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Abstract 

 

Rechargeable Magnesium/Oxygen Batteries:  
Reaction Mechanisms and Their Dependence on Electrolyte Composition 

 

 

Chairs: Donald J. Siegel and Charles W. Monroe 

 

Electrochemical energy storage devices that are robust, energy-dense, and cheap will 

accelerate the commercialization of electric vehicles. Magnesium/oxygen (Mg/O2) batteries are a 

promising system with the potential for very high energy densities. Furthermore, a rechargeable 

Mg/O2 battery could be a cheaper and potentially safer alternative to the lithium (Li)-ion batteries 

currently in use. The goal of this thesis is to explore candidate magnesium electrolytes for use in 

Mg/O2 batteries, and to assess the reaction mechanisms and performance of Mg/O2 cells that 

employ these electrolytes.  

We first consider electrolytes based on ionic liquids (ILs), which are attractive 

electrolytes for batteries because they are nonflammable and nonvolatile. The electrochemistry 

of Mg salts in room-temper���ature ionic liquids (ILs) was studied using plating/stripping��� 



 xvii 

voltammetry. Borohydride (BH4
–), trifluoromethane- ���sulfonate (TfO–), and bis(trifluoromethane-

sulfonyl)imide (Tf2N–) ���salts of Mg were investigated. Three ILs were considered: l-n-butyl- ���3-

methylimidazolium (BMIM)-Tf2N, n-methyl-n-propylpiperidinium (PP13)-Tf2N, and n,n-

diethyl-n-methyl(2-methoxyethyl)- ���ammonium (DEME+) tetrafluoroborate (BF4
–). Salts and ILs 

were ���combined to produce binary solutions in which the anions were���structurally similar or 

identical, if possible. Contrary to some prior reports, no salt/IL combination appeared to facilitate 

reversible Mg plating. In solutions containing BMIM+, oxidative activity near 0.8 V vs Mg/Mg2+ 

is likely associated with the BMIM cation, rather than Mg stripping. The absence of 

voltammetric signatures of Mg plating from ILs with Tf2N– and BF4
– suggests that strong 

Mg/anion Coulombic attraction inhibits electrodeposition. Cosolvent additions to 

Mg(Tf2N)2/PP13-Tf2N were explored but did not result in enhanced plating/stripping activity. 

The results highlight the need for IL solvents or cosolvent systems that promote Mg2+ 

dissociation. 

We next describe a room-temperature, non-aqueous, reversible Mg/O2 cell using a 

modified Grignard electrolyte. Although the cell exhibits low capacity, its discharge product is a 

faceted, transparent solid that can be recharged with fair efficiency. Electrochemical, 

microscopic, and spectroscopic analyses reveal characteristics that distinguish Mg/O2 chemistry 

from its alkali-metal/O2 analogues. The open-circuit voltage is 2.0 V, lower than the ~2.9 V 

expected for direct electrochemical formation of MgOx. Discharge generates a mixed phase 

primarily comprising crystalline MgO, with a substantial minority of amorphous MgO2. The low 

voltage and two-phase product are consistent with a multi-step discharge reaction in which a 

superoxide-ion (O2
–) intermediate forms at ~2 V vs. Mg/Mg2+. Chemical precipitation and 

disproportionation subsequently produce MgO2 and MgO, but do not contribute to the cell’s 

electrical energy output. During charging, MgO2 decomposes preferentially. Bypassing the multi-
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step mechanism in favor of direct electrochemical MgOx formation would raise the discharge 

potential and, consequently, the energy density. 

The performance of the preceding modified-Grignard-based cell is then compared with 

one based on an all-inorganic magnesium aluminum chloride complex (MACC) electrolyte. The 

precursor MACC solution is conditioned using choronoamperometry, a method which is shown 

to be capable of quickly conditioning large quantities of electrolyte. Mg/O2 cells based on the 

MACC electrolyte exhibited higher discharge capacities than those based on the modified 

Grignard electrolyte. The discharge product of the former system was found to be an 

inhomogeneous mixture of MgCl2 and Mg(ClO4)2. However, rechargeability was limited. 

Electrochemical impedance spectroscopy measurements were used to identify that film 

formation on the Mg anode is main source of impedance in Mg/O2 cells.  

This research shows that the performance of Mg-based batteries is highly sensitive to the 

type of electrolyte used. For example, our results demonstrate that Mg electrolytes containing 

Tf2N– and BF4
– anions do not promote reversible Mg electrochemistry due to the lack of 

dissociation between the Mg2+ cation and the anions. Moreover, the different behavior of Mg/O2 

cells based on either a modified Grignard or MACC electrolyte can be related to evolution of 

Mg/electrolyte interface in the presence of O2 and the electrolyte’s conductivity. For future work, 

it would be useful to develop halogen-free electrolytes to produce discharge products free of 

halogens which are chemically stable in the presence of O2. 
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Chapter 1 Introduction 

1.1 Batteries for Transportation  

Transportation currently accounts for a third of US annual primary energy consumption 

and greenhouse gas emissions.1 One of the main strategies to reduce greenhouse gas (GHG) 

emissions is to improve vehicle fuel efficiency by using advanced technologies such as hybrid 

vehicles and electric vehicles.2 Even when the GHG emissions associated with electricity 

production are taken into account, a plug-in hybrid vehicle can emit 50% less GHGs than a 

standard gasoline-powered vehicle.3 Widespread electrification of vehicles could help the 

transportation sector meet, and possibly exceed, the near-future carbon emissions standards.4-5 

Figure 1.1 shows the projected market share for new vehicle sales for conventional 

(gasoline-powered), hybrid (gasoline-powered with electric motor on board) and plug-in hybrid 

(allowing for extended, all-electric diriving range) vehicles.6 The market share for plug-in hybrid 

vehicles is projected to grow significantly in the next decade. As the demand for plug-in hybrid 

vehicles grows, it is anticipated that battery technologies will come under increasing pressure to 

improve reliability, energy density and cost.  
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Figure 1.1 Projected new car market share for medium PHEV penetration scenario (as 
outlined in Electric Power Research Institute’s report)6 for conventional vehicles, hybrid electric 

vehicles and plug-in hybrid electric vehicles.  

 

1.2 Beyond Li-ion technologies 

As part of the “EV Everywhere” challenge, the Department of Energy has set aggressive 

targets for battery energy density.5 Currently, volumetric and gravimetric energy densities for the 

batteries used in electric cars are in the range of 80-100 Wh/kg and 200 Wh/L. These are 

approaching the highest theoretical energy densities for Li-ion chemistries (567 Wh/kg and 

1901Wh/L). The Department of Energy’s target for volumetric and gravimetric energy densities 

for electric car batteries are 250 Wh/kg and 400 Wh/L, respectively.5 In order to reach these 

target energy densities, other battery chemistries with higher theoretical energy densities need to 

be explored.  

Currently, most hybrid and electrified vehicles use Li-ion batteries. These batteries suffer 

from high cost, modest energy density, limited cycle life, and the use of flammable and volatile 

electrolytes.7 Li-ion batteries operate by shuttling Li ions between two intercalation electrodes, 

typically comprising a carbon-based anode, and a transition metal-oxide cathode. In contrast, so-
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called “beyond-Li-ion” batteries have the capability to deliver gravimetric and volumetric energy 

densities that vastly exceed Li-ion batteries.8 Electric vehicles using higher-energy-density 

batteries could have longer vehicle ranges, which would make these vehicles more attractive to 

consumers and potentially minimize GHG emissions.9 

 

 
Figure 1.2 Theoretical volumetric and gravimetric energy densities for metal/O2 and Li-

ion battery chemistries. For metal/O2 chemistries, the compound in paranthesis indicates the 
discharge product.10 

 

Among the “beyond-Li-ion” candidates, metal/O2 (or “metal-air”) batteries offer some of 

the highest theoretical volumetric and gravimetric energy densities, which are compared to a 

typical Li-ion chemistry in Figure 1.2.11 Metal/O2 batteries utilize the electrochemical reaction 

between a metal such as lithium, sodium or zinc and a strong gaseous oxidizer (oxygen). 

Although non-reversible chemistries such as zinc/air were commercialized in the 1990s,12 recent 

years have seen a renewed interest in developing rechargeable metal/O2 batteries with alkali-

metal (Li, Na, K, etc.) and alkali-earth-metal (Mg, Ca, etc.) anodes. These chemistries offer 
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extremely high theoretical energy densities, coupled with the possibility for reversiblility. 

Multivalent alkali-earth-metal anodes have the additional advantage of contributing two 

electrons per metal ion, potentially yielding even higher gravimetric energy densities. For 

example, the gravimetric energy density for a Mg/O2 battery, 3.9 kWh/kg, can theoretically out-

perform that of  a Li/O2 battery, 3.4 kWh/kg.  

In addition to higher energy densities, magnesium also has advantages related to safety, 

cost, and environment impact. Catastrophic failures of Li-ion batteries often owe to Li dendrite 

formation and/or the combustion of flammable solvents. The Mg electrode is reportedly less 

prone to dendrite formation.13 The possibility of using non-flammable solvents in Mg batteries is 

explored in Chapter 2. Regarding cost, as of December 2015, the cost for magnesium metal was 

$1.99/kg, whereas lithium metal costs $200/kg.14 These prices reflect the higher abundance of 

magnesium versus lithium. Furthermore, the prevalence of magnesium as a structural material 

has resulted in the creation of a magnesium recycling technologies. The potential to recycle 

magnesium will reduce the environmental impact of magnesium use in batteries.  

Metal/air batteries consist of a metal negative electode (an anode during disharge) and a 

gas-breathing positive electrode (cathode) with either an aqueous or nonqueous electrolyte.11, 15 

There are several examples of metal-air chemistries where the reactant (O2) is harvested from air, 

such as zinc/air.16-17 However, metal/air batteries that use air as the O2 source are generally not 

electrochemically reversible due to degradatory effects of the water vapor, carbon dioxide, or 

nitrogen in typical air. Very recent advances in Li/O2 techonology do suggest that controlled 

amounts of water in the electrolyte may enhance battery performance, which could open the way 

to use air instead of pure O2 in metal/O2 batteries,18 but this is a topic of some dispute. For 

metal/air batteries, replacement of a degraded metal anode with a fresh metal anode is the only 

option for extended battery use (in combination with a scheme to regenerate spent anodes with 
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an external thermochemical process, this could be called ‘mechanical recharging’).19-20 

Alternatively, the electrolyte in contact with the Mg anode could be water-based (as in the 

aqueous Mg/air battery).21-22 In the case of aqueous Mg/air batteries, the Mg anode surface 

corrodes as the discharge reaction progresses and the Mg anode also needs to be mechanically 

recharged.19, 23   

The term ‘metal/air’ is sometimes casually used to refer to metal/O2 batteries, in which 

the gas feed is a pure O2 source free of water vapor or nitrogen. Metal/O2 batteries that use non-

aqueous electrolytes have the most potential to be electrochemically rechargeable and therefore 

this thesis focuses on non-aqueous Mg/O2 technology instead of aqueous.   

 

1.3 Mg electrolytes 

Electrolytes for Li-ion batteries have been the focus of intense research for the last two 

decades due of the large impact of electrolytes on battery performance.24 Li-ion battery 

electrolytes usually consists of a mixture of non-aqueous organic solvents (for example, 60:40 

propylene carbone:ethylene carbonate) and a simple Li salt such as LiPF6 or LiTf2N. Ratios of 

organic solvents, additives, Li salt concentration have been optimized to achieve better battery 

performance.24 Interestingly, for Mg, electrolytes that consist of a non-aqueous organic solvent 

and a simple Mg salt do not appeart to promote reversible electrochemistry.25 Therefore, new 

strategies are needed for electrolytes that are capable of reversible plating and stripping on Mg 

negative electrodes, and which allow for reversible insertion/extration from positive electrode 

intercalation hosts.  

The first report of reversible Mg deposition and dissolution from non-aqueous solvents 

was published in a paper by Gregory et al. in 1990.26 In this paper, a number of organic Mg salts 
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that resemble Grignard reagents were characterized in terms of conductivity and 

electrodeposition of pure Mg from these electrolytes were demonstrated. Grignard reagents have 

the formula RMgX, where R is alkyl or aryl group and X is a halogen. Furthermore, cycling of a 

cell containing a Mg metal anode with an intercalation cathode (Co3O4) was reported. The degree 

of ionicity in the Mg electrolyte was reported to control the efficiency of Mg electrodeposition. 

After Gregory’s discovery of a working Mg-ion cell, there was increased interest in 

identifying improved electrolytes and cathode materials that allow for higher cell voltages and 

longer-term cyclability.27-31 Research in the late 1990s converged on Grignard reagents in organic 

solvents as candidates for high-efficiency Mg-ion batteries. Aurbach et al. and Liebenow et al. 

concurrently reported that Grignard reagents dissolved in THF achieved <99% coulombic 

efficiency on noble metal electrodes.25, 31-32 Subsequent electrolyte studies revealed that addition 

of Lewis acids to Grignard reagents in organic solvents increase the electrolyte’s oxidative 

stability significantly.33-38 In addition, the compatibility of the organohaloaluminate (Grignard 

reagents reacted with Lewis acids containing Al) electrolytes with a Chevrel-phase cathode 

(Mo3S4) was demonstrated over 600 cycles.33 Several compositions of the organohaloaluminate 

electrolyte were subsequently studied; the reaction of PhMgCl and AlCl3 was found to produce 

the highest coulombic efficiency and oxidative stability.39-40 Different compositions of  

organohaloaluminate electrolytes were studied by several researcher groups and found to be 

robust systems for reversible Mg deposition.41-42 

Unfortunately, the oxidative stability of the Mg2+ electrolytes discussed so far was not 

suitable for use with high-voltage cathodes. Consequently, several reports focused on improving 

the oxidative stability of the organohaloaluminate electrolytes. It was reported that reacting 

HMDSMgCl with AlCl3 produced an electrolyte that has an oxidative stability higher than 3V vs. 

Mg/Mg2+.43-44 Furthermore, a solid Mg anode was parired with with a sulphur cathode to 
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demonstrate a Mg/S battery based on the HMDSMgCl:AlCl3 electrolyte.43 Other researchers 

focused on replacing the AlCl3 with boron-based species to achieve oxidative stabilities as high 

as 3.5 V vs. Mg/Mg2+.45-47 Borohydride-based electrolytes are also another interesting class of 

electrolytes due to the lack of halides that can cause corrosion.48-49 Iterations on the borohydride-

based electrolytes have enabled oxidative stabilities that are as high as 3V vs. Mg/Mg2+.50  

Modification of the ligands of Grignard reagents can also have important effects on the 

properties of the electrolyte. A series of R-Mg-Cl salts with ligands including 4-methoxy-

phenolate (MPMC), phenolate (PMC), 4-methyl-phenolate (MePMC), 4-tert-butyl-phenolate 

(BPMC), 4-(trifluoromethyl)-phenolate (FMPMC), pentafluorophenolate (PFPMC) were 

synthesized.51 Modified ligands such as the (FMPMC)2-AlCl3/THF and (PFPMC)2-AlCl3/THF 

solutions were reported to exhibit oxiditave stabilities at least 400mV above the previously 

published phenolate electrolytes.51 A similar approach by Wang et al. has produced electrolytes 

that are reported to be stable with air such as 2-tert-butyl-4-methyl-phenolate magnesium 

chloride (BMPMC)-AlCl3/THF.52   

Nelson et al. has reported a modified Grignard electrolyte consisting of PhMgCl reacting 

with Al(OPh)3 in THF.53 The oxidative stability of this electrolyte surpassed all other reported 

cases ( > 4 V vs. Mg/Mg2+) and the coulombic efficiency for Mg deposition was >99%. This 

electrolyte was used in the Mg/O2 battery experiments reported in Chapter III.   

 

1.4 Non-aqueous Mg/O2 batteries 

Non-aqueous Mg/O2 batteries are a relatively recent addition to the metal/O2 battery 

research field.  The first report of a non-aqueous Mg/O2 battery was published in 2013,54 and 

used a Mg metal anode. The electrolytic solution consisted of Mg(ClO4)2 salt and DMSO 
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solvent. The cathode was carbon sandwiched between platinum mesh grids. The battery was 

found to be rechargeable only through the addition of a redox mediator (iodine) to the 

electrolyte; a gravimetric capacity of 2131 mAh/gcathode was reported for the first cycle. The 

experiments were performed at an elevated temperature of 60°C.  

Another report on non-aqueous Mg/O2 batteries was conducted by Toyota Central 

Research & Development Laboratories.55 In that study an anion complex such as TEMPO was 

shown to facilitate chemical decomposition of the presumed MgO discahrge product at an 

elevated temperature of 60°C. A radical polymer called PTMA was synthesized by the radical 

polymerization of 2,2,6,6-tetramethylpiperidine methacrylate monomer with 2,2'- 

azobisisobutyronitrile, followed by oxidation with 3-chloroperoxybenzoic acid. The inclusion of 

PTMA in the carbon cathode along with the TEMPO anion on the electrolyte enabled a 

rechargeable Mg/O2 cell (using an ionic liquid electrolyte) with a gravimetric capacity of 737 

mAh/gcathode for the first cycle.  

In these studies the discharge and recharge process relied upon the presense of a redox 

mediator such as iodine or the TEMPO anion complex. It was also assumed that the discharge 

product was MgO, although little evidence to support the presence of MgO as the sole discharge 

product was presented. Furthermore, the chemistry of the discharge product can be dependent on 

the chemistry of the electrolyte and additives in the electrolyte18 and therefore should be 

characterized for each type of electrolyte.  

The preceding discussion suggests that a metal/O2 battery based on a Mg anode could 

offer a very attractive alternative to current electrochemical energy storage technologies. This 

disseration explores in detail the prospects for rechargeable Mg/O2 batteries by characterizing the 

performance and properties of this chemistry with several experimental techniques. This 

investigation begins in Chapter II, where we report on the electrochemistry of magnesium salts 
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in ionic liquids as candidates for secondary Mg batteries. In Chapter III a rechargeable, room-

temperature Mg/O2 battery using a modified Grignard electrolyte is reported, along with a 

detailed description of the discharge and recharge pathways. In contrast, in Chapter IV, an 

alternative, all-inorganic electrolyte was used in the same Mg/O2 cells.  Limitations on 

rechargeability were explored for this system based on impedence measurements. Finally, in 

Chapter V, we briefly discuss potential future work that could be undertaken to improve the 

performance of Mg/O2 batteries.  
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Chapter 2  Electrochemistry of Magnesium Electrolytes in Ionic Liquids for Secondary 

Batteries 

 

2.1 Introduction 

ILs are ideal candidates for electrolytes in battery applications due to their low 

flammability and volatility.56-59 ILs are ionic compounds that are liquid at room temperature and 

therefore have high ionic conductivity (~10mS/cm).58 They also exhibit high thermal stability 

and wide electrochemical windows.60 The drawbacks for ILs are their relatively high viscosity58 

and higher cost compared to organic solvents.61  

ILs have been studied for Li-ion applications62-63 and Li metal can be reversibly deposited 

with high coulombic efficiency using Li(Tf2N) in PP13-Tf2N64. High energy density systems 

such as Li/O2 and Li/S have also been explored with IL electrolytes.65-68 However, the research 

into using ILs as solvents for Mg-based electrochemistry has been limited and there are problems 

with reproducibility reported in literature.  

First mention of reversible deposition and dissolution of Mg in ionic liquids was reported 

with 1M Mg(TfO)2 in BMIM-BF4.69-71 Then, another IL (PP13-Tf2N) with 1M Mg(TfO)2 was 

also reported to enable reversible Mg deposition dissolution.72 Finally, a mixture of these two ILs 

(PP13-Tf2N and BMIM-BF4) was used to cycle a symmetric Mg/Mg cell for over 200 cycles.73 A 
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year later, Amir et al. reported that they were not able to reproduce the reversible Mg deposition 

with Mg(TfO)2 in BMIM-BF4.74 Cheek et al. also published a study with several combinations of 

Mg salts and ILs and reported no reversible Mg deposition at room temperature.75 Interestingly, 

it was found that Mg co-deposition was possible in a mixture of Mg(Tf2N)2 and LiTf2N in 

DEME-Tf2N but not in Mg(Tf2N)2 only in the same IL.76 

In a seminal paper, Gregory et al. showed that one can electrodeposit Mg reversibly from 

solutions of Grignard reagents, and suggested that the low partial charge on Mg in the Grignard 

molecule facilitates desolvation of Mg at the interface where plating occurs.26 Moreover, it was 

postulated that simple salts in which the Mg ion has a high charge density (e.g., highly ionic 

compounds such as MgCl2 or Mg(ClO4)2) are less likely to promote Mg plating due to the strong 

coulombic attraction between ions in the formula unit, which prevents dissociation in solution to 

produce solvated mobile Mg2+.26 Addition of Al-based Lewis acids to Grignard reagents has 

resulted in improved oxidative stability, while maintaining highly reversible Mg plating, which 

will be discussed in Chapter 3.25-26, 36, 40 Addition of Lewis acids promotes the formation of ionic 

Mg-containing Grignard-complexes that dissociate readily, increasing ionic conductivity while 

maintaining a low partial charge on Mg in the complex cation.40, 77 Recently, solutions of simple 

Mg salts combined with Al-based Lewis acids were shown to reversibly deposit and dissolve 

Mg, which will be discussed in Chapter 4.44, 78 Strong Lewis acids enable Mg dissociation when 

added to Mg-salt solutions due to their strong electron-withdrawing nature, which presumably 

overcomes the coulomb force that prevents the dissociation of anions from Mg2+.78 

Therefore, another approach to using ILs as solvents for Mg batteries has been to use 

Grignard reagents dissolved in THF as the Mg source in the electrolyte. For example, EtMgCl 

dissolved in THF was added to the IL (DEME-Tf2N) and reversible Mg deposition was 

observed.79 Additionally, a binary IL system that contains DEME-Tf2N and DEME-FSI was 
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examined and, using MeMgBr/THF as the Mg source, was able to achieve 90% coulombic 

efficiency.80  Optimization of the cation structure of ILs was also reported to improve the 

deposition characteristics with MeMgBr/THF.81 However, the presence of THF, an organic 

solvent with high flammability and volatility, still makes these mixed electrolytes susceptible to 

safery risks. Same can be said for adding ACN and DME to IL solvents to facilitate Mg 

deposition.82  

In this chapter, we have explored the effects of IL anion and cation on Mg 

electrochemistry in ILs in a systematic study.  

 

2.2 Experimental Methods 

2.2.1 Electrolytes 

Structures of the ILs and Mg salts investigated and their relevant physical properties are 

provided in Tables 2.1 and 2.2, respectively. BMIM+, PP13+, and DEME+ were chosen to 

represent the imidazolium, piperidinium, and tetra-alkylammonium families of IL cations, 

respectively. ILs containing these cations paired with Tf2N– or BF4
– anions were used as solvents, 

which included BMIM-Tf2N (99%, < 50ppm H2O, Sigma Aldrich, U.S.), PP13-Tf2N (99%, < 

50ppm H2O, Iolitec, U.S.), and DEME-BF4 (99%, < 230ppm H2O, Iolitec, U.S.). BMIM-Tf2N 

and PP13-Tf2N were used as received from the supplier. Because DEME-BF4 had relatively 

higher water levels, DEME-BF4 was stored over molecular sieves (3Å, Fisher Scientific, USA) 

for at least 2 days before use to remove residual water. All ILs were handled and stored under an 

Ar atmosphere in an Omnilab glovebox (Vacuum Atmospheres, USA) with O2 levels below 1 

ppm and H2O levels below 0.5 ppm.  
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Table 2.1 Formulae and structures of the ionic liquids and Mg salts tested in this work. 

Ionic liquids Mg salts 

BMIM-Tf2N 

 

Mg(Tf2N)2 

 

PP13-Tf2N 

 

Mg(TfO)2 

 

DEME-BF4 

 

Mg(BH4)2 

 

Table 2.2 Relevant physical properties of ILs and organic solvents used in this study. 

IL or solvent Melting point 

(K) 

Density 

(g/cm3) 

Viscosity 

(mPa.s) 

Conductivity

(mS.cm-1) 

BMIM-Tf2N 289 83 1.42 84 45 84 3.9 83 

PP13-Tf2N 281 85 1.43 85 129 86 1.5 85 

DEME-BF4 318 87 1.18 87 1200 87 4.8 87 

DME 229 88 0.86 88 0.455 88 ~0 

ACN 254 88 0.79 88 0.369 88 ~0 
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Three Mg salts were considered: Mg(BH4)2, (95%, Sigma-Aldrich, U.S.), Mg(TfO)2 

(98%, Strem Chemicals, U.S.), and Mg(Tf2N)2 (97%, Strem Chemicals, U.S.). These salts were 

dissolved in the various ILs by stirring with a PTFE-coated magnetic stir-bar for 1 hour at room 

temperature. Solvents DME (99.5%, Sigma Aldrich, U.S.) and ACN (99.5%, Sigma Aldrich, 

U.S.) were stored over molecular sieves  (3Å, Fisher Scientific, USA) in the glovebox for at least 

5 days before use to ensure dehydration.  To isolate the effect of the IL cation on voltammetric 

response, Mg(Tf2N)2 was dissolved in two ILs with Tf2N as the anion, BMIM-Tf2N and PP13-

Tf2N. In addition, Mg(TfO)2 was dissolved in PP13-TF2N to reproduce a composition examined 

in a previous report.72  

The Mg(BH4)/DME system was prepared to confirm that reversible plating and stripping 

of Mg could be obtained from the simple salt when dissolved in an ethereal solvent.48 To probe 

the voltammetric response of Mg(BH4)2 in IL solvents, solutions of Mg(BH4)2 in PP13-Tf2N and 

DEME-BF4 were prepared. Finally, co-solvent effects were investigated by mixing DME or 

ACN with the Mg(Tf2N)2/PP13-Tf2N solution.  

 

2.2.2 Working Electrode Preparation 

The working electrodes were 50 μm diameter disk microelectrodes, produced in the 

laboratory by flame-sealing metal wires in soda-lime-glass capillary tubes; Pt (99.997%, Alfa 

Aesar, U.S.), Au (99.998%, Alfa Aesar, U.S.), W (99.95%, Alfa Aesar, U.S.), Ag (99.997%, 

Alfa Aesar, U.S.) and Cu (99.999%, Alfa Aesar, U.S.) microelectrodes were produced. The 

microelectrodes were polished prior to each experiment with a slurry of 0.05 μm alumina 

particles (Buehler, USA) in 18 MΩ ultrapure water. All microelectrodes were air-dried for 24 

hours and exposed to vacuum in the glovebox antechamber for 30 min before each use. In each 
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IL-solvated binary electrolyte, Pt, Au, and W microelectrodes were used to test whether the 

working-electrode material affected the electrochemistry. The choice of working electrode did 

not significantly affect the observed voltammetric response in any experiment, so only data 

obtained with Pt electrodes are reported here. In addition, Ag and Cu microelectrodes were also 

used in attempts to reproduce data from previous studies72, 82 in which those metals were 

employed as working electrodes. 

 

2.2.3 Electrochemical Measurements  

Cyclic voltammetry measurements were carried out in the Omnilab glovebox under an Ar 

atmosphere at room temperature using an Autolab PGSTAT302N potentiostat (Metrohm, 

Netherlands). A standard unstirred three-electrode electrochemical cell was used, in which the 

reference compartment was connected to the working compartment by a Luggin capillary, and 

the counter compartment was separated from the working compartment by a glass frit. Counter 

and reference electrodes respectively comprised Mg foil (99%, Goodfellow, U.S.) and Mg wire 

(99%, Goodfellow, U.S.). Exterior surfaces of the Mg electrodes were removed mechanically in 

the glovebox prior to each experiment, by scraping their surfaces with stainless steel scissors to 

expose shiny sub-surfaces. 

For all the solutions tested, the voltage window for voltammetry was initially chosen to 

range from –1 to 1 V vs. Mg/Mg2+. The voltage window was increased by 0.25 V increments 

separately in the negative or positive directions until reductive or oxidative instability was 

observed. In each case, the voltammetric response of the Mg-salt/IL solution was compared to 

that of the neat IL, to deduce whether observed redox activity could be attributed to the Mg salt. 
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2.3 Results and Discussion 

2.3.1 Electrolytes containing Tf2N 

 Figure 2.1 shows CVs of neat BMIM-Tf2N and 10mM Mg(Tf2N)2 in BMIM-Tf2N on Pt.  

 

Figure 2.1 Cyclic voltammograms of neat BMIM-Tf2N (light gray) and 10 mM 
Mg(Tf2N)2 in BMIM-Tf2N (black) on a 50 μm diameter Pt working electrode at room 

temperature; scan rate 100 mV s-1. 

 The observed electrochemical stability window of 4.6 V agrees with prior reports.58 For 

the 10mM Mg(Tf2N)2 solution, no appreciable cathodic current was observed between 0 V and –

1 V vs. Mg/Mg2+, indicating that Mg plating is inhibited in the Mg/BMIM/Tf2N system. An 

increase in cathodic current below –1 V vs. Mg/Mg2+ is observed in the CV of the neat IL, as 

well as in that of the Mg-salt/IL solution; this voltammetric signature thus appears to arise from 

solvent reduction, rather than Mg2+ reduction. An oxidation peak near 0.8 V vs. Mg/Mg2+ appears 

in both the presence and absence of the Mg salt, although it shifts to a lower potential when Mg 

is present. This peak has been attributed to Mg stripping in the past,70, 89 but it has also been 

observed in previous electrochemical studies using BMIM-BF4,69, 74 strongly suggesting that the 
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redox signature arises from BMIM+ oxidation, or from oxidation of BMIM+ reaction products or 

impurities. As seen in Figure 2.2, the peak height and peak position are stable as a function of 

cycle number.   

 
Figure 2.2 Cyclic voltammograms of 10 mM Mg(Tf2N)2 in BMIM-Tf2N on a 50 μm 

diameter Pt working electrode at room temperature; scan rate 100 mV s-1. Data from three 
consecutive cycles are overlayed to illustrate the stability of the peak position and height. 
(Although the data are the same as the data from Figure 2.1, the abscissa and ordinate are 

magnified to illustrate the peaks more clearly.) 

 Furthermore, the oxidation peak is still present when the voltage window is constrained 

between –1 and 3 V vs. Mg/Mg2+ but peak height increases as the voltage window is widened in 

the negative direction, suggesting that it is an oxidation peak that is coupled to reduction 

reactions below –1 V vs. Mg/Mg2+. This coupling is illustrated in Figure 2.3. 
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Figure 2.3 Cyclic voltammograms of 10 mM Mg(Tf2N)2 in BMIM-Tf2N as a function of 

the negative voltage limit of the potential window (identified in the legend), with a positive 
voltage limit of 3V vs. Mg/Mg2+. Experiments were performed on a 50 μm diameter Pt working 
electrode at room temperature at a scan rate of 100 mVs–1. The inset has a magnified ordinate 
axis to provide a clearer representation of voltammograms with lower current levels (–1V, –

0.75V, –0.5V and 0V negative voltage limits). 

  

 Whether or not they illustrate Mg stripping, these data suggest that BMIM-containing ILs 

are not useful for Mg electrolytes because they exhibit appreciable redox activity in the voltage 

range where Mg stripping is expected to occur.  

Figure 2.4 shows a CV of neat PP13-Tf2N, which, similar to BMIM-Tf2N, has a wide 

window of electrochemical stability. The use of PP13+ in this case, along with the absence of 

redox activity, further supports the hypothesis that the anodic peak observed near 0.8 V vs. 

Mg/Mg2+ in the BMIM-Tf2N CV arises from reactions correlated to the presence of BMIM+.  
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Figure 2.4 Cyclic voltammograms of (a) neat PP13-Tf2N; and (b) Mg salts in PP13-TF2N 
(black) compared to neat PP13-TF2N (gray), using 50 μm diameter Pt electrodes at room 

temperature;  scan rate 100 mV s–1. Similar voltage windows were used in all cases. 

As previously described, NuLi et al. reported reversible Mg plating and stripping in 

PP13-Tf2N with Mg(TfO)2  as the Mg-ion source72 over a narrow window of –0.5 V to 0.5 V vs. 

Mg/Mg2+. Figure 2.4(b) shows CVs on Pt electrodes for three Mg salts dissolved in PP13-Tf2N 
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across a wider potential range (the figure details the –1 V to 1 V vs. Mg/Mg2+ range from CVs 

gathered across –2.25 V to 4 V vs. Mg/Mg2+).  The CV for 10 mM Mg(TfO)2  in PP13-Tf2N 

shows no evidence of Mg plating or stripping. Since the working electrode for the previous 

report was a Ag plate72 (and not a Pt microelectrode, as used here), the CV experiments for 1 M 

Mg(TfO)2  in PP13-Tf2N were repeated with a Ag microelectrode and analyzed in the voltage 

range of –0.5 V to 0.5 V vs. Mg/Mg2+. No significant change in the voltammetric response was 

detected when the Ag microelectrode was substituted for Pt and the voltage window was 

narrowed. The CV of 10 mM Mg(Tf2N)2 in PP13-Tf2N shows no redox activity corresponding to 

Mg plating and stripping, similar to CV for Mg(TfO)2. The CV for 100 mM Mg(BH4)2 in PP13-

Tf2N, much like those of the other Mg salts in PP13-Tf2N, also shows no clear evidence of Mg 

plating or stripping. (In contrast, the previous observation48 that reversible Mg plating and 

stripping could be obtained from a solution of Mg(BH4)2 in DME was confirmed.) 

The absence of significant Mg redox activity in the Mg(BH4)2/PP13-Tf2N system 

suggests that Tf2N– may play a role in blocking Mg plating. This hypothesis is supported by the 

observation that neither PP13-Tf2N nor BMIM-Tf2N supports Mg electrochemistry. One possible 

explanation for the absence of Mg plating/stripping in the presence of TF2N– could be the 

formation of a passivating film on the electrode surface by anion adsorption or reaction 

(chemical or electrochemical).25 Alternatively, plating could be inhibited due to the failure of 

dissolved Mg(Tf2N)2 to dissociate.  

The limited propensity for dissociation of Mg2+ from Tf2N– has been discussed in several 

computational and experimental prior reports.82, 90-92 Note, however, that Kakibe et al. and 

Yoshimoto et al. have observed reversible Mg plating on Au and Ni with solutions of Grignard 

reagents in ILs containing Tf2N–.79-81 Therefore, Mg can be reversibly deposited in the presence 

of Tf2N– if Mg is present in the form of a Grignard complex. These results appear to be consistent 
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with Gregory’s hypothesis that the low partial charge on Mg enables the electrochemical 

removal of Mg from the Grignard molecule.26 It is possible that Grignard reagents chemically 

remove a passivation layer that naturally exists on the electrode surface, allowing Mg plating. 

But when viewed in light of the independence of electrode material, the lack of plating in the 

systems studied here more likely results from strong association of Mg2+ and Tf2N– within 

dissolved Mg(Tf2N)2 formula units, rather than passivation. 

 

2.3.2 Effect of Co-solvent Addition 

In a recent study Kitada et al. reported the effects of adding diglyme to a mixture of 

Mg(Tf2N)2 and PP13-Tf2N. They found that CVs of co-solvent systems demonstrated anodic 

peaks at ~1.3V vs. Mg/Mg2+, possibly corresponding to Mg stripping.82 On the basis of these 

observations, it was hypothesized that the incorporation into ILs of more polar co-solvents, of 

which ACN is an extreme example, could lower the solvation energies of the Mg2+ and Tf2N– 

ions, promoting dissociation of the Mg(Tf2N)2 salt.  
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Figure 2.5 Cyclic voltammograms of (a) 100 mM Mg(Tf2N)2 in PP13-Tf2N/DME and (b) 
100 mM Mg(Tf2N)2 in PP13-Tf2N/ACN on a 50 μm diameter Pt electrode.  Measurements were 

performed with a scan rate of 20 mV s-1 at room temperature. Numbering adjacent to curves 
indicates the cycle number at which they were gathered. 

 

The effect of co-solvent polarity was investigated by adding DME (dielectric constant 

7.2, dipole moment 1.97D) or ACN (dielectric constant 36.6, dipole moment 3.92D) to a 

Mg(Tf2N)2/PP13-Tf2N solution. The volume ratio (DME or ACN):PP13-Tf2N was 4:1 on a neat-

liquid basis and the Mg2+ concentration in the mixed co-solvent was 100mM, similar to the 
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previous study.82 Figures 2.5(a) and 2.5(b) show CVs of Mg(Tf2N)2 in PP13-Tf2N/DME and 

PP13-Tf2N/ACN, respectively. No appreciable anodic current was observed up to 1.5 V vs. 

Mg/Mg2+. Furthermore, the magnitude of the cathodic current decreased significantly with 

increasing cycle number. Because previous reports used Cu working electrodes, additional 

experiments were performed using Cu instead of Pt, but no change in the voltammetric response 

was detected. In summary, no evidence of reversible Mg plating and stripping was seen in 

solutions where DME or ACN co-solvents were added to binary solutions of Mg(Tf2N)2 in PP13-

Tf2N.  

2.3.3 Electrolytes containing BF4 

An IL containing BF4
– was also studied. Due to the unavailability of Mg(BF4)2, Mg(BH4)2 

was used as the Mg salt on the basis of the similar structure of the anion. Figure 2.6 shows CVs 

of neat DEME-BF4 and 100mM Mg(BH4)2 in DEME-BF4 on Pt over two different voltage 

windows.  

To produce Figure 2.6(a), the voltage sweep was extended to the outer boundaries of the 

solution’s stability window – a range of 5.5 V. The anodic current above 1 V vs. Mg/Mg2+ has 

been attributed to oxidation of the BH4
– anion.48 The cathodic current observed below –1.5 V vs. 

Mg/Mg2+ likely arises from reductive decomposition of DEME-BF4. Although the addition of the 

Mg salt manifests an anodic peak in the CV that does not appear for the neat IL, the observations 

appear to suggest that this anodic peak does not correspond to Mg stripping. 

To produce Figure 2.6(b), the voltage sweep was constrained within –1 and 1 V vs. 

Mg/Mg2+. Observe that this constraint of the voltage window leads to a voltammetric signature 

dissimilar from the signature observed in a scan over a wider voltage range –  

and one more like a typical plating/stripping voltammogram. Although it looks like a  
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plating/stripping voltammogram, the qualitative appearance of the CV in Figure 2.6(b) is 

misleading. First, note that the net charge transferred over the portions of the sweeps between 0 

V to 1 V vs. Mg/Mg2+ for the Mg solution in Figure 2.6(b) is far greater than the charge 

transferred between –1 V and 0 V vs. Mg/Mg2+. Thus the observed anodic current must involve 

an oxidation process other than Mg stripping, since it is not possible to strip more Mg than is 

plated. Second, the magnitudes of the currents during the downward sweeps and upward sweeps 

of voltage –indicated by arrows in Fig. 2.6(b) – appear to be the reverse of what would be 

expected in the region where Mg plating should occur. In particular, the cathodic current during 

the return plating sweep (–1 V to 0 V vs. Mg/Mg2+) is lower in magnitude than the cathodic 

current observed during the forward plating sweep (0 V to –1 V vs. Mg/Mg2+), an atypical 

characteristic for a plating process. Finally, comparison of the CVs with and without Mg in 

Figure 2.6(b) reveals that both show significant cathodic current in the 0 V to –1 V vs. Mg/Mg2+ 

range, suggesting that the observed cathodic current likely arises from a reduction event 

associated with the neat IL that is enhanced by the presence of Mg(BH4)2. 
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Figure 2.6 Cyclic voltammograms of neat DEME-BF4 (light gray) and 100mM Mg(BH4)2 
in DEME-BF4 (black).  (a) CV scan limits are chosen to represent electrochemical stability 

window. Inset shows voltage range restricted to –1.5 to 1.5 V vs. Mg/Mg2+. (b) CV scan limits 
are constrained to –1 to 1 V vs. Mg/Mg2+. Working electrode is 50 μm diameter Pt electrode; 

scan rate: 100 mV s–1; measurements performed at room temperature. 

 

The reduction peak (around 0V vs. Mg/Mg2+) observed for neat DEME-BF4 in Figure 

2.6(a) is absent in Figure 2.6(b). Thus its appearance can be associated with an oxidation event 

that takes place above 1 V vs. Mg/Mg2+.  
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Since it was confirmed that Mg(BH4)2
 allows reversible Mg plating from ethereal solvents 

such as DME, the apparent absence of Mg plating/stripping in the DEME-BF4/Mg(BH4)2 system 

suggests that solvent effects are highly important.  In the DEME-BF4 solvent case, the anion of 

the IL, can strongly associate with dissociated Mg2+ and hinder reversible Mg plating.   

 

2.4 Conclusion 

Cyclic voltammetry was used to investigate the electrochemistry of electrolytic solutions 

consisting of various Mg salts (Mg(TfO)2, Mg(Tf2N)2, Mg(BH4)2), IL solvents (BMIM-Tf2N, 

PP13-Tf2N, DEME-BF4) and organic co-solvents (DME, ACN) on Pt working electrodes.  

Contrary to some prior reports, reversible Mg plating was not observed for any of these salt/IL 

combinations. In some cases the disagreement with prior observations arises from different 

interpretations of the voltammograms, as suggested by more robust control experiments in which 

the identity of the IL cation was varied, as well as by exploration of wider voltage ranges during 

voltammetry.  

The present results indicate that when evaluating a new Mg-containing IL solution it is 

imperative also to evaluate the redox activity associated with the neat IL. It was found that the 

anodic peak observed at ~0.8V vs. Mg/Mg2+ in the voltammetry of Mg(TfO)2 dissolved in 

BMIM-BF4, previously attributed to Mg stripping, likely originates from redox activity 

correlated to the presence of BMIM+.  

Mg(TfO)2 dissolved in PP13-Tf2N has been reported to exhibit reversible Mg plating, but 

voltammetry of three Mg salts in PP13-Tf2N did not show evidence of reversible Mg plating in 

the current investigation. The addition of two organic solvents of varying polarity to 

Mg(Tf2N)2/PP13-Tf2N also did not give rise to signatures of Mg plating or stripping.  
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Mg(BH4)2 in DEME-BF4 was also considered, but, similar to the other systems, no 

evidence of Mg plating or stripping was observed. A voltammetric signature that looked 

qualitatively like a plating/stripping voltammogram could be obtained by constraining the 

voltage window, but the magnitudes of the cathodic currents during the downward and upward 

voltage sweeps were inconsistent with a plating process, and the net anodic charge transfer above 

0 V vs. Mg/Mg2+ far outweighed the net cathodic charge transfer below 0 V vs. Mg/Mg2+, 

suggesting an oxidation reaction besides stripping. 

Taken together, these findings suggest that the failure of Mg to plate from electrolytes 

containing Tf2N– and BF4
– may owe to their strong coulombic attraction to Mg2+, which is a 

consequence of the extremely high charge density of the Mg2+ cation. The strong association of 

Tf2N– and Mg2+ could not be overcome by attempts to lower the ion solvation energies by adding 

high-polarity co-solvents. It therefore seems unlikely that simple Mg salts can be used as the Mg 

source in IL-based electrolytes for secondary Mg batteries unless new measures are taken to 

foster dissociation of the Mg salt or lower ion solvation energies significantly. It can be foreseen 

that a Mg-containing IL cation with lower charge density than Mg2+, or an anion shared by the 

salt and IL that is more readily solvated by the IL, could enable Mg plating. It is also possible 

that addition of strong Lewis acids to IL-based solutions could overcome the attraction between 

ions in simple Mg salts, favoring dissociation and enabling Mg plating from ILs. These 

approaches are suggested for future development of IL-based Mg electrolytes. 
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Chapter 3 Identifying the Discharge Product and Reaction Pathway for a Secondary 

Mg/O2 Battery 

 

3.1 Introduction 

Non-aqueous metal/oxygen batteries exhibit high theoretical specific energy capacities.10 

Chemistries based on alkali metals, such as Li/O2, Na/O2, and K/O2, have become popular 

research topics because they also hold promise for rechargeability.93-96 Multivalent battery 

systems involving alkaline earth metals, such as the Mg/O2 chemistry, can achieve higher 

theoretical energy densities than some of their alkali-metal analogues but have received little 

research emphasis.54-55 Although aqueous primary Mg/O2 batteries have been demonstrated, their 

cell potentials are limited by the presence of water; moreover, corrosion of the Mg electrode 

likely precludes rechargeability.20-22, 97 Non-aqueous electrolytes could enable a reversible Mg/O2 

cell, however. In this chapter, we demostrate a rechargeable non-aqueous Mg/O2 cell and identify 

the discharge product chemistry.  

3.2 Experimental Methods 

3.2.1 Cell assembly and testing 

Each Mg/O2 cell consisted of a Mg negative electrode, a glass-fiber separator, and a porous 

carbon positive electrode, which were all discs with 18 mm diameters. The Mg electrode 

comprised 0.25 mm thick magnesium foil (Goodfellow, 99.9%, USA). The Mg surface was 

scraped with the edge of stainless-steel scissors (Vacuum Atmospheres) to expose a shiny 
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subsurface before cell assembly; the scraping was performed in an Omnilab glovebox (Vacuum 

Atmospheres, USA) with an Ar atmosphere (99.998%, Cryogenic Gases, USA) containing less 

than 1 ppm O2 and less than 1 ppm H2O. The glass-fiber separator (EL-CELL Gmbh, Germany) 

had a thickness of 0.55 mm. The positive electrode comprised carbon paper (SIGRACET GDL 

24 BC, Ion Power, Inc., USA) with a porosity of 0.8 (per supplier), thickness of 235±20 mm (per 

supplier), and specific area of 13.3±0.2 m2g–1 (measured by N2 physisorption with a 

Micromeritics ASAP 2010 analyzer employing the Brunauer-Emmett-Teller isotherm).98 The 

average positive-electrode weight was 0.0265 g. The separator and the carbon electrode were 

vacuum dried at 110°C for at least 8 hours before being transferred to an Ar atmosphere for cell 

fabrication. 

ECC-AIR metal-oxygen electrochemical test cells were purchased from EL-CELL GmbH 

(Germany). Cells were assembled under Ar in the glovebox. Before cell assembly, the separator 

and positive electrode were immersed in the electrolytic solution to ensure that the pores were 

filled. The cell was assembled by placing the electrolyte-soaked positive electrode on top of the 

Pt-coated current collector. Then, the electrolyte-soaked separator was placed on the carbon 

electrode. Finally, the Mg electrode was placed on the separator, as shown in Figure 3.1. The  

electrode sandwich was slid into a cylindrical poly ether ether ketone sleeve with 18 mm inner 

diameter, which was inserted into a stainless steel cup that acted as the negative current collector.  
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Figure 3.1 Schematics of the ECC-Air cell from EL-CELL.99 

After completion of assembly and sealing with a threaded cap that acted as the positive 

current collector, the cell was removed from the glovebox and the O2 inlet was connected to a 

high purity O2 tank (99.993%, Cryogenic Gases, USA) at a pressure of 2 bar absolute. The O2 

outlet is sealed throughout the discharge and recharge experiments to maintain a static absolute 

pressure of 2 bar. 

The Mg/O2 cells held under pressurized O2 were connected to a Series 4000 battery tester 

(Maccor, USA). The open-circuit voltage was recorded until the rate of voltage change was 

observed to fall below 2 mVh–1, following the procedure suggested by Griffith et al.98 After 

voltage equilibration, discharge tests were initiated by applying a constant current.  

Cell discharge rates are reported as superficial quantities, which were determined using the 

cross-sectional area of the 18mm-diameter positive electrode. Thus, for example, a 5 μAcm–2 rate 

corresponds to a galvanostatic discharge at 12.7 μA. Discharge tests were terminated when the 

voltage dropped below a cutoff voltage of 0.6V.  

Before initiating recharge, cells were rested for 30 min to allow equilibration of oxygen. 

During these rests, the voltage was observed to relax to the open-circuit potential that had been 

reached before first discharge. Recharges were always performed using the same rate as the 

preceding discharge. Recharge steps were terminated when the discharge capacity for the 
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corresponding discharge/charge cycle was reached. Cells were also rested for 30 min between 

each discharge/recharge cycle.  

After the conclusion of each test, the Mg/O2 cell was flushed with high purity Ar gas via a 

three-way valve. The gas lines were then sealed, disconnected from the gas manifold, and 

returned to the glovebox for post-mortem analysis.  

Control experiments for first discharge were run with the same fabrication steps (cell 

assembly, O2 pressure, and Ar purge). These cells were held at zero current for the same period 

over which the other cells were discharged. A typical response is shown in Figure 3.4. Further 

control experiments were done by discharging under Ar gas, without exposing the cell assembly 

to O2. Representative data are presented in Figures 3.2 and 3.3. These cells were assembled in the 

glovebox and kept inside the glovebox and connected to the battery tester; the open-circuit 

voltage was recorded until equilibration. Discharge tests were initiated by applying a constant 

current corresponding to 5 μAcm–2  (superficial). 
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Figure 3.2 Zero-current holds for a Mg/O2 cells with (black line) and without O2 exposure 
(red line) prior to start of discharge experiment. 

  
 

 
Figure 3.3 Discharge curve for a cell assembly that was never exposed to O2. Discharge 

rate is 5 μAcm–2 (superficial).  
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Constant current constant voltage (CCCV) control experiments were run with the same 

fabrication steps (cell assembly, O2 pressure, and Ar purge). These cells were held at open circuit 

(current = ~0 A) until the voltage equilibrated. Then, the voltage was kept constant at the 

equilibrated open circuit voltage, and current was measured. Figure 3.4 shows a typical response.  

 

 
Figure 3.4 CCCV control experiment for a Mg/O2 cell. Dashed line indicates transition 

from constant current (current = ~0 A) to constant voltage (voltage = open circuit voltage). 

 

3.2.2 Electrolyte synthesis and characterization 

The electrolyte used in this study was developed by the University of Michigan 

Chemistry Department and was synthesized following the procedure described by Nelson et al.53 

The oxidative stability of the electrolyte on Pt electrodes was confirmed to be above 4 V vs. 

Mg/Mg2+, as shown in Figure 3.5. Voltammetry was also repeated using glassy carbon, which 

yielded a similar response, as shown in Figure 3.6.  
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Figure 3.5 Cyclic voltammogram at 100 mVs–1 for 4:1 PhMgCl:Al(OPh)3/THF on a 50 

µm radius Pt working electrode at room temperature. The counter and reference electrodes were 
polished Mg foil and polished Mg wire, respectively.  

 

 
 

Figure 3.6 Cyclic voltammogram at 100 mVs–1 for 4:1 PhMgCl:Al(OPh)3/THF on a 1.5 
mm radius glassy carbon working electrode at room temperature. The counter and reference 

electrodes were polished Mg foil and polished Mg wire, respectively.  
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3.2.3 Scanning Electron Microscopy (SEM) 

SEM was performed with a FEI Nova NanoLab microscope (5 kV accelerating voltage, 

98 pA), using the airtight sample holder described earlier by Griffith et al.98 Samples were 

transferred to the SEM chamber following Griffith et al.’s procedure. The holder is designed to 

be opened under vacuum in the microscope chamber, avoiding exposure to ambient air during 

sample transfer. In preparation for imaging by SEM, the positive electrodes were rinsed with 

THF in an Ar-atmosphere glovebox to remove residual electrolyte. 

 

3.2.4 Energy Dispersive Spectroscopy (EDS) 

EDS was performed in conjunction with SEM using a FEI Nova NanoLab microscope (5 

kV accelerating voltage, 98 pA) and EDAX XEDS software. The spectra were collected in spot 

mode.  

 

3.2.5 Raman Spectroscopy (RS) 

 Samples for RS were placed in a sample holder consisting of two parallel quartz slides 

sealed with silicone sealant (GE510, General Electric) on all four sides of the gap between them. 

After placement between the slides and sealing in the glovebox, the holder was rested for 24 

hours to allow the sealant to harden. Raman spectra were collected by a Renishaw inVia 

spectrometer. The laser wavelength was 532 nm and the laser power was kept at 5% in order to 

avoid damaging the carbon in the sample. The maximum power for the laser was 300mW and 

the Raman spectra were collected in extended mode from 0 to 1700 cm–1. An automated XYZ 

stage was used to focus the beam and move to different areas of the sample. 
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Density functional perturbation theory100-101 was used to calculate Raman activities in 

MgO2. Calculations were performed using the VASP code.102-105 The generalized gradient 

approximation (GGA) expressed using the formulation of Perdew-Burke-Ernzerhof (PBE) was 

used for the exchange-correlation energy.106 A kinetic-energy cutoff of 520 eV was used for the 

planewave basis, and the Brillouin zone was sampled with a regular, Γ-centered grid with a 

density of 16×16×16, corresponding to 24 k-points per Å. All ion positions were relaxed to a 

force tolerance less than 10–5 eVÅ–1. Born effective-charge tensors and dielectric tensors were 

calculated for each atom according to the method of Gajdos.107 The Hellmann–Feynman forces 

were used in combination with the supplemented direct method108 to evaluate the interatomic 

force constants of a 2×2×2 supercell.  To calculate the phonon frequencies in the long 

wavelength limit, the macroscopic electric field that follows from the collective displacement of 

ions was treated separately using the non-analytical form100, 109 of the dynamical matrix. The 

derivatives of the polarizability tensor with respect to atomic displacements were calculated by a 

finite-difference approach in which ions were displaced ±0.06 Å in each Cartesian direction. The 

Raman susceptibility tensor was then constructed and applied to the differential cross section for 

nonresonant first-order Raman scattering. The calculation was performed for a polycrystal using 

532 nm unpolarized light at 300 K. Density functional perturbation theory calculations were 

performed and analyzed by Jeff Smith. 

 

3.2.6 Auger Electron Spectroscopy (AES) 

AES was performed with a Physical Electronics Auger Nanoprobe 680 instrument using 

a beam voltage of 3kV and a beam current of 10 nA.  The positive-electrode sample was exposed 

to air before being placed in transfer chamber and drawn to 1.0 µTorr vacuum. Then the sample 
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was transferred to the analysis chamber (~1.5 nTorr). Auger spectra were collected in the range 

of 0 to 2 keV. Since the sample was exposed to air during transfer, the sample surface was 

sputtered with Ar at a rate of 2.5 nm min–1 and Auger spectra were collected after each layer was 

removed to see if the elemental composition varied as a function of depth. 

 

3.2.7 X-ray Diffraction 

XRD samples were placed in an air-tight sample holder with a Be window (2455-SH-

001, Rigaku, Japan). Diffraction patterns were gathered by a Rotaflex (40 kV, 100 mA) 

diffractometer (Rigaku, Japan) with a Cu Kα source at 0.75° min–1 and at 0.02° step size. 

 

3.3 Results and Discussion 

3.3.1 Discharge Voltage and Electrochemical Testing  

In a Mg/O2 cell, the half-reactions  

Mg2+ + O2 + 2e– ⇌ MgO2    (2.91 vs. Mg2+/0)  [1] 

2Mg2+ + O2 + 4e– ⇌ 2MgO (2.95 vs. Mg2+/0)  [2] 

might be anticipated at the gas electrode. Both involve Mg2+ ions and dissolved O2 from the 

liquid electrolyte, and both promise moderately high cell potentials of ~2.9 V. A Mg/O2 cell with 

a MgO discharge product formed by half-reactions 1 or 2 would exhibit theoretical maximum 

volumetric and gravimetric energy densities of approximately 14 kWhL–1 and 3.9 kWhkg–1, 

respectively, surpassing Li/O2 cells that discharge to Li2O2 (8.0 kWhL–1 and 3.4 kWhkg–1).10  

Each Mg/O2 cell in this study  was held at open circuit under O2 until the measured 

voltage equilibrated, typically yielding an open-circuit potential (OCP) of 2.0 ± 0.1 V. (see Fig. 

3.4). This OCP is low compared to the theoretical potentials expected from half-reactions 1 or 2.  
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Figure 3.7 Cell potentials and half-reaction potentials for several metal/O2 battery 
chemistries. The dashed red line corresponds to the potential at which O2 reduces to superoxide. 

Figure 3.7 compares the half-reaction potentials for the Mg/O2 system with the accepted 

half-reaction potentials of various alkali-metal/O2 chemistries.  In all cases, cells based on alkali 

metals exhibit OCPs close to the theoretical potentials expected for positive-electrode half-

reactions involving the direct electrochemical formation of MxOy compounds from metal cations 

and O2.94-95, 110 As Fig. 3.7 shows, however, the potential associated with superoxide formation 

(O2 + e– ⇌ O2
–, –0.33 V vs. SHE) in the alkali chemistries also closely matches the potentials for 

direct electrochemical MxOy formation from Li, Na, and K, making identification of the reaction 

pathway more challenging. In contrast, for Mg/O2, superoxide forms from O2 well (~0.9 V) 

below the potential for direct electrochemical MgO formation.  

In light of the thermodynamic data summarized on Fig. 3.7, the OCP in the Mg/O2 

system suggests a reaction pathway where oxygen reduction (i.e., O2
– formation) occurs as an 

initial electrochemical step: superoxide formation precedes a chemical reaction with Mg2+ that 

forms MgO2 and liberates molecular O2, after which MgO2 disproportionation occurs: 
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O2 + e– ⇌ O2
–    (2.04 V vs. Mg2+/0)   [3a] 

2 O2
– + Mg2+ ⇌ MgO2  + O2     [3b] 

2 MgO2  ⇌ 2 MgO + O2     [3c] 

This hypothesized pathway is an ECC (“electrochemical-chemical-chemical”) mechanism 

similar to those proposed for Li/O2 and other alkali-metal-based systems.111-114 Below, the results 

of several characterization techniques confirm that the discharge-product composition is also 

consistent with this ECC mechanism.  

Unlike alkali-metal/O2 systems, superoxide formation in Mg/O2 cells occurs at a low 

enough potential to distinguish step 3a from direct electrochemical formation of MgOx (reactions 

1 and 2). The subsequent chemical steps that form MgO2 and MgO do not contribute to the 

electrical work delivered by the cell. Materials that select against the superoxide pathway and 

support direct electrochemical formation of MgOx will be needed to realize the promise that the 

Mg/O2 chemistry holds for higher energy density. 

 

 
Figure 3.8 Discharge/recharge cycles for a room-temperature Mg/O2 cell using 4:1 

PhMgCl:Al(OPh)3/THF at 5 μAcm–2 (superficial). Curves are labeled with the corresponding 
cycle numbers. 
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Figure 3.8 shows discharge/recharge cycles for a typical Mg/O2 cell. During discharge, 

the voltage decreases monotonically until reaching the 0.6 V cutoff. At the end of discharge the 

cell is allowed to equilibrate for 30 min before recharging. Once a charging current is applied, 

the voltage quickly jumps to 2.5 V, and then rises monotonically until the discharge capacity is 

recovered. The energy efficiency for the first cycle is 42% – low compared to the energy 

efficiencies reported for non-aqueous Li/O2, K/O2 and Na/O2 chemistries, but comparable to 

those for elevated-temperature Mg/O2 cells.54, 94-95, 115 Still, the overpotentials during the discharge 

and recharge processes are similar, suggesting that the electrochemical steps involved in the 

forward and reverse cell reactions have similar activation energies.  Upon cycling, the capacity 

fade compares with other reported non-aqueous Mg/O2 systems.54-55 The cell capacity is low, 

probably owing to the low solubility and diffusivity of O2 in the electrolyte.116 The solubility of 

O2 in THF is about 5 times lower than in DME, a common metal/O2 battery solvent.117-118 The 

measured conductivity of the present electrolyte was reported by Nelson et al. to be  1.24 mScm–

1,53 which is comparable to other Mg electrolytes40, 44, 46, 119 but almost an order of magnitude 

smaller than typical lithium-battery electrolytes.24, 120 Development of an electrolyte with higher 

O2 solubility and ionic conductivity could facilitate improvements in both the capacity and rate 

capability of Mg/O2 chemistry. 
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Figure 3.9 SEM images of positive electrode at the end of first discharge for Mg/O2 cell 
using 4:1 PhMgCl:Al(OPh)3/THF electrolyte. 

 

Assuming that the discharge product comprises MgO particles with similar sizes and 

surface density to those depicted in Figure 3.9, the measured charge capacity is within an order 

of magnitude of the amount expected from the amount of discharge product. It is important to 

emphasize that a capacity estimate based on the discharge-product dimensions is at best 

qualitative; such an estimate is presented here only to demonstrate consistency with the more 

accurate capacities determined by discharge experiments. To probe possible side reactions, 

discharge was attempted in an Ar atmosphere (i.e., in a cell containing no O2). In this case the 

measured OCP was roughly half that of the O2-containing cell, 1.0 ± 0.1 V (Fig. 3.3). Upon 

discharge the voltage monotonically decreased (Fig. 3.4), suggesting that there is a side-reaction 

below 1V that may arise from solvent degradation. Side reactions at low voltages are also 

observed in the Li/O2 system.121 
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Figure 3.10 SEM images of the positive-electrode surface on the side closest to the O2 gas 
inlet for Mg/O2 cell using 4:1 PhMgCl:Al(OPh)3/THF electrolyte. The dashed circles represent 
boundaries of the regions that were directly exposed to O2 through perforations in the Pt-coated 

current collector. (a) An electrode after first discharge. (b) Higher magnification of the first-
discharge product, with an inset image of a control electrode exposed to O2 in a cell held at open 

circuit. (c) An electrode at the end of first recharge. (d) Higher magnification of the residual 
product after first recharge. 

Figures 3.10(a) and 3.10(b) show SEM images of the oxygen-electrode surface after 

discharge. Discharge product is concentrated within areas of the electrode that were in direct 

contact with O2 through the perforations in the current collector. The product comprises large, 

faceted, transparent particles, which have characteristic dimensions of 100-200 μm. These 

particles were only observed on the side of the positive electrode exposed to O2. Absence of the 

discharge product in areas further from the O2 supply indicates that O2 permeation through the 

liquid electrolyte limits capacity. A control image [Fig. 3.10(b) inset] was generated by holding a 

similar cell at open circuit under O2 for the same duration as the discharge experiment (a larger 

area is shown in Fig. 3.9). No particles were observed on the control electrode. Figures 3.10(c) 
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and 3.10(d) show that a majority of the particles have been decomposed at the end of first 

recharge. The incomplete disappearance of the discharge product suggests the presence of side 

reactions, which may rationalize both the low energy efficiency and the capacity fade upon 

cycling. 

3.3.2 Discharge Product Characterization 

The composition of the discharge product was characterized using EDS, AES, XRD, RS.  

 
Figure 3.11 Energy Dispersive Spectroscopy (EDS) spectrum collected with a beam 

focused on the discharge phase for Mg/O2 cell using 4:1 PhMgCl:Al(OPh)3/THF electrolyte.  

 
Figure 3.12 AES spectrum of the discharge phase for Mg/O2 cell using 4:1 

PhMgCl:Al(OPh)3/THF electrolyte. 
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As seen in Figure 3.11, EDS suggested the presence of Mg, O, and Cl in the discharge 

product. In agreement with the EDS results, AES also showed signals for only Mg, O, and Cl. 

(Figure 3.12). The Mg peak is located at 1181.5 eV, in agreement with the Mg KL2,3L3,3 Auger 

energy of Mg in MgO.122 In contrast to the EDS measurement, samples analyzed by AES were 

briefly exposed to air during sample transfer. Therefore, AES was performed in conjunction with 

Ar sputtering to remove the exterior surface of the discharge product.  

 
Figure 3.13 AES depth profile of the discharge product for Mg/O2 cell using 4:1 

PhMgCl:Al(OPh)3/THF electrolyte; Mg (Blue), O (red) and Cl (green) atomic concentrations are 
plotted as functions of sputtering depth. 

Figure 3.13 shows the atomic-composition percentages with respect to the distance from 

the surface yielded by an AES depth profile. The results suggest MgOx stoichiometry with x > 1. 

Furthermore, AES reveals that the quantity of Cl in the discharge product is small (average ~3.1 

at.%), and presumably owes to reaction with the electrolyte. It is noteworthy that the proportions 

of Mg, O and Cl remain relatively constant with respect to depth. The excess of O can be 

explained by the presence of domains of MgO2 within the predominantly MgO material. The 
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Mg-O phase diagram indicates that MgO is a line compound, and is the only stable Mg-O 

compound at ambient conditions.123 Based on the theoretical potentials from Eqs. 1 and 2, MgO2 

has a higher formation energy than MgO (by ~0.08 eV/formula unit); it is therefore weakly 

metastable and does not appear in the equilibrium phase diagram. Thus presence of MgO2 in the 

discharge product likely owes to a kinetic effect.  

If the discharge product is assumed to be a physical mixture of crystalline, solid MgO and 

MgO2, one can calculate the volumetric ratios of the two compounds by comparing the AES 

signals associated with oxygen and magnesium. The density values needed for this calculation 

are listed in Table 3.1.  

Table 3.1 Densities and Molar Masses for MgO and MgO2 

 MgO MgO2 
Density (g/cm3) 3.58 3.00 

Molar mass (g/mol) 40 56 
 

The ratio of oxygen signal to the magnesium signal as measured by AES is 1.04 on average for 

the discharged positive electrode. Relating these values through the equation  

 

the VolumeMgO2/VolumeMgO is found to be ~0.5. Therefore, ~30% of the volume probed 

by AES is occupied by MgO2. 

 

32
56

VolumeMgO2
× DensityMgO2( )+16

40
VolumeMgO × DensityMgO( )

24
56

VolumeMgO2
× DensityMgO2( )+ 24

40
VolumeMgO × DensityMgO( )

= Oxygen AES
Magnesium AES

≈1.04
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Figure 3.14 AES depth profile of the recharged discharge product for Mg/O2 cell using 

4:1 PhMgCl:Al(OPh)3/THF electrolyte; Mg (Blue), O (red) and Cl (green) atomic concentrations 
are plotted as functions of sputtering depth. 

 

In contrast to the oxygen-rich composition of the discharge product, particles remaining 

on the positive electrode after recharge exhibit a 1:1 Mg:O ratio in AES (Figure 3.14). This 

suggests that MgO2 decomposes preferentially during charging.  

 

 
Figure 3.15 XRD pattern of control (red), discharged (black) and recharged (blue) carbon 

electrodes for Mg/O2 cell using 4:1 PhMgCl:Al(OPh)3/THF electrolyte. 
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Figure 3.15 shows X-ray diffraction patterns collected from discharged, recharged, and 

control electrodes. Patterns were collected without exposure to air using an airtight sample 

holder. The MgO (200) peak appears in the XRD patterns of the discharged and recharged 

electrodes, but this peak is absent from the control-electrode XRD pattern, confirming that no 

discharge product forms when the cell is held at open circuit. In the recharged positive electrode, 

the peak attributed to crystalline MgO is significantly diminished, suggesting substantial, but not 

complete, dissolution of MgO during charging. No peaks corresponding to crystalline MgO2 

were observed in any electrode. 

 
Figure 3.16 Raman spectra collected from control (red), discharged (black) and recharged 

(blue) carbon electrodes for Mg/O2 cell using 4:1 PhMgCl:Al(OPh)3/THF electrolyte. 

 

Absence from the XRD patterns does not preclude the presence of amorphous MgO2, 

however. Figure 3.16 shows Raman spectra collected from the discharge product, the product 

remaining after recharge, and the control electrode. The oxygen electrodes were placed in an 

airtight RS sample holder with quartz windows. Several spectra were collected from reference 
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samples to identify the peaks in the discharge-product spectrum. Representative Raman spectra 

for isolated discharged and control electrodes, electrolyte, MgO2 (MgO2 • xMgO, x = 24-28%, 

Sigma-Aldrich, USA) and MgO (STREM, USA) powders are presented in Figure 3.17. Simple 

background removal has been performed on the spectra to minimize artifacts arising from 

fluorescence. 
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Figure 3.17 Raman spectrum collected from discharge phase. (b) Raman spectrum 

collected from a positive electrode without discharge phase. (c) Raman spectrum collected a 
carbon electrode soaked in electrolyte and dried without a THF rinse. (d) Raman spectrum 

collected from liquid electrolyte sample. (e) Raman spectrum collected from MgO2 powder. (f) 
Raman spectrum collected from MgO powder. Peaks observed in MgO and MgO2 powder are 

indexed to Mg(OH)2, which forms when MgO is exposed to moisture.124 
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The sharp peaks between 870 and 1100 cm–1 all can be assigned to residual electrolyte 

with THF solvent.125 The peak around 200 cm–1 can be attributed to Mg-Cl stretching.126  

 

Figure 3.18 Calculated Raman spectrum (blue line) and comparison to measurements 
(black line) performed on the positive electrode of a discharged Mg/O2 cell using 4:1 

PhMgCl:Al(OPh)3/THF electrolyte. 

In particular, the peak near 860 cm–1 was confirmed to correspond to O-O stretching in 

MgO2 by density-functional-theory calculations (Fig. 3.18), and has been attributed to O-O 

stretching in other peroxide compounds.127 (MgO does not yield a first-order Raman signal and 

therefore cannot not be detected by RS.128) The observation of a MgO2 peak in the Raman 

spectrum confirms the presence of amorphous MgO2 in the discharge product and is consistent 

with the excess oxygen observed by AES. In the recharged positive electrode the peak attributed 

to O-O stretching is not observed, supporting the notion that MgO2 decomposes preferentially 

during recharge, in agreement with the 1:1 Mg:O stoichiometry measured by AES (Fig. 3.14). 

In summary, the present study has probed the reaction pathway and characterized the 

discharge product in a reversible Mg/O2 cell. The cell produces a mixed-phase product that 

comprises crystalline MgO with domains of amorphous MgO2; this product forms after 
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electrochemical superoxide formation from O2, through chemical precipitation and 

disproportionation steps. Importantly, several aspects of Mg/O2 electrochemistry appear to differ 

fundamentally from alkali-metal/O2 systems. A discharge product comprising large, faceted 

particles was observed, but was seen only in areas of the electrode that were in close proximity to 

gas, suggesting that O2 transport limits cell capacity. Several techniques probed the discharge-

product composition, revealing that the product comprises roughly 70% MgO and 30% 

amorphous MgO2 on a volumetric basis. The recharged positive electrode contained a small 

amount of residual MgO, suggesting that MgO2 decomposes first during charging, followed by 

more limited MgO decomposition. 

 

3.4 Conclusion 

The combination of a multi-valent metal with an air-breathing positive electrode portends 

a secondary battery system with extremely high energy density. The superoxide-controlled 

discharge voltage, low capacity, and limited cycle life observed for the Mg/O2 cell presented here 

suggest that additional development is needed to realize these advantages. Further electrolyte 

development could increase apparent capacity and rate performance. In addition, circumventing 

the multi-step discharge mechanism in favor of direct electrochemical MgOx formation would 

lead to cells with far higher energy density. 
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Chapter 4 A Magnesium/Oxygen Battery Based on the MACC Electrolyte 

 

4.1 Introduction 

Prior to the invention of the all-inorganic Mg electrolytes in 2013, Grignard-reagent-

based electrolytes were thought to be the only class of non-aqueous solutions capable of 

reversible Mg deposition.26 But Grignard solutions exhibit low conductivity ( < 1 mS/cm) and 

need to be supported by Lewis acids to achieve oxidative stability above 1V vs. Mg/Mg2+.79, 129-130 

Also, Grignard reagents are generally pyrophoric,131 so an electrolyte without them could have 

practical advantages. Simple Mg salts are known to dissociate poorly in organic solvents, 

possibly due to the high charge density on the Mg ion.132-134 Undissociated Mg salts cannot 

enable reversible Mg deposition and are therefore unsuitable as electrolytes.  

In 2013, a fully inorganic electrolyte that does not contain any Grignard reagents was 

realized by reacting MgCl2 with AlCl3  (Magnesium Aluminum Chloride Complex, MACC) and 

the oxidative stability was found to be 3V vs. Mg/Mg2+,135 comparable to previously developed 

electrolytes. Complicated conditioning procedures were needed to achieve high coulombic 

efficiency, and were discussed separately.136 The reported conditioning method consists of 

repated voltage cycling at low scan rates (5 mV/s) across a voltage window from –1.2 to 2.1V vs. 
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Mg/Mg2+.137 For a 1.5mL  sample of 30mM MACC/DME electrolyte, many (> 100) cycles were 

needed to achieve > 99% coulombic efficiency for Mg plating and stripping. At these low scan 

rates, the cycling methods requires very long conditioning times (at 5 mV/s, the 3300 mV 

window takes about 20 minutes to cycle around just once, so 100 cycles requires at least a day 

and a half of conditioning). In this chapter, we present a scalable electrolysis method that is able 

to condition MACC/DME electrolyte in bulk quantities (> 20mL) very rapidly.  

The conditioning method merits study since it is not clear why it is needed in the first 

place. Barile et al. reported that the Mg:Al ratio (as measured by elemental analysis) increases 

with conditioning. Irreversible co-deposition of Mg and Al was observed on the working 

electrode of the conditioning apparatus.136 Furthermore, changing the electrodes was found not to 

change the properties of the conditioned electrolyte, suggesting that the conditioning process 

does not affect the electrode/electrolyte interface.136 Recently, it was reported that conditioning 

MACC/THF increases the concentration of free Cl– in the solution, and that this increased Cl– 

might aid in depassivating the Mg surface. 137 Theoretical studies have focused on identifying the 

stable electroactive species in the electrolyte and speculated that conditioning stabilizes charged 

species in solution.138 

The same all-inorganic salt electrolyte concept has been demonstrated with other Mg 

salts such as MgCl2-Mg(HMDS)2 and MgCl2-Mg(Tf2N).139-141 Similar conditioning steps were 

applied in order to achieve high coulombic efficiency (>99%) for these solutions.  

In this chapter, the synthesis and bulk conditioning of the MACC/DME electrolyte and 

Mg/O2 cells using the MACC/DME electrolyte are discussed. We report a high-capacity Mg/O2 

battery that uses the MACC electrolyte in DME.135-137, 142 Room-temperature Mg/O2 cells using 

MACC/DME electrolyte exhibit capacities that are similar to previously reported high-

temperature Mg/O2 cells using Mg salt electrolytes54-55 and much higher than the capacities 
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observed using a modified Grignard electrolyte.143 A wide range of discharge rates (0.02-1 

mAcm–2) is explored. The rechargeability of the battery is discussed in relation to the surface 

films that form on the anode and cathode as a function of time and applied current. The discharge 

product is identified as consisting of Mg(ClO4)2 and MgCl2. The effect of discharge rate on 

capacity and discharge voltage are reported. 

4.2 Experimental Methods 

 Experimental methods similar to those described in Chapter 3 were used to assemble and 

test Mg/O2 cell performance and identify the discharge product chemistry. In addition to the 

previously discussed methods, Electrochemical Impedance Spectroscopy (EIS) and X-ray 

Photoelectron Spectroscopy (XPS) experiments were performed.  

 

4.2.1 Electrochemical Impedance Spectroscopy (EIS)  

EIS was performed with a BioLogic SP-200 potentiostat using a voltage amplitude of 

10mV around the open-circuit potential in the frequency range 100 mHz – 7 MHz. During the 

OC hold, EIS measurements take 2 minutes to run for the frequency range stated. Then, the cell 

is rested at open circuit (zero current) for 8 minutes. Then, another EIS measurement is taken. 

Therefore, during the OC hold phase EIS spectra is recorded every 10 min. The full duration of 

the OC hold was 3 hours (18 cycles of EIS).  

4.2.2 X-ray Photoelectron Spectroscopy (XPS) 

XPS was performed with a Kratos Axis Ultra using the monochromated Al source. The 

beam size was 2 mm x 1 mm, and the source voltage and emission current were 14 kV and 8mA, 

respectively. Survey spectra were collected in the range of 0 – 1200 eV with a step size of 1 eV.  

Mg 2p spectra were collected in the range of 42 – 58 eV with a step size of 0.1 eV and 20 sweeps 
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were collected in the same range to improve the signal-to-noise ratio. The charge compensator 

was turned on for all measurements to inhibit charging effects. Samples were exposed to air 

briefly (< 2 min) during sample loading.  

 

4.2.3 Electrolyte Synthesis and Conditioning 

The MACC electrolyte was prepared using MgCl2 (99.99%, Sigma Aldrich, USA) and 

AlCl3 (99.999%, Sigma Aldrich) powders, and DME (99.5%, anhydrous, Sigma Aldrich, USA) 

in the glovebox. MgCl2 powder (0.9521g) was added into the reaction vessel.  40mL of DME 

was added to the MgCl2 powder in the reaction vessel and stirring was started at 300 rpm. The 

resulting solution is 0.25M on a Mg basis and 0.125M on a Al basis. The AlCl3 powder 

(0.6667g) was added to the MgCl2/DME solution as it was being stirred. The solution was then 

capped and heated to 50 °C for 2 hours or until the solution turned completely translucent. The 

resulting solution is 0.25M on a Mg basis and 0.125M on a Al basis. The liquid temperature was 

measured using a thermometer every 30 min. Once the solution was clear in appearance, the heat 

was turned off and the solution was stirred overnight at room temperature. The resulting solution 

was then filtered with a disposable filter with an average pore size of 0.5 µm. The filtered residue 

presumably consists of a mixture of MgCl2 and AlCl3. The weight of the residue was not 

measured. The concentrations reported for the electrolyte assume that all of the salts stayed in 

solution.  

The conditioning cell for the MACC electrolyte is a 20mL beaker cell with three 

electrode openings in the cap. Counter and reference electrodes were Mg strips (99%, 

Goodfellow, U.S.), and two working electrodes were incorporated: a Pt wire (99.997%, Alfa 
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Aesar, U.S.) for cyclic voltammetry measurements and a Mg strip for the electrolytic 

conditioning steps.  

Cyclic voltammetry was performed by starting at 1V vs. Mg/Mg2+ and sweeping to lower 

voltages at a rate of 10mV/s. The low-voltage cutoff for the window was extended until a sharp 

increase in the current indicated Mg deposition. For a freshly-prepared electrolyte, the initial 

deposition overpotential could be as high as 2V.  

 

 

 

4.3 Results and Discussion 

4.3.1 Electrolyte Conditioning and Characterization 

The CV for the as-prepared MACC/DME electrolyte can be seen in Figure 4.1. The 

overpotential for deposition is around –1V vs. Mg/Mg2+ and the coulombic efficiency is below 

10%.  
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Figure 4.1 CV of as-prepared 0.25M MACC in DME, on a Pt wire working electrode at 

room temperature. Counter and reference electrodes are Mg.  

 

After recording the CV for the as-prepared MACC/DME, electrolysis was performed 

after replacing the Pt wire working electrode by a Mg strip. The voltage was kept constant at a 

0.5V below the deposition overpotential observed for the as-prepared material. For example, for 

the MACC/DME electrolyte whose voltammetric response is shown in Figure 4.1, the first 

conditioning step was performed at –1.5V vs. Mg/Mg2+. A representative chronoamperometric 

curve for the first constant-voltage electrolysis of the material that produced the data in Figure 

4.1 is presented in Figure 4.2.  
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Figure 4.2 Representative current vs. time plot for the conditioning step of MACC/DME 

electrolyte. Counter, working and reference electrodes are Mg strips.   

 

Constant-voltage electrolysis was stopped after 20 C of charge is passed, which was ~1 

C/mL for the solutions prepared here. The Mg strip was removed and replaced with Pt wire for a 

cyclic voltammetry measurement, after which the Mg strip was returned to the cell. Conditioning 

steps were continued until the CV showed that the deposition overpotential was reduced to < 0.5 

V and the coulombic efficiency was > 95%. The effect of conditioning by electrolysis is shown 

in Figure 4.3 as a function of the cumulative charge passed during the conditioning steps. Note 

that the deposition overpotential decreases significantly as electrolysis proceeds. The final CV 

after 120 C of conditioning (blue CV curve) exhibits a deposition overpotential of –0.5V vs. 

Mg/Mg2+ and a coulombic efficiency of 96.5%. This electrolyte is then stored in a clean container 

to be used in Mg/O2 cell testing experiments.   

The conductivity of the conditioned MACC/DME electrolyte was measured using a 

Mettler Toledo SevenMulti conductivity meter at room temperature. The electrolyte was exposed 

to air for a very short period of time (< 10 seconds) while taking the conductivity measurement. 
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The conductivity of the conditioned MACC/DME electrolyte was measured as 2.21 mS/cm, 

about twice that of 4:1 PhMgCl:Al(OPh)3/THF, which was reported as 1.24 mS/cm.53 

 

 
Figure 4.3 CV of 0.25M MACC/DME electrolyte, as-prepared (black), after 60C of 

conditioning (red) and after 120C of conditioning (blue). Counter and reference electrodes are 
Mg strips.  Working electrode is Pt wire.  

 

4.3.2 Electrochemical Testing 

  Conditioned MACC electrolyte was used in Mg/O2 cell discharge experiments. To 

compare the modified Grignard electrolyte from Chapter 3 and the conditioned MACC 

electrolyte, a discharge experiment was performed at a superficial discharge rate of 5µA/cm2. 

Figure 4.4 shows a comparison of the two electrolytes under the same experimental conditions.  

The Mg/O2 cells using MACC reach similar OCVs of 2.0 ± 0.1 V. The discharge-voltage plateau 

for the MACC electrolyte is much higher and discharge is sustained for a longer time period, 

confirming a much higher capacity. Eventually, the discharge experiment for the MACC 

electrolyte using the discharge rate of 5 μAcm–2 was stopped because the discharge time 
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exceeded the experimental controls. (Figure 4.4) The reason for the large difference in discharge 

capacities observed for the two electrolytes could be due to higher conductivity of the 

MACC/DME electrolyte or the higher solubility of O2 in DME compared to THF. 117-118 

 

 
Figure 4.4 Voltage vs. discharge time for Mg/O2 cells using 4:1 PhMgCl:Al(OPh)3/THF 

electrolyte (black) and MACC/DME electrolyte (red). Discharge rate is 5 μAcm–2 (superficial). 

 

To check that the discharge capacity arises from reaction with O2, a control cell was 

assembled in which the cell was not exposed to O2. Figure 4.5 compares the discharge capacities 

of cells with and without O2 exposure. The cell potential for the cell with no O2 exposure 

decreases very sharply upon initiation of discharge, whereas the Mg/O2 cell exhibits a discharge 

plateau before a gradual decrease in voltage.  
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Figure 4.5 Discharge curves for for Mg/O2 cells using MACC/DME electrolyte with 
(black) and without (red) O2 exposure.  

 
Figure 4.6 Representative discharge curves for Mg/O2 cells using MACC/DME 

electrolyte over a range of discharge rates (20-1000 µAhcm–2).  
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 The rate capability of a battery is important when deciding whether it can be incorporated 

into a vehicular application. Using the MACC/DME electrolyte has allowed us to discharge 

Mg/O2 cells at a wide range of discharge rates (0.02–1 mAhcm–2). These rates are comparable to 

rates at which Li/O2 cells are tested so it offers the possibility of a direct comparison to the rate 

capability of Li/O2 chemistry. Figure 4.6 shows representative discharge curves for discharge 

rates of 20–1000 μAcm–2. The slowest discharge rate was chosen to complete the measurement 

within 24 hours. As expected, the discharge voltage plateau is higher for slower rates (smaller 

current) and the capacity decreases with increasing rate. Several experiments were performed at 

each discharge rate to gather information about the rate performance of Mg/O2 cells. Figure 

4.7(a) and 4.7(b) show discharge capacity and cell voltage at 50% depth-of-discharge as a 

function of discharge rate and include data collected from 28 independent Mg/O2 cells.  

 

Figure 4.7 (a) Capacity per geometric electrode achieved at the 0.6V cutoff potential as a 

function of discharge rate. (b) Cell potential at 50% depth-of-discharge as a function of 

discharge rate. 
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Figure 4.7 (a) shows that discharge rate does not significantly affect capacity at rates 
below 0.01 mAcm–2. Capacity decreases with increasing discharge rate at rates above 0.02 

mAcm–2.  

Peukert’s law is an empirical relation that relates the capacity of a cell with the discharge 

current.98 The Peukert coefficient (k) can be compared across different battery chemistries to 

inform the capability of the cell to retain its capacity with increasing rate An ideal battery would 

have a k of 1, meaning that the capacity of the cell would remain the same at each discharge rate, 

but the second law of thermodynamics requires k to be larger than 1.  The capacities observed 

above 0.02 mAcm–2 for Mg/O2 cells using MACC/DME electro lytes follow a power-law 

dependence on the discharge current. The calculated Peukert coefficient is 1.9 with a reference 

capacity of 91 µAhcm–2 at 1 mAcm–2. Compared to Li/O2 (k=1.6)98 chemistry, Mg/O2 chemistry 

shows low rate capability. The transition from k=1 (below 0.01 mAcm–2) to k>1 (above 0.02 

mAcm–2) is commonly observed for metal/O2 batteries.110 Figure 4(b) shows the cell potential at 

50% depth-of-discharge (DOD) vs. discharge rate for Mg/O2 cells. Following an analysis similar 

to that of Griffith et al.,98 data reveals a Tafel slope of 4.9 V–1 and an exchange-current density of 

1.6 µAcm–2(superficial).  

 

4.3.3 Rechargeability and Impedance Measurements 

 Experiments with Mg/O2 cells using MACC/DME electrolyte showed that the cells did 

not exhibit any appreciable recharge capacity. Figure 4.8 shows the discharge and recharge 

behavior for a Mg/O2 cell run at 50 μAcm–2. While the cell exhibits a considerable discharge 

capacity, recharge at the same rate is not possible.  
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Figure 4.8 Discharge and recharge curve for a Mg/O2 cell using MACC/DME electrolyte. 

Rate is 50 μAcm–2 (superficial).  

 

To understand the reason for the lack of recharge capacity in the MACC/DME 

electrolyte, the evolution of interfacial resistances as a function of time and applied current was 

studied with the help of electrochemical impedance spectroscopy (EIS).  

 

 
Figure 4.9 (a) EIS spectra for a Mg/Mg cell using MACC/DME electrolyte under Ar 

during OC hold (green) and after passing 1.4C through cell (blue). (b) EIS spectra for a Mg/Mg 
cell using MACC/DME electrolyte before O2 exposure (green), under O2 during OC hold (red), 
and after passing 1.4C through cell (blue). (c) Equivalent circuit model fit for RSEI during OC 
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holds for Mg/Mg cells under Ar (green circles) and under O2 (red squares). The EIS spectra 
during OC holds were taken every 10 minutes for a total of 3 hours. In Fig. 2(a) and 2(b), EIS 

data taken at 10, 20, 50,100, 150 and 180 minutes are plotted.  

 

A series of experiments was devised to identify the effects of OC holds and applied 

currents on Mg anode surfaces. Figure 4.9(a) shows Nyquist plots gathered from a symmetric 

Mg/Mg cell under Ar. The cell is kept at OC and an EIS measurement is taken every 10 minutes 

to identify how impedance changes as a function of time. The increase in the impedance of the 

Mg/Mg cell over time could be associated with the formation of a non-passivating solid 

electrolyte interface (SEI) film. After the OC hold, 1.4C of charge was passed through the cell 

and another EIS data set was recorded (blue curve). The decrease in the impedance after applied 

current could be explained by the dissolution of the SEI film on the Mg anode. Figure 4.9(b) 

presents a similar experiment to Figure 4.9(a), but with exposure of the cell to O2 gas throughout 

the OC hold interval. The green curve shows EIS data collected before O2 exposure and, again, 

impedance grows as a function of time during the OC hold under O2 (red curves). After 1.4C 

charge was passed through the cell, the impedance again decreased (blue curve).  

An equivalent circuit model (ECM) was used to fit the EIS data in Figures 4.9(a) and 4.9(b) 

to identify and isolate the effect of O2 exposure for a Mg surface. The initial equivalent circuit 

model (ECM) was chosen to represent the symmetric Mg/Mg cells using the formulation of 

Huggins.144  

Model I 
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In the ECM, Runcomp, Rbulk , RSEI represent the uncompensated resistance of the cell setup, the 

resistance associated with the electrolyte and the resistance associated with the 

electrode/electrolyte interface, respectively. Constant phase elements (CPEs) were used since 

EIS curves are not perfect semicircles. The non-ideal capacitance could be explained by a 

dispersion of the time constants associated with the processes or porous structure of the 

interfacial layers.  

The EIS data collected from Mg/Mg cells was then modeled using a simplified ECM (model 

II) that includes a Rbulk element in series with a parallel CPE-R circuit that can be used to model 

the semicircles observed. In this model, the contribution of the uncompensated resistance and the 

cell capacitance are ignored since they are small compared to the rest of the components in 

model I. The extra complexity of model I does not improve the interpretation of the data.   

Model II 

 
 

The ECM fits for RSEI (using model I) and RSEI (using model II) are plotted in Figure 4.10 

and Figure 4.11. The evolution of RSEI (from model I) and RSEI  (from model II) with time closely 

resemble one another. Furthermore, ECM fits using model I reveal that Rbulk (~1000Ω) and 

Runcomp (~20Ω) are an order of magnitude lower than RSEI (5000–50000Ω, varies with time), 

confirming that SEI formation dominates the cell impedance. CPEcell (< 10-6 F/cm2) fit from 

model I is also negligible. Therefore simplifying model I and using model II is justified. 
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Figure 4.10 Trendline fits for RSEI during open circuit holds for Mg/Mg cells using 

MACC/DME under Ar (green circles) and under O2 (red squares) as a function of time1/2. The O2 
data was fit with a linear fit, indicating diffusion limited film growth. The Ar data was fit with a 
quadratic equation but since the x-axis is square root of time, the fit indicates a linear growth rate 
for the SEI film on the Mg anode during hold under Ar. This figure was generated using model I.  

 
Figure 4.11 ECM fits for RSEI during open circuit holds for Mg/Mg cells using 

MACC/DME under Ar (green circles) and under O2 (red squares) as a function of time1/2. This 
figure was generated using model II.  
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Figure 4.10 summarizes the increase in the resistance associated with the SEI as a 

function of time.  RSEI increases linearly with respect to the square root of time for Mg surfaces 

exposed to O2, indicating that there might be a diffusion-limited film growth. There is SEI film 

formation under both Ar and O2 atmospheres, but the presence of oxygen appears to induce more 

rapid film formation on the Mg surface.  

Taking into account the ideality factor (α) of CPESEI, one can approximate the pseudo-

capacitance associated with the CPE element. The capacitance value for CPESEI is on the order of 

10–6 F/cm2, a magnitude consistent with an interfacial layer at the electrode/electrolyte 

interface.145  

 

 
Figure 4.12 Normalized Rbulk for a Mg/Mg cell that is exposed to O2 as a function of time 

for MACC/ DME(blue) and modified Grignard (green) electrolyte.  

 

The evolution of Rbulk (resistance element associated with electrolyte) could give insight 

into the chemical stability of the electrolyte in the presence of O2 exposure. Symmetric Mg/Mg 

cell experiments were run with the modified Grignard electrolyte previously used for Mg/O2 

discharge experiments53, 143 in addition to the MACC/DME electrolyte studied here. The rate of 
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increase for Rbulk is larger for the modified Grignard electrolyte than MACC/DME.  (Figure 4.12) 

Therefore, MACC/DME is a more stable electrolyte than Grignard electrolytes when exposed to 

O2. More experiments, such as cyclic voltammetry with O2-saturated electrolytes, are needed to 

confirm the chemical stability of Mg electrolytes in the presence of O2. 

 

 
Figure 4.13 (a) EIS spectra for a Mg/O2 cell using MACC/DME electrolyte before O2 

exposure (green), after OC hold under O2, and after discharge (blue.) (b) A representative 
discharge curve showing the stage in the experiment that the EIS spectra in Figure 4.13(a) 

correspond to.   

 

The experiment depicted in Figure 4.13 builds on the previous symmetric Mg/Mg cell 

EIS experiments to isolate the effect of the porous-carbon positive electrode in a full Mg/O2 cell. 

Similar to the symmetric Mg/Mg cells, the exposure of O2 induces an increase in impedance of 

the cell, likely caused by an SEI film formation on the Mg anode. After the cell is discharged 

(blue curve), there is a new interface formed in the cell, indicated by a new semicircle 

characterized by a frequency of 4.40MHz and with a capacitance value on the order of 10–12 F. 

The emergence of this semicircle can be tracked by partial discharge experiments and the 

semicircle appears to grow as discharge progresses. (Figure 4.14) 
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Figure 4.14 EIS measurements for a Mg/O2 cell using MACC/DME electrolyte before O2 

exposure (red), after O2 equilibration (green), middle of discharge (light blue) and end of 
discharge (blue). The measurement points are labeled in the right figure depicting a 

representative Mg/O2 discharge experiment.  

 

Model III 

 

 

In non-symmetric Mg/O2 cells, a new semicircle appears at the end of discharge which 

should be accounted for with another parallel CPEprod-Rprod circuit in series with the previous 

model I . Fitting the data with model III, Rcomp and CPEcell are again small and negligible 

compared to other cell components. Therefore, model III is simplified to model IV.  
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Model IV  

 
This new parallel CPEprod-Rprod circuit accounts for the interface created as the discharge 

product gets deposited onto the carbon cathode surface. When the CPEprod value is analyzed, it is 

on the order of 10-12 F/cm2 which confirms that this new semicircle is assciated with a bulk 

discharge product layer.145 Rprod is on the order of 600Ω which is significant when the entire cell 

impedance value is on the order of 3000Ω. 

 The EIS data for Mg/O2 cells were also fit using the Huggins model (model III) and the 

simplified model IV. The CPEprod and Rprod values were within 20% for both cases. Therefore the 

simplified model III is a suitable circuit to model the EIS data. 

Overall, symmetric Mg/Mg cell EIS measurements show that SEI film formation is the 

largest contributor to impedance at the Mg/electrolyte interface. The presence of O2 accelerates 

the formation of the SEI film, similar to the “cross-over effect” observed in metal/O2 chemistries. 

The EIS spectra for the Mg/O2 cell show that the discharge product formation significantly 

increases the impedance of the cell and introduces a new interface.  The impedance associated 

with this new interface could be another reason that the rechargeability of the cell is limited. 

4.3.4 Discharge Product Characterization 

 The chemistry of the discharge product is another factor in the rechargeability of the 

Mg/O2 cell. The discharge product of Mg/O2 cells using MACC/DME electrolyte had been 

analyzed using the same methods described in Chapter 3 and additional characterization tools.   
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Figure 4.15 SEM images of positive electrode at the end of first discharge for Mg/O2 cell 

using MACC/DME electrolyte at (a) low magnification and (b) high magnification. The inset 
image in (b) shows a control electrode exposed to O2 in a cell held at open circuit. Discharge rate 

is 50 μAcm–2 (superficial). The dashed circles represent boundaries of the regions that were 
directly exposed to O2 through perforations in the Pt-coated current collector.  

 
Figure 4.16 EDS spectra of discharge product for Mg/O2 cell using MACC/DME 

electrolyte. 

 

Figure 4.15 shows SEM images of the discharged cathode in a Mg/O2 cell using 

MACC/DME electrolyte. In comparison to the SEM images of the discharged cathode with 

PhMgCl:Al(OPh)3/THF electrolyte, it can be observed that the surface coverage of the discharge 

product is increased. This observation is in agreement with the increased capacity observed with 

MACC/DME electrolyte. Figure 4.15(b) shows that particles are faceted and seem to be stacked 
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on top of one another. Figure 4.16 shows the EDS spectra collected from the discharge product. 

There is a strong signal for Cl and weaker signals for Mg, O, and C.  

In first step, XRD was used to analyze the composition of the discharge product. Figure 

4.17 shows the XRD spectra for discharged and control carbon electrodes. Peaks for MgCl2 and 

Mg(ClO4)2 can be observed in the discharged cathode whereas the peaks for these compounds 

are absent in the control cathode. The anhydrous Mg(ClO4)2 compound is known to be unstable 

and could decomposes into MgCl2 and O2.146 So the inhomogenous discharge product at room 

temperature could be explained by formation Mg(ClO4)2 followed by decomposition into MgCl2. 

 

 
Figure 4.17 XRD pattern of control (red), discharged (black) carbon electrodes. 

 

Figure 4.18 shows the Raman spectra for the discharged and control carbon electrodes. 

There are many peaks in the discharge product that are also observed in the electrolyte despite 

holding the carbon cathode under vacuum for 30 min. Most of the peaks in the electrolyte can be 

attributed to the solvent (DME). In addition, peaks that are attributed to MgCl2 (212 cm–1) and 



 74 

AlCl3 (330 cm–1) can be observed in the discharge product. However, the peak for ClO4 vibration 

is only observed in the discharge product, indicating that discharge process results in formation 

of Mg(ClO4)2. However, it is important to note that the Raman spectra collected from the 

discharge product indicate that the discharge product is not homogenous. For example, figure 

4.19 shows Raman spectra collected from different locations on the discharge product. It can be 

observed that the ClO4 peak is absent from some of these spectra and there is a stronger MgCl2 

peak in some spectra. This leads to conclusion that location-specific measurements are not ideal 

to identify the discharge product.  

 

 
Figure 4.18 Raman spectra collected from control (red) and discharged (black) carbon 

electrodes. Star symbol indicates the peak for perchlorate vibration.  

 
Figure 4.19 Raman spectra collected from discharged carbon electrodes.  
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Similar to Raman measurements, AES measurements also showed that the discharge 

product is spatially inhomogeneous. Figure 4.20 shows AES spectra from 4 different locations 

on the sample. The relative instensities of the Mg, O and Cl peaks change dramatically by 

changing the data collection spot. Also, the Cl and O peaks are shifted slightly by changing 

location, indicating that the binding environments change with location as well.  

 
Figure 4.20 AES spectra collected from discharged carbon electrodes in four different 

locations. Mg (blue), O (red) and Cl (green) spectra are plotted.  

 

Since the AES sample loading exposes the sample to air, we performed sputtering 

measurements on the sample in conjunction with AES measurements. Figure 4.21 shows the 

atomic composition of the three elements as a function of depth. The Cl content in this sample is 

~9% which is higher than found in the discharge product with PhMgCl:Al(OPh)3/THF 

electrolyte but significantly lower than expected for a discharge product that consists of MgCl2 

and Mg(ClO4)2. The layers closer to surface show an unusually high Mg concentration. In the 

region that is 20 to 50 nm from the top surface, the Mg and O ratio indicates a MgO layer. 

Further sputtering (50-80nm) reveals a stronger O signal relative to Mg. Therefore, the discharge 

product is inhomogeneous in the plane of the cathode as well as along the surface of the cathode. 
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This inhomogeneity makes it difficult to conclude the chemistry of the discharge product using 

RS and AES. 

 

 
Figure 4.21 AES depth profile of discharge product. Mg (blue), O (red) and Cl (green) 

atomic concentrations are plotted. 

 

 XPS was also employed in order to characterize the discharge product. Figure 4.22 shows 

the XPS survey spectra that were collected from the sample in 4 different locations. Since the 

beam size is 1 x 2 mm, peaks attributed to C and F are present because the x-ray beam is 

sampling the carbon cathode (F is present in the binder of the cathode). C 1s peak was monitored 

to ensure that there are no charging effects that would result in a shift in the XPS spectra. The 

inset shows that there are no significant charging effects as evidenced by a stable C1s peak at 

284.8 eV. Figure 4.23 shows Mg 2p spectra collected from the sample in 4 different locations. 

The binding energies for Mg vary significantly depending on the location the data was collected. 

Mg 2p peak for MgO is found at 49.6 eV,147-148 whereas MgCl2 introduces peaks at 51.5 eV and 

53.0 eV.149 It was not possible to find data on Mg 2p peak for Mg(ClO4)2. The variety of higher-
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energy peaks that are present in the spectra suggests that Mg has more than two binding 

environments in the sample and therefore bulk analysis tools such as XRD are most reliable 

when analyzing the sample.  

 

Figure 4.22 XPS spectra of discharged cathode using MACC/DME electrolyte.  

 
Figure 4.23 Mg 2p XPS spectra of discharged cathode using MACC/DME electrolyte.  

4.4 Conclusion 

MACC electrolyte in DME solvent is prepared and conditioned by bulk electrolysis. The 



 78 

conditioned electrolyte shows excellent coulombic efficiency and the conductivity is higher than 

other reported Mg electrolytes. Mg/O2 cells using conditioned MACC/DME electrolyte exhibit 

high capacity compared to Mg/O2 cells using previously discussed PhMgCl:Al(OPh)3/THF 

electrolyte. The observed capacity (for 50 µA/cm2 discharge rate) is 400 µAh/cm2, which is 

comparable to previously reported Mg/O2 cells.54 The rechargeability of the Mg/O2 cells using 

MACC/DME electrolyte is limited. EIS measurements show SEI formation on the Mg anode 

significantly increases Mg/electrolyte interface impedance in the presence of O2. With EIS, we 

have tracked the formation of the interface associated with discharge product and shown that 

discharge product formation increases cell impedance considerably. The discharge product is 

inhomogeneous as deduced from RS, AES, and XPS measurements. XRD measurements suggest 

formation of Mg(ClO4)2 and MgCl2 on the cathode. It is predicted that Mg(ClO4)2 decomposes 

into MgCl2. The limited rechargeability of Mg/O2 cells using MACC/DME electrolyte 

presumably makes this electrolyte an unlikely candidate for future research. Further work is 

needed to discover electrolytes with low-Cl content. It is also possible to use redox mediators in 

the electrolyte to promote rechargeability in Mg/O2 cells using MACC/DME electrolyte.  
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Chapter 5 Conclusions and Next Steps 

 

Widespread electrification of vehicles could lead to a significant reduction of GHG 

emissions.5 While Li-ion technology has revolutionized portable electronics, battery chemistries 

with high energy densities are needed to realize a fully-electric vehicle fleet.150 In addition to 

high energy density, it is desirable for next-generation batteries to cost less and have enhanced 

safety. Mg/O2 batteries have one of the highest theoretical energy densities.10 Mg costs less than 

Li and studies show that Mg metal anodes are less prone to dendrite formation,13 thus less prone 

to catastrophic failure of the battery pack. This thesis explores the feasibility of Mg/O2 batteries 

as a future energy storage technology.  

One of the most challenging aspects of Mg battery development has been the 

electrolyte34-35, 74, 151-152, which shuttles Mg2+ ions between the cathode and the anode. Ideally the 

electrolyte should have high ionic conductivity, wide electrochemical window and low 

flammability and volatility. Ionic liquids satisfy all of these criteria, and for this reason we have 

used cyclic voltammetry to screen Mg electrolytes in ionic liquid solvents that could potentially 

be used in a Mg/O2 battery.132 Through a systematic screening process,  presence of BF4 and 

Tf2N anions were found to inhibit reversible Mg deposition due to the strong attraction between 

the Mg2+ cation and these anions. It was proposed that addition of strong Lewis acids could be 

utilized to enhance dissociation of Mg from BF4 and Tf2N anions and allow for use of ionic 

liquids in Mg/O2 batteries.  
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Although our study of IL-based electrolytes did not identify a promising composition, we 

subsequently identified and synthesized two electrolytes that enable highly efficient reversible 

Mg deposition: a modified Grignard reagent electrolyte53 and an all-inorganic Mg salt 

electrolyte135. We used these two electrolytes in Mg/O2 cells; Significant differences in Mg/O2 

battery performance were observed based on the electrolyte used.  

Mg/O2 cells using the modified Grignard electrolyte exhibited low capacities 

(~10µAhcm–2) at a discharge rate of 0.005mAhcm–2.143 The open-circuit voltage was 2.0 V, lower 

than the ~2.9 V expected for direct electrochemical formation of MgOx. Fair cycling 

performance was observed up to 3 cycles. The discharge product was identified as a mixture of 

crystalline MgO and amorphous MgO2. The low voltage and two-phase product are consistent 

with a multi-step discharge reaction in which a superoxide-ion (O2
–) intermediate forms at ~2 V 

vs. Mg/Mg2+. Chemical precipitation and disproportionation subsequently produce MgO2 and 

MgO, but do not contribute to the cell’s electrical energy output. During charging, MgO2 

decomposes preferentially. Bypassing the multi-step mechanism in favor of direct 

electrochemical MgOx formation would raise the discharge potential and, consequently, the 

energy density. 

In contrast to the modified-Grignard-based system, Mg/O2 cells using MACC/DME 

electrolyte exhibited very high capacities (~400µAhcm–2 at a discharge rate of 0.05mAhcm–2). A 

wide range of discharge rates were explored to characterize rate performance. The discharge 

product was identified to be a mixture of MgCl2 and Mg(ClO4)2. The origins of limited 

rechargeability was explored using electrochemical impedance spectroscopy. The SEI film 

forming on the Mg anode in the presence of O2 and discharge product formation were found to 

be the main sources of impedance in the Mg/O2 cell. In Mg/Mg cells held under O2, the 

resistance element associated with electrolyte grows faster as a function of time for Grignard 
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electrolyte when compared to MACC/DME electrolyte, indicating that the MACC/DME 

electrolyte is more stable in the presence of O2. It is proposed that addition of redox mediators to 

the MACC/DME electrolyte could enable a high-capacity and rechargeable Mg/O2 cell.  

Major accomplishments of this thesis include: (1) Identification of anions that inhibit 

reversible Mg deposition/dissolution in IL-based electrolytes, (2) Description for a discharge 

mechanism explaining the relatively low working potential of an Mg/O2 battery, (3) Detailed 

characterization of the Mg/O2 discharge product for two different types of Mg electrolytes, (4) 

Confirmation that O2 exposure can play a large role in the impedance behavior of Mg/O2 cells.  

Unlike in Li-ion batteries, Mg battery technology remains in an early stage of 

development, and has not yet settled on an optimized electrolyte.153 Improving the characteristics 

of the electrolyte by, for example, eliminating corrosive halogens remains an active area of 

research.47-48, 50 In order to realize a high-efficiency Mg/O2 battery that could be a candidate for 

commercialization, we need to understand the battery performance as a function of different 

electrolyte compositions and the effects of O2 on the electrolyte and the electrode/electrolyte 

interface.113 While this thesis serves as a starting point for understanding these aspects, several 

challenges remain.  

Rechargeability and round-trip efficiency are common challenges for ‘beyond-Li-ion’ 

batteries. Recent developments on metal/O2 chemistries such as Li/O2 could provide a path 

forward for Mg/O2 battery research in terms of understanding the limitations on 

rechargeability.18, 93, 154 For example, a 3-electrode electrochemical cell exposed to O2 can provide 

insight into the electrochemical reactions that take place at the separate electrodes and their 

impact on reversibility.154 Moreover, the chemical stability of candidate Mg electrolytes in the 

presence of O2 can be confirmed with this setup.  It is recommended that next phase of Mg/O2 

battery research examine the effect of O2 exposure on electrolyte stability and delve more deeply 
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into oxygen interactions with the negative electrode. Furthermore, the addition of metal 

nanoparticles and modification of the cathode’s composition have shown some promise for 

reducing the charging voltages in Li/O2 batteries.18, 155 Similar strategies could be undertaken in 

Mg/O2 batteries.  

Overall, Mg/O2 batteries remain at a very early stage of development. Nevertheless, their 

high theoretical energy densities suggest that further research into improving their 

rechargeability could pay enourmous dividends. To our knowledge, the present study is the first 

thesis to examine this system in detail. It is clear that more fundemental research needs to be 

undertaken to understand the reaction mechanisms as a function of the cell’s active and inactive 

materials. We speculate here that electrolyte development is the most critical aspect to be 

pursued. If the “right” electrolyte can be engineered, Mg/O2 batteries could be poised to make 

exciting contributions to a future energy storage system.  
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