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ABSTRACT 
 
 

THE DYNAMIC REGULATION OF INTESTINAL STEM CELLS BY NOTCH 
SIGNALING  

 
by 
 

Alexis J. Carulli 
 

Chair:  Linda C. Samuelson 
 

The intestinal epithelium has one of the fastest cellular turnover rates in 

the body. To keep up with the constant demand for newly differentiated 

absorptive and secretory cells, the intestinal crypt contains a highly active 

intestinal stem cell (ISC) compartment. Presently, two populations of ISCs are 

thought to exist: the active crypt base columnar stem cell (CBCC) and slower-

cycling quiescent stem cells (QSCs). Both populations of ISCs must be regulated 

to maintain intestinal homeostasis as well as accommodate cellular needs during 

times of intestinal growth, altered nutritional status, injury and repair. The Notch 

signaling pathway is one of many molecular messengers used to regulate these 

processes. Previous studies determined that Notch plays crucial roles in 

regulating differentiated cell fate, proliferation and CBCC survival. My thesis work 

has focused on understanding the specificity and kinetics underlying Notch 

regulation of CBCCs. 

 First, I used transgenic animal models to probe the specificity of Notch 

receptors in regulating intestinal homeostasis by conditionally deleting the 

Notch1 (N1) and/or Notch2 (N2) receptors in the intestinal epithelium. I 

discovered that N1 is the dominant Notch receptor regulating cell fate decisions, 

as deletion of N1 but not N2 led to a marked increase in secretory cell 



 
 

 xiii 

production. Additionally, I showed that N1 is important for stem cell maintenance, 

as N1 deletion resulted in a loss of approximately half of the CBCC population. 

Furthermore, I determined that N1 is required for post-irradiation intestinal 

recovery, an important discovery that has clinical implications for targeted anti-

Notch drugs as cancer treatments. 

 Our lab has shown that long-term (chronic) pharmacologic Notch inhibition 

with the drug Dibenzazepine (DBZ) leads to decreased CBCCs and decreased 

transit-amplifying (TA) cell proliferation, but the mechanism behind these 

changes was unknown. To approach these questions, I utilized a single dose of 

DBZ (acute treatment) to track the consequences of Notch inhibition on stem 

cells over time. Surprisingly, while acute DBZ did result in decreased CBCC 

number it also led to increased TA proliferation rather than the decreased 

proliferation observed with chronic DBZ. Like chronic DBZ, acute DBZ was 

sufficient to initiate a secretory cell differentiation program, suggesting that the 

increased proliferative cells were secretory progenitors. I devised a discrete 

compartmental mathematical model of the intestinal crypt to test several 

hypotheses to reconcile the proliferation differences observed with acute and 

chronic Notch inhibition. The model favored a mechanism where Notch signaling 

regulates both the symmetry of CBCC division into TA cells, as well as 

repopulation of the CBCC compartment, presumably by activation of QSCs. 

Further work investigating the role of Notch inhibition on QSCs suggests that 

Notch regulation of CBCC replacement is through regulation of the CBCC niche 

rather than direct regulation of QSCs. 

 In summary, my thesis work has further probed the role of Notch in 

intestinal epithelial homeostasis and CBCC maintenance. I show that loss of 

Notch signaling leads to a dynamic shift of CBCCs into the TA cell compartment 

and that N1 is the key receptor regulating these changes. 
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CHAPTER 1 
 
 

INTRODUCTION* 
 

 

 
 

Adult stem cells are crucial for maintaining proper function and repair of 

gastrointestinal tissues. The small intestinal epithelium is a complex tissue 

composed of a number of distinct differentiated cell types that must be 

continually replenished from rapidly dividing intestinal stem cells (ISCs) housed 

in the proliferative crypt region (Figure 1-1). The organized structure of the crypt 

as well as the fast rate of regeneration have made the intestine an ideal model 

for studying stem cell biology. ISC research not only aims to advance our 

understanding of stem cell physiology, but also to provide insight into intestinal 

pathologies. As ISCs are thought to drive intestinal and colorectal cancers1, 2, 

understanding how aberrant stem cell regulation initiates such processes is a 

major interest in the field. Additionally, ISCs are required for epithelial repair after 

intestinal damage, such as exposure to irradiation and chemical mutagens3-7. 

Thus, investigating the repair response is important for managing radiation 

therapies and environmental exposures as well as developing treatments for 

intestinal disease. Finally, ISC tissue engineering provides hope for regenerative 

therapies that can treat lost or damaged intestinal tissue8-10. For all of these  

                                            
* Note this chapter is an expansion of the following published review article: 

Carulli AJ, Samuelson LS, and Schnell S. Unraveling intestinal stem cell 
behavior with models of crypt dynamics. Integrative Biology 2014; 6:243-
57. 
 



Figure 1-1.  Intestinal epithelial structure and cell composition. The intestinal 
epithelium is organized into crypt and villus regions, with the stem and progenitor 
zone localized in the crypt. Current models favor the existence of two stem cell 
populations, the +4 stem cell and the crypt base columnar cell (CBCC), which are 
thought to be quiescent and active stem cells, respectively. Transit-amplifying 
(TA) progenitors arise from the stem cell compartment and differentiate into 
absorptive enterocytes or secretory goblet, enteroendocrine, tuft, or Paneth cells. 
Most of the differentiated cell populations migrate up the villi, but, uniquely, the 
Paneth cells move downward and reside between the CBCCs.  
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reasons, the impetus to unravel this cell’s identity, function, and regulation 

remains a priority.  

One of the greatest areas of interest in ISC biology is discovering the 

regulatory networks that modulate stem cell function. The Notch signaling 

pathway is a conserved cell-cell signaling pathway that is crucial throughout early 

development and organogenesis, as well as maintenance of many adult 

tissues11, 12. In the intestine, Notch has proven to be an essential regulator of 

proliferation, differentiated cell fate, and, importantly, stem cell maintenance13-18. 

Our understanding of how Notch regulates ISCs, however, is limited. Thus, the 

goal of this thesis is to present new investigation into the mechanisms behind 

Notch-regulated ISC homeostasis. Using transgenic mouse models, 

pharmacologic intervention, irradiation damage modalities and in silico 

mathematical modeling, the chapters ahead explore the sensitive dynamics of 

Notch regulation and the interconnection between ISCs and transit-amplifying 

(TA) progenitor cells.  

To properly introduce these themes, Chapter 1 introduces three broad 

topics: (1.1) the history and current understanding of intestinal stem and 

progenitor cells and the genes that define and regulate them, (1.2) the Notch 

signaling pathway, (1.3) current efforts in mathematical modeling of the intestinal 

crypt. Finally, the chapter concludes with an overview of the experimental 

approaches and main findings obtained in this thesis (1.4). 

  

 

1.1: INTESTINAL STEM AND PROGENITOR CELLS 
 
A Historical Debate 

There has been much debate over the location and identity of the ISC. 

Early studies suggested that the ISC was located approximately 4 cell positions 

from the base of the crypt, commonly referred to as the “+4 cell”3, 19, 20. 

Alternatively, it was proposed that crypt base columnar cells (CBCCs), small 

undifferentiated cells intercalated between the Paneth cells at the base of the 
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crypt, were the true ISCs21, 22. The prevailing theory today suggests that there are 

two stem cell populations in the intestine: an active stem cell (ASC) that is 

responsible for the bulk of proliferation and crypt maintenance, and a quiescent 

or reserve stem cell (QSC) that divides more slowly and is important for 

replenishing ASCs during crypt recovery after injury6, 23, 24. Recent findings, 

however, have called this two stem cell system into question, and thus a 

definitive catalog of ISC populations remains an active area of investigation7, 25-27. 

 

Early stem cell markers 

Clearly, the way to reconcile the +4/CBCC cell debate was to identify a 

reliable marker that would allow for visualization, isolation and genetic 

manipulation of ISCs. The first method that allowed visualization of putative stem 

cells was retention of a radioactive tritiated thymidine label21. These “label 

retaining cells” (LRCs) localized to the +4 position of the crypt and were thought 

to be stem cells due to their long-lived nature, although no functional data was 

obtained to validate this hypothesis3. 

The development of Vil1 promoter constructs capable of expression in all 

intestinal epithelial cells, including stem and progenitor cells, allowed the genetic 

manipulation of ISCs in transgenic mice for the first time28, 29. The capability to 

manipulate ISCs continues to be widely utilized to probe gene function for 

intestinal development or disease; however, the widespread Vil1-promoted 

transgene expression did not allow specific identification or manipulation of ISCs.  

The first more specific molecular marker of ISCs was the RNA-binding 

protein Musashi-1, which was shown by antibody staining to be expressed in the 

same location as LRCs30. Musashi-1 is also expressed in CBCCs and lower crypt 

TA cells31, which has limited its usefulness as a tool to manipulate specific stem 

cell populations. In 2007, the Wip1 phosphatase was shown to be expressed in 

ISCs and to regulate apoptosis and tumor formation at the stem cell level1. In situ 

hybridization and protein expression primarily localized Wip1 to the +4 position, 

but abundant CBCC labeling was observed as well, which has restricted its use 

as a specific stem cell marker1. 
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Lgr5 marks CBCCs 
In a landmark paper published in 2007, the leucine-rich-repeat–containing 

G-protein–coupled receptor 5 (Lgr5), was found to be a specific marker of 

CBCCs32. The Clevers group functionally demonstrated that LGR5+ cells were 

stem cells capable of producing all of the mature cell types of the intestine32. This 

conclusion was achieved through lineage tracing, a technique that allows 

permanent activation of a reporter gene in a cell and all of its progeny and is the 

gold standard for defining a stem cell in vivo33. In addition, isolated LGR5+ cells 

were subsequently shown to produce intestinal enteroids, intestine-like tissue 

grown in perpetuity in vitro, another indication of this cell’s stem-like function34. 

Importantly, activation of Wnt signaling in the LGR5+ cell population showed 

progressive formation of intestinal adenomas, a feature expected of aberrantly 

regulated stem cells2. Thorough quantitative studies have demonstrated that 

LGR5+ cells are highly proliferative, cycling approximately every 24 hours32, 35. 

This rate of proliferation confirms that if the LGR5+ CBCC is not the only stem 

cell population in the gut, it certainly is doing the bulk of the work, and thus has 

been indisputably considered the ASC. Notable additional markers subsequently 

identified for the ASC population include Ascl236, Olfm437, Smoc225, and Sox95, 38 

(Figure 1-2) although a multi-scale stem cell signature analysis identified 

countless others25. 

 

The +4 cell as a quiescent stem cell 
Although the LGR5+ CBCC had been established as the ASC, a surge of 

additional studies surfaced that continued to support the idea of a stem cell 

population that resides approximately in the +4 position. Immunostaining and 

lineage tracing studies identified a number of putative markers of this population 

including Bmi139, 40, Lrig141, mTert42 and Hopx43 (Figure 1-2). Of note, the gene 

Dclk1 has been cited numerous times in the literature as a putative +4 stem cell 

marker24, 44; however other studies reported that Dclk1 marks tuft cells, a 

differentiated cell type found in the stomach and intestine, rather than stem  



Figure 1-2. Intestinal stem cell markers. Molecular and functional markers that 
have been described for various proposed stem cell and potential stem cell 
populations. Of note, both TA cells and +4 cells have been shown to be Label 
Retaining Cells (LRCs). Sox9-EGFP ¬has been shown to mark both CBCCs and 
clonogenic enteroendocrine cells, depending on the level of EGFP expression. 
The gene Dclk1 has been proposed to be a stem cell marker, but it has also 
been shown to be a specific marker of differentiated tuft cells. It is possible that 
there is an independent +4 cell population that is also marked with Dclk1, but 
this has not been verified by lineage tracing. 
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cells45-47. Interestingly, recent lineage tracing studies showed that Dclk1 might 

additionally mark tumor stem-like cells48, although a new tumor expression study 

suggests that this might not extend to human intestinal cancers49. Although it is 

still unclear exactly what cells express Dclk1, it is likely that this gene is not 

useful for marking normal ISCs.  

Similar to the Lgr5 studies, the +4 cell lineage tracing experiments 

demonstrated that these markers were present in a stem cell population that was 

able to produce all of the differentiated intestinal cell types. Additionally, Wnt-

activated LRIG1+ cells showed even more aggressive adenoma formation than in 

the comparable LGR5 studies, again suggesting that these cells harbored stem-

like function41. As opposed to ASCs, however, many of these cells were shown to 

cycle more slowly, furnishing the idea that these markers were identifying a QSC 

population39, 41-43.  

It is important to note that Potten’s original studies did not suggest that the 

+4 cell was a quiescent cell population. Rather, it was thought that, like ASCs, 

this cell cycled approximately once per day and that the property of label 

retention was due to retention of an “immortal strand” of DNA that protected stem 

cells from accumulating mutations during DNA replication23. This hypothesis is 

highly controversial and has been challenged by several groups50, 51. In 

particular, Escobar et al.50 combined mathematical modeling with careful pulse-

chase labeling experiments to show that stem cells randomly sort their 

chromosomes. These findings further bolster the idea that the label retaining 

property of the +4 population is due to the cell being a long-lived, slower-cycling 

stem cell. 

One predicted function of a QSC population is to act as a reserve stem 

cell compartment. This feature was demonstrated in a number of studies that 

showed activation of QSCs in the post-irradiation injury setting5, 6, 43. Additionally, 

specific ASC ablation with diphtheria toxin led to activation of BMI1+ cells to 

generate differentiated intestinal epithelial cells. These QSCs appear to replace 

LGR5+ cells, thus repopulating the depleted ASC pool6, 40. Similarly, isolated 

BMI1+ cells were shown to create enteroids in vitro that ultimately contained 
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LGR5+ ASCs6. Interestingly, ablation of BMI1+ cells with diphtheria toxin results 

in complete epithelial collapse, suggesting that, unlike ASCs, these cells are 

indispensible for epithelial homeostasis39. 

Together, these findings support a two-stem cell paradigm in the gut: the 

LGR5+ cell is the ASC that divides every day and supports homeostasis under 

normal conditions and the +4 cell is the QSC that usually divides slowly and only 

occasionally contributes to homeostasis at baseline. In an injury setting the 

QSCs are activated and expanded and allow for crypt repopulation and repair of 

the ASC pool.  

 

Overlapping markers: the QSC dispute 

Despite the abundant lineage tracing data that supports the idea that Bmi1 

and other +4 genes mark QSCs, there continues to be doubt that these cells are 

truly an independent stem cell population. Much of the argument originates from 

studies that find putative QSC markers to be expressed in ASCs. Sorted ASCs 

were shown to express high levels of Bmi1 mRNA36 and an independent study 

showed that ASCs expressed higher levels of Lrig1 than any other cell in the 

epithelium52. A robust transcriptomic and proteomic approach that aimed to 

elucidate a definitive stem cell signature for the ASC showed that many QSC 

markers, including Bmi1, mTert, Hopx, and Lrig1, are not only expressed in the 

ASC, but single molecule transcript counting showed mRNA expression was 

located throughout the crypt rather than in a localized +4 cell population25, 26. To 

make matters more complex, Munoz et al.25 was unable to replicate the lineage 

tracing data of Capecchi and colleagues39 which showed that BMI1+ cells were 

predominantly located in the +4 position. Additionally, they observed that lineage 

tracing from BMI1+ cells occurred with similar kinetics as the ASC lineage tracing, 

calling into question the quiescent nature of this cell population25. Consequently, 

a molecular marker that uniformly and specifically marks +4 cells remains to be 

identified. 

 



 9 

Transit-amplifying cells  
Like most adult tissue stem cells, ISCs do not directly form the 

differentiated cell types of the intestine; rather, they contribute to an intermediate 

progenitor pool. These cells are referred to as transit- or transiently-amplifying 

(TA) cells because they divide approximately every 12-18 hours, 4-6 times prior 

to fully differentiating into the various epithelial lineages, fundamentally 

amplifying the population in the crypt20, 53, 54. Figure 1-3 shows the TA cell 

compartment and unanswered questions associated with this cell population. As 

TA cells divide it is assumed that they become committed to specific lineages 

and cell types, finally leading to mitotically-inactive fully mature absorptive or 

secretory cells as they migrate out of the crypt. The specific timing and nature of 

these differentiation events and how they might affect TA clonogenicity is largely 

unknown. 
Early mutagenic marking studies showed that multipotent progenitors exist 

as well as progenitors committed to a single differentiated cell type33. It is well 

established that a binary decision occurs between absorptive and secretory cell 

fates, which is largely controlled by the Notch signaling pathway, however it is 

unclear exactly when and how this occurs55. Some studies suggest that this is 

the first decision of TA cells13. Others report that the specific type of secretory 

lineage is first determined, but that this differentiation trajectory can be aborted if 

the cell is later specified to be an absorptive cell56. Some studies have identified 

an intermediate cell with both Paneth and goblet cell features, which might 

suggest that these cells share a common progenitor13, 57, although other studies 

describe a common Paneth/endocrine precursor7. Clearly, a definitive lineage 

fate map in the gut is still forthcoming. Additionally, it is unknown during which 

round of TA cell division these decisions take place. A paucity of specific markers 

or functional assays for different TA progenitors cells has been a stumbling block 

for progress on these fronts. Some markers like Msi130 and Prom158, 59 have 

been proposed, but these label both stem and progenitor cells,  

 

 



Figure 1-3.  TA cell amplification and clonogenicity. Schematic of the TA cell 
compartment. Left: The TA cells are thought to divide 4-6 times, but the exact 
number and regulation of TA cell divisions is not known. Five rounds of division 
(T1-T5) are illustrated above with increasing numbers of cells in each 
subsequent division. TA cells are thought to become more differentiated during 
each division, but the details of this process are not well understood. Right: a TA 
cell is shown to de-differentiate and replace a lost CBCC (curved arrow). Exactly 
which TA cells possess clonogenicity is unknown.
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and it is uncertain whether they differentially label TA subpopulations. 

Additionally, Ngn3 marks TA cells that are fated to become endocrine cells60, but 

this only applies to a small subset of the TA population. In Chapter 3, I use the 

gradient of GFP expression that exists in the crypt of the Lgr5-GFP mouse model 

to differentiate between stem cells and TA cells. 

 
TA cells are facultative stem cells 

Studies by Potten20,61 indicate that TA cells possess potential stem cell 

capabilities in the event that the stem cells are lost or damaged. Irradiation 

studies suggest that the first two rounds of TA cell division possess some 

regenerative capacity20. Later TA divisions, however, were shown to have lost 

this capability, suggesting that this property is either cell age- or crypt location-

dependent20.  
Recently, a cell expressing the Notch ligand Dll1 was identified as a multi-

potent progenitor cell that was definitively not a stem cell, as evidenced by its 

lack of robust lineage tracing and inability to form enteroids in vitro27. 

Interestingly, this cell population was shown to gain stem-like function by Wnt 

stimulation in vitro and crypt damage in vivo27. This study further supports the 

idea that early TA progenitors possess plasticity and can act as potential stem 

cells. Interestingly, other studies have shown a subpopulation of enteroendocrine 

cells in the crypt that co-express stem cell markers and seem to function as stem 

cells in vitro and in vivo5, 62, 63. This raises the possibility that committed TA cells 

or even fully differentiated cells may possess stem-like potential. 

 Recently, Winton and colleagues7 returned to the approach of label 

retention to isolate and manipulate QSCs. In this study, LRCs were defined as 

non-Paneth cells in the crypt that retained a YFP label for 10+ days7. Isolation of 

these cells by FACS followed by transcriptome profiling showed that these LRCs 

were a distinct subpopulation of LGR5+ cells that expressed both secretory cell 

and stem cell markers. Using a clever split Cre construct and dimerization agent, 

Buczacki et al.7 was able to lineage trace from LRCs and found that these cells 

contributed exclusively to differentiated Paneth and endocrine cell populations, a 
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property consistent with a bipotential secretory cell progenitor. Interestingly, with 

ASC injury the LRCs gained full clonogenic capacity and were shown to lineage 

trace into all differentiated cell populations7. This study supports the idea that 

there is not a dedicated population of QSCs, but rather a population of semi-

differentiated progenitor cells that can act as a reserve stem cell population in the 

event of ASC loss.  

 
Neutral drift dynamics and epigenomics 

Many believe that stem cell identity is not cell-intrinsic, but rather a 

consequence of the local signaling environment, or niche, such that any cell 

within the niche will have stem-like properties. One heavily-studied aspect of 

crypt biology that has fueled this belief is the process of crypt monoclonality, 

where heterogeneous crypts, presumably fed by many stem cells, become 

derived from a single stem cell over time35, 64, 65. The Winton and Clevers groups 

have independently investigated this process by modeling the rate it takes for a 

lineage trace to encompass an entire crypt35, 64. These studies conclude that this 

occurs through neutral competition of stem cell progeny for niche space, or 

neutral drift35, 64. This finding implies that the progeny of a stem cell division event 

are not one stem and one non-stem daughter cell, but rather two identical cells 

that are only further defined by the niche available to them.  

A recent study by the Shivdasani lab comparing epigenetic signatures of 

ISCs, secretory and absorptive progenitor cells, and differentiated cells showed 

that the genomes of these populations are largely primed to express the same 

transcripts66. The conclusion of this study extends the implications of the neutral 

drift dynamics findings to suggest that most cells in the crypt are able to 

interconvert depending on the niche signals available, and that lineage-defining 

decisions are not permanent changes66. 

In contrast, a recent report by the Kaestner lab also investigating the 

epigenetic changes that occur during intestinal differentiation came to different 

conclusions67. They find that DNA methylation by the DNMT1 methyltransferase 

is required for proper intestinal epithelial differentiation by repressing enhancers 
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involved in stemness67. The two studies together could suggest that epigenetic 

regulation is important for cell fate decisions and differentiation but that genomic 

flexibility remains to allow interconversion depending on niche signals.  

 

Niche signaling pathways 
Several signaling pathways are known to be important for intestinal 

epithelial homeostasis, and many of these have been implicated in forming and 

sustaining the stem cell niche (Figure 1-4).   

Wnt signaling is important for stem cell establishment in the developing 

intestine, as well as crypt development during the postnatal period68, 69. In the 

adult intestine, Wnt responsive cells are stimulated by soluble ligands that are 

released from both the surrounding mesenchymal cells as well as crypt epithelial 

cells, leading to a Wnt activity gradient from crypt to villus42, 69. Wnt signal is 

required for stem and TA progenitor cell proliferation and has been implicated in 

regulating aspects of cell differentiation70, likely through cross-talk with the Notch 

signaling pathway69. R-spondins are a family of proteins that potentiate the Wnt 

signal in the presence of Wnt ligand71. LGR5 itself is the receptor for RSPO1 and 

is thus inextricably linked to the level of Wnt signal that reaches the stem cell 

nucleus72-74. Indeed, exogenous WNT and RSPO are required for growth of in 

vitro enteroids34, 75. Interestingly, ASCs and QSCs appear to have different 

requirements for Wnt signaling, as ASCs depend on Wnt for survival, but BMI1+ 

QSCs appear to be unaffected by Wnt repression6. Of note, aberrant Wnt 

signaling is observed in almost all cases of colorectal and intestinal cancers68, 76.  

 The Notch signaling pathway plays a critical role in controlling lineage 

specification of differentiated cells in the intestinal epithelium; i.e. active Notch 

signaling leads to the formation of the absorptive lineage while absence of Notch 

results in secretory cell types55. Notch regulates intestinal proliferation, as 

blocking Notch reduces proliferation18, 77 and Notch activation has been shown to 

increase proliferating cell number17, 78. In addition, Notch was recently shown to 

be essential for maintenance of ASC number and function13. Together these  

studies suggest Notch may be distinctly required for ASC maintenance and for 



Figure 1-4. The stem cell niche. (A) An illustration of two opposing theories 
regarding the role of the stem cell niche. Left: The niche (green arrows) 
completely specifies the stem cell. Right: the niche partially specifies a cell that 
possesses certain features of intrinsic stemness (yellow). Only cells that acquire 
both extrinsic and intrinsic signals become stem cells. (B) Signaling pathways 
implicated in niche specification. Activation of the Bone Morphogenetic Pathway 
(BMP) occurs at a gradient that is higher in the villi and lower in the crypts. 
Conversely, Wnt activity is highest in the crypts. The Wnt gradient is established 
by secretion of Wnt ligands both from the mesenchymal myofibroblasts 
(WNT2a) as well as from epithelial cells. WNT3, in particular, is expressed in 
Paneth cells. The Notch signaling pathway is also critical for niche specification. 
Notch ligand presentation must occur from adjacent cells, and there is evidence 
that Paneth cells present DLL4, and that a subset of secretory progenitors 
express DLL1. It is unclear if other TA cell populations can present Notch ligand 
to stem cells.
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TA cell fate. A more detailed description of the Notch signaling pathway will 

follow in section 1.2. 

Other signaling pathways shown to be involved in intestinal homeostasis 

and development include Bone Morphogenetic Protein (BMP), Hedgehog, Hippo, 

Eph/Ephrin, and Epidermal Growth Factor (EGF)/ErbB. Many of these pathways 

play important roles in stem cell function and are likely contributing to the niche69. 

Briefly, BMP signaling occurs in a gradient in the epithelium, with the highest 

signal in the villi and the lowest at the base of the crypt79. Lower signaling levels 

are also associated with expression of the antagonist Noggin in the crypt 

region79. BMP appears to limit crypt formation and stem cell number as 

repression of the pathway with excessive Noggin results in aberrant crypt 

formation and tumors80, 81. Eph/Ephrin signaling is required for normal Paneth cell 

localization82, which might have critical implications in niche formation as 

discussed below. The EGF pathway is important for regulating different cellular 

functions, including proliferation and differentiation, and has been shown to be 

important for the intestinal adaptation response post-resection83. The putative 

QSC marker LRIG1 is a negative regulator of EGF signaling84, 85, which is 

consistent with the quiescent nature of these cells41, 52. Of note, recombinant 

EGF and BMP antagonist Noggin are growth factors required for enteroid 

culture34, 75.  

It is believed that many of these essential signals originate from the 

myofibroblasts in the mesenchyme underlying the epithelial basement 

membrane86. Recent studies, however, have challenged this mesenchyme-

centric hypothesis. Evidence in a number of different tissues supports a model 

where stem cell progeny may also play an important role in defining the stem cell 

niche87.  

 

The Paneth cell as niche  
Paneth cells secrete antimicrobial peptides and are thought to have a role 

in regulating host-microbial interactions88. Unlike other differentiated cells, which 

migrate up the villi and are sloughed off the tip on the order of 3-5 days, Paneth 
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cells migrate down to the base of the crypt, where they persist for approximately 

3 weeks89, perhaps longer90. In this position Paneth cells are in close association 

with CBCCs and thus have recently been implicated in specifying the stem cell 

niche. Over 80% of the CBCC surface area is in contact with neighboring Paneth 

cells91. As some niche signals, like Notch pathway components, are dependent 

on cell-cell interaction, the Paneth cell is the ideal candidate for ligand 

presentation. Indeed, expression-profiling studies suggest that Paneth cells 

express Notch, Wnt, and EGF ligands91. Additionally, the formation of epithelial-

only enteroids supports the idea that mesenchymal signals may not be essential 

for niche formation34. In fact, LGR5+ cell/Paneth cell doublets increased enteroid 

formation efficiency over 10-fold higher than LGR5+ cells alone91.  

Opponents of this theory cite that these in vitro culturing techniques rely 

on a large number of growth factors for successful enteroid formation. As 

mentioned above, these include a BMP antagonist, Notch ligand, EGF, WNT3a 

and the Wnt potentiator RSPO1, as well as a synthetic basement membrane-like 

matrix; all factors that could be provided by the mesenchyme or other adjacent 

epithelial cells in vivo34. Additionally, several studies have shown that genetic 

deletion of Paneth cells does not have deleterious effects on the intestine92-94. 

Furthermore, colonic stem cells appear to function similarly to small intestinal 

ASCs but the colon does not contain Paneth cells, although a study by 

Rothenberg et al.95 identified cKit+ cells that may function like Paneth cells to 

support stem cells in the colon.  

A recent study by the Clevers group96 indicated that mesenchymal Wnt 

signals may in fact play an essential role. The study showed that a Wnt ligand 

secreted from the Paneth cell, WNT3, is essential for in vitro enteroid growth but 

deletion of Wnt3 in vivo does not affect homeostasis96. They identified WNT2B as 

a mesenchymal Wnt signal that could compensate for the lost WNT3 signal96. 

These results may explain why genetic models that lack Paneth cells may form a 

normal stem cell compartment. It is therefore very likely that a combination of 

epithelial and mesenchymal signals determine the stem cell niche. 
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A full understanding of the niche is critical for advances in in vitro tissue 

engineering technology. It is hoped that the use of in vitro systems will quicken 

the pace of discovery and allow more detailed signaling and mechanistic data to 

be discovered. Additionally, the use of human organoids is anticipated to allow 

easier translation of these findings into the human health context97-99. 

Since current enteroid culturing conditions employ undefined components like 

Matrigel, which are unlikely to ever receive FDA approval100, all necessary 

external signaling and growth factors will need to be delineated before moving 

forward with applied clinical approaches. 

 

Irradiation and stem cells 
Irradiation-induced intestinal damage has been a widely used 

methodology for studying stem cell biology. As noted above, many QSC markers 

have been defined by their activation and expansion in the post-irradiation 

setting. Still, there is some debate over exactly how different ISC populations 

respond to irradiation damage. Originally, Potten described his +4 population as 

exquisitely sensitive to irradiation, dying at doses as low as 1Gy3, 101. This may 

suggest that the more recently discovered QSCs are not marking the same 

population, as they are not sensitive to low doses of irradiation. Additionally, 

although it was thought that ASCs were destroyed by moderate doses (8-12Gy), 

one report shows that some LGR5+ stem cells not only survive irradiation 

treatment, but also possess enhanced non-homologous end joining to repair 

double-stranded DNA breaks caused by the damage4.  

Furthermore, combination of irradiation with diphtheria toxin-induced 

LGR5+ cell ablation showed that ASC-deficient intestine can recover when less 

than 6Gy is applied, but doses above this threshold resulted in permanent 

intestinal damage102. Interestingly, ASC-deficient crypts were still able to mount a 

post-irradiation proliferative response, but crypt-fission activity and crypt 

organization was lost leading to intestinal architecture collapse102. This suggests 

that QSCs are still activated with irradiation damage, but the crypt cannot 

properly recover without ASCs. 
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Recently, LGR5+ cells were shown to express the receptor ROBO1 and its 

ligand SLIT2103. Treating mice with recombinant SLIT2 and the Wnt agonist 

RSPO1 leads to an increase in the number of LGR5+ stem cells, and surprisingly 

protects the intestine from chemoirradiation treatment104. This is further evidence 

that ASCs are required for irradiation recovery, and is a promising therapeutic 

avenue for protecting against irradiation damage.  

Additionally, the Notch signaling pathway has been implicated in providing 

radioresistance in cancer stem cells, and Notch blockade improved the 

therapeutic response to radiation treatment105. This suggests that normal stem 

cells with Notch activity, like ISCs, likely have multiple mechanisms to resist 

radiation damage. In Chapters 2 and 3 I show continued evidence that Notch is 

required for ASC maintenance, as numerous forms of Notch inhibition result in 

inability to recover from irradiation. 

 
Tamoxifen and stem cells 

Most of the data that has been compiled in the field and reviewed above 

has been dependent on reporter activation in transgenic mouse model systems. 

These inducible Cre transgenics have revolutionized mouse genetics by allowing 

both temporal and spatial regulation of a gene of interest. Sensitive temporal 

control is achieved by fusion of the Cre recombinase to a modified ligand-binding 

domain of the estrogen receptor (CreERT and CreERT2), such that Cre is only 

translocated to the nucleus to induce recombination in the presence of synthetic 

estrogen antagonists106-108. The tamoxifen-inducible Cre/Lox system is essential 

for conditional activation of reporter genes in stem cells, but also allows for 

specific deletion or expression of a gene of interest. 

Alarmingly, a new study calls into question experiments that have utilized 

tamoxifen as a method to activate stem cell lineage tracing. This study showed 

that tamoxifen alone was sufficient to induce apoptosis of both LGR5+ and LGR5- 

cells located near the +4 region109. Previously tamoxifen had been shown to 

cause parietal cell apoptosis in the gastric epithelium, but this is the first report 

linking tamoxifen to stem cell damage110. In this study, apoptosis was a key 
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factor leading to lineage tracing from LGR5+ cells, as tracing events were 

strikingly reduced in genetic models that block apoptosis109. These results 

suggest that the LGR5+ cell might not be the true ASC after all, but rather a 

dependable replacement for loss of the true stem cell located at the +4 position. 

Interestingly, the evidence suggests that this highly-tamoxifen sensitive cell 

population is the same low-dose irradiation-sensitive population described in 

Potten’s early studies109.  

In response to this finding, Winton and colleagues investigated the effect 

of high and low tamoxifen doses on stem cell clonality111. In contrast to the above 

report, they found no tamoxifen-dependent changes in clone number or size and 

concluded that tamoxifen was unlikely to cause stem cell death111. Because 

tamoxifen usage is ubiquitous in the field, it is clear that more research needs to 

be done to reconcile these findings.  

 

Non-transgenic applications of ISC research 

A chief goal of ISC research is to directly apply what is learned to treat 

human diseases. Since many of the approaches used in animal models rely on 

complicated transgenics that would be infeasible to replicate in humans, there is 

great interest in developing non-transgenic methods to identify and separate 

stem cells that could be used in the clinical setting.  

One widely-used approach is antibody staining of human specimens to 

determine biomarkers for diagnosis and prognosis of diseases. Accordingly, 

many ISC markers have recently been associated with colon cancer progression 

and outlook. LGR5 expression, for instance, is increased in tumors compared to 

normal neighboring tissue112, 113 and higher levels of LGR5 are linked with 

chemotherapy resistance114. Expression of OLFM4 was shown to differentiate 

between serrated sessile lesions and other colorectal cancer types115 as well 

mark cancers associated with improved survivability116. The QSC marker BMI1 

also displays increased expression in colorectal tumors117 and higher levels of 

BMI1 are associated with worse outcomes118.  
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Aside from merely identifying the presence of stem cell markers in human 

tissues, there is great interest in actually isolating ISCs from patients to analyze, 

expand, or modify ex vivo. One method that has been attempted to achieve this 

is side population sorting, a technique that separates populations of cells that 

have low retention of a dye, like Hoescht, with fluorescence-activated cell sorting 

(FACS). This system was first discovered in hematopoietic stem cells119, 120 and 

relies on the expression of the ABCG2 efflux transporter, which has been found 

to distinguish a number of different tissue stem cells121. The Henning group has 

adapted this approach to investigate ISC populations122. They have found that 

there are two groups of side population sorted cells, an upper side population 

and lower side population122. The upper side population was found to contain a 

large percentage of proliferating cells as measured by incorporation of the 

thymidine analog 5-ethynyl-2´-deoxyuridine (EdU). In contrast, the lower side 

population had almost no EdU uptake and is thus presumed to be a quiescent 

population. Combined studies using the Lgr5-GFP mouse demonstrated that the 

LGR5+ cells were almost exclusively localized in the upper side population. 

Transcript analysis of the populations showed expression of both ASC and QSC 

markers in the upper side population, which is not surprising due to the overlap in 

marker expression discussed above. In contrast, the quiescent lower side 

population was enriched with QSC markers. Thus, this technique is a promising 

way to separate different ISC populations based on cycling rate rather than 

marker expression that can easily be applied to human tissue. 

 

ISCs: a work in progress 

 In summary, although much has been discovered about ISCs, many 

questions and controversies continue to divide the field. The largest dispute 

concerns the existence and function of QSCs and how these cells may overlap 

with ASCs and progenitor cells. Other questions include regulation of ISC 

number, required niche signals and their origin, and ISC injury response. This 

thesis addresses many of these themes by investigating the specific Notch 

receptors required for stem cell maintenance (Chapter 2), ASC and TA plasticity 
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(Chapter 3-4), and the requirement of Notch for post-irradiation epithelial 

recovery (Chapter 2-3).  

 
 
 
 
1.2: THE NOTCH SIGNALING PATHWAY 
 
A direct cell contact pathway 
 As shown in Figure 1-5, Notch signal requires the interaction of two 

neighboring cells, a signal-receiving cell that expresses the transmembrane 

Notch receptor and a signal-sending cell, which expresses a transmembrane 

Notch ligand. In mammals there are 4 Notch receptors (Notch1-4) and 5 ligands 

(Delta-like1,3,4, Jagged1-2)123, all of which have variable temporal-spatial 

expression. Successful interaction of receptor and ligand results in the Notch 

intracellular domain (NICD) being released and transmitted to the nucleus where 

it can activate target gene transcription. No secondary messengers are 

generated by the signal and the Notch receptor is destroyed in the process124, 

thus generating a short-lived transcriptional signal to instill Notch effects.   
 
Notch receptor activation and regulation 
 The Notch receptor undergoes many modifications and enzymatic 

cleavage events along the path to activation, which can modulate Notch 

signaling. In the ER, glycosylation of the Notch extracellular domain (NECD) 

occurs, catalyzed by the enzyme O-fucosyltransferase (O-FUT), which adds a 

fucose moiety and acts as a chaperone for the receptor125, 126. Additional fucose 

and glucose modifications subsequently occur in the trans-Golgi network 

mediated by Fringe proteins127. In mammals there are three Fringe proteins: 

Lunatic, Manic and Radical Fringe, which have varied and non-redundant activity 

in a number of tissues128. The accumulated number and location of glycosylation 

events function to alter receptor-ligand interactions124. In fact, two independent  



Figure 1-5.  The Notch Signaling Pathway. (1) The immature Notch 
extracellular domain (NECD) is fucosylated in the ER by O-FUT. (2) Further 
glycosylation of NECD occurs in the Golgi by FRINGE proteins. Meanwhile, 
ubiquitin modifications by MINDBOMB result in ligand recycling and 
maturation. (3) FURIN-mediated S1 cleavage of the receptor results in mature 
Notch intracellular domain (NICD) and NECD. (4) The mature receptor is 
trafficked to the membrane chaperoned by O-FUT. (5) In the absence of ligand 
activation, ITCH mediates degradation of Notch receptor. Meanwhile, in the 
nucleus RBP-J associates with co-repressors blocking transcription of Notch 
target genes. (6) Binding of receptor and ligand exposes the S2 site, which is 
cleaved by ADAM proteases, releasing NECD. (7) NECD is trans-endocytosed 
with ligand by the signal-sending cell. S3 cleavage is catalyzed by the 
gamma-secretase complex. NICD is released from the membrane. (8) NICD 
translocates into the nucleus where it binds to a co-regulatory complex 
activating transcription of Notch target genes. (9) The Notch signal is 
terminated by CDK8 through NICD phosphorylation and degradation.  
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groups used hybrid receptor constructs composed of mis-matched NICD/NECD 

pairs to demonstrate that differences in Notch receptor activity is primarily 

attributed to NECD interactions129, 130, underscoring the importance of these post-

translational modifications. 

 While the immature Notch receptor is in the Golgi, it undergoes its first 

proteolytic cleavage event, S1. This furin-mediated enzymatic cleavage results in 

the separation of the NICD and NECD to form a mature heterodimer131. The 

receptor is then trafficked to the membrane and, after interaction with ligand, two 

more cleavage events take place. S2 cleavage is catalyzed by ADAM 

metalloproteases and results in shedding of the NECD132. NECD remains 

associated with the ligand and is endocytosed by the signal-sending cell. It is 

thought that the tension of endocytosis leads to receptor conformational changes 

allowing S2 site exposure and successful recruitment of ADAM proteases133. In 

the intestine ADAM10 has been shown to be the protease responsible for this 

cleavage event134. The final cleavage, S3, is performed by the gamma-secretase 

complex, which releases NICD from the membrane to enter the nucleus135. 

 Once in the nucleus, NICD associates with a protein complex, including 

the DNA-binding protein RBP-J and the transcriptional activator MAML, to 

activate target gene transcription136. Alternatively, when NICD is not in the 

nucleus, RBP-J associates with a co-repressor complex ensuring target gene 

inactivation123. The duration of the Notch signal is relatively short, as NICD has a 

limited half-life137. Interaction with the co-activation complex leads to CDK8 

recruitment and phosphorylation, which quickly targets NICD for ubiquitin ligase-

mediated degradation137.  

 

Additional regulatory mechanisms 
 Like the receptors, Notch ligands require post-translational modifications 

for proper activation. This involves ubiquitination, endocytosis, and recycling 

back on the membrane, a process initiated by the Neuralized and Mindbomb 

family of E3-ubiquitin ligases138, 139. Absence of this step leads to ligand 

endocytosis and degradation138. 
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 Notch receptors are also actively endocytosed and degraded when not 

engaged by ligand. ITCH, DTX1 and DTX2 are E3 ligases that ubiquitinate 

receptors to incite lysosomal degradation140. Additionally, NUMB, an endocytic 

adaptor protein, functions to remove Notch from the membrane and associates 

with a number of different factors to promote receptor degradation11, 141. NUMB is 

segregated asymmetrically into daughter cells and is thought to regulate cell fate 

switches and asymmetric stem cell division124.  

 
Notch patterning mechanisms 

 Notch is critical for patterning throughout development. This is 

accomplished by several different mechanisms: lateral inhibition, lineage 

decisions, and boundary development142. The variety of outcomes offered by 

these patterning mechanisms allow this simple pathway to play key roles in the 

development or homeostasis of almost every organ or tissue system. A 

comprehensive list has been compiled by Andersson et al.11 and has been 

summarized in Table 1-1.  

 
Notch target genes 

 Despite its fundamental role in development and homeostasis only a few 

Notch target genes have been well characterized. These consist of the HES and 

HEY (or HERP) families of basic helix-loop-helix (bHLH) transcription factors143. 

bHLH proteins can function as both transcriptional activators or transcriptional 

repressors, but the HES/HEY family members function primarily as repressors143. 

In many cases this leads to repression of differentiation factors and cell cycle 

inhibitors. In the intestine, for instance, HES1 blocks the transcription of Atoh1, 

the transcription factor linked to secretory cell fate18, 78, 144, 145 as well as the 

cyclin-dependent kinase inhibitors p27Kip1 and p57Kip2 16, 146-148. Other tissue 

specific target genes have been identified, such as c-Myc in developing and 

leukemic T cells149, 150, and we have identified the ASC-marker Olfm4 to be a 

direct Notch target in the intestine13. Although Notch regulates many important  
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Table 1-1. Notch regulation in multiple tissue systems*
Organ/Tissue Processes regulated
Brain Balance between gliogenesis and neurogenesis, stem cell maintenance, 

neuroepithelial cell polarity
Breast Alveolar development, luminal cell fate, regulation basal cell proliferation
Craniofacial 
structures

Palate morphogenesis, tooth development
Ear Defines sensory epithelium, hair cell and supporting cell fate
Esophagus Regulates epithelial homeostasis
Eye Fiber cell differentiation, lens development
Heart Cardiac patterning
Hematopoietic 
system

Hematopoiesis, balance of B-cell/T-cell development, myeloid homeostasis

Intestine Regulates proliferation vs. differentiation, stem cell maintenance
Kidney Defines podocytes and proximal tubules
Limbs Digit morphogenesis

Liver Ductal plate formation, intrahepatic bile duct morphogenesis
Lungs Tracheal branching morphogenesis
Muscle Regulates satellite cell transition to myogenic precursors and myoblasts
Neural crest Cardiac patterning, Schwann cell proliferation, melanocyte stem cell 

maintenance
Pancreas regulates endocrine cell differentiation, endocrine precursor maintenance, 

inhibits terminal differentation of acinar cells, controls epithelial branching
Pituitary Regulates growth and proliferation. Specifies malanotropes and gonadotropes

Placenta Fetal angiogenesis, maternal circulatory and spongiotrophoblast development
Prostate Epithelial differentiation, branching morphogenesis, stromal survival
Sex organs 
and germ cells

Leydig progenitor cell maintenance, spermatogenesis, ooctyle growth

Skin Cell adhesion, proliferation, hair follicale differentiation and homeostasis
Spine/pinal 
cord/somites

Somite segmentation

Spleen Generation of T lineage-restricted progenitors and marginal zone B-cells, CD8- 
dendritic cell homeostasis

Stomach Luminal and glandular cell fate switch

Thymus Thymic morphogenesis, gamma delta T-cell differentiation

Thyroid Regulates cell number, differentation and endocrine function of thryrocytes 
and C-cells

Vasculature Arteriovenous specification, endothelial and vascular smooth muscle 
differentiation, blood vesssel sprouting and branching

* Table contents paraphrased from Andersson et al, 2011. Specific references are listed therein 
Red text indicates tissues where Notch is implicated in stem and progenitor cell maintenance as 
published in Andersson et al. Blue text is additional information from VanDussen et al., 2012
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processes in numerous tissues, surprisingly few target genes have been 

described. Identification of Notch target genes that mediate key cellular 

responses in the intestine will be an important future goal to understand the 

mechanism of action.  

 A new study in developing and leukemic T cells suggests that Notch 

transcriptional regulation may occur at a superenhancers, increasing promoter 

permissiveness at a large number of loci151. This may explain how Notch 

regulates widespread transcriptional programs with only a few known direct 

target genes. 
 
Notch components in the intestine 
 Notch signaling has been shown to play fundamental roles in intestinal 

homeostasis, and many efforts have been made to define the Notch components 

expressed in this tissue. In situ hybridization (ISH) has been employed to map 

receptor, ligand and target gene expression. Notch1 and Notch2 appear to be the 

primary receptors expressed in the epithelium152, although studies publishing 

expression patterns have reported inconsistent results. In one study, Notch1 was 

shown to be expressed throughout the crypt while Notch2 expression was found 

only in a few cells153. Other reports have shown ISH results with much broader 

Notch2 crypt expression14. Notch3 and Notch4 expression are present in the 

intestine but are confined to the mesenchymal tissue152, 153. A mesenchymal 

component of Notch1 has also been identified153. Notch ligands Jag1, Dll1, and 

Dll4 are all expressed in the intestinal epithelium, specifically localized to the 

crypt region152, 153. Finally, Hes1, 5, 6, and 7 are all expressed in the crypt 

epithelium, although Hes5 was also found in the mesenchyme152. 

  

Notch intestinal function uncovered with inhibition studies 

 Genetic and pharmacologic Notch inhibitory models and their intestinal 

phenotypes are listed in Table 1-2. In summary, inhibition of the pathway results 

in a profound transformation of the intestinal epithelium from predominantly 

absorptive enterocytes to secretory cells15, 16, 18, 27, 154, 155. This occurs due to de- 
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Category Gene/Target S* P^ Additional Findings Reference
f-RBP-J é ê weight loss, death Van Es et al., 2012; Riccio 

et al., 2008
Rosa26-LSL-
dnMAML

é ê Dempsey, unpublished

f-N1 No phenotype
f-N2 No phenotype
f-N1 + f-N2 é ê weight loss, death
f-N1 é weight loss, decreased 

stem cells
Chapter 2

f-Dll1 é mild phenotype
f-Dll4 no phenotype
f-Jag1 no phenotype
f-Dll1+f-Dll4 é ê weight loss, death, 

decreased stem cells
f-Dll1+f-Jag1 é mild phenotype

f-ADAM10 é ê Dempsey, unpublished
f-Mindbomb é ê mislocalized Paneth 

cells
Koo et al., 2009

f-Pofut1 é ê Guilmeau et al., 2008
Target gene f-Hes1 é precociuos Paneth cell 

differentiation
Jensen et al., 2000; 
Suzuki et al., 2005

chronic DBZ é ê weight loss, death, 
decreased stem cells

Milano et al., 2004; Van 
Es et al., 2005 ; 
Vandussen et al., 2012acute DBZ é é decreased stem cells Chapter 3

α-N1 N1 é ê mild phenotype, toxicity 
with irradiation

Wu et al., 2010; Tran et 
al., 2013; Chapter 2

α-N2 N2 no phenotype Wu et al., 2010
α-N1 + α-N2 N1+N2 é ê weight loss, death, 

decreased stem cells
Wu et al., 2010; Tran et 
al., 2013; Chapter 2

α-Dll1 Dll1 no phenotype Chapter 2
α-Dll4 Dll4 no phenotype Ridgeway et al., 2006, 

Chapter 2
α-Dll1 + α-
Dll4

Dll1 + Dll4 no phenotype Tran et al., 2013,   
Chapter 2

Table 1-2. Intestinal phenotypes of Notch inhibition models
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repression of Atoh1, as discussed above. While some studies have suggested 

that only goblet cells are aberrantly formed with Notch inhibition, our lab and 

others have shown that all secretory lineages are increased including goblet,  

Paneth, enteroendocrine, and tuft cells13, 148, 154. In addition to cell lineage 

specification, these Notch inhibition also results in decreased epithelial 

proliferation15, 16, 18, 154, 155. Finally, pharmacologic inhibition by dibenzazepine 

(DBZ) treatment or genetic inhibition by Dll1/Dll4 deletion showed loss of ASCs 

cells, suggesting a role for Notch in stem cell maintenance13, 15. 

 

Notch redundancy in the intestine 
 Since multiple Notch receptors and ligands are expressed in the crypt 

there has been interest in determining if these factors are functioning in specific 

cell populations or if they play distinct roles in the epithelium. To determine which 

Notch receptors function in ISCs, mouse genetic reporter models have been 

engineered to activate a reporter gene in cells undergoing active Notch signaling 

(Table 1-3). These Cre reporter mice have shown that both Notch1 and Notch2 

are expressed in a stem cell population14. However, Notch2 tracing occurred at a 

much lower frequency than Notch114, which could indicate that Notch2 is present 

in a more rare stem cell population, like a QSC, although construct mosaicism 

could also lead to this phenotype. 

 NOTCH1 and NOTCH2 were shown to be functionally redundant since 

genetic deletion of either receptor reportedly had no phenotype16. Other studies 

contested that Notch1 deletion has a mild secretory cell phenotype compared to 

pan-deletion155, 156. My work in Chapter 2 extends these findings to show that 

Notch1 is the primary receptor regulating both secretory cell fate decisions and 

stem cell maintenance. 

 Similar questions of redundancy have been addressed for epithelial Notch 

ligands. While DLL1, DLL4, and JAG1 are all expressed in the crypt, only 

combined deletion of Dll1 and Dll4 results in a severe secretory hyperplasia 

phenotype15. This suggests that DLL1 and DLL4 are the main ligands  
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Gene Construct Reference

NIP-Cre (N1-ICD 
replaced by CreERT2)

Vooijs et al., 2007, 
Pellegrinet et al., 2011

N1-CreERT2 Fre et al., 2011

N2-CreERT2 Fre et al., 2011

Dll1-GFP-ires-CreERT2 Van Es et al., 2012

Table 1-3. Notch reporter models

Finding

Fully labeled crypts/vili indicate that N1 
actiity occurs in stem cells

Fully labeled crypts/vili indicate that N1 is 
expressed in stem cells

Rare fully labeled crypts/vili indicate that N2 
is expressed in some stem cells

Short-lived secretory cell clones indicate 
Dll1 is expressed in secretory progenitor 
cells. Lineage tracing post-irradiation 
suggest that Dll1+ precursors revert back to 
stem cells with injury
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responsible for cell fate and stem cell maintenance, and that their function is 

largely redundant. 

 

Notch in disease  
Mutations in the Notch signaling pathway genes are associated with a 

number of human diseases, including T-cell acute lymphoblastic leukemia (T-

ALL) (Notch1), CADASIL (Notch3), Alagille syndrome (Jag1, Notch2), Hajdu-

Cheney syndrome (Notch2) and serpentine fibula polycystic kidney syndrome 

(Notch2)157. Additionally, alterations in Notch signaling have been associated 

with intestinal diseases, including inflammatory bowel diseases158, 159 and colon 

cancer160-162. Thus, Notch is a promising therapeutic target for disease. Since 

Notch is required for many tissue systems, a perfectly refined understanding of 

the effect of Notch activation or inhibition in targeted systems will need to be 

achieved. A large focus of this thesis, discussed in Chapter 2, is to understand 

the requirement of NOTCH1 and NOTCH2 in the intestine, which will be 

important information for treatment regimes targeted in the gut or delivered 

systemically. 

 

 

1.3: MATHEMATICAL MODELING OF THE INTESTINAL CRYPT 
 
A powerful system 

Mathematical and computational models are immensely powerful tools 

that can be used to probe biological systems in ways that may be very difficult to 

address experimentally. First, models can be used to test several parallel 

hypotheses to help narrow down the most likely biological explanation, which can 

be validated by in vivo analysis.  New experimental findings can then be 

implemented into the model, and reiterations can relay new questions. Repeated 

refining of the model through coupled experimentation can lead to the 

identification of the key mechanisms underlying the behavior of the system as a 

whole.  
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Modeling has long been used as a method to investigate cellular 

mechanisms of intestinal crypt homeostasis, tumorigenesis, and injury. The full 

potential of these models was not realized, however, due to the limited 

availability of stem cell markers to identify the location and numbers of ISCs as 

well functional assays to validate the models in vivo. Much progress has been 

made on these fronts, resulting in a recent resurgence in modeling efforts to 

study ISC function and crypt dynamics.  

 Modeling has been critical for understanding the viability of the immortal 

strand hypothesis as well as neutral drift dynamics. Additional modeling 

approaches have been used to understand cell-cell adhesion, flow, and migration 

within the crypt163, 164, which is important for understanding how stem cell 

progeny migrate out of the crypts as well as how Paneth cells travel to the base. 

 

Modeling stem cell number 
In light of the continued ASC/QSC dispute, there is no agreed upon 

number of total stem cells in the crypt. Interestingly, even the number of ASCs 

continues to be debated. Snippert et. al35 calculated the number of stem 

cells/crypt to be 14 +/- 2 cells. This was based on counting the number of GFP-

labeled LGR5+ cells intercalated between Paneth cells at the base of the crypt. 

More recent studies have challenged the idea that mere expression of Lgr5 

defines an ASC. The Winton lab has taken a stem cell marker-independent 

functional approach to define stem cells and has found that the number of stem 

cells per crypt is closer to six111. Additionally, this method identified that the rate 

of functional stem cell turnover much lower than previously predicted111.  With 

these new data, Kozar et al.111 re-modeled the neutral drift dynamics from the 

Clevers data set as well as their own experimental data. They found that their 

new parameters fit both sets of data better than the previously tested values111. 

This study provided further evidence for neutral drift dynamics in the crypt while 

also challenging the accepted values for stem cell number and cell cycle rates. 

This example demonstrates one of the most important strengths of modeling 

approaches: the ability to test publicly available data sets and possibly draw new 
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conclusions as more information from biological study is discovered and 

subsequently implemented in the modeling process. 

 

 
Types of crypt models 

Apart from the specific mathematical analyses used in these models, there 

are two broad modeling approaches that have been applied in this field: spatial 

models and compartmental models. Spatial models use a geometric lattice, 

algorithm or boundary conditions to organize individual cells in space. These 

models typically consider both crypt physical forces and cell-cell interactions and 

have recently been reviewed by De Matteis165. Compartment models, on the 

other hand, utilize the unique cellular organization of the intestine, with 

proliferating stem and progenitor cells at the base of the crypts and most 

differentiated cells migrating up the villi, to group cell lineages into discrete cell 

population compartments for analysis.  

A recent trend in crypt modeling is to try to incorporate everything that is 

known about the crypt, including crypt geometry, migration, stem cell division, 

niche signals, differentiation, and other factors into one comprehensive model166, 

167. While these models have been able to seemingly replicate many 

experimental outcomes, these efforts must be interpreted with caution, as these 

models are created to fill a set of known outcomes and are often filled with 

assumptions that cannot be validated experimentally. Models of this nature 

typically have rule-based algorithms that depend on cell location and identity to 

determine cell behavior. With all of the ambiguity surrounding the existence and 

function of QSCs, TA cell plasticity and required niche signals, it is premature to 

develop these types of comprehensive models of the crypt. For instance, a 

computational model of the crypt by Pin et al.167 defines QSCs as the same 

population as ASCs, but located higher up the crypt in a different Wnt gradient. 

While this is an interesting hypothesis, current data, summarized above, cannot 

determine if QSCs are an independent population, a subset of LGR5+ cells, or 

progenitor cells. 
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An alternate approach would be to tackle narrow questions to limit the 

amount of assumptions in the model. Compartmental models, which look at 

different cell lineages in the intestine as separate independent compartments, 

are ideally suited to answer many of the questions that dominate the ISC field. 

Depending on the specific question being asked, these compartments can be 

made as nuanced or broad as desired. For instance, we can consider a model 

with a stem cell compartment that is inclusive of all types of stem cells, or we can 

define compartments more specifically and designate ASC, QSC, and facultative 

TA cells as separate stem cell compartments. The advantage of this approach is 

that models can be developed to what is known at present and updated as more 

definitive information about stem cell populations becomes known. The benefit of 

working with such a model is that the simple design allows for addressing very 

specific questions. 

In Chapter 4 I utilize compartmental modeling to investigate stem cell 

dynamics in a system of acute Notch inhibition. To provide credence for using 

this technique, in the following section, I discuss in detail compartmental models 

that have successfully investigated various aspects of crypt homeostasis and 

tumorigenesis168, crypt recovery post-irradiation169, and crypt development170. I 

discuss the impact these models have made on the field and compare the 

various techniques employed. Finally, I discuss how compartmental modeling 

can be used to answer some of the lingering questions remaining in the ISC 

biology field. 

 

Compartmental models of homeostasis and tumorigenesis 

 The level of cellular proliferation and turnover in the intestine is quite 

remarkable. In humans, an estimated 1011 cells are shed and replaced every 

day171. Colon cancer remains the third most prevalent and third most deadly 

cancer172, thus, appreciating how normal proliferation is kept in check is essential 

for understanding when these processes go awry and lead to tumor formation. 

Early theories proposed that tumor initiation could be mediated by mutations that 

led to increased cellular proliferation of immortal stem cells173. Fearon and 
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Vogelstein174 contextualized these mutations with their genetic model for tumor 

initiation in the colon, characterized as a systematic acquisition of mutations: 

both activation of oncogenes and loss of tumor suppressors. More recently, 

modeling of colorectal tumors showed that as tumors grow they become more 

heterogeneous as new mutations are acquired175, 176. This heterogeneity implies 

that more than one treatment approach is needed to eradicate the tumor. 

Modeling has also been used to directly determine how therapies should be 

applied. For example, a model of colon cancer carcinogenesis and tumor 

response to irradiation has been developed to better tune dosing of radiation 

therapy177. 

In 1995, Tomlinson and Bodmer178 probed the mechanisms through which 

mutations act to incite tumor initiation with their computational model of crypt 

homeostasis and tumorigenesis. This simple model divided the crypt into 3 

compartments: stem cells, semi-differentiated cells, and fully-differentiated cells, 

with cell populations determined by the rates of death, differentiation, renewal, 

and removal (Figure 1-6). The model was simplified to assume that all cell 

divisions occurred synchronously and updated at each subsequent generation. 

This study178 explored normal cell division as well as the resulting effect on 

cellular homeostasis when changing the rates of cells undergoing death or 

differentiation in each compartment. The findings were striking: under normal 

conditions, this model found that there are very stringent parameters that must 

be met in order for steady-state to be reached; small perturbations in rates of 

death, differentiation, or renewal led to exponential growth or decay. Importantly, 

the model178 suggested that alterations in stem cell number that lead to 

tumorigenesis might be through mechanisms other than simply increased stem 

cell proliferation rate, highlighting that it is not necessarily the mechanism of a 

tumorigenic mutation that is of key importance, but the crypt compartment that is 

affected.  

Several models have been adapted from the general framework of the 

Tomlinson and Bodmer178 study. In particular, Johnston and colleagues168 aimed 

to improve the model by eliminating synchronous division as a simplification to  



Figure 1-6.  A compartmental model of crypt homeostasis and 
tumorigenesis. (A) An illustration of the colonic crypt as modeled by Johnston 
et al. Unlike the small intestine the colon does not have villi nor traditional 
Paneth cells. (B) Compartmental model diagram adapted from Figure 1 of 
Johnston et al.167. Cell populations include stem cells, semi-differentiated cells 
and fully differentiated cells. Cell flows into and out of the compartments are 
indicated by arrows and are defined by rates of death, differentiation, and 
renewal from the stem and semi-differentiated compartments. There is no 
renewal in the fully differentiated compartment and cells leave by removal.
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more closely match crypt physiology. To do this they created two different 

revisions of the model: an “age-structured model” using partial differential 

equations that takes into account asynchronous cell divisions and a “continuous  

model” using ordinary differential equations (ODEs) that looks at the average cell 

population over time. In the age-structured model they explored the effect of cells 

in each compartment being in different stages of the cell cycle prior to 

undergoing renewal, differentiation, or death at certain time points. The resultant 

population of semi-differentiated cells from a crypt that started with all cells at the 

same point of the cycle was compared to one that started with an evenly 

distributed age profile. Since this resulted in similar populations, they concluded 

that it was unnecessary to specifically follow each cell’s age, and validated the 

use of the continuous model to study this system.  

Johnston et al.168, like the Tomlinson and Bodmer model178, found that 

both the age-structured and continuous models were “structurally unstable”, that 

is they reach stable steady-state cell populations only at very precise parameter 

values. Any deviation from these values results in exponential growth or decay of 

the crypt. In the intestine, unbounded growth would be equivalent to 

tumorigenesis and decay would result in eventual crypt loss. Due to this 

complication, Johnston et al.168 sought to test feedback mechanisms to model 

the steady-state that occurs in the actual crypt during homeostasis. Two 

alternative feedback models were tested, “linear feedback” and “saturating 

feedback”. In the linear feedback model, logistic growth of the stem cell 

population was implemented leading to a limited population size. In this case, 

tuning the parameters below a certain point resulted in exponential decay, but 

unlike the model without feedback, no set of parameters resulted in exponential 

growth. Effectively, the linear feedback model creates a crypt that is incapable of 

initiating tumors no matter how many mutations are accumulated that change cell 

renewal and differentiation rates, unless the mutation compromised the feedback 

mechanism.  

In the saturating feedback model168, rather than limiting total population 

size, feedback was incorporated to only limit the rate of differentiation. With this 
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feedback, three states of stem cell population growth were possible: crypt 

extinction, homeostasis, and exponential growth. Thus, the saturating feedback 

model establishes a simple model to explore the initiation and growth kinetics in 

tumorigenesis associated with multiple mutation acquisition. Alterations in the 

rate of renewal, differentiation, and death due to genetic mutations would change 

the governing rate parameters, leading to altered steady-state populations.  

Several studies have confirmed that the Johnston et al.168 model predicts 

experimental findings in tumorigenesis179, 180. Additionally, there have been 

adaptations of the model for colon cancer and other systems. For example, one 

study maintained the general framework of the model but included telomere 

length as a parameter that was regulated by location in the stem cell niche181. In 

another study182, the Johnston et al.168 scaffold was used to build a model for 

hematopoiesis and treatment of Chronic Myeloid Leukemia (CML). This study182 

tested synchronized discrete, age-structured, and continuous models with 

feedback mechanisms to determine that modulating growth factor signaling 

through the use of tyrosine kinase inhibitors should be able to cure CML by 

regulating CML progenitor cell populations. 

 

A compartmental crypt post-irradiation model 
 As discussed above, irradiation leads to severe intestinal damage. In fact, 

understanding both early and late injury responses has been a key interest in the 

field183. Additionally, acute irradiation damage has been used as a mechanism to 

study pathways involved in intestinal recovery, and, as mentioned above, has 

been a key tool in studying activation of QSCs. The acute irradiation response 

can be distilled into two stages. Initially, there is crypt apoptosis, mitotic arrest, 

and a decrease in both crypt and villus cell numbers184, 185. Next, there is a robust 

rebound “overshoot” in population before homeostasis is re-established184. 

Paulus et al.169 aimed to create a model that would faithfully replicate the post-

irradiation recovery to test their hypothesis that the damage control response 

resided solely in the stem cell compartment. They engineered a compartmental 
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model of the crypt to map the effect of the post-irradiation response on stem and 

TA cell populations (Figure 1-7). 

Prior to the publication of Paulus et al.169, several models had been 

designed to describe the intestinal response to irradiation. Many of these  

attempts were fueled by the observation that irradiation injury leads to shortened 

villi prior to crypt expansion and proliferative cell surge184. This was first 

investigated in the compartmental model by Sato et al.186, which posited that 

irradiation-induced changes to cell number and proliferation were generated from 

a feedback mechanism where villus damage sends signals to the crypts to 

regenerate.  One complication with this hypothesis was the observation of subtle 

changes in the crypt prior to the onset of villar atrophy, suggesting that not all of 

the effects originated from a villus feedback mechanism187.  

Paulus et al.169 challenged the idea that the irradiation recovery response 

had any aspect of villus-to-crypt feedback. Rather, they hypothesized that all 

cellular consequences could be traced back to changes in the stem cell 

compartment. Their study tested whether a stem cell-centric response could 

replicate the experimental findings in cell number, labeling index (incorporation of 

a tritiated thymidine label), and mitotic index in the post-irradiation recovery. To 

begin their model, they drew from a comprehensive data set that included 35 

time points after various irradiation doses from 2.5-12Gy. In these experiments, 

mice were administered tritiated thymidine 40 minutes prior to sacrifice, and ileal 

crypts were scored for labeling index and mitotic activity on histological sections. 

Paulus et al.169 used an agent-based approach, a computational model 

where cells are modeled as autonomous decision-making entities called agents 

that behave according to a set of rules defined from experimental observations of 

the phenomenon under investigation. Unlike many agent-based models that align 

cells to a geometrical lattice, this model situated the cells into one of six 

compartments: stem cells (A), four TA cell compartments (T1-T4) and 

differentiated cells (D) (Figure 1-7A). Each compartment contained sub-

compartments allocated to specific portions of the cell cycle (Figure 1-7B). 

Movement of cells from one compartment to the next was based on two  



Figure 1-7.  A compartmental model of crypt post-irradiation recovery. (A) 
Diagram of the cell population compartments of the crypt post-irradiation model 
adapted from Figure 2 of Paulus et al.168. Cell populations include stem cells 
(A), TA cells (T1-T4), differentiated cells (D), and previously proliferative cells 
that stopped cycling due to irradiation injury (D’). Cells move from one 
compartment to the next after completing the cell cycle. Cells in A and T1 can 
re-enter their compartment with the probability pA and pT1, respectively. (B) 
Diagram of different cell cycle subcompartments are shown. (i) 
Subcompartments during steady state when the cell cycle time is 24 hours for A 
and 12 hours for T compartments. Cells (white circles) advance to the next 
subcompartments every hour of the simulation. For clarity we have included 
G1, S, G2 and M phases of the cell cycle, but the lengths of G2 and M that 
were used during the Paulus et al.168 simulation was not made clear in the 
manuscript. (ii) Normal stochasticity in the model. Cell cycle time was allowed 
to vary slightly for each individual cell. This variation was limited to the G1 
compartment and was achieved by skipping a subcompartment. Renewal in the 
A and T1 compartment was accomplished by re-entering the first G1 
subcompartment after completing M phase. (iii) Alteration in subcompartments 
after maximal irradiation injury, where cell cycle lengths are decreased to 8 
hours. 
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regulated processes during the simulation: cell cycle time and self-maintenance 

probability; all other parameters were held constant. During the simulations, cell 

cycle time was very highly regulated based on experimental findings: 24 hours 

for stem cells and 12 hours for TA cells during steady-state; but after irradiation 

injury, cell cycle for both populations was shortened, with a minimum cell cycle 

time of 8 hours. Additionally, the number of stem cells in the crypt influenced 

stem cell cycle time, while TA cells were not regulated in this fashion. The model 

also embraced the idea of TA cells as potential stem cells, although it is assumed 

that only T1 cells have self-renewal capabilities. Therefore, after completing the 

cell cycle, cells in the A and T1 compartments either moved to the next 

compartment or re-entered the same compartment with the probabilities pA and 

pT1. 

Paulus et al.169 used data from administration of 8Gy irradiation to fit their 

parameters: cell death, “irreversible proliferative inhibition” i.e. removal of 

previously proliferative cells to a non-proliferative compartment (D’), mitotic 

delay, cell numbers, cell cycle times, and villus transit time. With these 

parameters, they were able to replicate the observed labeling index and cell 

numbers, including the expected overshoot in population, simply by regulating 

cell cycle time and self-maintenance probability.  To validate their model, they 

changed the initial values to match the observed cell numbers after 2.5Gy and 

12Gy irradiation, and again were able to replicate the labeling index and 

overshoot populations observed after these levels of irradiation damage. 

The Paulus et al.169 model served its goal to debunk the idea that the 

irradiation-response is a villus feedback mechanism. More recent studies have 

made it clear that the acute post-irradiation response is a crypt-centric process 

fueled by stem cell proliferation5, 39. Interestingly, although some stem cells 

undergo apoptosis after irradiation, a recent study showed that surviving ASCs 

possess radioresistance by activating DNA-damage repair processes4. 

Additionally, a recent study investigating lineage tracing of SOX9-EGFP during 

post-irradiation showed a marked increase in SOX9-EGFP low cells (which are 

thought to be CBCCs), but also found increased numbers of SOX9-EGFP high 
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cells (which are thought to be differentiated enteroendocrine cells5.)  This finding 

suggests that more mature cells can de-differentiate to replace lost stem cells, 

not just the T1 compartment as proposed by Paulus et al.169. 

 

A compartmental model of stem cell expansion during development  
 In the adult intestine, stem cell divisions must result, on average, in one 

stem cell and one TA cell in order to maintain homeostasis. This is usually 

termed asymmetric stem cell division, since the two daughter cells are of different 

lineages. Asymmetric division is one of the defining characteristics of stem cells 

as it allows for self-renewal188, 189. However, stem cells must also possess the 

ability to divide symmetrically to increase numbers in development and after 

injury190. This property is especially crucial as the intestine grows in length and 

develops crypts during postnatal development.191  
There have been a number of mathematical models probing the question 

of stem cell symmetry in adult tissues.  Clayton et al.192 devised the first model of 

this kind for the mammalian epidermis, demonstrating that stem cells had 

flexibility in cell division symmetry. Their probabilistic model of clone labeling 

concluded that adult skin stem cells were undergoing asymmetric division 84% of 

the time and symmetric division 16% of the time192. In the intestine, mathematical 

models of stem cell symmetry have come to slightly different conclusions. As 

mentioned above, neutral drift studies have suggested that stem cell division 

results in two equipotential daughter cells, which compete for spots in the niche. 

Essentially this means that stem cell divisions never truly occur asymmetrically, 

rather that population asymmetry occurs via stochastic availability of niche 

positions35, 64. While these studies call into question asymmetric division, they do 

indicate precedence for symmetric division in the intestine, the mechanism 

assumed to be essential for stem cell expansion.  

Itzkovitz et al.170 aimed to answer the question of exactly how shifts 

between asymmetric and symmetric stem cell division can create a mature crypt 

in the developing intestine in the optimal, or shortest, amount of time. The main 

question the group focused on was if there were multiple types of cell division 
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occurring simultaneously or if all cells completed similar types of division during 

the same window of time. This compartmental model defined two cell 

populations: stem cells and non-stem cells. Differentiated cell populations were 

not directly addressed, however non-stem cell extrusion was included as a 

possible outcome of cell division. The system is defined by a set of stochastic 

ODEs where the state variables are the population of stem cells and non-stem 

cells. The parameters include rates of stem cell and non-stem cell division, as 

well as extrusion from the non-stem cell compartment. The number of cells are 

governed by the probabilities that each compartment will undergo symmetric or 

asymmetric cell division.  

Since more than one type of symmetric stem cell division is addressed in 

the model, a shorthand nomenclature is used for this discussion: symmetric (S) 

or asymmetric (A), with a number indicating stem cell (1) or non-stem cell (2) 

progeny (Figure 1-8). The authors170 started with the assumption that 

development of mature intestine occurred with a certain probability of S1 and A 

stem cell divisions, but no S2 division. They next utilized optimal control theory193 

to determine the probabilities of each of these division events to take the initial 

population of cells at birth to the population of cells in the mature crypt in the 

least time possible. As the immature gut contains only a short supply of 

differentiated cells at birth191, 194, the authors rationalized that time was the 

driving force for creating a mature crypt.  

By solving for minimal time, they found that all stem cells would always 

divide the same way at the same time, either S1 or A, never mixed170.  With this 

criteria, there are two options for behavior, 1) cells will always divide the same 

way with no transition to another type of symmetry or 2) cells can switch which 

type of symmetry they undergo one or multiple times until maturation is achieved. 

The authors found that in order to reach mature crypts in the minimal amount of 

time symmetry would need to switch once and only once during development. 

Thus if the stem cells started with S1 division they would all switch to A division 

and continue dividing asymmetrically until the mature crypt was established. 

Alternatively, stem cells could begin with A division and switch to S1. This type of  



Figure 1-8.  A compartmental model of crypt development.  This figure has 
been adapted from Figure 3 of Itzkovitz et al.169 (A) Definitions of types of stem 
and non-stem cell divisions. Stem cells can undergo two types of symmetric 
division, S1 and S2, or asymmetric division, A. Non-stem cells always divide 
symmetrically or are extruded from the crypt. (B) Depiction of the two types of 
“bang-bang” model outcomes. The rounds of division have been limited to 5 for 
clarity. The left cell lineage tree shows bang-bang division that shows a switch 
from S1 stem cell division to A division. The right lineage tree shows A division 
preceding S1 division. (C) Depiction of the “overshoot” model where stem cells 
undergo S1 division followed by S2 division. The final cell composition is the 
same as the bang-bang models, but it only takes 4 rounds of divisions instead of 
5 to achieve this. 
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control mechanism containing a single on/off switch in behavior is referred to as 

“bang-bang control”195, 196.  

Next, the authors170 embraced the idea that stem cells could divide 

symmetrically into two non-stem cells (S2 division) (Figure 1-8).  Strikingly, they 

found that if S1 divisions occurred for the duration of crypt development, with the 

last round of divisions switching to S2, they could also achieve mature crypt 

populations, without any A divisions. Importantly, this approach led to 

overshooting the mature crypt stem cell population, before attaining normal 

levels. Interestingly, this “overshoot” model resulted in mature crypt formation in 

less time than with bang-bang control (Figure 1-8). 

Itzkovitz et al.170 then investigated in vivo their “bang-bang” vs. “overshoot” 

control findings. They used Lgr5 in situ hybridization to visualize stem cells and 

performed a kinetic analysis to measure proliferation rates. First, they found that 

the proliferation rate of stem cells and non-stem cells was maximal during crypt 

development, which was in accordance with their prediction for attaining mature 

crypts in minimal time. In fact, they measured stem cell cycle time (15.7 hours) to 

be essentially the same as TA cell time (16.9 hours), a marked decrease from 

the normal adult stem cell cycle time (22.4 hours). They were able to feed these 

proliferation rates back into their model to determine that the type of “bang-bang” 

control that would be favored is S1 division followed by A division. Additionally, 

their Lgr5 in situ data showed that developing crypts were initially filled, almost 

exclusively, with stem cells, and only later contained non-stem cell progeny, 

nicely corroborating this prediction. Importantly, they did observe Lgr5- non-stem 

cell progeny prior to the last round of division, which surprisingly favored the less 

efficient “bang-bang” model over the “overshoot” model. Finally, they performed 

lineage tracing studies that showed that they never observed S2 division, 

suggesting that the “overshoot” mechanism did not occur. Interestingly, this is in 

direct contrast to the findings in adult intestines, where S2 division is predicted to 

frequently occur35, 64. This inconsistency could point to a difference in the 

regulation of stem cell symmetry specifically during development or could call 

these earlier results into question. 
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The Itzkovitz et al.170 model exemplifies the importance of closely linking 

mathematical modeling efforts with in vivo validation. Had they only relied on 

their modeling data they may have assumed that the mechanism of crypt 

development was the “overshoot” model since it reached maturity in less time 

than the “bang-bang” control model.  

Although only recently published, the work by Itzkovitz et al.170 has 

spurred investigation into the discrepancy it introduced regarding the absence of 

S2 division in the developing intestine. Hu et al.197 reported both in vivo and 

modeling data suggesting that stem cell symmetry shifts from strict asymmetry 

(via A division) to population symmetry (via stochastic S1 and S2 division) with 

intestinal maturation. This report suggests that Itzkovitz et al.170 and the adult 

modeling studies by Lopez Garcia et al.64 and Snippert et al.35 could be correct 

and that stem cell symmetry is dependent on tissue age. 

 

A comparative look at crypt compartment models  
While the theoretical models discussed above share the feature of 

analyzing the intestinal epithelia as compartmental populations, the 

compartments that they utilize and the mathematical/computational approach 

that they employ are very different: Johnston et al.168 applied ODEs and partial 

differential equations, Paulus et al.169 embraced an agent-based model, and 

Itzkovitz et al.170 used a stochastic ODE system. These differences emphasize 

the versatility of the compartment modeling approach; many different types of 

questions can be addressed simply by restructuring the compartments and 

altering the theoretical framework. Since each approach is best suited to a 

specific type of system, it is wise to carefully consider which method will best 

answer the anticipated questions. There are strengths and weaknesses for each 

of these approaches.  
Johnston et al. model. The Johnston model168 comes to the conclusion 

that an ODE-derived “continuous” model is the simplest and most appropriate 

model of crypt homeostasis, and that changes in the rate parameters can be 

modulated to model both homeostasis and the process of tumorigenesis. Since 
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ODE models look at averages of cells over time, they assume that the cells in the 

system are uniform and that cell number is very large. Additionally, neither ODE 

nor partial differential equation models can resolve changes in small cell 

numbers that occur rapidly or transiently. While the number of cells in the 

intestinal crypt range in the several hundred, the number of stem cells is 

estimated to be 6 to 14 per crypt35, 111. This population number is too small to be 

well-described with a deterministic ODE model. When there are very small 

numbers like this, small random variations in stem cell number due to 

asymmetric vs. symmetric stem cell division can only be accurately captured with 

stochastic models. This does not invalidate the model, but does limit the 

questions that the model can answer.  For example, this model would be 

inappropriate to probe post-irradiation recovery where the changes in stem cell 

number change very quickly.  

Another weakness is that this model treats the TA, or semi-differentiated 

cell population, essentially as a stem cell population, which does not reflect crypt 

physiology. In order to appropriately capture the limited cell divisions in the TA 

compartment this model would need to use discrete equations or an agent-based 

system. 

 Paulus et al. model. The Paulus et al.169 model of crypt post-irradiation 

recovery takes a unique approach. They treat cells as individual agents, but 

distribute the cells into compartments and follow each one through sub-

compartments that reflect cell cycle time. One of the strengths of an agent-based 

approach is that all cells are accounted individually so the model allows for small 

cell numbers and rapid changes in cell populations. One of the disadvantages of 

agent-based models is that they have arbitrary physical units, which need to be 

explicitly defined a priori to interpret the simulation results with the experimental 

findings198. Unlike most agent-based models, however, the Paulus et al.169 model 

is free from a geometrical lattice and cells are not influenced by the behavior of 

neighbors. Although individual cell interactions cannot be resolved in a model like 

this, population-level behavior can be inferred. For instance, the probability that a 

T1 cell can re-enter the T1 compartment is dependent on the population of stem 
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cells in the A compartment. This approach could be used to ask questions about 

homeostasis or tumorigenesis, and would be informative to probe the interaction 

between different stem cell populations. 

Itzkovitz et al. model. The Itzkovitz et al. model170 used a stochastic ODE 

system to model the probabilities of symmetric or asymmetric stem cell division 

during the process of crypt development. One of the assumptions this approach 

makes is that the mechanisms controlling crypt development are optimized to 

take the shortest amount of time biologically possible. This is a stringent feature 

that leads to the conclusion that stem cell divisions occur via “bang-bang” control. 

If time were not the determining factor, the optimal control theory would be the 

wrong approach to take. A strength of this model is it was validated in vivo, and 

the model clearly helped to inform the appropriate experiments to perform in this 

respect. This is one of the most important aspects of these types of models: the 

ability to inform biological experiments to test mechanisms regulating the 

complex process of epithelial cell homeostasis.  

Weaknesses of this model include failure to address that the developing 

intestine does not receive all of the mature niche signals199. Since the niche is 

changing as crypt expansion occurs, it is possible that the rates of division 

intrinsic to the stem cell population could change throughout the process. They 

also assume that the crypt starts with one stem cell and zero TA cells, which 

does not account for any immature proliferative cells that may be located in the 

intervillus zone. The timing for TA cell appearance has not been critically 

determined, but cells expressing differentiated cell markers are apparent in 

prenatal intestine and intestinal function to absorb nutrients is essential upon 

birth, so differentiated cell populations must occur before crypts mature191. 

Finally, Itzkovitz et al.170 determined that there is a shift from stem cells dividing 

symmetrically to asymmetrically during crypt maturation. Notably, their in vivo 

studies determined that Paneth cells were not responsible for this shift because 

the timing occurred prior to Paneth cell maturation170. One option they did not 

address is whether signaling for the shift could occur through immature Paneth 

cell precursors, which have not been well defined in the immature intestine. 
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Immature intestine contains cells that express Paneth-like markers, which may 

provide signals to the developing ISCs to regulate their behavior. If the process 

of ISC maturation is totally independent from Paneth-like cell development, then 

it will be important to identify which signal may control this process during 

intestinal development. 

 

Future directions for modeling intestinal dynamics 
The models that have been discussed above utilized a compartmental 

framework to investigate the mechanisms of tumorigenesis, post-irradiation 

recovery, and development. All of these models have been able to answer 

specific questions about their system, and Paulus et al.169 and Itzkovitz et al.170  

validated their models with in vivo data. Itzkovitz et al.170 went even further to use 

their model to design new experimental approaches and used those results to 

further refine their model. We believe that similar techniques can be used to 

tackle some of the lingering questions that remain in the field of stem cell biology. 

1) How is stem cell number regulated? Modulations of several signaling 

pathways as well as various injury models have dramatic effects on stem cell 

numbers in the crypt. Some of these perturbations can result in loss of all CBCCs 

or reduction to a single stem cell. After recovery, stem cell populations return to 

normal, approximately 16 CBCCs/crypt. Compartmental modeling of stem cell 

populations in normal conditions compared to models of unbounded growth, can 

provide insights into exactly what signals are necessary for regulation of stem 

cell number. Use of CBCC markers like the Lgr5-GFP-CreERT2 mouse32 can be 

used to validate stem cell numbers in different conditions. Compartmental 

models can also help to answer the questions of whether all ASCs are equal or if 

there are subpopulations even within the Lgr5+ stem cell population. This would 

simply require sub-compartmentalizing these cells. Because a model like this 

would be working with very small numbers it would be best to use a stochastic 

model or an agent-based design to track cells individually. 

2) Are ISCs completely defined by the niche? A compartmental model 

investigating this aspect of stem cell biology could distinguish between two 
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possibilities: all cells are potential stem cells if they are exposed to niche signals 

or only cells possessing intrinsic stemness can become stem cells once they are 

in the niche. Like the Paulus et al.169 model this could be achieved by a 

subcompartment approach, where the large compartments would be niche and 

not niche, and the smaller compartments would be the cell populations. Total cell 

population censes would be measured with the inclusion of a intrinsically 

programmed cell compartment compared to a compartment that contained 

equipotential potential stem cells.   

3) Is there a dedicated QSC population? A compartmental model testing 

this question would need to address whether QSCs are always in existence, or 

whether they only arise during times of injury by de-differentiation of TA and 

differentiated cell populations. If QSCs are a true population then crypts 

containing these cells would have a slightly higher cell population than a crypt 

where QSCs are actually cells with other functions. Very refined cell counting in 

vivo would be required to determine if this additional cell compartment exists. 

4) What is the nature of the TA compartment? A model of TA cells could 

investigate the stringency of the number of divisions that these cells undergo. 

Proliferating cell numbers during homeostasis, injury, and post-injury could be 

utilized to determine if TA cells have an intrinsic division limit, or if the number of 

divisions is externally regulated. Although there are no specific markers for TA 

cells, TA cell number can be approximated by subtracting the number of stem 

cells from the total number of cells that proliferate during a 12-hour window. 

There are a number of other ways that these questions can be 

approached, combining in vivo and modeling techniques. A spatial model that 

takes into account crypt size boundaries as a regulatory mechanism, for 

instance, might best answer the stem cell number question. This would be 

combined with very careful measurements of crypt circumference to determine if 

stem cell number/crypt varies based on crypt size.  

Regardless of the specific modeling method used, the key issue is to keep 

the models focused and modest. By limiting the number of parameters in the 

system, we have the best chance to validate and refine the models 
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experimentally. This generates small-scale models that can be very powerful in 

generating new testable questions. Ideally, these smaller scale models would 

also be useable by non-experts, which would allow for more utilization of the 

combined in vivo/in silico approach and would fuel further advancement of the 

field. 

 

 
1.4: THESIS OVERVIEW 

The thesis research that I have undertaken has focused on how the Notch 

signaling pathway regulates stem cell dynamics. I have approached this question 

using mouse models of pharmacologic inhibition, and genetic inhibition or 

activation of the pathway and focusing on the temporal consequences of Notch 

inhibition.  

In Chapter 2, I investigate the specificity of Notch receptors in intestinal 

epithelial differentiation and stem cell maintenance with genetic models of 

Notch1 and Notch2 deletion. I discovered that NOTCH1 is the main receptor 

controlling differentiation in the intestinal epithelium as deletion of Notch1 alone 

results in secretory cell hyperplasia and stem cell loss. Additionally in Chapter 2, 

I use a Notch activation model to understand how constitutive Notch signaling 

affects the intestinal epithelial proliferation and differentiation profiles. To assess 

this I utilized the Villin-CreERT2 x Rosa26-LSL-NICD-nGFP model, which leads to 

expression of activated NICD in the intestinal epithelium. In this system I found 

that proliferation is increased, and that all types of differentiated cells are 

decreased. This is important since earlier works suggested that Notch activation 

results in an increase in the absorptive lineage at the expense of secretory 

cells17, 78.  

In Chapter 3 I investigate the short-term dynamics of stem cells after 

Notch signaling is turned off, by using an acute DBZ model. Since chronic Notch 

inhibition is typically associated with decreased proliferation and increased 

secretory cells, I was surprised to find that acute DBZ led to a both increased 

proliferation and increased secretory cell production, as well as decreased 
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CBCCs. I hypothesized that a Notch-dependent change in stem cell symmetry 

could explain both the proliferation and stem cell phenotypes observed in both 

chronic and acute Notch inhibition, and used a compartmental mathematical 

model to test this hypothesis. Furthermore, since CBCC loss is associated with 

QSC activation, I use a post-irradiation DBZ model and genetic deletion of Notch 

in QSCs (Bmi1-CreER x floxed-Rbp-j) to determine if Notch is required for QSC 

activation.  

In Chapter 4, I build and test a discrete compartmental model of the 

intestinal crypt for the purpose of testing our stem cell symmetry hypothesis. I 

found that stem cell symmetry could explain our chronic and acute DBZ 

proliferation findings, but only in the context of Notch-dependent stem cell 

repopulation. 

Finally, in Chapter 5 I put my work in the context of the field and 

demonstrate how these findings have provided important insights in ISC biology. 

I end with future directions and propose experimentation to further understand 

Notch receptor function in niche specification and ISC dynamics. 
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CHAPTER 2 
 
 

NOTCH1 IS THE PRIMARY RECEPTOR REGULATING INTESTINAL STEM 
CELL HOMEOSTASIS 

 

 

 

 

2.1: SUMMARY 
 The Notch signaling pathway controls intestinal epithelial differentiation, 

proliferation, and stem cell maintenance. Two Notch receptors, Notch1 (N1) and 

Notch2 (N2), are expressed in the epithelium, but the contribution of each 

receptor for these functions is unclear. In this study we use pan-epithelial genetic 

deletion of N1 and N2 to show that loss of N1 alone results in secretory cell 

hyperplasia and decreased LGR5+ stem cells. Interestingly, the secretory cell 

hyperplasia of the N1 deleted intestine almost completely normalizes by two 

months; however, N1 deletion renders the intestine incapable of post-irradiation 

recovery. Finally, we examine the combined roles of N1 and N2 on intestinal 

homeostasis. Our results suggest that N1 is the primary receptor involved in 

secretory cell fate decisions and stem cell maintenance, and that N2 plays a 

small role in differentiation, but a larger role in regulating proliferation. These 

results are critical for the continued understanding of intestinal stem cell 

regulation as well as potential complications with therapeutic Notch receptor 

blockade. 
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2.2: INTRODUCTION 
 In order to provide efficient digestive and barrier functions to the gut, the 

intestinal epithelium requires constant renewal of all of its absorptive and 

secretory cell populations, a process that is fueled by a highly proliferative 

intestinal stem cell compartment and regulated differentiation process.  

 The Notch signaling pathway is required for proper regulation of intestinal 

epithelial cell fate. Active Notch signaling is essential for specification of the most 

common cell type in the epithelium, the absorptive enterocyte1-3. Inhibition of the 

pathway by pharmacologic or genetic means leads to formation of secretory cell 

types such as mucin-producing goblet cells, hormone-secreting enteroendocrine 

cells, and antimicrobial peptide-secreting Paneth cells, at the expense of 

absorptive cells4-7. Notch signaling, in addition to Wnt, has been shown to be  

crucial for maintenance of proliferating progenitors1, 3, 5, 8, and we previously 

determined that Notch was necessary for stem cell survival4.  

 Expression of the 4 known Notch receptors (N1-4) and 5 ligands (Dll1, 3, 4 

and Jag1 and 2) is temporally and spatially controlled for proper development 

and homeostasis of many tissues. N1 and N2 are both expressed in the adult 

intestinal epithelium9-11, but individual roles for each receptor is not well 

understood. 
 Previous studies investigating N1 and N2 function utilizing humanized 

inhibitory antibodies suggested a role for N1 in regulating intestinal homeostasis, 

as α-N1 treatment showed a mild secretory cell hyperplasia12 and decreased 

intestinal proliferation and toxicity when paired with irradiation damage13 (see 

Appendix 1). Specific intestinal epithelial genetic deletion studies, in contrast, 

reported that N1 and N2 single deletions had no phenotype, and thus N1 and N2 

were thought to be fully functionally redundant in the gut14. Due to the important 

therapeutic implications of intestinal Notch regulation, it is critically important to 

reconcile these disparate findings. 

 In this study we use a genetic deletion model to definitively show that N1 

is the predominantly active Notch receptor in the intestinal epithelium, as N1 

deletion results in secretory cell transformation and impaired stem cell 



 70 

maintenance and repair function. Furthermore, we investigate the dynamic 

regulation of lost N1 signal and expand on the understanding of how N1 and N2 

function together to regulate proliferation and differentiation in the intestine.  

  

2.3: MATERIALS AND METHODS 
Mice 

Floxed-Notch1 (N1F/F)15 (Jackson Lab, no. 007181), floxed-Notch2 (N2F/F)16 

(Jackson Lab, no. 010525), floxed-Rbpjκ (RbpjF/F)17 (gift from T. Honjo), Rosa-

LSL-NICD-IRES-nGFP (NICD)18 (Jackson Lab, no. 008159), Villin-CreERT2 19 

(gift from S. Robine) and Lgr5-GFP-IRES-CreERT2 (Lgr5-GFP)20 (Jackson Lab, 

no. 008875) alleles were verified by PCR genotyping with the primers listed in 

Supplementary Table 2-1.  All crosses were maintained on a C57BL/6 strain 

background. Mice were housed in ventilated and automated watering cages with 

a 12-hour light cycle under specific pathogen-free conditions. Protocols for 

mouse usage were approved by the University of Michigan Committee on Use 

and Care of Animals. 

 

Animal treatment protocols and tissue collection 

 To activate CreER recombination, mice were injected intraperitoneally with 

100mg/kg tamoxifen (Sigma) once per day for 5 days and tissue was collected 

on day 6 unless otherwise noted. To induce intestinal injury, animals were 

exposed to one dose of 12Gy whole body irradiation from a 137Cs source. 

Animals were fasted overnight and injected intraperitoneally with 25 mg/kg 5-

ethynyl-2´-deoxyuridine (EdU) (Life Technologies) 2 hours prior to tissue 

collection. Intestinal tissue was harvested and fixed in 4% paraformaldehyde 

overnight as previously described4.  Tissue prepared for frozen sections was 

fixed in 4% PFA for 1 hour and incubated in 30% sucrose overnight before 

embedding in OCT (Tissue-Tek). 
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Immunohistochemistry 

5µm paraffin sections were stained with Periodic acid Schiff and Alcian Blue 

(PAS/AB) (Newcomer Supply) and Alkaline Phosphatase (Vector Laboratories) to 

visualize mucin-containing goblet cells and enterocytes respectively. EdU-Click-it 

(Life Technologies) was used to evaluate proliferating cell number. 

Immunostaining with rat α-MMP7 (1:400, Vanderbilt Antibody and Protein 

Resource), rabbit α-MUC2 (1:200, Santa Cruz) and rabbit α-Ki67 (1:200, 

Thermo) was performed as described21.  GFP transgene expression was 

visualized on 5µm frozen sections without antibody staining. Images were 

captured on a Nikon E800 microscope with Olympus DP controller software.  

Presented images are representative sections from terminal ileum unless 

otherwise noted. 

 

Quantitative morphometric analysis 

All slides were blinded for cell counting. Goblet cell hyperplasia was measured as 

the number of crypts that displayed increased goblet cells over total crypts per 

section. EdU morphometrics was achieved by counting the total number of 

epithelial EdU+ cells per well-oriented crypt and averaged per animal. EdU 

counts were performed by two individuals. 

 

Crypt isolation and flow cytometry 

Crypt isolation was performed on proximal jejunum: centimeters 4-8 for crypt 

RNA and 9-15 for flow cytometry as measured from the pylorus. Tissue was 

incubated in 15mM EDTA (Sigma) in DPBS (Gibco) at 4°C for 35 minutes, 

vortexed for 2 minutes, and filtered through a 70µm cell strainer (BD Bioscience). 

Prior to processing for RNA isolation, crypts were gravity-settled twice for 10 

minutes to remove single cells and fragments. To obtain a single cell suspension 

for flow cytometry, crypts were resuspended in TrypLE Express (Gibco), shaken 

at 37°C for 10-12 minutes, and 0.1mg/ml DNase I (Roche) and 10% fetal bovine 

serum (FBS) were added. Cells were passed through a 40µm cell strainer (BD 

Bioscience), pelleted at 400xG, resuspended in 2% FBS, 0.05% sodium azide 
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(Sigma), 2mM EDTA in DPBS and stained unfixed as follows. All cells were 

blocked with rat α-mouse CD16/CD32 (1:100, BD Bioscience), lymphocytes were 

excluded with CD45.2-PerCP-Cy5.5 (1:80, LifeTechnologies), epithelial cells 

were visualized with EpCAM-APC (1:80, eBioscience), and dead cells were 

excluded by DAPI incorporation. Cells were analyzed on a BD FACSCanto II and 

interpreted with FlowJo software (Treestar). GFP+ cells were sequentially gated 

for size, singlets, DAPI-, CD45.2-, and EpCAM+. 

  

Gene expression analysis 

RNA from full-thickness ileum was isolated by Trizol (Invitrogen) extraction 

followed by the RNeasy Mini kit (Qiagen) with DNAseI treatment. RNA from 

crypts was directly processed with the RNeasy Mini kit. cDNA was reverse 

transcribed with the iScript cDNA synthesis kit (BioRad) using 1µg of total RNA. 

Quantitative RT-PCR was performed as described21 with the primers listed in 

Supplementary Table 2-2. Assays were run in triplicate and normalized to 

glyceraldehyde-3-phosphate dehydrogenase (Gapdh) as an internal control.  

 

Statistical analyses 

All experiments were performed with 3-6 biological replicates per group unless 

otherwise noted. Quantitative data are presented as mean + SEM, with all 

experimental groups normalized to time-matched tamoxifen-treated controls. 

Comparisons between two groups were conducted with unpaired two-tailed 

Student t tests. Comparisons between 3 or more groups were analyzed by one-

way ANOVA with Tukey’s or Dunett’s post-tests as noted. Significance is 

reported as * (P<0.05), **(P<0.01), ***(P<0.001), and ****(P<0.0001). Prism 

software (Graphpad) was used for statistical analyses. 

 

2.4: RESULTS 

Weight loss and secretory cell hyperplasia in N1-deleted intestine 

 To conditionally delete N1 in the intestinal epithelium, we crossed the 

N1F/F 15 allele to the tamoxifen-regulated Villin-CreERT2 19. After tamoxifen 
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treatment Villin-CreERT2; N1F/F (N1Δ/Δ) mice transiently lost weight with a nadir 

(92% of initial weight) occurring at day 8 (Figure 2-1A). Although N1Δ/Δ animals 

began to gain weight after day 8, they remained significantly lighter than controls 

until day 35.  

 As increased secretory cell differentiation is a hallmark of Notch inhibition, 

we assessed secretory cell populations in N1Δ/Δ intestines to determine if single 

receptor deletion was sufficient to induce aberrant secretory cell differentiation. 

PAS/AB staining for mucin-containing cells revealed a striking increase in goblet 

cell abundance in the N1Δ/Δ terminal ileum (Figure 2-1) and all other regions of 

the intestine (Supplementary Figure 2-1) one day after completion of tamoxifen 

treatment. To determine if the abnormal goblet cell differentiation was 

maintained long-term, we analyzed N1Δ/Δ animals on days 8, 19, and 60 after the 

start of tamoxifen induction. Interestingly, while goblet cell hyperplasia was 

observed in over 80% of crypts on day 8, the number of aberrant crypts 

significantly declined at later timepoints (Figure 2-1, Supplementary Figure 2-1). 

By day 60, only 6% of crypts still maintained evidence of goblet cell hyperplasia 

(Figure 2-1F), consistent with the stabilization of N1Δ/Δ weights (Figure 2-1A). 

 To investigate if other secretory cell types were increased in N1Δ/Δ mice, 

we stained for the Paneth cell marker MMP7. There was a marked increase in 

MMP7 staining (Supplementary Figure 2-2), as well as the presence of 

MUC2/MMP7 co-stained cells. MUC2 is a marker of goblet cells, and co-staining 

of the two markers indicates the presence of intermediate cells, a cell type that is 

also observed in pharmacological pan-Notch inhibition4. This finding was most 

striking in the colon, where only rare co-staining cells were observed in control 

tissue (Figure 2-1H, arrow). N1Δ/Δ colon, in contrast, contained abundant 

MUC2/MMP7 co-stained cells, which persisted for more than 60 days (Figure 2-

1I).  

 Analysis of secretory cell transcription factors and differentiated cell 

mRNA paralleled the observed secretory cell hyperplasia in the N1Δ/Δ intestine as 

well as the time-dependent phenotype regression (Figure 2-2). Atoh1, which 

drives the differentiation of all secretory cell types22, 23, was increased 3.3-fold on  



Figure 2-1. Intestinal epithelial N1 deletion leads to weight loss and 
aberrant secretory cell differentiation. (A) Weight curve of control and 
Villin-CreERT2; N1F/F (N1Δ/Δ) animals treated with 5 days of 100mg/kg tamoxifen. 
Bar represents duration of tamoxifen (TAM) treatment. Weights are compared 
with student t tests. (B-F) PAS/AB stained goblet cells in control (B) or N1Δ/Δ 
ileum (C-F) at the time points indicated. (G) Quantification of ileal goblet cell 
hyperplasia. Data are presented as percent total crypts and analyzed by ordinary 
one-way ANOVA with Tukey’s multiple comparisons test. (H-I) Colon sections are 
immunostained for goblet cell marker MUC2 (green) and Paneth cell marker 
MMP7 (red) from control (H) and N1Δ/Δ (I) animals 60 days after tamoxifen 
treatment. White arrowhead marks a single co-staining cell. N = 3-6 animals for 
all groups. Scale bar = 100μm.

74

PA
S/

AB

Control

Control
N1Δ/Δ 

TAM

A

Day 19 Day 60
 N1Δ/Δ 

Days

%
 in

iti
al

 w
ei

gh
t

10 20 30 40 50
80

90

100

110

120

130

**
** ****

*** ** *
* *

B C D E F
Day 8Day 6

0
20
40
60
80

100

goblet cell hyperplasia

Day
 8

Day
 19

Day
 60

%
 to

ta
l c

ry
pt

s

****
****

**

G

M
U

C
2/

M
M

P7
/D

AP
I

Control Day 60
H I



Figure 2-2. Secretory cell markers and Notch ligands are transiently 
upregulated in N1Δ/Δ intestine. Quantitative RT-PCR analysis of secretory cell 
transcription factors (A-C), differentiated secretory cell markers (D-F) and Notch 
ligands (G-H) in control and N1Δ/Δ animals at the time points indicated. RNA was 
isolated from full-thickness ileum. All values were normalized to Gapdh 
expression level and reported as fold change compared to control. Data were 
compared with ordinary one-way ANOVA with Dunnett’s post-test. N = 3-6 
animals/group.
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day 8. Ngn3 which is expressed in early endocrine cell precursors24 was likewise 

increased 2.7-fold at this time point. Expression of these factors returned to 

baseline by day 60. Spdef, which is important for the terminal differentiation of 

goblet and Paneth cells25,26, remained amplified 2.4-fold on day 60 (Figure 2-2C), 

consistent with the persistent expression of Paneth cell markers. Expression of 

Muc2 and CgA, markers of differentiated goblet and endocrine cells, respectively, 

peaked at day 8 and normalized by day 60. Similar to Spdef, Mmp7 expression 

remained elevated 1.7-fold on day 60, in agreement with the sustained MMP7 

staining (Figure 2-2F). These results suggest that N1 deletion promotes the 

formation of all secretory cell lineages. Differentiated goblet and endocrine cells 

are transiently increased after N1 deletion while increased Paneth cell markers, 

presumably expressed in Paneth/goblet intermediate cells, remained for at least 

2 months.  

 

Dynamic regulation of Notch ligands 

 Overexpression of Notch ligands is one mechanism that could account for 

epithelial recovery in N1Δ/Δ intestine. DLL1 and DLL4 have been shown to be the 

primary ligands regulating the intestinal stem and progenitor compartment7. To 

this effect, we analyzed transcript levels of Dll1 and Dll4 in N1Δ/Δ intestine. 

Expression of both ligands was elevated 2.6-fold compared to control on day 8 

(Figure 2-2G-H).  

 To determine whether the changes in Dll1 and Dll4 expression were 

directly linked to Notch signal, we took advantage of a Notch activation model. 

Previous use of such models has demonstrated the positive regulation of Hes13 

and Olfm44 as well as the negative regulation of Atoh1 and Ngn33. For our 

experiment, we crossed Villin-CreERT2 to Rosa26-LSL-NICD-IRES-nGFP17, 

which results in overexpression of stabilized N1 intracellular domain (NICD). 

Pan-epithelial activation of NICD leads to an immediate increase in epithelial 

proliferation, decreased secretory cell abundance, as well as decreased 

absorptive cell number (Supplementary Figure 2-3). Essentially, Notch activation 

transforms the intestinal epithelium into undifferentiated proliferative cells, rather 
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than absorptive cells as previously suggested1. In NICD-activated samples, both 

Dll1 and Dll4 expression was significantly decreased, mirroring the findings in the 

N1Δ/Δ intestine (Supplementary Figure 2-3J-K).  

 Importantly, the overexpression of Dll1 and Dll4 in N1Δ/Δ animals subsided 

over time, similar to the secretory cell markers discussed above, suggesting that 

the ligands are expressed on the aberrant secretory cells, and that increased 

ligand presentation is limited to the secretory cell expansion period.  

 

N1-deletion does not lead to intestinal epithelial proliferation changes 

 In addition to secretory cell differentiation, Notch signaling controls 

intestinal epithelial proliferation1, 3, 5. Thus, we analyzed whether intestinal 

epithelial deletion of N1 alone led to a proliferative defect. Interestingly, N1Δ/Δ 

intestine showed no decrease in proliferation at any time point as measured by 

morphometric counting of EdU+ cells (not shown). Flow cytometry for epithelial 

EdU+ cells also showed no change at 6 days after initiation of tamoxifen 

treatment (Supplementary Figure 2-4). 

 

Loss of CBC stem cells in N1 deletion 

 We have previously shown that Notch signaling is critical for maintenance 

of the LGR5+ crypt base columnar (CBC) stem cell population4, and thus 

questioned whether the secretory cell changes in the N1Δ/Δ intestine were 

coupled with altered stem cell homeostasis.  To address this, we first analyzed 

mRNA transcripts of the CBC markers Lgr5 and Olfm4. Expression of both genes 

was markedly depleted in the N1Δ/Δ intestine (not shown).  

 To further validate the N1-dependence of CBC stem cells, we crossed the 

Villin-CreERT2; N1F/F mice to Lgr5-GFP 20 to allow visualization of LGR5+ stem  

cells by GFP expression. In this experiment, control animals were tamoxifen-

treated Lgr5-GFP mice with wild type N1 alleles. After tamoxifen induction, we 

noted that the N1Δ/Δ mice appeared to have fewer GFP+ cells (data not shown). 

To quantify this change we employed flow cytometry on single cells isolated from 

N1Δ/Δ and control crypts. As there is a gradient of GFP expression in Lgr5-GFP 
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crypts27 (Figure 2-3A), we gated for GFPHI cells to explicitly measure changes in 

LGR5+ CBCs (Figure 2-3C-D). In controls, 30% of total GFP+ cells were GFPHI, 

while N1Δ/Δ mice retained only 14% GFPHI cells, a 53% reduction from baseline. 

 

Quiescent stem cell markers are not directly regulated by Notch 

 To determine if stem cell depletion was specific to CBC stem cells, or if it 

was generalizable to proposed quiescent stem cell (QSC) populations, we 

assessed mRNA transcript levels of Bmi1, Lrig1, and Hopx. While we observed 

no change in Bmi1 or Lrig1 transcripts, there was a 2.3-fold increase in Hopx 

expression in N1Δ/Δ intestine (Supplementary Figure 2-5). To our knowledge 

there is no established association between Hopx and Notch signaling, and 

indeed we saw no change in any of these markers in NICD activated tissues. 

   

N1 is required for post-irradiation recovery 

 Since N1 deletion results in changes in both differentiated and CBC stem 

cell populations, we investigated whether loss of N1 also limits intestinal repair 

functions. To assess this, we treated control and N1Δ/Δ animals with tamoxifen 

and then administered 12Gy of whole body irradiation. The N1Δ/Δ group quickly 

lost weight and had to be euthanized 3 days post-irradiation (Figure 2-4). It 

should be noted that while the control group also lost weight, a parallel 

experiment demonstrated that 12 Gy-irradiated control mice survive at least 8 

days post-irradiation before succumbing to bone marrow insufficiency (data not 

shown). PAS/AB staining showed increased goblet cells in the N1Δ/Δ group 

(Figure 2-4C), consistent with the phenotype observed in non-irradiated animals 

at this time point (Figure 2-1D). Normal intestine experiences a proliferative 

surge 3 days post-irradiation as part of the recovery response. This surge is  

mainly attributed to the expansion of QSC populations, as the majority of CBCs 

are destroyed by irradiation28-30. To evaluate this, we analyzed EdU incorporation 

in control and N1Δ/Δ intestine. While control animals did display a visible increase 

in number of EdU+ cells compared to non-irradiated intestine, the N1Δ/Δ tissue 

was almost completely devoid of proliferative cells. The CBC compartment is not  



Figure 2-3. LGR5+ stem cells are depleted with N1 deletion. (A) Lgr5-GFP+ 
crypt shows a gradient of GFP expression which is highest in the CBCs. (B) 
Control and Villin-CreERT2; Lgr5-GFP; N1F/F animals were injected with 
100mg/kg tamoxifen daily for 5 days and harvested on day 6. (C-D) Scatter plots 
of GFP expression in single, live, CD45.2- EpCAM+ crypt epithelial cells in 
control (C) and N1Δ/Δ (D) animals. Gates indicate GFPHI populations and GFPTOTAL 
populations. (E) Quantification of GFPHI cells. Data are presented as percentage 
of GFPTOTAL cells. N = 3-4 animals/group.
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Figure 2-4. N1 is required for post-irradiation intestinal recovery. (A) Control 
and N1Δ/Δ animals were administered 12Gy of whole body irradiation on day 6 
and harvested on day 9 when the N1Δ/Δ group had lost more than 20% body 
weight and was moribund (  ). (B-C) PAS/AB staining for goblet cells in control (B) 
and N1Δ/Δ (C) intestine. (D-E) Proliferation was assessed by EdU incorporation in 
control (D) and N1Δ/Δ (E) animals. (F-G) Quantitative RT-PCR analysis of the 
CBC markers Lgr5 and Olfm4 in nontransgenic control mice treated with 0 or 12 
Gy whole body irradiation. Scale bar =100μm.
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expected to recover before approximately 1 week post-irradiation29. In fact, 

expression of CBC markers Lgr5 and Olfm4 do not recover until 8 days post-

exposure to 12Gy (Figure 2-4F-G). Thus the failed proliferation in irradiated N1Δ/Δ 

intestine is likely independent from the loss of CBCs discussed above. Although 

N1 deletion did not directly deplete QSC markers in non-irradiated tissue, the 

absence of N1 receptor may inhibit QSC activation when challenged with injury. 

 

N2-deleted intestine shows no change in differentiation  

 Since our N1Δ/Δ results identified previously unrecognized phenotypes of 

intestinal epithelial N1 deletion, we analyzed N2 deletion to determine if loss of 

this receptor led to any unappreciated epithelial changes as well. To achieve 

specific intestinal epithelial deletion we crossed Villin-CreERT2 to the N2F/F 16 

allele. In contrast to N1Δ/Δ, tamoxifen-treated Villin-CreERT2; N2F/F (N2Δ/Δ) 

animals did not lose any weight post-treatment (data not shown), and no goblet 

cell changes were evident in N2Δ/Δ intestine (Figure 2-5). Furthermore, no 

transcriptional changes were observed in any secretory cell transcription factors, 

differentiated cell markers, Notch ligands, or stem cell markers. 

 

Cooperation of N1 and N2 receptors  

 Although N2-deleted intestine had no overt phenotype on its own, double 

deletion of N1 and N2 receptors is known to be lethal. Since N1Δ/Δ animals 

survived and partially recovered, we aimed to compare the extent of the N1Δ/Δ 

secretory cell phenotype with full Notch receptor deletion. Indeed N1Δ/Δ;N2Δ/Δ 

animals had a more profound goblet cell hyperplasia compared to N1Δ/Δ alone 

(Figure 2-6). Secretory cell transcription factors and differentiated markers were 

significantly higher in N1Δ/Δ;N2Δ/Δ compared to the N1Δ/Δ animals. This suggests  

that N1 and N2 function synergistically rather than redundantly to regulate 

epithelial differentiation. 

 To better understand this relationship, we assessed whether N2 deletion 

sensitized the intestine to partial loss of N1. For this, we analyzed N1Δ/+;N2Δ/Δ 

animals. Interestingly, while we found that the secretory cell response was only  



Figure 2-5. N2 deletion in the intestinal epithelium does not result in 
secretory cell changes. Control or Villin-CreERT2; N2F/F animals were treated 
with 100mg/kg tamoxifen daily for 5 days (N2Δ/Δ) and harvested on day 6. (A-B) 
PAS/AB staining for goblet cells in control (A) and N2Δ/Δ (B) intestine. No marked 
increases in goblet cells were observed in the N2Δ/Δ animals. (C) qRT-PCR 
analysis of secretory transcription factors (purple), differentiated secretory cell 
markers (blue), Notch ligands (yellow) and stem cell markers (orange). Data are 
presented as mRNA fold-change compared to control, which was normalized to 1 
(dashed line). No significant changes were observed for any marker gene. 
(Ngn3, P=0.1364; Mmp7, P=0.1760). N = 3-6. Scale bar =100μm.
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Figure 2-6. Synergistic and redundant functions of N1 and N2 in the 
intestinal epithelium. (A) All animals were injected with 100mg/kg tamoxifen 
daily for 5 days and harvested on day 6. (B-E) PAS/AB staining for goblet cells in 
control (B), N1Δ/Δ (C), N1Δ/+; N2Δ/Δ  (D), N1Δ/Δ; N2Δ/Δ (E) ileum. (F-G) Quantitative 
RT-PCR analysis for secretory cell transcription factors (F) and differentiated 
secretory cell markers (G) in all groups. (H-K) Representative images of ileal 
proliferation as visualized by EdU uptake in all groups. (L) Quantification of 
proliferative cells. Data are presented as average EdU+ cells/crypt. Control group 
is pooled day 6 and day 8 controls, which were shown to the same. (M) 
Quantitative RT-PCR analysis for CBC stem cell markers in all groups. 
Quantitative data are compared with ordinary one-way ANOVA and Dunnett’s 
post-test. N = 3-5 animals/group. Scale bar =100μm.
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mildly more severe than N1Δ/Δ (Figure 2-6C, D), expression of secretory cell 

transcription factors was significantly increased in this group compared to N1Δ/Δ 

alone.  

 One crucial component of Notch epithelial regulation that was not 

appreciated in the N1Δ/Δ samples was disruption of overall epithelial proliferation. 

Interestingly, N1Δ/+;N2Δ/Δ intestine also showed no change in proliferation (Figure 

2-6J, L). Only full Notch receptor deletion resulted in decreased proliferation, 

suggesting that N1 and N2 function fully redundantly for this process. 

 Finally, we compared transcript levels of Olfm4 and Lgr5 in all three 

groups. Interestingly, while N1Δ/Δ;N2Δ/Δ animals had the highest suppression of 

CBC markers, N1Δ/Δ had a greater depletion of transcript levels than N1Δ/+;N2Δ/Δ 

(Figure 2-6M). This indicates N1 is the primary receptor functioning in this stem 

cell population. 

 

2.5 DISCUSSION 
 We present here evidence that the N1 receptor plays an important role in 

intestinal epithelial cell fate and stem cell maintenance. Epithelial deletion of N1 

results in a transient secretory cell hyperplasia, with overproduction of all 

secretory cell types. Overexpression of goblet and endocrine cell markers 

resolve by 2 months after N1 deletion, but Paneth cell markers and the presence 

of Paneth/goblet intermediate cells persist in N1Δ/Δ animals. Additionally, our 

study used the Lgr5-GFP mouse model in combination with N1 deletion to show 

that loss of N1 very acutely impacts CBC stem cell homeostasis. Furthermore, 

N1 deletion renders the intestine highly susceptible to irradiation injury, such that 

N1Δ/Δ animals die 3 days post-irradiation. Finally, our results further clarify the 

relationship between N1 and N2. We validate previous work that showed 

intestinal epithelial N2 deletion showed no obvious phenotype6, and report new 

evidence that N1 and N2 work redundantly to regulate proliferation, but work 

synergistically in regulating differentiated cell fate. 

 Previous studies implicated that N1 is important for stem cells since its 

expression was found to be highest in CBCs compared to other crypt cells31, 32.  
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Additionally, N1-expressing cells11 as well as cells undergoing active N1 cell-

surface cleavage33 have been shown to lineage trace, the gold-standard for 

defining stem cells in vivo. To our knowledge, though, only one other study has 

investigated the function of N1 in intestinal stem cells. Vooijs et al.33 used a 

chimeric N1 deletion mouse model to conclude that while N1 was active in stem 

cells, it was not required for stem cell maintenance since LacZ expression from 

deleted cells was still observed in adult chimeras. Our results are not in direct 

conflict with this study, as the sheer presence of crypts with goblet cell 

hyperplasia after 60 days demonstrates that at least some N1-deficient stem 

cells have survived. Indeed, we did not observe a complete loss of Lgr5 

transcript or LGR5-GFPHI stem cells in N1Δ/Δ intestine.  Rather, our data favors a 

model where N1-deficient stem cells are at a great disadvantage compared to 

normal stem cells. N1-deficient stem cells can survive if necessary, but this is the 

exception, not the rule. 

 Our study is the first to show the dynamic regulation of N1 deletion, as the 

epithelium almost completely normalizes within 2 months. This finding could be 

due to compensation for N1 loss by another Notch receptor or by competition 

with non-recombined cells. The N1 deletion efficiency in our tissues started at 

95% (data not shown), and since N1Δ/Δ stem cells are at a disadvantage, they 

could conceivably be outcompeted by neighboring unrecombined cells. This 

would lead to a patchy recovery over time as observed in both our N1 deletion 

time course as Rbpj partial deletion model (Supplementary Figure 2-6). 

 Although goblet and endocrine cell populations subsided during the period 

analyzed, Paneth cell markers continued to be expressed. While it is agreed that 

Paneth cells are much longer lived than other differentiated intestinal epithelial 

cells, the exact length of the Paneth cell lifespan is disputed, with estimates from 

18-60 days 34, 35. Interestingly, the Paneth cells produced in N1Δ/Δ animals co-

express goblet cell markers. The continued presence of these cells after 60 days 

suggests that once cells are specified as expressing both Paneth and goblet cell 

markers, that they do so for the duration of their life span. Of note, Dll1 and Dll4 

have both previously been shown to be expressed in Paneth cells36, 37 and Dll1 



 86 

expression has additionally been demonstrated in secretory progenitors and to a 

lesser extent differentiated secretory cells37. Our results extend this finding to 

expression in Paneth/goblet intermediate cells as well.  

 Different approaches have been used to investigate the role of intestinal 

N1 in the past, but these published results are inconsistent. While our study 

bolsters the secretory cell findings reported with N1-inhibitory antibody 

treatment12 and chimeric N1-deleted intestine33, another study using the same 

model system we have employed in our experiments found that Villin-CreERT2; 

N1Δ/Δ mice had no phenotype14. Since this study used juvenile mice, we 

questioned whether the role of N1 in regulating differentiated cell populations 

was specific to fully mature intestine. When we repeated our experiment in 

juvenile mice, secretory hyperplasia was evident (Supplementary Figure 2-7). 

Thus we conclude that the differences between the previously published report 

and our own data may be due to tamoxifen treatment concentrations and chase 

times post-treatment, which were not made clear in the previous study, or 

variation in recombination frequencies due to using different floxed-N1 and N2 

lines.  

  Finally, we previously discovered that N1-inhibitory antibody-treated 

animals were susceptible to irradiation injury13. Because the antibody was 

administered systemically, however, it was not clear if the intestinal epithelial cell 

findings were the primary cause of animal death, or it was a secondary 

phenotype produced from an off-target pathology like vasculopathy.  Since N1 

deletion in the current study was limited to intestinal epithelial cells, we have 

strong evidence that intestinal N1 is required for injury response. The 

significance of this finding is self-evident. Since Notch receptors are promising 

pharmacological targets for cancer treatment and most successful therapeutic 

schemes are combined with injury-inducing chemotherapies or radiation, dual 

treatment with N1 inhibition could be deleterious. 

 In conclusion, N1 receptor plays a primary role in regulating intestinal 

epithelial cell fate and stem cell maintenance. Genetic deletion of the receptor 

leads to eventual epithelial recovery, but targeted inhibition of N1 should be 
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handled with caution due to the important role this receptor plays in intestinal 

epithelial homeostasis. 

 
2.6: ACKNOWLEDGMENTS  
 We thank Jooho Chung and Ivan Maillard for invaluable time invested and 

insight in designing and interpreting our flow cytometry experiments. We 

additionally thank John Kao and Mohamad El-Zaatari for equipment and advice 

regarding flow protocol, Scott Magness, Jason Spence, and Noah Shroyer for 

expertise with crypt and single cell isolation protocols, and the University of 

Michigan Microscopy and Image Laboratory and Flow Cytometry cores for 

equiptment and expertise. Theresa Keeley and Jordan Onopa provided vital 

technical support, and Jessica Crowley was indispensible for animal 

management. Support for A. Carulli was graciously provided by the MSTP 

training fellowship (T32-GM07863), The Center for Organogenesis Training 

Program (T32-HD007515), and a Ruth L. Kirschstein NRSA (F30-DK095517). 

Support for N. Zayan was provided by the American Physiological Society 

Summer research fellowship and the Short Term Educational Program (STEP) 

towards Digestive and Metabolic Physiology 

(NIH/NIDDK R25 DK088752). This research was funded by the National 

Institutes of Health (RO1-DK078927). 



 88

Supplementary Table 2-1. 

Allele Forward primer sequence Reverse primer sequence

Villin-CreERT2 ACAGGCACTAAGGGAGCCAATG GTTCTTGCGAACCTCATCACT

Lgr5-GFP CTGCTCTCTGCTCCCAGTCT GAACTTCAGGGTCAGCTTGC

Floxed-N1 CCAACTGCACTCTTCTCCCAGTA
ATCGAAG

TGCCTCAGTTCAAACACAAGATA
CGAGGGG

Floxed-N2 ACCCTGTCAGAAAGTTGGCTGG
TCAGGTTT

TAGAGGACGCACTGACTGCTCA
TCTGACAA

Rosa-LSL-NICD AAAGTCGCTCTGAGTTGTTAT GAAAGACCGCGAAGAGTTTG

Floxed-Rbpj CTTGATAATTCTGTAAAGAGA ACATTGCATTTTCACATAAAAAA
GC

Genotyping primer sequences
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Supplementary Table 2-2. 
Primer sequences for genes analyzed by quantitative RT-PCR

Gene Forward primer sequence Reverse primer sequence

Ascl2 CCTCTCTCGGACCCTCTCTCAG CAGTCAAGGTGTGCTTCCATGC

Atoh1 GCCTTGCCGGACTCGCTTCTC TCTGTGCCATCATCGCTGTTAGGG

Bmi1 TATAACTGATGATGAGATAATAAGC CTGGAAAGTATTGGGTATGTC

CgA AAGAAGAGGAGGAGGAAGAGG TCCATCCACTGCCTGAGAG

Dll1 CTGAGGTGTAAGATGGAAGCG CAACTGTCCATAGTGCAATGG

Dll4 TCGTCGTCAGGGACAAGAATAGC CTCGTCTGTTCGCCAAATCTTACC

Hopx GAGGACCAGGTGGAGATCCT TCCGTAACAGATCTGCATTCC

Lgr5 CGAGCCTTACAGAGCCTGATACC TTGCCGTCGTCTTTATTCCATTGG

Lrig1 GTGAACAGTGGCTCCCTCTATGG ACTCCGCTAGACTCTCCTCATCC

Mmp7 CAGACTTACCTCGGATCGTAGTGG GTTCACTCCTGCGTCCTCACC

Muc2 AGAACGATGCCTACACCAAG CATTGAAGTCCCCGCAGAG

Ngn3 ACCCTATCCACTGCTGCTTGTC CGGGAAAAGGTTGTTGTGTCTCTG

Olfm4 GCCACTTTCCAATTTCAC GAGCCTCTTCTCATACAC

Spdef GGACGGACGACTCTTCTGACAG GCTCCTGATGCTGCCTTCTCC



Supplementary Figure 2-1. N1 deletion in the intestinal epithelium results 
in increased goblet cells throughout the intestine. (A-H) PAS/AB staining 
for goblet cells is shown for control (A-D) and N1Δ/Δ (E-H) tissue harvested on 
day 6 after initiating tamoxifen treatment. Representative paraffin sections are 
shown from duodenum (A, E), jejunum (B, F), ileum (C, G), and proximal colon 
(D, H). Goblet cell hyperplasia is observed in all segments of N1Δ/Δ intestine. (I) 
Quantification of goblet cell hyperplasia in the duodenum shows phenotype 
regression over time with similar kinetics as observed in the ileum (see Figure 
2-1). Data are presented as percent total crypts and compared using one-way 
ANOVA with Tukey’s multiple comparisons test. N = 4. Scale bar =100μm.
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Supplementary Figure 2-2. Paneth cells are increased with N1 deletion. 
(A-B) MMP7 staining for Paneth cells in control (A) and N1Δ/Δ (B) duodenum on 
day 19 after the start of tamoxifen induction. Increased numbers MMP7+ cells as 
well as expansion of the zone of cellular localization is observed in N1Δ/Δ 
intestine. Duodenum is displayed since the change is especially striking in 
proximal intestine where there are normally few Paneth cells, although 
increased MMP7 staining was observed in all parts of the intestine. N = 6. Scale 
bar =100μm.
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Supplementary Figure 2-3. NICD overexpression results in production of 
undifferentiated proliferative cells. Control or Villin-CreERT2; Rosa-LSL-NICD 
mice were treated with 5 days of 100mg/kg tamoxifen and tissues were 
harvested on day 6. (A-C) Proliferation in control and NICD ileum as visualized 
by Ki67 immunostaining and quantified in (C). Data are presented as average 
number of Ki67+ cells per crypt. A significant increase in proliferative cells was 
observed in NICD intestine. (D-E) PAS/AB staining for goblet cells in control and 
NICD ileum. Goblet cell number was significantly decreased in NICD intestine. 
(quantification not shown). (F) Expression of the goblet cell marker Muc2 was 
also decreased in NICD animals. (G-H) Alkaline Phosphatase (A/P) staining for 
brush border enzymes marks enterocytes. A/P+ surface area is greatly 
decreased in NICD animals. (I) Expression of the enterocyte marker sucrose 
isomaltase (SI) is also significantly decreased in NICD intestine.  (J-K) 
Expression of Notch ligands Dll1 and Dll4 are decreased in NICD intestine. 
Comparisons were made with Student’s t test. Scale bar =100μm. Data in 
collaboration with Nichole Zayan.
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Supplementary Figure 2-4. No change in proliferation is observed in N1Δ/Δ  
intestine. Singly isolated control and N1Δ/Δ  epithelial cells were assessed for 
proliferation via EdU incoroporation and flow cytometry analysis. No change in 
proliferation was observed. Data are presented as % total EpCAM+ cells that 
were Edu+. N = 4 animals/group. 
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Supplementary Figure 2-5. Quiescent stem cell markers are not 
Notch-regulated. (A-F) Quantitative RT-PCR analysis of quiescent stem cell 
markers in N1Δ/Δ (A-C) or NICD-overexpressing (D-F) intestine. RNA was isolated 
from full-thickness ileum. N = 3-4 animals/group.
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Supplementary Figure 2-6. Complete blockade of Notch signaling by Rbpj 
deletion results in goblet cell hyperplasia that normalizes over time. (A) 
Villin-CreERT2; RbpjF/F mice were treated with two doses of 100mg/kg tamoxifen 
and tissues were harvested on day 7, 9, and 14.  (B-G) PAS/AB staining for 
goblet cells in duodenum (B-D) and ileum (E-G) at the time points indicated. 
Arrows indicate patches of villi that lack goblet cells. Arrowheads denote crypts 
that maintain goblet cell hyperplasia. N=1 per time point. Scale bar =100μm.

95

A

C D

E F G

du
od

en
um

ile
um

Day 7 Day 9 Day 14
B

Day   1   2                     7        9                    14

Villin-CreERT2; RbpjF/F

100mg/kg Tamoxifen, IP
tissue analysis



Supplementary Figure 2-7. N1 deletion in juvenile mice has a mild but 
apparent secretory cell phenotype. (A) 10-day old control or Villin-CreERT2; 
N1F/F animals were treated with 100mg/kg tamoxifen for 5 days and tissues were 
harvested on day 6. (B-E) PAS/AB staining for goblet cells in control (B, D) and 
N1Δ/Δ (C,E) intestine. Increased goblet cell abundance is observed in both 
duodenum (C) and ileum (E) of juvenile N1Δ/Δ intestine. Interestingly N1Δ/Δ mice 
also appear to have more developed crypts than controls, which may be due to 
the altered differentiation program. N=1 control, 2 N1Δ/Δ. Scale bar =100μm.
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CHAPTER 3 
 
 

NOTCH REGULATION OF STEM CELL DYNAMICS 
 

 

 

3.1: SUMMARY 
 The Notch signaling pathway is an important regulator of intestinal stem 

and progenitor cells.  It has been previously shown that chronic blockade of 

Notch signaling leads to a marked reduction of proliferation, increased secretory 

cell formation, and decreased stem cell number. In this study, we show that 

acute inhibition of Notch signaling results in an unexpected increase in 

proliferation while maintaining robust secretory cell changes.  Transient blockade 

of Notch is sufficient to rapidly decrease the expression of the Notch-specific 

stem cell marker Olfm4, indicating that the stem cell compartment is targeted. 

Additionally, flow cytometry for GFP in Lgr5-GFP mice shows a shift from GFPHI 

to GFPINT, suggesting that loss of stem cells is due to flow from the stem cell 

compartment to the transit-amplifying (TA) cell compartment. Compartmental 

modeling of the intestinal crypt was used to test the hypothesis that symmetric 

division of stem cells into TA cells could account for the increased proliferation 

observed with acute DBZ treatment. Modeling supported the symmetric division 

hypothesis in the context of a Notch-regulated repopulation of the stem cell 

compartment. Acute DBZ in the post-irradiation setting suggests that Notch 

regulates repopulation by allowing crypt base columnar stem cell specification 

rather than directly regulating quiescent stem cell populations. 
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3.2: INTRODUCTION 
 The intestinal epithelium is one of the most rapidly renewing tissues in the 

human body, with an estimated 17 billion cells turning over each day1. This 

startling replenishment rate is fueled by highly active stem and progenitor cell 

compartments. Historically, a single population of intestinal stem cells (ISCs) was 

thought to direct this renewal. ISCs divide once per day, leading to both stem cell 

self-renewal as well as delivering cells to the transit-amplifying (TA) cell 

compartment2. TA cells subsequently divide approximately every 12 hours, 

undergoing several rounds of division, greatly augmenting the number of cells in 

the crypt3-5. Regulated differentiation of TA cells results in the formation of 

mature, differentiated intestinal cells: either absorptive enterocytes, the most 

common cell in the epithelium, or one of several secretory cell populations, 

including mucin-secreting goblet cells, hormone-secreting enteroendocrine cells, 

and antimicrobial peptide-secreting Paneth cells6.  

 The location and identity of the ISC has been debated for decades, with 

some favoring the crypt base columnar cell (CBCC) intercalated between the 

Paneth cells at the base of the crypt7, and others supporting the “+4 cell”, cells 

located on average 4 cells above the base of the crypt2, 3. A number of recent 

discoveries suggest that perhaps both of these populations are bona-fide ISCs. 

First, LGR5+ CBCCs were shown to actively cycle and produce all of the 

differentiated populations of the intestine in vivo8 and in vitro9. Second, several 

+4 cell markers (Bmi110, Lrig111, Hopx12, mTert13, and others) were discovered, 

and cells expressing these markers were shown to be capable of producing all 

types of mature intestinal epithelial cells. The +4 cells cycle much less frequently 

than CBCCs10-13 and are thus thought to represent quiescent stem cells (QSCs), 

which can replace CBCCs during times of injury and repair12, 14, 15. To further 

complicate this system, TA cells have also been shown to possess potential stem 

cell function during times of injury3, 16, 17 and QSCs markers have been shown to 

overlap with CBCCs as well as being diffusely expressed throughout the crypt18. 

 The Notch signaling pathway is one of many pathways crucial for intestinal 

epithelial homeostasis: regulating proliferation, differentiation and stem cell 
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maintenance19-24. Notch regulation of intestinal proliferation has been shown 

through both pathway activation and inhibition, as blocking Notch reduces 

proliferation21, 25 and Notch overactivation results in increased proliferating cell 

numbers20, 22. Notch is required for specification of enterocytes, as 

pharmacologic inhibition or genetic deletion of pathway components leads to a 

profound secretory cell hyperplasia19, 21, 23, 24. Finally, both pharmacological Notch 

inhibition as well as deletion of the Notch ligands Dll1 and Dll4 result in loss of 

CBCC stem cells19, 24. Although Notch inhibition showed reduced stem cell 

proliferation and function19, the mechanism behind these findings was unknown. 

 One of the functions of Notch signaling in stem cells in other tissues has 

been regulation of stem cell division asymmetry26. Asymmetric cell division 

occurs when the daughter cells of a division event assume different fates, i.e. 

one stem cell and one TA cell. This process is believed to be mediated by 

asymmetric inheritance of the Notch signaling pathway inhibitor NUMB in 

daughter cells26-28. The daughter cell that inherits NUMB turns Notch signaling off 

and becomes a TA cells, and the daughter that does not inherit NUMB continues 

to have active Notch signaling and remains a stem cell26-28. Studies in the 

Drosophila midgut29 and in human colon cancer cell lines30 suggest that NUMB 

might also function to inhibit Notch signaling in the intestine. The concept of 

NUMB-mediated asymmetric stem cell division in the intestine, however, has 

been contested by studies on neutral drift theory, the property that intestinal 

crypts become monoclonal over time31, 32. These reports contend that CBCC 

division does not occur asymmetrically, but rather symmetrically, forming two 

cells that are both capable of becoming either stem or TA cells31, 32. If this is the 

case, the role for Notch in regulating CBCCs remains unknown. 

 This study aims to further understand Notch intestinal epithelial function, 

specifically addressing the question how does Notch regulate CBCC 

maintenance? Combining in vivo experimentation with in silico modeling 

techniques, we provide evidence for a role for Notch in regulating CBCC-TA cell 

dynamics. We further probe the function of Notch in regulating QSC-CBCC 
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dynamics and determine that Notch functions permissively for CBCC 

specification.  

 

 

 3.3: MATERIALS AND METHODS 
Mice 

Floxed-Rbpjκ (RbpjF/F)33 (gift from T. Honjo), Villin-CreERT2 34 (gift from S. 

Robine), Bmi1-CreER10 (Jackson Lab, no. 010531) and Lgr5-GFP-IRES-CreERT2 

(Lgr5-GFP)8 (Jackson Lab, no. 008875) alleles were verified by PCR genotyping 

with the primers listed in Supplementary Table 3-1.  All crosses were maintained 

on a C57BL/6 strain background except Bmi1 crosses, which were on a mixed 

strain. Mice were housed in ventilated and automated watering cages with a 12-

hour light cycle under specific pathogen-free conditions. Protocols for mouse 

usage were approved by the University of Michigan Committee on Use and Care 

of Animals. 
 

Animal treatment protocols and tissue collection 

Mice were injected intraperitoneally with 30µmol/kg Dibenzazepine (DBZ)21 

(SYNCOM) for 1-5 days and tissue was harvested at the time points indicated. 

Mice in experiments using Bmi1-CreER were treated with 100mg/kg tamoxifen 

(Sigma) intraperitoneally or by oral gavage once per day for 5-8 days as noted. 

To induce intestinal injury, animals were exposed to one dose of 12Gy whole 

body irradiation from a 137Cs source. Animals were fasted overnight and injected 

intraperitoneally with 25 mg/kg 5-ethynyl-2´-deoxyuridine (EdU) (Life 

Technologies) 2 hours prior to tissue collection. Intestinal tissue was harvested 

and fixed in 4% paraformaldehyde overnight as previously described19.  Tissue 

prepared for frozen sections was fixed in 4% PFA for 1 hour and incubated in 

30% sucrose overnight before embedding in OCT (Tissue-Tek). 
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Immunohistochemistry 

Paraffin sections (5µm) were stained with Periodic acid Schiff and Alcian Blue 

(PAS/AB) (Newcomer Supply) to visualize mucin-containing goblet cells. EdU-

Click-it (Life Technologies) was used to identify proliferating cells. 

Immunostaining with rat α-MMP7 (1:400, Vanderbilt Antibody and Protein 

Resource), rabbit α-MUC2 (1:200, Santa Cruz), goat α-CGA (1:10, Santa Cruz) 

and rabbit α-Ki67 (1:200, Thermo) was performed as described35.  GFP 

transgene expression was visualized on 5µm frozen sections. Images were 

captured on a Nikon E800 microscope with Olympus DP controller software.  

 

In Situ Hybridization 

Briefly, slides were deparaffinized, hydrated, and treated with 0.2N HCl for 15 

minutes at room temperature. Tissues were treated with Proteinase K for 30 

minutes at 37°C, post-fixed in 4% PFA for 10 minutes, acetylated for 10 minutes, 

incubated with hybridization buffer for 1 hour, then with Olfm4 probe diluted in 

hybridization buffer at 68°C overnight. The next day tissues were washed, 

incubated in blocking solution for 1 hour, then with anti-DIG antibody (Roche) 

diluted in blocking solution overnight at 4°C. The next day slides were washed 

then developed with NBT/BCIP solution (Roche). 

 

Quantitative morphometric analyses 

Ki67 morphometrics were performed by counting the number of Ki67+ cells on 

both sides of well-oriented crypts. At least 10 crypts were counted per animal for 

all analyses, and counts were average per animal. EdU morphometrics on 

irradiated tissue was accomplished by counting Edu+ epithelial cells per crypt 

area as measured from the base of the crypt to the crypt villus junction. EdU 

counts were summed over 8-15 images and averaged over the entire measured 

tissue area. Nuclei per crypt were counted on both sides of well-oriented crypts 

on H+E images. Crypt depth measurements were performed on H+E images 

measuring from the crypt villus junction to the base of the crypt along the crypt 
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center.  Morphometric analyses were completed using ImageJ software 

(http://imagej.nih.gov/ij/). 

 

Crypt isolation and flow cytometry 

Crypt isolation for flow cytometry was from the jejunum, centimeters 9-15 as 

measured from the pylorus. Tissue was incubated in 15mM EDTA (Sigma) in 

DPBS (Gibco) at 4°C for 35 minutes, vortexed for 2 minutes, and filtered through 

a 70µm cell strainer (BD Bioscience). To obtain a single cell suspension for flow 

cytometry, crypts were resuspended in TrypLE Express (Gibco), shaken at 37°C 

for 10-12 minutes, and 0.1mg/ml DNase I (Roche) and 10% fetal bovine serum 

(FBS) were added. Cells were passed through a 40µm cell strainer (BD 

Bioscience), pelleted at 400xG, resuspended in 2% FBS, 0.05% sodium azide 

(Sigma), 2mM EDTA in DPBS and stained unfixed as follows. All cells were 

blocked with rat α-mouse CD16/CD32 (1:100, BD Bioscience), lymphocytes were 

excluded with CD45.2-PerCP-Cy5.5 (1:80, LifeTechnologies), epithelial cells 

were visualized with EpCAM-APC (1:80, eBioscience), and dead cells were 

excluded by DAPI incorporation. Cells were analyzed on a BD FACSCanto II and 

interpreted with FlowJo software (Treestar). GFP+ cells were sequentially gated 

for size, singlets, DAPI-, CD45.2-, and EpCAM+. 

  

Enteroid culture 

Purified crypts from the first 6cm of duodenum were instilled in Matrigel (BD 

Biosciences) overlaid with DMEM + GlutaMAX (LifeTechnologies) with 5% each 

Wnt3a36 and Rspo237 conditioned medias. Additional growth factors included 2% 

B27 (Invitrogen), 1% N2 (Invitrogen), 100ng/ml Noggin (Peprotech), 50 ng/ml 

EGF (R&D Systems), and 10 µM Y-27632 (Sigma, used for initial plating only). 

Enteroids were grown and passaged several times prior to assaying. For 

proliferation assays, enteroids were passaged at the indicated time and treated 

with 25µM DAPT in DMSO (EMD4Biosciences) or 100% DMSO as vehicle. 

Living enteroids were imaged with a Leica DMIRB Inverted Microscope and an 

Olympus DB30BW camera with Olympus DP Controller software. EdU was 
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introduced at 10nM for 2 hours prior to cell harvest. Experimental time points 

were completed in triplicate with quadruplicate wells pooled together as one 

replicate. Single cell isolation of enteroids was accomplished by resuspending 

the enteroids and Matrigel in 15mM EDTA in DPBS. Enteroids were pelleted and 

resuspended in 2ml TrypLE Express and incubated at 37°C for 2 minutes. 500ml 

of DMEM was added to each sample and enteroids were mechanically 

dissociated into single cells by pipetting 40 times. 5ml of additional DMEM was 

added to each sample, cells were pelleted, and washed with 1% BSA in DPBS. 

Staining for EdU was completed with the Click-it EdU flow cytometry kit 

(Invitrogen) as per manufacturer’s instructions.  

 

Gene expression analysis 

RNA from full-thickness ileum was isolated by Trizol (Invitrogen) extraction 

followed by the RNeasy Mini kit (Qiagen) with DNAseI treatment. RNA from 

crypts was directly processed with the RNeasy Mini kit. cDNA from full tissue and 

crypts was reverse transcribed with the iScript cDNA synthesis kit (BioRad) using 

1µg of total RNA. Quantitative RT-PCR was performed as described35 with the 

primers listed in Supplementary Table 3-2. Assays were run in triplicate and 

normalized to glyceraldehyde-3-phosphate dehydrogenase (Gapdh) as an 

internal control.  

 

Statistical analyses 

All experiments were performed with 3-6 biological replicates per group unless 

otherwise noted. Quantitative data are presented as mean + SEM. Comparisons 

between two groups were conducted with unpaired two-tailed Student t tests. 

Comparisons between 3 or more groups were analyzed by one-way ANOVA with 

Dunett’s post-test. Significance is reported as * (P<0.05), **(P<0.01), 

***(P<0.001), and ****(P<0.0001). Prism software (Graphpad) was used for 

statistical analyses. 
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3.4: RESULTS 
Chronic Notch inhibition is lethal 

 Pharmacological intervention with the gamma-secretase complex inhibitor 

Dibenzazepine (DBZ) has been widely used to probe Notch function in the 

intestine. A common treatment regimen, 5 daily doses of DBZ (referred to as 

“chronic DBZ” hereafter), results in a profound secretory cell hyperplasia as well 

as decreased epithelial proliferation (Figure 3-1). Previously, our lab determined  

that chronic DBZ also led to lost CBCC number19, implicating Notch in the 

maintenance of this stem cell population. Both the mechanism of Notch-related 

CBCC loss as well as the possibility of CBCC recovery, however, remained 

unknown. To probe the question if epithelial recovery was possible after Notch 

inhibition, mice were treated with chronic DBZ and monitored over time. Chronic 

DBZ led to weight loss and rapid animal lethality; with all animals succumbing 3-4 

days post treatment (Figure 3-1D). PAS/AB staining for goblet cells at the time of 

animal death revealed that the secretory hyperplasia had not resolved, 

suggesting that epithelial recovery was not possible after sustained Notch 

inhibition.  

 

Acute DBZ results in increased intestinal epithelial proliferation 

 Since animals treated with chronic DBZ did not live long enough to 

investigate the dynamics of Notch restoration and epithelial recovery, a milder 

treatment regimen was implemented. With “acute DBZ” treatment, only a single 

dose of DBZ was administered to transiently inhibit Notch activity. Animals 

tolerated this treatment and survived at least 2 weeks with no apparent ill effects. 

To pinpoint the timing of inhibition and recovery, animals were harvested at 

numerous time points post acute DBZ treatment (Figure 3-2A). Tissues were first 

assessed for changes in intestinal epithelial proliferation. Although all previous 

studies associated Notch inhibition with decreased proliferation19, 21, 38, acute 

DBZ treatment surprisingly resulted in a marked increase in intestinal epithelial 

proliferation, as measured by immunostaining for the proliferation marker Ki67 

(Figure 3-2). Significant increases in Ki67+ cells were observed as early as 2  
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Figure 3-1. Chronic DBZ results in lethal secretory cell hyperplasia and 
reduced proliferation. (A) Animals were administered 5 daily doses of 30μ
mol/kg Dibenzazepine (DBZ) for “chronic DBZ” treatment. (B-C) Co-staining for 
proliferation (Ki67) and mucin-containing cells (AB) in vehicle- (B) or chronic 
DBZ-treated (C) intestine. Pink bars show expanded crypt depth, orange arrows 
mark Ki67+ nuclei in chronic DBZ intestine. (D) Weight curve of animals 
post-chronic DBZ treatment. Statistical comparisons were made by upaired 
Student t test. N = 4 animals per group. (E-F) PAS/AB staining for goblet cells in 
vehicle (E) or 3 days after chronic DBZ (F) treatment. Scale bar = 100μm. 



Figure 3-2. Acute DBZ leads to transiently increased intestinal epithelial 
proliferation and crypt expansion. (A) Animals treated with “acute DBZ” were 
administered one 30μmol/kg dose of DBZ and harvested at the time points 
indicated. (B-E) Proliferation was assessed by immunostaining for Ki67 in 
vehicle-treated (B) or acute DBZ-treated mice (C-E). (F) Quantification of Ki67 
staining. Data are presented as number of Ki67+ nuclei per ileal crypt compared 
with One-way ANOVA and Dunnett’s post-test. Crypt depth (G) and number of 
cells per crypt (H) were measured in vehicle and 3 days post-acute DBZ ileum. 
Comparisons for G-H were made with unpaired Student t tests. N= 3-6 animals 
per group. Scale bar = 100μm.
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days post-acute DBZ. The proliferative surge continued on days 3-5, with a 1.7 

fold increase in proliferating cells compared to vehicle-treated samples on day 3. 

Proliferation normalized by day 7. Increased proliferation was accompanied by 

crypt expansion, which was increased 1.8-fold on Day 3 (Figure 3-2G). Total 

cells per crypt was increased 1.6-fold as well, suggesting that crypt expansion 

was due to hyperplasia (Figure 3-2H).  

 

Acute DBZ leads to the production of long-lasting secretory progenitors 

 Since acute DBZ treatment resulted in an unexpected increase in 

proliferation in vivo, we probed other hallmarks of Notch inhibition to determine if 

the DBZ dosage scheme was effective in adequately blocking the pathway. 

Staining with PAS/AB showed a progressive increase in goblet cells after acute 

DBZ (Figure 3-3), consistent with the secretory cell hyperplasia observed with 

chronic DBZ treatment. Goblet cells were detected in both the villus and crypt 

regions and present in all parts of the intestine (Supplementary Figure 3-1).  

Additionally, CGA+ enteroendocrine cells were greatly increased at the base of 

acute DBZ-treated crypts (Figure 3-3F) as were cells co-expressing the Paneth 

and goblet cell markers MMP7 and MUC2 (Figure 3-3H). These co-staining cells 

were also previously observed with chronic DBZ treatment19. The increased 

abundance of all of these secretory cell markers suggests that committed 

secretory progenitors are formed with only very short interruptions in Notch 

signaling and that they persist for several days after Notch signaling is re-

established. 

 Interestingly, both the appearance and the resolution of the secretory cell 

hyperplasia aligned with the timing of the crypt hyperproliferation. Co-staining 

with the mucin-marker AB and Ki67 showed both markers occupying the same 

crypt location (Supplementary Figure 3-2), suggesting that the proliferating cells 

are secretory progenitors. These data are consistent with a recent publication 

that described increased abundance of Ki67+ ATOH1+ cells 38 hours after DBZ 

treatment, and determined that Notch inhibition led to the expansion of the 

proliferating secretory progenitor compartment39.  



Figure 3-3. Acute DBZ results in a transient multi-lineage secretory cell 
surge. (A-D) PAS/AB staining for goblet cells at the timepoints indicated. (E-F) 
CGA immunostaining for endocrine cells in vehicle (E) or 3 days post-acute 
DBZ treatment (F). (G-H) Co-immunostaining for goblet cell marker MUC2 and 
Paneth cell marker MMP7 in vehicle (G) or 3 days post-acute DBZ treatment 
(H). N = 3-6 animals per group. Scale bar = 100μm.  
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Acute DBZ targets the stem cell compartment 

 To investigate if stem cells were affected by short interruption of Notch 

signaling, in situ hybridization was performed for the CBCC marker Olfm4. In 

addition to marking stem cells, Olfm4 is an exquisitely sensitive intestinal Notch 

target gene19, thus changes in Olfm4 indicate that Notch has been blocked 

specifically in CBCCs. Indeed, Acute DBZ led to complete loss of Olfm4 signal as 

early as 12 hours post acute DBZ treatment (Supplementary Figure 3-3). Such 

rapid control of Olfm4 was also observed in DAPT-treated human colon cancer 

cells in vitro. In the proximal intestine Olfm4 expression approached baseline 

levels by day 3 (Figure 3-4). To determine if this effect was limited to Olfm4 

transcript changes or indicated a loss in CBCC number, acute DBZ was 

administered to Lgr5-GFP mice8 which express GFP in CBCCs. A progressive 

loss in GFP expression was observed during the period of Olfm4 decline, with 

many fewer visible GFP+ cells on Day 2 after acute DBZ (not shown).  

 

Loss of GFPHI cells are linked to increased numbers of GFPINT cells  

 To quantify the change of CBCCs, flow cytometry was used to analyze 

cells marked by varying GFP levels in single cell isolates of acute DBZ-treated 

intestine. Since GFP expression occurs in a gradient in the crypts of Lgr5-GFP 

mice, cellular identity can be implied from the level of GFP expression. For our 

study, 3 levels of GFP were assessed: GFPHI, GFPINT, and GFPLOW, where 

GFPHI are CBCCs, GFPINT represent early TA progenitors (likely T1-T2, Figure 1-

3), and GFPLOW are later divisions of TA cells. Altered levels of GFPHI and GFPINT 

were observed with DBZ treatment (Figure 3-4E). GFPHI cells were decreased to 

40% control levels on Day 2.  Interestingly, GFPHI loss was coupled with a 1.5-

fold increase in GFPINT cells at this time point. As a TA cell population, increased 

GFPINT levels are consistent with the increased crypt proliferation observed with 

acute DBZ. Although not significant, similar trend decreases in GFPHI and 

increases in GFPINT were observed on Day 1, suggesting that the population 

changes occur together and that the process leading to these changes start early 

after acute DBZ treatment.   



Figure 3-4. CBCCs are decreased with acute DBZ treatment. (A-D) In situ 
hybridization for crypt base columnar cell (CBCC) stem cell marker Olfm4 in 
vehicle- (A) or acute DBZ-treated (C-D) mice at the times indicated. Insets are 
3x original magnification. (E) Scatter plot of GFP expression by flow cytometry 
analysis of vehicle-treated cells. Plot is sequentially gated for single, live, 
CD45.2-, EpCAM+ cells. Boxes represent gates used to assess GFPHI, GFPINT, 
and GFPLOW populations. Bar graphs display GFPHI and GFPINT as percent total 
GFP+ cells on Day 1 and Day 2 after acute DBZ normalized to vehicle treated 
levels which were set to 1 (dashed lines). Comparisons were made with 
unpaired Student t tests compared to vehicle controls. N=3-4 animals/group. 
Scale bars = 100μm
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Compartmental modeling of the crypt reveals a role for Notch in regulating stem 

cell division symmetry 

 Considering GFPHI cells were decreased as GFPINT cells were increased 

with acute DBZ treatment, an appealing hypothesis was that Notch inhibition led 

to direct shunting of CBCCs into the TA progenitor cell compartment. We 

questioned whether such a mechanism could explain the different proliferation 

trends observed in acute vs. chronic Notch inhibition.  

 To test this hypothesis, we turned to in silico modeling. As described in 

greater detail in Chapter 4, a theoretical compartmental model of the crypt was 

designed and used to identify a singular mechanism that could reconcile the 

proliferation differences observed between acute and chronic DBZ. (Figure 3-

5A). Modeling generated several conclusions: first, increased TA cell proliferation 

is linked with stem cell division (see Chapter 4). That is, shunting CBCCs into the 

TA compartment via differentiation in the absence of stem cell division would 

lead to decreased CBCCs but no overall increase in proliferation. Stem cell 

division, specifically symmetric stem cell division where both daughter cells of a 

stem cell division event become TA cells, is the other mechanism that results in 

CBCC to TA shunting.  

 The compartment model was used to test if symmetric stem cell division 

during Notch inhibition would result in the stem and TA cell numbers expected 

from the in vivo acute and chronic DBZ experiments. Simulated results showed 

that Notch regulation of stem cell symmetry alone would not result in the 

increased proliferation of acute DBZ and decreased proliferation of chronic DBZ. 

Instead, only a mechanism where Notch regulates both the symmetry of stem 

cell division as well as the repopulation of the CBCC compartment from another 

source (a QSC or de-differentiating TA cell) would result in the expected 

proliferation results (Figure 3-5B).  

 With this framework in place, the model qualitatively predicted the 

behavior of both acute and chronic DBZ treatment modalities: a transient 

increase in TA cell population after acute DBZ and a severe drop in stem cell 

number and TA cell population after chronic DBZ (Figure 3-5C-D). The model  
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Figure 3-5. Modeling Notch-regulated stem cell symmetry. (A) Schematic 
diagram of the discrete compartmental model of the intestinal crypt. 
Compartments include stem (S), TA (T), and Differentiated (D) cell 
compartments. X functions to regulate stem cell symmetry. X can range from 0-2 
and determines whether stem cells divide asymmetrically producing 1 stem cell 
and 1 TA cells, or symmetrically, forming either 2 stem cells or 2 TA cells. R is a 
gain or loss parameter that allows for repopulation of the stem cell compartment. 
(B) Diagram of hypothesis that Notch regulates stem cell symmetry as well as 
stem cell replacement. When Notch signaling is OFF, CBCCs divide 
symmetrically to form 2 TA cells, resulting in lost CBCC number. Only when 
Notch is turned back on can quiescent stem cells (QSCs) repopulate the CBCC 
compartment (C) Simulated data from testing the hypothesis in (B) To model a 
shift toward symmetric division, X = 1.5 for 1 day (acute Notch inhibition) or 5 
days (chronic Notch inhibition) during the periods indicated (purple bars). X is 
returned to 1 (asymmetric division) after treatment (green bar). Notch-dependent 
stem cell replacement uses R = 2 after the DBZ treatment window until St = S0.
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made two additional important predictions: 1) increased TA cell number would 

always occur after the initiation of Notch inhibition even with additional doses of 

DBZ and 2) stem and TA cell recovery should occur post-chronic DBZ (Figure 3-

5D). 

 

Validating compartmental model predictions in vivo 

 The first prediction of the model suggests that the increased proliferation 

observed 2 days after acute DBZ is a direct result of Notch inhibition rather than 

a post-DBZ recovery effect and thus, a similar proliferative response should be 

observed even with additional doses of DBZ. To test this hypothesis, animals 

were administered 2-4 daily doses of DBZ and assessed for proliferation 24 

hours later by Ki67 immunostaining (Figure 3-6). Interestingly, increased 

abundance of Ki67+ cells were observed after 2 doses of DBZ when compared to 

vehicle, consistent with the model prediction. A progressive decline in 

proliferation, however, was observed with subsequent doses of DBZ. 

 Flow cytometry of singly isolated cells from Lgr5-GFP mice was used to 

probe stem and TA cell levels after two doses of DBZ. When compared to 

vehicle, GFPHI CBCCs were decreased 0.6-fold while GFPINT TA cells were 

increased 1.5-fold. Of note, the same magnitude of change was observed in 

these values on day 2 after acute DBZ. 

 The second model prediction suggested that recovery of both stem and 

TA cell populations should occur post-chronic DBZ treatment. Although a 

recovery in differentiated cell populations did not occur at the time of animal 

death post-chronic DBZ (Figure 3-1F), both Ki67+ proliferative cells as well as 

GFP+ CBCCs were observed at this time (Figure 3-7). Interestingly, GFP+ cells 

were found to be displaced more highly in the crypt in these tissues (Figure 3-7C, 

orange arrowheads), suggesting that the stem cell niche was altered. 

 

Role of Notch in quiescent stem cell activation 

 Having validated these two predictions, more credence was given to the 

hypothesis underlying the qualitative behavior of the model: Notch regulates both  



118

Figure 3-6. 2 doses of DBZ results in a proliferative surge and altered stem 
cell dynamics. (A) Animals were administered 2-4 doses of 30μmol/kg DBZ and 
harvested 24 hours later. (B-E) Ki67 staining for proliferation in vehicle- (B) or 
DBZ-treated (C-E) mice. (F-G) Flow cytometry for GFPHI (F) and GFPINT after 2 
doses of DBZ. Data are presented as percent total GFP+ cells. Comparisons 
were made by unpaired Student t test compared to vehicle. N=4 animals/group. 
Scale bars = 100μm.
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Figure 3-7. Stem and progenitor cells recover post-chronic DBZ. (A) 
Lgr5-GFP mice were treated with chronic DBZ and harvested on day 8-9 when 
moribund. (B) Proliferating cells were visualized by Ki67 immunostaining. (C) 
CBCCs were visualized by GFP transgene expression. Orange arrows mark 
upward displaced stem cells. N=4. Scale bars = 100μm.
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stem cell symmetry as well as stem cell repopulation. Notch-regulated stem cell 

repopulation could occur via two means 1) Notch could directly regulate the 

activity of QSCs much like its regulation of CBCCs or 2) Notch could be required 

for QSCs to become CBCCs. To differentiate between these roles, an irradiation 

injury model was utilized. Irradiation has been shown to cause both CBCC  

depletion as well QSC activation, which are then primed to repopulate the voided 

CBCC compartment12, 14, 15. If Notch is indeed required for QSC activation, DBZ 

treatment in the irradiation setting should prevent the post-irradiation proliferative 

response. To test this, acute DBZ was administered post-12Gy whole body 

irradiation (Figure 3-8). Strikingly, post-irradiation DBZ treatment led to a 

dramatic loss of intestinal architecture including villus blunting, as well as 

decreased goblet cell differentiation. When assessed for proliferation via EdU 

uptake, however, abundant proliferation was observed in both vehicle and DBZ 

treated animals, suggesting that Notch is not required for the post-irradiation 

proliferative surge. 

 To further assess if active Notch is directly required in QSCs, a genetic 

mouse model was used in which Notch function was disrupted by conditional 

deletion of the Rbpj gene, the DNA binding protein essential for Notch pathway 

activation (see Figure 1-5). Rbpj-floxed mice were bred to the tamoxifen-

inducible Bmi1-CreER mouse to delete Notch signaling in the QSCs expressing 

this marker. Treatment with tamoxifen results in deletion of Rbpj in BMI+ QSCs 

(referred to as Bmi1; RbpjΔ/Δ). Littermates with deletion of a single copy of Rbpj 

were used as controls (Bmi1; RbpjΔ/+). 

 Although BMI1+ cells are not thought to contribute very much to 

homeostatic intestinal epithelial populations, some baseline lineage tracing is 

observed from cells expressing this marker10, 14, 15. To look at the effect and 

specificity of inhibiting Notch in this cell population, Bmi1; RbpjΔ/Δ intestine was 

assessed for secretory cell changes. A modest but evident increase in PAS/AB+ 

cells was observed in Bmi1; RbpjΔ/Δ compared to Bmi1; RbpjΔ/+ (Supplementary 

Figure 3-4), suggesting a small percentage of BMI+ cells contribute to the TA 

pool and loss of Notch in these cells leads to specification of secretory  
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Figure 3-8. Notch is not required for post-irradiation 
hyperproliferation. (A) Animals were exposed to 12Gy whole body 
irradiation, treated with one dose of 30 μmol/kg DBZ, and euthanized 
three days later. (B-C) PAS/AB staining for mucin-containing goblet cells 
reveals decreased goblet cells as well as altered epithelial structure in 
DBZ-treated (C) irradiated intestine. (D-E) Proliferating cells were 
visualized by EdU incorporation. (F) Quantification of EdU staining. Data 
are presented as mean epithelial EdU+ cells per crypt area in mm2. 
Groups were compared with unpaired Student t test, no significant 
change was observed between groups. N = 3 animals/group. Scale bar 
= 100μm.
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progenitors. This is in line with other studies that have described BMI1+ cell 

contribution to the TA pool14. Since Bmi1 and Lgr5 markers have been shown to 

overlap cell populations18, 40, 41 quantitative RT-PCR was used to evaluate the 

transcript levels of Bmi1 and Olfm4 in these animals to determine if Rbpj was 

deleted in CBCCs. Interestingly while Bmi1 transcript was significantly decreased 

in RbpjΔ/Δ mice, Olfm4 was not changed, suggesting that Notch signaling is not 

being inactivated in CBCCs in this model (Supplementary Figure 3-4E).  

 Bmi1; RbpjΔ/Δ mice were exposed to 12Gy irradiation to directly determine 

if Notch was required for post-irradiation activation of these cells. Similar to the 

post-irradiation DBZ experiment, no apparent change in the post-irradiation 

proliferative surge was observed in Bmi1; RbpjΔ/Δ, suggesting that Notch 

blockade in BMI1+ cells does not limit the proliferative capacity of this cell 

population.  

 

 

3.5: DISCUSSION 

In this study, we have used short-term Notch inhibition to investigate stem 

and TA cell dynamics in the intestinal epithelium. As opposed to chronic Notch 

inhibition, which results in decreased proliferation, increased secretory cells, 

stem cell loss and animal death, acute DBZ treatment leads to increased 

proliferation and increased secretory cells. Co-localization of these phenotypes 

was consistent with an overall increase in proliferative secretory progenitor cells. 

These histological findings were coupled with decreased LGR5-GFP+ CBCCs as 

well as increased GFPINT TA cells. The progressive nature of these changes 

suggested that CBCC loss is actually due to shunting CBCCs into the TA cell 

compartment, and compartmental mathematical modeling was used to test this 

hypothesis.  

A model where Notch regulates both the symmetry of stem cell division as 

well as repopulation of the CBCC compartment was consistent with the stem cell 

and proliferation findings of both acute and chronic Notch inhibition. We validated 

this model in vivo by determining that increased proliferation is observed after 
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two doses of DBZ and that stem and TA cell recovery occurs post-chronic DBZ 

treatment as predicted.  

Finally, we tested the hypothesis that Notch is required for CBCC 

repopulation by inhibiting Notch in the post-irradiation setting. In these 

experiments, QSC activation post-injury was found to be Notch-independent. 

This suggests that if Notch truly regulates CBCC repopulation, that it occurs 

during CBCC specification rather than directly regulating QSC activity. 

Thus, our model suggests that when Notch signaling is active CBCCs 

divide asymmetrically and when Notch is inhibited CBCCs divide symmetrically to 

form TA cells. Although asymmetric stem cell division is known to occur in many 

tissues42-44, several elegant studies in the intestine have suggested that this type 

of division may not actually occur31, 32. These studies suggest, rather, that CBCC 

division results in the formation of two equipotential cells that either form CBCCs 

or TA cells depending on niche availability31, 32. In this system, homeostasis is 

achieved when the average result of a stem cell division results in specification of 

1 CBCC and 1 TA cell, rather than specific stem cell division asymmetry.  

Our data are not inherently in conflict with these findings. Describing our 

system in this context, Notch inhibition would lead to disruption of the CBCC 

niche, mandating TA specification of all equipotential cells. In fact, this niche-

specific model also aligns with the apparent Notch-independent activation of 

QSCs, as limited niche availability would not prevent QSC expansion but would 

only inhibit QSC transformation into CBCCs. Together, these ideas support a 

model where active Notch signaling is required for CBCC specification during 

both homeostasis and repair (Figure 3-9). 

 As the Notch pathway requires cell-to-cell contact for signaling activation, 

the majority of the intestinal Notch regulation is expected to occur within the 

epithelium. However, Notch receptors and ligands are also expressed in the 

underlying intestinal mesenchyme45, and Notch inactivation in these cells could 

conceivably lead to secondary effects on the epithelium. To determine if the 

increased proliferation observed with acute DBZ was epithelial-specific, we 

assessed acute Notch inhibition in an in vitro intestinal enteroid system. This  
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Figure 3-9. A model for Notch regulation of the CBCC niche during 
homeostasis and injury.
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system, adapted from the Sato method9, contains only intestinal epithelial cells 

and no mesenchymal component. Surprisingly, increased proliferation was not 

observed at any of the time points tested (Supplementary Figure 3-5). At this 

time, it is unclear if this discrepancy indicates that the proliferative surge 

observed with acute DBZ treatment is not an epithelial-specific phenomenon, or if 

the current enteroid culturing system does not faithfully represent in vivo 

conditions. More work will be needed to confirm that the Notch component of the 

ISC niche is entirely epithelial. 

Our study is the first to investigate Notch regulation of QSCs. We found 

that QSCs may not be as Notch-sensitive as CBCCs, as specific deletion of Rbpj 

in BMI1+ cells results in a mild increase in secretory cells, but no deficit in post-

irradiation activation of Rbpj-deficient BMI+ cells. Interestingly, Yan et al.15 

showed that BMI1+ and LGR5+ cells responded differently to Wnt signaling15. Our 

study suggests that these cell populations may respond differently to Notch, and 

perhaps other components of the CBCC niche. 

Although our modeling favors the concept of increased TA cell 

specification as the mechanism for the increased proliferation observed in acute 

DBZ treatment, an alternate hypothesis for this finding could be Notch over-

activation as part of a post-treatment recovery response. Notch over-activation is 

associated with increased proliferation20, 22, and as DBZ is thought to be 

metabolized within 24 hours46, this type of activity is feasible within the timeline 

investigated. Such activity has been demonstrated in T cell systems where DBZ 

treatment led to a build-up of pre-cleaved Notch receptor on cell membranes47, 48. 

In our studies, we observed no increase in Notch target gene expression during 

the proliferative surge, which would indicate that Notch signaling had not rebound 

activated. Indeed, a decrease in both Olfm4 and Hes1 expression was observed 

during this period (data not shown). Further evidence that this mechanism was 

not responsible for the proliferative surge was that similar increases in 

proliferation and altered GFPHI/GFPINT levels were observed both 1 day after 2 

doses of DBZ and 2 days after a single dose of DBZ (i.e. both groups were 

analyzed on day 3 after the initiation of DBZ treatment, but were analyzed 24 
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hours apart after termination of treatment). If the proliferative response was due 

to rebound Notch activation we would expect to see altered proliferative 

outcomes dependent on the time post-DBZ treatment. 

Finally, our results shed light on the requirement of Notch signaling for 

overall intestinal function. Although acute DBZ led to dramatic stem, progenitor, 

and differentiated cell changes, these changes were transient and animals fully 

recovered. Chronic DBZ treatment, however, led to animal death within 4 days 

after drug removal. Our mathematical modeling and in vivo findings that stem 

and TA cells recover post-chronic Notch inhibition suggest that the lethality 

associated with chronic DBZ is not due to stem cell compartment collapse. This 

lethality is more likely a failure in epithelial barrier function. A recent report 

showed that Notch inhibition by genetic deletion of Rbpj resulted in bacterial and 

FITC-dextran translocation across the epithelium49, which is highly supportive of 

this hypothesis. Barrier malfunction is also likely involved with the rapid lethality 

of Notch inhibition in the irradiation setting. Thus, preventing barrier malfunction 

or implementing prophylactic antibiotic treatment may help prevent intestinal 

toxicity in therapeutic treatment regimes that combine irradiation injury and Notch 

inhibition. 

In conclusion, we propose a revised model of Notch activity in the 

intestinal epithelium. Notch is critical for CBCC niche specification and any 

interruption of Notch signaling leads to CBCC division and TA cell production. 

This results in an increased number of TA cells, leading to a transient 

proliferative surge. Notch activity is required for repopulation of the CBCC 

compartment, thus extended Notch inhibition results in TA cell compartment 

exhaustion resulting in a progressive reduction in epithelial proliferation. These 

studies underline the importance for Notch in CBCC maintenance as well as 

shine new light on the dynamic relationship between CBCCs, TA cells, and 

QSCs. 
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Supplentary Table 3-1. 

Allele Forward primer sequence Reverse primer sequence

Villin-CreERT2 ACAGGCACTAAGGGAGCCAATG GTTCTTGCGAACCTCATCACT

Lgr5-GFP CTGCTCTCTGCTCCCAGTCT GAACTTCAGGGTCAGCTTGC

Bmi1-CreER ACCAGCAACAGCCCCAGTGC AAAGACCCCTAGGAATGCTC

Floxed-Rbpj CTTGATAATTCTGTAAAGAGA ACATTGCATTTTCACATAAAAAA
GC

Genotyping primer sequences
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Supplementary Table 2-2. 
Primer sequences for genes analyzed by quantitative RT-PCR

Gene Forward primer sequence Reverse primer sequence

Bmi1 TATAACTGATGATGAGATAATAAGC CTGGAAAGTATTGGGTATGTC

Hes1 GCTCACTTCGGACTCCATGTG GCTAGGGACTTTACGGGTAGCA

Olfm4 GCCACTTTCCAATTTCAC GAGCCTCTTCTCATACAC



Supplementary Figure 3-1. Cell fate changes in acute DBZ model 
are consistent throughout the small and large intestine. PAS/AB 
staining for goblet cells shows that there are increased goblet cells in all 
parts of the intestine 3 days after acute DBZ treatment (E-H) compared 
to vehicle (A-D). N = 6 animals per group. Scale bar = 100μm
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Supplementary Figure 3-2. Secretory cells and proliferating cells occupy the 
same crypt location. Co-staining with the mucin-marker AB and the proliferation 
marker Ki67 show abundant expansion of AB+ and Ki67+ cells in acute DBZ 
treated intestine compared to vehicle. Co-localization of the markers is observed 
in the upper two thirds of the crypt (red dashed box). Although some Ki67+ cells 
are observed at the base of the crypt in vehicle treated intestine (orange 
arrowheads), the proliferative zone is shifted upward in acute DBZ treated 
animals. 
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Supplementary Figure 3-3. Olfm4 mRNA is very rapidly decreased after 
Notch inhibition. (A-B) Olfm4 in situ hybridization 12 hours after acute DBZ 
treatment shows a complete loss of Olfm4 signal in duodenal crypts. (C) 
Quantitative RT-PCR for human OLFM4 various time points after LS174T colon 
cancer cells were treated with 40μM DAPT or vehicle. DAPT results in 
decreased OLFM4 expression as early as 8 hours after treatment. comparisons 
are made with student’s t test. N = 3 per group.
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Supplementary Figure 3-4. Notch inhibition in BMI1+ cells does not prevent 
irradiation-induced proliferative surge. Bmi1; RbpjF/+ and Bmi1;RbpjF/F animals 
were treated with tamoxifen and either euthanized on day 6 (A) or exposed to 
12Gy irradiation and euthanized on day 9 after continued tamoxifen treatment 
(F). (B-C) PAS/AB staining shows increased goblet cells in RbpjΔ/Δ compared to 
RbpjΔ/+ animals suggestive of effective Notch deletion on day 6. (D-E) 
Quantitative RT-PCR for Bmi1 and Olfm4 suggest specificity of Rbpj deletion in 
BMI1+ cells and not Olfm4+ CBCCs. (G-J) Differences in goblet cells and 
proliferation via EdU staining were not observed in RbpjΔ/Δ intestine, suggesting 
that Notch deletion in these cells does not prevent post-irradiation induced 
proliferative surge. N=3-4 animals/group. Scale bar =100 μm.



Supplementary Figure 3-5. Acute Notch inhibition in enteroids does not 
lead to increased proliferation. (A) Acute DAPT treatment: enteroids were 
treated with a 24-hour pulse of 25μm DAPT or vehicle. Media was changed to 
DAPT-free media and harvested 62 hours later after 2-hour incubation with 
EdU. (B-C) Live images of enteroids immediately prior to harvest. DAPT-treated 
enteroids appeared smaller with fewer budding structures. Scale bar = 100μm. 
(D) Proliferation as measured by flow cytometry for EdU+ cells showed 
decreased proliferation in the acute DAPT treated enteroids. Comparison was 
made with Student’s t test. (E) To ensure that a time window of increased 
proliferation had not been missed, enteroids were treated with DAPT at various 
times prior to harvest as indicated. Proliferation was significantly decreased 12 
and 24 hours after DAPT treatment, but no time point showed increased EdU 
uptake compared to vehicle. Comparisons were made with One-way ANOVA 
and Dunnett’s post-test. Experiments were performed in triplicate with pooled 
quadruplicate treated wells.
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CHAPTER 4 
 
 

COMPARTMENTAL MODELING OF THE INTESTINAL CRYPT 
 

 

 

4.1: SUMMARY 
 This chapter describes mathematical modeling approaches used to tackle 

the question posed in Chapter 3: Does Notch inhibition lead to symmetric division 

of stem cells into two transit-amplifying (TA) cells? I first tested the 

compartmental model of the intestinal crypt published by Johnston et al.1, and 

determined that a differential equation system was unsuitable for replicating the 

short timing and rapidly changing dynamics of intestinal Notch inhibition. Next, a 

discrete compartmental model was built and calibrated to simply describe stem 

and TA cell dynamics. Finally, the model was implemented by testing several 

hypotheses that could explain the proliferation findings of in vivo Notch inhibition 

including: forced differentiation, symmetric stem cell division, and apoptosis. A 

model where Notch inhibition results in symmetric division followed by Notch-

dependent stem cell repopulation most closely matched our experimental 

findings. 

 

 

4.2: INTRODUCTION 
 Mathematical and computational models are powerful instruments in the 

scientific toolbox. Modeling can take what has been learned from experimental 

observations and derive new knowledge without the confines of experimental 

constraints or limited sample size. Synergistically, these insights can be taken 
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back to the bench in the form of testable hypotheses allowing more informed and 

focused investigation. In the intestine, modeling has been used for discovery-

making for decades: examining steady-state crypt proliferation2, 3, crypt cell 

migration rates4, 5, intestinal epithelial differentiation6-9, neutral drift dynamics10, 11, 

and tumorigenesis1, 12-14. Confronted with the question of how Notch regulates 

stem and progenitor cell number, modeling was a natural avenue to take. 

 In Chapter 3 I found that chronic Notch inhibition with the gamma 

secretase inhibitor Dibenzazepine (DBZ) resulted in decreased proliferation and 

decreased stem cell number15 while acute DBZ resulted in increased proliferation 

and decreased stem cells. Since these experiments produced data in the form of 

broadly categorized stem and proliferating progenitor cell counts, this intriguing 

dichotomy lent itself well to a compartmental modeling approach. As discussed in 

detail in Chapter 1, compartmental modeling is a particular type of mathematical 

model that focuses on the flux between different types of cells, grouped into 

discrete compartments. In the intestine this usually comprises stem, progenitor or 

transit-amplifying (TA), and differentiated cell compartments, although any 

number of compartments or subcompartments could be created depending on 

the question.  

 In 2007, Johnston et al.1 revised a simple compartmental model of the 

crypt that had been initiated by Tomlinson and Bodmer13 in 1995. The Johnston 

model1 utilizes an ordinary differential equation system to describe the rates of 

flows between stem, TA, and differentiated cell compartments and incorporates 

feedback into the model to make the system more stable. Their model1 was 

shown to accurately describe the crypt during both homeostasis and 

tumorigenesis, and thus was the perfect starting point for this project.  

 For this study I aimed to find a singular mechanism that would explain the 

timing-dependent proliferation outcomes post-Notch inhibition. Since we 

observed an apparent shift from GFPHI stem cells to GFPINT TA cells (Chapter 3), 

the concept of Notch regulation of stem cell division symmetry was a key 

hypothesis I wished to test in silico.  
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4.3: METHODS 
Simulations for the Johnston et al.1 model were run in XPPAUT (v.6). Discrete 

compartmental model simulations were performed in Microsoft Excel and plotted 

in Graphpad Prism. 

 

 

4.4: RESULTS AND DISCUSSION 
Johnston et al. model of the crypt does not replicate limited TA cell lifespan 

 To test the hypothesis of Notch regulation of stem cell symmetry in the 

context of the Johnston et al.1 model, I started by modulating parameters in the 

system to approximate bulk movement from the stem cell compartment to the TA 

cell compartment. As discussed in Chapter 1.3, the Johnston et al.1 model 

divides the crypt into three compartments: stem cells (N0), “semi-differentiated 

cells” (TA cells) (N1), and fully-differentiated cells (N2) (Figure 4-1). Fluxes out of 

N0 and N1 include death, differentiation, and renewal (α1, α2, α3 and β1, β2, β3 

respectively). Flux out of N2 is cell removal (sloughing off) (γ). The ordinary 

differential equation system of the saturating feedback model are reproduced 

below in Eq 1-31, where k0, k1, m0, and m1 are rate constants. 

  
 Since I was interested in using this model to look at stem cell division 

symmetry in the context of Notch inhibition, the most relevant parameters were 

α2 and α3, the rates controlling differentiation from stem cells to TA cells and  
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Figure 4-1. Compartmental model of the crypt by Johnston et al.1. Cells are 
distributed into 3 populations: stem cells (N0), semi-differentiated cells (N1), and 
fully-differentiated cells (N2). Parameters governing flows between the 
compartments include cell death (α1, β1), differentiation (α2, β2), self-renewal (α3, 
β3) and cell removal (γ).

Death Death

Differentiation Differentiation

Renewal Renewal

Removal

Semi-
differentiated 

cells
 

N1

Fully
differentiated 

cells
 

N2

Stem cells

N0

α1 β1 

α2 

α3 

β2 

β3 

γ 



 143 

stem cell self-renewal, respectively. Thus to effectively model symmetric division 

from 1 stem cell to 2 TA cells, α2 would increase while α3 would decrease. I 

performed several simulations testing the bounds of α2 and α3 modulation in the 

context of acute (1 day) or chronic (5 days) Notch inhibition and found that 

alteration of these parameters led to very mild increases in the N1 population 

when changed for either acute or chronic periods, but neither change led to any 

decrease in N1 or N2 number, which would be expected after the stem cell 

compartment had been fully depleted (Figure 4-2A,B). 

 Interestingly I found that even with an initial value for N0 of 0 stem cells, 

populations remained in the N1 and N2 compartments (not shown). It became 

clear that the N1 cell compartment in this model acts independently as another 

stem cell compartment since the parameter β3 allowed for indefinite N1 cell 

renewal. This is counter to the traditional view that TA cells possess limited self-

renewal, dividing 4-6 times prior to differentiating16-18.  

 To circumvent this issue, I simulated Notch inhibition such that 

contribution of β3 was eliminated during the time of α2 elevation, preventing 

unlimited TA self-renewal. Despite the fact that increased α2 should lead to a 

bolus of extra cells in the TA cell compartment leading to a transient increase in 

N1 cell number, loss of the unlimited TA cell self-renewal prevented any increase 

in this population (Figure 4-2C,D).  

 One of the strengths of the Johnston et al. model1 is that it provides ample 

feedback to prevent small changes in compartmental populations from 

destabilizing steady state populations. While this is ideal for analysis of crypt 

homeostasis over long periods of time, it leads to inability to describe short-term 

dynamics. To adequately test our hypothesis I needed to devise a crypt model 

were the TA cell compartment was not an independent entity, but very much 

dependent on the stem cell population and the outcome of stem cell division 

symmetry. 
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Figure 4-2. Johnston et al. model1 does not replicate short-term crypt 
dynamics. (A-B) Approximating symmetric stem cell division by increasing α2 (α
2 = 5) and decreasing α3 to (α3 = 0.001) during the period of “Notch inhibition” 
(red shaded boxes). Acute Notch inhibition is estimated as parameter changes 
for 1 day prior to normalization.  Chronic Notch inhibition is parameter changes 
for 5 days prior to normalization. (C-D) Analysis of N1 self-renewal removal. The 
self-renewal parameter β3 was decreased to 0 during the period of Notch 
inhibition. Symmetric cell division was estimated by increasing α2 to 1 during 
this period.  Homeostatic parameter values are α = 0.286, α2 = 0.3, α3 = 0.586, β 
= 0.432, β2 = 0.2, β3 = 0.732, γ = 0.323, k0 = 0.1, m0 = 0.1, k1 = 0.01, and m1 = 
0.01, as described in Johnston et al.1 where α = α3 – α1 – α2 and β = β3 – β1 – β2 
except during the Notch inhibition intervals as noted above.

Acute Notch inhibition Chronic Notch inhibition
C

el
l n

um
be

r

Time (days) Time (days)

0 5 10 15 200 5 10 15 20

250

200

150

100

0

0 5 10 15 20

C
el

l n
um

be
r

0 5 10 15 20

50

250

200

150

100

50

0

N2
N1N0

A B

C D

0 5 10 15 20



 145 

Discrete compartmental model  

 Since a differential equation system did not allow the flexibility of 

observing compartmental changes due to small, transient fluctuations in cell 

numbers, I switched to a discrete (difference equation) modeling approach. Like 

the Tomlinson and Bodmer13 and Johnston et al.1 models, my model also 

contains, in essence, 3 compartments: stem (S), TA (T), and differentiated (D) 

cells, although compartment D is not directly assessed in the following analyses. 

Instead of cell division fueled by intrinsic cell cycle rates, compartment population 

numbers are determined by amplification from the previous compartment. To 

accurately amplify the TA compartment I started with a number of T 

compartments to be consistent with the idea of 4-6 rounds of TA cell division 

(Figure 4-3). I thus crafted the following set of difference equations Eq 4-8. 

 
where S(t) is the population of stem cells at time t. X is the parameter that 

governs stem cell division. Thus if X = 1 an equal amount of stem cell and TA 

cells are produced from each stem cell division event, the definition of 

asymmetric stem cell division. When X = 0, stem cell division is symmetric but 

produces only stem-like daughter cells, and when X = 2, stem cell division 

produces only 2 TA cells (Figure 4-3B). R is a net gain or loss parameter. Tn(t) is 

the population in any one of several TA cell compartments at time t for n>1. 
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Figure 4-3. Discrete compartmental model of the intestinal crypt. (A) 
Schematic diagram of compartmental model. Compartments include stem (S), 
TA (T), and Differentiated (D) cell compartments. Multiple TA cell divisions are 
listed in subcompartments where n = 4-6 divisions. (B) X functions to regulate 
stem cell division symmetry. X can be 0, 1, or 2 and determines whether stem 
cells divide asymmetrically producing 1 stem cell and 1 TA cells, or 
symmetrically, forming either 2 stem cells or 2 TA cells.

Stem
(S) 

TA
(T) 

Diff 
(D)

replacement 
stem cell
 division differentiation 

X R 

T1 T2 T3 Tn...
TA amplification

removal

G

A

B Stem cell division symmetry

X = 2
symmetric

X = 1
asymmetric

X = 0
symmetric

stem cell
TA cell



 147 

T compartment population is calculated by simply doubling the population of the 

previous compartment and n is the total number TA divisions. Finally, D(t) is the 

population in the differentiated cell compartment at time t and G is the number of 

cells removed from D due to sloughing off at any time. 

 

Calibration of cell division timing  

 First, I addressed the dissimilarity in cell cycle times intrinsic to various cell 

populations. Stem cells are thought to divide on average once per day10, 19, while 

TA cells divide approximately every 12 hours16, 17. Johnston et al.1 determined 

that age-matching cells was not necessary and that continuously averaging the 

population was sufficient for compartment analysis. It was unclear, however, how 

important the scale of time step t was for system dynamics in an iterative model 

of the crypt.  

 To assess this, I first set t = 12 hours to be on scale with TA cell divisions, 

but only allowed stem cell division every other time step. Not surprisingly, this 

resulted in periodic gaps in TA cell compartments leading to oscillation in total T 

population (Figure 4-4A). I then compared this outcome with t = 1 day, with both 

stem and TA cell divisions occurring every time step (Figure 4-4B). Notably, 

summation over a 24-hour period in the 12-hour time step model gave the same 

outcome for total T population as the 1 day time step. These simulations were 

performed in the setting of asymmetric stem cell division (X = 1) but identical 

conclusions were made with other values of X (not shown). 

 The oscillations in the 12-hour time step model are an artifact caused by 

the inherent assumption that cell division is synchronized. In an actual crypt, cell 

division is asynchronous and thus no gap in S to T transition would ever truly 

occur. Because the overall T population numbers were identical between the two 

timescales when summed over a 24-hour period, and as the comparable 

experimental data was collected on a daily basis, the model was scaled to a 1 

day time step.  

 



148

C

Figure 4-4.  Compartmental model calibrations. (A,B) Simulated data for the 
discrete compartmental model with iterations run every 12 hours with stem cell 
division occurring every other iteration (A) or iterations run every 24 hours with 
stem cell division occur every iteration (B). (C) Comparison of total TA cell 
counts derived when various combinations of TA compartment number and 
rounds of division are used. Only combinations with # of divisions that were 
divisible by compartment number were used. Identical population values are 
shaded with the same color. Initial values for all calculations were S = 4, T1 = 4, 
X = 1, R = 0. 
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TA cell compartments can be lumped 

 Next, I aimed to determine if multiple TA cell compartments were 

necessary to accurately describe an amplifying system. To test this I condensed 

multiple TA compartments into larger compartments and calculated whether the 

resulting total TA population differed than if the amplifications had occurred in 

individual compartments. The results are plotted in Figure 4-4C. In summary, it 

does not matter computationally how many compartments the TA cells are 

spread between, only the number of divisions affect overall TA cell population. 

Thus, the Eq 5-7 can be simplified as Eq 9: 

 
where ω is an amplification constant dependent on the number of TA divisions. 

(For example, when n = 4, ω = 15 and when n = 6, ω = 63). 

 

Forced differentiation versus symmetric stem cell division 

 I favored a hypothesis that symmetric stem cell division could explain the 

increased proliferation and decreased stem cells observed with acute DBZ 

treatment, because such a division event would inherently decrease the number 

of stem cells and would increase the amount of TA cells primed for amplification.  

I questioned, however, if stem cell division was even necessary to lead to this 

outcome. In our experimental system this would indicate that Notch inhibition led 

to the differentiation of stem cells into TA cells rather than division of stem cells 

into TA cells. To test this, I compared whether simply moving the entire S 

compartment into T1 would result in increased TA cell number (Figure 4-5A). 

Strikingly, without stem cell division, no amplification above initial T population is 

observed. As expected, with loss of the stem cells, TA cells become depleted 

over time. When symmetric stem cell division is implemented however (X = 2), a 

robust doubling in population is observed over initial TA levels (Figure 4-5B). 

Without stem cells, this too is depleted over time, but the increased population is 

observed for several days prior to crypt collapse. Through this comparison,  
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Figure 4-5. Stem cell differentiation versus symmetric division. (A) Stem 
and TA cell populations resulting from S compartment shift to T1 compartment in 
the absence of stem cell division. Initial values: S = 4, T1 = 4, R = 0, X = 1, ω=15 
(B) Simulation of discrete compartmental model with symmetric stem cell 
division. Initial values: S = 4, T1 = 4, R = 0, X = 2, ω=15.
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I concluded that although differentiation of stem cells into TA cells moves cells 

into the proper compartment, without stem cell division no amplification is 

observed. 

 

Utilizing non-integer values of X   

 Having determined that symmetric stem cell division (X = 2) can lead to 

decreased stem cells and a transient increase in TA cells (Figure 4-5B), I was 

encouraged that this was a viable mechanism to test in our Notch inhibition 

model. I noted, however, that the stem cell population number was completely 

depleted after a single round of division when X=2. Since our experimental 

findings did not suggest that the entire stem cell compartment is lost after DBZ 

treatment, I considered relaxing the stringency of stem cell symmetry in our 

model, allowing non-integer values of X. This removes the strict definition of 

asymmetric versus symmetric symmetry from the model, but allows description of 

stem cell progeny on a population level. Any value of X between 1 and 2 (I used 

X = 1.5) would indicate a greater likelihood of TA cell specification. Thus Notch 

inhibition could lead to more, but not all, stem cell progeny becoming TA cells.  

 

Hypothesis-testing: Stem cell symmetry in acute and chronic Notch inhibition 

 The first hypothesis I wanted to test was if change in stem cell symmetry 

alone could account for the differing proliferation outcomes observed in acute 

and chronic Notch inhibition. To test this, we started our simulations with 

“homeostasis” such that X = 1, R = 0. During the period of Notch inhibition X was 

set at 1.5 to simulate preference for TA cell production over stem cell production. 

X was increased for 1 day (acute Notch inhibition) or 5 days (chronic Notch 

inhibition). The results of this simulation are shown in Figure 4-6A. As observed 

in our experimental data obtained after acute Notch inhibition with DBZ, the 

simulation showed a transient increase in TA cell population while stem cells 

were decreased. Both populations return to homeostasis after treatment, but, 

notably, at lower than initial value levels. Chronic Notch inhibition shows the 

same trends, although the stem cell compartment is completely depleted and TA  
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Figure 4-6. Hypothesis testing with the discrete compartmental model. The 
effect of Notch-regulated stem cell symmetry in the context of acute and chronic 
Notch inhibition is evaluated in three scenarios. To model a shift toward 
symmetric division X = 1.5 for 1 day (acute) or 5 days (chronic) during the 
periods indicated (purple bars). X is returned to 1 after treatment (green bar). 
Symmetry is tested alone (A), with Notch-independent stem cell replacement 
(B), and with Notch-dependent stem cell replacement (C). Notch independent 
stem cell replacement is accomplished by R = S0 – St during Notch inhibition 
window. Notch-dependent stem cell replacement uses R = 2 after the Notch 
inhibition window until St = S0.  Initial values: S = 4, T = 60, R = 0, X = 1, ω=15.
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cell populations progressively decline before reaching much lower resting levels. 

While the chronic Notch inhibition outcomes resemble the decreased stem and 

proliferating cell findings we observed experimentally, the acute Notch inhibition 

simulation did not mirror our results since experimental proliferation returned to 

baseline by 7 days, rather than remaining lowered post-treatment. 

 

Hypothesis-testing: Stem cell symmetry with Notch-independent stem cell 

replacement 

 Since the decreased homeostatic resting levels observed above were 

fueled from a persistent loss in stem cell number, I probed the idea of stem cell 

replacement in conjunction with altered stem cell symmetry. Numerous studies 

have shown that lost or damaged crypt base columnar stem cells can be 

replaced by quiescent or facultative stem cell populations20-23. Thus repopulation 

of the S compartment is possible independent from stem cell symmetry and self-

renewal. The model takes this into account with the net gain or loss parameter, 

R. Positive R values function to allow repopulation of S, presumably by a 

quiescent stem cell. 

 In Figure 4-6B, I simulated Notch-regulated stem cell symmetry as above, 

but allowed for replacement of lost stem cells throughout the Notch inhibition 

window. Constant stem cell replacement was determined by Eq. 10: 

 
where S0 is the initial stem cell population and St is the decreased stem cell 

population at time t. With these parameters, stem cell populations remained 

unchanged throughout the entire test window in both acute and chronic Notch 

inhibition conditions. TA populations increased during the period of treatment and 

normalized after restoration of Notch signaling. Neither of these scenarios 

reflected the stem cell trends observed in our experimental system. Notch-

independent stem cell replacement showed no loss in TA cell number in the 
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chronic Notch inhibition model, which did not at all reflect the significant loss in 

proliferating TA cells observed with chronic DBZ treatment experimentally.  

 

Hypothesis-testing: Stem cell symmetry with Notch-dependent stem cell 

replacement 

 Finally, I tested Notch-regulated stem cell symmetry with Notch-regulated 

stem cell replacement (Figure 4-6C). In this simulation, R was altered only after 

Notch restoration. In the post-Notch inhibition window R was arbitrarily set at 2 

until St returned to S0 levels. In acute Notch inhibition this resulted in transiently 

decreased stem cells and transiently increased TA cell population, both of which 

returned to baseline homeostatic levels, although a transient decrease in TA cell 

number was observed prior to normalization. With chronic Notch inhibition, this 

resulted in a complete loss of stem cells and a marked reduction in TA cell 

number. After Notch restoration, a slow but complete recovery of both 

populations is observed.  

 In comparing these simulations with our experimental findings, the stem 

cell symmetry with Notch-dependent stem cell replacement is the best 

approximation thus far reconciling both acute and chronic DBZ results. Although I 

did not directly observe a dip in TA cell number prior to restoration with 

experimental acute DBZ, all other aspects of this simulation closely resembled 

the stem and proliferating cell profiles obtained in those experiments. The lack of 

this TA cell dip could be because I did not directly measure TA cell number, or it 

could have occurred transiently at a time point I did not analyze.  

 If this system is a rough approximation of what actually occurs with crypt 

dynamics in the setting of Notch inhibition, then the chronic Notch inhibition 

simulation provides several interesting testable outcomes. First, increased TA 

cells are observed prior to decreased TA cells. Second, stem and TA cells 

eventually recover post-Notch inhibition. As discussed in Chapter 3, both of these 

outcomes were tested in our in vivo system and were found to closely resemble 

these predictions, an encouraging validation of the model.  
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Apoptosis: an alternate hypothesis 

 To avoid being short-sighted in my consideration of possible mechanisms, 

I used the model to test an obvious alternate mechanism of stem cell loss, 

apoptosis.  In our in vivo system, I did not find a significant increase in cleaved 

caspase+ cells in the crypts after acute DBZ. I questioned, however, whether I 

had simply missed a narrow window of apoptosis as other stem cell damage 

models have shown a wave of apoptosis ending within 6 hours post-injury24. 

Since decreased stem cell number was observed with both acute and chronic 

DBZ, apoptosis can be modeled with a negative R value in both scenarios. 

Apoptosis alone results in total crypt collapse (not shown), so replication of the 

proliferative cell expansion observed in acute DBZ would require either 

independent increased TA cell replication or a rebound increase in stem cell 

number. I modeled the latter hypothesis in Figure 4-7. Although the general 

trends are similar to our experimental data there are several key differences. 

First, increased TA cell proliferation is greatly delayed from the time of Notch 

inhibition and only appears after a transient decrease in TA cell number. Neither 

of these findings were observed in our experimental setting. Second, the chronic 

Notch inhibition simulation showed no transient increase in TA cell number, 

which we have now established occurs prior to decreased proliferation. These 

discrepancies in addition to the absence of in vivo evidence of increased 

apoptosis make this an unlikely mechanism regulating Notch-dependent 

proliferation changes. 

 

4.5: CONCLUSIONS AND FUTURE DIRECTIONS 
 I devised and implemented a simple compartmental model of the intestinal 

crypt to test the hypothesis that Notch inhibition results in symmetric division of 

intestinal stem cells. I found that Notch-regulated stem cell symmetry did 

approximate our in vivo findings of stem and TA cell number with acute and 

chronic Notch DBZ treatment, but only in the context of Notch-regulated stem cell 

replacement. These findings provided important predictions such as increased 

TA cell number after multiple doses of DBZ and recovery of both the stem and  



Figure 4-7. Testing apoptosis and Notch-dependent stem cell recovery as a 
mechanism of differential proliferation outcomes. Apoptosis is modeled by R 
= -2 during the Notch inhibition window (purple bar) and R = 4 immediately after 
Notch restoration (green bar). Initial values: S = 4, T = 60, R = 0, X = 1, ω=15.
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TA cell compartments post-chronic DBZ that I was able to take back to the bench 

to test directly for model validation. 

 This discrete compartmental model is composed of a very simple 

framework, which makes it approachable for non-experts of mathematical and 

computational biology, and thus ideal for interfacing with experimental efforts. 

The limited parameters and assumption of synchronized cell division inherent in 

the model, however, also limits its predictive power, allowing only general 

qualitative behavior to be assessed. To garner more quantitative simulated data, 

I would need to generate a model with more precise parameters such as cell 

cycle times and rates of flow between compartments. An ordinary differential 

equation system could be employed to model average rates, but this system 

would need to ensure that the TA cell compartment remained dependent on stem 

cell number. Alternatively, a probabilistic agent-based model could be employed 

to individually track cells moving through crypt compartments. 

 Future revisions to the model could include a more explicit investigation of 

stem cell replacement. In the simulations above, R was a bulk gain or loss 

parameter. I arbitrarily chose a value for stem cell replacement (R = 2) in my 

Notch-dependent stem cell replacement model, which assumes that only two 

new stem cells can be added to the compartment each day either by quiescent 

stem cell division or de-differentiation. More precise testing of timing and 

amplitude of R modulation could determine if the dip in TA cells observed in that 

simulation is a necessity of the system or an artifact of timing. Furthermore, some 

studies suggest that TA cells can de-differentiate to repopulate the stem cell 

pool23, 25. Addition of a term that would allow movement from the TA 

compartment back into the stem cell compartment would allow investigation of 

this process in the context of Notch inhibition. 

 In conclusion, mathematical models do not need to be particularly 

complex to be extremely useful in in silico hypothesis testing and hypothesis 

generation. The data that we generated in these simulations proved to be very 

helpful for directing the next phases of our experimental work. These types of 

models can be tailored to address many aspects of ISC biology. 
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CHAPTER 5 
 
 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

 

 

The research undertaken for this thesis has advanced the field of intestinal 

stem cell (ISC) biology by furthering our understanding of how the Notch 

signaling pathway regulates ISC dynamics. I have tackled this question with two 

broad approaches: (1) determining the specificity for Notch receptors in 

regulating intestinal epithelial homeostasis, and (2) probing the relationships 

between stem and progenitor compartments in the context of Notch inhibition.  

 In this chapter, I will put my research in the context of the field and discuss 

some questions that my work raises. I present some preliminary data and 

discuss experimentation that can be undertaken to address these questions 

regarding intestinal Notch signaling and ISC regulation. 

 

Notch1 is the primary receptor regulating intestinal epithelial differentiation  

 In Chapter 2, I discovered a specific role for the Notch1 (N1) receptor in 

controlling differentiation in the intestinal epithelium, as deletion of N1 alone 

results in a dramatic secretory cell hyperplasia. The role of N1 in regulating 

intestinal epithelial differentiation has been contested in the literature. Previous 

work using specific Notch inhibitory antibodies showed a mild secretory cell 

defect with α-N1 antibody treatment1 as did chimeric deletion of N12. In contrast, 

Riccio et al.3 used the Villin-CreERT2 Cre driver to conditionally delete N1 and N2 

in the intestinal epithelium. This study3 found that neither single deletion had any 

phenotype, and only double deletion of N1 and N2 resulted in secretory cell 
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hyperplasia. The conclusion that N1 and N2 are functionally redundant in the gut 

has since propagated throughout the literature.  

My work also took advantage of the Villin-CreERT2 mouse model to 

conditionally delete N1 and N2 specifically in the intestinal epithelium. While it is 

unclear why the Riccio et aI.3 study did not uncover the N1Δ/Δ secretory cell 

phenotype, my study provides definitive evidence that N1 is indeed required for 

proper intestinal epithelial cell fate decisions. 

 

N1 is the primary receptor for stem cell maintenance 

Our lab discovered that pan-Notch inhibition with the gamma-secretase 

inhibitor Dibenzazepine (DBZ) resulted in a loss of crypt base columnar stem cell 

(CBCC) number and function, suggesting a role for Notch in CBCC survival4. 

Additional work from the Radtke lab5 demonstrated that dual deletion of the 

Notch ligands Dll1 and Dll4 also leads to stem cell loss, bolstering our finding that 

Notch is required for CBCC maintenance.  

In Chapter 2, I utilize the Lgr5-GFP mouse model, which marks CBCCs 

with GFP, in conjunction with Villin-CreERT2-mediated N1 deletion. In this 

system, I showed that deletion of N1 is sufficient to reduce GFPHI CBCC levels to 

below 50% of baseline levels. Only one other report2 previously assessed a 

specific role for N1 in stem cell maintenance. Vooijs et al.2 used a chimeric 

mouse model where N1-deficient cells were marked by expression of LacZ. 

Although N1 had been missing from these cells since development, some LacZ+ 

crypt/villus units were observed in adult animals2. These LacZ+ cells also 

contained an increased proportion of secretory cells compared to normal, 

suggesting that a N1-deficient ISC was capable of survival and production of 

progeny2. 

Together, these data suggest that N1 deletion results in an initial loss of 

some (~50%) of CBCCs, but not all. This raises the question of why some stem 

cells would be susceptible to N1 deletion but others are not. One explanation is 

that not all stem cells, even CBCCs, are created equal and thus might have 

different requirements for Notch receptor activation. A recent study utilizing 
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intravital imaging of stem cell division has separated the LGR5+ CBCC 

compartment into two functional groups “central cells” which occupied the lower 

positions in the crypt and “border cells” which occupied positions 3-4, adjacent to 

TA cells6. As an aside, the presence of two functional CBCC groups might 

explain why the Winton group recently found that the number of functionally 

active stem cells was likely to be 6 per crypt7, despite LGR5-GFP counts showing 

14-16 cells per crypt8, 9. Although both central and border cells can function as 

stem cells, central cells were shown to have a “survival advantage,” which might 

be linked to niche exposure10. Since Notch is a critical component of the niche, 

cells that require more niche signals might be at a selective disadvantage with 

N1 is deleted.  

Our finding that the secretory cell hyperplasia in N1Δ/Δ intestine almost 

completely disappears by 2 months is consistent with N1-deficient stem cells 

having a selective disadvantage. These cells could be slowly replaced by normal, 

unrecombined stem cells over time. The Vooijs et al. study2 discussed above did 

not disclose the age of animals at the time of analysis, but based on my results I 

would expect that the number of LacZ+ crypts would reduce as the mice aged. 

 

LGR5+ stem cells are intolerant of Notch modulation 

The observation of decreased CBCCs with N1 deletion is consistent with a 

number of findings that stem cells are exquisitely sensitive to loss of Notch. In 

data that I did not present in this thesis, I used the LGR5-GFP-CreERT2 mouse 

model to investigate deletion or activation of Notch signaling components 

specifically in CBCCs. In these experiments, I expected to see secretory cell 

hyperplasia as evidence of Notch inhibitory phenotype in a patchy nature due to 

the mosaic nature of the Cre driver. Instead I observed no visible phenotype 

when Lgr5-GFP-CreERT2 was crossed to RbpjF/F, DNMAMLF/F, or combined 

N1F/F;N2F/F.  

Interestingly, a similar finding was observed even with Notch activation. In 

Chapter 2, I used a Notch activation model to understand how constitutive Notch 

signaling affects the intestinal epithelial proliferation and differentiation profiles. 
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To assess this I utilized the Villin-CreERT2 ; Rosa26-LSL-NICD-nGFP model, 

which leads to expression of activated NICD in the intestinal epithelium. In this 

system I found that proliferation is increased, and that all types of differentiated 

cells are decreased. This is important since earlier works suggested that Notch 

activation results in an increase in the absorptive lineage at the expense of 

secretory cells11, 12.  

Since Notch activation resulted in an undifferentiated phenotype and 

Notch is activated in a number of cancers, we were interested in determining if 

Notch activation specifically in CBCCs could induce intestinal adenoma 

formation. To study this we utilized the Lgr5-GFP-CreERT2 mouse crossed to 

Rosa26-LSL-NICD-nGFP. Interestingly, while NICD activation in LGR5+ cells in 

the stomach led to formation of antral polyps (Figure 5-1, Demitrack et al., 

unpublished), no polyps were observed in the intestine.  

Our hypothesis is that modulation of Notch signaling, either activation or 

inhibition, in CBCCs is deleterious such that these cells are at a competitive 

disadvantage compared to normal neighbors. This may explain why Notch 

signaling is not thought to be an inducing force for intestinal and colonic 

neoplasias. The fact that this phenomenon does not appear to occur in the same 

manner in the stomach introduces important questions of how LGR5+ cells may 

be differentially regulated by Notch in the stomach and intestine. 

  

Compensation versus loss of N1 deletion 

While selective disadvantage would be consistent with the above findings 

and would result in the secretory cell hyperplasia disappearance observed in the 

intestinal epithelium of N1Δ/Δ animals, an obvious alternate hypothesis is that 

compensation by another Notch component or alternate pathway occurs leading 

to restoration of the tissue. We have utilized both in situ hybridization as well as 

quantitative RT-PCR for N1 transcript to try to determine if N1 deletion rates 

change throughout our timecourse. At this point, both arms of the study are 

inconclusive, although it appears that at least a partial restoration of N1 occurs.  



Figure 5-1. NICD activation in LGR5+ cells results in polyp formation in the 
stomach but not intestine.  (A-B) Gross histology of Lgr5 and Lgr5; NICD 
stomachs 6 months after tamoxifen activation. Large antral polyps are visible in 
NICD stomachs (arrows) (C-D) H+E staining shows epithelial hypertrophy and 
glandular dysplasia in NICD polyps. (E-F) No abnormalities were observed 
along the entire length of the small and large intestine. Scale bars, 100 μm. 
(Stomach data aquired by Elise Demitrack, unpublished)
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Future optimization of N1-antibody staining would help these efforts in 

pinpointing the extent of N1 recovery. 

In terms of compensation, while we did observe increased expression of 

Dll1 and Dll4, these genes returned to baseline over time and are thus not likely 

for the long-term normalization of N1Δ/Δ. N2 is the most likely candidate for long-

term compensation of N1, although we did not observe an increase in N2 

expression transcriptionally. Since much of Notch receptor activity occurs post-

translationally, however, a more informative approach would be to look at 

changes in N2 surface expression in N1Δ/Δ animals. Preliminary flow cytometry 

data staining for N2 suggests that this is a feasible approach to take in the future 

(Figure 5-2). 

 

A specific role for N2? 

In Chapter 2, deletion of N2 appeared to have no secretory cell 

phenotype, consistent with previously published results1, 3. By combining different 

combinations of N1 and N2 deletion I show that N1 and N2 are synergistic for 

epithelial differentiation and redundant for proliferation. 

Previous in situ hybridization studies reported a range of N2 expression in 

the crypt, from a few cells13 to the entire crypt14, and a transgenic mouse model 

which expresses Cre in cells expressing N2 showed rare lineage tracing14. The 

reason for the rarity of the tracing is unknown, and could be due to mosaic 

expression of the transgene, or that N2 is functionally active on TA cells, and that 

lineage-traced crypts had TA cells that sporadically de-differentiated into the 

stem cell compartment. 

My preliminary flow cytometry data discussed above (Figure 5-2) suggest 

that N2 is membrane-associated for all GFP+ cells in the crypt which would 

include stem and TA cells. Future work requires better-controlled trials to be 

confident that this staining is legitimate. In any case, moving in the direction of 

assessing membrane protein expression is the right path to obtaining a better 

understanding of Notch signaling in the intestine.  

 



Figure 5-2. Preliminary N2 staining of intestinal epithelial cells. Singly 
isolated cells from Lgr5-GFP jejunum were stained with anti-N2 antibody or 
isotype control. Cells were sequentially gated for size, singlets, DAPI-, CD45.2-, 
EpCAM+, and GFP+. Low background staining is observed in isotype-stained 
control, but N2 staining is observed in GFPHI, GFPINT, and GFPLOW populations 
suggesting that N2 has surface expression on a subset of all stem and TA cells. 
This is a promising technique to investigate compensation of N2 in N1-deleted 
intestine.
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Acute Notch inhibition leads to increased proliferation and shifted stem cells 

In Chapter 3, I turn back to a pharmacologic inhibition model with DBZ to 

understand what happens to a stem cell once Notch signaling is turned off. Since 

chronic Notch inhibition is typically associated with decreased proliferation and 

increased secretory cells, I was surprised to find that a single (acute) dose of 

DBZ led to both increased proliferation and increased secretory cell production. 

 Exploiting the gradient GFP expression in the crypts of the Lgr5-GFP-

CreERT2 mouse model, I used flow cytometry to analyze GFPHI and GFPINT cells 

which are expected to be CBCCs and first level TA progenitors, respectively. 

With this technique I found that acute DBZ treatment led to a decrease in GFPHI 

cells that was always associated with an increase in GFPINT cells, consistent with 

a bulk shift from the stem to progenitor cell compartments.  

I used mathematical modeling (discussed below) to test the hypothesis 

that the increased proliferation of acute DBZ is caused by symmetric stem cell 

division and determined that Notch was also involved in CBCC replacement, 

presumably by a QSC population. 

 

Notch regulation of CBCC replacement 

To test the role of Notch in CBCC repopulation, I performed acute DBZ in 

the post-irradiation setting. Since irradiation leads to CBCC death15-17 this model 

aimed to block Notch signaling in the remaining QSCs. Increased QSC 

abundance is observed after irradiation15, 18, 19, and indeed increased overall 

epithelial proliferation was observed in our post-irradiation DBZ animals, despite 

intestinal architecture collapse. This suggests that Notch is not required for QSC 

activation. Additional experiments using the Bmi1-CreER; RbpjF/F model in the 

irradiation setting resulted in similar results, as proliferative cell expansion was 

observed despite inactivation of Notch signaling.  

These experiments are admittedly difficult to interpret. Timing of DBZ 

treatment and tamoxifen induction with the timing of irradiation injury could have 

major effects on the outcome. For instance, we administered DBZ 24 hours after 

12Gy irradiation. Studies have shown that BMI1+ cells are more proliferative by 2 
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days after 12 Gy15. It is possible, however, that this process starts within 24 

hours after irradiation exposure and that the DBZ was administered too late to 

effectively block activation. Additionally, acute DBZ itself led to increased 

proliferation. Since division of CBCCs into TA cells is thought to be the source of 

the increased proliferation in acute DBZ, and CBCCs are killed by irradiation, it is 

likely that the proliferative cells are QSC-derived rather than CBCC-derived. 

Including a lineage trace reporter gene or utilizing the Bmi1-GFP transgenic 

mouse20 would help to differentiate between these possibilities. The fact that the 

post-irradiation DBZ led to rapid lethality and total epithelial collapse despite a 

proliferative surge is another interesting avenue that needs to be followed up. 

  

Notch is required for post-irradiation recovery 

I have shown that various means of Notch inhibition render the intestine 

incapable of irradiation recovery: N1-deletion (Chapter 2), α-N1 inhibitory 

antibody treatment21, and DBZ treatment in the post-irradiation setting (Chapter 3 

and Tran et al.21). While the cause of death is not clear in these animals, it is 

clear that combination of irradiation and Notch inhibition is deleterious. This is 

one of the most striking and important findings in my thesis, as it implies that 

potential Notch-inhibiting cancer drugs should not be used in combination 

regimes with therapeutic or palliative radiation treatment.  Interestingly, Notch 

inhibition in the post-irradiation setting (post-irradiation DBZ or inhibitory 

antibodies) appears to lead to decreased secretory cell determination, the exact 

opposite of Notch inhibition on its own. Additionally, in Chapter 2, I found that the 

Notch target gene Olfm4 is markedly reduced immediately after irradiation 

treatment. This gene is expected to decline since it is a CBCC marker, and 

CBCCs are killed by irradiation, but its loss of expression precedes the loss of 

Lgr5, suggesting that Notch may be directly inhibited by irradiation damage. If 

this is the case, it will be important to determine if intestinal epithelial Notch is 

required for recovery from other injury modalities or if this extreme sensitivity is 

specific to irradiation treatment.  
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Compartmental mathematical modeling of the intestinal crypt 

Part of my thesis work has been devoted to understanding the state-of-

the-art in terms of compartmental mathematical modeling of the intestinal crypt. I 

published a review22 in a journal geared to integrate biological and computational 

themes to educate both sides of the community about models that have 

successfully described intestinal homeostasis and tumorigenesis, post-irradiation 

recovery, and crypt development. I have outlined methods that could be 

undertaken to use compartmental modeling in conjunction with experimentation 

to answer several of the lingering questions that remain in the ISC field such as: 

How is stem cell number regulated? Are ISCs completely defined by the niche? 

Is there a dedicated QSC population? What is the nature of the TA 

compartment?  

In Chapter 4, I directly take advantage of compartmental mathematical 

modeling to test my hypothesis: Does Notch regulate the symmetry of stem cell 

division? In this chapter, I first exploit one of the most valuable aspects of in silico 

work; the ability to use previously published models to test new hypotheses. I 

used the ordinary differential equation model of crypt homeostasis and 

tumorigenesis by Johnston et al.23 to test my Notch regulation of stem cell 

symmetry hypothesis. I found that while this model is suitable for evaluating 

stem, TA, and differentiated cell populations averaged over long periods of time, 

it was not appropriate to look at short-term changes like those expected during 

Notch inhibition.  

I then designed my own discrete compartmental mathematical model of 

the crypt to test my hypothesis. With this model I was able to obtain qualitative 

predictions of stem and TA cell numbers where inhibition of Notch results in 

symmetric stem cell division resulting in formation of 2 TA progenitors. I found 

that alteration of symmetry alone did not replicate the restoration of homeostasis 

observed in acute Notch inhibition. Rather, I found that my experimental findings 

of increased TA cells/decreased stem cells with acute DBZ and decreased TA 
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cells/decreased stem cells with chronic DBZ were replicated by a mechanism 

where Notch regulates symmetry as well as CBCC replacement. 

This approach allowed me to test some of my modeling predictions in vivo, 

but future revisions of the model integrating robust cell counting data as well as 

accurate cell division rates would allow for more quantitative predictions. 

Importantly, my work demonstrates a simple scaffold that can be adapted to test 

many other signaling pathways that may be involved in regulating stem cells. 

 

Asymmetric stem cell division in the ISC 

Although the concept of stem cell division asymmetry is commonplace for 

other tissue stem cells24-27, the idea is controversial in ISCs. This is due to neutral 

drift dynamics studies that determined that ISCs divide symmetrically to form 

equipotential cells, which are equally capable of becoming stem cells or TA cells 

depending on niche availability9, 28. A revision of this model now suggests that 

stem cells can either become a central CBCC, a border CBCC, or a TA cell, and 

that there is priority in central CBCCs staying in the stem cell compartment10. 

These authors10 still contend that these decisions are based off of niche 

availability rather than any intrinsic asymmetry of division. 

  Interestingly, asymmetric stem cell division was directly observed during 

crypt development29. Either ISCs lose the ability to divide asymmetrically with 

maturity or these studies are incapable of adequately visualizing asymmetric 

stem cell division. A study in adult drosophila ISCs showed localization of Par 

complex and integrins on the spindle to position NUMB for successful 

asymmetric stem cell division30. Many drosophila ISC findings have been 

replicated in mammals, so it is disconcerting that such a stark difference exists in 

the method of stem cell division. A better evaluation of NUMB and other proteins 

associated with asymmetric stem cell division is required before eliminating this 

as a possibility for adult mammalian ISCs. Whether ISCs truly divide 

asymmetrically or not, my data suggests that Notch plays an important role in 

eventual population asymmetry of crypt.  
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In conclusion, the Notch signaling pathway is important for many aspects 

of intestinal epithelial homeostasis. My thesis work has illustrated an important 

role for the N1 receptor in regulating epithelial cell fate and stem cell 

maintenance, especially in the post-irradiation setting. Additionally, I have shown 

that loss of Notch signaling leads to CBCC removal from the stem cell 

compartment by division into the TA cell compartment. Prolonged Notch 

inhibition results in TA cell collapse since CBCC replacement can only occur with 

active Notch signaling providing a CBCC niche. 
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