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ABSTRACT 

 
 The endogenous opioid neurotransmitter system (EOS) has been implicated in a wide 

array of behavioral processes, including reinforcement, pain modulation, mood disorders, social 

interactions, and the placebo effect.  These intertwining factors make an understanding of the 

EOS’s role crucial for developing effective therapies for a range of disorders.  We used positron 

emission tomography to investigate whether acute and long-term administration of two drugs of 

abuse, nicotine and opioid analgesics, are associated with alterations in endogenous µ-opioid 

neurotransmission.  We found that compared to healthy controls, overnight-abstinent smokers 

showed significant decreases in µ-opioid receptor (MOR) availability in the thalamus and 

bilateral basal ganglia, regions previously implicated in drug reinforcement and addiction.  

Moreover, these alterations in neurotransmission were associated with measures of both nicotine 

dependence and craving.  When overnight-abstinent smokers were subsequently given a 

denicotinized (DN) cigarette to smoke, they showed decreases in MOR availability in the right 

nucleus accumbens and thalamus, likely related to endogenous opioid release in response to the 

expectation of receiving nicotine.  This placebo effect associated with the DN cigarette appeared 

to mask the effects of the regular nicotine cigarette smoked afterwards.   

  We also examined how opioid analgesics affect MOR neurotransmission in patients with 

chronic back pain.  Our results indicated that decreases in the integrity of the endogenous opioid 

system, as indicated by a reduced ability to release endogenous opioids in response to pain, were 

associated with both higher clinical back pain ratings and with greater hedonic responses to the 
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administration of an exogenous opioid drug.  Patients using opioid analgesics for at least one 

year showed decreased experimental pain-induced MOR activation and a lower number of 

available free MORs at baseline in regions of the brain implicated in pain modulation and drug 

abuse, such as the nucleus accumbens and amygdala.  With the high prevalence of nicotine 

smoking, as well as the increasing use of opioid analgesics, it is crucial to understand how 

endogenous opioid mechanisms are implicated in the reinforcing and long-term effects of these 

drugs.  This knowledge will help suggest avenues to explore while determining what treatments 

may be most successful in individual patients.
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CHAPTER I 

Introduction 

THE ENDOGENOUS OPIOID SYSTEM (EOS) 

“Of all the remedies it has pleased almighty God to give man to relieve his suffering, none is so 
universal and so efficacious as opium.”—Thomas Sydenham (1624-1689) 
 

Opium, a drug made from the opium poppy, has been known for thousands of years for 

its analgesic and euphoric properties.  We now know that opium causes these effects by 

activating opioid receptors in the brain.  Morphine, the active ingredient in opium, was isolated 

in 1806 by Friedrich Sertürner, but not until 1973 was it demonstrated that opioids such as 

morphine were binding to receptors located in the brain (Pert and Snyder, 1973; Simon et al, 

1973; Terenius, 1973).  This suggested that there were also endogenous neurotransmitters being 

produced within the body that could bind to these same receptors.  These neurotransmitters and 

their opioid receptors make up what is today known as the endogenous opioid system (EOS), a 

system that has been implicated in a number of roles including reward, analgesia, sexual activity, 

learning and memory, and stress (Bodnar, 2013).   

There are four main types of receptors that make up the EOS.  These include the classical 

µ, δ, and κ receptors as well as the more recently-discovered nociception/orphanin FQ (N/OFQ) 

receptor.  All are G protein-coupled receptors consisting of 7 transmembrane regions (Trigo et 

al, 2010).  They couple to inhibitory G proteins, initiating a cascade leading to decreased 
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production of cyclic adenosine monophosphate (cAMP) and cellular hyperpolarization, which 

reduces cellular excitability.  It is now believed that multiple subtypes of some of these receptors 

also exist, through mechanisms such as alternative splicing and receptor heteromerization (Feng 

et al, 2012; Gretton and Droney, 2014). 

Opioid receptors are located widely throughout the central and peripheral nervous 

system.  The endogenous ligands that bind to the three classical receptor types are derived from 

three major precursor proteins: proopiomelanocortin (POMC), proenkephalin (PENK), and 

prodynorphin (PDYN).  The opioid peptides that are produced from these precursors include ß-

endorphins, enkephalins, dynorphins, and neo-endorphins.  Some of these peptides bind to more 

than one of the classical receptor types with varying levels of affinity, while others are more 

selective.  Unlike ligands for the classical receptor types, ligands for the N/OFQ receptor have 

not been found to activate any of the other receptor types (McDonald and Lambert, 2005). 

The µ-opioid receptor (MOR) system is one of the most frequently studied parts of the 

EOS, and will be the focus of my research discussed in the following chapters.   The highest 

densities of MORs are located in the basal ganglia and thalamus, as well as the periaqueductal 

gray and to a lesser extent the frontal and parietal cortices (Frost et al, 1985).  The endogenous 

opioid peptides ß-endorphin and endomorphin show a particularly strong affinity for these 

receptors, and these are also the receptors through which morphine exerts its analgesic and 

euphoric effects. 
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CONNECTION BETWEEN THE EOS AND REINFORCEMENT/SUBSTANCE ABUSE 

Neurocircuitry involved in reinforcement 

The ability of organisms to repeat actions that result in positive outcomes is key to their 

survival and reproduction.  In order to assist with this, animals have evolved a system of 

“reinforcement”, where certain actions produce feelings of reward and pleasure that increase the 

likelihood that the animal will repeat those actions.  Actions such as sexual reproduction, social 

bonding, eating, and drinking all commonly result in this type of positive reinforcement.  The 

network of brain regions involved in reinforcement includes the ventral tegmental area (VTA), 

nucleus accumbens (NAC), amygdala (AMY), ventral pallidum (VP), thalamus (THA), and 

periaqueductal grey (PAG), among other regions (Le Merrer et al, 2009).   

Mesolimbic dopaminergic projections from the VTA to the NAC are generally 

considered the main players in reinforcement, and animal and human studies have long shown 

dopamine’s importance in this reward network (Di Chiara et al, 2004; Wise, 2008).  However, 

opioid receptors are also located throughout the regions involved in reinforcement, and their role 

in modulating this circuitry is becoming increasingly well defined.  Animal studies have 

provided a significant amount of evidence showing the influence of opioid receptors in 

reinforcement.  These studies demonstrate that stimulation of MORs in certain regions of the 

NAC of rats causes an increase in both the “liking” and the “wanting” of a food reward (Pecina 

and Berridge, 2005).  The hypothalamus, VTA, amygdala, and VP all also contain regions that 

increase food intake in rodents when their MORs are stimulated (Le Merrer et al, 2009).  MOR 

antagonists introduced to the NAC, on the other hand, decrease a rat’s preference for food 

generally considered especially palatable by rodents, but does not alter intake of a less palatable 

food.  MOR knockout mice showed decreased food-anticipatory activity (Kas et al, 2004) as well 
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as decreased motivation to consume food (Papaleo et al, 2007).  The involvement of the EOS in 

social interactions can be seen through the release of endogenous opioids in response to social 

play in rats (Vanderschuren et al, 1995), as well as the fact that young mice that lack MORs 

show decreased maternal attachment (Moles et al, 2004).  In humans, the administration of the 

opioid antagonist naloxone modulates responses to reward and losses during a gambling task 

(Petrovic et al, 2008), increasing unpleasantness ratings for losses and decreasing the pleasure of 

rewards. 

Substance abuse    

 While reinforcement is crucial in guiding animals towards beneficial behaviors, such as 

reproducing and locating sustenance, drugs of abuse are able to hijack this reinforcement 

circuitry, resulting in detrimental outcomes such as addiction.  Drug addiction is generally 

characterized as a chronically relapsing “compulsion to use one or more drugs of abuse, the 

inability to control drug intake and continued drug use despite negative consequences” (Pierce 

and Kumaresan, 2006, p216).  Substance abuse and addiction are major health problems 

worldwide, resulting in costs of over $700 billion annually in the United States alone due to 

decreased productivity as well as health and crime-related costs (NIH, 2015).  Along with the 

financial cost, addiction impacts the social aspects of society, often harming interpersonal 

relationships and causing increases in crime as well as problems with health and employment.   

 There have been several theories put forward on the mechanisms through which addiction 

occurs.  Positive-reinforcement models of addiction focus on the euphoric and other mood-

elevating effects felt when individuals consume a substance of abuse, and consider them the 

main driver in addiction.  The positive feedback received after initiation of drug use spurs the 

individual to keep utilizing the drug.  However, this theory is insufficient to explain why 



 5 

individuals can persist in taking their preferred drug of abuse even in the face of severe personal 

or societal consequences, since it is unlikely the short-term positive effects induced by the drug 

would be able to outcompete the negative consequences associated with addiction.   

Another theory of addiction, the opponent-process theory, focuses more on the role of 

negative reinforcement (Solomon, 1980).  In this theory, while drug use begins due to positive 

reinforcement, such as the euphoria induced by the drug of abuse, as drug use continues the 

motivation gradually shifts and negative reinforcement becomes the primary player.  After the 

initial euphoric effect of using a drug such as heroin has ceased, individuals start feeling aversive 

withdrawal effects.  As the drug use is repeated more frequently, the euphoric effect may start to 

decrease as habituation occurs, but the withdrawal effects become more severe.  This drives 

individuals to continue taking the drug simply to stave off the aversive effects, even when no 

longer feeling the positive effects from the drug use.   However, although there is evidence in 

support of many parts of this theory, it is unable to explain other observations, including why 

addicted individuals feel persistent craving and relapse years after discontinuing drug use, long 

after withdrawal effects are no longer being felt (Robinson and Berridge, 1993). 

More recently, the incentive sensitization theory of addiction has posited that addiction is 

a result of a hypersensitization of mesolimbic reward circuitry in the brain that occurs in 

response to drugs of abuse (Robinson and Berridge, 1993).  These increases in the attractiveness 

of drugs of abuse and their associated stimuli lead to compulsive drug craving.  Furthermore, this 

theory suggests that drug “wanting” and drug “liking” can be disassociated, and addiction may 

be caused by excessive drug “wanting” even without changes in the circuitry controlling the 

pleasurable effects of the drug.  These theories are not all mutually exclusive, and it is quite 



 6 

likely that the process of becoming addicted to a drug involves aspects of the various theories at 

different time points.  

 

Neurotransmitter systems involved in substance abuse 

Most substances of abuse, including psychostimulants, alcohol, and nicotine, have been 

shown to either directly or indirectly activate the mesolimbic dopamine system discussed earlier, 

resulting in an increased release of dopamine (Pierce and Kumaresan, 2006).  However, although 

dopamine is the most well-known neurotransmitter affecting drug reward and reinforcement, the 

EOS has increasingly been shown to mediate responses to many drugs of abuse (Contet et al, 

2004; Gerrits et al, 2003).  Some drugs of abuse, such as heroin and prescription opioids, act 

directly on opioid receptors to exert their effects.  Important evidence of the role of MORs in 

morphine reward has come from MOR knockout mice.  Unlike wild-type mice, mice lacking 

MORs did not show morphine-induced conditioned place preference (CPP), suggesting MORs 

are necessary for the reinforcing effects of morphine (Matthes et al, 1996).  

 There is also evidence that even in drugs of abuse that do not directly bind to opioid 

receptors, such as cocaine, nicotine, and alcohol, the EOS plays some sort of modulatory role.  In 

one example, opioid antagonists were shown to reduce cocaine reinforcement in rodents 

(Kuzmin et al, 1997), while MOR agonists can increase cocaine self-administration (Corrigall et 

al, 1999).  MOR knockout mice also find cocaine, along with nicotine and alcohol, less 

reinforcing than wild-type mice (reviewed in Le Merrer et al, 2009).  Similar to rodent studies, 

human studies have also shown that naltrexone, an opioid receptor antagonist, is able to reduce 

the rewarding effects of cocaine in cocaine-dependent individuals (Kosten et al, 1992) as well as 
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decrease ethanol self-administration (Volpicelli et al, 1992).  Naltrexone is currently approved 

for use in treating both alcohol-dependent and opioid-dependent patients. 

Along with the manipulations available in animal studies, neuroimaging studies have 

shown promise for identifying the regions involved in drug abuse in humans (Fowler et al, 2007; 

Parvaz et al, 2011).  Techniques available range from electroencephalography studies, which 

have been able to associate nicotine administration with changes in brain wave frequencies 

(Domino, 2003), to functional magnetic resonance imaging (fMRI) studies, such as one study 

that showed increased activation in the anterior cingulate and dorsolateral prefrontal cortex when 

cocaine-dependent subjects were shown drug-related stimuli (Maas et al, 1998).  Recently, new 

techniques such as positron emission tomography (PET) have allowed us a greater understanding 

of how drugs of abuse alter neurochemistry in vivo.  These PET studies and their conclusions 

will be discussed further in Chapter 2. 

 

Variations in substance abuse susceptibility 

There are large interindividual differences in how susceptible or resilient people are to 

becoming addicted to drugs, and research has suggested that both environmental and genetic 

components play a role in these differences.  Environmental factors that increase the initiation of 

drug use in animal models include exposure to psychological stress, early social isolation, and 

prenatal drug exposure (reviewed in Gerrits et al, 2003).  Twin studies have also suggested that 

genetic factors play a role in drug abuse susceptibility (Kendler et al, 2003; Tsuang et al, 1998; 

van den Bree et al, 1998).     

There are a number of pathways involved in the development of drug addiction that could 

be altered by genetic polymorphisms, including variations in dopaminergic and serotonergic 
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pathways along with opioidergic pathways.  One genetic polymorphism of the opioid pathway 

that has been scrutinized for its possible association with drug abuse is a single nucleotide 

polymorphism (SNP) affecting the µ-opioid receptor (OPRM1) gene.  This polymorphism, 

referred to as the A118G polymorphism, results in the substitution of aspartic acid for asparagine 

at amino acid 40.   The G allele in this polymorphism results in MORs that bind ß-endorphin 

more tightly and increase its potency by a factor of three (Bond et al, 1998).  Although there is 

some evidence that this gene polymorphism can indeed be associated with different aspects of 

drug abuse (Ray et al, 2006; Verhagen et al, 2012), there are conflicting reports of which variant 

leads to greater vulnerability, as well as cases where no relationships were found (Arias et al, 

2006; Coller et al, 2009). 

 

CONNECTION BETWEEN THE EOS AND PAIN 

Neurocircuitry involved in pain 

Endogenous opioids play a major role in modulating both physical and emotional pain.  

Physical pain results from stimulation of nociceptors in response to actual or imminent tissue 

damage.  When these nociceptors are activated by noxious stimuli, they send signals via the 

spinal cord to the brain, resulting in the perception of pain as a type of negative feedback.  Along 

with this ascending pain system, there is also a descending pain pathway.  This “top-down” 

regulation has a significant impact on how an individual experiences pain.  These are the circuits 

that placebo-induced pain relief, a mechanism that recruits the endogenous opioid system, is 

believed to act through.  The brain regions that are involved in pain modulation significantly 

overlap with those involved in reinforcement, with the amygdala, PAG, and thalamus all 
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implicated, along with regions such as the anterior cingulate cortex and insula (Bingel and 

Tracey, 2008; Ossipov et al, 2010). 

Many neurotransmitters are involved in pain regulation, including substance P, 

glutamate, and serotonin.  For the research discussed in this dissertation, the involvement of 

opioid peptides in pain control is most relevant.   As mentioned earlier, exogenous opioid drugs 

such as opium and morphine have been used for centuries to relieve pain.  However, in 1972 

evidence was found that endogenous opioids were also involved in pain control.  It had been 

shown a year earlier that electrical stimulation of the PAG caused reduced sensitivity to painful 

stimuli in rodents (Mayer et al, 1971).  Akil and colleagues found that when rats were given the 

opioid antagonist naloxone before PAG stimulation, the analgesic effect of the stimulation was 

greatly reduced (Akil et al, 1972).  This suggested that opioid receptors were crucial for 

mediating the analgesic effect seen by Mayer et al. (1971).  In 2001, Zubieta et al. used positron 

emission tomography to show reductions in in vivo MOR availability in humans during a 

sustained pain challenge, consistent with pain-induced release of endogenous opioids (Zubieta et 

al, 2001).  These reductions occurred in regions such as the thalamus, hypothalamus, PAG, 

NAC, AMY, insular cortex, and dorsal anterior cingulate cortex, regions previously associated 

with regulating affective and sensory responses to pain, and were negatively correlated with 

subjects’ pain ratings.  Recent studies have also shown that individuals with chronic pain 

conditions have altered µ-opioid system function, both at baseline and in response to a pain 

challenge (Harris et al, 2007; Martikainen et al, 2013).  
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Opioid analgesics 

Opioid analgesics are widely considered the most effective drugs for treating acute pain.  

However, there is currently controversy on whether they are also suitable for treating patients 

with various types of chronic pain.  There is evidence of side effects such as opioid-induced 

hyperalgesia, and taking opioids long-term leads to greater risks of tolerance, dependence, and 

opioid misuse and abuse, with some studies suggesting that more than 10% of chronic pain 

patients who take opioid analgesics end up misusing them (Garland et al, 2013).  Patients who 

also suffer from disorders such as anxiety or depression or have a family or past history of drug 

abuse are at a particular risk of becoming dependent on these medications (Martel et al, 2014).  

The rise in opioid prescriptions over the past couple of decades has also coincided with an 

increased number of deaths due to prescription opioid abuse, demonstrating the risks involved in 

prescribing these drugs (Dunn et al, 2010).  Along with the many disadvantages to opioid use, 

we still lack well-controlled studies that suggest these analgesics are particularly effective for 

treating chronic pain conditions.  There is already evidence associating prescription opioid use in 

humans with volumetric changes in grey matter, changes in functional connectivity, and 

decreases in white matter anisotropy (Upadhyay et al, 2010; Younger et al, 2011).  Whether 

these changes correlate with important functional effects is still under investigation.  It also 

remains to be seen if long-term opioid analgesic use affects the endogenous µ-opioid system, one 

of the brain’s principal pain regulatory systems that also is involved in many other crucial 

functions. 

Opioid analgesics might still be the best treatment in some cases of pain, but it is 

important that researchers and physicians are aware of the risks associated with prescribing these 

drugs.  As our understanding of opioid mechanisms and the interindividual differences involved 
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increases, the hope is that we will be able to predict which individuals would be most at risk or 

benefit the most if given opioids, and physicians could alter their recommendations accordingly. 

 
 
PET IMAGING 

Positron emission tomography (PET) is an imaging technique that began its development 

in the 1950s, with the use of positrons as a method of localizing brain tumors.  By the 1970s, the 

first PET scanners similar to the ones in use today were being constructed and tested with human 

subjects (Nutt, 2002).  In PET, biological molecules of interest are tagged with radioactive 

isotopes, such as 11C, 18F, 15O, and 13N, to form radiotracers.  As the radioactive isotopes decay, 

the radiotracers release positrons, or “antielectrons”.  When these positrons collide with nearby 

electrons, an annihilation event takes place and gamma rays traveling in opposite directions are 

emitted.  The PET scanner is able to detect these gamma rays, and through the process called 

coincidence detection in conjunction with image reconstruction from projections, it is able to 

determine where in the body the annihilation event took place.  This allows researchers to track 

the position of the radiotracers.  One of the earliest radiotracers developed that became 

commonly used was deoxyglucose tagged with 18F (18F-FDG) (Nutt, 2002), and this glucose 

analog is still widely used today to investigate tissue metabolism. 

PET studies often discuss the binding potential (BP) associated with their radiotracer of 

interest.  Binding potential is a measure of the number of available receptors to which the 

radiotracer can bind.  It is derived from dynamic measures of the PET scan and is equivalent to 

the ratio of the receptor density, Bmax, to the radiotracer equilibrium dissociation constant, KD.  

Differences in BP between groups must be interpreted carefully.  If one group has fewer free 

receptors (a lower BP) at baseline, it could be due to a down-regulation in the total number of 
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receptors, or an up-regulation of endogenous ligands competing for those same receptors.  There 

are also other alterations, such as changes in binding affinity, that can affect BP values.  

Generally if an individual shows a decrease in BP after an intervention, it is considered an 

“activation” of the respective system, most likely due to increased release of endogenous ligands.  

An increase in BP, on the other hand, represents a “deactivation” of the system. 

There are several radiotracers currently being used to study the EOS.  11C-Carfentanil 

(11C-CFN), the first tracer to be introduced in 1985 to study the EOS in humans, is a selective 

MOR agonist (Frost et al, 1985).  Shortly after 11C-CFN, a non-selective opioid antagonist, 11C-

diprenorphine, came into use (Jones et al, 1988).  It binds with similar affinities to µ, δ, and κ 

receptors.  Other tracers commonly used today include 18F-cyclofoxy, which marks both µ and κ 

receptors, and 11C-methylnatrindole, which is selective for δ receptors (Henriksen and Willoch, 

2008).  The radiotracer 11C-GR103545, a κ agonist, has just recently been tested in humans 

(Naganawa et al, 2014), as has the N/OFQ receptor antagonist 11C-NOP-1A (Lohith et al, 2012).  

Still more radiotracers targeting various opioid receptors are currently in development. 

The development of PET has provided an in vivo, noninvasive method of following the 

actions of biologically significant molecules.  Limitations of PET include the expense, as well as 

the difficulty of interpreting any alterations seen in BP, given the multiple factors that could 

cause such a change.  However, the benefits of incorporating PET studies to fill in the gaps left 

by animal and other human studies are substantial. 

 
 
CURRENT DIRECTIONS 

The high cost of drug dependence, both to the individual and to society as a whole, makes 

increasing our understanding of the mechanisms involved in the development of this condition a 
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crucial undertaking.  It is becoming increasingly clear that neurotransmitter systems such as the 

EOS play a vital role in drug addiction.  Because the endogenous opioid system is involved in 

both the analgesic and rewarding effects of opioids, as well as having a role in functions such as 

stress, social attachment, and mood disorders, understanding the alterations in this 

neurotransmitter system that are associated with both acute and long-term drug use is 

essential.  If interindividual variations in EOS can be linked to an individual’s response to drugs 

of abuse, it would further increase our ability to personalize our treatment of patients taking 

potentially addictive drugs. 

In the following chapters I will first review the studies that have been conducted using 

positron emission tomography to examine the EOS in individuals at various stages of the drug 

abuse cycle.  I will then present data on the results of a study using PET to examine the 

alterations seen in the µ-opioid systems of smokers compared to healthy controls, as well as the 

acute effects of smoking denicotinized and nicotinized cigarettes on these individuals.  Finally, I 

will show how the acute subjective effects of opioid agonists, another class of drugs with high 

abuse potential, can be correlated with interindividual differences in pain-induced endogenous 

opioid function in a group of chronic pain patients.  The alterations in MOR neurotransmission 

resulting from long-term use of opioid analgesics in these patients will then be discussed. 
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CHAPTER II 

Use of Positron Emission Tomography to Examine  
Opioid System Functioning in Addiction1 

 

ABSTRACT 

Animal and human studies have long suggested a critical role for the endogenous opioid 

system (EOS) in reward and addiction.  The development of positron emission tomography 

(PET) has allowed researchers to investigate the functioning of the opioid system in vivo.  The 

resulting studies have confirmed that alterations in the EOS are involved in both acute and long-

term responses to drugs of abuse.  As drug abusers maintain abstinence, there are also indications 

that some of these dysregulations will begin to normalize.  The full potential of this methodology 

needs to be further explored in future studies. 

 

INTRODUCTION 

Addiction is an incredibly difficult psychiatric condition to treat.  Nearly 60% of all 

patients seeking treatment for substance abuse or dependence relapse, and there are currently few 

pharmacological treatments available to counteract the addiction process (McLellan et al, 2000).  

However, one set of pharmacological agents that act to either fully or partially interfere with 

activity at the opioid receptor have proven to help stem cravings and deter relapse.  In the early 

                                                
 
1 This work reflects collaboration with Dr. Tiffany Love and Dr. Jon-Kar Zubieta at the University of Michigan 
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1980s, work pioneered by scientists including Charles O’Brien and colleagues indicated that use 

of the opioid receptor antagonist naltrexone could reduce the rate of relapse among alcoholics 

(Pettinati et al, 2006).  Since that time, more evidence has emerged which indicates that 

naltrexone may also be useful for treating methamphetamine dependence (Karila et al, 2010), 

and certain full or partial opioid agonists, such as methadone or buprenorphine, may significantly 

aid in the treatment of populations abusing opioid drugs (e.g. Bart, 2012; Gerra et al, 2006). 

Mounting evidence suggests the endogenous opioid system (EOS) plays a key role in the 

addiction process.  While it is certainly no surprise the EOS is responsive to opioid agonists that 

are frequently abused (e.g. heroin, morphine, oxycodone), it is now understood that this system 

is also engaged in response to many other drugs of abuse including cocaine, methamphetamine 

and alcohol (Trigo et al, 2010).  While a vast amount of what is known about the opioid system 

in addiction has been borne from animal and post-mortem human studies, relatively recent 

breakthroughs in neuroimaging technologies have enabled the study of opioid system 

functioning in living human beings.  This review will discuss the use of positron emission 

tomography (PET) to enquire into the state of opioid system functioning in substance dependent 

populations and summarize current progress. 

 

OPIOID SYSTEM OVERVIEW 

There are several major receptor subtypes that respond to endogenous and exogenous 

opioids – µ, κ, δ, and N/OFQ.  Opioid receptors are widely distributed in the brain and each 

belongs to the G-protein-coupled receptor (GPCR) superfamily.  Activation of these receptors 

results in the inhibition of adenlyl cyclase and voltage-gated Ca2+ channels, and the stimulation 

of inwardly-rectifying K+ channels.  The net result is inhibition of presynaptic release of a range 
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of neurotransmitters.  Endogenous ligands for these receptors include endorphins, endomorphins, 

and enkephalins, which display preferences for µ- and δ- receptors, and dynorphin and 

nociception, which principally bind to κ- and N/OFQ receptors, respectively (Table 2.1). 

While the relative receptor distribution varies depending on the type of opioid receptor, 

there are widespread concentrations of each of the receptor types throughout the central nervous 

system.  Relevant to the discussion of addiction and the role of the opioid system, however, are 

the heavy concentrations of opioid receptors within the motivational circuitry.  These include 

various areas within the limbic system: the hippocampus and amygdala, prefrontal cortex, the 

dorsal and ventral striatum as well as within the ventral tegmental area (VTA) (see Frost et al, 

1985; German et al, 1993; Peckys and Landwehrmeyer, 1999).  Prior to the 1970s, the 

anatomical distributions of each opioid receptor type in humans was determined via post-mortem 

studies; however, following the development of the first positron emission tomography (PET) 

opioid radiotracers for humans, it was possible to conduct this research in living humans (Frost et 

al, 1985). 

 

POSITRON EMISSION TOMOGRAPHY 

In use in clinical populations since the late 1970s, positron emission tomography (PET) 

has granted researchers the opportunity to observe specific neurochemical processes in vivo.  

PET is a nuclear medicine imaging technique that utilizes compounds tagged with radioisotopes 

(e.g. 11C, 18F, 68Ga,15O, 13N) to track biochemical processes of interest (Phelps, 2004).  These 

compounds, commonly referred to as radioligands, are typically administered intravenously, 

subsequently taken up by the body, and, utilizing specialized equipment, can be detected and 

localized. 
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The radioisotopes used in PET imaging are atoms with unstable nuclei that will decay to 

a more stable form by emitting a positron (i.e. the electron’s antiparticle).   Radioisotopes can be 

generated through the use of a cyclotron, which can alter the number of protons or neutrons in 

the nucleus of a particular target via particle acceleration.  Having the same mass as an electron 

but opposite in charge, when a positron collides with an electron the result is called annihilation.  

During this process, the mass of the electron and positron are converted into energy and a pair of 

511 keV gamma rays will be emitted in opposite directions from the site of the annihilation.  

These gamma rays are detected by PET scanner equipment using a method dubbed coincidence 

detection (Phelps, 2004) and the anatomical site of positron annihilation can be determined 

through reconstruction from projections. 

By attaching these positron-emitting radioisotopes to molecules of interest, a variety of 

neurochemical processes can be tracked.  In the case of opioid system research, investigators 

often utilize radioligands designed to monitor opioid receptor availability.  The primary measure 

used to describe receptor availability is binding potential (Bmax/KD), which incorporates both the 

density of available receptors (Bmax) and the affinity to which the radioligand binds to the given 

receptor (KD) (Phelps, 2004).  

The first opioid receptor radioligand used in human PET imaging was 11C-carfentanil 

(11C-CFN).  11C-CFN is an opioid agonist derived from fentanyl that is highly selective for the µ 

subtype of opioid receptor (OR) (Frost et al, 1985).  This was followed by development of 11C-

diprenorphine (Jones et al, 1988), 11C-methylnatrindole (Madar et al, 1996), and 18F-cyclofoxy 

(Theodore et al, 1992) (Table 2.2).  There are also several opioid radiotracers currently in 

development including 11C-GR103545 (κ-OR agonist) and 11C-PEO/18F-PEO (µ-agonist, κ-OR 

agonist) (Marton et al, 2009; Naganawa et al, 2014). 
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OVERVIEW OF OPIOID PET STUDIES IN HUMANS 

There has been a myriad of opioid PET studies conducted in an attempt to understand the 

interaction between drugs of abuse and the EOS.  These studies have encompassed the entire 

cycle of drug abuse, from the acute effects of the drug, both in naïve and frequent users, to the 

chronic effects seen in drug users undergoing recovery.  In the following sections, we discuss 

some of the important findings from opioid PET studies, how they fit in to the rest of the drug 

abuse literature, and gaps that still need to be filled. 

Acute effects of substance use 

While numerous preclinical studies indicate endogenous opioids are released in response 

to consumption of drugs of abuse, relatively few investigations have examined this phenomenon 

in humans.  Recent opioid PET imaging studies indicate acute recreational drug use can interfere 

with µ-opioid receptor (MOR) activity.  For example, acute alcohol consumption is associated 

with a decrease in MOR binding potential (BP) in the bilateral nucleus accumbens (NAC) as 

measured by 11C-CFN, which indicates alcohol consumption can promote endogenous opioid 

release.  Such decreases in MOR BP were noted in both non-alcohol dependent subjects as well 

as in heavy drinkers, suggesting that this effect was not purely related to alcohol dependence or 

craving (Mitchell et al, 2012).   However, greater decreases in MOR BP were correlated with 

greater subject ratings of feeling the “best ever” after alcohol consumption, implicating 

endogenous opioid release as a factor in the positive reinforcement that occurs when drinking 

alcohol. 

Studies on the acute effects of nicotine smoking on the endogenous opioid system have 

been inconsistent.  In a pilot study of 6 male smokers, MOR BP decreased in the anterior 

cingulate cortex (ACC) after subjects smoked a regular nicotine cigarette compared to after 
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smoking a denicotinized cigarette, suggesting endogenous opioid release in that region.  

However, MOR BP also increased in the left amygdala (AMY), left ventral basal ganglia, and 

right thalamus, which was interpreted as a possible sign that the denicotinized cigarette itself 

might have induced endogenous opioid release due to expectations and non-nicotine elements of 

smoking, which overwhelmed some of the effects of the nicotine cigarette.  A later study 

similarly showed both increases (L putamen, L AMY, and L NAC) and decreases (medial 

prefrontal cortex, R ventral striatum (vStr), L insula (INS), and R hippocampus) in MOR BP 

after smoking the nicotine cigarette (Domino et al, 2015).  In contrast, though, are two other 

studies that did not report any changes in BP (Kuwabara et al, 2014; Ray et al, 2011).  The 

gender ratio of the subjects differed among these studies, as well as the timing and manner of 

smoking the two types of cigarettes.  These differences may have contributed to the conflicting 

results. 

Acute drug effects on opioid system activity have also been observed following 

amphetamine administration, although the results are again somewhat mixed.  Colasanti and 

colleagues found that oral amphetamine administration caused a decrease in MOR BP in a 

number of brain regions, including the thalamus, cingulate, vStr, and frontal cortex (Colasanti et 

al, 2012).  These results were recently replicated in a separate group of participants (Mick et al, 

2014).  A study by Guterstam and colleagues, however, failed to find any significant alterations 

in MOR BP in healthy men after intravenous amphetamine administration compared to placebo 

administration (Guterstam et al, 2012).  Differences in route of administration and timing of the 

PET scan, among other aspects, may account for the differing results.   

While there have only been a handful of studies examining acute drug administration 

effects on opioid system activity, initial evidence suggests that in at least some cases the changes 
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in receptor availability seen in humans mirror what is observed in animals, whose endorphin 

levels appear to increase during alcohol, nicotine, and psychostimulant administration (reviewed 

in Trigo et al, 2010).  These endogenous opioids that are released then bind to receptors and 

initiate an intracellular signaling cascade that can lead to an increase in dopamine release, a 

neurotransmitter implicated in the rewarding effects of most drugs of abuse. 

Chronic effects of substance use 

Along with the observable changes during acute drug administration, alterations in opioid 

system function also generally occur with chronic drug use.  These changes appear to be linked 

to both length of abstinence and craving.  The majority of PET studies conducted on the opioid 

system in people with substance use disorder (SUD) have focused on individuals at various 

stages of abstinence.  When Weerts and colleagues conducted research with alcohol-dependent 

(AD) subjects, they observed them after five days of abstinence.  Both AD subjects and controls 

underwent two PET scans, one using CFN and one using 11C-methylnaltrindole (MeNTL), a δ-

opioid receptor (DOR)-selective ligand.  AD subjects showed higher MOR BP than controls in 

the cingulate, amygdala, vStr, insula, thalamus, caudate, putamen, and globus pallidus.  The 

amount of recent alcohol drinking was positively correlated with DOR BP in the caudate of AD 

subjects, indicating alcohol consumption may lead to decreased release of the endogenous 

opioids that bind to delta opioid receptors.   However, in contrast to MOR BP, no differences 

were found in DOR BP between groups (Weerts et al, 2011).  An examination of BP for the non-

selective opioid ligand 11C-diprenorphine (DPN) in AD patients after 2 weeks of abstinence 

found a negative correlation between lifetime alcohol consumption and 11C-DPN BP in the 

brainstem.  Although the results did not reach statistical significance, abstinent AD subjects 

showed a trend towards increased 11C-DPN BP compared to controls, similar to what was seen in 
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the previous study (Williams et al, 2009).  When CFN scans of AD subjects who had been 

abstinent between 1 and 3 weeks were compared to those of controls, MOR BP was again shown 

to be significantly elevated in the AD subjects in both the vStr and putamen (Heinz et al, 2005).  

Higher MOR BP in the frontal cortex and vStr was associated with increased craving in these 

individuals, implicating craving as either a possible cause or a result of the increased MOR 

availability seen.  These changes in BP are consistent with rodent studies that showed that MOR 

density increased when animals receiving chronic ethanol treatment underwent abstinence 

(Djouma and Lawrence, 2002).  However, not all the data on AD subjects match: Bencherif and 

colleagues reported lower MOR BP in the right dorsolateral prefrontal cortex (DLPFC), anterior 

frontal cortex, and parietal cortex of AD individuals on the 4th day of abstinence (Bencherif et al, 

2004).  The reasons for this inconsistency are unclear, but could simply be due to the small 

sample size (8 AD males).  Subjects had also been abstinent for a shorter period than those in the 

study by Heinz and colleagues, and Weerts and colleagues included both male and female 

subjects in their study. 

Opioid and cocaine use can also affect EOS functioning in chronic substance abusers.  

Opioid-dependent individuals examined using 11C-DPN PET exhibited increases in average 

global opioid receptor BP compared to controls on their 10th day of abstinence (Williams et al, 

2007).  Williams and colleagues also observed region-specific heightened 11C-DPN BP in the 

ACC, R AMY, putamen, and portions of the orbitofrontal cortex of opioid-dependent individuals 

as compared to controls.  Similar increases were seen in the MOR BP of cocaine-dependent 

subjects undergoing early withdrawal (Zubieta et al, 1996).  A longitudinal study also 

investigating alterations in cocaine-dependent subjects scanned subjects at day 1, week 1, and 

week 12 after entering a treatment facility, in order to examine how MOR BP changed (Gorelick 
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et al, 2005).  Compared to controls, after a day of abstinence cocaine users showed an increase in 

MOR BP in the prefrontal, inferior frontal, and dorsolateral prefrontal cortices, as well as the 

lateral temporal cortex and anterior cingulate.  A week later, MOR BP in the DLPFC and lateral 

temporal cortex had decreased to the levels seen in controls.  By 12 weeks, only the anterior 

cingulate and anterior frontal regions still showed a significant increase in MOR BP.  These 

results help elucidate the relationship between length of cocaine abstinence and changes in MOR 

BP, suggesting that as abstinence continues, the changes associated with cocaine use can be at 

least partially reversed.  

Studies comparing smokers versus nonsmokers have also been conducted, again with 

inconsistent results.  In the pilot study mentioned earlier, overnight-abstinent male smokers 

showed decreased MOR BP in the rostral ACC, thalamus, NAC, and AMY compared to controls 

(Scott et al, 2007).  Two more recent studies did not show differences in MOR BP between 

smokers and controls, although one did find that within smokers there was a negative correlation 

between MOR BP in the bilateral superior temporal cortices and nicotine dependence as 

measured by the Fagerström Test for Nicotine Dependence (Kuwabara et al, 2014; Ray et al, 

2011).  The decreased MOR BP seen by Scott and colleagues in cigarette smokers after a few 

hours of abstinence contrasts with the effects seen after longer periods of abstinence in many 

other drugs of abuse.  This may be partially explained by the fact that cigarette smokers were 

likely undergoing physical withdrawal symptoms, while most other studies on abstinent subjects 

waited until physical withdrawal symptoms had subsided. 

There is evidence from several studies that EOS activity can also be used to predict how 

intensely a drug user will crave his or her drug of choice, as well as the related measure of how 

likely an abstinent subject is to relapse.  In general, it appears that high MOR BP in areas of the 
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brain such as the ACC and AMY correlates with more intense craving during withdrawal.  This 

has been shown for both cocaine and alcohol-dependent subjects, as well as in heroin-dependent 

subjects being maintained on buprenorphine (Gorelick et al, 2005; Greenwald et al, 2003; 

Williams et al, 2009; Zubieta et al, 1996).  Since craving appears to be an important factor in 

determining whether an abstinent patient will relapse (Rohsenow et al, 2007), understanding and 

being able to modulate the factors that influence craving would be extremely helpful in 

preventing relapse.   

As the link between craving and relapse might predict, when researchers directly 

investigated relapse rates in patients, similar correlations to those found in craving were 

uncovered.  Cocaine-dependent subjects who stayed abstinent the longest after entering a 

program tended to have had lower MOR BP before treatment in the ACC, medial frontal, middle 

frontal, middle temporal, and sublobar insular gyri, compared to patients who relapsed more 

quickly (Ghitza et al, 2010).  As mentioned earlier, many of the regions with significantly higher 

MOR BP in cocaine-users versus controls tended to normalize as abstinence continued (Gorelick 

et al, 2005).  This suggests that opioid system functioning can begin to recover if subjects are 

able to remain abstinent for prolonged periods, although more research is needed to examine 

whether similar trends are seen in subjects dependent on other drugs of abuse.  A subsequent 

study by Gorelick and colleagues correlated the decrease in MOR BP between week 1 and week 

12 of abstinence with measures of treatment outcome (Gorelick et al, 2008).  They found a 

positive correlation between the decrease in binding and time before relapse in the right inferior 

frontal cortex, bilateral temporal cortex, and left thalamus, and a negative correlation in the 

bilateral frontal cortex.  When patients were split into individuals who relapsed within 10 days 

and those who took longer to relapse, those who relapsed earlier had more minimal decreases in 
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binding between 1 and 12 weeks in the right vStr, right orbitofrontal cortex, right frontal cortex, 

and left anterior temporal cortex.  Baseline MOR BP at 1 week was also greater in the temporal 

cortex, left OFC, and right vStr of the early relapsers (Gorelick et al, 2008).  

Not all studies on people with SUD are consistent in equating higher MOR BP with 

increased craving.  Although results from the study on AD subjects by Williams and colleagues 

were similar to those seen in other drugs of abuse, there has also been research suggesting that 

AD subjects sometimes show a different pattern.  Bencherif et al. (2004) and Weerts et al. 

(2011) both found that alcoholic dependent subjects showed an inverse correlation between 

MOR BP and alcohol craving.  Additional research is needed to clarify these conflicting results. 

Treatment 

As an alternative to complete abstinence from drugs, some opioid dependent individuals 

can be treated using full or partial opioid agonists such as methadone and buprenorphine (BUP).  

Methadone is a synthetic opioid and BUP is a µ-opioid partial agonist and κ/δ antagonist.  Both 

drugs will decrease opioid withdrawal symptoms and craving without producing euphoria, and 

will block symptoms produced by other opioids.  They provide a safer and more controlled 

alternative for opioid-dependent individuals, who can either maintain their methadone/BUP 

doses long-term or take advantage of the milder forms of withdrawal that those drugs produce to 

gradually stop opioid use altogether.  

To examine the effects of methadone on the EOS, former heroin users on long-term 

methadone maintenance were compared to healthy controls using 18F-cyclofoxy, a µ- and κ-

opioid receptor antagonist.  The group on methadone was shown to have significantly lower 

binding in areas such as the thalamus, caudate, ACC, middle temporal cortex, and middle frontal 

cortex (Kling et al, 2000).  However, binding of 11C-diprenorphine did not appear to differ 
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between heroin-dependent individuals maintained on methadone and controls (Melichar et al, 

2005).  To explain this, Melichar and colleagues posited that methadone may only be required to 

bind to a very small percentage of receptors to be clinically effective, which 11C-diprenorphine 

PET may be unable to detect.  They also pointed out that while 11C-diprenorphine has been 

shown to label internalized receptors, studies have not yet been done to determine whether the 

same is true for 18F-cyclofoxy.  Therefore, if methadone treatment causes opioid receptor 

internalization, it might explain why binding differences were seen when using 18F-cyclofoxy, 

but not when using 11C-diprenorphine. 

In a preliminary study examining the effects of buprenorphine on three heroin-dependent 

subjects and controls, it was found that BUP dose-dependently decreased MOR BP in many 

regions of the brain (Zubieta et al, 2000).  After treatment with BUP was ceased and subjects 

were on placebo, the heroin-dependent subjects were compared to controls.  Significant increases 

in MOR BP were shown in the anterior cingulate and inferofrontal cortex of the heroin-

dependent subjects, while the PFC and ventral caudate showed a trend in that direction.  A later 

study with a larger sample size also showed that BUP dose-dependently decreased MOR BP in 

all the regions of interest (ROIs) investigated (PFC, ACC, NAC, AMY, thalamus, and caudate) 

as well as in the whole brain analyses (Greenwald et al, 2003).  This decrease in MOR BP was 

associated with decreased craving and fewer withdrawal symptoms.  Greenwald and colleagues 

also examined how MOR BP changed after heroin-dependent subjects who had been taking BUP 

daily discontinued their dose (Greenwald et al, 2007).  As time since the last BUP dose increased 

from 4 to 76 hours, whole-brain MOR availability compared to controls taking placebo increased 

from 30% to 82%.  To examine the effectiveness of the BUP at blocking the actions of opioids, 

subjects were given hydromorphone, an opioid agonist, at various time points.  At both 4 and 28 
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hours after BUP administration, subjects reported no significant opioid agonist symptoms due to 

hydromorphone administration.  By 52 and 76 hours after the last BUP dose, however, 

hydromorphone was able to produce significant increases in agonist symptoms. 

The effects of naltrexone, a non-selective opioid receptor antagonist, and naloxone, an 

inverse agonist, have also been studied by several researchers.  Like methadone and BUP, 

naltrexone can be used to treat opioid dependence, although it is more commonly used to treat 

alcohol dependence.  Since it is an antagonist, it blocks the effects of opioids but does not reduce 

craving.  In AD subjects, naltrexone prevents the alcohol from releasing endogenous opioids, 

which prevents some of the pleasurable effects of alcohol (Latt et al, 2002).   Naloxone, on the 

other hand, is most frequently used to treat opioid overdose.  The effect of naltrexone on the µ- 

and δ-opioid systems was examined using CFN and 11C-methyl naltrindole PET (Weerts et al, 

2008).  Alcohol-dependent subjects were admitted to a clinical research unit to undergo alcohol 

withdrawal.  PET scans were obtained before naltrexone was administered and after withdrawal 

symptoms abated on the 5th day.  On day 15, subjects began receiving oral naltrexone doses 

daily, and a second set of PET scans was conducted 3 days later.  Results from the CFN scan 

showed an average 94.9% (±4.9% SD) decrease in MOR BP throughout the brain.  DOR BP was 

also shown to decrease during naltrexone administration, although to a lesser extent and with 

larger interindividual variation: BP decreased by 21.1% (±14.49% SD) across brain ROIs 

compared to the earlier scan.  The day after their first set of PET scans, these same subjects were 

given increasing doses of naloxone while their plasma ACTH and cortisol concentrations were 

recorded.  This provided information on baseline opioid system function, since naloxone would 

be expected to inhibit the baseline endogenous opioid inhibitory tone that normally regulates 

ACTH secretion, resulting in increased ACTH and cortisol release.  The relationship between 
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opioid receptor availability and cortisol release in response to naloxone was investigated in these 

AD subjects and compared to controls (Wand et al, 2012, 2013).  In healthy controls, Wand and 

colleagues found negative correlations between DOR BP in the vStr, cingulate cortex, and 

fusiform gyrus, and the area under the cortisol response curve (Wand et al, 2013).  These 

correlations were not seen in AD subjects.  Similarly, healthy subjects showed a negative 

correlation between MOR BP and cortisol response in nine ROIs studied, including the vStr, 

thalamus, and AMY.  Again, no correlations were found in the AD subjects, suggesting a 

disruption in these individuals of the normal relationship seen between the opioid system and the 

HPA axis (Wand et al, 2012). 

At-risk populations 

PET studies investigating individual differences in the EOS could also be useful in 

predicting who may be at higher risk for developing a drug addiction later in life.  Generally, 

individuals with substance abuse problems have higher ratings of impulsivity than healthy 

controls, and there is some indication that impulsivity is negatively associated with treatment 

outcome (Bickel et al, 1999; Krishnan-Sarin et al, 2007; Madden et al, 1997).  Evidence 

indicates a two-way connection between drug abuse and impulsivity: individuals with higher 

impulsivity are at greater risk of using drugs, and drug use is associated with increases in 

impulsivity (de Wit, 2009; Diergaarde et al, 2008; Jentsch, 2008; Perry et al, 2008).  The 

association between impulsivity and MOR BP was examined by Love et al. (2009), who found 

that people with high impulsivity scores have greater MOR BP in the right ACC, medial frontal 

cortex, ventral basal ganglia, and AMY.  This is interesting given that opioid, cocaine, and some 

alcohol-dependent individuals who are abstinent and craving also showed heightened MOR 



 33 

availability within regions such as the cingulate, putamen, and AMY when compared to control 

populations. 

Genetic variations are also believed to play a role in predisposing certain individuals to 

develop an addiction.  One example is the OPRM1 A118G polymorphism.  The less common G 

variant of this polymorphism has been linked in previous studies to increased risk of addiction, 

although results are inconsistent (Haerian and Haerian, 2013; Ray et al, 2012; Verhagen et al, 

2012).  In a recent CFN PET study, Ray et al. (2011) observed that smokers with a G allele 

exhibit decreased MOR BP after smoking in the left ACC, AMY, right caudate, and thalamus.  

Individuals with a G allele also appear to have decreased global MOR BP, as shown in a study 

examining both 5-day abstinent AD individuals and healthy controls (Weerts et al, 2013).  The 

effects of other genetic variations on the EOS of humans should also be examined using PET. 

 

DISCUSSION 

This review has focused on studies examining in vivo alterations of the human EOS in 

individuals at various stages of the drug abuse cycle.  Earlier animal studies have shown that 

along with the well-known connections to the dopaminergic system, reward and addiction are 

also linked to changes in the endogenous opioid system (reviewed in Di Chiara et al, 2004; Trigo 

et al, 2010).  The advent of PET has provided a crucial tool that allows us to study these 

processes in humans. 

Much has already been learned about the EOS through studies on animals, such as its 

ability to modulate reinforcement properties of various drugs and to affect craving and relapse 

(see Gerrits et al, 2003; Trigo et al, 2010).  MOR knock-out mice, as well as animals given MOR 

antagonists, seem to find drugs of abuse less reinforcing, suggesting that MORs are especially 
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crucial in mediating the rewarding effects of these drugs.  One known mechanism through which 

the opioid system plays a role in drug abuse is by modulating the function of the dopaminergic 

system.  Dopaminergic activation, particularly in the NAC, is believed to be the primary 

reinforcing effect in most drugs of abuse (Di Chiara et al, 2004).  Injections of both µ- and δ-

opioid receptor agonists lead to increased dopamine (DA) levels in the vStr in rats.  Rats also 

learn to self-administer infusions of both of those agonists into their VTA, indicating that the 

infusions are reinforcing (Devine et al, 1993; Devine and Wise, 1994).  The knowledge obtained 

from these types of animal studies can now be elaborated upon in humans using PET studies, 

which have the unique ability to focus on alterations in neurotransmitter systems of interest while 

subjects are awake and performing tasks. 

As our ability to synthesize radiotracers targeting specific receptors of interest grows, 

PET studies will also be useful for differentiating between the activities of the various types of 

opioid receptors in humans.  Although the µ-opioid system is generally thought of as the main 

player when discussing the role of the EOS in addiction, there is increasing evidence that the 

other receptors, especially the k-opioid receptors, play critical roles as well.  While the δ-opioid 

system often acts similarly to the µ-opioid system, agonists for k-receptors have aversive effects 

in animals and may interfere with the rewarding effects of drugs of abuse (see Wee and Koob, 

2010).  There are a number of cases where µ and k agonists appear to have opposing effects, 

including how they alter drinking behavior, locomotion, and DA release, and it has been 

suggested that the aversive effects of k-opioid agonists may contribute to the drug withdrawal 

symptoms seen in people with SUD.  Animal and post-mortem human studies both suggest that 

drug abusers have an upregulated κ-opioid system (reviewed in Wee and Koob, 2010).  Animals 

studies have also found that during withdrawal from cocaine, ethanol, and opioids, levels of the κ 
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agonist dynorphin appear to increase in the NAC and AMY (reviewed in Koob, 2008).  This 

increase in dynorphin levels is hypothesized to lead to a downregulation of the dopaminergic 

system, which may cause some of the aversive effects associated with withdrawal (Wee and 

Koob, 2010).  As radiotracers focusing exclusively on the κ receptors become better developed, 

these studies should be replicated in vivo in humans.   

Since the development of opioid receptor specific PET radiotracers, our options for 

investigating the dysregulation of the human EOS that occurs in response to drugs of abuse have 

expanded.  We are able to examine opioid receptor functioning and determine how receptor 

availability changes in patients at different stages of drug abuse.  The majority of the studies 

reviewed in this paper agree that acute drug administration decreases MOR BP, while in 

recently-abstinent drug users, whether they are dependent on opioids, cocaine, or alcohol, MOR 

BP is increased compared to controls.  Animal studies suggest that this initial decrease in MOR 

BP after acute drug administration is likely due to the release of endogenous opioids, which then 

compete with the radiotracers for receptors.  The increase in binding potential seen in human 

chronic drug users undergoing abstinence could be explained by an upregulation of MORs, a 

decrease in endogenous opioids, or some combination.  However, two studies examining 

postmortem brains of opioid-dependent individuals did not find any significant difference in 

MOR density or affinity, which suggests that alterations in endogenous opioid levels may be 

primarily responsible for the differences in binding (Gabilondo et al, 1994; Schmidt et al, 2001).  

In rodents chronically exposed to cocaine, the MOR system appears to show activation in a 

variety of regions, and withdrawn animals have shown higher levels of MOR mRNA in the 

frontal and cingulate cortices (reviewed in Yoo et al, 2012).  In the PET studies reviewed here, 

the degree to which BP is increased often appears to predict the strength of the craving that an 
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individual feels for a drug and the likelihood of relapse.  As the length of abstinence increases, 

MOR BP may normalize back to the levels found in controls in many of the brain regions, as 

occurred in a sample of cocaine-dependent subjects followed for several months (Gorelick et al, 

2008).   

In the PET studies discussed above, the NAC was a region that often showed alterations 

in the EOS in response to drugs of abuse.  The NAC is part of the mesolimbic pathway, which 

connects the VTA to the limbic system.  This pathway is a major player in drug addiction, 

believed to mediate “acute reinforcing effects of drugs and various conditioned responses related 

to craving and relapse” (Feltenstein and See, 2008, p265).  As Mitchell and colleagues show, 

after acute alcohol intake there is a decrease in MOR BP in the NAC, which is associated with 

subjects feeling the “best ever” (Mitchell et al, 2012).  Alterations in NAC BP in people with 

SUD are also seen in a number of the other studies discussed.  The NAC is a key structure in 

reinforcement and addiction, and as mentioned earlier, most drugs of abuse are believed to obtain 

their reinforcing properties due to the release of DA in the NAC (Volkow et al, 2012).  

Generally, GABA interneurons inhibit the activity of the dopaminergic neurons in this area.  

When µ- or δ-opioid receptors in the NAC or VTA are activated, they inhibit the inhibitory 

GABA interneurons.  This disinhibits the dopaminergic neurons, leading to increased DA release 

in the NAC and presumably causing the rewarding effects of opioid drugs (Trigo et al, 2010).  In 

the above study by Mitchell and colleagues, decreased MOR BP likely indicated an increase of 

endogenous opioids in the NAC following alcohol consumption.  This could then act to 

disinhibit the dopaminergic neurons and increase DA release, producing the reported reinforcing 

effect. 
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The cingulate cortex and DLPFC are two other regions that were frequently implicated in 

the reviewed PET studies.  Both of these regions are part of the mesocortical dopaminergic 

pathway, which connects the VTA to various cortical areas and is believed to be involved in the 

“conscious drug experience, drug craving and a loss of behavioural inhibition related to 

compulsive drug-seeking and drug-taking behaviours” (Feltenstein et al, 2008, p265).  The 

relevance of these regions in reward and drug abuse has been examined in humans using 

functional magnetic resonance imaging (fMRI), which uses changes in blood-oxygen-level 

dependent (BOLD) signal intensity as a way of estimating changes in neural activity.  An fMRI 

study by Maas et al. (1998) reported increased BOLD activation in the anterior cingulate and the 

left DLPFC in cocaine-dependent individuals compared to controls when shown drug cues, with 

stronger activation corresponding to greater craving.  Activation of the DLPFC may also be 

important for self-regulation of craving, according to an fMRI study conducted by Kober et al. 

(2010).  Subjects were scanned while considering how smoking or eating would make them feel 

at that moment, as well as while employing a cognitive strategy meant to decrease craving: 

considering the long-term consequences associated with the appetitive stimuli.  Increases in 

BOLD activity in the DLPFC and decreases in vStr activity were both associated with how 

effectively subjects were able to decrease their craving using that strategy.  This is consistent 

with the suggestion that individuals who have problems with substance abuse may show 

decreased prefrontal control over regions associated with reward, such as the vStr. 

As this review shows, PET studies have affirmed the role of the EOS in the 

pathophysiology of various stages in the drug abuse cycle.  However, despite the potential, there 

have been relatively few PET studies examining the opioid system in people suffering from drug 

abuse, and practically none on populations believed to be at increased risk of drug abuse.  Of the 
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PET studies that do focus on the EOS, the vast majority uses either radiotracers specific to the µ-

opioid system or tracers that bind to multiple receptor types.  Since kappa receptors often show 

effects opposing those of the other receptors, non-specific tracers could mask the true effects of 

each of the receptor types.  Future studies should increase our examination of changes in κ- and 

δ-opioid system function in relation to drug addiction, since there is growing evidence that these 

systems may also have important roles to play in addiction. 
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TABLES 

Table 2.1: Endogenous opioid receptor preferences. 

Endogenous Opioid Receptor Preference 

Endorphins µ, δ 

Enkephalins µ, δ 

Nociceptins N/OFQ 

Endomorphins µ, δ 

Dynorphins κ, N/OFQ 

 

 

Table 2.2: Common opioid radioligands and receptor targets.  

Radioligand Receptor Selectivity 

11C-carfentantil µ-OR agonist 

11C-diprenorphine / 18F-diprenorphine µ-OR antagonist, δ-OR agonist, κ-OR agonist 

11C-methylnatrindole δ-OR antagonist 

18F-cyclofoxy µ-OR antagonist, κ-OR antagonist 
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CHAPTER III 

Nicotine-Specific and Non-Specific Effects of Cigarette Smoking on  
Endogenous Opioid Mechanisms2 

 
ABSTRACT 

This study investigates differences in µ-opioid receptor mediated neurotransmission in 

healthy controls and overnight-abstinent smokers, and whether these differences are affected by 

OPRM1 A118G genotype.  It also examines the effects of smoking denicotinized (DN) and 

average nicotine (N) cigarettes on the µ-opioid system.  Positron emission tomography (PET) 

with 11C-carfentanil was used to determine regional brain µ-opioid receptor (MOR) availability 

(non-displaceable binding potential, BPND) in a sample of 19 male smokers and 22 nonsmoking 

control subjects.   

Nonsmokers showed greater MOR BPND than overnight abstinent smokers in the basal 

ganglia and thalamus bilaterally.  BPND in the basal ganglia was negatively correlated with 

baseline craving levels and Fagerström scores.  Interactions between group and genotype were 

seen in the nucleus accumbens bilaterally and the amygdala, with G-allele carriers demonstrating 

lower BPND in these regions, but only among smokers.   

After smoking the DN cigarette, smokers showed evidence of MOR activation in the 

thalamus and nucleus accumbens.  No additional activation was observed after the N cigarette, 

with a mean effect of increases in MOR BPND (i.e., deactivation) with respect to the DN cigarette 

                                                
2 This work reflects collaboration with Lisong Ni, Dr. Edward Domino, and Dr. Jon-Kar Zubieta at the University of 
Michigan 
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effects in the thalamus and left amygdala.  Changes in MOR BPND were related to both 

Fagerström scores and changes in craving. 

This study showed that overnight-abstinent smokers have lower concentrations of 

available MORs than controls, an effect that was related to both craving and the severity of 

addiction.  It also suggests that nicotine non-specific elements of the smoking experience have an 

important role in regulating MOR-mediated neurotransmission, and in turn modulating 

withdrawal-induced craving ratings.    

 

INTRODUCTION 

With over one billion smokers worldwide, nicotine dependence is a major health concern.  

There are more than 5 million deaths associated with tobacco each year, and tobacco smoking is 

the most prevalent cause of “preventable disease and death” in the United States (Graul and 

Prous, 2005).  There are substantial lines of evidence pointing to a strong link between nicotine 

use and endogenous µ-opioid mechanisms, which may mediate some of nicotine’s addictive 

properties and distress during withdrawal (for review see Pomerleau, 1998).   

Animal and cell culture studies suggest that acute nicotine induces endogenous opioid 

release (Boyadjieva and Sarkar, 1997; Davenport et al, 1990).  However, attempts to translate 

these initial findings into human studies have led to inconsistent results.  Studies examining 

changes in MOR availability (binding potential, BP) after smoking denicotinized (DN) versus 

average nicotine (N) cigarettes with positron emission tomography (PET), an indirect measure of 

changes in neurotransmitter release and µ-opioid receptor activation, have found both reductions 

in BP (suggesting activation of neurotransmission) and increases (deactivation) in different 

regions of the brain (Domino et al, 2015; Scott et al, 2006).  Alternatively, some studies have not 
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found any significant differences in MOR binding after smoking N versus DN cigarettes 

(Kuwabara et al, 2014; Ray et al, 2011).  Measures at baseline have also shown either lower 

MOR BP in smokers compared to nonsmoking controls (Scott et al, 2006), or no significant 

differences between groups (Kuwabara et al, 2014).  The µ-opioid system is also known to 

respond to positive expectancies, including the so-called placebo effect (Pecina et al, 2015a; 

Scott et al, 2008; Zubieta et al, 2005), which may impact the effects of both DN and N.  This 

effect could be particularly prominent in studies conducted after nicotine abstinence, when 

craving and positive expectancies are highest.  This was initially suggested in a small pilot study 

(Scott et al., 2006), and could potentially contribute to inconsistencies in results across study 

designs. 

To explore this possibility, the current study examined MOR non-displaceable BP (BPND) 

(Innis et al, 2007) at baseline, preceding and following DN and N cigarettes, and again during 

DN and N smoking using a single blind design.  In this analysis, effects of DN and N cigarette 

smoking on subsequent BPND values were further controlled by their corresponding baseline 

values to provide a corrected measure of µ-opioid system activation (changes in BPND) after DN 

and N smoking.  Smokers were studied after verified overnight abstinence when craving for 

cigarettes would be high.  The effects of a common functional polymorphism of the MOR, 

known to influence both baseline MOR BPND (Pecina et al, 2015b; Ray et al, 2011; Weerts et al, 

2013) and the activation of the µ-opioid system during positive expectations (Pecina et al, 

2015b) were also evaluated in these analyses.   
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PATIENTS AND METHODS 

Participants and study design 

Twenty-four smokers and 22 healthy non-smokers between the ages of 20 and 35 were 

recruited by advertisement for this study.  All participants were male and right-handed, not on 

any medication, and had no history or current signs of psychiatric or physical illnesses.  

Participants were excluded if they used any drugs of abuse besides tobacco smoking.  Written 

informed consent was obtained from all subjects, and the study was approved by the Institutional 

Review Board for Human Subject Research and the Radioactive Drug Research Committee at 

the University of Michigan. 

 Five individuals from the experimental group had to be excluded from the analyses.  

Three had missing elements of MRI or PET data, and one subject was discovered to be a 

nonsmoker.  Another participant tested positive for opioids at the time of his PET scan.  The 

final sample was 19 male smokers between the ages of 20 and 35 (mean ± SD: 25.3±4.4 years) 

and 22 non-smokers (mean ± SD: 24.2±3.7 years).  Participants smoked between 6 and 30 

cigarettes a day (mean ± SD: 18.4±5.6), and had Fagerström Scale of Nicotine Dependence 

(FSND) scores ranging from 2 to 8.3 (mean ± SD: 5.5±1.9) with 10 being most dependent 

(Heatherton et al, 1991).   

 Smokers were instructed to cease smoking the night before the 8:30 AM scans, resulting 

in 8-12 hrs of abstinence.  Compliance was tested using a carbon monoxide (CO) detector 

(Vitalograph Breath CO Model BC1349, Vitalograph Inc., Lenexa, KS) with a requirement of 

CO levels < 10 parts per million (p.p.m.) prior to scanning (Domino and Ni, 2002). 

 In the overall protocol, PET scanning was conducted using the radiotracers 11C-

carfentanil (11C-CFN) and 11C-raclopride (11C-RCL) targeting µ-opioid and dopaminergic D2/D3 
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receptors, respectively.  Only the 11C-CFN data is reported here.  Smokers participated in the 

trials on two separate days, with two consecutive 90 min PET scans each day (Figure 3.1).  For 

the first half of each scan the participants were simply instructed to lie still, providing a baseline 

measure.  Between 43 and 53 min after tracer administration, smokers were directed to smoke 

either two DN cigarettes (0.08 mg nicotine/cigarette, 9.1 mg tar/cigarette) or two N cigarettes 

(1.01 mg nicotine/cigarette, 9.5 mg tar/cigarette) through a one-way airflow system.  Smokers 

received the N cigarettes second in order to prevent the effects of the nicotine from carrying over 

into the DN condition.  Each day, participants received one scan using the tracer 11C-CFN and 

one using the tracer 11C-RCL.  The order was counterbalanced the second time the participants 

came in.  The data from the 11C-RCL scans has been previously reported (Domino et al, 2012; 

Domino et al, 2013), as has a different analysis of the 11C-CFN data (Domino et al, 2015).  

 Prior to scanning, smokers were asked to rate a 1-10 visual analog scale (VAS) for 

“craving”, “relaxed”, “sickness”, “wakefulness”, and “nervousness”.  They repeated this at 30 

and 60 min into each of the scans (once before smoking and once after smoking).  At the 30 and 

60 min time points participants also completed the Positive and Negative Affectivity Schedule 

(PANAS; Watson and Clark, 1999), Profile of Mood States (POMS; McNair et al, 1971), and 

Spielberger State Anxiety Inventory (STAI; Spielberger et al, 1983).   

Six of the healthy controls were asked to smoke a sham cigarette (unlit cardboard 

cylinder) in place of either the DN or N cigarette.  The remaining 16 controls simply underwent 

one 90 min baseline 11C-CFN scan in which they were asked to lie in the scanner with no 

intervention.   
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Scanning protocol and data acquisition 

Participants were placed in a Siemens HR+ scanner and data were collected as previously 

described (Domino et al, 2012; Scott et al, 2006).  Briefly, scans were acquired in three-

dimensional mode (reconstructed FWHM resolution ~5.5 mm in-plane and 5.0 mm axially, with 

septa retracted and scatter correction).  Images were reconstructed using iterative algorithms 

(brain mode; FORE/OSEM four iterations, 16 subsets; no smoothing) into a 128x128 pixel 

matrix in a 28.8 cm diameter field of view.  Attenuation correction was done using a 6 min 

transmission scan (68Ge source) obtained before the radiotracer was injected.  Image data was 

transformed into two sets of parametric maps: a tracer transport measure (K1) and a receptor 

related measure (BPND) using a modified Logan graphical analysis (Logan et al, 1996) with the 

occipital cortex as a reference region. 

 A light forehead restraint was used on each participant to reduce movement, Two 

intravenous (antecubital) lines were placed.  11C-CFN was synthesized at high specific activity 

through the reaction of 11C-methyliodide and a non-methyl precursor (Jewett, 2001).  The tracer 

was administered through one of the intravenous lines, beginning with a bolus containing half of 

the tracer.  The other 50% was administered continuously during the scan.   Throughout the scan, 

each participant’s blood pressure and heart rate were recorded. 

 A high-resolution anatomical MRI image was obtained for each participant using a 3 

Tesla scanner (Signa, General Electric, Milwaukee, WI).  The acquisition sequence used was an 

axial SPGR IRpPrep MR (TE = 5.5, TR = 14, TI = 300, flip angle = 20°, NEX = 1, 124 

contiguous images, 1.5mm thickness), followed by axial T2 and proton density images (TE = 20 

and 100, respectively; TR = 4000, NEX = 1, 62 contiguous images, 3mm thickness).  
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Participants were also asked to complete several functional MRI tasks while in the scanner, the 

results of which will be published separately. 

Bloods/Genotyping/Plasma nicotine 

Before the first scan, 10 ml of venous blood was drawn from each participant.  Blood was 

processed by the Michigan Center for Translational Pathology laboratory biorepository and 

Michigan Sequencing Core for analysis and subsequently reconfirmed (Domino et al., 2012).  

Each participant’s genotype at the OPRM1 A118G polymorphism was determined.  Participants 

were divided into two groups based on whether they carried at least one rare G allele (G*) or 

whether they were homozygous for the A allele.  Nicotine plasma levels were also determined by 

drawing blood samples just before smoking (min 43) and at five other time points after smoking 

initiation (49, 59, 65, 75, and 95 min after tracer administration).  Blood samples were analyzed 

by MEDTOX Laboratories, Inc. (St. Paul, MN). 

Data analysis 

Image preprocessing 
 

PET data consisted of two early BPND values acquired at baseline (10-40 min post-tracer 

administration, one of them after overnight abstinence and the second after an initial DN 

smoking session), and two late session BPND values (45-90 min post-tracer administration) 

acquired after DN and N smoking.  Each participant’s PET images were coregistered to their 

own MRI image using Matlab (MathWorks, Natick, Massachusetts) and SPM8 (Wellcome Trust 

Center for Neuroimaging, London, United Kingdom) software, and then were linear and non-

linear warped using VBM8 Toolbox (Christian Gaser, University of Jena, Department of 

Psychiatry, Jena, Germany) within SPM8 to match the Montreal Neurological Institute (MNI) 

stereotactic atlas orientation.  Coregistration and warping were checked visually for each 
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participant, and a 3-D Gaussian filter (FWHM 6 mm) was applied to each scan.  Voxel-by-voxel 

whole-brain analyses were performed on the participants, and significance thresholds estimated 

using image smoothness, the Euler characteristic, and the number of voxels in the gray matter 

(Worsley et al, 1992).  Further analyses were performed on extracted data using SPSS Statistics 

v. 20 (IBM Corp, Armonk, NY).  Differences in BPND values were examined to investigate 

differences between baseline values, changes in BPND as a result of DN and N smoking, and the 

effect of the OPRM1 A118G polymorphism on these measures. 

 
 
Craving, Fagerström scores, and plasma nicotine levels in smokers: 
 

We focused on craving ratings and their change within and between scans using SPSS.  

Paired t-tests were used to compare VAS craving ratings at 30 min and 60 min (before and after 

DN and N) and Pearson correlations were calculated between VAS craving and Fagerström 

scores.  The effect of smoking DN and N cigarettes on plasma nicotine levels was determined 

using paired t-tests between levels acquired prior to smoking (min 43) and post-smoking samples 

at min 49, 59, 65, 75, and 95 after tracer administration.  Plasma nicotine data was not collected 

on one subject during the DN scan, and on another subject during the N scan. 

 
 
Effects of group and genotype on baseline MOR BPND: 
 

A 2x2 whole-brain analysis of covariance (ANCOVA) in SPM8 was used to examine the 

effect of group (smokers vs. controls) and genotype (AA vs. *G at the A118G polymorphism) on 

baseline MOR BPND (10-40 min post-tracer administration), as well as any interactions between 

group and genotype.  The genotype frequencies for smokers were 14AA, 4AG, and 1GG; for 

nonsmokers they were 15AA, 5AG and 2GG.     
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Effects of DN and N smoking on MOR BPND. 
 

Differences between baseline BPND values preceding DN (after overnight abstinence) and 

after DN (prior to N), reflecting potential effects of DN smoking on endogenous opioid release, 

were examined in SPM8 using voxel-by-voxel paired t-tests with scan order as a covariate.  

Because of some technical difficulties with the image data, this sample included n=16 smokers.  

Similar analyses were conducted to examine differences between DN and N effects, controlling 

for their preceding baseline BPND values and scan order (n=19). 

Regions that were significant after cluster-level FWE correction (p<0.05) or approached 

significance (p<0.06) were extracted for further analysis using MarsBaR (Brett et al, 2002).  

Only areas with BPND values greater than 0.1 were included in the analyses, to exclude regions 

with nonspecific binding.  Correlations between BPND in these regions of interest (ROIs), 

baseline VAS craving, and participants’ Fagerström scores were examined using SPSS and 

Pearson correlations at p<0.05. 

 

RESULTS 

Baseline MOR BPND in smokers compared to non-smokers 

Two-way ANCOVA showed an effect of group on MOR BPND at baseline.  Healthy 

controls showed higher BPND than smokers in the left and right basal ganglia (BG) and the 

thalamus (THA) (Figure 3.2a,b).  BPND in the left and right BG of smokers were negatively 

correlated with baseline craving (L BG: r(17)=-0.67, p=0.002; R BG: r(17)=-0.68, p=0.001) 

(Figure 3.2c).  Fagerström score was also negatively correlated with MOR BPND in the same 

regions (L BG: r(17)=-0.55, p=0.014; R BG: r(17)=-0.54, p=0.017) (Figure 3.2c). 
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Effects and interactions of 118G allele and smoking status on baseline MOR BPND   

Two-way ANCOVA showed an overall significant effect of genotype, with G-allele 

carriers showing lower baseline BPND than AA homozygotes throughout brain areas with 

specific binding, most prominently in the orbitofrontal cortex (OFC), anterior cingulate cortex 

(ACC), insular cortex, nucleus accumbens (NAC), and THA (Figure 3.3a).  

An interaction between group and genotype was also observed in the NAC bilaterally, as 

well as in the right AMY (Figure 3.3b,d).  For controls, A118G genotype did not have a 

significant effect on baseline BPND in those regions (L NAC: F(1,36)=0.135, p=0.719; R 

NAC/AMY: F(1,36)=0.355, p=0.555).  G-carrier smokers, however, showed lower BPND values 

compared to AA homozygotes (L NAC: F(1,36)=10.921, p=0.002; R NAC/AMY: 

F(1,36)=12.531, p=0.001) (Figure 3.3c). 

Craving, plasma nicotine levels, and Fagerström scores in smokers 

Craving scores were significantly reduced after both the DN cigarette (t(18)=5.89, 

p<0.0001) and the N cigarette (t(18)=6.64, p<0.0001) compared to ratings prior to smoking.  

Craving during N scans was significantly lower than during DN scans, both at 30 min (post-DN 

smoking, pre-N smoking) (t(18)=3.34, p=0.004) and at 60 min (post-N smoking) (t(18)=3.71, 

p=0.002) (Figure 3.4a).   No significant differences were found in the degree of craving relief 

afforded by N compared to DN cigarettes (30-60 min) (t(18)=-0.35, p=0.732).  There were also 

no significant effects of OPRM1 A118G genotype on craving measures. 

 Smokers with higher Fagerström scores had higher baseline craving (r(17)=0.69, 

p=0.001) and a greater reduction in craving after both DN (r(17)=0.65, p=0.003) and N 

cigarettes (r(17)=0.51, p=0.026).  Both the DN and the N cigarette significantly increased plasma 

nicotine levels from pre-smoking levels (DNpre vs. DNpost: t(17)=-3.26, p=0.005; Npre vs. 
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Npost: t(17)=-3.953, p=0.001), but with plasma nicotine levels at all time points after N being 

significantly higher than the corresponding plasma nicotine levels after DN (p<0.001)  (Figure 

3.4b).  After DN smoking, plasma nicotine levels peaked at min 59 (mean ± SD: 3.2 ± 1.9 

ng/ml), and after N smoking levels peaked at min 65 (mean ± SD: 16.4 ± 8.1 ng/ml).   

Effect of DN smoking 

Early baseline scan (10-40 min) MOR BPND (before DN) was significantly higher than 

that following DN (before N) in an area that included the THA and the right NAC (Figure 3.5), 

suggesting a substantial activation of endogenous opioid neurotransmission in these areas after 

DN that persisted into the following scanning period.  No significant correlations were found 

between the changes in BPND and Fagerström scores, craving ratings, or plasma nicotine levels.  

There were also no significant effects of OPRM1 A118G genotype. 

Effect of N smoking 

To isolate the effects of DN versus N smoking, we controlled for the above baseline 

differences in MOR BPND during the early scans preceding DN and N.  For this purpose we first 

subtracted the late portion of each scan (DN or N) from the earlier baseline portion and then 

examined differences between DN and N smoking effects.  In these analyses, we observed 

significantly greater activation of neurotransmission during DN smoking compared to N 

smoking, and net increases in BPND in the THA and left AMY during the N scan compared to the 

DN scan, suggesting an overall effect of deactivation of neurotransmission during N smoking 

relative to DN smoking in these regions (Figures 3.5b, 3.6).  There were no significant increases 

in MOR BPND during DN compared to N scans.  No significant effects of OPRM1 A118G 

genotype were observed in these analyses. 
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Fagerström scores were negatively correlated with changes in BPND in the THA during 

the DN scan (r(15)=0.52, p=0.031) and the N scan (r(15)=-0.65, p=0.005), with greater relative 

activation of neurotransmission observed in those with higher nicotine dependence scores.  The 

change in craving scores after DN smoking were also inversely associated with changes in MOR 

BPND in the THA (r(15)=-0.64, p=0.006).   No significant associations were observed for 

changes after N smoking. 

 

DISCUSSION 

This manuscript examined changes in endogenous µ-opioid receptor mediated 

mechanisms in addicted smokers during DN and N cigarette smoking in relation to a control 

sample of non-smokers.  We observed reductions in baseline receptor availability (BPND) in 

smokers after overnight abstinence compared to non-smoking controls.  These group effects 

were observed in the BG bilaterally and in the THA, regions involved in reward responsiveness 

and habitual behavior, and sensory integration, respectively (Graybiel, 2008; Haber and Knutson, 

2010; Tyll et al, 2011).  Reductions in the BG were further associated with Fagerström and 

craving scores, suggesting an association between the effects of chronic tobacco smoking on 

MORs and the severity of nicotine addiction.  These data are also consistent with that acquired in 

an initial pilot study from our group, where reductions in MOR BPND were observed in a small 

sample of smokers after DN cigarette smoking in the rostral ACC, THA, NAC, and AMY, in 

comparison with non-smoking controls (Scott et al, 2006).  Previous work by Ray et al. (2011) 

and Kuwabara et al. (2014), however, did not find significant differences in receptor availability 

between controls and smokers, a discrepancy that may be secondary to differences in the samples 

studied or in the study designs.  Both Ray et al. (2011) and Kuwabara et al. (2014) studied males 
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and females, who present substantial differences in MOR BPND under resting conditions (Zubieta 

et al, 1999), potentially increasing the variance of the measures.  In contrast, the present study 

and Scott et al. (2006) included only males.  Participants in this study also had average peak 

nicotine levels above 16 ng/mL, while in the study by Kuwabara et al. (2014) nicotine levels 

appear to have peaked around 7 ng/mL.  This may have been too low a level to show significant 

group differences in binding, as previous EEG studies have suggested that increases of plasma 

nicotine levels greater than 10 ng/mL are needed before brain waves are significantly altered by 

smoking (Kadoya et al, 1994).  There is also evidence that smokers self-regulate smoking to 

obtain nicotine boosts of 10 ng/mL per cigarette, a level that may be necessary to obtain many of 

the positive subjective effects of nicotine (Russell et al, 1995).  In addition, the present study 

acquired baseline measures after overnight abstinence without any intervention, while others 

(Kuwabara et al, 2014; Ray et al, 2011) used scans acquired after DN smoking as surrogate 

baselines, which may introduce an additional confound, as noted below.  Similarly to the present 

report, Kuwabara et al. (2014) observed negative correlations between MOR BPND and 

Fagerström score during the DN condition, albeit in different regions. 

 The observed reductions in baseline MOR BPND would be consistent with a chronic 

activation of this neurotransmitter system as a result of smoking and subsequent receptor 

downregulation, effects similar to those observed for dopamine and dopamine D2 receptors 

(Brody et al, 2004).  It is also possible that overnight nicotine abstinence induced acute increases 

in endogenous opioid production, as suggested by data in animal models (Houdi et al, 1998; 

Isola et al, 2002), further reducing the receptor availability measures acquired in vivo.  

 In animal models, chronic exposure to nicotine has been shown to reduce MOR 

concentrations, an effect that was linked to the development of tolerance to nicotine (Galeote et 
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al, 2006).  However, the opposite effect has also been observed, with increases in MOR receptor 

concentrations after chronic administration that were associated with nicotine-induced reward 

conditioning (Walters et al, 2005).  These upregulatory effects have also been shown to be sex 

dependent, more prominent in female than in male rodents, and associated with reductions in 

intracellular content of met-enkephalin (Wewers et al, 1999). 

 Smoking status also interacted with OPRM1 A118G genotype, whereby reductions in 

MOR BPND were observed in G allele carriers but only in smokers, not in non-smoking controls, 

similar to data presented in Ray et al. (2011).  Presence of the G allele has been associated with 

lower levels of MOR mRNA expression in human post-mortem tissue (Zhang et al, 2005), in 

cultured cells (Kroslak et al, 2007), and in animal models (Mague et al, 2009; Wang et al, 2012).  

In larger healthy control samples, G allele carriers have also shown reductions in MOR BPND in 

multiple cortical and subcortical brain regions, when compared to AA homozygotes (Pecina et 

al, 2015b).  The significant interaction between smoking status and genotype found in this study 

are therefore likely to represent an additive effect of chronic smoking and G-allele reducing 

MOR availability, which would not be present in the control group and may not have been 

detected with the small control sample sizes employed in this report and in Ray et al. (2011).  

Peciña et al. (2015b) studied a much larger healthy control sample, but did not include smokers.  

In smokers, lower levels of receptor availability were associated with higher Fagerström nicotine 

dependence scores and higher craving ratings in both the present report and in Kuwabara et al. 

(2014).  In non-smokers, lower regional MOR BPND values in G-allele carriers have been linked 

to higher trait NEO Neuroticism scores, and specifically to the two subscales Vulnerability to 

Stress and Depression (Pecina et al, 2015b).  
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   During the smoking phases of the study, both DN and N cigarettes significantly reduced 

craving after overnight abstinence, an observation that parallels the results of prior studies 

examining the effect of DN and N smoking on subjective reports of tobacco withdrawal 

symptoms, including craving (Butschky et al, 1995; Pickworth et al, 1999).  The non-nicotine 

effects of smoking were highlighted in a recent study showing that smokers would preferentially 

self-administer DN cigarette puffs over intravenous nicotine (Rose et al, 2010), suggesting the 

importance of secondary, nicotine non-specific, reinforcing effects of smoking, which include 

sensory aspects such as the taste, smell, and feel of the cigarette smoke.  In our study we 

observed lower craving levels immediately prior to and after N smoking compared to the same 

periods in the preceding DN scans, further suggesting that smoking the DN cigarette after 

overnight abstinence had substantial effects that carried over into the subsequent N smoking 

scanning period.  The effects of both DN and N smoking were also dependent on the severity of 

nicotine addiction, with higher Fagerström scores associated with greater craving after overnight 

abstinence and more profound reductions in craving ratings after both DN and N cigarettes.  

 These non-specific effects of smoking, observed at the behavioral level, were paralleled 

by the results of the molecular measures acquired.  In the experimental design employed, 

baselines were acquired prior to DN and N smoking acquisitions, which were not randomized in 

order.  The rationale for this design was that the baseline periods, acquired early in the scan, 

would allow for the assessment of a “true” baseline prior to the introduction of any challenge.  

Comparisons between the effects of DN and N smoking can then be carried out across early 

periods as well as across late periods with similar signal to noise ratios, as tracer decay may 

differentially affect BPND estimates acquired early and late during scanning.  Potential carry-over 
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effects of the DN challenge would then be reflected in the following baseline, while N smoking, 

expected to have substantial carry over effects, would not affect DN BPND estimates.   

 We observed significant reductions in MOR BPND from the period preceding compared 

to that following DN smoking in the THA and AMY, suggesting that DN smoking alone elicited 

a substantial release of endogenous opioid peptides.  In parallel, and accounting for differences 

in baseline values across scans, relatively greater activation of endogenous opioid 

neurotransmission was observed for DN, in relation to N smoking during the late scanning 

periods.  In the THA, Fagerström scores were correlated with activation of neurotransmission 

after smoking both the DN and the N cigarettes.  The change in craving ratings was likewise 

associated with differential levels of activation in neurotransmission after DN smoking in the 

THA. 

 These results then suggest that after overnight abstinence, when craving is highest, 

nicotine non-specific effects are prominent, inducing the release of endogenous opioids and µ-

opioid receptor activation, which in the present study largely obscured additional effects of 

nicotine during N smoking, and are consistent with prior experimental observations (Butschky et 

al, 1995; Pickworth et al, 1999; Rose et al, 2010). 

 MORs in the THA and AMY, regions implicated in the regulation of sensory and 

emotionally relevant information (Gallagher and Chiba, 1996; Tyll et al, 2011), are known to be 

implicated in homeostatic responses of the organism to salient environmental cues.  In the 

context of pain, but also in Major Depression, activation of MOR-mediated neurotransmission by 

expectations of symptom relief during placebo administration has been observed in these and 

other brain regions (Pecina et al, 2015a; Scott et al, 2008; Zubieta et al, 2005).  It is therefore 

likely that DN smoking, particularly after overnight abstinence, when nicotine withdrawal 
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distress and craving are high, would represent a strong environmental cue that induced a potent 

activation of MOR-mediated neurotransmission independent of nicotine content in the cigarettes. 

 These observations are relevant for the treatment of nicotine addiction.  They would 

imply that under similar conditions of taste and appearance, reductions in nicotine content in 

cigarettes, particularly those consumed during early abstinence, would be possible and still 

afford craving relief in nicotine-addicted individuals.  This would allow for progressive 

reductions in nicotine consumed shortly after awakening, one of the hallmarks of nicotine 

dependence. 

 Further exploration of these processes appears warranted, given the high retention of 

addiction among heavy smokers.  The results acquired in this study highlight the importance of 

non-specific elements of cigarette smoking.  Future studies examining the effects of nicotine and 

smoking on brain function should take these processes into account by using sham comparison 

controls and employing full randomization of DN and N smoking. 
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FIGURE LEGENDS 

Figure 3.1: Experimental design.  Participants were scanned on two separate days, receiving one 
RCL and one CFN scan each day.  Scanning was counterbalanced between participants who 
either went through Protocol A their first day and Protocol B their second day or vice versa.  
Participants began smoking the DN cigarette on minute 43 of the first scan and the N cigarette on 
minute 43 of the second scan. 
 
Figure 3.2: Relationship between MOR BP and smoking status.  a) Regions where MOR BPND 
is greater in controls than in overnight abstinent smokers. b) Cluster size, cluster-level FWE-
corrected p-value, Z-value, and coordinates of regions. c) Plot showing Pearson correlations 
between MOR BPND and craving or Fagerström score in overnight abstinent smokers. * Regions 
where FWE corrected cluster significance is <0.05. 
 
Figure 3.3: Interaction between smoking status and A118G genotype.  a) Regions where AA 
individuals have higher baseline MOR BPND than *G individuals.  b) Regions where there is an 
interaction between group and genotype. c) Bar graph of the mean baseline MOR BPND ±1 SEM 
for regions shown in 3.3b.  In the left nucleus accumbens (L NAC) and right nucleus 
accumbens/amygdala (R NAC/AMY), the presence of the 118G allele was associated with 
decreased BPND in smokers, but not in controls. d) Table showing cluster size, cluster-level 
FWE-corrected p-value, Z-value, and coordinates of regions showing an interaction between 
group and genotype.  * Regions where FWE corrected cluster significance is <0.05. 
 
Figure 3.4: Change in craving and plasma nicotine levels in response to DN and N smoking. a) 
Mean visual analog scale ratings for craving (from 1-10, with 10 being highest craving). Ratings 
were taken before each DN scan (Pre-scan), at 30 min into the DN and N scans (before receiving 
the cigarettes: Pre-DN, Pre-N), and at 60 minutes into the DN and N scans, (after receiving the 
cigarettes: DN, N).  b) Mean plasma nicotine levels (ng/mL) after smoking either the DN or the 
N cigarettes.  Error bars show ±1 SEM.  *p<0.01. **p≤0.001. 
 
Figure 3.5: Effects of DN smoking.  a) Brain regions showing greater MOR BPND before the DN 
cigarette than after the DN cigarette. b) Cluster size, cluster-level FWE-corrected p-value, Z-
value, and coordinates of the regions of interest shown in Figure 3.5a, as well as regions where 
the change in BP from the early to the late portion of the scan differs between the DN and N 
scans ((early-late) D > (early-late) N) (Figure 3.6). * Regions where FWE corrected cluster 
significance is <0.05. 
 
Figure 3.6: Effects of N smoking compared to DN smoking.  a) Regions where the increase in 
MOR BPND from the early (min 10-40) to the late (min 45-90) portion of the scan is greater in N 
scans than in DN scans. b) MOR BPND in the left amygdala and thalamus during the early and 
late portions of both the DN and the N scans.  c) Change in MOR BPND from the early to the late 
portion of the DN and N scans, and for the baseline scans of the healthy controls (HC).  Error 
bars show ±1 SEM. 
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FIGURES 
 
Figure 3.1: Experimental design 
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Figure 3.2: Relationship between MOR BP and smoking status   
 
a) 

 
 
b) 

Regions Cluster size 
(mm3) 

P-value 
(cluster level, 

FWE corrected) 
Z-value x y z (mm) 

Controls > Smokers     

L BG 2216 0.055 4.14 -20    6   0 

R BG 3976 *0.007 4.62 24    6   0 

THA 3496 *0.012 5.5 2 -12 10 
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c) 
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Figure 3.3: Interaction between smoking status and A118G genotype 
 
a)     b) 

 
 
 
c) 
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d) 

Regions Cluster size 
(mm3) 

P-value 
(cluster level, 

FWE corrected) 
Z-value x y z (mm) 

Group by Genotype 
Interaction     

L NAC 2152 0.059 4.54 -14    6  -8 

R NAC merging into R AMY 7064 * <0.001 5.01 12  10  -8 
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Figure 3.4: Change in craving and plasma nicotine levels in response to DN and N smoking 
 
a) 

 

b) 
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Figure 3.5: Effects of DN smoking  
 
a) 

 
b) 

Regions Cluster size 
(mm3) 

P-value 
(cluster level, 

FWE corrected) 
Z-value x y z (mm) 

Before DN > After DN         

R NAC merging into THA 2288 *0.002 4.28 6     4    -6 

(early-late) D > (early-late) N     

L AMY 528 0.054 4.48 -20   -2  -30 

THA 1624 * <0.001 4.95 -2  -20     2 
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Figure 3.6: Effects of N smoking compared to DN smoking 
 
a) 

 
 
b)           c) 
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CHAPTER IV 

Interactions of Acute and Chronic Opioid Administration with Endogenous Opioid System 
Function in Chronic Back Pain Patients3 

 

 
ABSTRACT 

One-third of American adults suffer from chronic pain, and many are treated with opioid 

analgesics.  Opioid drugs have proven useful for controlling acute pain, but chronic use may lead 

to pain chronicity as well as tolerance and dependence, and few studies have examined the 

effects of long-term opioid use on the brain.  Determining the neurobiological consequences of 

long-term use and identifying characteristics that predict individual responsiveness to opioid 

medication would inform clinicians treating chronic pain.  

We hypothesized that individual differences in MOR function would relate to a patient’s 

response to the opioid drug fentanyl, and that long-term opioid use would be associated with 

decreased µ-opioid receptor (MOR) function.  We used positron emission tomography with the 

radiotracer 11C-carfentanil to compare the µ-opioid systems of chronic non-neuropathic back 

pain patients taking opioids long-term (CNBP+O) with those not taking opioids (CNBP-O).  We 

also related CNBP-O patients’ subjective responses to fentanyl with measures of their 

endogenous opioid system function. 

Our results demonstrated that individuals that showed decreased pain-induced activation 

of MOR neurotransmission in the thalamus, left nucleus accumbens (NAC), and left amygdala 
                                                
3 This work reflects collaboration with Dr. Martikainen, Chelsea Cummiford, Dr. Love, Dr. Green, and Dr. Zubieta 
at the University of Michigan, Dr. Stohler, at Columbia University, and Dr. Greenwald at Wayne State University 
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(AMY) reported stronger “good drug effects” when given fentanyl.  Compared to CNBP+O 

subjects, CNBP-O subjects had higher baseline MOR binding in the left nucleus accumbens 

(NAC).  During a sustained pain challenge, CNBP-O subjects showed greater MOR activation in 

the left NAC and right amygdala.  Further information on the relationships between opioid use 

and µ-opioid system function is valuable for determining the benefits and risks of opioid 

analgesics. 

 

INTRODUCTION 

Chronic pain is one of the most prevalent medical issues affecting us today, with recent 

estimates suggesting that approximately 37% of adults suffer from some form of persistent pain 

state (Tsang et al, 2008).  Despite the large number of people affected, available treatments 

remain largely unsatisfactory.  Opioid analgesics are one of the most common treatments and are 

a well-proven therapy during short-term use.  However, despite their increasing use (Boudreau et 

al, 2009), they are of questionable or unproven efficacy during chronic administration (Martell et 

al, 2007) and can be associated with tolerance over time, leading to higher dosing and the 

potential development of opioid misuse and abuse (Compton and Volkow, 2006).  In addition, 

opioid analgesics have in some preclinical and clinical studies been associated with the 

development of hyperalgesia (Chang et al, 2007; Tompkins and Campbell, 2011).   

Opioid medications currently in use are agonists of the µ-opioid receptor (MOR), which 

mediates both their analgesic and tolerance effects.  This receptor system forms part of the 

endogenous opioid mechanisms implicated in the internal regulation of stressors, including the 

experience of pain in both its sensory and affective-emotional domains (Akil et al, 1972; Zubieta 

et al, 2001).  The acute administration of opioid drugs effectively activates these receptors, 
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however the effects of their chronic administration have not been well studied in humans (Fields, 

2011; Sullivan and Howe, 2013).  Chronic opioid treatment induces the downregulation of 

MORs and their transduction mechanisms in animal models, an effect that has been associated 

with tolerance and reduced analgesic efficacy (Williams et al, 2013).  There is also some 

suggestion that chronic opioid administration impairs the production of endogenous opioid 

peptides in rodents (Gudehithlu et al, 1991; Van Bockstaele et al, 2000), which in turn may 

impair endogenous pain and emotion regulatory mechanisms.  

In addition to their role in pain regulation, MORs are critically implicated in the 

reinforcement and addiction potential of opioid medications (reviewed in Trigo et al, 2010).  The 

euphoric effect elicited by opioids, high addiction potential, and their wide availability has 

contributed to prescription opioids being the second most commonly abused drugs in the US 

(Wilson, 2007).  Potential misuse and abuse of opioids is of particular concern and difficult to 

address in chronic pain patients, in whom both positive (analgesia) and negative effects 

(tolerance and dependence) may manifest (see Fields, 2011; Garland et al, 2013; Sullivan et al, 

2013).  The dysregulation of this neurotransmitter system may also have implications for 

domains beyond pain, as it has been centrally implicated in social behavior (Hsu et al, 2013; 

Panksepp et al, 1980), as well as in the pathophysiology of mood and anxiety disorders (Hsu et 

al, 2015; Kennedy et al, 2006; Liberzon et al, 2007; Pecina et al, 2015a), which are themselves 

highly comorbid with persistent pain syndromes. 

There are also alterations in opioid receptor availability and endogenous opioid system 

function in persistent pain syndromes, with decreased baseline opioid receptor availability 

reported in neuropathic pain syndromes (Jones et al, 2004; Maarrawi et al, 2007; Willoch et al, 

2004) and fibromyalgia (Harris et al, 2007), but also both regional upregulations of MOR 
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availability and reductions in endogenous opioid system function in non-neuropathic back pain 

(CNBP) (Martikainen et al, 2013).  These variations in MOR availability would be expected to 

induce variability in the acute effects of opioid drugs.  However, this has not been studied 

directly in humans.  

This study examines the subjective, acute effects of cumulative doses of fentanyl, a short-

acting MOR agonist, as a function of receptor availability (non-displaceable binding potential, 

BPND (Innis et al, 2007)) in a sample of patients diagnosed with CNBP.  This syndrome has been 

previously associated with increases in MOR availability in the thalamus and amygdala, but with 

substantial interindividual variability (Martikainen et al, 2013).  In addition, we examined the 

effects of chronic opioid administration on MOR BPND and the responses of the endogenous 

opioid system to an experimental sustained pain challenge in CNBP patients treated chronically 

with those medications. 

We hypothesized that the subjective effects of fentanyl would be positively associated 

with receptor availability in CNBP patients.  In addition, it was believed that the chronic 

administration of opioid drugs would induce reductions in MOR BPND, potentially through a 

combination of occupancy and downregulation.  Chronic opioid use was also hypothesized to 

lead to a dysregulation of endogenous opioid system function, resulting in reduced opioid release 

during an experimental pain challenge.  

 

PATIENTS AND METHODS 

Participants 

Participants were 50 right-handed individuals between 20 and 50 years old (mean (±SD) 

age=38.5±9.4 years) diagnosed with CNBP and recruited through a specialized pain clinic at a 
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university hospital.  Eligible patients reported back pain for at least one year with a pain rating 

between 3 and 8 on a visual analog scale (VAS) of 1 to 10.   Average baseline back/neck pain 

intensity was 57.3±23.3 on a VAS of 0 to 100.   Participants were excluded if they had a current 

or past history of neurological or psychiatric disorders other than depression or anxiety.  Other 

exclusionary criteria included the current use of recreational drugs, exercising more than an hour 

a day, and drinking more than 10 units of alcohol per week.  Participants were grouped into those 

who had not taken regular opioid medication for at least the past year (CNBP-O) and those who 

were currently taking opioid analgesics and had been taking them for a minimum of one year 

(CNBP+O) at stable doses.  In this group current daily doses, in morphine equivalents, were 

36.1±28.4 mg/day (range 6.8-100 mg/day).  CNBP+O volunteers were instructed to take their 

morning dose of medications as usual.  All studies were conducted in the afternoon, with the first 

scanning period starting at 1:30 PM. 

Written informed consent was obtained from all patients, and the study was approved by 

the Institutional Review Board and the Radioactive Drug Research Committee.  The protocol 

was in accordance with the Declaration of Helsinki. 

Study design 

Subjects completed two 90-minute positron emission tomography (PET) scans using the 

MOR selective radiotracer 11C-carfentanil.  The two scans, a baseline and a scan that included an 

experimental pain challenge, were conducted in a randomized and counterbalanced order (Figure 

4.1).  Scanning protocols were identical to those reported previously (Martikainen et al, 2013).  

A subset of CNBP-O patients also underwent fentanyl administrations on a separate day. 
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Pain challenge 

During the pain challenge scan, subjects received two 20-minute IM saline injections in 

the masseter muscle via a computer-controlled closed-loop system (Stohler and Kowalski, 1999; 

Zhang et al, 1993): a nonpainful 0.9% isotonic saline injection, and a painful 5% hypertonic 

saline injection.  Subjects were blind to the order of administration or the lateralization of the 

challenge.  However, to simplify data analyses they always received the isotonic saline in the 

right masseter during the early portion of the pain scan (minutes 5-25) (a control, pain 

expectation condition).  Hypertonic saline was injected into the left masseter muscle during 

minutes 45-65 of the scan.  This method of sustained painful stimulation during PET allows the 

determination of acute changes in MOR BPND associated with the activation of endogenous 

opioid release, measures which are related to individual assessments of the pain experience 

(Scott et al, 2006; Zubieta et al, 2001).  VAS ratings of pain (0 no pain, 100 most pain 

imaginable) were acquired via an electronic VAS placed in front of the scanner gantry and the 

infusion rate adjusted to maintain a sustained pain at moderate intensity (43.7±18.1).  This 

feedback mechanism ensured that the pain intensity was standardized across individual subjects 

and subject groups (Stohler et al, 1999). 

Subjective assessments 

Measures of clinical pain included the McGill Pain Questionnaire (MPQ; Melzack and 

Torgerson, 1971), the Pain Catastrophizing Scale (PCS; Sullivan et al, 1995), the Beliefs in Pain 

Control Questionnaire (Internal Locus of Control, I-LOC BPCQ; Skevington, 1990), the Center 

for Epidemiological Studies Depression scale (CESD; McCallum et al, 1995), the Positive and 

Negative Affect Schedule (PANAS; Watson and Clark, 1999), and 0-100 VAS ratings of 

back/neck pain intensity and unpleasantness, acquired prior to scanning.  Ratings of experimental 
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pain included MPQ and 0-100 VAS ratings of intensity and unpleasantness acquired after 

completion of the masseter pain challenge, and PANAS ratings, collected before and after (min 

35, min 75) the experimental pain challenge.  

Scanning protocol and data acquisition 

PET scans were acquired with a Siemens HR+ scanner (Knoxville, TN) in 3D mode with 

septa retracted and scatter correction (reconstructed full width at half-maximum (FWHM) 

resolution 5.5 mm in-plane and 5.0 mm axially). 11C-carfentanil was synthesized at high specific 

activity (>2000 Ci/mmol) by the reaction of 11C-methyl triflate with desmethyl carfentanil as 

previously described (Dannals et al, 1985; Jewett, 2001).  Half of the 11C-carfentanil dose was 

administered as a bolus, and half as a continuous infusion, to more rapidly achieve steady state 

levels.  

Participants lay supine in the scanner, with a light forehead restraint to reduce head 

movement.  Intravenous (antecubital) lines were placed in both arms, one to administer the 11C-

carfentanil, and one for blood sampling.  Prior to scanning, 23-gauge needles were placed 

bilaterally in the masseter muscles of each participant and connected to either the isotonic or 

hypertonic saline. 

A high-resolution anatomical T1-weighted magnetic resonance (MR) image was also 

obtained for each participant for the purposes of spatial normalization.  Images were collected on 

a Sigma LX 3T scanner (Sigma LX; General Electric, Milwaukee, WI), with 3D inversion 

recovery-prepared fast spoiled gradient recalled (SPGR) acquisition (echo time=1.9 ms; 

repetition time=9.2 ms; inversion time=500 ms; flip angle=15º; bandwidth=16 kHz; number of 

excitations=1; 256x256 matrix; field of view=25/26 cm; number of contiguous images=154; 

isotropic voxel size=1 mm).  
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Fentanyl procedure 

This procedure was designed to assess the subjective effects of fentanyl in CNBP-O 

patients, and test whether these were associated with PET MOR functional measures.  Subjects 

received a total of four 10 mL IV infusions 20 minutes apart, with each infusion lasting two 

minutes.  A placebo infusion of 0.9% NaCl was always given first, followed by three cumulative 

infusions of fentanyl in 0.9% NaCl.  For each fentanyl infusion, participants were given a dose of 

0.1 mg/70 kg (1.43 mcg/kg).  Participants were told that any of the 4 infusions could be either a 

placebo or fentanyl.  Participants were asked to rate on a scale of 0 (“not at all”) to 4 

(“extremely”) how much they felt symptoms such as “coasting”, “backache”, and “relaxed”, and 

completed a series of visual analog scales asking them to rate their moods/feelings (“any drug 

effect”, “good drug effect”, “bad drug effect”, “high”, “like the drug effect”, “stimulated”, and 

“sedated”) on a 0-100 VAS.  Scales were completed before the infusions began and 5 minutes 

after each infusion.  After each infusion participants also chose whether they would prefer the 

drug they just received versus payments ranging from $0.25-$15. 

Data analysis 

Image preprocessing 

PET images were reconstructed using iterative algorithms (brain mode; Fourier rebinning 

with ordered subsets-expectation maximization, four iterations, 16 subsets; no smoothing) into a 

128x128 pixel matrix in a 28.8 cm diameter field of view.  A 6-minute transmission scan (68Ge 

source) run before the PET study was used for attenuation correction.  Automated computer 

algorithms were used to correct for minor head motions during the scans, and images were then 

coregistered (Minoshima et al, 1993).  Time points were decay-corrected during PET data 

reconstruction.   Image data were transformed on a voxel-by-voxel basis into two sets of 
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parametric maps: (1) a tracer transport measure (K1 ratio) and (2) a receptor-related measure 

during pain expectation and pain (non-displaceable binding potential, BPND).  

A modified Logan graphical analysis (Logan et al, 1996) using the occipital cortex as a 

reference region was used to calculate tracer transport and BPND.  A 6 mm FWHM Gaussian 

filter was applied to each scan, and scans were divided into early (minutes 5-40) and late 

(minutes 45-90) sessions and coregistered to the participant’s anatomical image using Matlab 

(MathWorks, Natick, Massachusetts) and SPM8 (Wellcome Trust Center for Neuroimaging, 

London, United Kingdom) software.  Images were then warped using VBM8 Toolbox (Christian 

Gaser, University of Jena, Germany) within SPM8 to match Montreal Neurological Institute 

(MNI) stereotactic atlas orientation with individual quality checks. 

 

Comparison of PET data: CNBP-O vs CNBP+O 

Fifty individuals participated in the PET portion of this study.  This included 29 CNBP-O 

patients (14 males) and 21 CNBP+O patients (6 males).  One CNBP-O subjects and three 

CNBP+O subjects had technical problems during the pain scans, and were not included in those 

analyses.  Voxel by voxel analyses were performed using SPM8, with independent-sample t-tests 

used to compare MOR function between CNBP-O and CNBP+O participants.  Fagerström 

scores, a measure of nicotine dependence (Heatherton et al, 1991), were used as a covariate to 

control for smoking status.  Age and scan order were also included as covariates.  Baseline BPND 

was determined using data from min 45-90 of each participant’s baseline scan, while reductions 

in MOR BPND during the sustained pain challenge compared to the baseline scan were used as a 

measure of MOR activation.  Voxel by voxel regression analyses were also conducted in a 
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combined group of CNBP subjects to determine associations between selected psychophysical 

measures and MOR measures. 

For these and subsequent PET analyses, statistical significance was determined using 

Monte Carlo simulations with p=0.0001 and an alpha of 0.05.  Individual MOR BPND values 

were extracted for each region of interest using MarsBaR and further analyses were conducted 

with SPSS. 

 

Fentanyl procedure 

Seventeen CNBP-O subjects completed the fentanyl procedure (6 males, 11 females; 

age=34.4±10.1 years).  The acute effect of fentanyl was shown by comparing drug effects felt 

after the placebo vs the first dose of fentanyl via paired t-tests.  The Benjamini-Hochberg 

procedure was used to control for a false discovery rate of 0.05.  To examine whether 

endogenous opioid function could be related to fentanyl response, we tested whether the change 

in the 7 VAS scales after receiving fentanyl vs placebo, as well as the change in “backache”, 

were correlated with subjects’ MOR function at baseline and during pain.  One of the subjects 

that received fentanyl did not complete the PET scans and was not included in these analyses. 

 

RESULTS 

Acute opioid effects in CNBP-O patients: Fentanyl procedure 

Significant increases in “high”, “coasting”, “drunken”, “rush”, “soapbox (talkative)”, and 

“friendly” ratings were observed after fentanyl compared to placebo, while a reduction in 

“backache” ratings was observed (Figure 4.2a).  The subjective monetary value of the drug 

(amount of money in $) also increased significantly after fentanyl administration, as did 
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participant VAS ratings of “any drug effect”, “good drug effect”, “like the drug effect”, “high”, 

“stimulated”, and “sedated” (Figure 4.2b).  

No statistically significant correlations were found between baseline MOR BPND and 

VAS ratings of drug effects or backache.  However, significant negative associations were 

observed between the change in MOR BPND during the sustained pain challenge, a measure of 

endogenous opioid system activation, and participants’ ratings of “good drug effect”.  These 

associations were localized in the left nucleus accumbens (NAC), thalamus, and left amygdala 

(AMY) (Figure 4.2c,d; Table 4.1).  Similar regions showed correlations with VAS “liked the 

drug effect”, but only the thalamus reached statistical significance (Table 4.1).  VAS ratings of 

“good drug effect” and “liked the drug effect” were highly correlated (r(14)=0.91, p<0.001), but 

these were not associated with ratings of back pain intensity.  Of the significant regions above, 

the change in BPND in the left amygdala was the only one also associated with baseline ratings of 

back pain intensity (r(14)=-0.65, p=0.007).  

Chronic effects of opioid administration: CNBP-O vs CNBP+O 

There were no significant group differences in baseline back pain ratings (VAS pain 

intensity, VAS unpleasantness, MPQ (total, sensory and pain affect subscales), PCS total, I-LOC 

BPCQ, CESD, or PANAS scores.  CNBP+O patients were older on average than CNBP-O 

patients (42.7±7.6 years vs. 35.4±9.5 years; t(48)=-2.87, p=0.006), and age was included as a 

covariate in subsequent analyses. 

 

Baseline MOR BPND 

CNBP+O subjects showed localized reductions in baseline MOR BPND in the left nucleus 

accumbens/ventral pallidum (NAC/VP), compared to CNBP-O subjects (Figure 4.3a; Table 4.2).  
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There were no regions where CNBP+O patients showed higher MOR BPND values than CNBP-O 

patients.   

Across groups, MOR BPND in a region that incorporated the left NAC/VP and 

hypothalamus (HTH) was positively associated to subjective reports of masseter muscle pain 

intensity and unpleasantness during the experimental challenge (Figure 4.3b,d; Table 4.2).  

Positive associations were also observed between baseline BPND and the I-LOC of the BPCQ in 

the dorsal cingulate and the medial thalamus bilaterally (Figure 4.3c,e) and between baseline 

PANAS positive affect scores and MOR BPND in the right basal ganglia (Table 4.2).  There were 

no associations between current opioid dose in morphine equivalents and baseline MOR BPND.  

 

Activation of endogenous opioid neurotransmission during experimental pain 

During the experimental pain challenge, CNPB+O subjects reported higher back pain 

unpleasantness scores than CNBP-O subjects (t(44)=-2.48, p=0.013).  Other pain measures 

examined did not show statistically significant differences, although back pain intensity (t(44)=-

1.96, p=0.056) and MPQ masseter pain sensory scores (t(44)=-1.94, p=0.059) approached 

significance, with CNPB+O subjects showing higher pain ratings.  There were no group 

differences in changes in PANAS positive or negative affect during experimental pain. 

CNBP-O subjects showed greater experimental pain-induced activation of endogenous 

opioid neurotransmission (reductions in BPND from baseline to pain challenge scans) in the left 

NAC and the right AMY (Figure 4.4a,b; Table 4.3).  There were no regions where CNBP+O 

patients showed greater MOR activation than the CNBP-O sample during the experimental pain.  

Across subjects, baseline ratings of back pain intensity and unpleasantness were negatively 

associated with experimental pain-induced MOR system activation in the left amygdala (Figure 
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4.4c,d).  Experimental pain-induced MOR system activation was also negatively correlated with 

back pain MPQ pain affect subscores in the left NAC (Table 4.3). 

 

DISCUSSION 

This paper examines interindividual variations in the effects of opioids administered 

acutely or chronically in patients diagnosed with CNBP.  We related the responses of patients to 

two functional measures of the MOR system: MOR BPND at baseline, and endogenous opioid 

release when given a standardized sustained pain experimental challenge.  When CNBP-O 

volunteers were administered fentanyl during the acute studies, their behavioral and back pain 

ratings were not associated with global or regional MOR concentrations.  However, greater 

hedonic “good drug” and “liked the drug” effects were negatively associated with the capacity to 

activate the endogenous opioid system in response to an experimental sustained pain challenge in 

the thalamus, NAC, and AMY.  Individuals who released the most endogenous opioids when 

undergoing a pain stressor reported fewer positive effects of the opioid fentanyl, while those 

showing a decreased ability to release endogenous opioids reported greater positive effects.  

In previous work, reductions in experimental pain-induced activation of endogenous 

opioid neurotransmission were detected in the AMY of CNBP-O patients in comparison to 

healthy controls, though with substantial interindividual variation (Martikainen et al, 2015; 

Martikainen et al, 2013).  The capacity to release endogenous opioid during experimental pain in 

the AMY in CNBP-O patients was related to better clinical pain ratings and the maintenance of 

positive affect in these patients.  

Consistent with those results, here we also show that the baseline ratings of back pain 

intensity acquired prior to the PET scans were associated with the capacity to activate 
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endogenous opioid neurotransmission during the experimental challenge.  These data then 

confirm that decreased endogenous opioid system integrity in CNBP patients not treated with 

opioids is related to both higher clinical pain ratings, as previously shown, as well as to increased 

hedonic responses to exogenous opiate administration.  Notably, these associations were 

observed in a circuit where endogenous opioids are involved not only in pain regulation (THA, 

NAC, AMY) (Zubieta et al, 2001, 2002), but also in hedonic responses to MOR agonists and the 

incentive value of rewards (Mahler and Berridge, 2012; Pecina and Berridge, 2005; Smith and 

Berridge, 2007; Trigo et al, 2010).  These results therefore suggest that in addition to more 

effectively regulating chronic pain, the integrity of the endogenous opioid system (but not 

necessarily MOR concentrations in these regions) would be protective against an exaggerated 

reinforcement by exogenous opiates in CNBP patients. 

Chronic treatment with opioids in CNBP+O volunteers, compared to data from CNBP-O 

participants, was associated with reductions in baseline BPND in the NAC, a critical part of the 

mesolimbic reward system (Trigo et al, 2010), but also implicated in the internal regulation of 

pain (Scott et al, 2008; Zubieta et al, 2001).  Perhaps surprisingly, these effects were not 

generalized, but were exclusively localized in this region.  Chronic opioid administration is 

known to induce tolerance to its effects over time.  This may occur through downregulatory 

effects of this neurotransmitter system (e.g., desensitization of transduction mechanisms), but not 

necessarily through reductions in receptor concentrations, which are internalized and recycled by 

some (e.g., etorphine, methadone) but not other (e.g., morphine) opioids (Christie, 2008; 

Gabilondo et al, 1994; Keith et al, 1998; Whistler et al, 1999).  

Higher MOR BPND values in the NAC of CNBP patients were positively associated with 

experimental pain intensity and unpleasantness ratings, but not with clinical pain scores.  This 
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may suggest that lower endogenous opioid system function, reflected by a lesser capacity to 

engage this neurotransmitter system during the experimental pain challenge, was associated with 

some degree of compensatory receptor upregulation in this region.  In other brain areas 

(thalamus, dorsal anterior cingulate) receptor BPND was, in contrast, associated with ratings of a 

measure of “internal locus of control” (I-LOC), reflecting the subjectively assessed capacity of 

the individual to modify their pain by their own actions.  Higher I-LOC scores have previously 

been associated with lesser disability and better treatment outcomes (Cheng and Leung, 2000; 

Harkapaa, 1991; Harkapaa et al, 1991; Williams and Gracely, 2006).  Higher MOR BPND in the 

ventral basal ganglia was also associated with the maintenance of positive affect. 

Chronic opioid treatment in the CNBP+O sample was additionally associated with a 

lesser capacity to activate endogenous opioid neurotransmission during the sustained pain 

challenge, compared to the CNBP-O volunteers, in both the NAC and AMY.  The capacity to 

activate endogenous opioid neurotransmission during experimental pain was associated with 

clinical pain intensity and unpleasantness ratings in the AMY and with back pain MPQ pain 

affect ratings in the NAC, replicating and extending previous studies (Martikainen et al, 2015; 

Martikainen et al, 2013).  These results appear consistent with those obtained in animal models, 

whereby the chronic administration of opioids has been shown to reduce the production of 

endogenous opioid peptides, potentially through the suppression of endogenous opioid gene 

expression (Borsook et al, 1994; Gonzalez-Nunez et al, 2013). 

  In this manuscript we report that the capacity to experimentally activate endogenous 

opioid neurotransmission, a measure of the integrity of this neurotransmitter system, is 

associated with both decreased hedonic responses to a MOR agonist in patients not treated with 

opioids, and well as with less severe back pain ratings in the combined group of CNBP patients.  
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Further, we report that the chronic administration of opioids in CNBP patients is linked to both 

reductions in receptor availability and in the capacity to activate endogenous opioid 

neurotransmission in response to changes in pain signal.  These effects were related to the 

clinical presentation of the volunteers and took place in regions including the NAC and AMY, 

which are critically involved in motivated behavior as well as in pain control mechanisms (Baliki 

et al, 2010; Baliki et al, 2013; Martikainen et al, 2015; Martikainen et al, 2013). 

As prescription opioid abuse becomes an increasingly severe public health problem, a 

better understanding of the mechanisms that are implicated in opioid reinforcing behavior in 

humans is critical.  We show that the function of the endogenous opioid system is of importance 

in these processes, as well as in pain control, and that chronic opioid usage interferes with these 

systems.  The information presented here supports the examination of novel therapeutic agents 

that, instead of directly acting on MORs, would enhance endogenous opioid peptide function, 

activating these receptor sites in a more physiological manner.  In addition, these data suggest 

that genetic variations which impact the function of this neurotransmitter (e.g. Pecina et al, 

2015b; Zubieta et al, 2003) may also contribute to pain chronicity and the potential for opioid 

abuse among patients afflicted with persistent pain that are treated chronically with opioid 

medications.  
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TABLES 

Table 4.1: Regions showing a significant negative correlation between experimental pain-
induced MOR activation and the subjective effects of a dose of fentanyl.     
 

Region 
Cluster size 

(mm3) 
T Z x y z (mm) 

Good drug effect: Negative correlation with MOR activation 

L NAC 544 6.13 4.21 -14 14 -2 

L AMY 320 6.87 4.47 -22 -8 -18 

THAL 632 7.1 4.55 2 -14 0 

Liked the drug effect: Negative correlation with MOR activation 

THAL 248 5.94 4.13 2 -14 2 
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Table 4.2: Regions showing significant differences in baseline MOR BPND between CNBP-O 
and CNBP+O patients, as well as regions where correlations were found between psychophysical 
measures and MOR BPND at baseline. 
 

Region 
Cluster size 

(mm3) 

 
T Z x y z (mm) 

Baseline: CNBP-O>CNBP+O 

L NAC/VP 360 4.94 4.4 -14 2 -4 

Baseline: Positive correlation with I-LOC (BPCQ) 

dACC 368 5.27 4.64 -10 -4 46 

L THAL 664 6.18 5.25 -6 -14 0 

R THAL 416 5.96 5.1 8 -14 2 

Baseline: Positive correlation with masseter muscle pain intensity 

NAC/VP/HTH 1248 6.33 5.31 -2 6 -6 

Baseline: Positive correlation with masseter muscle pain unpleasantness 

NAC/VP/HTH 2744 7.17 5.81 -2 6 -8 

Baseline: Positive correlation with baseline positive affect (PANAS) 

R BG 368 4.65 4.17 18 20 0 
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Table 4.3: Regions showing significant differences in experimental pain-induced MOR 
activation between CNBP-O and CNBP+O patients, as well as regions where correlations were 
found between psychophysical measures and MOR activation during pain. 
 
 

Region 
Cluster size 

(mm3) 

 
T Z x y z (mm) 

Pain: CNBP-O>CNBP+O 

L NAC 272 5.35 4.63 -16 0 -8 

R AMY 264 5.56 4.77 24 -2 -16 

Pain: Negative correlation with baseline back pain intensity 

L AMY 448 6.51 5.42 -22 -4 -24 

Pain: Negative correlation with baseline back pain unpleasantness 

L AMY 376 5.7 4.91 -22 -2 -24 

Pain: Negative correlation with baseline affective back pain (MPQ) 

L NAC 512 6.03 5.1 -8 6 -8 

Pain: Positive correlation with masseter muscle pain intensity 

R AMY 440 6.79 5.59 18 -2 -20 
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FIGURE LEGENDS 

Figure 4.1: Experimental design.  Each participant received both a baseline scan and a pain scan.  
The scan order was counterbalanced.  Participants were injected with isotonic saline as a non-
painful control during the first half of the pain scan; during the second half participants were 
injected with hypertonic saline to produce moderate pain.   
 
Figure 4.2: Subjective responses to administration of the opioid agonist fentanyl, and 
correlations with MOR activation.  Significant differences were seen when comparing subject 
ratings of a) symptoms (High: t(15)=-6.98, p<0.001; Coasting: t(15)=-5.17, p<0.001; Drunken: 
t(15)=-4.04, p=0.001; Rush: t(15)=-3.60, p=0.003; Soapbox (talkative): t(15)=-3.03, p=0.008; 
Friendly: t(15)=-2.71, p=0.016; Backache: t(15)=2.71, p=0.016) and b) VAS and dollar value ($) 
questionnaire responses  (Any drug effect: t(15)=-8.34, p<0.001; Good drug effect: t(15)=-8.74, 
p<0.001; Like the drug effect: t(15)=-7.81, p<0.001; High: t(15)=-7.14, p<0.001; Stimulated: 
t(15)=-4.00, p=0.001; Sedated: t(15)=-3.83, p=0.002); Value ($): t(15)=-6.02, p<0.001) after 
subjects received their first dose of fentanyl compared to after the placebo dose. c) Regions 
where the change in MOR BPND (MOR activation) is negatively correlated with subjective 
ratings of fentanyl’s “good drug effect” in the left nucleus accumbens, left amygdala, and 
thalamus. d) Representative scatter plot showing the negative correlation found in the left 
nucleus accumbens between the “good drug effect” of fentanyl and the change in MOR BPND 
from the baseline to the hypertonic saline scan (r(14)=-0.74, p=0.001).   
  
Figure 4.3: Group differences and correlations relating to baseline MOR BPND in CNBP 
patients.  a) Significant reductions in baseline MOR BPND in the left nucleus accumbens/ventral 
pallidum are seen in CNBP+O subjects, when compared to CNBP-O subjects. b) Positive 
correlations were seen between masseter muscle pain unpleasantness ratings and baseline MOR 
BPND in the nucleus accumbens/ventral pallidum/hypothalamus.  c) Positive correlations were 
seen between the strength of an individual’s internal locus of pain control (I-LOC) and baseline 
MOR BPND in the right and left thalamus and dorsal anterior cingulate cortex. d) Example scatter 
plot of each individual’s baseline MOR BPND in the nucleus accumbens/ventral 
pallidum/hypothalamus, versus their masseter muscle pain unpleasantness rating (r(46)=0.530, 
p=0.0001). e) Example scatter plot of each individual’s baseline MOR BPND in the dorsal 
anterior cingulate cortex, versus their I-LOC rating (r(46)=0.60, p<0.0001). 
 
Figure 4.4: Group differences and correlations relating to MOR activation in CNBP patients. a) 
MOR activation during pain anticipation is greater in CNBP-O subjects than in CNBP+O 
subjects in the left nucleus accumbens and right amygdala. b) Example graph showing group 
differences in the change in MOR BPND during the pain challenge in the right amygdala. c) 
Negative correlations were seen between VAS ratings of back pain intensity and MOR activation 
in the left amygdala. d) Scatter plot showing baseline back pain intensity versus MOR activation 
in the left amygdala (r(44)=-0.45, p=0.002).   
  



 96 

FIGURES 

 

Figure 4.1: Experimental design 
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Figure 4.2: Subjective responses to administration of the opioid agonist fentanyl, and 
correlations with MOR activation 
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Figure 4.3: Group differences and correlations relating to baseline MOR BPND in CNBP patients  
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Figure 4.4: Group differences and correlations relating to MOR activation in CNBP patients 
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CHAPTER V 

Conclusion 

DISCUSSION 

The studies discussed above provide evidence that µ-opioid neurotransmission is 

involved in both acute and long-term effects of potential drugs of abuse such as nicotine and 

opioids.  These data show group differences in EOS function between smokers and nonsmokers, 

as well as between opioid users and nonusers.  However, our data also indicates that there is high 

interindividual variability throughout the groups.  Decreased baseline MOR availability after 

overnight abstinence was associated with greater nicotine dependence in our smokers.  Whether 

these differences in endogenous opioid neurotransmission existed before subjects began 

smoking, and potentially played a role in smoking initiation and continuation, or whether 

differences in nicotine dependence levels (or the associated craving) was what led to these 

variations needs to be further examined. 

In our chronic pain patients, increased baseline MOR availability was correlated with 

higher positive affect and greater beliefs that subjects were in control of their own pain, aspects 

that have been associated with better coping strategies and more positive outcomes.  Differences 

in how a patient’s µ-opioid system responds to a sustained pain challenge could also be used to 

predict that individual’s subjective response to an opioid agonist, a valuable ability for deciding 

whether opioid analgesics would be beneficial in treating a patient’s pain.   
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This high variability in EOS function can be partially attributed to genetic factors that 

influence opioid neurotransmission, as indicated by the interaction between A118G genotype and 

smoking status that was associated with baseline MOR availability.  A more complete 

understanding of the interindividual differences that affect opioid system functioning would 

significantly help in developing more personalized therapies for treating a number of disorders.  

Individuals naturally differ in their basal opioidergic tone, which has been shown to impact both 

stress responses as well as the ability to modulate pain (Buchsbaum et al, 1983; Chong et al, 

2006; Koppert et al, 2005).  Differences in the EOS have also been linked to personality traits, 

such as impulsivity, which are further known to correlate with vulnerability to addiction (Love et 

al, 2009).  Studies using naloxone blockade to measure endogenous opioid activity have also 

found evidence of decreased activity in the hypothalamus of individuals with a family history of 

alcohol use (Wand et al, 1998).  

As discussed earlier, G allele carriers at the A118G polymorphism appear to have 

decreased baseline MOR availability.  The possible functional implications of these genetic 

alterations with regard to the potential to abuse drugs or the ability to modulate pain are currently 

being investigated (Pecina et al, 2015; Ray and Hutchison, 2004).  Preliminary studies have 

suggested that *G individuals require higher doses of opioid analgesics to control their pain 

(Chou et al, 2006; Sia et al, 2008) and show an increased cortisol response to naloxone blockade 

(Chong et al, 2006).  However, studies have so far not provided a clear answer on whether the A 

or G allele at this polymorphism is a risk factor for drug abuse (Chong et al, 2006).  Other 

genetic polymorphisms that are known to alter endogenous opioid neurotransmission, such as the 

catechol-O-methyltransferase (COMT) polymorphism (Zubieta et al, 2003), would likewise be 
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good targets for future research as possible contributing factors for the high variation observed in 

how individuals respond to drugs of abuse, pain, and opioid analgesics. 

Because of the wide variety of roles the EOS plays, it can be difficult to disentangle 

which changes are directly versus indirectly associated with alterations in EOS function.  The 

EOS shows alterations in both mood disorders such as depression, which are often comorbid 

with chronic pain and drug abuse, as well as during the placebo effect, which can be involved in 

treating both depression and pain.  Our data on smokers suggest that smokers’ expectations of 

receiving nicotine could be just as relevant to the release of endogenous opioids as the nicotine 

itself, if not more so.  The EOS’s role in the placebo effect complicates studies that are 

attempting to examine this system in relation to specific drug effects, and necessitates that future 

study designs take into account the role that expectations play in an individual’s response to a 

drug.  It is essential to understand these interactions, as they may account for some of the 

differences seen between human studies, where expectations can play a major role, and animal 

studies.   

Since both nicotine use and chronic back pain appear to be associated with alterations in 

EOS function, this neurotransmitter system could be at least partially responsible for the link 

seen between tobacco smoking and pain.  Compared to the general population, patients suffering 

from chronic pain are about twice as likely to smoke (Ditre et al, 2011).  Although most studies 

have not investigated the direction of causality between chronic pain and smoking, there has 

recently been evidence that individuals who are smokers are more likely to develop pain later in 

life (Goldberg et al, 2000).  Whether smoking directly leads to an increased chance of 

developing pain, or whether both the likelihood of becoming a smoker and the likelihood of 

developing pain are linked to a third factor, is something researchers need to examine.  If a third 
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factor, such as genetic differences in endogenous opioid tone, is associated with the development 

of both nicotine use and chronic pain, it could provide a potential method for physicians to 

determine who is at the greatest risk for developing these disorders and improve treatment 

options. 

The EOS also provides a common link between opioid analgesics and nicotine use.  Mice 

pretreated with nicotine appear to show decreased morphine-induced analgesia, suggesting that 

cross-tolerance can occur between nicotine and opioids (Zarrindast et al, 1999).  There is also 

evidence that nicotine-dependent individuals are more likely to use prescribed opioids repeatedly 

(Skurtveit et al, 2010).  Our research found that individuals with chronic pain, and particularly 

individuals on long-term opioids for their pain, show significant dysfunctions in MOR activation 

in response to experimental pain.  Smoking might be an alternative way for these individuals to 

boost endogenous opioid activity in their bodies and at least temporarily decrease pain levels.  

The possibility that the opioid activation due to smoking might be mostly due to expectancy of 

receiving nicotine rather than the nicotine itself suggests interesting possibilities for future 

research. 

 

LIMITATIONS AND FUTURE DIRECTIONS 

 The PET studies presented here are cross-sectional studies, which limits our ability to tell 

whether the differences seen in MOR function between smokers and nonsmokers, as well as 

between opioid users and nonusers, were a cause or an effect of the long-term drug use.  In one 

of the few studies that has scanned chronic pain patients before and after initiating opioid use, 

Younger et al. (2011) found significant differences in grey matter morphology after only one 

month of analgesic use, indicating that opioid drugs are able to rapidly cause alterations in the 
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brain.   Future research on the associations between opioid use and EOS function should use a 

similar protocol in order to elucidate whether the observed decreases in baseline MOR 

availability and opioid system activation associated with long-term opioid use are a direct effect 

of the opioid analgesics, or whether perhaps these alterations resulted in individuals being more 

likely to take opioids.  Our fentanyl data gives rise to the intriguing possibility that a preexisting 

difference in EOS function may have been partially responsible for the differences seen between 

our opioid users and nonusers.   Among our subjects that did not use opioids, individuals who 

reported the highest positive acute effects of fentanyl also had endogenous opioid systems that 

acted the most like those of our opioid users, with a decreased ability to release endogenous 

opioids in response to pain.  This relationship bears further investigation. 

Since we have shown that the OPRM1 A118G genotype affected baseline MOR binding 

in our nicotine study, it might be predicted that this polymorphism will also alter how patients 

with chronic pain respond to opioid analgesics, as well as how they respond to an 

experimentally-induced increase in pain levels.  Future analyses should investigate these effects 

in our sample of chronic pain patients, as well as the effects of other polymorphisms known to be 

involved in EOS function, such as COMT.  Examining links between EOS function and subject 

responses to other tasks influenced by reinforcement networks, such as monetary incentive delay 

tasks, could also be productive. 

Although our chronic pain patients included smokers, we did not have a large enough 

sample to compare the interactions between smoking, chronic pain, and opioid use in these 

subjects.  Future work should attempt to increase recruitment of smokers in order to examine 

whether nicotine use, and the alterations in baseline MOR availability that we have found to be 
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associated with both craving and nicotine dependence, alters the associations currently shown 

between EOS function, opioid use, and both clinical and experimental pain. 
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