spring and damper system with constant spring stiffness

k1 and damping coefficient c1. The point O (see Figures 2.3 – 2.5) is the center of the

rim (wheel carrier) and we assume there is no horizontal displacement between the

rim and the quarter car body. A simplified rigid ring tire model is used where the tire

interacts with the rim through a vertical spring and damper system with stiffness k2

and damping coefficient c2, and a horizontal spring and damper system with stiffness

k3 and damping coefficient c3. The interaction between the tire and road surface is

modeled as a rotating spring and damper through the contact point and the center

of wheel rim O with stiffness k4 and damping coefficient c4. Note that w1 and w2 are
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Figure 2.4: Dynamic model of running about front edge

the only contact points in phase 2 and phase 3, respectively. The angle θ is the angle

between the vertical line and the line connecting center of rim O and the contact

point during phase 2 and 3 as in Figures 2.4 and 2.5.

The variables x1, x2, x3, and a are the displacements from equilibrium of springs

k1, k2, k3 and k4, respectively. These displacements are defined to be positive when

the corresponding spring is extended. The variables x4 and x5 are the horizontal and

vertical displacements relative to an inertial point, respectively. The variable τ is the

driving torque; b represents the tire-road slip displacement and ḃ is the slip velocity.

A commonly used slip-friction relation is illustrated in Figure 2.6, which is described

by the following expression,

µ(κ) =
2µpκp
κ2p + κ2

κ, (2.5)

where κ is the slip ratio defined as κ = vsp
max(vt, ωR)

, vsp is the slip velocity (vsp = ḃ in

our case), and vt is the wheel tangential velocity. Since we are considering the driving

15



Figure 2.5: Dynamic model of hitting and running about rear edge

wheel, ωR is normally greater than vt. As a result, our formulation yields

κ =
ḃ

ωR
. (2.6)
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Figure 2.6: A typical relation between slip ratio and friction coefficient

16



In (2.5), µp is the peak friction coefficient that depends on the road surface and

condition while κp is the slip ratio at which the maximum friction coefficient is ob-

tained. In Figure 2.6, µp = 0.8 and κp = 0.2. FD is the longitudinal drag force acting

on the quarter car and is modeled as a combination of aerodynamic drag proportional

to the square of the speed, and a force due to the rear half car body, which we assume

is proportional to the speed,

FD =
1

2
Cadv

2 + Cdv, (2.7)

where Cad is the aerodynamic drag coefficient (air density incorporated) assuming sea

level density and Cd is a constant capturing the drag force due to the rear half car

body. The variable v is the vehicle longitudinal speed.

In phases 2 and 3, we exploit two frames in the derivation of the equations of

motion (EoMs). The first frame, FA, is an inertial frame and the second frame, FB,

is attached to the wheel. The vectors iA, jA, kA, iB, jB, and kB are the basis vectors

associated with Frames FA and FB. During phase 2, we have FA
θ−→̂
j
FB, which means

FB can be obtained by rotating FA around eigenaxis ĵ by an angle θ as in Figure 2.4

and we have FA
−θ−→̂
j

FB during phase 3 as in Figure 2.5. Then EoMs for the three

modes are derived using Newton’s second law and are shown as follows.

1. EoM for mode 1 (phase 1 and 4):

mbẍ5 = −mbg − k1x1 − c1ẋ1,

(mb +mr)ẍ4 = k3x3 + c3ẋ3 −
1

2
Cadẋ

2
4 − Cdẋ4,

mr(ẍ5 − ẍ1) = −mrg + k1x1 + c1ẋ1 − k2x2 − c2ẋ2,

mt(ẍ5 − ẍ1 − ẍ2) = −mtg + k2x2 + c2ẋ2 − (k4a+ c4ȧ),

mt(ẍ3 + ẍ4) = −k3x3 − c3ẋ3 + fµ,

Iθ̈ = τ − fµ(R + a),

ȧ = ẋ5 − ẋ1 − ẋ2,

ḃ = ẋ3 + ẋ4 − θ̇(R + a).

(2.8)
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2. EoMs for mode 2 (phase 2):

mbẍ5 = −mbg − k1x1 − c1ẋ1,

(mb +mr)ẍ4 = k3x3 + c3ẋ3 −
1

2
Cadẋ

2
4 − Cdẋ4,

mr(ẍ5 − ẍ1) = −mrg + k1x1 + c1ẋ1 − k2x2 − c2ẋ2,

mt(ẍ5 − ẍ1 − ẍ2) = −mtg + k2x2 + c2ẋ2 − cos θ · (k4a+ c4ȧ)− sin θ · fµ,

mt(ẍ3 + ẍ4) = −k3x3 − c3ẋ3 − sin θ · (k4a+ c4ȧ) + cos θ · fµ,

Iθ̈ = τ − fµ(R + a),[
ȧ

ḃ

]
= R−1r (θ)

[
−ẋ1 − ẋ2 + ẋ5

ẋ3 + ẋ4

]
+

[
θ̇b

−θ̇(R + a)

]
,

(2.9)

where Rr(θ) =

[
cos θ sin θ

− sin θ cos θ

]
is the planar rotation matrix.

3. EoMs for mode 3 (phase 3):

mbẍ5 = −mbg − k1x1 − c1ẋ1,

(mb +mr)ẍ4 = k3x3 + c3ẋ3 −
1

2
Cadẋ

2
4 − Cdẋ4,

mr(ẍ5 − ẍ1) = −mrg + k1x1 + c1ẋ1 − k2x2 − c2ẋ2,

mt(ẍ5 − ẍ1 − ẍ2) = −mtg + k2x2 + c2ẋ2 − cos θ · (k4a+ c4ȧ) + sin θ · fµ,

mt(ẍ3 + ẍ4) = −k3x3 − c3ẋ3 + sin θ · (k4a+ c4ȧ) + cos θ · fµ,

Iθ̈ = τ − fµ(R + a),[
ȧ

ḃ

]
= R−1r (θ)

[
−ẋ1 − ẋ2 + ẋ5

ẋ3 + ẋ4

]
+

[
−θ̇b

θ̇(R + a)

]
,

(2.10)

where I is inertia of the wheel and Rr(θ) =

[
cos θ − sin θ

sin θ cos θ

]
is the planar rotation

matrix.

The responses of hitting a pothole can then be described by a switched system for

which the switching conditions are determined by the geometries described in (2.2)-

(2.4). The switching diagram for hitting a small pothole is described in Figure 2.7.

Before hitting the pothole, the quarter car is rolling on flat ground and the system

is in mode 1. When the vehicle starts to contact the pothole, the system switches

to mode 2 and the angle described in Figure 2.4 changes from 0 to ϕ0. The system
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switches to mode 3 when the wheel hits the rear edge of the pothole and the angle

described in Figure 2.5 changes from θ0 to 0. The vehicle then continues rolling on

flat ground so it switches back to mode 1.

Figure 2.7: Switching diagram of hitting a small pothole

For simulation of the switched system, the Events option in MATLAB ode45 is

used to determine the switching conditions.

2.3 Model validation with FTire

The dynamics of hitting a pothole are modeled as a switched system described in

Section 2.2. Before we exploit the developed model to implement pothole detection

algorithms, model parameters are tuned and validated. Towards this end, we use

FTire [38], a commercial software for tire-road interaction simulation with a Flexible

Ring tire model. FTire can model tire responses to road anomalies such as potholes

and speed bumps, providing benchmark to validate our model. The FTire simulation

setup is illustrated in Figure 2.8. Tire type and pothole parameters can be specified

in the FTire block set. The inputs of FTire are the three dimensional velocity of the

rim center, wheel carrier orientation, driving torque and braking torque. The outputs

of the FTire block include three dimensional tire forces, wheel angular velocity, tire

deflection, etc. Since our model is two dimensional, to validate our model by compar-

ing the simulation results, we feed longitudinal and vertical tire force components Fx,

Fz into a suspension system with the same parameters as in the multi-phase model.

Then the longitudinal and vertical velocity of the rim center vx and vz are fed back

into FTire to close the loop.

Simulation results of the developed multi-phase model and FTire have been com-

pared for various scenarios that include varying vehicle speed v, pothole diameter
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Figure 2.8: Simulink setup with FTire

l and front/rear edge height difference r. Simulation results of the two models are

similar as shown in Figures 2.9 – 2.11. The wheel angular velocity and longitudinal
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Figure 2.9: Responses of multi-phase model vs. FTire: l = 0.25m, r = 0.05m, v =
30mph

acceleration have more resonance in FTire than the multi-phase model response. The

reason is that FTire, unlike our model, uses a Flexible Ring tire model, in which

there is a rotational spring and damper between the rim and tire. Fortunately, the

detection algorithm we develop below relies more on the trends than specific response,

which are shown to be similar between the two models.

Remark 2.1. A physics-based multi-phase dynamic model is developed for the pur-
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Figure 2.10: Responses of multi-phase model vs. FTire: l = 0.15m, r = 0, v =
30mph
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Figure 2.11: Responses of multi-phase model vs. FTire: l = 0.25m, r = 0, v =
40mph

pose of pothole detection. In this initial study, the multi-phase model is compared

with FTire simulation package (as a benchmark) under three cases. Comprehensive

comparisons should involve multiple runs (e.g., 1000 runs) to obtain their differences

statistically. Model parameters should also be further tuned to improve the model

performance. More comprehensive model comparison and validation are considered

as future work.
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2.4 Model-based pothole detection

The multi-phase dynamic model developed in Section 2.2 and Section 2.3 is now

exploited in a pothole detection algorithm.

2.4.1 Mode confidence

Based on the developed multi-phase model, hitting a pothole is modeled as a

switched system with three sequential modes. The idea of the detection algorithm

is to compare the inferred mode sequence with the expected mode sequence when

hitting a pothole. By taking a sequence of measurements Yk = {y1, y2, · · · , yk} in

an interval, the confidence of each mode is computed recursively based on Bayesian

inference as follows,

p(mj|Yk) =
p(yk|mj, Yk−1)p(m

j|Yk−1)����p(Yk−1)∑
i p(yk|mi, Yk−1)p(mi|Yk−1)����p(Yk−1)

(2.11)

=
p(yk|mj, Yk−1)p(m

j|Yk−1)∑
i p(yk|mi, Yk−1)p(mi|Yk−1)

,

where mj is the jth mode and j = 1, 2, 3. The mode with the highest confidence

value is viewed as the true mode. The difficulty in applying (2.11) is in computing

p(yk|mj, Yk−1), the probability of a current measurement yk given mode mj and the

previous observations Yk−1. In this work, we apply the Unscented Kalman Filter

(UKF) [39] to compute p(yk|mj, Yk−1) due to its capacity for nonlinear estimation

and relatively low computational complexity.

2.4.2 Estimation with Unscented Kalman Filter (UKF)

The computation of p(yk|mj, Yk−1) using the UKF [39] is based on nonlinear model

equations in each mode:

ẋ = fi(x, ν) + w, (2.12)

y = hi(x, ν) + v, (2.13)

where x = [x1, x2, x3, θ, a, b, ẋ1, ẋ2, ẋ3, ẋ4, ẋ5, θ̇]
T is the state vector and fi(·) is the

system equation in mode i from (2.8)-(2.10); ν is the vector of the pothole parameters;

hi is the output function of mode i. w and v are the process noise and measurement

noise, respectively. The UKF (see Figure 2.12) uses a deterministic sampling tech-

nique referred to as the unscented transform to pick a set of sigma points around the
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Figure 2.12: Estimate p(yk|mj, Yk−1) with UKF

mean. These sigma points are then propagated through the system functions and

the mean and covariance of the state distribution are estimated from these results.

With measurements taken at each step, the UKF recursively computes state mean

µx and covariance Pxx as well as output mean µy and covariance Pyy. Compared to

its counterpart of extended Kalman filter [40], it avoids computations of Jacobian

matrices that might cause numeric issues. Assuming that the output is Gaussian, the

probability density function takes the following form,

Fy(y) =
1√

(2π)q detPyy
exp

(
− 1

2
(y − µy)TP−1yy (y − µy)

)
, (2.14)

where q is the dimension of measurement vector y. Then by specifying a small dy,

p(yk|mj, Yk−1) can be computed as

p(yk|mj, Yk−1) ≈ p(yk − dy < y < yk + dy) ≈ 2Fy(yk)dy. (2.15)

2.4.3 Detection example

Detection relies on horizontal speed vx, vertical acceleration az and wheel an-

gular velocity ω, all of which are accessible measurements in modern vehicles from

speedometer, z-axis accelerometer, and angular velocity measurement, respectively.

Simulation results from FTire with added Gaussian noise are taken as fictitious mea-

surements. Figure 2.13 shows the vertical acceleration simulation results from FTire

with Gaussian noise. The duration of hitting the pothole is illustrated by the double

arrow. The mode confidences are computed every 0.01 sec as in (2.11) and all ini-

tialized with 1/3 for the initial probability. The time interval is chosen to be 0.01 sec

to represent a compromise between the fast dynamics and limited sensor bandwidth.

The bandwidth of the embedded acceleration sensors typically ranges between 100

Hz and 380 Hz. The confidence score for every 0.01 s interval is illustrated in Fig-
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ure 2.14. From the results, the second interval is dominated by mode 2 and the
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Figure 2.13: Fictitious vertical acceleration measurements from FTire
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Figure 2.14: Mode confidence scores

following two intervals are dominated by mode 3. Since this sequence matches the

formulated switching system in Figure 2.7, a pothole is successfully detected. Note

that multiple tests should be performed to better evaluate the detection algorithm.

However, due to FTire availability issues, we were only able to test a single case.

More comprehensive evaluations should be performed in future work.

2.5 Summary and discussion

In this chapter, pothole characteristics were analysed and the dynamics of hitting

a pothole by an automotive vehicle were broken down into phases. A multi-phase
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dynamic model was built as a switched system with three modes to capture the

responses of hitting a pothole. The developed model was validated by comparing

results with FTire over varied scenarios. The results show that our multi-phase model

was able to generate similar simulation results and trends. A model-based detection

algorithm was developed that recursively computes the confidence of each mode with

Bayesian estimation and the Unscented Kalman Filter.

A numerical simulation was presented to show the capability of the proposed

detection algorithm. The confidence score of each mode was computed every 0.01

sec and each mode confidence computation interval should contain at least a few

observations. As a result, the implementation requires sensors with high bandwidth

(e.g., 1K Hz) which may not be available in current vehicles, which has a bandwidth

around 100 Hz. To resolve this problem, we develop a more practical detection

algorithm in the next chapter.
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CHAPTER 3

Simultaneous road profile estimation and anomaly

detection

3.1 Introduction

Rough roads are undesirable for drivers due to the potential for ride discomfort,

the need for decreased driving speed, and possible vehicle damage. Road anoma-

lies such as potholes and speed bumps can make the ride even worse due to sudden

accelerations which can lead to damage such as tire punctures and steering misalign-

ment. If available, road profile and anomaly information can be used to improve route

planning [31], enhance suspension control [28] and facilitate road maintenance. This

information can also be seamlessly integrated with navigation systems for autonomous

driving [41, 42].

Current road profile measures typically rely on sophisticated profilers [43] that

may be expensive to acquire and operate [44]. Recently, inexpensive and easy-to-

implement road profile estimation methods have been explored, as in [45] where a

standalone vehicle accelerometer measures vehicle body acceleration in turn mapped

to road power spectral density with a transfer function generated from a half-car

model. Also, in [44], accelerometers in a smart phone were used to correlate vertical

acceleration with road roughness. While these approaches are easy to implement,

they are only able to classify road roughness level with no further road profile details.

Road anomaly detection has attracted attention in the past decade. Detection

algorithms mainly fall into two categories: data-driven and model-based. Data-driven

methods typically require extensive training data and are useful when models are not

available. In [12], a pothole detector is developed with three external accelerometers

and machine learning techniques are then exploited to train the system from collected

data. Alternatively, model-based methods are able to deal with new and unforeseen
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situations and are insensitive to unmeasured disturbances. However, they require an

accurate physical model. In Chapter 2, a pothole detection algorithm was proposed by

developing and exploiting a multi-phase dynamic model, but high-bandwidth sensors

were required for successful identification.

In this chapter, we develop a systematic framework to simultaneously estimate

road profile and detect road anomalies. A front half-car dynamic model is developed

to represent the interactions between the vehicle and road disturbances. In the model,

road velocity disturbances at the front two wheels are treated as inputs to the half

car model and a multi-input observer developed in [46] is exploited to estimate the

inputs. The input observer requires an estimate of system states. A jump diffusion

process (JDP)-based estimator is developed to estimate these states.

As opposed to the Gaussian disturbance assumption in a Kalman filter, JDP-based

estimation assumes the disturbance is a combination of Wiener process and Poisson

process. This assumption can include rare but pronounced events such as potholes or

bumps and it can also be used to represent wind gusts in other applications [47]. A

JDP-based estimator was developed in [48] and we extend it to the vector disturbance

case, as well as the case where the jump diffusion disturbance affects measurement

channel data. We demonstrate that the JDP-based estimator outperforms a Kalman

filter when jumps are present. The algorithm has been implemented in a Lincoln MKS

test vehicle on which we demonstrate good estimation and detection performance.

This chapter is organized as follows. Section 3.2 develops the dynamic model and

introduces the multi-input observer. Section 3.3 derives the JDP-based estimator and

presents simulation results compared with a Kalman filter. Experimental results are

presented in Section 3.4, followed by a summary and discussion in Section 3.5.

3.2 Background

3.2.1 Dynamic model

When vehicles travel on roads, they are perturbed by road disturbances. In sus-

pension control applications, roadway vertical velocity disturbances are typically mod-

eled as inputs to the suspension system [28, 37, 36]. If we can estimate these inputs,

then the road velocity profile can be obtained and used for anomaly detection. We

exploit the input observer from [46] to estimate road inputs.

To implement the input observer developed in [46], a dynamic model is required.

We initially used the full-car model from Figure 3.1. The model has seven Degrees

of Freedom (DoF) and fourteen states, a comprehensive model that can capture the
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Figure 3.1: Seven DoF full-car model

disturbances at all four wheels. However, its use is impeded by the number of available

sensors in our test vehicle, a 2012 Lincoln MKS, illustrated in Figure 3.3. In this

vehicle, only four measurements (left front suspension deflection, left rear suspension

deflection, vertical acceleration and roll rate) are available in the full-car model. Our

simulation results reveal that some of the full-car model states can not be accurately

estimated.

A reduced front half-car model, illustrated in Figure 3.2, is used as an alternative

model for the design of the input observer. The front half car is modeled as a rigid

body with mass mb. Ix represents the moment of inertia about the longitudinal axis.

z, z1 and z2 represent the vertical displacement of the center of gravity (CG), left body

tip and right body tip, respectively, from equilibrium. The left and right tip-to-CG

distances are denoted by L1 and L2, respectively. ks and cs, respectively, represent

the spring stiffness and damping coefficient of the suspension system and we assume

that the left and right side have the same parameters. We denote the roll angle by θ.

q1 and q2 represent left and right suspension deflection from equilibrium, respectively.

v1 and v2 are the road velocity inputs to the left and right wheel, respectively. Note

that since the wheel is stiff, we approximate v1 and v2 as being directly applied to
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Figure 3.3: Test vehicle and main available sensors

the left and right suspension, respectively.

Defining x1 = q1, x2 = q2, x3 = ż and x4 = θ̇ as the states, we obtain the following

equations of motion,

ẋ1 = x3 + L1x4 − v1,

ẋ2 = x3 − L2x4 − v2,
1

2
mbẋ3 = −ksx1 − csẋ1 − ksx2 − csẋ2,
1

2
Ixẋ4 = −L1ksx1 − L1csẋ1 + L2ksx2 + L2csẋ2.

(3.1)

The measurement vector y includes front left suspension deflection x1, vertical accel-

29



eration z̈ and roll rate θ̇, i.e.,

y = [x1 z̈ θ̇]T. (3.2)

Let w = [v1 v2]
T represent the input vector. The equations of motion in (3.1) can

be represented as:

ẋ = Ax+ Γw,

y = Cx+Dw +D2ν,
(3.3)

where ν is measurement noise and A, Γ, C, D are constant matrices consistent with

(3.1)-(3.2).

3.2.2 Input observer

To estimate the road input w in (3.3), we exploit a multi-input observer developed

in [46]. For the half-car dynamics in (3.3), the model can be written as:

ẋ(t) = Ax(t) + Γw(t). (3.4)

The input observer has the following form,

ε̇(t) = −γSε(t) + γSAx(t) + (γS)2Kx(t),

ŵ(t) = −ε(t) + γSKx(t),
(3.5)

where ε is the observer state, γ > 1
2

is a scalar gain, S = 1
2
Im + 1

2γ
P where P is a

weighting matrix, m is the number of inputs, and K = (ΓTΓ)−1ΓT is the pseudo-

inverse of Γ. Note that the column rank of Γ must be equal to m so that K is

well-defined. Henceforth we assume that P = Im.

In [46], it is shown that, assuming ‖ẇ(t)‖ ≤ b1, the estimation error is bounded

by

‖w(t)− ŵ(t)‖2P ≤ ‖w(0)− ŵ(0)‖2P e−γt +
b21

2γ2
. (3.6)

Note that to implement the input observer in (3.5), we require a state estimate for x.

To design a state estimator for the implementation of the input observer, we develop

a JDP-based estimator below.
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3.3 JDP-based estimation and comparison with the Kalman

filter (KF)

3.3.1 JDP-based estimation

As discussed above, a state estimator is required to implement the input observer

(3.3). Note that for the purpose of state estimation, road velocity inputs w(t) are

now treated as disturbances. The conventional treatment of the road velocity input as

Gaussian noise is enhanced in this chapter with a JDP model that is able to account

for rare but pronounced events such as potholes and bumps.

A JDP has the form η + σζζ where η is a vector Poisson (Jump) process, ζ is a

standard vector Wiener (Diffusion) process and σζσ
T
ζ ≥ 0 is a covariance matrix. In

a Kalman filter, it is assumed that w(t) = σζ ζ̇. The JDP-based estimator modifies

this assumption so that

w(t) = η̇(t) + σζ ζ̇(t), (3.7)

where Poisson term η can model rare but pronounced events. In our problem, η

represents road anomalies such as potholes or speed bumps.

For the half-car model (3.3) with the disturbance modeled in (3.7), the JDP-based

estimator is assumed to have the following form,

˙̂x = Ax̂+ F (ŷ − y) + (Γ + FD)λµη,

= Ax̂+ F (Cx̂− Cx−Dw −D2ν) + (Γ + FD)λµη,
(3.8)

where F is the estimator gain to be determined, λ and µη are the rate parameter and

mean jump size of η, respectively. Let e = x− x̂ denote estimation error. Then,

ė = (A+ FC)e+ (Γ + FD)w + FD2ν − (Γ + FD)λµη. (3.9)

Let ν = σξ ξ̇ with ξ representing a standard vector Wiener process and σξσ
T
ξ ≥ 0

being the covariance matrix of ν. Defining D̄ = [FD2σξ (Γ + FD)σζ ], we have,

de =
[
(A+ FC)e− (Γ + FD)λµη

]
dt+ D̄

[
dξ

dζ

]
+ (Γ + FD)dη. (3.10)
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Let z = Se be a weighted estimation error to keep small. Select F to minimize

J = lim
t→∞

1

t
E

t∫
0

zT(τ)z(τ)dτ. (3.11)

Theorem 3.1. Suppose the pair (C,A) is detectable, the pair (A,Γ) is stabilizable,

D2D
T
2 > 0 and STS > 0. Then the optimal gain F that minimizes (3.11) in the open

set of all gains F for which A+ FC is asymptotically stable, is given by

F = −ΓΣ̄DTV −12 −QCTV −12 , (3.12)

and Q is the unique positive semi-definite solution to

(A− ΓΣ̄DTV −12 C)Q+Q(A− ΓΣ̄DTV −12 C)T

+ V1 −QCTV −12 CQ = 0,
(3.13)

where V1 = ΓΣ̄ΓT − ΓΣ̄DTV −12 DΣ̄ΓT, V2 = D2σξσ
T
ξ D

T
2 + DΣ̄DT and Σ̄ = σζσ

T
ζ +

λµηµ
T
η + λΣη where Ση is the covariance of η.

Proof. The proof follows [48] and is represented for completeness since here a more

general case is considered with vector input η and D 6= 0. Assuming that Ā = A+FC

is asymptotically stable, and given that STS > 0, we can find M > 0 such that,

MĀ+ ĀTM = −STS. (3.14)

Let V = 1
2
eTMe. From (A.2), the infinitesimal of V , denoted by LV , is calculated

as:

LV = [Āe− (Γ + FD)λµη]
TMe+

1

2
trace(D̄TMD̄)

+

∫
Rm

[1
2
sT(Γ + FD)TM(Γ + FD)s+ eTM(Γ + FD)s

]
λφ(s)ds

=
1

2
eT(ĀTM +MĀ)e+

1

2
trace(D̄TMD̄)

+
1

2
λ · trace[(Γ + FD)TM(Γ + FD)Ση]

+
1

2
λ · µT

η (Γ + FD)TM(Γ + FD)µη

= −1

2
eTSTSe+

1

2
trace(D̄TMD̄) +

1

2
D̃TMD̃ +

1

2
trace[D̂TMD̂],

(3.15)
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where D̃ =
√
λ(Γ + FD)µη and D̂ =

√
λ(Γ + FD)N with NNT = Ση being a lower

triangular matrix from Cholesky decomposition.

This expression, along with STS > 0, M > 0, implies that E[V (t)] is bounded.

Then, using Dynkin’s formula, we have

1

t
E[V (t)]− 1

t
E[V (0)] = −1

2

1

t
E

t∫
0

zT(τ)z(τ)dτ +
1

2
D̃TMD̃

+
1

2
trace(D̄TMD̄) +

1

2
trace(D̂TMD̂).

(3.16)

Consequently,

lim
t→∞

1

t
E

t∫
0

zT(τ)z(τ)dτ = D̃TMD̃ + trace(D̄TMD̄) + trace(D̂TMD̂). (3.17)

Next apply the method of indeterminate Lagrangian multipliers. There exist λ0 ∈
{0, 1} and a matrix Q, (λ0, Q) 6= 0 which together with the optimal values of F and

M , yield the first-order optimality conditions for function J from (3.11):

J = λ0
[
trace(D̄D̄TM) + trace(D̃D̃TM)

+ trace(D̂D̂TM)
]

+ trace
[
(MĀ+ ĀTM + STS)Q

]
= trace

[
(FD2σξσ

T
ξ D

T
2 F

T + (Γ + FD)σζσ
T
ζ (Γ + FD)T)M

]
+ trace

[
λ · (Γ + FD)µηµ

T
η (Γ + FD)TM

]
+ trace

[
λ · (Γ + FD)ΣT

η (Γ + FD)TM
]

+ trace
[
(MĀ+ ĀTM + STS)Q

]
= trace(FD2σξσ

T
ξ D

T
2 F

TM)

+ trace[(Γ + FD)Σ̄(Γ + FD)TM ]

+ trace
[
(MĀ+ ĀTM + STS)Q

]
,

(3.18)

where Σ̄ = σζσ
T
ζ + λµηµ

T
η + λΣη. Therefore,

∂J

∂F
= 2MFD2σξσ

T
ξ D

T
2 + 2MΓΣ̄DT + 2MFDΣ̄D + 2MQCT. (3.19)

Setting ∂J
∂F

= 0 implies that,

F = −QCTV −12 − ΓΣ̄DTV −12 , (3.20)
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where V2 = D2σξσ
T
ξ D

T
2 +DΣ̄DT.

Also,

∂J

∂M
= FD2σξσ

T
ξ D

T
2 F

T + ΓΣ̄ΓT + 2FDΣ̄ΓT

+ FDΣ̄DTFT +QAT +QCTFT + AQ+ FCQ

= FV2F
T + ΓΣ̄ΓT + 2FDΣ̄ΓT + 2QCTFT +QAT + AQ.

(3.21)

Setting ∂J
∂M

= 0 and from (3.21), it follows that,

AQ+QAT + ΓΣ̄ΓT − FV −12 FT = 0. (3.22)

(3.22) along with (3.20) imply (3.13).

Remark 3.2. The JDP-based estimator (3.8), (3.12), (3.13) is similar to the steady-

state Kalman filter but an additional term (Γ + FD)λµη is added. The additional

term can potentially increase the dynamic response of the filter and thus is able to

capture abrupt changes such as road anomalies. The algebraic Riccati equation in

(3.13) has more terms that can encode additional disturbance information.

3.3.2 Simulation results

In this subsection, we simulate and compare state estimation and resulting in-

put estimation performance of a Kalman filter and the JDP-based estimator. Both

estimators are tuned manually to provide the best performance. Kalman filter pa-

rameters were set to W = 10 · I4 and V = 10−4 · I3, where W is the process noise

covariance and V is the measurement noise covariance. The tuned parameters of

the JDP estimator used in the simulation and experimental evaluations are listed in

Table 3.1.

Table 3.1: JDP estimator parameters

µη Ση σζ σξ λ
[1, 1] 5 · I2 10 · I2 0.01 · I2 0.01

We first present a performance comparison by simulating the response of hitting a

pothole. A pothole can be modeled as an input for which a jump occurs at one wheel

while the other one is flat. Figure 3.4 shows an example, where a left pothole at 2s

and a right pothole at 4s are encountered. With the specified inputs in Figure 3.4,
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the state estimation errors for x2 and x3 are illustrated in Figure 3.5. Note that x1

and x4 are directly measured.
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Figure 3.4: Input estimation with the JDP estimator
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Figure 3.5: State estimation comparison with KF and JDP estimator

The Kalman filter works poorly when jumps occur, i.e., around 2s and 4s. As a

result, the input estimation for the jumps works poorly as can be seen in Figure 3.6.

On the other hand, the JDP-based estimator works better than the Kalman filter as

can be seen in Figure 3.5. The input estimation tracks the true inputs well with the

JDP-based estimator, as shown in Figure 3.4.
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Figure 3.6: Input estimation with the KF

We next present a performance comparison in the case where the vehicle hits a

speed bump. A speed bump can be modeled as an input where both wheels have

jumps with similar magnitudes. See Figure 3.7 as an example where a speed bump

is encountered at 2s. State estimation errors are illustrated in Figure 3.8. The JDP-

based estimator tracks the true states well while the Kalman filter does not work well

during and immediately after the jumps occur.

Consequently, as shown in Figure 3.7, the inputs with a JDP-based state estimator

are tracked well, while the jumps are poorly tracked with the Kalman filter, as shown

in Figure 3.9.

3.4 Anomaly detection algorithm and experimental results

3.4.1 Road anomaly detection algorithm

Section 3.3 showed that the JDP-based state estimator (3.8) coupled with the

input observer (3.5) can be exploited to estimate road velocity inputs. With road ve-

locity input estimation, Algorithm 3.1 is developed to detect and label road anomalies.

In the algorithm, v̂1 and v̂2 are, respectively, the maximum magnitudes of the

estimated left and right road velocity inputs over the past time window. v̄ is the

average car speed over the time window; tp2p denotes the peak-to-peak time duration

from the last time window to the previous window; L is the car length; L− is the

label variable to indicate whether an anomaly was reported for the last time window.
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Figure 3.7: Input estimation with the JDP estimator
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Figure 3.8: State estimation error comparison with KF and JDP estimator

Value L− = 1 indicates an anomaly was reported in that time window while L− = 1

indicates no anomaly. th1 is a vehicle speed-dependent threshold for large anomaly

response; th2 < th1 is a vehicle speed-dependent threshold for small anomalies and

thperc is a threshold for the left and right input difference. The reason that th1 and

th2 are speed-dependent is higher vehicle speed, based on experimental data, leads

to larger response for same road anomalies. In the real-time implementation, lookup

tables are implemented for th1 and th2 as a function of average speed.

Since we use a front half-car model, repeated patterns can be found when the rear
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Figure 3.9: Input estimation with the KF

car hits the same anomaly. An experimental example is illustrated in Figure 3.13

where the repeated patterns can be found around 3s and 5.3s. The first if statement

is used to differentiate the repeated pattern from a new anomaly. This is because

the rear half of the car also hits the anomaly causing secondary jumps. We compare

the peak-to-peak time duration tp2p with car length L divided by the average speed

during window v̄. If tp2p < L/v̄, then it is not classified as a new anomaly. Otherwise,

the subsequent steps are executed.

The anomaly detection algorithm is based on the fact that the pothole is an event

where jump occurs on only one side while speed bumps or road joints are events where

both sides have jumps. The two thresholds th1 and th2 are magnitude thresholds used

to determine whether the response is large or small.

3.4.2 Experimental results

We have shown above that the road profile estimator works well in simulations.

We also tested the profile estimator in a 2012 Lincoln MKS test vehicle, pictured in

Figure 3.3. However, there is no “true” road velocity for comparison. As a result,

we validate road input estimation performance by running our test vehicle on road

segments with different road surface types to see whether the estimator can reflect
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roughness levels. Three different surfaces are illustrated in Figure 3.10 where the

roughness increases from left to right. The test vehicle was driven at approximately 30

km/h on the road segments and left input estimations v̂1 are illustrated in Figure 3.11.

(a) Surface 1 (b) Surface 2 (c) Surface 3

Figure 3.10: Three road surface types; roughness increases from left to right

Our anomaly detection algorithm validation procedure is straightforward. We ran

our detection algorithm in real-time on dSPACE and an interface was used to indicate

real-time detections as illustrated in Figure 3.12. The interface can indicate whether

Algorithm 3.1 Road Anomaly Detection Algorithm

Inputs: v̂1, v̂2, v̄, tp2p, L−
Outputs: Anomaly indication and anomaly label (left/right/large/small pothole,
speed bump)

1: if L− = 1 and tp2p < L/v̄ then
2: Report no anomaly.
3: else
4: if v̂1 > th1(v̄) or v̂2 > th1(v̄) then

5: if |v̂1−v̂2|
min(v̂1,v̂2)

< thperc then
6: speed bump detected.
7: else if v̂1 > v̂2 then
8: left large pothole detected.
9: else
10: right large pothole detected.

11: else if v̂1 > th2(v̄) or v̂2 > th2(v̄) then

12: if |v̂1−v̂2|
min(v̂1,v̂2)

< thperc then
13: road joints detected.
14: else if v̂1 > v̂2 then
15: left small pothole detected.
16: else
17: right small pothole detected.

18: else
19: report no anomaly.
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Figure 3.11: Input estimation on the three road surfaces

an anomaly has been detected (state light), the anomaly type, GPS coordinates, left

and right inputs, and time. Figure 3.13 shows estimated road inputs in a vehicle test

Figure 3.12: Real-time dSPACE ControlDesk interface

when hitting a small pothole followed by a large pothole at the right side. Jumps

are detected approximately 2s and 4.2s. Using anomaly detection Algorithm 3.1, a

right small pothole and a right large pothole were successfully detected. Note that

repeated patterns can be found approximately 3s and 5.3s. This is because the rear

half of the car also hits the pothole causing secondary jumps. To differentiate the

repeated pattern from a new pothole, we compare the peak-to-peak time duration

tp2p with the car length L divided by the minimum speed during window vmin. If

tp2p < L/vmin, then it is not classified as a new anomaly. Otherwise, a new anomaly
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is detected.
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Figure 3.13: Input estimation when driving over a small pothole followed by a large
pothole

Note that we compared the right and right side inputs to determine the anomaly

types. If the vehicle happens to hit a right pothole and left pothole simultaneously

with similar magnitudes, current algorithm may treat it as a speed bump.

As we drove our vehicle around Dearborn, Michigan, anomalies were detected

and recorded. One of the trips is shown in Figure 3.14. During our test drives, the

algorithm did not reveal any false positives and missed detections were rare. The

missed detections were mainly due to smooth manholes and road joints, which are

not true anomalies given our classifications. Anomaly labeling accuracy was 145 out

of 168 correctly labeled reports. Note that some of the labeling errors were due to

events such as uneven speed bumps.

We note that our test vehicle can be used as a probe vehicle for creating a detailed

anomaly map. This map can be stored on a cloud and shared with drivers to better

plan their routes. Anomaly map data is also useful for road agencies to efficiently

maintain the roads.

3.5 Summary and discussion

This chapter proposed and validated a method of simultaneous road profile esti-

mation and anomaly detection. A multi-input observer was used to estimate road

velocity inputs. A jump diffusion process (JDP)-based estimator was developed and
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Figure 3.14: Detected anomalies in Dearborn with our test vehicle

shown to have better estimation performance than a Kalman filter when jumps are

present. The JDP-based estimator forms the central element of an anomaly detection

algorithm. Anomaly detection was implemented in real-time on a test vehicle and

promising experimental results were obtained. The anomaly detection procedure can

be applied to create a crowd-sourced anomaly map which can assist drivers in route

planning and help road agencies maintain the roads.
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CHAPTER 4

Cloud-enabled anomaly reports clustering

4.1 Introduction

Mobile sensing and data sharing offer new opportunities to advance intelligent

transportation systems. Modern vehicles are embedded with sophisticated sensors

and control units that can be exploited to characterize road and environmental in-

formation in real time. References [10, 11, 12] provide examples of traffic density

estimation, road friction coefficient estimation and pothole detection, respectively.

Sensed information can be sent to a server, e.g., the cloud, to be further processed,

crowd-sourced, then shared with other vehicles and road agencies.

Road anomalies such as potholes and bumps are annoying events that can cause

ride discomfort and vehicle damage. If available, anomaly maps can be used to

enhance route planning [31], improve suspension control [28] and notify road main-

tenance. Anomaly detection algorithms have been developed in previous work. For

example, a pothole detector with three external accelerometers was developed using

machine learning techniques [12]. In [26] and Chapter 2 of this thesis, we developed

a road anomaly detection algorithm based on a half-car model by exploiting a multi-

input observer. Promising detection performance was demonstrated in a test vehicle

using standard sensors.

Anomaly detectors can be integrated in a Vehicle-to-Cloud-to-Vehicle (V2C2V)

framework as illustrated in Figure 4.1. A fleet of vehicles equipped with anomaly

detectors are deployed as mobile sensors. Anomaly locations, e.g., from Global Posi-

tioning System (GPS) coordinates, are sent to the cloud, where a clustering module is

implemented to process raw anomaly reports. Clusters with high credibility score are

stored in a cloud database where their locations can later be broadcast to other vehi-

cles and road agencies. Clusters with low credibility score are stored in a buffer and

not shared. In this chapter, we develop a clustering algorithm that can process raw
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reports and retrieve useful anomaly information. The desired clustering algorithm

has the following properties:

• No assumptions on number of clusters. The number of road anomalies can not

be known in advance and is continuously evolving. New anomalies can develop

and old anomalies can disappear once repaired. The algorithm hence should

not assume a constant number of clusters [49, 50].

• Ability to handle outliers. False alarms can sometimes occur. The clustering

algorithm should be able to discriminate outliers and not broadcast outlier

information to vehicles and road agencies.

• Consideration of anomaly evolution. Road anomalies are evolving, that is, new

potholes may occur and old potholes may be fixed. The clustering algorithm

must be able to deal with change in aggregated reports.

• Localization of isolated anomalies and information compression for stretched

anomaly segments. The algorithm should also be able to accurately localize

isolated anomalies and compress summary information from a segment with

intensively distributed anomalies.

• Memory and computation efficiency. The clustering algorithm needs to process

large-scale data streams as efficiently as possible. Cluster information should be

stored in a compact data structure and updated with minimal computational

overhead.

In general, clustering algorithms partition data into groups with underlying pat-

terns. They are widely applied in the fields of image processing [51], data mining [52],

and diagnostics and prognostics [53]. Many clustering algorithms are designed to deal

with static data [49, 54, 55], that is, cases where all data are available in advance.

These algorithms are not applicable to processing anomaly reports since the reports

are dynamic and time-evolving. Recently, clustering algorithms have been developed

to deal with evolving data streams. The CluStream algorithm [50] exploits micro-

clusters to summarize information for a set of data points. The micro-clusters are

updated online with new stream inputs and a weighted k -means algorithm is applied

offline on the micro-clusters to obtain the final clusters. While good accuracy can

be obtained, the algorithm assumes a constant number of clusters so it cannot be

used in our problem. In [56], a streaming k -means clustering algorithm is developed

with a divide-and-conquer strategy. It optimizes a k -means objective function and
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Figure 4.1: Vehicle-to-Cloud-to-Vehicle anomaly detection and information sharing

can generate more than k clusters. However, the obtained clusters are hypercircles

which cannot be used to compress information for stretched anomaly segments. Also,

outliers and the evolving nature of anomalies cannot be well handled.

An extended Gustafson-Kessel algorithm is developed in [57], where Mahalanobis

distance is exploited to measure the similarity between clusters and new data points.

The cluster center and covariance matrix are updated recursively with new data in-

puts. Updated clusters are hyperellipsoids with arbitrary orientation. The algorithm

is applicable to real-time pattern recognition and information compression. However,

it is not able to deal with outliers and cannot capture the road anomalies that change

over time.

In this chapter, we develop a novel clustering framework that satisfies all spec-

ified requirements. Similar to [57], we exploit Mahalanobis distance as a similarity

metric. Two cluster types, the outlier cluster and the main cluster, are defined based

on their computed credibility values. A cluster feature vector is defined by a weight,

center, covariance matrix inverse, creation time and a label. Clusters are updated

in a single-pass setting; A Woodbury matrix inverse lemma [58] is exploited to sim-

plify the covariance matrix update and avoid possible singularity issues in numerical

computations. Clusters are pruned based on their weights and creation time to deal

with outliers as well as anomaly changes over time. Memory and computations is
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are light and simulation results demonstrate the efficiency of the proposed clustering

algorithm.

The chapter is organized as follows. Section 4.2 presents background on Maha-

lanobis distance and its relation to the χ2 distribution. Section 4.3 is devoted to

the discussion of cluster feature definition and the clustering algorithm. Simulation

results are described in Section 4.4, followed by a summary and discussion in Section

4.5.

4.2 Mahalanobis distance and χ2 distribution

The Mahalanobis distance measures the similarity between a point and a cluster

of points [59]. It generalizes a notion of number of standard deviations between a

point and the mean of the cluster for multi-dimensional data. The distance grows

as the point moves away from the mean along each principal component axis. As a

result, the distance is unitless and scale-invariant, and accounts for the distribution

and correlations of the cluster data. Let x ∈ Rn be a data point. Let µ and Σ be the

mean and covariance matrix of a cluster of points denoted by C, respectively. The

Mahalanobis distance between x and C, D(x, C), is defined as:

D(x, C) =
√

(x− µ)TΣ−1(x− µ). (4.1)

Note that Mahalanobis distance in (4.1) includes the Euclidean distance between x

and µ as a special case with Σ being the identity matrix.

Suppose the data points are normally distributed around the cluster center µ

with covariance Σ, i.e., X ∼ Nn(µ,Σ), where Nn represents the multivariate normal

distribution of dimension n. Define

Z = Σ−
1
2 (X − µ) = [Z1, Z2, · · · , Zn]T.

It is straightforward to show that Z ∼ Nn(0n, In), where 0n and In represent the zero

vector of dimension n and identity matrix of dimension n, respectively. As a result,

the Mahalanobis distance in (4.1) between X and C is:

D2(X, C) = ZTZ = Z2
1 + Z2

2 + · · ·+ Z2
n, (4.2)

which means that D2(X, C) is chi-square distributed with degrees of freedom n, i.e.,

D2(X, C) ∼ χ2
n. The chi-square value is often associated with a p-value, which is
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defined as the probability of obtaining a result equal to or “more extreme” than what

is observed. The chi-square distribution is frequently used in statistical hypothesis

testing. The value (1 − p) is known as the confidence interval (CI) that represents

the probability of D2(X, C) < χ2
n(p). The cross references of the p-value, CI and the

sigma values (σ, standard deviation) for n = 1 and χ2
n values for some low dimensions

are given in Table 4.1.

Table 4.1: Cross-reference table of p-value, CI and sigma band for n = 1, and χ2

values for n = 1, 2, ·, 6
σ band 1σ 2σ 3σ 4σ
CI (%) 68.3% 95.45% 99.73% 99.99%
p-value 0.317 0.0455 0.0027 0.000006
χ2
1(p) 1 4 9 16
χ2
2(p) 2.3 6.18 11.83 19.33
χ2
3(p) 3.53 8.02 14.16 22.06
χ2
4(p) 4.72 9.72 16.25 24.50
χ2
5(p) 5.89 11.31 18.21 26.77
χ2
6(p) 7.04 12.85 20.06 28.91

4.2.1 Math preliminaries

In this subsection, we introduce the following lemma that will be used in subse-

quent developments.

Lemma 4.1. ([58]): Let A, B, C, D be matrices of appropriate dimensions. Suppose

matrices A, C, and C−1 +DA−1B are nonsingular, then

(A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1. (4.3)

Lemma 4.1 is often referred to as the Woodbury matrix inversion lemma.

4.3 Anomaly Report Stream Clustering Algorithm (ARSCA)

In this section, we develop a new clustering algorithm ARSCA to process road

anomaly report stream that satisfies all the desired properties specified in Section I.

We first introduce the cluster features, followed by the developed clustering algorithm

ARSCA.
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4.3.1 Cluster features

The main goal of our clustering algorithm is to obtain anomaly information by

processing aggregated anomaly reports from vehicles. To achieve this goal, we repre-

sent each cluster Ci, i = 1, 2, · · · , c with a tuple,

Ci = (wi, vi, Σ−1i , t0i , Li), (4.4)

where wi =
∑Mi

k=1 f(t − tik) is the weight of cluster Ci with Mi being the number of

anomaly reports in the cluster. t and tik denote the current time instant and the

time instant that report k, xik, was added to cluster i, respectively. Time stamps t

and tik are represented in a common time unit, for example, in days. f(τ) = α−λτ

is a decaying function with α and λ being two positive parameters. The weight wi

reflects the credibility score of the cluster where high wi represents high credibility.

Note that the weight of a newly received report is one and the weight decays as a

function of the past time period.

The cluster center vi is defined as a weighted mean:

vi =

∑Mi

k=1 f(t− tik)xik∑Mi

k=1 f(t− tik)
, (4.5)

and Σi is the weighted covariance matrix defined as

Σi =

∑Mi

k=1 f(t− tik)(xik − vi)(xik − vi)T∑Mi

k=1 f(t− tik)
. (4.6)

We track the inverse of Σi, instead of Σi, for the convenience of recursive computation

as detailed in Section 4.3.3. The time stamp t0i > 0 represents the time when cluster

Ci was first created.

The variable Li ∈ {m, o} in (4.4) serves as a label indicating the cluster type.

We specify two cluster types, main clusters (m-clusters, Li = m) and outlier clusters

(o-clusters, Li = o). M -clusters are the clusters with high credibility that are believed

to represent true anomalies. Credibility of clusters are reflected in the cluster weight

wi, where high wi implies high credibility. On the other hand, o-clusters represent

outliers due to false alarms or those representing true anomalies that do not yet have

high aggregated weights.

We note that the m-clusters and o-clusters can be interchanged as weights change.

This allows new anomalies to become m-clusters and removed (repaired) anomalies to
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become outliers. Two thresholds hm and ho, ho > hm > 0, are introduced to capture

the interchange capability. For an m-cluster, if few reports are gained and the cluster

weight decays such that wi < hm, then cluster i will be relabeled an o-cluster. For an

o-cluster, if the cluster weight, with aggregated reports, increases such that wi > ho

then the cluster is relabeled an m-cluster. The constraint hm < ho ·α−λ avoids clusters

repeatedly switching labels. Thresholds hm and ho can be set as a function of annual

average daily traffic (AADT) for each road segment.

On the other hand, if an o-cluster fails to become an m-cluster after a certain

period of time To, it means that the o-cluster corresponds to false alarms and should

be deleted from the outlier buffer. We check all the o-clusters periodically, e.g., at

the end of each day. If t − t0i > To, then delete Ci from the outlier buffer, where t is

current time and t0i is cluster creation time.

Obtained clusters are hyperellipsoids with orientation determined by the principal

axes of their covariance matrices Σi. The cluster representation can localize true loca-

tion for isolated events and can compress information for a stretch of anomaly events

with arbitrary orientation as illustrated in Figure 4.2. A stretch of three anomalies

is included in Cluster 1 with an orientation aligned with the road. Moreover, it can

accurately indicate the anomaly location for an isolated anomaly as in Cluster 2.

 

 
Anomaly reports
Cluster 1
Cluster 2
True anomalies
Center of cluster 2

Figure 4.2: Clusters in forms of ellipsoids

M -cluster information is stored in a cloud database and can be shared between

vehicles for route planning [31], suspension control [28], or other purposes. The

information can also inform road agencies for maintenance. O-clusters are stored in

a buffer that is not shared with other users.
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4.3.2 Cluster maintenance algorithm

In this chapter, we develop Algorithm 4.1 to process road anomaly report streams.

When a new anomaly report arrives, there are two possible scenarios. First, if the

newly arrived report is “close” to some existing clusters, then the data should be

merged into the “closest” one. On the other hand, if there is no existing cluster

or the data is not close to any of the existing clusters, a new cluster should be

created and centered at the new reported location. The “closeness” or similarity of

the newly reported location and existing clusters is measured by the Mahalonobis

distance discussed in Section 4.2. These scenarios (or conditions) are characterized

by the if statements at Steps 4 and 9 in Algorithm 4.1.

Note that since the Mahalanobis distance is unitless and scale-invariant, we are

able to directly process GPS coordinates without transforming it to state plane co-

ordinates in Euclidean space.

Let C and C+ define the set of old cluster features and updated cluster features,

respectively. Let X define the sequence of anomaly reports. Suppose there are c

existing clusters when a new report xnew = (lon, lat) arrives. Then based on (4.1), the

squared Mahalanobis distance between data x and cluster Ci = (wi, vi, Σ−1i , t0i , Li),
i = 1, 2, · · · , c is calculated as

D2(x, Ci) = (x− vi)TΣ−1i (x− vi). (4.7)

The cluster, i∗, with the minimum distance can be obtained as

i∗ = arg min
i=1,··· ,c

D2(x, Ci). (4.8)

Finding the “closest” cluster i∗ using (4.7) and (4.8) is illustrated by Steps 7 and 8

in Algorithm 4.1.

As discussed in Section 4.2, suppose x is normally distributed around vi∗ with

covariance matrix Σi∗ . Then D2(x, Ci∗) ∼ χ2
n, where n = 2 is the dimension of x.

We thus define a boundary parameter χ2
2(p) to determine whether the data is close

enough to the cluster and can be included in the cluster. The bound can be different

between urban and rural areas due to GPS characteristics.

Consequently, if the squared Mahalanobis distance to the closest cluster is within

the bound D2(x, Ci∗) ≤ χ2
2(p) then we merge x into cluster i∗, which is captured by

Step 9 in Algorithm 4.1. The weighted mean vi∗ , weighted covariance matrix Σi∗ , and
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Algorithm 4.1 ARSCA

Constant Parameters: p, α, λ, ho, hm, To, γ
Inputs: C, X
Outputs: C+

1: top:
2: do
3: Read next report xk ∈ X
4: if no cluster exists, then
5: Initialize the first cluster C1:

w1 = 1, v1 = x1, Σ−11 = γI2, L1 = o, t01 = t.

6: else
7: Calculate the Mahalanobis distances to all existing clusters:

D2(xk, Ci) = (xk − vi)Σ−1i (xk − vi)T, i = 1, · · · , c.

8: Find the closest cluster as:

i∗ = arg min
i=1,··· ,c

D2(xk, Ci).

9: if D2(xk, Ci∗) ≤ χ2
2(p), then

10: Update the covariance matrix inverse of Ci∗ using (4.13) and (4.14).
11: Update the center of Ci∗ using (4.10).
12: Update the weight of Ci∗ using (4.9).
13: if Li∗ = o and wi∗ > ho, then
14: Set Li∗ = m and update the cloud database with Ci∗ .

15: else
16: Create a new cluster and increment c = c+ 1.
17: Initialize the new cluster Cc as:

wc = 1, vc = xk, Σ−1c = γI2, t
0
c = t, Lc = o.

18: while More than m minutes before the end of day t
19: Within m minutes to the end of day t:
20: Update the cluster weights:

w+
i = wi · α−λ, i = 1, 2, · · · , c.

21: Check the m-clusters:
22: if Ci is an m-cluster and wi < hm after the update, then
23: Set Li = o; delete it from the cloud database; send it to the outlier buffer.

24: Check the o-clusters:
25: if Ci is an o-cluster and t− t0i = To, then
26: delete Ci from the outlier buffer.

27: increment the day count: t = t+ 1.
28: go to top.
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cluster weight wi∗ are, respectively, updated as

w+
i∗ = wi∗ + 1, (4.9)

v+i∗ =
wi∗vi∗ + x

wi∗ + 1
, (4.10)

Σ+
i∗ =

wi∗Σi∗ + (x− vi∗)(x− vi∗)T

wi∗ + 1
, (4.11)

where the superscript “+′′ denotes “update”. The weight and mean updates are given

by Steps 11 and 12 in Algorithm 4.1, respectively. Note that the inverse covariance

update at Step 10 in Algorithm 4.1 does not use (4.11). Instead, we exploit the

Woodbury Inverse Lemma to avoid potential numerical computation issues as will be

discussed in the next subsection.

Suppose cluster i∗ is an o-cluster and with increased weight, the updated weight

wi∗ becomes greater than threshold ho. In this case we relabel cluster i∗ as an m-

cluster and its information is stored on a cloud database and shared with vehicles and

agencies. This relabeling procedure is presented by Steps 13 and 14 in Algorithm 4.1.

On the other hand, if D2(x, Ci∗) > χ2
2(p), that is, the data is outside all cluster

boundaries, we increment c = c+ 1 and assign a new cluster Cc to x,

Cc = (1, x, γIn, o, t), (4.12)

where γ > 0 is a scalar that initializes the covariance matrix inverse and t is the

current time (in days). This initialization is illustrated by Steps 15-17 in Algorithm

4.1.

At the end of each time period, the weight of each cluster is decayed by multiplying

by α−λ. We check the weights of all m-clusters: if any m-cluster has a weight less

than hm, then it is removed from the database and sent to o-clusters in the outlier

buffer. O-cluster weights are also updated. If the cluster creation day of an o-cluster

is less than the current day minus To, a time duration threshold to delete o-clusters

if they fail to become m-clusters, then the cluster is removed from storage. These

relabeling and pruning procedures are characterized by Steps 20-26.

Note that anomaly reports are processed in a single pass; that is, they are all pro-

cessed exactly once. Anomaly information is summarized in cluster features without

storing separate reports. This reduces memory and computation resources require-

ments in comparison to algorithms that store individual reports.
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4.3.3 Recursive computation of matrix inverse

Expression (4.11) provides a simple way to update the covariance matrix for clus-

ters. However, after each update, the inverse of covariance matrix must be computed

to estimate Mahalanobis distance from next arrived point as in (4.7). This recur-

sive computation of matrix inversion may cause singularity issues due to numerical

ill-conditioning. As an alternative, we exploit Lemma 4.1, the Woodbury matrix in-

version lemma, to resolve this issue.

Let A = wi
wi+1

Σ, B = x− vi, C = 1
wi+1

, and D = (x− vi)T. From (4.3) and (4.11),

it follows that

(Σ+
i )−1 =

( wi
wi + 1

Σ + (x− vi)
1

wi + 1
(x− vi)T

)−1
=
wi + 1

wi
Σ−1i −

wi + 1

wi
Σ−1i (x− vi)

[
(wi + 1)

+ (x− vi)T
wi

wi + 1
Σ−1i (x− vi)

]−1
·

(x− vi)T
wi

wi + 1
Σ−1i

= (1 +
1

wi
)Σ−1i

(
In −KiΣ

−1
i

)
,

(4.13)

where

Ki = (x− vi)
[
wi + (x− vi)TΣ−1i (x− vi)

]−1
(x− vi)T. (4.14)

Note that calculation of Ki in (4.14) requires only a scalar inversion. Recursive

matrix inversion computations with (4.13) replace numerical matrix inversion with

a simple algebraic calculation. This technique greatly simplifies the calculation and

resolves possible singularity issues. The update of the covariance matrix inverse using

(4.13) and (4.14) is illustrated by Step 10 in Algorithm 4.1.

4.3.4 Parameter selection discussion

The following parameters must be specified to implement the proposed clustering

algorithm.

• p-value. p-value is required to obtain a chi-square value bound χ2
2(p) based on

Table 4.1. This bound controls the distance over which reports can be merged

to an existing cluster. This parameter depends on GPS accuracy that may vary

from urban to rural areas.

• α and λ in the decay function. This pair of positive parameters is used in the
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decay function to control dependence on old data. Large α and λ represent less

dependence on old data. Note that maintenance information from road agencies

can be incorporated to change decay rate if we know anomalies in certain areas

have been repaired.

• Thresholds ho > hm > 0. These two thresholds define the criteria for switching

between m-cluster and o-cluster. Thresholds vary with the AADT of the road

segments. The higher the AADT, the higher ho and hm should be.

• Time unit and pruning period To. Since the life cycle of road anomalies is

typically at least a few days, it is reasonable to use “day” as the time unit.

Time duration parameter To controls how long we keep an o-cluster. If an o-

cluster exists more than To days and does not change to an m-cluster, we remove

it from memory.

• Inverse covariance matrix initialization parameter γ. The parameter γ > 0 is

used to initialize the inverse covariance matrix in a new cluster. Simulation

results show that γ = 108 works well.

• Time parameter m. The time parameter m depends on how long it needs to

update the cluster weights. For example, m = 3 means that the last 3 minutes of

each day are used to update the cluster weights. New reports are not processed

during that time.

4.4 Simulation demonstration

In this section, we present a simulation to demonstrate the efficacy of the proposed

clustering algorithm. We simulate the algorithm over a period of 15 days on the roads

around North Campus of the University of Michigan as illustrated in Figure 4.3. There

are 10 true anomalies and 4 false alarms in the simulation.

From day 1 to day 5, anomalies 1-9 are present. On day 6, anomalies 6-8 are fixed

and anomaly 10 is developed. The total number of reports is uniformly distributed

between 100 and 150 each day. The reports are randomly generated around the true

anomalies with a covariance matrix corresponding to a 5 · I2 (m2) covariance in the

state plane coordinates. Two of the outliers are generated on day 3 and two are

generated on day 5.

Parameters in Table 4.2 are used in the Matlab simulation. The chosen p-value

corresponds to 3σ bands. Decay parameters α and λ, thresholds ho and hm, and
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Figure 4.3: Road anomalies and false alarms

Day 1

 
 W=53.11

 
 W=18.28

 
 W=59.2

 
 W=18.28

 
 W=13.93

Figure 4.4: Snapshot at the end of day 1

pruning period T are chosen based on statistics specified in the simulation setup.

Table 4.2: Parameters for simulation
p α λ ho hm To γ

0.0027 2 0.2 80 50 5 108

Note that anomalies 1, 2, 3 and anomalies 6, 7, 8 are groups that can be included

in one cluster each for the benefits of memory efficiency. A snapshot at the end of

day 1 is illustrated in Figure 4.4. With aggregated reports, the weight of each cluster

increases. However, since none of the clusters have a weight more than ho = 80, all

clusters are labeled as o-clusters with black outlines.

The clustering algorithm can compress information about densely clustered anoma-
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Day 1

 
 W=59.2

3

2

1

Figure 4.5: Information compression for anomalies 1, 2 and 3

Day 5

 
 W=209.98

 
 W=191.53

 
 W=65.14

 
 W=55.92

 
 W=60.11

 
 W=0.66  

 W=0.66

 
 W=0.87

 
 W=0.87

 

 

Figure 4.6: Snapshot at the end of day 5

lies as illustrated in Figure 4.5. Note that the maximum band can be compressed is

controlled by the chi-square number χ2
2(p). With a larger p, the algorithm is able to

discriminate “closer” anomalies.

A snapshot at the end of day 5 is illustrated in Figure 4.6. With aggregated

reports, the clusters formed by anomalies 1-3 and anomalies 6-8 have greater weights

than ho thus become m-clusters represented in red ellipsoids. At the same time, four

outliers have been formed.

Based on the simulation setup from day 6, anomalies 6-8 are repaired and anomaly

10 is developed. A snapshot at the end of day 10 is shown in Figure 4.7. Since the

outliers fail to become m-clusters in T = 5 days, the outliers are removed from the
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Day 10

 
 W=131.08

 
 W=96.18

 
 W=123.18

 
 W=369.17

 
 W=123.24

 
 W=98.94

Figure 4.7: Snapshot at the end of day 10

Day 15

 
 W=143.87

 
 W=45.99

 
 W=424.19

 
 W=152.73

 
 W=127.48

 
 W=137.61

Figure 4.8: Snapshot at the end of day 15

outlier buffer. Also, since anomalies 6-8 are fixed and no new reports are aggregated,

the weight decreases due to the forgetting function.

Finally, a snapshot at the end of day 15 is shown in Figure 4.8. The weight

of the cluster formed by anomalies 6-8 continues decreasing based on the forgetting

function. As a result, at the end of day 15, the weight becomes less than hm = 50.

The cluster is relabeled as an o-cluster and is moved to the buffer that is note shared

with interested parties.

The simulation shows that the algorithm is able to handle outliers and can success-

fully capture the evolution of anomalies. The computation and storage requirements

are also light.
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4.5 Summary and discussion

In this chapter, the clustering algorithm ARSCA was developed to process anomaly

reports that can be integrated in a Vehicle-to-Cloud-to-Vehicle framework. Cluster in-

formation was summarized in a feature vector that was recursively updated with new

reports. The Mahalanobis distance was exploited to measure the similarity between

a reported location and existing clusters. The obtained clusters were hyperellipsoids

with arbitrary orientations. The Woodbury matrix inverse lemma was employed to

facilitate the recursive computation of the covariance matrix inverse. The ARSCA

algorithm can reject outliers and capture the evolving nature of road anomalies with

a combined o-cluster and m-cluster strategy. The proposed algorithm can localize

isolated anomalies and compress information for stretched anomaly segments with

light memory and computation requirements.

Parameter selection was briefly discussed in this study. Future work will include a

more comprehensive study on parameter selection based on GPS characteristics and

traffic density information. Real-world data should be collected and machine learning

techniques can be applied to find optimal parameters. Implementation with a V2C2V

architecture will also be considered in our future work.
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Part II

Cloud-aided automotive

applications

CHAPTER 5

Cloud-aided semi-active suspension control

5.1 Introduction

Cloud computing can enable significant advancement in automotive control, di-

agnostics and prognostics capabilities. While traditional vehicle Electronic Control

Units (ECUs) have limited computational characteristics, cloud computing will fa-

cilitate the implementation of more computationally-intensive predictive, optimal

and cooperative driving strategies in a Vehicle-to-Cloud-to-Vehicle (V2C2V) con-

trol framework [4, 5, 16]. A general-purpose V2C2V architecture is illustrated in

Figure 1.2.

In Chapter 3, a framework of simultaneous road profile estimation and anomaly

detection was developed. This framework can be used to crowdsource road profile and

anomaly information using onboard sensors. This information can then be stored in a

cloud database and shared with other vehicles. In this chapter, we exploit the crowd-

sourced road profile and anomaly information for next-generation vehicle suspension

control.

Suspension control is well researched, see e.g., [36, 35, 60] and references therein,

but not from the perspective of a V2C2V implementation. The benefits of such an

implementation include the ability to plan and optimally respond based on lookahead

road profile and pothole information that can be accessed in a distributed cloud
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database. A simplified (yet representative) treatment of the problem is adopted in

this chapter, based on a linear quarter-car model with the suspension set to one of

a finite number of damping modes. Road input is modeled as a combination of a

known deterministic component and an unknown stochastic component, where the

deterministic part is obtained from vehicle crowdsourcing as discussed in Chapter

3 and the stochastic component models random mismatch between the true profile

and estimated one. A simplified model is also developed for characterizing vehicle

response to traversing a pothole. At the time scale of the suspension dynamics, the

response to a pothole is modeled as an instantaneous change in wheel velocity, and we

link this velocity change to the physical characteristics of the pothole and the vehicle.

We show that the problem of selecting the optimal damping mode reduces to

integrating Riccati-type differential equations backward in time over the prescribed

look-ahead horizon. The computations depend on vehicle parameters including vehi-

cle speed as well as known deterministic road profile complemented with stochastic

and pothole information. A V2C2V implementation is defined in which cloud re-

sources are used to store vehicle and road profile data. A cloud-based computation

pool is used to determine the optimal suspension mode, and vehicle-to-cloud commu-

nications are employed to exchange the information.

Figure 5.1 illustrates the envisioned cloud-based vehicle software agent that has

access to stored vehicle parameters (Mus, Ms, kus, ks, R, cs,i) defined in Section 5.2.

This software agent receives vehicle state estimate x̂, its error covariance matrix Σ,

vehicle longitudinal velocity vcar, wheel speed ω, and GPS coordinates and time stamp

tv2c. It sends road profile information ṙo to the vehicle-based state estimator along

with the computed optimal suspension mode (i∗), and time stamp (tc2v). The data

packets to transmit between cloud and vehicle are small, so while a link must be

available for real-time use, communication bandwidth need not be extensive.

This chapter is organized as follows. In Section 5.2 we describe the suspension

dynamic model as well as the road input model. In Section 5.3 we define the optimal

suspension mode selection problem and present its solution . The proposed architec-

ture for V2C2V suspension control system is discussed in Section 5.4, along with the

discussion of additional issues, such as the communication delay and suspension force

saturation, that need to be considered in a full implementation. Simulation results

are reported in Section 5.5, and Section 5.6 concludes this chapter.
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Figure 5.1: V2C2V Suspension Control System.

5.2 Suspension dynamic model and road input characteriza-

tion

This section presents models of suspension dynamics, road profile, and pothole

impact.

5.2.1 Dynamic model of semi-active suspension systems

Quarter-car models are often used for suspension control design [36, 35, 61, 62]

because they are simple yet capture many important characteristics of the full-car

model. A quarter-car model, with two degrees of freedom (DoF) as in Figure 5.2, is

used. The car body is represented by sprung mass Ms, while the tire and axles are

represented by unsprung mass Mus. The spring and shock absorber with adjustable

damping ratio constitute the suspension system, connecting sprung (body) and un-

sprung (wheel assembly) masses. The tire is modeled as a spring with stiffness kus

and its damping ratio is assumed to be negligible in the suspension formulation. From

Figure 5.2, we have the following equations of motion:

ẋ1 = x2 − w − ṙo,

Musẋ2 = −kusx1 + ksx3 + cs(x4 − x2),

ẋ3 = x4 − x2,

Msẋ4 = −ksx3 − cs(x4 − x2),

(5.1)
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where x1 is tire deflection from equilibrium; x2 is unsprung mass velocity; x3 is

suspension deflection from equilibrium; x4 is sprung mass velocity; ṙo represents the

deterministic vertical velocity disturbance due to the known road profile; w represents

the zero-mean white noise stochastic road disturbance; cs is the adjustable damping

ratio of the suspension damper; and ks and kus are suspension and tire stiffness,

respectively. Define x = [x1 x2 x3 x4]
T . The suspension system model can then

Figure 5.2: Semi-active suspension dynamics.

be written as:

ẋ = Ax+Bṙo +Bw, (5.2)

where

A =


0 1 0 0

− kus
Mus

− cs
Mus

ks
Mus

cs
Mus

0 −1 0 1

0 cs
Ms

− ks
Ms
− cs
Ms

 , B =


−1

0

0

0

 . (5.3)

The semi-active suspension system enables damping level to be varied, for in-

stance, by changing the viscosity of a magneto-rheologic (MR) fluid [63], or by chang-

ing the orifice of a current-controlled valve in Telescopic-Hydraulic dampers [64]. A

typical vehicle implementation features several suspension modes (e.g., sport, com-

fort, etc.) selectable by a higher-level supervisory control scheme or manually by

the driver. Each of these modes may employ a different dependence of the damping

force versus the relative velocity or different feedback controller gains optimized for

different performance metrics. In this chapter, we will treat a simplified yet repre-

sentative case, where m individual suspension modes are defined that correspond to
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different choices of suspension damping coefficient cs. Treatment of suspension force

saturation, beyond brief comments in Section 5.4, is relegated to future publications.

5.2.2 Road input modeling

Road profile information can be exploited for suspension mode optimization. Ac-

curate road profile information is available from vendors who collect data using static

or inertial profilers. Inertial profilers, composed of a vehicle mounted accelerometer,

a laser height sensor and a distance measuring instrument, have been widely used for

accurate road profile collection [65]. These sensors operate at approximately 16 kHz

and can take about 15 readings per inch of vehicle travel at 60 mph. Those readings

are filtered and can be stored on the cloud for future use. However, profilers are

generally expensive to acquire and operate.

Chapter 3 develops a method to obtain the road profile by crowdsourcing the

information from numerous vehicles. Collected road profile and anomaly information

can be stored in cloud databases to keep the dynamic road information up-to-date.

To accommodate uncertainties in road profile collection, in (5.2) the road profile

is modeled by a combination of deterministic (ṙo) and stochastic (w) components.

This formulation permits modeling of road profile as purely stochastic (i.e., ṙo = 0)

if no other data is available or purely deterministic (i.e., w = 0) if the road profile

can be assumed known.

As is conventional, w is assumed to be white noise of unit intensity. Consequently,

the true intensity of the noise scales matrix B, and since it is linearly dependent on

vehicle speed, vcar [66], we can re-state the model in (5.2) as

ẋ = Ax+Bṙo +Bw, (5.4)

where A is given in (5.3), and

B = B0 ·
vcar
vcar,0

, (5.5)

where B0 is the B matrix of (5.3) scaled by the noise intensity at the vehicle velocity

vcar,0. vcar is the actual velocity. Consequently, the computation of B in (5.5) involves

obtaining B0 and vcar,0 for the given road segment, and employing scaling based on

actual vehicle speed vcar.
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5.2.3 Pothole response modeling

Potholes are one of the main road hazards that can degrade ride comfort, cause tire

damage or even accidents. Road input is often modeled as either deterministic (e.g.,

given by sinusoids [64, 67, 68]) or stochastic [36, 37] without an explicit representation

for hitting a pothole. In this chapter, we explicitly consider the response of hitting a

pothole. In Chapter 2, a multi-phase dynamic model is developed to characterize the

response of hitting a pothole. For the purpose of semi-active suspension control, this

model is simplified in this chapter. At a time scale of vehicle suspension dynamics,

hitting a pothole is modeled as a reset of the state

x(t+p ) = Reset[tp, x(t−p )] :

x(t−p ) =


x1(t

−
p )

x2(t
−
p )

x3(t
−
p )

x4(t
−
p )

→ x(t+p ) =


x1(t

−
p )

x2(t
−
p ) + ∆

x3(t
−
p )

x4(t
−
p )

 ,
(5.6)

where tp denotes the time of hitting the pothole, t−p is immediately before, t+p is

immediately after, and ∆ depends on vehicle physical parameters, wheel rotational

speed and pothole parameters.

A model for wheel velocity change ∆ is now described. Similar to Chapter 2, the

geometry at the instant of hitting the rear edge of a pothole is shown in Figure 5.3,

where l denotes the diameter of the pothole; d is the vertical difference between the

front (left) and rear (right) edges of the pothole; R represents the effective wheel

radius; r represents the maximum vertical wheel dropping. The case considered here

occurs when the height of the rear edge is higher than that of the front edge. Similar

analysis can be performed if the rear edge is lower than the front edge.

Figure 5.3: Pothole analysis.
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The following equations are then satisfied,

l = l1 + l2,

d =
√
R2 − l21 −

√
R2 − l22.

(5.7)

From (5.7), l1, l2 can be determined if l, d and R are known. Then,

r = R−
√
R2 − l21. (5.8)

Note that if the vertical difference between the front and rear edges d is 0, then

l1 = l2 =
l

2
.

To obtain the change in wheel velocity and impact force, we first find the wheel

longitudinal and vertical velocities relative to the ground when hitting the rear edge.

The kinematics are illustrated in Figure 5.4. The magnitudes of longitudinal and

vertical relative velocities, vx and vy, respectively, satisfy

vx =vcar − ωR cos θ = vcar − ωR
R− r − d

R

=vcar − ω(R− r − d), (5.9a)

vy =
√

2rg + ωR sin θ =
√

2rg + ωR
l2
R

=
√

2rg + ωl2, (5.9b)

where vcar is the car center of mass velocity magnitude and ω represents the angular

velocity magnitude of the wheel. The distances l2 and r are determined from (5.7) and

(5.8). Note that both vcar and ω can be obtained from onboard sensors. According

to the model previously defined in (5.6),

∆ =
√

2rg + ωl2. (5.10)
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Figure 5.4: Kinematics when hitting the rear edge.

5.3 Performance prediction and mode selection

Consider the linear system model of suspension dynamics (5.4) and m discrete

control modes representing different suspension damping levels corresponding to dif-

ferent values of damping coefficient cs in (5.1). The suspension performance can be

measured by the following quadratic cost function,

J =
1

2

t0+T∫
t0

q1x
2
1 + q2x

2
3 + ẋ24 dt,

where q1, q2 are weights and t0 and T are the initial time and the look-ahead hori-

zon, respectively. The above cost function trades off several competing objectives:

passenger comfort (reflected in ẋ4), small desired suspension stroke due to packaging

constraints (reflected in x3), and small tire deflection to ensure good vehicle handling

(reflected in x1). Note that horizon T may vary according to road conditions (e.g.,

smooth roads vs uneven roads).

Let

y = ẋ4 = Cx =

[
0

cs
Ms

− ks
Ms

− cs
Ms

]
x.

Then

J =
1

2

t0+T∫
t0

x(t)TQx(t) dt, (5.11)

where

Q = Q1 +Q2 · CTC,
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and

Q1 =


q1 0 0 0

0 0 0 0

0 0 q2 0

0 0 0 0

 , Q2 = 1.

Consider first the situation when the vehicle travels over road segment without a

pothole. If control mode i is engaged, the corresponding cost functional over a finite

time interval [t0, t0 + T ], is given by

Ji =
1

2

t0+T∫
t0

xT(t, i)Qx(t, i)dt, (5.12)

with x(t, i) denoting vehicle trajectory in mode i. A stochastic differential equation

(5.1) can be written as

dx = Aixdt+Brodt+Bdζ, (5.13)

where ζ is the zero mean and unit intensity (standard) Wiener process and w =“dζ
dt

”

in (5.2).

Since the system has a stochastic input, each realization of this stochastic input

will lead to a specific value of the cost function. A single cost function value can be

defined by taking the expected value,

Ji = E

[
1

2

t0+T∫
t0

xT(t, i)Qx(t, i)dt

]
. (5.14)

For (5.13), the infinitesimal generator for a given function, Vi(t, x), defined on a

time interval tini ≤ t ≤ tfin has the following form,

LiVi =
∂Vi
∂x

(Aix+Bṙo(t)) +
∂Vi
∂t

+
1

2
trace(BTVi,xxB), (5.15)

with Vi,xx denoting the Hessian matrix of second derivatives. If we can find a function

Vi such that

LiVi +
1

2
xTQx(t) = 0, (5.16)
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then applying Dynkin’s formula [69] to both sides we obtain

E[Vi(tini, x(tini)]− E[Vi(tfin, x(tfin)] =

E

[ tfin∫
tini

1

2
xT(t, i)Qx(t, i)dt

]
.

(5.17)

If the function Vi is known, the cost in (5.14) can be easily evaluated. Assuming that

for tini ≤ t ≤ tfin,

Vi(t, x, tfin) =
1

2
xTPi(t)x− xTgi(t) + φi(t), (5.18)

and substituting this expression into (5.16) we obtain that Pi(t), gi(t) and φi(t) satisfy

the following ordinary differential equations,

Ṗi(t) + AT
i Pi(t) + Pi(t)Ai + trace(BTPi(t)B) · I = −Q, (5.19)

−ġi(t) + Pi(t)Bṙo(t)− AT
i gi(t) = 0, (5.20)

φ̇i(t)− ṙTo (t)BTgi(t) = 0, (5.21)

where tini ≤ t ≤ tfin. To preserve the meaning of Vi being the cost-to-go, we impose

additional terminal conditions,

Pi(tfin) = 0, g(tfin) = 0, φ(tfin) = 0. (5.22)

The system (5.19)-(5.22) must be solved backward in time. After solving these equa-

tions, the expected cost function can be evaluated using (5.17).

Suppose next there is a single pothole over the look-ahead time interval [t0, t0 +T ]

that the vehicle hits at a time instant tp, t0 ≤ tp ≤ t0 + T . Note that the pothole is

at a specific spatial location and once it comes in range at time t0, the time to hit it,

tp, depends on vehicle speed. Then the value of the cost (5.12) can be evaluated as

J̃i = E

[
Vi(t0, x(t0), tp)

]
+ E

[
Vi(tp, Reset[tp, x(t−p , i)], t0 + T )

]
, (5.23)

with the reset map defined by (5.6) and (5.10), and x(t−p , i) denoting the prediction

of x(t−p ) in mode i. The on-board mode selection logic is based on choosing the mode
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i∗ that minimizes the predicted cost value, i.e.,

i∗ ∈ argmini=1,··· ,m{J̃i}. (5.24)

5.4 Towards V2C2V implementation

The V2C2V semi-active suspension control structure is presented in Figure 5.1.

On the cloud, all pertinent data and parameters can be accessed and used to solve

control equations (5.19), (5.20), (5.21). The state estimate x̂(ts), the state estimation

error covariance matrix, Σ(ts), vehicle velocity vcar(ts), and wheel speed ω(ts) at

time instant ts < tp are communicated from the vehicle to the cloud. The current

suspension mode, i−, is assumed to apply over [ts, t0) and the selection of the mode

is optimized for time interval (t0, t0 + T ]. On the cloud, the vehicle speed and wheel

speed are assumed to be constant over the time interval [ts, t0 + T ], allowing the

prediction of tp.

Since system model (5.4) is linear, the distribution of x̄(t0), i.e., the prediction of

x(t0), is Gaussian with the mean and the covariance matrix that can be computed by

integrating the following differential equations,

µ̇ = Ai−µ+Bṙo, µ(ts) = x̂(ts), (5.25)

and

Σ̇ = Ai−Σ + ΣAT
i− +BBT, (5.26)

with

Σ(ts) = E[(x(ts)− x̂(ts))(x(ts)− x̂(ts))
T].

Then, x̄(t0) ∼ N(µ(t0),Σ(t0)). Similarly, the prediction of x(t−p ), x̄(t−p ), satisfies

x̄(t−p ) ∼ N(µ(tp),Σ(tp)), where

µ̇ = Aiµ+Bṙo, (5.27)

and

Σ̇ = AiΣ + ΣAT
i +BBT, (5.28)

with µ(t0) and Σ(t0) as the initial conditions for (5.27)-(5.28). Finally, the prediction
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of x(t+p ), x̄(t+p ), satisfies

x̄(t+p ) ∼ N

µ(tp) +


0

∆

0

0

 ,Σ(tp)

 .

The following proposition can be exploited in computing the value of the quadratic

cost function (5.18) and in evaluating (5.23):

Proposition: Suppose x ∼ N(µ,Σ) and Vi is given by (5.17). Then,

E[Vi(t, x, tfin)] =
1

2
trace

(
Pi(t)Σ

)
+

1

2
µTPiµ+ µTgi(t) + φi(t).

(5.29)

Proof. The proof follows by the properties of the expectation and algebraic manipu-

lations,

E[Vi(t, x, tfin)] = E
[1
2
xTPix− xTgi(t) + φi(t)

]
= E[

1

2
xTPi(t)x]− µTgi(t) + φi(t).

(5.30)

Now we calculate the expectation as follows,

E[
1

2
xTPi(t)x] = tr(E[

1

2
xTPi(t)x]) = E[tr(

1

2
xTPi(t)x)]

= E[tr((
1

2
Pi(t)xx

T))] =
1

2
tr(Pi(t)E[xxT])

=
1

2
tr(Pi(t)(Σ + µµT)) =

1

2
tr(Pi(t)Σ) +

1

2
µTPi(t)µ. (5.31)

As a result, (5.30) and (5.31) lead to (5.29).

Once the best suspension mode i∗ is selected based on (5.24), it is transmitted to

the vehicle. To solve the optimal mode selection problem, the most expensive part of

the computation is to solve differential equations (5.19) - (5.22) and (5.25) - (5.28).

For our specific suspension control problem, we apply the Runge-Kutta (RK4) method

[70] with an error order of O(h4), where h is the integration step-size. In Equations

(5.19) - (5.22), at a specific time stamp t, Pi(t) is a four by four matrix; gi(t) is a four

by one vector and φi(t) is a scalar. Thus, the three differential equations have order

nine. In addition, means and covariances of the state are propagated as in (5.25) -
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(5.28), which are ODEs of order ten. Suppose in a prescribed control horizon T , we

have N discretization steps. By applying RK4, there are five computations for every

step size. Since we have m modes, the computation steps would be 19× 5×m×N ,

which has complexity O(mN). Suppose we choose a T = 30-sec horizon, a 0.01-

second step size and m = 5 modes, there would be at least 1, 425, 000 computation

steps in 30 sec.

This complexity is not high and may be performed on-board if the information

on road profile and potholes was available. The cloud-based implementation offers,

however, significant opportunities to refine mode evaluation to account for different

scenarios.

In particular, not every vehicle may hit a pothole (e.g., the vehicle may be in

a different lane or pass the pothole between the wheels). If probability of a vehicle

hitting a pothole, p, is known, expression (5.23) can be changed to account for average

performance,

J̃i = (1− p)E
[
Vi(t0, x(t0), t0 + T )

]
+ pE

[
Vi(t0, x(t0), tp)

]
+ pE

[
Vi(tp, Reset[tp, x(t−p , i)], t0 + T )

]
. (5.32)

The complexity of this expression increases when vehicles might hit multiple potholes

within the look-ahead horizon. Similarly, to ensure robustness of mode selection with

communication latencies and GPS location errors, multiple scenarios with respect to

these latencies can be considered so that the best average mode can be selected.

Finally, the definition of modes corresponding to damping coefficient values cs in

(5.1) is convenient as it keeps the model linear and enables evaluation of the cost

(5.12) by integrating Riccati-like equations. If the modes are defined differently or

suspension force saturation is taken into account, the evaluation of (5.12) may need

to be performed by averaging results over different road profile scenarios. In the

trivial case when w = 0, road profile is assumed to be fully known and there are

no communication latencies, a single simulation suffices. Otherwise, multiple Monte

Carlo-style simulations may be used to evaluate mode performance over different

scenarios thus characterizing the response of the nonlinear system to stochastic inputs.

An alternative approach exploits stochastic linearization techniques and is pursued

in the conference paper [71].
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5.5 Simulation results

The optimal suspension control problem has been analyzed in the previous section.

By making use of stored deterministic profile data as a preview and solving three

differential equations, costs of different modes can be predicted so that the best mode

with minimal cost is chosen. In this section, we simulate the model and optimal

control computations on a desktop computer. For simulations, a road segment over

the future T = 10 sec horizon is modeled as follows,

ṙo(t) =


−0.2 · cos 2πt 0.25s ≤ t ≤ 0.75s,

0.05 · sin 2πt 6.25s ≤ t ≤ 6.75s,

0 otherwise.

A unit intensity zero mean white noise input scaled by 0.01 is also included. See

Figure 5.5 for the specified road profile. The simulation parameters are specified in

Table 5.1.
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Figure 5.5: Road disturbances (ṙ0 + w).

Table 5.1: Simulation parameters

Ms Mus ks kus R vcar vcar,0
290 kg 60 kg 16800 N/m 19000 N/m 0.3 m 15 m/s 20 m/s

Five damping modes are modeled as specified in Table 5.2. The cost function

weights are chosen as q1 = 106 and q2 = 103, which means the design is more handling-

oriented.

For the initial condition x̂(0) = [0 0 0 0]T, by integrating Riccati-like equations

(5.19), (5.20) and (5.21) together with the propagated state means and covariances
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Table 5.2: Damping Coefficients Cs (N· s/m)

Mode #1 Mode #2 Mode #3 Mode #4 Mode #5
200 400 800 900 1000 (max)

with (5.27) and (5.28), the cost of each mode is evaluated per (5.17) and (5.29) as:

J1 = 6.7074, J2 = 4.8023, J3 = 4.1453, J4 = 2.8347, J5 = 2.6332.

In this case, the cloud will command the suspension system to select Mode 5 for

the next 10 second horizon, for the given ṙo(t) profile, as it has the lowest cost.

Now we consider the case where in addition to the previous road profile, there is

also a pothole at time t = 2s depicted as a red upward arrow in Figure 5.5. The

pothole has a diameter of 0.3 m and the height difference between the front and

rear edge is 0.05 m. As a result, there is a state reset as in (5.6). The cost of each

mode is evaluated with (5.23) by integrating the Riccati-like equations (5.19) - (5.22),

together with the propagated state means and covariances with (5.25) - (5.28). The

costs are

J1 = 7.9077, J2 = 5.7099, J3 = 5.2434, J4 = 3.6337, J5 = 3.6669.

In this case, Mode 4 is selected as it has the lowest cost.

5.6 Summary and discussion

A novel Vehicle-Cloud-Vehicle (V2C2V) implementation of a semi-active suspen-

sion control system was discussed. Cloud storage enabled detailed road profile data

to be exploited to optimize suspension control decisions. In the proposed V2C2V

implementation, pothole and road profile data were stored and accessed on the cloud.

We showed that in the simplified form, the optimal semi-active suspension mode se-

lection problem reduced to solving three differential equations and then evaluating

the predicted cost over a prescribed horizon. Thus the optimal suspension mode for

each road segment can be computed on the cloud and downloaded to the vehicle.
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CHAPTER 6

Cloud-aided safety-based route planning

6.1 Introduction

According to a recent report [72] from the United States (US) National Highway

Traffic Safety Administration, 33, 561 people lost their lives on US roadways during

2012. The estimated property damage caused by auto accidents exceeded 200 billion

dollars. To increase vehicle safety, various improvements in vehicle design and con-

trol are being pursued. For example, Adaptive Cruise Control systems [73, 74] are

being implemented to automatically adjust vehicle speed to maintain a safe following

distance. Lane Keeping Assist systems [75, 76] can alert the driver when the system

detects that the vehicle is about to deviate from a traffic lane. In addition, the AAA

Foundation for Traffic Safety has implemented the US Road Assessment Program to

rank road risk into five levels, helping drivers plan their travel routes and assisting

road agencies in improving the roads [77]. In this chapter, we propose road risk

management through risk-aware route planning, with the goal of determining routes

with low risk of accident as well as fast travel time. While modern vehicle navigation

systems are able to generate optimal routes in terms of travel time, distance or fuel

economy, in this chapter, we augment such cost terms with a safety-based risk metric.

Due to road geometries, distractors, traffic density, and other factors, some roads

are more prone to accidents than others. To assess relative risk level and in turn

implement safety-based route planning, a quantitative risk metric is required. Road

risk index (RRI), which is modeled as a function of risk exposure, crash rate and

severity, is accepted as a quantitative metric to reflect the relative crash risk as a

function of road segment [78, 79, 80]. If available, RRI can also be used in safety-

based route planning. However, crash rate records classified by route segment are not

commonly available. As a result, some objective crash rate prediction models have

been developed to predict crash rate based on road geometry. In [78], Miaou and Lum
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studied the relation between highway crash rates and road geometries with Ordinary

Least Squares (OLS) and Poisson Regression (PR) models. A Quantile Regression

(QR) model was developed in [80] and demonstrated to have better prediction per-

formance compared with the OLS and PR models proposed in [78]. In this chapter,

a hybrid Artificial Neural Network (ANN) is developed and demonstrated to have

better performance than the previously proposed models.

To develop the crash prediction model, an informative database with 30, 682 road

segments and 144, 821 crashes from the Highway Safety Information System (HSIS) is

processed. While many advanced modeling techniques such as polynomial regression,

support vector regression and ANN are available, the ANN has been demonstrated to

effectively model complex relationships and has been successfully applied in a variety

of applications such as handwriting recognition [81], vehicle fuel economy modeling

[82] and traffic prediction modeling [10]. From a practical implementation stand-

point, ANNs have an important advantage in that they are familiar to automotive

engineers, and represent proven technology that has been used in production vehicles

[48]. Automotive engineers thus already understand ways to make the ANN-based

solutions robust to real world variability and noise factors.

In this study, a hybrid ANN model is developed for road crash rate prediction.

The inputs of this ANN include road geometries (segment length, curvature, grade

etc.) and traffic density (annual average daily traffic). The outputs are the predicted

crash rates categorized in three severity levels (fatality, injury and property damage

only). Furthermore, the raw data is partitioned into three clusters with a fuzzy C-

means clustering algorithm and three separate neural networks from data in each

cluster are trained. This hybrid ANN model accurately predicts RRI as a function of

road geometries and traffic information.

While this static hybrid ANN model can accurately predict RRI given road ge-

ometries and historical traffic information, real-time factors such as weather, time of

day or day of the week, which can affect the risk level, need to be also considered.

We therefore augment the prediction model with a dynamic layer to include such

influences by employing multiplicative correction factors; these factors have not been

considered in previous crash prediction models [78, 79, 80].

Safety-based route planning considers both travel time and risk in selecting the

best route. The aim is to find a route with a minimum composite cost, which, in

this chapter, is based on the travel time and RRI. Cost function weights reflect driver

preferences. This problem can be specified as a multi-objective optimization problem

that reduces to a Mixed Integer Programming (MIP) problem. A realistic route is
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planned from Scioto Downs Inc, Ohio to Delaware, Ohio to demonstrate this route

planning functionality. Several examples are presented to illustrate how the “safe”

route can be different from the fastest route and how real-time factors can influence

the resulting routes.

The proposed safety-based route planning functionality is envisioned within the

framework of a V2C2V-equipped vehicle fleet. In our proposed V2C2V route planning

architecture, safety is factored into planner decisions as illustrated in Figure 6.1. As

RRI 

database 

Data retrieval & 

Planning algorithm 

Real time 

Traffic info 
Road 

database 

Sequence 

 of nodes 

Origin, Destination, 

RRI weights, VIN, 

GPS coordinates 

Cloud 

Figure 6.1: Architecture of cloud-aided safety-based route planning

in other V2C2V applications, vehicles communicate with the cloud through a wire-

less channel. The user initiates planning by providing the origin (current position by

default), the destination, preferences that inform RRI weights and Vehicle Identifica-

tion Number (VIN). If the driver fails to follow the planned route, the vehicle keeps

sending its GPS coordinates to the cloud so that the planner can replan and update

the routes accordingly. The cloud hosts our RRI model (see Section 6.2) and the

planning algorithm. Real-time traffic and weather information can be obtained from

a variety of sources. For example, INRIX XD Traffic delivers detailed traffic speeds

every 800 feet (250 meters) across 4 million miles of roads in 37 countries [83]. While

INRIX and other traffic data sources can ultimately be integrated within our route

planner, incorporation of this data is beyond the scope of this study. We therefore

generate representative data for our simulation studies.
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Figure 6.2: Safety-based route planning overview

An overview of our work is given in Figure 6.2. A road and accident database

from the Highway Safety Information System (HSIS) is first processed to extract

road characteristics. With a hybrid neural network, the data is then translated to a

road risk database which is subsequently combined with real-time factors to provide

safety-based route planning. The real-time factors include time of day, day of the

week, real-time weather and traffic. Then a safety-based route planning is realized

using a Mixed Integer Programming (MIP) algorithm with the real-time RRI, traffic

and a user-specified weighting factor.

The contributions of this chapter include the following. First, by processing an

informative road and accident database from HSIS, a hybrid ANN model is developed

to efficiently predict crash rate. The hybrid ANN is demonstrated to have better

performance than existing models presented in previous publications [78, 79, 80]. In

addition, real-time factors such as weather, time of day and day of the week which

have not been considered in previous models are incorporated as correction factors

to a static RRI. An original framework for safety-based route planning is presented

to provide optimal routes balancing safety and the traditional metrics such as travel

time. Last but not least, real-world case studies are presented to demonstrate the

applicability of the proposed route planning framework. While comprehensive time-

based route planners and a number of road risk models have been studied previously,

this work integrates risk and time together in a holistic route planning framework.
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The chapter is organized as follows. Section 6.2 develops a neural network-based

risk prediction model and compares it with QR and OLS models to quantify perfor-

mance improvement. Model sensitivity to changes in inputs are analyzed and RRI

dependence on various factors is established in Section 6.3. Real-time factors affect-

ing road risk and their modeling are discussed in Section 6.4. The safety-based route

planning problem is formulated using a Mixed Integer Programming problem in Sec-

tion 6.5. Real-world case studies are presented to illustrate the safety-based route

planning in Section 6.6, and Section 6.7 concludes the chapter.

6.2 Road risk modeling

6.2.1 Road risk index

A natural way to model the risk level of a road segment is to associate it with

a crash rate (e.g., number of accidents per year). However, this method has two

deficiencies: it cannot be used for roads with no historical crash data, and it is

not able to predict dependence on dynamic factors such as traffic density and road

geometries.

In the past two decades, a different approach based on a Road Risk Index (RRI)

has emerged. De Leur and Sayed have studied a driver-based subjective assessment

of existing road risks [79]. Objective statistical crash prediction models have also

been developed. Miaou and Lum proposed a Poisson Regression model [78] and

Wu presented a Quantile Regression method [80]. These statistical risk models relate

crash counts to influencing factors such as road geometries and traffic information and

can be used to predict crash rate, generate road risk indices, and suggest improved

road designs.

In [79, 80], RRI is modeled as a function of exposure, crash rate and severity.

Exposure represents the amount of activity in which a crash may occur; Vehicle Miles

Traveled (VMT) is the most common measure of exposure. Crash rate is the number

of crashes per unit of exposure. It is proportional to the probability of a crash. Crash

severity reflects the consequence of crashes in terms of injuries and property damage.

Crash severity is officially classified in three categories: fatality, injury, and property

damage only [72]. Since we develop road risk index for individual drivers, we only

consider crash rate and severity in defining RRI so that

RRI(i) = F(
∑
j=1,2,3

nijSj/AADTi), (6.1)
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where i is road segment number; RRI(i) is the risk index of road segment i; j = 1, 2, 3,

represents the severity level of fatality, injury and property damage only, respectively;

nij is the predicted number of accidents of level j to occur over road segment i in a

certain period of time, e.g., during one year; Sj is the cost of an accident of type j;

and F(·) is a function that scales the cost of most homogenous segments to an index

between 0 and 100. According to a report from the Bureau of Transportation Statis-

tics (BTS) [80], the average costs of fatality, injury, and property damage accidents

are S1 = $4, 113, 956, S2 = $144, 291, and S3 = $6, 783, respectively. The AADTi in

(6.1) represents the annual average daily traffic on road segment i. In this study a

linear function F(x) = x/10 is used and (6.1) becomes

RRI(i) =
1

10

∑
j=1,2,3

nijSj/AADTi. (6.2)

We develop a data-driven model to predict the number of accidents nij as a func-

tion of road segment geometry, traffic conditions and weather conditions.

6.2.2 HSIS database

Road and crash data from the Highway Safety Information System (HSIS) [84]

are utilized to develop a crash rate prediction model. The HSIS has a multi-state

database that contains crash, roadway inventory, and traffic volume data for a select

group of States (Washington, California, Minnesota, Illinois, Ohio, Maine and North

Carolina). Crash data and road information for Ohio from 2006 are used in this

study to develop a risk prediction model. The Ohio data provided by HSIS include

the following:

• Accident (accident, vehicle and occupant),

• Roadway inventory file, denoted Roadlog,

• State supplemental inventory, containing curve and grade.

Accidents are recorded case-by-case. Separate files containing vehicle and occu-

pant information can be linked to accident data for specific cases using the accident

case number. The accident data can also be linked to a Roadlog file using three

common variables: county, route number, and milepost. Unlike an accident file, each

record in the Roadlog file contains information on a homogeneous section of the road-

way (i.e., a stretch of road that is consistent in terms of certain characteristics), with

each new section being defined by a new beginning reference point. Each record in
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the Roadlog file contains current characteristics of the road system including surface

type and width, shoulder and median information, lane information, etc.

Data on 30,682 homogeneous road segments and 144,822 accidents for the year

2006 in Ohio were processed and eight features were extracted as inputs to the model.

These features include:

• Pavement Roughness, defined as the International Roughness Index (IRI). Gen-

erally, a road segment is smooth if its IRI is under 100 and rough if its IRI is

above 180. IRI varies from 30 to 562.

• Speed limit, the officially marked speed limit of the road segment in mile per

hour (mph). Speed limit varies from 20 to 65 mph.

• Segment length, the length of a homogenous road segment in miles. It varies

from 0.01 to 16.97 miles.

• Number of lanes, representing the total number of lanes over both travel direc-

tions. The range is from 1 to 11.

• Annual average daily traffic per lane (AADT), reflecting average traffic density.

AADT per lane varies from 27.5 to 56,980.

• Width per lane, varying from 7 to 36 feet.

• Curvature, the maximum degree of curvature in that road segment. An n-degree

curve turns in the forward direction by n degrees over 100 ft. Curvature ranges

from 0 to 270 degrees.

• Grade, representing the largest slope over the road segment in percent, which

is the tangent of the angle of inclination times 100. Grade ranges from 0 to 20

percent.

To build an objective model relating database features to accident rate, the above

eight features are used as the explanatory variables and accidents of each type in

Ohio in 2006 are the response variables. The statistics of these variables are listed in

Table 6.1. We next explore models to capture relationships between explanatory and

response variables.
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Table 6.1: Explanatory and response variable statistics
Variables Mean Std.Dev Min Max

Response variable
Number of fatality crashes 0.2 0.14 0 2
Number of injury crashes 12.3 6.94 0 72

Number of property-damaged-only crashes 34.7 17.81 0 183
Explanatory variables

Pavement roughness (IRI) 126.9 60.77 30 562
Speed limit (mph) 47.03 11.36 20 65

Segment length (miles) 0.62 1.07 0.01 16.97
Number of lanes 2.82 1.27 1 11
AADT per lane 3790.4 3929 27.5 56980

Width per lane (ft) 12.37 2.75 7 36
Grade (percent) 1.70 3.33 0 20

Curve (deg/100ft) 5.65 17.81 0 270

6.2.3 Crash rate prediction

In this subsection, we develop and compare Ordinary Least Squares, Quantile

Regression and neural network models to predict the crash rates based on explanatory

variables in Table 6.1. Let {xi, yij} represent the observations for road segment i,

i = 1, 2, · · · , 30682. xi is the vector of explanatory variables as in Table 6.1, and

yij is the number of level j accidents occurring on road segment i, where j = 1, 2, 3

represents fatality, injury and property damage only, respectively. We note that the

difference between yij and nij in (6.1) is that yij represents database statistics while

nij is the prediction with a certain model.

6.2.3.1 Ordinary least squares (OLS)

OLS is a linear regression model linking the explanatory variable xi and response

variable yij,

yij = xTi βj + εij, (6.3)

where βj ∈ R8 is the vector of identified parameters and εij represents fitting errors.

Note that since there are three separate response variables denoting each one of

severity levels, we have three sets of linear models for j = 1, 2, 3. For each linear

model, βj minimizes the sum of fitting error squared and is given by

β̂j = (XTX)−1XTYj, (6.4)
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where Yj ∈ R30682, and X ∈ R30682×8 is a matrix of regressors. With β̂j identified, the

number of accidents of level j can be predicted by

nij = xTi β̂j. (6.5)

6.2.3.2 Quantile regression (QR)

In [80], Wu developed a crash rate prediction model with QR. QR provides a more

comprehensive representation of effects of the explanatory variables on the response

variable. QR models the relation between a set of explanatory variables and specific

percentiles (or quantiles) of the response variable. It specifies changes in the quantiles

of the response. A QR model generates an ensemble of models for each accident type

j, j = 1, 2, 3, corresponding to specified quantiles. For each severity level j and a

quantile τ , the linear model with parameter vector βjτ can be obtained by solving

min
βjτ∈R8

30682∑
i=1

ρτ (yij − xTi βjτ ), (6.6)

where ρτ (·) is the tilted absolute value function as in Figure 6.3. The resulting

Figure 6.3: The function ρτ (x) in 6.6

minimization problem can be solved by linear programming methods [85].

With the models of corresponding quantiles, predictions can be made by dividing

quantiles into intervals and associating each interval with a quantile in the middle

of the interval. Let xi be the vector of explanatory variables of road segment i in

Table 6.1 and τk be the middle quantile of the kth interval, k = 1, 2, · · · , N . With

β̂jτ identified, the number of accidents of level j can be predicted by

nij =
N∑
k=1

pk · xTi β̂jτk , (6.7)

82



where N is the number of divided intervals, and pk is the probability of the occurrence

of crash rate falling into the kth quantile interval.

6.2.3.3 Neural network model

A neural network model mapping explanatory variables in Table 6.1 to the number

of accidents of each type is illustrated in Figure 6.4. The network uses a single layer

with 20 neurons in the hidden layer. The MatlabTM neural network toolbox was used

for network training and testing.
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Figure 6.4: Neural network for crash rate prediction

6.2.3.4 Comparison

We next compare the performances of the aforementioned models. A dataset with

30,862 road segments was randomly partitioned such that 70 percent of the samples

were used to train the models and 30 percent were reserved for cross-validation. All

models used the same training and testing data. Root mean square error (RMSE) is

selected as the performance criterion, where

RMSE =

√√√√ ∑
j=1,2,3

30682∑
i=1

(nij − yij)2. (6.8)

In (6.8), nij is the predicted number of level j accidents for a road segment i, and

yij is the observation from data. The performance comparison is illustrated in Ta-
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Table 6.2: Model performance comparison

ble 6.2, where acc/yr is number of accidents per year which is the unit of RMSE.

The comparison shows that the proposed neural network model has the best RMSE.

To further improve the model performance, a hybrid neural network architecture is

considered next.

6.2.3.5 Hybrid neural network model

A hybrid neural network scheme is shown in Figure 6.5. Input data were first

partitioned into three groups with a fuzzy C-means clustering algorithm [86]. Then

for each cluster a separate neural network was developed. The RMSE of the three

networks are 3.12, 3.24 and 2.96, respectively, which is an improvement over the

conventional neural network. Based on the number of accidents listed in Table 6.1,

the predicted error is about five percent. Each of these three networks has three

outputs corresponding to the three crash ratings. To compute the output of the

hybrid neural network, we first compute the Euclidean norms (distance) between the

input and cluster centers. Then we apply the neural network corresponding to the

minimum-distance cluster. As a result, accident rates of each type can be predicted

and the risk index can be generated using (6.1). Since the best RMSE results are

obtained with the hybrid neural network, it is chosen as the model for the analysis

and optimization to follow.

Raw data Fuzzy C-means clustering 
cluster1 

cluster2 

cluster3 

Training 

Training 

Training 

Network1 

Network2 

Network3 

Figure 6.5: A hybrid neural network model

Note that the developed model assumes the underlying data set is stationary.
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This assumption can be relaxed with the V2C2V implementation, where the cloud

can constantly adapt road changes and update the model.

6.3 Model sensitivity analysis

In this subsection, we use the hybrid neural network model to analyze the sensi-

tivity of RRIs to changes in the inputs around nominal values. Sensitivity analysis

can reveal interesting trends and, provided the trends are reasonable, help build con-

fidence in the model. The nominal road segment corresponds to 150 IRI, 55 mph

speed limit, 1 mile length, 2 lanes, 2700 AADT per lane, an 18 feet lane width, 13.5

degrees of curvature, 3 percent grade and no-adverse weather. By varying each vari-

able one at a time, we obtain the results in Figure 6.6(a)- Figure 6.8(b), where red

circles represent the nominal values.
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Figure 6.6: RRI dependence on roughness, speed limit and segment length
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Figure 6.7: RRI dependence on number of lanes, AADT and lane width

Figure 6.6(a) shows that RRI varies negligibly when IRI is under 200 and it

increases abruptly with an approximate slope of 3/100 RRI per IRI when IRI is

above 200. Figure 6.6(b) shows that segments with a speed limit between 35 and 55

mph have the lowest risk index. Figure 6.6(c) shows that the risk index increases
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Figure 6.8: RRI dependence on curvature and grade

almost linearly as road segment length increases with an approximate slope of 4.5

RRI per mile. Figure 6.7(a) indicates that segments with more lanes tend to carry

higher risk. This result assumes that the AADT per lane is fixed at a nominal value.

More lanes thus correspond to more traffic and higher risk. Figure 6.7(b) shows that

as AADT per lane increases, the risk tends to first decrease and then increase between

8,000 and 15,000. This is not surprising given that RRI in (6.10) is proportional to

the probability of having an accident. As a result, more traffic may lead to more total

accidents but lower probability of an accident for any particular vehicle. Figure 6.7(c)

indicates that the wider the lane, the safer the road segment. Figure 6.8(a) shows

risk first decreases and then increases with curvature and Figure 6.8(b) shows that

higher slope leads to higher risk.

Note that the model has been developed for homogeneous road segments, in which

the number of lanes, lane width, speed limit etc., do not change. The homogeneous

road segments are atomic, i.e., any route is composed of these segments. However,

for the purpose of route planning, it is more convenient and yields a more tractable

search space to represent road segments as edges between intersections, where each

edge may consist of multiple homogeneous segments. The RRI of an edge between

intersections can be obtained by summing RRIs over homogeneous segments. Note

that for those edges that include only a part of a homogeneous segment, according to

Figure 6.6(c), we can add the RRI according to the proportion of the homogeneous

segment included. An illustrative example is shown in Figure 6.9. The ith edge with

vertices Vi and Vi+1 consists of homogenous road segments sm+2, sm+3, sm+4 and part

of road segments sm+1 and sm+5, then the RRI of the edge i is computed as

RRI(i) = 1/2 ·RRI(sm+1) +RRI(sm+2) +RRI(sm+3)

+RRI(sm+4) + 2/3 ·RRI(sm+2).
(6.9)
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Figure 6.9: Edge RRI composition of multiple homogeneous road segments

Remark 6.1. RRIs of homogenous road segments are summed to obtain the overall

RRI of a road edge between intersections as in (6.9). Note that the summation is

valid if we assume that the events of having an accident over the road segments are

mutually independent. Since RRI is a linear function of probabilities of accidents as

in (6.1), it is straightforward to check that the summation of RRIs directly follows

from the definition.

6.4 Real-time factors influencing road risk

Besides road geometries and historical traffic density, real-time factors can have a

significant impact on road risk. For example, a snowy road segment is more risky than

a normal road segment and driving at midnight on the weekend can be more dangerous

because of greater likelihood of impaired and fatigued drivers. Unfortunately, these

factors were not available in the HSIS database and could not be treated as ANN

inputs in the same way as in the previous section. In this section, we describe how

such factors are incorporated into the model.

6.4.1 Weather

Weather can have a significant impact on traffic safety. Adverse weather condi-

tions such as snow, fog and rain can worsen the driving environment. In the HSIS

crash database, accidents are recorded with the weather conditions present when the

accident happened. To see how those adverse weather conditions affect crash risk,

we investigate the average number of accidents happening in each recorded weather

condition. By processing raw accident data, we determine the average number of

daily accidents in Ohio in 2006 versus weather conditions, as shown in Table 6.3. The

average number of daily accidents over all weather conditions was 396.77. We apply a
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Table 6.3: Average daily accidents under different weather conditions
Weather conditions Not adverse Snow Rain Fog

Average daily accidents 367.89 452.68 415.32 409.58

correction factor as the ratio of number of accidents at specific weather conditions to

total number of daily accidents. For instance, if we obtain a RRI of 4.5 for a segment

from the neural network model and it is currently snowy or predicted to be snowy,

then the RRI is corrected to

4.5× 452.68

396.77
= 5.13.

6.4.2 Time of day, day of the week

According to a report from the National Highway Traffic Safety Administration

(NHTSA) [87], the later hours of the weekend and late afternoon to evening on the

weekdays tend to be the riskiest periods for driving. The HSIS accident database

includes hour of the day and day of the week of each accident. The distribution of

number of accidents versus day of the week is illustrated in Figure 6.10. As shown

in Figure 6.10, the number of accidents occurring during a week is evenly distributed

except that Fridays and Sundays are a little above and below average, respectively.

Figure 6.11 illustrates the distribution of weighted number of accidents over time of

day for weekdays and weekends. The weighted number of accidents is defined as the

number of accidents divided by the AADT distribution over a given one hour time

interval, as shown in Figure 6.12. Each bin in the Figure 6.12 histogram corresponds

to a one-hour period. For example, the bin centered at 0.5 describes the period from

0:00 am to 0:59 am. These figures reveal similar conclusions to these presented in

[87]. For instance, accidents are most likely in late nights during the weekend. This

fact can be explained by a considerable number of drivers in the late night of the

weekend being fatigued or impaired. Based on Figure 6.11, a correction factor can be

defined as the ratio of the weighted number of accidents to the average. For instance,

travel at 1:30 am on Saturday will have a correction factor of 580
304

= 1.91, where 580

is the weighted number of accidents in the 1-2 am period in the weekend and 304 is

the average weighted number of hourly accidents over a week.

88



Sunday Monday Tuesday Wednesday	 Thursday Friday Saturday
0

0.5

1

1.5

2

2.5

3
x 10

4

Day of the week

N
u
m
b
er

o
f
a
cc
id
en
ts
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Figure 6.11: Accident distribution over time of day

6.4.3 Driving style and vehicle conditions

Driver characteristics and vehicle conditions are also important factors influencing

safety. Aggressive drivers are more prone to accidents than non-aggressive drivers.

Older or improperly maintained vehicles may also result in more accidents. Onboard

driving style identification [88, 89] and vehicle condition monitoring [90, 91] are be-

coming available. In this study, we assume compounding correction factors of 1.2 and

1.1 for an aggressive driver and a poorly maintained vehicle, respectively.

6.5 Safety based route planning

Route planning is a network flow problem [92]. A road network can be modeled

as a directed graph as shown in Figure 6.14(a). Intersections and road segments are

89



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

1

2

3

4

5

6

7

8

Time of day

A
cc
id
en
ts

in
p
er
ce
n
t
(%

)

Figure 6.12: AADT distribution over time of day (1996-2006) [2]

abstracted as nodes and edges, respectively, in this directed graph. A route planner

generates an optimal route in the transportation network based on specified cost

functions. Traditional planners mainly consider time, distance or fuel economy. Route

planners have been applied to a variety of applications. For example, evacuation

planning has been studied for victim evacuation [93, 94, 95]. Our study focuses on

traditional route planning but with time and our new road risk index cost metrics.

A variety of searching/optimization algorithms can be exploited to solve the road-

based route planning problem, e.g., Dijkstra’s algorithm [96], A∗ algorithm [97] and

the Genetic Algorithm [98]. In this chapter, we apply a Mixed Integer Programming

(MIP) approach as a prototype. This choice is motivated by the existence of com-

mercial MIP solvers such as Cplex [99] or Gurobi [100] that have been deployed in

cloud-based applications. The MIP based approaches have also been previously used

for route planning applications as in [101].

6.5.1 Problem Formulation

Safety-based route planning is a multi-objective graph traversal problem. The

goal is to find an optimal route that minimizes a weighted sum of cumulative travel

time and RRIs. The problem can be defined as follows.

Problem 6.1. For a directed graph G = {V,E}, where V is the set of vertices and E

is the set of edges, we assign each edge ei,j a pair (ti,j, ri,j), where i, j ∈ V are two

adjacent vertices; ei,j ∈ E represents an edge from i to j; the pair (ti,j, ri,j) represents

expected real-time travel time red from the cloud and RRI of ei,j, respectively. Let
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s and d be the start and destination vertices, respectively. We denote by P the

set of all paths from s to d, where a path P is a sequence of vertices from s to d,

i.e., {s, v1, v2, . . . , vn, d}. The problem is to find an optimal route that minimizes the

following cost function,

min
P∈P

ts,v1 + tv1,v2 + · · ·+ tvn,d + α× (rs,v1 + rv1,v2 + · · ·+ rvn,d), (6.10)

where α is the weight on cumulative RRI reflecting the relative driver weighting of

route safety and travel time.

6.5.2 Optimal route planning by Mixed Integer Programming

In this chapter we employ Mixed Integer Programming (MIP) [102, 103] to solve

Problem 6.1. For each edge ei,j, we assign a binary decision variable xi,j ∈ {0, 1}
which determines if the edge is travelled, and we redefine the problem as follows,

J =
1

2

∑
ei,j∈E

xi,jti,j + αxi,jri,j → min
xi,j

(6.11)

subject to: ∑
es,v∈E

xs,v = 1, (6.12)∑
es,v∈E

xs,v = 1, (6.13)∑
ei,j∈E

xi,j =
∑
ej,k∈E

xj,k,∀j ∈ V, j 6= s& j 6= d. (6.14)

Constraints (6.12) and (6.13) imply that there is only one edge in the path from

the start node and only one to the destination. Constraint (6.14) dictates that each

vertex in-between has the same number of incoming and outgoing edges.

We use Cplex [99] to solve the above problem. Note that since route optimization

can be performed on the cloud, powerful solvers such as Cplex can be made readily

available and can reasonably be expected to quickly generate optimal long-distance

routes.

6.6 Route planning case study

In this section, we consider a real world route planning case study. As illustrated

in the Google Maps snapshot in Figure 6.13(a), our goal is to plan a route from Scioto
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Downs Inc, Ohio to Delaware, Ohio. To plan the route, we first abstract the road net-

work into the graph as shown in Figure 6.14(a). Nodes represent intersections of main

roads included in the database. For example, node 2 represents the intersection of

Route 23 and Interstate 270. The goal is to find a path from node 1 to node 29 with a

minimum cost specified in (6.10). For each edge, we define a pair of metrics (ti,j, ri,j),

which are the travelling time and dynamic RRI, respectively. The expected travel

time is measured using Google Maps at 04:30 PM, 10/16/2014 (Thursday) EST. The

RRIs are generated using the model we developed in Section 6.2 and dynamic factors

in Section 6.4. To accomplish this, we link map road segments to the correspond-

ing homogenous road segments in the HSIS database according to the county, road

number and milepost. We will next illustrate the optimal route under the following

scenarios to identify the specific road segment characteristics (but not RRIs which

are computed from the model). We assume that the driver’s driving style and the

vehicle conditions are both nominal.

6.6.1 Time optimal route

When α = 0, the user does not care about road risk and desires a time-optimal

route. As expected, the Cplex results match the Google Maps results shown in

Figure 6.13(a). The optimal time route in terms of Figure 6.14(a) nodes is 1-2-3-9-

14-18-24-27-29. The expected traveling time is 42 minutes and the total risk index is

161.89. The final cost is J = 42 + 161.89× 0 = 42.

6.6.2 α = 0.2

When α = 0.2, the optimal route is 1-2-3-9-14-15-20-26-28-29, as shown in Fig-

ure 6.13(b). The expected travelling time is 44 minutes and the total risk index is

103.57. The final cost J = 44 + 0.2× 103.57 = 64.71. This second route has 36% less

risk than the first route but requires 2 additional minutes of travel time.

The above example pair shows that a route can indeed change if safety is taken

into account. We now show that real-time factors such as weather and time of day

can also lead to different optimal routes.

6.6.3 Route changes with time of day, day of the week

Suppose the time is now 1:00 am on Saturday, as discussed in Section 6.4.2, all

the RRI will be updated by applying a correction factor of 585
304

= 1.92. Again assume

weighting factor α = 0.2. As a result of the day and time, RRI is greatly increased for
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(a) α = 0 (b) α = 0.2

Figure 6.13: Optimal routes with different α’s

each road segment. These changes result in a safety-optimal route as 1-2-3-9-14-15-20-

26-25-27-29 which is visualized in Figure 6.15(a). The expected travelling time is 45

minutes and the total risk index is 204.42. The final cost J = 45+0.2×204.42 = 85.88.

We note that this route is also the “safest” route when independent of time (α =∞).

6.6.4 Route changes with weather conditions

We now change our travel time back to 04:30 pm on Thursday and suppose it is

snowing in east Columbus as seen in the pink area of Figure 6.14(b). As discussed

in Section 6.2, the RRIs in the affected roads are adjusted using a correction factor

β = 452.68
396.77

, where 452.68 and 396.77 are the average number of daily accidents in

snowy days and overall average number of accidents, respectively. A snow cover can

significantly impact travel time as well as risk. While attributes of a road such as
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(a) Abstracted road network map (b) Roads with local snow to the east

Figure 6.14: Abstracted road maps

grade and curvature would certainly factor into travel speed reduction, in this work,

we adopt a representative 20% travel time increase based on a report showing data

indicating a 5-19% speed reduction range in snow [104]. With the updated time, RRIs

(in red in Figure 6.14(b)) and weight α = 0.2, the optimal route generated with Cplex

changes to 1-2-3-9-14-18-24-25-27-29. The expected traveling time is 42 minutes and

the total risk index is 161.89. The final cost is J = 42 + 161.89× 0.2 = 74.38.

Remark 6.2. In practice, several modes (e.g., time-optimal, balanced, safe) can be

predefined by assigning specific α’s. User feedback about the planned routes can also

be exploited to obtain the optimal weighting factors with an adaptive scheme, which

will be considered in our future work.

6.7 Summary and discussion

In this chapter a safety-based route planner was proposed. This planner optimized

over both travel time and road risk metrics. Primary contributions of the work were
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(a) Optimal route for travel at 1 am on Sat-
urday

(b) Optimal routes with local snow.

Figure 6.15: Route changes with real-time RRI adjustments

in processing of accident data to an RRI metric in route optimization that balances

time and safety metrics. Advantages of its V2C2V implementation included access

to extensive computational and regularly-updated database resources not available

onboard. We demonstrated that a hybrid neural network model can be developed

to model road risk index based on available accident data. We showed that this

model outperforms several model alternatives in terms of root mean square error. A

sensitivity analysis of this model was performed showing reasonable trends.

The route planning problem was reduced to a Mixed Integer Programming prob-

lem and solved with Cplex. Real world case studies were considered that demonstrate

changes in the route when safety is included in the optimization. We also illustrated

how real-time information such as weather, time of day, and day of the week can be

factored into route planning. Future work will include RRI database management,
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tradeoff analysis of how long the route buffer is downloaded, and a demonstration

with a V2C2V-equipped vehicle.
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CHAPTER 7

Cloud-aided comfort-based route planning

7.1 Introduction

People spend significant time in their vehicles commuting every day. Based on a

report by the AAA Foundation for Traffic Safety [105], Americans drove an average of

29.2 miles with an average duration of 46 minutes each day. Ride comfort is therefore

increasingly demanded and has become one of the differentiating features that car

manufacturers are pursuing [106].

Factors that affect ride comfort are classified by Corbridge [107] into three cate-

gories: dynamic factors including shock, vibration and acceleration, ambient factors

such as temperature, air quality and acoustic noise, and spatial factors associated

with ergonomics. While all three factors are important, in this chapter, we focus

on dynamic factors associated with vibration and accelerations. Numerous advanced

control and system design technologies are being pursued to improve ride comfort

from the perspective of vibration and accelerations. For example, semi-active and

active suspension systems have been intensively studied and implemented to isolate

vehicle occupants from road vibrations [37, 35, 108, 109]. Noise Vibration and Harsh-

ness (NVH) performance analysis has been exploited in the design of vehicle trim and

transmission systems [106, 110].

Due to variations in roughness, geometries and anomaly distribution, some roads

are more comfortable than others. In this chapter, we propose to improve ride comfort

through a comfort-based route planning framework that identifies routes with good

ride comfort as well as low travel time. While modern vehicle navigation systems are

able to generate optimal routes in terms of travel time, distance or fuel economy, in

this chapter, we augment such cost terms with comfort-based metrics.

To implement comfort-based route planning, metrics are needed to reflect rela-

tive comfort level of road segments. While subjective assessment may be a natural
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and direct way to indicate the ride quality, its use for route planning is impeded by

variability between subjects and the difficulty of subjective data collection. As an

alternative, studies have focused on analyzing the stimuli that affect ride comfort

[107, 111, 112, 113, 114]. Vibration-related indices have been developed. Interna-

tional Roughness Index (IRI) [115] has been widely used and generally accepted as

a standard metric to describe the roughness of road segments. However, its mea-

surement relies on sophisticated road profilers which are expensive to acquire and

operate. Power Spectral Density (PSD) and Vibration Does Values (VDV) are also

widely used for vibration comfort analysis under British Standard 6841 (BS 6841)

[111] or International Standard 2631 (ISO 2631) [112]. BS 6841 recommends four

acceleration measurements, three on the seat (fore-aft, lateral, vertical) and one at

the backrest (fore-aft). ISO 2631 recommends measurement of the three-dimensional

acceleration on the seat pan. While these metrics reveal good correlation with ride

comfort, their use for route planning is limited due to sensor requirements.

Recently, inexpensive and easy-to-implement estimation methods have been ex-

plored. In [45], a standalone vehicle accelerometer is used to measure vehicle body

acceleration which is then mapped to road power spectral density with a transfer

function generated from a half-car model. Also, in [44], accelerometers in a smart

phone are used to correlate vertical acceleration with road roughness. While these

approaches are easy to implement, they are only able to classify road roughness level

and may not be sufficient for comfort assessment.

In this chapter, we formulate three objective comfort-based metrics by exploiting

the simultaneous road profile estimation and anomaly detection framework devel-

oped in Chapter 3. We first define a Roughness Index (RI) based on estimated road

profile. The notion of Roughness Weighted Time (RWT) is further developed by

integrating time and RI. In addition, a Road Anomaly Cost (RAC) metric is defined

based on driver aversion to road anomalies such as potholes and bumps. Finally,

an Intersection-Induced Cost (IIC) is developed by considering potential stop-and-

go’s and turns at intersections. While there are many other factors affecting riding

comfort, the developed route-dependent metrics, RWT, RAC, and IIC, are considered

representative factors suitable for route planning. A real-world case study, route plan-

ning from Ford Research and Innovation Center, Dearborn Michigan, to Ford Rouge

Factory Tour, Dearborn Michigan, is presented to demonstrate how the “comfortable”

route can differ from the fastest route.

In route planning algorithms, road networks are traditionally modeled as graphs

where nodes represent main intersections and edges represent road segments [92]. A
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route planner generates an optimal route that minimizes total cost. Costs are tra-

ditionally assigned to route segments, e.g., time, distance, fuel etc. However, in the

proposed comfort-based route planning framework, route segment transition costs

such as turns at intersections correspond to costs associated with pairs of connected

edges are considered. The presence of these edge-transition costs complicates the

design of a planning algorithm. There are generally two approaches to deal with

transition costs. The first approach exploits edge-based graphs in which edges in the

original graph are replaced by nodes and pairs of consecutive edges modeled as edges

in the new graph [116, 117]. This corresponding road network representation can

model edge costs such as travel time as well as edge-transition costs such as intersec-

tion turns. However, additional nodes are introduced so computational complexity

increases. Another approach employs an exception list that stores transition costs for

adjacent edges [118]. The planning algorithm can then query the transition cost list

during the route optimization. This approach retains the traditional network repre-

sentation but a list is needed with associated query increasing computation time. In

this chapter, we exploit the latter approach, a planner with a transition cost list, to

perform comfort-based route planning.

The proposed comfort-based route planner is envisioned with a Vehicle-to-Cloud-

to-Vehicle (V2C2V) implementation as illustrated in Figure 7.1. V2C2V-enabled ve-

hicles are used as mobile sensors to estimate road profile and detect road anomalies as

discussed in Chapter 3. These data are sent to the cloud and a data processing module

extracts useful information from aggregated reports. Road profile and anomaly in-

formation is then stored in a cloud database for use in comfort-based route planning.

The user specifies the destination and user preferences which reflect the user’s trade-

off between comfort and travel time. A comfort-based route planner then combines

real-time travel information from the web, road information from a database, and

road profile and anomaly data from a database to generate an optimal comfort-based

route. The benefits of V2C2V implementation include road data crowd-sourcing and

sharing, real-time traffic data update, and fast route optimization.

This chapter is organized as follows. Section 7.2 discusses comfort-related factors

and develops objective comfort metrics for route planning. The comfort-based route

planning problem is formulated and solved in Section 7.3. A real-world case study is

presented in Section 7.4 while Section 7.5 provides a summary and discussion.

99



Evolving data  
processing module 

Road profile and 
anomaly database 

Comfort 
 route 

Road profile, 
road anomaly 

Comfort-based route planner 

Real-time 
travel time 

Road infrastructure 
database 

Traffic lights, 
stop signs, etc. 

Destination, 
user preference 

Cloud 

Road profile, 
road anomaly 

Road profile, 
road anomaly 

Broadcasting 

Figure 7.1: Architecture of cloud-aided comfort-based route planning

7.2 Comfort-related factors and metrics for route planning

In [107], factors affecting riding comfort are divided into three categories: vibra-

tion and acceleration, ambient, and spatial. While ambient and spatial aspects are

important in vehicle air conditioning and ergonomic design, this chapter considers

ride comfort from the perspective of vibration and accelerations.

7.2.1 Comfort-related vibration and acceleration factors

For the purpose of route planning, in this subsection, we consider route-dependent

stimuli that influence riding comfort.

7.2.1.1 Road roughness

Rough roads can cause discomfort and driver fatigue. The International Rough-

ness Index (IRI) [115] is a standard metric to measure road roughness. However,

expensive road profilers are needed to collect IRI. Also, the road conditions evolve

over time so use of a profiler is further impeded.

100



In Chapter 3 we developed a systematic approach to estimate road profile using

commonly-available vehicle sensors. This road profile estimator computes road inputs

at front left and right wheels. For a specific road segment, we use the average of the

root mean square (RMS) of the estimated inputs in front left and right wheels as an

indicator of roughness index (RI):

RI(i) =
1

2

(
RMS(V̂l,i) +RMS(V̂r,i)

)
, (7.1)

where i is road segment number; RMS(·) denotes the root mean square of a vector

or sequence. V̂l,i and V̂r,i represent the sequence of roadway velocity input estimates

at the left and right wheels on road segment i, respectively.

Based on the experimental results in Chapter 3, the estimated RI from (7.1) for

the road surfaces illustrated in Figure 7.2(a), Figure 7.2(b) and Figure 7.2(c) are 0.62,

0.85 and 1.03, respectively.

(a) Surface 1 (b) Surface 2 (c) Surface 3

Figure 7.2: Three road surface types; roughness increases from left to right. The
roughness indices (RI) are 0.62, 0.85 and 1.03, respectively.

7.2.1.2 Road anomalies

Besides rough roads, road anomalies such as potholes and bumps can induce

sudden acceleration changes and worsen the driving experience. These anomalies

can cause back or neck pain. In Chapter 3, we presented an algorithm to detect

and label the anomalies. The anomalies can be detected with onboard sensors and

accurately labeled as large pothole, small pothole (or manhole), speed bump or road

joints as illustrated in Figure 7.3. For comfort-based route planning, different costs

can be specified for each of the anomaly types based on the driver’s evaluation of the

anomalies.

Note that hitting an existing anomaly is a probabilistic event. Anomaly locations

can be determined using the clustering algorithm developed in Chapter 4 with aggre-
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(a) Pothole (b) Manhole (c) Speed bump (d) Road joints

Figure 7.3: Road anomaly types

gated anomaly reports. With cloud queries, probabilities of hitting these anomalies

can be estimated.

7.2.1.3 Turns at intersections

Turns at intersections are undesirable for safety and efficiency reasons. The United

Parcel Service (UPS) eliminated left turns for their delivery trucks which has reduced

fleet-wide fuel consumption [119]. Turns at intersections can also degrade ride comfort

due to induced lateral accelerations and longitudinal deceleration. Left and right turns

are illustrated in Figure 7.4. We hypothesize that left turns cause more discomfort

than right turns because these turns typically cross multiple oncoming traffic lanes.

𝑟1 
𝑟2 

Figure 7.4: Left and right turns at intersections

7.2.1.4 Stop signs and traffic lights

Stop signs can also cause discomfort because of induced longitudinal acceleration

while the vehicle decelerates to a full stop and accelerates again. Similarly, traffic
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lights may require stop-and-go behavior with likelihood based on duration statistics.

Note that left turn, right turn and straight travel have different statistics at each

intersection.

7.2.1.5 Driving duration

Travel time determines how long the driver is exposed to the vibrations and thus

plays an important role in ride comfort. Prolonged driving can cause fatigue and

further reduce driving quality.

7.2.1.6 Others

Besides factors listed above, there are other factors that also affect ride comfort.

For example, road curvature and grade can affect ride comfort with similar induced

accelerations. Lighting and weather conditions, lane width, and truck traffic are also

influencing factors. However, in this chapter, we only consider the vibration-related

factors listed above as models for metrics and experimental data were available.

7.2.2 Comfort metrics for route planning

In this subsection, we integrate the aforementioned comfort factors to develop

metrics for comfort-based route planning. We first introduce roughness-weighted time

(RWT), which combines the impact of travel time and road roughness in a unified

metric. The RWT of road segment i is defined as

RWT (i) = S
(
RI(i)

)
t(i), (7.2)

where i is the road segment number. RI(i) is the roughness index of road segment

i defined in (7.1), t(i) is the expected travel time of road segment i, and S(·) is the

sigmoid weighting function defined as

S(x) = a+
b− a

1 + e−k(x−x0)
, (7.3)

where a and b are the lower and upper bounds of the weight, respectively; x0 is the

sigmoid’s midpoint and k represents the stiffness of the curve. Based on roughness

estimation for different road pavements illustrated in Figure 7.2, we specify an exam-

ple function as illustrated in Figure 7.5 with a = 0.8, b = 1.2, x0 = 0.08, and k = 80.

Note that if a = b = 1, S(x) ≡ 1.
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Figure 7.5: An example Sigmoid function (7.3) with a = 0.8, b = 1.2, x0 = 0.08, and
k = 80

The function indicates an ideally smooth road can be as pleasant as a twenty

percent discount on travel time while travel on a very rough road is equivalent to

having an additional twenty percent of travel time. The lower and upper bounds can

be specified by the user based on driver sensitivity to road roughness.

We next consider the effects of road anomalies. Drivers may have different trade-

offs between anomalies and travel time. A questionnaire may be used to obtain the

driver’s personal aversion level for each anomaly type. See Table 7.1 for the ques-

tionnaire and an example of the author’s preferences. Through the questionnaire the

driver rates the level of undesirable events by providing a number ranging from 0 to

10 for each event where 10 represents most undesirable. Driver preferences might be

averaged over more extensive human subjective experiments in future work.

Table 7.1: Driver comfort metric questionnaire for road anomalies

Large pothole (cLP ) Small pothole (cSP ) Speed bump (cSB) Road joints (cRJ)
8 4 8 2

Road anomaly events, i.e., large pothole (LP), small pothole (SP), speed bump

(SB), and road joints (RJ), can be identified using the frameworks developed in

Chapter 3 and Chapter 4. The probability of hitting these anomalies can be estimated

with aggregated reports. The total road anomaly cost (RAC) on road segment i is
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defined as a summation:

RAC(i) = JLP (i) + JSP (i) + JSB(i) + JRJ(i), (7.4)

where subscripts LP, SP, SB, and RJ, represent anomaly types. If the corresponding

undesired event is not present for road segment i, then the associated cost component

is set to 0. For example, if there is no speed bump on segment i, then JSB(i) = 0.

Otherwise, each cost component reflects the expected value of the number of potential

encounters times driver-specified cost. For example, if road segment i has probabilities

0.5, 0.8, and 0.7 for hitting a sequence of three large potholes then the large pothole

induced cost is

JLP = (0.5 + 0.8 + 0.7) ∗ cLP , (7.5)

where cLP is the user-specified cost for large potholes in Table 7.1, i.e., cLP = 8.

As discussed, intersections are undesirable for the possible stop-and-go events

as well as possible turns. We introduce an Intersection-Induced cost (IIC) metric

in which we consider both intersection turns and stop-and-go’s. Similar to RAC

development, a questionnaire may be used to quantify the driver’s aversion to these

events. See Table 7.2 for the questionnaire and the author’s personal preferences. This

questionnaire collects driver aversion level of the undesirable events at intersections

by specifying a number ranging from 0 to 10 for each event where 10 represents most

undesirable. These preferences can also be more accurately obtained with human

subject experiments in future work.

Table 7.2: Driver comfort metric questionnaire for intersections

Left turn (cLT ) Right turn (cRT ) Go straight (cGS) Stop-and-Go (cSG)
8 6 4 8

As an example, a right turn at an intersection with probability of 0.3 encountering

a red light has an IIC equal to cRT +cSG∗0.3 = 8.4. A left turn at an intersection with

a stop sign has an IIC of cLT + cSG = 16. Note that the IIC captures the transition

cost between two road segments and is associated with two edges in a graph.

Remark 7.1. The developed comfort metrics are driver-dependent. Preferences and

weighting factors need to be specified to define the metrics. We note that the weights

could be obtained by recursive learning with driver feedback, e.g., based on driver’s

comfort rating after each drive, or comparisons between different routes. However,

such work is beyond the scope of this thesis.
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7.3 Comfort-based route planning

In Section 7.2, ride comfort metrics, RWT, RAC and IIC, are defined. We incor-

porate these metrics into a comfort-based route planning framework. We model the

road network as a directed graph as illustrated in Figure 7.7. Intersections and road

segments are modeled as nodes and edges, respectively, in this directed graph. The

route planner generates an optimal route in the road network based on the specified

cost functions for RWT, RAC and IIC.

7.3.1 Problem Formulation

For a directed graph G = {V,E}, V = {v1, · · · , vn}, |V | = n, represents the list

of nodes, while E = {e1, · · · , em}, |E| = m, is the list of edges. Each edge e = (s, t)

consists of a source node and a target node and the following mappings are defined,

source
(
(s, t)

)
, s,

target
(
(s, t)

)
, t.

(7.6)

We define three weighting functions: wRWT (e) : E → R+
0 assigns each edge a RWT

cost; wRAC(e) : E → R+
0 assigns each edge a RAC cost; and wIIC(e1, e2) : E×E → R+

0

assigns each pair of connected edges an IIC cost.

A path is a list of connected edges P = {e1, · · · , ep} such that source(ei+1) =

target(ei) for i = 1, · · · , p− 1. Path weights are defined similarly as

wRWT (P ) =
∑
ei∈P

wRWT (ei),

wRAC(P ) =
∑
ei∈P

wRAC(ei),

wIIC(P ) =

p−1∑
i=1

wIIC(ei, ei+1).

(7.7)

We also define source(P ) , souce(e1) and target(P ) , target(ep). Then given a

start node s and destination node d in the graph, the goal is to find a path from s to

d such that a predefined cost function is minimized. In this work, we define the cost

function as a weighted sum of RWT, RAC and IIC costs, i.e.,

min
P∈P

wRWT (P ) + α1 · wRAC(P ) + α2 · wIIC(P ), (7.8)
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where P := {P : source(P ) = s, target(P ) = d}, and α1 > 0, α2 > 0 are weighting

factors reflecting the driver’s tradeoff between RWT, RAC and IIC. For example, if

α1 = 0.1, the driver would like to spend 0.8 minutes (roughness weighted) to avoid a

large pothole based on the questionnaire response in Table 7.1.

7.3.2 Optimal route planning by Extended Dijkstra’s algorithm

The conventional shortest-path problem has been extensively studied and a rich set

of methods have been explored, e.g., A∗ algorithm [97], Dijkstra’s algorithm [96], and

the Genetic Algorithm [98]. However, these methods only consider costs assigned to

graph edges. In our problem, the IIC models the edge-transition cost and is associated

with two edges. As a result, traditional methods can not be directly applied.

As discussed above, two main approaches have been developed to handle graph

search with dual-edge costs: the edge-based graph [116, 117] and table lookup. For the

table lookup, the cost table data structure is over a three-node sequence. For example,

let IIC(v1, v2, v3) = c denote the IIC cost of the edge transition v1 → v2 → v3. In the

graph depicted in Figure 7.7, IIC(1, 2, 5) indicates the transition cost of 1−2−5 which

captures a right turn and possible stop-and-go behavior. Note that these transition

costs can be stored in a 4× k matrix, where k is the number of edge transitions and

each column represents the three associated nodes (v1, v2, v3) and the cost value (c).

In this work, we propose this approach to implement comfort-based route planning.

Using the 4 × k edge cost matrix, Dijkstra’s algorithm can then be applied to find

the optimal route. Note that additional search is required to query the IIC costs. We

refer to the Dijkstra’s algorithm with an additional list (or matrix) structure as an

extended Dijkstra’s algorithm.

7.4 Route planning case study

In this section, we present a real-world case study for the developed comfort-based

route planner. We plan a route from Ford Research & Innovation Center, Michigan to

Ford Rouge Factory Tour, Michigan, with the goal of finding a fast and “comfortable”

route. These sites are illustrated in Figure 7.6 in which a time-optimal route is also

indicated on Google Maps.

To plan the route, we first abstract the road network into a graph as shown

in Figure 7.7. Nodes represent intersections of main roads. For example, node 7

represents the intersection of Michigan Avenue and Oakwood Boulevard, Dearborn

Michigan. The goal is to find a path from node 1 to node 25 with minimum cost per
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Figure 7.6: Route planning from Ford Research and Innovation Center to Ford Rouge
Factory Tour. A time-optimal route is highlighted on Google Maps.

(7.8).
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Figure 7.7: Abstracted road network map; each edge is assigned a cost triple (ex-
pected travel time, roughness index and road anomaly cost)

To obtain roughness and road anomaly information for the related route segments,
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we collected data in an experimental test vehicle that implements the estimation al-

gorithm developed in Chapter 3. The vehicle trace and detected anomalies are shown

in Figure 7.8. Note that no speed bumps were encountered in the test drive. Then

combining the anomalies with the driver anomaly cost specifications in Table 7.1,

(7.4) and (7.5), the road anomaly cost (RAC) of each road segment was computed.

Ideally data from multiple vehicles should be collected to indicate road anomalies

more accurately and the probability of hitting the anomalies can be better estimated.

However, in this study, test vehicle availability was limited so detected anomalies were

assigned probability 1 when calculating the RAC of each road segment. Note that the

above challenge can be capably handled by the implementation of a V2C2V-enabled

fleet. With aggregated reports, we can detect all the anomalies and estimate the

probabilities of hitting these anomalies eventually.

 

 
Trace
Large pothole
Small pothole
Road joint

Figure 7.8: Trace of the experimental drive and detected anomalies

Road profile inputs were estimated using the simultaneous road profile estimation

and anomaly detection algorithm developed in Chapter 3. The roughness index (RI)

of each road segment was generated using (7.1). In this work, we use data from a single

test drive as a representative study. Expected travel time was captured using Google

Maps at 03:10 PM, 10/25/2015 (Sunday) EST. In the case study, we were not able to

get the statistics of the traffic lights and thus will not consider the intersection-related
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costs in this case study, i.e., α2 = 0 from Equation (7.8).

As a result, each edge is associated with three metrics, i.e., travel time, RI and

RAC, as illustrated in Figure 7.7. Note that since the road segments we considered are

all bidirectional, we approximate costs of both directions with the same metric values.

To facilitate route planning, we exploit roughness weighted time (RWT) developed in

(7.2) and (7.3). With the example sigmoid function in Figure 7.5, the RWT of each

segment was calculated as shown in Figure 7.9. Each edge is associated with two

metrics, RWT and RAC. We are now able to use Dijkstra’s algorithm to find optimal

routes as described below.
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Figure 7.9: Abstracted road network map; each edge is labeled by a tuple (RWT,
RAC)

7.4.1 Time optimal route

To obtain the time-optimal route without considering road roughness and road

anomalies, we set a = b = 1 in Sigmoid function (7.3) so that the travel time is

not weighted by road roughness. We then set weighting factor α1 in (7.8) to be 0.

The obtained route is 1-2-3-8-9-14-19-20-23-25 with 11.1 minutes travel time. The

obtained route matches the route recommended by Google Maps (Figure 7.6).
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Although it is fastest, this route contains 4 large potholes, 5 small potholes and 2

road joints which yield a total road anomaly cost of 56 (4× 8 + 5× 4 + 2× 2).

7.4.2 α1 = 0.06 case

We next plan routes with different α’s. Let a and b set to the same values as in

the example from Figure 7.5, and let α1 = 0.06. The obtained route is 1-2-3-8-9-

14-13-16-21-19-20-23-25 as shown in Figure 7.10. The unweighted travel time is 14.1

minutes which is 3 minutes longer than the time-optimal route. However, there are

only 1 large pothole, 3 small potholes and 4 road joints with an induced road anomaly

cost of 28 (1× 8 + 3× 4 + 4× 2).

Figure 7.10: Optimal comfort route with α1 = 0.06

7.4.3 α1 = 0.1 case

By assigning α1 = 0.1, we obtain the route 1-2-3-8-9-14-12-11-17-22-23-25 as

shown in Figure 7.11. The unweighted travel time is 15 minutes which is 4 min-

utes longer than the time-optimal route. However, the road anomaly cost is only 18

with 1 large pothole, 1 small pothole and 3 road joints.

7.4.4 Routes with minimum anomaly impact

To obtain the route with minimum anomaly impact, we can set α1 to be large.

By setting α1 = 10, we obtain route 1-2-3-4-6-10-13-16-21-19-18-20-23-25 as shown

in Figure 7.12. The unweighted travel time is 20 minutes, 9 minutes longer than the
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Figure 7.11: Optimal comfort route with α1 = 0.1

fastest route. However, this route offers minimum anomaly impact, containing 0 large

potholes, 1 small pothole, and 3 road joints.

Figure 7.12: Route with minimum anomaly impact (α1 = 10)

7.5 Summary and discussion

In this chapter, we developed a comfort-based route planning framework that

considers both time and ride comfort. Three objective metrics, roughness weighted

time (RWT), road anomaly cost (RAC) and intersection-induced cost (IIC), were

formulated and used in comfort-based route planning. The problem of route planning
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with edge-transition cost is solved with an extended Dijkstra’s algorithm. A real-world

case study was presented to demonstrate how comfortable routes can differ from the

time-optimal route. A simultaneous road profile estimation and anomaly detection

algorithm was implemented in a test vehicle to collect road profile and anomaly data

for the case study.

Future work will include a study of obtaining the driver’s weights among these

costs based on human subjective experiments. Additional data for intersection statis-

tics also must be collected to include the IIC metric in the case study. We also plan to

demonstrate comfort-based route planning with a V2C2V-equipped vehicle to obtain

further driver feedback and develop an informative in-vehicle interface.
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CHAPTER 8

Conclusions and future work

8.1 Summary

This dissertation has investigated several potential automotive planning and con-

trol Vehicle-to-Cloud-to-Vehicle (V2C2V) applications. In particular, a multi-phase

dynamic model has been developed to characterize the response of hitting a pothole

with the long-term aim of populating a crowd-sourced database of potholes and more

generally road anomalies. We have also developed an algorithm to simultaneously

estimate road profile and detect road anomalies, supporting this same V2C2V goal.

The framework has been demonstrated in a Ford test vehicle with promising perfor-

mance. This thesis also developed a clustering algorithm to process aggregated road

anomaly reports to compress anomaly information. Data from the road anomaly and

profile database can be used in the cloud-aided semi-active suspension control sys-

tem developed in this thesis. The suspension controller exploits the road profile and

anomaly data from the cloud as a preview.

A road safety metric has been developed by processing a comprehensive database

from the Highway Safety Information System and a cloud-aided safety-based route

planning capability has been formulated and evaluated in simulation-based case stud-

ies. We have also developed a comfort-based route planner by considering factors

including road roughness, road anomaly and intersections.

8.2 Conclusions

8.2.1 Benefits of V2C2V

In this dissertation, several benefits of the V2C2V implementation have been

explored. We first showed that vehicles can be used as mobile sensors to crowd-
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source roadway data. In Chapter 3, we developed a framework to simultaneously

estimate road profile and detect road anomalies using commonly available sensors.

An evolving clustering algorithm was also developed in Chapter 4 to process anomaly

reports so that the processed data can be shared with the V2C2V-equipped vehicles.

Second, we demonstrated that information on the cloud can enhance vehicle con-

trol and enable comfort and safety-based route planning. In Chapter 5, we showed

that crowd-sourced road profile and road anomaly data can be used to enable cloud-

based semi-active suspension control. We also showed that road safety and comfort

databases can enable safety and comfort-based route planning in Chapter 6 and Chap-

ter 7, respectively.

Third, we envisioned that cloud computing can greatly facilitate real-time compu-

tation and data access. In Chapter 5, we proposed to compute the optimal suspension

mode on the cloud, which can provide a solution in real-time. We also proposed route

planning optimizations in Chapter 6 and 7 on the cloud to improve computing per-

formance and data storage capacity.

Specific developments and results are summarized below for each major contribu-

tion of this dissertation.

8.2.2 Pothole response modeling and detection

We have developed a multi-phase dynamic model to characterize the complex

response of hitting a pothole. The switched system can be exploited for estimation and

control purposes. Simulation comparisons between the developed model and FTire

were favorable, and a pothole detection algorithm was developed from integrated

application of the multi-phase model, Bayesian estimation, and an Unscented Kalman

Filter.

Complex response of dynamic systems may be analyzed by decomposing it into

several simplified phases based on a good understanding of the mechanism. Bayesian

estimation needs a sequence of measurements and may require high-bandwidth sensors

for implementation, especially for systems with fast dynamics.

8.2.3 Simultaneous road profile estimation and anomaly detection

We presented a framework for simultaneous road profile estimation and anomaly

detection. The theory of JDP-based estimation was extended to the vector distur-

bance case, as well as the case where the jump diffusion disturbance also influences

the measurement channel data. A road profile estimation and anomaly detection
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algorithm was developed by combining the JDP-based estimator with a multi-input

observer. The algorithm was implemented and tested in an experimental vehicle with

promising results.

Road inputs to front tires were treated as disturbances in state estimation while

they are treated as system inputs and estimated in the input observer. These treat-

ments enables the algorithm which was shown to be legit based on the performance.

8.2.4 Cloud-enabled anomaly reports clustering

We developed a clustering algorithm to process aggregated road anomaly reports

from cloud-enabled vehicles. The algorithm can localize isolated anomalies and com-

press information for stretched anomaly segments. By exploiting o-cluster and m-

cluster strategies, the clustering algorithm can also reject outliers and capture the

road anomaly changes over time.

In recursive computations with matrix inverse, Woodbury matrix inverse lemma

can be used to resolve numerical computation issues and reduce computational com-

plexity.

8.2.5 Cloud-aided semi-active suspension control

A novel V2C2V implementation of a semi-active suspension control system was

developed. Pothole and road profile information accessed from the cloud were ex-

ploited to optimize suspension control decisions. We showed that in the simplified

form, the optimal semi-active suspension mode selection problem reduces to solving

three differential equations and then evaluating the predicted cost over a prescribed

horizon. This application demonstrated how the crowd-sourced road data on the

cloud can be used.

Many V2C2V vehicle control systems can use this similar hierarchical control

strategy. Higher-level commands or specifications can be computed on the cloud and

then sent to the vehicle. Real-time algorithms can be implemented onboard with

received optimal operating mode or parameters. This implementation can ensure

safety even communication failures.

8.2.6 Cloud-aided safety-based route planning

We proposed a safety-based route planning framework that optimizes over both

travel time and road risk metrics. A road and accident database from HSIS was

mined with a hybrid ANN model as shown to have superior performance over existing
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models. Sensitivity analysis of the model reveals interesting trends. Dynamic factors

such as time of day, day of the week and weather were first considered in a road

risk index framework. The V2C2V implementation was proposed to facilitate access

to extensive computational and regularly-updated database resources not available

onboard. A real-world case study was performed to show how a “safe” road can differ

from the fastest route.

Sensitivity analysis on developed models can indicate interesting trends and help

gain confidence on the model when reasonable trends are revealed.

8.2.7 Cloud-aided comfort-based route planning

We demonstrated how crowd-sourced road profile and anomaly information can

be used for a proposed comfort-based route planner. Three objective comfort-related

metrics, roughness weighted time (RWT), road anomaly cost (RAC), and intersection-

induced cost (IIC), were formulated and used for the comfort-based route planning.

A test vehicle was employed to collect road profile and anomaly data for a real-world

case study. The study demonstrated how the “comfortable” can be different from the

time-optimal route.

8.3 Future work

8.3.1 Pothole response modeling and detection

In the simulation comparison between our multi-phase dynamic model and FTire,

the longitudinal response of FTire has more resonance. The difference can be reduced

by introducing two springs along the tires in our model. The tradeoff between model

complexity and accuracy would need to be evaluated.

The developed multi-phase model was compared with the FTire simulation pack-

age for three cases. The comparison should be run multiple times (e.g., 1000 times)

and statistics about the error should be analyzed. Model parameters should also be

tuned to improve the model performance.

Furthermore, we exploited Bayesian estimation to detect potholes, which required

a sequence of measurements for each phase. Since each phase happens in a very

short period of time (around 0.01s), this requirement demands high-bandwidth sen-

sors which are not commonly available today. Other detection algorithm might be

developed based on the multi-phase model with lower sensor sampling rate require-

ments.
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8.3.2 Simultaneous road profile estimation and anomaly detection

The thresholds th1 and th2 in the anomaly detection algorithm (Algorithm 3.1)

were chosen based on limited experimental data. In the future work, we would like

to exploit machine learning techniques to determine optimal thresholds with more

experimental data.

Due to sensor availability in the test vehicle, a half-car model was used in the

algorithm design. Consequently, repeated patterns were revealed as expected and

additional logic was required to discriminate repeated patterns from new anomalies.

Based on simulation results, one more suspension deflection measurement on the

right side can actually result in good estimation results even in a full-car model.

The suspension sensors on the right side are typically available in most vehicles with

semi-active suspension but they were not available in the vehicle used in our tests.

In the future, a full-car model can be exploited augmented with the right suspension

measurements. This augmentation should facilitate estimating inputs at four wheels

and discriminating repeated patterns.

The algorithm was only demonstrated in one vehicle. Implementation in multiple

vehicles should be performed for robustness analysis and in order to obtain more

representative road information.

8.3.3 Cloud-enabled anomaly reports clustering

The clustering algorithm was demonstrated with simulations. We would like to

apply the results in Chapter 3 to real-world data. The question of how to efficiently

store and retrieve the data should also be considered in the future work.

Parameter selection was briefly discussed in this study. Future work should include

a more comprehensive study on parameter selection based on GPS characteristics and

traffic density information. Real-world data should be collected and machine learning

techniques can be applied to find optimal parameters.

8.3.4 Cloud-aided semi-active suspension control

A simplified semi-active suspension control problem was considered by choosing

the best mode for a certain time horizon. Future research is needed to extend these

results to handle semi-active suspension state and control constraints.

Pothole locations were assumed to be exactly known and stored in a cloud database.

An alternative way to model the potholes is by a jump (or Poisson) process. This

model enables the suspension mode selection problem to be analyzed with similar
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Jump-Diffusion Process (JDP) developments in Chapter 3. Statistics of the processes

can be stored in the cloud instead of the detailed spatial profile.

Also, further research is needed to understand how the road profile information

should be optimally stored, updated, and retrieved. The selection of the optimization

horizon should also be considered in future work.

8.3.5 Cloud-aided safety-based route planning

We would like to find the road characteristics for Michigan and build a road risk

database for Michigan road segments. We are also interested in tradeoff analysis of

how long the route buffer is downloaded. The planner should be evaluated in human

subjective experiments with a V2C2V-equipped vehicle to fully quantify its benefits.

Traffic density was considered in the road risk metric. Suppose drivers follow

the safe routes indicated by the planner, the traffic density of related roads may

also change. This dynamic evolution of traffic density due to the safety-based route

planner should also be analyzed.

8.3.6 Cloud-aided comfort-based route planning

Road roughness, road anomaly, intersection, and time were considered in our

comfort-based route planning problem formulation. We would like to include factors

such as grade and curvature to develop a more comprehensive comfort metric. Future

work should also include a demonstration with a fleet of V2C2V-equipped vehicles.

The weighting factors in the cost function are specified by the user. Future research

should consider applying learning techniques to obtain the optimal weights based on

driver feedback. For example, the planner may guide drivers through different routes

and adjust the weights by route comparisons based on driver feedback.

Safety and comfort metrics have both been developed. We would like to extend our

route planning framework to a multi-objective route planning with time, comfort and

safety metrics. Road and vehicle data from University of Michigan Mobility Trans-

formation Center (MTC) [120] and University of Michigan Transportation Research

Institute can also be further analyzed. Those data may enable additional planning

functionalities such as workload-based route planning.
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APPENDIX A

Infinitesimal generator for systems driven by a

jump diffusion process

Lemma A.1 ([121]). Consider a stochastic system in the following form,

dx(t) = [A(t)x(t) + f(t)]dt+D(t, x)dζ +G(t, x)dη, (A.1)

where A, D, G are known (matrix) functions of appropriate dimensions, f is a known

function, ζ is a standard vector Wiener process and η is a vector jump process. The

processes η and ζ are assumed to be independent of each other. The infinitesimal

generator of a given sufficiently smooth function V (t, x), denoted by LV (t, x), can be

shown to have the following form,

LV (t, x) =
∂V

∂t
+ [A(t)x(t) + f(t)]TV ′x(t, x)

+
1

2
trace(D(t, x)TV ′′xxD(t, x))

+

∫
Rm

[
V (t, x+G(t, x)s)− V (t, x)

]
λφ(s)ds,

(A.2)

where m is the dimension of η, V ′x and V ′′xx denote the first and second partial deriva-

tives of V with respect to x; λ is the rate parameter of the jumps; and φ(s) is the

joint jump size probability density function, assuming hereafter that the jump size is

a continuous random vector.
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