
Maximizing Expected Value of Information in Decision
Problems by Querying on a Wish-to-Know Basis

by

Robert W. Cohn

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2016

Doctoral Committee:

Professor Satinder Singh Baveja, Co-Chair
Professor Edmund H. Durfee, Co-Chair
Professor Richard L. Lewis
Professor Michael P. Wellman

©Robert W. Cohn

2016

To my late grandfather, Seymour B. Cohn, whose seminal
contributions to engineering and casual mastery of seem-
ingly all matters of life will always inspire me.

ii

A C K N O W L E D G M E N T S

First and foremost I would like to thank my co-advisors, Satinder Singh and Ed Durfee, for
their combined efforts in training me as a researcher. I am deeply grateful for Ed’s tireless
guidance and patience throughout the entirety of my experience at Michigan, always
making himself available whenever I needed help in overcoming obstacles, whether they
be research-related or life-related, and his willingness to explore the theoretical paths I am
drawn to while training me to properly ground my work in rigorous empirical studies. I
am also deeply grateful for Satinder’s efforts in conveying to me his vast array of sharp
insights into research, regarding technical and practical matters alike, and his welcoming
aid in my theoretical endeavors despite my humble mathematical background.

I also thank my other doctoral committee members, Michael Wellman and Rick Lewis,
for their consistently insightful feedback throughout the proposal, dissertation defense,
and thesis writing stages of my time at Michigan. In particular, I could always count on
Michael Wellman to ask sharp questions, which often led to fruitful discussions that helped
to shape some of the deepest facets of my research, and I thank Rick for his encouragement
early on that motivated me to continue pursuing the theoretical avenues that ended up
becoming the foundation of my dissertation.

I would like to thank the AI faculty of the Michigan CSE department as a whole for their
willingness to openly discuss and debate research topics in nearly any context, and I am
deeply grateful to John Laird for his personal involvement in arranging the initial funding
that brought me to Michigan to begin as a masters student. I also thank the staff of the
CSE department as a whole, and I am particularly grateful to Dawn Freysinger for her
cheerful help on numerous occasions in guiding me through the formal processes required
at various points in the program.

I also thank my colleagues, especially my group, past and present. In particular, I am
grateful to Jonathan Sorg, Erik Talvitie, and Alex Kulesza for their mentorship, and to
Nan Jiang, Jeshua Bratman, Ananda Narayan, and XiaoXiao Xu for the conversations and
comradery we shared.

iii

TABLE OF CONTENTS

Dedication . ii

Acknowledgments . iii

List of Figures . vii

Abstract . x

Chapter

1 Introduction . 1

1.1 Problem Statement . 3
1.2 Approach . 4

1.2.1 Uncertainty-based Query Filtering 4
1.2.2 Decision Query Projection . 5

1.3 Contributions . 6

2 Background . 8

2.1 Preliminaries . 8
2.1.1 Decision-Making under Uncertainty 8
2.1.2 Querying . 10

2.2 Query Selection Problem . 12
2.3 Related Work . 13

2.3.1 Sequential Decision-Making . 14
2.3.2 Knowledge Acquisition . 16
2.3.3 Querying in Decision Problems 18

2.4 Summary . 19

3 Query Selection in Sequential Decision Making 20

3.1 Setting . 21
3.1.1 Bayesian MDPs . 21
3.1.2 EVOI in Sequential Decision-Making 22

3.2 Selecting Transition and Reward Queries 23
3.2.1 Dirichlet Priors and Transition/Reward Query Semantics 23
3.2.2 Computing Expected Value of Information for Reward and Tran-

sition Queries . 26
3.2.3 Empirical Results . 28

3.3 Selecting Action Queries under Reward Uncertainty 36

iv

3.3.1 Computing Expected Value of Information for Action Queries . . 37
3.3.2 Active Sampling . 40
3.3.3 Computation-Limited Scenarios and Hybrid Approach 42
3.3.4 Comparisons . 42

3.4 Conclusions . 49

4 Wishful Query Selection: Selecting from the k-Response Query Set 51

4.1 Problem Formulation . 52
4.2 Summary of Theoretical Results . 53
4.3 Myopic k-Response Query Selection . 54
4.4 Nonmyopic k-Response Query Selection 58

4.4.1 Expected Value of Information for Query Trees 58
4.4.2 Decision Queries and Decision-Set Queries in Nonmyopic Query

Selection . 59
4.5 Algorithms for k-Response Query Selection 62

4.5.1 Myopic k-Response Query Selection 63
4.5.2 Nonmyopic k-Response Query Selection 64

4.6 Discussion . 65

5 Selecting from Arbitrary Subsets of k-Response Queries via Wishful Query
Projection . 67

5.1 Askable Query Selection Setting . 68
5.2 Decision Entropy and Query Response-Entropy 69
5.3 Approaches for Askable Query Selection 69
5.4 MEDER Query Selection Algorithm . 70
5.5 Wishful Query Projection . 74

5.5.1 Directed Expected Entropy Reduction (DEER) 75
5.5.2 Directed Mistake Volume Minimization (DMVM) 81

5.6 Summary of Algorithms and Results . 86
5.7 Discussion . 87

6 Empirical Study of Wishful Query Projection in Askable k-Response Deci-
sion Query Selection . 89

6.1 Askable Decision Query Setting . 89
6.1.1 Wishful Query Projection Algorithms 92
6.1.2 Askable Evaluation . 94
6.1.3 EVOI-loss upper bound for AskEnum-AskEval 95

6.2 Experiments . 97
6.2.1 Setup . 98
6.2.2 Empirical study of DEER for Askable Decision Query Selection . 98
6.2.3 Empirical performance of DEER approximations 111
6.2.4 Computational Performance . 113

6.3 Discussion . 118
6.4 Appendix . 121

6.4.1 Value-based Decision Replacement 121

v

6.4.2 Greedy AskEnum-DoEval . 123

7 Conclusions . 126

7.1 Summary of Contributions . 126
7.2 Future Work . 128

7.2.1 Query Selection in Sequential Decision-Making 129
7.2.2 Extending Wishful Query Projection 131
7.2.3 EVOI-Sufficiency . 133

Bibliography . 136

vi

LIST OF FIGURES

3.1 The “tree” and “grid” domains. 29
3.2 a) Value of the policy obtained after a sequence of EMG queries, compared

with a random query sequence and the optimal policy with full information.
b) Value of the policy obtained after a sequence of EMG queries, minus the
total cost to obtain it for various costs of querying. 35

3.3 Average policy loss for EMG-AQS, AS, and Random on the Puddle World
across a sequence of queries shown, from left to right, for discount 0.2, 0.9,
0.99, and 0.999. All error bars are confidence intervals with p-value = .05. . . . 45

3.4 a) The Driving Domain. Average policy loss for various query strategies ac-
cording to b) computation time allotted and c) number of queries made. Error
bars are confidence intervals for p-value 0.05. 48

4.1 Diagram illustrating the main steps used to prove Theorem 4.6. Each arrow
represents a statement that, for any query/query tree contained in the set at the
tail of the arrow, a query/query tree with equal or higher EVOI must exist in
the set at the head of the arrow. The three solid arrows, together with the fact
that M(Hk) ⊂M(Qk), imply Theorem 4.6 (represented by the dotted arrow). . 60

6.1 Results for Experiment 6.1– a) Average EVOI of query selected and b) average
posterior response entropy of d∗ induced by query selected, as a function of
the size of the askable decision set; the size of the doable decision set is fixed
at 15. For each trial, both the askable and doable decisions sets are uniformly
sampled from the complete Boston housing decision set. 101

6.2 Results for Experiment 6.2 – a) Average EVOI of query selected and b) aver-
age posterior response entropy of d∗ induced by query selected, as a function
of the size of the askable decision set; the size of the doable decision set is
fixed at 15. For each trial the doable decision set is uniformly sampled from
the complete Boston housing decision set, and the askable decision set is then
sampled from the doable decision set. 103

6.3 Control for Experiment 6.3 – Average EVOI of query selected as a function of
ρ, the scaling factor used for the chimerical features (the last two features) of
each decision in the askable deicsion set. 104

vii

6.4 Experiment 6.3 – a) Average EVOI of query selected and b) average poste-
rior response entropy of d∗ induced by query selected, as a function of ρ: the
scaling factor used for the chimerical features (the last two features) of each
decision in the askable deicsion set. The doable decision set is obtained by
starting with two specially constructed “risky decisions” and then uniformly
sampling additional decisions from the complete Boston housing decision set,
and the askable decision set is obtained by uniformly sampling from the com-
plete Boston housing dataset and then scaling the chimerical features (the last
two features of each decision) by ρ. 105

6.5 a) Average number of decisions contained in the set asked about by d∗ that are
Bayes-optimal after updating ψ with the selected query’s response (which can
be 0, 1, or 2 for the binary decision queries considered here, and b) average
prior response entropy of query selected, as a function of ρ: the scaling fac-
tor used for the chimerical features (the last two features) of each decision in
the askable deicsion set. The doable decision set is obtained by starting with
two specially constructed “risky decisions” and then uniformly sampling ad-
ditional decisions from the complete Boston housing decision set, and the ask-
able decision set is obtained by uniformly sampling from the complete Boston
housing dataset and then scaling the chimerical features (the last two features
of each decision) by ρ. 109

6.6 Experiment 6.4 – a) Average EVOI of query selected and b) average poste-
rior response entropy of d∗ induced by query selected, as a function of τ : the
scaling factor used for the negative decision features of the two risky deci-
sions present in the doable decision set. The doable decision set is obtained
by starting with two specially constructed “risky decisions”, scaling their neg-
ative features by τ , and then uniformly sampling additional decisions from the
complete Boston housing decision set. The askable decision set is obtained by
uniformly sampling from the complete Boston housing dataset and then scal-
ing the chimerical features (the last two features of each decision) by ρ = 0.1.

. 110
6.7 Results for Experiment 6.1– a) Average EVOI of query selected and b) average

posterior response entropy of d∗ induced by query selected, as a function of
the size of the askable decision set; the size of the doable decision set is fixed
at 15. For each trial, both the askable and doable decisions sets are uniformly
sampled from the complete Boston housing decision set. 114

6.8 Results for Experiment 6.2 – a) Average EVOI of query selected and b) aver-
age posterior response entropy of d∗ induced by query selected, as a function
of the size of the askable decision set; the size of the doable decision set is
fixed at 15. For each trial the doable decision set is uniformly sampled from
the complete Boston housing decision set, and the askable decision set is then
sampled from the doable decision set. 115

viii

6.9 Results for Experiment 6.3 – a) Average EVOI of query selected and b) aver-
age posterior response entropy of d∗ induced by query selected, as a function
of ρ: the scaling factor used for the chimerical features (the last two features)
of each decision in the askable deicsion set. The doable decision set is ob-
tained by starting with two specially constructed “risky decisions” and then
uniformly sampling additional decisions from the complete Boston housing
decision set, and the askable decision set is obtained by uniformly sampling
from the complete Boston housing dataset and then scaling the chimerical fea-
tures (the last two features of each decision) by ρ. 116

6.10 Results for Experiment 6.4 – a) Average EVOI of query selected and b) aver-
age posterior response entropy of d∗ induced by query selected, as a function
of τ : the scaling factor used for the negative decision features of the two risky
decisions present in the doable decision set. The doable decision set is ob-
tained by starting with two specially constructed “risky decisions”, scaling
their negative features by τ , and then uniformly sampling additional decisions
from the complete Boston housing decision set. The askable decision set is ob-
tained by uniformly sampling from the complete Boston housing dataset and
then scaling the chimerical features (the last two features of each decision) by
ρ = 0.1. 117

6.11 Average computation in seconds to select a query as a function of the size of
the askable (a) and doable (b) decision set, where in (a) the size of doable set
is fixed at 20, and in (b) the size of the askable set is fixed at 20. 119

6.12 Supplemental results for Experiments 6.1 and 6.2 – average EVOI-loss of
query selected as a function of the askable decision set, where the size of
the doable decision set is fixed at 15 and uniformly sampled from the com-
plete Boston housing decision set, and where a) the askable decision set is
uniformly sampled from the complete Boston housing decision set (Experi-
ment 6.1); or b) the askable decision set is sampled uniformly from the doable
decision set (Experiment 6.2). 125

ix

ABSTRACT

Maximizing Expected Value of Information in Decision Problems by Querying on a
Wish-to-Know Basis

by

Robert W. Cohn

Co-Chairs: Satinder Singh Baveja and Edmund H. Durfee

An agent acting under uncertainty regarding how it should complete the task assigned to

it by its human user can learn more about how it should behave by posing queries to its

human user, provided its user is capable of responding to them. Asking too many queries,

however, may risk requiring undue attentional demand of the user, and so the agent should

prioritize asking the most valuable queries. For decision-making agents, Expected Value

of Information (EVOI) measures the value of a query, and so given a set of queries the

agent can ask, the agent should ask the query that is expected to maximally improve its

performance by selecting the query with highest EVOI in its set.

Unfortunately, to compute the EVOI of a query, the agent must consider how each possi-

ble response would influence its future behavior, which makes query selection particularly

challenging in settings where planning the agent’s behavior would be expensive even with-

out the added complication of considering queries to ask, especially when there are many

potential queries the agent should consider. The focus of this dissertation is on developing

x

query selection algorithms that can be feasibly applied to such settings.

The main novel approach studied, Wishful Query Projection (WQP), is based on the intu-

ition that the agent should consider which query to ask on the basis of obtaining knowledge

that would help it resolve a particular dilemma that it wishes could be resolved, as opposed

to blindly searching its entire query set in hopes of finding one that would give it valu-

able knowledge. In implementing WQP, this dissertation contributes algorithms that are

founded upon the following novel result: for myopic settings, when the agent can ask any

query as long as the query has no more than some set number of possible responses, the

best query takes the form of asking the user to choose from a specified subset of ways for

the agent to behave. Through a combination of empirical and theoretical analysis, the work

presented shows that WQP selects queries with near-optimal EVOI when the agent’s query

set is (1) balanced in the range of queries it contains; and (2) rich in terms of the highest

contained query EVOI.

xi

CHAPTER 1

Introduction

“If information value theory and associated decision theoretic structures do

not in the future occupy a large part of the education of engineers, then the

engineering profession will find that its traditional role of managing scientific

and economic resources for the benefit of man has been forfeited to another

profession.”

– Ronald A. Howard, 1966.

Designing agents to effectively represent and reason over their uncertainty about their
world is central in artificial intelligence, since for many settings the agent can benefit by
adapting its behavior to take advantage of knowledge it gains as it acts in the world that
cannot be feasibly specified beforehand. For instance, it may be infeasible to provide the
agent with a complete model of its environment, or it may be that the agent’s task de-
pends on unclear and/or ambiguous instructions provided by a human user. As an example,
consider a web assistant agent tasked by its human user to recommend housing options
in Boston. The agent is unlikely to have complete information regarding the user’s prefer-
ences among housing options in trading off factors such as cost, proximity to transportation
hubs, population density, neighborhood safety, and structural properties.

Empowering such a housing recommendation agent with the ability to query its user
for more information can allow it to dynamically adapt its planning process according to
the individual preferences of its user. For example, suppose the agent can ask its user any
yes/no question. The agent may be able to significantly narrow the space of options it
considers by asking the user whether she would be willing to pay up to x additional dollars
to live on a cul-de-sac, whether living near a subway stop would be worth living in an area
with unreliable parking access, or whether she would prefer a particular housing option
over another. With a set of such queries at its disposal, the agent can acquire valuable
knowledge about its user’s preferences that it can use to improve its task performance.

1

Beyond the challenges of designing the agent’s representation of its environment, its
uncertainty representation, its space of decisions, and the set of queries it can ask, the
computational problem of determining what the agent should ask presents significant chal-
lenges. In principle, the agent should ask the query that it expects, upon learning its re-
sponse, will best improve its ability to make good decisions – that is, it should ask the
query with highest Expected Value of Information (EVOI). However, computing the EVOI
associated with a particular query requires the agent to reason about how asking the query
would update its knowledge and allow it to improve its own decision-making process, im-
plying that the computational complexity of EVOI-based query selection is inherently tied
to that of optimal planning.

Selecting from a large query set, then, can present significant computational challenges
in settings where optimal planning under uncertainty would be expensive even if the agent
did not consider any queries. In such settings, researchers typically either consider small
query sets that can be exhaustively searched (which limits the agent’s ability to be selective
about what knowledge it gains), or employ query selection approaches that do not offer
formal approximation guarantees. An example of the latter approach is to select queries
on the basis of some measure of global uncertainty reduction instead of EVOI, which can
often be done more efficiently at the cost of sacrificing the quality of the query selected.
The cost can be substantial, however, in situations where the agent is uncertain about many
factors of its world, but only a key subset play an important role in the agent’s decision
problem. For example, suppose the housing recommendation agent is highly uncertain
about the user’s preferences regarding high altitudes. Since altitude is not a pertinent factor
when only considering housing options in Boston, the agent should focus its queries on
learning about more important factors even though the agent might be less uncertain about
them.

In this dissertation I study the computational problem of selecting the query with max-
imum expected value of information for decision-making agents, focusing on the rela-
tionship between uncertainty reduction and expected value of information. Drawing from
insights I obtain through analytical and empirical comparisons of techniques for query se-
lection, I contribute a new approach for query selection called Wishful Query Projection

(WQP) founded upon the following principle. Selecting the query that maximizes expected
value of information can be efficiently approximated by factoring the problem into two
steps: first, find a good (“wishful”) query to ask without considering what the agent can
ask, and second, select a query that the agent can ask that reduces the agent’s uncertainty
in a similar way. Towards better understanding the computational properties and structure
of expected value of information, along with the potential effectiveness of utilizing WQP

2

for query selection, I present research that focuses on examining the structure and compu-
tational properties of the problems posed by each of the aforementioned two steps of WQP.
In addition, I present an empirical study that evaluates the closeness of approximation
and computational savings afforded by WQP algorithms compared to existing uncertainty-
based techniques and brute-force EVOI maximization.

1.1 Problem Statement

This dissertation is concerned with the computational problem of how an agent can select
the query with maximum Expected Value of Information (EVOI) from some specified ask-
able set, in settings where optimal planning is computationally expensive. Here, the EVOI
of a query corresponds to the expected improvement in value associated with the agent
improving its decision as a function of the query’s response compared to the best decision
before asking the query, and hence EVOI is the natural criterion for query selection when
queries are used to improve the agent’s performance in its decision problem.

However, the fact that EVOI directly measures expected value improvement means that
the complexity of computing EVOI is related to the complexity of optimal planning: in
order to compute the EVOI of a query, the agent must, for each possible response to the
query, compute the posterior Bayes-optimal decision value under the associated posterior
distribution, which requires optimal planning. EVOI-based query selection for large query
sets, then, presents a challenge in settings where optimal planning would be expensive even
if the agent did not consider queries. Lest query selection be limited to small query sets
that limit the extent to which the agent can acquire valuable knowledge in a variety of
states of uncertainty, the number of EVOI computations that need to be performed should
be sublinear in the size of the query set, or ideally, independent of the size of the query set.
For some cases, structure in the query set, decision problem, and/or form of uncertainty can
allow only a subset of the queries to be considered at no penalty (Viappiani and Boutilier,
2010) or can allow EVOI computations to be simplified at no penalty (Bonilla et al., 2010a).
More generally, a good query selection algorithm must either replace EVOI computations
with a simpler comptuation, restrict attention to only a subset of queries, or both, while
offering formal approximation guarantees regarding the query they select relative to the
best query in the set.

This dissertation evaluates EVOI-based query selection algorithms on the basis of:

(A) The complexity of the algorithm relative to the complexity of optimal planning and
the size of the query set,

3

(B) The extent to which the algorithm offers formal guarantees pertaining to the EVOI of
the query selected relative to the EVOI of the best query in the agent’s query set; and

(C) The empirical performance of the algorithm as compared to brute-force EVOI max-
imization, baselines, and applicable state-of-the-art query selection algorithms, mea-
sured by

(C1) The EVOI of the query selected, as a function of relevant properties of the agent’s
query set and/or decision problem; and

(C2) The computation time (in seconds) the algorithm spent to select a query, as a
function of the size of the query set.

I have presented a high-level description of the query selection problem this dissertation
will examine towards providing researchers/practitioners new algorithmic tools for design-
ing decision-making agents that intelligently query their human users; in Section 2.2 I will
formally specify the first two points above by defining what it means for a query selection
algorithm to be efficient and approximate in the context of this dissertation.

1.2 Approach

As I discussed in Section 1.1, the research presented in this dissertation is directed towards
developing query selection algorithms that can be feasibly applied to select from large
query sets on the basis of maximizing expected value of information (EVOI) in settings
where optimal planning computations serve as the main bottleneck in performing EVOI
computations. The algorithms developed in this dissertation limit the number of optimal
planning computations that must be performed by restricting EVOI computations to a space
that can be efficiently searched, and I describe two novel approaches for doing so next.

1.2.1 Uncertainty-based Query Filtering

The first approach is to restrict attention to a promising subset of the queries based on how
much they are expected to reduce the agent’s uncertainty, without considering whether or
not they are actually useful for improving the agent’s behavior, and then computing EVOI
only for this manageable subset. The first hypothesis of this dissertation is that selecting
a query in this hybrid fashion can find queries with higher EVOI compared to selecting
queries on the basis of EVOI (computed directly) or on the basis of uncertainty reduction,
given the same computational constraints. I evaluate a heuristic version of this approach to
query selection in a sequential decision making setting in Chapter 3.

4

1.2.2 Decision Query Projection

The second approach is the focus of most of this dissertation, and applies the following
intuition. Consider the thought process a human might take leading up to asking a good
question. Certainly, one would not proceed by enumerating all questions that can be gener-
ated by natural language. Instead, one would perform this search with some kind of goal in
mind. For example, reconsidering the housing option example but where a human realtor
assumes the role of the agent, the realtor may have two neighborhoods containing proper-
ties that stand out as the best candidates according to what she knows about her customer’s
preferences, but can only show options in one of the neighborhoods due to time constraints.
Then, even though she cannot realistically ask the customer which of all of the options in
the two neighborhoods would be best, there might be a factor that options in each neigh-
borhood have in common, such as whether or not they are close to good schools. Then, the
realtor might ask the customer whether they have children in order to narrow down which
neighborhood would be most promising to consider. Here, the realtor would never con-
sider questions about less important factors like the preferred color of the house, or about
negligibly related factors such as their political affiliation.

The key takeaway here is that the agent should search its query set on the basis of find-
ing a query that can give it information which it has already determined to be useful, instead
of blindly searching its query set in the hope that it can find a query that will give it useful
information. More specifically, if the agent can efficiently find an ideal query (henceforth,
a wishful query) that it would select if only it could be asked, it can search the set of queries
that it can ask on the basis of finding a query similar to that wishful query in terms of how

they reduce the agent’s uncertainty. With this approach the agent restricts EVOI compu-
tations to an easily searchable wishful query set, and uses the result to drastically simplify
the task of searching its query set so that it becomes a query projection problem which
no longer requires performing optimal planning computations. I will refer to this abstract
query selection approach as Wishful Query Projection (WQP).

A concrete WQP algorithm requires specifying the following two components:

1. Wishful query selection: Specify and efficiently search an appropriate space of queries
to obtain a wishful query; and

2. Query projection: Efficiently find a query that the agent can ask that best approxi-
mates the wishful query.

The second and main hypothesis of this dissertation is that WQP can be implemented to
yield efficient and approximate query selection algorithms (I specify technical definitions

5

for efficient and approximate in Section 2.2). I consider wishful query selection in Chap-
ter 4 and query projection in Chapter 5, and then study the empirical performance of several
WQP algorithms in Chapter 6 in terms of how they depend on key properties of the agent’s
query set.

1.3 Contributions

This dissertation provides four main contributions to the decision-theoretic knowledge ac-
quisition community. Two of these contributions are query selection algorithms that are
designed to approximately maximize EVOI while avoiding optimal planning computations
to the extent possible. The other two contributions are theoretical results that are used in
this dissertation to derive one of these algorithms (an implementation of the abstract Wish-
ful Query Projection (WQP) approach discussed in the previous section), and also serve as
contributions in their own rights. I provide brief descriptions of each contribution, ordered
by the chapters in which they appear, below.

Hybrid Algorithm. The first algorithm, introduced in Chapter 3, is designed for action
query selection in sequential decision-making settings. To select a query while avoiding
optimal planning computations, the Hybrid algorithm begins by employing an algorithm
contributed by related work to cheaply select a promising subset of queries to consider,
and then Hybrid selects a query by performing EVOI computations (which require optimal
planning) only for queries in this subset. Also in Chapter 3, Hybrid is empirically evaluated
in a car-driving problem.

Wishful Query Selection. Chapter 4 investigates an abstract setting where the agent can
ask any query, so long as its query has exactly k possible responses. The main result is that
the agent can ignore all queries except those contained in a particular subset. Specifically,
the agent can restrict its attention to decision queries, which are queries that ask the user
to select their preferred decision out of a specified set. This result provides insight into the
question of what types of queries the agent should consider.

Decision Query Projection. Chapter 5 investigates the problem of efficiently finding a
query that the agent can ask that has similar EVOI to that of a particular decision query.
The main result is that the loss in EVOI incurred by replacing a decision query with an
arbitrary query can be upper bounded as a function of how uncertain the agent would be on
average, after asking the replacement query, about what the response would have been if it

6

had asked the decision query instead.

DEER Algorithm. The second algorithm, DEER, is introduced in Chapter 5, and imple-
ments the abstract WQP approach discussed in the previous section. DEER draws from the
second and third contributions described above to implement the two steps of WQP, and
by combining their accompanying theoretical results, upper bounds on the loss in EVOI in
asking DEER’s selected query compared to the best query in the set are derived. DEER is
empirically evaluated in a housing option recommendation problem in Chapter 6.

I note that the first and second contributions are published (Cohn et al., 2011, 2014)
while the third and fourth have yet to be published at the time of writing.

7

CHAPTER 2

Background

In this dissertation I consider an agent that is faced with acting according to the uncertain
preferences of its user, and focus on how the agent can efficiently solve the query selection

problem: that is, how the agent can efficiently determine which of some allowed set of
queries would be best to ask its user. In this chapter I begin by introducing the technical
concepts that are core in this dissertation, and then I use them to formalize and expound
upon the problem statement I outlined in Section 1.1. Then I present a brief survey of the
rich body of related work to this problem, highlighting the associated limitations that the
contributions of this dissertation address.

2.1 Preliminaries

Here I present a general framework to formalize (1) the uncertain decision problem faced by
the agent, (2) the semantics of queries; and (3) the Expected Value of Information criterion
used in this dissertation to measure the value of queries. I formalize the settings I consider
in each subsequent chapter as special cases of this framework, except for Chapter 5 where
I adopt this framework in its full generality.

2.1.1 Decision-Making under Uncertainty

I assume that the agent’s uncertainty takes the form of some arbitrary distribution ψ over
a (possibly continuous) parameter space Ω, where each ω ∈ Ω specifies a possible model.
Throughout this disseration I refer to ψ as the agent’s “uncertainty.” Examples include un-
certainty over parameter values in parameterized reward functions or transition functions,
as well as other noise parameters in decision problems. I assume that the agent is faced
with the one-shot decision problem of selecting from a finite set U of possible decisions
(such as which of a set of housing options to recommend to a human user), where each

8

decision could for instance be an action, an open-loop plan, or a policy even though the
agent’s choice among them is single-shot.
I emphasize that when I refer to the agent’s “decision”, I am referring to the agent’s
future behavior (however that is expressed); this is not to be confused with an individ-
ual action taken in a sequential decision making setting. For each ω ∈ Ω and decision
u ∈ U , there is an associated value denoted V u

ω that captures the expected utility of decision
u in model ω. To illustrate, in the housing recommendation example discussed in Chap-
ter 1, the decision set could be a set of possible housing options to recommend to the human
user, and the space of models could correspond to a space of weight vectors, specifying the
relative values of neighborhood safety versus saving monetary costs versus proximity to
transportation hubs, with the value associated with each possible housing option being a
linear function of the uncertain weight vector.

The expected value of decision u under distribution ψ can be written as

V u
ψ = Eω∼ψ[V u

ω] =

∫
Ω

ψ(ω)V u
ω dω,

where ω ∼ ψ denotes model-parameters (ω) sampled from distribution ψ over Ω, and the
Bayes-optimal decision that maximizes expected value under ψ is

u∗ψ = arg max
u∈U
{V u

ψ },

and the associated Bayes-optimal value is

V ∗ψ = max
u∈U
{V u

ψ } = V
u∗ψ
ψ .

Throughout this thesis, I often informally refer to the problem of computing Bayes-optimal
decisions/values as “optimal planning”.

Note that while I have assumed that the agent has some way to compute the value V u
ω

of decision u in some model ω (and Bayes-optimal decisions/values for uncertainty ψ), I
have purposely not committed to how it does so because my focus here is on developing
and studying query selection algorithms that do not depend on any special structure in the
decision model or form of uncertainty, leaving room for these algorithms to be adapted
to take advantage of any available known structure in practice. However, as I discussed
in Section 1.1 this disseration is focused on settings where optimal planning is expensive.
For instance, in the housing recommendation example discussed in the previous chapter,

9

optimal planning could be expensive if the agent’s decision problem were to take the form
of a valued constraint satisfaction problem (which are known to be NP-hard (Cohen et al.,
2006)), or optimal planning could be expensive simply due to the need to consider a large
number of candidate housing options.

2.1.2 Querying

I assume that the agent can ask a single query and observe its response before executing a
decision. Next I define queries and show how their responses can be used to improve the
agent’s decision. First, note that ψ, the distribution over model parameters, is a sufficient
statistic of the agent’s knowledge about which decision is best, and thus any information
relevant to the value of decisions that the agent receives as a response to a query can be
incorporated via a Bayes update to ψ. Specifically, assume the agent poses query q to the
user, and the user responds with the jth out of a finite number of possible responses to q.
Then the posterior distribution of ψ given response j to query q is written as

ψ(ω|q = j) =
Pr(q = j|ω)ψ(ω)∫

Ω
Pr(q = j|ω′)ψ(ω′)dω′

. (2.1)

Note that the likelihood function associated with a query q, Pr(q = j|ω) for each response
j, completely defines how asking q and observing its response can impact the agent’s
knowledge. Intuitively, this is the agent’s model for how the user would respond to the
query conditioned on parameter ω, and so the agent’s prediction for what the response to
the query would be if the agent were to ask the query depends on the agent’s uncertainty ψ
over ω.

I will use ψ|Y = y to denote the posterior distribution induced when ψ is updated to
incorporate the knowledge that Y = y for a random variable Y . After receiving response
j for query q, the agent’s best decision based on the updated knowledge is u∗ψ|q=j with a
new expected value of V ∗ψ|q=j . Note that by abuse of notation, the query q is treated here as
a random variable over responses j with its distribution implicitly determined by ψ. This
allows the query’s mathematical effect on the agent’s uncertainty to be considered directly,
abstracting away its semantic meaning. The expected value of asking query q, denoted V ∗ψ|q,
is thus Ej∼q;ψ[V ∗ψ|q=j], where the expectation is over the probability of response j to query
q given prior knowledge ψ. Note that ψ here represents the parameters that determine the
agent’s uncertainty, as opposed to a realization of ω, which I signify with a semi-colon. For
clarity, throughout this dissertation I use semi-colons instead of conditional symbols “|” in
order to distinguish functional dependencies of distributions on non-random parameters,

10

from distributions resulting from conditioning on realizations of random variables.
In expectation, if a query and its response induces a new Bayes-optimal decision, that

decision can only improve the agent’s expected value:

V ∗ψ = max
u

Eω∼ψ[V u
ω] = max

u

[
Ej∼q;ψEω∼ψ|q=j[V u

ω]
]

≤ Ej∼q;ψ
[

max
u

Eω∼ψ|q=j[V u
ω]
]

(by Jensen’s inequality)

= Ej∼q;ψ[V ∗ψ|q=j] = V ∗ψ|q.

This disseration is concerned with the question of how an agent decides what to ask its
human user. The Expected Value of Information (EV OI) associated with query q measures
the expected increase in value associated with asking q, updating to a new Bayes-optimal
decision, and never asking another query:

EV OI(q;ψ) = Ej∼q;ψ
[
V ∗ψ|q=j − V

u∗ψ
ψ|q=j

]
(2.2)

= Ej∼q;ψ
[
V ∗ψ|q=j

]
− Ej∼q;ψ

[
V
u∗ψ
ψ|q=j

]
= V ∗ψ|q − V ∗ψ . (2.3)

Equation 2.3 holds since the law of iterated expectations directly implies that Ej∼q;ψ
[
V
u∗ψ
ψ|q=j

]
=

V
u∗ψ
ψ . Intuitively, this can be understood as follows: prior to asking the query q, the set of

posterior distributions, and their probabilities of occurring, are directly determined by the
agent’s prior distribution ψ; hence, the expected value of the agent’s prior Bayes-optimal
decision should not change when evaluated as an expectation across each possible posterior
distribution, even though it may change for each posterior individually.

Lastly, note that for any q and ψ, EV OI(q;ψ) ≥ 0 (to see this, consider Equation 2.2
and note that V ∗ψ|q=j ≥ V

uψ
ψ|q=j for any q, j, and u).

Note that in this setting, the agent can only ever ask a single query, as opposed to
settings where the agent can select a conditional sequence of queries (query trees). When
I consider the latter setting, I explicitly refer to it as the nonmyopic setting to distinguish
it from the setting specified here, which I refer to as the myopic setting since researchers
often assume that the agent can only ask a single query as an approximation in settings
where it can ask multiple queries (Dittmer and Jensen, 1997).

I note that using myopic or nonmyopic to characterize properties of settings is an abuse
of terminology, since these terms are usually used to characterize agent reasoning processes
as opposed to settings in which they act. In particular, single-shot and sequential would be

11

the more conventional terms for how myopic and nonmyopic are used here, but I use this
notation in order to make clear the distinction between how the query selection problem is
characterized (myopic versus nonmyopic) and how the posterior decision-making problem
is characterized (single-shot versus sequential).

2.2 Query Selection Problem

I now formalize the query selection problem considered in this dissertation, and specify
the non-empirical properties of query selection algorithms that this dissertation aims to
achieve, as outlined in Section 1.1.

A Q-EVOI-optimal query (sometimes referred to as a myopically optimal query se-
lected from Q) for some askable query set Q maximizes EV OI given prior knowledge
ψ:

q∗ = arg max
q∈Q

[V ∗ψ|q − V ∗ψ] = arg max
q∈Q

V ∗ψ|q.

When the context is clear, I will often refer to a Q-EVOI-optimal query as simply EVOI-
optimal, and I will assume that queries contained in Q each have exactly k possible re-
sponses for some fixed, finite k ≥ 2 unless otherwise noted.

The query selection problem is to compute q∗. The main objective of this disserta-
tion is to contribute algorithms for solving the query selection problem approximately and
efficiently. More specifically, in the context of this dissertation,

• An algorithm solves the query selection problem approximately if it offers nontrivial
formal guarantees pertaining to the EVOI of the query selected relative to the EVOI
of the Q-EVOI-optimal query q∗; and

• An algorithm solves the query selection problem efficiently if its computational com-
plexity is such that the number of optimal planning computations performed by the
algorithm is independent of the size of the query set.

For example, consider the Exhaustive algorithm that evaluates the EVOI of every query
in Q. Exhaustive is approximate (in this case, exact) since doing so is guaranteed to com-
pute q∗, which is the best possible formal guarantee. However, Exhaustive is not efficient
since doing so requires performing |Q| EVOI computations, each of which have complex-
ity O(kBΠ∗), where B represents the complexity of a Bayesian update and Π∗ represents
the complexity of optimal planning under a posterior distribution (i.e., computing the value
of a Bayes-optimal decision).

12

At the other extreme, consider the Random algorithm that selects a query at random.
Random is not approximate since in the worst-case, where all queries but one have zero
EVOI, in expectation Random selects a query with EVOI approaching zero as |Q| grows
since it is equally likely to choose any query in the set, independent of their relative EVOIs,
and so it cannot offer any nontrivial approximation guarantee for the general case. How-
ever, Random is efficient since it selects a query with complexity that is independent of
optimal planning complexity.

Now that I have formally specified the query selection problem considered in this dis-
sertation, I survey related work and describe the associated limitations towards designing
query selection algorithms that I address through the contributions of this dissertation.

2.3 Related Work

The query selection problem considered in this dissertation is related to an extremely rich
body of work spanning such research communities as active learning, active sensing, pref-
erence elicitation, and bayesian experimental design, and to recurring themes in such re-
search communities as optimal planning, reinforcement learning, and human/agent interac-
tion. I begin the following presentation of related work by considering two possible ways to
express the query selection problem studied in this dissertation as a special case of frame-
works studied in related work, and then I consider the most closely related work which
lies at the intersection. I would be remiss not to emphasize, however, that the vastness of
related work necessarily prohibits the subsequent instances I describe from comprising an
exhaustive survey.

To begin, first consider an abstract treatment of the query selection problem where
querying corresponds to choosing an action in a sequential decision-making setting (that
is, ignoring any structure in the effect of query responses on the agent’s world). From
this perspective, the query selection problem becomes a type of sequential optimal plan-
ning problem, and I discuss how the query selection problem fits into the vast literature
of sequential decision-making problems in Section 2.3.1 and the limitations of treating it
directly as such. In addition, since the value of a query (to the agent) relates to how it can
make use of its response to improve its behavior, the extent to which the agent can effi-
ciently perform optimal planning under uncertainty (independent of asking queries) plays
a key role in how efficiently it can perform query selection; in Section 2.3.1 I also provide
technical background on several types of optimal planning problems that I use to exemplify
situations where optimal planning becomes the computational bottleneck.

Second, many researchers have considered problems where the objective is to determine

13

the best “piece of knowledge” to acquire under a variety of criteria (that is, settings where
the acquired knowledge is not necessarily used to improve an agent’s behavior; I give
examples below), and I discuss how the query selection problem fits into the rich body
of knowledge acquisition literature in Section 2.3.2. Overall, the query selection problem
considered in this dissertation lies within the intersection of optimal planning problems and
knowledge acquisition problems, and I make liberal use of techniques contributed in each.
I discuss other work lying within this intersection in Section 2.3.3.

2.3.1 Sequential Decision-Making

At its core, the query selection problem considered in this dissertation is a type of sequential
decision-making problem. Namely, the agent faces a 2-stage sequential planning problem
in which the first stage corresponds to selecting a query to ask, and the second stage cor-
responds to acting in its world under its updated uncertainty upon observing the response
to its query. Note that the second stage may, in turn, correspond to a nested sequential
decision-making problem if the agent will act over multiple time steps after observing the
response to its query. In this section I discuss several types of sequential decision-making
problems in detail, and explain why the sequential decision-making literature does not ad-
dress the challenges presented in the types of query selection problems examined in this
dissertation.

2.3.1.1 Markov Decision Processes

In a Markov Decision Process (MDP) (Bellman, 1957), the agent’s environment is mod-
eled as a tuple M = 〈S,A, T,R〉 where the components represent the state space, action
space, transition function, and reward function, respectively. Throughout this chapter I will
assume that the agent’s action space A is finite. At each time step, the agent observes its
current state s, takes action a, probabilistically transitions to state s′ according to T (s′|s, a),
and receives reward R(s′) ∈ [rmin, rmax]. A policy π maps S → A, and the expected value
of acting according to π in MDP ω beginning from state s is denoted V π

ω (s) and defined
as
∑∞

t=0 γ
trt, where γ is a discount factor ∈ (0, 1] and rt is the reward received at time t.

Let Π, the agent’s policy space, denote the set of all possible policies. The optimal pol-
icy for MDP ω, denoted π∗ω, can be computed by algorithms from dynamic programming,
e.g., value iteration or policy iteration (Sutton and Barto, 1998), or algorithms from linear
programming (Bertsekas and Tsitsiklis, 1996).

14

2.3.1.2 Partially Observable MDPs and Belief State MDPs

Partially Observable MDPs (POMDPs) (Pineau et al., 2006) are an extension of MDPs
where the agent is assumed to act in an underlying MDP M = 〈S,A, T,R〉, except the
agent cannot directly observe its current state at each time step, instead maintaining a belief
state based on observations it sees at each time step. At each time step the agent’s belief
state (probability distribution) over current states s is ψ, the agent takes action a, receives
reward r according to R(s), probabilistically transitions to state s′ according to T (s′|s, a),
and then observes observation x which is stochastically emitted as a function of the action
a it took in the state s it occupied and the state s′ it transitioned to. More formally, the
observation x ∈ X is sampled from the observation function Ω where for all states s, s′ ∈ S
and actions a ∈ A,

∑
x∈X Ω(x|s, a, s′) = 1. The agent then updates its belief state from

ψ to ψ′ using Bayes rule, conditioning on the action a it took and the observation x it
observed (here, it is assumed that the agent can do so because it knows all parameters of
the POMDP).

A belief state MDP representation can be constructed from a POMDP representation
of an uncertain sequential decision-making problem so that the POMDP is represented
directly as an MDP. In a belief state MDP, the agent’s action space is the same, but its
state space directly corresponds to the space of possible belief states Ψ, and Bayes updates
performed by the agent to account for observations are abstracted away, instead represented
directly in the transition function T . Here, T (ψ′|ψ, a) corresponds to the probability that
the agent’s posterior belief state will be ψ′ when it executes action a in belief state ψ, where
the probability is determined by accounting for the distribution over observations emmitted
from the distribution over next states given it executes a in ψ. The reward function R(ψ),
then, is the expectation of R(s) over the distribution ψ over states s.

2.3.1.3 Key Challenges in Query Selection

The agent’s query selection problem could conceivably be represented with either a belief
state MDP or POMDP, where queries correspond to actions and query responses correspond
to observations, and the agent’s state in the underlying MDP corresponds to a realization ω
of its uncertainty, which is not affected by the agent’s actions. Such a representation might
be especially natural if the agent faces a nested sequential decision-making problem upon
observing the response to its query. However, solving query selection this way becomes
computationally infeasible as the size of the query set increases beyond a small number of
queries. For the case of using a belief state MDP, the size of the representation would grow
linearly in the number of queries and their possible responses, as would the corresponding

15

optimal planning complexity even ignoring the complexity of constructing the representa-
tion. Worse, methods for solving POMDPs often have exponential runtime or convergence
rates in the size of the observation set, and researchers typically focus on cases where the
observation sets are small and the size of the state space or length of planning horizon is
the limiting factor (Pineau et al., 2006).

Thus, neither belief state MDP representations nor POMDP representations afford tractable
out-of-the-box solutions to the query selection problem considered in this dissertation. In-
stead, the approaches considered in this dissertation deal with these issues by exploiting
structure in query selection problems that is not present in general sequential decision-
making problems. Namely, treating the query selection problem as a generic sequential
decision-making problem ignores the fact that the agent’s state in the underlying MDP
never changes, and so queries affect the agent’s belief state only in constrained ways, com-
pared to general state-action representations where the agent’s belief state could be affected
in arbitrary ways. In fact, I will show in Chapter 4 that there is structure in the space of
potential uncertainty updates in the form of a partial ordering over all possible queries in
terms of their EVOI, and this is the main point of leverage used by the WQP algorithms I
develop in Chapter 5.

2.3.2 Knowledge Acquisition

A rich literature exists on the subject of knowledge acquisition in settings where queries
have special structure and/or are evaluated on the basis of criteria other than EVOI. In fact,
many settings have been considered in related work where the problem of selecting a single
query to ask, however the query set and objective are defined, has exploitable structure and
can be solved efficiently, either exactly or approximately. In such cases, other aspects of the
problem become the computational bottleneck, such as the cost of Bayesian updates, and
often researchers focus on planning query trees instead of single queries, which presents
different challenges. I discuss two notable examples below.

2.3.2.1 Active Learning

Active learning (Settles, 2009) is a subfield of machine learning in which the agent actively
chooses some or all of the data that it will use, typically in a classification setting. There are
two crucial differences between active learning problems and the query selection problem
of this dissertation. The first is that in active learning, the agent can ask only queries relating
to the label of a datapoint or set of datapoints, whereas in query selection the agent’s query
set can contain queries that map parameters (in active learning, hypotheses) to arbitrary

16

categorical distributions. The second difference is that in active learning, the agent’s objec-
tive is usually to ask queries that will best improve a measure of its classification accuracy
over the space of possible datapoints when using a particular classification algorithm, as
opposed to the decision-theoretic objective considered in this dissertation. Combining the
two, there is often an analytical relationship between a query and its value in active learn-
ing settings which can be exploited to select queries efficiently (Cohn et al., 1996). Hence,
active learning researchers typically focus on the challenges that arise in selecting condi-
tional sequences of queries, i.e., query trees, (Nowak, 2011) for their settings, whereas in
the setting considered in this dissertation, the problem of selecting a single query to ask
presents significant computational challenges on its own.

2.3.2.2 Active Sensing

Researchers in active sensing (Krause and Guestrin, 2005) focus on knowledge acquistion
problems that occur in a variety of engineering applications, where the main challenges
involve accounting for noise in interfacing with the physical world, and effectively exploit-
ing structure for problems of interest (Krause et al., 2008). However, in addition to directly
addressing challenges that occur in practical settings, the active sensing community has
studied a variety of abstract knowledge acquisition problems. In particular, researchers
have studied problems where selecting multiple queries, whether they are selected in an
unordered or sequential fashion, is infeasible, and a common approximation to this prob-
lem is to repeatedly select which single query to ask, without taking into account future
queries (Dittmer and Jensen, 1997; Bayer-Zubek, 2004), which is termed myopic query
selection as opposed to nonmyopic query selection.

Towards providing theoretical justification for myopic approximations, Krause and
Guestrin (2007) show that for knowledge acquisition problems where the objective function
is monotonic and submodular, selecting queries myopically offers powerful approximation
guarantees (Nemhauser et al., 1978), and similar guarantees apply to settings where mul-
tiple queries are selected adaptively (Golovin and Krause, 2011). Although these results
do not apply directly to the query selection problem considered in this dissertation, they
do apply to the wishful query selection problem considered in Chapter 4 and hence are
germane in the implementation and theoretical analysis of the WQP approach developed in
this dissertation.

17

2.3.3 Querying in Decision Problems

I now discuss the most closely related work to this dissertation, where researchers consider
query selection problems with objectives related to improvement in decision-making prob-
lems. A key factor distinguishing related work in query selection for decision-theoretic set-
tings is the criterion used for selecting queries. Broadly, criteria used fall into one of four
categories: Expected Value of Information (EVOI), direct uncertainty reduction, model
elimination, and maximum regret minimization. Which criterion is appropriate depends on
the nature of the agent’s model of its decision problem. In the setting studied in this disser-
tation, the agent maintains an explicit distribution over models that define the value of each
possible decision, and hence EVOI is the appropriate criterion since EVOI measures the
expected value improvement induced by a query. In contrast, in settings where the agent
similarly considers a space of models that determine the value of each possible decision
but does not maintain an explicit distribution over the space of models (i.e., non-Bayesian
settings), querying so as to maximize the number of models eliminated, or querying so as
to minimize worst-case loss (maximum regret minimization) are examples of appropriate
criteria (Braziunas, 2007). Lastly, in settings where the space of models do not prescribe
value to each possible decision, but instead prescribe probabilities over which decision
is optimal (Wilson et al., 2012), uncertainty-based criteria such as directly reducing the
agent’s uncertainty in the model space or directly reducing the agent’s uncertainty in which
decision is optimal may be appropriate (Abbas, 2004).

Various authors have contributed EVOI-based query selection algorithms that can be
used to select queries from particular query sets defined with respect to special classes of
decision problems and/or forms of uncertainty (Boutilier et al., 2003; Bonilla et al., 2010b;
Dittmer and Jensen, 1997; Chajewska et al., 2000; Braziunas and Boutilier, 2005). In
particular, most work in EVOI-based query selection takes place in single-shot decision-
making settings where computing an optimal decision conditioned on knowledge of the
true model parameter is not the computational bottleneck, and these authors tend to focus
on reducing the cost of computing Bayes updates or other forms of Bayesian inference
required for EVOI computation in their settings. Nevertheless, for the settings these authors
consider the exhaustive algorithm for EVOI-based query selection is still impractical, albeit
for different reasons, and these authors have considered ways to approximate EVOI-based
query selection by exploiting structure in the agent’s uncertainty representation, decision
value representation, and/or query set.

For example, Viappiani and Boutilier (2010) study preference elicitation in a recom-
mender system setting where the agent’s goal is to recommend to the user an item maxi-
mizing the user’s preferences, but can ask choice queries first, which ask the user to state

18

their preferred item out of a set of k options. In fact, their items are just a different way
of referring to decisions in this dissertation, and the noiseless choice queries they consider
correspond exactly to the k-response decision queries I define in Chapter 4. In these terms,
they address EVOI-based query selection of k-response decision queries, and show that
a greedy algorithm that incrementally builds the set of decisions comprising the decision
query enjoys the guarantee that the EV OI of the k-response decision query constructed
is within a factor of 1 − (k−1

k
)k (at worst 63%) of optimal. While their results apply di-

rectly only to variations of decision query selection problems, the fact that decision query
selection can be approximated efficiently plays a crucial role in implementing the WQP
approach for query selection considered in this dissertation. I will discuss their theoreti-
cal results and algorithms in great detail in Section 4.5 of Chapter 4, and I will study an
extended decision query selection setting in Chapter 6.

2.4 Summary

In this chapter I formally defined the agent’s uncertain decision-making problem, formally
defined queries, showed how the agent can use the knowledge provided by responses to
queries to potentially improve its decision, and then introduced Expected Value of Informa-
tion (EVOI) as the principal metric used in this dissertation to measure the value of asking a
query. Then I specified the agent’s query selection problem and expounded upon the prob-
lem statement stated in Section 1.1 to define what it means for a query selection algorithm
to be efficient and approximate. Finally, I presented background material on sequential
decision-making and surveyed related work, placing the query selection problem consid-
ered in this dissertation at the intersection of optimal planning and knowledge acquisition.
In the next chapter I study several query selection problems in sequential decision-making
settings, where the challenge of dealing with expensive optimal planning computations is
paramount.

19

CHAPTER 3

Query Selection in Sequential Decision Making

A semi-autonomous agent acting in a sequential decision-making environment should act
autonomously whenever it can do so confidently, and seek help from its human user when
it cannot. In this chapter I study how an agent can select a good query to ask on the basis
of Expected Value of Information (EVOI) when the agent is acting under uncertainty in a
sequential decision-making problem.

Recall that in Chapter 2 I formalized the agent’s query selection problem as one that
takes place in the context of an abstract single-shot decision-making framework, where the
agent has uncertainty over a space of models that prescribe value to each of the agent’s
possible decisions. In this formulation, it is assumed that the agent asks a single query,
observes the query’s response, and then makes the posterior Bayes-optimal decision. While
the step of making the posterior Bayes-optimal decision is single-shot in that no future
decisions are to be made, this formulation makes no assumptions regarding structure in the
agent’s decision set (other than that it is of finite cardinality) or structure in how the model
space maps decisions to values.

In this chapter I consider several types of query selection problems where decisions cor-
respond to policies defined in sequential decision-making problems. In such cases, queries
update the agent’s knowledge about parameters of the problem (such as rewards) which in
turn update the agent’s knowledge about how policies map to values. Here, the main com-
putational challenge in query selection is that the single-shot problem of selecting from the
set of policies in light of the response to its query requires performing an (often) expensive
optimal planning computation. This limits the number of queries that can be feasibly eval-
uated on the basis of EVOI, since evaluating the EVOI of a single query requires as many
optimal planning computations as there are possible responses to the query.

This chapter is organized as follows. First I consider reward and transition query selec-
tion, which directly query parameters of the agent’s model distribution. I show how param-
eterizing the agent’s prior with a set of independent Dirichlet distributions allows Bayes

20

updates for these types of queries to be performed efficiently, and discuss approximate
methods for overcoming the challenges of continuous response spaces and Bayes-optimal
planning under transition/reward uncertainty. In the context of reward and transition query
selection, I empirically investigate the extent to which myopic query selection limits the
agent’s ability to select good queries compared to nonmyopic query selection. Then I con-
sider action queries, which are often natural query forms (Chernova and Veloso, 2009) but
provide only indirect information about the agent’s MDP distribution and thus present ad-
ditional computational challenges. I study their application in settings where the agent has
uncertainty only in its reward function, and show how this structural assumption leads to
straightforward simplifications of EVOI. Even with these simplifications, however, the is-
sue of expensive optimal planning computations limits the number of queries that can be
evaluated, and I empirically compare several types of strategies for action query selection
that trade off between computational requirements and selected query EVOI. I find that
a hybrid method, which narrows the space of queries to consider on the basis of cheap
uncertainty-reduction-based evaluations before performing expensive EVOI evaluations,
can both quickly find good queries and eventually settle on near-EVOI-optimal queries
given enough computation time, recommending its application in computation-restricted
scenarios.

3.1 Setting

Next I introduce the Bayesian MDP representation used to represent the agent’s uncertain
decision-making problem in this chapter. Note that Bayesian MDPs extend MDPs, which
I discussed in Section 2.3.1.1 of Chapter 2.

3.1.1 Bayesian MDPs

An agent may have uncertainty about any of the parameters of the MDP, such as the transi-
tion function T and/or the reward function R. This uncertainty translates into a distribution
over possible MDPs, which in this chapter I will assume all have the same state and ac-
tion spaces. However the distribution over MDPs is represented, let the agent’s uncertainty
be denoted ψ. The expected value for policy π under uncertainty ψ is Eω∼ψ[V π

ω], where
ω ∼ ψ denotes parameters ω sampled from the distribution ψ over a space of parameters
Ω, where the mapping from parameters ω ∈ Ω to a corresponding MDP is left implicit. The
Bayes-optimal policy under uncertainty ψ is π∗ψ = arg maxπ

{
Eω∼ψ[V π

ω]
}

, and the associ-

ated expected optimal value function for ψ is therefore Eω∼ψ
[
V
π∗ψ
ω

]
. As shorthand, I will

21

use V ∗ψ to denote the expected optimal value function for ψ, and V π
ψ to denote the expected

value function associated with π for ψ.

3.1.2 EVOI in Sequential Decision-Making

Like the abstract setting specified in Chapter 2, in this chapter I will assume that the agent
can ask only a single query before it makes its decision. For the sequential decision-making
settings considered in this chapter, the agent’s decision set corresponds to its policy space
Π, and I will assume that the agent occupies state sc when it asks its query, and then
immediately observes the response to its query in the same state.

In principle, each π ∈ Π should prescribe an action for each state s and uncertainty ψ
pair, since the agent may gain additional knowledge about the underlying model as it con-
tinues to act in the world after observing the response to its query. However, in this chapter
I will assume that once the agent observes the response to its query and updates ψ, it never
updates its uncertainty again, which allows Π to be simplified so that each π ∈ Π pre-
scribes actions as a function of state only. Thus, in this chapter query selection ignores any
potential information the agent might gather from sources other than queries. For example,
observing future state transitions might induce updates to its transition function uncertainty,
and taking that into account could affect the relative usefulness of some queries. This as-
sumption allows optimal planning computations in the settings I describe subsequently to
be tractably approximated, and I emphasize that this assumption is in addition to the as-
sumption in the abstract formulation specified in Chapter 2 that the agent can ask only a
single query. Since both assumptions are myopic in that potentially impactful future events
are ignored, in this chapter I refer to them as the myopic assumptions or myopic conditions,
formally specified as follows:

1. The agent asks exactly one query in its current state sc before taking any actions; and

2. After the agent observes the response to its query and updates its uncertainty, the
agent never acquires additional knowledge that would induce further updates to its
uncertainty.

As discussed at the end of Section 2.1.2, throughout this dissertation I use the terms
“myopic” and “nonmyopic” to characterize the structure of knowledge acquisition pro-
cesses, and I use the terms “single-shot” and “sequential” to characterize the structure of
decision-making processes, in order to avoid confounding these concepts with the fact that
query selection followed by decision selection is always sequential regardless of the struc-
ture of each. As introduced in Chapter 2, Expected Value of Information (EVOI) assesses

22

the goodness of a query in terms of how much value the agent is expected to gain from it.
Since in this setting the agent’s decision set corresponds to its policy space Π, and the value
of a policy is a function of the agent’s current state sc, the EVOI associated with asking a
query q (and receiving its response) under uncertainty ψ while occupying state sc, under
the myopic assumptions above, is defined as follows:

EV OI(q, ψ, sc) = Ej∼q;ψ
[
V
π∗
ψ|q=j

ψ|q=j (sc)
]
− V π∗ψ

ψ (sc)

= Ej∼q;ψ
[
V ∗ψ|q=j(sc)

]
− V ∗ψ (sc), (3.1)

and the EVOI-based query selection problem when the agent can ask queries in some set
Q is to select the query satisfying

arg max
q∈Q

EV OI(q, ψ, sc),

which will, in expectation, most increase the agent’s value under the myopic assumptions
above.

3.2 Selecting Transition and Reward Queries

In this section I will focus on two types of queries for which computing posterior distribu-
tions is straightforward, and will make the (somewhat unrealistic) assumption that the user
is capable of perfectly responding to them. I now describe those query types and how the
agent can parameterize its MDP uncertainty to efficiently incorporate their responses.

3.2.1 Dirichlet Priors and Transition/Reward Query Semantics

Transition queries ask for the outgoing transition probabilities associated with taking some
specified action a in state s, while reward queries ask for the reward that would be received
upon entering some specified state s. In this way, the agent can ask a reward or transition
query to improve its knowledge of the uncertain parameters of the underlying MDP in
which it must act, potentially allowing it to improve its policy in light of the response to
its query. Although in principle an agent might have simultaneous reward and transition
uncertainty and be able to ask both reward and transition queries, I will consider separate
settings for each.

23

3.2.1.1 Dirichlet Transition Uncertainty Parameterization and Transition Queries

Suppose the agent knows the reward function of the user’s model of the true MDP exactly,
but has only a prior distribution over a space of transition functions. For a particular state-
action pair, this translates to a distribution over categorical distributions (arbitrary discrete
distributions) governing the transition probabilities to each possible next state, assuming the
state space is finite. Absent prior knowledge that correlates the transition functions between
different state-action pairs, the natural choice (oft-used in the literature, e.g. see Dearden
et al. (1999)) to parameterize the agent’s prior distribution over transition functions is as a
set of independent Dirichlet distributions, one for each state-action pair.

Dirichlet distributions of order |S| are supported by the space of |S|-dimensional cate-
gorical distributions (i.e., a sample is |S| real numbers ω1, ω2, . . . , ω|S| that sum to 1 with
each ωi ≥ 0), and are parameterized by an |S|-dimensional vector of real numbers θ (often
informally referred to as “counts”) with the following pdf:

Dir(ω; θ) =
1

B(θ)

|S|∏
i=1

ωθi−1
i ,

where B(θ) is a normalizing constant. With this representation, the agent’s model space
Ω is the space of |S| · |A|-dimensional vectors of categorical distributions, and letting ωs,a
denote the distribution corresponding to the outgoing state transition probabilities when
action a is executed in state s and letting θs,a denote the parameters of the corresponding
Dirichlet distribution, the agent’s prior ψ over transition functions ω ∈ Ω is parameterized
as

ψ(ω) =
∏

(s,a)∈S×A

Dir(ωs,a; θs,a).

This representation for transition function uncertainty is often used in the literature be-
cause it allows the agent to easily incorporate observations of state-action-state transitions
to update its uncertainty as it acts in the world (Dearden et al., 1999). Namely, the Bayes
update for ψ upon observing a transition from state s to state sj upon executing action
a simply corresponds to incrementing the jth component of θs,a by 1. Even though such
non-query observations are not accounted for by EVOI as defined in Equation 3.1 (due to
the second myopic assumption), in practice the agent could benefit by performing Bayes
updates and potentially updating its policy as it observes transitions after asking its query.

With the agent’s transition uncertainty parameterization made concrete, I now discuss
how the agent can incorporate responses to transition queries. A transition query q asks
about some state-action pair (s, a), and the response specifies ωs,a: the categorical distri-

24

bution over possible next states when action a is taken in state s. Let QT denote the set of
all such queries (note that QT is implicitly a function of the state and action space, which
are known to the agent). Since the Dirichlet distributions for each state-action pair are in-
dependent of each other and the user’s response is assumed to match the parameters of the
underlying MDP, the Bayes update for ψ to incorporate the response j to a transition query
q about (s, a) simply corresponds to replacing the corresponding Dirichlet distribution ψs,a
with the (point distribution on) the categorical distribution specified by j. This ensures
that all MDPs sampled from the post-query distribution ψ|q = j would have the transition
probabilities for (s, a) set to agree with j.

The transition query selection problem for an agent currently occupying state sc is to
select the transition query q∗ with highest EVOI as defined in Equation 3.1:

q∗ = arg max
q∈QT

EV OI(q, ψ, sc).

I have provided a simple way for the agent to represent its transition uncertainty, al-
lowing the agent to efficiently perform Bayes updates to incorporate responses to transition
queries. Next I discuss reward queries and show how a similar uncertainty parameterization
can be used for reward uncertainty instead of transition uncertainty.

3.2.1.2 Dirichlet Reward Uncertainty Parameterization and Reward Queries

Suppose the agent knows the transition probabilities of the MDP exactly but begins with
a prior over a space of reward functions, where recall in this chapter I have assumed that
reward is a function of state only. Further, suppose rewards can only take on values defined
within some (known) finite set Γ and may be a stochastic function of state. Then, absent
prior knowledge correlating the rewards between different states, the agent can use exactly
the same parameterization for its reward uncertainty as the parameterization for transition
uncertainty described above, except ψ is parameterized as |S| independent Dirichlet distri-
butions instead of |S| · |A| of them, and each Dirichlet distribution is of order |Γ| instead of
order |S|.

A reward query q asks about some state s, and the response specifies the categorical
distribution over the possible reward values Γ for s. LetQR denote the set of reward queries
(note that QR is implicitly a function of the state space, which is known to the agent).
Similarly to the case for transition queries, the agent can trivially update its uncertainty ψ
to ψ|q = j upon receiving response j to reward query q by replacing the corresponding
Dirichlet component with the (point distribution on) the categorical distribution specified
by j.

25

The reward query selection problem for an agent currently occupying state sc is to select
the reward query q∗ with highest EVOI as defined in Equation 3.1:

q∗ = arg max
q∈QR

EV OI(q, ψ, sc).

I have provided simple representations for transition and reward uncertainty that afford
efficient Bayes updates for transition and reward queries, respectively. Next I discuss how
EVOI can be approximately computed for reward and transition queries.

3.2.2 Computing Expected Value of Information for Reward and Tran-
sition Queries

Recall that Equation 3.1 defines EVOI in this chapter as follows:

EV OI(q, ψ, sc) = Ej∼q;ψ
[
V ∗ψ|q=j(sc)

]
− V ∗ψ (sc).

Now, even though Bayes updates can be efficiently performed for these simple query types
when using the above described uncertainty parameterizations, it is not clear that Equa-
tion 3.1 can be generally computed exactly due to three computational challenges: (1) the
expectation over responses in Equation 3.1 is generally not analytically computable, (2) it
is generally infeasible to compute Bayes-optimal policies; and (3) it is generally infeasible
to exactly compute the expected value of Bayes-optimal policies.

Challenge (1) is mainly due to the continuous nature of reward and transition query
responses, and one simple way to overcome this is to approximate the expectation using
Monte-Carlo methods, sampling possible responses from the distribution Pr(q = j;ψ) by
sampling MDPs ω from ψ and then sampling a response from the distribution Pr(q =

j|ω) for each sampled ω, and finally averaging the posterior Bayes-optimal value for each
sampled posterior distribution. More formally, suppose n models {ωj}nj=1 are sampled
from ψ, and let Jq(ωj) denote the response to query q conditioned on model ωj . Then,

Ej∼q;ψ
[
V ∗ψ|q=j(sc)

]
≈

n∑
j=1

1

n
V ∗ψ|q=Jq(ωj)(sc). (3.2)

Computing this, however, in turn requires computing the Bayes-optimal value associ-
ated with each sampled induced posterior, and doing so accurately is key as this corresponds
to computing the extent to which the query response’s change to the agent’s uncertainty is
actually useful to the agent in terms of allowing it to improve its policy, and in turn its
value. The expensive nature of posterior Bayes-optimal planning computations in sequen-

26

tial decision-making settings makes challenges (2) and (3) the main obstacles for tractably
selecting queries in sequential decision-making settings. For the reward and transition
queries considered in this section, I handle (2) with the mean-MDP method below, and
handle (3) with Monte-Carlo methods, sampling MDPs from the appropriate distribution
and averaging their Bayes-optimal values. Of course, for Monte-Carlo approximations,
increased sampling improves approximation accuracy; for the experiments that follow, I
empirically determined that 200 (500) samples approximated transition (reward) queries
well.

The mean-MDP method is one way to approximately compute Bayes-optimal policies.
For the case of unknown reward functions, the optimal policy with respect to the mean
MDP is also Bayes-optimal (Ramachandran and Amir, 2007), and I will discuss how this
structure can be further exploited when I discuss action query selection in Section 3.3. For
the case of unknown transition probabilities in acyclic domains (i.e., domains where the
agent can never return to any state it has previously visited), the same result holds. How-
ever, in the general case the mean-MDP method is only an approximation. Nevertheless,
for the remainder of this section I refer to the optimal mean-MDP policy as Bayes-optimal
even if approximate. Note that an advantage of using independent Dirichlet distributions
for both cases is that the mean-MDP is trivial to compute: the counts θ map directly to
empirical probabilities for the mean-MDP parameters.

Utilizing the mean-MDP method, each V ∗ψ|q=Jq(ωj)(sc) in Equation 3.2 is approximated
as follows. Letting ψ|q = Jq(ωj) denote the mean-MDP associated with ψ|q = Jq(ωj) (the
posterior distribution for ψ induced upon incorporating response Jq(ωj) to query q), and
supposing m samples {ωij}mi=1 are drawn from ψ|q = Jq(ωj),

V ∗ψ|q=Jq(ωj)(sc) ≈
1

m

m∑
i=1

V
π∗
ψ|q=Jq(ωj)

ωij
(sc). (3.3)

Note that using Equations 3.2 and 3.3 to approximate EVOI for reward and transition
queries reduces the computation to a set of optimal planning computations, one for each
sampled mean-MDP. Even though optimal planning in MDPs is well-studied and myr-
iad algorithms exist for doing so, optimal planning for many sequential decision-making
problems of interest is expensive; in such cases, the fact that many optimal planning com-
putations must be performed to approximate the EVOI of even a single query means that
the agent will be limited to considering only a few queries at best. For the experiments in
this section, I will examine small domains where this is not an issue, but in the next section,
where I discuss action query selection, I will return to this point and discuss strategies for
approximating EVOI to avoid optimal planning computations to the extent possible. More-

27

over, in Chapter 5 I will discuss general strategies for avoiding optimal planning computa-
tions that apply to arbitrary types of queries and uncertain decision problems.

I will refer to the algorithm that selects a query by evaluating the EVOI of each one via the
approximations specified above as Expected Myopic Gain (EMG).

3.2.3 Empirical Results

Recall from Section 3.2.2 that the EVOI-optimal query (which EMG approximates) with
respect to the query set being selected from is the optimal query for the agent to ask in
the sequential decision-making setting considered in this chapter under the following two
myopic conditions, or myopic assumptions:

1. The agent asks exactly one query in its current state sc before taking any actions; and

2. After the agent observes the response to its query and updates its uncertainty, the
agent never acquires additional knowledge that would induce further updates to its
uncertainty.

In this section I examine EMG’s performance on a pair of problem domains that are
small enough to exhaustively compare EMG’s choice against other possibilities, but that
are interesting enough to allow for preliminary testing of the degree to which the above
conditions are critical to EMG’s (approximate) optimality. The first, called the “tree” do-
main, takes the form of a (acyclic) tree shown in Figure 3.1 (left), where the agent starts in
state 0 and takes 2 actions, ending in one of the 4 “terminal” states 3− 6. In each of states
0, 1, and 2, the agent has two action choices, depicted with “solid” and “dotted” lines. For
example, taking action s (solid) in state 0 has probability ps0 and 1−ps0 of transitioning into
states 1 and 2, respectively. The agent knows the transition topology (e.g., from state 0 the
next state is either 1 or 2). For transition queries the agent also knows the expected rewards
(R4 = 0.4 and R5 = 1.0 and zero for the other states). For reward queries, the agent also
knows the transition probabilities (ps0 = ps1 = ps2 = .9 and pd0 = pd1 = pd2 = .8), that states 0− 2

have zero reward, and that rewards for states 3− 6 can be {0, 1, 2}.
The second domain, called “grid” (Figure 3.1 right), has nine states, where the agent

starts in state 0, and state 8 is the terminal goal state (the episode ends once the agent
reaches it). The agent has a choice of four different actions in each non-goal state, where
each action can stochastically transition to neighboring states as indicated by the solid ar-
rows. The agent knows this topology. For transition queries, the agent also knows the
rewards of all states (R5 = −10, R6 = −2, R8 = 1, and the rest are all 0). For reward

28

Figure 3.1: The “tree” and “grid” domains.

queries, the agent also knows the actions’ transition probabilities: each action (concep-
tually, North, South, East, and West) moves in its corresponding direction with probabil-
ity .9 and in the opposite direction with probability .1, and knows that rewards can be
{−10,−2, 0, 1} for all states.

As described in the previous section, for both query types in both domains, the agent’s
prior is a set of independent Dirichlet distributions. All counts are initialized to 1 so that the
prior is uniform over multinomial transition (reward) probabilities for transition (reward)
queries.

3.2.3.1 Experimental Procedure

For a particular type of query and a particular domain, the agent computes the Bayes-
optimal policy given its initial knowledge, and it also uses EMG to compute an approx-
imately EVOI-optimal query. To evaluate the actual value of asking a query, I adopt the
following procedure. I randomly draw some number (10,000 unless otherwise noted) of
sample (fully specified) MDPs from the prior distribution. For a given sampled MDP and a
query, I use the sampled MDP’s answer to the query to update the agent’s distribution over
MDPs, from which it computes a (possibly new) Bayes-optimal policy. The query’s value
for the MDP is the difference in long-term expected reward from executing the new versus
the old policy in the sampled MDP. Note that this value does not take into account reward
or transition knowledge that the agent could acquire and exploit as it takes actions after
asking its query. While this does not impact values computed in the tree domain due to its
acyclicity, it does impact values computed in the grid domain. However, when these values
are treated as correct, both myopic assumptions are met and EMG should be expected to

29

choose the best query on average for this definition of query value.
Given such a measure for the value of each query, I compare EMG to other query

selection methods by studying the average value of the query selected by each method
across the sample MDP set. The first method I analyze is random, which simply chooses
a query randomly. I execute this strategy by choosing a query randomly for each sample
MDP (as opposed to using the same query throughout the sample MDP set). The next
query selection method, Best-Fixed, asks the query with maximum average value across the
sample MDP set as opposed to the query with maximum expected value across the MDP

distribution. The last method, omniscent, chooses the query with highest value separately
for each sample MDP (so it may choose a different query for each sample).

Note that neither Best-Fixed nor Omni are realizable query selection methods, as they
both identify queries to ask using after-the-fact information that the agent could not pos-
sibly have. I include them in order to get a sense for how well EMG performs relative to
upper bounds (Best-Fixed is an upper bound since both it and EMG must select one query
for the entire sample set, and Best-Fixed chooses the query with best average value; omni
is an upper bound since it selects the best query for each individual sample, resulting in a
set of optimal queries across the sample set).

As an example, consider reward queries in the tree domain and consider drawing 2
MDPs as the sample set. Random will choose a random state to ask about for each sample;
suppose it chooses states 0 and 1, respectively. EMG will choose to ask about state 3
(as explained in the next section). Best-fixed will look at the two sample MDPs in the
set and choose to ask about whatever state yields the highest average value across both
sample MDPs; suppose that is state 4. Omni will choose the best state to ask about for
each sample; suppose it chooses states 1 and 2, respectively. The evaluation of each query
selection method then consists of averaging the value of each method’s queries throughout
the sample set: in this example, random’s choice of (0,1), EMG’s choice of (3,3), Best-
Fixed’s choice of (4,4), and omni’s choice of (1,2).

Due to symmetries in the environments, an arbitrary choice sometimes is made over
equally good (in expectation) queries, and what happens experimentally is that due to the
luck of the draw sometimes the EMG choice is the same as the Best-Fixed query for the
specific trials, and sometimes it is not. To account for this variability, I present results
that average the value of each query selection method over 10 independently-generated
experiments of 10000 sampled MDPs each.

30

Query Domain Rand EMG BF Omni
Trans Tree 0.0137 0.0202 0.0203 0.0473
Trans Grid 0.382 0.715 0.740 3.12

Reward Tree 0.0530 0.0576 0.0586 0.127
Reward Grid 0.851 1.23 1.34 4.04

Table 3.1: Results for the optimality under myopic assumptions experiment.

3.2.3.2 EMG Optimality under Myopic Assumptions

Recall that in the experimental setup described above, both myopic assumptions are met
since query value is empirically measured assuming that the agent does not exploit any
post-query knowledge it could acquire. Thus, EMG should select the most valuable query
on average. To verify this claim, I begin by comparing in Table 3.1 the average values of
EMG, Best-Fixed, omni, and random queries in the tree and grid domains.

For transition queries in the tree domain, the EMG query is arbitrarily either ps2 or pd2.
Though derivable analytically, it can be easily understood why asking about an action in
state 2 is rational. State 2 dominates state 1 because (since they are equally likely to be
reached) a better decision in state 2 in expectation will be more beneficial given the high
reward of state 5. Comparing states 0 and 2, information about an action in either would
be expected to equally increase the probability of reaching state 5. However, such a better
decision in state 0 also decreases the probability of reaching state 4 (the only other pos-
itive reward), while a better decision in state 2 leaves the probability of reaching state 4

unchanged. Hence, asking about a state 2 action is the optimal choice (in expectation). The
top row in Table 3.1 shows that EMG performed considerably better than random, and ap-
proaches Best-Fixed as one would expect which verifies EMG’s optimality in this scenario.
Omni provides an upper bound for how well the agent could do if it could miraculously
guess the right query for every sample MDP.

In the grid domain, the EMG transition query asks about an action in state 4 (intuitively,
the point on the best path to goal state 8 where a misstep is most costly). With 4 actions
in state 4 that are initially indistinguishable, its chances of guessing the best for a particu-
lar set of trials is smaller than in the tree domain, so EMG is more noticeably lower than
Best-Fixed. The optimal reward query in the tree domain is to ask about state 3, since the
agent has the most control in getting to state 3 if it finds out it has high reward, and also
the most control in avoiding state 3 if it finds out it has low reward. For reward queries
in the grid domain, the symmetry of transition probabilities means that asking about states
1 and 3 are equivalently the best choice, since the agent must pass through at least one of
them on its path to the goal and it may choose which to pass through. Table 3.1 shows that

31

in the grid domain, EMG’s performance beats that of random and approaches Best-Fixed.
However, even though the gap between EMG and Best-Fixed is to be expected in light of
the explanation just given, the clear evidence for EMG’s optimality in the tree domain does
not translate to the grid domain.

Accounting for cost: In principle, even the optimal query should only be made when its
expected gain is no less than its cost. The value of each entry in Table 3.1 provides an
empirically-derived maximum “cost” (in terms of value) the agent should be willing to
incur for posing that query; otherwise in expectation it would do better by autonomously
following its initial Bayes-optimal policy than asking for help. Here I confirmed that EMG
predicts the value of its query well by comparing the expected gain computed by EMG for
the optimal query with the corresponding empirical gain in Table 3.1. For example, 100 in-
dependent executions of EMG for transition queries on the tree domain yielded an average
expected gain of 0.0212 (st.dev. 0.0018), which closely estimated the corresponding em-
pirical gain in Table 3.1, 0.0202. But I next examine how EMG’s predictions about query
value and its willingness to query can change as its optimality conditions are violated.

3.2.3.3 Post-Query Updates

Throughout the remainder of the experiments, I investigate how EMG’s performance is
affected when its myopic assumptions are violated. Recall that EMG’s myopic optimality
conditions require that once the agent receives the user’s response to its query and builds
its new Bayes-optimal policy, it will not receive any additional knowledge and so it cannot
update its policy any further. For example, an agent executing in a state space that includes
cycles (like the grid domain) could potentially learn from its experiences to update its
model so as to build a better policy given it might return to that state. EMG does not
consider how a state-action pair that can be learned at runtime might be less valuable to ask
about beforehand.

Because of the myriad ways in which an agent could gather and incorporate knowledge
at runtime, I examine the same phenomenon but in a simpler way. In these experiments, I
assume that after it asks its one query, the agent is also unexpectedly (to it) given informa-
tion for either 1 or 2 randomly-selected queries, where a random query could duplicate what
the agent asked, and in experiments with 2 random queries they are distinct. The entries
in the table represent the average value for knowing both the answer to its query and the

post-query information. Here, unlike EMG, Best-Fixed takes into account which random
query response(s) the agent will observe, and selects the query that is best in combination
with each sampled random query response(s) across the sampled MDP set.

32

Query Domain Rand EMG BF Omni
Trans Tree-1 0.0242 0.0298 0.0299 0.0530
Trans Grid-1 0.739 1.03 1.05 3.18

Trans Tree-2 0.0336 0.0382 0.0385 0.0566
Trans Grid-2 1.05 1.35 1.35 3.35

Reward Tree-1 0.0796 0.0819 0.0825 0.129
Reward Grid-1 1.46 1.82 1.84 4.04

Reward Tree-2 0.102 0.103 0.104 0.131
Reward Grid-2 1.97 2.27 2.28 4.08

Table 3.2: Results with 1 and 2 post-query updates.

As shown in Table 3.2, EMG tracks Best-Fixed closely, suggesting that EMG’s initial
query choice (which is the same as for the previous set of experiments) tends to be near-
optimal despite not anticipating the possible additional information. However, it would
not be difficult to construct other problems where EMG performs much more poorly, such
as problems where it is known up-front that the same information that EMG asks for will
definitely also be in the post-query information; being myopic, EMG cannot use this knowl-
edge, whereas a nonmyopic approach could.

Notice also in Table 3.2 the narrowing gap between EMG/Best-Fixed and random, and
with omni. This is not surprising, since given more randomly-chosen additional informa-
tion, one would expect the agent’s initial query choice to make less difference. This has
implications on the value of incurring the overhead of EMG (random might become prefer-
able) as well as on whether to query at all.

Accounting for cost: As the impact of the EMG query is diluted by other gathered infor-
mation, the value-added by the query will fall. For example, I experimentally determined
that the value-added of the EMG query in row 1 Table 3.2 (by comparing to the case where
no query is asked but random information is received) is 0.0164, and for row 3 is 0.0121.
EMG computes a gain of 0.0212 for its query, and thus EMG could myopically overesti-
mate the acceptable “cost” for querying the user.

3.2.3.4 Sequences of Queries

EMG also assumes that the agent can ask only a single query. If the agent can ask multiple
queries, then EMG can make incorrect decisions by failing to factor into its gain calcula-
tions the (exploration) value a query has for asking better queries downstream. In general,
computing optimal sequences of queries to reliably derive such a strategy involves solv-
ing Bayes-Adaptive Markov decision processes (Duff, 2003), which is widely considered

33

Query Domain Rand EMG BF Omni
Trans Tree 0.0254 0.0386 0.0379 0.0592
Trans Grid 0.640 1.17 1.25 3.98

Reward Tree 0.0907 0.0960 0.0968 0.134
Reward Grid 1.60 2.31 2.13 4.42

Table 3.3: Results for the sequence of queries experiment.

intractable (Braziunas and Boutilier, 2008).
The hypothesis I will empirically test is as follows: If an agent can ask two queries, then

using EMG to determine these queries yields an expected added value competitive with
the best possible query sequence. I tested this hypothesis in the two domains by slightly
modifying the experimental procedure: for each trial (sampled true MDP), after computing
and asking the EMG query and incorporating the response, the agent ran EMG a second
time to identify the most valuable (next) query to ask given its new distribution over MDPs.
After the response to this, the Bayes-optimal policy given the combined information of the
two responses was evaluated against the true MDP. For each of the 10,000 trials, I also
computed the value for every possible fixed pair of queries.

As seen in Table 3.3, the sequence of two EMG queries together yielded an average
value similar to that of the average value of the Best-Fixed-pair (omni and random query-
pair values are also given for completeness). In fact, in some cases, EMG did even better.
EMG has an advantage over any fixed-pair, because EMG is not fixed: it can choose a
different second query based on the response to the first. On the other hand, EMG is at a
disadvantage because it does not look ahead to how the first query can “set up” the sec-
ond.1 As the data shows, sometimes EMG’s advantage of following a policy (conditionally
branching to a different second query) outweighs being myopic, and other times it does
not. Note that experimentally evaluating the space of all possible 2-step policies to see
how close EMG gets to the best such policy would require overcoming additional nontriv-
ial computational challenges, since the space of 2-step policies is continuous (for 2-step
policies, the second query to ask is allowed to be a function of the continuous response to
the first) and cannot be explicitly enumerated unlike the small finite set of query pairs the
agent can ask.

Accounting for cost: The agent can of course ask even longer sequences of queries. Fig-
ure 3.2a shows, for the transition-query grid domain, a comparison between the value of the
posterior policies induced by sequential EMG or random queries, as well as the optimal (in

1If each query EMG considered was instead about a pair of pieces of information, EMG could find the
pair with the highest expected gain, but then would be limited to considering a fixed pair.

34

a) b)

Figure 3.2: a) Value of the policy obtained after a sequence of EMG queries, compared
with a random query sequence and the optimal policy with full information. b) Value of
the policy obtained after a sequence of EMG queries, minus the total cost to obtain it for
various costs of querying.

expectation) policy the agent is attempting to obtain. As expected, repeatedly asking EMG
queries improves agent value faster than a sequence of random queries. The important
thing to note, however, is in general the improvement in value for each additional query de-
creases as the sequence gets longer. This suggests that, if EMG is used for problems where
multiple (even unlimited) queries can be asked, there will likely be a tipping point where
the cost of querying exceeds the expected gain of doing so. This is shown in Figure 3.2b,
where a few different costs for querying are shown. The higher the cost, the fewer queries
can be asked before the expected net value to the agent starts falling.

3.2.3.5 Online Query Asking

Finally, I try relaxing the myopic assumption that the agent ask its query before taking any
action. Now, an agent could benefit by waiting to ask its query until after taking some
actions. In the tree domain for transition queries, for example, as discussed above if the
agent must ask its query before it begins acting, it should ask about an action in state 2.
However, the response will not change the agent’s action choice in state 0. If it takes its
action in state 0 first, taking it to state 1 or 2 with equal probability in expectation, then it
can ask a query that improves its action choice in whichever of those states it ended up in.
Its expected value increases because it improves the chances of reaching a non-zero reward
state however its action in state 0 turns out, compared to asking first (where information it
gets about an action in state 2 will only be useful 50% of the time in expectation).

This suggests a heuristic strategy for deciding when to query: if the Bayes-optimal
policies for every possible answer to the (proposed) EMG query all prescribe the same

35

Query EMG EMG+AWINA EMG+Random
Trans 0.715 0.869 0.750
Reward 1.23 1.23 1.18

Table 3.4: Results for the online experiments (grid domain).

action for the current state, there is no advantage in asking the query at this time. The agent
should instead take an action. It can then repeat this procedure, postponing asking a query
until it has reached a state where that query will impact its next action choice.

This Ask When Impacts Next Action (AWINA) heuristic clearly would work in the simple
example considered so far. However, because the tree domain involves taking exactly two
actions, it does not provide much latitude for more comprehensive evaluation, so I use
the grid world (with all other EMG optimality conditions met) to compare standard (prior
to any actions) EMG to the AWINA heuristic. I also consider the case where the decision
about asking the EMG query is made randomly (with probability .5) at each time step (until
a query has been asked), and the results are given in Table 4 (note that the agent updates its
uncertainty upon observing transitions or rewards as it acts before asking its query). These
results suggest that, in the grid domain, the agent will do well to use EMG with the AWINA
heuristic when dealing with transition queries because it is better off waiting until it knows
which negative state it has wandered near. Note that even waiting randomly to ask does
better than always asking at the start. For reward queries, in contrast, finding out anything
about the reward landscape before setting off is useful, so AWINA does not improve EMG,
and EMG+random does worse than the others. In summary, AWINA can sometimes help,
but a more complete exploration for additional interesting heuristics is an area for future
research (I touch on this topic in Chapter 7).

3.3 Selecting Action Queries under Reward Uncertainty

While in the previous section I considered reward and transition queries which are tied di-
rectly to the agent’s uncertainty regarding the parameters of the underlying MDP, in this
section I consider action queries which the agent can use to indirectly improve its knowl-
edge. Of the many types of queries one could consider asking the user, action queries are
arguably quite natural for a human to respond to, as they ask what action the user would
take if teleoperating the agent in a particular state.

When teleoperating, the user chooses actions according to her model of the world. I
will assume that the agent fully knows the user’s model of world dynamics (i.e., the agent
has full knowledge of the transition function), but has an incomplete model of the user’s

36

rewards, and thus risks acting counter to the user’s true rewards. Further, I will assume that
the only way the agent can learn about the underlying rewards is to ask a query, i.e., there is
no “reward signal” present so the reward function is solely used as a means to parameterize
the agent’s policy.

The agent’s objective is to identify the query that will maximize its gain in expected
long-term value with respect to the user’s true rewards and the agent’s current state, which
corresponds to identifying the query with highest EVOI (Equation 3.1). Recall that this
objective is myopic because it ignores future queries that could be made, such as if the
agent could ask a sequence of queries, or wait to query later.

This section is organized as follows. First, I show how EVOI can be simplified to take
advantage of the structure associated with the agent being uncertain only about the reward
function, to create a new EVOI-based algorithm for action query selection: EMG-AQS.
Second, I compare the EMG-AQS algorithm with an uncertainty-based algorithm called
Active Sampling (AS) (Lopes et al., 2009) that applies directly to the problem setting, but
selects action queries based on maximally reducing uncertainty in policy representations.
Third, I develop a new hybrid algorithm combining EMG-AQS and AS, which I show in a
computation-time-limited scenario can combine the strengths of EMG-AQS and AS.

3.3.1 Computing Expected Value of Information for Action Queries

In this section I assume that the agent has uncertainty only over the reward function, i.e., un-
certainty over the user’s preferences for how it should act. To learn more about the user’s
preferences over how the agent should act, the agent can ask action queries. An action

query asks the user for what action she would take in some state s, which corresponds to
asking for the optimal action for state s given knowledge of the underlying reward function
ω. Note that independent Dirichlet priors cannot account for the correlations introduced
among state-rewards when incorporating the response to an action query (no such correla-
tions are introduced for the reward and transition queries studied in the previous section),
and hence are not a viable choice to parameterize the agent’s uncertainty when it considers
action queries. Instead, I assume that the set of possible reward functions is finite, so that
the agent’s uncertainty ψ is expressed as an arbitrary discrete probability distribution (i.e.,
a categorial distribution) over a finite set Ω of reward functions.

Let QA denote the set of all action queries (which is implicitly a function of the state
space of the underlying MDP, which is known to the agent). Recall that EVOI is specified
as follows:

37

EV OI(q, ψ, sc) = Ej∼q;ψ
[
V ∗ψ|q=j(sc)

]
− V ∗ψ (sc), (3.4)

For the case considered in this section where the agent only has reward uncertainty,
drastic simplification applies. First, as described in Section 3.2.2, the mean-MDP method
can be used to exactly compute Bayes-optimal values for the case of reward uncertainty
only. Specifically, the expected value of a policy over a reward distribution is its value for
the single mean-reward function, denoted ψ̄, which implies that the Bayes-optimal policy
for ψ is the optimal policy for ψ̄. (See proof of Thm. 3 by Ramachandran and Amir 2007.)
Thus, Equation 3.4 can be simplified as

EV OI(q, ψ, sc) = Ej∼q;ψ
[
V ∗
ψ|q=j(sc)

]
− V ∗

ψ
(sc),

where ψ|q = j denotes the mean-reward function for the posterior distribution of ψ induced
upon incorporating response j to q, or more formally, ψ|q = j is defined as Eω∼ψ|q=j

[
ω
]
.

Updating ψ to incorporate the response j to an action query q to obtain ψ|q = j is not
trivial as is the case for the reward and transition queries considered in the previous section,
but fortunately this problem is closely connected to related work. Namely, this is exactly
the problem solved in Bayesian Inverse Reinforcement Learning (BIRL) (Ramachandran
and Amir, 2007), and like Lopes et al. (2009) I use BIRL to perform Bayes updates over
the reward space in this section.

In BIRL, the starting assumption is a noisy-model of the user’s action selection. For the
MDP given by reward function ω, there is an associated action-value function Q∗ such that
Q∗(s, a, ω) is the expected value obtained when the start state is s, the first action is a, and
the optimal policy is followed thereafter. The user is assumed to respond with action j to
an action query q for state s with probability Pr(q = j|ω) = 1

Zω
eαQ

∗(s,a,ω), where Zω is the
normalization term and α is a noise (or confidence) parameter such that the larger the α, the
more confident the agent is that the response received is indeed optimal for the user. Setting
α lower can help in situations in which the user’s responses are noisy, or inconsistent with
respect to all rewards in the reward space. Given a response j to query q about state s, and
a current distribution ψ over rewards, the posterior distribution ψ|q = j over rewards is
defined by the Bayes update

ψ(ω|q = j) =
1

Z
Pr(q = j|ω)ψ(ω), (3.5)

where again Z is the appropriate normalization term. The finiteness of the reward set
allows the agent to tractably update ψ exactly according to Equation 3.5 upon receiving
the response to an action query, since the agent can precompute (or cache) value functions

38

for each reward parameter, resulting in substantial computational savings when updating
the reward distribution (provided the set of reward functions is small). Although it can
be more natural from the agent designer’s perspective to use continuous reward spaces to
account for many possible policies, performing BIRL in continuous reward spaces comes
at a significant computational cost. (See Lopes et al. (2009) and Ramachandran and Amir
(2007) for Monte Carlo methods for approximating BIRL in continuous reward spaces.)

Combining the above model for action query responses with the finiteness of the agent’s
action space, Equation 3.3.1 can be explicitly computed as a weighted sum over the |A|
possible responses as follows:

EV OI(q, ψ, sc) =

|A|∑
j=1

Pr(q = j;ψ)V ∗
ψ|q=j(sc)− V

∗
ψ

(sc)

=

|A|∑
j=1

V ∗
ψ|q=j(sc)

∑
ω∈Ω

ψ(ω) Pr(q = j|ω)− V ∗
ψ

(sc). (3.6)

Assuming that the value caching scheme above is used to allow each Pr(q = j|ω) and
ψ|q = j to be explicitly computed in an efficient manner, the main computational bot-
tleneck associated with using Equation 3.6 to approximate EVOI is the computation of
each Bayes-optimal posterior value V ∗

ψ|q=j(sc), which are not always cached by the above
scheme since the mean-rewards ψ|q = j are a convex combination of members of Ω and
thus not necessarily a member of Ω.

This completes the description of how the agent updates its reward function distribu-
tion after each query, and utilizes the structure present in reward function distributions to
simplify EVOI computations. I will refer to the algorithm that exhaustively computes the
EVOI of every action query in this manner and then selects the best one as EMG-based

action query Selection (EMG-AQS).

Reward function parameterizations. Parameterizing the reward function allows for a
compact representation of the reward function distribution, even when defined over an in-
finite state space. Consider a distribution over a discrete parameter space Ω and a function
φ that maps ω ∈ Ω to a reward function R. The mean reward function can be safely used
for computing policies and values optimal with respect to a reward distribution, but the
reward function associated with the mean reward parameters can be safely used instead
only when Eω∼ψ[φ(ω)] = φ(Eω∼ψ[ω]) (an extension of Theorem 3 in Ramachandran and
Amir 2007). Due to linearity of expectation, this equality holds when φ(ω) is a linear

39

function of ω, but not necessarily otherwise. Therefore I use the mean reward parame-
ters when this equality holds, but otherwise use the mean reward function, calculated as
Eω∼ψ[φ(ω)] =

∑
ω∈Ω φ(ω)ψ(ω). I explain in more detail how I make use of parameterized

reward functions in the descriptions of the experiments that follow.

3.3.2 Active Sampling

Another approach for action query selection is Active Sampling (AS), due to Lopes et al.
(2009). Intuitively, AS reduces the agent’s uncertainty in the user’s policy by querying the
state that has maximum mean entropy (uncertainty) in its action choices. Next I describe
AS in more detail.

Each MDP has a stochastic optimal policy (stochastic only in that ties between actions
are broken with uniform probability), and the action-choice probability for a state for each
action is binned into X uniform intervals between 0 and 1. Given a current distribution
over rewards ψ, the mean-entropy for state s, H̄(s), is given by

H̄(s) = − 1

|A|
∑
a∈A

X−1∑
x=0

µsa(x) log µsa(x), where

µsa(x) =
∑
ω∈Ω

{
π∗(a|ω; s) ∈ Ix

}
ψ(ω).

Here Ix = (x
X
, x+1
X

] for x 6= 0 and I0 = [0, 1
X

], ψ(ω) is the probability of reward function r
given distribution ψ over rewards, and {π∗(a|r; s) ∈ Ix} is 1 if the probability of action a
in state s under the optimal policy given r falls in the interval Ix and 0 otherwise. The AS
algorithm queries the state with maximum mean-entropy.

Note that using AS for action query selection affords computational advantages over
using EMG-AQS. In particular, AS never needs to compute posterior Bayes-optimal poli-
cies/values, and in fact never needs to compute Bayes-optimal policies/values at all when
the value caching scheme described in the previous section is used (once the cost of precom-
puting the optimal value function for each candidate reward function is paid). However, this
advantage over EMG-AQS comes at the tradeoff of less accurate query selection. For ex-
ample, the dynamics of the world may dictate that some states are less likely to be reached
than others, especially when taking into account the agent’s current state. Also, taking the
wrong action in some states may be catastrophic, whereas in others benign. Minimizing
policy uncertainty does not consider these factors, and thus is only a proxy for achieving
the agent’s objective of maximizing its expected value.

40

Connection to Value-Loss Minimization. Even though the query selection strategy adopted
by AS does not improve the agent’s expected value directly as the strategy adopted by
EMG-AQS does, Theorem 3.1, a new result that I prove below, implies that querying the
state with maximum mean-entropy reduces an upper bound on the agent’s expected value

loss compared to if it were somehow able to act optimally for the underlying MDP. (I will
refer back to Theorem 3.1 when I analyze the properties of another uncertainty-based al-
gorithm in Chapter 5, but for now the reader can safely skip to the empirical comparisons
of Section 3.3.4 if desired.)

Theorem 3.1. Let µ(a|s, ψ) = Eω∼ψ
[

Pr(a = π∗ω(s)|ψ)
]
, and letHµ(ψ, s′) = H(µ(·|s′, ψ)),

where H denotes the Shannon entropy function, i.e., for some discrete probability distribu-

tion Y , H(Y) = −
∑

i Y (i) log(Y (i). Then for any distribution ψ over a set of MDPs Ω,

Eω∼ψ[V ∗ω (s)− V π∗ψ
ω (s)] ≤ (1− e−maxs′ Hµ(ψ,s′))|Ω|(Vmax − Vmin).

Proof. Let policy µψ be defined as follows: µψ(s) = arg maxa µ(a|s, ψ) (with ties broken
arbitrarily), and let p = mins maxa µ(a|s, ψ). Then,

Eω∼ψ[V ∗ω (s)− V π∗ψ
ω (s)] ≤ Eω∼ψ[V ∗ω (s)− V µψ

ω (s)] ≤ Eω∼ψ[V ∗ω (s)− V µψ
ω (s)]

=
∑
ω

ψ(M)(V ∗ω (s)− V µψ
ω (s)).

Now if ψ(ω) > (1− p),∀s′ µψ(s′) = π∗ω(s′) and consequently ∀s′ V ∗ω (s′) = V
µψ
ω (s′).

To see this, note that ∀ω if ∃s′ : µψ(s′) 6= π∗ω(s′), then ψ(ω) + p ≤ 1,

and the preceeding claim follows. Thus,

∑
ω

ψ(ω)(V ∗ω (s)− V µψ
ω (s)) =

∑
ω:ψ(ω)≤1−p

ψ(ω)(V ∗ω (s)− V µψ
ω (s))

≤
∑

ω:ψ(M)≤1−p

(1− p)(V ∗ω (s)− V µψ
ω (s))

≤
∑

ω:ψ(M)≤1−p

(1− p)(Vmax − Vmin)

≤ (1− p)|Ω|(Vmax − Vmin)

≤ (1− emaxs′ Hµ(ψ,s′))|Ω|(Vmax − Vmin). (Lemma 5.1)

The last inequality is due to Lemma 5.1 which I will prove in Chapter 5. Note that if
Hµ(ψ) = 0,Eω∼ψ[V ∗ω (s) − V

π∗ψ
ω (s)] = 0, which implies that the upper bound evaluates

41

to zero when maxs′ Hµ(ψ) is zero, at which point the agent would be guaranteed to act
optimally. This suggests that querying the state in which the agent’s policy entropy is
highest, as done by AS, is a sensible surrogate for EVOI.

3.3.3 Computation-Limited Scenarios and Hybrid Approach

So far I have described two approaches for evaluating and selecting action queries: EMG-
AQS, which directly maximizes EVOI in a costly manner, and AS, which indirectly maxi-
mizes EVOI using a cheaper uncertainty-based criterion. In practice, however, computation
time may be limited if neither method can feasibly evaluate all possible queries.

To perform query selection in such a scenario, a simple heuristic strategy would be
to evaluate, using EMG-AQS or AS, as many randomly sampled queries from the agent’s
query set as possible before the available computation time is exceeded. In implementing
such a strategy, it is unclear whether EMG-AQS or AS would be the better choice, since
although AS can evaluate many more queries than EMG-AQS given the same time limit,
it could conceivably select a less valuable query since its uncertainty reduction criterion is
only a proxy for EVOI.

One way to potentially improve this strategy would be to select a promising subset of
queries to evaluate instead of evaluating as many random queries as time allows. Namely,
the Hybrid approach, the main contribution of this chapter, uses AS’s cheap evaluations
to identify a promising subset of queries for EMG-AQS to consider. More specifically,
Hybrid uses AS’s evaluation metric to select the top m queries out of a set of n randomly
sampled queries, and then uses EMG-AQS’s evaluation metric to evaluate as many of those
m queries as time allows. I empirically compare the effectiveness of using Hybrid as op-
posed to EMG-AQS or AS alone for computation-limited scenarios in Experiments 2 and
3 of the next section.

3.3.4 Comparisons

I now empirically compare the relative suitability of EMG-AQS versus AS for choosing
the most valuable queries to pose to the user. Prima facie, one might expect EMG-AQS
to perform better, as it is Bayes-optimal for selecting a single query assuming that only a
single query can be asked. However, neither method is Bayes-optimal when selecting a
sequence of queries, or when limited computation time is available so that only some of the
possible queries can be evaluated. I test the former condition in the first experiment, the
latter condition in the second experiment, and both combined in the third experiment. In

42

the second and third experiments, I include the Hybrid method method in the comparisons
as well.

The principal metric of comparison that I use is policy loss, which is the difference
in value between the optimal policy and the policy based on uncertain knowledge. In the
experiments that follow, I report average policy loss over trials (error bars shown are confi-
dence intervals for p-value 0.05), where each trial uses a reward function whose parameters
are uniformly randomly drawn from the reward parameter space. Both strategies begin with
uniform priors.

3.3.4.1 Puddle World

I conducted the first set of experiments in the Puddle World, as used in the evaluations
of Lopes et al. (2009). The puddle world is a 21x21 gridworld, and so has 441 states
(locations). The agent can move (deterministically) in any of the 4 cardinal directions to a
neighboring state (unless it bumps into a grid edge in which case it does not change state).
The agent operates over an infinite time horizon, with discount factor γ ∈ [0, 1). The
reward function is

f(w, s) = r1 exp(
−||s1 − s||

2σ2
) + r2 exp(

−||s2 − s||
2σ2

),

where s1,s2 represent the centers of reward emitting regions, and r1,r2 constitute the sign
and magnitude of the reward emitted from each. The pre-set scalar σ determines the rate of
decay of the magnitude of reward emitted from each center. The parameterization permits
cases with one goal and one puddle (where one of the r parameters is positive and the other
is negative), and similarly two goals or two puddles.

Like in the experiments of Lopes et al. (2009), the agent’s start state is always (0, 0).
While their formulation uses a continuous state space, their deterministic direction and
distance of movement actions resulted in a de facto discretization of space. Similarly, in this
experiment the agent explicitly represents the state space discretely, which also allows for
much more accurate and rapid Q-value approximations than would be computed through
function approximation. I discretized the parameter space to allow the reward decay scalars
to independently take on values−1 or 1 and the centers of the reward emitting regions to be
located on a 5x5 discretization of the state space. This results in a set of reward parameters
of size 2500.

The user in this experiment is modeled as the optimal policy given the actual reward
parameters for the particular trial: a response to a query is the action in this policy corre-
sponding to the state being asked about.

43

Experiment 1.
Here I perform the comparison across a range of discount factors. Since the agent’s

value is always measured with respect to the start state, a smaller discount factor reduces
the benefit of collecting rewards in the future – good queries will inform the agent how to
behave near the start state. As the discount factor increases, however, rewards the agent
receives in the future are increasingly important. I test over a range of discounts to gain
insights into each method’s sensitivity to corresponding changes in query quality.

Figure 3.3 shows the performance of each method for a sequence of queries, across dis-
count factors 0.2, 0.9, 0.99, and 0.999. Note the different scaling of the y-axes: a smaller
discount factor leads to lower policy values, which in turn leads to lower policy loss mag-
nitudes.

On all graphs, EMG-AQS shows the best performance for its first query. This is ex-
pected because EMG-AQS’s first query choice is Bayes-optimal, so no method can do
better in expectation for the first query. For the low discount factor of 0.2, EMG-AQS
significantly outperforms AS across the entire sequence. In fact, AS’s performance is com-
parable to Random, a strategy that simply selects random queries. Because EMG-AQS
directly aims to increase the agent’s expected discounted reward, it outperforms AS which
instead improves decisions that are most uncertain regardless of when those decisions might
be needed. Similarly, for discount 0.9, which is the exact (discretized) setting Lopes et al.
(2009) use to test their method, EMG-AQS outperforms AS for queries 2-4.

One might expect that, by raising the discount factor closer to 1, the relative benefits of
EMG-AQS would diminish. Indeed, with a discount of 0.99, the difference between EMG-
AQS and AS shrinks. In fact, AS outperforms EMG-AQS for queries 4 and 5. This is not
entirely surprising: both approaches make myopic decisions based on different criteria, so
even though EMG-AQS will greedily make Bayes-optimal decisions at each point in the
query sequence, the combination of queries asked by AS can be better.

Surprisingly, though, this trend does not persist as the discount factor is raised to 0.999:
EMG-AQS once again outperforms AS. By investigating the queries being asked, I dis-
covered that the explanation for this is essentially the other side of the coin for the larger
discount factors. That is, when the discount factor is high enough, the penalties incurred
by, for example, wandering too near the puddle on the way to the goal location become
negligible compared to the accumulation of reward the agent gets as it hovers around the
goal. Because of this, EMG-AQS focuses on queries that effectively map the goal region
rather than the puddle region, while AS is not biased either way.

Hence, in the Puddle World, EMG-AQS effectively biases its queries towards the start

44

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0 1 2 3 4 5

P
ol

ic
y

lo
ss

Number of queries made

Puddle World: Discount=0.2

"EMG-AQS"
"AS"

"Random"

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 1 2 3 4 5

P
ol

ic
y

lo
ss

Number of queries made

Puddle World: Discount=0.9

"EMG-AQS"
"AS"

"Random"

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1 2 3 4 5

P
ol

ic
y

lo
ss

Number of queries made

Puddle World: Discount=0.99

"EMG-AQS"
"AS"

"Random"

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5

P
ol

ic
y

lo
ss

Number of queries made

Puddle World: Discount=0.999

"EMG-AQS"
"AS"

"Random"

Figure 3.3: Average policy loss for EMG-AQS, AS, and Random on the Puddle World
across a sequence of queries shown, from left to right, for discount 0.2, 0.9, 0.99, and
0.999. All error bars are confidence intervals with p-value = .05.

state (for low discounts) or towards finding the best region to occupy in steady state (for
high discounts), while AS is more evenhanded. These results suggest that EMG-AQS
makes better choices by more accurately assessing whether querying to improve reward
collection in the short-term versus reward collection in the long-term would be more valu-
able, though in a balanced situation where this choice is less impactful, AS can be better.
Next I further test the methods over sequences of queries, but also take into account the
computational efficiency of the methods.

3.3.4.2 Driving Domain

To test the robustness of the trends observed in the Puddle World, and to take computa-
tional efficiency into account, I ran additional comparisons between EMG-AQS and AS
in an implementation of the Driving Domain (Figure 3.4a), which is a traffic navigation
problem often used in studies of apprenticeship learning (Abbeel and Ng, 2004).

Dynamics: At each discrete time step the agent controls a car on a highway by taking one

45

of three actions: move left, no action, or move right. Attempting to move off the edge
results in a no action. Other cars are present, which move at random continuously-valued
constant speeds (this makes the state space infinite) and never change lanes. The agent
lacks an explicit transition function, but can forward simulate to sample trajectories influ-
enced by its choices of actions.

State Features: The agent represents state as a vector of features, consisting of three parts.
The first has 5 binary features to specify the agent’s current lane. The second contains 3

binary features to specify whether the agent is colliding with, tailgating, or trailing another
car. The third part consists of 3 sets of features, one for the agent’s current lane, and one
for each adjacent lane, each containing 20 binary features specifying whether the agent’s
car (disregarding lane) will collide with another car in 2x timesteps, where x ranges from
0 to 19. This part encodes an agent’s left, forward, and right view of traffic and takes into
account car velocities.

Rewards: The reward function is parameterized by a weight vectorw as f(w, s) = φ(s)·w,
where φ(s) is a vector of reward features corresponding to state s. In particular, φ(s) con-
tains four binary features, which specify whether the agent is colliding with, tailgating or
trailing another car, and whether the agent is currently driving on the shoulder. In the exper-
iments, the agent has a priori knowledge that the reward weight corresponding to driving
on the shoulder is −0.2, but must learn which of 1000 possible assignments of the other
parameters best encodes user preferences.

Practicality of Action-Queries: Since in these evaluations the user is a policy, queries
can be answered by invoking the user policy. However, in a practical scenario with a human
user, the agent should translate its representation of state into one that a human could more
easily understand. Since a hypothetical state includes information about car positions and
velocities as well as the agent car’s position, the agent could present a state to the human
user as a simulated video clip, or an annotated picture.

Value Calculations: Due to the infinite state space, the optimal value function for a given
reward parameter can no longer be calculated exactly, and so I employ Sarsa(λ) (Sutton and
Barto, 1998) with linear function approximation to approximate value functions. This often
makes the user suboptimal with respect to the reward function chosen for a particular trial.
I accordingly set α to 40.0, which represents relatively high confidence in user responses
but allows robustness to possible inconsistencies in responses. Unlike the experiments in

46

the Puddle World, the agent makes action-queries to learn the user’s driving preferences
before it enters the world. As a result, there is no notion of current or start state, and so
policy values, including those used in our policy loss performance metric, are computed as
an expectation over possible start states.

Query Space: The infinite state space also makes it impossible to exhaustively consider
and rank every possible query with either EMG-AQS or AS, resulting in a de-facto computation-
time limitation. Given only a subset of possible queries can be evaluated, the agent needs a
means to approximately find each query evaluation algorithm’s maximum. In the following
experiments I compare the strategies discussed in Section 3.3.3 for doing so. Namely, I con-
sider using EMG-AQS or AS to evaluate as many randomly (uniformly) sampled queries
as possible, and also consider using the Hybrid method discussed in detail in Section 3.3.3.
The more computation time is allowed, the larger the set of queries that can be evaluated,
and in turn the greater the chances of finding a good query among them. In the experiments,
I assess the impact of various computation time limits.

Experiment 2.
In this experiment, I measure the policy loss for each method asking one query, allotting

each method the same amount of time to select from a large set of randomly-selected candi-
date queries. The implementation of AS used here (using precomputed values) evaluates a
single query about 200 times faster than EMG-AQS (also using precomputed values), since
EMG-AQS performs the time-consuming operation of formulating hypothetical policies
for each of the answers to the query. I.e., EMG-AQS must perform optimal planning com-
putations for every query evaluated, unlike AS. I also test the Hybrid method described in
Section 3.3.3, using AS to rank 16 randomly-selected queries, and then using the remaining
allotted time for EMG-AQS to evaluate them in order until time expires and then return the
best found.

Figure 3.4b shows that AS’s superior speed allows it to find a better query more quickly
than EMG-AQS, but does not benefit from additional time unlike EMG-AQS, allowing
EMG-AQS to outperform AS once at least 3 seconds are available for computation. The
Hybrid algorithm, on the other hand, gets the best of both worlds and meets or surpasses
the performance of both methods at all points. Intuitively, this is due to AS’s ability to
quickly find queries whose answers are very uncertain, allowing the slower but more effec-
tive EMG-AQS to determine which of those is most helpful in terms of value gain.

Experiment 3.

47

a) b)

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6 7
P

ol
ic

y
Lo

ss

Computation time allowed (seconds)

Timed Single Query Driving Domain Experiment

"Hybrid"
"Random"

"EMG-AQS"
"AS"

c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7

P
ol

ic
y

Lo
ss

Queries made

Sequence of Queries Driving Domain Experiment

"Hybrid-16-2"
"Random"

"EMG-AQS-2"
"AS-400"

"EMG-AQS-4"

Figure 3.4: a) The Driving Domain. Average policy loss for various query strategies ac-
cording to b) computation time allotted and c) number of queries made. Error bars are
confidence intervals for p-value 0.05.

Here I test how the strategies perform over a sequence of queries in the Driving Domain,
when again computation time is limited. I employ three strategies that each take roughly 2

seconds to select a query per step: AS applied to a set of 400 random queries, EMG-AQS
applied to a set of 2 random queries, and Hybrid where AS selects 2 queries from a set of
16 random queries and EMG-AQS selects the best of those (these correspond to T=2 for
each strategy on the previous graph). I also employ EMG-AQS applied to a set of 4 random
queries, which consumes 4 seconds of computation per step, as well as Random.

Figure 3.4c shows that AS-400 outperforms EMG-AQS-2, but that the Hybrid method,

48

which adds a small computational cost (about 4%) to EMG-AQS-2, outperforms both.
EMG-AQS-4, consuming twice the computation time, outperforms the rest (except when
beaten by Hybrid for the first two queries). I also ran the strategies over larger query sets,
and found that EMG-AQS and Hybrid continued to improve as they were allowed to sort
through more random queries, while AS did not. These results build on the trends observed
for a single query: EMG-AQS only outperforms AS when a certain level of computation is
available, but Hybrid’s usage of AS as a query filter can boost EMG-AQS’s performance
when computation is limited to get the best of both worlds.

3.4 Conclusions

In this chapter I considered three types of queries that an agent acting in an uncertain se-
quential decision-making problem can ask. For reward and transition queries, which query
parameters of the agent’s uncertainty over MDP models directly, I showed that Bayes up-
dates for query responses can be performed efficiently when the agent’s uncertainty is rep-
resentable by independent Dirichlet distributions. Then I discussed several straightforward
approximations that can be applied to reduce EVOI computations to repeated sequential op-
timal planning computations, which in turn can be performed by standard optimal planning
methods, producing the Expected Myopic Gain (EMG) algorithm for selecting transition
and reward queries. I then presented empirical results that demonstrated EMG’s near-
optimality when its assumptions were met, and that it continued to be effective even when
the assumptions were violated.

Then I introduced action queries, and developed a new action query selection method,
called Expected Myopic Gain-based Action Query Selection (EMG-AQS), which imple-
ments EVOI-based action query selection by performing Bayes updates using Bayesian
Inverse Reinforcement Learning, and takes advantage of the structure present when the
agent has only reward uncertainty to simplify optimal planning computations. Even so, the
optimal planning computations required by EMG-AQS are expensive and I presented an
empirical comparison between EMG-AQS and an existing action query selection method,
Active Sampling (AS), which has the computational advantage that it does not need to per-
form expensive optimal planning computations to select a query. Although EMG-AQS is
Bayes-optimal for a single query, I tested the effects of two conditions under which EMG-
AQS is not Bayes-optimal: performance over a sequence of queries, and performance given
a fixed amount of time allotted to select queries. Under the former condition, I found that in
most cases EMG-AQS outperformed AS over a sequence of queries due to its superior dis-
cretion between querying to improve short-term versus long-term reward collection. Under

49

the latter condition, I found that when little computation time was available, AS outper-
formed EMG-AQS, but once enough time was available, EMG-AQS outperformed AS. In
addition, I devised the Hybrid algorithm, which performed better than either method alone
in settings with limited computation time.

50

CHAPTER 4

Wishful Query Selection: Selecting from the
k-Response Query Set

For typical settings in which the agent can query its user, the agent is restricted to asking a
query from some specified set, such as the set of action-queries in the context of sequential
decision-making considered in Chapter 3. Intuitively, the impact of asking queries in terms
of improving the agent’s performance partially depends on the usefulness of the set of
queries it has access to. A natural question to ask, then, is how to determine when the
agent’s query set is expressive enough, i.e., how can the agent’s designer know whether
or not it would be useful to consider adding more queries to the agent’s query set? One
way to formally pose this question is as a query selection problem, where the agent can
ask any k-response query (a query with k possible responses, with k fixed to some integer
≥ 2): can the agent consider only those queries contained in some subset of the set of all
k-response queries without missing the most valuable k-response query? If so, that subset
should be considered “expressive enough.”

To this end, in this chapter I study the question of what the agent should ask its user in
order to maximize EVOI when the only restriction on what the agent can ask is that it can
only have k possible responses (where k ≥ 2), in an abstract setting in which a decision-
making agent must query before making its “decision” when (1) the agent may ask only
a single query (myopic query selection); and (2) the agent may ask n queries (nonmyopic
query selection).

I show that, in myopic settings, where the goal is to select a query so as to maximize
EVOI without considering any future queries that could be asked, the set of k-response
decision queries, each of which ask for the best decision out of some subset, is sufficiently
general in that there is no benefit in considering any k-response queries beyond k-response
decision queries. This result dovetails with recent work by Viappiani and Boutilier (2010),
who contribute efficient approximate algorithms for k-response decision query selection
that exploit the submodularity of a lower-bound for decision query EVOI.

51

In addition, I consider a nonmyopic setting where the goal is to select a depth-n k-
response query tree instead of a single query. Here I show that the set of depth-n trees
constructed from k-response decision queries is not sufficiently general, in that there are
cases where more valuable depth-n k-response query trees exist outside the set of depth-
n k-response decision query trees. However, I also show that the set of depth-n trees
constructed from k-response decision-set queries is sufficiently general. Finally, I show
the computational result that depth-n k-response query tree selection can be reduced to
kn-response decision query selection, where the algorithms contributed by Viappiani and
Boutilier (2010) directly apply.

The results developed in this chapter provide guidance for how queries can be designed
to be as informative as possible. In particular, they provide theoretical justification for
using only decision/decision-set queries (in the myopic/nonmyopic settings) when these
ideal types of queries can be asked. Moreoever, as I will show in Chapter 5 the results of
this chapter for the myopic setting provide a solution to the wishful query selection problem
proposed in Chapter 1, and hence play a crucial role in implementing the Wishful Query
Projection (WQP) approach for query selection developed in this dissertation.

4.1 Problem Formulation

In this chapter I will use the models and notation specified in Section 2.1 of Chapter 2,
focusing on the study of the k-response query set, which I define next.

There has been much past research on the subject of selecting Q-EVOI-optimal queries
from specific query sets Q. For example, Action Queries, which ask about the optimality
of actions in particular states of a Markov decision process (MDP), are a popular form
of query recently studied in the areas of learning by demonstration (Chernova and Veloso,
2009) and active inverse reinforcement learning (Melo and Lopes, 2013; Judah et al., 2012).
(See detailed discussion of action query selection in Chapter 3.) Specifically, action queries
take the form “What is the best action to take in state s?” When the number of actions is
finite, an action query can have only a finite number of responses. However, the number
of possible action queries depends on the number of possible states, which can be large or
infinite in many problems of interest.

As another example, Bound Queries ask whether the true value of some dimension of
the unknown parameter exceeds a particular threshold, and thus cleanly map to the agent’s
uncertainty representation (Chajewska et al., 2000; Braziunas and Boutilier, 2005). For
example, given uncertainty about the reward value of a goal state, a bound query might
ask “Is the reward of this state above 0.5?” Bound-queries are binary-response queries

52

that have two possible responses (intuitively, “yes” and “no”); however, there are infinitely
many such queries when the parameter being queried about is continuous.

One attribute that many query sets used by the research community have in common is
that they contain only queries that have k possible responses for some fixed integer k ≥ 2.
For example, action query sets in sequential decision making settings are typically com-
prised of queries that each have |A| possible responses (where |A| is the size of the action
space), and pairwise comparison query sets correspond to binary-response decision query
sets (Bonilla et al., 2010b). The following three types of k-response query sets are at the
core of this chapter:

k-Response Queries. Let Qk denote the set of all k-response queries. Other than being
limited to a fixed number of responses, this class is unconstrained. For example, Q2 in-
cludes the Bound Queries mentioned previously.

k-Response Decision Queries. Let Dk denote the set of all k-response decision queries,
where a query q ∈ Dk asks which out of k decisions is best given knowledge of the un-
certain parameter. As noted above, the semantics of a query are defined by its likelihood
function Pr(q = j|ω); thus the decision query q over decisions {ui}ki=1 is defined so that
Pr(q = j|ω) = δ(arg maxi{V ui

ω } = j), where δ is the indicator-function that takes on the
value of one if the equality in its argument is satisfied and zero otherwise. (I assume that in
the event of a tie, the response with smallest index is chosen, unless stated otherwise.)

k-Response Decision-Set Queries. Let Hk denote the set of all k-response decision-set

queries, where a query q ∈ Hk asks which out of k finite sets of decisions contains
the best decision. More formally, if q queries sets {Ui}ki=1, where each Ui ⊆ U , then
Pr(q = j|ω) = δ(arg maxi{maxu∈Ui V

u
ω } = j) (with ties broken in the same manner as

above).

Note that the size of Qk is infinite (in general) while the sizes of Hk and Dk are finite,
since the number of decisions is finite. Furthermore, Qk ⊃ Hk ⊃ Dk.

4.2 Summary of Theoretical Results

The main results of this chapter stem from studying the following comparisons.

• Myopic query selection: Compare k-response queries with k-response decision queries

53

in terms of the most valuable queries they contain.

• Nonmyopic query selection: Compare depth-n k-response query trees, depth-n k-
response decision query trees, and depth-n k-response decision-set query trees with
each other in terms of the most valuable query trees they contain.

As contributions, these comparisons show that, for all finite decision problems and for
all uncertainty ψ over them:

1. (In a myopic setting, the agent can safely consider only decision queries.) I show in
Section 4.3 that the set of k-response decision queries is EVOI-sufficient: the EVOI-
optimal k-response decision query has EVOI at least as high as any other k-response
query.

2. (In a nonmyopic setting, the agent can safely consider only decision-set queries.)
I show in Section 4.4 that the set of depth-n k-response decision-set query trees is
EVOI-sufficient: the EVOI-optimal depth-n k-response decision-set query tree has
EVOI at least as high as any depth-n k-response query tree.

3. (In a nonmyopic setting, the agent cannot be limited to only decision queries.) I show
in Section 4.4 that the set of depth-n k-response decision query trees is not EVOI-

sufficient: the EVOI-optimal depth-n k-response decision query tree may have lower
EVOI than the EVOI-optimal depth-n k-response query tree.

4.3 Myopic k-Response Query Selection

The first query selection problem I consider in this chapter is the myopic k-response query
selection problem:

q∗k = arg max
q∈Qk

EV OI(q;ψ), (4.1)

for some fixed k ≥ 2. That is, what should the agent ask when the only restriction is that
its query must have exactly k responses? Before tackling that problem, consider what the
agent should ask when there is no restriction at all in what it can ask, i.e., when even k is
unrestricted.

Prior to asking its query, the agent’s Bayes-optimal decision u∗ψ may be suboptimal with
respect to the true realization of the uncertain parameter, inducing expected loss

Eω∼ψ[V ∗ω − V
u∗ψ
ω].

54

Note that this upper-bounds the maximum EVOI a query could have, and that any query
allowing the agent to behave optimally thereafter in response (i.e., allowing the agent to
adopt maxu V

u
ω under any ω ∈ Ω as a function of the query response) achieves this EVOI.

Thus, the query that asks “Which decision in U has highest value under the true realiza-
tion of the uncertain parameter?” must have the highest EVOI out of any possible query.
This result implies that in the extreme case where k = |U | (recall that U corresponds to
the agent’s decision set), one solution to Equation 4.1 is the query that asks “What is the
optimal decision?” which, in fact, is a member of the set of |U |-response decision queries.

Returning to the k-response query selection problem (Equation 4.1), the agent will, in
general, no longer have the ability to completely resolve its uncertainty regarding which
decision it should execute via a single query (typically, k � |U |): but does the agent
need to consider all k-response queries? A desirable property of a k-response query set Q
would be that for all finite decision problems and for all uncertainty ψ over them, Q always
contains a k-response query with EVOI as high as any other k-response query, so that there
would be no benefit in considering any k-response queries beyond those contained by Q.
More formally, I will say that a query setQ is k-response EVOI-sufficient (hereafter, simply
EVOI-sufficient with the constraint k on the number of responses left implicit) if Q satisfies

sup
q∈Q

EV OI(q, ψ) = sup
q′∈Qk

EV OI(q′, ψ).

Next I derive the first and main result of this chapter: Theorem 4.2, which states that
the set of k-response decision queries is EVOI-sufficient. Intuitively, this means that the
above result that the |U |-response decision query has the highest possible EVOI for any
unrestricted-response query generalizes to the Dk-EVOI-optimal query having the highest
possible EVOI for any k-response query (where k is fixed). This reduces the (myopic)
k-response query selection problem to the (myopic) k-response decision query selection
problem, and I discuss algorithms for the latter in Section 4.5.

To prove that the set of k-response decision queries is EVOI-sufficient, I will begin
by proving the following lemma, and then I will show how it directly leads to Theo-
rem 4.2. (Theorem 4.2 is actually a special case of Lemma 4.1, and in Chapter 6 I will
use Lemma 4.1 again to prove another result.)

Lemma 4.1. Consider an arbitrary k-response query q, and suppose the agent will execute

decision uj upon receiving response j to q for j = 1, 2, . . . , k. Let dq be the k-response

decision query over u1, u2, . . . , uk. Then,

55

k∑
j=1

Pr(q = j)V
uj
ψ|q=j ≤

k∑
j=1

Pr(dq = j)V
uj
ψ|dq=j.

Proof.

k∑
j=1

Pr(q = j)V
uj
ψ|q=j =

∫
Ω

ψ(ω)
k∑
j=1

Pr(q = j|ω)V uj
ω dω

≤
∫

Ω

ψ(ω)
k∑
j=1

Pr(q = j|ω) max
i∈1,...,k

V ui
ω dω

=

∫
Ω

ψ(ω) max
i∈1,...,k

V ui
ω

k∑
j=1

Pr(q = j|ω)dω

=

∫
Ω

ψ(ω) max
i∈1,...,k

V ui
ω dω

=
k∑
j=1

Pr(dq = j)V
uj
ψ|dq=j.

The last step follows since the following two quantities are equivalent: (1) the expected
highest value under the uncertain parameter out of the k posterior-executed decisions; and
(2) the expected value associated with asking which of the the k posterior-executed deci-
sions has highest value under the uncertain parameter and then executing that decision.

Intuitively, Lemma 4.1 can be interpreted as follows. Consider the expected value asso-
ciated with asking a k-response query q and then executing some arbitrary decision uj ∈ U
upon observing response j to q (note that these decisions may not be Bayes-optimal deci-
sions with respect to the corresponding posteriors). Lemma 4.1 implies that this value can
only be improved by replacing q with the k-response decision query asking about those
decisions u1, u2, . . . , uk.

However, typically the agent will ask a query in order to improve the expected value
of its decision. That is, upon asking a k-response query q and observing response j, it ex-
ecutes the posterior Bayes-optimal decision as opposed to some arbitrary decision. Since
Lemma 4.1 is true for any arbitrary set of decisions executed for the posterior distributions,
it applies to this case where the decisions are posterior Bayes-optimal as well. Intuitvely,
this implies that if the agent will use the response to a k-response query q to choose the
best of decisions {uj}kj=1 (which may contain duplicates), the agent can only do better by
getting straight to the point and asking which of those decisions is best directly instead of

56

asking q. This gives rise to the query improvement procedure I discuss next.

Query improvement procedure. Consider the procedure that replaces an arbitrary k-
response query q with the k-response decision query dq, which asks which of q’s posterior
Bayes-optimal decisions is best given full knowledge of the uncertain parameter. Theo-
rem 4.2 shows that the set of k-response decision queries is EVOI-sufficient by showing
that this procedure can only improve the query, in that dq must have EVOI at least as high
as the original query q:

Theorem 4.2. (The set of k-response decision queries is EVOI-sufficient.)

For all finite decision problems and for all uncertainty ψ over them, the EVOI-optimal

k-response decision query has EVOI equal to that of the EVOI-optimal k-response query:

sup
q∈Qk
{EVOI(q, ψ)} = max

q′∈Dk
{EVOI(q′, ψ)}.

Proof. Consider an arbitrary k-response query q and recall that the decision u∗ψ|q=j is the
Bayes-optimal decision for the posterior distribution ψ|q = j (the posterior induced by
the jth response to query q). Let dq denote the k-response decision query that asks for the
optimal decision in the set {u∗ψ|q=j}kj=1. Then,

k∑
j=1

Pr(q = j)V ∗ψ|q=j =
k∑
j=1

Pr(q = j)V
u∗
ψ|q=j

ψ|q=j

≤
k∑
j=1

Pr(dq = j)V
u∗
ψ|q=j

ψ|dq=j (By Lemma 4.1)

≤
k∑
j=1

Pr(dq = j)V ∗ψ|dq=j,

implying that EVOI(q, ψ) ≤ EVOI(dq, ψ). Since this is true for any k-response query
q, it is also true for the Qk-EVOI-optimal query, so the Dk-EVOI-optimal query must be
Qk-EVOI-optimal.

Thus, I have shown that the set of k-response decision queries is EVOI-sufficient. This
means that when restricted to asking k-response queries, there is no loss in considering
only k-response decision queries.

57

Recursive query improvement. As discussed above, a query q can be improved (in terms
of EVOI) to a decision query dq that asks which of q’s posterior Bayes-optimal decisions
has highest value under the uncertain parameter. However, note that the jth decision asked
about by dq might not be posterior Bayes-optimal when j is the response to dq. For example,
the jth decision uj asked about by dq might have lower value than another decision u′j for
all ω ∈ Ω that prescribe response j to dq. As a result, applying this query improvement
procedure to dq may yield another query d′q that has higher EVOI than dq. In general,
repeating this query improvement procedure recursively would converge to a k-response
decision query q∗k with the property that when j is the response, the jth decision in the
set queried by q∗k is Bayes-optimal1. I will refer to k-response decision queries that have
this property as locally optimal k-response decision queries, and will revisit this point in
Section 4.5 where I discuss algorithms for k-response decision query selection.

4.4 Nonmyopic k-Response Query Selection

Now I turn to the nonmyopic setting and ask: what query trees of depth-n should the agent
consider when each query is constrained to having k responses?2 Here, a depth-n query

tree prescribes an ith query to ask as a function of the responses to the i− 1 queries already
asked. I begin the analysis by defining EVOI for query trees. Then I show that the set
of depth-n k-response decision-set query trees contains a query tree with EVOI at least as
high as any other depth-n k-response query tree. Lastly, I show that the same is not true
for depth-n k-response decision query trees. That is, Theorem 4.2 does not generalize to
nonmyopic query selection.

4.4.1 Expected Value of Information for Query Trees

Let Mn(Q) represent the set of all depth-n query trees that select queries only from query
set Q. When a depth-n query tree µ is used to select n queries, the result is a trajectory
of queries and responses. Let X(µ) denote the random variable where Pr(X(µ) = j)

represents the probability that the jth such trajectory is realized when µ is used to select n
queries.

Similarly to asking a single query, using µ to select n queries results in an updated

1Applying the query improvement procedure recursively until strict EVOI improvement is no longer pos-
sible must converge in a finite number of recursions, since there are a finite number of decisions and hence a
finite number of k-response decision queries.

2Note that this is a departure in the context of this dissertation, as I do not study nonmyopic query selection
anywhere else.

58

posterior at the leaves; let ψ|X(µ) = j refer to the posterior distribution induced when the
jth query and response trajectory is realized, which leads to a possibly new Bayes-optimal
decision V ∗ψ|X(µ)=j . Thus, the EVOI associated with µ under ψ can be written as

EVOI(µ, ψ) = V ∗ψ|X(µ) − V ∗ψ ,

exposing the intuitive fact that the EVOI of any depth-n k-response query tree can be
thought of as the EVOI of an equivalent kn-response query, as stated by the following
lemma:

Lemma 4.3. (Depth-n k-response query trees can be represented as kn-response queries.)

For all finite decision problems and for all uncertainty ψ over them, for all depth-n

k-response query trees µ, there exists a kn-response query qµ such that the EVOI of µ is

equal to the EVOI of qµ, implying that

sup
µ∈Mn(Qk)

{EVOI(µ, ψ)} ≤ sup
q∈Qkn

{EVOI(q, ψ)}.

Proof. Consider an arbitrary depth-n k-response query tree µ. Since there are kn possi-
ble trajectories of queries and responses resulting from using µ to select a trajectory of
n queries, it is possible to construct a kn-response query qµ such that Pr(qµ = j|ω) =

Pr(X(µ) = j|ω). Thus, EVOI(µ, ψ) = EVOI(qµ, ψ) since µ and qµ are interchangable in
terms of their effect on ψ.

I will say that a depth-n k-response query tree set M is Depth-n k-Response EVOI-

sufficient if M always contains a query tree with EVOI at least as high as any other depth-n
k-response query tree. (Hereafter, I omit the dependence on k and n and refer to such query
tree sets as EVOI-sufficient.)

Next I show that the set of depth-n k-response decision-set query trees is EVOI-sufficient,
while the set of depth-n k-response decision query trees is not EVOI-sufficient.

4.4.2 Decision Queries and Decision-Set Queries in Nonmyopic Query
Selection

First I show that the set of depth-n k-response decision-set query trees is EVOI-sufficient.
The following lemma provides a key step in proving this fact, reversing the relationship
shown by Lemma 4.3 for the special case of depth-n k-response decision-set query trees
and kn-response decision queries:

59

Figure 4.1: Diagram illustrating the main steps used to prove Theorem 4.6. Each arrow
represents a statement that, for any query/query tree contained in the set at the tail of the
arrow, a query/query tree with equal or higher EVOI must exist in the set at the head of
the arrow. The three solid arrows, together with the fact that M(Hk) ⊂ M(Qk), imply
Theorem 4.6 (represented by the dotted arrow).

Lemma 4.4. (kn-Response decision queries can be represented as depth-n k-response

decision-set query trees.)

For all finite decision problems and for all uncertainty ψ over them, for all kn-response

decision queries q, there exists a depth-n k-response decision-set query tree µq such that

the EVOI of q is equal to the EVOI of µq, implying that

max
q∈Dkn

{EVOI(q, ψ)} ≤ max
µ∈Mn(Hk)

{EVOI(µ, ψ)}.

Proof. Let q denote any kn-response decision query. I will prove the result by showing that
it is always possible to construct a depth-n k-response decision-set query tree µq so that
EVOI(µq, ψ) = EVOI(q, ψ).

µq can be constructed as follows. Let Zk(S) be any function that partitions a set S into
k disjoint sets (where |S| divisible by k), and let U q denote the set of decisions queried by
q. Then, construct µq such that µq(ψ) is the query that asks the decision-set query about
sets Zk(U q), and let µq(ψ|µq(ψ) = j) be the query that asks the decision-set query about
sets Zk

(
Zk(U

q)j

)
, and so on. When taken together, responses to queries selected when

using µq to select a trajectory of n k-response decision-set queries exactly determine which
decision out of the original set U q has maximum value for every possible ω.

Thus, if, under a particular ω, invoking µq to select a trajectory of n k-response decision-
set queries determines that decision uqj is best out of the set, the response to q under ω would
be j, and vice-versa; thus, for all ω,Pr(X(µq) = j|ω) = Pr(q = j|ω), which implies that
EVOI(µq, ψ) = EVOI(q, ψ).

60

As a side note, the above construction implies that the agent can restrict attention to
k-response decision-set queries containing decision sets of size kn−1 or less, compared to
the set of all k-response decision-set queries, which includes those containing decision sets
of size up to |U |.

Corollary 4.5. For all finite decision problems and for all uncertainty ψ over them, the

EVOI-optimal depth-n k-response decision-set query tree can be constructed using decision-

set queries whose decision sets contain no more than kn−1 decisions.

I now put together Lemma 4.3, Lemma 4.4, and Theorem 4.2 to prove that the EVOI-
optimal depth-n k-response query tree has EVOI no higher than the EVOI-optimal depth-n
k-response decision-set query tree (see Figure 4.1 for a visualization of the proof below):

Theorem 4.6. (The set of depth-n k-response decision-set query trees is EVOI-sufficient.)

For all finite decision problems and for all uncertainty ψ over them, the EVOI-optimal

depth-n k-response query tree has EVOI equal to the EVOI of the EVOI-optimal depth-n

k-response decision-set query tree:

sup
µ∈Mn(Qk)

{EVOI(µ, ψ)} = max
µ′∈Mn(Hk)

{EVOI(µ′, ψ)}.

Proof. Invoking Lemma 4.3, Theorem 4.2, and Lemma 4.4 sequentially,

sup
µ∈Mn(Qk)

{EVOI(µ, ψ)} ≤ sup
q∈Qkn

{EVOI(q, ψ)}

= max
q′∈Dkn

{EVOI(q′, ψ)}

≤ max
µ′∈Mn(Hk)

{EVOI(µ′, ψ)},

implying that
sup

µ∈Mn(Qk)

{EVOI(µ, ψ)} = max
µ′∈Mn(Hk)

{EVOI(µ′, ψ)},

since Mn(Hk) ⊆Mn(Qk).

I now show that the set of depth-n k-response decision query trees is not EVOI-sufficient,
by constructing an example where no depth-2 binary-response decision query tree can have
EVOI as high as the EVOI-optimal depth-2 binary-response decision-set query tree:

61

Theorem 4.7. (The set of depth-n k-response decision query trees is not EVOI-sufficient.)

There exist finite decision problems under uncertainty ψ where the optimal depth-n k-

response decision query tree has lower EVOI than the optimal depth-n k-response query

tree, i.e., where

sup
µ∈Mn(Qk)

{EVOI(µ, ψ)} > max
µ′∈Mn(Dk)

{EVOI(µ′, ψ)}.

Proof. Consider a decision problem with four possible decisions u1, u2, u3 and u4, where
all 4! orderings over the values of each decision are supported by ψ and no two decisions
have the same value under any parameter. Lemma 4.3 and Lemma 4.4 together imply
that the EVOI-optimal depth-n k-response query tree has EVOI equal to that of the EVOI-
optimal kn-response decision query. Thus, here the EVOI-optimal depth-2 binary-response
query tree has EVOI equal to that of the EVOI-optimal 4-response decision query q∗. In
this problem, asking q∗ would allow the agent to act optimally as a function of the response
to q∗ since there are only four possible decisions, which is achievable by the EVOI-optimal
depth-2 binary-response query tree by Lemma 4.4. However, no depth-2 binary-response
decision query tree exists that can meet this requirement.

To see this, suppose that the agent’s first query asks which is the better of u1 and u2, and
that the response is u1. Since all possible orderings of the decision values are supported
by ψ, this still leaves any of u1, u3, and u4 as candidates for being the best out of all four
decisions, and similarly, any subsequent query asked will leave the agent uncertain about
which is the better of two decisions (three if it asks the same query again), hence in this
case there is no depth-2 binary-response decision query tree in which the agent asks about
u1 and u2 first that ensures the agent will act optimally after asking two queries. Due to
symmetry, the same is true no matter which query is asked first, implying that no depth-2
binary-response decision query tree guarantees that the agent will act optimally after asking
2 queries.

4.5 Algorithms for k-Response Query Selection

Recall that this chapter is focused on studying the k-response query selection problem.
In Section 4.3 I showed that the k-response query selection problem can be reduced to
k-response decision query selection since the set of k-response decision queries is EVOI-
sufficient (Theorem 4.2). Next I discuss algorithms for myopic k-response decision query
selection.

62

4.5.1 Myopic k-Response Query Selection

The problem of selecting the EVOI-optimal k-response decision query has been studied
by Viappiani and Boutilier (2010) (the decision queries of this chapter correspond to their
“noiseless choice queries”). In particular, they show that greedily constructing a k-response
decision query (where, at each iteration, the next decision to add to the set asked about
is determined by maximizing EVOR, a lower bound for EVOI defined below which can
be computed efficiently) closely approximates EVOI-optimal k-response decision query
selection. Next I summarize their results, which connect with Theorem 4.2.

To begin, define the Expected Value of Recommendation (EVOR) of a k-response deci-
sion query d as follows, letting udj denote the decision associated with the jth response to
d:

EV OR(d, ψ) = Eω∼ψ
[

max
j
V
udj
ω

]
− V ∗ψ .

EVOR is the same as EVOI applied to decision queries, except when the response is j,
EVOR considers the expected value associated with executing decision udj , as opposed to
EVOI which considers the expected value associated with executing the posterior Bayes-
optimal decision u∗ψ|d=j . Since the Bayes-optimal posterior decision when uj is the re-
sponse to a decision query may not be uj , EVOR is a lower-bound for EVOI, i.e., for any
k-response decision query d ∈ Dk,

EV OR(d, ψ) ≤ EV OI(d, ψ). (4.2)

Recall from Section 4.3 that starting with an arbitrary k-response query and recursively
applying the query improvement procedure (presented below the proof of Theorem 4.2)
eventually converges to a locally optimal k-response decision query, which has the property
that when decision uj is the response, uj is the new Bayes-optimal decision. Letting D∗k
denote the set of locally optimal k-response decision queries, this implies that

max
d∈D∗k

EV OI(d, ψ) = max
d′∈Dk

EV OI(d′, ψ), (4.3)

and that for any locally optimal k-response decision query d (i.e., d ∈ D∗k),

EV OR(d, ψ) = EV OI(d, ψ). (4.4)

Combining these three facts, we have that

63

arg max
d∈Dk

EV OI(d, ψ) = arg max
d∈D∗k

EV OI(d, ψ)

= arg max
d∈D∗k

EV OR(d)

= arg max
d∈Dk

EV OR(d),

i.e., the EVOI-optimal k-response decision query can be computed by maximizing EVOR
instead of EVOI. Furthermore, EVOR is monotonic and submodular in k, implying EVOR
maximization can be closely approximated by greedily constructing the query on the basis
of EVOR (Nemhauser et al., 1978), and Equation 4.4 implies that the same procedure
closely approximates EVOI maximization as well. Next I summarize the properties of the
aforementioned greedy construction procedure compared to an exhaustive aproach.

Let the computational complexity of executing a single Bayes update be O(B), where
B is a measure of the size of the problem (which I leave undefined here because I will
simply count how many such updates are performed by the different algorithms).

Exhaustive k-Response Decision Query Selection Algorithm. Exhaustively evaluate
each possible k-response decision query and select the best one. This has computational
complexity O(|U |kkB).

Greedy k-Response Decision Query Selection Algorithm. Approximate the EVOI-optimal
k-response decision query by greedily constructing the set of k decisions it asks about as
follows. Begin with the empty set, and on the first iteration, add the prior Bayes-optimal de-
cision u∗ψ to the set. Then on each subsequent ith iteration, expand the set of i−1 decisions
added so far to include the decision that maximizes the EVOR of the i-response decision
query that asks about those decisions. This algorithm enjoys the guarantee that the EVOI
of the k-response decision query constructed is within a factor of 1−(k−1

k
)k (at worst 63%)

of EVOI-optimal (due to monotonicity and submodularity of EVOR, as explained above),
and has computational complexity O(k2|U |B).

4.5.2 Nonmyopic k-Response Query Selection

Although Viappiani and Boutilier (2010) do not discuss algorithms for nonmyopic query
selection, the same algorithms as described above can be applied in the nonmyopic setting
by exploiting the theoretical results provided by this chapter.

Namely, combining Theorem 4.2 with Theorem 4.6 implies that the EVOI-optimal

64

depth-n k-response query tree can be computed through two steps: (1) compute the EVOI-
optimal kn-response decision query q∗; (2) contruct a depth-n k-response decision-set
query tree µ∗ yielding the same EVOI as q∗.

Working backwards, step (2) can be implemented by the procedure described in the
proof of Lemma 4.4, which involves computing any size-k partition of the kn decisions
queried by q∗ for all kn nodes of the tree. Since each of these kn computations is O(kn),
step (2) has complexity O(k2|U |). Implementing step (1) by either the exhaustive or the
greedy algorithm above, then, yields the two algorithms below for depth-n k-response
decision-set query tree selection.

Exhaustive Depth-n k-Response Decision-set Query Tree Selection Algorithm. This
algorithm implements step (1) using the exhaustive k-response decision query selection al-
gorithm above, and so its computational complexity is O(|U |knknB).

Greedy Depth-n k-Response Decision-set Query Tree Selection Algorithm. This algo-
rithm approximates step (1) using the greedy k-response decision query selection algorithm
described above, and so it has computational complexity O(k2n|U |B) while offering the
guarantee that the EVOI of the query tree computed is within a factor of 1 − (k

n−1
kn

)k
n

(again, at worst 63%) of EVOI-optimal.
Thus, the computational problem of selecting an EVOI-optimal depth-n k-response

query tree can be reduced to selecting an EVOI-optimal kn-response decision query.

4.6 Discussion

In this chapter, I considered the problem of selecting a query when the only restriction on
what queries can be asked is that they must have exactly k possible responses (for some
k ≥ 2). In the myopic setting, I proved that the set of k-response decision queries is
EVOI-sufficient, which intuitively means that there is no benefit in considering additional
k-response queries beyond decision queries. In the nonmyopic setting, where queries are
used to construct depth-n query trees, I showed that the set of depth-n k-response decision
query trees is not EVOI-sufficient, but that the more general set of depth-n k-response
decision-set query trees is in fact EVOI-sufficient.

I then discussed algorithms developed in related work that can be directly applied to
provably approximate k-response decision query selection, and moreover, I showed that
the same algorithms apply to selecting depth-n k-response decision-set query trees, since
depth-n k-response decision-set query tree selection can be reduced to kn-response deci-

65

sion query selection.
I note that while I showed in this chapter that decision queries and decision-set queries

are EVOI-sufficient in the myopic and nonmyopic settings respectively, I did not discuss
how humans may understand and answer queries from these sets. In some application
domains, this may indeed be a practical challenge. In particular, it is clear that decision-set
queries would be difficult for humans to answer unless the component decision-sets were
to correspond to, say, well-understood (by humans) categories of decisions. In the next
chapter I take a step towards answering these types of questions by providing a principled
way to choose a query from some askable set to replace a decision query, but studying
how decision and decision-set queries can best be approximately conveyed in practical
applications and how to take into account the cognitive burden they impose when evaluating
them are important directions for future work, and I discuss this subject further in Chapter 7.

As another direction, in the next chapter I show how, in the myopic setting, the theo-
retical properties of decision queries and the computational tractability of approximately
selecting from them can be exploited to implement the first step of the WQP approach
discussed in Section 1.2 of Chapter 1.

66

CHAPTER 5

Selecting from Arbitrary Subsets of k-Response
Queries via Wishful Query Projection

In Chapter 3, I compared query selection algorithms for sequential decision-making set-
tings when the agent was restricted to asking queries from particular structured query sets,
and empirically found that, for the action query set, combining an uncertainty-based ap-
proach with an EVOI-based approach resulted in a more effective tradeoff between min-
imizing computational requirements and maximizing EVOI compared to using either ap-
proach alone. Then, in Chapter 4, I considered query selection in a general setting with
minimal structure in the underlying decision problem and query set; namely, I considered
the problem of selecting the query with highest EVOI assuming that any k-response query
can be asked when the agent is faced with an abstract single-shot decision-making prob-
lem. There, I showed that the agent can ignore all k-response queries except k-response
decision-queries without sacrificing EVOI. As a result, selecting from the space of all
k-response queries reduces to k-response decision query selection.

In settings like those studied in Chapter 3, however, the agent can ask its user only
queries that lie within some specified subset of all k-response queries, e.g., queries whose
meanings the agent and user mutually understand, and whose required effort on the part of
the user to answer is acceptable. Query selection in such cases can become computationally
difficult in the absence of exploitable structure in the query set, and finding the best query
may be compared to finding a needle in a haystack. In this chapter I draw from the intuition
and theoretical results developed in Chapter 4 to develop general principles for designing
query selection algorithms that apply to arbitrary query sets, specifically addressing the
problem of selecting the EVOI-optimal query from some arbitrary askable set of k-response
queries with all other details of the problem abstracted away.

As a general approach to solving this type of query selection problem, I implement
the Wishful Query Projection (WQP) proposed in Chapter 1, and approach the problem
of selecting from an arbitrary set Q of k-response queries as follows: first, compute the

67

EVOI-optimal k-response decision query d∗ even though it cannot necessarily be asked;
then, project d∗ into Q using a query similarity criterion to find a query like d∗ that can be
asked. I show that implementing WQP with an uncertainty-based similarity criterion yields
an algorithm offering a formal guarantee regarding the EVOI loss of the query selected as
a function of how similar the askable query set is to the k-response decision query set,
connecting back to the empirical success I found in Chapter 3 with a different type of
hybrid EVOI-based and uncertainty-based approach.

5.1 Askable Query Selection Setting

In this chapter I study the same setting as the myopic setting studied in Chapter 4, where
recall the agent is a single-shot decision maker with finite decision set U and arbitrary
uncertainty ψ over arbitrary model space Ω with each ω ∈ Ω prescribing value V u

ω to each
decision u ∈ U , where the problem is to select a k-response query to ask with the objective
of maximizing EVOI. Unlike Chapter 4, however, here the set Q of queries to select from
consists of only a subset of all k-response queries, where the particular subset cannot be
chosen but is known to the agent. I will refer to Q ⊆ Qk as the askable query set. In this
setting, the objective is to solve the askable query selection problem:

q∗ = arg max
q∈Q

EV OI(q;ψ), (5.1)

where Q ⊆ Qk. I will also make the simplifying assumption that Q is a finite query set.
This assumption makes it possible to specify and study the properties of query selection
algorithms that evaluate every askable query under different criteria, since without making
additional assumptions about the structure of the askable query set, it is unclear how askable
query selection could be accomplished in any principled manner without enumerating the
askable query set. Although enumerating the askable query set in practice is likely to
be infeasible, my intention is to provide analysis of general query selection techniques
that might be combined with domain-specific techniques for scaling to particular settings.
Examples of finite k-response query sets are the k-response decision query set (studied
in detail in Chapter 4), structured subsets of the k-response decision query set (studied in
detail in Chapter 6), the k-response action query set for sequential decision-making settings
with finite action sets (studied in Chapter 3), and sets of queries that directly query about
parameters of the decision problem (such as finite subsets of the reward and transition
queries studied in Chapter 3).

68

5.2 Decision Entropy and Query Response-Entropy

Throughout this chapter I will use ψU to denote the discrete distribution over which decision
in U has the highest value induced by ψ, where

ψU(u) = η

∫
Ω

ψ(ω)δ(u = arg max
u′

V u′

ω),

where η is a normalization constant.
I will use H to denote the Shannon entropy function, where for some discrete prob-

ability distribution Y , H(Y) = −
∑

i Y (i) log(Y (i)). I will also apply H to queries so
that H(q) denotes the entropy over the discrete distribution over the responses to q under
ψ (note that ψ is implicit unless stated otherwise); i.e., the response-entropy of a query q is
defined as

H(q) , −
∑
j

Pr(q = j) log(Pr(q = j)), (5.2)

where Pr(q = j) =
∫

Ω
Pr(q = j|ω)dψ(ω).

Now, consider two queries q and q′. Observing response j to q updates the agent’s dis-
tribution ψ over model parameters, so it also updates the agent’s distribution over what the
response to q′ would be if asked. By asking q the agent can only improve (in expectation)
its prediction of what the response would be if q′ were to be asked, in that the expected
posterior response-entropy of q′ induced by asking q can be no higher than H(q′) (due to
Jensen’s inquality (Kuczma, 2009)). I use H(q′|q = j) to denote the posterior response-
entropy over q′ upon observing response j to q, and I will use H(q′|q) as shorthand to
denote the expected posterior response-entropy of q′ induced by observing the response to
q, or more formally,

H(q′|q) , Ej∼q;ψ
[
H(q′|q = j)

]
.

5.3 Approaches for Askable Query Selection

The naı̈ve approach to solving the askable query selection problem would be to evaluate
the EVOI of every query in Q, and to then select the one with highest EVOI: in this chapter
I will refer to the algorithm following this approach as Exhaustive. Since every EVOI com-

69

putation requires, for each of the k possible responses, a Bayes update (whose complexity
I will denote as B) and a posterior optimal planning computation (whose complexity I will
denote as Π∗), the computational complexity of Exhaustive is O

(
|Q|kB + |Q|kΠ∗

)
. For

the settings considered in this dissertation, the complexity of optimal planning dominates
that of performing a single Bayes update, and hence the second term, |Q|kΠ∗, is the main
concern.

Exhaustive can be used to select only from small query sets, then, since the larger the
askable query set, the more optimal planning computations must be performed. However,
larger query sets can allow better queries to be asked across the variety of states of uncer-
tainty in which the agent may find itself, so the extent to which an agent can take advantage
of asking queries is tied to how many queries it considers. An efficient query selection
algorithm, then, should have complexity scaling separately as a function of |Q| and Π∗, so
that the additional computation required when the query set is expanded is not a function
of optimal planning complexity. One family of algorithms that typically have this property
is uncertainty-based algorithms.

Uncertainty-based query selection algorithms can be used to select a query purely on
the basis of how much the agent would learn by asking the query, as a proxy for expensive
EVOI computations which take into accout how useful doing so would be. As discussed
in Chapter 2, uncertainty-based algorithms are commonly used in non-decision-theoretic
settings, such as Active Learning, where the natural objective is often to minimize some
measure of the agent’s uncertainty. Related work (Guo and Sanner, 2010; Boutilier et al.,
2003), and the work described in Chapter 3, has studied the use of various uncertainty-
based criteria as heuristics for EVOI-based query selection in decision-theoretic settings,
where their main computational advantage is that they need not solve any optimal planning
problems in order to select a query, provided computing Bayes updates for the askable
query set does not require doing so.

Next I introduce MEDER, an uncertainty-based algorithm for askable query selection
which I use extensively both in this chapter and in Chapter 6 to benchmark the theoretical
properties and empirical performance of the algorithms I develop later in this chapter.

5.4 MEDER Query Selection Algorithm

Here I discuss a query selection algorithm that reduces a measure of the agent’s decision

uncertainty directly as a proxy for maximizing EVOI. Formally, the Maximum Expected

Decision Entropy Reduction (MEDER) algorithm selects the query that maximally reduces
the agent’s expected posterior decision entropy. (The idea of selecting a query to reduce

70

the agent’s expected posterior decision entropy is not new; e.g., see Wilson et al. (2012)
who study a similar approach in a sequential decision-making setting.) MEDER selects a
query from an askable set Q according to the following objective:

qMEDER = arg max
q∈Q

EER(q, ψ), where EER(q, ψ) = H(ψU)−H(ψU |q).

For concreteness, I will assume that MEDER, like Exhaustive, applies its criterion to all
askable queries in order to select the best one. MEDER, then, effectively replaces the EVOI
computations of Exhaustive with EER computations. Without further assumptions, EER
computations would have complexity scaling with |U |, which is the same as the complexity
of optimal planning absent exploitable structure. In practice, however, criteria similar to
decision-entropy can be computed much more efficiently than EVOI for some settings (e.g.,
see the Active Sampling algorithm of Lopes et al. (2009) discussed in Chapter 3). For
this reason, I will distinguish decision-entropy computations from other decision-related
computations by using E to represent the complexity of decision-entropy computations.
The complexity of MEDER, then, is O

(
|Q|kB + |Q|kE

)
.

Note that MEDER’s EER criterion is just one choice out of many possible uncertainty-
based criteria. Namely, a variety of other criteria have been studied in active learning
settings that could conceivably be considered here (such as Fisher Information (Zhang
and Oles, 2000), KL-Divergence (McCallum and Nigam, 1998), or version space shrink-
ing (Dasgupta, 2004)). Additionally, the agent’s uncertainty over model parameters (ψ)
could be minimized instead of its uncertainty over which decision is best. While a com-
prehensive study of how MEDER might compare to other uncertainty-based algorithms is
out of the scope of this dissertation, MEDER’s approach of maximizing EER has two ap-
pealing properties in the context of askable query selection. First, unlike MEDER many
other uncertainty-based approaches make additional assumptions regarding the form of the
agent’s uncertainty representation or query set, which do not apply to the general setting
considered in this chapter. Second, although MEDER is uncertainty-based in that its ob-
jective of reducing the agent’s overall decision uncertainty does not take into account how
queries improve the agent’s decision-making in terms of value, it does not completely ig-
nore the agent’s decision problem as many other uncertainty-based algorithms would.

In fact, using MEDER to approximate EVOI-based query selection is principled in that
reducing EER reduces an upper bound on the loss associated with the agent’s expected
value in acting under uncertainty, as compared to if it were to act optimally. This bound,
stated as Corollary 5.3 below, plays an important role in the subsequent derivations of

71

theoretical guarantees for the WQP algorithms introduced in Section 5.5. Next I prove a
simple lemma which I apply in a key step in the derivation of Lemma 5.2, which then leads
directly to Corollary 5.3. Intuitively, Lemma 5.1 provides a lower bound for how peaked a
discrete probability distribution must be as a function of its entropy:

Lemma 5.1. Let y be an arbitrary discrete probability distribution with sample space

{1, 2, . . . , k}, and let jmax , arg maxj y(j). Then y(jmax) ≥ e−H(y).

Proof.

H(y) , −
k∑
j=1

y(j) log(y(j)) ≥ −
k∑
j=1

y(j) log(y(jmax)) = − log(y(jmax)).

Thus, − log(y(jmax)) ≤ H(y), implying that

y(jmax) ≥ e−H(y).

Note that when H(y) = 0, Lemma 5.1 implies that y(jmax) ≥ 1 (which is tight for the
Dirac delta distribution: the minimum entropy distribution), and when H(y) = − log(1

k
),

Lemma 5.1 implies that y(jmax) ≥ 1
k

(which is tight for the uniform distribution: the
maximum entropy distribution). Hence, the bound is tight for the two extreme values of
H(y); however, the bound is loose for values in between.

Intuitively, when applied to the agent’s decision uncertainty ψU , Lemma 5.1 implies
that as the agent’s decision entropy H(ψU) decreases, the extent to which the most likely
decision to be optimal under ψU must be more likely to be optimal than the rest of the
decisions increases. The following lemma uses this fact to upper bound the expected value
loss of the Bayes-optimal decision as a function of the agent’s decision entropy:

Lemma 5.2. For any decision problem and uncertainty ψ over them,

Eω∼ψ[V ∗ω −V
u∗ψ
ω] ≤ (1−e−H(ψU))(Vmax−Vmin), where ψU denotes the discrete distribution

over which decision in U has highest value under the uncertain model parameter.

Proof. Let x = arg maxx ψU(x) (note that x ∈ U , i.e., x is a decision as opposed to an

72

index). Then,

Eω∼ψ[Vω − V
u∗ψ
ω] ≤ Eω∼ψ[Vω − V x

ω]

= ψU(x)Eω∼ψ|x=arg maxu V uω [Vω − V x
ω] + (1− ψU(x))Eω∼ψ|x 6=arg maxu V uω [Vω − V x

ω]

= (1− ψU(x))Eω∼ψ|x 6=arg maxu V uω [Vω − V x
ω]

≤ (1− ψU(x))(Vmax − Vmin)

≤ (1− e−H(ψU))(Vmax − Vmin). (Lemma 5.1)

A simple application of Jensen’s inequality (Kuczma, 2009) yields a similar bound that is
a function of the expected posterior entropy of ψU when q is asked:

Corollary 5.3. For any query q,

Ej∼ψ;q

[
Eω∼ψ|q=j[V ∗ω − V

u∗
ψ|q=j

ω]
]
≤ (1− e−H(ψU |q))(Vmax − Vmin).

Note that MEDER’s objective of maximizing EER corresponds to minimizing the expected
posterior entropy of ψU , since H(ψ) does not depend on q. Corollary 5.3, then, implies
that even though MEDER is uncertainty-based in nature, its focus on reducing the agent’s
decision-entropy in particular is formally tied, albeit indirectly, to improving the agent’s de-
cisions. Even so, at the extreme, a query with high EER can have zero EVOI, as illustrated
by the following example:

Example 5.1. Suppose U contains four decisions u1, u2, u3, and u4, the ask-

able query set Q contains q1,4 and q2,3 (which ask about u1 and u4, u2 and

u3 respectively), and that Ω consists of three possible models ω1, ω2, and ω3,

where ψ assigns them equal probability 1
3
. Further, suppose values range from

−300 to 3.

Now suppose u1, u2, and u3 are all risky decisions in that, for each one, uj
has value j for ωj , but the lowest possible value (−300) for the other two ω.

On the other hand, u4 is a safe decision in that u4 has value 0 for all ω. Note

that u4 is the prior Bayes-optimal decision since it has expected value 0, while

all other decisions have expected value that is at most −199. For the purpose

of this example, assume that the user breaks ties uniformly when answering a

query (i.e., for ω1, when q2,3 is asked, both decisions have value −300 for ω1

so the probability is 0.5 for each response).

73

Consider which of the two askable queries would be better to ask. First,

EV OI(q2,3;ψ) = 0 because knowing its response will not change the Bayes-

optimal decision. On the other hand, EV OI(q1,4) = 1
3

because Pr(q1,4 =

1) = 1
3
, and ψ|q1,4 = 1 assigns probability 1 to ω1, allowing the agent to

change its decision to u1 which has value 1 for ω1 when the response is u1, but

effecting no change when the response is u4. In summary, q1,4 has EVOI of 1
3

while q2,3 has EVOI of 0.

Using EER as a proxy for EVOI fails in this example, since u4 is not optimal for

any ω, resulting in q1,4 having EER of 0 as opposed to q2,3 which has positive

EER.

While Example 5.1 shows that reducing EER does not necessarily lead to improvements in
the agent’s decision-making, Corollary 5.3 implies that reducing EER does reduce an upper
bound on the extent to which the agent’s decision value differs from that of the optimal
decision. Further, in the limit where H(ψU) = 0, the loss evaluates to 0, since in such
a case the agent has no uncertainty regarding the optimal decision and thus is guaranteed
to act optimally by selecting the Bayes-optimal decision. Thus, MEDER will select the
EVOI-optimal query when the askable query set contains a query allowing the agent to
completely eliminate its decision uncertainty – i.e., when the query set contains a query
equivalent to the |U |-response decision query d∗U that asks the user to select from the entire
set U of decisions.

However, the askable query set typically will not contain d∗U , since it would be bur-
densome to ask the agent’s user in that it essentially asks the user to program the agent’s
policy according to the user’s preferences/knowledge. (Avoiding this burden is arguably
one of the main motivations for incorporating query-asking into agents in the first place!)
In cases where the askable query set does not contain d∗, then, MEDER can be viewed as
the algorithm that selects the query that maximally reduces the entropy over the responses

to d∗U (to see this, note that ψU(uj) = Pr
(
d∗U = uj;ψ

)
). In this sense, using MEDER for

query selection treats learning the response of d∗U as the goal, but MEDER can run into
issues like the one illustrated in Example 5.1 when achieving that goal with a single query
from the askable query set is unrealistic.

5.5 Wishful Query Projection

I have shown that MEDER’s objective of maximizing EER is related to minimizing the
agent’s expected value loss (Corollary 5.3), and that maximizing EER can be viewed

74

as minimizing the agent’s response-entropy over the best possible query d∗U . However,
MEDER can be misled into selecting minimally valuable queries when learning the re-
sponse to d∗U is an unrealistic goal given the queries contained by the askable query set.

Suppose instead that the agent were to treat learning the response to a more realistic, but
still valuable, decision query d∗ as its goal when selecting an askable query. If the agent
can find an askable query similar to d∗, this should result in the agent selecting a query
with high EVOI to the extent that d∗ has high EVOI. This novel goal-based query selection
approach is at the core of the Wishful Query Projection (WQP) approach for query selection
developed in this dissertation.

Consider the following way to factor EVOI-based query selection for arbitrary k-response
query sets into two steps to select a query q: 1) solve the Dk-EVOI-optimal query selection
problem to obtain query d∗, which may not be askable; and 2) project d∗ into the askable
query set by finding an askable query q similar to d∗. Note that step 1) here specifies an
implementation for the wishful query selection step of WQP as presented in Section 1.2 of
Chapter 1, and henceforth when I refer to WQP I will assume its first step is implemented
this way. The remainder of this chapter is focused on implementing step 2): the query
projection step.

In WQP, all computations related to optimal planning are frontloaded into the first step,
which can be approximated efficiently (as discussed in Section 4.5). The second step’s task
of searching the askable query set for a query similar to d∗, then, can focus on finding an
askable query similar to d∗ without taking into account its effect on the agent’s decision-
making since queries similar to d∗ are known to have high EVOI, which should find an
askable query with high EVOI to the extent that the askable query set contains a query
similar to d∗. I introduce an uncertainty-based implementation of this approach for query
selection next, along with an approximation for it, and analyze in detail the corresonding
computational and EVOI-maximizing properties of the two algorithms.

5.5.1 Directed Expected Entropy Reduction (DEER)

The first WQP algorithm I develop is Directed Expected Entropy Reduction (DEER), which
selects a k-response query from the askable query set Q according to the following steps:

• Compute the Dk-EVOI-optimal k-response query d∗:
d∗ = arg maxd∈Dk EV OI(d;ψ)

• Select the query q from Q that minimizes the agent’s uncertainty over what the re-
sponse to d∗ would be:
q = arg minq∈QH(d∗|q)

75

The first step of DEER computes d∗, the Dk-EVOI-optimal k-response decision query.
Recall that d∗ has the highest possible EVOI out of all k-response queries, making it the
ideal query if only the agent could ask it. In the second step, DEER recasts the query selec-
tion problem to finding a query similar to d∗, which will produce a query with high EVOI
to the extent that the askable query set Q contains such a similar query. Specifically, the
second step selects the query which, in expectation (over the responses to q), induces the
lowest posterior entropy over the responses to d∗. For example, the ideal match would be
d∗ itself (supposing d∗ ∈ Q), since there can be no uncertainty regarding the response to
d∗ conditioned on its own response (recall that decision queries are answered determinis-
tically). Connecting back to the discussion of MEDER in Section 5.4, the second step is
equivalent to applying MEDER to a reduced version of the original problem where U is
replaced by the subset of its decisions that are queried by d∗ – so in this way, DEER is a
hybrid EVOI-based and uncertainty-based query selection algorithm.

5.5.1.1 DEER Computational complexity

First, consider the computational complexity of the first step. As discussed in Chapter 4,
Viappiani and Boutilier (2010) showed that the Dk-EVOI-optimal query can be computed
exactly with complexityO(|U |kkB) via evaluating the EVOR of every k-response decision
query, or approximately with complexity O(|U |k2B) via greedy construction where again
EVOR is used in place of EVOI.

Naı̈vely, DEER’s second step can be computed with complexity O(|Q|kE + |Q|kB)

by evaluating the expected posterior entropy over d∗ induced by each askable query q.
However, note that

H(d∗|q) = H(q|d∗)−H(q) +H(d∗) (Bayes’ Rule for Conditional Entropy) ,

and so the agent can equivalently perform the second step by solving

q = arg min
q∈Q

H(q|d∗)−H(q)

instead, which requires computing only k Bayes updates since the posteriors of d∗ can be
computed before iterating through the askable query set. This implements the second step
with complexity O(|Q|kE + kB).

Combining the two steps, DEER’s complexity is O(k(|U |kB + |Q|E)) when the first
step is computed exactly, orO(k(|U |Bk+ k|Q|E)) when the first step is approximated via

76

greedy construction. In contrast, the computational complexity of exhaustive EVOI eval-
uation is O(|Q|kB + |Q|kΠ∗), where Π∗ represents the complexity of solving an optimal
planning problem. In the absence of structure in the decision problem, the complexity of
optimal planning isO(|U |), and so in such a setting DEER’s complexity is factored into the
sum of two terms, one of which depends on optimal planning complexity while the other
depends on the size of the query set, compared to exhaustive query selection which must
perform |Q|k optimal planning computations. Thus, DEER achieves the disseration-wide
computational goal of allowing the query set to be expanded without requiring additional
computation that scales with optimal planning complexity.

Revisiting Example 5.1.

Once again consider Example 5.1, where MEDER selected q2,3, which has

EVOI = 0.0, instead of q1,4, which has EVOI = 1
3
. Now consider which query

DEER will select. For the first step, d∗ is q3,4 since knowing that u3 yields

the highest value yields the highest value improvement compared to u1 or u2.

Then, DEER will select q1,4. To see this, note that 1
3

of the time the response

to q1,4 will be u4, and conditioned on that the response to q3,4 will always

be u4, inducing zero posterior response entropy for d∗, and 2
3

of the time the

posterior response entropy for d∗ becomes − log(1
2
). In contrast, the response

to q2,3 always induces− log(1
2
) posterior response entropy for d∗. Thus, unlike

MEDER, DEER selects the right query because the askable query set contains

a query providing similar information to that of d∗, unlike the query about all

decisions d∗U which MEDER aims to approximate.

5.5.1.2 EVOI-loss performance bound for DEER

Here I derive a performance guarantee for DEER in the form of an upper bound on the
EVOI-loss associated with the query it selects. More formally, the EVOI-loss of a query q
selected from askable query set Q is defined as maxq′∈QEV OI(q′;ψ)−EV OI(q;ψ). For
example, the algorithm that selects a query by exhaustively evaluating the EVOI of every
askable query always produces a query with zero EVOI-loss. Also, note that EVOI-loss is
always nonnegative.

Recall from Chapter 4 that a locally optimal k-response decision query is defined as a
k-response decision query with the property that (under ψ) the decision associated with the
jth response to the query is posterior Bayes-optimal conditioned on the jth response to the
query, and also recall that the set of locally optimal k-response decision queries is denoted

77

as D∗k, which is a subset of Dk, the set of all k-response decision queries.
Recall that DEER selects a query by replacing the Dk-EVOI-optimal k-response deci-

sion query d∗ with one contained in the askable query set whose response, in expectation,
will induce the lowest posterior entropy over the responses to d∗. In this section I show
that DEER is principled by deriving Theorem 5.5: an upper bound on how much worse
the query DEER selects can be than the EVOI-optimal askable query q∗, in terms of EVOI.
To begin, I establish Lemma 5.4, which shows that DEER’s projection step is principled
in that the EVOI lost in replacing a locally optimal k-response decision query with an
arbitrary k-response query can be upper bounded as a function of the expected posterior
response-entropy of d∗ upon receiving a response to q:

Lemma 5.4. For any d ∈ D∗k and q ∈ Q,

EV OI(d;ψ)− EV OI(q;ψ) ≤
(

1− e−Ej∼ψ;q

[
H(d|q=j)

])(
Vmax − Vmin

)
,

where Vmax = supω V
∗
ω and Vmin = infω,u V

u
ω .

Proof. Let Ud denote the set of decisions queried by d. Then,

EV OI(d;ψ)− EV OI(q;ψ) = Ei∼ψ;d

[
V ∗ψ|d=i

]
− Ej∼ψ;q

[
V ∗ψ|q=j

]
≤ Ei∼ψ;d

[
V ∗ψ|d=i

]
− Ej∼ψ;q

[
max
u∈Ud

V u
ψ|q=j

]
≤ Eω∼ψ

[
max
u∈Ud

V u
ω

]
− Ej∼ψ;q

[
max
u∈Ud

V u
ψ|q=j

]
(Since d ∈ D∗k)

= Ej∼ψ;q

[
Eω∼ψ|q=j

[
max
u∈Ud

V u
ω

]
−max

u∈Ud
V u
ψ|q=j

]
(Law of iterated expectations)

= Ej∼ψ;q

[
Eω∼ψ|q=j

[
max
u∈Ud

V u
ω − V

arg maxu∈Ud V
u
ψ|q=j

ω

]]
≤ Ej∼ψ;q

[(
1− e−H(d|q=j)

)(
Vmax − Vmin

)]
(Corollary 5.3 with Ud as U and ψ|q = j as ψ)

Note that when q = d, H(d|q = j) = 0 for all responses j; in this case the right-hand
side of the bound evaluates to 0, predicting correctly that there can be no loss in asking q in
place of d. Otherwise, the loss increases smoothly as a function of the expected posterior
entropy over d conditioned on the response to q.

Recall from Chapter 4 that the Dk-EVOI-optimal k-response decision query has the
highest possible EVOI out of all k-response queries (Theorem 4.2): combining this fact
with Lemma 5.4 yields an upper bound that is a function of how similar Q and D∗k are
in terms of the extent to which a query can be chosen from Q to minimize the expected

78

posterior entropy over the responses to an arbitrary locally optimal k-response decision
query. I will use H(Q,D∗k) to represent this measure of similarity between Q and D∗k,
formally defined as

H(Q,D∗k) = max
d∈D∗k

min
q∈Q

Ej∼ψ;q

[
H(d|q = j)

]
.

Then,

Theorem 5.5. (Upper bound on DEER EVOI-loss.) For any askable k-response query set

Q, if DEER selects q, then

max
q∗∈Q

EV OI(q∗;ψ)− EV OI(q;ψ) ≤
(

1− e−H(Q,D∗k)
)(
Vmax − Vmin

)
.

Proof.

max
q∗∈Q

EV OI(q∗;ψ)− EV OI(q;ψ) ≤ max
d∗∈D∗k

EV OI(d∗;ψ)− EV OI(q;ψ) (Theorem 4.2)

≤ max
d∗∈D∗k

{(
1− e−H(q∗|q)

)(
Vmax − Vmin

)}
(Lemma 5.4)

≤
(

1− e−H(Q,D∗k)
)(
Vmax − Vmin

)
.

Intuitively, Theorem 5.5 states that the richer the askable query set is in terms of the
extent to which, for any locally optimal k-response decision query d, it contains a similar
query to d, the better the guarantee associated with the EVOI loss of the query selected by
DEER. Thus, DEER can be expected to select nearly Q-EVOI-optimal queries when Q is
nearly as rich as the set of k-response decision queries Dk.

As a side note, a similar bound can be obtained for MEDER since MEDER’s objec-
tive corresponds to minimizing the agent’s expected posterior response-entropy for d∗U ,
which recall is the ideal query d∗U asking about all decisions (this bound is weaker than
DEER’s, however, since learning the response to d∗U is typically unrealistic as discussed in
Section 5.4). The bound is given below, and note that D∗|U | contains only d∗U .

Corollary 5.6. (Upper bound on MEDER EVOI-loss.) For any askable k-response query

set Q, if MEDER selects q, then

max
q∗∈Q

EV OI(q∗;ψ)− EV OI(q;ψ) ≤
(

1− e−H(D∗|U|,Q)
)(
Vmax − Vmin

)
.

79

EVOI-loss guarantee for greedy approximation of DEER. A similar guarantee applies
to DEER when its first step is approximated as follows. First, perform the greedy con-
struction procedure described in Section 4.5 to obtain a k-response decision query d. Then,
recursively apply the query improvement procedure discussed in Section 4.3 to d until con-
vergence to a locally optimal k-response decision query d′. The additional step of improv-
ing d to d′ is needed because in general, the greedy construction procedure is not guaranteed
to construct a locally optimal k-response decision query, and the response-entropy based
EVOI-loss upper bound provided by Lemma 5.4 on which Theorem 5.5 relies is valid only
when the decision query to be replaced is locally optimal. The complexity of each iteration
of query improvement has complexity O(|U |k +Bk) (Viappiani and Boutilier, 2010), and
while recursive query improvement is guaranteed to converge in a finite number of recur-
sions as discussed in Section 4.3, little else is known about its computational properties1.
An EVOI-loss bound for DEER when its first step is approximated in this way is provided
by Theorem 5.7 below (I note that the greedily approximated version of DEER tested in
Chapter 6 does not perform the step of recursive query improvement).

Theorem 5.7. Suppose the first step of DEER is approximated by the procedure described

above. Then for any askable k-response query set Q, if this approximate version of DEER

selects q, then

max
q∗∈Q

EV OI(q∗;ψ)− EV OI(q;ψ) ≤
(

1− e−H(Q,D∗k)
)(
Vmax − Vmin

)
+

(Vmax − Vmin)

e
.

Proof. First, as discussed in Section 4.5, the greedy construction procedure produces a
k-response decision query d such that

EV OI(d;ψ) ≥
(
1− (

k − 1

k
)k
)

max
d∗∈Dk

EV OI(d∗;ψ).

Combining the fact that
(
1− (k−1

k
)k
)
≥ (1− 1

e
) (Nemhauser et al., 1978) and the fact that

recursively applying the query improvement procedure discussed in Section 4.3 produces
query d′ with EVOI at least as high as the EVOI of d, we have that

EV OI(d′;ψ) ≥ (1− 1

e
) max
d∗∈Dk

EV OI(d∗;ψ). (5.3)

1Viappiani and Boutilier (2010) informally state that in practice it tends to converge quickly for various
heuristic ways to choose the initial k-response decision query. For the case considered here, the initial query
is greedily constructed and one might expect that recursive query improvement would tend to converge even
faster compared to the cases tested by Viappiani and Boutilier (2010).

80

Then,

max
q∗∈Q

EV OI(q∗;ψ) ≤ max
d∗∈D∗k

EV OI(d∗;ψ) (Theorem 4.2)

=⇒ (1− 1

e
)EV OI(q∗;ψ) ≤ (1− 1

e
) max
d∗∈D∗k

EV OI(d∗;ψ)

=⇒ (1− 1

e
)EV OI(q∗;ψ) ≤ EV OI(d′;ψ) (Equation 5.3)

=⇒ EV OI(q∗;ψ) ≤ EV OI(d′;ψ) +
1

e
EV OI(q∗;ψ)

=⇒ EV OI(q∗;ψ) ≤ EV OI(d′;ψ) +
(Vmax − Vmin)

e

=⇒ EV OI(q∗;ψ)− EV OI(q;ψ) ≤ EV OI(d′;ψ)− EV OI(q;ψ) +
(Vmax − Vmin)

e

=⇒ EV OI(q∗;ψ)− EV OI(q;ψ) ≤
(

1− e−H(Q,D∗k)
)(
Vmax − Vmin

)
+

(Vmax − Vmin)

e
.

Comparing Theorem 5.7 to Theorem 5.5, the maximum EVOI-loss is the same except
an additional penalty of at most (Vmax−Vmin)

e
(about 0.37% of Vmax − Vmin) is incurred by

the approximate version of DEER compared to the exact version of DEER.

5.5.2 Directed Mistake Volume Minimization (DMVM)

Next I introduce DMVM: an approximation for DEER. Then, I derive a performance guar-
antee for DMVM and show how it can be specified for an example uncertainty represen-
tation. While I do further discuss DMVM in Chapter 6 where I include it in some of the
experiments, my focus will be on DEER, so if desired the reader can skip this subsection
without risk of missing the core content of the remainder of the dissertation.

DEER’s second step, which requires performing an entropy computation for every pos-
sible query, can be approximated by minimizing a geometrical criterion that may be cheaper
to compute than expected posterior response-entropy for some settings. In particular, Di-

rected Mistake Volume Minimization (DMVM) approximates DEER’s second step as fol-
lows:

81

q = arg min
q∈Q

M(d∗|q), where

M(d∗|q) =

∫
Ω

k∑
j=1

Pr(d∗ = j|ω)δ(Jd∗(ω) 6= f(d∗|q = j))dω,

Jd∗(ω) = arg max
j

Pr(d∗ = j|ω), and

f(d∗|q = j) = arg max
i

Pr(d∗|q = j).

Instead of selecting the query that minimizes the expected posterior entropy over responses
to d∗, the second step of DMVM selects the query q that minimizes M(d∗|q): the Mistake

Volume associated with using q to match d∗.
To illustrate what mistake volume measures, consider the straightforward case where

queries are binary (k=2) and have deterministic responses when conditioned on ω, and
without loss of generality denote the possible responses to either query as “yes” and “no”
. Observing the response “yes” to q, then, will eliminate all ω that are not in the subset
Ωq,“yes” ⊆ Ω containing the ω where Pr(q = “yes”|ω) = 1.0, as the rest are inconsistent
with the observed response. Then, Ωq,“yes” is split into two subsets: one subset where the
response of d∗ would be “yes”, and one where the response would be “no”. The response
corresponding to the subset with higher probability mass than the other, then, would be the
best response prediction of d∗ after observing response “yes” to q, which would correspond
above to f(d∗; q = “yes”) above. Similarly, there is a best response prediction of d∗ when
the response for q is observed to be “no”, which would correspond to f(d∗; q = “no”).
Mistake volume, then, would correspond to the volume of the subset of Ω containing those
ω where, given ω, the resulting best response prediction of d∗ upon observing the response
to q does not match what the response to d∗ would be.

The computational efficiency of DMVM compared to DEER heavily depends on the
nature of the askable query set Q, the functional form governing decision values V u

ω , and
the geometric structure of the model space Ω. In particular, DMVM needs to compute
weighted volumes over Ω, which could be challenging or even infeasible to compute ex-
actly in high-dimensional spaces (for example, computing the volume of a convex polytope
defined by a set of linear inequalities is #P-hard (Dyer and Frieze, 1988)). While in general
DMVM may not afford computational advantages over DEER, in Chapter 6 I will study the
empirical performance of a particularly efficient algorithm whose query selection criterion
is motivated by that of DMVM’s, in a setting similar to the illustration described above.

82

5.5.2.1 DMVM EVOI-loss

Next I derive a bound similar to the one stated in Theorem 5.5 that is a function of DMVM’s
geometrical similarity criterion for queries instead of DEER’s entropy-based similarity cri-
terion. Applying Fano’s inequality (Fano and Wintringham, 1961), H(d∗|q) can be re-
placed with a quantity that is specific to a function or algorithm used to predict responses
to queries in D∗k given a response to a query in Q. Let f(d∗; q = j) be the function that
predicts the response to d∗ that has highest probability conditioned on the response to q,
i.e., f(d∗|q = j) = arg maxi Pr(d∗ = i|q = j;ψ). Then,

Lemma 5.8. For any d∗ ∈ D∗k and q ∈ Qk,

H(d∗|q) ≤ Ej∼ψ;q

[
Pr(d∗ 6= f(d∗; q = j)|q = j);ψ

]
log(k) + 1.

Proof. Let b(d∗; q) denote the Bernoulli distribution where a success corresponds to the
event that f(d∗; q = j) predicts the correct response to d∗, i.e., p = Pr(f(d∗; q = j) = d∗).
By Fano’s inequality,

H(d∗|q) ≤ H
(
b(d∗; q)

)
+ Ej∼ψ;q

[
Pr(d∗ 6= f(q, j)|q = j);ψ

]
log(k − 1),

which in turn implies that

H(d∗|q) ≤ Ej∼ψ;q

[
Pr(d∗ 6= f(d∗; q = j)|q = j);ψ

]
log(k) + 1.

Next I further factorH(d∗|q) so that it becomes a function of the mistake volume associated
with q and d∗, which leads directly to an EVOI-loss upper bound for DMVM. To do so, I
need to introduce some additional definitions:

• Let the Response Function Jd∗(ω) for d∗ ∈ D∗k and ω ∈ Ω be defined as

Jd∗(ω) = arg max
j

Pr(d∗ = j|ω).

Note that Jd∗(ω) is deterministic since decision query responses are deterministic
conditioned on ω. I will utilize this fact below.

83

• Let the Mistake Volume associated with using the response to q to predict the response
to d∗ be defined as

M(d∗, q) =

∫
Ω

k∑
j=1

δ(Jd∗(ω) 6= f(d∗; q = j))dω.

Note that mistake volume is the criterion that DMVM minimizes in order to project
d∗ into the askable query set.

• LetRz denote the set of all subsets of Ω such that for all R ∈ Rz,
∫
R
dr ≤ z.

• Finally, let pΩ(z;ψ) = supR∈Rz Pr(ω ∈ R;ψ).

Applying these definitions,

Ej∼q;ψ
[

Pr(d∗ 6= f(d∗; q = j)|q = j;ψ)
]

= Eω∼ψ
[
Ej∼q|ω

[
Pr(d∗ 6= f(d∗; q = j)|ω)

]]
=

∫
Ω

ψ(ω)
k∑
j=1

Pr(q = j|ω) Pr(Jd∗(ω) 6= f(d∗; q = j)|ω)

=

∫
Ω

ψ(ω)
k∑
j=1

δ(Jd∗(ω) 6= f(d∗; q = j))dω

≤ pΩ(M(d∗, q);ψ).

Combining this inequality with Lemma 5.8 yields

H(d∗|q) ≤ pΩ(M(d∗, q);ψ) log(k) + 1, (5.4)

which can be understood as an upper bound for H(d∗|q) as a function pΩ, which governs
how concentrated the mass of ψ is in a geometric sense (which is independent of q and d∗),
and as a function of the mistake volume associated with matching d∗ with q, which DMVM
minimizes to project d∗ into the askable query set.

Analagous to howH(Q,D∗k) measures similarity betweenQ andD∗k in terms of posterior-
response entropy, define M(Q,D∗k) as

M(Q,D∗k) = min
q∈Q

max
d∗∈D∗k

M(d∗, q),

which measures similarity between Q and D∗k in terms of mistake volume. Applying this
definition yields Theorem 5.9 below:

84

Theorem 5.9. (Upper bound on DMVM EVOI-loss.) For any askable k-response query set

Q, if DMVM selects q, then

max
q∗∈Q

EV OI(q∗;ψ)− EV OI(q;ψ) ≤
(

1− e− log(k)pΩ

(
M(Q,D∗k);ψ

)
−1
)(
Vmax − Vmin

)
.

Proof.

max
q∗∈Q

EV OI(q∗;ψ)− EV OI(q;ψ) ≤ max
d∗∈D∗k

EV OI(d∗;ψ)− EV OI(q;ψ) (Theorem 4.2)

≤ max
d∗∈D∗k

{(
1− e−H(d∗|q)

)(
Vmax − Vmin

)}
(Lemma 5.4)

≤ max
d∗∈D∗k

{(
1− e−pΩ(M(d∗,q);ψ) log(k)−1

)(
Vmax − Vmin

)}
(Eq. 5.4)

≤
(

1− e
−pΩ

(
M(Q,D∗k);ψ

)
log(k)−1

)(
Vmax − Vmin

)
.

The last inequality follows since DMVM selects q so as to minimize M(q, d∗) and pΩ is
monotonically nondecreasing.

EVOI-loss guarantee for greedy approximation of DMVM. Recall that when DEER’s
first step is approximated by greedy construction followed by recursive query improvement
until convergence, the EVOI-loss of the query selected can be no more than (Vmax−Vmin)

e

more than the EVOI-loss of the query selected by the exact version of DEER (Theorem 5.7).
When DMVM’s first step is approximated in the same manner, the same increase in maxi-
mum EVOI-loss applies, and the proof is analogous to that of Theorem 5.7.

Special Case: Gaussian Uncertainty. Here I show an example for how Theorem 5.9 can
be specified for a simple example uncertainty representation. In particular, let ψ take the
form of a Gaussian distribution with mean µ and variance σ2. Then,

pΩ

(
M(Q,D∗k)

)
= Pr

(
ω ∈ [µ− M(Q,D∗k)

2
, µ+

M(Q,D∗k)

2
]
)

= erf
(M(Q,D∗k)

2σ
√

2

)
, where (5.5)

erf(x) ,
2√
π

∫ x

0

e−t
2

dt.

The first equality above holds due to the combination of the facts that 1) the Gaussian pdf is

85

symmetric over its mean; and 2) the Gaussian pdf is monotonically decreasing in absolute
distance from the mean. The second equality holds because for any n,

Pr
(
ω ∈ [µ− nσ, µ+ nσ]

)
= erf

(n√
2

)
;

the n in this case is obtained by setting M(Q,D∗k)

2
= nσ and solving for n. Plugging this

result into Theorem 5.9 yields an EVOI-loss bound for DMVM that applies to the special
case of single-dimensional Gaussian uncertainty:

Lemma 5.10. Let the askable query set Q, and let ψ take the form of a Gaussian distribu-

tion with variance σ2. Then if DMVM selects q,

max
q∗∈Q

EV OI(q∗;ψ)− EV OI(q;ψ) ≤
(

1− e
− log(k)erf

(
M(Q,D∗k)

2σ
√

2

)
+1)(

Vmax − Vmin

)
.

Note that since erf(x) is monotonically increasing in x, Equation 5.5 implies that pΩ(M(Q,D∗k))

is monotonically increasing in M(Q,D∗k) while monotonically decreasing in σ. This im-
plies that for Gaussian distributions, the error bound stated in Lemma 5.10 prescribes lower
worst-case EVOI-loss as 1) D∗k and Q become more related in terms of maximum mistake
volume; and 2) the variance of the agent’s uncertainty increases. Intuitively, this can be
understood as follows: the more specific the region of Ω the agent needs to learn about,
the stronger the required connection between D∗k and Q (in terms of maximum mistake
volume) in order to achieve the same upper bound on EVOI loss.

5.6 Summary of Algorithms and Results

Below I list the algorithms studied in this chapter and the main results I developed for them.

• Exhaustive (baseline)

– Computational complexity: O(|Q|kB + |Q|kΠ∗)

– EVOI-loss: 0

• MEDER (baseline)

– Computational complexity: O
(
|Q|kB + |Q|kE

)
– EVOI-loss: ≤

(
1− e−H(D∗|U|,Q)

)(
Vmax − Vmin

)
• DEER (novel algorithm)

86

– Computational complexity: O(k(|U |kB + |Q|E))

– EVOI-loss: ≤
(

1− e−H(D∗k,Q)
)(
Vmax − Vmin

)
• DEER with first step approximated by greedy construction (novel algorithm)2

– Computational complexity: O(k(|U |Bk + k|Q|E))

– EVOI-loss: ≤
(

1− e−H(D∗k,Q)
)(
Vmax − Vmin

)
+ (Vmax−Vmin)

e

• DMVM (novel algorithm)

– Computational complexity: setting-dependent

– EVOI-loss: ≤
(

1− e− log(k)pΩ

(
M(Q,D∗k);ψ

)
−1
)(
Vmax − Vmin

)

5.7 Discussion

In this chapter I focused on developing principles for designing query selection algorithms
that apply to any setting where the agent can select a query from some specified set of k-
response queries. To this end, I introduced the Wishful Query Projection (WQP) approach
for query selection, which operates by first computing the ideal query to ask assuming it
can have only k possible responses, and then efficiently finding a similar askable query.
Intuitively, the main computational advantage of using WQP to select a query is that the
query set can be expanded without requiring additional optimal planning computations,
since all computations related to optimal planning are frontloaded into the first step. I then
presented two specific implementations of WQP, DEER and an approximation of DEER
called DMVM, and proved that both offer formal performance guarantees regarding the
maximum loss in EVOI of the queries they select compared to the best one in the askable
set, as a function of measures of how similar the askable query set is to the k-response
decision query set. I also briefly discussed the impact that greedily approximating the first
steps of DEER and DMVM has on their computational complexity, and also the impact
that it has on their performance guarantees.

I examine the strengths and weaknesses of WQP (mainly focusing on DEER) further
in Chapter 6, where I conduct an empirical study of its application (along with DMVM
and MEDER) in a particular askable query selection setting. Before moving on to that
more specific setting, however, it is useful to better understand how WQP approximates
askable query selection in the abstract. Intuitively, WQP makes two approximations to

2Results apply only if recursive query improvement until convergence is performed after greedy construc-
tion in the first step.

87

approximate EVOI-optimal query selection. The first approximation is that the askable
query set is assumed to contain a query similar to the best k-response decision query d∗

computed in the first step. When this is not true, there is no guarantee that approximating
d∗ will lead to a good query. For example, it could be the case that no askable query
similar to d∗ exists, but that an askable query similar to another k-response decision query
d exists, where although d and d∗ are dissimilar, d has nearly as high of value as d∗. The
second approximation is that a query with higher similarity to d∗ is assumed to lead to
higher EVOI, which may not be the case. For example, when using DEER, it may be that
a specific set of models needs to be eliminated in order for the decision corresponding to
one of the responses to d∗ to ever be valuable in expectation due to differences in relative
value magnitudes among models, where at the same time the posterior response-entropy
of d∗ is minimized by asking a query that eliminates a different set of models where the
response to d∗ is equally uncertain even though the differences in value between decisions
is unimpactful, resulting in the corresponding query having low EVOI. In the next chapter
I will empirically study how these two approximations can affect DEER’s performance.

88

CHAPTER 6

Empirical Study of Wishful Query Projection in
Askable k-Response Decision Query Selection

In Chapter 4, I showed that when the agent has the ability to ask any query from the set of
all k-response queries, the agent can consider only k-response decision queries at no EVOI
penalty (Theorem 4.2), which reduces the general k-response query selection problem to a
tractable one where efficient, provably approximate algorithms apply. Then, in Chapter 5, I
restricted the agent by assuming that the agent can ask only queries lying within an arbitrary
given subset of all k-response queries, where the agent cannot choose the subset. There,
I showed that the EVOI-Sufficiency and tractability of the k-response decision query set
can be leveraged to select from arbitrary k-response query sets in the form of two Wishful
Query Projection (WQP) algorithms – DEER and DMVM. While I showed that DEER and
DMVM have appealing computational properties while offering approximation guarantees,
I have yet to provide empirical analysis of when using them would be suitable compared to
alternative approaches.

In this chapter, I study the efficacy of WQP algorithms when applied to an extension
of the standard decision query selection setting where the algorithms of Viappiani and
Boutilier (2010) do not directly apply. Namely, I compare WQP algorithms to alternative
approaches, such as an algorithm that attempts to make use of structure specific to this
setting. To do so, I make liberal use of the algorithms, results, and terminology pertaining
to the work of Viappiani and Boutilier (2010) presented in Section 4.5 of Chapter 4.

6.1 Askable Decision Query Setting

Consider an extension of the k-response decision query setting where the decisions that can
be used to compose queries can be different than the decisions the agent can execute. Such
a case could arise when some of the agent’s possible decisions would be too complex to

89

communicate (such as policies in sequential decision making settings) and/or would require
undue cognitive burden on the part of the user to choose from.

For example, consider an agent whose task is to recommend a housing option to its
human user who is moving from Chicago to Boston. The relative suitability of options
in Boston may depend on factors whose range of possibilities the user is familiar with in
Chicago, but unfamiliar with in Boston, such as proximity to public transportation lines or
neighborhood crime rates, and so asking the user to choose among options in Boston may
be infeasible. However, the agent could indirectly learn about the user’s preferences over
options in Boston by asking about options in Chicago, whose values for the relevant factors
the user better understands.

Formally, consider a single-shot decision-making under uncertainty setting with deci-
sion set U and uncertainty ψ over model space of dimension d Ω ⊆ Rd, where each ω ∈ Ω

prescribes value to each u ∈ U such that

V u
ω , ωTφ(u), (6.1)

where φ : U 7→ Rc is a mapping from decisions to vectors of c features. I assume that
the agent can execute only decisions contained in a subset D ⊆ U , and that the agent can
ask only k-response decision queries composed of decisions contained in a subset A ⊆ U .
I refer to D as the doable decision set and the set of k-response queries composed of
decisions in D as the doable decision query set QD. Similarly, I refer to A as the askable

decision set A, and the set of k-response queries composed of decisions in A as the askable

decision query set QA.
This chapter is concerned with the askable decision query selection problem, formally

defined as
q∗A = arg max

q∈QA
EV OI(q;ψ).

Note that the EVOI for an arbitrary q can be written as

EV OI(q;ψ) + V ∗ψ = Ej∼q;ψ
[
V ∗ψ|q=j

]
(6.2)

= Ej∼q;ψ
[

max
u∈D

V u
ψ|q=j

]
. (6.3)

Thus, the EVOI of a decision query, whether it contains decisions from D, A, or both,
is a function of how much the query’s response will improve the agent’s ability to select
a decision from D, not A. In some cases, the same algorithms devised for the standard
decision query setting can be applied here at no penalty. Namely, if D ⊆ A, the following

90

lemma implies that this problem can be reduced to selecting a query from QD:

Lemma 6.1. Let D ⊆ A. For any ψ, if q∗ = arg maxq∈QD EV OI(q;ψ), then q∗ =

arg maxq∈QA EV OI(q;ψ).

Proof. Note that q∗ is the QD-EVOI-optimal query, and so by Theorem 4.2 no k-response
query can have higher EVOI (in particular, no query in QA can have higher EVOI than q∗).
Since D ⊆ A, q∗ ∈ QA, implying the statement of the lemma.

In other words, when the set of decisions contained by A subsumes that of D, the addi-
tional decisions the agent can ask about beyondD are superfluous, and so the setting can be
reduced to the standard decision query selection setting discussed in Section 4.5 of Chap-
ter 4. However, in the general case where it may be that D 6⊆ A, the fact that queries must
be constructed from a different decision set than the decision set the agent needs to learn
about comes into play, since the query produced by the aforementioned reduction cannot
always be asked. Throughout the chapter, I use the following example to discuss the merits
of various askable decision query selection algorithms:

Example 6.1. Suppose k = 2, and U = D = {u1, u2, u3, u4, u5, u6} is com-

prised of six possible housing options where the agent’s task is to recommend

the user her most preferred option. Further, suppose the housing options have

the following characteristics:

• u1 and u2 are both close to a subway stop, are too expensive to be feasi-

ble, but u1 is in a gated community while u2 is not.

• u3 and u4 are close and far (respectively) from a subway stop, are in the

user’s price range, and neither are in a gated community.

• u5 and u6 are both close to a subway stop, are in the user’s price range,

but u5 is in a gated community while u6 is not.

Assume the utility associated with a housing option is a function only of dis-

tance from a subway stop (close or far), whether or not it is in the user’s price

range, and whether or not it is located in a gated community. Further, assume

the extent of the agent’s knowledge of the user’s weights on these factors is

that the user strongly prefers that the option is in her price range, and that the

user has a strong unknown preference in whether or not the option is in a gated

community but only a minor preference in distance from a subway stop. That

91

is, the crucial information missing is whether or not the user would prefer to

live in a gated community.

Finally, suppose the agent can ask the user a query only about housing options

that are currently available to be shown, which only includes u1, u2, u3, and

u4 (i.e., A = {u1, u2, u3, u4} ⊆ {u1, u2, u3, u4, u5, u6}).

In this example, which would be the best query to ask? Even though u1 and u2

are too expensive to be feasible choices for recommendation, asking the user

which she prefers would help reveal her preferences with respect to whether or

not she would prefer to live in a gated community. The answer to this query

would then allow the agent to choose the better of the two best candidates, u5

and u6, and so the query asking about u1 and u2 would be QA-EVOI-optimal.

Of course, in general the QA-EVOI-optimal query can be computed by exhaustively

evaluating the EVOI of each query in QA; I refer to this algorithm as Askable Enumeration

Doable Evaluation (AskEnum-DoEval). However, exhaustively evaluating the EVOI of ev-
ery query inQA as AskEnum-DoEval does would become computationally intractable asA
and/orD grow in size – namely, AskEnum-DoEval requires

(|A|
k

)
EVOI computations, each

of which have complexity |D|kB. (Recall that B represents the complexity of performing
a single Bayes-update; for example, B could depend on the number of particles used in a
particle filtering scheme.) Thus, AskEnum-DoEval has complexity O(kAk|D|B). Next I
discuss algorithms for approximating askable decision query selection.

6.1.1 Wishful Query Projection Algorithms

The Wishful Query Projection (WQP) strategy developed in Chapter 5 and adopted by
DEER and DMVM can be used to approximate query selection in the askable decision
query selection setting. Recall that the general idea is to begin by computing the optimal
k-response decision query d∗, and then project d∗ into the askable query set Q according
to some similarity measure – DEER uses response-entropy-based projection, and DMVM
uses mistake-region based projection. Also, recall that the response-entropy of a query q
under uncertainty ψ, as defined in Chapter 5 and used frequently throughout this chapter,
is defined as

H(q;ψ) ,
k∑
j=1

Pr(q = j;ψ) log
(

Pr(q = j;ψ)
)
.

92

Note that DEER and DMVM both solve Example 6.1 in that they ask the EVOI-optimal
askable query: the first step selects the query d∗ asking about u5 and u6, and in their second
step both algorithms select the query asking about u1 and u2 since it both reduces the
response entropy of d∗ to zero and has the same mistake region as d∗.

In terms of computation, the first step shared by DEER and DMVM has complexity
O(k|D|kB) when solved exactly, or complexityO(k2|D|B) when approximated greedily1.
DEER’s second step has complexityO(k|A|kB), since it exhaustively searches the askable
decision query set for the query inducing the least expected posterior entropy over the
responses to d∗. Thus, DEER and DEER-Greedy have complexity O(k|D|kB + k|A|kB)

and O(k2|D|+ |A|k) in the askable decision query setting, respectively.
DMVM, on the other hand, can be efficiently implemented in the askable decision

query selection setting for the case where queries are binary (k=2) and where decision-
values have a linear functional form (assumed in Equation 6.1). Namely, the mistake re-
gion volume associated with replacing some binary-response doable decision query with
a binary-response askable decision query can be replaced with the angle formed between
the two corresponding response boundary hyperplanes without changing the ordering over
queries2. Hence, under these assumptions the projection step of DMVM can be imple-
mented by selecting a query q̂ from the askable decision query set so as to minimize the
angle between q̂’s response boundary hyperplane and d∗’s response boundary hyperplane:

q̂ = arg max
q∈QA

{
cos−1

[(φ(aq̂1)− φ(aq̂2)
)
·
(
φ(ud

∗
1)− φ(ud

∗
2)
)

||φ(aq̂1)− φ(aq̂2)|| · ||φ(ud
∗

1)− φ(ud
∗

2)||

]}
.

Note that each angle in the maximization above can be computed with complexity O(c)

(recall that c is the dimensionality of the decision-feature space), so this implementation of
DMVM has complexityO(c|A|k). I use this implementation of DMVM in the experiments
discussed in Section 6.2; hence, DMVM and DMVM-Greedy can be implemented with
complexityO(|D|2B+c|A|2) andO(|D|B+c|A|2), respectively, when k = 2 and decision-
values are linear.

I study the empirical performance DEER and DMVM (and their greedy versions) in the
subsequent empirical analysis, where I compare the performance of various askable query
selection algorithms in terms of the EVOI of the queries they select and the computation

1The greedy versions of DEER and DMVM studied in this chapter do not perform the recursive query
improvement step discussed in Section 5.5.1.2, so none of the EVOI-loss bounds derived in Chapter 5 apply
to the greedy versions of DEER and DMVM in this chapter

2Assume that Ω is a d-dimensional hypersphere centered at the origin, so that Ω is trivially bounded and
symmetric among its dimensions. In other cases, the described algorithm may only be an approximation of
DMVM.

93

they consume in various scenarios. First, however, I discuss another way to approximate
askable decision query selection.

6.1.2 Askable Evaluation

One way to approximate AskEnum-DoEval would be to treat A as the agent’s decision
set in addition to the set from which queries can be constructed – this would replace each
EVOI computation (each of which involves solving optimal planning problems within D)
with an approximated EVOI computation (each of which involves solving optimal planning
problems only within A). More formally, consider the following approximation to the
askable decision query selection problem:

arg max
q∈QA

EV OI(q;ψ) = arg max
q∈QA

{
Ej∼q;ψ

[
max
u∈D

V u
ψ|q=j

]}
≈ arg max

q∈QA

{
Ej∼q;ψ

[
max
a∈A

V a
ψ|q=j

]}
.

This approximation completely ignores the doable decision set, and is equivalent to
treating the problem as the standard decision query selection setting with U = A.

Solving this approximated version of the problem can be computationally easier than
the original in two ways: first, exhaustively solving it has complexity scaling only with the
size of A – i.e.,O(k|A|kB), so it does not depend on the complexity of the agent’s decision
problem. However, A may still be large enough that enumerating QA would be intractable.

The second computational advantage of this approximation is that exhaustive search of
QA can itself be approximated by greedy construction of the decision set in exactly the same
way as in the standard decision query setting, in that doing so offers the same approximation
guarantee as in the standard decision query setting (see Section 4.5 of Chapter 4), with the
important caveat that the guarantee only applies to the approximated EVOI measure. The
complexity of the greedy version, then, is O(k2|A|B).

I refer to the algorithm that exhaustively searches QA but approximates EVOI this way
as Askable Enumeration Askable Evaluation (AskEnum-AskEval), and I refer to its greedy
approximation as Askable Greedy Construction Askable Evaluation (AskGreedy-AskEval).
In the subsequent analysis and empirical comparisons I consider only the exact version of
AskEnum-AskEval.

How much EVOI can be lost by ignoring the doable decision set when selecting a
query, as AskEnum-AskEval does? Consider Example 6.1: using AskEnum-AskEval to

94

select a query would result in choosing to ask about u3 and u4, since this query would at
least allow the agent to choose the one with the more preferred subway stop proximity,
as opposed to asking about u1 and u2, which wouldn’t help the agent decide between any
of the decisions in A. In fact, the query selected by AskEnum-AskEval would have zero
EVOI if u5 and u6 were better choices than u3 or u4 even if the agent were to have known
the user’s preferences regarding subway stop proximity, such as a scenario where the user’s
prior gated community preference is biased towards yes.

Here, the reason AskEnum-AskEval is misled is that the most valuable features to learn
about for selecting from A are not useful for selecting from D, and vice-versa. In general,
the more dissimilar the values of the decisions contained by A and D become, the more
potential there is for them to be uninformative about each other. Next I upper bound the
extent to which dissimilar values between the askable and doable decision sets can hurt
AskEnum-AskEval’s EVOI performance.

6.1.3 EVOI-loss upper bound for AskEnum-AskEval

Here I show that the EVOI lost by AskEnum-AskEval can be upper bounded as a function
of the extent to which A and D are dissimilar in terms of decision values – i.e., the stronger
the similarity between A and D, the smaller the maximum EVOI loss in using AskEnum-
AskEval. In particular, consider the following measure of relatedness, which considers the
maximum value that could be lost (or gained) when some decision u ∈ U is replaced by
the decision a ∈ A such that a minimizes the worst-case value difference between u and a:

∆(D,A) , max
u∈D

min
a∈A

max
ω∈Ω:Pr(ω)>0

|V u
ω − V a

ω |.

The following theorem states that the query produced by AskEnum-AskEval can have
EVOI no worse than 2∆(D,A) less than the EVOI of query produced by AskEnum-DoEval
(which, recall, is QA-EVOI-optimal):

Theorem 6.2. Let q̂ be the query computed by AskEnum-AskEval, let q∗ be the query com-

puted by AskEnum-DoEval. Then,

EV OI(q∗;ψ)− EV OI(q̂;ψ) ≤ 2∆(D,A).

95

Proof.

EV OI(q∗;ψ)− EV OI(q̂;ψ) =
k∑
j=1

Pr(q∗ = j)V ∗ψ|q∗=j −
k∑
j=1

Pr(q̂ = j)V ∗ψ|q̂=j

≤
k∑
j=1

Pr(q∗ = j)V ∗ψ|q∗=j −
k∑
j=1

Pr(q̂ = j) max
aj∈A

V
aj
ψ|q̂=j + ∆(D,A) (See below)

≤
k∑
j=1

Pr(q∗ = j)V ∗ψ|q∗=j −
k∑
j=1

Pr(q∗ = j) max
aj∈A

V
aj
ψ|q∗=j + ∆(D,A) (See below)

=
k∑
j=1

Pr(q∗ = j)
(

max
uj∈D

V
uj
ψ|q∗=j −max

aj∈A
V
aj
ψ|q∗=j

)
+ ∆(D,A)

≤
k∑
j=1

Pr(q∗ = j)∆(D,A) + ∆(D,A)

= 2∆(D,A).

The first inequality can be understood as follows. Let u∗j , arg maxuj∈D V
uj
ψ|q̂=j , and

similarly let a∗j , arg maxaj∈A V
aj
ψ|q̂=j . Also, note that V ∗ψ|q̂=j = V

u∗j
ψ|q̂=j . The inequality

holds because for each j, V
a∗j
ψ|q̂=j can be higher than V

u∗j
ψ|q̂=j by no more than ∆(D,A) since

for any a ∈ A there exists some u ∈ D such that for all ω ∈ Ω, |V a
ω − V u

ω | ≤ ∆(D,A).
The second inequality holds because AskEnum-AskEval chooses q̂ so as to maximize

k∑
j=1

Pr(q̂ = j) max
aj∈A

V
aj
ψ|q̂=j,

which is equivalent to EVOI-optimal decision query selection for the decision problem
with decision set A, and so by Theorem 4.2 replacing q̂ with any other k-response query
(namely, q∗) can only lower the above quantity.

I have shown that AskEnum-AskEval is guaranteed to select a query with at most
2∆(D,A) EVOI loss. Indeed, note that in Example 6.1 above, ∆(D,A) is at least as
large as the extent to which u5 and u6 dominate all decisions in A. More generally, unless
selecting a decision from A is nearly the same decision problem as selecting a decision
from D for all ω (for example, when ∆(D,A) is small), it is possible that valuable askable
decision queries with respect to selecting from A could have very different (even orthog-
onal) effects on the agent’s uncertainty as compared to valuable askable decision queries

96

with respect to selecting from D.

6.2 Experiments

Next I turn to an empirical evaluation of the askable decision query selection algorithms
discussed thus far. Recall that, in the context of this dissertation, the primary purpose
of the askable decision query setting is as an experimental testing ground to study the
effectiveness of the Wishful Query Projection (WQP) approach developed in Chapter 5.
As such, the experiments are specifically designed to expose key factors in query selection
problems that practitioners should consider when determining the viability of using WQP
for their query selection problem. To ground the analysis, I use DEER as the representative
for WQP, since DMVM and DEER-Greedy are derived as approximations for DEER, and I
leave a study focused on the unique strengths and weaknesses of DEER-Greedy, DMVM,
and DMVM-Greedy for future work (however, I still include these approximate algorithms
in the results presented after the main experiment descriptions to provide evidence that they
can be effective approximations in some situations). The experiments provide evidence for
the following two claims:

• (Inconsistent projection quality can hurt DEER.) The query selected by DEER can
become worse relative to that selected by AskEnum-DoEval, MEDER, and baselines
(AskEnum-AskEval, Random) as the closeness of the best match in the askable query
set to a doable decision query d more strongly depends on the particular d.

• (Weak askable query sets can hurt DEER.) The query selected by DEER can be-
come worse relative to that selected by AskEnum-DoEval, MEDER, and baselines
(AskEnum-AskEval, Random) as the extent to which the EVOI of d∗ overestimates
the EVOI of q∗ increases.

The first and second claims above relate to the first and second key approximations
made by DEER, respectively, which were discussed in Section 5.7: DEER’s first step
chooses d∗ without considering the extent to which the askable query set contains a good
match compared to other decision queries, and DEER’s second step chooses a query to
match d∗ solely on the basis of response-entropy reduction without considering its effect
on the agent’s policy or value. (Note that these are not assured to comprise an exhaustive
characterization of DEER’s weaknesses, however.) After I present the main experiment
descriptions, I provide some basic results showing that DEER’s approximations DMVM,
DEER-Greedy, and DMVM-Greedy can be effective in some scenarios while requiring
significantly less computation.

97

6.2.1 Setup

Next I describe the empirical problem space considered in the experiments and the method-
ology I use to compare the algorithms. In the following experiments, the agent’s task is to
recommend a housing option in Boston to a user looking for housing. I use the Boston
Housing dataset to obtain the list of available houses, which contains a list of 506 vectors
of 14 real-numbered statistics concerning a suburb (here, for the sake of illustration I am
calling each suburb a housing option). Before the agent recommends a housing option to
its user, it can query its user to ask which of two housing options of the agent’s choosing
the user would prefer – i.e., the agent can ask its user a binary-response decision query.
However, the set of housing options the agent can ask its user about may not match the
housing options it can recommend to its user – i.e., the agent faces an askable decision
query selection problem.

The prior distribution over decision-value feature weights is defined by independent
gaussians for each feature with σ = 2.0 and µ = 1.0, and the prior distribution is ap-
proximated throughout the experiments as a uniform distribution over 300 particles that
are independently drawn from the prior at each trial (but shared between each algorithm
on each trial so as to reduce variance). Note that particle resampling is not necessary here
since the agent can ask only one query, i.e., the particle weights do not need to undergo
multiple updates, so particle depletion is not a concern. All results are averaged over 300

trials, and all errorbars shown in the figures are confidence intervals with p-value of 0.05.

6.2.2 Empirical study of DEER for Askable Decision Query Selection

I begin with a detailed comparison of the performance of DEER compared to MEDER,
AskEnum-AskEval, Random, and AskEnum-DoEval purely in terms of the EVOI of the
queries selected; in Section 6.2.3 I show some basic results regarding the performance (in
terms of EVOI) of approximating DEER with DMVM, DEER-Greedy, or DMVM-Greedy,
and in Section 6.2.4 I compare the computational requirements of all of the aforementioned
algorithms.

Throughout the following experiments I consider various ways to construct the askable
and doable decision sets (A and D) from the full list contained in the dataset. Using the
decision sets as the variable between experiments in this way allows control of several key
factors that play a role in the relative performance of the algorithms, including the follow-
ing two factors which are the subject of the two claims stated above:

F1: (Consistency of projection quality). The extent to which the closeness of the best

98

match (in terms of expected posterior response-entropy) in the askable query set to a doable
decision query d more strongly depends on the particular d; and

F2: (Richness of askable decision query set relative to doable decision query set.)
The extent to which the EVOI of q∗ is close to the EVOI of d∗.

6.2.2.1 Experiment 6.1: Uniformly Random Decision Sets

In the first experiment, the askable and doable decisions are sampled independently and
uniformly from the full decision set on each trial. Hence, the average similarity between
the two sets is purely a function of diversity in the decision set and any inherent correlations
in decision features. As such, this experiment is exploratory in nature, and compares the
algorithms without introducing any additional biases that might benefit one algorithm over
another (e.g., without explicitly designing the askable query set to be impoverished or rich
compared to the doable query set) in order to formulate initial hypotheses, which I then use
as the basis for designing subsequent experiments. This will also serve to show that DEER
can perform well in settings that are not specifically designed to have particularly aligned
askable and doable decision sets, and that DEER can perform better than the worst-case
bound derived in Chapter 5 (Theorem 5.5) would predict.

Figure 6.1a shows the average EVOI of the query selected by each method when the
size ofD is held fixed at 15, as a function of the size ofA. As one would expect, the average
EVOI of the query selected by each method tends to increase with the size of A (except
for Random, which uses no form of discrimination to select a query, and DoEnum-DoEval,
which considers doable decision queries instead of askable decision queries). Note that
DEER achieves the best performance aside from AskEnum-DoEval, which asks the best
askable query q∗.

What makes this a particularly favorable scenario for DEER? One potential explana-
tion would be that the askable query set nearly always contains a nearly identical query
to d∗. However, if that were the case both DEER and AskEnum-DoEval would achieve
nearly the EVOI that DoEnumDoEval does, which asks d∗ directly – but the EVOI of d∗ is
0.9 on average (not shown in Figure 6.1a for visual clarity), which is significantly higher.
Furthermore, consider Figure 6.1b, which shows the average posterior entropy over the re-
sponses to d∗ after each algorithm asks their query. While the posterior entropy over the
response probabilities for d∗ can be lowered significantly, the match is far from perfect on
average. This suggests that in this scenario, imperfect projection of d∗ into the askable
decision query set is forgiving in the sense that higher similarity in information between

99

an askable decision query q and d∗ reliably leads to higher EVOI gains, as opposed to the
other extreme where all but near-exact matches could have negligible EVOI. That is, the
empirical EVOI-loss in replacing d∗ with the query selected by DEER is much lower in this
scenario than that prescribed by the upper bound on EVOI-loss stated in Theorem 5.5.

In addition, even though AskEnum-AskEval asked queries with higher EVOI than ran-
dom on average, it acheived significantly lower EVOI than AskEnum-DoEval. It seems,
then, that in this scenario queries must be evaluated on the basis of how they improve the
agent’s selection of decisions from D as opposed to A, lest significant potential EVOI be
lost. Note that according to Theorem 6.2, these results imply that ∆(A,D) is high for
this scenario, which is to be expected since A and D are independently sampled as small
subsets from the full decision set.

Finally, notice that MEDER performs nearly as well as DEER at first but then begins
to drop off as the askable decision set grows.3 Why is this? Comparing Figure 6.1a and
Figure 6.1b, observe that MEDER’s drop off in EVOI as the askable decision set grows
larger is accompanied by a growing gap between MEDER’s d∗ response entropy reduction
and that of DEER’s. Hence, as the askable query set contains queries more similar to
d∗, the EVOI of the query selected by DEER approaches the highest possible EVOI for
a binary-response query 4.2, and so directing queries at reducing the response entropy of
d∗ begins to yield noticeably higher EVOI than the less informed strategy of reducing the
entropy over all doable decisions. The next experiment tests this explanation by observing
the effect of forcing the askable query set to contain queries that are similar to d∗ more
often.

6.2.2.2 Experiment 6.2: Askable Decisions as Doable Decision Subsets

The second experiment considers the same setting as the first experiment, except on each
trial the askable decision set is sampled from the doable decision set used for that trial
so that A ⊆ D. Here the performance of AskEnum-AskEval should improve relative to
Experiment 6.1, since askable decision queries will directly improve the agent’s ability to
select from at least a subset of D. In addition, the askable decision query set will contain
a better match to d∗ on average, since one or more of the exact decisions composing d∗

will be present in the askable set more often than in Experiment 6.1. The explanation for

3While Figure 6.1a lacks the statistical significance needed to support this claim, Figure 6.12a (located
in the appendix of this chapter) plots EVOI-loss instead of EVOI, and does verify the claim with statistical
significance. For the experiments in this chapter, EVOI-loss measurements tend to have less variance than
EVOI measurements, since the magnitudes of the former vary less than the magnitudes of the latter among
trials, but I default to reporting EVOI results instead of EVOI-loss results, as EVOI tends to offer better visual
clarity for the experiments presented in this chapter.

100

a)

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 4 6 8 10 12 14 16

E
V

O
I o

f s
el

ec
te

d
qu

er
y

Size of askable decision set

Random Decision Subsets Experiment: Size of Askable Decision Set vs EVOI

"AskEnum-DoEval"
"DEER"

"MEDER"
"AskEnum-AskEval"

"Random"

b)

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 2 4 6 8 10 12 14 16

E
xp

ec
te

d
po

st
er

io
r

d*
 r

es
po

ns
e

en
tr

op
y

Size of askable decision set

Random Decision Sets Experiment: Size of Askable Decision Set vs d* Entropy

"AskEnum-DoEval"
"MEDER"

"AskEnum-AskEval"
"DEER"

"Random"

Figure 6.1: Results for Experiment 6.1– a) Average EVOI of query selected and b) average
posterior response entropy of d∗ induced by query selected, as a function of the size of the
askable decision set; the size of the doable decision set is fixed at 15. For each trial, both
the askable and doable decisions sets are uniformly sampled from the complete Boston
housing decision set.

101

the gap that forms between DEER and MEDER in Figure 6.1a given above would imply,
then, that in this scenario the gap should widen since DEER can more effectively project
d∗, which brings the projected query’s EVOI closer to the highest possible EVOI for q∗

(Theorem 5.5), unlike MEDER which asks the query that maximally reduces decision-
entropy as a whole with no consideration as to how it might improve the agent’s value or
decision.

The results are shown in Figure 6.2a and b, which as before show EVOI of query se-
lected and expected posterior d∗ response-entropy as a function of the size of the askable
decision set. Indeed, the EVOI gap between DEER and MEDER is widened in Figure 6.2a
as compared to Figure 6.1a,4 and Figure 6.2b shows an increase in projection quality com-
pared to that shown in Figure 6.1b, which together corroborate the explanation above for
MEDER’s degraded performance relative to DEER as a function of the askable decision set
size. Note that DEER’s advantage in this scenario over MEDER’s pure decision entropy re-
duction approach is evidence that the idea at the heart of Chapter 5 – approximating EVOI
maximization by querying to reduce the agent’s uncertainty about factors it wishes it could
know – can at least sometimes display a meaningful advantage over global measures of
uncertainty reduction.

Figure 6.2a also shows that AskEnum-AskEval’s performance dramatically improves to
approximately match DEER’s performance, as compared to the previous experiment. This
means that this scenario is a particularly easy askable decision query selection scenario in
that treating it like the standard decision query selection setting where A = D does not
incur much loss, which benefits AskEnum-AskEval and, indirectly, DEER as well5.

In the next two experiments I study DEER’s performance relative to the other algo-
rithms when the scenario is gamed to be hard for DEER by tuning factors F1 and F2.

6.2.2.3 Experiment 6.3: Doable Decisions with High Risk and Varied Askability

Under what conditions can DEER be misled into selecting a poor query relative to q∗, the
query selected by AskEnum-DoEval? Recall that DEER’s first main weakness is that it
does not consider what queries can actually be asked when it constructs d∗ – which leaves
open the possibility that DEER may select a poor query when the askable query set does
not contain any query giving much information about d∗. However, this alone does not

4Measuring EVOI-loss instead of EVOI (shown by Figure 6.12a for Experiment 6.1 and Figure 6.12b for
Experiment 6.2) allows this claim to be made with statistical significance; see previous footnote for additional
details.

5In fact, Theorem 6.4 proven in the appendix of this chapter shows that an algorithm related to DEER (a
third WQP algorithm) has EVOI-loss bounded by ∆(A,D), relating its theoretically favorable conditions to
those of AskEnum-AskEval.

102

a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 2 4 6 8 10 12 14 16

E
V

O
I o

f s
el

ec
te

d
qu

er
y

Size of askable decision set

Random Decision Subsets Experiment: Size of Askable Decision Set vs EVOI

"AskEnum-DoEval"
"DEER"

"MEDER"
"AskEnum-AskEval"

"Random"

b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 2 4 6 8 10 12 14 16

E
xp

ec
te

d
po

st
er

io
r

d*
 r

es
po

ns
e

en
tr

op
y

Size of askable decision set

Random Decision Subsets Exp: Size of Askable Decision Set vs d* Entropy

"AskEnum-DoEval"
"MEDER"

"AskEnum-AskEval"
"DEER"

"Random"

Figure 6.2: Results for Experiment 6.2 – a) Average EVOI of query selected and b) average
posterior response entropy of d∗ induced by query selected, as a function of the size of the
askable decision set; the size of the doable decision set is fixed at 15. For each trial the
doable decision set is uniformly sampled from the complete Boston housing decision set,
and the askable decision set is then sampled from the doable decision set.

103

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

E
V

O
I o

f s
el

ec
te

d
qu

er
y

Scaling of chimerical features

Control for Risky Decisions Experiment: d* Askability vs EVOI

"AskEnum-DoEval"
"DEER"

"AskEnum-AskEval"
"MEDER"
"Random"

Figure 6.3: Control for Experiment 6.3 – Average EVOI of query selected as a function of
ρ, the scaling factor used for the chimerical features (the last two features) of each decision
in the askable deicsion set.

imply that DEER will select a poor query relative to q∗ since it could be that no query is
particularly informative about selecting from the doable decision set. Hence, for DEER
to select a poor query when a good one exists, there must be a good query that is less
informative about d∗ than the one DEER selects. One way such a situation is possible is
when F1– consistency of projection quality– is low, such as when the second-best doable
decision query can be closely matched, but d∗ cannot.

I construct a scenario with low F1 by augmenting the scenario studied in Experiment
6.1 as follows. First, each time an askable decision set is sampled, the last two features of
each decision in the set are multiplied by a scaling factor ρ, where 0 ≤ ρ ≤ 1. The smaller
ρ is, then, the less can be learned about the weights for these last two features, which I refer
to as the chimerical features and the chimerical weights. Since which in a pair of doable
decisions has higher value could conceivably depend heavily on the chimerical features for
some doable decision pairs, this change alone does lower F1.

Figure 6.3, which shows the EVOI of the query selected by each algorithm as a function
of ρ when the size of the askable and doable decision sets are both fixed to 15, shows that
the impact of this change alone is minimal. Intuitively, this is because the relative value
of most pairs of doable decisions depends on much more than just the chimerical features,
so rarely will this change alone impact the extent to which the askable decision query set

104

a)

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 0 0.05 0.1 0.15 0.2 0.25 0.3

E
V

O
I o

f s
el

ec
te

d
qu

er
y

Scaling of chimerical features

Risky Decisions Experiment: d* Askability vs EVOI

"DoEnum-DoEval"
"AskEnum-DoEval"

"MEDER"
"AskEnum-AskEval"

"DEER"
"Random"

b)

 0.655

 0.66

 0.665

 0.67

 0.675

 0.68

 0.685

 0.69

 0.695

 0 0.05 0.1 0.15 0.2 0.25 0.3

E
xp

ec
te

d
po

st
er

io
r

d*
 r

es
po

ns
e

en
tr

op
y

Scaling of chimerical features

Risky Decisions: d* Askability vs d* Posterior Entropy

"AskEnum-DoEval"
"MEDER"

"AskEnum-AskEval"
"DEER"

"Random"

Figure 6.4: Experiment 6.3 – a) Average EVOI of query selected and b) average posterior
response entropy of d∗ induced by query selected, as a function of ρ: the scaling factor used
for the chimerical features (the last two features) of each decision in the askable deicsion
set. The doable decision set is obtained by starting with two specially constructed “risky
decisions” and then uniformly sampling additional decisions from the complete Boston
housing decision set, and the askable decision set is obtained by uniformly sampling from
the complete Boston housing dataset and then scaling the chimerical features (the last two
features of each decision) by ρ.

105

contains a query to match d∗. However, if D were to be constructed so that the better of
the two decisions composing d∗ depends only on the chimerical weights, DEER should
be misled into the futile endeavour of selecting an askable decision query on the basis of
learning about the chimerical weights, which should in turn result in poor performance.

To accomplish this, D is also modified so that it always contains two specially con-
structed decisions that serve as bait for DEER, which I refer to as the risky decisions,
in addition to ones that are randomly sampled as before. The features for the two risky
decisions are all 0.0 except the chimerical features, which are −20, 10 and 10,−20 respec-
tively. These decisions are risky in that they have negative value in expectation, but high
value compared to other decisions in D when the weight corresponding to the negative
chimerical feature is known to be low (near-zero or negative) and the weight correspond-
ing to the positive chimerical feature is known to be high. As such, the agent would need
to significantly improve its knowledge about the chimerical weights in order to make one
of these risky decisions Bayes-optimal – and d∗, which always asks about the two risky
decisions, does just that, hence setting an effective DEER trap.

Figure 6.4 shows the EVOI of the query selected by each algorithm as a function of ρ
when the sizes of the doable and askable decision sets are both fixed to 15 (note that EVOI
is given in logscale here). Comparing these results with those shown in Figure 6.3, the
presence of the risky decisions causes ρ to have a dramatic effect on the performance of all
algorithms except for AskEnum-AskEval, which is to be expected since AskEnum-AskEval
ignores D. In particular, reading the graph right-to-left, for ρ < 0.3 DEER performs worse
than MEDER, and for ρ < 0.2 DEER performs worse than AskEnum-AskEval until it
degrades to the performance of Random for ρ = 0.

As mentioned above, augmenting A by scaling down the chimerical features lowers F1
in the sense that even though no askable decision queries exist that are helpful as a replace-
ment for d∗, other askable decision queries exist that are helpful as a replacement for other,
albeit strictly less valuable (Theorem 4.2), doable decision queries. The key conclusion of
this experiment is that the lower F1 becomes, the more potential there is for DEER to miss
the forest for the trees, and so more generally practitioners should consider DEER most
applicable when the askable query set is balanced in its ability to match decision queries,
all else being equal.

6.2.2.4 Experiment 6.4: Doable Decisions with Varied Risk and Limited Askability

Note that in addition to F1, F2 is also much lower in the scenario just considered compared
to previous scenarios, as evidenced by the much higher magnitude of DoEnum-DoEval’s
EVOI relative to AskEnum-DoEval’s EVOI compared to previous scenarios (recall that

106

the EVOI results given in Figure 6.4a are in log-scale). Along with F1, F2 also plays an
important role in DEER’s performance relative to the other algorithms, which I study in the
next experiment through further analysis of ρ’s effect on DEER’s query selection tendencies
in the risky decision scenario studied in this experiment, and by further augmenting the
scenario to magnify or shrink the riskiness of the risky decisions.

Recall that in the previous experiment I considered a scenario constructed to push on
DEER’s first weakness: DEER’s first step selects d∗ as the query to match without con-
sidering what queries the askable query set contains. Here I focus on exemplifying and
pushing on DEER’s second weakness: namely, DEER’s second step matches d∗ on the ba-
sis of expected posterior response-entropy reduction, which does not consider the resulting
impact on the agent’s value or policy. As discussed in Chapter 5, DEER’s second step
is in fact equivalent to using MEDER for query selection when the (doable) decision set
contains only the decisions d∗ asks about, so DEER shares some of MEDER’s weaknesses,
which become particularly relevant when matching d∗ is an unrealistic goal.

Consider Figure 6.5a, which shows, in the scenario considered in Experiment 6.3, the
frequency at which DEER and AskEnum-DoEval would adopt one of the risky decisions
asked about by d∗ in response to the query they ask, as a function of ρ. As expected, for
small values of ρ (say, < 0.1) neither DEER nor AskEnum-DoEval ask a query whose
response would cause one of the risky decisions asked about by d∗ to be Bayes-optimal for
the corresonding posterior very often, since for small values of ρ the agent cannot learn
enough about the chimerical features to offset either risky decision’s negative prior value.
As such, for small values of ρ, AskEnum-DoEval asks queries that allow it to select from
the other decisions, resulting in its higher EVOI in Figure 6.4a compared to DEER, which
attempts to learn about d∗ even though doing so is futile. However, somewhat surprisingly,
as ρ grows larger (say, starting at 0.2), AskEnum-DoEval begins asking queries that cause
one of the risky decisions to be posterior Bayes-optimal about a third of the time, in ex-
pectation over both responses to the query asked, compared to about a fifth of the time
for DEER’s queries, even though unlike AskEnum-DoEval, DEER is explicitly aiming to
reduce the uncertainty over d∗.

To investigate the cause of this phenomenon, I examined the specific queries being
asked by AskEnum-DoEval and DEER for larger values of ρ, and found that DEER typ-
ically asked queries resulting in about the same posterior d∗ response-entropy reduction
for each possible response to its queries – which often resulted in neither response giv-
ing enough information to cause one of the risky decisions to be Bayes-optimal. In con-
trast, AskEnum-DoEval typically asked queries that, for one of the responses, signifi-
cantly decreased the response-entropy of d∗ to the extent that one of the risky decisions

107

would be Bayes-optimal in the corresponding posterior, whereas for the other response,
left the response-entropy of d∗ relatively unchanged. In this sense, AskEnum-DoEval
asked queries helping it choose between one of the non-risky decisions and one of the
risky decisions, which yielded more useful information than DEER’s queries, which were
aimed at allowing the agent to choose one or the other of the risky decisions, even though
most of the time there was not an askable query that yielded enough information about
the chimerical features to allow it to do so. Indeed, Figure 6.4b shows that the average
prior response-entropy of AskEnum-DoEval’s queries tended to be much higher than that
of DEER’s queries – i.e., AskEnum-DoEval’s queries were imbalanced in that one response
was much more likely than the other, analogous to asking a question about whether or not
an unlikely but influential (if true) statement is true of the world. DEER, on the other hand,
selected more even-handed queries that yielded moderate d∗ response-entropy reduction
for both responses whose weighted sum exceeded that of AskEnum-AskEval’s query, even
though their responses rarely caused one or both of the risky decisions to be Bayes-optimal
(extreme situations like these are responsible for the looseness of the upper bound given in
Lemma 5.4).

As the potential for a good match increases as ρ increases, the askable query set be-
comes rich enough in learning about the chimerical features that DEER’s choice of queries
that attempt to learn about both risky decisions do allow it to select one or the other of the
risky decisions, so the extent to which DEER is punished for optimistically matching d∗

without taking into account the impact of its query on its decision diminishes. More gener-
ally, as the richness of the askable query set increases in terms of the best contained match
to d∗, the penalty of using d∗ response-entropy reduction to approximate EVOI decreases.
This sense of richness in the askable query set is captured by F2, since if the askable query
set is rich in that it does contain a query with EVOI close to that of d∗, DEER will select
a query with EVOI close to that of d∗ – unless d∗ was a poor target to begin with, which
depends on F1.

In order to study DEER’s performance as a function of F2, consider extending the risky
decisions scenario considered in Experiment 6.3 so that the negatiave feature associated
with each risky decision becomes a parameter. Namely, let the negative feature of each
risky decision be multiplied by a scaling factor τ . As τ increases, the risk increases in that
the prior expected value of each risky decision decreases; however, the potential reward

also increases because if the agent knew the values of the chimerical feature weights to
be negative for one and positive for the other, increasing τ would actually make the more
valuable of the two risky decisions even more valuable, leading to an increase in the EVOI
of d∗. However, at the same time the knowledge that the agent must gain about the chimeri-

108

a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.05 0.1 0.15 0.2 0.25 0.3

d*
 d

ec
is

io
n

ra
te

Scaling of chimerical features

Risky Decisions: d* Askability vs d* Decision Rate

"AskEnum-DoEval"
"DEER"

"Random"

b)

 0.56

 0.57

 0.58

 0.59

 0.6

 0.61

 0.62

 0.63

 0.64

 0.65

 0.66

 0 0.05 0.1 0.15 0.2 0.25 0.3

S
el

ec
te

d
qu

er
y

pr
io

r
en

tr
op

y

Scaling of chimerical features

Risky Decisions: d* Askability vs Selected Query Prior Entropy

"AskEnum-DoEval"
"DEER"

"Random"

Figure 6.5: a) Average number of decisions contained in the set asked about by d∗ that are
Bayes-optimal after updating ψ with the selected query’s response (which can be 0, 1, or
2 for the binary decision queries considered here, and b) average prior response entropy of
query selected, as a function of ρ: the scaling factor used for the chimerical features (the
last two features) of each decision in the askable deicsion set. The doable decision set is
obtained by starting with two specially constructed “risky decisions” and then uniformly
sampling additional decisions from the complete Boston housing decision set, and the ask-
able decision set is obtained by uniformly sampling from the complete Boston housing
dataset and then scaling the chimerical features (the last two features of each decision) by
ρ.

109

a)

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 0.5 1 1.5 2 2.5

E
V

O
I o

f s
el

ec
te

d
qu

er
y

Scaling of negative risky decision features

Risky Decisions Experiment: Risk vs EVOI

"DoEnum-DoEval"
"AskEnum-DoEval"

"MEDER"
"AskEnum-AskEval"

"DEER"
"Random"

b)

 0.62

 0.63

 0.64

 0.65

 0.66

 0.67

 0.68

 0.69

 0.5 1 1.5 2 2.5

E
xp

ec
te

d
po

st
er

io
r

d*
 r

es
po

ns
e

en
tr

op
y

Scaling of negative risky decision features

Risky Decisions Experiment: Risk vs d* Entropy

"AskEnum-DoEval"
"MEDER"

"AskEnum-AskEval"
"DEER"

"Random"

Figure 6.6: Experiment 6.4 – a) Average EVOI of query selected and b) average posterior
response entropy of d∗ induced by query selected, as a function of τ : the scaling factor used
for the negative decision features of the two risky decisions present in the doable decision
set. The doable decision set is obtained by starting with two specially constructed “risky
decisions”, scaling their negative features by τ , and then uniformly sampling additional
decisions from the complete Boston housing decision set. The askable decision set is ob-
tained by uniformly sampling from the complete Boston housing dataset and then scaling
the chimerical features (the last two features of each decision) by ρ = 0.1.

110

cal weights in order to make one of the risky decisions Bayes-optimal increases with τ as
well. Hence, in this scenario increasing τ can be viewed as decreasing F2, which makes
the problem harder for DEER.

Figure 6.6a shows the EVOI of the query selected by each method (in log-scale) as a
function of τ when ρ is fixed to 0.1 – notice that the increase of τ induces increase of the
gap between AskEnum-DoEval and DoEnum-DoEval, which reflects decreasing F2. When
τ < 1, DEER performs as well or better than the other approximate algorithms because the
risky decisions are no longer as risky, and as such DEER’s queries that are directed toward
learning which is better of the two are useful more often even though its ability to do
so is limited (since ρ = 0.1)6. However, as τ increases, so does the detrimental effect
of DEER’s entropy-related weakness, quickly resulting in DEER’s performance dropping
towards that of Random as the closeness in match to d∗ the agent needs to change its
decision to one of the risky decisions relative to what it can ask becomes increasingly
unrealistic, at which point the agent should focus on queries that help it select from the
rest of the decisions instead. Figure 6.6b verifies this explanation, since up to τ = 1.2 the
extent to which the agent can match d∗ changes only negligibly, yet throughout this interval
DEER’s performance relative to the other algorithms in terms of EVOI significantly drops.
Note that the drop in d∗ posterior entropy for τ > 1.2 is due to the fact that d∗ begins to
change increasingly often from asking about the two risky decisions to asking about one
risky decision compared to a non-risky decision, which has lower prior entropy but still
cannot be usefully matched by an askable query for these values of τ .

The key conclusion of this experiment is that as F2 decreases (i.e., the askable query set
becomes more impoverished in terms of the EVOI of its best query compared to the EVOI
of the best possible binary-response query d∗), so does the potential for DEER’s approach
of maximal d∗ response-entropy reduction to be misguided in how it acheives posterior
entropy reduction. Hence, practitioners should consider DEER most applicable when the
askable query set is nearly as rich as the decision query set in terms of the EVOI of queries
contained.

6.2.3 Empirical performance of DEER approximations

In the previous section I studied DEER’s EVOI-maximizing performance compared to alte-
native algorithms. However, as I discuss in Section 6.2.4, DEER in its exact form may not

6Note that for τ in the interval between 0.0 and approximately 0.1 (Figure 6.6a begins at τ = 0.2),
the better of the two risky decisions under the prior is often Bayes-optimal; in this interval the dominant
trend is that the EVOI of all algorithms increases until approximately τ = 0.2 (DEER performs nearly as
well as AskEnum-DoEval here, unlike the other algorithms), at which point the risky decisions are rarely
Bayes-optimal under the prior and the trend described in this experiment becomes dominant.

111

be computationally viable for some settings. Here I consider DMVM, DEER-Greedy, and
DMVM-Greedy as approximations for DEER (see Section 6.1.1 for specifications of these
algorithms). Next I summarize the results I obtained when applying these three algorithms
to each of the four scenarios considered above, comparing their EVOI performance to that
of DEER and Random.

Approximating DEER with DMVM. When applied to the first two scenarios considered
above, DMVM and DEER shared very similar EVOI performance (Figures 6.7a and 6.8a,
and indeed in both scenarios DMVM lowered the response-entropy of d∗ nearly as effec-
tively as DEER (Figures 6.7b and 6.8b). When applied to the third and fourth scenarios
considered above, however, DMVM performed significantly worse than DEER, and even
worse than Random at many points (Figures 6.9a and 6.10a), which was accompanied
by significant differences in the extent to which DMVM was able to lower the response-
entropy of d∗ compared to DEER (Figures 6.9b and 6.10b).

Greedy approximation of DEER and DMVM. In all four scenarios, DEER-Greedy per-
formed nearly identically to DEER (part a of Figures 6.7 through 6.10). On the other
hand, DMVM-Greedy performed nearly identically to DMVM in the first two scenarios
(Figures 6.7a and 6.8a) and then significantly better in the third and fourth scenarios (Fig-
ures 6.9a and 6.10a). While in general the greedy approximations of both methods have the
potential to perform better than their exact counterparts when the greedily constructed deci-
sion query happens to be a better target than d∗ given the queries available in the askable de-
cision query set, it is unclear why DMVM-Greedy displayed superior performance as com-
pared to DMVM in the third and fourth scenarios while DEER-Greedy did not outperform
DEER, but the low sensitivity of the mistake region criterion to the agent’s prior compared
to that of expected response-entropy reduction means that DMVM-Greedy’s query varies
less between trials compared to DEER-Greedy’s query, which means DMVM-Greedy’s
choice of query between trials is mostly a function of the askable and doable decision
sets sampled. Thus, it is conceivable that, for some points, DMVM-Greedy’s less vari-
ant queries would be more valuable on average than DEER-Greedy’s, but this effect could
potentially be flipped were the properties of the decision sets being used to change just
enough to change DMVM’s typical choice of query.

To summarize, DMVM effectively approximated DEER in the easy scenarios (the first
and second), but its performance degraded significantly in the harder scenarios (the third
and fourth). On the other hand, greedy approximation of both DEER and DMVM resulted

112

in the same or better performace in all four scenarios. These results suggest that DMVM,
DEER-Greedy, and DMVM-Greedy, when applied judiciously, may all be promising ways
to implement WQP as approximations for DEER, and in the next section I show that they
afford significant computational savings when used in place of DEER.

6.2.4 Computational Performance

A good query selection algorithm should not only be able to find queries with high EVOI,
but it should do so at a reasonable computational cost. In Chapter 5 and throughout this
dissertation I have set the computational goal of query selection algorithms to being able to
select a query without requiring computation time that scales with the product of optimal
planning time and the size of the query set. DEER and DMVM, along with their greedy
versions, accomplish this goal from a theoretical perspective; however, their first step of
solving for d∗, which depends on optimal planning complexity, may incur significant cost,
and they still must enumerate the query set during the projection step (in the absence of
exploitable structure). In this section I determine how they compare to alternative algo-
rithms in empirical computational costs for askable decision query selection in the Boston
Housing dataset.

I compare the computational costs of the algorithms discussed in this chapter according
to how much time, empirically, they take to select a query, as a function of (a) the size
of the askable query set; and (b) the size of the underlying optimal planning problem. I
quantify these dimensions in the askable query selection problem studied in this chapter as
the size of the askable decision set, and the size of the doable decision set, respectively,
and the results are shown in Figure 6.11a and b, respectively. Note that in both cases the
decision sets are sampled uniformly randomly as in Section 6.2.2.1.

First, consider how DEER and DMVM compare in computation time. DEER and
DMVM scale the same asymptotically since they share the same first step of solving for
d∗, and both apply their projection criteria by enumerating the askable query set. How-
ever, Figure 6.11a shows that the overhead associated with DEER’s expected posterior d∗

response-entropy criterion is much higher than that of DMVM’s mistake region criterion,
which is implemented here with a decision-boundary angle criterion (see Section 6.1.1 for
details). In fact, in Figure 6.11a, DMVM appears to require negligibly more computation
as the askable decision set – and accordingly, the askable decision query set – grows, as for
DMVM the computation associated with the optimal-planning-related step of solving for
d∗ dominates that of the projection step. Hence, for DMVM many more askable decision
queries could conceivably be added to the set without significantly changing the computa-

113

a)

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 2 4 6 8 10 12 14 16

E
V

O
I o

f s
el

ec
te

d
qu

er
y

Size of askable decision set

Random Decision Sets Experiment: Size of Askable Decision Set vs EVOI

"AskEnum-DoEval"
"DEER"
"DMVM"

"DEER-Greedy"
"DMVM-Greedy"

"Random"

b)

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 2 4 6 8 10 12 14 16

E
xp

ec
te

d
po

st
er

io
r

d*
 r

es
po

ns
e

en
tr

op
y

Size of askable decision set

Random Decision Sets Experiment: Size of Askable Decision Set vs d* Entropy

"AskEnum-DoEval"
"DEER"
"DMVM"

"Random"

Figure 6.7: Results for Experiment 6.1– a) Average EVOI of query selected and b) average
posterior response entropy of d∗ induced by query selected, as a function of the size of the
askable decision set; the size of the doable decision set is fixed at 15. For each trial, both
the askable and doable decisions sets are uniformly sampled from the complete Boston
housing decision set.

114

a)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 2 4 6 8 10 12 14 16

E
V

O
I o

f s
el

ec
te

d
qu

er
y

Size of askable decision set

Random Decision Subsets Experiment: Size of Askable Decision Set vs EVOI

"AskEnum-DoEval"
"DEER"
"DMVM"

"DEER-Greedy"
"DMVM-Greedy"

"Random"

b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 2 4 6 8 10 12 14 16

E
xp

ec
te

d
po

st
er

io
r

d*
 r

es
po

ns
e

en
tr

op
y

Size of askable decision set

Random Decision Subsets Exp: Size of Askable Decision Set vs d* Entropy

"AskEnum-DoEval"
"DEER"
"DMVM"

"Random"

Figure 6.8: Results for Experiment 6.2 – a) Average EVOI of query selected and b) average
posterior response entropy of d∗ induced by query selected, as a function of the size of the
askable decision set; the size of the doable decision set is fixed at 15. For each trial the
doable decision set is uniformly sampled from the complete Boston housing decision set,
and the askable decision set is then sampled from the doable decision set.

115

a)

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 0 0.05 0.1 0.15 0.2 0.25 0.3

E
V

O
I o

f s
el

ec
te

d
qu

er
y

Scaling of chimerical features

Risky Decisions Experiment: d* Askability vs EVOI

"DoEnum-DoEval"
"AskEnum-DoEval"

"DMVM"
"DEER-Greedy"
"DMVM-Greedy"

"DEER"
"Random"

b)

 0.655

 0.66

 0.665

 0.67

 0.675

 0.68

 0.685

 0.69

 0.695

 0 0.05 0.1 0.15 0.2 0.25 0.3

E
xp

ec
te

d
po

st
er

io
r

d*
 r

es
po

ns
e

en
tr

op
y

Scaling of chimerical features

Risky Decisions: d* Askability vs d* Posterior Entropy

"AskEnum-DoEval"
"DMVM"
"DEER"

"Random"

Figure 6.9: Results for Experiment 6.3 – a) Average EVOI of query selected and b) av-
erage posterior response entropy of d∗ induced by query selected, as a function of ρ: the
scaling factor used for the chimerical features (the last two features) of each decision in
the askable deicsion set. The doable decision set is obtained by starting with two specially
constructed “risky decisions” and then uniformly sampling additional decisions from the
complete Boston housing decision set, and the askable decision set is obtained by uni-
formly sampling from the complete Boston housing dataset and then scaling the chimerical
features (the last two features of each decision) by ρ.

116

a)

 0.0625

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 0.5 1 1.5 2 2.5

E
V

O
I o

f s
el

ec
te

d
qu

er
y

Scaling of negative risky decision features

Risky Decisions Experiment: Risk vs EVOI

"DoEnum-DoEval"
"AskEnum-DoEval"

"DMVM"
"DEER-Greedy"
"DMVM-Greedy"

"DEER"
"Random"

b)

 0.62

 0.63

 0.64

 0.65

 0.66

 0.67

 0.68

 0.69

 0.5 1 1.5 2 2.5

E
xp

ec
te

d
po

st
er

io
r

d*
 r

es
po

ns
e

en
tr

op
y

Scaling of negative risky decision features

Risky Decisions Experiment: Risk vs d* Entropy

"AskEnum-DoEval"
"DMVM"
"DEER"

"Random"

Figure 6.10: Results for Experiment 6.4 – a) Average EVOI of query selected and b) av-
erage posterior response entropy of d∗ induced by query selected, as a function of τ : the
scaling factor used for the negative decision features of the two risky decisions present
in the doable decision set. The doable decision set is obtained by starting with two spe-
cially constructed “risky decisions”, scaling their negative features by τ , and then uniformly
sampling additional decisions from the complete Boston housing decision set. The askable
decision set is obtained by uniformly sampling from the complete Boston housing dataset
and then scaling the chimerical features (the last two features of each decision) by ρ = 0.1.

117

tion time required to select a query.
The same relationship holds between DEER-Greedy and DMVM-Greedy, and both

benefit from the reduced computational burden of the first step through its greedy con-
struction approximation – the computational savings of this approximation are particularly
salient in Figure 6.11b, as the computational growth of the greedy variants as a function
of the size of the doable decision set is nearly flat, as opposed to the exact versions whose
computation grows quadratically. In fact, DMVM-Greedy requires only between 10 and 50

miliseconds to select a query at all points shown.
When the askable decision set is small, AskEnum-AskEval’s approach of ignoring the

doable decision set results in significant computational savings as compared to AskEnum-
DoEval, but this same trait results in its computation comparing unfavorably to the other
algorithms, even the exact AskEnum-DoEval, when the askable decision set grows to be
large enough. MEDER, which was implemented exactly, requires similar computation to
that of AskEnum-DoEval – this is because computing decision-entropy in the askable deci-
sion query setting requires roughly the same computation as optimal planning. In practice,
this computation could be approximated heuristically by, for example, considering only a
sampled subset of the decisions when computing decision entropy (which would make its
computation similar to that of DEER, depending on the size of the sampled set), or other
uncertainty-based methods could be used – in this chapter, the purpose of MEDER is to
serve as an example of an uncertainty-based method to study its effectiveness in maximiz-
ing EVOI compared to DEER, without focusing on its efficient implementation.

In summary, this section provided the following straightforward computational results:
while DEER had high computational costs when implemented exactly, approximating its
first step greedily (DEER-Greedy) caused its performance as a function of the size of the
underlying decision problem to improve substantially, and approximating its second step
through mistake region minimization (DMVM), whose implementation exploited structure
in the askable decision query setting studied in this chapter, caused its performance as a
function of the size of the askable query set to improve substantially as well; combining
the two approximations (DMVM-Greedy) reduced the empirical time required to select a
query by several orders of magnitude as compared to DEER and AskEnum-DoEval.

6.3 Discussion

In this chapter I began by defining the askable decision query selection setting: an exten-
sion of the standard decision query selection setting where the decisions the agent can ask
about and the decisions the agent can execute can be different. Here I studied the EVOI-

118

a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30 35

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)
to

 s
el

ec
t q

ue
ry

Size of askable decision set

Random Decision Subsets Experiment

"AskEnum-AskEval"
"MEDER"

"AskEnum-DoEval"
"DEER"
"DMVM"

"DEER-Greedy"
"DMVM-Greedy"

b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30 35

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)
to

 s
el

ec
t q

ue
ry

Size of doable decision set

Random Decision Subsets Experiment

"DEER"
"DMVM"

"MEDER"
"AskEnum-DoEval"

"AskEnum-AskEval"
"DEER-Greedy"
"DMVM-Greedy"

Figure 6.11: Average computation in seconds to select a query as a function of the size of
the askable (a) and doable (b) decision set, where in (a) the size of doable set is fixed at 20,
and in (b) the size of the askable set is fixed at 20.

119

maximizing abilities and computational properties of AskEnum-AskEval (an algorithm that
utilizes structure in this setting), MEDER, and Wishful Query Projection (WQP) algo-
rithms (DEER and DMVM). I then presented an empirical study that focused on comparing
DEER’s performance in terms of query EVOI to that of MEDER, AskEnum-AskEval, and
baselines as a means of both providing empirical evidence for the merit of using the WQP
approach for query selection, and to better understand what factors should be considered
when determining whether WQP would be effective for query selection.

Confirming intuition from Chapter 5, the empirical study showed that, while the relative
performance of the algorithms depended on myriad factors, practitioners should consider
at least two key factors when assessing the viability of using DEER as a WQP algorithm
for their query selection problem. First, the quality of queries selected by DEER can suffer
when the askable query set is imbalanced in terms of obtainable information about deci-
sions, so DEER is most applicable when the askable query set contains a wide range of
queries. Second, the quality of queries selected by DEER can suffer when the askable
query set is impoverished in terms of its highest contained query EVOI compared to the
EVOI-optimal decision query, so DEER is most applicable when the askable query set
consistently contains queries with close to the highest possible k-response query EVOI.
Practitioners should treat these only as guidelines, not strict guarantees, as they directly
correlate with DEER’s performance only in the sense of upper bounds on the extent to
which things can go wrong.

120

6.4 Appendix

In this appendix I provide additional analysis pertaining to the askable decision query set-
ting, as even though my primary motivation for studying the askable decision query setting
in the context of this dissertation was as an empirical testing ground for strengthening intu-
itions regarding what factors are important to consider when determining the applicability
of WQP algorithms compared to alternatives such as MEDER, the setting is interesting in
its own right.

Specifically, I provide additional theoretical analysis regarding the EVOI performance
of AskEnum-AskEval compared to VBDR, a third WQP algorithm. In addition, I discuss in
detail the potential merit of another algorithm for askable decision query selection, which
can be viewed as an extension of the greedy decision query construction procedure from
the standard decision query selection setting.

6.4.1 Value-based Decision Replacement

AskEnum-AskEval is related to a value-based WQP algorithm. Namely, consider a third
projection algorithm which applies only to the askable decision query setting: Value-Based
Decision Replacement (VBDR), which selects a query from QA as follows. First, d∗ is
computed. Then, each decision uj queried by d∗ is replaced by a decision aj so as to
minimize maxω∈Ω |V

uj
ω −V aj

ω |, producing query q̂A. I show next that VBDR and AskEnum-
AskEval are closely related in that a performance guarantee similar to the one stated in
Theorem 6.2 applies to VBDR; the result is stated as Theorem 6.4 below. To this end, I
first prove Lemma 6.3, which states that any query about decisions in D can be replaced by
a query about decisions in A to ensure that a maximum of ∆(D,A) EVOI loss is incurred:

Lemma 6.3. For any q ∈ QD, there exists some q′ ∈ QA such that

|EV OI(q;ψ)− EV OI(q′;ψ)| ≤ ∆(D,A).

Proof. The proof is by construction. Consider some q ∈ QD, and let uj denote the posterior
Bayes-optimal decision under the posterior induced by the jth possible response to q for
{uj}kj=1; i.e., uj , arg maxu∈D V

u
ψ|q=j . Construct query q′ to query {a1, a2, . . . , ak}, where

aj = arg minaj∈A maxω∈Ω |V
uj
ω − V aj

ω |. Then,

121

EV OI(q;ψ)− V ∗ψ =
k∑
j=1

Pr(q = j)V ∗ψ|q=j

=
k∑
j=1

Pr(q = j)V
uj
ψ|q=j

≤
k∑
j=1

Pr(q = j)
(
V
aj
ψ|q=j + ∆(D,A)

)
=

k∑
j=1

Pr(q = j)V
aj
ψ|q=j + ∆(D,A)

≤
k∑
j=1

Pr(q′ = j)V
aj
ψ|q′=j + ∆(D,A) (By Lemma 4.1).

Combining Theorem 4.2 with Lemma 6.3 above yields the EVOI-loss bound for VBDR:

Theorem 6.4. Let q∗ denote the QA-EVOI-optimal query, and let q̂ denote the query se-

lected by VBDR. Then for any decision problem and uncertainty ψ over them,

EV OI(q∗;ψ)− EV OI(q̂;ψ) ≤ ∆(D,A).

Proof. Let d∗ denote the QD-EVOI-optimal query, and recall that q̂ is constructed by re-
placing each decision uj queried by d∗ with decision aj in order to minimize maxω∈Ω |V

uj
ω −

V
aj
ω | ≤ ∆(D,A). Then,

EV OI(q∗;ψ)− EV OI(q̂;ψ) ≤ EV OI(d∗;ψ)− EV OI(q̂;ψ) (By Theorem 4.2)

≤ ∆(D,A) (By Lemma 6.3).

Theorem 6.4 shows that like AskEnum-AskEval, VBDR is guaranteed to work well
when the underlying askable and doable decision problems are similar in terms of the exact
value magnitudes prescribed by the parameter space to the available decisions in each set.
Intuitively, VBDR and AskEnum-AskEval share a key weakness: they both can fail when
the best askable decision queries ask about askable decisions with very low values relative
to other askable decisions, since VBDR attempts to match the value magnitudes of the

122

decisions composing the best doable decision query (which are biased to be high), and
AskEnum-AskEval is biased towards using askable decisions with high value magnitudes.
In contrast, DEER and DMVM do not share this weakness because their projection criteria
consider relative decision values instead of magnitudes.

Next, I conclude my theoretical discussion of askable decision query selection by dis-
cussing another specialized approach for the setting: greedily approximating AskEnum-
DoEval.

6.4.2 Greedy AskEnum-DoEval

Recall that the QA-EVOI-optimal decision query can be computed through the AskEnum-
DoEval algorithm described above. However, AskEnum-DoEval’s approach of evaluating
every combination of k askable decisions requires evaluatingO(|A|k) queries, which would
be infeasible in many settings. It is natural to ask, then, whether adapting the greedy con-
struction procedure of Viappiani and Boutilier (2010) to construct the query from decisions
in A while evaluating them with respect to D would yield similar computational benefits
and approximation guarantees as in the standard decision query selection setting7 (refer to
Section 4.5 of Chapter 4 for details of the greedy algorithm and notation, both of which are
referred to below). I refer to this greedy approximation to AskEnum-DoEval as Askable

Greedy construction Doable Evaluation (AskGreedy-DoEval).
Computationally, the algorithm must perform O(k|A|) EVOI computations, each of

which have complexity O(k|D|B) (recall that B represents the complexity of bayesian in-
ference, such as the number of particles used in a particle filtering approach). Although
AskEnum-DoEval evaluates fewer queries than AskEnum-DoEval, these EVOI computa-
tions cannot be replaced by EVOR computations as they can in the standard decision query
selection setting (recall that the EVOR of a decision query is defined as the expected value
of executing the decision associated with the response chosen by the user when asked the
query), because the agent cannot necessarily execute the decisions in the set being con-
structed. Thus, one of the major computational advantages of the greedy construction
procedure over exhaustive search in the standard decision query setting does not apply to
the askable decision query setting – recall that EVOR computations areO(kB), in contrast
to EVOI computations which here are O(k|D|B).

The approximation guarantee that applies to the greedy construction procedure is lost
in the askable decision query selection setting as well. To understand why, consider the
following argument. As discussed in Section 4.5, the approximation guarantee proven

7How to choose the first decision to add to the set is unclear. Here, assume that the algorithm begins by
adding the askable decision that has highest expected value out of decisions in A.

123

by Viappiani and Boutilier (2010) is derived by proving and combining the following two
results: 1) EVOR is monotonic and submodular (this implies that EVOR can be maxi-
mized greedily while offering the guarantee derived from the more general Nemhauser
result (Nemhauser et al., 1978); and 2) the decision query with highest EVOI also has high-
est EVOR. However, in the askable decision query setting, the askable decision query with
highest EVOR may not have the highest EVOI, since applied to askable decision queries
EVOR would consider how the query would induce improvement in selecting from A in-
stead of D. Thus, one would need to prove that EVOI, instead of EVOR, is monotonic and
submodular for queries constructed from decisions in A. However, unlike EVOR, EVOI is
nonmonotonic in general for decision queries, and so cannot be nonmonotonic for queries
constructed from decisions in A. To see this, consider Example 6.1 above and the QA-
EVOI-optimal binary-response query asking about {u1, u2}. Recall that even though u1

and u2 have low value compared to u3 and u4, the information provided by distinguishing
between u1 and u2 is useful for distinguishing between u5 and u6. Now consider adding u3

to the set so the query becomes {u1, u2, u3}. The answer will always be u3, which provides
no information to help distinguish between u5 and u6, and so the EVOI of the expanded
query is zero. Hence, EVOI is nonmonotonic and so the same guarantee cannot directly
apply in this setting.

This concludes my discussion of AskGreedy-DoEval; I leave empirical analysis and
further theoretical analysis of AskGreedy-DoEval for future work.

124

a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 4 6 8 10 12 14 16

E
V

O
I-

lo
ss

 o
f s

el
ec

te
d

qu
er

y

Size of askable decision set

Random Decision Subsets Exp: Size of Askable Decision Set vs EVOI-loss

"DEER"
"MEDER"

"AskEnum-AskEval"

b)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 2 4 6 8 10 12 14 16

E
V

O
I-

lo
ss

 o
f s

el
ec

te
d

qu
er

y

Size of askable decision set

Random Decision Subsets Exp: Size of Askable Decision Set vs EVOI-loss

"DEER"
"MEDER"

"AskEnum-AskEval"

Figure 6.12: Supplemental results for Experiments 6.1 and 6.2 – average EVOI-loss of
query selected as a function of the askable decision set, where the size of the doable deci-
sion set is fixed at 15 and uniformly sampled from the complete Boston housing decision
set, and where a) the askable decision set is uniformly sampled from the complete Boston
housing decision set (Experiment 6.1); or b) the askable decision set is sampled uniformly
from the doable decision set (Experiment 6.2).

125

CHAPTER 7

Conclusions

A variety of research communities are concerned with the problem of how an agent should
select which query to ask its human user from an available set in order to improve future
decision-making under uncertainty, both from a theoretical perspective (e.g., preference
elicitation) and from a practical perspective (e.g., human/agent interaction). Among these
communities, an oft-used criterion (and the one used in this dissertation) for measuring
the value of asking a query is its associated Expected Value of Information (EVOI), which
measures the expected impact of a query’s response on the agent’s policy and hence value.

EVOI-based query selection presents significant challenges in settings where optimal
planning under uncertainty is computationally expensive, since EVOI measures the ex-
pected impact of the query on the agent’s policy, especially when the set of queries the
agent considers is large. In such cases any benefits brought about by considering queries
to ask may be outweighed by the additional computational expense required to reason over
them, limiting the scope of potential practical applications of querying in agents. The
work in this disseration makes theoretical and practical contributions to overcoming these
challenges in EVOI-based query selection, focusing on settings where incorporating query
responses to update the agent’s uncertainty is much less computationally demanding than
optimal planning computations.

7.1 Summary of Contributions

I now enumerate the main contributions I make in this dissertation, ordered by the chapters
in which they appear.

1) Hybrid Algorithm for Action Query Selection in Sequential Decision-Making (Chap-
ter 3). The first contribution is the Hybrid algorithm, which is designed for action query
selection in sequential decision-making settings. Hybrid utilizes the computational effi-

126

ciency of uncertainty reduction to select a promising subset of queries on which to per-
form computationally expensive EVOI analysis. The efficacy of this Hybrid algorithm is
demonstrated in the empirical investigations, where it displays clear advantages over pure
uncertainty reduction and pure EVOI maximization in a setting considered in related work,
supporting the hypothesis that hybrid uncertainty-based and EVOI-based techniques can
be applied to feasibly perform EVOI-based query selection in problems of interest to the
community.

2) EVOI-Sufficiency of k-Response Decision Query Set (Chapter 4). Another contri-
bution is a theoretical result that narrows the space of queries that need even be consid-
ered, provided maximizing EVOI is the explicit target and all other factors such as their
human understandability/answerability are ignored. Namely, I show that given the only
requirement is that queries must be constrained to having k possible responses, the set of
k-response decision queries is sufficiently general in that there is no benefit in consider-
ing any additional k-response queries. Practitioners can use this contribution to inform
their design of query sets by restricting attention to decision queries, where efficient EVOI-
based query selection algorithms exploiting submodularity have been recently developed.
Of course, this contribution is directly useful only when decision queries can be sensibly
asked and easily answered by humans in the target setting; however, even in such cases,
the community can design query sets in a principled manner by designing them to be as
informative about decision queries as possible, which connects with the next (third) contri-
bution. In addition, this contribution forms the foundation for the fourth contribution below.

3) Response-Entropy Bound for EVOI-loss in Decision Query Projection (Chapter 5).
The next contribution establishes a means to characterize the worst-case loss in EVOI when
using some k-response query in place of a decision query. Intuitively, the more a k-response
query reduces uncertainty (in expectation) in what the response to a locally optimal deci-
sion query would be, the smaller the loss in using the k-response query as a substitute for
that k-response decision query. Researchers can use this contribution to assess the loss in
EVOI associated with using some k-response query set that is suited to their target setting
according to factors independent of EVOI (such as costs in developing interfaces for accu-
rately presenting queries to humans and cognitive burdens imposed on humans to answer
them), compared to if they were to use the k-response decision query set. In addition, this
contribution, combined with the previous contribution, provides theoretical justification for
the next contribution.

127

4) DEER Algorithm for Query Selection (Chapters 5 and 6). A fourth contribution
draws on the previous two contributions to implement the Wishful Query Projection (WQP)
approach for query selection, which is hypothesized in this dissertation as a means for
tractably finding queries with high EVOI in settings where repeated optimal planning com-
putations would be computationally prohibitive, in the form of a concrete query selection
algorithm called Directed Expected Entropy Reduction (DEER). DEER begins by selecting
an EVOI-optimal k-response decision query, which, according to the second contribution
above, is the ideal k-response query to ask purely in terms of EVOI. However, this ideal
query cannot be asked directly unless it is included by the target query set, and so the DEER
algorithm selects the query from the target query set serving as the best substitute accord-
ing to the third contribution above, and hence approximates EVOI-based query selection
by restricting EVOI evaluations to an efficiently searchable (decision) query space and then
finding a suitable match in the askable query set.

Applying the second and third contributions described above, DEER is shown to be
principled in that it is guaranteed to select a query with EVOI close to the best query
in the set, as a function of two different measures of the query set’s similarity to the k-
response decision query set. DEER is also empirically evaluated by comparing it with
baseline algorithms and several other approximate query selection algorithms, profiling its
computational costs and performance abilities to delineate the contexts in which it pro-
vides an effective tradeoff between good query choices and computational costs, as a func-
tion of key properties of the query set to be selected from and the decision problem the
agent faces, confirming the hypothesis that WQP can be implemented to produce an ef-
ficient and approximate query selection algorithm both from a theroetical and empirical
perspective. DEER thus contributes to the community a new query selection algorithm
with well-understood strengths and limitations that can be particularly effective when (1)
the computational cost of updating the agent’s uncertainty in light of query responses is
small compared to evaluating the EVOI of a query, (2) the agent’s query set is balanced in
the extent to which it contains queries similar to the range of k-response decision queries;
and (3) the agent’s query set is rich in the extent to which it contains a query with similar
EVOI to that of the EVOI-optimal k-response decision query.

7.2 Future Work

I close this dissertation with an informal discussion of a selection of opportunities for future
work, organized by topic.

128

7.2.1 Query Selection in Sequential Decision-Making

In Chapter 3 I studied three instances of query selection problems defined in sequential
decision-making settings, for which I provided some basic uncertainty representations and
computational tools allowing EVOI-based query selection to be feasibly approximated.
However, I did not consider implementing Wishful Query Selection (WQP) as a means for
approximating EVOI-based query selection in these settings, and I discuss this topic below,
focusing on the computational challenges associated with WQP selection in these settings.
Then, as a separate topic I revisit the Ask When Impacts Next Action (AWINA) heuristic
discussed briefly in Chapter 3 as a means to address the question of when the agent should
query in addition to the question of focus in this dissertation of what the agent should query.

7.2.1.1 Implementing k-Response Decision Query Selection

Recall that this dissertation considers EVOI-based query selection in settings where opti-
mal planning computations are the primary computational concern. However, in Chapter 6
I only evaluated WQP in a setting where optimal planning could be feasibly accomplished
by enumerating the entire decision set, and focused on understanding the key factors in-
fluencing the EVOI-maximizing effectiveness of WQP. However, for sequential decision-
making settings like those studied in Chapter 3, the decision set (policy set) is far too
large to enumerate, preventing even the greedy construction procedure for approximating

WQP’s first step, wishful query selection, from being feasibly applied, since its complexity
is O(k2|U |B). For WQP to be feasibly applied to query selection in sequential decision
making problems, wishful query selection would need to take advantage of structure to
compute or approximate the EVOI-optimal k-response decision query.

In constructing the approximately EVOI-optimal k-response decision query, the step
of the greedy algorithm causing the linear dependence on |U | is the step of computing the
best decision to add to the set given a subset of decisions added so far. Specifically, when
adding the jth decision to the set {u1, u2, . . . , uj−1}, the step needs to solve the following
optimization problem:

u∗j = arg max
uj∈U

{
Eω∼ψ

[j∑
i=1

δ(V ui
ω > max

u6=i
V
u6=i
ω)V ui

ω

]}
.

Consider applying the greedy construction procedure to k-response decision query se-
lection in the reward-uncertain sequential decision-making setting studied in Chapter 3.
Here, decisions correspond to policies that map state to action, so intuitively, the above
optimization problem boils down to the following: suppose the agent currently occupies

129

state s, and consider a set of j− 1 policies π1, π2, . . . , πj−1. Which jth policy should it add
to the set if it will be told which of the j policies has highest value, and then it must adopt
that policy?

The main factor that makes this problem nontrivial is that the probabilities for each
policy being the best in the set change as a function of the jth policy added to the set. Thus,
a good policy to add is one that is different enough from the ones already added so that it
would be a better choice than the rest under some subset of Ω, but different in a way that
the subset of Ω on which it is better has reasonably high probability. It seems unlikely that
solving this problem should require exhaustively searching the entire policy space, since
the way the weights on each policy added so far change as a function of the jth policy
to add is directly related to how they compare in expected value. Thus, I conjecture that
it can be framed as a convex optimization problem of some sort, if not a linear program.
Ideally, solving this problem would have similar complexity to that of optimal planning
in the same setting (ideally adding only a linear or quadratic dependence on k), making
it tractable. Of course, even if this is the case, it is unclear whether k-response decision
query selection could be solved in a computationally feasible manner for other forms of
uncertainty besides reward uncertainty, as the case of reward uncertainty allows optimal
planning under uncertainty to be reduced to a fully observable planning problem through
the mean-MDP method discussed in Chapter 3, unlike other forms of uncertainty.

7.2.1.2 When to Query?

I assumed in Chapter 3 that the agent must ask its query while occupying its current state
in order to focus on the question of what query the agent should ask, but developing an ef-
fective query-asking agent in a sequential decision-making setting in practice would surely
require addressing the question of when the agent should query. While here I will not pro-
pose a way to extend the setting considered in Chapter 3 to fully capture this question, the
Ask When Impacts Next Action (AWINA) heuristic briefly discussed in Section 3.2.3.5
suggests one way the agent can be intelligent about when it queries.

Recall that when using AWINA, the agent only asks the query it selects if the response
has the potential to change its action at its current state. Otherwise, it takes an action and
then selects a new query conditioned on its new state, and repeats the process. Supposing
the agent can ask an unlimited number of queries before taking actions, the agent would
only ask queries until no query would change its next action, which does limit the number
of queries asked by the agent.

However, AWINA suffers from the limitation that the agent will query if just one of the
possible responses to the query could influence its action. This could result in the agent

130

asking many queries before taking its action if there exist many factors that are unlikely to
be true but would change the agent’s action if true, supposing the askable query set contains
queries asking about those factors. Since these queries would typically have neglible EVOI,
one way to overcome this issue would be to impose a threshold, possibly expressed as a
cost of querying, and unless the threshold is exceeded by the query’s EVOI, the query
would not be asked, and the agent would take an action instead. The main challenge would
be defining costs that are appropriately callibrated with respect to values in the decision
problem versus costs the user associates with answering a query.

7.2.2 Extending Wishful Query Projection

Recall that the WQP algorithms developed in Chapter 5 implement the first step of WQP
(wishful query selection) by computing the EVOI-optimal k-response decision query d∗k.
Since I assumed that the agent’s askable query set contains only k-response queries, d∗k is
guaranteed to have EVOI at least as high as the EVOI-optimal askable query since d∗k is the
EVOI-optimal k-response query (Theorem 4.2), and thus d∗k represents an ideal query for
the agent to ask given its limitation to k-response queries, which the second step of WQP,
query projection, attempts to match as closely as possible with an askable query. However,
as discussed above, a glaring limitation of WQP is that it selects the wishful query without
considering the content of the askable query set (beyond the constraint that it contains only
k-response queries). A variety of extensions are possible to address this problem, and I
discuss two below.

7.2.2.1 Optimizing k

For cases where the askable query set is impoverished in terms of EVOI (F2 discussed in
Chapter 6), one potential way to select a better wishful query to serve as the goal would
be to choose a smaller k for the wishful query selection step, since it would typically have
lower EVOI (never higher EVOI) than d∗k. In fact, it is easy to construct examples where
WQP – specifically, DEER – can select a better (k-response) askable query by using a
smaller k for wishful query selection, and I give one such example next.

Consider a case where there are six possible decisions, where u1, u2, and u3

each have 1
3

probability of being optimal but 2
3

probability of having extremely

negative value, u4 and u5 each have 1
2

probability of having second-best value

but 1
2

probability of having extremely negative value, and u6 always has ex-

tremely negative value. Finally, suppose the askable query set contains two

131

trinary-response queries (so here, k=3). The first askable query, q126, is the

decision query about u1, u2, and u6. The second askable query, q456, is the

decision query about u4, u5, and u6.

Here, q456 is the better of the two askable queries because it allows the agent
to choose the better of u4 and u5 as a function of its response, but note that d∗k
is the decision query asking about u1, u2, and u3, which projects to q126, and
as a result DEER selects the wrong askable query. However, if the k used to
choose the wishful query is set to 2 instead, DEER selects the right askable
query since d∗2 is q45, which projects to q456.

The example just shown illustrates a case where the knowledge obtainable by a k-
response askable query set corresponds more closely to the (k−1)-response decision query
set than the k-response query set, and thus choosing k−1 instead of k for the wishful query
selection step is beneficial for this case. However, there are also cases where it can be better
to choose a larger k for the wishful query selection step. For example, it could be that the
closest match contained in the askable query set for d∗k is not only a poor match for d∗k, but
also gives no information about other decisions that could be fruitfully queried about. In
such a case, using k = |U | would produce a wishful query asking about all decisions, and
could conceivably project to a more valuable askable query that reveals information about
decisions other than those queried by d∗k.

In conclusion, extending WQP to intelligently choose a different k than the one that
matches the number of responses for queries in the askable query set can result in fruitful
EVOI gains in some cases. Futher investigation into what factors influence which k is best
and/or identification of properties of the mapping between k and DEER’s selected query
EVOI may inform the design of methods, heuristic or exact, for choosing k.

7.2.2.2 Informed Wishful Query Selection

In order to extend DEER to be robust to cases where the askable query set contains no
query similar to the decision query d∗k selected in the first step, but contains queries very
similar to other k-response decision queries (F1 in Chapter 6), one approach would be to
prune the set of decisions that can be used to construct the wishful query. That is, prune the
decision set to ones the askable query set contains informative queries about. In particular,
decisions with very high value for some candidate models and very low value for others
should be scrutinized, since they can be part of valuable decision queries that need very
close matches in the askable query set to achieve similar EVOI.

132

One heuristic method for pruning such decisions could be to prune any decisions whose
posterior expected value remains similar across all askable query responses, according to
some measure of similarity, perhaps involving a threshold parameter. Computationally, this
requires only value compuations as opposed to optimal planning computations, provided
only a subset of decisions are scrutinized. One potentially promising subset of decisions to
scrutinize would be those composing d∗k, and wishful query selection could be repeated, at
each step only considering decisions that have yet to be pruned, and terminated once none
of the k decisions composing the current wishful query can be pruned.

7.2.3 EVOI-Sufficiency

In Chapter 4 I studied the problem of how the agent can narrow the space of queries it
should consider from the general k-response query set to a subset, when the goal is to select
a query on the basis of EVOI only. First I considered a myopic setting where the agent can
only ask a single k-response query, and proved that the agent can restrict attention to k-
response decision queries at no EVOI-loss, i.e., the set of k-response decision queries is
EVOI-sufficient. Then I considered a nonmyopic setting where the agent can dynamically
select a sequence of n k-response queries to ask, or equivalently a depth-n k-response query
tree, and proved that the agent cannot consider only those query trees composed entirely
of k-response decision queries without risking EVOI-loss. I also proved that the agent
can consider only those query trees composed entirely of k-response decision-set queries
without risking EVOI-loss. However, there exist a variety of open questions on the topic of
EVOI-sufficiency, and I discuss some of them below.

7.2.3.1 EVOI-Necessity

A natural question to ask in the myopic setting is whether the agent needs to consider all
k-response decision queries to assuredly find the k-response query with maximum EVOI,
provided no additional assumptions are made about the structure of the decision value
function or the agent’s uncertainty ψ. If the answer to this question turned out to be no,
then the agent could consider a different k-response query set than decision queries, which
might be easier to search and/or easier to convey to humans. However, I conjecture that the
answer to this question is yes, and that it can be proven by showing that for any arbitrary k-
response decision query d, there exists a decision set, model space, and form of uncertainty
where d has strictly higher EVOI than any other k-response query.

Another question is whether depth-n k-response decision-set query trees are necessary
in the same sense just described, but for the nonmyopic setting. I conjecture that the answer

133

to this question is yes as well, and that a similar proof technique to the one described above
could be used to prove the claim.

7.2.3.2 EVOI-Sufficiency in Structured Settings

One or more of the agent’s decision set, model space, or form of uncertainty may have
potentially exploitable structure. As an example, the model space Ω could be over a space
of weight vectors, and the decision value function for a given ω ∈ Ω and decision u could
take the form of the weighted combination (prescribed by ω) of features of u. In such a
case, are there other EVOI-sufficient k-response query sets besides the ones proven to be
EVOI-sufficient in their respective settings in Chapter 4? What about for other types of
structure?

7.2.3.3 EVOI-Sufficiency for Selecting Query Sets

Consider a setting where the agent needs to select a set consisting of m k-response queries
that it will select from, given the agent has limited knowledge of the uncertain decision
problem that it will face. For concreteness, assume that the agent begins with a prior ξ over
a set Ψ of possible priors ψ each supported by model space Ω, so that the agent explicily
represents its uncertainty over the uncertain decision problem it will face. Also, assume
that upon selecting a query set Q, the agent immediately observes the uncertain decision
problem and can ask a single query from the query set Q it selected before it must make
its decision (i.e., after choosing its query set the agent enters the myopic query selection
setting). Which subset of size m of k-response queries should the agent consider as its
query set, with the goal of maximizing the expected EVOI of the query it will ask? Solving
this query set selection problem could be useful in situations where implementing human-
agent interfaces for asking and answering queries is expensive and needs to be limited, or
could be useful as a way to save computation in query selection by reducing the set of
queries the agent considers.

Questions of EVOI-sufficiency extend to such a setting. Namely, can the agent restrict
attention to subsets of k-response decision queries without risk of expected EVOI-loss?
The answer would certainly be yes if m ≥ |Dk|, since that would allow the agent to select
any superset of Dk as its query set, which in turn would guarantee that the agent will be
able to select the EVOI-optimal k-response query for any of the possible uncertain decision
problems it turns out to face. Similarly, the answer would be yes ifm ≥ |Ψ|, since the agent
could select the set of decision queries comprised of each of the EVOI-optimal decision
queries for each ψ ∈ Ψ. For the general case, however, the answer is unclear. If the answer

134

is no, the natural question to ask next would be whether the agent can restrict attention to
subsets of k-response decision-set queries without risk of expected EVOI-loss.

135

BIBLIOGRAPHY

Ali E. Abbas. Entropy methods for adaptive utility elicitation. IEEE Transactions on
Systems, Man, and Cybernetics, Part A, 34(2):169–178, 2004.

Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learn-
ing. In Proceedings of the Twenty-First International Machine Learning Conference
(ICML), 2004.

Valentina Bayer-Zubek. Learning diagnostic policies from examples by systematic search.
In Proceedings of the Twentieth Conference on Uncertainty in Artificial Intelligence
(UAI), pages 27–34, 2004.

Richard Bellman. A markovian decision process. Indiana Univ. Math. J., 6:679–684, 1957.
ISSN 0022-2518.

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scien-
tific, 1st edition, 1996. ISBN 1886529108.

Edwin V. Bonilla, Shengbo Guo, and Scott Sanner. Gaussian process preference elicita-
tion. In Proceedings of the Twenty-Fourth Conference on Neural Information Processing
Systems (NIPS), pages 262–270. 2010a.

Edwin V. Bonilla, Shengbo Guo, and Scott Sanner. Gaussian process preference elicita-
tion. In Proceedings of the Twenty-Fourth Conference on Neural Information Processing
Systems (NIPS), pages 262–270, 2010b.

Craig Boutilier, Richard S. Zemel, and Benjamin Marlin. Active collaborative filtering.
In Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence
(UAI), pages 98–106, 2003.

Darius Braziunas. Minimax regret based elicitation of generalized additive utilities. In
Proceedings of the Twenty-Third Conference on Uncertainty in Artificial Intelligence
(UAI), 2007.

Darius Braziunas and Craig Boutilier. Local utility elicitation in GAI models. In Pro-
ceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence (UAI),
pages 42–49, 2005.

Darius Braziunas and Craig Boutilier. Elicitation of factored utilities. AI Magazine, 29(4):
79–92, 2008.

136

Urszula Chajewska, Daphne Koller, and Ronald Parr. Making rational decisions using
adaptive utility elicitation. In Proceedings of the Seventeenth National Conference on
Artificial Intelligence (AAAI), pages 363–369, 2000.

Sonia Chernova and Manuela Veloso. Interactive policy learning through confidence-based
autonomy. Journal of Artificial Intelligence Research (JAIR), 34:1–25, 2009.

David A. Cohen, Martin C. Cooper, Peter G. Jeavons, and Andrei A. Krokhin. The com-
plexity of soft constraint satisfaction. Artificial Intelligence, 170(11):983 – 1016, 2006.
ISSN 0004-3702.

David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active learning with statistical
models. Journal Of Artificial Intelligence Research (JAIR), 4:129–145, 1996.

Robert Cohn, Edmund Durfee, and Satinder Singh. Comparing action-query strategies in
semi-autonomous agents. In Proceedings of the Twenty-Fifth Conference on Artificial
Intelligence (AAAI), pages 1102–1107, 2011.

Robert Cohn, Satinder P. Singh, and Edmund H. Durfee. Characterizing EVOI-sufficient
k-response query sets in decision problems. In Proceedings of the Seventeenth Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS), pages 131–139,
2014.

Sanjoy Dasgupta. Analysis of a greedy active learning strategy. In L.K. Saul, Y. Weiss, and
L. Bottou, editors, Proceedings of the Seventeenth Conference on Neural Information
Processing Systems (NIPS), pages 337–344. MIT Press, 2004.

Dearden, Friedman, and Andre. Model based Bayesian exploration. In Proceedings of
the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI), pages 150–159,
1999.

Søren L. Dittmer and Finn V. Jensen. Myopic value of information in influence diagrams.
In Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence
(UAI), pages 142–149, 1997.

Michael O. Duff. Design for an optimal probe. In ICML, pages 131–138, 2003.

M. E. Dyer and A. M. Frieze. On the complexity of computing the volume of a polyhedron.
SIAM Journal on Computing, 17(5):967–974, 1988.

Robert M. Fano and W. T. Wintringham. Transmission of information. Physics Today, 14:
56, 1961.

Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in
active learning and stochastic optimization. Journal of Artificial Intelligence Research
(JAIR), 42:427–486, 2011.

Shengbo Guo and Scott Sanner. Real-time multiattribute Bayesian preference elicitation
with pairwise comparison queries. In Proceedings of the 13th International Conference
on Artificial Intelligence and Statistics (AISTATS), 2010.

137

Kshitij Judah, Alan Fern, and Thomas G. Dietterich. Active imitation learning via reduction
to I.I.D. active learning. In Proceedings of the Twenty-Eighth Conference on Uncertainty
in Artificial Intelligence (UAI), pages 428–437, 2012.

Andreas Krause and Carlos Guestrin. Near-optimal value of information in graphical mod-
els. In Conference on Uncertainty in Artificial Intelligence (UAI), July 2005.

Andreas Krause and Carlos Guestrin. Near-optimal observation selection using submodular
functions. In National Conference on Artificial Intelligence (AAAI), Nectar track, July
2007.

Andreas Krause, Jure Leskovec, Carlos Guestrin, Jeanne VanBriesen, and Christos Falout-
sos. Efficient sensor placement optimization for securing large water distribution
networks. Journal of Water Resources Planning and Management, 134(6):516–526,
November 2008.

Marek Kuczma. An Introduction to the Theory of Functional Equations and Inequalities:
Cauchy’s Equation and Jensen’s Inequality. Springer Science & Business Media, 2009.

Manuel Lopes, Francisco Melo, and Luis Montesano. Active learning for reward estima-
tion in inverse reinforcement learning. In Proceedings of the European Conference on
Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML PKDD), pages 31–46, 2009.

Andrew McCallum and Kamal Nigam. Employing EM and pool-based active learning for
text classification. In Proceedings of the Fifteenth International Conference on Machine
Learning, ICML ’98, pages 350–358, 1998.

Francisco S. Melo and Manuel Lopes. Multi-class generalized binary search for active
inverse reinforcement learning. CoRR, abs/1301.5488, 2013.

G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of approximations for maxi-
mizing submodular set functions–I. Mathematical Programming, 14(1):265–294, 1978.

Robert D. Nowak. The geometry of generalized binary search. IEEE Transactions on
Information Theory, 57(12):7893–7906, 2011.

Joelle Pineau, Geoffrey Gordon, and Sebastian Thrun. Anytime point-based approxima-
tions for large POMDPs. Journal Of Artificial Intelligence Research (JAIR), 2006.

Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In Pro-
ceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJ-
CAI), pages 2586–2591, 2007.

Burr Settles. Active learning literature survey. Technical Report 1648, University of Wis-
consin – Madison, 2009.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998.

138

Paolo Viappiani and Craig Boutilier. Optimal Bayesian recommendation sets and myopi-
cally optimal choice query sets. In Proceedings of the Twenty-Fourth Conference on
Neural Information Processing Systems (NIPS), pages 2352–2360, 2010.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. A Bayesian approach for policy learning
from trajectory preference queries. In Proceedings of the Twenty-Sixth Annual Confer-
ence on Neural Information Processing Systems (NIPS), pages 1142–1150, 2012.

Tong Zhang and Frank J. Oles. A probability analysis on the value of unlabeled data for
classification problems. In Proceedings of the Seventeenth International Conference on
Machine Learning, 2000.

139

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	Abstract
	Introduction
	Problem Statement
	Approach
	Uncertainty-based Query Filtering
	Decision Query Projection

	Contributions

	Background
	Preliminaries
	Decision-Making under Uncertainty
	Querying

	Query Selection Problem
	Related Work
	Sequential Decision-Making
	Markov Decision Processes
	Partially Observable MDPs and Belief State MDPs
	Key Challenges in Query Selection

	Knowledge Acquisition
	Active Learning
	Active Sensing

	Querying in Decision Problems

	Summary

	Query Selection in Sequential Decision Making
	Setting
	Bayesian MDPs
	EVOI in Sequential Decision-Making

	Selecting Transition and Reward Queries
	Dirichlet Priors and Transition/Reward Query Semantics
	Dirichlet Transition Uncertainty Parameterization and Transition Queries
	Dirichlet Reward Uncertainty Parameterization and Reward Queries

	Computing Expected Value of Information for Reward and Transition Queries
	Empirical Results
	Experimental Procedure
	EMG Optimality under Myopic Assumptions
	Post-Query Updates
	Sequences of Queries
	Online Query Asking

	Selecting Action Queries under Reward Uncertainty
	Computing Expected Value of Information for Action Queries
	Active Sampling
	Computation-Limited Scenarios and Hybrid Approach
	Comparisons
	Puddle World
	Driving Domain

	Conclusions

	Wishful Query Selection: Selecting from the k-Response Query Set
	Problem Formulation
	Summary of Theoretical Results
	Myopic k-Response Query Selection
	Nonmyopic k-Response Query Selection
	Expected Value of Information for Query Trees
	Decision Queries and Decision-Set Queries in Nonmyopic Query Selection

	Algorithms for k-Response Query Selection
	Myopic k-Response Query Selection
	Nonmyopic k-Response Query Selection

	Discussion

	Selecting from Arbitrary Subsets of k-Response Queries via Wishful Query Projection
	Askable Query Selection Setting
	Decision Entropy and Query Response-Entropy
	Approaches for Askable Query Selection
	MEDER Query Selection Algorithm
	Wishful Query Projection
	Directed Expected Entropy Reduction (DEER)
	DEER Computational complexity
	EVOI-loss performance bound for DEER

	Directed Mistake Volume Minimization (DMVM)
	DMVM EVOI-loss

	Summary of Algorithms and Results
	Discussion

	Empirical Study of Wishful Query Projection in Askable k-Response Decision Query Selection
	Askable Decision Query Setting
	Wishful Query Projection Algorithms
	Askable Evaluation
	EVOI-loss upper bound for AskEnum-AskEval

	Experiments
	Setup
	Empirical study of DEER for Askable Decision Query Selection
	Experiment 6.1: Uniformly Random Decision Sets
	Experiment 6.2: Askable Decisions as Doable Decision Subsets
	Experiment 6.3: Doable Decisions with High Risk and Varied Askability
	Experiment 6.4: Doable Decisions with Varied Risk and Limited Askability

	Empirical performance of DEER approximations
	Computational Performance

	Discussion
	Appendix
	Value-based Decision Replacement
	Greedy AskEnum-DoEval

	Conclusions
	Summary of Contributions
	Future Work
	Query Selection in Sequential Decision-Making
	Implementing k-Response Decision Query Selection
	When to Query?

	Extending Wishful Query Projection
	Optimizing k
	Informed Wishful Query Selection

	EVOI-Sufficiency
	EVOI-Necessity
	EVOI-Sufficiency in Structured Settings
	EVOI-Sufficiency for Selecting Query Sets

	Bibliography

