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Abstract 

 

Functional interpretation of high-throughput sequencing (HTS) data provides 

insight into biological systems, including important pathways in the context under study. 

A common approach is gene set enrichment (GSE) testing. GSE emerged in the age of 

microarrays as a way to biologically interpret long lists of differentially expressed genes 

(DEGs). However, HTS data has characteristics not present in microarray data that can 

bias GSE results. My thesis is focused on identifying, characterizing, and accounting for 

biases to improve functional interpretation in HTS data.  

In this thesis, I present GSE tests designed for ChIP-seq data and RNA-seq 

data. Our tests have applications beyond HTS data, which we show by using them to 

analyze genomic features, including mappability and repeat content. ChIP-Enrich is a 

GSE test for ChIP-seq data. It includes a database of locus definitions to annotate 

peaks to different gene loci (such as exons, introns, promoters, and other intergenic 

regions), which allows for biological discovery unique to different regions. ChIP-Enrich 

empirically adjusts for the observed bias due to the varying lengths of these gene loci in 

its enrichment test. RNA-Enrich is a GSE test for RNA-seq data. RNA-Enrich corrects 

for the selection bias often observed in RNA-seq data, where long and highly expressed 

genes are more likely to be identified as DEGs. Unlike other GSE tests for RNA-seq 

data, RNA-Enrich does not require permutations or a cut-off to define DEGs, and works 

well with small sample sizes. For both ChIP-Enrich and RNA-Enrich, we showed well-

calibrated type I error compared to competing methods. Finally, we characterize 

sequence mappability, which is one potential bias in the interpretation of HTS data. We 

characterize properties of the main contributors of low mappability (transposons and 

segmental duplications), overall mappability, and their relationship with gene locus 

length and function. Across different transcribed and regulatory regions, certain gene 

functions showed unique signatures involving significantly more/fewer associated 
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repeats, higher/lower mappability, and longer/shorter locus length. Our analyses provide 

insight into evolutionary selection pressures that maintain complexity of gene regulation. 

Overall, we demonstrate that considering characteristics of the human genome is 

essential to improving functional interpretation of HTS data. 
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 Introduction Chapter 1

1.1 Introduction 

The era of high-throughput sequencing (HTS), also known as next-generation 

sequencing or massively parallel sequencing, has inspired progress in genomics that 

has produced an incredible amount of data. Along with generating the data, researchers 

have also developed various algorithms for each step of data processing. What starts 

as a multitude of short DNA sequences eventually undergoes quality control, genome 

alignment, gene assignment or quantitation, a myriad of statistical analyses, and then, 

finally, interpretation [1, 2]. Since the assembly of the human genome, we have 

expanded high-throughput sequencing from sequencing of full genomes to a wide 

variety of applications that can measure gene expression [3], gene regulation and 

epigenetic marks [4]. The human genome is complicated but not random. Studying it 

poses many challenges. The organization of the human genome (e.g. exon/intron 

structures, spatial organization, and sequence redundancy) [5, 6] can perpetuate as 

biases in downstream analyses of HTS studies, resulting in incorrect interpretations of 

results, and therefore also may lead researchers to draw erroneous conclusions. This 

dissertation is focused on identifying, characterizing, and accounting for such biases to 

improve functional interpretation in various HTS platforms, including RNA-seq and 

ChIP-seq. Biases due to gene length, sequencing selection, and sequence mappability 

(the ability to uniquely align short DNA sequences) will be explored. While the research 

only includes select sequencing platforms, the findings and the methodology may be 

applicable to many types of current and, perhaps, future iterations of high-throughput 

sequencing technologies. 
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1.2 Background 

1.2.1 High-throughput technologies 

In this section, I explore some basic designs of popular high-throughput 

technologies, and pros and cons of each technology as relevant to this dissertation, 

beginning with the technology that predates HTS: microarrays. Prior to HTS, 

microarrays were the tools of choice for measuring gene expression, copy number 

variation, DNA-binding (ChIP-chips), SNP genotyping, and more. They still remain 

popular in some areas of study such as DNA methylation and SNP genotyping. Gene 

expression microarrays make use of oligo hybridization and fluorescent labelling of 

probes to measure gene expression. Probes contain DNA sequence targets that are 

spread across the genome to target various parts of the gene body and/or intergenic 

regions. Probes occupy a small chip, and each sample cDNA (generated from sample 

RNA) can be PCR amplified to determine levels of expression based on the fluorescent 

signal. The Human MethylationEPIC BeadChip, for example, is the latest methylation 

microarray from Illumina and has over 850,000 probes that measure methylation using 

bisulfite-converted DNA across the genome. Many statistical applications for high-

throughput data already existed for microarrays when next-generation sequencing was 

developed. Naively, approaches developed for microarrays were applied to sequencing 

data with little regard to whether underlying assumptions were correct. As I will further 

discuss in this dissertation, understanding the differences in data from microarrays and 

from sequencing is essential in developing the right tools, and for biological 

interpretation. 

The incentive to complete the Human Genome Project inspired next-generation 

sequencing technologies, which in turn motivated the development of a variety of 

molecular methods to explore a wide range of biological phenomena. The basis of 

massively parallel sequencing requires library preparation from select fragmentation of 

DNA. Fragments are then ligated to common adaptor sequences, and optionally 

undergo multiple rounds of amplification to increase product input [7]. In RNA-seq, 

cDNA libraries can be prepared from RNA with specific features, for example those with 

a poly-A tail, a unique feature to mRNA [3]. Variations on RNA-seq to increase power to 
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detect specific isoforms and increase coverage include creating libraries that are paired-

end and/or strand-specific. RNA-seq achieves a much higher dynamic range than 

microarrays and is not subjected to the same selection bias that may occur due to probe 

placement. However, RNA-seq is not without its problems. Longer genes and more 

highly expressed genes are more likely to have more reads, and therefore are more 

likely to be called as significantly differentially expressed for many of the commonly 

used tests [8, 9]. In addition, sequenced fragments exhibit positional and sequence-

specific preferences [10]. Several methods have been proposed to correct for such 

biases at the gene level [11-13], however if left uncorrected (or corrected for poorly), 

these biases can affect interpretation at the gene function level, e.g. gene set 

enrichment testing – a topic I explore in Chapter 3 of this dissertation. 

While RNA-seq is the HTS equivalent to gene expression microarrays, ChIP-seq 

is the HTS equivalent of ChIP-chip. ChIP is chromatin immunoprecipitation, a procedure 

to study the interaction between proteins and DNA in vivo. ChIP-chip is ChIP combined 

with microarrays, whereas ChIP-seq is ChIP combined with massively parallel 

sequencing. In ChIP-seq, which is used to study genome-wide protein-DNA interactions 

(e.g. to identify transcription factor binding sites), libraries can be prepared from DNA 

bound by protein using an anti-body to target the particular protein of interest after 

crosslinking of protein and DNA, and then sample fragmentation. ChIP-seq has various 

modifications for applications beyond transcription factors. Histone modification ChIP-

seq involves using antibodies that can detect specific histone tail modifications such as 

methylation or acetylation of one of the histone amino acids in the tetramer nucleosome 

protein complex. DNase-seq bypasses the antibody and performs fragmentation by 

targeting DNase hypersensitive sites with DNaseI digestion. FAIRE-seq (Formaldehyde-

Assisted Isolation of Regulatory Elements) does not use antibodies and therefore is not 

limited to particular DNA-binding proteins. Proteins are crosslinked, followed by sample 

fragmentation, sonication, and then phenol-chloroform extraction of DNA [4, 14]. Similar 

to RNA-seq, ChIP-seq also has a selection bias, in that longer genes and genes with 

more intergenic space around them are often more likely to have an associated peak. 

Technically speaking, peaks are areas of the genome where there is a significant 

number of consensus sequence read alignments; biologically speaking, they are the 
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predicted protein-DNA binding sites. A study of the performance of a dozen popularly 

used peak calling algorithms [15] (including MACS, spp, and PeakSeq – three peak 

callers that have been used by the ENCODE consortium [16]) on ChIP-seq datasets for 

three transcription factors with different binding profiles, showed that the number of 

peaks identified can vary by tens of thousands among different peak callers. There are 

several newer peak callers [17-19] that have shown significant improvement in calling 

peaks with higher specificity – i.e. tested datasets produce peaks with high occurrence 

of binding motif and can be reproduced with ChIP and PCR. Unfortunately, it is often 

difficult to convince users to diverge from their usual protocol. Conceivably, a list of 

ChIP peaks that contains a substantial amount of false negatives may affect 

downstream analysis if certain categories of genes consistently have many peaks or 

few peaks. 

A critical step to analysis of HTS data is alignment of reads. Longer read lengths 

are more likely to uniquely align to areas of the genome but shorter reads may align to 

multiple places, and therefore are often less mappable (i.e. have less unique 

sequence). Repeats pose a problem to sequence alignment. An estimated 45% of the 

human genome consists of repetitive elements called transposons [20, 21]. As we show 

in Chapter 4, they especially have a high occurrence in introns and intergenic regions. 

Alu elements, a type of short interspersed nuclear element, make up about 11% of the 

human genome and often occur near the transcription start site (TSS) [22]. Depending 

on how non-uniquely mappable reads are handled by the chosen sequence aligner, 

ChIP-seq peaks that occur near the TSS may be less likely to be detected if the peak 

region is not highly mappable. This also applies to any other region in the genome that 

is not uniquely mappable. 

1.2.2 Gene set enrichment testing 

Gene set enrichment (GSE) testing, also known as functional analysis of genes, 

is a way to identify important gene functions that differ between two different biological 

states. We have used it, for different genomic features like mappabiilty, repeat content, 

and gene length (Chapter 4). GSE can give insights into how a biological system works, 

and perhaps which pathways are important targets. GSE emerged in the age of 

microarrays as a way to interpret the biological relevance of long lists of differentially 
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expressed genes (DEGs). Microarrays conquered the problem of obtaining gene 

expression profiles; however often the result was a list of hundreds or thousands of 

DEGs, which was simply too much information to absorb one gene at a time. The most 

common goal of GSE testing is to find pathways or biological processes that were 

affected by the conditions of an experiment. For example, in a microarray experiment 

that tested changes in gene expression before and after a drug treatment, GSE testing 

can enlighten researchers about which pathways were most affected by the treatment. 

In ChIP-seq data, one may be interested in discovering what biological processes are 

regulated by a transcription factor, or in what diseases it may play a role.  

Gene sets may be constructed with various purposes in mind. Gene Ontology 

(GO), a commonly used gene set database, describes gene products in terms of 

biological processes, molecular functions, and cellular components [23]. The Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathways is a collection of manually 

drawn pathway maps representing molecular interactions and reaction networks [24]. 

Genes can also be classified into diseases (using MeSH terms or OMIM), spatially by 

open or condensed chromatin (cytoband), drug target lists, and many more. Typically 

GSE tests for overrepresentation, or enrichment, of gene sets. If the GSE test is two-

sided, it may also test for underrepresentation, or depletion.  

Several popular GSE methods exist for microarray data that are commonly 

applied to HTS data, three of which I will highlight here: Fisher’s exact test, GSEA, and 

random sets. Fisher’s exact test (FET) is a statistical test that analyzes contingency 

tables. In the case of GSE, the table is typically 2-by-2, where rows are gene set status 

(if the gene is in the gene set or not), and columns are gene significance status (for 

example, either differentially expressed or not, have a ChIP peak or not, etc). DAVID is 

perhaps the most widely used FET-based GSE test [25, 26]. DAVID modifies the FET 

by subtracting 1 from the table cell with the number of DEGs that are in the gene set. 

This modified FET is more conservative, it reduces the unpredictability of small gene 

sets, while having minimal effect on larger gene sets. Many implementations of FET 

exist besides DAVID, including GoMiner [27, 28] and HOMER [29] – which is designed 

for HTS data, allowing for association of peaks to genes as well as GSE testing. The 

underlying assumption of FET that is often violated with HTS data is that all genes are 
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assumed to have equal power (similar type II error rate) and to be equally likely to be a 

false positive (similar type I error rate). As we show in chapters 2-4, there are several 

factors that make a gene more or less likely to be identified as differentially expressed, 

have a peak, or any differential status. 

Another widely used GSE method is GSEA, abbreviated from “Gene Set 

Enrichment Analysis”. GSEA uses a weighted Kolmogorov-Smirnov test, a non-

parametric test (i.e. it does not rely on a statistical distribution) [30, 31]. Input for GSEA 

is a ranked list of gene-level statistics, (for example, fold change ranked from most up-

regulated to most down-regulated). A running-sum of the ordered gene-level statistics of 

genes in the gene set is calculated and compared to those not in the gene set to obtain 

an enrichment score. To calculate an associated p-value, a null distribution is generated 

by permuting phenotype labels, and the original enrichment score is compared to the 

distribution of permuted enrichment scores. There are several versions of GSEA that 

have been adapted for HTS data, including GSAASeqSP [32], which permutes read 

counts of genes, and SeqGSEA [33], which permutes the negative binomial statistics 

after using DESeq to test for differential gene expression. While GSEA, and some 

GSEA-like methods give the user the option to permute genes instead of phenotype 

labels, the GSEA authors recommend doing the latter, which “preserves gene-gene 

correlations and, thus, provides a more biologically reasonable assessment of 

significance than would be obtained by permuting genes” [31]. However, this cannot be 

done with small sample sized experiments, because a sufficient number of unique 

permutations is required to obtain p-values with reasonable accuracy. Both 

GSAASeqSP and SeqGSEA recommend sample sizes of at least 6-7 in each 

phenotype for accurate GSE results. Often in HTS experiments, it is not feasible to have 

this many samples in each condition.  

Finally, I would like to describe the random sets method for GSE testing [34]. 

Random sets is, in a way, a hybrid of FET and GSEA. While FET is limited to a binary 

gene status, the random sets approach, like GSEA, allows gene level statistics to be 

any general quantitative expression score, sg, for gene g. However, the test may not 

behave properly if the distribution of scores, sg, is far from normally distributed. The 

unstandardized enrichment score for random sets is 𝑋̅ =
1

𝑚
∫ 𝑠𝑔𝑔∈𝐶

, where m is the 
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number of genes in gene set C. Intuitively, the enrichment score of one gene set is 

compared to random sets of the same size m that are drawn from the population of G 

genes (𝐺
𝑚

), however this comparison is done with a simple theoretical formula rather 

than performed directly, resulting in a quick, reproducible result. This approach is 

equivalent to permuting gene-level statistics among the gene labels. In the case where 

𝑠𝑔 is binary, random sets reduces to FET. Newton et al (2007) showed the distribution of 

𝑋̅ is approximately normal, and used the method of moments to determine a test 

statistic and associated p-value for enrichment. While random sets does not require a 

binary gene status like FET, nor is it limited by small sample sizes like GSEA, it does 

continue to make the assumption that all genes are equally likely to be detected as 

significant (i.e. all genes have approximately the same power and same type 1 error). I 

expand on the performance of random sets in more detail in Chapter 3. 

Other GSE tests mentioned in this dissertation belong to the class of model-

based methods. LRpath, also developed for microarray data, uses a logistic regression 

model to test whether differential expression p-values, or any significance values of 

choice, for genes in a gene set are more or less significant than those for other genes 

[35, 36]. LRpath makes the same assumption that all genes are assumed to have equal 

power and equally likely to be a false positive. In Chapter 4, we use a different logistic 

regression GSE method, Broad-Enrich [37], that uses coverage proportion of gene 

(appropriate for HTS data like ChIP-seq of histone modifications) as the values of 

interest and corrects for gene locus length. In some cases, FET, GSEA, random sets, 

and LRpath can be applied to HTS data. However, as I will explain in this dissertation, 

the underlying assumptions of these tests are often not met with HTS data. 

1.3 Overview of dissertation 

Why is it important to account for bias in gene set enrichment testing? What are 

the origins of bias in HTS data? And what can we do to correct for these biases so that 

our conclusions are biologically sound? These are important questions that I seek to 

answer in this dissertation. Functional interpretation (e.g. GSE testing) bridges the gap 

between unwieldy, often hard to organize, high-throughput sequencing data and 

biological relevance. Improving our methods for analyzing HTS data begins with 
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identification and characterization of the biases in the current state of HTS technology. It 

is important to note both technical and biological biases, as sometimes both are not 

mutually exclusive and often will affect the accuracy of conclusions that one draws from 

analyzing HTS data.  

In Chapter 2, we present a gene set enrichment test, called ChIP-Enrich, that 

was designed for ChIP-seq data and other assays that produce a list of relatively narrow 

genomic regions (peaks). To perform GSE testing with ChIP-seq data, peaks have to be 

assigned to genes. The common practice is to assign peaks (defined by their midpoints) 

to the nearest TSS. As I have mentioned before, genes with longer loci are more likely 

to have a peak assigned to them. We address the bias of gene locus length in 

assignment of ChIP-seq peaks to genes, and developed a method that empirically 

adjusts for the observed bias. In doing so, we created a database of locus definitions to 

annotate peaks to different loci, such as introns, exons, nearest TSS, and 5kb around a 

TSS, therefore requiring different locus length adjustments and allowing for biological 

discovery that may be unique to different regulatory regions. We demonstrated that 

ChIP-Enrich is able to correct for all kinds of peak-to-locus-length relationships while 

maintaining a good type I error. We also introduce the significance of correcting for 

sequence mappability, which I expound upon in Chapter 4. In the ChIP-Enrich project, 

my contributions as a co-first author, in addition to helping to write the manuscript, were: 

(1) creating the locus definitions for the available genomes; (2) calculating mappability 

values for different kmer lengths and genomes; (3) applying ChIP-Enrich to 63 different 

ENCODE ChIP-seq datasets; (4) along with co-first author Ryan Welch, performing 

permutation testing on select ENCODE datasets to show how type I error rates of ChIP-

Enrich compared to competing methods; (5) analyzing and interpreting a case study on 

a glucocorticoid receptor ChIP-seq dataset from ENCODE in respect to its regulatory 

activity in promoter and distal regions; and (6) assisting in creating the R Bioconductor 

package, chipenrich and chipenrich.data that are also employed on our website: 

http://chip-enrich.med.umich.edu/.  

In Chapter 3, we present a gene set enrichment test, RNA-Enrich, to address a 

selection bias often observed in RNA-seq data where long and highly expressed genes 

are more likely to be identified as significantly differentially expressed (i.e. not all genes 

http://chip-enrich.med.umich.edu/
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have the same power). We modify the random sets method to adjust for average read 

count per gene. To calculate a test statistic for gene set enrichment, we determine a 

weight based on the observed relationship between read count and significance values 

in the data. In datasets where there is no relationship, RNA-Enrich approximates 

random sets. In datasets where there is a relationship, correcting for the bias allows for 

improved identification of truly enriched or depleted gene sets. We compare RNA-

Enrich to other GSE methods: random sets, DAVID, GOseq, GSAASeqSP and 

SeqGSEA. We also implement RNA-Enrich using significance values from different 

sources, including differential gene expression p-values from two different methods and 

a corrected fold change instead of p-values. We show that using average gene read 

count as a proxy for the selection bias greatly improves the type I error compared to 

other GSE tests for RNA-seq data.  

Chapter 4 delves into sequence mappability, its relationship with repeat elements 

and gene length, and their correlation with gene function. We perform GSE testing using 

highly prevalent transposons in the human genome: L1 elements, which are a type of 

long intersperse nuclear element, and Alu elements, a type of short intersperse nuclear 

element. Together, these two repetitive elements make up an estimated 26% of the 

human genome. Segmental duplications, which are long duplications of DNA sequence 

that are 1-200kb in length and have >90% identity, make up 5% of the human genome. 

We show that across different regulatory regions, certain gene functions show unique 

enrichment signatures of Alu elements, L1 elements, segmental duplication, 

mappability, and gene length. That is, certain types of genes have significantly 

more/fewer associated repeat elements, higher/lower mappability, and longer/shorter 

gene locus length. While sequence mappability is a technical measurement that 

depends on sequence read length, we show that it can elucidate genomic architecture 

that relates to gene length and repeat elements. Our analyses gives insight into how 

evolutionary selection has been used to maintain the required complexity of gene 

regulations, and which types of genes have been most affected. 
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 ChIP-Enrich: Gene set enrichment testing for ChIP-seq Chapter 2

data 

2.1 Introduction 

Genome-wide high-throughput experiments can assess transcription factor 

binding, epigenetic marks, differential gene expression or disease association, and 

often result in thousands of identified genomic regions or genes. Gene set enrichment 

testing is one way to determine how these lists of genomic regions or genes are related 

biologically, e.g. by assessment of Gene Ontology (GO)) terms [38-40]. For ChIP-seq 

experiments, oftentimes thousands of transcription factor binding sites or histone 

modification sites are identified. Enrichment testing of this data, or with a union or 

intersection of multiple ChIP-seq datasets, can identify key biological processes, 

functions, disease gene signatures, or other biological concepts regulated by the 

factor(s) under the given experimental conditions [41]. Conversely, ChIP-seq data can 

be used to create gene sets against which other experimental datasets can be tested 

for significant enrichment, including other ChIP-seq data [42, 43]. 

Gene set enrichment tests can generally be classified as competitive [36, 39, 44], 

self-contained [31], or a hybrid [31, 45], as discussed by Efron and Tibshirani in [46]. 

The hypothesis of competitive approaches is that there is a higher proportion of 

identified genes (or a higher level of significance overall) in the gene set of interest than 

in the remaining genes. In contrast, self-contained methods only use information about 

the genes in the gene set of interest, and test whether the significance level of the set is 

greater than expected given a null hypothesis. The enrichment testing methods used for 

sets of genomic regions (ChIP-seq data), including FET and binomial based tests, are 

Chapter 2 is published as Welch RP*, Lee C*, Imbriano PM, Patil S, Weymouth TE, Smith RA, Scott LJ, Sartor 

MA: ChIP-Enrich: gene set enrichment testing for ChIP-seq data. Nucleic Acids Research 2014, 42(13). 
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all competitive approaches [40, 47]. 

Fisher’s exact test (FET), and slight variations on it, have traditionally been used 

for gene set enrichment in microarray gene expression data [39, 48-51]. FET makes the 

assumption that each gene has an equal probability of being identified as significant. 

Across gene sets, this means that each gene set is expected under the null hypothesis 

to have approximately the same proportion of significant genes as the overall proportion 

of significant genes. In contrast to microarray data, the data generated from ChIP-seq, 

RNA-Seq, and genome-wide association studies (GWAS), often show a positive 

correlation between the length of the relevant genomic region and detection of the gene 

[9, 52, 53]. In ChIP-seq data, the probability of a peak occurring within a gene or its 

surrounding non-coding sequence, which together we denote as the gene locus, is often 

positively correlated with the length of the locus [54]. Due to this correlation, genes with 

longer locus lengths contribute a disproportionate amount to the enrichment signal, and 

this bias introduced in the signal due to gene locus length violates the assumptions of 

FET. Furthermore, because many commonly tested gene sets contain genes with 

substantially longer (e.g., developmentally and nervous system related genes) or 

shorter (e.g., electron transport, rRNA processing) than average locus length [54], the 

gene sets with longer or shorter than average locus length are more or less likely, 

respectively to be detected as significantly enriched [53]. Therefore, lack of effective 

adjustment for gene locus length can lead to false positive findings.  

Several approaches have been developed to adjust for locus length in ChIP-seq 

[47], RNA-Seq (for example, GOseq) [9], and GWAS data [52, 55]. For ChIP-seq data, a 

commonly used binomial-based test asks if the total number of peaks within the loci in a 

gene set is greater than expected, given the total locus length of the gene set, the total 

number of peaks and the corresponding length of the genome (implemented in 

Genomic Regions Enrichment of Annotations Tool (GREAT)) [47, 53]. In contrast to 

FET, the assumptions of the binomial test are met when the number of peaks in a locus 

is proportional to locus length, and the variability of peak counts among genes, given 

gene locus length, is consistent with that expected by the binomial distribution.  

We examined the gene locus length-to-peak presence relationships in 63 

ENCODE ChIP-seq GM12878 datasets and found they ranged from no relationship to 
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strongly positively correlated. Given these observations, our goal was to develop a gene 

set enrichment method for ChIP-seq data (ChIP-Enrich) that empirically models and 

adjusts for the relationship between locus length and peak presence. ChIP-Enrich 

maintained the expected type I error rate (false positive rate) in all tested datasets, 

whereas FET and the binomial test did not. For each DNA binding protein (DBP), we 

asked if different (potential) regulatory region definitions would identify different 

enriched/disenriched gene sets. For the glucocorticoid receptor α (GRα), we examined 

the ability of ChIP-Enrich to detect known and potentially novel functions. Our method is 

freely available in the R Bioconductor package chipenrich and as a web-based program 

(http://chip-enrich.med.umich.edu). 

2.2 Materials and Methods 

2.2.1 Experimental ChIP-seq peak datasets 

We used ENCODE ChIP-seq peak datasets from 63 DNA binding proteins for 

cell line GM12878 [56] (see http://chip-enrich.med.umich.edu/SummaryEncode.jsp) 

(Supplementary Table 2.1). We used the existing peak calls, which were called by the 

original authors using one or two of three peak calling methods (MACS, spp or Scripture 

[57-59]). For the subset of datasets that were called by two callers (MACS and spp), we 

use results from MACS, as we generally observed a larger number of called peaks for 

MACS than for spp.  

2.2.2 Gene loci definitions and presence of peaks in a locus 

We define a gene as the region between the furthest upstream transcription start 

site (TSS) and furthest downstream transcription end site (TES) for that gene. The 

positions of the TSSs and TESs for each gene were extracted from the UCSC 

knownGene table (human genome build hg19). We removed small nuclear RNAs as 

they are likely to have different regulatory mechanisms than other genes and often 

reside within the boundaries of other genes. For gene set enrichment testing we assign 

ChIP-seq peaks to genes (based on the peak midpoint) using three primary definitions 

of a gene's designated regulatory region (locus definitions). 1) Nearest TSS: the region 

between the upstream and downstream midpoints between a gene and the two 

http://chip-enrich.med.umich.edu/
http://chip-enrich.med.umich.edu/SummaryEncode.jsp
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adjacent genes' TSSs. This is equivalent to assigning each peak to the gene with the 

nearest TSS. 2) Nearest gene: the region from the midpoint between the TSS and the 

adjacent gene's TSS or TSE (whichever is closest) to the midpoint between the TES 

and the adjacent gene’s TSS or TES (whichever is closest). This is equivalent to 

assigning peaks to the nearest gene. 3) ≤1kb from TSS: the region within 1kb of all 

TSSs in a gene. If TSSs from the adjacent gene(s) are less than 2kb away, we use the 

midpoint between the two TSSs as the boundary of the locus for each gene. Additionally 

we define ≤5kb from TSS, using the same rules as we defined ≤1kb from TSS, and we 

define >10kb from TSS, by subtracting the 10kb regions around the TSS from the 

nearest TSS locus definition. We define peak presence in a locus as ≥ 1 peak midpoint 

within the gene locus boundaries. 

2.2.3 Gene Ontology terms 

GO terms from GO molecular functions, GO cellular components, and GO 

biological processes were extracted from Bioconductor species specific annotation 

packages and the GO.db R package. We removed genes from each GO term that do 

not exist in our gene locus definitions as these genes could not have a peak assigned to 

them. For testing in the manuscript and in our tool, we exclude GO terms with <10 

genes as they have more limited power to detect significant results, and as a rule of 

thumb logistic regression requires at least 10 events for each explaining variable [60]. In 

the manuscript, we also exclude reporting GO terms with >500 genes, as the categories 

become broader and less informative in interpreting the results. Q-values were 

calculated using all GO terms with 10-2000 genes (our tool’s defaults).  

2.2.4 Overdispersion test of peak count (given locus length) in each gene 

set 

Overdispersion is defined as higher variability in a data set than expected based 

on the distribution used to model it. The binomial test in GREAT uses a binomial 

distribution to model the combined number of peaks for all genes in a gene set, so if 

significant overdispersion in peak counts exists among genes, the binomial distribution 

assumption is not satisfied. We tested for overdispersion in the number of peaks per 

gene (given locus length) in each gene set using Tarone’s Z statistic [61]. Tarone’s Z 
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allows better estimates of overdispersion when the binomial probabilities are close to 0 

or 1 (the probabilities of having a peak for each basepair are very close to 0). We tested 

all gene sets with a minimum of 50 genes (as gene sets with fewer genes often do not 

have adequate power for this test) and a maximum of 500 genes (the maximum gene 

set size used throughout the paper). For each DBP, we reported the proportion of gene 

sets that had significantly higher variability than expected based on the binomial 

distribution (q-value≤0.05). 

2.2.5 Mappability calculations 

To estimate the mappable proportion of each gene locus for different read 

lengths, we first calculated base pair mappability for reads of lengths 24, 36, 40, 50, 75, 

and 100 base pairs using mappability data for Homo sapiens (build hg19) from the 

UCSC Genome Browser. The UCSC browser mappability tracks provide, for each base 

pair i, the reciprocal of the number of locations in the genome to which a read beginning 

at i and extending for read length K could map; a value of 1 indicates the read maps to 

one location in the genome, a smaller value indicates the read maps to two or more 

locations in the genome. We set reads with mappability <1 to 0 and calculated base pair 

mappability as the average read mappability of all possible reads of size K that include 

a specific base pair location, i,: 

𝐵𝑖 =  (
1

2𝐾 − 1
) ∑ 𝑀𝑗

𝑖+(𝐾−1)

𝑗=𝑖−𝐾+1

 (equation 1) 

where Bi is the mappability of base pair i, and Mj is the read mappability (from UCSC’s 

mappability track) of a read of length K beginning at position j. We define gene locus 

mappability, m, as the average of all base pair mappability, Bi, values for a gene locus; 

each gene locus mappability score m represents the proportion of the gene locus that is 

uniquely mappable (given the read length of the data). 

2.2.6 ChIP-Enrich method  

We developed a logistic regression approach to test for gene set enrichment 

while adjusting for log10 mappable locus length for each gene. Suppose that for a given 

set of genomic regions (referred to as peaks), we have assigned each peak to a gene 

locus. The dependent variable is a binary vector defined as 1 if ≥1 peak is assigned to a 



15 
 

gene’s locus, and 0 if none are assigned to the gene’s locus. For each gene set, the 

explanatory variable of interest is gene set membership, g, defined as 1 for genes in the 

gene set, and 0 for all other genes. Let L be the locus length, such that m∙L is the 

mappable locus length. Let  be the probability that a gene with gene set membership g, 

and adjusted for mappable locus length, has ≥1 peak. Then   1  are the 

corresponding odds that a gene, given g = 0 or 1 and mappable locus length m∙L, has 

≥1 peak. If the log-odds differ by gene set membership adjusted for (mappable) locus 

length, then we conclude that peak presence is associated with the gene set. Our model 

is: 

  1log
1

log 1010 


mLfg



   (equation 2) 

where 0 is the intercept, 1 is the coefficient of interest, and the function f(log10 

(m∙L+1)) is a binomial cubic smoothing spline term that adjusts for log10 mappable locus 

length (or log10 locus length if m is omitted). We apply the log10 transformation to locus 

length as this improves the model fit (data not shown). The smoothing spline is 

estimated with a penalized spline using a cubic spline basis fit with 10 knots distributed 

evenly throughout the data. Placing a knot at each data point as in a true smoothing 

spline would not be computationally feasible. The model is fit using penalized likelihood 

maximization, where the smoothing penalty is the squared second derivative penalty, 

and generalized cross-validation is used to choose the optimal value for the smoothing 

parameter,  [62, 63]. We use the gam function of the R package mgcv to fit the model 

[64], and the Wald statistic to test for significance of the gene set term, β1,which is 

calculated as: 

2

1ˆ

1
ˆ




















s
W      (equation 3) 

 where 1̂  is the penalized maximum likelihood estimate for , and 
1β

s ˆ  is the standard 

error for 1̂ . W is distributed as 2 with one degree of freedom under the null hypothesis 

β1=0, and p-values are calculated accordingly for the alternative hypothesis, β1≠0. P-

values for the gene sets are corrected for multiple testing using the Benjamini-Hochberg 

false discovery rate approach [65]. To be included in the analysis, genes had to be 
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annotated in GO and have a locus defined. For example, we have 19,051 human genes 

with the nearest TSS locus definition and 16,653 (87.4%) of these genes have ≥ 1 GO 

term annotation (with no restriction for GO term size). 

2.2.7 R package and website 

Our ChIP-Enrich gene set enrichment testing method is implemented in the 

chipenrich package for the R statistical software environment and available through 

Bioconductor, and as a web version at http://chip-enrich.med.umich.edu/. We also 

provide Fisher’s exact test as an alternative enrichment method. In addition to Gene 

Ontology, we include 12 additional annotation sources containing over 20,000 total 

gene sets [35]. We currently support the human genome (hg19), mouse genome (mm9, 

mm10), and rat genome (rn4). Precomputed mappability is available for hg19 (for read 

lengths specified above) and for mm9 (read lengths 36, 40, 50, 75, and 100 base pairs). 

Users may either supply an R data frame (for the R package) or a BED format file 

containing the peak locations as input. Runtime is typically 10-14 minutes for testing all 

GO terms but varies depending on the dataset, number of cores, and choice of locus 

definition. In addition to the nearest TSS, nearest gene, ≤1kb from TSS and ≤5kb from 

TSS locus definitions, described above, in ChIP-Enrich we also offer Exons: peaks are 

assigned to gene exons, ignoring all peaks outside of an exon. Users may also supply 

their own custom locus definition and/or mappability file. This enables users to study 

functional binding patterns relative to alternative gene features (e.g., 3’UTRs) or at 

different distances from TSSs, and to use different estimates of the observable region 

for each gene locus. Diagnostic plots are available to visualize the relationship between 

locus length and proportion of genes with a peak, and to examine the proportion of 

peaks binding proximal or distal to TSSs. We also offer an ENCODE ChIP-Enrich 

Results website (http://chip-enrich.med.umich.edu/summaryReport.jsp ), where users 

can download enrichment testing results for individual DBPs or in bulk for the GM12878 

and K562 cell lines. 

http://chip-enrich.med.umich.edu/
http://chip-enrich.med.umich.edu/summaryReport.jsp


17 
 

2.2.8 Fisher’s exact test for gene set enrichment testing of ChIP-seq data 

For each GO term, we tested for association of peak presence and GO term 

membership using a two-sided Fisher’s exact test. For inclusion in the analysis, genes 

had to be annotated in GO and have a locus defined.  

2.2.9 Binomial test for GO term enrichment testing of ChIP-seq data 

We used a slight modification of the one-sided binomial test for GO term 

enrichment described by Taher et al (2009) [53] and implemented in GREAT [47]. We 

calculate the one-sided probability of seeing greater than or equal to the number of 

peaks we observe for a GO term, π, with the following formula: 

∑ (
𝑛
𝑖

) 𝑝𝜋
𝑖 (1 − 𝑝𝜋)𝑛−𝑖𝑛

𝑖=𝑘𝜋
    (equation 4) 

where n is the total number of peaks within gene loci present in any GO term, and kπ is 

the number of peaks annotated to GO term π. We define pπ as the expected proportion 

of peaks in GO term π, as the total non-gapped length of the gene loci in the GO term, 

divided by the total non-gapped length of loci with ≥1 GO term annotation. P-values are 

calculated as the probability of observing kπ or greater number of peaks in the GO term. 

Our implementation is consistent with other GO term enrichment programs which 

restrict the background gene set to those annotated in GO [66]. In contrast, GREAT 

uses the total non-gapped genome as the denominator for pπ and defines n as all 

observed peaks.  

2.2.10 Permutations to create ENCODE ChIP-Seq data with no 

biological enrichment 

We performed permutations to assess the behavior of each enrichment test 

under two null scenarios of no true enrichment. For both scenarios, we used three 

ENCODE ChIP-seq datasets from cell line GM12878: SIX5 (Figure 2.1a,d), PAX5 

(Figure 2.1b,e), and H3K27me3 (Figure 2.1c,f). For each of the two permutation 

scenarios below, we perform 300 permutations and test each permuted dataset for GO 

term enrichment (5519 GO terms) using the three tests (ChIP-Enrich, Fisher’s exact 

test, and the binomial test).  
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Under both scenarios, we do not expect to detect enrichment, as we have 

removed any association between gene membership in GO terms, and the count of 

peaks. To help visualize the two permutation scenarios, consider a data table, where 

each row represents a gene, and contains the following columns: count of peaks per 

gene, locus length of each gene, and one column for each GO term containing a (0,1) 

indicator variable for whether the gene belongs to that GO term. In the GO term 

permutations scenario, we randomly permute the count of peaks per gene and the locus 

length as a unit. This results in a dataset where genes (identified by their peak count 

and locus length) have been reassigned to new GO terms and the locus length bias 

inherent in GO terms has been removed, but the number of genes per GO term, 

correlations between GO terms, and the relationship between locus length and count of 

peaks have all been preserved. In the GO term permutation by locus length bin 

scenario, we first order the data by locus length and then randomly permute peak count 

and locus length as a unit, but restrict this permutation within successive bins of gene 

locus length (100 genes per bin). This is similar to the first scenario, but preserves the 

relationship between locus length and GO term membership.  

2.2.11 GRα analysis 

We applied ChIP-Enrich to ChIP-seq peaks for GRα data from the A549 cell line 

from Reddy et al (2009): ChIP-Seq peaks with FDR <0.02 (4,392 peaks). In Reddy et al 

(2009), sequence reads of 36mer length, were generated from Illumina GA1, aligned 

using ELAND, and peaks were called using MACS. Reddy et al. (2009) identified 209 

genes as differentially expressed based on RNA-Seq data from A549 cells that were 

treated for 1hr with 100mM of Dexamethasone (DEX) or with 0.02% Ethanol control 

(EtOH). Briefly, in Reddy et al. (2009), gene expression levels were estimated using 

ERANGE to calculate reads per kilobase per million tags sequenced (RPKM) values, 

which were then adjusted for dependence of variance on expression level. A custom 

maximum likelihood approach was used to calculate p-values for the observed change 

in gene expression between DEX-treated and ethanol-treated cells. Finally, genes with 

FDR<0.05 were called significant [67]. Using the 209 reported differentially expressed 

genes, we tested for GO term enrichment (over-representation) with the R package 

goseq [9]. For Table 3, we pruned the list of top-ranked, enriched GO terms of closely 
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related terms for presentation by removing terms whose parents, children, or siblings in 

the ontology tree were present at a higher rank in the list. We used the R package 

GO.db to determine relationships among GO terms.  

2.3 Results 

2.3.1 Observed relationship between gene locus length and presence of at 

least one peak in ENCODE ChIP-seq datasets 

We first explore the relationship between gene locus length and the presence of 

a peak in 63 ENCODE ChIP-seq datasets from tier 1 cell line GM12878 [16, 56] using a 

binomial cubic smoothing spline to model the relationship (see Experimental ChIP-seq 

peak datasets and ChIP-seq method sections of Methods) [62, 63]. GM12878 is a 

lymphoblastoid cell line, transformed using Epstein-Barr Virus, and which has a normal 

karyotype. Lymphoblasts are immature cells that typically differentiate into lymphocytes, 

and serve as a good model for functional studies as they are known to express a wide 

range of metabolic pathways [68]. This exploration of ChIP-seq data is motivated by the 

opposing assumptions underlying FET and the binomial test: for FET that there is no 

association between locus length and presence of a peak, and for binomial-based tests, 

that the number of peaks per locus is proportional to locus length. In Figure 2.1, we 

assigned peaks to the gene with the nearest TSS (see Methods) and grouped the 

ENCODE datasets based on the total number of peaks (three equal sized groups). For 

datasets with the smallest number of peaks, we noticed that a large fraction of peaks 

were close to a TSS, and there was no or little relationship between locus length and 

probability of a peak (Figure 2.1a,d; n=21) which is consistent with the assumptions of 

FET. All were transcription factor datasets. In contrast, datasets with the largest number 

of peaks tended to have the smallest proportion of peaks within 1kb of a TSS and had a 

strong positive locus length-to-peak presence relationship (Figure 2.1,f; n=21), which is 

potentially consistent with the assumptions of the binomial test. Many of these datasets 

were histone modifications that tend to occur much more widely across the genome 

than TF binding. The locus length-to-peak presence patterns within datasets with 



20 
 

intermediate numbers of peaks show larger variability and are often not consistent with 

either FET or the binomial test assumptions (Figure 2.1b,e). 

The binomial test sums the peaks over all the genes/loci in a gene set. This 

summation assumes that the underlying probability of a peak per unit length is the same 

for each gene in the gene set (and the same for each gene not in the gene set), i.e. the 

variance of peak counts among genes in a gene set is no greater than expected based 

on the binomial distribution. We tested for variability greater than that of the binomial 

distribution, in GO terms containing between 50 and 500 genes. All DBPs showed a 

substantial proportion of GO terms with significantly (FDR<0.05) higher variability than 

expected, with many DBPs having over 99% of GO terms with significant extra 

variability (Supplementary Table 2.2) (see Overdispersion test in Methods). Thus, even 

DBPs that have a strong positive relationship between number of peaks and locus 

length (Figure 2.1f) do not satisfy the binomial test assumptions.  

2.3.2 ChIP-Enrich method 

Given the observed locus length-to-peak presence relationships, we sought to 

develop a gene set enrichment testing approach for ChIP-seq data that would 

empirically model this relationship (Figure 2.2). To capture different aspects of the 

underlying regulatory biology, we define loci based on one or more genomic features, 

and assign peaks in the defined genomic regions to genes (locus definitions). In this 

paper we use as primary locus definitions: 1) the region(s) within 1kb of every TSS of a 

gene (≤1kb from TSS), 2) the region between the upstream and downstream midpoints 

between a gene’s TSS and the adjacent genes' TSSs (nearest TSS), and 3) the gene 

and half the intergenic region between adjacent genes, defined by the closest TSS/TES 

of each gene (nearest gene) (See Gene loci definitions section of Methods for more 

details). Consistent with previous observations [54], genes with long locus lengths 

defined by the nearest TSS definition were significantly enriched for neuronal 

processes, development, and adhesion (Supplementary Table 2.3), while genes with 

short locus lengths were enriched for translation and chromatin-related processes 

(Supplementary Table 2.4),  

We test for gene set enrichment using a logistic regression model, and adjust for 

the probability of a peak as a function of log10(observable locus length) using a 
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binomial cubic smoothing spline (see ChIP-Enrich method section of Methods). Since a 

logistic regression model without the smoothing spline term approximately corresponds 

to Fisher’s exact test, our model is motivated by FET while accounting for locus length. 

Because we observed that the average mappability of gene loci both differed 

substantially among genes and that many GO terms were enriched with highly or lowly 

mappable genes (Supplementary Text and Supplementary Figure 2.1), we also account 

for the average mappability of each gene locus. We calculate the proportion of each 

locus length that is uniquely mappable as the mappability score, and use locus length × 

mappability as an estimate of the observable locus length (see Mappability Methods 

section). Although mappability often improved the spline fit (Supplementary Figure 2.2), 

it had little effect on the results of these analyses. Our R package and web-based tool 

offer a number of additional options, including custom locus and mappability definitions 

(see R package and website Methods section). Thirteen gene annotation databases 

[35] are available for testing; for simplicity, we use GO terms to illustrate our method in 

our analyses below (see Gene Ontology terms Methods section).  

2.3.3 Comparison of ChIP-Enrich, Fisher’s exact test and the binomial test 

for permuted and non-permuted ENCODE datasets  

To illustrate the performance of the different tests, we selected three ENCODE 

GM12878 DBPs with different locus length-to-peak presence relationships: SIX 

homeobox 5 (SIX5) (weak relationship, Figure 2.1d), paired box 5 (PAX5) (moderate 

positive relationship, Figure 2.1e), and trimethylation of histone 3 lysine 27 (H3K27me3) 

(strong positive relationship, Figure 2.1f) (Supplementary Figure 2.3). These DBPs have 

75, 26, and 5% of peaks ≤1kb from a TSS (Figure 2.1a-c) and 4,442, 19,618 and 

41,464 total peaks, respectively. We first tested for GO term enrichment with FET, the 

binomial test, and ChIP-Enrich in the original data (see Methods for implementation 

details of FET and the binomial test). The top ranked terms from the three tests were 

highly different for H3K27me3, moderately different for PAX5, and similar for SIX5 

where several very strongly enriched GO terms were identified by all tests (Table 2.1 

Comparison of top ranked GO terms for three DBPs from cell line GM12878 using 

ChIP-Enrich, FET, and the binomial test.). However, other datasets with total peaks 
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counts similar to SIX5 (few peaks) (Figure 2.1a,d) had less agreement between the top 

ranked terms for ChIP-Enrich and the binomial test (data not shown). 

Under the null hypothesis of no true gene set enrichment, the type I error rate for 

a dataset at a given threshold α is the proportion of gene sets with p-value less than α. 

A method with type I error rate higher than the expected α level will have an increased 

number of false positives. Therefore, we investigated the type I error rates for ChIP-

Enrich, the binomial test, and FET. We assessed the type I error rate using two 

permutation scenarios that preserve the GO term correlation structure but under which 

no biological enrichment exists, and therefore none should be detected. In the first 

scenario, we grouped gene locus length and gene peak count and permuted them 

together across all genes, which removes any relationship between GO term 

membership and locus length (permutations across all genes). In the second scenario, 

we grouped locus length and gene peak count and permuted them together within bins 

of 100 genes ordered by locus length, which retains the GO term-locus length 

relationship (permutations within locus length bins) (see Permutations Methods section). 

In the permutations across all genes, ChIP-Enrich and FET showed slightly 

conservative type I error for both permutation scenarios at α=0.05 and 0.001 (Table 2.2 

and Supplementary text), with the slight deflation expected due to the discrete nature of 

the data [69]. The lack of inflation for FET was expected since this permutation breaks 

the GO term-locus length relationship. In contrast, the binomial test had very high type I 

error rates at all three tested alpha levels (Table 2.2).  

For the permutations within locus length bins, ChIP-Enrich again had the 

expected type I error rate (Table 2.2). FET showed inflation of type I error rates for 

PAX5 and H3K27me3, but not for SIX5. SIX5 shows little relationship between locus 

length and peak presence, and therefore the assumptions for FET are approximately 

satisfied. As a check of the ChIP-Enrich method, we compared the –log10(p-values) in 

the original SIX5 data and found they were highly correlated between ChIP-Enrich and 

FET (Pearson’s r=0.97), illustrating that in this case ChIP-Enrich closely approximates 

Fisher’s exact test. The binomial test again had very high type I error rates for every 

DBP, with particularly high error for H3k27me3 (minimum permuted p-value = 1 × 10-

57). Using the binomial test we observed 761 gene sets with p<0.001 in the original 
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H3k27me3 data, compared to a median of 618 for the permutated data, implying that 

most of the significant results for the original H3k27me3 data are false positives. For 

SIX5 using permutations within locus length bin, >75% of gene sets with short average 

locus lengths had p-values <0.05 with the binomial test, whereas nearly all the gene 

sets with long average locus lengths had p-values>0.9. The binomial model assumes 

that genes with longer locus length will have proportionally more peaks, which is not 

satisfied in the SIX5 data (Supplementary Figure 2.4a). We observed the same 

behavior using the GREAT program (Supplementary text and Supplementary Figure 

2.5), but not for ChIP-Enrich (Supplementary Figure 2.4b). To see whether the bias in 

ranks based on locus length for the binomial test carried over from the permuted to the 

original unpermuted data, we asked if the ranks for original and permuted SIX5 datasets 

were correlated. We observed a high correlation for the binomial test (r =0.71) between 

the ranks of results from the original SIX5 data and the average ranks from 

permutations within locus length bins, but not for permutations across all genes 

(Supplementary Figure 2.6a,b), indicating that the correlation is due to locus length. 

With ChIP-Enrich, there was no correlation between ranks of the original and permuted 

data (r =-0.02) as expected (Supplementary Figure 2.6c,d).  

To complement our permutation study, we also simulated ChIP-seq peak 

datasets with no true biological enrichment under various scenarios and tested for 

enrichment with ChIP-Enrich, the binomial test, and FET. In these simulations, the 

binomial test had an inflated type I error rate when peak counts were not proportional to 

locus length or when extra-variability (overdispersion) was added to gene peak counts. 

Only ChIP-Enrich showed the expected type I error rate in all simulations 

(Supplementary text and Supplementary Figure 2.7, Supplementary Figure 2.8). 

2.3.4 Influence of locus definition on detection of gene set enrichment  

For each of the 63 GM12878 ChIP-seq datasets, we asked if dissimilar sets of 

biologically-related genes were detected using different locus definitions, as a way to 

identify DBPs that regulate distinct biological functions from different regulatory regions. 

Comparing ChIP-Enrich results for peaks assigned to the nearest TSS to those of the 

nearest gene, we found moderate to high correlations in the enrichment results 
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(Pearson’s r=0.62-0.99 for –log10 p-values) and p-values of similar magnitude, indicating 

that the two definitions are capturing similar information.  

We observed much greater variability in comparisons between the ≤1kb from 

TSS and nearest TSS locus definitions, with four distinct patterns emerging (Figure 2.3 

and Supplementary Figure 2.9). 1) We found similar results for ≤1kb from TSS and 

nearest TSS for DBPs that tend to bind near TSSs, such as SIX5 (Figure 2.3a), and for 

a subset of other DBPs (Supplementary Figure 2.9). 2) We identified distinct GO terms 

for ≤1kb from TSS and nearest TSS for JunD and a small number of other DBPs (Figure 

2.3b). JunD showed strong enrichment for calcium ion-related terms only within 1kb of a 

TSS and enrichment for the JNK and MAPK cascades only using nearest TSS (not 

shown). JunD regulates varied physiological processes [70]; these results suggest it 

may regulate different processes from near versus far TSSs. 3) We identified much 

stronger enrichment using nearest TSS than ≤1kb from TSS for H3K36me3 (Figure 

2.3c), H3k79me2 and H4k20me1 (Supplementary Figure 2.9) which bind along gene 

bodies [71]. 4) Finally, we saw much stronger GO term enrichment using ≤1kb from 

TSS compared to nearest TSS for CTCF (Figure 2.3d), WHIP, and a subset of DBPs 

with a small percent of peaks ≤1kb from the TSS (Supplementary Figure 2.9).  

Although CTCF is a well-known insulator in intergenic regions, both CTCF-

binding and housekeeping genes are enriched in the boundary regions of genomic 

topological domains [72], and we see many of the same strongly enriched GO terms for 

CTCF binding ≤1kb from a TSS (RNA processing, mitochondrion, and cell cycle) as for 

genes identified at the boundary regions. WHIP binds to damaged DNA and in that 

capacity is not expected to bind within or near genes with specific functions [73, 74]. 

The most highly enriched gene sets for WHIP using the ≤1kb from TSS definition 

included DNA repair (p=1.1×10-17), chromatin organization (p=3.6×10-15) and cell cycle 

regulation suggesting transcriptional roles of WHIP related to its direct function in DNA 

repair. Other DBPs with relatively small percentages of peaks near a TSS also showed 

stronger ≤1kb to TSS enrichment results; these have known transcriptional functions 

and/or involvement in DNA repair (ZNF143, CHD2) [75, 76], chromatin structure (EBF1) 

[77], or centromere formation (SMC3) [78], which may explain the lack of biological 

enrichment from more distal peaks (Supplementary Figure 2.9).  



25 
 

2.3.5 ChIP-Enrich analysis of the glucocorticoid receptor α (GRα) 

We asked whether ChIP-Enrich could identify known and potential new biology of 

a well-characterized transcription factor, the glucocorticoid receptor α (GRα) [79]. 

Previous analysis identified 4,392 peaks in A549 cells treated with 100nM DEX 

(dexamethasone stimulates GR activity); only 4.7% of the peaks were within 1kb of a 

TSS (Figure 2.4a). GO term enrichment testing yielded largely distinct subsets of 

significant (FDR≤0.05) terms for nearest TSS (195 terms) and ≤1kb from TSS (72 

terms) with only 16 overlapping terms (Figure 2.4b,d; Supplementary Table 2.5). The 

most significant terms (after collapsing similar terms) are shown in Table 2.3. Terms 

significant using one or both locus definitions include “epithelial cell differentiation” (q-

values: nearest TSS=1.8×10-6; ≤1kb from TSS=1.0) and “negative regulation of blood 

coagulation” (q-values: nearest TSS=0.077, ≤1kb from TSS=3.19×10-7, with the related 

term “regulation of wound healing” (q-values: nearest TSS=0.0064, ≤1kb from 

TSS=0.0029). In addition, we observed “response to glucocorticoid stimulus” (q-values: 

nearest TSS=0.0035; ≤1kb from TSS=0.55) and “regulation of lipid metabolic process” 

(q-values: nearest TSS=0.0062, ≤1kb from TSS=0.74). GRα is known to be involved in 

the response to steroids and the activation of lipolysis [80, 81], although knowledge of 

the transcriptional role of GRα in wound healing and blood coagulation is more limited. 

We also tested for enrichment using non-overlapping locus definitions for regions closer 

to a TSS (≤5kb from TSS; 14.5% of peaks) and further from a TSS (>10kb from TSS; 

75.6% of peaks) and again identified largely distinct gene sets (Supplementary Figure 

2.10).  

We also compared the enrichment results (using nearest TSS) from ChIP-Enrich 

with those using the binomial test and FET. Due to inflated type I error rates for the 

binomial test and FET for nearest TSS, the specific p-values and number of terms with 

FDR<0.05 cannot be used. Instead, we compared the top ranked terms among the 

methods, using the number of top ranked terms with FDR <.05 for ChIP-Enrich (195). 

There was substantial overlap, with 57 (29%) GO terms identified by all three methods 

and 150 (77%) identified by at least two (Figure 2.4c). Both FET and the binomial test 

had higher overlap with ChIP-Enrich than with each other, consistent with the fact that 
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the locus length-to peak presence relationship modeled by ChIP-Enrich is intermediate 

between the assumptions of FET and the binomial test.  

To evaluate the biological relevance of our results, we compared the ChIP-seq 

enrichment results from ChIP-Enrich with RNA-Seq enrichment results based on 

differential expression between control and 100nm DEX treated A549 cells [18] (See 

GRα analysis section of Methods). Of 4,544 GO terms tested for enrichment based on 

RNA-Seq differential expression, 458 (10%) were significant at FDR≤0.05. "Vascular 

development", the most significant GO term based on differential expression, was also 

significantly enriched for GRα binding using the nearest TSS analysis (q-value=0.0047) 

but not using ≤1kb from TSS (q-value=0.97). Eighty-six (29%) of the significant terms 

from RNA-Seq were significant with one or both of the locus definitions in ChIP-seq data 

(Figure 2.4d). From the ChIP-seq perspective, many of the most highly significant terms 

using nearest TSS and <1kb from TSS were significant for RNA-Seq (Table 2.3, Figure 

2.4e,f). Seventy-two (37%) of the significant GO terms for nearest TSS were significant 

for RNA-Seq, whereas only 20 (28%) of the significant GO terms for ≤1kb from TSS 

were significant for RNA-Seq, indicating potentially stronger correspondence of the 

gene expression data with the GRα peaks captured by the nearest TSS definition than 

only those peaks ≤1kb from a TSS. Correlations with RNA-Seq results using a custom 

>10kb from TSS locus definition (see Gene loci definitions Methods section) were 

similar to nearest TSS and those for ≤5kb from TSS were similar to ≤1kb from TSS (not 

shown). GO terms enriched only in RNA-seq may be regulated by genes downstream of 

those directly regulated by GRα or be GRα-independent DEX effects. GO terms 

enriched only in ChIP-seq data may indicate pathways that are poised to be regulated, 

either from proximal promoter or more distal enhancer regions. 

2.4 Discussion 

We developed a gene set enrichment testing method for ChIP-seq data, ChIP-

Enrich, that empirically models and adjusts for the effect of gene locus length. In 

contrast to Fisher’s exact and the binomial test, ChIP-Enrich maintains the correct type I 

error rate for datasets with a wide range of locus length-to-peak presence relationships. 

FET and the binomial test make assumptions that are inconsistent with the observed 
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relationships, which can lead to inflated type I error rates (false positive results). 

Strikingly, the binomial test often has significantly more false positives than FET.  

ChIP-Enrich uses a binomial smoothing spline to empirically model the 

relationship with gene locus length; an approach similar to that employed by GOseq, 

which was developed for RNA-seq data [9]. Whereas GOseq uses either a resampling 

approach or the approximate Wallenius method to calculate GO term enrichment p-

values, ChIP-Enrich incorporates the smoothing spline in a logistic regression model, 

allowing more precise p-value calculations and in less time than a resampling approach 

requires. Compared to the Wallenius approximation, ChIP-Enrich has greater power, as 

determined by finding more significantly enriched GO terms (36% more on average) 

across the 63 GM12878 ChIP-seq datasets (data not shown). 

For many DBPs, particularly those with more binding near TSSs, testing for 

enrichment using the nearest TSS and ≤1kb from TSS locus definitions identifies largely 

overlapping gene sets, suggesting the two definitions often capture similar regulatory 

information. However, for a subset of DBPs, these two locus definitions detect very 

different enriched gene sets. JunD, for example, may be regulating different biological 

processes nearer to and further from the TSS, possibly with different cooperating 

factors. For datasets with a small proportion of peaks ≤1kb of a TSS, but stronger levels 

of enrichment detected with those peaks (examples WHIP and CTCF), it is possible that 

DBP binding >1kb from the TSS may not be properly assigned to the regulated gene(s), 

or that some of the widespread DBP binding may not regulate genes in any specific 

biological processes. Thus for DBPs with unknown function, comparisons of patterns of 

gene set enrichment could help predict an alternative role for the DBP, such as DNA 

repair and/or chromatin remodeling or looping. 

To further explore the biological relevance of our results, we compared the gene 

sets enriched for differential expression of mRNA following activation of GRα to the 

gene sets enriched for GRα binding [79]. For GRα a subset of gene sets, many of which 

were not detected using the ≤1kb from TSS locus definition and including vasculature 

development, showed substantial enrichment for both differential expression and GRα 

binding. GRα has been reported to play a limited role in vasculature development, 

mainly through non-transcription factor activities; the extent to which it directly regulates 
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vasculature development genes as a group was thus far unknown [82-84]. This 

suggests that GRα regulates many genes and functions via binding further from TSSs, 

consistent with the observations of Reddy et al (2009) [79], and this regulation would be 

missed if only peaks within 1kb were examined (such as could be tested without bias 

using FET).  

Unlike the binomial test, ChIP-Enrich results are not influenced by a single gene 

or few genes with a large number of peaks. However, because higher numbers of a 

bound DBP in a gene locus may exert stronger biological effects (49), the use of a 

model based on peak counts, that accounts for extra-variability and diverse locus 

length-to-peak count relationships, could be considered. For example, a negative 

binomial or beta binomial model may be able to account for the extra variability among 

genes in the peak count data. However, it is unclear whether these models can fully 

account for both the extra variability and the observed negative correlation between 

peak occurrence rate and locus length, or how best to empirically adjust for locus 

length. 

In conclusion, we developed a gene set enrichment testing method, ChIP-Enrich, 

which allows enrichment analysis of ChIP-seq data with any locus length-to-peak 

presence relationship with the expected type I error rate. This is in contrast to currently 

available methods, which often exhibit highly elevated type I error and/or gene set 

ranking biased towards genes with long or short locus length, leading to false positive 

results. Based on our observations, we recommend testing each set of genomic regions 

for enrichment with both a locus definition representing promoter regions (e.g., ≤1kb 

from TSS or ≤5kb from TSS) and a locus definition representing all regions or regions 

more distal to TSSs (e.g., nearest TSS, nearest gene, or >10kb from TSS). ChIP-Enrich 

can be used to further assess and refine regulatory region definitions, based on 

empirical exploration, and to identify biological functions of regions exhibiting various 

complex patterns of histone marks or protein binding using the wealth of biological data 

from ENCODE, the Roadmap Epigenomics Program and other public and non-public 

sources. With the option for user-defined locus definitions and/or mappability tracks, this 

framework can also be used with other genome-wide sequencing data such as RNA-
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Seq (with potential bias from transcript length and/or read depth) or bisulfite sequencing 

data (with potential bias from number of measured CpG sites).  

2.5 Supplementary Methods 

2.5.1 Testing for enriched GO terms with genes of longer (or shorter) than 

average locus length 

We used DAVID [85] to test for GO term enrichment in the top 500 genes with 

longest (or shortest) locus lengths. For both tests, the complete set of genes in our 

locus definition file was used as the background gene list. Results were limited to GO 

terms with ≤2,000 genes and FDR≤0.05 in order to report more specific categories. 

2.5.2 Testing for enriched GO terms with genes having higher or lower 

than average mappability 

We tested for GO terms enriched with genes having higher or lower than 

expected mappability scores using a logistic regression model with GO term 

membership as the outcome and average gene locus mappability scores as the 

predictor (LRpath [86]; lrpath.ncibi.org). Because LRpath typically accepts p-values as 

input which are then log-transformed, we exponentiated mappabililty values before input 

to preserve the original mappability scale. Results were limited to GO terms with ≤2,000 

genes and FDR≤0.05.  

2.5.3 Simulation and enrichment testing of data under the null hypothesis 

of no GO term enrichment 

We simulated ChIP-seq peaks under the null hypothesis of no association with 

any GO term. As an alternative to simulating peak locations, we randomly sampled 

genes with replacement and set the number of times the gene was selected to the count 

of peaks occurring within the locus of a gene. Genes were sampled in two ways: 1) 

randomly (not in proportion to locus length), and 2) randomly in proportion to locus 

length. The first simulates peaks occurring within genes with no dependence on locus 

length (FET assumption). The second method simulates peaks being assigned to genes 

with probability in proportion to locus length (binomial test assumption). We simulated 
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datasets of 10,000 peaks with varying percentages (0, 50 and 100%) sampled in 

proportion to locus length. For FET and ChIP-Enrich, a gene is labeled as having a 

peak if the count of peaks is ≥ 1. Each GO term was tested for enrichment using FET, 

the binomial test, and ChIP-Enrich. We repeated this process 1,000 times for each test 

and percentage of genes sampled by locus length, and calculated the median of the 

1,000 simulation p-values at each quantile of the 2,565 GO term p-values to create the 

plots for the bottom row of Supplementary Figure 2.7.  

To examine the effect of overdispersion (added variation in peak count among 

genes) on each of the three tests, we simulated data with 100% of peaks sampled by 

locus length (satisfying the binomial test assumption) but with additional overdispersion 

in number of peaks per gene. In the simulations above without overdispersion, we 

sampled genes in proportion to their locus lengths to represent ChIP-seq peaks 

occurring in gene loci, by assigning each gene a weight proportional to its locus length. 

Here, we sample genes in proportion to random deviates of their locus lengths using a 

gamma distribution with mean equal to the gene’s locus length and variance set to one 

of four different levels (0, 0.01, 0.1, 0.5) to simulate increasing overdispersion. For each 

simulation, a weight is drawn for each gene and then 10,000 draws of genes are made 

based on the weights to represent 10,000 peaks. For each gamma variance level, we 

performed 1,000 simulations. The simulated data was tested for enriched GO terms 

using FET, ChIP-Enrich and the binomial test, and results were presented as median 

quantile p-values as above (Supplementary Figure 2.8).  

Code for all simulations is available in Supplementary_code.zip.  

2.5.4 GREAT testing on permuted ChIP-seq datasets 

To confirm that our results in Supplementary Figure 2.4 were not restricted to our 

implementation of the binomial test, we repeated the analysis of GO term permutations 

by locus length bins data (permuted ENCODE datasets for SIX5, PAX5, and 

H3k27me3) with the GREAT website (Supplementary Figure 2.5). For each of the three 

experimental datasets, we used GREAT with the “single gene” setting, where “each 

gene is assigned a regulatory domain that extends in both directions to the nearest 

gene's TSS but no more than the maximum extension in one direction.” The “maximum 

extension” was set to 100,000 kb in order to insure each peak is assigned to a 

http://nar.oxfordjournals.org/content/42/13/e105/suppl/DC1
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regulatory domain (i.e. gene), which is most equivalent to our nearest TSS locus 

definition. 

2.6 Supplementary Results 

2.6.1 Effect of locus length and read mappability on gene set enrichment 

tests  

Gene set enrichment testing with Fisher’s exact test (FET) can be confounded 

when there is a positive relationship between locus length and the presence of a peak, 

since many gene sets contain genes with substantially longer or shorter locus lengths 

than average [54]. Taher and Ovcharenko (2009) identified Gene Ontology (GO) terms 

with much longer or shorter than expected gene loci (defining a locus as the gene and 

half the intergenic region between adjacent genes) [53]. Similarly, when we assigned 

peaks to the gene with the nearest TSS, we found that GO terms related to 

nucleosome, protein-DNA complexes, and translation have genes with shorter than 

average locus lengths (Supplementary Table 3) and nervous system development, cell 

adhesion, and transcription have genes with longer than average locus lengths 

(Supplementary Table 4).  

The probability of calling a ChIP-seq peak can depend on the mappability of the 

reads in the binding region [87, 88]. To account for mappability (which similar to locus 

length, varied significantly by gene set (Supplementary Figure 2.1)), we use locus 

length × mappability as the observable locus length in our analyses; this can improve 

the spline fit (Supplementary Figure 2.2), although it had little effect on the final results 

of the presented enrichment testing analyses (data not shown). To assess the ability of 

mappability to confound the relationship between the presence of a peak and gene set 

membership, we estimated the average mappability of each gene locus based on base 

pair mappabilities for 50bp reads (see Supplementary Figure 2.1a for comparison of 

mappability at different read lengths). Genes with less mappable loci are significantly 

more likely to be present in sensory, xenobiotic response and oxygen related terms, 

whereas genes with highly mappable loci are more likely to be involved in nervous 

system or development terms ( q-value < 3.0x10-16) (Supplementary Figure 2.1b,c). We 
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observed similar results at other read lengths (data not shown). Several GO terms (e.g., 

central nervous system development) had both longer locus lengths and higher 

mappability, increasing the possibility for confounding.  

In addition to mappability, GC content has also been noted to influence 

sequencability and thus detection of ChIP-seq peaks. To examine a potential bias due 

to GC content, we downloaded the UCSC Genome Browser’s GC content track for 

hg19, which provides GC content for every 5bp. We calculated average GC content for 

four definitions of gene loci (nearest TSS, exons, 1kb and 5kb), and observed very little 

spread in the distribution of GC content. Testing for GO terms enriched with low or high 

GC content genes (using the nearest TSS definition and the same LRpath approach as 

used for testing low or high mappability genes), we found only 14 significant terms as 

compared to 717 significant terms for mappability (FDR<0.05). Given the tight 

distribution of GC content among gene loci and the small number of significantly 

associated GO terms, we conclude that it is unlikely that GC content is a confounding 

variable or significantly biases the enrichment testing results. 

2.6.2 Comparison of ChIP-Enrich, Fisher’s exact test, and the binomial test 

under the null hypothesis of no enrichment using simulated data  

To examine the sensitivity of each test to varying mixtures of peak distributions 

that meet the FET or binomial test assumptions, we simulated datasets of 10,000 peaks 

with 0%, 50%, and 100% of the peaks simulated in proportion to locus length relative to 

those simulated irrespective of locus length. As the percentage of peaks simulated in 

proportion to locus length increases from 0 to 100%, the relationship between the 

probability of a gene having at least one peak and locus length changes from flat 

(Supplementary Figure 2.7a) to increasingly correlated (Supplementary Figure 2.7b,c).  

Using our simulated datasets, we tested for GO term enrichment and plotted the 

observed –log10(p-values) versus the expected –log10(p-values) under the null 

hypothesis of no enrichment in quantile-quantile (QQ) plots (Supplementary Figure 

2.7d-f.) For all three scenarios, ChIP-Enrich shows no inflation of significance levels 

from the expected distribution but has a slight deflation of the most significant p-values. 

When all peaks are simulated with each gene having equal probability of having a peak 
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(0% proportional to locus length), Fisher’s exact test shows the expected distribution of 

p-values (observed = expected) also with a slight deflation of the most significant p-

values similar to ChIP-Enrich, expected due to the discrete nature of the data [89] . With 

an increasing percentage of peaks sampled in proportion to locus length, FET becomes 

increasingly anti-conservative (Supplementary Figure 2.7d  e  f), such that p-values 

as low as 10-10 are observed in the absence of any true enrichment. The binomial test 

shows the opposite behavior; when peaks are sampled in proportion to locus length 

(100% proportional to locus length) and without any additional variability among genes 

in a gene set, the binomial test has the expected p-value distribution (again with a slight 

deflation as for FET when 0% random) but when peaks are sampled independent of 

locus length (0% proportional to locus length) the test becomes increasingly anti-

conservative (Supplementary Figure 2.7f  e  d), with even lower p-values than 

observed for Fisher’s exact test.  

2.6.3 Test behaviors in the presence of overdispersion of peak counts 

among genes, given locus length 

To better understand the difference in binomial test behavior between 1) the 

H3K27me3 dataset GO term permutation by locus length bin (which shows a strong 

inflation of significance levels despite peaks occurring approximately in proportion to 

locus length) and 2) simulations in which 100% of peaks were simulated in proportion to 

locus length (Supplementary Figure 2.8f; which shows no inflation of significance levels 

when peaks occur in proportion to locus length), we performed additional simulations 

with 100% of the peaks simulated in proportion to locus length. In these simulations, we 

added increasing levels of extra variability (overdispersion) in peak counts among 

genes (gamma variance levels of 0.01, 0.1, and 0.5). The overdispersion did not visually 

change the observed spline fit (not shown). Again, we tested for GO term enrichment 

and plotted the observed –log10(p-values) versus the expected –log10(p-values) in QQ 

plots (Supplementary Figure 2.8). As before, ChIP-Enrich shows no inflation of 

significance levels. The binomial test, however, shows increasing inflation of 

significance levels with increasing overdispersion. FET shows decreasing levels of 
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inflation with increasing overdispersion, but remained biased for each overdispersion 

scenario.  

2.6.4 Slight deflation in p-values compared to what is expected under the 

null 

When the assumptions of Fisher’s exact test are met, e.g. for the transcription 

factor SIX5, Fisher’s exact test shows a slight deflation of the most significant p-values 

compared to what is expected if we assume a uniform distribution of p-values under the 

null hypothesis. This trend is expected due to the discrete nature of the data [89]. We 

observe the same slight deflation for both ChIP-Enrich (Figure 2.3c,g,k, and 

Supplementary Figure 2.7d,e,f, and 8b) and the binomial test (Supplementary Figure 

2.7f and Supplementary Figure 2.8c) when the assumptions of the test are satisfied. 

2.6.5 Sensitivity analysis for GR 

As a sensitivity analysis we also repeated the GR analyses with a larger set of 

peaks identified using a less stringent cutoff. This set contains 15,837 peaks with p-

value ≤ 1 x10-9, equivalent to an FDR < 0.23 (Supplementary dataset 1 from Reddy et 

al.) [79]. Results using nearest TSS with the 15,837 peaks were similar to those from 

the more stringent peak calling (r =0.61 for –log10(p-value) comparison) (see 

Supplementary text), with 81/216 (38%) of the significant GO terms also significant in 

the RNA-seq enrichment analysis. However, the ≤1kb from TSS analysis results from 

the less stringent peak calling identified only 26 GO terms compared to 72 from the 

more stringent peak calling with only 8 GO termsin common. Only five (19%) of the 26 

GO terms were also significant in the RNA-seq GOseq enrichment analysis, consistent 

with our finding in the main text that there is potentially stronger correspondence of 

gene expression data with GRα binding captured by nearest TSS (mainly distal regions) 

than only those peaks ≤1kb from a TSS. 
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2.7 Figures 

 
 
Figure 2.1 Gene locus length-to-peak presence relationship becomes stronger as total number of peaks 
increases. The relationship between gene locus length and proportion of genes with ≥1 peak in a gene locus varies 

widely in 63 ENCODE ChIP-seq datasets, from no relationship to strongly positive. DNA binding proteins (DBPs) from 
the GM12878 cell line were categorized into three groups of 21 DBPs by the total number of peaks. For each DBP, 
the relationship between log10 locus length and proportion of genes with a peak was modeled using a binomial cubic 
smoothing spline (see Methods). (a-c) Barplots show the average proportion of peaks present within the specified 
distance from the TSS (kb) (gray bar) and the proportions for individual DBPs (colored dots, same color as line in the 
corresponding plot). DBPs with fewer peaks tend to have a higher proportion of binding close to TSSs. (d) The locus 
length-to peak presence relationship tends to be weak for datasets with few peaks. (e-f) The relationship becomes 
strongest when the number of peaks is highest (f). None of the DBPs in (d), two of the DBPs in (e) and 10 of the 
DBPs in (f) are histone modifications. 
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Figure 2.2. Overview of ChIP-Enrich. We describe ChIP-Enrich in four steps. (1) ChIP-seq peaks are assigned to 

genes using a chosen gene locus definition. Definitions include: nearest gene, ≤1kb from TSS and nearest TSS. (2) It 
is determined whether ≥ 1 peak is present in each gene locus. (3) Gene set enrichment is performed for each gene 
set using a logistic regression model, adjusting for locus length with a binomial cubic smoothing spline term 
(represented as f in the model equation.) (4) Data and results are summarized. a) Plot of observed spline fit for log10 
locus length versus proportion of genes with a peak (orange). Expected line if no relationship between log10 locus 
length and proportion of genes with a peak (dark gray, satisfies Fisher’s exact test assumptions). Expected line if 
number of peaks observed is proportional to locus length (light gray, binomial test assumption). For visualization only, 
each point is the proportion of genes assigned a peak within sequential bins of 25 genes; b) Barplot of proportion of 
peaks found at various distances from the TSS; c) Abbreviated ChIP-Enrich output. 
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Figure 2.3. Representative plots of the 4 patterns of enrichment comparing the ≤1kb from TSS and nearest 
TSS locus definitions. Gene set enrichment testing using the ≤1kb from TSS and nearest TSS locus definitions may 

identify similar (a) or different (b) sets of significant GO terms for the same DBP. Alternatively, most of the enrichment 
signal may come from nearest TSS which uses all peaks (c) or ≤1kb from TSS which ignores peaks >1kb from a TSS 
(d). (a-d) Upper plot: Barplot of proportion of peaks at different distances from the TSS. Lower plot: Comparison of –
log10(p-values) from ChIP-Enrich GO term enrichment testing using ≤ 1kb from TSS versus nearest TSS locus 
definitions in ENCODE data for the GM12878 cell line. GO terms enriched with FDR ≤0.05 for: ≤1kb from TSS only 
(green); nearest TSS only (blue); ≤1kb from TSS and nearest TSS (orange); neither analysis (black). r, Pearson 
correlation coefficient. These patterns are representative of patterns present in 63 ENCODE DBPs from the 
GM12878 cell line. 
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Figure 2.4 Comparison of GRα enrichment results for ChIP-seq (using two locus definitions) and RNA-seq 
data from A549 cells. Enriched GO terms for differentially expressed transcripts and GRα binding following 100nM 
DEX treatment show stronger overlap using the nearest TSS locus definition than using the ≤1kb from TSS definition. 

(a) Observed spline fit for GRα fits neither FET nor the binomial test assumption (orange); barplot of proportion of 
peaks at different distances from the TSS. See Fig 2.4.a and b for further details. (b) Using the nearest TSS locus 
definition with GRα results in more overlapping terms with RNA-seq results than using ≤1kb from TSS (c) Using the 
top 195 ranked terms for each test, FET and the binomial test have more overlap with ChIP-Enrich than with each 
other. (d-f) Comparison of –log10(p-values) for GO term enrichment tests based on ChIP-seq data (ChIP-Enrich) 
and/or RNA-seq (GOseq) data. (f) Many enriched RNA-seq terms would have been missed in the ChIP-seq data if 
only peaks in promoter regions were considered. GO terms enriched and FDR ≤0.05: for Y-axis test only (green); for 
X-axis test only (blue); for X and Y-axis tests (orange); for neither (black). Vasculature development and related GO 
terms (triangles). The majority of GO terms that overlap between ≤1kb from TSS and nearest TSS are related to fatty 
acid metabolism, reactive oxygen species and unfolded proteins, or blood coagulation. 
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2.8 Tables 

Table 2.1 Comparison of top ranked GO terms for three DBPs from cell line GM12878 using ChIP-Enrich, FET, 
and the binomial test. (a) H3K27me3, (b) PAX5, and (c) SIX5. The most extreme differences are observed for 

H3K27me3, which also had the highest type I error rate for the binomial test. Differences among the tests are more 
moderate for PAX5. SIX5 had several extremely significant GO terms with ChIP-Enrich, which were also easily 
detected by the other two methods. All tests were performed using the nearest TSS locus definition. CE=ChIP-Enrich; 
Binom=binomial test; FET = Fisher’s exact test. 

 

a H3k27me3      

 
CE 

rank 
Binom 
Rank 

FET 
rank GO term 

CE 
q-value 

Binom 
q-value 

FET 
q-value 

GO term avg 
locus 

length %ile* 

 1 898 1 extracellular matrix 1.5x10
-9

 0.013 2.2x10
-20

 69.6 

 2 14 4 regulation of hormone levels 3.3x10
-7

 4.4x10
-16

 3.9x10
-13

 58 

 3 1633 3 proteinaceous extracellular matrix 3.8x10
-7

 0.15 9.2x10
-17

 70.4 

 4 648 311 cytokine activity 2.7x10
-6

 2.6x10
-3

 1.2x10
-3

 20.9 

 5 1137 122 anchored to membrane 2.9x10
-6

 0.036 1.6x10
-5

 88.2 

 691 1 1066 3',5'-cyclic-GMP phosphodiesterase 

activity 
0.28 9.8x10

-32
 0.089 52.1 

 986 2 3715 IgG binding 0.41 1.9x10
-26

 0.77 1.8 

 256 3 2696 pancreatic ribonuclease activity 0.095 1.10x10
-24

 0.77 0.1 

 3537 4 3186 cytoplasmic dynein complex 0.87 9.28x10
-23

 1 37.4 

 2842 5 3049 localization within membrane 0.99 2.6x10
-21

 0.92 42 

 14 4946 2 synapse 1.7x10
-4

 1.0 3.6x10
-17

 91.6 

 21 1250 5 sensory organ development 8.7x10
-4

 0.053 4.6x10
-13

 77.8 

*Average locus length percentile for the top 20 terms for: ChIP-Enrich- 59.1; binomial test- 41.6; FET- 82.2. 
 

b PAX5      

 CE 
rank 

Binom 
rank 

FET 
Rank GO term 

CE 
q-value 

Binom 
q-value 

FET 
q-value 

GO term avg 
locus length %ile* 

 1 6 2 immune response-regulating 

signaling pathway 
1.4x10

-7
 1.1x10

-53
 4.5x10

-10
 39.6 

 2 4 1 immune response-activating signal 

transduction 
1.5x10

-7
 3.0x10

-54
 4.5x10

-10
 39.2 

 3 111 13 protein localization to organelle 2.8x10
-7

 9.0x10
-17

 4.8x10
-6

 27 

 4 13 66 viral reproduction 3.2x10
-7

 1.4x10
-41

 5.8x10
-4

 9.3 

 5 3 3 leukocyte activation 5.8x10
-7

 1.3x10
-54

 5.0x10
-9

 48.9 

 20 1 39 regulation of immune response 8.6x10
-5

 5.2x10
-74

 1.1x10
-4

 28.5 

 170 2 405 innate immune response 0.024 4.2x10
-61

 0.10 20.9 

 49 5 31 induction of apoptosis 5.2x10
-4

 3.3x10
-54

 8.6x10
-5

 30.9 

 6 11 4 lymphocyte activation 1.3x10
-6

 5.5x10
-44

 9.8x10
-9

 52 

 8 19 5 immune response-activating cell 

surface receptor signaling 

pathway 

7.1x10
-6

 8.7x10
-37

 4.8x10
-8

 46.7 

*Average locus length percentile for the top 20 terms for ChIP-Enrich: 25.9, binomial test: 33.3, and FET: 48.6 
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c SIX5       

 

 CE 
rank 

Binom 
rank 

FET 
Rank GO term 

CE 
q-value 

Binom 
q-value 

FET 
q-value 

GO term 
avg locus length %ile* 

 1 1 1 Ribosome 4.4x10
-32

 1.5x10
-60

 1.9x10
-34

 3.4 

 2 4 2 structural constituent of 

ribosome 
9.8x10

-25
 4.2x10

-49
 1.7x10

-27
 3.1 

 3 6 4 establishment of protein 

localization to organelle 
2.6x10

-23
 1.1x10

-43
 8.4x10

-24
 8.6 

 4 28 6 mRNA processing 6.2x10
-23

 5.8x10
-26

 2.3x10
-22

 22.7 

 5 3 5 ncRNA metabolic process 1.0x10
-22

 1.0x10
-49

 8.8x10
-23

 6.6 

 6 2 6 viral reproduction 1.1x10
-22

 1.0x10
-52

 2.3x10
-22

 9.3 

 7 5 3 ribosomal subunit 2.5x10
-22

 1.0x10
-46

 2.9x10
-24

 2.6 

*Average locus length percentile for the top 20 terms for ChIP-Enrich: 8.4, binomial test: 5.1, and FET: 8.0 

 

 

 

 

 

Table 2.2. Fisher’s exact test and the binomial test, but not ChIP-Enrich, show strongly inflated type I error 
rates. ChIP-Enrich shows the expected type I error rate in permuted ENCODE GM12878 ChIP-seq data; Fisher’s 

exact test and the binomial test can show substantial inflation of type I error rate. Values represent the proportion of 
tests with p-value less than the given 
locus length bins), a well-
number of tests was 300 permutations × 5519 GO terms = 1,655,700 tests. CE=ChIP-Enrich; Binom=binomial test; 
FET = Fisher’s exact test. 

  
 

 level = 0.05  level = 0.001  level = 10
-5

 

  
CE Binom FET CE Binom FET CE Binom FET 

Permuted 

across all 

gene 

SIX5 
0.038 0.11 0.038 6.2x10

-4
 0.012 5.9x10

-4
 6.5x10

-5
 .0033 6.4x10

-5
 

PAX5 
0.043 0.25 0.040 4.3x10

-4
 0.093 7.8x10

-4
 2.8x10

-5
 0.054 6.9x10

-5
 

H3k27me3 
0.045 0.30 0.040 4.7x10

-4
 0.14 7.4x10

-4
 3.9x10

-5
 0.096 5.1x10

-5
 

Permuted 

within locus 

length bins 

SIX5 
0.038 0.13 0.039 7.4x10

-4
 0.034 7.3x10

-4
 6.7x10

-5
 0.019 6.2x10

-5
 

PAX5 
0.043 0.25 0.073 3.9x10

-4
 0.11 0.0046 3.4x10

-5
 0.073 0.0011 

H3k27me3 
0.044 0.32 0.18 4.2x10

-4
 0.17 0.044 3.1x10

-5
 0.12 0.024 
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Table 2.3. Most significant Gene Ontology terms from GRα ChIP-Enrich analysis using nearest TSS and ≤1kb 
from TSS locus definitions show a large degree of overlap with significant GO terms from RNA-seq data from 
the same cell line. Most highly significant GO terms (after collapsing related terms; q-value ≤0.05) detected using 

ChIP-Enrich with the a) nearest TSS and b) ≤1kb from TSS locus definitions. The highest ranked GO term from each 
related set of GO terms is displayed. Bold rows designate GO terms with q-value ≤0.05 in GOseq analysis of RNA-
Seq data. In total, 458 GO terms (with ≤500 genes) were significantly enriched for the RNA-seq results.  

a 

ChIP-Enrich 
rank 

nearest TSS 

GOseq 
rank 

RNA-seq data GO Term 

___ ChIP-Enrich q-value___ 
GOseq 
q-value nearest TSS ≤1kb from TSS 

 

1 22 epithelial cell differentiation 1.8x10
-6
 1.0 1.2x10

-6
 

 2 936 adherens junction 5.3x10
-5

 1.0 0.39 

 

4 85 negative regulation of sequence-
specific DNA binding 
transcription factor activity 

5.5x10
-5
 1.0 3.0x10

-4
 

 

5 9 anti-apoptosis 5.5x10
-5
 0.34 3.2x10

-9
 

 7 1040 basolateral plasma membrane 1.7x10
-4

 1.0 0.52 

 
8 501 unsaturated fatty acid metabolic 

process 
3.2x10

-4
 0.028 0.063 

 10 872 focal adhesion 4.5x10
-4

 1.0 0.32 

 

13 132 regulation of small GTPase 
mediated signal transduction 

8.6x10
-4
 1.0 1.3x10

-3
 

 

14 95 response to inorganic substance 1.2x10
-3
 0.075 4.3x10

-4
 

 
15 1616 response to growth hormone 

stimulus 
1.4x10

-3
 1.0 1.0 

 

b 

ChIP-Enrich 
rank 

nearest TSS 

GOseq 
rank 

RNA-seq data GO Term 

 ____ChIP-Enrich q-value___ 
GOseq 
q-value ≤1kb from TSS nearest TSS 

 

1 267 negative regulation of blood 

coagulation 
3.2x10

-7
 0.077 0.010 

 
7 1143 intrinsic to external side of plasma 

membrane 
1.8x10

-4
 0.062 0.68 

 8 1648 leukotriene metabolic process 2.2x10
-4

 6.4x10
-3

 1.0 

 10 4193 anchored to plasma membrane 2.1x10
-3

 0.39 1.0 

 

14 323 positive regulation of leukocyte 

chemotaxis 
3.5x10

-3
 0.092 0.017 

 15 1091 platelet alpha granule lumen 4.7x10
-3

 0.25 0.61 

 18 1099 ameboidal cell migration 5.2x10
-3

 0.31 0.94 

 19 1108 regulation of nuclease activity 5.2x10
-3

 0.083 0.66 

 

20 192 cellular response to biotic 

stimulus 
5.2x10

-3
 6.1x10

-3
 3.7x10

-3
 

 

22 876 nucleotide-binding domain, 

leucine rich repeat containing 

receptor signaling pathway 

6.1x10
-3
 0.15 0.010 
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2.9 Supplementary Figures 

 
b) GO Terms whose Genes’ Loci Have Higher Mappability c) GO Terms whose Genes’ Loci Have Lower Mappability 

GO Term # Genes P-value Q-value GO Term # Genes P-value Q-value 

Organ morphogenesis 642 2.6E-22 5.5E-19 Olfactory receptor activity 114 1.6E-11 7.0E-09 

Central nervous system 
development 454 2.9E-19 3.0E-16 

Sensory perception of 
smell 131 1.3E-09 6.3E-08 

Neurogenesis 634 1.4E-18 9.8E-16 Cellular defense response 60 3.0E-08 9.0E-07 

Neuron differentiation 534 2.7E-18 1.4E-15 
Sensory perception of 
chemical stimulus 167 3.7E-08 1.1E-06 

Cell development 786 5.5E-18 2.3E-15 Oxygen binding 44 7.7E-08 8.7E-06 

Generation of neurons 589 1.6E-17 5.6E-15 
Cellular response to 
xenobiotic stimulus 35 2.2E-07 5.1E-06 

Skeletal system development 272 2.6E-16 7.8E-14 
Xenobiotic metabolic 
process 35 2.2E-07 5.1E-06 

Regionalization 217 1.9E-15 4.9E-13 Electron carrier activity 156 4.9E-07 3.0E-05 

 

Supplementary Figure 2.1. Gene loci with high (or low) average mappability are enriched for specific Gene 
Ontology terms. (a) Distribution of human (hg19) mappability scores (calculated as the average mappability for each 
gene locus using the nearest TSS locus definition) for five different sequencing read lengths. (b) Most significantly 

enriched GO terms associated with high mappability using 50mer reads (c) Most significantly enriched GO terms 
associated with low mappability using 50mer reads. GO biological processes and molecular functions were tested 
using the LRpath gene set enrichment program [36]. 
 

  

a) 
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Supplementary Figure 2.2. Using the mappable locus length (locus length x mappability) tends to improve 
the fit of the binomial cubic smoothing spline in the model, illustrated here with PAX5. Adjusting for 

mappability often shifts up the spline fit for the longest locus lengths; the dip in the fit without mappability is due to 
outlier points with long locus length and very low mappability. 
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Supplementary Figure 2.3. SIX5, PAX5, and H3K27me3 have different gene locus-length-to-peak presence 
relationships. SIX5 (also in Figure 2.1a) has a weak relationship; PAX5 (also in Figure 2.1b) has a mid-level 

relationship; H3K27me3 (also in Figure 2.1c) has a strong relationship. The relationships between locus length and 
proportion of genes with a peak were estimated using a binomial cubic smoothing spline (orange line). Expected line 
if no relationship between presence of ≥ 1 peak and log10 locus length (dark gray, satisfies Fisher’s exact test 
assumptions). Expected line if number of peaks observed is proportional to locus length (light gray, binomial test 
assumption). For visualization only, each point is the proportion of genes assigned a peak within sequential bins of 25 
genes. 
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Permutations within locus length bins – Binomial test 

30-50 genes 51-200 genes >200 genes 
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Supplementary Figure 2.4. The binomial test tends to identify gene sets with short locus length as significant 
(p < 0.05), especially for SIX5. Panel (a) shows the –log10 p-values from the binomial test versus the average log10 

locus length of each gene set tested. Each row shows results from a permutation of the DBP dataset, where the 
original DBP dataset has been permuted by shuffling genes within bins of locus length. Each column subdivides all 
gene sets by their number of genes: the first column has gene sets with 30-50 genes, the next 51-200 genes, and the 
last > 200 genes. Panel (b) shows plots as in (a) for ChIP-Enrich. The binomial test shows a trend of much larger – 
log10 p-values for gene sets with low average log10 locus length, and this trend is most pronounced for sets of genes 
with fewer than 200 genes (first and second columns.) ChIP-Enrich does not show this trend for any of the three 
datasets tested.  

 

Permutations within locus length bins – ChIP-Enrich 

30-50 genes 51-200 genes >200 genes 
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Supplementary Figure 2.5. The GREAT website test tends to detect gene sets with shorter than average locus 
length, especially for SIX5. Plots show the –log10 p-values from the GREAT test versus the average log10 locus 

length of each gene set tested. Each row show results from a permutation of the DBP dataset, where the original 
DBP dataset has been permuted by shuffling genes within bins of locus length. Each column subdivides all gene sets 
by their number of genes. Gene set enrichment testing using GREAT on each set of permuted peaks from SIX5, 
PAX5, and H3k27me3 found significantly enriched GO terms (FDR≤0.05), when none should have been detected. 
The trend with locus length was again greatest for SIX5 and least for H3k27me3. 
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Supplementary Figure 2.6. For SIX5 the ranks of the binomial test results from the original data are highly 
correlated the average ranks from 25 permutations (within locus length bins) of the original data (Spearman r 
= 0.71). For ChIP-Enrich the rank of test results from original data and the average rank permuted data are not 

correlated. The fact that this correlation is not observed in (b, permutations across all genes), implies that the 
correlation is due to the locus length bias. Each plot compares the average ranks of results from 25 permutations to 
rank in the original data, and the red dash line indicates the highest rank where FDR≤0.05 for the original data. (a) 
Binomial test results for permutations within locus length bins. Of the 509 significantly enriched (FDR≤0.05) GO terms 
(with ≤500 genes) using the original, non-permuted data, 413 (81.1%) were also significantly enriched in at least one 
of the permuted data sets. Of the 4,325 not significantly enriched GO terms, only 583 (13.5%) were enriched in at 
least one of the permuted data sets. (b) Binomial test results from permutations across all genes. The average ranks 
of the binomial test results are not correlated with the ranks of the original data (Spearman r=-0.06), indicating that 
the correlation in (a) is due to the confounding by locus length. ChIP-Enrich test results from (c) permutations within 
locus length bins and (d) permutations across all genes, respectively. In both permutation scenarios, the ranks of 
ChIP-Enrich results from permuted and the original data were not correlated (Spearman r=-0.02 and -0.005, 
respectively).   
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Supplementary Figure 2.7. Relationship in simulated datasets between locus length and presence of at least 
one peak (a-c), and QQ-plots showing the type 1 error rate of Fisher’s exact test, the binomial test, and ChIP-
Enrich under these relationships (d-f). Simulated datasets of 10,000 peaks and 0% (a, d), 50% (b, e), or 100% (c, 

f) of peaks sampled in proportion to locus length. Top row (a-c) - For visualization, each point is a bin of 25 genes, 
plotted as the average proportion of genes having a peak within the bin against the average log10 locus length. The 
dark grey horizontal line represents the model where peaks occur within genes with no relationship to their locus 
length. The light grey line represents the probability of a locus having ≥1 peak if peaks are randomly distributed 
across the genome (binomial test assumption). The purple line is a binomial smoothing spline fit to the underlying 
data (the 0/1 vector denoting whether a peak was assigned to a gene vs. the log10 locus length of each gene). The 
yellow line represents the known relationship that exists in the simulated data. Bottom row (d-f) – QQ plots showing 
Fisher’s exact and the binomial test represent two extreme assumptions for enrichment testing for ChIP-seq data, 
while ChIP-Enrich empirically estimates the correct balance between these two extremes. Incorrect assumptions at 
either end leads to biased significance levels. Median p-values (solid lines) are shown for 1000 simulations of 
Fisher’s exact test, ChIP-Enrich, and the binomial test.  
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Supplementary Figure 2.8. Increasing overdispersion in peak counts among genes increases the type 1 error 
rate of the binomial test, decreases type 1 error for Fisher’s exact test, and has no effect on ChIP-Enrich.  

QQ plots of expected versus observed –log10(p-values) for (a) Fisher’s exact test, (b) ChIP-Enrich, and (c) the 

binomial test. Increasing levels of overdispersion, modeled using a gamma distribution, were assessed ranging from 

no overdispersion (red) to a gamma distribution with variance = 0.5 (blue). Red line (no overdispersion) represents 

the same simulation as that in Supplementary Figure 2.7c,f. Simulated datasets of 10,000 peaks were used, and 

median p-values for 1000 simulations are shown.  
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Supplementary Figure 2.9. Gene set enrichment testing using ≤ 1kb from TSS and nearest TSS locus 
definitions often identifies very different sets of significant GO terms for the same DBP.  
Comparison of –log10(p-values) from testing GO terms with ChIP-Enrich using ≤ 1kb from TSS versus nearest TSS 

locus definitions in ENCODE data for the GM12878 cell line. GO terms with: FDR ≤.05 for ≤ 1kb from TSS only 

(green); FDR ≤.05 for nearest TSS only (blue); FDR ≤.05 for ≤ 1kb from TSS and nearest TSS (orange); FDR >.05 in 

both analyses (black). r: Pearson correlation coefficient. DBPs are arranged by groupings in Figure 2.1a, (a-c) are 

DBPs with low number of peaks, (d-f) are DBPs with medium number of peaks, and (g-l) are DBPs with high number 

of peaks. 
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Supplementary Figure 2.10. A comparison of ChIP-Enrich GO term enrichment results for GR using peaks 
≤5kb from the TSS and peaks >10kb from the TSS. Only 14 gene sets were significantly enriched (q≤0.05) in both 

tests. Vasculature development (shown as the blue triangle) was only significant using peaks >10kb from the TSS. 
GO terms with: FDR ≤.05 for ≤ 5kb from TSS only (green); FDR ≤.05 for >10kb from TSS only (blue); FDR ≤.05 for ≤ 
5kb from TSS and ≥10kb from TSS (orange); FDR >.05 in both analyses (black). r: Pearson correlation coefficient. 
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2.10 Supplementary Tables 

Supplementary Table 2.1. List of DBPs from Figure 2.1 with their total peak counts and associated peak 
caller. All DBPs are from ENCODE cell line GM12878. 

 

DNA binding protein Peak caller Number of peaks % of peaks ≤ 1kb from TSS 

ATF3 spp 1884 66.9 
BATF spp 24600 4.9 
BCL11A spp 13256 5.7 
BCL3 MACS 22503 13.1 
BCLAF1 MACS 29162 30.8 
BHLHE40 MACS 57698 21.7 
BRCA1 MACS 15431 40.6 
C-Fos spp 1744 81.8 
CHD2 MACS 42652 29.4 
CTCF MACS 44056 16.1 
Ctcf Scripture 61525 12.8 
EBF1 MACS 98976 14.2 
EGR1 spp 13662 54.3 
ELF1 spp 20528 52.7 
ETS1 spp 2879 72.6 
Ezh2 Scripture 64277 9.9 
GABP spp 5095 79.9 
H2az Scripture 95358 15.0 
H3k27ac Scripture 56069 18.5 
H3k27me3 Scripture 41464 5.4 
H3k36me3 Scripture 33710 3.0 
H3k4me1 Scripture 109612 8.9 
H3k4me2 Scripture 79675 15.3 
H3k4me3 Scripture 57476 17.6 
H3k79me2 Scripture 28302 13.7 
H3k9ac Scripture 41266 25.5 
H3k9me3 Scripture 74515 2.3 
H4k20me1 Scripture 23943 5.0 
JunD spp 1715 3.0 
MAX spp 2087 39.7 
MEF2A spp 16694 11.5 
MEF2C MACS 968 15.1 
NF-E2 MACS 12973 24.2 
NFKB spp 10073 22.1 
NRF1 spp 5042 12.7 
NRSF spp 2541 39.2 
P300 spp 3687 16.5 
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PAX5 spp 19618 18.5 
PBX3 spp 7431 26.1 
POL2 MACS 14989 33.1 
POL3 MACS 112 55.5 
POU2F2 spp 14441 32.9 
PU.1 spp 35821 11.3 
RAD21 MACS 23947 6.5 
RFX5 MACS 26336 33.4 
RXRA spp 2965 31.4 
SIX5 spp 4442 74.8 
SMC3 MACS 64597 14.4 
SP1 spp 13139 46.1 
SRF spp 2412 48.7 
STAT3 MACS 24257 15.1 
TAF1 spp 5169 82.4 
TBP MACS 31315 30.4 
TCF12 spp 15028 25.8 
TR4 MACS 1530 29.5 
USF1 spp 7074 43.0 
USF2 MACS 30248 28.3 
WHIP MACS 88803 17.0 
YY1 MACS 42162 32.3 
ZBTB33 spp 1934 64.8 
ZEB1 spp 8304 46.5 
ZNF143 MACS 81743 18.4 
ZNF274 MACS 1483 1.5 
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Supplementary Table 2.2. Significant overdispersion in peak count among genes is observed for a 
substantial number of GO terms in all 63 ENCODE ChIP-seq datasets from cell line GM12878. Number and 

percentage of GO terms (with 50-500 genes) that contain significant overdispersion in peak counts among the genes 
(q≤0.05). DBPs from Figure 2.1 panels c,f have more peaks than DBPs from panels a, d and thus higher power to 
detect significant overdispersion.  

 

 
  

DBP 

Figure 1 

panel 

# over-

dispersed GO 

terms 

% GO 

 terms over-

dispersed 

 

DBP 

Figure 1 

panel 

# over-

dispersed GO 

terms 

% GO  

terms over-

dispersed 

ATF3 a, d 630 35  PAX5 b, e 1831 100 

cFOS a, d 758 42  POL2 b, e 1828 100 

ETS1 a, d 1253 68  POU2F2 b, e 1827 100 

GABP a, d 1620 88  RAD21 b, e 1755 96 

JunD a, d 692 38  RFX5 b, e 1829 100 

MAX a, d 705 39  SP1 b, e 1829 100 

MEF2C a, d 561 31  STAT3 b, e 1830 100 

NF-E2 a, d 1800 98  TBP b, e 1831 100 

NFKB a, d 1803 98  TCF12 b, e 1828 100 

NRSF a, d 493 27  USF2 b, e 1830 100 

P300 a, d 1413 77  BHLHE40 c, f 1831 100 

PBX3 a, d 1751 96  CHD2 c, f 1832 100 

RXRA a, d 1319 72  CTCF c, f 1831 100 

SIX5 a, d 1448 79  Ctcf c, f 1831 100 

SRF a, d 902 49  EBF1 c, f 1832 100 

TAF1 a, d 1614 88  Ezh2 c, f 1830 100 

TR4 a, d 577 32  H2az c, f 1832 100 

USF1 a, d 1763 96  H3k27ac c, f 1832 100 

ZBTB33 a, d 769 42  H3k27me3 c, f 1831 100 

ZEB1 a, d 1807 99  H3k36me3 c, f 1832 100 

ZNF274 a, d 832 59  H3k4me1 c, f 1832 100 

BATF b, e 1821 99  H3k4me2 c, f 1832 100 

BCL11A b, e 1813 99  H3k4me3 c, f 1832 100 

BCL3 b, e 1826 100  H3k9ac c, f 1832 100 

BCLAF1 b, e 1831 100  H3k9me3 c, f 1832 100 

BRCA1 b, e 1824 100  MXI1 c, f 1832 100 

EGR1 b, e 1825 100  PU1 c, f 1828 100 

ELF1 b, e 1831 100  SMC3 c, f 1831 100 

H3k79me2 b, e 1832 100  WHIP c, f 1832 100 

H4k20me1 b, e 1830 100  YY1 c, f 1832 100 

MEF2A b, e 1815 99  ZNF143 c, f 1832 100 

NRF1 b, e 1829 100      



56 
 

Supplementary Table 2.3. GO terms most strongly associated with short locus length. 

The 500 genes with shortest locus lengths (ranging from 23bp to 5,066bp) were tested for GO term enrichment 

relative to all remaining genes (having a computed locus length) using DAVID [39]. 

 

GO Term # genes total genes in term fold enrich p-value q-value 

nucleosome 13 58 11.64 8.0x10
-10

 2.5x10
-7

 

protein-DNA complex 14 81 8.97 4.3x10
-9

 6.6x10
-7

 

translation 25 314 4.10 9.7x10
-9

 1.3x10
-5

 

DNA packaging 14 105 6.87 1.1x10
-7

 7.2x10
-5

 

nucleosome assembly 12 74 8.35 1.6x10
-7

 7.0x10
-5

 

chromatin assembly 12 77 8.03 2.5x10
-7

 8.0x10
-5

 

ribosome 18 201 4.65 3.4x10
-7

 2.6x10
-5

 
protein-DNA complex 
assembly 12 81 7.63 4.2x10

-7
 1.1x10

-4
 

cellular macromolecular 
complex assembly 22 304 3.73 4.6x10

-7
 1x10

-4
 

nucleosome organization 12 83 7.45 5.4x10
-7

 1x10
-4

 

 

 

 

 
Supplementary Table 2.4. GO terms most strongly associated with long locus length.  

The 500 genes with the longest locus lengths (ranging from 879 kb to 15,8 Mb) were tested for GO term enrichment 

relative to all remaining genes (having a computed locus length) using DAVID [39]. 

 

GO Term # genes total genes in term fold enrich p-value q-value 

homophilic cell adhesion 29 130 8.65 1.9x10
-18

 3.9x10
-15

 
nervous system 
development 78 1066 2.84 2.2x10

-17
 2.3x10

-14
 

cell adhesion 60 686 3.39 9.9x10
-17

 7.6x10
-14

 

biological adhesion 60 687 3.39 1.0x10
-16

 5.7x10
-14

 

cell-cell adhesion 37 271 5.30 4.3x10
-16

 1.8x10
-13

 

generation of neurons 43 549 3.04 2.1x10
-10

 4.0x10
-8

 

calcium ion binding 58 896 2.49 2.4x10
-10

 1.4x10
-7

 

neurogenesis 44 591 2.89 6.1x10
-10

 1.1x10
-7

 

neuron differentiation 34 429 3.07 1.9x10
-8

 3.0 x10
-6

 

axonogenesis 21 191 4.26 1.0x10
-7

 1.5x10
-5
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Supplementary Table 2.5a. Top enriched GO terms (not collapsed, with ≤500 genes) for GR ChIP-seq data 
(4,392 peaks) that were significantly enriched (q ≤0.05) using the nearest TSS locus definition.  

Bolded terms are significantly enriched in both ChIP-Enrich and GOseq results. The complete list of enriched GO 

terms for GR using the nearest TSS and ≤1kb from TSS locus definition is included as a supplemental excel file, 

“Supplementary_table_5expanded.csv.” 

a Rank GO term 
nearest TSS 

q-value 
≤1kb from TSS 

q-value 
GOseq 
q-value 

 1 epithelial cell differentiation 1.8x10
-6

 1.0 1.2x10
-6

 
 2 adherens junction 5.3x10

-5
 1.0 0.39 

 3 anchoring junction 5.3x10
-5

 1.0 0.49 
 4 negative regulation of sequence-

specific DNA binding 
transcription factor activity 5.5x10

-5
 1.0 3.0x10

-4
 

 5 anti-apoptosis 5.5x10
-5

 0.34 3.2x10
-9

 
 6 regulation of epithelial cell 

differentiation 7.6x10
-5

 1.0 0.14 
 7 basolateral plasma membrane 1.7x10

-4
 01.0 0.52 

 8 unsaturated fatty acid metabolic 
process 2.9x10

-4 
3.5x10

-3
 0.52 

 9 icosanoid metabolic process 1.8x10
-4

 2.9x10
-3

 4.1x10
-4

 
 10 focal adhesion 4.5x10

-4
 1.0 0.32 

 11 cell-substrate junction 4.5x10
-4

 1.0 0.39 
 12 cell-substrate adherens junction 4.5x10

-4
 1.0 0.35 

 13 regulation of small GTPase mediated 
signal transduction 8.7x10

-4
 1.0 1.3x10

-3
 

 14 response to inorganic substance 1.2x10
-3

 0.075 4.3x10
-4

 
 15 response to growth hormone stimulus 1.4x10

-3
 1.0 1.0 

 16 regulation of cellular component 
movement 1.8x10

-3
 0.74 5.7x10

-6
 

 17 monocarboxylic acid metabolic process 1.9x10
-3

 0.15 0.66 
 18 response to calcium ion 0.0024 0.33 0.14 
 19 regulation of anti-apoptosis 2.9x10

-3
 0.76 0.63 

 20 negative regulation of protein 
metabolic process 3.2 x10

-3
 0.57 5.5 x10

-3
 

 21 response to glucocorticoid stimulus 3.5 x10
-3

 0.56 0.39 
 22 positive regulation of anti-apoptosis 3.7 x10

-3
 0.62 0.49 

 23 response to corticosteroid stimulus 3.9 x10
-3

 0.63 0.18 
 24 regulation of epidermal cell 

differentiation 4.1 x10+ 1.0 0.84 
 25 Ras protein signal transduction 4.1 x10

-3
 1.0 0.26 

 26 energy reserve metabolic process 4.2 x10
-3

 1.0 0.60 
 27 negative regulation of transcription 

from RNA polymerase II 
promoter 4.4 x10

-3
 1.0 2.5x10

-6
 

 28 actin cytoskeleton organization 4.4 x10
-3

 1.0 0.15 
 29 vasculature development 4.7 x10

-3
 0.97 7.4x10

-16
 

 30 small GTPase mediated signal 
transduction 4.7 x10

-3
 1.0 4.9 x10

-3
 

 

http://nar.oxfordjournals.org/content/42/13/e105/suppl/DC1
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Supplementary Table 2.5b. Top enriched GO terms (not collapsed, with ≤500 genes) for GR ChIP-seq data 

(4,392 peaks) that were significantly enriched (q ≤0.05) using the ≤1kb from TSS locus definition. Bolded terms 

are significantly enriched in both ChIP-Enrich and GOseq results. The complete list of enriched GO terms for GR 

using the nearest TSS and ≤1kb from TSS locus definition is included as a supplemental excel file, 

“Supplementary_table_5expanded.csv.” 

b Rank GO term 
≤1kb from TSS 

q-value 
nearest TSS 

q-value 
GOseq 
q-value 

 1 negative regulation of blood 
coagulation 3.2x10

-7
 0.077 0.010 

 2 negative regulation of coagulation 4.3x10
-7

 0.15 0.015 
 3 fibrinolysis 3.5x10

-5
 0.088 0.033 

 4 regulation of blood coagulation 7.0x10
-5

 0.011 5.4x10
-4

 
 5 regulation of fibrinolysis 1.4x10

-4
 0.073 0.11 

 6 regulation of coagulation 1.4x10
-4

 0.029 9.9x10
-4

 
 7 intrinsic to external side of plasma 

membrane 1.8x10
-4

 0.062 0.68 
 8 leukotriene metabolic process 2.2x10

-4
 6.3x10

-3
 1.0 

 9 positive regulation of coagulation 3.1x10
-3

 0.061 0.028 
 10 anchored to plasma membrane 2.1x10

-3
 0.39 1.0 

 11 regulation of wound healing 2.9x10
-3

 6.4x10
-3

 1.4X10
-4

 
 12 regulation of response to external 

stimulus 2.9x10
-3

 0.014 5.0X10
-5

 
 13 positive regulation of coagulation 3.0x10

-3
 0.061 0.028 

 14 positive regulation of leukocyte 
chemotaxis 3.5 x10

-3
 0.092 0.017 

 15 platelet alpha granule lumen 4.7 x10
-3

 0.25 0.61 
 16 secretory granule lumen 4.7 x10

-3
 0.29 0.63 

 17 cytoplasmic membrane-bounded 
vesicle lumen 5.1 x10

-3
 0.25 0.64 

 18 ameboidal cell migration 5.2 x10
-3

 0.31 0.94 
 19 regulation of nuclease activity 5.2 x10

-3
 0.083 0.66 

 20 cellular response to biotic stimulus 5.2x10
-3

 6.1x10
-3

 3.7x10
-3

 
 21 vesicle lumen 5.5 x10

-3
 0.20 0.68 

 22 nucleotide-binding domain, leucine rich 
repeat containing receptor 
signaling pathway 6.1 x10

-3
 0.15 0.32 

 23 peptidyl-glutamic acid carboxylation 6.9 x10
-3

 0.11 1.0 
 24 regulation of leukocyte chemotaxis 0.011 0.18 0.028 
 25 long-chain fatty acid transport 0.011 0.028 0.12 
 

26 
second-messenger-mediated 

signaling 0.012 0.66 0.047 
 27 positive regulation of leukocyte 

migration 0.014 0.20 0.031 
 28 carboxylic acid transport 0.014 0.18 0.39 
 29 external side of plasma membrane 0.015 0.63 1.0 
 30 endoplasmic reticulum unfolded protein 

response 0.069 0.015 0.29 

 

http://nar.oxfordjournals.org/content/42/13/e105/suppl/DC1
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 RNA-Enrich: A cut-off free functional enrichment Chapter 3

testing method for RNA-seq with improved detection power 

3.1 Introduction  

Functional enrichment testing is one of the most common downstream analyses 

for transcriptomics experiments, facilitating a deeper interpretation of results. Examples 

of gene set databases used for testing are Gene Ontology (GO) which includes 

biological processes, cellular components, and molecular functions, and the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) which places genes in metabolic and 

other pathways. Most current gene set enrichment (GSE) methods, such as DAVID [66], 

were developed for microarray data. These methods often only make use of differential 

expression (DE) p-values or ranks, or simply a list of significant genes. With RNA-seq, 

which uses whole transcriptome sequencing to quantify gene expression, tests for DE 

often exhibit a relationship between read count and likelihood of detecting DE. For 

example, when power is greater to detect longer and/or higher expressed genes, gene 

sets that have long genes or that are highly expressed are more likely to be detected as 

significant, violating common test assumptions. Thus, accounting for read count per 

gene may improve standard GSE methods, which may otherwise not be appropriate for 

RNA-seq data. 

RNA-seq achieves a very high dynamic range, with gene read counts often 

varying across six or more orders of magnitude. Read-count based methods such as 

those using a negative binomial model (e.g., edgeR and DEseq2) can be more likely to 

identify longer and highly-expressed transcripts as significant. Two methods that can 

account for this bias in GSE testing are GOseq [9] which requires a p-value cut-off, and 

Chapter 3 is published as Lee C, Patil S, Sartor MA: RNA-Enrich: a cut-off free functional enrichment testing 

method for RNA-seq with improved detection power. Bioinformatics 2015. 
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GSAASeqSP [32] and SeqGSEA[33], which require permutations and moderate to large 

sample sizes to obtain a sufficient number of unique permutations of phenotype labels. 

We have developed RNA-Enrich, a GSE method that empirically adjusts for average 

read count per gene, and does not require a cut-off to define differentially expressed 

genes (DEGs), time consuming permutations, or regression models. Similar cut-off free 

methods for microarray data have shown improved ability to detect gene sets enriched 

with either a few very strong DEGs or many only moderate DEGs [35, 36].  

3.2 Methods 

3.2.1 Model 

RNA-Enrich models the relationship between log10(average read count) per gene 

and -log10(significance score) using a binomial cubic smoothing spline. The significance 

scores, usually p-values, and read counts are input by the user. Per gene weights (wg) 

are calculated from the spline fit as the ratio between mean –log10(p-value) and fitted 

values, and then normalized to have a mean of 1. A modified version of the random sets 

method, as proposed by [34], is used. We calculate the test statistic 𝑥̅ for genes in a 

gene set: 

)*( gg swmeanx     (1) 

where sg is the –log10(p-value) from a differential gene expression test such as edgeR 

or DESeq2. The distribution of the statistic to test whether 𝑥̅ is significantly different from 

what is expected by chance is intractable. Instead, we use the first and second 

moments of the distribution to define approximate z-scores which are then used to 

calculate p-values of enrichment [34]. Adjusted p-values (q-values) are calculated to 

correct for multiple testing.  

The use of weights ensures that if a relationship exists between read count and 

DE p-values genes, it will be adjusted for properly. The original random sets method 

does not include the wg terms, i.e. all genes are equally weighted; the method for 

calculating p-values using approximate z-scores was the same. Our website supports 

16 different annotation databases plus custom gene sets, seven organisms, and 

clustering of results. 
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3.2.2 Datasets 

Prostate cancer LNCaP cells treated with an androgen hormone 

Li, et al [90] collected RNA-seq data from LNCaP cells, a prostate cancer model 

cell line, treated with an androgen hormone, which is associated with survival in 

prostate cancer. There were 7 total samples: 3 replicates treated with 100μM of 

dihydrotestosterone (DHT) to stimulate androgen production, and 4 controls treated with 

an inactive compound. Expression data was downloaded from 

http://yeolab.ucsd.edu/yeolab/Papers; and differential gene expression testing was 

performed using edgeR accounting for tag-wise overdispersion using R code provided 

by [91] in the edgeR user’s guide on Bioconductor, and with DESeq2 ([92]).  

A549 cells treated with dexamethasone 

The ENCODE dataset, wgEncodeHaibRnaSeqA549Dex100nm, consists of 4 

total samples from A549 cells, adenocarcinomic human alveolar basal epithelial cells: 2 

replicates treated with 100μM of dexamethasone (DEX) and 2 controls treated with 

0.02% ethanol solution. We performed differential gene expression testing using edgeR 

accounting for tag-wise overdispersion and with DESeq2. 

Tunicamycin-treated mice embryonic fibroblasts 

Embryonic fibroblasts from transgenic mice [93] were treated with tunicamycin for 

10 hours. Two treated samples were compared to two controls. Expression data was 

downloaded from GEO (ascension number GSE35681). We performed differential gene 

expression testing using edgeR accounting for tag-wise overdispersion and with 

DESeq2. 

3.2.3 Description of Permutations 

We performed two sets of permutations: “permuted within bins” and “permuted 

overall.” Permuted data was then tested for enrichment of Gene Ontology (GO) terms. 

When data was permuted within bins, the input data, which includes three columns: 

gene ID, differential gene expression p-value and the read count, is ordered by read 

count and divided into bins of 100 genes. Per each group of 100 genes, p-value and 

read count is randomized. This permutation scenario preserves any relationship 

between read count and p-values but removes any association between p-values and 

http://yeolab.ucsd.edu/yeolab/Papers
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GO term membership. In the second permutation scenario, p-values and read counts 

were randomized over all genes, which removes their relationship as well as any 

association between p-values and GO term membership. The difference between the 

results of these two permutations is due to the effect of the relationship between read 

counts and significance values. For example, in the barplots, if a method is conservative 

for “permuted overall” but has an excess of p-values in the left-most bar for “permuted 

within bins”, then that method is not adequately adjusting for the relationship between p-

values and read count. 

For each dataset, we created 100 permuted datasets for each permutation 

scenario. The median p-value of each GO term was calculated across all permutations 

in a permutation scenario for each dataset. We tested each dataset with RNA-Enrich, 

random sets, GOseq, and DAVID.  

3.2.4 Performance Comparison 

To assess the type I error rate for RNA-Enrich, we created permuted datasets 

from two experiments. The first, prostate cancer LNCaP cells treated with 

dihydrotestosterone (DHT), an androgen hormone [90], showed increasing read counts 

with increasing significance (Figure 3.1a). The second, A549 cells treated with 

dexamethasone (ENCODE dataset wgEncodeHaibRnaSeqA549Dex100nm) showed 

steady read counts with increasing significance (Figure 3.1d).  

The original datasets were sorted by read counts, and then within each bin of 

100 genes, GO term membership, DE p-value and average read count were permuted 

as a group. This scenario preserved the association between p-values and read count 

but removed functional enrichment significance from the data, allowing us to assess 

type I error under the null hypothesis and given the observed relationship with read 

count. We also tested the use of corrected fold changes instead of p-values; in this case 

the relationship with read count differed by dataset, but still existed. For both the LNCaP 

dataset and the A549 dataset, 100 permutations were performed. Each original dataset 

and permutation was tested using RNA-Enrich, the random sets method, GOseq and 

DAVID for all GO terms containing 10 – 500 genes. The median p-value of each GO 

term was calculated across all permutations for each dataset. We also provide results 

for a simpler type of permutations, where data was permuted over all genes; this does 
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not preserve the association between DE p-values and read count, and is thus an 

estimate of what type I error would be if no relationship with read count existed. 

3.2.5 Other comparisons 

We used GOseq version 1.18.0 on R version 3.1.1 for enrichment testing on the 

original datasets and the permuted datasets. Average normalized read counts were 

provided as the bias data. We tested the original and the permuted datasets using both 

the sampling method and Wallenius approximation [9]. 

We reimplemented DAVID [39], which uses a modified Fisher’s exact test, to use 

in R in order to test the same GO database that was tested with RNA-Enrich, the 

random sets method, and GOseq.  

We calculated a corrected fold change (cFC) = log2( (X+C) / (Y+C)) where C = 

10th percentile of read counts, X is the average normalized read count per gene for 

treatment cases, and Y is the average normalized read count per gene for control 

cases. Each sample’s read counts were normalized for library size by dividing by total 

number of reads of sample, and then multiplied by average read count across all 

samples. cFC was used in place of –log10(p-value) in RNA-Enrich and random sets. 

3.3 Results & Discussion 

3.3.1 Method performance with permutated data 

Using permuted datasets we compared the type I error of RNA-Enrich to the 

random sets method (does not account for any bias in the data), GOseq (can adjust for 

read counts, but using a cut-off based method), and DAVID (does not adjust for read 

counts, and uses a cut-off based method). We show that when there is a relationship 

between read count and –log10(p-values), adjusting for read count improves the type I 

error rate compared to random sets (Figure 3.1a-c and Figure 3.2). Without adjusting for 

read count, 37 GO terms were enriched in the permuted data for random sets but only 3 

for RNA-Enrich (q-value≤0.05). When the relationship does not exist, as is observed in 

the A549 dataset, RNA-Enrich and random sets have nearly identical type I error rates 

(Figure 3.1d-f). DAVID had 0 GO terms enriched in the permuted data for the LNCap 

experiment, but its type I error was overly conservative in cases where no relationship 
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exists (Figure 3.3). RNA-Enrich provides a diagnostic plot for the user to determine if a 

relationship between read count and –log10(p-value) exists in their data (Figure 3.1a,d). 

If a relationship does exist, we recommend using RNA-Enrich to provide more 

biologically relevant results. RNA-Enrich also has favorable type I error rate compared 

to GOseq and DAVID (Figure 3.3, Figure 3.4, Figure 3.5). The performance of RNA-

Enrich with p-values from DESeq2 instead of edgeR resulted in the same conclusions 

(Figure 3.6). Use of corrected fold change instead of p-values as input showed a 

different relationship exists, but similarly resulted in a benefit for RNA-Enrich compared 

to random sets (Figure 3.7). 

3.3.2 Method performance with experimental results 

Using RNA-Enrich with the LNCaP cells treated with DHT we found 192 enriched 

GO terms (q-value ≤0.05) (Table 3.1 and Supplementary Table 3.1). In comparison, the 

random sets, GOseq, and DAVID methods identified 35, 8, and 30 enriched GO terms, 

respectively. We tested a second dataset, mice embryonic fibroblasts treated with 

tunicamycin, that also revealed a relationship between read counts and significance 

levels, and resulted in conclusions similar to the LNCaP dataset (Figure 3.8, Figure 3.9, 

Figure 3.10). Again, RNA-Enrich detected more GO terms than the alternatives (Figure 

3.8). 

In the A549 dataset, we did not expect an advantage to RNA-Enrich over random 

sets, since there was no observed relationship between read count and significance 

levels. RNA-Enrich found 367 enriched GO terms including negative regulation of 

transcription, vasculature development and fat cell differentiation – all top ranked 

enriched GO terms also found by random sets and GOseq. Random sets and GOseq 

identified 347 and 363 GO terms, respectively. Based on Figure 3.1e,f and our overall 

findings, RNA-Enrich has the desirable property of reducing to the random sets method 

when no relationship with read count exists. 

https://bioinformatics-oxfordjournals-org.proxy.lib.umich.edu/content/early/2015/12/25/bioinformatics.btv694/suppl/DC1
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3.4 Figures and Tables 

 
 
Figure 3.1. Comparison of RNA-Enrich with random sets with two datasets exhibiting two different p-value to 
average read count trends. Permuted data is “permuted within bins.” (a) RNA-seq data from LNCaP cells treated 

with DHT compared to a control showed a relationship between average gene read count and –log10(p-values) from 
DE tests. (b-c) Histogram of permutation p-values (teal color) should be uniformly distributed for acceptable type I 
error rate. For RNA-Enrich, the type I error rate is approximately uniform (b), but for the random sets approach for 
which there is no correction, more p-values are significant than expected (c). With the original data, RNA-Enrich 
identifies more significant GO terms than the random sets method (pink color). (d) RNA-seq data from A549 cells 
treated with Dex compared to ethanol showed no relationship between read count and –log10(p-values). (e-f) With or 
without the read count bias correction, type I error rate is approximately uniform, indicating that no correction is 
needed and either test is valid. 
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RNA-Enrich Random Sets 

Prostate cancer LNCaP cells treated with an androgen hormone 

a 
Permuted within bins 

 
P-value 

b 
Permuted overall 

 
P-value 

c 
Permuted within bins 

 
P-value 

d 
Permuted overall 

 
P-value 

A549 cells treated with dexamethasone 

e 
Permuted within bins 

 
P-value 

f 
Permuted overall 

 
P-value 

g 
Permuted within bins 

 

P-value 

h 
Permuted overall 

 
P-value 

Tunicamycin-treated mice embryonic fibroblasts 

i 
Permuted within bins 

 
P-value 

j 
Permuted overall 

 
P-value 

k 
Permuted within bins 

 
P-value 

l 
Permuted overall 

 
P-value 

 
Figure 3.2. RNA-Enrich and random sets performance on permutated data. P-value distributions of RNA-Enrich 

versus the random sets method on datasets that were “permuted within bins” and “permuted overall.” Histograms of 
permutation p-values (teal color) should be uniformly distributed for acceptable type I error rate. Both the prostate 
cancer LNCaP dataset (a-d) and a third dataset of tunicamycin-treated mice embryonic fibroblasts (i-l) exhibited a 
positive relationship between read count and DE p-values. When enrichment testing was applied to the permuted 
datasets that were permuted within bins, which preserves that relationship, RNA-Enrich had a better type I error rate 
than the random sets method, which shows an excess of low p-values when data is permuted within bins (c,k). When 
data is permuted overall (b,d,f,h,j,l), the type I error of RNA-Enrich and random sets is similar, which implies that the 
difference between methods observed for the “permuted within bins” scenario is due to random sets’ inability to adjust 
for the effect of read counts. RNA-Enrich calls more significantly enriched gene sets than random sets for this 
dataset. When RNA-Enrich and random sets were applied to the A549 cells dataset, type I error was very similar 
between the two methods and both methods called a similar number and list of enriched gene sets. 
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Top 500 genes (p ≤ 5.36 x10-14, q ≤ 1.46 x10-12) 

a permuted within bins 

 

b permuted overall 

 

Top 1000 genes (p ≤ 7.13 x10-7, q ≤ 9.65 x10-7) 

c permuted within bins 

 

d permuted overall 

 

Genes with p ≤10-4 (1,934 genes, q ≤ 6.94 x10-4) 

e permuted overall 

 

f permuted overall 

 
 
Figure 3.3. DAVID results: Prostate cancer LNCaP cells treated with an androgen hormone. P-value 

distributions from DAVID with the LNCaP dataset. Histograms of permutation p-values (teal color) should be 
uniformly distributed for acceptable type I error rate. (a, c, e) When the permuted data retains the relationship 
between read counts and DE p-values, DAVID calls more significantly enriched GO terms when the cutoff for 
differential expression includes more genes. (b, d, f) When the permuted data no longer has a relationship 
between read counts and DE p-values, the type I error rate of DAVID is conservative. 
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Top 500 genes (p ≤ 0.88, q ≤ 1) 

a permuted within bins 

 

b permuted overall 

 
 
Top 1000 genes (p ≤ 0.83, q ≤ 1) 

c permuted within bins 

 

d permuted overall 

 
 
Genes with p ≤10-4 (156 genes, q ≤ 0.01) 

e permuted within bins 

 

f permuted overall 

 
 
Figure 3.4. DAVID results: A549 cells treated with dexamethasone. P-value distributions from DAVID with the 

A549 cells dataset. Histograms of permutation p-values (teal color) should be uniformly distributed for acceptable 
type I error rate. (a-f) The type 1 error rate for DAVID is similar when testing on data permuted within bins (retains 
relationship between read count and DE p-values) and permuted overall (relationship is not retained), because this 
data set does not have a relationship between read count and differential gene expression p-values. The type I error 
rate of DAVID is somewhat conservative. 
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RNA-Enrich 
a permuted within bins 

 
P-value 

b permuted overall 

 
P-value 

 
GOSeq, sampling, 500 genes (p ≤ 5.36 x10-14, q ≤ 1.46 x10-12) 
c permuted within bins 

 
P-value 

d permuted overall 

 
P-value 

 
GOSeq, Wallenius, 500 genes (p ≤ 5.36 x10-14, q ≤ 1.46 x10-12) 
e permuted within bins 

 
P-value 

f permuted overall 

 
P-value 

 
 

Figure continues on next page…  
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GOSeq, sampling, with p ≤10-4 (1,934 genes, q ≤ 6.94 x10-4) 
g permuted within bins 

 
P-value 

  

GOSeq, Wallenius, with p ≤10-4 (1,934 genes, q ≤ 6.94 x10-4) 
h permuted within bins 

 
P-value 

  

 
Figure 3.5. RNA-Enrich vs GOseq: Prostate cancer LNCaP cells treated with an androgen hormone. 

RNA-Enrich versus GOseq for LNCaP dataset. Histograms of permutation p-values (teal color) should be 
uniformly distributed for acceptable type I error rate. For the GOseq analysis, we used two different cut-offs to 
define differentially expressed genes: the top 500 significant genes, and genes with p-value ≤10

-4
. We tested 

GOseq using both the default sampling method as well as the Wallenius approximation method. (a-b) For RNA-
Enrich, the type I error rate is approximately uniform. (c-d) GOseq using the sampling method and a cutoff of 
the top 500 genes to define differentially expressed genes, results in an approximately uniform distribution. 
(a,b) With the original data, RNA-Enrich identifies more significant GO terms than GOseq (pink color). (e,f) 
GOseq using the Wallenius approximation and a cutoff of the top 500 genes to define differentially expressed 
genes. Again, the type I error rate is acceptable. (g) GOseq using the sampling method and genes with p- value 
≤10

-4
. (h) GOseq using the Wallenius approximation and genes with p- value ≤10

-4
. (d,f) Type I error of RNA-

Enrich and GOseq using permuted data that was permuted overall, which removes any relationship between 
read count and differential gene expression p-values, was similar to that using the data that was permuted 
within bins. This suggests both methods do account for that bias. However, all cutoffs we tried with GOseq 
resulted in less significant GO terms than with RNA-Enrich.  
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Prostate cancer LNCaP cells treated with an androgen hormone 
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Figure 3.6. Comparison of RNA-Enrich and Random Sets using DESeq2 differential gene expression 
significance values. Relationships between read counts and significance values, and p-value distributions for 

RNA-Enrich and random sets using p-values from DESeq2 instead of edgeR. Results were similar between the 
two differential gene expression tests. (a,d) Relationship between read count and differential gene expression p-
values remain the same for each dataset as they appeared for edgeR. (b,e; teal color) Type I error of RNA-Enrich 
remains improved over (c,f; teal color) random sets when there exists a relationship between read count and DE 
p-value (b,c) and is the same when there is no relationship (e,f). RNA-Enrich still appears to have improved 
detection power (b,c,e,f; pink color). 
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Prostate cancer LNCaP cells treated with an 
androgen hormone 
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A549 cells treated with dexamethasone 
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Figure 3.7. Comparison of RNA-Enrich and Random Sets using corrected fold change as significance 
values. Results for RNA-Enrich and random sets using corrected fold change (cFC) = log( (X+C) / (Y+C)) where 

C = 10
th

 percentile of read counts, X is average normalized read count per gene for treatment cases, and Y is 
average normalized read count per gene for control cases. (a,e) Relationship between read counts and cFC 
exists for A549 dataset, but not for the LNCaP dataset, which is opposite from what was observed based on p-
values. Permutation p-value distributions for RNA-Enrich (b,f; teal color) compared to random sets (c,g; teal color) 
show that random sets has more lower p-values than expected for the A549 dataset, as evident in the higher bar 
at p=0 – 0.02. (d,h) GSE –log10(p-values) were highly correlated between RNA-Enrich using cFC and RNA-Enrich 
using p-values from edgeR.  
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Figure 3.8. RNA-Enrich vs random sets in tunicamycin-treated mouse embryonic fibroblasts dataset using 
edgeR. (a) RNA-seq data from tunicamycin-treated mouse embryonic fibroblasts also showed a relationship between 

average gene read count and –log10(p-values) from differential expression tests using edgeR. (b-e) Histograms of 
permutation p-values (teal color) should be uniformly distributed for acceptable type I error rate. (b) For RNA-Enrich, 
the type I error rate is again approximately uniform. (c) For the random sets approach for which there is no correction, 
more p-values are significant than expected. With the original data, RNA-Enrich identified more significant GO terms 
(548) than the random sets method (310) (pink color). (d) Using GOseq (sampling method) and a cutoff of q≤10

-4
 

(795 genes) to define differentially expressed genes, 158 GO terms were enriched. (e) Using DAVID with the top 
1,000 genes (p ≤ 4.44 x10-5, q ≤ 7.80 x10-4), 274 GO terms were enriched. 
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Figure 3.9. RNA-Enrich vs random sets in tunicamycin-treated mouse embryonic fibroblasts dataset using 
DEseq2. (a) RNA-seq data from tunicamycin-treated mouse embryonic fibroblasts also showed a relationship 

between average gene read count and –log10(p-values) from differential expression tests using DEseq2. (b-c) 
Histograms of permutation p-values (teal color) should be uniformly distributed for acceptable type I error rate. (b) For 
RNA-Enrich, the type I error rate is again approximately uniform. (c) For the random sets approach for which there is 
no correction, more p-values are significant than expected. With the original data, RNA-Enrich identified more 
significant GO terms (771) than the random sets method (415) (pink color).  
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Figure 3.10. RNA-Enrich vs random sets in tunicamycin-treated mouse embryonic fibroblasts dataset using 
corrected fold change. (a) RNA-seq data from tunicamycin-treated mouse embryonic fibroblasts showed only a very 

slight relationship between average gene read count and cFC. (b-c) Histograms of permutation p-values (teal color) 
should be uniformly distributed for acceptable type I error rate. (b) For RNA-Enrich, the type I error rate is again 
approximately uniform. (c) For the random sets approach for which there is no correction, only slightly more p-values 
are significant than expected. In this case with the original data, RNA-Enrich identified 758 significant GO terms and 
the random sets method identified 842 GO terms as significant (pink color).  
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Table 3.1. Top ranked GO terms from RNA-Enrich for LNCaP cell line treated with DHT.  

Results shown are limited to the top unrelated GO terms. 

Rank  GO term P-value FDR 

 1 extracellular space 2.3 x 10-8 1.6 x 10-6 

 2 vasculature development 4.6 x 10-9 3.4 x 10-6 

 7 signaling receptor activity 3.9 x 10-7 1.3 x 10-4 

 9 epithelial cell differentiation 2.3 x 10-6 5.0 x 10-4 

 10 cellular biogenic amine metabolic process 2.4 x 10-6 5.0 x 10-4 

 12 response to endoplasmic reticulum stress 8.9 x 10-6 1.3 x 10-3 
 

 

Supplementary Table 3.1. Extended version of Table 3.1.  

https://bioinformatics-oxfordjournals-org.proxy.lib.umich.edu/content/early/2015/12/25/bioinformatics.btv694/suppl/DC1
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 Transposons, segmental duplications, sequence Chapter 4

mappability, and gene length: Deciphering their relationship 

with gene function 

4.1 Introduction 

The ability to uniquely map short DNA read sequences to a reference genome 

(referred to as mappability) varies significantly across the mammalian genome [88, 94], 

with repetitive and duplicated regions generally reducing mappability. Mappability tracks 

are available on the UCSC Genome Browser for the human and mouse genomes [88] 

and some peak finders for the discovery of DNA binding sites in ChIP-seq data, such as 

PeakSeq [88], MOSAICS [18] and MUSIC [95], can adjust for mappability when calling 

peaks. Others have noted read bias in copy number variation calls due to mappability 

and have proposed methods to adjust for this [96]. Although mappability is a technical 

factor, it can serve as a measure of sequence uniqueness for any genomic region of 

interest, and may help to reveal the underlying regulatory architecture of the functional 

genome.  

While mappability has not yet been studied in conjunction with gene function, 

there are several studies that suggest genes requiring more complex and tissue-specific 

regulation have at least some regions with high mappability, and vice versa. The 

creators of the CRG mappability tracks, which we utilize in this study, found that the 

approximately 900 olfactory receptor genes annotated in GENCODE were 10% less 

mappable than the average of protein-coding genes [94]. Olfactory receptor genes are 

highly paralogous. The majority of them in humans are no longer functional but are 

pseudogenes, and many have multiple copies [97], resulting in lower mappability. On 

the other end of the mappability spectrum, transposon-free regions are long stretches of 

sequence that are devoid of transposons (a class of repetitive elements), and therefore 

are more likely to be highly mappable. Though exons have a higher proportion of 
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transposon-free regions, the majority of transposon-free regions occur in intronic and 

intergenic regions. The longest transposon-free regions are enriched in or near genes 

involved in DNA binding, regulation of transcription and development [21]. The 

distribution of transposon-free regions and their functional annotation suggest that 

certain genes need more finely tuned regulation, while other genes, such as olfactory 

receptor genes, do not need as finely tuned regulation and are more tolerant of 

repetitive element insertion, mutations, and may gain/lose copies over time.  

Evolutionarily, the cell can fine-tune gene regulation by (1) having more potential 

regulatory space around the gene exons (i.e. longer intergenic distances and/or longer 

introns), (2) having more unique sequence space (e.g. fewer repetitive elements), or (3) 

both. Nelson et al. [98] have shown these two properties are related to regulatory 

complexity in Drosophila melanogaster and Caenorhabditis elegans. We hypothesize 

that in mammals, mappability, along with gene and intergenic length, can be used as an 

indirect measure of the complexity of a gene’s regulation. Although mappability has 

been shown to bias read coverage and the results of multiple sequencing applications, 

little has been published on the relationship between mappability and gene function in 

mammals. To study this relationship, one needs to consider the main factors that 

contribute to mappability: transposons and segmental duplications. 

Repetitive elements, such as transposons and segmental duplications, pose a 

major problem to sequence alignment. Transposons such as long interspersed nuclear 

elements (LINEs), short interspersed nuclear elements (SINEs) , long terminal repeats 

(LTRs), and DNA transposons (transposons that do not require an RNA intermediate) 

together constitute an estimated 45% of the human genome [20, 21] (and possibly up to 

66% [99]) . These regions have a high level of short sequence repeats and tend to be 

poorly mappable, although their mappability is correlated with age since older 

transposons have had more time to accumulate mutations. LINEs and SINEs are 

classes of autonomous mobile DNA sequences. Both LINEs and SINEs primarily move 

in a “copy and paste” manner using reverse transcriptase to insert DNA copies into the 

genome, however SINEs do not encode the reverse transcription machinery and rely 

upon reverse transcriptase produced from intact LINEs. LINEs and SINEs have been 

evolutionarily selected against in coding regions such as exons, but make up a large 
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proportion of non-coding DNA, which include promoters, introns, and intergenic regions 

[100]. In the human genome, the most abundant transposons in the LINE and SINE 

classes are LINE-1 (L1) elements and Alu elements, respectively. L1 elements make up 

an estimated 15% of the human genome, while Alu elements make up an estimated 

11% and are twice as abundant as L1 elements [22, 100, 101]. The Alu sequence is 

only 300bp, while the canonical L1 sequence is 6kb in length, however the majority of 

L1 elements in the genome are fragments of the original. Alu elements are more often 

observed in gene-rich regions, while L1s are enriched in gene-poor regions. 

Consequently, Alu elements are also enriched in R-bands (euchromatin) and CpG rich 

regions. However, Alu elements are more likely to be evolutionarily selected against 

over time compared to L1 elements [22].  

Segmental duplications are long duplications of DNA sequence, inter- and intra- 

chromosomal, that are 1-200kb in length and have >90% identity. They make up about 

5% of the human genome [102-105] and are enriched near centromeres and telomeres, 

as well as specific focal regions within euchromatin. It is estimated that 10.6% of highly 

identical (>98% identity) segmental duplications are paralogs, genes related by 

duplication that may evolve to have new functions [102]. Indeed segmental duplications 

have been implicated as the source of evolution of novel genes [106, 107], including 

genes that contributed to the divergence between humans and apes [108, 109].  

While the distribution of repetitive elements and segmental duplications across 

the human genome is well-characterized, studies of their relationship with gene function 

have been limited. Alu elements have been shown to have a preference for (or are 

tolerated in) promoter regions of housekeeping genes over tissue-specific genes [110], 

and canresult in new binding sites for multiple transcription factors with single nucleotide 

mutations [111, 112]. An analysis of Alu distribution in chromosomes 21 and 22showed 

that Alu elements on these chromosomes were enriched in or near transport, 

metabolism, and signaling genes [113]. A recent study of L1 elements in coding regions 

found that these genes produced proteins such as transcriptional factors, and 

topoisomerase, and were involved in histone modification, RNA elongation, signal 

transduction, membrane receptors and extracellular growth factors [114]. L1 elements in 
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intergenic regions have been suggested to help recruit the protein Xist RNA for X-

inactivation [115].  

Despite the above specific studies, to our knowledge, a genome-wide analysis of 

repetitive elements and segmental duplications and their relationship with gene function 

has not been conducted. One reason why this may not yet have been accomplished is 

that until recently, there was no functional enrichment testing method developed to 

handle data with these characteristics that have extremely high prevalence across the 

genome in both genic and intergenic regions. However, given an appropriate 

enrichment testing method, genome-wide functional enrichment of repetitive element 

families could elucidate evolutionary selection pressures, and identify which gene 

functions may benefit from maintaining or deleting repeats in the various regulatory 

regions of the associated genes. 

Although little is known about the relationship between repetitive element families 

and gene function, the relationship between gene function and the length of a gene or 

the amount of intergenic distance surrounding a gene has been well-studied [38-40]. 

For example, genes involved in various developmental programs, nervous system 

related processes, and regulation of transcription (as determined by Gene Ontology 

(GO)) tend to be longer and/or have longer intergenic distances surrounding them. 

Conversely, genes involved in electron transport, chromatin assembly and organization, 

and the ribosome and rRNA processing tend to be shorter and/or have shorter 

intergenic distances.  

Since repetitive elements and segmental duplications are the main contributors 

to mappability, we reasoned that if they are all independently depleted in the same gene 

functions as intergenic distance, it would be strong evidence that natural selection 

pressure drives these same gene functions to have overall higher levels of unique, 

potential regulatory sequence. We hypothesized that some or all of the gene functions 

that require complex regulation, also require a high level of uniqueness in the 

surrounding sequences. This would result in higher than average mappability levels and 

maintenance of long gene locus length that would provide protection from degradation 

of essential DNA sequence or distances for DNA loops. This leads to the hypothesis 

that genes with fewer transposons and segmental duplications in their surrounding 
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regions, and with longer intronic/intergenic regions, require complex regulation. 

Conversely, we hypothesize that genes containing more transposons and segmental 

duplications require simpler regulation and/or may have adapted the repetitive elements 

for their own regulatory purposes. 

Here we examine the levels of L1 elements, Alu elements, segmental 

duplications, and overall mappability in different genic and intergenic regions, as well as 

gene length, to discern significant patterns of enrichment or depletion across gene 

functions. We first show how average mappabiilty differs among gene locus regions 

(e.g. exons, introns, promoters). Secondly, we characterize the contribution of L1, Alu, 

and other repetitive elements, and segmental duplications to mappability across various 

regions in the human genome. We illustrate a strong relationship between repetitive 

elements and gene function and compare that with those of gene length and 

mappability. Our results suggest mappability could have important implications for 

interpretation of deep sequencing applications, and the evolutionary mechanisms used 

to achieve proper regulation. 

4.2 Methods 

4.2.1 Locus regions 

We define the locus regions similarly to those in Welch and Lee, et al [116]. The 

TSS extended locus region is defined as the genomic region between the upstream and 

downstream midpoints between a gene and the TSS’s of the two adjacent genes. This 

region represents an estimate of the entire region that is part of, or regulates, the gene. 

≤5kb from TSS is defined as the region within 5kb upstream and downstream of all 

TSSs in a gene. If TSSs from the adjacent gene(s) are less than 10kb away, we use the 

midpoint between the two TSSs as the boundary of the locus for each gene. We define 

>5kb upstream from TSS as the region between 5kb upstream of a TSS to the midpoint 

of the adjacent upstream TSS. We also defined two additional locus regions: exons, the 

exonic regions of each gene (in the case where exons from multiple transcripts of the 

same gene overlap, the region was reduced to one non-overlapping region), and 
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introns, the intronic regions of each gene, that is the region between two non-

overlapping exons of transcripts belonging to the same gene.  

4.2.2 Mappability calculations 

We calculated base pair mappability for reads of lengths 24, 36, 50, 75, and 100 

base pairs derived from mappability data for Homo sapiens (build hg19) from the CRG 

mappability tracks on the UCSC Genome Browser [94]. An illustration of our mappability 

calculations is shown in Figure 4.1. Let Bi be the average read mappability of all 

possible reads of size K that encompass a specific base pair location, i, based on the 

mappability tracks from the UCSC browser. The values from the UCSC mappability 

tracks are the reciprocal of the number of mapped locations in the genome to which a 

read beginning at position j and extending for length K maps uniquely. A value of 1 

indicates the read maps to one location in the genome. A value of 1/n indicates the read 

maps to n distinct places in the genome. We converted the values from the mappability 

track to binary (either uniquely mappable or not). For each base pair position, and then 

determined the proportion of reads overlapping that position that are uniquely 

mappable. We defined the mappability of a locus as the average of all base pair 

mappability values in the defined gene locus region. We chose to primarily use 50mer 

read length throughout the chapter due to the common choice of this read length, 

especially for ChIP-seq experiments. 

4.2.3 Repetitive elements and segmental duplications 

We defined repetitive elements using the repeat masker (“rmsk”) and segmental 

duplications (“superdupe”) tables from the UCSC genome browser. For Alu and L1 

elements, we used the subset of the repeat masker table defined by the respective 

transposon family. Mappability of each non-overlapping region was calculated in the 

same way as locus definitions; that is, we averaged base pair mappability over the 

repetitive element or segmental duplication. 
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4.2.4 Contribution of repetitive elements and segmental duplications to 

mappability 

To quantitate the contribution of each repeat type to mappability, we created a 

contribution score for each repeat type, C, which we define as 1 minus the mappability 

of the region where the repeat type overlapped with the loci, multiplied by the percent of 

the loci covered by the repeat type. We performed simple linear regression using the 

model: 

𝑚𝑎𝑝𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝛽1𝐶𝐴𝑙𝑢 + 𝛽2𝐶𝐿1 + 𝛽3𝐶𝑂𝑡ℎ𝑒𝑟 + 𝛽4𝐶𝑆𝑒𝑔𝐷 

and calculated the R2 values for each factor and the overall model, which we report as 

the percent of mappability explained by repetitive elements and segmental duplications. 

4.2.5 Gene set enrichment testing 

We used RNA-Enrich [117] (http://lrpath.ncibi.org) to test for Gene Ontology (GO) 

terms enriched with genes with high or low mappability, which corrected for any effect of 

gene length on average mappability. For GO term enrichment testing of genes with long 

or short locus length, we use LRpath [36] in order to use a continuous measure for gene 

length rather than a method that requires a cut-off to define short and long genes. For 

GO term enrichment testing of the Alu and L1 elements, and segmental duplications, we 

use Broad-Enrich [37]. Broad-Enrich tests for enrichment/depletion of percent coverage 

of repeats across gene loci, while correcting for locus length. This allows us to discover 

gene functions with genes whose loci consist majorly of repeats (enrichment) or rarely 

contain repeats (depletion). Since repeats occurred in almost all genes, using a method 

that reduces the repeat coverage to a binary measure would not have been appropriate. 

In all cases, we corrected p-values for multiple testing using the False Discover Rate 

(FDR) approach. We report results for GO terms with ≤500 genes to avoid overly broad 

terms. 

4.2.6 Clustering 

Gene sets that had significantly high or low mappability (q-value≤0.001) in at 

least two locus regions in at least 1 type of repeat (Alu elements, L1 elements, or 

segmental duplications), were included in the clustering. P-values from gene set 

enrichment testing were log10 transformed and then multiplied by -1 if the gene set was 

http://lrpath.ncibi.org/
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enriched (resulting in a positive number), thereby creating “signed” –log10(p-values). 

Hierarchical clustering was performed using uncentered correlation and average 

linkage. Clustering was performed with gene set enrichment results of GO terms across 

the five locus regions in the following order: exons, introns, TSS extended, ≤5kb from 

TSS, and >5kb upstream from TSS. The order was chosen to show trends using 

different partitions of the genome, from coding (exons) to non-coding (introns) regions, 

overall regions that included the previous and intergenic regions, and then the potential 

regulatory regions surrounding a gene. 

4.2.7 Motif discovery and mappability 

We used MEME (Multiple EM for Motif Elicitation) to perform an unsupervised 

search for transcription factor motifs (with a maximum 21bp width) in the ENCODE 

ChIP-seq experiment for neuron-restrictive silencer factor (NRSF) in cell line K562, with 

6,016 peaks called using the peak finder PePr. MEME output includes a logo of the 

motif as well as a position-specific probability matrix. Sequences for each NRSF peak 

were extracted using the UCSC genome browser. The position-specific probability 

matrix was used as a position weight matrix in the Bioconductor R package, Biostrings, 

to calculate all areas in the human genome where the motif matched ≥80%. Genomic 

coordinates for each instance where the motif was found was extended upstream and 

downstream by 100bp to simulate ChIP-seq peaks. Simulated peaks were overlapped 

with the NRSF peaks to determine potential peaks that were not identified by the peak 

finder. Mappability was calculated for each simulated peak that had a motif and 

compared between simulated peaks that overlapped and did not overlap with the NRSF 

peaks.  

4.3 Results 

4.3.1 Mappability varies by read length and region of gene 

We first describe the mappability of each gene’s overall locus (defined as the 

gene body and its surrounding genomic region) and the mappability of specific regions 

for each gene, such as exons, introns, and upstream regions. We calculated the 

mappability at each base pair for read lengths ranging from 24 to 100mer for human 
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(Figure 4.1a; see methods for details). The overall percent mappability in the human 

genome ranged from 48.6% (for 24mers) up to 93.6% (100mers). As expected, longer 

reads had consistently higher average mappability (Figure 4.1). We then calculated the 

average mappability of the following locus regions for each gene: (1) TSS extended - 

the region between the midpoints of a gene’s TSS and the upstream and downstream 

TSSs of adjacent genes, (2) exons, (3) introns, (4) ≤5kb from TSS- the 5kb region 

upstream and downstream of a TSS, and (5) >5kb upstream from TSS – the region from 

5kb upstream to the midpoint between the gene’s TSS and the neighboring gene TSS 

(Figure 4.1b). The last four locus regions are encompassed in TSS extended. 

In human, using the TSS extended regions, the percent of gene loci having an 

average mappability ≥ 90% for 24, 36, 50, 75, and 100mers was 0.21, 7.41, 24.2, 76.2, 

and 90.1 %, respectively. Although the results for 100mers was very high, still only 2.7% 

of gene loci had 100% unique mappability. For all read lengths, exons were the most 

mappable locus region; this was particularly pronounced for the shorter read lengths 

(Figure 4.2). Focusing on the widely used read length of 50nt, regions >5kb upstream of 

TSS tend to be least mappable, although the distributions of different locus regions 

across all genes are very similar (Figure 4.3a).  

4.3.2 Mappability of repetitive elements and their distribution across genic 

regions 

We next sought to understand how much various factors contribute to the 

mappability of different gene locus regions, and how they are distributed across genes. 

To accomplish this, we examined different locus regions across genes and calculated 

(1) the mappability of different repetitive elements and (2) the proportion of each region 

of each gene covered by these repetitive elements (Figure 4.3b-f). As expected, most 

repetitive elements were not highly mappable, however L1 elements were relatively 

highly mappable with an average of 86% mappabiilty (Figure 4.3d). Segmental 

duplications and Alu elements were least mappable with an average of 41% and 46% 

mappability, respectively. Other repetitive elements were relatively highly mappable with 

an average of 92% mappability. Overall, mappability of Alu and L1 elements were 
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positively correlated with age as measured by percent divergence from consensus 

sequence (Figure 4.4).  

Repetitive elements occurred in almost all TSS extended loci, with Alu elements 

in 98% of genes, L1 elements in 90% of genes, and other repetitive elements in 99% of 

genes. Segmental duplications were associated with only 27% of genes. As expected, 

repetitive elements were least prominent in exons, while segmental duplications were 

most prominent in exons and had a similar distribution of coverage for the other four 

locus regions (introns, ≤5kb from TSS, and >5kb upstream, and TSS extended) (Figure 

4.3). Alu elements on average covered 16-19% of a non-exonic locus region, while L1 

elements covered 6-16% (Figure 4.3b-c). Compared to Alu elements, L1 elements had 

a more significant depletion in coverage in introns and ≤5kb of the TSS. Both Alu 

elements and L1 elements were most prominent in the >5kb upstream from TSS loci, 

which contain distal regulatory regions.  

Overall, repetitive element coverage negatively correlated with mappability. Loci 

with segmental duplications were among those with lower mappability (Figure 4.5). To 

quantitate the contribution of each repeat type to mappability, we created a contribution 

score that measures how much the unmappability (1-mappability) of a locus is due to 

coverage by a repeat type (see methods for further details). Contribution scores of 

repetitive elements and segmental duplications were highly correlated with loci 

mappability (Figure 4.6). We performed linear regression to determine separately and 

altogether how much repetitive elements and segmental duplications contribute to the 

mappability of different locus regions. In order from explaining most to least, the regions 

were ≤5kb of the TSS (95.5%), introns (94.5%), TSS extended (90.3%), >5kb upstream 

from TSS (89.3%), and exons (79.9%) (Figure 4.7). Thus, these repetitive elements 

account for the great majority of the unmappability of regions. The contribution to exon 

mappability may be lowest due to the low coverage of most repetitive elements in these 

regions and because exons may contain many duplicated regions too small to be 

defined as a segmental duplication.  

Also interesting was the range of coverage proportions observed across genes 

both for Alu and L1 elements. For example, although on average only 15% of a gene’s 

promoter region is covered by Alu elements, some genes had as high as >50% Alu 
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element coverage in their promoter while others had <5%. For L1 elements, we 

observed that a certain group of genes had near 0% L1 coverage across their entire 

range, while the rest had a fairly spread out distribution, resulting in a bimodal 

distribution. This led us to wonder whether the types of genes at either end of these 

distributions were random, or whether they tend to belong to certain functions and 

processes. And if so, were they similar or different functions and processes for the 

different contributors to low mappability (Alus, L1s, segmental duplications, etc)? 

4.3.3 Repetitive elements and overall mappability in both genic and 

regulatory regions are associated with gene function and locus 

length 

To assess gene functions that are significantly enriched with or depleted of 

different repetitive element types, we performed gene set enrichment tests using GO 

terms. For comparison, we also performed similar tests for gene functions that have 

significantly higher/lower than average overall mappability, and significantly 

longer/shorter than average locus length. We found gene length to be a potentially 

confounding factor for both mappability and repeat coverage, as the average 

mappability and coverages were correlated with locus length in various ways (Figure 

4.8). Therefore, we used recently-developed tests that empirically adjust for locus length 

and were appropriate for testing mappability and all repeat types. For mappability 

testing, we used a method that automatically adjusts for any relationship with gene 

locus length [117]; for repetitive element testing, we used a method (Broad-Enrich [37]) 

that adjusts for locus length and models the proportion of each gene locus covered by a 

genomic region of interest. Both methods were developed by our group, and allowed us 

to carry out these analyses in an unbiased way.  

For each type of repetitive element we found strong enrichments and depletions, 

with some overlapping GO terms across the different locus regions. For example, we 

found that Alu elements were most strongly depleted in transporter activity, transcription 

factor binding, and brain development; and enriched in immune related functions, and 

olfactory and xenobiotic processes. For L1 elements, we found depletion in early and 

nervous system development functions; and enrichment in olfactory processes, immune 
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related functions, cellular organization, chromatin modifications, and RNA processes. 

Segmental duplications were not as strongly depleted/enriched among gene functions 

as Alu and L1 elements (i.e. gene set enrichment p-values were not as significant). 

Segmental duplications were depleted in early and nervous system development 

functions and processes involved in transcription regulation, and were enriched in 

cellular organization processes, hormone metabolism, cytokine activity, and xenobiotic 

processes. Other top enriched and depleted terms are shown in Table 4.1, and results 

of all GO terms in Supplementary Table 4.1. For locus length, our results are in strong 

agreement with previous reports [54].  

Given the large number of tests performed (5 locus regions x 3 repeat types, plus 

overall mappability and locus length), we wished to visualize the results all together. We 

clustered significance values, using signed –log10(p-values) (negative for depleted 

terms, positive for enriched terms) (Figure 4.9). One of the most notable observations is 

that the overall mappability and locus length results are highly correlated with each 

other and negatively correlated with repetitive element coverages. That is, gene 

functions that have high mappability also tend to have long locus lengths; conversely, 

gene sets with low mappability tend to have shorter locus lengths, albeit with a lesser 

degree of agreement (Figure 4.10). Another notable observation is that while there are 

many gene functions consistently depleted in all three repeat types (Alu elements, L1 

elements, and segmental duplications), and that had high mappability and long locus 

length, there were no gene functions that were consistently enriched in all three.  

Overall, we identified 8 distinct clusters, each with a unique enrichment 

signature. Clusters 1-4 included GO terms that were lowly mappable and had shorter 

locus lengths (using TSS extended). Clusters 1 and 2 were generally depleted in 

segmental duplications but enriched with L1 elements. Cluster 1 was different than 

Cluster 2 in that Cluster 1 was highly enriched with L1 elements in exons and had 

shorter locus lengths. Cluster 1 included terms that were related to RNA (28.6%) - such 

as RNA catabolic process, ribosome, and mRNA transport, mitochondria - such as 

mitochondrial matrix and mitochondrial respiratory chain, and terms related to 

transcription and translation. Cluster 2 included terms that were related to cellular 

organization and division such as microtubule, spindle assembly and kinetochore, 

https://www.dropbox.com/s/sap2tts5m4t2ekg/Supplementary_Table_1.xlsx?dl=0
https://www.dropbox.com/s/sap2tts5m4t2ekg/Supplementary_Table_1.xlsx?dl=0


89 
 

protein modifications such as protein targeting and histone modification, and chromatin 

such as centrosome and chromosomal part. Cluster 3 differed from Clusters 1 and 2 in 

that it was enriched with segmental duplications and depleted of L1 elements except in 

TSS extended, suggesting that L1 elements were enriched in regions downstream of 

the TSS. Cluster 3 was dominated by terms related to immune response–response to 

bacterium and innate immune response, cell signaling such as cytokine activity and 

steroid metabolic process, and protein secretion. Cluster 4 was unlike cluster 3 in that it 

exhibited very strong enrichment of Alu elements. It included terms related to 

immunoglobulin binding, as well as GO terms like mismatch repair, olfactory receptor 

activity, and heme binding. GO terms in clusters 1-4 where those whose genes allowed 

the most repetitive elements of various types in their surrounding locus regions, 

suggesting they may be under strong positive selection.  

The other half of the heatmap, Clusters 5-8, included GO terms that were highly 

mappable and had longer locus lengths. Cluster 5, which was depleted in Alu elements 

and segmental duplications, and mixed for L1s (enriched with L1 elements only in the 

region ≥5kb upstream from TSS) was dominated by terms related to kinase activity, 

transcription factor binding, actin, and regulation of GTPase. Cluster 6 was strongly 

depleted of L1 elements and somewhat enriched with segmental duplications; it 

included many terms related to ion channel activity and ion transportation, and some 

developmental terms such as head development, vasculature development, and kidney 

development. Cluster 7, the largest cluster, was depleted in Alu elements, L1 elements, 

and segmental duplications. The majority of this cluster is terms related to development, 

as 72% of the GO terms in this cluster included the word “development,” “formation,” 

“differentiation,” or the suffix “-genesis.” The development terms were related to organ 

formation, tissue development, embryo development and nervous system development, 

including terms such as brain development, axon, dendrite, and synapse. Non-

developmental terms included transcription factor complex and transcription regulatory 

region sequence-specific DNA binding, processes where mutations or repetitive 

element insertion could cause widely detrimental trans-regulation effects. Cluster 8 was 

the smallest cluster, distinct in that it was enriched only with Alu elements. This cluster 

included specific terms such as cranial nerve development, regulation of kidney 
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development, and developmental pigmentation. The full list of GO terms associated with 

each cluster is shown in Supplementary Table 4.2. 

4.3.4 Comparison of mouse and human mappability and locus length 

To determine the extent to which our above findings are limited to human, versus 

generalize to other mammals, we performed a simplified analysis in mouse testing for 

gene functions enriched with high/low mappability and long/short locus length. We 

found that GO terms with high mappability in human were also generally highly 

mappable in mouse (Figure 4.11a, r =0.35) such as terms related to nervous system 

development, early development, and transcription factor binding. Over 500 GO terms 

had significantly high mappability in both species using the TSS extended regions; 

these included terms related to nervous system development like axon guidance, 

regulation of neurogenesis, and synaptic membrane, as well as pattern specification 

process, regionalization, and sequence-specific DNA binding RNA polymerase II 

transcription factor activity. There was less agreement with lowly mappable terms, 

however there were still seventeen terms overlapping between the two species, 

including olfactory receptor activity and defense response to bacterium (Figure 4.11a). 

This divergence for lowly mappable gene functions suggests the possibility that the 

different repetitive element types in mouse compared to human have been adapted to 

help regulate different types of processes, and/or that different types of genes are more 

likely to have a segmental duplication. Overall, there was higher concordance between 

human and mouse for GO terms enriched with long genes or short genes than there 

was for mappability (Figure 4.11, r=0.35 for mappability, and r=0.59 for locus length). 

There were 445 GO terms that were both highly mappable and had long locus lengths 

in both human and mouse (q ≤0.05 and ≤500 genes); of those, 187 (42%) included the 

word “development”, “formation, “differentiation” or the suffix “-genesis.” The top ranked 

GO terms with high mappability and long locus length in both species were regulation of 

neuron differentiation and morphogenesis of an epithelium. Mouse enrichment results 

are provided in Supplementary Table 4.3.  

https://www.dropbox.com/s/yktps5akahuvb1u/Supplementary_Table_2.xlsx?dl=0
https://www.dropbox.com/s/yktps5akahuvb1u/Supplementary_Table_2.xlsx?dl=0
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4.3.5 Effect of mappability on ChIP-seq peak detection 

Finally, we asked how variations in mappability might affect the ability of ChIP-

seq to detect true DNA protein binding. Successful peak detection (detection of protein-

DNA binding sites) requires the ability to uniquely align sequencing reads to the binding 

region. Binding sites in regulatory regions with lower mappability are less likely to be 

detected, because fewer reads can be mapped to those regions. To investigate this, we 

calculated the mappability of the region surrounding a DNA binding protein motif and 

asked if motifs under ChIP-seq peaks for that DNA binding protein had higher 

mappability than motifs not in a peak. Specifically, we used Motif Em for Motif Elicitation 

(MEME[118]) to scan for DNA binding motifs in 6,016 peaks (called by PePr [119]) from 

the ENCODE ChIP-seq experiment for neuron-restrictive silencer factor (NRSF) in cell 

line K562, an immortalised myelogenous leukemia cell line. As expected, the most 

prominent motif was for NRSF (Figure 4.12a). Using the resulting position weight matrix 

(PWM), we identified 17,021 predicted NRSF motif sites in the genome (hg19). Of these 

computationally predicted motif sites, 2,607 (15.3%) occurred in a ChIP-seq peak; these 

motif sites tended to occur near the center of the peaks (Figure 4.12b). We compared 

the mappability of motifs in ChIP-seq peaks to those outside of peaks, calculating the 

mappability of the regions 100bp up- and down-stream of each motif site. Motif regions 

in ChIP-seq peaks had significantly greater mappability than motif regions not in a peak 

(p =8.65x10-6) (Figure 4.12c). A likely explanation is that many of the NRSF bound 

regions with lower mappability were not detected by the peak calling algorithm. If true, 

given the results of the previous sections, undetected binding sites may be in the loci of 

genes with low mappability; and thus the detected binding sites may be enriched for 

subsets of genes (and GO terms) with high mappability. 

4.4 Discussion 

The mappability of genomic loci is directly related to sequence uniqueness. 

Factors that affect the mappability of genomic regions include read length and presence 

of repetitive elements such as transposons and segmental duplications. Our partitioning 

of the genome into five different locus regions: (1) TSS extended, (2) exons, (3) introns, 

(4) ≤5kb from TSS, and (5) >5kb upstream from TSS showed different patterns of 
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mappability and coverage of repetitive elements and segmental duplications. Repetitive 

elements and segmental duplications explained >90% of unmappable sites in all locus 

regions except exons. As expected, exons were generally most highly mappable and 

had the lowest amount of repetitive elements and segmental duplications. Any 

unmappability in exons not explained by repetitive elements and segmental duplications 

may be due to other factors, such as duplications not long enough to be categorized as 

segmental duplications, but are replicated to code for the same protein domain in 

various proteins. One example is tandemly duplicated exons, estimated to occur in 

about 10% of annotated genes in Homo sapiens, that are present in expressed 

sequence tags and cDNAs, and therefore are likely functional [120].  

Loci with Alu and L1 elements and segmental duplications depleted or enriched 

with gene functions. Across the different repetitive elements and segmental duplications 

we examined, we showed that certain gene functions exhibit specific repeat enrichment 

signatures and many of these coincide with the enrichment signatures of overall 

mappability and locus length. Furthermore, results for repeat elements varied across 

different locus regions. We observed depletion, but never strong enrichment, of all three 

repeat types across all locus regions, implying that certain regions tend to tolerate a 

specific type of repeat, but do not tolerate repetitive elements in general. 

The strong associations of Alu elements, L1 elements, and segmental 

duplications with gene function show that incorporation and proliferation of repeats is 

not random, and suggest locus-specific tolerance. Our results also suggest that the 

selection for one type of repeat over another may be because that repeat type is 

beneficial to regulation of genes involved in that function, and perhaps that repeat type 

has even been adapted for use by the genes, a process called exaptation. For example, 

cluster 3 of the heatmap (Figure 4.9) showed a signature highly enriched for Alu 

elements in genes involved with immune response. It has been previously shown that 

an Alu element had been exapted as a highly conserved binding site for the CAMP 

gene, which is regulated in the vitamin D pathway, a pathway involved in innate immune 

response in humans and primates [121].  

The top enrichment results for segmental duplications were less significant than 

for Alu and L1 elements. Segmental duplications occur at a larger scale than 
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transposons, often resulting in large blocks of duplications, and inter- and intra-

chromosomal rearrangements; therefore, survival of segmental duplications may be 

less dependent on gene regulation mechanisms. Rather genes in gene functions 

enriched with segmental duplications may have one or a combination of favorable 

features: (1) tolerant of having duplications, (2) located in regions of chromosomes 

(pericentromeric, subtelomeric, and “duplication cores” [122] ) that are more likely to be 

duplicated and re-arranged , and/or (3) have simpler regulation not requiring many 

unique sequences. For the gene functions in cluster 3 (Figure 4.9) that are enriched 

with segmental duplications and Alu elements, it is possible that these are the result of a 

positive relationship between segmental duplications and Alu elements. It has been 

shown that a significant amount of pericentromeric and interstitial (occurring in 

euchromatin) segmental duplications are enriched with AluY and AluS, younger 

subfamilies of Alu elements, at the boundaries of segmental duplication events [123, 

124]. 

We consistently found developmental genes, especially those involved in 

nervous system development and early development, to be highly mappable, have 

longer locus length, and to be strongly depleted of Alu and L1 elements, and segmental 

duplications in multiple locus regions. While this is expected for coding regions like 

exons, depletion in surrounding intergenic regions suggest these functions require more 

unique sets of sequences and potentially preserved distances between them,to 

maintain proper regulation from promoter and enhancer regions. Genes in these 

processes tend to be consistent across everything tested, having both longer and more 

highly mappable intergenic space around them. These findings agree with and expand 

on those of Simons, et al. [21], i.e. that transposon-free regions are highly enriched in 

developmental genes. Interestingly, these genes may also be resistant to acquiring 

mutations. For example, ultra-conserved elements have been found to be enriched in 

“gene deserts” that are 10-100 kilobases (kb) away from known genes, where the 

closest flanking genes are associated with early development functions [125, 126]. Also 

consistent with the idea that developmental genes require complex regulation and 

therefore more sequence uniqueness, Lawson and Zhang [127] found that the 5’-UTRs 

of tissue-specific genes, which often require complex regulatory control, have 
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significantly fewer simple sequence repeats than the 5’-UTRs of housekeeping genes. 

Tissue-specific regulation requires the cooperation of multiple transcription factors, and 

thus multiple binding locations [128], and genes with complex expression patterns often 

require long-range cis-regulatory elements. This was first revealed by the fact that 

intergenic chromosomal breaks in disease disrupted these genes [129].  

The relationships we have described among transposons, segmental 

duplications, mappability, and gene locus length with gene function, suggest that 

mappability may need to be taken into account when looking at the biological relevance 

of genomic regions from genome-wide sequencing results. In particular, genes involved 

in biological functions tending to have high mappability will be more likely identified than 

genes involved in functions tending to have low mappability, simply due to higher 

sequence coverage. Our example of how mappability affects ChIP-seq peak detection 

with the NRSF dataset shows that even though many of our computationally predicted 

binding sites were likely false positives, we were still able to detect a significant shift 

towards higher mappability in the sites covered by a detected peak. These results are in 

agreement with those of Rozowsky, et al. [88] who found that mappability had a 

significant effect on modifying the overall ChIP-seq signal.  

Our analyses were made possible by gene set enrichment tests [37, 117] that are 

able to account for confounding factors and to measure the proportion of loci covered by 

a repeat. It is well known that gene locus length can bias gene set enrichment tests [54], 

and it should therefore be accounted for. A previous study by Tsirigos, et al [130], who 

used a permutation-based approach to find gene functions enriched with Alu elements 

in the human genome did not take into account gene locus length. We compared our 

results to theirs and found little agreement. In the case of highly occurring genomic 

features, such as repetitive elements and segmental duplications, gene set enrichment 

tests that reduce the genomic features to a binary value or even the number of features, 

would not be as informative since, or almost all genes, would have that genomic feature 

and they can be various lengths. The method we used, Broad-Enrich [37], uses 

percentage of loci covered by the repeat type for gene set enrichment testing, and 

therefore is well-suited for Alu and L1 elements, and segmental duplications. 
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There are multiple limitations of our study and/or future directions for further 

analysis. Mappability may play an even larger role in bisulfite sequencing studies, where 

unmethylated cytosines are converted to uracil (and read as thymine on sequencers). In 

these studies, the genome is essentially reduced to a three letter alphabet, significantly 

reducing the unique information content of short read sequences. Although we identified 

many significant associations, our study was limited by our method of using nearest 

genes for defining gene regulatory regions. Future studies may take into account 

insulators (e.g., CTCF sites) and identified DNA loops between enhancer and proximal 

promoter regions, which could refine enrichment results. In our study, we focused on 

read lengths of 50bp. Although sequencers are now capable of longer reads, these 

short read results remain relevant due to the large number of publicly-available 

sequencing experiments available and still being extensively used that were performed 

with shorter reads. For example, nearly all of the ENCODE ChIP-seq data were 

performed with 35-40nt read length (ENCODE TFBS metadata, column Z). Finally, 

other classes and subclasses of LINEs and SINEs, besides Alu and L1 elements, may 

be associated with different gene functions. Liang, et al. [131] found that tandem 

repetitive elements, unlike transposable elements, were more highly enriched in genes 

involved with development and regulation functions, especially in 5’ UTR regions. 

However, their analysis did not take into account gene locus length, and only looked at 

the presence (while we look at the proportion) of a repetitive element in 5’-, 3’-UTR, and 

set regions upstream and downstream of the transcription start/end sites. Our approach 

in this study can further be applied to other repeat types as well.  Also of particular 

interest would be an analysis of subfamilies of Alu and L1 elements, as these 

subfamilies are of different ages and sequence similarity. Segmental duplications that 

are >10kb and >95% identity are more prone to duplication-mediated rearrangements 

and non-allelic homologous recombination [103, 132, 133]. Paralogous segmental 

duplications or segmental duplications of different lengths and identity may be 

associated with distinct gene functions, not captured in this analysis. Also of interest 

could be a comparison of pericentromeric, subtelomeric, and interstitial segmental 

duplications. There is much more to discover, but here we have described and applied 

https://docs.google.com/spreadsheet/ccc?key=0Am6FxqAtrFDwdHdRcHNQUy03SjBoSVMxdUNyZV9Rdnc#gid=7
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the most comprehensive study of depletion and enrichment of highly occurring repetitive 

elements in gene functions across different gene locus regions in the human genome.  

4.5 Figures and Tables 

 

 
 
Figure 4.1. Illustration of locus definitions and example of mappability calculation.  
(a) An example our mappabiilty calculation using a Kmer read. Original values from UCSC CRG mappability tracks 
are 1/number of locations to which the read aligns. We convert UCSC mappability to 1 if the read sequence is unique, 
otherwise it is assigned a value of 0. Each base pair in the genome is given a base pair mappabiilty (Bi), which is the 
average number of uniquely mappable reads that span over base pair i. Mappability of a gene’s loci is the average of 
all Bi in the loci. (b) We created five different locus definitions: TSS extended - the region between the midpoints of a 
gene’s TSS and the upstream and downstream TSSs of adjacent genes, exons – the exons of a transcript of a gene, 
introns – the regions between two exons of a transcript of a gene, ≤5kb from TSS - the 5kb region surrounding a 
TSS, and >5kb upstream from TSS- the region >5kb upstream of a TSS.  
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Figure 4.2. Density curves of mappability of TSS extended loci show increased mappability as read length 

increases. 
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Figure 4.3. Distribution of mappability and repetitive elements across different loci. (a) Distribution of average 
mappability (50mer) across genes for different locus regions and (b) different repetitive elements: Alu, L1, and other 
repetitive elements. (c-f) Density curves across genes showing proportion of loci consisting of (c) Alu elements, (d) L1 

elements, (e) other repetitive elements, and (f) segmental duplications. Panels b-f have inset plots excluding the most 
dominating density curve. 
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Figure 4.4. Mappability of a Alu and L1 elements are positively correlated with age as measured by percent 
divergence from consensus sequence. Spearman’s correlation is 0.72 for Alu elements and mappability, and 0.54 

for L1 elements and mappability. 
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Figure 4.5. Scatterplots of mappability using 50mer reads and proportion of loci that are Alu elements, L1 
elements, and other repetitive elements show generally that gene loci that contain larger proportion of a repetitive 
element have lower mappability and vice versa. Alu elements affect mappability more so than other repetitive 
elements in the all the different loci. Each point (i.e. gene) is colored blue if that gene locus has no respective 
repetitive element and no segmental duplications. Black points are gene loci with the respective repetitive element 
but do not have any segmental duplications. Blue points are gene loci with no respective repetitive element and no 
segmental duplications. Green points are gene loci that have both the respective repetitive element and at least one 
segmental duplication. Pink points are gene locus that have no respective repetitive element but do have at least one 
segmental duplication. Having at least one segmental duplication also decreases mappability. Gene loci that have at 
least one segmental duplication can have much lower mappability that those that do not, even when there are no 
repetitive elements, or are repetitive elements such as L1 elements and other repetitive elements that tend to be 
more highly mappable than Alu elements. 
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Figure 4.6. Contribution scores of repetitive elements and segmental duplications are correlated with 
mappability. 
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Figure 4.7. Individual contribution of repetitive elements and segmental duplications to mappability.  
In order from explaining mappabiilty most to least, the regions were ≤5kb of the TSS (95.5%), introns (94.5%), TSS 
extended (90.3%), >5kb upstream from TSS (89.3%), and exons (79.9%). 
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Figure 4.8. Relationship of (a) mappability, (b) Alu elements, (c) L1 elements, and (d) segmental duplications 
with gene length. (b-d) are output plots from Broad-Enrich, genes are grouped into bins of 25 genes ordered by 

locus length. Locus length here is calculated from TSS extended regions. 
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Figure 4.9. Heatmap showing signed –log10(p-values) (negative for depleted terms, positive for enriched 
terms) of GO gene set enrichment results. The first five columns are enrichment results for the different loci using 
proportion of Alu elements, the second set of five columns are enrichment results for the different loci using 
proportion of L1 elements, the third set of five columns are enrichment results for the different loci using proportion of 
segmental duplications, and the last two columns are enrichment results for highly/lowly mappable GO terms and 
short/long locus lengths using the TSS extended loci. We identified 8 distinct clusters of GO terms that show similar 
enrichment patterns. GO terms included were limited to those that had less than 500 genes and FDR≤0.001 in at 
least two locus definitions in at least one type of repetitive element or segmental duplications, which resulted in 510 
gene sets. 
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Figure 4.10. Mappability and locus length in human have similarly enriched gene sets. Each point represents a 

GO term. The axes are signed –log10(p-value), i.e. +log10(p-value) if long locus length/high mappability, or -log10(p-
value) if short locus length/low mappability using TSS extended locus regions and 50mer mappability. Purple 
indicates terms that have long locus length/high mappability. Green indicates terms with short locus length/low 
mappability. Turquoise indicates terms with long locus length/high mappability. Gold indicates terms with short locus 
length/low mappability. Pink indicates terms that have only significantly short locus length. Dark red indicates terms 
that have only significantly long locus length. Bright red indicates terms that have only significantly low mappability. 
Dark blue indicates terms that have only significantly high mappability. The remaining terms are indicated in black. 
Reported GO terms are limited to those with ≤500 genes 
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 Figure 4.11. Human and mouse have similarly enriched gene sets for (a) high and low mappability and (b) 
long and short locus lengths. Each point represents a GO term. The axes are signed –log10(p-value), i.e. +log10(p-

value) if highly mappable/long locus length, or -log10(p-value) if lowly mappable/short locus length in mouse or human 
using 50mer mappability from TSS extended locus regions. Purple indicates terms that have high mappability/long 
locus length in both human and mouse. Green indicates terms with low mappability/short locus length in human and 
high mappability/long locus length in mouse. Turquoise indicates terms with high mappability/long locus length in 
human and low mappability/short locus lengths in mouse. Gold indicates terms with low mappability/short locus 
length in both human and mouse. Pink indicates terms that are only significantly lowly mappable/short locus length in 
human. Dark red indicates terms that are only significantly highly mappable/long locus length in human. Bright red 
indicates terms that are only significantly lowly mappable/short locus length in mouse. Dark blue indicates terms that 
are only significantly highly mappable/long locus length in mouse. The remaining terms are indicated in black. 
Reported GO terms are limited to those with ≤500 genes. 
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Figure 4.12. NRSF ChIP-seq results. (a) Motif logo identified by MEME using peaks called by PePr; (b) histogram 

showing that motifs had a strong tendency to occur in the middle of a peak; (c) histograms showing that the predicted 
NRSF binding sites in peaks (blue) tend to have higher mappability than the computationally predicted NRSF binding 
sites not overlapping a peak (orange) (p =8.65x10

-6
). 
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Table 4.1. Select significantly enriched/depleted GO terms. Top 5 non-related terms for each repeat type and 

locus regions, limited to GO terms with ≤500 genes. The full list is in Supplementary Table 4.1. 

a) Top GO terms significantly enriched with Alu elements 
GO term Branch Locus Regions 

(q-value ≤0.05) 
Average 

Mappability 
Locus Length  

%tile 

dichotomous subdivision of an epithelial 
terminal unit 

BP intron, exon, ≤5kb, >5kb 
up. 

0.62 88 

enteric nervous system development BP intron, exon, ≤5kb, >5kb 
up. 

0.66 61 

glucuronosyltransferase activity MF All 0.76 43 

heme binding MF TSS ext., intron, exon, 
>5kb up. 

0.77 16 

IgG binding MF All 0.25 1.7 

immunoglobulin binding MF All 0.51 2.3 

keratin filament CC intron, exon, >5kb up. 0.81 0.019 

MHC class I protein complex CC All 0.7 0.42 

monooxygenase activity MF TSS ext., intron, exon, 
>5kb up. 

0.76 22 

olfactory receptor activity MF intron, exon, ≤5kb, >5kb 
up. 

0.73 26 

oxidoreductase activity, acting on paired 
donors,… 

MF TSS ext., intron, exon, 
>5kb up. 

0.69 3.9 

positive regulation of kidney development BP intron, exon, ≤5kb, >5kb 
up. 

0.64 92 

response to xenobiotic stimulus BP All 0.76 16 

b) Top GO terms significantly depleted with Alu elements 
GO term Branch Locus Regions 

(q-value ≤0.05) 
Average 

Mappability 
Locus Length  

%tile 

brain development BP intron, exon, >5kb up. 0.87 88 

cell division BP exon 0.83 41 

inorganic cation transmembrane transporter 
activity 

MF intron, exon, >5kb up. 0.85 64 

metal ion transport BP intron 0.86 59 

protein binding transcription factor activity MF TSS ext., exon, >5kb up. 0.85 63 

regulation of cell development BP intron, exon, >5kb up. 0.87 88 

regulation of nervous system development BP intron, exon, >5kb up. 0.87 90 

sensory organ development BP intron 0.86 78 

synapse CC TSS ext., intron, exon, 
>5kb up. 

0.86 91 

c) Top GO terms significantly enriched with L1 elements 

GO term Branch Locus Regions 
(q-value ≤0.05) 

Average 
Mappability 

Locus Length  
%tile 

chromatin modification BP intron, ≤5kb, >5kb up. 0.83 45 

chromosomal part CC intron, ≤5kb, >5kb up. 0.82 32 

keratin filament CC TSS ext. 0.81 0.019 

keratinization BP TSS ext. 0.84 1.9 

mitochondrial membrane CC intron, exon, ≤5kb, >5kb 
up. 

0.81 15 

mitochondrial membrane part CC intron, exon, 5kb 0.79 11 

monooxygenase activity MF TSS ext. 0.76 22 

mRNA processing BP intron, ≤5kb, >5kb up. 0.81 22 

https://www.dropbox.com/s/sap2tts5m4t2ekg/Supplementary_Table_1.xlsx?dl=0
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olfactory receptor activity MF TSS ext. 0.73 26 

protein folding BP intron, 5kb 0.81 31 

ribosome CC intron, exon, 5kb 0.8 3.3 

RNA catabolic process BP intron, exon, ≤5kb, >5kb 
up. 

0.8 5.2 

RNA splicing BP intron, ≤5kb, >5kb up. 0.81 24 

SRP-dependent cotranslational protein 
targeting to membrane 

BP intron, exon, 5kb 0.79 2.5 

structural constituent of ribosome MF intron, exon, 5kb 0.8 3.1 

transcription cofactor activity MF >5kb up. 0.85 63 

transcription factor binding MF >5kb up. 0.83 65 

translational termination BP intron, exon, 5kb 0.77 1.7 

unfolded protein binding MF intron, 5kb 0.81 7.6 

viral genome expression BP intron, exon, ≤5kb, >5kb 
up. 

0.8 3 

viral reproduction BP intron, exon, ≤5kb, >5kb 
up. 

0.81 9.1 

xenobiotic metabolic process BP TSS ext. 0.76 16 

d) Top GO terms significantly depleted with L1 elements 

GO term Branch Locus Regions 
(q-value ≤0.05) 

Average 
Mappability 

Locus Length  
%tile 

actin filament-based process BP exon, TSS ext. 0.84 64 

axon CC intron, exon, ≤5kb, TSS 
ext. 

0.86 95 

axonogenesis BP intron, exon, ≤5kb, TSS 
ext. 

0.86 93 

behavior BP intron, exon, ≤5kb, >5kb 
up. 

0.86 82 

brain development BP intron, exon, ≤5kb, TSS 
ext. 

0.87 88 

dendrite CC intron, exon, ≤5kb, TSS 
ext. 

0.86 94 

embryonic morphogenesis BP intron, exon, ≤5kb, TSS 
ext. 

0.86 78 

extracellular matrix CC intron, exon, ≤5kb, >5kb 
up. 

0.85 69 

intermediate filament CC intron, exon, ≤5kb, >5kb 
up. 

0.84 1.8 

monooxygenase activity MF intron, ≤5kb, >5kb up. 0.76 22 

olfactory receptor activity MF intron, ≤5kb, >5kb up. 0.73 26 

pattern specification process BP intron, exon, ≤5kb, TSS 
ext. 

0.86 75 

phospholipid binding MF exon, TSS ext. 0.83 69 

regulation of cell development BP intron, exon, ≤5kb, TSS 
ext. 

0.87 88 

regulation of nervous system development BP intron, exon, ≤5kb, TSS 
ext. 

0.87 90 

regulation of system process BP All 0.87 76 

sensory perception BP intron, ≤5kb, >5kb up. 0.85 57 

skeletal system development BP All 0.86 77 

synapse CC intron, exon, ≤5kb, TSS 
ext. 

0.86 91 

tissue morphogenesis BP intron, exon, ≤5kb, TSS 0.86 81 
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ext. 

tube development BP intron, exon, ≤5kb, TSS 
ext. 

0.85 87 

vasculature development BP intron, exon, ≤5kb, TSS 
ext. 

0.86 79 

xenobiotic metabolic process BP intron, ≤5kb, >5kb up. 0.76 16 

e) Top GO terms significantly enriched with segmental duplications 
GO term Branch Locus Regions 

(q-value ≤0.05) 
Average 

Mappability 
Locus Length  

%tile 

branched-chain amino acid catabolic process BP exon 0.81 28 

channel activity MF intron, TSS ext. 0.85 73 

CoA hydrolase activity MF exon, 5kb 0.75 3.9 

cytokine activity MF intron, TSS ext. 0.84 21 

cytokine receptor activity MF intron, ≤5kb, TSS ext. 0.82 28 

defense response to bacterium BP intron, ≤5kb, TSS ext. 0.76 14 

high-density lipoprotein particle CC exon 0.81 0.19 

hormone metabolic process BP >5kb up., TSS ext. 0.82 41 

immune effector process BP intron, TSS ext. 0.82 28 

inflammatory response BP intron, ≤5kb, TSS ext. 0.82 34 

innate immune response BP intron, ≤5kb, TSS ext. 0.81 21 

ion channel activity MF intron, TSS ext. 0.86 76 

lipid catabolic process BP intron, ≤5kb, >5kb up., 
TSS ext. 

0.83 28 

mitochondrial matrix CC 5kb, TSS ext. 0.81 13 

oxidoreductase activity, acting on CH-OH group 
of donors 

MF 5kb, >5kb up. 0.81 22 

regulation of defense response to virus by host BP exon 0.77 15 

response to bacterium BP intron, TSS ext. 0.81 35 

response to xenobiotic stimulus BP intron, ≤5kb, >5kb up., 
TSS ext. 

0.76 16 

small molecule catabolic process BP 5kb, TSS ext. 0.82 30 

steroid metabolic process BP intron, ≤5kb, >5kb up., 
TSS ext. 

0.82 27 

transferase activity, transferring hexosyl groups MF intron, ≤5kb, >5kb up., 
TSS ext. 

0.82 75 

transferase activity, transferring one-carbon 
groups 

MF exon 0.8 16 

xenobiotic metabolic process BP intron, ≤5kb, >5kb up., 
TSS ext. 

0.76 16 

f) Top GO terms significantly depleted with segmental duplications 

GO term Branch Locus Regions 
(q-value ≤0.05) 

Average 
Mappability 

Locus Length  
%tile 

actin cytoskeleton CC intron, exon, TSS ext. 0.84 41 

actin filament-based process BP exon, TSS ext. 0.84 64 

axon guidance BP All 0.85 92 

axonogenesis BP intron, exon, ≤5kb, TSS 
ext. 

0.86 93 

cell-cell adhesion BP exon, 5kb 0.85 96 

chordate embryonic development BP intron, ≤5kb, >5kb up., 
TSS ext. 

0.86 72 

chromatin binding MF intron, ≤5kb, TSS ext. 0.84 67 
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chromatin organization BP intron, ≤5kb, TSS ext. 0.83 37 

embryonic morphogenesis BP intron, ≤5kb, TSS ext. 0.86 78 

homophilic cell adhesion BP exon, 5kb 0.86 99 

Microtubule CC intron, exon, TSS ext. 0.82 44 

mRNA processing BP intron, TSS ext. 0.81 22 

muscle structure development BP intron, ≤5kb, TSS ext. 0.87 79 

negative regulation of transcription from RNA 
polymerase II promoter 

BP intron, ≤5kb, >5kb up., 
TSS ext. 

0.85 75 

pattern specification process BP intron, ≤5kb, >5kb up., 
TSS ext. 

0.86 75 

posttranscriptional regulation of gene 
expression 

BP intron, 5kb 0.83 31 

regionalization BP intron, ≤5kb, TSS ext. 0.88 72 

regulatory region DNA binding MF intron, ≤5kb, TSS ext. 0.86 73 

tissue morphogenesis BP intron, ≤5kb, TSS ext. 0.86 81 

tubulin binding MF intron, >5kb up., TSS ext. 0.82 44 

 

Supplementary Table 4.1. Enriched and depleted GO terms for Alu and L1 elements, and segmental 
duplications for all locus regions (extended version of Table 4.1). 

Supplementary Table 4.2. Full list of GO terms associated with clusters from Figure 4.9. 

Supplementary Table 4.3. GO term enrichment results for mappability and locus length, comparing mouse 
and human.  

https://www.dropbox.com/s/566d5xk66lq853k/Supplementary_Table_4.1.xlsx?dl=0
https://www.dropbox.com/s/o05qhqsom3qmhom/Supplementary_Table_4.2.xlsx?dl=0
https://www.dropbox.com/s/eftooypw78xcysz/Supplementary_Table_4.3.xlsx?dl=0
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 Conclusions & Future Directions Chapter 5

5.1 Conclusions 

In this dissertation, I contributed to the tools available for functional interpretation 

of high-throughput sequencing data such as ChIP-seq and RNA-seq data, as well as 

characterizing the main contributing factors to read mappability at the pathway level. 

Overall, the research I present has and will further our understanding of how gene 

length, read count, and read mappability can affect statistical tests for HTS data.. 

 In Chapter 2, we introduced ChIP-Enrich, a gene set enrichment test for ChIP-

seq data that adjusts for gene locus length in peak-to-gene assignments. ChIP-Enrich 

consists of two main parts: (1) locus definitions that allow peak-to-gene assignments for 

studying various genic and regulatory regions, and (2) a gene set enrichment test that 

empirically adjusts for the observed relationship between locus length and probability of 

having at least one peak in the gene loci. We showed through permutation testing that 

unlike other existing GSE tests, Fisher’s exact test and the binomial test, ChIP-Enrich 

maintains an acceptable type I error rate even when there exists a relationship between 

locus length and probability of having at least one peak. We applied ChIP-Enrich to 63 

ENCODE datasets that included transcription factors and histone modifications, and 

were generated using different peak callers. The datasets varied widely by binding 

patterns as well as number of peaks. We showed that ChIP-Enrich was able to account 

for all types of relationships between locus length and peak presence. FET was only 

appropriate for data sets where there was no relationship between locus length and 

peak presence. The other test we compared ChIP-Enrich to was the binomial test, 

which assumes number of peaks is proportional to locus length. However, for datasets 

with high number of peaks, which were the same datasets that often had peaks 

proportional to locus length, the binomial test underestimates variance because of over-

dispersion of peaks among genes. This resulted in incorrect p-values and inflated type I 
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error. In addition, we showed that limiting peaks to a restrictive locus definition, ≤1kb 

from TSS, compared to an all-inclusive locus definition, nearest TSS, resulted in 

different discovered biology. We further examined the effect of the locus definition by 

applying ChIP-Enrich to a ChIP-seq dataset of glucocorticoid receptor activity in A549 

cells treated with Dex, and showed that using two locus definitions, ≤1kb from TSS and 

nearest TSS, elucidated different regulatory activity of GR in proximal and distal 

regulatory regions.  

 In Chapter 3, we introduced RNA-Enrich, a gene set enrichment test for RNA-seq 

data that corrects for any selection bias due to varying read counts. To correct for this 

relationship, weights for genes were created using a spline fitted to average gene read 

count and significance values like differential gene expression p-values. Therefore if 

genes that were more likely to have higher read counts, like highly expressed, long 

genes, also had more significant p-values, then those genes were weighed less and 

were less influential in enrichment of a gene set. Unlike other GSE tests for RNA-seq 

data such as DAVID (which uses a modified Fisher’s exact test) and GOseq (which can 

also adjust for read count), RNA-Enrich does not require a cut-off to define differentially 

expressed genes. And unlike permutation-based tests like GSEA, GSAASeqSP, and 

SeqGSEA, RNA-Erinch does not require large sample sizes for power and accuracy, or 

a long run-time. RNA-Enrich also had substantially improved type I error compared to 

DAVID and GOseq, and maintained similar performance when we used p-values from 

DEseq instead of edgeR or a correct log fold change. 

 With ChIP-Enrich and RNA-Enrich, we showed that gene length and read count, 

respectively, can affect functional interpretation of ChIP-seq and RNA-seq data. 

However our GSE tests are not limited to these two types of HTS data. Here are some 

examples: ChIP-Enrich may also be applied to GWAS data, especially if genes with 

longer locus length are more likely to have significant SNP variants. In Chapter 4, we 

used RNA-Enrich to perform GSE testing of mappability, in which case we used 

mappability values as the significance values and locus length instead of read count. 

Bisulfite sequencing data may also be a good candidate for RNA-Enrich. Some bisulfite 

sequencing platforms arebias toward CpG islands, thus genes with more CpGs may be 
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more likely to be identified as differentially methylated. Genes with more intergenic 

distance may also be more likely to contain CpGs. 

 We first introduced the concept of mappability in Chapter 2 as an option for ChIP-

Enrich. However we did not further expand on how much effect mappability has on gene 

set enrichment testing after accounting for gene length. We showed in Chapter 4 that 

certain gene functions do tend to have higher or lower mappability, and therefore 

mappability should be considered in GSE tests. We also showed that mappability of 

potential DNA protein binding sites can affect which peaks would be detected in ChIP-

seq. Thus we explored how certain gene functions had more or less mappable genes, 

and how that concurred with gene locus length. Our analysis of mappability and gene 

length showed that gene sets that tend to have shorter genes were also lowly 

mappable, while gene sets that tend to have longer genes were also highly mappable. 

We also found similar highly/lowly mappable and longer/shorter locus length gene sets 

in mouse, suggesting some conservation of gene functions across different species. 

We suggested that in addition to co-varying with gene length, mappability can 

also be indicative of the complexity of gene regulation. Genes that need more complex 

regulation would need more unique surrounding sequence and intergenic distance. We 

expanded our analyses of mappability and gene length to include repetitive genomic 

features like transposons and segmental duplications. We showed that mappability is 

strongly affected by transposons and segmental duplications, which are both lowly 

mappable. We further analyzed the most prominent LINE elements, L1 elements, and 

the most prominent SINE elements, Alu elements, in the human genome, as well as 

segmental duplications. We discovered distinct enrichment and depletion signatures of 

Alu and L1 elements, segmental duplications, mappability and gene length exhibited by 

certain gene functions. For example, genes involved with development were strongly 

depleted of repeat elements, were highly mappable, and had longer genes - all of which 

suggest evolutionary pressure to maintain unique sequence and long intergenic 

distances for complex regulation of developmental genes. Gene sets enriched with Alu 

elements, L1 elements, and/or segmental duplications suggest evolutionary selection 

for the repeat element, and perhaps adaptation of the element for the gene’s own 

benefit. Overall, we showed that mappability is indicative of genomic architect and 
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complexity of gene regulation. We found certain gene functions are more highly or lowly 

mappable, and therefore can bias GSE of ChIP-seq data. Fortunately our GSE test, 

ChIP-Enrich has the option to correct for mappability and therefore is robust to this 

effect.  

Throughout this dissertation, we demonstrated that considering characteristics of 

the human genome is essential to improving functional interpretation of HTS data. The 

GSE tests we have developed have enabled us to perform functional interpretation of 

HTS data, repetitive elements and segmental duplications, and mappability for the first 

time taking into account locus length. 

5.2 Future Directions 

5.2.1 Chapter 2 

 In developing ChIP-Enrich, we generated various locus definitions for assigning 

peaks to genes, each resulting in different locus lengths. The regulatory regions we 

assigned to each gene were based on a linear and continuous organization of the 

genome. However, our understanding of the genome has evolved with studies of 

histone marks and chromatin conformation. Regulatory regions are not necessarily 

adjacent to gene TSS’s. Studies of topologically associated domains, or TADs, show 

that the human genome is organized in various loops and compartments [72]. 

Furthermore, current ChIP-Enrich locus definitions do not allow overlap of loci among 

genes, which makes the assumption of a one-to-one locus to gene regulatory system. 

However, it is known that enhancers can regulate multiple genes, and some genes have 

multiple enhancers [134]. We are currently developing more biologically realistic locus 

definitions that make use of enhancer databases to better define promoter and 

enhancer regions of genes.  

 In our analysis of 63 ENCODE datasets, we observed that histone modification 

ChIP-seq experiments tend to call more peaks and broader peaks. ChIP-Enrich reduces 

peak information to a binary indicator, i.e. either a gene has no peaks or at least one 

peak, and peaks are only defined by their midpoints. This is not the best approach for 

histone modification data as peaks can occur in almost all genes and may even span 
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multiple genes. As a follow-up to ChIP-Enrich, we developed Broad-Enrich [37], which 

uses the locus proportion covered by a peak instead of a binary peak indicator. In doing 

so, Broad-Enrich has improved power for histone data compared to ChIP-Enrich. Broad-

Enrich is not limited to histone data as we have showed in Chapter 4. It can also be 

used with experiments that result in many genomic regions, especially occurring 

frequently throughout the genome (like transposons), and/or broad genomic regions 

(like segmental duplications). 

 Our analyses of ChIP-seq data has thus far been limited to comparing gene sets 

to one another. However, across different cell lines and different DNA-binding proteins, 

genes in the same gene sets may be regulated similarly. Some genes may be regulated 

by the proximal promoter, others more so from distal regions. These patterns of 

regulation may be observed on a global scale, i.e. not just limited to one cell line or one 

DNA-binding protein. This approach can give insight into more detailed regulatory 

patterns of genes and gene functions. 

5.2.2 Chapter 3 

 We showed improved type I error in RNA-Enrich when we correct for the 

relationship between significance values and average read count, however we 

acknowledge that the results from our permutations are still not perfectly uniform as 

there are more gene sets with p≤0.05 than expected. There is evidence that sequences 

with high GC content more easily amplify compared to those that are not [8, 135, 136]. If 

GC content perpetuates at the gene set level, it may affect enrichment results. Other 

factors that may affect read alignment is mappability. Though we show in Chapter 4 that 

exons are most mappable, alternative splicing may result in a transcript that includes 

typically non-coding regions, which tend to be less mappable. Overall read coverage 

can also affect differential expression testing, which is not mutually exclusive of GC 

content bias. The dataset of A549 cells treated with Dex had higher coverage than the 

other two datasets we used, suggesting that the relationships we observed between 

differential expression significance values and average read count per gene may 

become less prominent with deeper sequencing. It would be of interest to apply RNA-

Enrich to more datasets of varying read coverage. 



118 
 

5.2.3 Chapter 4 

 Transposons are a rich field of study. We have only performed our analyses on 

Alu and L1 elements, however there are 42 other repeat families in the UCSC genome 

browser “rmsk” table. For example, human endogenous retroviruses (HERVs), a type of 

long terminal repeat (LTR), comprise 5-8% of the human genome and have been 

implicated in cancer and as an inducer of genetic instability, methylation, transactivation 

and RNA interference. HERVs have been shown to act as promoter, enhancer, and 

transcriptional factor-binding site to potentially regulate neighboring genes [137]. 

Associations of HERVs with gene function may provide some insight into their evolution 

in the genome. Also of interest is examining whether the age of L1 elements is 

associated with gene function. Younger L1 elements tend to be located closer to genes 

than older elements [138] , whereas full length L1 elements are more abundant on sex 

chromosomes [139] and have been implicated in X-inactivation [115].  

Thus far, we have only performed enrichment of repeat elements in human. We 

have performed gene set enrichment of mappability and gene length in mouse but will 

also perform the same analysis for repeat elements. Of particular interest is the 

relationship between gene function and transposons. In the evolutionary timeline, 

primate-rodent split of 7SL RNA derived elements (the origin of Alu elements in human, 

and B1 elements in mouse) diverged about 80 million years ago. The result was 

independent amplification, duplication and mutation accumulation in copies of Alu and 

B1 elements [140, 141]. While the sequences of L1 elements are similar between 

human and mouse, in mouse B1 elements are the most prominent SINEs. We 

hypothesize that we will find similar gene functions enriched with B1 in mouse as Alus in 

human, as it has been shown that Alu and B1 elements have similar distributions in 

genomic features, for example, both are more prominent in upstream promoter regions 

of genes [130]. If our hypothesis holds true, this would be evidence for conserved 

evolutionary selection pressures, and identify which gene functions, despite 

independent evolution and accumulation of of Alu and B1 in human and mouse, may 

benefit from maintaining or deleting repeats in the various regulatory regions of the 

associated genes. 
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Also of interest in comparing mouse and human is the relationship of segmental 

duplications and gene function. Bailey, et al [142] and, more recently, She, et al [143] 

found that while the distribution of segmental duplications in humans are interspersed 

over large genomic distances, in mouse, segmental duplications are more locally 

clustered, taking the form of tandem duplications. Many of the identified mouse 

segmental duplications were copy number polymorphisms of immune response genes; 

similarly we found segmental duplications were also enriched in immune response 

genes in human. However, it is worth investigating if the differences in genomic 

architecture of segmental duplications in mouse and human perpetuate to differences in 

gene functions.  

Further exploration of mappability in our GSE methods and different HTS data 

will show to what degree mappability improves performance and biological findings. For 

example, mappability may play an even larger role in bisulfite sequencing data, where 

unmethylated cytosines have been converted to uracil (and read as thymine on 

sequencers). The genome is essentially reduced to a three letter alphabet, significantly 

reducing the unique information content of short read sequences. 
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