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ABSTRACT

Measurements to Elucidate the Mechanism of Thermal and Radiation Enhanced
Diffusion of Cesium, Europium, and Strontium in Silicon Carbide

by

Shyam S. Dwaraknath

Chair: Gary S. Was

Containment of fission products (FP) within the TRISO fuel particle is critical to the

success of the very high temperature reactor (VHTR). Over sixty years of experience

developing and testing this fuel has yet to identify the mechanism by which several

key fission products (cesium, europium, and strontium) escape through intact SiC at

temperatures between 900◦C and 1, 300◦C.

A novel diffusion couple was developed that was successful in making the first

measurements of fission product diffusion in SiC. This design allows for the isolation of

thermal diffusion and investigation of radiation enhanced diffusion using ion irradiation

as a simulant for neutron radiation damage. The thermal and radiation enhanced

diffusion of cesium, europium, and strontium were measured between 900◦C and

1, 300◦C. The ion irradiation significantly enhanced the diffusion of all three fission

products with enhancement factors ranging from 100× to 107× over thermal diffusion.

All three fission products exhibits mixed diffusion kinetics between 900◦C and

1, 300◦C under purely thermal conditions, and between 900◦C and 1, 100◦C under ion

irradiation. This indicates that both bulk and grain boundary diffusion are active

xv



mechanisms for fission product release. A defect reaction model indicates that fission

product diffusion can occur on both the silicon or carbon sub-lattices. Comparison of

cesium diffusion with the literature suggests that the best quality TRISO fuel should

exhibit minimal cesium release and that cesium release is a good indicator of TRISO

fuel failure.
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CHAPTER I

Introduction

Current very high temperature reactor (VHTR) designs use TRISO fuel to permit

operation at temperatures over 900◦C. The TRISO fuel design consists of a kernel

of nuclear fuel that is coated with a layer of pyrolytic carbon (PyC), silicon carbide

(SiC) and a final layer of PyC. The SiC layer serves as the diffusion barrier that

prevents fission product (FP) release. Past national fuel qualification programs have

discovered that several fission products are able to escape the fuel particle through

intact SiC and that the release behavior of some of these FPs does not correlate with

any environmental variables. The FPs silver, palladium, and europium appear to

penetrate the SiC layer most easily [1–5]. Experience operating and testing TRISO

fuel has revealed significant in-pile silver release [2–7] with little to no out-of-pile

release [7–10] suggesting that irradiation is a key factor. More recently, transmission

electron microscopy (TEM) analyses of irradiated TRISO fuel have revealed a spatial

correlation of silver and palladium [2, 3, 9] There is little consistent information

on europium and strontium [2, 11], while palladium has not been measured until

very recently. There is no consensus on the mechanism of FP diffusion or the

key variables that affect it, even for the known releasers such as silver, palladium

and europium [3, 6]. Cesium, europium and strontium are all known releasers with

significant radiological health concern [12].
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Several hurdles have impeded progress in understanding the FP diffusion process.

First, the temperatures of interest, 900◦C to 1, 600◦C, are well above the melting

or boiling point of the FPs of interest, making traditional diffusion couples very

difficult to construct. Secondly, while FPs are able to migrate through intact SiC,

the expected solubilities in SiC are limited, making their detection difficult. These

first hurdles have been addressed by ion implanting FPs into SiC and then heat

treating the SiC to measure the diffusion of FPs. Unfortunately, this introduces the

FP at well over the solubility and introduces trapping sites via radiation damage,

which results in a heterogeneous microstructure of precipitates inlayed in the SiC

with little to no mobility for the FP. The subsequent diffusion measurements are

several orders of magnitude slower than what is expected from fuel release data.

Third, the data from fuel test programs can be divided into either in-pile release

data or out-of-pile accident test data. The in-pile data is valid for understanding

the radiation enhanced diffusion process, but is more limited in time as there are

no in-situ techniques to monitor FP release from fuel. The out-of-pile accident test

data forces the fuel to higher temperatures to accelerate the diffusion process and is

actively monitored in-situ, resulting in more detailed information, but is only valid for

understanding the thermal diffusion process. To validate against both sets of data,

the thermal diffusion process must first be isolated and measured, followed by the

radiation enhanced diffusion process.

This thesis aims to identify the mechanism of transport for three key FPs: cesium,

europium and strontium through SiC under thermal and radiation enhanced conditions

using a novel diffusion couple developed to overcome the hurdles of direct ion implantation

experiments and conventional diffusion couples. Chapter 2 introduces background on

SiC and the relevant microstructure, then diffusion theory and how it is measured,

before focusing on TRISO fuel, FP release data and attempts to isolate diffusion.

Chapter 3 provides the experimental procedure involved in fabricating the novel
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diffusion couples, the details of the high temperature annealing treatments, ion irradiations

to investigate RED and the diffusion analysis using time-of-flight secondary ion mass

spectrometry (ToF-SIMS). Chapter 4 presents the results of this extensive investigation.

Chapter 5 discusses the results and contextualizes the diffusion data with respect to

the FP release data. Chapter 6 presents conclusions and recommendations for future

work.
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CHAPTER II

Background

This chapter reviews the published literature relevant to the understanding fission

product diffusion in SiC and provides the context for the experimental study and

discussion. Section 1 reviews the properties of SiC relevant to this thesis. Section

2 reviews diffusion theory, the measurement methodologies and diffusion in similar

systems. Section 3 reviews the current state of TRISO fuel, the fission product release

data and attempts to isolate diffusion. The final section states the objective of this

thesis and outlines the approach to understanding fission product diffusion.

2.1 Silicon Carbide

2.1.1 Structure and Defects

SiC is a wide bandgap high temperature ceramic with a variety of different structures

or polytypes depending on the stacking sequence of the silicon-carbon planes as

depicted in Figure 2.1. The bonding in SiC is primarily covalent in nature, but

there is a small ionic component due to a difference in electro-negativity. The

microstructure and corresponding properties of SiC are a strong function of the

fabrication route. Only chemical vapor deposition (CVD) is able to produce highly

crystalline, pure and stoichiometric SiC, which is critical for irradiation stability [13].

Many of the polytypes of SiC are hexagonal or rhombohedral in nature, but only one
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is cubic: β-SiC or 3C-SiC, where 3 represents the number of stacks to repeat the

structure and C indicates it is cubic. It has a zinc-blende lattice structure, which

is two interpenetrating FCC lattices offset by a quarter of the body diagonal. All

other structures are classified together as α-SiC. β-SiC is the preferred polytype for

radiation environments due to its superior radiation damage tolerance [13].

Several different defects can form in SiC including vacancies, interstitials and

anti-site defects on either sub-lattice with varying charges. No experimental measurements

exist for either the formation or migration energy for defects in 3C-SiC. Since SiC

is a semiconductor, the formation and migration energies are strong functions of the

Fermi-level, which depends on the type and amount of impurities. Formation energies

for vacancies and interstitials calculated using density functional theory (DFT) show

large variations depending on the simulation parameters. For silicon, the vacancy

formation energies range from 5 eV to 10.7 eV and interstitial formation energies

range from 3 eV to 9 eV, with the neutral < 110 > split dumbbell being the most

stable interstitial configuration [14–22]. Vacancy migration barriers range from 2.4eV

to 3.6eV while interstitial migration barriers range from 1 to 1.4 eV. For carbon,

the vacancy formation energies range from 3.5 to 7 eV, and interstitial formation

energies range from 4.5 to 9.5 eV, with the neutral < 100 > split dumbbell being the

most stable. Vacancy migration barriers range from 3.5 to 5.2 eV, while interstitial

migration barriers range from 0.2 to 1.7 eV. DFT calculations of anti-site defect

formation energies have shown very little variation, ranging from 3.5eV to 4eV, in

comparison with vacancy and interstitial formation energies. Table 2.1 lists the defect

formation and migration energies used here. The lowest formation energy neutral

defects were chosen as the most appropriate for this study.
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2.1.2 Radiation Damage Response

Displacement energies for a two component system such as SiC depend on the

sub-lattice and the direction. The displacement energy varies from 18 to 71 eV

for carbon and from 36 to 113 eV for silicon [23–40], while the most widely used

direction-averaged values are 20 eV for carbon and 35 eV for silicon [41]. This

difference in displacement energies for silicon and carbon in the SiC system creates

an asymmetry in the displacement efficiencies with a ratio as high as five to one

carbon to silicon displacements [24, 28, 29, 32, 34, 38, 41–43]. Nearly ten percent of

all defects are anti-site defects, which are more stable than sub-lattice vacancies and

interstitials [27, 28, 32, 37, 44, 45]. The peak cascade displacement count increases as

a function of temperature which counteracts the increase in defect annihilation as a

function of temperature and results in a nearly constant number of Frenkel pairs after

the cascade has quenched as a function of temperature. SiC also exhibits a lack of

cascade clustering in comparison to metallic systems [27,28,43].

Microstructural evolution in cubic SiC has three distinct regimes [13]. Figure

2.2 diagrams these various microstructural observations in these three regimes as a

function of temperature and dose. Black dot damage and small loops are observed

at low temperature and/or fluence. Larger loop populations and Frank loops are

observed at intermediate temperatures over 800◦C and at moderate fluences on the

order of a dpa to a few 10’s of dpa. At very high doses, large dislocation loop networks

are observed as well as significant void density. SiC swells at all temperatures despite

the lack of voids at low temperatures and doses. Below the critical amorphization

temperature (150◦C), the strain induced by amorphization causes SiC to swell, but

saturates at approximately 10%. Above this temperature, the strain induced by

immobile point defects causes SiC to swell and the saturation swelling decreases with

increasing irradiation temperature. Above 900◦C vacancies becomes mobile and begin

to cluster into voids. Depending on the irradiation conditions, SiC has been observed
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to exhibit breakaway swelling as low as 1, 000◦C due to void growth.

2.2 Diffusion

2.2.1 Fundamentals

Solid state diffusion is the movement of atoms due to a gradient in chemical

potential. Fick’s first and second laws govern diffusion and are stated as:

J = −M∇µ (2.1)

∂C

∂t
= −∇ ·Mµ (2.2)

In an ideal system, the diffusion coefficient is independent of the concentration and

the chemical potential is directly proportional to the concentration. The proportionality

constant, the chemical activity, is absorbed into the diffusion coefficient:

µ ∝ γC

J = −D∇C
∂C

∂t
= D∆C

(2.3)

There are two environmental variables that could control diffusion: temperature

and radiation. Diffusion could be a purely thermal process in which the magnitude

increases with temperature. Radiation can affect diffusion by producing additional

defects that will accelerate the diffusion of atoms. In either case, the diffusion

coefficient follows an Arrhenius relationship:

D(T ) = D0exp

(
−EA
kT

)
(2.4)
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This expression requires both an activation energy (EA) for migration and a

pre-factor (D0). These definitions are used when the diffusion mechanism is not

known or can not be specified.

The diffusion coefficient for bulk diffusion is:

DB(T ) = DB
0 exp

(
−E

B
A

kT

)
(2.5)

where DB
0 is the pre-factor for bulk diffusion and EB

A is the activation energy for bulk

diffusion. The diffusion coefficient for grain boundary diffusion is:

DGB(T ) = DGB
0 exp

(
−E

GB
A

kT

)
(2.6)

where DGB
0 is the pre-factor for grain boundary diffusion and EGB

A is the activation

energy for grain boundary diffusion.

2.2.2 Bulk vs. Grain Boundary Diffusion

This thesis will focus on bulk and grain boundary diffusion as the two primary

mechanisms of diffusion as these are the most likely mechanisms for over-sized solute

diffusion.

The Fisher model has been used to describe the interplay between bulk and

grain boundary diffusion [46]. In this model, shown schematically in Figure 2.3,

the grain boundary is a high diffusivity, uniform, and isotropic slab embedded in a

low-diffusivity isotropic bulk crystal. No assumptions in grain boundary structure

such as orientation or crystallinity are made. The impurity atoms are introduced at

the surface and diffuse into either the bulk or into the grain boundary. Impurity atoms

are further allowed to diffuse from the crystal into the grain boundary or vice-versa.

Harrison subdivided this model into three classical regimes: Type A, where bulk

diffusion dominates, Type C where grain boundary diffusion dominates and Type B
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where both are comparable [47]. Figure 2.4 shows these three regimes schematically

in a simple polycrystalline material where the grain boundaries are separated by the

grain size (d), and the grain boundaries have a finite width (δ).

Type A diffusion is a limiting case regime of high temperature, long anneal times,

or small grain sizes. In all three cases the bulk diffusion front is large enough to cross

more than one grain. In this regime, the bulk diffusion distance is greater than the

spacing between grains:
√
DBt >> d. Tracer atoms are able to visit many grains

during the anneal time. The result is a system that obeys a single effective diffusion

coefficient:

Type A: Deff = Db (2.7)

Type C diffusion is the other limiting case, in which the particles travel only via

grain boundaries. Since there is no bulk diffusion, the effective diffusion coefficient is

the grain boundary diffusion coefficient.

Type C: Deff = Dgb (2.8)

Type B diffusion is the most complex, and describes the case where grain boundary

diffusion transports particles much further than bulk diffusion, but the overall mass

transport through the two mechanisms is comparable. This is the mixed diffusion

regime. Mathematically it is bound by the grain size and the grain boundary width:

sδ <<
√
DBt << d, where s is the segregation factor defined as the concentration

in the grain boundary divided by the concentration in the bulk directly adjacent to

the grain boundary and δ is the grain boundary width. As a result, particles are

able to move directly through the grain boundary, directly through the bulk crystal,

through the grain boundary and then the bulk , or through the bulk and then the

grain boundary. In this regime, Fick’s law is observed within the bulk and within the
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grain boundary, but the overall diffusion length is proportional to t
1/4 rather than

t
1/2 . Concentration profiles in this regime contain enough information to extract

the bulk diffusion coefficient (Db) and the term sδDGB, which is the product of the

grain boundary segregation factor, the grain boundary width, and the grain boundary

diffusion coefficient.

The grain boundary width and segregation factor are important characteristics in

understanding the atomistics of diffusion near and along grain boundaries. The grain

boundary width is relatively constant, and has been measured to be between 0.5 nm

and 2 nm for both self-diffusion and solute diffusion [48]. The segregation factor is

the ratio of solute atom concentration in the grain boundary to that in the bulk. It

is a thermodynamic quantity that drives equalization of the chemical potential at the

interface to that in the bulk. In the dilute limit it follows the Henry isotherm which

follows an Arrhenius relationship with a segregation energy Es that shows up as part

of the grain boundary activation energy for mixed diffusion measurements.

2.2.3 Bulk vs. Grain Boundary Diffusion Measurements

There is a large body of literature investigating bulk and grain boundary diffusion

in other systems. This work is a useful comparison to justify the model, bound

diffusion in SiC, and understand the atomistics of bulk vs. grain boundary diffusion.

Several systems have been studied using single and polycrystalline substrates to

isolate bulk and grain boundary diffusion. In general, these studies have proven

the validity of the Fisher model and Harrison regimes as means of understanding

this interplay [49–55]. There has also been some work looking at the interplay of

conventional bulk diffusion and fast pipe diffusion [51,55–57]. While the Fisher model

should apply here, the relative diffusivities in fast pipes, such as stacking faults and

dislocations, vs. the matrix does not seem to vary widely enough to create the

different regimes exhibited by bulk and grain boundary diffusion [55]. This effect has
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been isolated to well controlled single crystal samples, and has been shown to be an

enhancing factor for bulk diffusion in polycrystalline material [56].

Most of the work performed on bulk and grain boundary diffusion is limited

to the bulk dominant or mixed diffusion regimes [53]. As temperature rises, the

solubility of tracer atoms in the material increases, allowing for lower sensitivity

analysis methods. The grain boundary diffusion dominant regime is the lowest

temperature region, which results in very low solubility. Grain boundaries constitute

a small fraction of the sampled volume. These two aspects make grain boundary

diffusion measurements extremely difficult for all but model systems. It is still

necessary to make measurements in this regime to fully characterize grain boundary

diffusion and extract the grain boundary diffusion coefficient. It has only been a few

years since reliable systematic Type C regime measurements have been made due

to the production of carrier free radiotracers and proliferation of extremely sensitive

detectors with large counting efficiency and low background [53].

Few measurements have been made in the grain boundary diffusion dominant

regime due to their difficulty, and are limited to model systems such as silver in

copper or nickel in silver [53]. The diffusion of impurities in silver has been heavily

studied across all three diffusion regimes [49–52]. Figure 2.5-2.7 show the bulk

diffusion coefficient, the grain boundary diffusion coefficient, and the segregation

factor for self-diffusion as well as nickel, selenium, and tellurium diffusion in silver.

The segregation factor is calculated from the grain boundary diffusion coefficient in

the Type C and Type B regimes. Nickel and selenium are undersized solutes, while

tellurium is an over-sized solute. Selenium is weakly segregating, while tellurium is

strongly segregating to grain boundaries. While they both have high bulk diffusivities

, the strong segregation behavior of tellurium retards its grain boundary diffusivity

in comparison with selenium. The strong segregation behavior is an indication of a

trapping effect that degrades grain boundary diffusion.
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Diffusion measurements in polycrystalline samples probe the full spectrum of

available grain boundaries, resulting in an average grain boundary diffusion measurement.

Experiments with bi-crystals have been used to study grain boundary diffusion as a

function of grain boundary character. Orientation dependence of the grain boundary

diffusion coefficient can either be monotonic or have minima and maxima corresponding

to special orientations. Initial work investigating silver self-diffusion pointed to monotonic

dependence [51]. More recent work investigating gold diffusion in copper with very

fine step size in the misorientation angle shows local minima at the perfect Σ5

orientation [58]. Figure 2.8 shows the results of this study as a plot of the GB

diffusivity (P = sδDGB) of gold vs the tilt angle for [001] symmetric tilt bi-crystals in

copper with two different purities at two different temperatures and annealing times.

The grain boundary diffusivity exhibits a discontinuity at the perfect Σ5 orientation

and a minima at 36.5◦.

There is a significant body of work investigating diffusion in bulk crystalline

material. Diffusion models such as Kirkendall, Inverse-Kirkendall, and interstitial

drag rely on the binding of solutes to defects to explain how impurity atoms are able

to move about in the lattice. The atomistics of grain boundary diffusion are far more

complex. Ignoring the complexities of grain boundary structure, the atomistics of

grain boundary diffusion are still in their infancy [59, 60]. DFT and kinetic Monte

Carlo models have revealed some key points. The formation and migration energies

in grain boundaries are far lower than in the matrix and are highly site specific.

At low temperatures, well below the melting temperature, a defect mediated model

of diffusion in the grain boundary seems to still apply, but is complicated by the

heterogeneity of nucleation of defects and the multiplicity of diffusion paths. The

correlation factors are far more complicated due to the diversity of structure and the

migration barriers associated with an evolving path as defects themselves play an

important role in grain boundary structure. At high temperatures the presence of
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large concentrations of defects makes understanding grain boundary structure, and

the corresponding migration barriers very difficult. This is likely the case under

irradiation as there is a large super-saturation of defects and a large flux of defects

to sinks such as grain boundaries.

2.3 TRISO Fuel

2.3.1 Fission Product Release

While coated particle development began in the 1960’s with the British program

for their advanced gas reactors (AGR), significant experience fabricating and operating

TRISO fuel did not accumulate until it was chosen as the reference fuel for the German

high temperature gas reactor (HTGR) program due to the poor performance of BISO

fuel in containing FPs [1]. BISO Fuel consists of a fuel kernel that is coated with a

layer of low density carbon and a PyC layer. This design was successful in retaining

gaseous fission products but did nothing to stop solid fission product release. TRISO

was designed to retain solid fission products as well, but several FPs were observed

to penetrate through presumably intact SiC. Of these, only silver was quantified due

to its erratic release behavior. Using a 1D diffusion analysis Nabielek et al. [61] was

able to show that both the fractional release of silver and diffusion times correlated

well if the diffusion coefficient in the SiC was assumed to have the same activation

energy as the uranium oxide fuel (218 kJ/mol), but a factor of 100 higher value of D0.

At the time, it was not possible to pinpoint a diffusion mechanism in SiC that would

have this activation energy.

Bullock et al. [8, 62] measured diffusion coefficients in post irradiation annealing

experiments with fuel from the HRB-15b irradiation capsule as part of the first US

HTGR program in the 1980’s. TRISO fuel with UO2, UC2, and UCO, all with 88%

to 90% uranium loading, were irradiated in the High Flux Isotope Reactor (HFIR)
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to a burn up of 20% fissions per initial metal atom (FIMA) at 900◦C in several

capsules. Irradiation Microsphere Gamma Analysis (IMGA) indicated that TRISO

particles from capsule HRB-15b retained their full cesium and silver inventories during

irradiation. Post-irradiation annealing experiments were then conducted between

1, 200◦C and 1, 500◦C up to 10,000 hours. Cesium was retained in all particles

containing intact SiC, which provided a convenient method to separate diffusion of

other fission products through intact and failed SiC. UO2, UCO, and UC2 particles

released varying degrees of silver between 1, 200◦C and 1, 500◦C, with release fractions

as high as 65%. Diffusion coefficients were calculated assuming diffusion in the SiC

was rate limiting resulting in an activation energy of 410 kJ/mol. The release of silver

varied greatly from particle-to-particle rather than by fuel type, which suggested that

the kernel fuel type did not affect silver release and that the SiC layer was the only

inhibiting layer. If the lack of cesium release was in fact an indicator of intact SiC,

then most of the released silver had to diffuse through the SiC. No effort was made

to analyze strontium or europium.

More recently, Van der Merwe [5,11] analyzed silver release data from the German

HGTR program as well as analysis performed by ORNL on irradiated fuel from that

program. He was able to determine that 98% of the silver release was in particles

with intact SiC, while the remaining 2% could be accounted for by 2 factors: natural

uranium and thorium contamination of the graphite and defective SiC coatings. By

considering the error in chemical deconsolidation techniques as well as the IMGA

data provided by ORNL, he was able to calculate a design limit in-pile silver diffusion

coefficient and an activation energy. The calculated activation energy was a factor

of 4 smaller than the value derived from post irradiation annealing treatments by

Bullock et al. at 109 kJ/mol and a factor of 2 smaller than the than accepted value

of 218 kJ/mol reported by the IAEA [1]. The large difference in calculated diffusion

coefficients from various national fuel programs can have two sources: large differences
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in the quality of the TRISO fuel itself, or large differences in an intrinsic property

of the SiC. It has been theorized that differences in SiC coating parameters could

create different grain boundary networks, in both the distribution of grain boundary

character and location that could account for this large variation, which would affect

the diffusion of all solid FPs including cesium, strontium, and europium.

As part of the Japanese HTGR program, Minato et al. [6] have looked closely at

fission product profiles using energy disperse x-ray (EDS) analysis in TRISO fuel 5

years after irradiation in the Japan Materials Test Reactor (JMTR) between 1, 200◦C

and 1, 500◦C with up to 5% burn up FIMA. Palladium had accumulated at the

interface between the inner PyC and SiC and in some cases had corroded the SiC,

which results in a mixture of palladium silicide and excess carbon : SiC + 2Pd <

− > Pd2Si + C [63]. Other noble metals that are known to corrode SiC, such as

ruthenium and rhodium, were not detected near the SiC but primarily in the kernel.

Silver was not detected within any of the TRISO coatings. The lack of sensitivity

of EDS does not preclude the possibility that silver was in the TRISO coatings at

concentrations below what EDS could detect, but it does indicate that silver does not

segregate into precipitates in any of the TRISO coatings above the detection limits

of EDS.

In the late 1980’s, Schenk et al. [62] measured fission product concentrations in

cross section using electron micro-probe analysis (EPMA) on fuel irradiated in a

variety of reactors, including the High Flux Reactor (HFR) at Petten, the AVR, the

Dido reactor at Julich, and the HFR at Grenoble, only to find that silver was in

the inner PyC and kernel at concentrations of approximately 0.01% but not in the

SiC or the outer PyC. He then performed post-irradiation annealings up to 1,900◦C

with silver release fractions between 5% and 90% and examined the particles with

EPMA afterwards. EPMA profiles showed significant penetration of palladium and

ruthenium at higher temperatures. Cesium was detected in the SiC in particles
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annealed at 1,900◦C, but not at 1, 700◦C or lower. Small amounts of silver were

detected in the inner PyC in particles annealed at 1, 600◦C, regardless of the silver

release fraction. This suggests that silver solubility in SiC is extremely low. The high

temperatures necessary for cesium to penetrate SiC suggest that cesium solubility and

diffusion in SiC are also very small, but do not verify that a lack of cesium release

is an indicator for intact SiC for in-pile measurements where radiation can greatly

enhance both the solubility and diffusion.

More recently, the Next Generation Nuclear Plant (NGNP) program has had

success in producing lab scale and industrial scale TRISO fuel and irradiating it in the

Advanced Test Reactor (ATR) to 20% burn up FIMA between 1, 000◦C and 1, 200◦C

[5]. Figure 2.9 presents the fractional release of fission products from the AGR-1 test

campaign completed at Idaho National Laboratory (INL) broken into three sections,

in-pile release, release to the test train, release during high temperature annealing [3].

Lab-scale TRISO fuel was produced at INL and Oak Ridge National Laboratory

(ORNL). The test-fuel was then irradiated at the Advanced Test Reactor for 2 years,

before being analyzed for fission product release. The first section shows the range

of fission product release during irradiation. A dashed line signifies the amount of

fission product that would be released if a single particle was to fail and release its

full fission product inventory. Some of the fuel was subjected to thermal annealing

at elevated temperatures to simulate accident conditions. The fission product release

from these annealings is shown in the third section of Figure 2.9.

Preliminary isotopic assay of the graphite holders showed significant amounts of

silver release with large variations from compact to compact. Significant amounts

of palladium and lesser amounts of europium were also released from the TRISO

particles into the graphite holders. Gamma assay of the TRISO particles themselves

showed silver release fractions ranging from 0% to 60%. It was acknowledged that

there were significant temperature gradients in the test trains and that the fuel could
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have seen up to 300◦C differences in temperature depending on their radial and axial

location. Post-irradiation annealing of the compacts showed a large release of silver

upon ramp up to 1, 250◦C, followed by no release at high temperature [2]. The amount

of silver released in the annealing corresponded well with the amount of silver that

should have been in the graphite matrix in the compact due to release from the

TRISO particles during irradiation. Significant amounts of europium, palladium,

and strontium were also released from the TRISO particles during post-irradiation

annealing, greater than what would have been in the graphite. There was a correlation

in the europium and strontium release fractions, suggesting that the transport mechanism

for these fission products was the same. Electron microscopy revealed a large number

of palladium, uranium and silicon rich precipitates at the interface between the inner

PyC and the SiC with smaller palladium precipitates extending as far as a few µm into

the SiC [9]. Silver was identified in one precipitate at a triple junction suggesting that

palladium played a role in silver transport. Cesium and rhenium were also identified

in these precipitates. The post-irradiation and in-pile release data from this program

provides the most complete picture of what could be occurring for several FPs (cesium,

europium, and strontium) that have had little focus in the past.

2.3.2 Experiments and Simulations to Isolate Fission Product Diffusion

Nabielek et al. [61] attempted to isolate silver diffusion through SiC by ion implanting

silver into SiC plates produced in the same furnace used to coat SiC onto the fuel

particles, and annealed them at 1, 180◦C for 30 minutes. Rutherford backscattering

spectroscopy (RBS) analysis of the silver concentration profiles before and after

annealing showed no change in the silver concentration profile, indicating that silver

was immobile. The diffusion coefficient for the ion implantation experiment was

bounded by a maximum value of 10−19m2s−1, which is two orders of magnitude lower

than what was expected if the previous 1D analysis of silver release from TRISO fuel
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was valid.

Using a mesoscale kinetic monte carlo (KMC) model Meric de Bellefon [64] showed

that a network of fast and slow diffusion paths could account for the variability in the

diffusion coefficient of silver. Shrader et al. [14] showed that bulk diffusion of silver

through SiC can be ruled out due to the extremely large barrier for silver to enter

solution in SiC. His calculations also showed that the formation energies for defect

silver complexes, including the formation energy of the defect itself, were relatively

large (up to 9 eV), but their migration barriers were small. This suggested that if

an auxiliary process such as radiation damage could form these complexes, then the

resulting bulk diffusion would be very fast.

MacLean et al. [65] suggested that nano-cracks could be the fast transport paths.

She annealed silver ion implanted SiC samples at temperatures up to 1, 500◦C for

up to 500 hours and observed no change in the silver concentration profiles. From

this, she concluded that silver did not diffuse in SiC. Rather, using a subset of the

silver release data from the German HTR program, she showed that above a critical

temperature of 962◦C (the melting temperature of silver), there was a marked increase

in the in-pile silver release fraction for previous TRISO campaigns. This suggested

a gas phase transport mechanism, and since the release was through intact SiC, the

network of mechanical pathways (nano-cracks) was too small to resolve. No direct

evidence of gas-phase transport or the presence of nano-cracks was presented.

Recently, Honorato-Lopez et al. [66,67] showed that silver could diffuse along the

grain boundaries in SiC at higher temperatures. They trapped a thin layer of silver

between two layers of SiC in a spherical diffusion couple. The outer layer of SiC

was deposited using a low temperature polymer pyrolysis technique, so it was not

considered in further analysis. Silver was observed in the form of nodules along grain

boundaries at temperatures as low as 1, 200◦C in the inner SiC. Unfortunately, they

did not take into account the ability of pure silver to dissolve silicon from SiC [68],
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which in turn acts as a mechanism for the injection of vacancies that could enhance

transport in SiC.

Another proposed process relies on the corrosive nature of palladium, which is

produced in much higher yield than silver, to provide for a transport process into and

through SiC [6, 69, 70]. Palladium was co-deposited onto SiC substrates via physical

vapor deposition (PVD) and then annealed at 900◦C to 1, 000◦C. Both palladium and

silver were observed to penetrate along grain boundaries past the reaction front for

palladium-SiC corrosion. Correlation of palladium nodules ahead of silver nodules

along grain boundaries was used as evidence for a chemically enhanced transport

process. Still, these experiments have not considered the dependence of transport on

concentration and none have been in the 1, 100◦C to 1, 300◦C temperature range of

interest to an operating VHTR, or up to 1, 600◦C, which would mimic more closely

the out-of-pile release experiments [71].

The only conclusive result seen in the literature is that silver transport in direct

ion implanted SiC is several orders of magnitude slower than what is seen in either

post-irradiation annealing or in-pile release of TRISO fuel [10, 61, 65, 72]. While

diffusion couples have had limited success in providing clues to the underlying transport

mechanisms, they have only focused on silver. No consensus exists on a process

of silver transport in TRISO fuel, with or without irradiation. No mechanistic

understanding of cesium, europium, or strontium transport through SiC exists in

the published literature.

2.4 Objective and Approach

The objective of this thesis is to determine the mechanism of transport

for cesium, europium, and strontium through SiC under prototypical very

high temperature reactor (VHTR) conditions.

This work will focus on cesium, strontium and europium diffusion beacuse of their
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importance for licensing from a radiological health perspective [73], their significant

release as observed by the NGNP program [2] and the similarities and differences in

their chemical behavior. There are two environmental variables that could control FP

transport through SiC: temperature and radiation. While palladium could enhance

FP transport by altering the local microstructure and chemistry, the evidence from

TRISO irradiations suggests that this may only occur with silver, not cesium, strontium

or europium. Further, FP release measurements by the NGNP program reveal that

in-pile strontium and europium release are comparable with release from out-pile

accident tests at temperatures of 300◦C to 500◦C higher than irradiation conditions

[2]. This suggests that the effect of radiation is dominant and will be the primary

focus of this thesis.

There are many pathways through which FPs could potentially be transported

through SiC. Three of the most likely pathways/mechanisms are bulk diffusion, grain

boundary diffusion, and vapor transport along nano-cracks. The majority of the SiC

volume is made up of grains, each of which constitutes a single crystal. FP diffusion

through the bulk of the SiC crystal is therefore an obvious potential pathway for

escape. While grain boundaries represent a substantially smaller fraction of the SiC

volume, their more open structure along with the disruption in bonding can raise

both the mobility and local thermodynamic solubility of FP (through segregation).

If nano- or micro-cracks are present, they would constitute very fast short-circuit

diffusion pathways for FP. Transport along interconnected crack networks can occur

either through surface diffusion, or in gaseous form.

While nano-cracks are a convenient mechanism to explain the variability in silver

release, their existence is still speculative. Our own research has shown no evidence

of interconnected nano/micro-cracks in representative SiC substrates as observed by

both HRTEM and helium porisimetery, which can resolve surface porosity down to

tens of nanometers. Furthermore, a network of nano-cracks would be mechanically
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similar to a large crack in the SiC. This would facilitate the release of all FPs, which

is not necessary for significant europium, palladium, silver, or strontium release.

A systematic study to determine the mechanism for FP diffusion first has to

determine the pre-factors, and activation energies for both bulk and grain boundary

diffusion. Then the diffusion coefficients can be calculated as a function of temperature

under purely thermal and irradiation conditions. Comparison of the diffusion coefficients

for bulk and grain boundary diffusion will then yield which mechanism is dominant

under various conditions.
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Lattice
Ev
f

(eV)
Ev
m

(eV)
Ei
f

(eV)
Ei
m

(eV)

Silicon 5.9 [22] 2.65 6.0 [16] 0.74 [37]
Carbon 6.8 [22] 2.82 6.3 [16] 1.53 [37]

Table 2.1: Formation and migration energies for interstitial and vacancies in 3C-SiC
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Figure 2.1: The stacking sequence for 4 different SiC polytypes. The first is 3C-SiC
which is the only cubic structure. The second and third are two hexagonal structures
with a 4 place and 6 plane repeat sequence. The final is a rhombohedral structure
with a 15 plane repeat sequence [13]
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Figure 2.2: Microstructural evolution in 3C-SiC under neutron and ion irradiation [13]
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Figure 2.3: The Fisher model of bulk and grain boundary diffusion where the grain
boundary is a thin infinite slab of material embedded in the matrix. This model serves
as the basis for all grain boundary diffusion coefficient calculations used today [46,53].

25



(a) (b) (c)

Figure 2.4: Schematic showing the concentration profile evolutions for the three
regimes in Harrison diffusion model: (a) Bulk dominant diffusion (b) Combination of
grain boundary and bulk diffusion at intermediate temperature (c) Grain boundary
dominant diffusion at low temperature.
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Figure 2.5: Arrhenius diagram of bulk diffusion and impurity diffusion in Ag [53]
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Figure 2.6: Arrhenius diagram of grain boundary diffusion and impurity diffusion in
Ag [53]
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Figure 2.7: Arrhenius diagram of the segregation factor for impurity diffusion in
Ag [53]
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Figure 2.8: Orientation dependence of the diffusivity (P = sδDGB) of gold in copper
[001] tilt symmetric grain boundaries for two different purities of copper: Cu1 and
Cu2 at two different diffusion lengths. [58].
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Figure 2.9: Fractional fission product release from the AGR-1 lab-scale fuel irradiation
at the advanced test reactor at Idaho National Laboratoy (INL) [3].
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CHAPTER III

Experimental Method

3.1 Materials

Polycrystalline SiC was chosen as the substrate material to be as representative

of TRISO SiC as possible. The SiC substrates were supplied by Rohm and Haas

Chemicals LLC in the form of 1 cm × 1 cm × 0.6 mm plates made by grinding and

cutting a larger plate grown by CVD with the growth direction normal to the surface.

X-ray diffraction (XRD) analysis was conducted using a Rigaku X-ray diffractometer

with Cu Kα radiation from 30◦ to 110◦ with a step size of 0.01◦ to identify if any phases

other than β-SiC were present. The XRD spectrum, shown in Figure 3.3 contains

peaks that match only with β-SiC. There is also a broad plateau near the (111) peak

that is characteristic of stacking faults in SiC which was verified in TEM [74].

Previous electron back scatter diffraction (EBSD) analysis presented in Figure

3.1 showed large and small columnar grains in the growth direction with an average

grain size of 1.5µm with grains as large as 14µ [74]. The microstructure of TRISO SiC

depends on the deposition conditions which have been varied over the past 60 years

to reduce the dominant fuel failure mode of that test campaign. Figure 3.2 presents

inverse pole maps of the four different variants of SiC used in the AGR-1 TRISO fuel

irradiation campaign [75]. In all four variants, large grains tend to be columnar in

the growth direction, while small grains are equiaxed. The grain size ranges from
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2µm for variant 1, to 600 nm for variant 4. Variant 1 is the most similar variant to

the SiC used here with grains ranging in size from 500 nm to 8µm, with an average

grain size of 2 µm. Grain boundary character determination (GBCD) of TRISO SiC

showed a microstructure dominated by random high angle boundaries and a lack of

low-Σ grain boundaries as is the case in the material used here [76].

3.2 Diffusion Couple Fabrication

The fabrication of the diffusion couple is divided into 4 steps, as shown schematically

in Figure 3.4 : substrate preparation, PyC deposition, FP implantation, and SiC cap

deposition. Proper substrate preparation resulted in a sharp substrate/host layer

interface to accurately measure the diffusion depth of FPs into the SiC. The PyC

host layer was deposited via CVD in order to be chemically similar to TRISO PyC.

FP implantation into the PyC introduced the FP and provided the capability to

investigate a wide range of elements. A final SiC diffusion barrier layer was deposited

using plasma enhanced CVD (PECVD) to prevent premature loss of the FPs during

annealing.

3.2.1 Substrate Preparation

The substrates were ground flat using 9µm diamond solution and polished using 3

µm, 1µm and 0.25 µm diamond solutions for 5 minutes per step prior to a vibratory

polish using 0.02 µm colloidal silica for 4 hours. Surface roughness, measured using

an atomic force microscope (AFM) sampling 8,000µm2 was 22 nm Ra. While the

chemo-mechanical polishing (CMP) mechanism of the vibratory polish removes the

damage layer introduced by conventional mechanical polishing, it also introduces a

surface contamination layer [77]. A final plasma cleaning, using a 500 W argon plasma

at 130 mTorr for 5 minutes, removed this layer and improved the surface finish by

reducing the surface roughness to 6 nm Ra.
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3.2.2 PyC Deposition

Figures 3.8a-3.8c shows simulations of the implanted concentration profile and

displacement damage introduced into PyC at 400 keV to a fluence of 1016 cm−2.

The PyC thickness was standardized to 300 nm for all the elements investigated to

ensure that similar concentrations were achieved. PyC depositions were performed

in a vertical flow hot-walled graphite reactor at 1, 300◦C and 15 Torr. A schematic

of the furnace is shown in Figure 3.5. The reactant enters the hot-zone from the top

allowing for a large uniform deposition area within the furnace. A sight glass is used

to ensure the temperature is accurate using a pyrometer calibrated to the emissivity

of the graphite insulation on which the samples sit on. A vacuum connection on the

bottom allows for evacuation prior to heat up and ensures that the reactant is flowing

vertically within the reaction zone to ensure uniform coatings. A schematic of the gas

mixing system is shown in Figure 3.6, which allows for variable mixtures of ultra-high

purity (UHP) argon and propylene using two mass flow controllers. The system can

divert the flow to either the top port for PyC depositions or to the sight glass for

thermal annealing treatments using two 3-way ball valves. A vent port equipped with

a wide range diaphragm manometer allows for pressure monitoring from 1,500 Torr

down to 1 mTorr.

Prior to deposition of PyC, the samples were cleaned in baths of acetone, methanol,

and finally ethanol in a sonicator for 5 minutes each. They were then dried using a

99.99% nitrogen line before being loaded into the furnace equidistant from each other

and the edges of the graphite insulation. The furnace was then sealed and evacuated

to 50 mTorr using a two-stage oil-sealed rotary vane pump. The furnace pressure is

then raised to 15 Torr by flowing 50 sccm of UHP argon. A throttle valve was used

to control pumping speed to stabilize this pressure. The furnace was then heated to

1, 300◦C over a 1-hour period. The temperature was verified using a spot pyrometer

measured on the graphite support on which the samples rest. After allowing the
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temperature to settle to within 5◦C of the 1, 300◦C set point, 21.6 sccm of 99.5%

purity propylene was introduced via another mass flow controller and the deposition

proceeded for a total of 35 minutes. When the deposition was complete, the propylene

flow was cut off, and the reactor was cooled down over 4 hours to prevent thermally

shocking the deposited PyC.

Coating thicknesses were measured using Rutherford backscattering spectrometry

(RBS) performed at the Michigan Ion Beam Laboratory (MIBL). A 1 mm diameter 2

MeV He++ beam was placed on the sample at normal incidence to the sample surface

with a detector at a backscatter angle of 160◦. Figure 3.7 shows a RBS spectrum

for a 308 nm PyC deposition on a SiC substrate. The green arrow marks the front

surface energy for the PyC, while blue arrows mark the width of the carbon plateau

from the PyC and the silicon edge from the SiC. The PyC thickness was calculated by

simultaneously fitting the width of the carbon plateau and the shift down in energy of

the silicon edge due to the PyC, assuming the PyC was at the theoretical density of

2.21 g/cm3. This yielded a thickness of 306±10 nm as measured over 5 batches of 10

samples. The sample roughness, as measured over 8,000µm2 using AFM, increased

to 11 nm Ra after PyC deposition.

3.2.3 Fission Product Implantation

FP implantation was performed at the Michigan Ion Beam Laboratory (MIBL)

using a National Electrostatics Ion Implanter. All of the investigated FPs: cesium,

europium and strontium were implanted at 400 keV to a fluence of 1016cm−2. The

implantation energy was chosen to maximize the implanter efficiency, while the fluence

was chosen to be in the order of magnitude of the FP yield per unit IPyC/SiC interface

area for a TRISO particle at 20% burn up [78]. The implantation flux was limited

to 1.5× 1011cm−2s−1 to maintain the sample at room temperature as measured by a

thermocouple located behind a sample. The resulting FP concentration profile, was
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measured using RBS and was found to be Gaussian in shape and contained within

the PyC. Implantation peak depths ranged from 60 nm for europium to 160 nm for

strontium. Peak concentrations ranged from 1.9% to 0.95%. Full width half-maxima

(FWHM) ranged from 53 nm to 88 nm. Figure 3.8 shows the implantation and

damage profiles, as calculated by SRIM in the quick Kinchin-Pease mode, using a

carbon displacement energy of 24 eV [79] for 400 keV cesium, europium and strontium

into PyC to a fluence of 1016cm−2. Table 3.1 lists the FP implant energy, range, full

width half maximum (FWHM) and peak concentration. The high fluence induces a

large amount of radiation damage in the PyC. Most of the implanted FP is within

the expected amorphous region, which occurs over 1 dpa [80], while a small portion

of the PyC near the substrate is left undamaged.

3.2.4 SiC Cap Deposition

It was found early on that FPs easily migrate through the front surface and out

the sides of the PyC layer at annealing temperatures of 1, 100◦C to 1, 600◦C, well

over their respective melting points. Several coatings were tested for their efficacy in

retaining fission products within the diffusion couple. Physical vapor depositions of

molybdenum and tungsten delaminated from the PyC at 900◦C. Sputter depositions

of SiC proved to be ineffective, allowing all of the implanted FP to be released from the

diffusion couple after annealing at 1, 100◦C for 10 hours. It was postulated that the

FP was diffusing out the edges of the PyC coating. SiC coatings created by pyrolyzing

spin-coated polycarbosilane (PCS), which covered the edges of the diffusion couple

as well as the front surface, showed promise in retaining both silver and cesium

at 1, 100◦C. The coatings were difficult to reproduce, exhibited a high degree of

non-uniformity and greatly enhanced the roughness of the diffusion couple.

PECVD SiC was found to create a reproducible, high density, low roughness

coating and so it was chosen as the diffusion barrier to retain FPs within the PyC and
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thus, allow for diffusion into the SiC substrate. This process creates a reproducible,

high density, low roughness coating. The thickness of this cap was limited to a

maximum of 100 nm in order to retain the ability to accurately measure FP concentration

profiles in the PyC via RBS. Initial tests showed that a 50 nm thick layer was sufficient

to retain FPs within the diffusion couple. The PECVD SiC was deposited using

a Plasmatherm 790 PECVD tool. The chamber was evacuated using a two-stage

turbo-drag pump backed by a semiconductor pump to a pressure of 10−8 torr before

being heated to 250◦C. Then, 1,000 sccm of argon was flown into the chamber for 2

minutes to allow the throttle valve to stabilize the chamber pressure at 1 Torr before

flowing 50 sccm of methane and 5 sccm of silane. The plasma was powered by a 13.56

MHz RF generator, which provides 0.05 W cm−2 for 5 minutes. The chamber was

then re-evacuated to 10−8 torr and cooled before removing the diffusion couples.

Figure 3.9 shows the RBS spectrum for a strontium diffusion couple after being

coated with the PECVD SiC. Green arrows mark front surface energies. The peak

closest to the strontium surface energy is from the strontium implantation into the

PyC. The PECVD cap primarily shows up as the silicon peak at the 1143 keV. There

is also an oxygen peak and nitrogen peak that are contaminants in the PECVD SiC

due to contaminants in the argon. The silicon to carbon ratio was measured from the

ratio of the silicon peak to the height of the step in the carbon edge that marks the

transition from PECVD SiC to PyC. The silicon:carbon ratio ranged between 1.0 and

1.2. The sample roughness did not change from 22 nm Ra measured post-implantation

as a result of the PECVD deposition. A cross-section sample of the PECVD SiC cap

on PyC was prepared for transmission electron microscopy (TEM) using the focus

ion beam (FIB) technique. A diffraction analysis of the SiC cap revealed that it was

amorphous, as expected of the low temperature process. The density, calculated from

the areal density measured by RBS and the thickness measured in TEM, yielded a

value of 2.64 g/cm−3 or 83% of the theoretical density of SiC.
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Leakage of FPs through the cap was observed in all samples with diffusion couples

retaining larger total quantities of the implanted FP at lower temperatures. Total

cesium leakage ranged from 0% at 900◦C to 15% at 1, 300◦C, while total strontium

and europium leakage ranged from 8% at 900◦C to 92% at 1, 300◦C. Ion irradiated

diffusion couples exhibited the same amount of leakage as their thermally annealed

counterpart. Higher temperature anneals increased the likelihood of SiC cap loss and

in combination with the FP leakage through the cap limited this study to 1, 300◦C. ‘

3.3 High Temperature Annealing

All thermal annealing treatments were performed in a high temperature graphite

furnace with a custom gas delivery system that allows for PyC deposition or ultra

clean annealing. Ultra high purity (UHP) (99.995%) argon was passed through an

inert gas purifier to prevent oxygen contamination and is admitted to the furnace

via a mass flow controller with an upstream solenoid to allow for vacuum operation.

An oil-based rotary vane rough pump is used to create a temporary vacuum and to

allow for flushing and backfilling at the beginning of operation. Vacuum is measured

using a wide range diaphragm manometer that is sensitive down to 1 mTorr. Argon

is introduced through the top port during the furnace flushing operation or a side

quartz window port during high temperature annealing. A calibrated boron-graphite

thermocouple provides feedback for power control. The calibration is performed at

900◦C, 1, 100◦C, 1, 300◦C, and 1, 500◦C using a Type C thermocouple that can be

inserted through a top feed-through. A graphite crucible with a cavity positioned

at the sight-line of the quartz window is also calibrated for emissivity for use with a

pyrometer. During operation the temperature control is from the boron graphite

thermocouple, but is validated using the pyrometer. A calibration is performed

after every 4 annealing treatments or 2 weeks to ensure the accuracy of the furnace

temperature remained at 1% of the measured temperature.
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Diffusion couples were cleaned in a sonic cleaner filled with ethanol to remove any

surface contaminants and then loaded into a graphite crucible in the furnace. The

furnace was then evacuated to 100 mTorr and back-filled with argon once to flush

the argon lines and inert gas purifier, followed by a second evacuation to 100 mTorr.

Power was slowly applied and the furnace was heated to 400◦C in 30 minutes and

then held at this temperature in order to remove water and nitrogen contaminants

in the graphite felt insulation. Once the vacuum returned to 100 mTorr, ultra high

purity argon was admitted to establish a pressure of 10 Torr within the furnace and

held for 15 minutes to continue to flush contaminants. The vacuum pump is then

isolated and the furnace is pressurized to 800 Torr to ensure that air could not leak

into the furnace. The furnace is then ramped to operating temperature at ramp rates

of 200◦C/hr up to 900◦C, and then 100◦C/hr up to 1, 300◦C. The furnace temperature

is verified at the beginning of the dwell and at the end via the calibrated pyrometer

and cavity. Ramp down rates are 100◦C/hr above 900◦C and 200◦C/hr below 900◦C.

Five annealing conditions were used in this study: 900◦C 40 hours, 1, 066◦C 10 hours,

1, 100◦C 10 hours, 1, 200◦C 10 hours, and 1, 300◦C 10 hours. The 1, 100◦C 10 hour

condition was repeated for strontium to test the repeatability of the results.

3.4 Ion Irradiation

High temperature irradiations were performed using a 3 MV Pelletron accelerator

at the University of Michigan Ion Beam Laboratory. Figure 3.10 is a schematic of the

irradiation chamber that was designed to allow for accurate dose and temperature

monitoring. A 4.5 MeV Si++ beam is raster scanned at 1,019 Hz horizontally and

117 Hz vertically over a set of tantalum slits that define the irradiation area. Dose is

monitored using a Faraday cup inserted periodically in front of the stage to measure

the beam current on the stage. Vacuum at the start of an irradiation was in the

10−8 Torr range, but jumped into the mid 10−7 range when beam is first applied and
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slowly dropped during the course of the irradiation.

The calculated dose-rate was 4.6×10−3dpa s−1 at the PyC/SiC substrate interface

in the SiC using SRIM in quick Kinchin-Pease mode [81, 82] with a silicon atom

displacement energy of 35 eV and a carbon atom displacement energy of 20 eV [13].

This damage rate was necessary to achieve the peak irradiation temperature of

1, 100◦C. The irradiations were all conducted for 6 hours to a final dose of 10 dpa.

Figure 3.13 shows the total damage and implanted ion concentration as a function of

depth. Between the PyC/SiC substrate interface (at a depth of 350nm) and a depth

of 1,000 nm the implanted silicon concentration was minimal and the change in dose

only varies by a factor of two. While this could affect the diffusion kinetics, the

majority of the effect should be within the first 300 nm as witnessed in the thermal

diffusion study, where the dose only varies by a factor of 50%.

Ion irradiation is used as a simulant for neutron radiation damage in this study.

These two methods of creating radiation damage can differ in the dose-rate as well

as the damage morphology. The dose-rate can be experimentally controlled, but

the damage morphology is feature of the irradiation type. The spectrum of primary

knock-on atom (PKA) energies is determined by the interaction of the irradiating

particle and the material. Once the PKA is created, the damage process is independent

of the irradiation type. Thus comparing PKA energy spectra is a useful method to

compare the damage morphology between neutron irradiation and ion irradiation.

The weighted average recoil spectrum is the PKA energy spectrum weighting for the

total number of displacements made by that energy PKA [83]. It is defined as:

W (Ei, T ) =
1

ED(Ei)

T∫
Ed

σ(Ei, T
′)ED(T ′)dT ′ (3.1)

ED(Ei) =

T̂∫
Ed

σ(Ei, T
′)ED(T ′)dT ′ (3.2)
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T is the PKA energy. σ(Ei, T
′) is the energy transfer cross section for an incoming

particle of energy Ei to a PKA of recoil energy T ′. ED(T ′) is the damage energy,

which is the energy loss by the incoming particle to PKAs. Ed is the displacement

energy, which is 20 eV for carbon and 35 eV for silicon [41]. T̂ is the maximum energy

transfer to a PKA:

T̂ =
4M1M2

(M1 +M2)2
Ei (3.3)

M1 is the incoming particle mass and M2 is the PKA mass, which will depend on

whether the incoming particle interacts with the silicon or carbon sub-lattice. There

is an analytic solution for the weighted average recoil spectrum for neutron irradiation

[83]:

Wn(Ei, T ) =
T 2 − E2

d

T̂ 2
(3.4)

For the silicon ion irradiation, there is no analytic solution. The Lindhard model [84]

was used for both the energy transfer cross-section and the damage energy, as detailed

in ref [83], to calculate the weighted recoil spectrum for the ion irradiation.

Figure 3.14 presents the weighted recoil spectra for 4.5 MeV Si++ ions using

the Lindhard model and 1 MeV neutrons using the analytic solution from Eq. 3.4.

The average energy for carbon primary knock on atoms (PKA) in the silicon ion

irradiation is 92 keV for the carbon lattice vs. 238 keV for the neutron irradiation.

The average energy for silicon PKAs in the silicon ion irradiation is 64 keV vs. 98 keV

in the neutron irradiation. This indicates that the damage morphology will be more

comparable between the neutron and silicon ion irradiations on the silicon sub-lattice

vs. carbon sub-lattice. For both irradiation types the majority of damage is created

by PKAs exhibiting the average PKA energy. The tails of the ion irradiation PKA

energy spectrum are much more pronounced indicating that cascade morphology will

vary more for the ion irradiation than the neutron irradiation which exhibits a narrow

range of PKA energies.
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3.4.1 Stage Design

The irradiation stage was designed to be able to conduct ion irradiations at high

temperatures and is shown in Figure 3.11. This was accomplished by using a high

power density pyrolytic boron-nitride(PBN)/graphite heater designed to operate up

to 1, 500◦C and insulating the stage from the vacuum flange with a vacuum break.

The stage consists of two 1/16” molybdenum plates supported by four stainless steel

posts connected to the vacuum flange and separated by a 4-40 stainless steel nut to

provide the vacuum break. The PBN heater is mounted on the molybdenum plates

by molybdenum threaded rods and nuts. A set of alumina screws is mounted in the

top molybdenum plate above and below the heater. These allow the graphite shim to

be repeatedly placed on the same position on the heater and to provide the clamping

force to hold the sample to the heater. One feed-through provides the power for the

PBN heater while the other provides thermocouple connections.

The stage is assembled by first mounting both molybdenum plates in place followed

by the heater. The connections to the heater are installed and tested to ensure that

the total resistance across the power pins is 8Ω. The guide screws for the graphite

shim are then installed in place and the stage is ready for sample mounting. The

sample is cleaned in a sonicator with ethanol to remove any surface contaminants.

The sample is then placed on the PBN heater and the graphite shim is lined up on

the guide posts. The thermocouple is placed on the edge of the sample and held in

place while the graphite shim is slid into place. Alumina nuts are then used to tighten

down the graphite shim. Light hand tightening, followed by 1/2 turn per nut with

a pair of tweezers is sufficient to ensure even contact between the graphite shim and

the sample. The stage is then connected to a power source for the heater and the

thermocouple is tested to ensure it is reading and responding to temperature changes.
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3.4.2 Temperature Monitoring

The sample temperature was monitored using a thermocouple and a 2D infrared

pyrometer. After initial heating to 250◦C, the 2D infrared pyrometer was calibrated

to the surface emissivity using the thermocouple. A total of 9 areas of interest were

placed in a 3×3 pattern on the front surface of the sample as shown in Figure 3.12.

The emissivity of each area of interest is then adjusted until the temperature is in

line with the thermocouple reading. This is performed every 200◦C, up to the peak

sample temperature of 900◦C when the beam is not applied. The ion beam adds

an additional 200◦C of temperature increase due to beam-heating as verified using

the pyrometer. The thermocouple is protected from the beam and does not see this

temperature increase. The surface temperature varied by 15◦C across the irradiated

area.

A COMSOL thermal analysis was performed to ensure that the surface temperature

was indicative of the SiC substrate and that the temperature profile in the SiC

substrate could be considered constant. A thermal conductivity of 0.1 W/(m◦K) [85]

was used for the SiC cap and 4 W/(m◦K) [86] for the PyC. A temperature dependent

thermal conductivity was used for the SiC substrate [13]:

KP =
[
−0.0003 + 1.05× 10−5T

]
(3.5)

The back temperature of the sample was calculated at 1, 280◦C for a front surface

temperature of 900◦C considering only the heat generation from the heater. This

served as the back surface boundary condition for the ion irradiation condition where

the ionization energy deposited by the 4.5 MeV silicon ion was used as the heat

generation term. Figure 3.15 shows the resultant temperature distribution considering

radiative heat transport from the front surface and conduction throughout the layer

with perfect contact at the interfaces for an 1, 100◦C silicon ion irradiation. The
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temperature drop from the front surface within the first 2µm is less then 0.01◦C, which

is significantly less than any other source of error in the temperature measurement.

This validates the use of the surface temperature as the diffusion temperature in all

RED analyses.

3.5 Diffusion Profiling and Calculation

3.5.1 ToF-SIMS

Time of flight secondary ion mass spectrometry (ToF-SIMS) was used to profile

the diffusion of FPs into the SiC. Two separate Ion-TOF SIMS 5 instruments were

used at Pacific Northwest National Labs (PNNL) and Georgia Institute for Electronics

Tech and Nanotechnology (IEN). All ToF-SIMS spectra were acquired analyzing for

positive ions using 25 keV Bi+ to sputter material for analysis and 5 keV O+ to

sputter material for depth profiling. The sputtered craters were 100µm × 100µm

while only the center 50µm × 50µm was analyzed to prevent edge effects that would

reduce the depth resolution of the analysis.

Figure 3.16 shows an optical image of one sputter crater and optical profilometry

line scans across the crater bottom. The line scans have been adjusted to show

the deviation from the crater bottom. The deviation is within 10 nm for most of the

central 50 µm area, which is the area analyzed in the ToF-SIMS measurement. Surface

roughness in the analysis area is 7 nm Ra, which is comparable to the surface rougness

of the diffusion couple, indicating that the sputtering process has not introduced an

added source of error in to the SIMS profiles.

SiC substrates, ion implanted with cesium, strontium, or europium at 400 keV

to a fluence of 1016cm−2, were used as calibration standards for the depth profiles.

Depth profiles of these samples with the same instrument parameters as the profiles

were used to calculate sputter rates and reduced sensitivity factors (RSF). These
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calibrations were measured at the beginning of each SIMS session. The sputter rate

was calculated from the crater depth assuming a constant sputter rate through the

calibration profile at 0.66 nm/s at PNNL and 0.53 nm/s at the IEN. The RSFs are

calculated by:

RSF =
DnImatrixt

zI
(3.6)

where D is the implanted dose in cm−2, n is the number of data points,Imatrix is the

average matrix counts, t is the time between data points, z is the depth of the crater

in cm, and I is the sum of the counts from the element of interest along the full depth

range of the implant. The RSFs were 5,400 for cesium, 7,100 ppm for strontium, and

8,900 ppm for europium. The RSFs varied by no more then 4% between instruments.

The concentration (C) and depth (x) are then calculated by:

x = Ẏ × tsputter

C = RSF × IFP
Imatrix

(3.7)

where Ẏ is the sputter rate, IFP is the count rate for the calibrated element and

Imatrix is the count rate for the matrix element.

3.5.2 Diffusion Calculation

FP diffusion in the SiC should proceed via two different mechanisms: bulk or

grain boundary diffusion. The Fisher model was used to analyze the various diffusion

regimes and is illustrated in Figure 2.4 [46, 47]. The first regime, Type A, occurs

at very high temperature or long diffusion times and bulk diffusion dominates the

overall FP flux. This results in a Fickian concentration profile that can be analyzed
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with the simple 1D steady state constant source solution:

CB(x) = C0erfc

(
(x− x0)√

4DBt

)
(3.8)

or the thin film solution:

CB(x) = C0exp

(
(x− x0)2

4DBt

)
(3.9)

depending on the surface concentration conditions.

The Type C regime occurs at very low temperature or short diffusion times where

only grain boundary diffusion is relevant, as bulk diffusion is too low to measure.

The grain boundary concentration profile follows a standard Fickian diffusion profile

and is fit using the same formalism as bulk diffusion in the bulk diffusion dominant

regime.

The Type B diffusion regime occurs at intermediate temperatures and diffusion

times where both bulk and grain boundary diffusion are significant for the overall

FP flux. In this mixed diffusion regime, the bulk diffusion concentration profile still

follows the same Fickian analysis since the source is still dominated by the interface

concentration C0. There is also a grain boundary diffusion tail tail which has a source

term composed of the interface concentration and the whole bulk diffusion front and

requires a complicated analysis to calculate a diffusion coefficient. Traditionally this

is done by plotting the ln(C) vs x6/5 and fitting a line through the tail region [87,88].

For this analysis, the tail region was directly fit to an exponential:

CGB(x) = CGB
0 exp(−m ∗ x6/5) (3.10)

where m is defined as:

m =
∂ln(C)

∂x6/5
(3.11)
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The grain boundary diffusion coefficient was then calculated from [48]:

sδDGB = 2

√
DB

t

(
0.77 +

δ√
8DBt

)5/3

m−5/3 (3.12)

where s and δ are two parameters that are difficult to determine unless the grain

boundary dominant region can be accessed. For self-diffusion s = 1, but for over-sized

solute diffusion s can vary greatly [48]. The grain boundary width (δ) on the other

hand has been found to range between 0.5nm and 2nm for both self-diffusion and

solute diffusion [48].

These formalisms are only valid in the regions of the diffusion profile where

bulk diffusion is strongly dominant or where grain boundary diffusion is strongly

dominant. Between these two regions the concentration profiles are dictated by

the whole Whipple solution and not just the super-position of these two analytic

simplifications due to the interaction of the bulk diffusion and grain boundary diffusion

mechanisms [48].

3.5.3 Error Analysis

A scientific computing and analysis package, SciPy [89], was used to fit exponentials

for both bulk and grain boundary diffusion rather than apply linear fits in a transformed

space. Directly fitting the error function and exponential allows the fit code to

calculate the covariance of the fitting variables, which for the bulk diffusion coefficient

is the error. The analysis package uses least-squares non-linear regression which

minimizes the sum of the squares of the residuals to find the best fit:

χ2 =
N∑
i=1

1

σ2
i

(yi − y(xi, β))2 (3.13)

where N is the number of data points, yi is the data point, σi is the error in that

data point, and βm is the m-th iteration of the coefficient matrix for the model
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equation defined by y(x, β). SciPy performs this minimization and returns the best

fit parameters and a covariance matrix: C. The diagonal elements of this covariance

matrix are the variances of the fitted parameters. For the case of fitting bulk or grain

boundary diffusion using Eq. 3.9, this is the error in the diffusion coefficient:

[σC0 , σDB
] = diag(C) (3.14)

One estimate of goodness of fit for non-linear regression is the Pearson χ2:

χ2
P =

N∑
i=1

(yi − y(xi, βm))2

y(xi, βm)
(3.15)

The cumulative χ2 is then used to look up the p-value, which is the probability that

the fit accurately models the data given the number of degrees of freedom available

to the fitting equation. A χ2
P of 0 would indicate that the fit perfectly represents the

data, while a χ2
P of ∞ indicates that the model and data share no relation.

If two mechanisms are active, the grain boundary diffusion coefficient is fit from

a diffusion tail using Eq. 3.10 and calculated using Eq. 3.12. In this case the error

in the grain boundary diffusion coefficient is calculated using the variance formula:

σDGB
=

√(
∂DGB

∂DB

)2

σ2
DB

+

(
∂DGB

∂m

)2

σ2
m (3.16)

∂DGB

∂DB

=
1

sδ

[√
1

DBt

(
0.77 +

δ√
8Dbt

)5/3

m−5/3

+
−5

6

(
0.77 +

δ√
8DBt

)(
δ√
8t
D
−3/2
B

)] (3.17)

∂DGB

∂m
=

2

sδ

√
DB

t

(
0.77 +

δ√
8Dbt

)5/3 −5

3
m−8/3 (3.18)

This yields the true error in the grain boundary diffusion coefficient due to errors
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in both the fit and the bulk diffusion coefficient. The relative error, defined as the

percent of the total error from the fit, gives an indication of how well the grain

boundary tail is fit in comparison with the bulk fit. A low relative error indicates

that the grain boundary diffusion coefficient error is systemic of the experiment itself,

rather than from the ability to discern and fit the tail.

The process of fitting the two regimes can be somewhat subjective. A metric based

methodology reduces this subjectivity and makes the process repeatable. Figures 3.17

shows a flow chart for this process. The concentration profile is visually examined to

determine if there is one active mechanism or two. Figures 2.4a and 2.4c both diagram

the concentration vs depth profile for a single active mechanism, while Figure 2.4b

diagrams the concentration vs depth profile for two active mechanisms. Two active

mechanisms indicated that the diffusion kinetics are in the mixed diffusion regime.

In this case bulk diffusion was fit first. The fitting program successively increased

the fit area starting from the interface using Eq. 3.9. Once all possible fits from the

interface were found, the bulk diffusion coefficient was calculated from the fit that

minimized the relative fitting error, defined as the standard deviation of the fit over

the fit value. The process was repeated for the grain boundary concentration tail

using Eq. 3.11 starting at the end of the tail and successively increasing the fit area

back towards the bulk diffusion portion. The grain boundary diffusion coefficient was

then calculated using Eq. 3.12. If the concentration profile did not exhibit mixed

kinetics the single mechanism was fit using Eq. 3.9 to obtain a diffusion coefficient.

Comparing the temperature of the annealing or ion irradiation with the temperature

range for mixed kinetics indicated if the concentration profile was due to bulk or grain

boundary diffusion.
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3.6 Transmission electron microscopy

Transmission electron microscopy (TEM) samples were prepared via the focused

ion beam (FIB) lift out method using a FEI Helios with a final thinning performed

using 5 kV Ga+ ions at the Michigan Center for Materials Characterization. Scanning

transmission electron microscopy (STEM) analysis was performed at Sandia National

Labs on the sample containing strontium and thermally treated at 1, 100◦C for 10

hours using a FEI Titan G2 80-200 with ChemiSTEM technology operated at 200kV.

Bright field diffraction contrast images were used to identify grain boundaries in the

SiC substrate. High angle annular dark field images were used to identify areas

of build up of strontium along the PyC/SiC interface. Bulk and grain boundary

diffusion were profiled using energy dispersive spectrometry (EDS) with a collection

solid angle of 0.7 sr. X-ray images were acquired in STEM mode using a sub-nm

probe at a current of 2 nA.
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Fission
Product

Energy
(keV)

Range
(nm)

FWHM
(nm)

Peak
Concentration

(%)

Cesium 400 144 (140) 63 (65) 1.38 (1.37)
Europium 400 118 (115) 45 (48) 1.84 (1.82)
Strontium 400 184 (178) 88 (90) 0.96 (0.95)

Table 3.1: FP Implantation range, FWHM, and peak concentration for cesium,
europium and strontium in PyC as calculated by SRIM 2013. RBS measured values
are in parenthesis.
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Figure 3.1: Electron back scatter diffraction (EBSD) of the Rohm and Hass SiC used
in this study. (a) Inverse pole figure in the growth direction (b and c) normal to the
growth direction (d) grain size distribution [74]
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Figure 3.2: EBSD inverse pole maps of the four different variants of SiC used in the
AGR-1 TRISO Fuel irradiation campaign [75].
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Figure 3.3: Cu Kα XRD of the SiC substrates provided by Rohm and Haas Inc. All
the peaks correspond to β-SiC. The inlay shows the broad plateau near the (111)
peak that is characteristic of stacking faults in SiC [74]
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Figure 3.4: Schematic illustration of the four steps in preparing the novel diffusion
couple: (a) Preparation of the substrate to create a sharp interface with the PyC
(b) Deposition of a layer of CVD PyC (c) Implantation of an FP into the PyC
(d) Deposition of a SiC cap to retain the FP within the diffusion couple at high
temperature.
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Figure 3.5: A schematic showing orientation of sample in the graphite furnace with
reactant flow and vacuum port.
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Figure 3.6: A schematic of the gas flow in newly designed PyC deposition panel fitted
for the graphite furnace. Two three way valves allow for reconfiguring the furnace
to run thermal annealings as well. Mass flow controllers are used to control the
argon-propylene mixture. A vent allows for a constant flow of gas through the system
for thermal annealings

57



Figure 3.7: RBS spectrum for a 308nm thick PyC layer on a SiC substrate. Green
arrow marks the front surface energy for the PyC, while blue arrows mark the width
of the carbon plateau from the PyC and the Si edge from the SiC
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(a)

(b)

(c)

Figure 3.8: Implantation range and damage for 400 keV (a) cesium, (b) and (c)
strontium into PyC to a fluence of 1016 cm−2 as simulated by SRIM using a damage
energy of 20eV [79,81].
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Figure 3.9: RBS spectrum of a diffusion couple for strontium prior to annealing. The
front surface energies for the various elements are marked by arrows with dashed
green lines.
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Figure 3.10: Schematic of the irradiation chamber. A 4.5 MeV Si++ beam is used
to irradiate the sample. A Faraday cup that can be inserted directly in front of the
sample is used to measure dose. A set of variable slit apertures is used to control the
irradiation area. A thermocouple on the stage and the 2D infrared thermal imager
are used to monitor temperature. A CCD camera allows for monitoring of the entire
setup. An ion gauge placed close to the stage monitors vacuum in the chamber.
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Figure 3.11: A 3D CAD model of the high temperature irradiation stage with the
primary parts labeled.
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Figure 3.12: The 2D infrared pyrometer software used to measured the surface
temperature of the sample. This is a calibration at 750◦C. Note the 3 x 3 array
of areas of interest on the sample. An additional area of interest on the graphite shim
is used to ensure the beam spread is minimal.
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Figure 3.13: SRIM calculation of 4.5 MeV Si++ into the diffusion couple [81]. The
layers are differentiated by dashed black lines. Gray lines mark the 10 and 20 dpa
dose points which correspond to the PyC/SiC interface and 650 nm into the SiC
substrate, where all the radiation enhanced diffusion is limited to.
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Figure 3.14: Weighted recoil spectra for 4.5 MeV Si++ ions and 1 MeV neutrons in
SiC.
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Figure 3.15: Temperature deviation within a diffusion couple as a function of depth
for an 1, 100◦C 4.5 MeV silicon ion irradiation
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(a)

(b)

Figure 3.16: (a) Optical image of a sputter crater from the ToF-SIMS analysis. (b)
Optical profilometry scans corresponding to the lines marked 1-5 in (a). The scans
have been adjusted to present the deviation from the crater base. Dashed blue lines
indicate the analysis area
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Figure 3.17: Flow chart for the diffusion analysis process
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CHAPTER IV

Results

This chapter will present the FP concentration profiles resulting from thermal

annealings or ion irradiations and measured using time of flight secondary ion mass

spectrometry (ToF-SIMS), and fits to the diffusion equations detailed in Experimental

Method chapter. Annealing temperatures ranged from 900◦C to 1, 300◦C. The ion

irradiations were conducted between 900◦C and 1, 100◦C.

4.1 Thermally Annealed Diffusion Couples

Figure 4.1 shows the ToF-SIMS profile for a strontium diffusion couple before

annealing. It revealed that the implanted FP was fully contained within the PyC.

Vertical blue lines are used to mark the boundaries between the SiC cap, PyC and

the SiC substrate. The sharp interfaces between the PyC and SiC layers on the

as-fabricated diffusion couple exhibit widths, as defined by the full width at half

maximum, of approximately 12s of sputtering time or 8 nm after calibration of the

sputtering rate. This interface width is a systemic source of error due to both the

roughness of the PyC/SiC interface and the flatness and planarity of the SIMS crater.

While several temperatures between 900◦C and 1, 300◦C were evaluated, not all

provided usable diffusion coefficients. A set of criteria was developed to determine if

the diffusion coefficient from a concentration profile should be included in the diffusion
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study:

1. The PECVD cap must be present.

2. FP concentration at the interface must be above the minimum detectability limit

for SIMS.

3. Concentration profile must fit either types A,B, or C diffusion.

4. Minimum error on the diffusion coefficient must be less than the value of the

diffusion coefficient.

The raw data from the depth profile of the first 1, 100◦C:10hr strontium diffusion

couple is shown in Figure 4.2. The interfaces between the PyC and SiC substrate

layers have broadened to 11 nm in width indicating that silicon has diffused into the

PyC from both the SiC cap and SiC substrate. This occurred at all temperatures and

for all FPs investigated. Strontium in the PyC has diffused into both the SiC cap and

into the SiC substrate. The strontium sensitivity in the PyC is an order of magnitude

lower than in the SiC. As a result, one count in the PyC represents ten times the

strontium concentration as does one count in the SiC. Carbon was not monitored due

to poor sensitivity in positive mode (< 20 counts at each depth ), which was evident

for all diffusion couples in the as-received and annealed cases. The sensitivity factor

at the interfaces changes as the interface is sputtered away and makes it very difficult

to deconvolute the actual concentration profile at the interface. For this reason, the

concentration in the interface region is not considered for analysis, which could have

provided the relative solubilities in the SiC and the PyC.

The following three sub-sections present the concentration vs depth profiles for

cesium, europium, and strontium diffusion in the SiC. The concentration profiles are

limited to the SiC substrate where reduced senstivity factors (RSF) and sputter-rates

can be applied to convert time and counts into depth in nm and concentration in
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ppm. The diffusion equation (Eq. 3.9) was used to fit single mechanism profiles.

Two mechanism profiles were fit using Eq. 3.9 for the slow diffusion mechanism and

Eq. 3.10 for the fast diffusion mechanism based on the formalisms of the Fisher

model. The slow mechanism is assumed to be bulk diffusion and the fast mechanism

is assumed to be grain boundary diffusion in this chapter. The argument in support

of this diffusion mode will be made in the Discussion section.

Table 4.1 lists the bulk diffusion equations for the bulk diffusion fits presented in

the following three sub-sections. Table 4.2 list the grain boundary tail equations for

the grain boundary diffusion fits presented in the following three sub-sections. The

diffusion profile naming scheme is as follows: FP-Temperature:time-profile number.

The 1, 100◦C:10h annealing condition for strontium is the only cause in which multiple

diffusion couples were fabricated and annealed. Sr-1100:10h-01 and Sr-1100:10h-02

are from one diffusion couple while, Sr-1100:10h-03 and Sr-1100:10h-04 are from the

second. Tables 4.1 and 4.2 also list the Pearson χ2, which is an indicator of the

goodness of fit, and the p-value, which is the probability that the fit accurately

describes the fitted data. Table 4.3 list the bulk and grain boundary diffusion

coefficients calculated from the fits in Table 4.1 and Table 4.2.

4.1.1 Strontium

Figure 4.3 is a concentration profile of the 1, 100◦C:10hr annealed condition for

strontium. This profile for strontium exhibits two distinct mechanisms, believed to be

bulk and grain boundary diffusion. The steeper depth profile is due to bulk diffusion

and the long diffusion tail is believed to be due to grain boundary diffusion. A green

dashed line shows the instantaneous source fit from Eq. 3.9 for bulk diffusion and a

blue dashed line shows the fit for the grain boundary tail using Eq. 3.10. The bulk

region reaches 30 nm into the SiC, while the grain boundary tail extends to 200 nm

into the SiC.
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Figure 4.4c presents (a) a diffraction contrast image and (b) a high angle annular

dark field (HAADF) image of the PyC/SiC interface and SiC substrate from the

1, 100◦C:10hr-01 condition. The PyC/SiC interface is clearly visible in the HAADF

image, while the grain structure and the locations of grain boundaries are visible in

the diffraction contrast image. A STEM-EDS map of the strontium concentration

for the region designated by the red box is shown in (c) . The PyC/SiC interface

was identified from the HAADF image and is marked by a dashed white-line. The

strontium concentration is high at the PyC/SiC interface. A small amount of strontium

has diffused into the SiC substrate on the right side of the map. Figure 4.4d shows

the corresponding depth profile where the x-axis corresponds to the depth below

the PyC/SiC interface indicated in Figure 4.4c. The concentration measured at the

interface by EDS is comparable to the concentration measured at the interface by

SIMS and presented in Figure 4.3. The depth of penetration is also comparable to

that measured by SIMS for the bulk diffusion front. No strontium was detected along

grain boundaries due to the sensitivity limit of the ChemiSTEM EDS, which was

estimated at 0.01%.

Figure 4.5 is the concentration profile in the SiC substrate of the 900◦C:40hr

annealed condition for strontium. The concentration profile exhibits a single diffusion

mechanism that extends 25 nm into the SiC and can be fit with the instantaneous

source formalism from Eq. 3.9. Figure 4.6 is the concentration profile in the SiC

substrate of the 1, 066◦C:10hr annealed condition for strontium. The concentration

profile exhibits two mechanisms that are assumed to be bulk and grain boundary

diffusion. The bulk region extends further into the SiC to a distance of 25 nm, while

the grain boundary tail reaches 92 nm into the SiC. The 1, 066◦C:10hr profile is clearly

in the mixed diffusion kinetic regime and the 900◦C:40hr is clearly not in the mixed

diffusion regime. The Harrison formalism for diffusion used in this study indicates

that all diffusion below the mixed diffusion kinetics dominant temperature regime is
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due to fast diffusion, which in this study is assumed to be grain boundary diffusion.

Thus the 900◦C:40hr profile is attributed to grain boundary diffusion.

Two separate 1, 100◦C:10hr diffusion couples were prepared for strontium in two

separate annealings. Two separate SIMS depth profiles were measured for each

1, 100◦C:10hr diffusion couple. Figure 4.3 presented the first concentration profile

for the first diffusion couple. Figure 4.7 presents the second concentration profile for

the same diffusion couple. Figures 4.8 and 4.9 present the two profiles from the second

diffusion couple. The first three profiles all clearly exhibit two diffusion mechanisms

that are fit with bulk and grain boundary diffusion formalisms from Eq. 3.9 and 3.10.

The last profile might have a small bulk penetration region that can be fit with Eq.

3.9, but is excluded from this study due to difficulty in determining if that region is

an artifact or an actual diffusion front. The grain boundary tail was fit using Eq.

3.10 rather than Eq. 3.9 as the single mechanism fit did not conform to the tail

region. The bulk penetration depth ranged from 30 nm to 50 nm for the first three

profiles. The grain boundary penetration depth ranged from 125 nm to 250 nm over

all 4 profiles.

Two SIMS depth profiles were also measured from one 1, 200◦C:10hr strontium

diffusion couple presented in Figures 4.10 and 4.11. The first profile exhibits mixed

diffusion kinetics and was fit using the two-mechanism formalism using Eq. 3.9 and

3.10. The second profile appears to exhibit one mechanism, but does not conform

to a normal diffusion profile between the PyC/SiC interface and what is likely the

fast diffusion tail. The single mechanism formalism from Eq. 3.9 fit the profile, but

the large penetration depth of 200 nm did not fit with the rest of the bulk diffusion

measurements, but corresponded more to the grain boundary diffusion measurements

which were exhibiting diffusion depths on the order of 200 nm, designating this

diffusion coefficient as due to grain boundary diffusion.

Figure 4.12 is the concentration vs depth profile for the 1, 300◦C:10hr annealed
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condition for strontium. This profile exhibits mixed diffusion kinetics and was fit

using the two mechanism formalism. The bulk diffusion front extends to nearly 100

nm into the SiC, while the grain boundary tail reaches nearly 600 nm into the SiC.

4.1.2 Europium

Figures 4.13 is the concentration profile for europium diffusion in SiC at 1, 100◦C:10hr.

The profile exhibited mixed diffusion kinetics that were fit with the same two mechanism

formalism used for strontium with Eq. 3.9 for the bulk region and Eq. 3.10 for

the grain boundary diffusion tail. The noise in the europium signal is due to the

noise in the silicon signal which is used as the reference for calculating concentration.

Several profiles were conducted on this sample and all exhibited this noise for this

one condition. This will show up in the error for the calculated diffusion coefficients.

Figure 4.14 and 4.15 are two concentration profiles from the same diffusion couple

annealed at 1, 200◦C10hr. Both exhibit mixed diffusion kinetics and can be fit with

two separate mechanisms. The second profile begins at a concentration that is two

orders of magnitude lower than the first. The second profile also has a much smaller

bulk penetration depth at 50 nm vs. 200 nm.

Figure 4.16 is the concentration profile for europium diffusion at 1, 300◦C10hr.

There is a clear bulk penetration region that extends 150 nm into the SiC and a long

grain boundary tail that extends over a micron into the SiC.

4.1.3 Cesium

Figure 4.17-4.20 are the concentration profiles for cesium diffusion in SiC for

the 900◦C:40h through 1, 300◦C:10hr conditions. Cesium diffusion exhibits mixed

diffusion kinetics that are fit with the two mechanism formalism used for strontium

and europium using Eq. 3.9 and 3.10 in this temperature range. Both bulk and grain

boundary penetration depths are very shallow at 20nm and 60nm at 900◦C:40hr, but
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steadily increase to nearly 50 nm for bulk diffusion and 250 nm for grain boundary

diffusion at 1, 300◦C:10hr.

4.2 Ion Irradiated Diffusion Couples

The following three sub-sections report the concentration profiles for strontium,

europium, and cesium diffusion under ion irradiation conditions at a dose rate of 4.6×

10−4dpa s−1 to a total dose of 10 dpa between 900◦C and 1, 100◦C. All three elements

exhibited mixed diffusion kinetics that are fit with the two-mechanism formalism using

Eq. 3.9 for the bulk region and Eq. 3.10 for the grain boundary tail. Table 4.4 lists

the bulk diffusion equations for the bulk diffusion fits presented in the following three

sub-sections. Table 4.5 list the grain boundary tail equations for the grain boundary

diffusion fits presented in the following three sub-sections. Tables 4.4 and 4.5 also list

the Pearson χ2, which is an indicator of the goodness of fit, and the p-value, which

is the probabitliy that the fit accurately describes the fitted data. Table 4.6 list the

bulk and grain boundary diffusion coefficients calculated from the fits in Table 4.4

and Table 4.5.

4.2.1 Strontium

Figures 4.21-4.23 are the concentration profiles for strontium diffusion under ion

irradiation from 900◦C:6hr:10dpa through 1, 100◦C:6hr:10dpa. At 900◦C:6hr:10dpa

the bulk diffusion region reaches 100 nm into the SiC, while the grain boundary tail is

nearly flat and extends past the limits of the SIMS depth profile. At 1, 000◦C:6hr:10dpa

the bulk diffusion region extends nearly 120 nm into the SiC, while the grain boundary

diffusion tail only reaches 600 nm and is measured near the limits of the SIMS

sensitivity at 1 ppm. At 1, 100◦C:6hr:10dpa the penetration depth due to bulk

diffusion increases to 200 nm, and that due to grain boundary diffusion reaches nearly

900 nm.
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4.2.2 Europium

Figures 4.24-4.26 are the concentration profiles for europium diffusion under ion

irradiation from 900◦C through 1, 100◦C.At 900◦C:6hr:10dpa the bulk diffusion region

reaches 30 nm into the SiC, while the grain boundary tail reaches nearly 70 nm into

the SiC. At 1, 000◦C:6hr:10dpa the penetration depths increase to 40 nm for the

bulk diffusion region and 100 nm for the grain boundary tail. At 1, 100◦C:6hr:10dpa

the overall concentrations within the SiC dropped significantly reducing the bulk

penetration depth to 20nm, and the grain boundary tail penetration depth to 60 nm.

4.2.3 Cesium

Figures 4.27-4.29 are the concentration profiles for cesium diffusion under ion

irradiation from 900◦C:6hr:10dpa through 1, 100◦C:6hr:10dpa. At 900◦C:6hr:10dpa

the bulk diffusion region reaches 30 nm into the SiC, while the grain boundary tail

reaches nearly 70 nm into the SiC. At 1, 000◦C:6hr:10dpa the penetration depths

increase to 40 nm for the bulk diffusion region and 100 nm for the grain boundary tail.

At 1, 100◦C:6hr:10dpa the overall concentrations within the SiC dropped significantly

reducing the bulk penetration depth to 20nm, and the grain boundary tail penetration

depth to 60 nm.

4.2.4 Interface Concentrations

Table 4.7 presents the maximum interface concentrations in the thermally annealed

and ion irradiated conditions. Between 900◦C and 1, 100◦C all three elements exhibit

mixed diffusion kinetics at all three temperatures for the irradiated condition. Since

strontium was the only element observed to exhibit grain boundary diffusion dominant

kinetics at 900◦C under purely thermal conditions, it is also the only element to

change diffusion regime in this study. Both cesium and europium exhibit a significant

decrease in the interface concentration under irradiation vs. thermal annealing,
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while strontium exhibits a significant increase at 900◦C that reduces in magnitude at

1, 100◦C. The 900◦C interfacial enrichment for strontium is likely due to the difference

in diffusion regime from grain boundary diffusion dominant, where the interface

concentration is the grain boundary concentration, to mixed diffusion dominant,

where the interface concentration is the matrix concentration.
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Profile Fit χ2
P

Cs-900:40h-01 C(ppm) = 2, 400exp
(

x2

220nm2

)
3.5, p=0.47

Cs-1100:10h-01 C(ppm) = 1, 200exp
(

x2

230nm2

)
1.7, p=0.79

Cs-1200:10h-01 C(ppm) = 1, 300exp
(

x2

360nm2

)
3, p=0.55

Cs-1300:10h-01 C(ppm) = 58exp
(

x2

790nm2

)
2.4, p=0.66

Eu-1100:10h-01 C(ppm) = 10, 000exp
(

x2

250nm2

)
3.3, p=0.51

Eu-1200:10h-01 C(ppm) = 8, 200exp
(

x2

1,200nm2

)
1.9, p=0.75

Eu-1200:10h-02 C(ppm) = 93exp
(

x2

500nm2

)
3.6, p=0.46

Eu-1300:10h-01 C(ppm) = 410exp
(

x2

9,400nm2

)
2.8, p=0.59

Sr-1066:10h-01 C(ppm) = 630exp
(

x2

11nm2

)
1.4, p=0.84

Sr-1100:10h-01 C(ppm) = 710exp
(

x2

160nm2

)
1.2, p=0.87

Sr-1100:10h-02 C(ppm) = 1, 000exp
(

x2

250nm2

)
1.5, p=0.82

Sr-1100:10h-03 C(ppm) = 35exp
(

x2

79nm2

)
2.8, p=0.59

Sr-1200:10h-01 C(ppm) = 1, 000exp
(

x2

1000nm2

)
1.8, p=0.77

Sr-1300:10h-01 C(ppm) = 240exp
(

x2

23,000nm2

)
2.2, p=0.69

Table 4.1: Bulk diffusion fits to FP concentration profiles from thermal annealing.
χ2
P is the indicator of goodness of fit. The corresponding p-values are the

probability that the fit accurately models the data. The sample naming scheme is as
follows: FP-Temperature:time-profile number. The 1100C:10h annealing condition
for strontium is the only cause in which multiple diffusion couples were fabricated
and annealed. Sr-1100:10h-01 and Sr-1100:10h-02 are from one diffusion couple while,
Sr-1100:10h-03 and Sr-1100:10h-04 are from the second.
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Profile Fit χ2
P

Cs-900:40h-01 C(ppm) = 75exp
(
−0.091nm−6/5x6/5

)
4.2, p=0.52

Cs-1100:10h-01 C(ppm) = 28exp
(
−0.039nm−6/5x6/5

)
3.8, p=0.57

Cs-1200:10h-01 C(ppm) = 28exp
(
−0.044nm−6/5x6/5

)
3.5, p=0.62

Cs-1300:10h-01 C(ppm) = 4.5exp
(
−0.017nm−6/5x6/5

)
3.2, p=0.67

Eu-1100:10h-01 C(ppm) = 110exp
(
−0.028nm−6/5x6/5

)
3.5, p=0.62

Eu-1200:10h-01 C(ppm) = 8.1exp
(
−0.015nm−6/5x6/5

)
3.3, p=0.65

Eu-1200:10h-02 C(ppm) = 17exp
(
−0.033nm−6/5x6/5

)
3.9, p=0.56

Eu-1300:10h-01 C(ppm) = 18exp
(
−0.0029nm−6/5x6/5

)
3.1, p=0.68

Sr-900:40h-01 C(ppm) = 61exp
(

x2

11nm2

)
2.8, p=0.73

Sr-1066:10h-01 C(ppm) = 680exp
(
−0.053nm−6/5x6/5

)
1.6, p=0.90

Sr-1100:10h-01 C(ppm) = 590exp
(
−0.021nm−6/5x6/5

)
2.5, p=0.77

Sr-1100:10h-02 C(ppm) = 47exp
(
−0.034nm−6/5x6/5

)
3.2, p=0.67

Sr-1100:10h-03 C(ppm) = 4.3exp
(
−0.037nm−6/5x6/5

)
4.6, p=0.46

Sr-1100:10h-04 C(ppm) = 36exp
(
−0.012nm−6/5x6/5

)
3.7, p=0.59

Sr-1200:10h-01 C(ppm) = 120exp
(
−0.026nm−6/5x6/5

)
3.3, p=0.65

Sr-1200:10h-02 C(ppm) = 85exp
(
−0.024nm−6/5x6/5

)
4.1, p=0.53

Sr-1300:10h-01 C(ppm) = 10exp
(
−0.022nm−6/5x6/5

)
2.6, p=0.76

Table 4.2: Grain boundary diffusion fits to FP concentration profiles from thermal
annealing. χ2

P is the indicator of goodness of fit.
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Profile
Temperature

◦C
Location DB(cm2s−1) sδDGB(cm3s−1)

Relative
Error (%)

Cs-900:40h-01 900 PNNL 1.5± 0.96× 10−17 1.6± 0.88× 10−24 49
Cs-1100:10h-01 1100 PNNL 6.5± 4.7× 10−17 1.7± 1.6× 10−22 18
Cs-1200:10h-01 1200 PNNL 9.9± 2.9× 10−17 4.7± 2.4× 10−22 10
Cs-1100:10h-01 1300 PNNL 2.2± 1.6× 10−16 3.9± 1.2× 10−21 34

Eu-1100:10h-01 1100 IEN 6.8± 4.3× 10−18 1.5± 1.2× 10−22 3
Eu-1200:10h-01 1200 IEN 3.4± 1.0× 10−16 8.7± 3.0× 10−21 7
Eu-1200:10h-02 1200 IEN 1.4± 0.89× 10−16 1.3± 0.27× 10−20 4
Eu-1300:10h-01 1300 IEN 2.6± 0.47× 10−15 3.7± 0.67× 10−20 6

Sr-900:40h-01 900 PNNL ND 6.9± 2.6× 10−25

Sr-1066:10h-01 1066 IEN 3± 0.78× 10−18 6.7± 0.93× 10−23 10
Sr-1100:10h-01 1100 PNNL 4.4± 1.4× 10−17 7.6± 2.4× 10−22 6
Sr-1100:10h-02 1100 IEN 6.8± 4.3× 10−17 3.1± 1.7× 10−22 6
Sr-1100:10h-03 1100 IEN 2.2± 1.5× 10−17 2.5± 1.2× 10−22 7
Sr-1100:10h-04 1100 IEN ND 1.1± 0.58× 10−21 18
Sr-1200:10h-01 1200 PNNL 2.8± 0.84× 10−16 2.1± 0.67× 10−21 6
Sr-1200:10h-02 1200 IEN ND 1.7± 0.49× 10−21 14
Sr-1300:10h-01 1300 IEN 6.3± 4.9× 10−15 2.6± 2.1× 10−20 4

Table 4.3: Bulk and grain boundary diffusion coefficients for cesium, europium and
strontium thermal diffusion. The relative error is the percent of the error in the grain
boundary diffusion coefficient from fitting the grain boundary tail. ND indicates
values that were not determined.
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Profile Fit χ2
P

Cs-900:40h-01 C(ppm) = 130exp
(

x2

4,700nm

)
2.7, p=0.61

Cs-1000:10h-01 C(ppm) = 140exp
(

x2

1,900nm

)
2.5, p=0.64

Cs-1100:10h-01 C(ppm) = 580exp
(

x2

1,800nm

)
1.9, p=0.75

Eu-900:10h-01 C(ppm) = 1, 100exp
(

x2

120nm

)
1.9, p=0.75

Eu-1000:10h-01 C(ppm) = 9, 800exp
(

x2

120nm

)
1.6, p=0.81

Eu-1100:10h-02 C(ppm) = 2, 400exp
(

x2

79nm

)
2.1, p=0.71

Sr-900:40h-01 C(ppm) = 2, 300exp
(

x2

2,500nm

)
2.2, p=0.69

Sr-1000:10h-01 C(ppm) = 1, 200exp
(

x2

4,300nm

)
2.0, p=0.73

Sr-1100:10h-01 C(ppm) = 750exp
(

x2

15,000nm

)
2.3, p=0.68

Table 4.4: Bulk diffusion fits to FP concentration profiles from ion irradiation. χ2
P is

the indicator of goodness of fit.
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Profile Fit χ2
P

Cs-900:40h-01 C(ppm) = 10exp
(
−0.00017x6/5

)
2.5, p=0.77

Cs-1000:10h-01 C(ppm) = 11exp
(
−0.0086x6/5

)
3.1, p=0.68

Cs-1100:10h-01 C(ppm) = 10exp
(
−0.0031x6/5

)
2.2, p=0.82

Eu-900:10h-01 C(ppm) = 7exp
(
−0.022x6/5

)
3.4, p=0.63

Eu-1000:10h-01 C(ppm) = 31exp
(
−0.022x6/5

)
3.1, p=0.68

Eu-1100:10h-02 C(ppm) = 23exp
(
−0.022x6/5

)
2.9, p=0.71

Sr-900:40h-01 C(ppm) = 11exp
(
−0.00039x6/5

)
2.3, p=0.80

Sr-1000:10h-01 C(ppm) = 3exp
(
−0.0087x6/5

)
2.7, p=0.74

Sr-1100:10h-01 C(ppm) = 32exp
(
−0.0024x6/5

)
1.7, p=0.88

Table 4.5: Grain boundary diffusion fits to FP concentration profiles from ion
irradiation. χ2

P is the indicator of goodness of fit.
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Profile
Temperature

◦C
DB

(cm2s−1)
sδDGB

(cm3s−1)

Relative
Error
(%)

Cs-900:6h:10dpa-01 900 1.3± 1.0× 10−15 1.7± 1.1× 10−18 8
Cs-1000:6h:10dpa-01 1,000 5.3± 3.7× 10−16 6.3± 4.5× 10−20 9
Cs-1100:6h:10dpa-01 1,100 5.2± 1.0× 10−16 1.1± 0.2× 10−18 6

Eu-900:6h:10dpa-01 900 3.4± 1.8× 10−17 9.5± 4.6× 10−22 3
Eu-1000:6h:10dpa-01 1,000 3.3± 1.6× 10−17 4.6± 2.9× 10−22 6
Eu-1100:6h:10dpa-01 1,100 2.2± 1.1× 10−17 1.9± 1.0× 10−22 7

Sr-900:6h:10dpa-01 900 7.0± 4.3× 10−16 7.9± 6.5× 10−18 3
Sr-1000:6h:10dpa-01 1,000 1.2± 0.2× 10−15 7.6± 3.6× 10−19 9
Sr-1100:6h:10dpa-01 1,100 4.1± 1.6× 10−15 3.4± 2.3× 10−19 7

Table 4.6: Radiation enhanced diffusion coefficients for cesium, strontium and
europium at a dose rate of 4.6× 10−3 dpa s−1
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Fission
Product

Temperature
(◦C)

Thermal
Concentration

(ppm)

Irradiated
Concentration

(ppm)

Cesium
900 2,200 200

1,100 2,000 1,000

Europium 1,100 10,000 1,000

Strontium
900 60 2,000

1,100 600 700

Table 4.7: The maximum FP concentration on the SiC side of the PyC/SiC interface
for the thermal and radiation enhanced diffusion
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Figure 4.1: ToF-SIMS depth profile of a strontium diffusion couple in the as fabricated
case. The silicon profile is used to navigate the layer structure which begins with the
SiC cap at the surface, transitions to the PyC between 90s and 520s and finally to
the SiC substrate after 520s. The strontium profile is completely contained within
the PyC region, ensuring the integrity of the SiC substrate for diffusion analysis.
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Figure 4.2: ToF-SIMS depth profile of the a 1, 100◦C 10 hour strontium diffusion
couple. A calibrated depth scale is also included for just the SiC substrate.
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Figure 4.3: Calibrated and fitted concentration profiles for strontium at 1, 100◦C for
10 hours exhibiting mixed diffusion kinetics. The steeper depth profile is due to bulk
diffusion and the long diffusion tail is due to grain boundary diffusion.
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(a) (b)

(c) (d)

Figure 4.4: (a) Diffraction contrast image of the PyC/SiC interface and SiC substrate
in the 1, 100◦C:10hr-01 condition shown in Figure 4.2.
(b) HAADF image of the same region as (a).
(c) EDS map of strontium in SiC in the designated by the red box in (a) and (b).
The map presents the normalized EDS intensity across the PyC/SiC interface and in
the SiC substrate. An EDS map of the silicon concentration was used to identify the
PyC/SiC Interface indicated by the dashed white line.
(d) The corresponding 1D depth profile below the PyC/SiC interface in (c) plotted
in blue. The equivalant SIMS profile from Figure 4.3 is shown in red for comparison.
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Figure 4.5: Calibrated and fitted concentration profiles for strontium at 900◦C for 40
hours exhibiting grain boundary dominant diffusion kinetics.
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Figure 4.6: Calibrated and fitted concentration profiles for strontium at 1, 066◦C for
10 hours exhibiting mixed diffusion kinetics. The steeper depth profile is due to bulk
diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.7: Calibrated and fitted concentration profiles for strontium at 1, 100◦C for
10 hours exhibiting mixed diffusion kinetics. The steeper depth profile is due to bulk
diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.8: Calibrated and fitted concentration profiles for strontium at 1, 100◦C for
10 hours exhibiting mixed diffusion kinetics. The steeper depth profile is due to bulk
diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.9: Calibrated and fitted concentration profiles for strontium at 1, 100◦C for
10 hours exhibiting mixed diffusion kinetics. The steeper depth profile is due to bulk
diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.10: Calibrated and fitted concentration profiles for strontium at 1, 200◦C for
10 hours exhibiting mixed diffusion kinetics. The steeper depth profile is due to bulk
diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.11: Calibrated and fitted concentration profiles for strontium at 1, 200◦C for
10 hours. Only the grain boundary diffusion coefficient could be extracted using the
formalism for mixed diffusion kinetics
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Figure 4.12: Calibrated and fitted concentration profiles for strontium at 1, 300◦C for
10 hours exhibiting mixed diffusion kinetics. The steeper depth profile is due to bulk
diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.13: Calibrated and fitted concentration profiles for europium at 1, 100◦C for
10 hours exhibiting mixed diffusion kinetics. The steeper depth profile is due to bulk
diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.14: Calibrated and fitted concentration profiles for europium at 1, 200◦C for
10 hours exhibiting mixed diffusion kinetics. The steeper depth profile is due to bulk
diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.15: Calibrated and fitted concentration profiles for europium at 1, 200◦C for
10 hours exhibiting mixed diffusion kinetics. The steeper depth profile is due to bulk
diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.16: Calibrated and fitted concentration profiles for europium at 1, 300◦C for
10 hours exhibiting mixed diffusion kinetics. The steeper depth profile is due to bulk
diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.17: Calibrated and fitted concentration profiles for cesium at 900◦C for 10
hours exhibiting mixed diffusion kinetics. The steeper depth profile is due to bulk
diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.18: Calibrated and fitted concentration profiles for cesium at 1, 100◦C for
10 hours exhibiting mixed diffusion kinetics. The steeper depth profile is due to bulk
diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.19: Calibrated and fitted concentration profiles for cesium at 1, 200◦C for
10 hours exhibiting mixed diffusion kinetics. The steeper depth profile is due to bulk
diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.20: Calibrated and fitted concentration profiles for cesium at 1, 300◦C for
10 hours exhibiting mixed diffusion kinetics. The steeper depth profile is due to bulk
diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.21: Calibrated and fitted concentration profiles for strontium at 900◦C
irradiated at 4.6 × 10−4dpa s−1 to 10 dpa over 6 hours. The steeper depth profile is
due to bulk diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.22: Calibrated and fitted concentration profiles for strontium at 1, 000◦C
irradiated at 4.6 × 10−4dpa s−1 to 10 dpa over 6 hours. The steeper depth profile is
due to bulk diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.23: Calibrated and fitted concentration profiles for strontium at 1, 100◦C
irradiated at 4.6 × 10−4dpa s−1 to 10 dpa over 6 hours. The steeper depth profile is
due to bulk diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.24: Calibrated and fitted concentration profiles for europium at 900◦C
irradiated at 4.6 × 10−4dpa s−1 to 10 dpa over 6 hours. The steeper depth profile is
due to bulk diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.25: Calibrated and fitted concentration profiles for europium at 1, 000◦C
irradiated at 4.6 × 10−4dpa s−1 to 10 dpa over 6 hours. The steeper depth profile is
due to bulk diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.26: Calibrated and fitted concentration profiles for europium at 1, 100◦C
irradiated at 4.6 × 10−4dpa s−1 to 10 dpa over 6 hours. The steeper depth profile is
due to bulk diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.27: Calibrated and fitted concentration profiles for cesium at 900◦C
irradiated at 4.6 × 10−4dpa s−1 to 10 dpa over 6 hours. The steeper depth profile is
due to bulk diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.28: Calibrated and fitted concentration profiles for cesium at 1, 000◦C
irradiated at 4.6 × 10−4dpa s−1 to 10 dpa over 6 hours. The steeper depth profile is
due to bulk diffusion and the long diffusion tail is due to grain boundary diffusion.
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Figure 4.29: Calibrated and fitted concentration profiles for cesium at 1, 100◦C
irradiated at 4.6 × 10−4dpa s−1 to 10 dpa over 6 hours. The steeper depth profile is
due to bulk diffusion and the long diffusion tail is due to grain boundary diffusion.
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CHAPTER V

Discussion

This chapter will evaluate the performance of the diffusion couple design and

then determine the diffusion coefficients from the concentration profiles presented in

Chapter IV, including the activation energies and pre-factors for both bulk and grain

boundary diffusion in the thermally annealed condition. It will then compare these

values to determine which is dominant for each fission product. This process will

be repeated for the ion-irradiated condition. A point defect model will be used to

determine the atomistics of diffusion of the FPs on the silicon and carbon sub-latices.

The diffusion coefficients, activation energies and pre-factors will then be compared

with literature data to determine their impact on fission product release modeling.

5.1 Diffusion Couple Performance

The properties of SiC are highly dependent on the fabrication process. This is

true for thermo-mechanical [13] and chemical properties as evidenced by the vastly

different diffusion fluxes of strontium through the SiC cap and into the SiC substrate

as shown in Figure 4.2. The PECVD SiC produced here is initially amorphous

and then slowly crystallizes upon heating. While the initial film may be deposited

at theoretical density, the crystallization and hydrogen desorption result in a film

with sub-theoretical density [90]. This reduces the efficacy of the SiC cap and
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limited the temperature range of this study. Still, this study has been successful in

containing enough of the implanted FP to measure the diffusion of cesium, europium

and strontium between 900◦C and 1, 300◦C and the radiation enhanced diffusion of

these FPs between 900◦C and 1, 100◦C.

Friedland et. al. attempted to study cesium and strontium diffusion by direct ion

implantation into SiC [91–93]. They ion implanted FPs into polycrystaline 3C-SiC

and single crystal 6H-SiC, annealed the samples at high temperature, and measured

concentration using SIMS. For both FPs, redistribution of the FP was observed when

the damaged SiC recrystalized, but not into the undamaged SiC at temperatures up to

1, 500◦C. In this study, cesium and strontium diffusion was observed as low as 900◦C,

but the FP was introduced into the SiC a fundamentally different manner. This could

be due to the introduction of excessive radiation damage into the SiC from direct ion

implantation, creating trapping sites for the FPs, or due to the lack of the PyC/SiC

interface. The multi-layered diffusion couple also exhibits some trapping of FPs at the

PyC/SiC interface as observed by the build up of strontium at the PyC/SiC interface

seen in the EDS map in Figure 4.4c. If the radiation damage was solely responsible

for the difference in diffusion behavior, then there would still be some observation of

diffusion in the direct ion implantations, albeit greatly diminished in comparison to

the measurements made in this study. It is likely that the thermodynamics across

the PyC/SiC interface greatly increase the amount of FPs that can diffuse into the

SiC vs. the FP precipitate/SiC interlace.

5.1.1 Reproducibility

The reproducibility of diffusion measurements was investigated by producing two

separate 1, 100◦C:10hr strontium diffusion couples and taking two SIMS depth profiles

from each diffusion couple. Bulk diffusion coefficients varied by a factor of 3, while

grain boundary diffusion coefficients varied by a factor of 5, which is far less than the
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orders of magnitude variability for the diffusion of FPs in SiC in the literature [1,93].

The strontium concentration at which bulk and grain boundary diffusion occurred at

varied by nearly 2 orders of magnitude, but this had little impact on the diffusion

coefficients, which are related to the slopes of the concentration profiles.

There are three major sources of variability in this study. The first is the variability

in the quality of the SiC cap on each individual sample. The SiC cap ensures

that the FP has enough residence time at the PyC/SiC interface to diffuse into the

SiC. The PECVD process deposits a relatively uniform layer, but the dynamics of

recrystallization and hydrogen desorption during annealing can greatly affect the

final SiC cap density. This creates sample to sample variation, and variation within

each sample, which were not characterized. An annealing pre-treatment at lower

temperatures might ensure a more uniform high density SiC cap, reducing some of

this variation.

The second source is the PyC/SiC interface. The EDS map of strontium in the

1, 100◦C:10hr condition presented in Figure 4.4c shows a localized nodule of strontium

on the right side of the image. This preferential segregation at one portion of the

PyC/SiC interface could be due to the local orientation mismatch between the PyC

and SiC, the nature of the bonding at that location, or stress concentration due to

the surrounding interface character.

The third source is the diffusion into SiC itself. Bulk diffusion should be relatively

homogenous within SiC. Grain boundaries are heterogeneously located and differ in

character. The grain boundary character is likely to play a role in both the segregation

thermodynamics and the diffusion kinetics, controlling the concentration and the rate

at which FPs diffuse along the boundary. This heterogeneity will create a variability

in the measured diffusion coefficient depending on the distribution of grain boundaries

that the SIMS profile averages over.
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5.2 Fast Diffusion Paths

Bulk and grain boundary diffusion are assumed to be the only two active mechanisms

in poly-crystalline 3C-SiC that is grown by CVD and is at theoretical density with

minimum impurities such as the SiC used in this study. The Fisher model provides

a method to analyze diffusion by two competing mechanisms, one that is isolated

to small thin slabs and is relatively fast and the other that takes up the rest of the

material but is relatively slow. The slow diffusion mechanism has been shown to be

bulk diffusion via TEM in Figure 4.4.

Historically the fast mechanism has been assumed to be grain boundary diffusion

and has been verified in a variety of model systems by studying diffusion in single

crystal and poly-crystalline samples [49, 54, 56, 94–96]. While other features such

as stacking faults and dislocations could also be fast diffusion paths, the general

consensus is that the effects of fast pipe diffusion are observed as an enhancement of

bulk diffusion when grain boundary diffusion is a competing mechanism as is the case

in all poly-crystalline material [55,97,98].

Vapor phase diffusion via inter-connected porosity is another probable mechanism.

The diffraction contrast and HAADF images shown in Figure 4.4a and Figure 4.4b

show a notable lack of porosity and no indication that strontium has diffused via

any additional paths. Theoretical density SiC should have no porosity, let alone

the inter-connected network of porosity that is necessary for vapor phase diffusion.

Honorato et al. investigated this mechanism for silver diffusion in SiC by tailoring

the density of SiC coatings for their spherical diffusion couples [67]. They found that

silver did not segregate to the porosity, but rather to grain boundaries at annealing

temperatures of 1, 500◦C.

It was also not possible to detect strontium along the grain boundaries visible

in Figure 4.4a, but this could be due to the limited sensitivity of EDS or a grain

boundary character dependence on diffusion. Decreasing temperature would increase
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the segregation to grain boundaries increasing the local concentration but would

also limit the diffusion kinetics across the PyC/SiC interface, limiting the peak

concentrations available to the grain boundaries. These competing effects must

be better evaluated to identify the ideal set of conditions for confirmation of grain

boundary diffusion.

TEM observation of irradiated TRISO particles by Rooyen et al. have shown

significant segregation to grain boundaries of silver, palladium, cesium and cadmium

[9, 99, 100]. These FPs represent a wide distribution of chemical behavior and size

effects, including cesium which is investigated in this study. The lack of alternative

mechanisms, the extensive literature on diffusion in poly-crystalline systems that show

the activation of grain boundary diffusion, and the TEM observations of TRISO fuel

suggest that the fast mechanism observed in this study is in fact grain boundary

diffusion.

5.3 Thermal Diffusion

5.3.1 Bulk Diffusion

Table 5.1 lists all the bulk thermal diffusion coefficients, calculated according to

Eq. 3.9, in this study for all three elements. The majority of the bulk diffusion

coefficient error comes from the shallow diffusion depths. Cesium bulk diffusion

was measured between 900◦C and 1, 300◦C. Europium bulk diffusion was measured

between 1, 100◦C and 1, 300◦C. Strontium bulk diffusion was measured between 1, 066◦C

and 1, 300◦C. Figure 5.1 is an Arrhenius plot of these diffusion coefficients and

Arrhenius fits used to extract activation energies and pre-factors. Below 1, 150◦C

cesium bulk diffusion is faster than either strontium or europium diffusion. Strontium

bulk diffusion is faster than that for europium at all temperatures.

Table 5.2 lists the fitted activation energies and pre-factors. The scatter in
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the data about the fit creates large errors in the pre-factors, while the error in

the diffusion coefficients themselves dominate the error in the activation energy.

The activation energies for europium and strontium bulk diffusion are very similar

indicating they diffuse via similar hop mechanisms. There is no literature data

on experimentally measured activation energies for specific mechanisms for cesium,

strontium or europium diffusion. Shrader et al. calculated migration barriers for

cesium in SiC [101]. They found that the fastest bulk diffusion mechanism involved

a ring exchange process in which cesium could hop between substitutional carbon

sites by temporarily moving into a silicon vacancy and involved the coordination

of 2 negatively charged silicon vacancies to facilitate the process. The activation

energy for this process was 5.14 eV, which is significantly higher than the measured

activation energy of 1.0 eV. No calculations for either strontium or europium diffusion

are available in the literature.

5.3.2 Grain Boundary Diffusion

This study was not able to directly measure the grain boundary diffusion coefficient,

but rather the triple product of the diffusion coefficient, the grain boundary width

and the segregation factor. The grain boundary width is already well characterized

experimentally between 0.5 nm and 2 nm [60]. The segregation factor is far more

difficult to measure or calculate. Experiments on model systems have noted that the

segregation factor can vary by six orders of magnitude. The segregation of solute

to the grain boundary is a thermodynamic process governed by a segregation energy

and varies as a function of temperature:

s = exp(Eseg/kT ) (5.1)
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As a result, the activation energy measured here is a sum of the migration barrier and

the segregation energy. Calculating the segregation energy is also difficult. To first

approximation, the segregation energy is the elastic energy released from the lattice

when a solute moves from the bulk to the grain boundary [102]:

ESeg =
24πKGr3ξ2

3K + 4G
(5.2)

where K is the solute bulk modulus, G is the matrix shear modulus, r is covalent

radius of the solute atom and ξ is the misfit between the covalent radius of the

solute atom and the atomic radius of the matrix itself: ξ = (r − rmatrix)/r. Table

5.3 shows the parameters used in this calculation as well as the segregation energies

using a matrix sheer modulus of 160GPa [13] and matrix atomic radius of 0.128 nm,

which is the Si-C spacing in 3C-SiC. The covalent radii are very similar amongst

these three elements, so the bulk modulus dominates the differences in segregation

energies. Cesium has the lowest segregation energy due to a very low bulk modulus,

while strontium has the highest due to a large bulk modulus. Cesium also has the

largest misfit, suggesting that it undergoes the largest compressive strain from the

lattice. This formalism is useful in elucidating trends in segregation behavior [103].

These segregation energies suggest that strontium is the mostly strongly segregating

to grain boundaries, while cesium is the least strongly segregating and that europium

segregation to grain boundaries should be similar but less than that of strontium.

Table 5.1 lists grain boundary diffusion coefficients, calculated by dividing the

triple product (sδDGB) from Eq. 3.12 by the sδ assuming δ is 1 nm and using Eq.

5.1 for s with the segregation energies in Table 5.3. Cesium grain boundary diffusion

was measured between 900◦C and 1, 300◦C. Europium grain boundary diffusion was

measured between 1, 100◦C and 1, 300◦C. Strontium grain boundary diffusion was

measured between 900◦C and 1, 300◦C. It also lists the relative error from the fit of
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the grain boundary tail vs the total error in the grain boundary diffusion coefficient.

In all cases the majority of the error in the grain boundary diffusion coefficient comes

from the error in the bulk diffusion coefficient. Cesium has higher relative grain

boundary errors due to very low overall grain boundary diffusion resulting in shallow

profiles with larger fitting errors than the comparable strontium or europium profiles.

The high segregation energies for strontium and europium suggest that these two FPs

have slow diffusion kinetics, but the thermodynamics of grain boundary segregation

drive them to diffuse in comparable amounts via grain boundaries.

Figure 5.2 is an Arrhenius plot of the triple products with the Arrhenius fits used

to extract activation energies and pre-factors. Below 1, 100◦C cesium grain boundary

diffusion is faster than either strontium or europium grain boundary diffusion. Above

1, 100◦C cesium grain boundary diffusion is slowest. Europium grain boundary diffusion

is faster than that for strontium at all temperatures.

Table 5.2 also lists the fitted activation energies and pre-factors for grain boundary

diffusion. The activation energies for europium and strontium grain boundary diffusion

are very similar indicating that they diffuse via similar paths. There are no experimental

values for grain boundary diffusion of cesium, europium or strontium diffusion in

SiC. Rabone et al. investigated the hop mechanisms for cesium diffusion along

Σ5 grain boundaries [104] using accelerated density functional theory (DFT). They

found very large incorporation energies (> 7eV ) for cesium in the Σ5 grain boundary

suggesting that the solubility of cesium in Σ5 grain boundaries is very low. They also

calculated migration barriers at various locations along the Σ5 grain boundary which

ranged from 2 eV to 5.4 eV. Assuming that the lowest energy hop is preferred, these

calculations are very close to the migration energy measured in this study at 2.2 eV.

Their calculations did not consider significant restructuring of the Σ5 grain boundary

near the incorporation site for cesium and the electron density maps indicated that

cesium bonding to the grain boundary could play an important factor in altering the
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migration energies.

This is the first time that the thermally driven bulk and grain boundary diffusion

of cesium, europium and strontium were measured in SiC. Cesium exhibited mixed

diffusion kinetics between 900◦C and 1, 300◦C indicating that both bulk and grain

boundary diffusion mechanisms are active. Strontium exhibited grain boundary

dominant diffusion kinetics at 900◦C, but mixed diffusion kinetics above 1, 066◦C.

Europium exhibited mixed diffusion kinetics above 1, 100◦C, but was not measured

below this temperature. The segregation energies of strontium and europium are

similar suggesting that europium will exhibit grain boundary dominant kinetics below

1, 066◦C.

5.4 Radiation Enhanced Diffusion

5.4.1 Bulk Diffusion

The radiation enhanced diffusion (RED) of cesium, europium and strontium via

the bulk was measured at a dose rate of 4.6×10−4 dpa s−1 using ion irradiation as the

damage source. Table 5.4 lists the bulk diffusion coefficients calculated in this study

using Eq.3.9. Bulk diffusion was measurable for all three elements between 900◦C

and 1, 100◦C in the irradiated condition.

Figures 5.3 - 5.5 plot the RED coefficient as well as the thermal diffusion coefficients

for cesium, europium and strontium bulk diffusion. The cesium RED coefficient

exhibits significant enhancement over thermal diffusion and trends weakly down with

temperature. Europium bulk RED at 1, 100◦C is comparable with thermal diffusion.

Below this temperature the europium RED enhancement should be significant. Strontium

bulk RED exhibits significant enhancement at all temperatures and a strongly increasing

trend with temperature.

Table 5.5 lists the activation energies for bulk RED. The activation energies
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for strontium and europium bulk diffusion are very similar under purely thermal

conditions. Under irradiation, that changes drastically. Strontium bulk RED is faster

than either europium or cesium bulk RED for bulk diffusion. Only strontium bulk

RED exhibits the expected behavior of a thermally controlled process as a function

of temperature with a positive activation energy.

Figure 5.6 shows the radiation enhancement for the bulk diffusion for all three

fission products of interest. The bulk diffusion enhancement is plotted in blue with

solid, dotted, and dashed lines differentiating between cesium, europium, and strontium.

At 900◦C all three elements show significant enhancement of diffusion via the bulk.

This enhancement is negligible by 1, 100◦C for europium bulk diffusion. Cesium bulk

and strontium bulk radiation enhancement both become negligible by 1, 300◦C. The

significantly larger radiation enhancement for strontium and europium bulk diffusion

vs. cesium bulk diffusion suggest that defect concentrations are more closely coupled

with strontium and europium bulk diffusion than cesium bulk diffusion. This could

also imply that more defects are involved in the migration of strontium and europium

diffusion than cesium diffusion.

5.4.2 Grain Boundary Diffusion

The RED of cesium, europium and strontium via grain boundaries was measured

at a dose rate of 4.6 × 10−4 dpa s−1 using ion irradiation as the damage source.

Table 5.4 lists the grain boundary diffusion coefficients calculated in this study as

well as the relative errors from the fit of the grain boundary tail vs the total error in

the grain boundary diffusion coefficient. Grain boundary diffusion coefficients were

calculated by dividing the triple product (sδDGB) from Eq. 3.12 by the sδ assuming

δ is 1 nm and using Eq. 5.1 for s with the segregation energies in Table 5.3. Grain

boundary diffusion was measurable for all three elements between 900◦C and 1, 100◦C

in the irradiated condition. The high segregtion energies for strontium and europium
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suggest that grain boundary diffusion kinetics are slower than bulk diffusion kinetics

but the thermodynamics of grain boundary segregation allow for comparable diffusion

via both mechanisms.

Figures 5.7 -5.9 plot the radiation enhanced diffusion coefficient as well as the

thermal diffusion coefficients for cesium, europium and strontium grain boundary

diffusion. Both strontium and europium grain boundary diffusion exhibit downward

trends with temperature, while cesium grain boundary diffusion has an inflection

around 1, 000◦C. Both cesium and strontium RED exhibit significant enhancement

over thermal diffusion. Europium also exhibits an enhancement of RED over thermal

diffusion, but the enhancement is eliminated by 1, 100◦C.

Table 5.5 also lists the activation energies for grain boundary RED. It was not

possible to fit an Arrhenius curve to the cesium grain boundary RED values. The

activation energies for strontium and europium grain boundary diffusion are also very

similar under purely thermal conditions. Under irradiation, that changes drastically.

Strontium RED is faster than europium, but comparable with cesium RED for grain

boundary diffusion.

Figure 5.10 shows the radiation enhancement for bulk and grain boundary diffusion

for all three fission products of interest. The bulk enhancement is plotted in blue

while the grain boundary enhancement is plotted in red. At 900◦C all three elements

show significant enhancement of diffusion by grain boundaries. This enhancement

is negligible by 1, 100◦C for europium grain boundary diffusion. Strontium grain

boundary radiation enhancement becomes negligible by 1, 300◦C. Cesium grain boundary

diffusion exhibits enhancement up to 1, 300◦C.

Both cesium and strontium exhibit significant radiation enhancement between

900◦C and 1, 300◦C, while the radiation enhancement of europium is negligible by

1, 100◦C. Both cesium and strontium also exhibit a larger enhancement for grain

boundary diffusion than bulk diffusion, while europium exhibits the opposite behavior.
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The difference for the enhancement of europium diffusion is within an order of magnitude.

This is the error of the thermal and radiation enhanced diffusion coefficients indicating

that the two mechanisms exhibit the same enhancement within error. Cesium grain

boundary diffusion exhibits significantly more radiation enhancement than bulk diffusion

indicating that cesium grain boundary diffusion is more limited by the concentration

of defects available to mediate diffusion than cesium bulk diffusion in SiC. The

enhancement for strontium diffusion via bulk or grain boundaries is similar across

all temperature ranges, and the difference in slopes is most likely due to the error in

the measurements. The enhancement for europium diffusion for both mechanisms is

within the error of the diffusion measurements. This suggest that europium diffusion

is the least limited by defect concentrations.

5.4.3 Point Defect Reaction Model

The radiation enhancement of bulk diffusion is governed by the flux of point defects

[83]. Radiation enhanced diffusion coefficients should follow the defect concentrations.

At low irradiation temperatures the production of point defects overwhelms thermal

defects and the concentrations grow to be so large that recombination of point

defects dominates. As the temperature continues to rise the flux of point defects

to sinks becomes significant, reducing the point defect concentrations. Eventually

the thermally supported concentration of defects becomes significant and dominates

the trend in defect concentrations.

The point defect reaction equations were solved for SiC to verify the temperature

range in which the point defect concentrations transition from thermally dominated

to radiation dominated and to determine whether these transitions are consistent

with our results for cesium, europium and strontium RED. The rate of change in the

vacancy and interstitial concentrations for silicon and carbon are given by:
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Here, dCA
j /dt is time differential for the concentration of species j on sub-lattice

A. KSi
0 and KC

0 are the damage production rates on either sub-lattice obtained from

SRIM using the Kinchin-Pease mode to determine K0 and the full cascade mode to

calculate how the damage is partitioned to either sub-lattice [81]. kAjl is the reaction

rate coefficient between species j and l on sub-lattice A. Cs is the sink density.

There are two primary sinks in CVD-SiC: stacking faults and grain boundaries.

Sinks strengths, defined as k2
m wherem refers to the sink, provide a way to compare the

relative importance of various sinks in the material for the point defect concentrations.

The sink strength for stacking faults is: k2
sf = zsfρsf , where zsf is the bias to stacking

faults and ρsf is the stacking fault density. The bias for stacking faults is generally no

more than 2% [83], and the stacking fault density in SiC is 1014cm−2 [76], yielding a
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stacking fault sink strength of 1.02×1014cm−2. The sink strength for grain boundaries

is: k2
gb = 24/d2, where d is the grain size [83]. The grain size in the CVD SiC used in

this study is 1.8µm, yielding a grain boundary sink strength of 7.4 × 1010cm−2.The

sink strength for stacking faults is three orders of magnitude higher than the sink

strength for grain boundaries indicating that grain boundaries do not control the

overall point defect concentrations reducing the sink term to annihilation at stacking

faults, therefore Cs is the stacking fault density, ρsf .

Table 5.6 defines the reaction rate coefficients which are functions of the interaction

radii and point defect diffusivities. The interstitial diffusivities are given in literature

[37]. Vacancy diffusivities were back-calculated from the self-diffusion coefficients

[105] and the vacancy formation energies [22] assuming carbon and silicon self-diffusion

in SiC occur by way of vacancies near the melting temperature [106,107].

DSi = DSi
v C

Si
v +DSi

i C
Si
i ≈ DSi

v C
Si
v

DC = DC
v C

C
v +DC

i C
C
i ≈ DC

v C
C
v

DSi
v ≈ DSi/CSi

v (5.7)

DC
v ≈ DC/CC

v (5.8)

Table 5.7 lists the parameters used to calculate the resulting point defect diffusivities.

The radii for point defect interaction are based on the geometry of the two inter-penetrating

FCC lattices and the nearest neighbor distances. The zinc-blende system is an FCC

lattice with a two atom basis: one on the origin and another of the opposing type

on 1/4 the body diagonal. The geometry factors for nearest neighbor interactions on

the same sub-lattice and opposing sub lattices are the same. The nearest neighbor

distance for defects on the same sub-lattice is then the nearest neighbor distance of

the FCC lattice which is 1/√2a0. The nearest neighbor distance for opposing lattices
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is the basis distance or the nearest atom distance which is
√

3/4a0. Figure 5.11 shows

two ball and stick models labeling the near atom distance and the nearest neighbor

distance. Table 5.8 defines the interaction radii and the parameters necessary to the

point defect concentrations.

At steady-state, all the differentials of concentration with time in Eqs (5.3-5.6) are

set equal to 0, which leaves a set of coupled equations that can be solved numerically

as a function of temperature. A scientific computing and analysis package,SciPy [89],

was used to solve these coupled non-linear equations to determine the point defect

concentration under ion-irradiation and neutron irradiation damage rates.

Figure 5.12 shows the point defect concentrations determined from Eqs. (5.3-5.6)

under the ion irradiation conditions used here. There are three regimes for the point

defect concentration. At low temperatures, the production of defects by irradiation

swamps the thermal concentrations. As temperature increases, the diffusivity of

point defects increase, increasing the loss rate due to recombination and annihilation

at sinks. A constant production rate and increasing loss rate creates a decreasing

point defect concentration as a function of temperature. At high temperatures, the

thermal production of point defects controls the point defect concentration. Excess

point defects created by irradiation are quickly removed from the system via loss

mechanisms and the material returns to thermal equillibrium. At intermediate temperatures

these two regimes overlap, creating an athermal knee region where the point defect

concentrations are flat. The carbon vacancy concentration decreases with temperature

between 900◦C and 1, 100◦C. Conversely, the silicon vacancy concentration monotonically

increases between 900◦C and 1, 100◦C. Both interstitial concentrations have inflection

points in this temperature range.

Figure 5.13 shows the point defect concentrations determined from Eqs. (5.3-5.6)

using a dose rate of 1.6 × 10−7dpa s−1 which is relevant to neutron irradiation

conditions as per the AGR-1 fuel irradiation campaign conducted by INL at the
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Advanced Test Reactor [2]. The knees in the defect concentrations shift to much lower

temperatures, below 900◦C, below the irradiation temperature range for AGR-1 and

the expected operating temperature range for TRISO in a VHTR. This indicates that

a neutron irradiation campaign would not be able to observe the inflection points in

the diffusion coefficient to determine the sub-lattice and defects associated with FP

diffusion in SiC. Similarly, they indicate that the RED of FPs in SiC under neutron

irradiation will be monotonically increasing over the expected operating temperature

range of a VHTR.

The carbon vacancy concentration under ion irradiation decreases as a function

of temperature up to 1, 100◦C, in agreement with the weakly decreasing trends for

cesium bulk, europium bulk, europium grain boundary and strontium grain boundary

diffusion. Similarly, the weakly increasing trend for strontium bulk diffusion corresponds

well with the positive temperature dependence of the silicon vacancy concentration.

The inflection at 1, 000◦C for cesium grain boundary diffusion could correspond with

either silicon or carbon interstitial concentration.

A sensitivity study was conducted to determine the effect of error in the parameters

on the point defect concentrations. Defect migration energies in SiC are strong

functions of the Fermi level which depend on the doping. The parameters used

in this study assume that SiC is neither n-type or p-type, which could significantly

alter the migration energies based on amount and type of fission products in SiC.

The migration energies have intrinsic errors on the order of 1 eV [16, 22, 37]. The

point defect concentrations exhibited deviations of 710% per eV change in a single

migration energy. Concurrent changes in multiple migration energies resulted in

larger sensitivities and the sensitivity of the point defect concentrations to a change

in all four migration energies was 100,000% per eV, indicating that there are strong

coupling effects on the migration energies and the point defect concentrations. It is not

possible to calculate diffusion coefficients directly from the point defect concentrations
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as the exact mechanism that defines how point defects mediate diffusion is not

known. As a result, the absolute magnitude of the point defect concentrations

and the relative magnitudes are of little consequence to the overall conclusions from

this study, which focuses on the location of the inflection points to correlate fission

product diffusion with a sub-lattice defect. The inflection points exhibited deviations

of 100◦C per eV change in the migration energies. The inflection points in the silicon

interstitial and silicon vacancy concentrations are within 60◦C of each other, which

could change the defect on the silicon sub-lattice associated with strontium bulk

diffusion. The sensitivity in the temperature of the inflection points does not affect

the other conclusions.

At a dose rate relevant to ion irradiation, 4.6 × 10−4dpa s−1, the point defect

concentrations are insensitive to any deviation in the sink density within the limitations

of error in a numerical solution. At a sink density of 1018cm−2, the numerical solutions

for the point defect concentrations became unstable. Decreasing the sink density to

0, had no effect on the point defect concentration, indicating that the recombination

of point defects controls the point defect concentration. At a dose rate relevant to

neutron irradiation conditions, 1.6 × 10−7dpa s−1 , the point defect concentrations

do change as a function of the sink density. The point defect concentrations exhibit

a change of 0.08% per % change in the sink density. The inflections points exhibit

deviations of 5.5× 10−4 ◦C per % change in the sink density. This corresponds to a

0.55◦C deviation in the inflection points for a factor 10 increase in the sink density,

which doesn’t alter the correlations between point defects and diffusivities identified

in this study.

This is the first time that the radiation enhanced bulk and grain boundary diffusion

of cesium, europium and strontium were measured in SiC. All three FPs exhibited

mixed diffusion kinetics with measurable diffusion coefficients between 900◦C and

1, 100◦C indicating that both mechanisms are important for these three FPs. Europium
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had negligible radiation enhancement for bulk and grain boundary diffusion by 1, 100◦C.

All but cesium grain boundary diffusion exhibited negligible enhancement at 1, 300◦C.

A point defect model elucidated the atomistics associated with FP Diffusion. It

indicates that cesium bulk, europium bulk and grain boundary, as well as strontium

grain boundary diffusion are likely to proceed on the carbon sublattice, while strontium

bulk diffusion is likely to proceed via the silicon sublattice.

5.5 Comparison with Reactor Data

5.5.1 FP Release Data

The IAEA TECDOC-978 report contains the most widely accepted and utilized

diffusion data to benchmark TRISO FP release [1]. The suggested pre-factors and

activation energies from the TECDOC are listed in Table 5.9. The TECDOC lists

two activation energies for cesium and strontium corresponding to a low temperature

mechanism below 1, 600◦C and a high temperature mechanism above this temperature.

This study was limited to 1, 300◦C and can only be compared with the low temperature

mechanism from the TECDOC. The low temperature activation energy of cesium at

1.3 eV from the TECDOC compares favorably with the bulk diffusion coefficient of 1.0

eV calculated here. Neither the bulk nor grain boundary activation energies measured

here for strontium compare with the TECDOC’s low temperature activation energy

at 2.1 eV.

Figure 5.14 is an Arrhenius plot of cesium diffusion data from past TRISO test

programs used to calculate the fits for high temperature (> 1, 600◦C) and low temperature

(< 1, 600◦C) diffusion mechanisms in the IAEA TECDOC-978. These diffusion

coefficients were obtained by irradiating TRISO fuel in hexagonal compacts or spherical

pebbles in materials test reactors and test gas reactors, followed by annealing in a

furnace at high temperature. The release rate of cesium was monitored during the
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annealing and then plotted against ideal solutions of the diffusion equation assuming

the SiC is the key retaining layer to calculate a diffusion coefficient. Defect fractions

and failure fractions were difficult to quantify in these irradiations and the quality

of the TRISO fuel varied greatly. As a result, TRISO particles could have failed

during irradiation or annealing, release a full particle’s inventory of cesium, which

would then be averaged over the entire compact or pebble. It is believed that most

of the literature data that trends with the high temperature and low temperature

mechanisms for the IAEA fits are due to release from TRISO failure. There is batch

of historic data that is significantly lower than the rest from Myers/Nabielek circled

in red in Figure 5.14. This is from the German TRISO program which has historically

had the lowest defect fraction of any TRISO program, and as a result the best quality

TRISO particles. The low release diffusion coefficients from Myers/Nabielek support

the theory that the rest of the release measurements are of failed TRISO averaged

over a compact or pebble and not diffusion through intact SiC.

Diffusion coefficients from thermal annealing are plotted on top of the literature

data in Figure 5.15a . Bulk diffusion coefficients are plotted in blue while grain

boundary diffusion coefficients are plotted in red. The grain boundary diffusion

coefficient are plotted using the segregation energies tabulated in Table 5.3 and a grain

boundary width of 1 nm. Both bulk and grain boundary diffusion coefficients from this

study agree with the Myers/Nabielek diffusion coefficients from high quality German

TRISO fuel. The agreement between the cesium diffusion coefficients measured in

this study and the cesium diffusion coefficients measured by Myers/Nabielek via

cesium release measurements of high quality TRISO fuel support the premise that

high quality SiC should exhibit minimal cesium diffusion.

RED coefficients from the ion irradiations are plotted on top of the literature data

in Figure 5.15b. Bulk diffusion coefficients are plotted in blue while grain boundary

diffusion coefficients are plotted in red. Open circles indicate diffusion coefficients
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from the ion irradiations, while closed circles are for RED coefficients that have

been dose rate adjusted to the neutron irradiation dose rate discussed in the next

section. The ion irradiation RED coefficients show a significant diffusion enhancement

well over the cesium diffusion coefficients seen in TRISO fuel and straddle the low

temperature fit from ref [1]. This suggests that radiation damage could be a key

component of the variability in cesium release.

As stated previously the fabrication route is key to the performance of SiC.

Small differences such as CVD vs. fluidized bed CVD, which are the two processes

for the substrate used here vs. TRISO SiC, can greatly change the chemical and

thermo-mechanical properties [13]. Still the trends should be comparable as the

substrate used here is theoretical density CVD 3C-SiC with a similar grain size

to TRISO SiC [108]. Qualitatively, the trends in the diffusion data agree with

what has been seen in the literature. At low temperatures, cesium appears to be

more mobile than strontium [109]. Strontium release correlates well with europium

release [2, 62,110,111]. Recent TRISO test fuel shows an order of magnitude greater

europium release than strontium, which correlates well with a larger grain boundary

diffusion coefficient for europium than strontium both determined in this study and

in the literature [112].

5.5.2 Fission Product Release Modeling

Most of the measurements made in this study were in the mixed diffusion regime.

In fuel and in fuel modeling, it is difficult to model or to incorporate a dual diffusion

system. One way to work around this is to use an effective diffusion coefficient. The

Kalnin equation [113] is a mean-field approximation for effective diffusion of solutes

in a material. It accounts for the partial trapping of solutes by the bulk, the energy

barrier for a solute to diffuse into the bulk from the grain boundary, as well as the

effect of networking of grain boundaries around grains creating additional trapping
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area. As a result, the effective diffusion coefficient can be lower than either bulk

or grain boundary diffusion coefficients if the grain boundary segregation factor is

large and the bulk and grain boundary diffusion coefficients are comparable. This

is an indicator that the solubility of the solute in the bulk and grain boundary is as

important in the mobility of the solute as the diffusivity.

The Kalnin equation is defined as:

Deff =
sDGB [(3− 2)DB + 2fsDGB]

(1− f + sf) [gDB + (3− f)sDGB]
(5.9)

where f is the fraction of atomic sites belonging to grain boundaries and s is the

segregation factor. For solute diffusion f can be defined by:

f =
qδ

d
(5.10)

where q is a geometry factor for the shape of grains and the dimensionality of the

diffusion paths. For 3D diffusion q ∼ 3. δ is the grain boundary width and d is the

grain size. δ ranges from 0.5 nm to 2 nm, depending on the grain boundary type [60].

The term sDGB can come from the mixed diffusion measurements of grain boundary

diffusion.

The dot-dashed red line in Figure 5.15a is the effective thermal diffusion coefficient

calculated using equation 5.9, a segregation energy of 0.39 eV as calculated in Table

5.3, δ of 1nm, q of 3, d of 1.8µm and the cesium diffusion coefficients for the

case of thermal annealing. The effective thermal diffusion coefficient (DEff ) is very

similar in slope to the TECDOC fit in the low temperature regime, but 2.5 orders

of magnitude lower. This difference in magnitude between the effective thermal

diffusion coefficient calculated here and the TEDOC fit agrees with the discrepancy

observed in predictions of cesium release by PARFUME using the TECDOC fit and

those measured by deconsolidation-leach-burn-leach method for the NGNP AGR-1
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irradiation [112]. Figure 5.16 shows the cesium release for 6 compacts from the

AGR-1 irradiation that exhibit between 1 and 3 orders of magnitude over-prediction

in cesium release by PARFUME using the IAEA diffusion coefficients as compared

with release measurements [112]. The quality of the SiC used here is a limiting

case and should exhibit the lowest diffusion coefficients for cesium. This validates the

premise that high quality TRISO SiC should have minimal cesium release. The release

levels corresponding to these diffusion coefficients are less than the total inventory of

a single TRISO particle [1]. This also validates the assumption that cesium release

greater than the total inventory of a single particle can be used to determine if any

TRISO particles have fully fractured SiC.

The RED coefficients plotted in Figure 5.15b are those measured in the ion

irradiated samples. However, to properly compare with the literature data, which

are a result of reactor irradiations at much lower dose-rates, the RED coefficients

have to be scaled to account for the difference in dose-rate. There are two limits on

the scaling of the RED coefficients based on the microstructure that controls the point

defect concentrations. One limit is when recombination of point defects controls the

point defect concentrations, which occurs at low temperature and high dose-rates.

The other limit is when annihilation of defects at sinks controls the point defect

concentration, which occurs at high temperatures and low dose-rates. The definition

of high and low temperature as well as high and low dose-rates are microstructure

dependent [83]. It is likely that the ion irradiations, due to the higher dose rates,

are closer to the recombination dominant regime and the neutron irradiations, due

to their lower dose rates, are closer to sink dominant regime, but can not be verified.

The exact scaling law is DRED ∝ Kn
0 , where n is between 0.5 and 1, and accounts

for the likelihood that the two dose-rates are in different point defect regimes. The

neutron dose rate corrected RED coefficients plotted in Figure 5.15b assume the

scaling is K0
0 .5 to calculate the worst case diffusion coefficient for cesium release.
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These coefficients span the range between the thermal diffusion coefficients and the

IAEA low temperature mechanism, suggesting that radiation is a key factor in the

variability of cesium release.

Comparison with activation energies and pre-factors suggested by IAEA TECDOC-978

reveals a disagreement of 2 to 3 orders of magnitude in diffusion coefficients measured

in this study for thermal conditions and those suggested in the TECDOC. Still,

effective thermal diffusion coefficients calculated in this study agree well with the

lower bounds of diffusion coefficients calculated from cesium release measurements and

effective RED coefficients span most of the range in diffusion coefficients calculated

from cesium release, suggesting that variations in irradiation conditions due to temperature

and dose rate affect variations in diffusion observed with TRISO fuel test irradiations.

The agreement between the thermal diffusion coefficients for cesium and the lower

bounds of cesium diffusion coefficients calculated from cesium release measurements

suggest that TRISO with flawless SiC should retain it’s full inventory and that high

cesium release is a valid indicator of SiC fracture.
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Profile
Temperature

◦C
Location DB(cm2s−1) DGB(cm2s−1)

Relative
Error (%)

Cs-900:40h-01 900 PNNL 1.5± 0.96× 10−17 3.4± 1.9× 10−19 49
Cs-1100:10h-01 1100 PNNL 6.5± 4.7× 10−17 6.4± 5.9× 10−17 18
Cs-1200:10h-01 1200 PNNL 9.9± 2.9× 10−17 2.2± 1.1× 10−16 10
Cs-1100:10h-01 1300 PNNL 2.2± 1.6× 10−16 2.2± 0.68× 10−15 34

Eu-1100:10h-01 1100 IEN 6.8± 4.3× 10−18 6.9± 5.4× 10−19 3
Eu-1200:10h-01 1200 IEN 3.4± 1.0× 10−16 6.7± 2.3× 10−17 7
Eu-1200:10h-02 1200 IEN 1.4± 0.89× 10−16 1.0± 0.21× 10−17 4
Eu-1300:10h-01 1300 IEN 2.6± 0.47× 10−15 4.5± 0.81× 10−17 6

Sr-900:40h-01 900 PNNL ND 2.2± 0.83× 10−23

Sr-1066:10h-01 1066 IEN 3± 0.78× 10−18 1.0± 0.14× 10−21 10
Sr-1100:10h-01 1100 PNNL 4.4± 1.4× 10−17 1.5± 0.48× 10−20 6
Sr-1100:10h-02 1100 IEN 6.8± 4.3× 10−17 6.2± 3.4× 10−20 6
Sr-1100:10h-03 1100 IEN 2.2± 1.5× 10−17 5.0± 2.4× 10−20 7
Sr-1100:10h-04 1100 IEN ND 2.2± 1.2× 10−19 18
Sr-1200:10h-01 1200 PNNL 2.8± 0.84× 10−16 8.8± 2.8× 10−19 6
Sr-1200:10h-02 1200 IEN ND 7.1± 2.0× 10−19 14
Sr-1300:10h-01 1300 IEN 6.3± 4.9× 10−15 2.1± 1.7× 10−17 4

Table 5.1: Bulk and grain boundary diffusion coefficients for cesium, europium
and strontium thermal diffusion. The relative error is the percent of the error
in the grain boundary diffusion coefficient from fitting the grain boundary tail.
ND indicates values that were not determined. The sample naming scheme is as
follows: FP-Temperature:time-profile number. The 1100C:10h annealing condition
for strontium is the only cause in which multiple diffusion couples were fabricated
and annealed. Sr-1100:10h-01 and Sr-1100:10h-02 are from one diffusion couple while,
Sr-1100:10h-03 and Sr-1100:10h-04 are from the second.
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Fission
Product

DB
0

(cm3s−1)
EB

0

(eV)
sδDGB

0

(cm3s−1)
EGB
A

(eV)

Cesium 2.1± 1.5× 10−13 1.0± 0.1eV 1.9± 8.8× 10−14 2.2± 0.6
Europium 1, 300± 2, 500 5.5± 0.3 5.4± 31× 10−5 4.7± 0.8
Strontium 1, 200± 57, 000 5.7± 0.6 1.4± 1.6× 10−5 4.6± 0.1

Table 5.2: Activation energies and pre-factors for cesium, europium and strontium
bulk and grain boundary diffusion
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FP
K

(GPa)
r

(pm)
ξ

Eseg
(eV)

Cesium 1.6 225 0.43 0.39
Europium 8.3 198 0.35 0.91
Strontium 13.2 195 0.34 1.28

Table 5.3: The segregation energy for FPs assuming that only the elastic strain energy
is significant.
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Profile
Temperature

◦C
DB

(cm2s−1)
DGB

(cm2s−1)

Relative
Error
(%)

Cs-900:6h:10dpa-01 900 1.3± 1.0× 10−15 3.6± 2.3× 10−13 8
Cs-1000:6h:10dpa-01 1,000 5.3± 3.7× 10−16 1.8± 1.3× 10−14 9
Cs-1100:6h:10dpa-01 1,100 5.2± 1.0× 10−16 4.1± 0.74× 10−13 6

Eu-900:6h:10dpa-01 900 3.4± 1.8× 10−17 1.2± 0.57× 10−18 3
Eu-1000:6h:10dpa-01 1,000 3.3± 1.6× 10−17 1.2± 0.72× 10−18 6
Eu-1100:6h:10dpa-01 1,100 2.2± 1.1× 10−17 8.7± 4.6× 10−19 7

Sr-900:6h:10dpa-01 900 7.0± 4.3× 10−16 2.5± 2.1× 10−16 3
Sr-1000:6h:10dpa-01 1,000 1.2± 0.2× 10−15 6.5± 3.1× 10−17 9
Sr-1100:6h:10dpa-01 1,100 4.1± 1.6× 10−15 6.8± 4.6× 10−17 7

Table 5.4: Radiation enhanced diffusion coefficients for cesium, strontium and
europium at a dose rate of 4.6× 10−3 dpa s−1
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Fission
Product

DB
0

(cm2s−1)
EB
A

(eV)
sδDGB

0

(cm3s−1)
EGB
A

(eV)

Cesium 1.7± 4.7× 10−17 −0.4± 0.3 ND ND
Europium 1.9± 2.9× 10−18 −0.3± .2 1.7± 1.3× 10−26 −1.1± 1.0
Strontium 3.6± 1.9× 10−9 1.6± 0.6 1.1± 0.7× 10−23 −1.2± 0.7

Table 5.5: Activation energies and pre-factors for bulk and grain boundary RED of
cesium, europium and strontium.
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Reaction Rate Coefficients (cm3s−1)

kSiiv 4πrSiiv (DSi
i +DSi

v )
kCiv 4πrCiv(D

C
i +DC

v )
kSi−Civ 4πrSi−Civ (DSi

i +DC
v )

kC−Siiv 4πrC−Siiv (DC
i +DSi

v )
kSiii 4πrSiii 2DSi

i

kCii 4πrCii2D
C
i

kSivv 4πrSivv2D
Si
v

kCvv 4πrCvv2D
C
v

kii 4πrii(D
Si
i +DC

i )
kvv 4πrvv(D

Si
v +DC

v )
kSiis 4πzidD

Si
i

kSivs 4πzvdD
Si
v

kCis 4πzidD
C
i

kCvs 4πzvdD
C
v

Table 5.6: Reaction rate coefficients for the point defect reaction model.
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Diffusion Coefficients (cm2s−1)

DSi
i 1.23× 10−3exp

(−0.74eV
kT

)
DSi
v 8.36× 107exp

(−2.65eV
kT

)
DC
i 3.3× 10−3exp

(−1.53eV
kT

)
DC
v 2.62× 108exp

(−2.82eV
kT

)
Table 5.7: Diffusion coefficients for the point defect reaction model.
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Quantity Value

a0 4.335Å [13]

rSiiv 48/
√

2a0 = 14.7nm

rCiv 48/
√

2a0 = 14.7nm

rSi−Civ 48
√

3/4a0 = 9.0nm

rC−Siiv 48
√

3/4a0 = 9.0nm

rSiii 84/
√

2a0 = 25.7nm

rCii 84/
√

2a0 = 25.7nm

rSivv 84/
√

2a0 = 25.7nm

rCvv 84/
√

2a0 = 25.7nm

rSiCii 84
√

3/4a0 = 15.8nm

rSiCvv 84
√

3/4a0 = 15.8nm
zid 1.02 [83]
zvd 0.98 [83]
Cs 1014cm−2 [76]
ESi
m−i 0.74eV

ESi
m−v 2.65eV

EC
m−i 1.53eV

EC
m−v 2.82eV

Table 5.8: Quantities for the point defect reaction model.
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Low Temperature High Temperature Thermal Diffusion

Fission
Product

D0

(cm2s−1)
EA

(eV)
D0

(cm2s−1)
EA

(eV)
DB

0

(cm2s−1)
EB
A

(eV)
DGB

0

(cm2s−1)
EGB
A

(eV)

Cesium 5.5× 10−10 1.3 1.6× 102 5.3 2.1× 10−13 1.0 1.9× 10−14 2.6
Strontium 1.2× 10−5 2.1 1.8× 1010 8.2 1,200 5.5 1.4× 10−5 6

Table 5.9: Activation energies and pre-factors suggested by the IAEA TECDOC-978
compared with activation energies and pre-factors for bulk and grain boundary
diffusion measured in this study. [1].
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Figure 5.1: Arrhenius plot for cesium, europium and strontium thermal bulk diffusion.
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Figure 5.2: Arrhenius plot for cesium, europium and strontium thermal grain
boundary diffusion.
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Figure 5.3: Cesium bulk thermal and radiation enhanced diffusion.
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Figure 5.4: Europium bulk thermal and radiation enhanced diffusion.
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Figure 5.5: Strontium bulk thermal and radiation enhanced diffusion.
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Figure 5.6: Radiation enhancement for the bulk diffusion of cesium, strontium and
europium
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Figure 5.7: Cesium grain boundary thermal and radiation enhanced diffusion.
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Figure 5.8: Europium grain boundary thermal and radiation enhanced diffusion.
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Figure 5.9: Strontium grain boundary thermal and radiation enhanced diffusion.
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Figure 5.10: Radiation enhancement factor for the bulk and grain boundary diffusion
of cesium, strontium and europium
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(a) (b)

Figure 5.11: Ball and stick model of the SiC unit cell with carbon in red and silicon
in blue labeling (a) the nearest atom distance and (b) the nearest neighbor distance.
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Figure 5.12: Point defect concentrations for SiC under ion irradiation conditions.
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Figure 5.13: Point defect concentrations for SiC under neutron irradiation conditions.
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Figure 5.14: Arrhenius plot for cesium diffusion measured using post-irradiation
heating experiments [114–121]. The very low release cesium diffusion coefficients
from Myers/Nabielek are circled in red
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(a)

(b)

Figure 5.15: Same plot as 5.14 with (a) thermal bulk and grain boundary diffusion
coefficients from this study plotted in red and blue open circles or (b) the ion irradiated
bulk and grain boundary RED coefficients plotted in red and blue open circles and
closed circles for the dose rate corrected RED coefficients calculated by assuming that
the diffusion coefficient scales by the square-root of the dose rate for a ion irradiation
dose rate of 4.6× 10−4dpa s−1 and a neutron dose rate of 1.7× 10−7dpa s−1 [2].
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Figure 5.16: Cesium release for 6 compacts that exhibit between 1 and 3 orders of
magnitude over-prediction by PARFUME as compared with release measurements
made by the deconsolidation-leach-burn-leach method [112].
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CHAPTER VI

Conclusion

The major conclusions of this thesis are:

1. A novel multi-layer diffusion couple was developed to investigate the diffusion

of fission products in SiC under prototypical very high temperature reactor

conditions. This design introduces fission products to SiC below the solubility

limit without causing excess radiation damage to the SiC and was successful in

retaining enough cesium, europium and strontium between 900◦C and 1, 300◦C

for a measureable portion of the implanted fission product to diffuse into the

SiC substrate under purely thermal and ion irradiation conditions.

2. Diffusion measurements were performed on cesium, europium, and strontium

diffusion in SiC between between 900◦C and 1, 300◦C and were able to resolve

bulk diffusion and isolate grain boundary diffusion for all three fission products

under purely thermal condition. These are the first successful measurements

of fission product diffusion in SiC in nearly 60 years of research investigating

fission product release in TRISO fuel.

3. Radiation enhanced diffusion measurements were performed using 4.5 MeV

silicon ion irradiation as an emulatant for neutron irradiation. The bulk and

grain boundary radiation enhanced diffusion of cesium, europium, and strontium
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were measured between 900◦C and 1, 100◦C at a dose rate of 4.6 × 10−4dpa

s−1 and exhibited significant enhancements, ranging from 100× to 107×, over

thermal diffusion for both bulk and grain boundary diffusion. These are also the

first successful measurements of fission product radiation enhanced diffusion in

SiC.

4. Cesium, europium, and strontium all exhibit mixed diffusion kinetics between

900◦C and 1, 300◦C under thermal conditions indicating that both bulk and

grain boundary mechanisms are active. They also exhibit mixed diffusion

kinetics between 900◦C and 1, 100◦C under ion irradiation conditions indicating

that both mechanism are active under irradiation as well. Neither mechanism

dominates in this temperature range under either set of conditions.

5. A defect reaction model for the point defect concentrations under thermal and

irradiation conditions show that both the carbon and silicon sub-lattices are

important for fission product diffusion. It indicates that cesium bulk, europium

bulk and grain boundary, as well as strontium grain boundary diffusion are

likely to proceed on the carbon sub-lattice, while strontium bulk diffusion is

likely to proceed via the silicon sub-lattice.

6. The thermal diffusion of cesium measured in this study agrees with the best

case cesium diffusion coefficients measured from cesium release from German

TRISO fuel, which is well known in the community to have had the lowest defect

fraction of all the historic TRISO test campaigns. This further supports the

premise that high quality TRISO fuel should exhibit minimal cesium release,

and that cesium release is a good indicator of TRISO fuel failure.
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CHAPTER VII

Future Work

This dissertation was focused on establishing a methodology to isolate and analyze

the diffusion of three key FPs: cesium, europium, and strontium in SiC. These

three FPs are important from a radiological health perspective. There are several

other FPs that are of importance in order to eventually license TRISO fuel and

need to be investigated using the multilayer diffusion couple developed in this study.

Iodine and cerium are also important FPs for public health concerns [73]. Silver and

palladium are two FPs with significant importance for the operation of any reactor

concept utilizing TRISO [12]. Silver shows the most erratic release, while palladium

is produced in large quantities and is known to corrode SiC, if present in high enough

concentration.

Similarly, the temperature range needs to be expanded to increase the confidence

in diffusion coefficients for in-pile and out-of-pile release calculations. This study was

limited to 1, 300◦C, but TRISO fuel is being designed to be subject to accidents as high

as 1, 800◦C. The temperature range should also be extended to lower temperatures to

accurately measure grain boundary diffusion and determine the segregation energies

for FPs. It is very likely that the segregation behavior of FPs provides a better

picture of the efficacy of SiC in preventing FP release. The effect of radiation on the

segregation energy would also provide a better understanding of how radiation is able
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to accelerate grain boundary diffusion.

The dose-rates investigated in the ion irradiation study were very high in order

to force an effect of irradiation. A more comprehensive study would perform lower

dose-rate ion irradiations to investigate the dose-rate scaling and potential changes in

point-defect reaction regimes. This study would also validate the use of ion irradiation

as an appropriate accelerated testing method for over-size solute diffusion in SiC.

All of these studies require an improvement in the performance of the diffusion

couple itself. Leakage of FPs through the cap was observed in all samples. Higher

temperature anneals increased the likelihood of SiC cap loss and in combination with

the FP leakage through the cap limited this study to 1, 300◦C. The PECVD SiC recipe

could be optimized to reduce the hydrogen content of the deposited film and reduce

the internal stress. A pre-annealing treatment could be used to slowly recrystallize

the SiC cap, creating a more uniform and effective PECVD SiC layer. An improved

diffusion couple process might deposit a SiC cap using conventional CVD and then

implant through the SiC cap to achieve better retention and the ability to probe

diffusion at higher temperatures. Pulsed laser deposition (PLD) could also be a

viable low temperature deposition process to extend the utility of this design with

minimal changes [122].

Varying the fluence of implanted FP could be used to probe the effect of the

PyC/SiC interface which controls both the concentrations of FPs that can diffuse into

the SiC and the total rate. There is no information on FP solubilities in SiC in either

the bulk or the grain boundaries. Some of this information can be gathered from

grain boundary segregation energies, but the thermodynamics across the PyC/SiC

interface are also critical to the understanding of FP release phenomena.

The assignment of bulk and grain boundary diffusion has been through the interpretation

of the concentration profiles in the context of what is observed in literature for model

diffusion systems and TRISO fuel. A second method confirming grain boundary
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diffusion via TEM or some other imaging technique would be useful in further supporting

this theory and providing information on grain boundary structure. This could also

be used to identify if there is a grain boundary structure dependence to FP diffusion

in either thermal or RED regime.

Finally, this thesis has investigated FP diffusion via experimental methods, which

are limited by the difficulty of the experiments and the resolution and sensitivity of

current analytic techniques. Any further mechanistic investigation needs to approach

the atomistics via computational methods. The first-of-a-kind activation energies

measured here provide a target for DFT calculations for hop mechanisms, grain

boundary structural dependencies, and the fundamental mechanisms by which radiation

affects FP diffusion. It also indicates which sub-lattice these three FPs diffuse via,

narrowing down the number of possible hop mechanisms.
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low temperatures,” physica status solidi (b), vol. 78, pp. 689–698, Dec. 1976.

[99] I. van Rooyen, T. Lillo, and Y. Wu, “Identification of silver and palladium
in irradiated TRISO coated particles of the AGR-1 experiment,” Journal of
Nuclear Materials, vol. 446, pp. 178–186, Mar. 2014.

[100] I. J. van Rooyen, E. Olivier, J. H. Neethlin, I. J. van Rooyen, E. Olivier, and
J. H. Neethlin, “Investigation of the Distribution of Fission Products Silver,
Palladium and Cadmium in Neutron Irradiated SIC using a Cs Corrected
HRTEM,” Oct. 2014.

174



[101] D. Shrader, I. Szlufarska, and D. Morgan, “Cs diffusion in cubic silicon carbide,”
Journal of Nuclear Materials, vol. 421, pp. 89–96, Feb. 2012.

[102] D. McLean, Grain boundaries in metals. Clarendon Press, 1957.

[103] M. P. Seah and E. D. Hondros, “Grain Boundary Segregation,” Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 335,
pp. 191–212, Oct. 1973.
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[111] W. Amian and D. Stöver, “Diffusion of Silver and Cesium in Silicon-Carbide
Coatings of Fuel Particles for High-Temperature Gas-Cooled Reactors,” Nuclear
Technology, vol. 61, pp. 475–486, June 1983.

[112] B. Collin, “Comparison of fission product release predictions using PARFUME
with results from the AGR-1 irradiation experiment,” Tech. Rep. INL-14-31976,
Idaho National Laboratory, Idaho Falls, ID (United States), Sept. 2014.

[113] J. Kalnin, E. Kotomin, and J. Maier, “Calculations of the effective diffusion
coefficient for inhomogeneous media,” Journal of Physics and Chemistry of
Solids, vol. 63, no. 3, pp. 449 – 456, 2002.

175



[114] R. Martin, “Compilation of Fuel Performance and Fission Product Transport
Models and Database for MHTGR Design,” Tech. Rep. ORNL/NPR-91/6, Oak
Ridge National Laboratory (ORNL), Oak Ridge, TN, Oct. 1993.

[115] F. Montgomery, “Fission-product sic reaction in htgr fuel,” tech. rep., General
Atomic Co., San Diego, CA (USA), 1981.

[116] Y. Kurata, K. Ikawa, and K. Iwamoto, “Fission product release from
triso-coated uo 2 particles at 1940 to 2320 c,” Journal of Nuclear Materials,
vol. 98, no. 1, pp. 107–115, 1981.

[117] F. MONTGOMERY, B. MYERS, and N. PACKAN, “Hrb-22 capsule
irradiation test for htgr fuel (jaeri/usdoe collaborative irradiation test),”
JAERI-Research, vol. 98, p. 021, 1998.

[118] H. ALLELEIN, “Fission product behavior in particular 137csin htr-triso-coated
particle fuel,” Jiil-1695, Kernforschungsanlage Julich (Dec. 1980)(in German).

[119] W. Amian and D. Stöver, “Diffusion of silver and cesium in silicon-carbide
coatings of fuel particles for high-temperature gas-cooled reactors,” Nuclear
Technology, vol. 61, no. 3, pp. 475–486, 1983.

[120] H. Nabielek and B. Myers, “Fission product retention in htr fuel,” in Gas-cooled
reactors today (Vol. 2). Advances in fuel, core and structural materials, 1982.

[121] R. Gontard and H. Nabielek, “Performance evaluation of modern htr triso
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