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Abstract

Spatiotemporal processes exist widely in manufacturing, such as tool surface degradation

in ultrasonic metal welding and surface shape progression in high-precision machining.

High-resolution characterization and monitoring of spatiotemporal processes are crucial

for manufacturing process control. The rapid development of 3D sensing technologies

has made it possible to generate large volumes of spatiotemporal data for process charac-

terization and monitoring. However, critical challenges exist in effectively acquiring and

utilizing such spatiotemporal data in manufacturing, e.g., a high cost in the acquisition

of high-resolution spatiotemporal data and a lack of systematic approaches for modeling

multi-source data and monitoring spatiotemporal processes.

To address these challenges, this dissertation carries out three research tasks for the

development of collecting, modeling and monitoring spatiotemporal data. Specifically,

(1) A novel dynamic sampling design algorithm is developed to efficiently characterize

spatiotemporal processes in manufacturing. A state-space model and Kalman fil-

ter are used to predictively determine the measurement locations using a criterion

considering both the prediction variance and the measurement costs. The deter-

mination of measurement locations is formulated as a binary integer programming

problem, and genetic algorithm is applied for searching the optimal design. In ad-

dition, a new test statistic is proposed to monitor and update the temporal transition
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parameters in the spatiotemporal model.

(2) A new surface modeling approach is devised to cost-effectively assess spatial

surface variations by integrating an engineering model with multi-task Gaussian

process (GP) learning. Surface variation is decomposed into a global trend which

is induced by process variables and a zero-mean GP which shares commonality

among multiple similar-but-not-identical processes. An iterative algorithm is de-

veloped to simultaneously estimate the process-specific parameters and the GP

parameters.

(3) A tool condition characterization and monitoring framework is developed for ultra-

sonic metal welding in lithium-ion battery manufacturing. The geometric progres-

sion of the tool surfaces is characterized using high-resolution spatiotemporal data.

Classification algorithms are developed with monitoring features extracted from

both the space and frequency domains. A novel impression measurement method

is designed to effectively measure tool surfaces without the need of disassembling

tools for off-line measurement.
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Chapter 1

Introduction

1.1 Motivation

Spatiotemporal processes exist widely in a variety of science and engineering areas, such

as environmental science (Anderson et al., 2006; Stein et al., 1998; Kyriakidis and Jour-

nel, 1999; Kibria et al., 2002), climate prediction and meteorology (Handcock and Wallis,

1994), epidemiology (Waller et al., 1997), agriculture (Mitchell and Gumpertz, 2003), and

manufacturing (Shao et al., 2014). In manufacturing processes and systems, it is crucial to

characterize and monitor spatiotemporal variations to guarantee satisfactory product qual-

ity or tooling conditions. For instance, in ultrasonic welding of lithium-ion batteries for

electric vehicles, tool surfaces, including horn and anvil, change progressively as the tool

degrades over time. The surface degradation affects the weld quality greatly, and should

be closely monitored to ensure satisfactory weld quality (Shao et al., 2014). Another ex-

ample involves the machining process of automotive engine components. The control of

surface shape variation on a machined engine component is of great importance in automo-

tive powertrain manufacturing, because the variation critically influences the downstream

sealing and assembly performance, further affecting the overall quality of an engine. The

surface variation pattern belongs to spatiotemporal processes, because it is significantly

affected by a number of time-variant process variables (Suriano et al., 2015), e.g., cutter
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degradation, modified product design, and varying process settings.

In the recent years, the rapid development of sensing technologies, including 3D

measurement techniques, has created a big data era for manufacturing. Many modern

manufacturing plants have become a data-rich environment. For example, in an automo-

tive battery manufacturing plant, production data are continuously collected from various

sources, including process parameters, machine identity, tool types, product identity, on-

line monitoring functional data, and high-resolution tool surface measurements. Figure 1.1

illustrates the data sources in the ultrasonic metal welding process in lithium-ion battery

manufacturing. Product history is recorded for every battery pack, such as the machine

identity and quality characteristics of all upstream operations. Within a welding cycle, data

are collected from multiple sources. First, process parameters are predetermined, including

welding pressure, vibration amplitude, and welding energy. Second, four sensors are used

for on-line quality monitoring, including a power sensor, a frequency sensor, a linear vari-

able differential transformer, and a microphone. These sensors generate functional curves

in every welding cycle. Third, in order to monitor the tool degradation level, the surfaces

of the horn and the anvil are measured every a certain number of welds, and successive

measurement of tool surfaces forms spatiotemporal data.

Another example is the machining process for automotive engine components. For

the purpose of quality monitoring and control, an engine plant records quality-related data

from multiple sources, including (1) product identity, such as product type, station identity,

and product history information, (2) machining process variables, e.g., feed rate, depth of

cut, cutter type, remaining cutter life, monitoring signals from acoustic emission sensor

and force sensor, and (3) surface quality data, which are acquired using one or more 3D

2



Figure 1.1 Multi-source data in the ultrasonic metal welding of lithium-ion batteries

measurement systems. Examples of 3D measurement systems used in machining processes

include coordinate measuring machine, profilometer, and laser holographic interferometer

(Suriano et al., 2015).

The availability of big data provides us with new opportunities to understand and mon-

itor manufacturing processes and systems from a much more fine scale, both temporally

and spatially. Nevertheless, it is highly challenging to effectively use such data.

First, high-resolution 3D sensing systems are often expensive and time-consuming.

For example, a 3D microscope is used to measure tool surfaces in ultrasonic welding of

lithium-ion batteries (Shao et al., 2014, 2016). It takes approximately 8 hours to measure

a 43 mm × 8 mm surface. Considering that one weld cycle takes less than 1s, the signif-

icant downtime caused by the measurement will greatly reduce the production rate (Shao
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et al., 2013, 2016). Meanwhile, the long measurement time also introduces a significant

delay to the tool replacement decision, making real time process adjustment not feasible.

The insensitive adjustment actions will further hinder the welding quality, which is very

undesirable because electric vehicle manufacturing has critical requirement on the joining

quality (Guo et al.). Consequently, the high costs induced by high-resolution 3D measure-

ment systems have limited the potential of using high-resolution spatiotemporal data for

process monitoring and control.

Second, there is a lack of modeling approaches for integrating spatiotemporal data

with other in-plant process information, such as product design, product history, process

settings, on-line monitoring sensor signals, and high-resolution spatiotemporal data. As

illustrated by Figure 1.1, modern manufacturing have become a data-rich environment, and

data from a variety of sources are readily accessible for on-line process monitoring and

control. Nevertheless, the data structure is highly complicated: there are a number of cat-

egorical and continuous variables, functional curves, and high-dimensional spatiotemporal

data. Existing modeling approaches have seldom considered the cross-correlations among

multiple data sources, especially for spatiotemporal data. Therefore, although the big data

shows great potentials in improving current process control techniques, nontrivial efforts

are necessary for developing new modeling algorithms.

Third, effective and efficient monitoring algorithms are lacking for spatiotemporal

processes in manufacturing. Modeling of spatiotemporal processes has received some at-

tention recently (Harvill, 2010), but existing studies have been conducted mostly in the

fields other than manufacturing, such as environmental science, climate prediction and

meteorology, epidemiology, and agriculture. Modeling and monitoring of such processes
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in manufacturing are unique, mainly because spatiotemporal processes in manufacturing

applications are often high-dimensional and expert process knowledge is generally avail-

able to assist the extraction and selection of monitoring features. Hence, new monitoring

techniques are highly desirable to characterize and monitor spatiotemporal processes in

manufacturing.

1.2 Research Objectives

The objective of this dissertation is to develop methods for efficient data collection, cost-

effective spatial variation modeling, and effective monitoring of spatiotemporal processes,

with applications to manufacturing processes. Specific research tasks are described as fol-

lows.

(1) Development of a dynamic sampling design approach for spatiotemporal pro-

cesses: High-resolution characterization of spatiotemporal processes is crucial for

process monitoring and control. One example is the ultrasonic metal welding pro-

cess. However, the acquisition of high-resolution measurement is often costly and

time-consuming. Therefore, a dynamic sampling design algorithm is desirable to

adaptively distribute measurement locations, and then spatial interpolation can be

conducted to predict the surface height at unmeasured locations. A state-space spa-

tiotemporal model is proposed for the process characterization, and Kalman filter

can be applied to derive the prediction variance in a recursive manner. Due to the

high-dimensionality of the design space, the genetic algorithm is suggested for so-

lution searching. Moreover, since tool degradation rate is generally time-variant

5



over one tool life, a monitoring algorithm is necessary to estimate the degradation

rate, which may be reflected by model parameter changes.

(2) Development of a surface shape model to incorporate low-resolution measurement

data and process physics: As discussed in Section 1.1, a new cost-effective surface

modeling approach is needed for the monitoring and control of surface manufac-

turing. Data fusion provides a means to make use of data from multiple sources.

In machining processes, the relationship between process variables and the surface

quality has been well studied in the literature. Additionally, products machined

from the same machining station, or parallel running stations often share many

similarities with each other. Hence, there is an opportunity to integrate these two

types of information, i.e., process variables and similar-but-not-identical surfaces,

to improve the modeling performance for surface variations. A potential method is

to combine a process model with a machine learning technique, multi-task learning

for Gaussian processes. A model parameter estimation algorithm will be needed to

simultaneously estimate parameters in the two parts.

(3) Design of a tool condition monitoring system for ultrasonic welding of lithium-ion

batteries: It has been reported that tool wear, especially tool surface degradation, is

one key factor affecting the welding quality in ultrasonic metal welding for electric

vehicle manufacturing. In addition, as a result of lacking accurate tool condi-

tion monitoring, the battery manufacturing plant replaces welding tools using a

conservative strategy, and therefore some available tool lifetime is being wasted,

significantly increasing production costs. Thus, a tool condition monitoring system

for ultrasonic metal welding is very important for balancing product quality and

6



production costs. Using tool surface measurement data from a real-world battery

plant, this study will first characterize tool wear progression both qualitatively and

quantitatively. Then algorithms for monitoring feature generation and tool condi-

tion classification will be developed for spatiotemporal data with expert process

knowledge.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows.

Chapter 2 presents a dynamic sampling design approach for characterizing spatiotem-

poral processes in manufacturing. A state-space model is utilized to describe a spatiotem-

poral process, where the residual is modeled as a spatiotemporal noise process. Then a

measurement equation is adopted to select a parsimonious subset of the potential measure-

ment locations. Based on Kalman filter, the covariance matrix of the estimation error is

evaluated in an iterative fashion. In order to balance between the cost and the precision,

a new design criterion is proposed as a combination of measurement costs and weighted

average of the prediction uncertainty at all locations. The search process of optimal mea-

surement subset, i.e., sampling design, is formulated as a binary integer programming

problem. Genetic algorithm is used to solve for the optimal design. Additionally, a new

test statistic is developed to monitor and update the temporal transition parameter. A com-

parative case study is conducted to show the effectiveness of the proposed method.

In Chapter 3, a novel surface modeling approach is developed to cost-effectively mea-

sure the parts for characterizing spatial surface variations by incorporating an engineering
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model with multi-task learning for Gaussian processes. In this model, part surface variation

is decomposed into two levels, namely, a global trend which is mainly induced by process

settings, such as material removal rate, and remaining cutter life, and a local variation

modeled using a zero-mean Gaussian process. Among multiple similar-but-not-identical

processes, e.g., machined parts from the same machining station or parallel stations, local

variations share commonalities, and therefore can be estimated using multi-task learning.

A new iterative multi-task Gaussian process learning algorithm is devised for the model pa-

rameter estimation. Furthermore, some practical suggestions are provided to expedite the

iteration convergence. The approach is demonstrated using data collected from a real-world

engine plant, and the implementation issues, including the effects of sample size, number

of tasks, and the accuracy of the engineering model, are discussed with case studies.

Chapter 4 presents a framework for characterizing and monitoring tool surface degra-

dation in ultrasonic welding of lithium-ion batteries. First, the surface progression of

ultrasonic welding tools is characterized using optical images and high-resolution spa-

tiotemporal data. Monitoring features are then extracted from the space and frequency

domains of spatiotemporal measurements based on expert knowledge. Classification al-

gorithms are developed based on the extracted monitoring features. In order to reduce

production downtime, a novel impression measurement method is designed to effectively

measure tool surface geometry. The effectiveness of the framework is demonstrated using

the data from an electric vehicle battery manufacturing plant.

In Chapter 5, the contributions of this dissertation are summarized and future research

directions are outlined.
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Chapter 2

Dynamic Sampling Design for Characterizing Spatiotemporal
Processes in Manufacturing

2.1 Introduction

Spatiotemporal processes evolve in both space and time. The characterization and mon-

itoring of such processes are crucial in a variety of scientific and engineering fields, e.g.,

environmental science (Stein et al., 1998; Kyriakidis and Journel, 1999; Kibria et al., 2002),

climate prediction and meteorology (Handcock and Wallis, 1994), epidemiology (Waller

et al., 1997), agriculture (Mitchell and Gumpertz, 2003), and manufacturing process control

(Shao et al., 2014).

Spatiotemporal processes exist widely in manufacturing. For example, ultrasonic metal

welding is adopted for battery joining in electric vehicle manufacturing (Shao et al., 2013).

The surface geometry of the welding tools progresses over time (Shao et al., 2014), as illus-

trated by Figure 2.1; in the machining process of automobile engine components, machined

surfaces exhibit varying spatial variation patterns as cutters wear out. Figure 2.2 compares

engine head surfaces that are cut using a new and a worn tool. It is indicated that the surface

machined with a worn cutter presents significantly larger variation, especially in the edge

areas.

Fine-scale characterization of spatiotemporal processes is essential for process monitor-

ing and control in manufacturing. As an example, in ultrasonic metal welding of batteries

9



Figure 2.1 Tooling degradation process in ultrasonic metal welding

(a) New tool (b) Worn tool

Figure 2.2 Engine head surfaces machined using (a) new tool and (b) worn tool

for electric vehicle manufacturing, tool surface degradation is an important root cause ac-

counting for low-quality weld (Shao et al., 2014, 2016). In the example of high-precision

machining processes for automotive engine components, surface quality is of great im-

portance for assembly performance and the overall engine quality (Suriano et al., 2015;

Nguyen et al., 2013). The spatial variations in both examples fall into the category of spa-

tiotemporal processes. Accurate characterization of such processes is important for both

understanding the underlying process mechanism and enabling high-performance monitor-

ing and control of the manufacturing processes.

Critical challenges exist in efficient and effective characterization of spatiotemporal

process in manufacturing. First, high-resolution measurement data are expensive and

time-consuming to acquire. For instance, a 3D microscope is used by an electric vehicle

manufacturer for tool wear monitoring of ultrasonic metal welding. It takes the microscope

approximately 8 hours to measure a single tool surface with the dimension of 43 mm ×
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8 mm. The low measurement efficiency not only leads to a large amount of production

downtime, but also greatly delays the decision-making in tool condition monitoring. The

high cost has limited the usage of high-resolution surface measurement systems for on-line

process monitoring.

Spatial interpolation is one possible solution to reducing the cost induced by high-

resolution measurement systems. In spatial statistics, interpolation refers to the procedure

of estimating the value of properties, e.g., surface height, at unsampled/unmeasured lo-

cations using measurement data from their vicinities. Examples of spatial interpolation

techniques include kriging (Stein, 2012), cokriging (Atkinson et al., 1992), and regression

kriging (Odeh et al., 1995). The accuracy and precision of interpolation largely depend

on the number of sampling/measurement sites and the distribution of measurement points.

Therefore, sampling design is critically needed to achieve satisfactory interpolation results.

Sampling design has received much attention in the area of natural resources and envi-

ronmental science (McBratney et al., 1981; McBratney and Webster, 1981, 1983a,b; Curran

and Williamson, 1986; Curran, 1988; Xiao et al., 2005; Anderson et al., 2006; Zhu and

Stein, 2006), and is recently investigated in the area of manufacturing (Jin et al., 2012).

A sampling design problem can be generally formulated as follows. Assume the lo-

cation set of interest is denoted by S , and the sampled/measured location set is So =

{s1, . . . ,sn} ⊂ S . The goal is to adaptively select So such that the inference at unob-

served locations, denoted as Su = S \So, is optimized. Prediction error variance has been

popularly used as a performance measure of one sampling design. If the prediction error
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variance is denoted as V , the design target is then given by Equation (2.1).

min
So⊂S

f (V ), (2.1)

where f (·) is some function of the prediction error variance. Examples of f (·) include

minimum, maximum, and average.

In general, sampling design approaches can be divided into three main categories:

(1) random sampling, (2) spatial variability based method, and (3) sequential design ap-

proaches based on computer experiment methods.

Random sampling is a widely applied sampling design technique. One basic assump-

tion of random sampling is that no spatial correlation of random variables exists among

locations to be sampled. Two most popular random sampling designs are simple random

sampling (SI) and stratified simple random sampling (STSI) (Brus and De Gruijter, 1997).

SI suggests to randomly select a predetermined number of sample locations no from the

surface of interest S with equal probabilities of selection and independently from one an-

other. With STSI, the surface of interest S is first divided into sub-regions, also called

strata, S1, . . ., Sd , and then SI is applied to each stratum Si, i = 1, . . . ,d, individually. The

sample size of the stratum i, noi = |Si|, can be determined such that the probabilities of the

locations of being sampled differ among strata. SI is more widely used because it is easier

to implement, but this strategy often results in a larger sample size and duplication of in-

formation because some measurement locations are too close to each other (Curran, 1988).

If an optimal sample size is defined as the number of sample points no that minimizes the

measurement cost given a pre-specified estimation precision, STSI is able to increase the

cost-efficiency by taking the within stratum variances into consideration.
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While random sampling is convenient to implement in practice, it does not consider

the spatial correlation among sampling locations, possibly leading to non-optimal design

and high measurement cost. Geostatistical methods are thus introduced to take the spatial

variability into consideration. This type of method is based on the regionalized variable

theory which assumes that the closer the sampled locations, the more similar the sampled

data. Normally, the spatial variability is decomposed into global and local variability (An-

derson et al., 2006). The global spatial variability indicates the spatial variation pattern of

a variable. The local variability refers to the variation of the variable within a neighbor-

hood. According to the extent of considering global and local spatial variability, there are

two geostatistical sampling techniques: global variability based approaches (Curran and

Williamson, 1986; Curran, 1988; Anderson et al., 2006; McBratney and Webster, 1983a,b;

Atkinson et al., 1992, 1994; Xiao et al., 2005; Curran and Williamson, 1986; Curran, 1988)

and local variability based methods (Anderson et al., 2006).

Sequential design approach is another type of sampling strategy. An exemplary method

is reported in Jin et al. (2012), where a systematic measurement strategy is designed for

wafer geometric profile estimation based on sequential design methods. The core idea of

such methods is to sequentially allocate additional sampling points at the locations where

a higher improvement is expected, thus reducing the number of experiments/samples to

achieve the optimal solution. Jin et al. (2012) combined the sequential design approach

with prior engineering understanding of the wafer cutting process, and developed a sam-

pling method for wafer surface quality monitoring. Once the optimal sampling locations

are determined for a representative wafer profile, the strategy will be used for other profiles

in the same manufacturing batch.
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The sampling methods reviewed so far are applicable for a single spatial process or

multiple processes with high similarities, but cannot be directly applied to the sampling

design problem of spatiotemporal processes. As a matter of fact, there is relatively limited

work on sampling designs for spatiotemporal processes (Fanshawe and Diggle, 2013). For

a spatiotemporal process, the spatial structure varies over time, and therefore the optimal

design at an earlier time may not always be optimal. In order to cost-effectively character-

ize a spatiotemporal process, the sampling design is supposed to be determined according

to the time-variant spatial variation pattern. Those approaches are generally referred to as

“dynamic sampling.” Wikle and Royle (1999) is one of the earlies studies on this topic.

In this study, a space-time dynamic model is used for characterizing spatiotemporal pro-

cesses, and Kalman filter is adopted to derive the prediction covariance matrix conditional

on the measurements at the current time and all historical data in a recursive manner. Then

dynamic sampling design is achieved by minimizing some design criterion based on the

prediction error variance. Following this study, dynamic sampling design methods have

been developed for ecological monitoring with both Gaussian (Hooten et al., 2009) and

non-Gaussian (e.g., Poisson or log-normal) data (Wikle, 2004).

Existing dynamic sampling methods are mostly focused on the applications of environ-

mental monitoring (Wikle and Royle, 1999; Fanshawe and Diggle, 2013) and ecological

monitoring (Hooten et al., 2009; Wikle, 2004). However, there is a lack of studies on

spatiotemporal processes in manufacturing. Compared with environmental or ecological

monitoring, manufacturing processes have some unique characteristics, which make the

design problem more complicated. Specifically,

(1) In manufacturing process control, multiple measurement systems are often jointly
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used. For instance, in tool condition monitoring for ultrasonic metal welding, a

microscope has various lenses with different measurement ranges and resolutions.

In surface quality monitoring for high precision machining of automotive engine

heads, a coordinate measuring machine and a profilometer are adopted to measure

a path following the edges of a rectangle and several rectangular regions, respec-

tively (Suriano et al., 2015). Therefore, the dynamic sampling design should take

the measurement capability of all the gages into consideration.

(2) Existing methods have seldom considered the measurement cost during the de-

sign process. In ecological and environmental monitoring, the total number of

measurement locations or monitoring devices is often determined based on bud-

get constraints (Hooten et al., 2009). However, in manufacturing, it is important

to consider the measurement cost to achieve a balance between sampling cost and

prediction precision.

(3) The design space in manufacturing is much higher than that in environmental

and ecological monitoring. For example, the potential measurement points on

a ultrasonic welding anvil can be 9 million. The design space in environmental

or ecological monitoring normally consists of several hundred potential locations

(Hooten et al., 2009). With such a high-dimensional space, exchange algorithms,

which are commonly used in existing studies, may not be effective in searching for

the optimal design in manufacturing.

(4) An algorithm for monitoring and updating the model parameters is necessary.

Model parameters of spatiotemporal processes in manufacturing are generally time-

variant. For example, in a process where tool wear is the major cause for the
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spatiotemporal variation, the tool degradation rate is often time-variant. It is critical

to monitor and update the model parameters, as inaccurate parameters will likely

result in non-optimal designs and inaccurate interpolation.

To address these challenges, this chapter develops a dynamic sampling design approach

to characterize spatiotemporal processes in manufacturing. The rest of this chapter is or-

ganized as follows. Section 2.2 presents a formulation of the dynamic sampling design

problem, a state-space spatiotemporal model, and recursive prediction error estimation

based on Kalman filter. Section 2.3 introduces a dynamic sampling design approach with a

new design criterion, a genetic algorithm (GA) based design search, and a novel algorithm

for estimating and monitoring the temporal transition parameter.

2.2 Problem Formulation

This section formulates the dynamic sampling design problem for spatiotemporal processes

using a state-space spatiotemporal model and Kalman filter.

2.2.1 Spatiotemporal Model

Over the recent years, various spatiotemporal models have been proposed, among which

a state-space approach has received extensive attention (Xu and Wikle, 2007; Huang and

Cressie, 1996; Wikle and Royle, 1999; Wikle, 2004; Hooten et al., 2009). One advantage

of this approach is that empirical Bayesian or spatiotemporal Kalman filter can be used to

easily implement such models (Wikle and Royle, 1999). We will briefly review the model

formulation as follows.
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Let Zt = (Z(s1, t), . . . ,Z(sn, t))
ᵀ be an n×1 vector for an unobservable spatiotemporal

process at some fixed set of locations S = {s1, . . . ,sn}. In surface manufacturing, s is of-

ten a two-dimensional geographic coordinate vector, namely, s = [x, y]. Additionally, in

manufacturing, the location set S of interest is often a grid, and is constant over time. The

spatiotemporal model is given by the following state equation.

Zt =ΦtZt−1 +ηt , (2.2)

where Φt is a first-order Markov parameter matrix and ηt is a spatiotemporal process with

covariance matrix Σηt . In spatiotemporal processes where the spatial variation is caused by

tool degradation, Φt represents the tool degradation dynamics and can be time-variant.

At a particular time t, a subset of S is measured, and the measurement data are given

by Mt = (M(s1, t), . . . ,M(smt , t))
ᵀ, which is an mt × 1 vector. Supposing the measure-

ments/observations are acquired with errors, a measurement equation can be written as

follows.

Mt = DtZt +ϵt , (2.3)

where Mt is a vector of mt measurement data; Dt is an mt × n matrix that maps the true

process, Zt , to the data at observed locations, Mt ; and ϵt is a zero-mean measurement error

process with covariance matrix Σεt . Dt determines which locations in Zt are observed and

it is a sparse matrix of 0’s and 1’s (Wikle et al., 1998). Consequently, the dynamic sampling

design is equivalent to the determination of Dt .

In the context of manufacturing processes, we make the following assumptions regard-

ing Models (2.2) and (2.3).
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Assumption 2.1 (Model Assumptions for Spatiotemporal Model)

(1) The transition matrix takes the form of

Φt = ϕtI, (2.4)

where ϕt is the surface progression rate and should be monitored and updated, and

I is an n×n identity matrix. In spatiotemporal processes where tooling degradation

is the major factor, ϕt can be viewed as the tooling degradation rate.

(2) Σϵt is a diagonal matrix and is fully determined by the gage repeatability and the

design Dt .

(3) Σηt is time-invariant, and the parameters can be estimated and updated over time.

2.2.2 Prediction Error Estimation

Given the state-space model (2.2) and the measurement equation (2.3), a state-space

Kalman filter can be developed either by Bayesian arguments (Harrison and West, 1999)

or projection arguments (Hamilton, 1994). Then we can obtain recursive equations for the

prediction error covariance, as shown by Equations (2.5)–(2.8) (Wikle and Royle, 1999).

At ≡ Var(Ẑt |Mt , . . . ,M1) (2.5)

= Bt −BtDᵀ
t
[
DtBtDᵀ

t +Σϵt

]−1 DtBt (2.6)

Bt ≡ Var(Ẑt |Mt−1, . . . ,M1) (2.7)

=ΦtAt−1Φ
ᵀ
t +Σηt (2.8)

To start the recursion, A0 needs to be specified and is typically chosen to be the uncon-

ditional variance-covariance matrix of the spatiotemporal process (Wikle and Royle, 1999).
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Moreover, by Assumption 2.1, Σϵt is jointly determined by Dt and the gage repeatability;

Σηt =Ση is constant and will be updated after each sampling; the calculation of Bt can be

further simplified as the following equation.

Bt = ϕ 2
t At−1 +Ση. (2.9)

2.3 Dynamic Sampling Design

This section presents a dynamic sampling design approach for spatiotemporal processes

in manufacturing. Particularly, the design problem is formulated in Section 2.3.1; Section

2.3.2 presents a new design criterion which simultaneously considers the prediction pre-

cision and the measurement cost; finally, in Section 2.3.3, a binary integer programming

problem is formulated and GA is proposed for the solution search.

2.3.1 Measurement System Setting

For the measurement and monitoring of spatial variations in manufacturing, various mea-

surement devices are available, including coordinate measuring machines (CMMs) (Suri-

ano et al., 2015), profilometers (Suriano et al., 2015), 3D microscopes (Shao et al., 2014,

2016), laser holographic interferometers (Suriano et al., 2015), and touching probe sensors

(Jin et al., 2012). Simultaneous adoption of multiple gages with different measurement

resolutions is a common practice. For instance, in high precision machining of automobile

engine components, a CMM and a profilometer are used in combination to monitor the

surface quality; in tool condition monitoring of ultrasonic metal welding, different lenses

of a 3D microscope may be used together for surface measurement.
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In this study, we assume a 3D measurement system with two resolution levels, i.e.,

Level 1 and Level 2, is applied to characterize a spatiotemporal process. At each sam-

pling time, two levels are used in combination for measurement. We make the following

assumptions regarding the measurement from Levels 1 and 2.

Assumption 2.2 (Measurement System Setting)

(1) Level 1 is able to measure the whole surface with one-time scanning but it has a

relatively poor precision, which is reflected by a large measurement error variance,

or a poor repeatability. We denote the measurement error variance of Level 1 as

σ2
1 .

(2) The measurement locations of Level 1 are fixed.

(3) Level 2 has a smaller measurement error variance, denoted as σ2
2 , but the mea-

surement range is small. We have

σ2
1 > σ2

2 . (2.10)

(4) The measurement locations of Level 2 are programmable.

(5) In designing the sampling locations for Level 2 measurement, a surface needs to be

segmented into a number of grids, and each grid is measured by one single scan.

The “Grid Segmentation” process will be explained later. The design problem is

then equivalent to selecting a subset of all grids.

(6) The unit measurement costs of Level 1 and Level 2 are assumed to be c1 and c2,

respective. Level 2 measurement is more expensive to acquire, so we have

c1 < c2. (2.11)
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Figure 2.3 Illustration of grid segmentation for Level 2 measurement

Figure 2.3 illustrates the process of grid segmentation. The points in the prediction lo-

cation set S are assumed to align with an equally spaced grid, the size of which is Nx×Ny,

as shown by the blue dots in Figure 2.3. The measurement range of Level 2 is nd,x ×nd,y,

indicating that one single scan of Level 2 can measure nd,x × nd,y points. Then the total

number of grids is calculated as

Ng =

⌈
Nx

nd,x

⌉
×
⌈

Ny

nd,y

⌉
, (2.12)

where Ng is the total number of grids, and ⌈·⌉ is a ceiling function.

In the case shown by Figure 2.3, Nx = Ny = 11,nd,x = nd,y = 2, so the total number of

grids is Ng =
⌈11

2

⌉
×
⌈11

2

⌉
= 36, and the grids are indexed as 1,2, . . . ,36.

The sampling design is to select a certain number of grids from all Ng grids. The design
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target is two-fold: (1) to determine the number of measurement grids (ng) and (2) to deter-

mine where to allocate these grids. The number of all possible designs, Ndesign is calculated

by the following equation.

Ndesign =
Ng

∑
ng=0

(
Ng

ng

)
= 2Ng. (2.13)

For the example in Figure 2.3, the number of all possible designs is 236 ≈ 687 million.

The design matrix, Dt can be rewritten as

Dt =

 D1

D2,t

 , (2.14)

where D1 is time-invariant, but D2,t is time-variant and is designed predictively.

The number of measurement points of Level 1 and Level 2 can be calculated as

m1 = trace
(
D1Dᵀ

1
)
, (2.15)

m2,t = trace
(

D2,tDᵀ
2,t

)
, (2.16)

where m1 and m2,t are the number of measurement points of Levels 1 and 2, respectively.

Then the total measurement cost, Ct , is given by the equation below.

Ct = c1m1 + c2m2,t . (2.17)

With the representation of Equation (2.14), the measurement equation, namely, Equa-

tion (2.3), is rearranged, as shown by Equation (2.18).

Mt =

M1,t

M2,t

 , (2.18)
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where M1,t and M2,t are the measurements of Level 1 and Level 2, respectively. M1,t and

M2,t can be calculated using

M1,t = D1Zt , (2.19)

M2,t = D2,tZt . (2.20)

Accordingly, the covariance matrix of the measurement error process, ϵt , can be esti-

mated with the following equation.

Σϵt =

σ2
1 Im1×m1 0m1×m2,t

0m2,t×m1 σ2
2 Im2,t×m2,t

 , (2.21)

where Im1×m1 and Im2,t×m2,t are identity matrices, and 0m1×m2,t and 0m2,t×m1 are zero matri-

ces.

Note: if some locations are measured by both Level 1 and Level 2, we will only use the

measurement from Level 2, because Level 2 is more precise. Meanwhile, the specific rows

corresponding to these locations will be removed from D1, and we denote the modified

design matrix as D′
1,t . Moreover, the formulation in the equations above will be revised

accordingly.

2.3.2 Design Criterion

The design criterion can be constructed using some function of the prediction covariance

matrix, At , such as average or maximum prediction error variance (Wikle and Royle, 1999).

Then the design procedure follows a two-step algorithm.

Algorithm 2.1 (Dynamic Sampling Design Procedure)
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Step 1: Calculate Bt based on At−1;

Step 2: Minimize the pre-specified design criterion over all possible designs D .

Average or maximum prediction variance is easy to implement in practice; however,

there are two major limitations in using these criteria. First, the measurement cost cannot

be incorporated in the design process. Although it may be reasonable in environmental

and ecological monitoring to predetermine the total number of observations according to

budget constraints, it is not desirable to use such criteria in characterizing spatiotempo-

ral processes in manufacturing. Second, these criteria cannot accommodate the scenario

where one has varying precision requirement on a surface. For example, in tool condition

monitoring for ultrasonic metal welding, the knurl peaks are of more concern because these

areas play a significant role in determining the weld quality.

Here, we propose a new design criterion to simultaneously consider the measurement

cost and the “weighted average prediction variance.” The weighted average prediction

variance is defined as

Vt = trace(AtW) , (2.22)

where At is the prediction covariance matrix and W is an n× n weight matrix, and it is

given by Equation (2.23).

W =



w1 0 . . . 0

0 w2 . . . 0

. . . . . . . . . . . .

0 0 . . . wn


, (2.23)
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where the diagonal entry of W, Wii, is the weight assigned to the ith location in Z. Higher

weight corresponds to stricter precision requirement. If the precision requirement is time-

variant, one can simply adopt a varying weight matrix, Wt .

The precision measure in Equation (2.23) may be rewritten as Equation (2.24).

Vt =
n

∑
i=1

wiAt(ii), (2.24)

where At(ii) is the ith diagonal entry of At .

The design criterion is defined by a loss function, Lt , as shown by Equation (2.25).

Lt =Ct +λVt , (2.25)

where λ is a tuning parameter. Larger λ places more emphasis on the prediction preci-

sion, and will generally lead to better prediction precision and higher measurement cost. In

practice, λ can be determined based on expert knowledge.

2.3.3 GA-Based Binary Integer Programming

The dimension of the design space D in characterizing a spatiotemporal process in man-

ufacturing could be extremely high. In the example shown by Figure 2.3, there are 687

million possibilities in selecting measurement grids for Level 2. This number will increase

exponentially, as shown by Equation (2.13). Exchange algorithms, which have been com-

monly applied in existing studies on dynamic sampling design, might not be effective in

dealing with such a high-dimensional design space. Therefore, a more effective program-

ming technique is needed. In this section, we first formulate the design process as a binary

integer programming problem, and then use GA to solve this problem.
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The design problem is essentially equivalent to determining whether to conduct mea-

surement at a certain grid, which is a binary decision. Assume there are in total Ng grids in

the surface of interest. We define an Ng×1 design vector dt , and each element can only take

the values of 0 or 1. A 0 value indicates that there is no measurement at the corresponding

grid, while 1 suggests that a Level 2 measurement is performed at that grid. Note that the

design vector dt and the Level 2 design matrix, D2,t , are one-to-one mapped. Additionally,

given that the Level 1 design matrix, D1, is fixed, dt and Dt are also one-to-one mapped.

Hence, the dynamic sampling design problem can be well represented by a binary integer

programming problem (Taha, 2014).

There are various techniques available in the literature to solve integer programming

problems (Burer and Letchford, 2012), including exact methods, such as branch-and-bound

(Land and Doig, 1960), branch-and-reduce (Ryoo and Sahinidis, 1995, 1996), and heuristic

methods, which may be based on tabu search (Exler et al., 2008) and GA (Luo et al., 2007;

Young et al., 2007; Schlüter et al., 2009). This study adopts a GA based integer program-

ming approach, which is implemented in Matlab (Attaway, 2013). One practical suggestion

in solving this programming problem is that when the number of grids is large, the compu-

tation efficiency can be greatly improved by adopting sparse matrix representation (Gilbert

et al., 1992), as the design matrix, Dt , is a highly sparse matrix.

26



2.3.4 An Illustration Example of a Design Process

This section provides an example to illustrate a design process. We consider a surface with

the following settings.

Nx = Ny = 4; nd,x = nd,y = 2;

σ2
1 = 5, σ2

2 = 1; c1 = 1, c2 = 2;

W =

 2 016×15

015×1 I15×15

 .
(2.26)

The surface dimension is 4× 4, and there are 16 prediction locations. We first index

these locations using integers 1 to 16, as shown by Figure 2.4a. As the measurement range

of Level 2 is nd,x × nd,y = 2× 2, we shall segment the surface into 2× 2 grids, and the

segmentation result is shown by Figure 2.4b. After the grid segmentation, there are Ng = 4

grids.

(a) Surface with indices (b) Surface after grid segmentation

Figure 2.4 Illustration of a design process

The weight matrix is a 16× 16 diagonal matrix. Of the diagonal entries in W, only

W11 = 2, and all other entries are equal to 1, i.e., W j j = 1, j = 2, . . . ,16.
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We further suppose that the measurement locations of Level 1 are fixed at Locations 1,

4, 13, and 16. Correspondingly, the Level 1 design matrix is

D1 =

1st column 4th column 13th column 16th column



1 01×2 0 01×8 0 01×2 0

0 01×2 1 01×8 0 01×2 0

0 01×2 0 01×8 1 01×2 0

0 01×2 0 01×8 0 01×2 1

(2.27)

Assume that at a certain time t, Grid 1 is selected for Level 2 measurement. Equiva-

lently, Locations 1, 2, 5, and 6 are measured using Level 2. The design vector for Level 2

is then

dt =

[
1 0 0 0

]ᵀ
. (2.28)

Correspondingly, the design matrix for Level 2 is given by

D2,t =

1st column 2nd column 4th column 5th column



1 0 01×2 0 0 01×10

0 1 01×2 0 0 01×10

0 0 01×2 1 0 01×10

0 0 01×2 0 1 01×10

(2.29)

As shown by Equations (2.27) and (2.29), D1 and D2,t are sparse matrices, where there

is only one element taking the value of 1 in each row, and the number of rows is equal to

the number of measurement points. The numbers of measurement locations for Level 1 and
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Figure 2.5 Illustration of the measurement allocation

Level 2 can also be calculated using Equations (2.15) and (2.16). In any case, we obtain

m1 = 4 and m2,t = 4. The measurement cost is then calculated as Ct = 4×1+4×2 = 12.

This design is further illustrated by Figure 2.5. In Figure 2.5, blue squares indicate

Level 1 measurement and red dots represent Level 2 measurement.

Note that Location 1 is measured by both Level 1 and Level 2. Since Level 2 is more

precise, we will use the measurement from Level 2 for this point. Correspondingly, we

modify D1 by removing the first row, i.e.,

D′
1,t =

4th column 13th column 16th column


01×3 1 01×8 0 01×2 0

01×3 0 01×8 1 01×2 0

01×3 0 01×8 0 01×2 1

(2.30)
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Stacking D′
1 and D2,t vertically, we obtain the overall design matrix:

Dt =

1st 2nd 4th 5th 6th 13th 16th
column column column column column column column



0 0 0 1 0 0 01×6 0 01×2 0

0 0 0 0 0 0 01×6 1 01×2 0

0 0 0 0 0 0 01×6 0 01×2 1

1 0 0 0 0 0 01×6 0 01×2 0

0 1 0 0 0 0 01×6 0 01×2 0

0 0 0 0 1 0 01×6 0 01×2 0

0 0 0 0 0 1 01×6 0 01×2 0

(2.31)

The covariance matrix of the measurement error process, ϵt , is evaluated as

Σϵt =

5I3×3 03×4

04×3 I4×4

 , (2.32)

where I3×3 and I4×4 are identity matrices, and 03×4 and 04×3 are zero matrices.

2.3.5 Estimation and Monitoring of the Temporal Transition Parameter

Accurate estimation of the temporal transition parameter, ϕt , is crucial in dynamic sampling

design, as an inaccurate estimation will lead to incorrect evaluation of At and Bt , and the er-

ror will accumulate over time, deteriorating the overall design and prediction performance.

Therefore, an algorithm for estimating and monitoring ϕt is critically needed.

In the dynamic sampling design literature, Hooten et al. (2009) suggests using a method

of moments estimator for ϕt using all historical measurement data. Nevertheless, the esti-

mator is developed based on the assumption that the transition parameter is constant, which
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may not be a valid assumption in manufacturing.

On the monitoring of transition parameters, possible solutions include system identifi-

cation techniques for state-space models (Juang, 1994; Van Overschee and De Moor, 1994;

Ljung, 1998; Pillonetto et al., 2014) and methods for monitoring autoregressive parameters

in time series models (Gombay and Serban, 2009; Gombay, 2008; Na et al., 2011; Davis

et al., 1995). However, these methods cannot be directly applied in dynamic sampling

design either because of their high-complexity or large detection delays.

In fact, the monitoring problem in dynamic sampling design is unique in the sense

that for the measurement data, the error variance is known and fully determined by the

measurement system’s repeatability. This information provides us with an opportunity for

monitoring the parameter change. In the rest of this section, we will develop an algorithm

to monitor and update the temporal transition parameter, ϕt , based on hypothesis testing

using the measurement data.

We first define the set of locations measured by Level 1 to be S1, which is time-invariant

by assumption. At time t, we denote the set of locations measured by Level 2 as S2,t . Then,

at time t−1, the Level 1 and Level 2 measurement locations are S1 and S2,t−1, respectively.

The locations mutually measured by Level 2 at both time t −1 and t can be obtained by

S2,t(t−1) = S2,t−1 ∩S2,t , (2.33)

where S2,(t−1)t represents the set of mutually measured locations by Level 2 at both time

t −1 and t.

Then we denote the measurements at locations of S2,(t−1)t at time t − 1 and t to be

Mt−1
2,(t−1)t and Mt

2,(t−1)t , respectively.
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The mutual measurements at time t−1 and t can be represented as stacked measurement

vectors of Level 1 and Level 2, i.e.,

Mt−1
(t−1)t =

 M1

Mt−1
2,(t−1)t

 ,

Mt
(t−1)t =

 M1

Mt
2,(t−1)t

 ,
(2.34)

where Mt−1
(t−1)t and Mt

(t−1)t are the measurement data at mutually measured locations at

time t −1 and t, including both Level 1 and Level 2 measurement.

Statistics are defined as the average height of the measurements at these mutually loca-

tions at time t −1 and t, as given by Equation (2.35).

ut−1,(t−1)t = avg
(

Mt−1
(t−1)t

)
,

ut,(t−1)t = avg
(

Mt
(t−1)t

)
,

(2.35)

where avg(·) is an average function.

A one-time temporal transition parameter, which is denoted by ht , is defined as follows.

ht =
ut,(t−1)t

ut−1,(t−1)t
. (2.36)

When no shift occurs in the temporal transition parameter, ϕt , it is estimated using

Equation (2.37).

ϕ̂t =
1

t − t0

t

∑
i=t0

hi =
1
t0

[
(t − t0)ϕ̂t−1 +ht

]
, (2.37)

where t0 is the time right after the previous shift occurs. When no shift has occurred, t0 = 1.

When a shift is detected, we will estimate ϕt using the one-time temporal transition
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parameter, ht , namely,

ϕ̂t = ht . (2.38)

The monitoring of ϕt is conducted using the following hypothesis test 1.

Test 2.1 (Shift Detection of ϕt) Conclude that H0: ht = ϕ̂t−1 is not supported when∣∣∣∣∣∣ ut,(t−1)t − ût,(t−1)t√(
1+ ϕ̂ 2

t−1
)

σ2
ε,(t−1)t

∣∣∣∣∣∣> Zα/2, (2.39)

where Zα/2 is the standard normal critical value, and

ût,(t−1)t = ϕ̂t−1ut−1,(t−1)t ,

σ2
ε,(t−1)t =

m1σ2
1(

m1 +m2,(t−1)t
)2 +

m2,(t−1)tσ2
2(

m1 +m2,(t−1)t
)2 ,

m2,(t−1)t =
∣∣S2,t(t−1)

∣∣ .
(2.40)

The estimation and monitoring procedure is summarized by Figure 2.6.

2.4 Case Study

This section presents a case study to compare the proposed dynamic sampling design

approach with the random sampling method. The experiment setting is summarized as

follows.

Nx = Ny = 16; nd,x = nd,y = 2;

σ2
1 = 1, σ2

2 = 0.1; c1 = 1, c2 = 1.5;

λ = 1.3; t = 1,2, . . . ,10.

(2.41)

Additionally, Level 1 measures 16 points, as given by Equation (2.42). The Level 1

1Detailed derivation of the hypothesis test is given in Appendix A.
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Figure 2.6 Flowchart for the estimation and monitoring of ϕt

measurement locations are further illustrated by Figure 2.7.

(1,1), (1,6), (1,11), (1,16)

(6,1), (6,6), (6,11), (6,16)

(11,1), (11,6), (11,11), (11,16)

(1,16), (16,6), (16,11), (16,16)

(2.42)

The weight matrix is given by Equation (2.43).

Wii =


3 if i ∈ {61,62, . . . ,70,201,202, . . . ,220}

1 otherwise

(2.43)

The temporal transition parameter is assumed to be a step function, as given in Equation
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Figure 2.7 Level 1 measurement locations in the case study

(2.44). The surface degradation rate is 0.8 in the first half and becomes 0.95 afterwards.

ϕt =


0.8 1 ≤ t ≤ 5

0.95 6 ≤ t ≤ 10

(2.44)

The spatiotemporal noise, ηt , is assumed to be constant and known in this case study.

In practice, ηt can be estimated by selecting a proper kernel function for the covariance

matrix and then estimating the kernel parameters. Normally in spatial statistics, exponen-

tial kernels are a common choice. The kernel function could also be selected from some

candidate functions by conducing a cross-validation study using historical data.

A0 needs to be specified to start the Kalman recursion. Here, we assume that the diag-

onal elements of A0 are equal to 1, and all other elements are 0.05. In practice, A0 may
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Figure 2.8 Measurement cost comparison of dynamic and random sampling approaches

be specified as the unconditional variance-covariance matrix of the spatiotemporal process

(Wikle and Royle, 1999).

The proposed sampling approach is compared with a random sampling strategy. For the

convenience of comparison, when conducting random sampling, we predetermine the num-

ber of Level 2 measurements as the same with our approach, and randomly allocate these

points on the surface. Therefore, the two methods will always have the same measurement

cost, and we will only need to compare the prediction precision, Vt . The comparison results

are shown by Figures 2.8 and 2.9. Figure 2.8 indicates that two approaches have the same

measurement costs for all sampling times. It is suggested by Figure 2.9 that the proposed

dynamic sampling approach yields smaller Vt all the time, which demonstrates that the

proposed method leads to better prediction performance than random sampling.

Furthermore, we compare the spatial distributions of the prediction variance from two
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Figure 2.9 Precision comparison of dynamic and random sampling approaches

methods. The weight matrix is plotted as Figure 2.10. In Figure 2.10, each blue dot rep-

resents a prediction location, and the location indices are given by the numbers on the left

and right sides of the map. It is observed that Locations 61–70 and 201–221 are marked

by yellow color, indicating higher weight, and all other locations are shown by blue color.

This is consistent with the weight assignment given by Equation (2.43).

The comparison of the overall distribution of Level 2 measurements over all 10 sam-

pling is given by Figure 2.11. As indicated by Figure 2.11a, for the dynamic sampling

approach, the highest measurement frequency on the surface are clustered around the loca-

tions with higher weights. Note that the rows beginning with Locations 49 and 65 belong

to different grids, so the dense measurement locations expand to the rows above and below.

On the other hand, rows beginning with Locations 193 and 209 belong to same grids, and

therefore these grids connect to become one single band. Particularly, as Locations 201–

37



x
0 2 4 6 8 10 12 14 16

y

0

2

4

6

8

10

12

14

16

  1

 17

 33

 49

 65

 81

 97

113

129

145

161

177

193

209

225

241

 16

 32

 48

 64

 80

 96

112

128

144

160

176

192

208

224

240

256

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Figure 2.10 Map of the weight matrix

204 and 217–220 are all assigned with high weights, the corresponding two grids have

highest measurement frequency, as indicated by yellow color. The overall measurement

distribution when using random sampling presents a random pattern, as shown by Figure

2.11b.

We further compare the prediction variance maps of dynamic and random sampling,

and the results are shown by Figure 2.12. From Figure 2.12, we can make the following

observations.

(1) In both Figures 2.12a and 2.12b, the locations given by Equation (2.42) have small

prediction variance. This is due to the fact that Level 1 measurements are performed

at these locations all the time.

(2) In Figure 2.12a, the prediction variance is smaller at locations with high weights.

Specifically, Locations at 61–64 and 65–70 along with the locations below and
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Figure 2.11 Overall distribution of Level 2 measurements
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above them have small variance, and this is caused by both the large weights at

these locations and that the locations below or above them belong to same Level 2

measurement grids. Since rows beginning from 193 and 209 belong to same Level

2 measurement grids, only one low variability “band” forms at these locations.

Moreover, Locations 201–204 and 217–220 have even smaller variability, and it is

a result of the fact that all these locations have large weights.

(3) The variance map of random sampling presents a random pattern, as shown by

Figure 2.12b.

The results presented in this case study demonstrate that the proposed dynamic sam-

pling strategy is able to allocate the measurement efforts according to the weight distri-

bution and the spatiotemporal progression of the surface, thus leading to an improved

prediction performance while balancing measurement costs.

2.5 Conclusion

In this chapter, a framework for the dynamic sampling design of spatiotemporal processes

in manufacturing is developed to achieve a balance between the prediction performance

and the measurement cost. The contributions are summarized as follows.

(1) The design problem is formulated for characterizing spatiotemporal processes in

manufacturing, where two precision levels of one measurement system or two

gages with varied capabilities are applied in combination.

(2) A new design criterion is proposed to simultaneously consider prediction precision

and measurement cost. Then the design search is formulated as a binary integer
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Figure 2.12 Comparison of dynamic and random sampling approaches using prediction variance
maps
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programming problem, and GA is suggested to obtain the solution.

(3) A novel algorithm is developed to estimate and monitor the temporal transition pa-

rameter based on hypothesis testing using mutually measurement locations at two

adjacent sampling times.

Future research may be focused on “spatiotemporal dynamic sampling design,” where

the design is dynamic in both the temporal and spatial domains. First, the requirement

on the prediction precision may be time-variant. For example, in the early stage of tool

life, normally less concern exists, but one has higher concern after the tool reaches a

certain degradation level. Therefore, the weight matrix becomes time-variant, Wt . Ad-

ditionally, the covariance structure of the spatiotemporal noise, ηt , may become more

complicated as one tool degrades, e.g., stronger correlations and higher variability. This

phenomenon reflects the increased complexity in the tool wear mechanism. Intuitively,

one may suggest reducing the sampling time in the early tool stage, but increasing the

sampling frequency during the late tool stage. However, in existing literature on dynamic

design of spatiotemporal processes, the temporal sampling interval is mostly assumed to

be constant. Therefore, a systematic method for spatiotemporal dynamic sampling design

is highly desirable to achieve better prediction performance and lower measurement cost.
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Chapter 3

Surface Shape Modeling by Integrating an Engineering Model with
Multi-Task Gaussian Process Learning

3.1 Introduction

The control of surface shape variation on a machined surface is of great importance in auto-

motive powertrain manufacturing because such variation has a significant influence on the

sealing performance and causes distortion during surface assembly, such as those between

engine heads and blocks or upper and lower transmission valve bodies. Characterization of

the surface shape with high precision has become critical in controlling surface variations

and to ensure the functional performance of surface assembly.

Various high-resolution surface measurement systems have been developed, including

profilometers and laser holographic interferometers. However, the acquisition of high-

resolution measurements using those systems is time-consuming and expensive. Moreover,

such measurements may not be robust in response to environmental disturbance. For exam-

ple, the measurement accuracy based on a laser holographic interferometer system can be

affected by the heat dissipated from a machined part, measurement table vibration, and sur-

face contamination, thus resulting in data loss and measurement errors, as shown in Figure

3.1.

Various approaches have been developed to make fine-resolution evaluation of the

entire surface shape based on low or multi-resolution surface measurements. These ap-
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Figure 3.1 Data loss during high-resolution measurement

proaches include interpolating and extrapolating surface shapes from measured points

through least squares (Zhu et al., 2004), B-spline methods (Yang and Menq, 1993; Grove

et al., 2004; Jung and Kim, 2000) and grid fit through triangulation (D’Errico, 2005). In

spatial statistics, the method is to estimate the surface shape by considering spatial correla-

tions among sampled points. Such correlations reflect the spatial similarities between data

in the vicinity on the part surface, and has been extensively utilized to interpolate and ex-

trapolate surface data for form error estimation (Yang and Jackman, 2000; Xia et al., 2008)

and geographic understanding in remote sensing applications (Curran and Williamson,

1986; Atkinson et al., 1992; Wang et al., 2005; Xiao et al., 2005). One limitation with

these data-driven approaches is that the precision of the surface predictions is constrained

by the density of measurements. To deal with the limitation, Suriano et al. (2015) pro-

posed an engineering-driven surface model to improve surface prediction without having

to increase surface measurements. The prediction improvement was achieved by fusing

multi-resolution measurements with cutting force dynamics during surface manufacturing.

In summary, state-of-the-art surface modeling techniques mostly focus on the interpo-

lation/extrapolation of the data and process information from one single manufacturing
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process. Additionally, most of the data-driven methods lack engineering insights.

This chapter will explore new opportunities in improving surface shape modeling by

considering the relationship between multiple manufacturing processes whenever avail-

able. The idea is motivated by a common manufacturing scenario when the process of

interest lacks sufficient data whereas rich data could be available from other similar-but-

not-identical processes. For instance, an automaker plans to build a new engine plant where

there is a lack of historical data to establish a baseline for surface quality control. In the

meantime, other engine plants have been running for some time and therefore the relevant

historical surface data are extensively available. Though the machining processes in the ex-

isting plants were developed for different types of engines, the cutting mechanism for the

same materials could be very similar and thus those process data can partially contribute to

the prediction of the surface shapes in the new plant (Figure 3.2a). Similar scenario applies

to a parallel machining station where multiple machines produce the same type of parts in

parallel (Figure 3.2b). Surface data from the parallel machines can be potentially utilized

to jointly learn the surface shape models for all machines.

These examples motivate us to improve the surface variation prediction by transferring

the knowledge learned from data-rich processes to a similar process. Multi-task learning

has emerged as a solution to dealing with such a knowledge-transfer problem (Caruana,

1997). It can be particularly useful in the situation when a limited amount of data is

available in the target task while data from other related tasks are readily available. It is

expected that by learning these tasks simultaneously, superior prediction performance can

be achieved over the “no transfer” case (i.e., when each task is learned in isolation). Fig-

ure 3.3 summarizes the difference between multi-task learning and traditional single task
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(a) New plant (b) Low production station

Figure 3.2 Two instances of the common scenario in manufacturing

learning. Multi-task learning has been employed to Gaussian process prediction, neural

network, Dirichlet processes, and support vector machine (Caruana, 1997; Lawrence and

Platt, 2004). The key problems of multi-task learning include the modeling of the simi-

larity among multiple processes and the learning algorithms for model parameters. As for

Gaussian processes, various similarity models such as block diagonal or not block diagonal

covariance matrix and learning algorithms such as expectation-maximization algorithm are

proposed (Bonilla et al., 2007; Yu et al., 2005; Schwaighofer et al., 2004). Therefore, it can

be anticipated that through multi-task learning, the quality performance of the manufactur-

ing process of interest or the new plant can be predicted by utilizing the observations from

different but related manufacturing processes or plants. However, current multi-task learn-

ing for Gaussian processes is data-driven and does not incorporate the engineering insight

into the model prediction.

This study aims to develop an engineering-guided multi-task learning (EG-MTL) sur-

face model, which fuses engineering knowledge and surface measurement data from a
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(a) Single task learning (b) Multi-task learning

Figure 3.3 Difference between single task learning and multi-task learning

number of similar-but-not-identical processes (tasks). We first establish a process physics

guided spatial model consisting of a global trend that is induced by cutting force dynamics

(engineering knowledge) and a local variation term that can be characterized by a zero-

mean Gaussian process. The global trend captures the overall shape variation across the

surface, and can be explained by the process physics to a great extent (Suriano et al.,

2015). An iterative multi-task Gaussian process learning algorithm is then developed to

learn the parameters from the global trend and the local variation. The algorithm will be

demonstrated based on engine head deck face machining processes.

The remainder of this chapter is organized as follows. First, the surface model is pre-

sented in Section 3.2. Section 3.3 presents a case study to compare the proposed modeling

approach with existing methods. Then Section 3.4 discusses the selection of hyperparam-

eters, effects of the sample size and the number of tasks, and the effect of the correlation

strength between the covariate and the primary variable. Finally, Section 3.5 concludes the

chapter.
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3.2 Surface Shape Modeling by Integrating Engineering Knowledge

with Multi-Task Learning

In this section, the EG-MTL surface model which integrates engineering physics with

multi-task learning is first presented, and then an iterative algorithm is developed to es-

timate the model parameters.

3.2.1 Engineering-Guided Multi-Task Learning Surface Model

Traditional multi-task learning approaches for Gaussian processes are data-driven, and do

not incorporate engineering physics into the model. This study develops a new engineering-

guided multi-task learning surface model that integrates engineering knowledge with multi-

task learning, aiming to improve the surface prediction accuracy based on limited measure-

ment data. Assume there are m similar-but-not-identical surfaces or surface manufacturing

processes. For surface l, the surface model takes the form in Equation (3.1).

Zl(s) = Ul(s)βl +ηl(s), (3.1)

where l is the surface index, and l = 1, . . . ,m; s = (x,y) is the coordinate vector; Zl(s) is the

surface height at location s in surface l; Ul(s) is a vector of the location-dependent highly

correlated process variables that are identified by expert knowledge; ηl(s) is a zero-mean

Gaussian process.

In Model (3.1), the surface variation is decomposed into a global trend that is induced

by process settings and a local variation part that is modeled by a zero-mean Gaussian
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process. The global trend is modeled by a linear combination of multiple process vari-

ables. When there are both categorical and continuous process variables, a generalized

linear model may be used instead (Nelder and Baker, 1972; Fahrmeir et al., 2013). The

local variation is modeled as a zero-mean Gaussian process, and will be jointly learned

across multiple similar-but-not-identical surfaces.

The rationale behind this decomposition is as follows. First, a linear model is em-

ployed to capture the relationship between the process inputs and the surface height in

high-precision machining processes. It is reported that the surface height variation in the

cut engine deck faces is strongly influenced by the cutting arc length, cutter path, cutting

insert engagement, cutting feed rate, and clamping scheme (Suriano et al., 2015). The

global trend is determined by machining process conditions. A summary of such factors

is given in Table 3.1. More detailed explanation on these factors can be found in Suriano

et al. (2015). Second, Gaussian process has been proven to be an effective method to model

the local random surface variation that exhibits the spatial distribution similarity (Stein and

Corsten, 1991; Atkinson et al., 1992; Suriano et al., 2015).

3.2.2 Iterative Algorithm for Parameter Estimation of the EG-MTL Model

The parameters in Model (3.1) that need to be estimated include: (1) the parameter vector

in the global trend, βl , and (2) the zero-mean Gaussian process parameters, ηl(s), where

l = 1, . . . ,m. The global trend describes the overall spatial variation pattern on a surface,

and is mostly determined by the process settings. The local variation part shares similarity

across multiple surfaces, and multi-task learning can potentially improve the estimation

accuracy. Figure 3.4 illustrates the scheme for learning the parameters. As indicated by
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Table 3.1 Summary of factors that impact surface height variation in the high-precision machining
process (Suriano et al., 2015)

Engineering factor Explanation Example process variables U(s)

Product/surface design Design patterns of a surface
(size, shape, and spatial distri-
bution of holes and slots) or in-
ternal structure inside a part can
cause cutting force change and
local surface deformation

Arc length of a cutter engaged in
cutting

Physical attributes of
part materials

Due to manufacturing flaws
from suppliers, workpiece ma-
terials may come with defects
and heterogeneous physical at-
tributes causing surface non-
uniform deformation

Casting pore size, distribution
density, and mass density (that
can be acquired by industrial X-
ray computed tomography scan-
ning)

Manufacturing process
conditions

Manufacturing process and
machine tool-related parameters
that can change cutting force
and torque causing local surface
variation

Feed rate, spindle setup tilt,
spindle speed, depth of cut, cut-
ter path-related MRR, clamping
force

Multistage interdepen-
dence

A downstream manufacturing
stage could change the surface
shapes that have been created in
certain upstream stages

Process variables or surfaces
manufactured at different stages

Figure 3.4, three information sources are fused in the spatial model, namely, (1) surface

measurement from the process of interest, (2) engineering knowledge on the process, and

(3) measurement data from other similar-but-non-identical processes. A summary of the

difference between the proposed model and existing approaches is given below.

• Traditional multi-task learning approaches only employ information from (1) and

(3), and do not incorporate engineering knowledge;

• Simple kriging interpolation uses data from source (1) only;

• Some other kriging approaches, e.g., cokriging and kriging with external drift, jointly
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Figure 3.4 Illustration of the learning scheme

utilize information sources (1) and (2), but do not transfer knowledge from other

relevant processes.

In the remainder of this section, we first review one data-driven multi-task learning

algorithm for zero-mean Gaussian processes, and then present an iterative algorithm for

estimating the parameters in Model (3.1).

3.2.2.1 Review of Multi-Task Learning

Several multi-task learning algorithms are available for Gaussian processes in the literature,

such as Yu et al. (2005) and Bonilla et al. (2007). The performance of a certain algorithm

may depend on a number of factors, e.g., the algorithm assumption, the true data distri-

bution, and the selection of the spatial kernel function. Any multi-task Gaussian process

learning algorithm can be incorporated into the proposed model. Here, without losing gen-

erality, this study adopts the approach developed by Yu et al. (2005). A brief review of the

model is provided below.
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The goal of multi-task learning for Gaussian processes is to estimate m related functions

ηl , l = 1, . . ., m, based on training data represented by Equation (3.2).

Dl = (Sl,ηl) , (3.2)

where Sl ∈Rnl×d is a set of the inputs for function l, ηl ∈Rnl is a set of the function values

at these inputs, and nl is the size of training data for task l. In surface modeling, the location

is generally determined by two coordinates, i.e., x and y, and therefore d = 2. It is further

assumed that there are in total n distinct data points in {Dl} with min({nl})≤ n ≤
m
∑

l=1
nl .

The commonality among different tasks is defined via the following inductive model

(Yu et al., 2005).

Model 3.1 Let ηl be the values of ηl on a set S, satisfying ∪Sl ⊂ S. Given the hyperprior

distribution of µα and Cα described by a Normal-inverse-Wishart distribution as shown

by Equation (3.3), the Gaussian process for task l is generated by the following three steps.

p(µα ,Cα) = N

(
µα

∣∣∣∣0, 1
π

Cα

)
I W

(
Cα
∣∣τ,κ−1 ) . (3.3)

1. µα , Cα are generated once using Equation (3.3);

2. For each function ηl ,

αl ∼ N (µα ,Cα) . (3.4)

3. Given s ∈ Sl ,

ηl(s) =
n

∑
i=1

α l
i κ(si,s)+ ε, (3.5)
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where κ(·, ·) is the base kernel function; s ∈ S; and ε ∼ N (0,σ2).

The estimates of Θ=
{
µα ,Cα ,σ2} can be obtained using an expectation-maximization

(EM) algorithm (Yu et al., 2005), and the details of the EM procedure are presented in

Appendix B. After obtaining Θ and {α̂l} with the EM algorithm, the function value corre-

sponding to an unknown input su from task l is estimated using the following equation.

η̂l(su) =
n

∑
i=1

α̂ l
i κ(si,su), (3.6)

where the prediction is calculated as a linear combination of κ(si,su), and si ∈ S includes

both the training data from task l and these from other tasks. The kernel function κ(·, ·) is

a measure of the “distance” or similarity between two inputs.

One critical limitation of this approach is that the surface means must be accurately

estimated and removed prior to conducting multi-task learning, because it is based on the

assumption that the Gaussian processes have zero means. However, estimation of the global

means with limited training data is often not sufficiently accurate. The prediction results

can be misleading when the zero-mean assumption does not hold. This study utilizes a lin-

ear model to characterize the global trend with expert process knowledge. The estimation

is expected to be more accurate, and the zero-mean assumption for residual local variation

will be valid.

3.2.2.2 Iterative Multi-Task Learning Algorithm

There are two types of model parameters in Model (3.1), i.e., coefficients in the linear

model, βl , and Gaussian process parameters. Simultaneously estimating both types of pa-
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Figure 3.5 Flowchart for the iterative multi-task learning algorithm

rameters is challenging as the changes in one part directly impacts the estimation of the

other. To address this issue, an iterative algorithm is developed for the model estimation.

The algorithm is illustrated by Figure 3.5. For m similar-but-not-identical surfaces, the

global trend and the Gaussian processes are estimated in an iterative manner, and this pro-

cess is terminated when the coefficients in the global trend converge. In this procedure, the

superscript j ( j = 0,1, . . .) specifies the iteration index, and the subscript l (l = 1, . . . ,m)

indicates the task/part/surface number. The procedure is further explained as follows.

As an initialization action, the Gaussian process part and the coefficient vector in the
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global trend are both set to be zero for all surfaces, as shown by Equation (3.7).

η̂0
l (s) = 0,

β̂0
l = 0,

(3.7)

where l = 1, . . . ,m.

In the jth iteration, the Gaussian process part estimated from ( j − 1)th iteration,

η̂ j−1
l (s), is first removed from the surface height for all surfaces, as shown by Equation

(3.8). Then robust linear regression is applied to estimate the coefficient vector β̂l for

l = 1, . . . ,m. The model of the global trend for surface l at the jth iteration is given by

Equation (3.9).

µ̂ j
l (s) = Zl(s)− η̂ j−1

l (s), (3.8)

where Zl(s) is the height of the lth surface; η̂ j−1
l (s) is the estimated Gaussian process for

lth surface at the ( j−1)th iteration; and l = 1, . . . ,m.

µ̂ j
l (s) = Ul(s)β̂

j
l , (3.9)

where l = 1, . . . ,m.

There are mainly three categories of robust regression methods for linear models: (1)

least squares alternatives (Holland and Welsch, 1977), (2) parametric alternatives (Lange

et al., 1989), and (3) unit weights (Wainer and Thissen, 1976). This study adopts the

method presented in Holland and Welsch (1977), which applies iteratively reweighted least

squares for robust regression. This method has been implemented in some popular com-
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puting softwares, such as R and Matlab. Maronna et al. (2006) provides a comprehensive

overview of the popular robust regression techniques.

After the robust linear regression, the convergence test is conducted to check whether

the coefficients of the linear models converge. The change of the coefficient vector is de-

fined by Equation (3.10). The convergence criterion is given by Equation (3.11). The

convergence is considered to be achieved if the changes of the coefficient vectors for all

surfaces are within a predetermined threshold.

∆β̂ j
l = β̂

j
l − β̂

j−1
l , (3.10)

where β̂ j
l and β̂

j−1
l are the coefficient vectors from iterations j and j−1, respectively; and

l = 1, . . . ,m.

∥∥∥∆β̂ j
l

∥∥∥< ε0, ∀l ∈ {l, . . . ,m}, (3.11)

where ε0 is a predetermined threshold and can be tuned based on applications and the

accuracy requirement.

If convergence is achieved at the jth iteration, the iterative process is terminated and the

parameter estimation is finished. Meanwhile, the prediction results at the ( j−1)th iteration

are the final results of the algorithm. If convergence is not achieved, multi-task Gaussian

process learning (MTGPL) is then conducted to estimate η(s)’s, and another iteration is

performed.

The detailed implementation of multi-task learning for Gaussian processes is illustrated

by Figure 3.6. Specifically, the first step is to assign the hyperprior parameters, including
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Figure 3.6 Implementation procedure of multi-task learning

τ and π in the Normal-inverse-Wishart distribution as described by Equation (3.3) and to

determine the base kernel function form κ(·, ·). A common practice is to apply cross-

validation to select the best settings from a set of candidate parameters and function forms

(Yu et al., 2005; Huang et al., 2012). The second step is to estimate the model and perform

predictions, and this step follows the procedure reviewed in Section 3.2.2.1.

It should be noted that inappropriate initial settings may lead to undesirable results,

e.g., slow convergence or non-convergence and unsatisfactory prediction accuracy. Several

practical suggestions are provided as follows to improve the EM efficiency and guarantee

the acquisition of the global maximum.

• Random restart (starting with different randomly selected initial parameter values);

• Perform Simulated annealing (Kirkpatrick et al., 1983; Brooks and Morgan, 1995);

• Monitoring the log-likelihood trace, and changing the initial values when (1) fluctu-
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ation occurs or (2) convergence is not achieved within a certain number of iterations.

3.3 Case Study

This section compares the proposed engineering-guided multi-task learning surface model

(denoted as “EG-MTL model” afterwards) with some representative interpolation methods

which have been applied popularly, including the multi-task learning for Gaussian pro-

cesses (referred to as GPMTL), simple kriging, and kriging with external drift (KED). A

summary of these methods is given in Table 3.2.

Table 3.2 Method summary for the case study

Method Using engineering
knowledge?

Transferring knowledge
from other processes?

EG-MTL model Yes Yes

GPMTL No Yes

Simple kriging No No

KED Yes No

GPMTL applies the algorithm described in Section 3.2.2.1. As this algorithm is appli-

cable to zero-mean Gaussian processes (Yu et al., 2005), the global mean is first estimated

using the sample mean from the training data and then multi-task learning is performed.

For surface l, l = 1, . . . ,m, the global mean is estimated using Equation (3.12).

µ̂l,0 = Z(sl,o) =

∑
s∈Sl

Z(s)

nl
, (3.12)

where sl,o represents the observed locations in surface l.
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KED is a generalized case of kriging where the overall trend is modeled as a func-

tion of some auxiliary predictors (Hudson and Wackernagel, 1994; Bourennane et al.,

2000), which are the process variables in the machining example. Linear models may

be applied to capture the linear correlations between the target variable and the auxiliary

predictors (Bourennane et al., 2000). This interpolation technique incorporates the engi-

neering knowledge but do not employ the similarities between the process of interest and

other relevant processes.

A laser holographic interferometer was adopted at an engine manufacturing plant to

measure engine block deck surfaces, and the obtained surface data from this plant will be

used throughout the case study. Root mean squared error (RMSE) is be chosen as a metric

of the prediction performance, and its definition is given by Equation (3.13). Another met-

ric of interest is the improvement percentage of RMSE from the simple kriging method to

the EG-MTL model or MTGPL, which is defined by Equation (3.14).

RMSE(l) =

√√√√ ∑
s∈S

(
Ẑl(s)−Zl(s)

)2

|Gl|
, (3.13)

where l = 1, . . . ,m is the task/surface number, Gl is a set of locations where predictions are

made; | · | is an operator to calculate the set size, and therefore |Gl| is test sample size for

surface l.

RSMEI,kriging =
RMSEkriging −RMSEengineering

RMSEkriging
×100%, (3.14)

where RMSEkriging and RMSEengineering are the RMSEs of simple kriging and the proposed

EG-MTL model, respectively.
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Table 3.3 Summary of part information

Part number (l) 1 2 3

Machine ID 2N 2N 3N

Training sample size (nl) 50 50 50

Test sample size (|Gl|) 32563 32790 32673

Correlation strength (ρ(U,Z)) 0.84 0.78 0.78

Similarly, a metric is defined to quantify the performance improvement from KED

method to the EG-MTL model, as given by Equation (3.15).

RSMEI,KED =
RMSEKED −RMSEengineering

RMSEengineering
×100%, (3.15)

where RMSEKED and RMSEengineering are the prediction RMSEs of KED and the EG-MTL

model, respectively.

The measurement data of three engine head surfaces are utilized for the comparative

case study. The product part information is summarized by Table 3.3. The parts were

machined at different machines in a machining station: Parts 1 and 2 were machined at

Machine 2N, and Part 3 was from Machine 3N. The test data of each part consists of ap-

proximately 32600 points, and 50 points are randomly sampled as training data. Figure 3.7

shows an engine head surface example, where red dots represent sampling locations. For

each part, a covariate, U , is simulated to have a correlation of around 0.80 with the surface

height, Z. Examples of U are listed and explained in Table 3.1.

The prediction results are shown by Figure 3.8. The average RMSEs of the EG-MTL

model, GPMTL, simple kriging, and KED over three parts are 3.30, 4.31, 4.71, and 4.14,
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Figure 3.7 An engine head surface example

respectively. Figure 3.8 indicates that for all three parts, the EG-MTL model performs the

best, and the simple kriging obtains the worst prediction accuracy. The KED model yields

smaller RMSEs than MTGPL and simple kriging, and this implies that the incorporation of

engineering knowledge is beneficial. Hence, by incorporating a highly correlated covari-

ate, which can be identified using engineering understanding of the process physics, the

EG-MTL model is able to significantly improve the prediction accuracy over existing inter-

polation techniques. When no such knowledge is available, the data-driven model reviewed

in Section 3.2.2.1 is suggested, because GPMTL outperforms simple kriging, as shown by

Figure 3.8.

3.4 Discussion

This section discusses the following three issues: (1) hyperparameter selection, (2) effects

of the sample size and the number of tasks, and (3) the effect of the correlation strength

between the covariate and the surface height.
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Figure 3.8 RMSE comparison for the EG-MTL model, GPMTL, simple kriging, and KED

3.4.1 Hyperparameter Selection

It was found by a preliminary study that a quadratic exponential kernel function performed

well in modeling surface height, and we will use this kernel form in this study. Actually,

quadratic exponential functions are commonly used as kernels in spatial statistics (Ripley,

2005). The general form is given by Equation (3.16).

κ
(
s,s′
)
= exp

(
−∥s− s′∥2

δ 2

)
, (3.16)

where δ 2 is an unknown parameter and should be estimated in practice.

Three hyperprior parameters need to be determined prior to the modeling, i.e., τ and π

from the Normal-inverse-Wishart distribution, as well as δ 2 from the base kernel function.
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Figure 3.9 Engine surface example for the hyperparameter study

Table 3.4 Experimental setting for the hyperprior parameter study

Number of tasks (m) 5

Training sample size (nl) 20

Test sample size (|Gl|) approximately 11000

Candidate hyperparameter values {0.0001,0.001,0.01,0.1,0.5,1,6,11, . . . ,151}

Total number of experimental runs 46656

An experiment is conducted to investigate the effects of the hyperparameters using a partial

engine surface. Figure 3.9 displays an example of the surface, where red circles indicate

sampling/measurement locations.

A summary of the experimental setting is given as Table 3.4. In this study, the number

of tasks and the training sample size are fixed as 5 and 20, respectively; the test sample size

is approximately 11000; the candidate parameter values vary from 0.0001 to 151, and all

possible combinations are tested.
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By testing all possible parameter combinations, it is found that the average RMSE for

simple kriging is 6.91, and the lowest prediction error using multi-task learning is 2.87, with

corresponding parameters as
[
τ,π,δ 2]= [0.0001,1,111]. Moreover, Figure 3.10 shows the

1D RMSE trends vs. τ , π , and δ 2. Figure 3.11 displays the RMSE trends when simultane-

ously changing the pairs of [τ,π],
[
τ,δ 2], and

[
π,δ 2].

Figure 3.10a shows that as the increase of τ , the RMSE first decreases sharply and then

increases slowly, meaning that the prediction performance first improves significantly and

then degrades. A similar pattern is observed for π , as displayed by Figure 3.10b. From Fig-

ure 3.10c, it is noted that when increasing δ 2, the RMSE first decreases, and then increases

slowly, meaning that the prediction performance does not change significantly when δ 2 is

at a relatively high level, e.g., δ 2 > 50. These patterns can be reconfirmed by the 3D RMSE

plots which are shown by Figures 3.11a to 3.11c. It is concluded that

(1) In general, smaller τ and π along with larger δ 2 yield better prediction perfor-

mance.

(2) In practice, it is suggested to choose τ and π to be around 1, and δ 2 to be between

50 and 100.

The selection of optimal hyperparameter is mostly determined by the spatial varia-

tion pattern. When implementing the proposed modeling approach in practice, a cross-

validation study may be conducted using the training data to find appropriate values.

3.4.2 Effects of the Sample Size and the Number of Tasks

The learning performance of multi-task learning can be sensitive to the sample size and the

number of tasks; therefore, it is important to analyze the effects of these factors in practice.
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Figure 3.10 Effects of hyperparameters on RMSE (cont.)
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Figure 3.10 Effects of hyperparameters on RMSE

Table 3.5 Summary of experimental settings for the effects of the sample size and the number of
tasks

Experiment 1 2 3

Number of tasks (m) 5 {3,4, . . . ,20} {3,4, . . . ,10}

Training sample size (nl) {10,50,100, . . . ,300} 50 {10,20, . . . ,150}

Test sample size (|Gl|) ≈32600 ≈ 32600 ≈ 32600

Number of repeated runs 10 10 1

In this section, three experiments are conducted to investigate the effects of the sample size

and the number of tasks. Table 3.5 summarizes the experimental settings.

In the first experiment, the number of tasks is fixed at 5, and the sample size varies

from 10 to 300. 10 repeated runs are performed for every sample size, and the sampling

locations are randomly selected for each run. The experiment results are illustrated using

Figure 3.12, where box plots are used to show the range of 10 runs. It is seen that as the
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Figure 3.11 Effects of hyperparameter pairs on RMSE

sample size increases, the prediction performance of both multi-task learning and kriging

improve, and RSMEI first increases, then keeps stable, and shows a sign of decreasing in

the end.

The second experiment fixes the sample size as 50 for all parts, and varies the number

of tasks from 3 to 10. The results are shown by Figure 3.13. As the increase of the number

of tasks, RSMEI first increases quickly, and then keeps stable after the number of tasks

reaches 17.

In the third experiment, both the number of tasks and the sample size are changed.

The number of tasks takes the values of {3,4, . . . ,10}, and the sample size varies as

{10,20, . . . ,150}. Figure 3.14a displays the 3D trend of RMSE when varying the sam-

ple size and the number of tasks. Clearly, the RMSE decreases with greater sample size

and number of tasks. Figure 3.14b shows the 3D plot of RSMEI, and it is indicated that

multi-task learning outperforms simple kriging in all cases, and RSMEI increases as the
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Figure 3.12 Effects of sample size on the prediction performance
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Figure 3.13 Effects of the number of tasks on the prediction performance
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Figure 3.14 Effects of sample size and number of tasks on the prediction performance

increase of sample size and number of tasks.

The above experimental results lead to three major findings:

(1) Multi-task learning is able to improve the prediction accuracy over simple kriging;
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(2) For both multi-task learning and kriging, the prediction accuracy improves as the

increase of the training sample size;

(3) The prediction performance improves when the number of tasks increases for multi-

task learning;

(4) RSMEI becomes bounded when the sample size and the number of tasks are rela-

tively large.

Intuitively, when the training sample size is sufficient, single-task learning, which is

simple kriging in this application, will be able to learn the spatial model very well, and the

benefits brought by transferring knowledge thus become limited. Moreover, when the num-

ber of tasks increases, duplicate information may exist across tasks, and the improvement

becomes less significant.

3.4.3 Effect of the Correlation Strength

To investigate the influence of ρ(U,Z) on the estimation accuracy, we vary the strength

of ρ(U,Z), and compare the performance of the EG-MTL model, MTGPL, simple krig-

ing, and the KED method. The comparative results are illustrated using Figures 3.15a and

3.15b, which show the trends of RMSE and RSMEI, respectively. In Figures 3.15a and

3.15b, the results corresponding to each correlation strength are averaged over three parts.

The following observations are made from these results.

(1) The performance of KED is strongly influenced by the correlation strength. When

the correlation between U and Z is relative weak, e.g., ρ(U,Z)< 0.75, its prediction

accuracy is worse than simple kriging. When ρ(U,Z) becomes stronger, the predic-

tion accuracy of KED improves, and outperforms simple kriging. Also, the RMSE
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improvement from KED to the EG-MTL model reduces as ρ(U,Z) increases, indi-

cating that the benefits introduced by multi-task learning become limited.

(2) The prediction accuracy using the EG-MTL model is significantly affected by the

correlation strength: as ρ(U,Z) increases, RMSE for the EG-MTL model decreases

and RSMEI increases. When the correlation is relatively low, e.g., less than 0.5,

introduction of such a covariate will even degrade the prediction performance.

(3) GPMTL outperforms simple kriging under all circumstances, indicating that when

expert knowledge on the process is not available and thus highly correlated vari-

ables cannot be identified, the adoption of multi-task learning is beneficial com-

pared with single task learning.

3.5 Conclusion

This chapter develops a novel engineering-guided multi-task learning (EG-MTL) surface

model by incorporating an engineering model with multi-task learning for Gaussian pro-

cesses. Specifically, the following accomplishments are achieved:

(1) An improved surface shape modeling approach by incorporating engineering in-

sights with multi-task learning for Gaussian processes: The major uniqueness of

the developed model is that information from both the engineering knowledge and

spatial data from other similar-but-not-identical processes is fused in one frame-

work. The model is advantageous in predicting surface height at unobserved

locations over traditional approaches, such as simple kriging, kriging with exter-

nal drift, and data-driven multi-task learning for Gaussian processes. The approach
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Figure 3.15 Effects of ρ(U,Z) on the prediction performance
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is validated using the data from real-world machining processes in an engine plant.

(2) An iterative algorithm for estimating model parameters: A novel algorithm is de-

veloped to iteratively estimate the parameters in the engineering model and the

Gaussian process. Parameters are updated in each iteration and the procedure is

terminated once the convergence criterion is met. Moreover, practical suggestions

are provided to expedite the EM optimization process.

(3) Systematic discussions on the hyperparameter selection and the effects of training

data availability: Response surfaces of the prediction performance are created for

the model hyperparameters, the number of tasks, and the training sample size. Ad-

ditionally, it is revealed that the model performance improves as more engineering

insights of the process become available.

The proposed engineering integration model is expected to improve the surface predic-

tion accuracy with limited measurement data, thus alleviating the high costs induced by

high-resolution 3D measurement systems and enabling fine-resolution surface characteri-

zation on the plant floor.

Future research will be focused on (1) variable selection for the engineering model

and (2) task selection for multi-task learning. First, variables reflecting multidisciplinary

process information may take a variety of types and formats. These variables may not be

equally important for improving the surface shape prediction or they may contain duplicate

information. Consequently, a systematic variable selection algorithm is highly desirable to

identify a parsimonious subset of process variables for the engineering model. Second, a

systematic approach is needed to select tasks/surfaces for multi-task learning. Some algo-

rithms have been reported in the literature to select tasks based on certain task similarity

75



quantification metrics. However, the selection problem is more complicated in the pro-

posed integration model due to the model structure, and nontrivial efforts are expected to

devise a systematic task selection algorithm.
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Chapter 4

Tool Wear Monitoring for Ultrasonic Metal Welding of Lithium-Ion
Batteries

4.1 Introduction

In manufacturing lithium-ion batteries for electrical vehicles such as the Chevrolet Volt,

it is critical to create reliable interconnections among battery cells, from module to mod-

ule, and from module to control unit. Ultrasonic metal welding is advantageous in joining

multi-layer dissimilar, thin and conductive materials (Kim et al., 2011; Shao et al., 2013). It

is a solid-state joining process which uses ultrasonic vibration to generate oscillating shears

between metal sheets clamped under pressure (Lee et al., 2013, 2014). A typical ultrasonic

metal welding system is shown in Figure 4.1. The surfaces of the weld tools, i.e., horn and

anvil, consist of a large number of pyramid-shape knurls as displayed by Figure 4.2. The

horn and anvil wear out quickly in production and are expensive to replace. As a result,

monitoring of the horn and anvil wear is critically needed to ensure battery joining quality

and reduce production cost.

Figure 4.1 A typical ultrasonic metal welding system (Shao et al., 2013)
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(a) Horn knurl (b) Anvil knurl

Figure 4.2 Pyramid-shape knurls on the horn and anvil (Shao et al., 2014)

Figure 4.3 Ultrasonic welding mechanism

The ultrasonic metal welding process is illustrated by Figure 4.3. Workpieces are placed

between the horn and anvil, and a clamping force is applied to hold the workpieces tightly.

During welding, the horn vibrates at a frequency of around 20 kHz, while the anvil is sta-

tionary. It is reported in Shao et al. (2014) that relative movements exist between the top

metal sheet and the horn, as well as between the bottom sheet and the anvil, and these

relative movements are believed to be a major cause of tool wear.

In automotive lithium-ion battery manufacturing, horn and anvil are reported to be a

78



major production cost. Specifically, production costs as a result of tool wear can be divided

into two major categories (Shao et al., 2014): (1) costs due to machine down-time as caused

by tool wear induced quality problems or time needed for tool replacement; and (2) costs

for fabricating, reworking, or refurbishing the replaced tools. Vehicle battery manufactur-

ing has a strict quality requirement for battery tab joining because any low-quality joints

may result in the failure of an entire battery pack, causing high production loss (Shao et al.,

2013). Consequently, when a TCM system is not available, a conservative tool replacement

strategy is generally utilized to ensure satisfactory quality. For example, some battery plant

uses the number of welds as a measure of tool wear, and replaces tools once the number of

welds reaches a certain limit. While this empirical strategy is straightforward to implement,

it may sacrifice some useful tool lives and increase production costs.

TCM has been a popular and important research topic in manufacturing and has re-

ceived tremendous attention over the past several decades. The majority of the TCM

literature has been focused on machining processes (Jantunen, 2002; Cook, 1973; Koren

et al., 1991; Abellan-Nebot and Subirón, 2010; Rehorn et al., 2005; Zhou et al., 2011; Er-

tunc et al., 2001; Dimla, 2000; Kurada and Bradley, 1997a,b; Lanzetta, 2001; Byrne et al.,

1995) and forming processes (Kang et al., 1999a,b; Lepadatu et al., 2006; Kong and Naha-

vandi, 2002). Tool wear mechanism in cutting processes has been investigated in (Cook,

1973; Koren et al., 1991) using physical or empirical models. Tool wear monitoring tech-

niques have been developed in Abellan-Nebot and Subirón (2010); Rehorn et al. (2005);

Zhou et al. (2011); Ertunc et al. (2001); Dimla (2000); Kurada and Bradley (1997a,b);

Lanzetta (2001). In general, tool wear monitoring techniques can be categorized into direct

and indirect methods (Byrne et al., 1995). Direct methods determine tool conditions by
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measuring tool wear using visual inspection or computer vision. However, direct methods

are not attractive economically or technically mainly due to the environmental restrictions

on the plant floor (Jantunen, 2002). Hence, indirect methods using on-line signals are often

more desirable, and some exemplary scenarios can be found in Jantunen (2002); Koren

et al. (1991); Abellan-Nebot and Subirón (2010); Rehorn et al. (2005); Zhou et al. (2011);

Ertunc et al. (2001); Dimla (2000). A typical method for developing an indirect monitoring

system includes the following key steps (Abellan-Nebot and Subirón, 2010): (i) sensor se-

lection; (ii) signal pre-processing; (iii) feature generation; (iv) feature selection/extraction;

(v) monitoring decision and faulty classification using artificial intelligence technique. A

comprehensive review on indirect monitoring methods is presented in Abellan-Nebot and

Subirón (2010).

Tool wear in forming processes has also been investigated, especially in extrusion and

forging processes (Kang et al., 1999a,b; Lepadatu et al., 2006; Kong and Nahavandi, 2002).

Archard’s wear model is widely applied in studies on extrusion processes (Kang et al.,

1999a,b). Statistical process control analysis of the tool wear progression in a metal extru-

sion process was conducted in Lepadatu et al. (2006). On the TCM of forging processes, an

on-line TCM system using artificial neural network was developed to integrate information

from multiple sensors (Kong and Nahavandi, 2002).

Despite extensive literature focusing on TCM development for machining and form-

ing processes, limited studies have been conducted on TCM for ultrasonic metal welding.

Developing a TCM system for ultrasonic welding is more challenging than machining

or forming processes, mainly because: (1) the ultrasonic welding mechanism has not

been thoroughly understood, and ultrasonic welding possesses the characteristics of high-
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frequency (around 20 kHz) and short-duration (each cycle lasts approximately 0.6 s), and

(2) the geometry of welding tools is much more complicated (Shao et al., 2014).

To address the above challenges and develop an effective TCM system for ultrasonic

welding, this paper (1) characterizes tool wear progression by comparing tool surface mea-

surements in different wear stages; (2) designs an indirect method to efficiently obtain tool

surface measurements in plant environment without taking the tools off-line; and (3) devel-

ops a tool condition classification algorithm with application-dependent features which are

generated from both space and frequency domains.

The remainder of this chapter is organized as follows. Section 4.2 characterizes tool

wear progression using changes in the knurl geometry based on high-resolution 3-D mea-

surements. An impression method is presented in Section 4.3 as an indirect tool geometry

measurement strategy. Section 4.4 develops a tool condition classification algorithm. Fi-

nally, Section 4.5 summarizes the chapter.

4.2 Tool Wear Characterization

This section characterizes the tool wear progression in ultrasonic metal welding based on

the comparison of the optical images and height profiles at different wear stages. Rep-

resentative samples of four different stages were collected from a battery plant and then

measured using a 3D microscope. Specifically, Section 4.2.1 compares the optical images;

Sections 4.2.2 and 4.2.3 depict the wear progression in the direction perpendicular to vi-

bration and in the vibration direction, respectively. For the sake of simplicity, we define the

direction perpendicular to vibration as “horizontal direction” and the vibration direction as
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“vertical direction.”

4.2.1 Comparison of Optical Images

The optical images of the four stages are shown by Figure 4.4, and the characteristics of

each stage are summarized as follows (Shao et al., 2014).

Stage 1: Each knurl possesses a regular pyramid shape.

Stage 2: The peak remains at each knurl, but a small flat top forms, and the knurl shape

becomes more complex geometrically than Stage 1: more materials have been

removed at the left and right sides than the upper and lower sides. In addition, the

colors of peaks become shining.

Stage 3: The left and right sides of each knurl are almost flat, and only a small amount of

materials remain in the upper side.

Stage 4: All peaks have been removed and the knurls take a frustum shape.

4.2.2 Tool Wear Progression in the Horizontal Direction

In each anvil, typical cross-sectional profiles are extracted in the horizontal direction, and

the profiles are shown in Figure 4.5.

In Figure 4.5a, one can see that the cross sections of all knurls of a new tool have trian-

gle shapes and similar peak height. In Figure 4.5b, three types of tool wear patterns can be

observed: (1) flank wear, (2) side wear, and (3) breakage. The flank wear is at the upright

direction, which occurs with the removal of peaks (height decreases); the side wear repre-

sents the wear around the peaks, where two shoulders form at the left and right sides; the

breakage happens with a removal of the whole knurl peak and is indicated by a depressed
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(a) Stage 1 (b) Stage 2

(c) Stage 3 (d) Stage 4

Figure 4.4 Optical images of different wear stages (Shao et al., 2014)

shape. In Figure 4.5c, the height reduces significantly compared with Figure 4.5b, and

some of the peaks are almost removed. Additionally, the width of shoulders increases. In

Figure 4.5d, all peaks have disappeared, and the surface becomes completely flat.

Based on the findings revealed by Figure 4.5, the characterization of each stage in the

horizontal direction is summarized by Figure 4.6 and described as follows (Shao et al.,

2014).

Horizontal direction

Stage 1: The knurl is new, and it possesses a triangle shape.

Stage 2: Material is removed in both downward and lateral directions, and shoulders ap-

pear on the left and right sides.

Stage 3: Height decreases significantly, and the width of shoulders increases.
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(a) Stage 1

(b) Stage 2

(c) Stage 3

(d) Stage 4

Figure 4.5 Cross-sectional profiles in the horizontal direction (Shao et al., 2014)
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Figure 4.6 Anvil knurl wear progression in the horizontal direction (Shao et al., 2014)

Stage 4: Material is removed until the peak disappears, and a trapezoid shape forms.

4.2.3 Tool Wear Progression in the Vertical Direction

Similar to Section 4.2.2, the cross-sectional profiles in the vertical direction are also ex-

tracted and compared, and the results are shown in Figure 4.7.

As shown in Figure 4.7a, a new anvil has triangle shapes. In Figure 4.7b, an asymmetric

pattern can be seen in two sides of the knurl in the vertical direction: more materials have

been removed in the knurl’s lower side, and a groove forms. A knurl in this stage has two

peaks, i.e., a main peak and a side peak. This asymmetry is further illustrated in Figure 4.8,

which was obtained using a high-resolution microscope. Figure 4.8a is an optical image

obtained by a microscope, and Figure 4.8b is the corresponding 3D height plot.

In Figure 4.7c, one can see that after more material removal, the side peak in Figure

4.7b disappears and only a main peak remains. Figure 4.7d shows the final wear stage in

the vertical direction. The main peak in Figure 4.7c has been completely removed, and a

flat surface forms in the end.

According to the results shown in Figure 4.7, the knurl-level wear progression in the
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(a) Stage 1

(b) Stage 2

(c) Stage 3

(d) Stage 4

Figure 4.7 Cross-sectional profiles in the vertical direction (Shao et al., 2014)
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(a) Optical image (b) 3D image

Figure 4.8 Pyramid-shape knurls on the horn and anvil (Shao et al., 2014)

Figure 4.9 Anvil knurl wear progression in the vertical direction (Shao et al., 2014)

vertical direction is illustrated by Figure 4.9. The characteristics of the knurls in each stage

are summarized as follows (Shao et al., 2014).

Vertical direction

Stage 1: The knurl possesses a triangle shape.

Stage 2: Materials are mainly removed in the lower side, where a groove and a side peak

form. The height of the main peak decreases compared with Stage 1.

Stage 3: More materials are removed until the side peak disappears. The height of the

main peak continually decreases.

Stage 4: The main peak is completely removed, and a trapezoid forms.
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4.3 Impression Method

In ultrasonic welding, tool surface geometry patterns provide essential tool condition in-

formation; hence an efficient tool surface measurement method is necessary. Most 3D

measurement systems require the tools to be removed from the welding machine and be

placed on a flat and stable fixture. As a result, tool disassembly is necessary in order to

directly measure the tool surfaces. However, tool disassembly and assembly for ultrasonic

welding machine are complicated and time-consuming, leading to a significant amount

of machine down time, which is not desirable in production. As a result, an innovative

measurement scheme is crucial in real productions.

To effectively obtain tool surface measurements without introducing significant inter-

ruption to production, an “impression method” is developed. Rather than measuring the

tool, an impression is made on a weld coupon. The depth of deformation is measured

under a microscope and then the inverse of the coupon image is created as a surrogate of

the tool image. The process of obtaining the tool image from an “impression” is illus-

trated in Figure 4.10. When a measurement is needed, one coupon will be generated using

pre-determined weld parameters and materials, and then it will be measured using a 3D

metrology system. Finally, data processing, i.e., horizontal flip and height inversion, will

be applied, and the original tool surface profiles are finally reconstructed.

The weld parameters and the coupon materials need to be carefully selected in order to

optimize the quality of the reconstructed tool surfaces. In practice, design of experiment

(Wu and Hamada, 2011) can be used to identify the optimal combination of the weld pa-

rameters and the coupon materials. In general, soft metals are recommended as they are
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Figure 4.10 Flowchart for impression method

more efficient in capturing tool surface profiles. In this study, four layers of pure aluminum

are adopted, and the thickness of each layer is 0.2 mm.

To validate this method, several anvils and corresponding coupons are measured for

comparison, and good agreement is achieved between the original tool surfaces and recon-

structed ones. For illustrative purposes, only the results from one pair of anvil and coupon

are presented, as shown by Figure 4.11.

In Figure 4.11, (a) and (b) display the images of anvil and coupon, respectively; (c) and

(d) compare the cross-sectional profiles from the anvil and the coupon in the horizontal and

vertical directions. The blue solid lines in (a) and red dashed lines in (b) indicate the mea-

surement paths for the cross-sectional profiles. In (c) and (d), the blue solid lines represent

the measurement of the anvil, and the red dashed lines correspond to the coupon mea-

surement. It is demonstrated by Figure 4.11 that the coupon impression is able to capture

the knurl height profiles effectively. Additionally, the knurl shapes from the impression

methods are also very similar to these from the direct measurement. Thus, the designed
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(a) Anvil image

(b) Coupon image
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(c) Comparison of horizontal profiles
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(d) Comparison of vertical profiles

Figure 4.11 Comparison between measurements of a tool and a coupon
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Table 4.1 Comparison results for impression method

Correlation
coefficient

Root mean
squared error

Horizontal 0.9864 18.7 µm
Vertical 0.9731 25.9 µm

impression method is effective in constructing the tool surface geometry.

The directly measured profiles and coupon profiles are further quantitatively compared

in Table 4.1. The high correlations and low root mean squared errors indicate that the

coupon profiles are able to well capture the tool profiles.

4.4 Tool Condition Classification

This section presents a tool condition classification algorithm to identify the state of wear.

First, monitoring features are extracted from surface data to characterize tool conditions.

Then Fisher’s discriminant ratio is used to select features which are closely relevant to tool

conditions. Finally, classifiers are developed to classify tool conditions.

4.4.1 Monitoring Feature Generation

In this subsection, several monitoring features are generated from surface data in both the

space and frequency domains for tool condition classification. As indicated by Figures 4.6

and 4.9, cross-sectional profiles in the horizontal direction which cut cross through knurl

centers can well capture the characteristics of different tool life stages. Accordingly, fea-

tures are extracted from the cross-sectional profiles to quantify tool wear. The procedure of

extracting features is illustrated by Figure 4.12. First, tool surface is reconstructed by ap-
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plying image processing algorithms, including noise elimination, image rotation, baseline

adjustment, horizontal flip, and height inversion, to the coupon data. Then representative

cross-sectional profiles are obtained from tool surfaces. Assume the tool surface height is

represented by a matrix H, the size of which is nr ×nc, where nr and nc are the numbers of

rows and columns, respectively. The extraction of the horizontal profiles can be conducted

based on the following algorithm.

Profile Extraction Algorithm

Step 1: Calculate the sum of each row for H. For the ith row, the sum is calculated using

Equation (4.1):

Si =
nc

∑
j=1

Hi j, (4.1)

where i is the row index, i = 1, . . . ,nr, and j is the column index.

Step 2: Treat {Si} as a profile, and identify the local maxima. We denote the indices of the

local maxima as m1, . . . ,mnp , where np is the number of knurls along the vertical

direction.

Step 3: Obtain the horizontal profiles by extracting the row vectors with the indices from

Step 2. For the kth index, the corresponding profile is extracted using Equation

(4.2).

lk = Hmk·, (4.2)

where lk is the kth profile, k = 1, . . . ,np.

Features are extracted from the obtained horizontal profiles in both space and frequency

domains. In the space domain, two features are used to describe knurl geometry, i.e., av-

erage knurl height variance and average shoulder width. Knurl height variance is defined
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Figure 4.12 Process flowchart for feature extraction

as the variance around knurl peaks. As tool wears out, materials are removed from knurl

top, and a smaller height variance will present. Shoulder width is defined as the sum of

the left and right shoulders besides knurl peaks, as illustrated by Figure 4.13. As the tool

wear becomes more severe, the shoulder width will increase. After calculating knurl-level

variance and shoulder width, tool level features are obtained by averaging them over all

knurls.

Frequency-domain features are the amplitudes corresponding to the dominant frequen-

cies after applying fast Fourier transform (FFT) to the cross-sectional profiles. These

features are able to capture the overall periodic pattern which is closely related to the tool

wear level. Figure 4.14 shows (a) original profiles in four wear stages and (b) FFT profiles.
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Figure 4.13 Shoulder width calculation

From (b), it is shown that the amplitude of the 1st dominant frequency, 0.7040, which is

corresponding to the diameter of a knurl, 1.4 mm, has a decreasing trend as tool wear gets

more severe; however, the amplitude of the 2nd dominant frequency, 1.43, corresponding

to half period, 0.7 mm, has an increasing trend. Thus, the amplitudes of 1st to 5th dominant

frequencies are considered as candidate features.

A summary of candidate features is given by Table 4.2. Two features are extracted from

the space-domain to depict the average knurl geometry and five features are generated from

the frequency-domain to acquire periodic patterns of cross-sectional profiles.

Figure 4.15 depicts the trend of the extracted features over the number of welds. In

each subplot, the horizontal axis is the number of welds, and the vertical axis is the feature

value. It is seen that, Features 1, 3, and 4 have decreasing trends; Features 2, 5, and 6 have

increasing trends; while Feature 7 first increases and then decreases as the number of welds

increases.
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Figure 4.14 Frequency features for different stages of wear
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Table 4.2 Candidate feature list

Feature No. Feature Name Category

Feature 1 Average knurl-level variance
Space-domain

Feature 2 Average shoulder width

Feature 3 1st peak amplitude

Freq.-domain

Feature 4 2nd peak amplitude

Feature 5 3rd peak amplitude

Feature 6 4th peak amplitude

Feature 7 5th peak amplitude
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Figure 4.15 Feature trend vs. the number of welds
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4.4.2 Feature Selection

In the development of monitoring algorithms, feature selection is an essential step for

achieving best monitoring performance, as not all features have good separability between

different classes (Shao et al., 2013). Fisher’s discriminant ratio is applied to perform fea-

ture screening in a computationally simple and fast manner. Fisher’s discriminant ratio

was first presented in Fisher (1936), and it is a separability measure for feature selection

(Duda et al., 2012). A larger Fisher’s ratio indicates more significant difference between

two classes. Fisher’s ratio is defined as

J =
(µ1 −µ2)

2

s2
1 + s2

2
, (4.3)

where µ1 and µ2 are the means of new and worn classes, s2
1 and s2

2 are respective variances.

56 coupons have been collected from a battery manufacturing plant, and expert knowl-

edge is used to classify them as new (Class 1) and slightly worn (Class 2). Fisher’s ratios

are then calculated for all candidate features, the results of which are shown by Figure 4.16.

Features 2, 5, and 6 have higher ratios, indicating that they can provide better separability

between new and slightly worn coupons. As a result, Features 2, 5, and 6 (average shoul-

der width, 3rd and 4th peak amplitudes in the frequency-domain) are chosen for monitoring

tool conditions. Scatter plots of these features are shown by Figure 4.17, which indicates

good class separability.

97



Feature
1 2 3 4 5 6 7

F
is

he
r's

 R
at

io

0

1

2

3

4

5

6

7
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Figure 4.17 Scatter plots of selected features
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Figure 4.18 Simulated profiles for worn tools

4.4.3 Classification

In this subsection, classifiers are designed for tool condition classification, and leave-one-

out cross-validation (LOOCV) is applied to evaluate the performance. Candidate classifiers

include linear classifier (Fisher, 1936), quadratic classifier (Zhang, 1997), and support vec-

tor machine (SVM) (Suykens and Vandewalle, 1999). When the data sample size is limited,

cross-validation is commonly used for evaluating and comparing learning algorithms (Shao

et al., 2013). LOOCV proposes to partition the data into two sets: one set only includes one

observation and is used for model validation, and the remaining observations are used for

model training. By repeating this partition for all observations, LOOCV is able to predict

and compare the performance of different learning algorithms.

In order to ensure satisfactory welding quality, the battery plant applies a conservative

tool replacement strategy, i.e., the tools are always replaced before the degradation can

affect the weld quality. Therefore, it is very difficult to collect coupons that reflect truly

worn tools’ surface profiles from production. To obstacle this issue, 8 coupon surfaces are

simulated by truncating the knurl peaks from new or slightly worn surfaces, and examples

of simulated profiles are shown by Figure 4.18.
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Table 4.3 Misclassification rates of different classifiers

Linear Quadratic SVM

Training error rate 15.63%
(10/64)

1.56%
(1/64)

15.63%
(10/64)

CV error rate 15.63%
(10/64)

3.13%
(2/64)

18.75%
(12/64)

In this research, 64 coupons, including 38 new coupons (Class 1), 18 slightly worn

coupons (Class 2), and 8 simulated completely worn coupons (Class 3) are used for clas-

sifier training and LOOCV. The comparison of linear classifier, quadratic classifier, and

SVM is shown by Tables 4.3 and 4.4.

From Tables 4.3 and 4.4, it is noticed that the quadratic classifier achieves the best

performance, and the corresponding cross-validation misclassification rate is 3.13%. Ad-

ditionally, all coupons in Class 3 are classified correctly, and no Class 1 or Class 2 coupons

are misclassified as Class 3, implying that the quadratic classifier is able to accurately dis-

tinguish Class 3 from the other two classes. On the other hand, the linear classifier and

SVM have significantly larger misclassification rates, and neither of them is able to com-

pletely distinguish Class 3 from the other two classes. Consequently, for this application,

the quadratic classifier is able to achieve satisfactory classification performance.

Note to Practitioners: When applying this tool wear monitoring framework on the plant

floor, it is recommended to adopt a more efficient and cost-effective measurement system to

measure the coupons. As shown by the previous results in this section, cross-sectional pro-

files along the horizontal direction contain rich information on the tool degradation level.

Therefore, one potential measurement system may be a line scanner with sufficient resolu-
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Table 4.4 Confusion matrices for cross-validation

(a) Linear Classifier

Predicted class

Class 1 Class 2 Class 3

True class

Class 1 76.32%
(29/38)

2.63%
(1/38)

21.05%
(8/38)

Class 2 5.56%
(1/18)

94.44%
(17/18) 0

Class 3 0 0 100%
(8/8)

(b) Quadratic Classifier

Predicted class

Class 1 Class 2 Class 3

True class

Class 1 97.37%
(37/38)

2.63%
(1/38) 0

Class 2 5.56%
(1/18)

94.44%
(17/18) 0

Class 3 0 0 100%
(8/8)

(c) SVM

Predicted class

Class 1 Class 2 Class 3

True class

Class 1 68.42%
(26/38)

5.26%
(2/38)

26.32%
(10/38)

Class 2 0 100%
(18/18) 0

Class 3 25.00%
(2/8) 0 75.00%

(6/8)
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tions, the measurement of which is generally completed within minutes. In this way, the

tool condition monitoring can be conducted in a more timely manner.

4.5 Conclusion

Tool wear characterization and monitoring for ultrasonic welding of lithium-ion batteries

have been investigated in this paper. By comparing tool surface measurements at different

tool life stages, tool wear is characterized by four stages using changes in the knurl geom-

etry. A novel impression method is then developed to efficiently and accurately obtain tool

surface profiles without introducing significant interruption to plant production. Finally, an

effective monitoring algorithm is developed using a quadratic classifier and features that are

extracted from space and frequency domains of cross-sectional profiles on tool surfaces.

This study enhances our understanding of the tool wear mechanism in ultrasonic metal

welding, and the algorithm can be utilized to accurately identify tool conditions, leading to

decreased production costs while ensuring good joining quality in battery manufacturing.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion and Contributions

Characterization and monitoring of spatiotemporal processes have become increasingly

important for quality evaluation and improvement in manufacturing. This dissertation de-

velops novel methods for efficient sampling, cost-effective surface variation modeling, and

effective process monitoring. The major achievements and contributions of this dissertation

are summarized as follows.

(1) Dynamic sampling design for characterizing spatiotemporal processes in manufac-

turing. In this study, we first formulate the dynamic sampling design problem for

spatiotemporal tooling degradation processes. Then a new design criterion is de-

fined by simultaneously considering the prediction precision and the measurement

costs. A weight matrix is introduced to account for the spatially varied precision

requirement. The design search process is formulated as a binary integer program-

ming problem, and the genetic algorithm is adopted for solution search. Moreover,

an innovative algorithm is devised to monitor and update the temporal transition

parameter in the spatiotemporal model. A comparative case study is conducted to

demonstrated the effectiveness of the developed framework.

(2) Cost-effective surface variation modeling by integrating an engineering model with
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multi-task learning. The proposed model decomposes spatial variation into a global

trend and a local variation part. The global trend is induced by process settings,

and it is modeled using an engineering model. The local variation part is mod-

eled as a zero mean Gaussian process, which shares commonalities among multiple

similar-but-non-identical surfaces, and it is estimated using multi-task learning. An

iterative algorithm is developed to estimate the model parameters in the global trend

and the local variation part. A case study using engine deck surface data from an

automobile plant has demonstrated that the developed approach outperforms those

existing methods, including simple kriging, kriging with external drift, and data-

driven Gaussian process multi-task learning. Additionally, the effects of number of

tasks, sample size, and correlation strength between process variables and surface

height have been discussed.

(3) Tool wear monitoring of ultrasonic metal welding in lithium-ion battery manufac-

turing. A framework for tool condition monitoring of ultrasonic metal welding

is developed for the first time. Tool wear progression is first characterized using

optical images and surface height measurement of welding tools in various wear

stages. A new impression method is then developed to efficiently obtain tool sur-

face profiles. Based on expert knowledge, monitoring features are generated from

both the spatial and temporal domains of high-resolution spatial data. Classifica-

tion algorithms are designed for tool condition determination using the extracted

monitoring features. Measurement data from a real-world electric vehicle battery

manufacturing plant is used to validate the developed algorithms.

104



5.2 Suggested Future Work

Future research efforts are proposed in the following several directions.

(1) Spatial and temporal dynamic sampling design for spatiotemporal processes: Tra-

ditional dynamic sampling design methods for spatiotemporal processes often as-

sume the temporal sampling interval to be constant. For instance, in environmental

and ecological monitoring, measurement is conducted daily, monthly, or annually;

in tool condition monitoring of ultrasonic metal welding, tool surfaces are mea-

sured every a certain number of welds. Nevertheless, constant sampling interval

may not be optimal. Further improvement can be achieved by adaptively varying

the sampling interval according to the spatiotemporal progression pattern.

(2) Data fusion for spatiotemporal modeling in manufacturing: The availability of

multi-source data, including process variables, functional curves, and spatiotempo-

ral data, provides a good opportunity for further improving process monitoring and

control. However, modeling the cross-correlations among different data sources is

very complicated, and there is a lack of systematic modeling methods. It is very

promising to integrate process monitoring and control in one framework based on

data fusion. For example, for the ultrasonic welding process in Figure 1.1, the

welding quality monitoring algorithm should be adaptive to the tool degradation;

tool condition monitoring can be developed by incorporating tool surface measure-

ment and the monitoring signals; process parameters, such as pressure, amplitude,

and energy, are supposed to be adjusted based on tool degradation. Through this

integration, quality monitoring performance will be improved; cost-effective tool
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condition monitoring can be enabled; the welding quality will be robust to tool

degradation; and tool life may be extended to reduce production costs.

(3) Variable and task selection for fusion model with multi-task learning: Variables re-

flecting multidisciplinary process information may take various types and formats.

These variables may not be equally important or they may contain duplicate in-

formation. Thus, a systematic variable selection algorithm is necessary to select a

parsimonious subset of all candidate variables for the engineering model. More-

over, task selection is one important topic in multi-task learning. As shown by

Figure 3.13, adding more tasks is not always able to improve the prediction perfor-

mance, but the computational load will be significantly increased. Therefore, a task

selection approach is desirable for the model developed in Chapter 3.

(4) Multi-level tool wear model development for ultrasonic metal welding: In Chap-

ter 4, a tool condition monitoring system is developed to classify a tool into three

categories: new, early worn, and worn. However, this system is not able to predict

remaining tool life or estimate when to conduct tool replacement. Hence, a con-

tinuous tool life model is highly desirable for quantification of the tool wear level

and prediction of remaining tool life. A knurl-based spatiotemporal model may

be developed using knurl-level features, e.g., average knurl height, knurl volume,

and shoulder width. The model can predict the progression of knurl features, and

further remaining tool life. Additionally, this model will be able to reveal abnormal

degradation progression patterns, assisting process diagnosis and control. For in-

stance, tool misalignment is a common issue in ultrasonic welding and may greatly

reduce tool life. The misalignment often yields nonuniform degradation patterns,
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and it may be effectively detected using the spatiotemporal model at an early stage.

Then tool adjustment can be conducted accordingly.
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Appendix A

Hypothesis Testing for Monitoring the Temporal Transition Parameter

ut−1,(t−1)t and ut,(t−1)t in Equation (2.35) can be rewritten as Equations (A.1) and (A.2).

ut−1,(t−1)t =
1

m1 +m2,(t−1)t

(
sum(M1,t−1)+ sum

(
Mt−1

2,(t−1)t

))
, (A.1)

ut,(t−1)t =
1

m1 +m2,(t−1)t

(
sum(M1,t)+ sum

(
Mt

2,(t−1)t

))
, (A.2)

where sum(·) is a summation function; m1 is the number of Level 1 measurement points,

and it is time-invariant; and m2,(t−1)t is the number of measurement locations which are

measured by Level 2 at both time t −1 and t.

It is known that the measurement error variances of Level 1 and Level 2 are σ2
1 and

σ2
2 , respectively, according to Assumption 2.2. Therefore, we can assume the Level 1 mea-

surement points are independent normal random variables with mean as the true height and

variance as the measurement error variance, σ2
1 . Similarly, Level 2 measurement points are

also independent normal random variables with mean as the true height and variance σ2
2 .

Both ut−1,(t−1)t and ut,(t−1)t are normal random variables. Their variances are equal

and determined by the repeatability of Level 1 and Level 2 measurements. We denote their

variances as

σ2
ε ,(t−1)t ≡ Var

(
ut−1,(t−1)t

)
= Var

(
ut,(t−1)t

)
. (A.3)
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σ2
ε,(t−1)t can by calculated using the following equation.

σ2
ε,(t−1)t =

1(
m1 +m2,(t−1)t

)2

(
m1σ2

1 +m2,(t−1)tσ2
2
)

=
m1σ2

1(
m1 +m2,(t−1)t

)2 +
m2,(t−1)tσ2

2(
m1 +m2,(t−1)t

)2 .

(A.4)

Define ût,(t−1)t as the estimation of ut,(t−1)t using ut−1,(t−1)t and ϕ̂t−1, as shown by

Equation (A.5).

ût,(t−1)t = ϕ̂t−1ut−1,(t−1)t . (A.5)

A statistic is further defined as the difference between ut,(t−1)t and ût,(t−1)t :

∆u(t−1)t = ut,(t−1)t − ût,(t−1)t . (A.6)

Under H0: ϕ̂t−1 = ht in Test 2.1,

E
(
∆u(t−1)t

)
= E

(
ut,(t−1)t − ϕ̂t−1ut−1,(t−1)t

)
= E

(
htut−1,(t−1)t − ϕ̂t−1ut−1,(t−1)t

)
=
(
ht − ϕ̂t−1

)
E
(
ut−1,(t−1)t

)
= 0,

(A.7)

Var
(
∆u(t−1)t

)
= Var

(
ut,(t−1)t − ϕ̂t−1ut−1,(t−1)t

)
= Var

(
ut,(t−1)t

)
+ ϕ̂ 2

t−1Var
(
ut−1,(t−1)t

)
=
(
1+ ϕ̂ 2

t−1
)

σ2
ε,(t−1)t .

(A.8)

Consequently,

∆u(t−1)t ∼ N
(

0,
(
1+ ϕ̂ 2

t−1
)

σ2
ε,(t−1)t

)
. (A.9)
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Consequently, we can test H0 using two-tailed hypothesis test for normal distributions

and reject H0 if the following condition holds.∣∣∣∣∣∣ ∆u(t−1)t√(
1+ ϕ̂ 2

t−1
)

σ2
ε,(t−1)t

∣∣∣∣∣∣> Zα/2. (A.10)

�
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Appendix B

Multi-Task Gaussian Process Learning Algorithm

The estimates of Θ =
{
µα ,Cα ,σ2} can be obtained using the following EM algorithm

(Yu et al., 2005). Detailed derivation of the algorithm is available in Yu et al. (2005).

• E-step: Estimate the expectation and covariance of α, l = 1, . . . ,m, given the current

Θ.

α̂l =

(
1

σ2κ
ᵀ
l κl +C−1

α

)−1( 1
σ2κ

ᵀ
l ηl +C−1

α µα

)
, (B.1)

Cα l =

(
1

σ2κ
ᵀ
l κl +C−1

α

)−1

, (B.2)

where κl ∈ Rnl×n is the base kernel κ(·, ·) evaluated between Sl and S.

• M-step: Optimize Θ=
{
µα ,Cα ,σ2}.

µα =
1

π +m

m

∑
l=1

α̂l, (B.3)

Cα =
1

τ +m

{
πµαµ

ᵀ
α + τκ−1 +

m

∑
l=1

Cα l +
m

∑
l=1

[
α̂l −µα

][
α̂l −µα

]ᵀ}
, (B.4)

σ2 =
1

∑m
l=1 nl

m

∑
l=1

∥ηl −κα̂l∥2 + tr
[
κlCα lκ

ᵀ
l

]
, (B.5)

where tr(·) is the trace operator.
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