
A Safety-First Approach to Memory Models

by

Abhayendra Narayan Singh

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2016

Doctoral Committee:

Professor Satish Narayanasamy, Chair
Professor Peter M. Chen
Principal Researcher Madanlal Musuvathi, Microsoft Research, Redmond
Associate Professor Thomas F. Wenisch
Associate Professor Zhengya Zhang

© Abhayendra Narayan Singh 2016

All Rights Reserved

To my family

ii

ACKNOWLEDGEMENTS

I have been very fortunate to have Professor Satish Narayanasamy as my advisor.

He is the source of many ideas in this dissertation. He has been a constant source

of inspiration and motivation throughout my PhD. I would like to express my most

sincere and profound gratitude to him for his support and masterly guidance. I

would also like to thank Professor Thomas Wenisch, Professor Peter Chen, Professor

Zhengya Zhang and Principal Researcher Madanlal Musuvathi for their support and

their role on my committee. I must also thank my undergraduate advisor Professor

Mainak Chaudhuri, who introduced me to computer architecture and taught me how

to conduct research. Without his encouragement, I doubt if I had pursued PhD in

computer architecture.

I also consider myself very lucky for having an very exciting and fruitful collabo-

ration with Dr. Daniel Marino, Professor Todd Millstein, and Madanlal Musuvathi.

This collaboration has provided many excellent research and learning opportunities

throughout these years. I have benefited immensely from working with them.

Many thanks go to my friends and colleagues in Computer Engineering Labora-

tory and in Computer Science department for making it a fun place to work. I must

thank Jie Yu and Dongyoon Lee for helping me with SIMICS, LLVM and engaging

iii

in many useful discussions related to research. During my final year, Chun-hung

helped a lot with EECS 483 that I was teaching. Shaizeen collaborated with me

during later stages and was fun and helpful. Other friends in Computer Engineer-

ing Laboratory I was lucky to interact with include Gaurav Chadha, Ritesh Parikh,

Ankit Sethia, Daya Khudia, David Meisner, Joe Greathouse, Shantanu Gupta, Biruk

Mammo, Mehrzad Samadi, Aasheesh Kolli, Neha Agarwal and Shruti Padmanabha.

I also thank Mukesh Bachhav, Megha Bachhav, Animesh Banerjee, Ayan Das, Vivek

Joshi, Soumya Kundu, Mohit Nahata, Gaurav Pandey and many other friends in

Ann Arbor who made last six years fun and enjoyable despite having long Michigan

winters.

Finally, I must thank my parents and my brother for all they have done to help

me reach where I stand now. I sincerely acknowledge the support and encouragement

I received from them during my stay at Michigan. I thank all other family members

for being loving and caring.

The “drfx Memory Model” (Chapter III) and “End-to-End Sequential Consis-

tency” (Chapter IV) work were result of collaboration with Dan Marino, Todd Mill-

stein, Madan Musuvathi and Satish Narayanasamy. I thank my co-authors for allow-

ing me to present the results of our collaboration in my dissertation.

The “Efficiently Enforcing Strong Memory Ordering in GPUS” (Chapter V) was

the result of collaboration with Shaizeen Aga and Satish Narayanasamy. I thank my

co-authors for allowing me to present the results of our collaboration in my disserta-

tion.

Chapter III contains material that appears in “Efficient Processor Support for

iv

DRFx, a Memory Model with Exceptions”, in Sixteenth International Conference

on Architectural Support for Programming Languages and Operating Systems, Ab-

hayendra Singh, Daniel Marino, Satish Narayanasamy, Todd Millstein, Madan Musu-

vathi. The dissertation author was the primary investigator and author of this paper.

Portions of Chapter III are Copyright ©2011 by the Association for Computing Ma-

chinery, Inc. Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are not made or

distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by

others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, to republish, to post on servers, or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions from permissions@acm.org.

Chapter IV contains material that appears in “End-to-End Sequential Consis-

tency”, in 39th Annual International Symposium on Computer Architecture, Ab-

hayendra Singh, Satish Narayanasamy, Daniel Marino, Todd Millstein, and Madan

Musuvathi. The dissertation author was the primary investigator and author of this

paper. Portions of Chapter IV are Copyright ©2012 IEEE. Reprinted, with permis-

sion, from [Abhayendra Singh, Satish Narayanasamy, Daniel Marino, Todd Millstein,

and Madan Musuvathi, End-to-End Sequential Consistency, ISCA, June/2012].

Chapter V contains material that appears in “Efficiently Enforcing Strong Memory

Ordering in GPUS”, in 48th International Symposium on Microarchitecture, Abhayen-

dra Singh, Shaizeen Aga, and Satish Narayanasamy. The dissertation author was the

primary investigator and author of this paper. Portions of Chapter V are Copyright

v

©2015 Abhayendra Singh. Permission to make digital or hard copies of all or part

of this work for personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components of this

work owned by others than the author(s) must be honored. Abstracting with credit

is permitted. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org.

vi

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . xi

LIST OF TABLES . xiii

ABSTRACT . xiv

CHAPTER

I. Introduction . 1

II. Background . 8

2.1 Relaxed Memory Models at ISA Level 8
2.2 High Level Language Memory Model 9

2.2.1 Data-Race-Free-0 (DRF-0) Memory Model 10
2.2.2 C++ and Java Memory Model 10

2.3 Problems with Relaxed memory models 11

III. DRFx Memory Model . 14

3.1 The DRFx Memory Model 15
3.1.1 A Compiler and Hardware Design for drfx 17
3.1.2 Contributions . 19

3.2 Overview of drfx . 20
3.2.1 Compiler Transformations in the Presence of Races 20
3.2.2 Writing Race-Free Programs is Hard 21
3.2.3 Detecting Data Races Is Expensive 22
3.2.4 Detecting SC Violations is Enough 24
3.2.5 Enforcing the drfx Model 25

vii

3.2.6 From Region Conflicts to drfx 26
3.2.7 The Compiler and the Hardware Contract 27

3.3 Compiler and Hardware Implementation 29
3.4 drfx-compliant Compiler . 31

3.4.1 Inserting Hard Fences for DRFx-compliance 31
3.4.2 Inserting Soft Fences to Bound Regions 32
3.4.3 Compiler Optimization 33

3.5 drfx-compliant Hardware: Design and Implementation . . . 34
3.5.1 Overview . 34
3.5.2 Signature-based Lazy Conflict Detection 37
3.5.3 Concurrent Region Conflict Check and Region Exe-

cution . 39
3.5.4 Coalescing Soft-Fence-Bounded Regions 40
3.5.5 Out-of-Order Execution of Regions 40
3.5.6 Out-of-order Commit of Regions 41
3.5.7 Exploiting Locality in Memory Accesses 43
3.5.8 Handling Context Switches 46
3.5.9 Debugging Support 47
3.5.10 System Calls and Safety 48
3.5.11 drfx Hardware Design Details 49

3.6 Performance Evaluation . 52
3.6.1 Methodology . 52
3.6.2 Comparison of drfx with Other Relaxed Memory

Models . 54
3.6.3 Effectiveness of drfx Hardware Optimizations . . . 55
3.6.4 Scalability . 57

3.7 Conclusion . 58

IV. SC-preserving Hardware . 59

4.1 Introduction . 60
4.2 Efficient and Complexity-Effective SC Hardware Remains a

Challenge . 62
4.3 Relaxing Memory Model Constraints for Safe Accesses 65
4.4 Design: Memory Access Type Driven SC Hardware 66

4.4.1 Two Techniques to Determine Memory Access Type 67
4.4.2 SC Architecture Design 69
4.4.3 Store-to-Load Forwarding with Two Store Buffers . 70
4.4.4 Illustration . 71
4.4.5 SC Memory Model Guarantees 73

4.5 Static Classification of Memory Accesses 74
4.5.1 Classification of Memory Accesses 75
4.5.2 Ensuring Correctness for Hardware with Two Store

Buffers . 76
4.5.3 CISC Architecture 79

viii

4.6 Dynamic Classification of Memory Accesses 80
4.6.1 Background: Process-Level Page Protection 80
4.6.2 Proposed Extension: Thread-Level Page Protection 81
4.6.3 State Transitions and Guaranteeing Memory Order-

ing Constraints . 81
4.6.4 Initialization Phase 84
4.6.5 Context Switches 84
4.6.6 Direct Memory Accesses (DMA) 85

4.7 Evaluation . 86
4.8 Methodology . 86

4.8.1 Performance of Memory Access Type Driven SC Hard-
ware . 89

4.8.2 Cost of End-to-End SC 91
4.8.3 Sensitivity to Store Buffer Sizes 92
4.8.4 Processors with Limited Instruction Level Parallelism 92

4.9 Conclusion . 93

V. Efficiently Enforcing Strong Memory Ordering in GPUs . . . 95

5.1 Introduction . 96
5.2 Background . 99

5.2.1 GPU Architecture 99
5.2.2 CUDA and OpenCL Memory Consistency Models . 102

5.3 Enforcing Memory Ordering Constraints in a GPU 105
5.3.1 Violation of Ordering Constraints 105
5.3.2 Relaxed Memory Ordering 109
5.3.3 Total Store Order 110
5.3.4 Sequential Consistency 111
5.3.5 Common Memory Ordering Optimizations 113
5.3.6 Impact of GPU Architectural Features 114

5.4 Efficient SC for GPU . 116
5.4.1 Overview . 116
5.4.2 Implementation . 121

5.5 Experimental Methodology 127
5.5.1 Simulation environment 127
5.5.2 Benchmarks . 128

5.6 Experimental Results . 128
5.6.1 Comparison of naïve SC, naïve TSO and RMO . . . 130
5.6.2 Benefits of TSO over SC are Small 132
5.6.3 Prefetching is Ineffective 133
5.6.4 Type-aware design is Effective 134
5.6.5 Impact of cache-write policy 135

5.7 Conclusion . 137

VI. Related Work . 138

ix

6.1 Efficiently Supporting Sequential Consistency 138
6.1.1 Compiler based approaches 138
6.1.2 Data-Race Freedom by Construction 139
6.1.3 Efficient SC hardware 139

6.2 End-to-end Sequential Consistency 141
6.2.1 Transactional Memory 141
6.2.2 BulkSC . 142

6.3 Memory Models With Exceptions 143
6.4 Private and Shared Data Driven Architectures 145
6.5 Memory Consistency Models for GPUs 146

VII. Conclusion . 147

BIBLIOGRAPHY . 150

x

LIST OF FIGURES

Figure

1.1 Unintuitive execution behavior due to reordering of memory accesses. 3
3.1 Example of a data-race-free program 21
3.2 Incorrect fix of a program with data-races 22
3.3 A program with a data race may or may not exhibit SC behavior at

runtime. 23
3.4 The relationships among various properties of a program execution. 25
3.5 A transformation that introduces a read and a write. 28
3.6 An Example Binary Compiled Using drfx Compiler. 42
3.7 Out-of-order commit and locality optimizations together can violate

drfx guarantees . 45
3.8 Architecture support for drfx . 49
3.9 Slowdown of benchmark programs run under the drfx model com-

pared to a baseline DRF0 model, broken down in terms of cost of lost
compiler optimization and cost of hardware race detection. 54

3.10 Effectiveness of Region Coalescing, and Out-Of-Order Region Execu-
tion and Commit Optimizations. 55

3.11 Profile of commit stage stall in drfx 56
3.12 Scalability of drfx with increasing number of cores. 57
4.1 Memory Access Type Driven SC Processor and OS 69
4.2 Comparison of a program’s execution in baseline SC (top) and pro-

posed SC hardware (bottom) designs. 72
4.3 Challenging cases for static classification scheme 77
4.4 State transition of a page. Accesses to the shaded state are unsafe. . 83
4.5 Performance of the baseline SC and variants of the proposed SC de-

signs compared to TSO. 89
4.6 Classification of memory accesses by various methods. 90
4.7 Comparison of our proposed system with baseline SC, TSO, and

RMO hardware. 91
4.8 Comparison of our proposed system with baseline SC, TSO, and

RMO hardware with in-order cores 93
5.1 Hierarchical organization of a GPU kernel 100
5.2 Direct and indirect synchronization 106

xi

5.3 Utility of relaxed ordering constraints in an in-order GPU. 113
5.4 Example of streaming and non-streaming stores in GPGPU programs 115
5.5 Proposed type-aware GPU architecture for efficient SC 120
5.6 State transition diagram of sectors in MAC 122
5.7 Normalized execution time of naïve TSO and naïve SC(write-back

cache, GTO warp scheduler) . 130
5.8 An example to demonstrate how naïve SC could perform better

than RMO . 131
5.9 Normalized execution time of SC with prefetching (write-back cache,

GTO warp scheduler) . 133
5.10 Performance of various memory models with a write-through L1 cache

(GTO warp scheduler) . 135

xii

LIST OF TABLES

Table

3.1 Processor Configuration . 53
4.1 Processor Configuration . 87
5.1 Synchronization functions in GPGPU programming models. Nota-

tions: S: synchronization, R: read, W: write 102
5.2 GPGPU-sim Configuration . 129

xiii

ABSTRACT

A Safety-First Approach to Memory Models

by

Abhayendra Narayan Singh

Chair: Satish Narayanasamy

Sequential consistency (SC) is arguably the most intuitive behavior for a shared-

memory multithreaded program. It is widely accepted that language-level SC could

significantly improve programmability of a multiprocessor system. However, effi-

ciently supporting end-to-end SC remains a challenge as it requires that both compiler

and hardware optimizations preserve SC semantics.

Current concurrent languages support a relaxed memory model that requires pro-

grammers to explicitly annotate all memory accesses that can participate in a data

race (“unsafe” accesses). This requirement allows compiler and hardware to aggres-

sively optimize unannotated accesses, which are assumed to be data-race-free (“safe”

accesses), while still preserving SC semantics. However, unannotated data races are

easy for programmers to accidentally introduce and are difficult to detect, and in such

cases the safety and correctness of programs are significantly compromised.

xiv

This dissertation argues instead for a safety-first approach, whereby every memory

operation is treated as potentially unsafe by the compiler and hardware unless it is

proven otherwise.

The first solution, drfx memory model allows many common compiler and hard-

ware optimizations (potentially SC-violating) on unsafe accesses and uses a runtime

support to detect potential SC violations arising from reordering of unsafe accesses.

On detecting a potential SC violation, execution is halted before the safety property

is compromised.

The second solution takes a different route and instead of throwing exceptions, it

guarantees SC by making both the compiler and the hardware SC-preserving. SC-

preserving compiler and hardware are also built on the safety-first approach. All

memory accesses are treated as potentially unsafe by the compiler and hardware.

SC-preserving compiler and hardware rely on different static and dynamic techniques

to identify safe accesses. Our final result indicates that supporting SC at the language

level is not very expensive in terms of performance and hardware complexity.

The dissertation also explores an extension of this safety-first approach for data-

parallel accelerators such as Graphics Processing Units (GPUs). There are significant

micro-architectural differences between a CPU and a GPU, which warrant a fresh look

at trade-offs involved in different memory models for GPUs. Furthermore, these dif-

ferences also render prior efficient SC solutions for CPUs ineffective for data-parallel

architectures; requiring an SC-preserving solution specific to data-parallel architec-

tures. The proposed solution based on our SC-preserving approach performs nearly

on par with the baseline GPU that implements a data-race-free-0 memory model.

xv

CHAPTER I

Introduction

Parallel programming has become increasingly important over last decade as pro-

cessor industry transitioned to multi-cores. The “Free Lunch” of software devel-

opment, enabled by aggressive frequency scaling and Moore’s Law, has long been

over [108]. As a result, mainstream programmers are expected to write parallel pro-

grams in order to extract performance out of current and future parallel platforms.

Shared memory parallel programming is the most common programming model

for writing parallel programs. In this model, a program consists of multiple threads

that share same address space. All threads share the program’s data and communi-

cate with each other via simple loads and stores. Shared memory provides easy to

understand abstractions to programmers, but writing a correct parallel program is

inherently hard. The programmer has to think about how multiple threads from an

application interact with each other. For example, in a sequential program, a read

is always guaranteed to return a value written by the last write in program order.

For a multithreaded program, however, defining last write for a read operation is not

straightforward because multiple threads can be writing to the same location.

1

A parallel system’s interface that defines what values a read can return is known

as memory consistency model or memory model in short. Memory consistency model

is a language-level contract that programmer can assume and the system (compiler

and hardware) must honor. Thus, foundation of concurrency semantics of a language

is based on the memory consistency model supported by that language. Designing

a memory model involves a balance between two, often conflicting goals: improving

programmer productivity with a memory model that matches programmer’s intu-

ition, and maximizing system performance with a weak memory model that enables

hardware and compiler optimizations.

Sequential consistency (SC) [69] is arguably the most intuitive memory model

discussed in the literature. Under SC, memory accesses of a program appear to

have executed in a global order consistent with the per-thread program order. This

execution order matches with programmer’s intuition of parallel program being an

interleaving of its constituent threads. Researchers widely agree that providing SC

could simplify concurrency semantics of a language as SC matches with program-

mer’s intuition, but they also believe that SC is an unaffordable luxury [50]. The

primary reason for such a belief is the requirement of memory accesses being exe-

cuted in program order within a thread. This requirement disallows popular compiler

optimizations such as common subexpression elimination, loop invariant code motion

and store buffer optimization employed in hardware. In quest of high performance,

therefore, modern languages and hardware have opted for a weaker memory model

that is more permissive in allowing compiler and hardware optimizations that reorder

memory accesses.

2

X* x = null;
bool init = false;

// Thread t // Thread u
A: x = new X(); C: if(init)
B: init = true; D: x->f++;

X* x = null;
bool init = false;

// Thread t // Thread u
B: init = true;

C: if(init)
D: x->f++;

A: x = new X();

(a) Original program. (b) Transformed program.

Figure 1.1: Unintuitive execution behavior due to reordering of memory accesses.

Relaxing memory ordering constraints, however, can result in non-intuitive se-

mantics that are hard to understand and reason about. Consider a simple C++

program shown in Figure 1.1a. In this code snippet, one thread is creating an object

and notifying other thread by setting the init variable. Here programmer expects

statement D to correctly dereference the pointer x. This expectation is borne out of

the fact that we usually take two programming abstractions for granted when analyz-

ing a program snippet: program order, which requires that instructions in a thread

execute one after the other in the order they appear in the program text; and shared

memory, which requires that memory behave as a map from addresses to values with

each memory operation taking effect immediately. SC matches with programmer’s

intuition by supporting the program order abstraction.

But contrary to intuition, statement D can trigger a null-pointer exception. This

is because C++ and other mainstream languages [20, 74] provide weaker semantics

known as data-race-free-0 (DRF-0) [4]. DRF-0 guarantees SC only if all the data races

in a program are explicitly annotated. Two memory operations conflict if they access

the same memory location and at least one of them is a write. A data race is defined

3

as a pair of conflicting accesses which are executed by different threads and are not

ordered by any synchronization operation. The accesses to init in the program in

Figure 1.1a form a data race as there is no synchronization between read and write

to init. Failure to annotate this data race can expose the effects of sequentially

valid (i.e. correct when considered on a single thread in isolation) compiler and

hardware transformations. For instance, in the absence of an annotation on the init

variable, the compiler and hardware are allowed to freely reorder statements A and B

(Figure 1.1b) since there is no data or control dependence between them. However,

this transformation can result in a null-pointer exception at statement D.

Such counter-intuitive semantics result in increased complexity of the memory

model interface provided to programmers. While such programs are typically con-

sidered erroneous, data races are easy for programmers to accidentally introduce and

difficult to detect. Having either undefined (e.g. C++) or complex semantics (e.g.

Java) for data-races can significantly compromise the safety, correctness, and debug-

gability of programs. Boehm and Adve has shown how a sequentially valid compiler

optimization can cause a racy program to jump to an arbitrary code [20]. Debug-

ging an erroneous program execution is also difficult under DRF-0 model because

programmer must always assume that there might have been a data race present.

Therefore, it may not be sufficient to reason about program’s execution using intu-

itive SC semantics while debugging.

Providing concurrency support that provides such weak safety property goes

against the philosophy of safe languages. A safe language protects its own abstrac-

tions [92]. Safe languages provide strong guarantees to programmers for all programs

4

that are allowed to execute, obviating large classes of subtle and dangerous errors

and cleanly separating a language’s interface to programmers from its implementa-

tion details. Modern languages (and programmers) have embraced the compelling

programmability benefits of safety despite the additional run-time overhead. Specif-

ically, memory- and type-safe languages such as Java, C#, Python, and JavaScript

protect the abstraction of memory as a collection of disjoint entities, each with a

well-defined structure and set of operations based on its type.

Unfortunately, C++ and Java memory model are reversing this trend by providing

multi-threading support that subverts fundamental programming language abstrac-

tions, exposes the complexities of compiler and hardware optimizations to program-

mers, and makes it easy for programmers to shoot themselves in the foot in ways that

are difficult to detect and correct. This is the case not only for “unsafe” languages

like C and C++ but also for “safe” languages like Java.

To address above mentioned problems, this dissertation focuses on a safety-first

approach for designing memory model. The primary reason for these problems with

DRF-0 based memory models is the assumption that all unannotated accesses are

safe by default ; compiler and hardware can freely reorder them. The key idea behind

our safety-first approach is to treat unannotated memory accesses as potentially racy

(“unsafe”), and relax memory ordering constraints only when they are proven to be

data-race-free (“safe”). In this way, SC semantics is guaranteed for all programs

whether data-race-free or not. Memory accesses can be identified as safe through

programmer provided annotations, static, and dynamic analyses. This dissertation

describes three instantiations of this safety-first approach to provide SC guarantees.

5

drfx memory model provides uniform fail-stop semantics to all programs (in-

cluding programs with data-races). drfx memory model treats all memory accesses

as unsafe by default. Although drfx allows common compiler and hardware optimiza-

tions on such unsafe accesses, it relies on a runtime support to detect potential SC

violations. On detecting a potential SC violation, execution is halted by throwing a

memory model exception. Therefore, drfx guarantees that an execution of a parallel

program is either SC or it is terminated with a memory model exception before SC is

violated.

End-to-End sequential consistency: A large fraction of legacy codes contains

several intentional benign data-races [85]. Throwing exceptions for all such legacy

codes would result in backward incompatibility and may not be an ideal approach.

To address this problem, the second solution focuses on providing SC for all programs

instead of throwing exceptions. Similar to drfx, it also treats all unannotated data

accesses as unsafe by default and restricts potentially SC-violating compiler and hard-

ware optimizations to safe accesses only. SC-preserving compiler [76, 77] empirically

demonstrates that the performance incentive for relaxing the intuitive SC semantics

in compiler is much less than previously assumed. SC-preserving hardware follows

unsafe by default approach and uses a hybrid classification scheme to identify safe

accesses. Together, SC-preserving compiler and hardware guarantee language level

SC without incurring significance performance or design complexity overhead.

Efficient SC for data-parallel architectures: The drfx memory model and

End-to-end SC proposals target general purpose CPU multi-core systems. In recent

years, data-parallel accelerators, more commonly referred to as Graphics Process-

6

ing Units (GPUs), have started to play an increasingly important role in parallel

computing. Modern GPUs are no longer limited to graphics applications, and are

also being used as data parallel accelerators for general purpose programs. Program-

ming models such as CUDA [87] and OpenCL [81] have enabled developers to exploit

data-parallelism in general-purpose applications using GPUs (referred as GPGPU

applications).

Data-parallel architectures represent a class of parallel systems that is significantly

different from CPU based multi-cores due to micro-architectural differences. These

differences pertain to virtual memory support, instruction execution, number of con-

current threads per core (SM for GPU), presence of a shared memory in SM and

partitioned address space, etc. Due to these differences, a new inquiry into trade-offs

involved in supporting various memory models is warranted. Following our unsafe-by-

default approach, we extend the SC-preserving hardware idea to GPUs and propose

an efficient SC design that takes these micro-architectural differences into account

and performs on par with baseline DRF-0.

The rest of dissertation is organized as follows. Chapter II presents some back-

ground material useful in understanding all subsequent chapters. Chapter III de-

scribes the drfx memory model which provides simple, strong guarantees to a pro-

grammer while still allowing most common optimizations. Chapter IV presents a SC

hardware design that in conjunction with SC-preserving compiler provides end-to-end

SC guarantees to programmers. Chapter V discusses how presents an implementation

to support SC efficiently in GPUs. Finally Chapter VI discusses some related work

and Chapter VII concludes.

7

CHAPTER II

Background

This chapter provides background on memory consistency models and data races.

It provides useful context for material presented in subsequent chapters.

2.1 Relaxed Memory Models at ISA Level

Early works on memory models delegated most of memory model concerns to the

hardware. Therefore, most of the memory models described in literature are hardware

centric and defined at assembly language level. SC requires that memory operations

from same thread appear to have executed in the program order. However, many

sequentially valid optimizations (i.e. correct when considered on individual thread in

isolation) can potentially violate SC by reordering memory accesses. In order to allow

such optimizations, several memory models have been proposed that relax the pro-

gram order execution requirement. Tutorial by Adve and Gharachorloo [3] provides a

very good overview of these memory models. Total Store Ordering [113] allows later

loads to bypass earlier pending stores. Current x86 processors support a variant of

8

TSO memory model. Weak Ordering [34] relaxes all memory ordering constraints for

loads and stores. It classifies all memory operations into data and synchronization

operations. Compiler and hardware are allowed to freely reorder data accesses as long

as they preserve ordering for accesses to a single location. Release Consistency [42]

further divides the synchronization operations into acquire and release operations.

It allows roach-motel kind of optimizations, where data operations outside of a syn-

chronized region can be brought within the synchronized region. However, memory

operations inside a synchronization region can not get outside of the synchronized

region. Commercial implementations like Digital Alpha, SPARC V9 RMO, IBM

PowerPC, etc. implement either weak ordering, release consistency or some variant

of these.

2.2 High Level Language Memory Model

A high level language memory model is consistency model provided by a high level

language (such as C++, Java, Python, etc.) to programmers. Ideally a high level

language memory model shields programmers from quirks of underlying hardware’s

memory model. Programmers should be able to reason about a parallel program’s

execution using rules defined by the language level memory model. A parallel system’s

observable consistency model depends on the weakest memory model supported in

the computing stack. If hardware supports a memory model which is weaker than

what a high level language guarantees, either compiler or runtime system has to

insert additional synchronization operations to prevent the hardware from reordering

9

memory accesses in such a way that violates the language level memory model.

2.2.1 Data-Race-Free-0 (DRF-0) Memory Model

Memory model adopted by current mainstream languages is data-race-free-0 [4].

It is a variant of weak ordering and is more programmer centric. As in weak or-

dering, it also classifies all memory accesses into data and synchronization accesses

and guarantees SC execution only for programs which do not contain any data races.

Two memory accesses conflict if they access same location and at least one of them

is a write. A program contains a data race (or simply a race) if it has a sequentially

consistent execution in which two threads are about to execute a conflicting pair

of accesses which are not ordered by any synchronization operation. Conflict among

synchronization operations is not treated as a data-race. A program is said to be data

race free if all conflicting accesses in the program are either properly synchronized or

labeled as synchronization operations.

2.2.2 C++ and Java Memory Model

In recent years, there have been significant efforts to bring together language,

compiler, and hardware designers to standardize the memory model for mainstream

programming languages. The consensus has been around memory models based on

DRF-0, which attempts to strike a middle ground between simplicity for program-

mers and flexibility for compiler and hardware. To make a program data race free,

programmers can use synchronization constructs (including high level constructs like

lock, barrier, as well as individual memory accesses qualified with volatile [74] or

10

atomic [20] keyword). Key assumption made by these models is that all data accesses

are safe by default ; compiler and hardware can freely reorder data accesses as long

as they preserve program ordering for accesses to same location. This assumption al-

lows many sequentially valid compiler optimizations that are potentially SC violating

(e.g. common subexpression elimination, loop invariant code motion, register promo-

tion, etc.). Similarly hardware optimizations such as out-of-order execution and store

buffering, which are also potentially SC violating, are valid in DRF-0 based memory

models. While enabling these performance optimizations in compiler and hardware,

DRF-0 puts additional burden on programmers to properly annotate all data races

in the program as synchronization operations. Failing to annotate even a single data

race could result in executions that are non intuitive and could compromise safety of

the system as discussed in next section.

2.3 Problems with Relaxed memory models

Under DRF-0, a program containing a data race does not have any defined seman-

tics for its executions. While such programs are typically considered erroneous, data

races are easy for programmers to accidentally introduce and are difficult to detect.

The DRF-0 memory model, therefore, poses following problems for programmer:

• A racy execution that is allowed to execute arbitrarily can compromise desired

safety property. For example, Boehm and Adve have shown how a sequentially

valid compiler optimization can cause a program to jump to arbitrary code in

presence of a data race [20].

11

• Debugging an erroneous program is difficult under DRF-0. Programmer must

always assume worst case and assume that a data race might be present in

the program. Programmer, therefore, can no longer use intuitive SC semantics

during debugging to understand and identify errors.

Similar to DRF-0, recently adopted C++ memory model does not provide any defined

semantics to programs with data races. On the other hand, Java, being a safe lan-

guage, can not afford to have undefined semantics. Therefore, it provides a complex

semantics that is hard to understand and reason about.

The primary reason for the undefined or complicated semantics in presence of

data races is the safe by default assumption for data accesses made by DRF-0 based

memory models. While this assumption enables many common compiler and hard-

ware optimizations, it can also lead to executions that are non-intuitive and could

compromise safety. Instead, we need a memory model that preserves safety proper-

ties and provides uniform and easy to understand semantics to all programs (even to

those with data races). Such a memory model should treat memory accesses as un-

safe by default as opposed to the safe by default assumption of DRF-0. Under unsafe

by default assumption, compiler or hardware are allowed to reorder memory opera-

tions only when they can prove that concerned accesses are data-race-free (“safe”).

This approach ensures that safety is not compromised even in presence of data races.

Providing uniform semantics to all programs will improve programmability as it pre-

serves shared memory and program order abstractions that programmers rely on. In

Chapters III, IV and V, we discuss novel solutions that follow the unsafe by default

12

approach and provide strong SC guarantees to all programs while preserving safety

guarantees.

13

CHAPTER III

DRFx Memory Model

Current mainstream languages (C++, Java) support a memory consistency model

that is based on data-race-free-0 (DRF0) memory model. DRF0 memory model

provides strong guarantees of SC only to programs that do not have any data races.

For programs containing data races, programmer is given either weaker semantics

(Java) or no semantics at all (C++). This undermines the ease of debugging and the

safety of parallel programs. This is also a problem for compiler/hardware designers

as proving the correctness and safety of various compiler and hardware optimizations

remains to be a challenge [112, 24].

To address the problem of data races in DRF0 based memory models, researchers

have proposed to use data race detectors to identify data races statically or dynami-

cally and provide fail-stop semantics by either rejecting the program (static approach)

or halt the execution on detecting a data race (dynamic approach) [5, 19]. However,

most static data race detection techniques are limited to lock based synchronization

and either restrict programming style or have difficulty in scaling to large programs.

On the other hand, dynamic data race detection must be precise, neither allowing a

14

program to complete its execution after a data race nor allowing a race-free execution

to be erroneously rejected. However, precise data race detection can slow down the

program by 8X when done in software [38]. Hardware based dynamic race detectors

have lower overhead in comparison to software based techniques, but they rely on

complex rollback and re-execution support in order to avoid false positives [5, 84].

The research described in this chapter presents the drfx memory model, which

provides uniform fail-stop semantics for all programs (including those with data races)

without relying on a precise data race detector.

3.1 The DRFx Memory Model

The drfx memory model provides a simple and strong guarantee to programmers

while supporting many common compiler and hardware optimizations. drfx memory

model is inspired by the observation of Gharachorloo and Gibbons [40] that to provide

a useful guarantee to programmers, it suffices to detect only the data races that cause

SC violations. They illustrate that such detection for a compiled program can be

much simpler than full-fledged data-race detection. drfx follows the unsafe by default

principle and treats all accesses as being unsafe. While it allows common compiler and

hardware optimizations on these unsafe accesses, it uses a runtime system support

to detect SC violations arising from reordering of unsafe accesses. On detecting a

potential SC violation, drfx halts the program’s execution by throwing a memory

model (MM) exception. drfx guarantees two key properties for any program P:

• Data-Race Completeness: If an execution is terminated with an MM excep-

15

tion, then P has a data race.

• SC Soundness: If an execution is not terminated with an MM exception, then

that execution is SC.

Together these two properties imply the DRF0 property: data-race-free programs

obtain SC semantics (and are never terminated with an MM exception). However,

unlike DRF0, the SC Soundness property allows programmers to safely reason about

all programs, whether data-race-free or not, using SC semantics. Finally, the Data-

Race Completeness property ensures that MM exceptions cannot be raised willy-nilly,

but only when the program has a data race.

While these properties provide strong guarantees to programmers, they are care-

fully designed to admit implementation flexibility. For example, drfx allows an MM

exception to be thrown even if SC is not violated, as long as the original program

has a data race. This is an acceptable result since, as with the DRF0 memory model,

drfx considers a data race to be a programmer error. Conversely, drfx also allows a

data-racy execution to continue without exception as long as it does not violate SC.

As we will see, our compiler and hardware designs make good use of this flexibility.

SC Soundness requires only that an SC violation will cause execution to halt with

an MM exception eventually, which also provides implementers significant flexibility.

However, an execution’s behavior is undefined between the point at which the SC

violation occurs and the exception is raised. The drfx model therefore guarantees

an additional property:

• Safety: If an execution of P invokes a system call, then the observable program

16

state at that point is reachable through an SC execution of P.

Intuitively the above property ensures that any system call in an execution of P

would also be invoked with exactly the same arguments in some SC execution of P.

This property ensures an important measure of safety and security for programs by

prohibiting undefined behavior from being externally visible.

3.1.1 A Compiler and Hardware Design for drfx

Gharachorloo and Gibbons [40] describe a hardware mechanism to detect SC viola-

tions. Their approach dynamically detects conflicts between concurrently executing

instructions. Two memory operations are said to conflict if they access the same

memory location, at least one operation is a write. While simple and efficient, their

approach guarantees the SC Soundness and Race Completeness properties with re-

spect to the compiled version of a program but does not provide any guarantees with

respect to the original source program [40, 25].

A key contribution of drfx is the design and implementation of a detection mech-

anism for SC violations that properly takes into account the effect of both compiler

optimizations and hardware reorderings while remaining lightweight and efficient.

The approach employs a novel form of cooperation between the compiler and the

hardware. drfx introduces the notion of a region, which is a single-entry, multiple-

exit portion of a program. The compiler partitions a program into regions, and both

the compiler and the hardware may only optimize within a region. Each synchroniza-

tion access must be placed in its own region, thereby preventing reorderings across

such accesses. It is also required that each system call be placed in its own region,

17

which allows drfx to guarantee the Safety property. Otherwise, a compiler may

choose regions in any manner in order to aid optimization and/or simplify runtime

conflict detection. Within a region, both the compiler and hardware can perform

most standard sequentially valid optimizations. For example, unrelated memory op-

erations can be freely reordered within a region, unlike the case for the traditional

SC model.

To ensure the drfx model’s SC Soundness and Race Completeness properties

with respect to the original program, it suffices to detect region conflicts between

concurrently executing regions. Two regions R1 and R2 conflict if there exists a pair

of conflicting operations (o1, o2) such that o1 ∈ R1 and o2 ∈ R2. Such conflicts can be

detected using runtime support similar to conflict detection in transactional memory

(TM) systems [53]. As in TM systems, both software and hardware conflict detection

mechanisms can be considered for supporting drfx. A hardware detection mechanism

is pursued, since the required hardware logic is fairly simple and is similar to existing

bounded hardware transactional memory (HTM) implementations such as Sun’s Rock

processor [33], Intel’s Haswell [59], and IBM’s Blue Gene/Q [49]. A drfx compiler can

bound the number of memory bytes accessed in each region, enabling the hardware

to perform conflict detection using finite resources. While small regions limit the

scope of compiler and hardware optimizations, Section 3.5 discusses an approach

in that regains most of the lost optimization potential. drfx hardware leverages

several optimizations described in Section 3.5 that allow the hardware to execute

and commit regions out-of-order, coalesce regions to reduce the number of conflict

checks, and exploit temporal locality to exclude a significant fraction of accesses from

18

participating in conflict detection. These optimizations significantly improve upon

the performance overhead of the baseline hardware design for SC violation detection.

3.1.2 Contributions

The research presented in this chapter makes the following contributions:

• The drfx memory model for concurrent programming languages is defined via

three simple and strong guarantees for programmers (Section 3.2). A set of

conditions on a compiler and hardware design that are sufficient to satisfy these

conditions is established..

• A detailed compiler and micro-architecture design is discussed that instantiates

drfx memory model (Section 3.4 and 3.5). drfx compliant compiler ensures

that regions have a bounded size, allowing a processor to detect conflicts using

finite hardware resources. A novel approach to regain most of the lost opti-

mization potential due to small region sizes described. The hardware detects

conflicts lazily, and several optimizations are described to basic detection mech-

anism. A drfx-compliant C compiler is implemented by modifying LLVM [70]

and drfx-compliant hardware designs are modeled using the Simics-based FeS2

simulator [37].

• A detailed evaluation of drfx-compliant compiler and hardware measures the

performance cost in terms of lost optimization opportunity for programs in the

Parsec and SPLASH-2 benchmark suites (Section 3.6). The results show that

the performance overhead is on average 9.6% when compared to the baseline

19

fully optimized implementation.

3.2 Overview of drfx

This section provides an overview of drfx memory model. It first motivates the

problem by delving into details of some of issues mentioned in Chapter II, including

interaction of data races and relaxed memory models and impracticality of full race

detection for the purpose of simplifying the semantics provided to programmers. A

description of the drfx approach for SC violation detection follows.

3.2.1 Compiler Transformations in the Presence of Races

It is well known that sequentially valid compiler transformations, which are correct

when considered on a single thread in isolation, can change program behavior in the

presence of data races [4, 42, 74]. Consider the C++ example from Figure 1.1(a)

discussed in Chapter I. Thread t uses a Boolean variable init to communicate to

thread u that the object x is initialized. Note that although the program has a data

race, the program will not incur a null dereference on any SC execution.

Consider a compiler optimization that transforms the program by reordering in-

structions A and B in thread t. This transformation is sequentially valid, since it

reorders independent writes to two different memory locations. However, this re-

ordering introduces a null dereference (and violates SC) in the interleaving shown in

Figure 1.1(b).1 The same problem can occur as a result of out-of-order execution at
1 Although this “optimization” may seem contrived, many compiler optimizations, for example

common-subexpression elimination and loop-invariant code motion, can have the effect of reordering
accesses to shared memory.

20

X* x = null;
atomic bool init = false;

// Thread t // Thread u
A: x = new X(); C: if(init)
B: init = true; D: x->f++;

Figure 3.1: Correct, data-race-free version of program from Figure 1.1

the hardware level.

To avoid SC violations, languages have adopted memory models based on the

DRF0 model [4]. Such models guarantee SC for programs that are free of data races.

The data race in this example program can be eliminated by explicitly annotating

the variable init as atomic (volatile in Java 5 and later). This annotation tells

the compiler and hardware to treat all accesses to a variable as “synchronization”. As

such, (many) compiler and hardware reorderings are restricted across these accesses,

and concurrent conflicting accesses to such variables do not constitute a data race.

As a result, the revised C++ program shown in Figure 3.1 is data-race-free and its

accesses cannot be reordered in a manner that violates SC.

3.2.2 Writing Race-Free Programs is Hard

For racy programs, on the other hand, DRF0 models provide much weaker guar-

antees than SC. For example, the proposed C++ memory model [20] considers data

races as errors akin to out-of-bounds array accesses and provides no semantics to

racy programs. This approach requires that programmers write race-free programs

in order to be able to meaningfully reason about their program’s behavior. But races

are a common flaw, and thus it is unacceptable to require a program be free of these

21

X* x = null;
bool init = false;

// Thread t // Thread u
A: lock(L); E: lock(M)
B: x = new X(); F: if(init)
C: init = true; G: x->f++;
D: unlock(L); H: unlock(M)

Figure 3.2: An incorrect attempt at fixing the program from Figure 1.1.

bugs in order to reason about its behavior. As an example, consider the program in

Figure 3.2 in which the programmer attempted to fix the data race in Figure 1.1(a)

using locks. Unfortunately, the two threads use different locks, an error that is easy

to make, especially in large software systems with multiple developers.

Unlike out-of-bounds array accesses, there is no comprehensive language or library

support to avoid data race errors in mainstream programming languages. Further,

like other concurrency errors, data races are nondeterministic and can be difficult to

trigger during testing. Even if a race is triggered during testing, it can manifest itself

as an error in any number of ways, making debugging difficult. Finally, the interaction

between data races and compiler/hardware transformation can be counter-intuitive

to programmers, who naturally assume SC behavior when reasoning about their code.

3.2.3 Detecting Data Races Is Expensive

This problem with prior data-race-free models has led researchers to propose to

detect and terminate executions that exhibit a data race in the program [5, 19, 36].

Note that it is not sufficient to only detect executions that exhibit a strictly simul-

22

// Thread t // Thread u

A: lock(L);
C: init = true;

E: lock(M)
F: if(init)
G: x->f++;
H: unlock(M);

B: x = new X();
D: unlock(L);

// Thread t // Thread u

A: lock(L);
C: init = true;
B: x = new X();
D: unlock(L);

E: lock(M)
F: if(init)
G: x->f++;
H: unlock(M)

(a) (b)

Figure 3.3: A program with a data race may or may not exhibit SC behavior at runtime.
(a) Interleaving that exposes the effect of a compiler reordering. (b) Interleaving that does
not.

taneous data race. While the existence of such an execution implies the existence

of a data race in the program, other executions can also suffer from SC violations.

Figure 3.3(a) shows such an execution for the improperly synchronized code in Fig-

ure 3.2. When executing under a relaxed memory model, statements B and C can be

reordered. The interleaving shown in Figure 3.3(a) suggests an execution where the

racing accesses to init do not occur simultaneously, but non-SC behavior (null deref-

erence upon executing statement G) can occur. The execution has a happened-before

data race [68].

Unfortunately, precise dynamic data-race detection either incurs 8x or more per-

formance overhead in software [38] or incurs significant hardware complexity [95, 84].

The cost is due to the need to build a happened-before graph [68] of the program’s

dynamic memory accesses in order to detect races. A pair of racy accesses can be exe-

cuted arbitrarily “far” away from each other in the graph. This increases the overhead

of software-based detection and requires hardware-based detection to properly handle

23

events like cache evictions, context switches, etc. Imprecise race detectors can avoid

some of these problems [101, 75, 21] but cannot guarantee to catch all SC violations,

as required by the drfx memory model.

3.2.4 Detecting SC Violations is Enough

Although implementing drfx requires detecting all races that may cause non-SC

behavior, there are some races that do not violate SC [40]. Thus, full happened-

before race detection, while useful for debugging, is overly strong for simply ensuring

executions are SC. For example, even though the interleaving in Figure 3.3(b) contains

a happened-before data race, the execution does not result in a program error. The

hardware guarantees that all the memory accesses issued while holding a lock are

completed before the lock is released. Since the unlock at D completes before the

lock at E, the execution is sequentially consistent even though the compiler reordered

the instructions B and C. Therefore, the memory model can safely allow this execution

to continue. On the other hand, executions like the one in Figure 3.3(a) do in fact

violate SC and should be halted with a memory model (MM) exception.

The Venn diagram in Figure 3.4 clarifies this argument (ignore the RCF and RS

sets for now). SC represents the set of all executions that are sequentially consistent

with respect to a program P. DRF is the set of executions that are data-race free.

To satisfy the SC Soundness and Data-Race Completeness properties described in

Section 3.1, all executions that are not in SC must be terminated and all executions

in DRF must be accepted. However, the model allows flexibility for executions that

are not in DRF but are in SC: it is acceptable to admit such executions since they

24

DRF	 SC	 RCF	

SC	 =	 Sequen,ally	 Consistent	 	 	 RS	 =	 Region	 Serializable	
RCF	 =	 Region-‐Conflict	 Free	 	 	 	 	 	 	 DRF	 =	 Data-‐Race	 Free	

ALL	

RS	

Figure 3.4: The relationships among various properties of a program execution.

are sequentially consistent, but it is also acceptable to terminate such executions

since they are racy. This flexibility allows for a much more efficient detector than

full-fledged race detection, as described below.

The drfx memory model only guarantees that non-SC executions eventually ter-

minate with an exception. This allows SC detection to be performed lazily, thereby

further reducing the conflict detector’s complexity and overhead. Nevertheless, the

Safety property described in Section 3.1 guarantees that an MM exception is thrown

before the effects of a non-SC execution can reach any external component via a

system call.

3.2.5 Enforcing the drfx Model

The key idea behind enforcing the drfx model is to partition a program into re-

gions. Each region is a single-entry, multiple-exit portion of the program. Both the

hardware and the compiler agree on the exact definition of these regions and perform

program transformations only within a region. Each synchronization operation and

each system call is required to be in its own region. For instance, one possible region-

25

ization for the program in Figure 3.2 would make each of {B,C} and {F,G} a region

and put each lock and unlock operation in its own region.

During execution, the drfx runtime signals an MM exception if a conflict is de-

tected between regions that are concurrently executing in different processors. We

define two regions to conflict if there exists any instruction in one region that conflicts

with any instruction in the other region. More precisely, we only need to signal an

MM exception if the second of the two conflicting accesses executes before the first

region completes. In the interleaving of Figure 3.3(b), no regions execute concurrently

and thus the drfx runtime will not throw an exception, even though the execution

contains a data race. On the other hand, in the interleaving shown in Figure 3.3(a),

the conflicting regions {B,C} and {F,G} do execute concurrently, so an MM exception

will be thrown.

3.2.6 From Region Conflicts to drfx

The Venn diagram in Figure 3.4 illustrates the intuition for why the compiler

and hardware co-design overviewed above satisfies the drfx properties. If a program

execution is data-race-free (DRF), then concurrent regions will never conflict during

that execution, i.e., the execution is region-conflict free (RCF), so an MM exception

will never be raised. Since synchronization operations are in their own regions, this

property holds even in the presence of intra-region compiler and hardware optimiza-

tions, as long as the optimizations do not introduce speculative reads or writes. This

reasoning establishes the Data-Race Completeness property of the drfx model. Fur-

ther, if an execution is RCF, then it is also region-serializable (RS): it is equivalent to

26

an execution in which all regions execute in some global sequential order. That prop-

erty in turn implies the execution is SC with respect to the original program. Again

this property holds even in the presence of non-speculative intra-region optimizations.

This reasoning establishes the SC Soundness property of the drfx model.

In general, each of the sets illustrated in the Venn diagram is distinct: there exists

some element in each set that is not in any subset. In some sense this fact implies

that the notion of region-conflict detection is just right to satisfy the two main drfx

properties. On the one hand, it is possible for a racy program execution to nonetheless

be region-conflict free. In that case the execution is guaranteed to be SC, so there

is no need to signal an MM exception. This situation was described above for the

example in Figure 3.3(b). On the other hand, it is possible for an SC execution to

have a concurrent region conflict and therefore trigger an MM exception. Although

the execution is SC, it is nonetheless guaranteed to be racy. For example, consider

again the program in Figure 3.2. Any execution in which instructions B and C are

not reordered will be SC, but with the regionization described earlier some of these

executions will trigger an MM exception.

3.2.7 The Compiler and the Hardware Contract

The compiler and hardware are allowed to perform any transformation within

a region that is consistent with the single-thread semantics of the region, with one

limitation: the set of memory locations read (written) by a region in the original

program should be a superset of those read (written) by the compiled version of the

region. This constraint ensures that an optimization cannot introduce a data race in

27

for(i=0; i<n; i++)
sum += a[i];

reg = sum;
for(i=0; i<n; i++)

reg += a[i];
sum = reg;

if(n>0) {
reg = sum;
for(i=0; i<n; i++)

reg += a[i];
sum = reg;

}
(a) (b) (c)

Figure 3.5: A transformation that introduces a read and a write.

an originally race-free program.

Many traditional compiler optimizations (constant propagation, common subex-

pression elimination, dead-code elimination, etc.) satisfy the constraints above and

are thus allowed by the drfx model. Figure 3.5 describes an optimization that is dis-

allowed by the drfx model. Figure 3.5(a) shows a loop that accumulates the result

of some computation in the sum variable. A transformation that allocates a register

for this variable is shown in Figure 3.5(b). The variable sum is read into a register

at the beginning of the loop and written back at the end of the loop. However, on

code paths in which the loop is never entered, this transformation introduces a spuri-

ous read and write of sum. While such behavior is harmless for sequential programs,

it can introduce a race with another thread modifying sum. One way to avoid this

behavior is to explicitly check that the loop is executed at least once, as shown in

Figure 3.5(c). The drfx model allows the transformation with this modification, al-

though our current compiler implementation simply disables the transformation. In

spite of this, the experimental results in Section 3.6 indicate that the performance

reduction due to lost compiler optimizations is reasonable, on average 6.2% on the

evaluated benchmarks.

28

In addition to obeying the requirement above, the hardware is also responsible

for detecting conflicts on concurrently executing regions. While performing conflict

detection in software would avoid the need for special-purpose hardware, conflict de-

tection in software can lead to unacceptable runtime overhead due to the need for

extra computation on each memory access. On the other hand, performing conflict de-

tection in hardware is efficient and lightweight, as demonstrated by the transactional

memory (TM) support in several existing processors [33, 59, 49]. drfx hardware can

actually be simpler than TM hardware, since speculation support is not needed. Fur-

ther, unlike in a TM system, the drfx compiler can partition a program into regions

of bounded size, thereby further reducing hardware complexity by safely allowing

conflict detection to be performed with fixed-size hardware resources.

Having the compiler bound the size of regions is essential for efficient hardware

detection, but the fences inserted by the compiler for the purposes of bounding should

not unnecessarily disallow hardware optimizations. As such, the drfx implementation

supports two types of fences: hard fences that surround synchronization operations

and system calls, and soft fences that are inserted only for the purposes of bounding

region size. The implementation accounts for the fact that the hardware can perform

certain optimizations across soft fences that it must not perform across hard fences.

3.3 Compiler and Hardware Implementation

There are several possible compiler and hardware designs that meet the require-

ments necessary to ensure the drfx properties as described in the previous section.

29

The next two sections describe one concrete approach for drfx-compliant compiler

and hardware. It is evaluated in the section 3.6. The approach is based on two key

ideas crucial for a simple hardware design:

• Bounded regions: First, the compiler bounds the size of each region in terms

of number of memory accesses it can perform dynamically using a conserva-

tive static analysis. Bounding ensures that the hardware can perform conflict

detection with fixed-size data structures. Detecting conflicts with unbounded

regions in hardware would require complex mechanisms, such as falling back to

software on resource overflow, that are likely to be inefficient.

• Soft fences: When splitting regions to guarantee boundedness, the compiler

inserts a soft fence. Soft fences are distinguished from the fences used to demar-

cate synchronization operations and system calls which are called hard fences.

While hard fences are necessary to respect the semantics of synchronization

accesses and guarantee the properties of drfx, soft fences merely convey to

the hardware the region boundaries across which the compiler did not opti-

mize. These smaller, soft-fence-delimited regions ensure that the hardware can

soundly perform conflict detection with fixed-size resources. But, it is in fact safe

for the hardware to reorder instructions across soft fences whenever hardware

resources are available, essentially erasing any hardware performance penalty

due to the use of bounded-size regions.

30

3.4 drfx-compliant Compiler

A drfx-compliant compiler was built by modifying the LLVM compiler [70]. To

ensure the drfx properties the compiler must simply partition the program into valid

regions, optimize only within regions, avoid inserting speculative memory accesses,

and insert fences at region boundaries.

3.4.1 Inserting Hard Fences for DRFx-compliance

A hard fence is similar to a traditional fence instruction. The hardware ensures

that prior instructions have committed before allowing subsequent instructions to ex-

ecute and the compiler is disallowed from optimizing across them. To guarantee SC

for race-free programs, the compiler must insert a hard fence before and after each

synchronization access. On some architectures, the synchronization access itself can

be translated to an instruction that has hard-fence semantics (e.g., the atomic xchg

instruction in AMD64 and Intel64 [20]), obviating the need for additional fence in-

structions. In the current implementation, the compiler treats all calls to the pthread

library and lock-prefixed memory operations as “atomic” accesses. In addition, since

the LLVM compiler does not support the atomic keyword proposed in the new C++

standard, all volatile variables are treated as atomic. All other memory operations

are treated as data accesses.

To guarantee drfx’s Safety property, a drfx-compliant compiler should also insert

hard fences for each system call invocation, one before entering the kernel mode and

another after exiting the kernel mode. Any state that could be read by the system call

31

should first be copied into a thread-local data structure before the first hard fence is

executed. This approach ensures that the external system can observe only portions

of the execution state that are reachable in some SC execution. Transforming system

calls in this way is not implemented in the compiler used for the experiments in

Section 3.6.

To insert a hard fence, the compiler uses the llvm.memory.barrier intrinsic in

LLVM with all ordering restrictions enabled. This ensures that the LLVM compiler

passes do not reorder memory operations across the fence. LLVM’s code generator

translates this instruction to an mfence instruction in x86 which restricts hardware

optimizations across the fence.

3.4.2 Inserting Soft Fences to Bound Regions

In addition to hard fences, the compiler inserts soft fences to bound the number

of memory operations in any region. Soft fences are inserted using a newly created

intrinsic instruction in LLVM that is compiled to a special x86 no-op instruction

which can be recognized by the drfx hardware simulator as a soft fence. The compiler

employs a simple and conservative static analysis to bound the number of memory

operations in a region. While overly small regions do limit the scope of compiler

optimizations, experiments show that the performance loss due to this limitation is

about 6.2% on average (Section 3.6). After inserting all the hard fences described

earlier, the compiler performs function inlining. Soft fences are the inserted in the

inlined code. A soft fence is conservatively inserted before each function call and

return, and before each loop back-edge. Finally, the compiler inserts additional soft

32

fences in a function body as necessary to bound region sizes. The compiler performs

a conservative static analysis to ensure that no region contains more than R memory

operations, thereby bounding the number of bytes that can be accessed by any region.

The constant R is determined based on the size of hardware buffers provisioned for

conflict detection.

The above algorithm prevents compiler optimizations across loop iterations, since

a soft fence is inserted at each back-edge. However, it would be possible to apply

a transformation similar to loop tiling [115] which would have the effect of placing

a soft fence only once every R/L iterations, where L is the maximum number of

memory operations in a single loop iteration. Restructuring loops in this way would

allow the compiler to safely perform compiler optimizations across each block of R/L

iterations.

3.4.3 Compiler Optimization

After region boundaries have been determined, the compiler may perform its op-

timizations. Any sequentially valid optimization is allowed within a region, as long as

it does not introduce any speculative reads or writes since they can cause false con-

flicts. As such, in the current implementation, all speculative optimizations in LLVM

are explicitly disabled.2 Note, however, that there are several useful speculative op-

timizations that have simple variants that would be allowed by the drfx model. For

example, instead of inserting a speculative read, the compiler could insert a special
2 The LLVM implementation has functions called isSafeToSpeculativelyExecute,

isSafeToLoadUnconditionally and isSafeToMove, which were modified to return false for both
loads and stores.

33

prefetch instruction which the hardware would not track for purposes of conflict de-

tection. The Itanium ISA has support for such speculation [111] in order to hide the

memory latency of reads. Also, as shown earlier in Figure 3.5, loop-invariant code

motion is allowed by the drfx model, as long as the hoisted reads and writes are

guarded to ensure that the loop body will be executed at least once.

3.5 drfx-compliant Hardware: Design and Implementation

This section discusses the proposed drfx processor architecture. A lazy conflict

detection scheme using bloom filter signatures is described, as well as several opti-

mizations that allow efficient execution in spite of the small, bounded regions created

by the drfx compiler.

3.5.1 Overview

To satisfy drfx properties, the runtime has to detect a conflict when region-

serializability may be violated due to a data race and raise a memory model ex-

ception (Section 3.2.6). Figure 3.8 presents an overview of a drfx hardware design

which supports this conflict detection. Additions to the baseline DRF0 hardware are

shaded in gray. The state of several hardware structures at some instant of time

during an execution of a sample program is also shown. Section 3.5.11 discusses the

implementation details of the proposed design.

Rollback is a necessary requirement of hardware transactional memory systems.

As such, they can easily tolerate false positives in their conflict detection mechanism

34

by simply rolling back and re-executing. This allows them to use cache-line granularity

conflict detection which may report false races. drfx, on the other hand, does not

require a rollback mechanism. But, because it terminates an execution upon detecting

a race, false race reports cannot be tolerated. As such, drfx performs byte-level

conflict detection. Performing precise, eager byte-level conflict detection complicates

the coherence protocol and cache architecture [73]. For instance, such a scheme

would require the hardware to maintain byte-level access state for every cache block,

maintain the access state even after a cache block migrates from one processor to

another, and clear the access state in remote processors when a region commits.

Instead, the drfx hardware employs lazy conflict detection [47]. Each processor

core has a region buffer which stores the physical addresses of memory accesses ex-

ecuted in a region. An entry is created in the region buffer when a memory access

is committed from the reorder buffer (ROB). A load completes its execution when

it commits from the ROB, while a store completes its execution when it retires from

the store buffer. When all the memory accesses in a region have completed their

execution, the processor broadcasts the address set for the region to other processors

for conflict checks. Once the requesting processor has received acknowledgments from

all other processors indicating a lack of conflicts, it commits the region and reclaims

the region buffer entries. The communication and conflict check overhead is reduced

by using bloom filter based signatures to represent sets of addresses [27]. A signature

buffer is employed to store the read and write signatures for all the in-flight regions

in a processor core.

The region buffer has to be at least as large as the maximum number of instructions

35

allowed to be executed in a soft-fenced region created by the drfx compiler. The static

analysis used by the drfx compiler to guarantee this bound is necessarily conservative

and may create regions that are much smaller than the desired bound. Frequent soft-

fences leads to frequent conflict checks. This cost is reduced by coalescing adjacent

regions separated by a soft fence into a single region at runtime when there is sufficient

space available in the region buffer. Supporting this optimization requires using a

region buffer somewhat larger than the maximum possible region-size guaranteed by

the compiler.

When executing a hard fence, the drfx hardware stalls the execution of all fu-

ture memory accesses until all accesses preceding the fence have completed. This

helps guarantee correct behavior of synchronization operations and ensures that any

conflicts that are detected indeed correspond to a data race. But it also prevents

full utilization of processor resources since instruction and memory level parallelism

cannot be exploited across the fence. If the more frequently occurring soft fences be-

haved the same as hard fences, these lost opportunities to exploit parallelism would

result in significant performance overhead. Fortunately, this is unnecessary since soft

fences do not indicate the presence of synchronization. In fact, memory accesses from

a region can be allowed to execute even if earlier regions that end in soft fences have

not committed. In addition, regions separated by a soft fence can be committed out

of order.

36

3.5.2 Signature-based Lazy Conflict Detection

Let us assume that a processor treats soft fences similar to hard fences, an as-

sumption that will be relaxed later in the discussion. drfx hardware employs lazy

conflict detection to detect when region-serializability could have been violated due

to a data-race.

Each processor core has a region buffer to record the addresses of memory locations

accessed in a region. Each region buffer entry corresponds to a cache block and stores

cache block’s address along with read and write bit vectors that keep track of the

bytes accessed within a cache block. This organization of region buffer entry allows

us to coalesce memory accesses from same region if they access the same cache block.

The drfx compiler bounds the size of a soft-fenced region to a predefined bound B,

which determines the minimum size that a processor needs to provision for a region

buffer. In practice, however, a region would require fewer entries in the region buffer

as memory accesses to same cache block are coalesced.

Similar to DRF0 hardware, the memory accesses within a region can execute out-

of-order, and in the case of stores, retire from a store buffer out-of-order. An entry in

the region buffer is created for a memory access when it is committed from the ROB.

Once all the memory accesses of a region have committed from the ROB, and stores

are retired from the store buffer, the corresponding processor broadcasts the address

set to the other processors to perform conflict checks. On receiving a conflict check

request, a processor detects a conflict if the addresses in its region buffer intersect

with the address set received. If the intersection is empty, an acknowledgment is

37

sent to the requester. On receiving acknowledgments from all the other processors, a

processor commits a region by deleting its address entries from the region buffer.

Broadcasting addresses accessed by every region and checking their membership

in every processor’s region buffer is clearly expensive. To reduce this cost, bloom

filter based signatures [27] can be used. Memory addresses accessed by a region are

represented using a read and a write signature. Signatures for the in-flight regions

are stored in the signature buffer (more than one region could be in-flight due to the

out-of-order execution optimizations discussed later in Section 3.5.5). To perform

conflict checks for a region, a processor first broadcasts only its signatures. Each

processor performs AND operations over the incoming signatures with the contents in

its signature buffer. On detecting a potential conflict, a NACK is sent to the requester.

On receiving a NACK, a processor sends the full address set for the region so that

precise conflict detection can be performed.

The size of signatures needs to be large enough so that false conflicts are rare,

avoiding frequent transmission of full address sets. On the other hand, large signatures

could incur significant communication overhead. But, since many regions can be in

flight in a processor at once, the signature may be compared with many remote

regions, increasing the probability of getting a false conflict. To address this problem,

large signatures (1024 bits) are used, but they are compressed before transmission

to reduce communication overhead. To build these signatures, cache block address

of locations accessed by memory operations are used. Using cache block granularity

keeps the number of unique addresses that go into signatures low. Because many

regions have small access sets, their signatures are effectively compressed using a

38

simple, efficient run-length encoding scheme. This strategy resulted in very high

compression ratios which significantly reduced communication overhead.

3.5.3 Concurrent Region Conflict Check and Region Execution

When a processor P receives a conflict check request for a region R′, it need not

stall the execution of its current region R while it performs the conflict check. A

conflict check can be performed in parallel with the execution of a local region. The

intuition here is that any memory access in pipeline can be shown to have executed

after memory accesses in R′. Thus, hardware can order R′ before R in the region

serialization of the execution.

However, care must be taken in ensuring that memory accesses in pipeline are

completed after memory accesses in R′. Stores are not completed before they are

committed from store buffer. A store in pipeline, therefore, is definitely not completed.

If an in-flight load has already read the value from the cache, drfx hardware needs

to ensure that value has not been changed by another region that is serialized before

current region. To this end, a load that has already read the data from cache, is re-

executed if the accessed cache block is invalidated/evicted before load is committed

from the ROB. This mechanism is same as the speculative load-execution technique

proposed by Gharachorloo et al. [41] for a SC hardware. A DRF0 hardware could use

this mechanism to enable load speculation across fences. However, in the proposed

drfx design, this mechanism is enforced for all loads (even if they are not speculating

across fences). Re-executing all loads on cache invalidations is certainly expensive,

but such re-executions are expected to be rare.

39

3.5.4 Coalescing Soft-Fence-Bounded Regions

The drfx compiler uses a conservative static analysis to estimate the maximum

number of instructions executed in a region. This could result in frequent soft fences.

But a processor can dynamically ignore a soft fence if the preceding soft-fenced region

executed fewer memory accesses than a predetermined threshold T. Combining two

contiguous soft-fenced regions at runtime does not violate drfx guarantees, because

any conflict detected over the newly constructed larger region is possible only if there

is a race, and ensuring serializability of the larger, coalesced soft-fenced regions is

sufficient to guarantee SC for the original unoptimized program.

However, the processor needs to ensure that the newly constructed region does not

exceed the size of its region buffer. The design guarantees this by using a region buffer

that is of size T + B, where B is the compiler specified bound for a soft-fenced region,

and T is the threshold used by a processor to determine when to ignore a soft fence.

Too high a value for the threshold T would result in large regions at runtime, which

might negatively impact performance, because the probability of aliases in signatures

increase. Also, it could undermine out-of-order commit optimization discussed in

Section 3.5.6.

3.5.5 Out-of-Order Execution of Regions

In this optimization, the restriction on execution of soft-fenced regions is relaxed

and soft-fenced regions are allowed to be executed out-of-order. In the case of a

hard fence, before a processor can execute memory accesses from a later region, it

40

has to wait for all memory accesses in the preceding regions to complete. This is

clearly a requirement for hard fences, since false conflicts may be detected if memory

accesses are allowed to be reordered across hard fences that demarcate synchronization

operations. However, this execution ordering can be relaxed for soft fences, allowing

multiple regions that are not committed to be in-flight simultaneously. For example,

in Figure 3.6, I7 can be allowed to execute even if regions R0 and R1 have pending

memory accesses in the ROB or the store buffer. If there is a pending store in a

previous region (e.g., I1), its value can be forwarded to a load in a later region (e.g.,

I7).

The correctness of the above optimization can be intuitively understood by observ-

ing that executing memory accesses out-of-order only results in more in-flight accesses

that could potentially conflict. Therefore, it does not mask any conflicts that would

have been detected before. Also, reordering accesses across soft fences will not cause

any access to be reordered across a synchronization operation. As such, any conflict

that is detected as a result of this reordering still implies the presence of a data race.

3.5.6 Out-of-order Commit of Regions

Once a region’s memory accesses have been completed, a processor can initiate

conflict check and commit the region from the region buffer if the check succeeds.

Since instructions are committed from the ROB in the program order, it is guaranteed

that when a region is ready to commit, all the memory accesses from preceding regions

would have also committed from the ROB. There could, however, be stores in the store

buffer pending for the earlier regions. As a result, those earlier regions would not yet

41

I1: x = 1

I2: t1= x

I3: soft-fence

I4: y = 1

I5: soft-fence

I6: z = 1

I7: t4 = x

J1: t2 = y

J2: soft-fence

J3: x = 2

J4: soft-fence

J5: t3 = x

P1 P2

R0

R1

R2

S0

S1

S2

Figure 3.6: An Example Binary Compiled Using drfx Compiler.

be ready to commit. In this scenario, it is correct to conflict check and commit a later

region as long as all its accesses have committed from the ROB and retired from the

store buffer. When a region is being committed out-of-order while there are pending

regions before it, it must also include the addresses of memory locations accessed by

earlier regions during conflict detection. This inclusion is required to ensure that there

are no conflicts with earlier regions when a region is being committed out-of-order.

For example, in Figure 3.6, say region R0 is waiting for its store I1 to be retired

from the store buffer. In the meantime, I4 has completed and has retired from the

store buffer. Now R1 is ready to commit. The processor can perform conflict checking

for R1 (including the addresses for any uncommitted, prior regions), and if no conflict

is detected, commit by deleting its entries from the region and signature buffers

(but leaving the entries for uncommitted, prior regions). This optimization can be

intuitively understood by observing that even if a write from R0 lingering in the store

buffer eventually causes a conflict with another access that has not been committed

from the ROB yet, the successful conflict check of the addresses in R1 and R0 at the

time R1 commits establishes a global order of all committed and lagging regions in

the system at that point. This guarantees SC behavior up to the latest committed

42

region in each thread.

3.5.7 Exploiting Locality in Memory Accesses

The hardware design discussed so far conflict checks all the addresses accessed

within a region. We propose an optimization that exploits the temporal locality

exhibited by applications to drastically reduce the number of addresses that need to

be conflict checked for a region.

The key insight is that once a processor core has conflicted checked an address

for a read or a write access, it does not need to perform the same check again till it

relinquishes the coherence permission that it must have acquired for performing that

access.

However, since processor core performs conflict checks at the byte granularity

(to ensure precision that is necessary in drfx memory model), it is possible that a

core has coherence read/write permission to an entire cache block, but core has not

performed conflict checks for all the addresses in that cache block.

To solve this problem, processor keeps track of two additional safe bits per cache

block:

• read-safe: If set, it indicates that all the addresses of the cache block has been

conflict checked for read-permission.

• write-safe: If set, it indicates that all the addresses of the cache block has

been conflict checked for read and write permission.

If a memory instruction results in a cache miss and brings in a cache block,

43

or if it accesses a cache block for which the corresponding safe bit is not set, it

needs to participate in the conflict detection. During conflict detection, read and

write signatures are built for only those memory instructions that did not observe

appropriate safe bit in the cache. Read and write signatures (which are based on

cache block address) are sent to other cores in first phase of the conflict detection. If

no conflict is detected in signatures, appropriate read/write-safe bit is set for the

cache blocks if they have not been invalidated yet. However, if a conflict is detected

in signatures, core sends the precise read/write address set to perform precise conflict

detection. Also, safe bits in cache blocks accessed in this region remain unchanged if

a conflict in signatures is detected.

When a region is ready to commit from the region buffer, the processor core needs

to know the subset of addresses for which it needs to initiate a conflict check. To de-

termine this set, each region buffer entry is extended with read-safe and write-safe

bits. When a read/write accesses a cache block with the read/write safe bit set, then

its region buffer entry’s safe bit is also appropriately set. The addresses of these

accesses are not conflict checked when the region commits, except for the following

scenario.

It is possible for a processor core to relinquish coherence permission to a cache

block when there is a safe region buffer entry to one or more of its addresses. There-

fore, before evicting or downgrading coherence permission to a cache block, the pro-

cessor core needs to snoop the region buffer and reset the safe bits that correspond

to the evicted/downgraded cache block.

44

P1 P2

R1: x = 1

R2: y = 1

R3: r1 = y

R4: r2 = x

Figure 3.7: Out-of-order commit and locality optimizations together can violate drfx
guarantees

We observe that this locality optimization cannot be employed together with the

out-of-order commit optimization discussed in Section 3.5.6, as it can violate the drfx

guarantees. We illustrate this problem using the example shown in Figure 3.7. In

this example, two processors (P1 and P2) are executing four soft-fenced regions each

containing only one instruction. Assume that variables x and y are allocated on sep-

arate cache lines C1 and C2 respectively and P2 is caching C1 with read-safe bit set.

Also assume that write of x in R1 misses in the cache and store is pending in the store

buffer. In meantime, R2 completes and starts its commit out of order. Since there are

no conflicting accesses in P2, R2 successfully commits. Subsequently P2 executes R3,

R4 and commits them in program order without detecting any conflict. Note that for

R4, P2 does not send out address of x to P1 because P2 thinks that reading x is safe

(indicated by read-safe bit in C1). Finally, R1 completes and broadcast address of x,

but does not detect any conflict as P2’s region buffer is empty at this time. Therefore,

P1 commits R1 without raising any MM exception. However, this execution is not SC

because execution of regions is not serializable. Therefore, out-of-order commit and

cache based locality optimizations are not compatible with each other in preserving

45

drfx guarantees.

3.5.8 Handling Context Switches

A thread can incur a context switch at runtime for a variety of reasons. When

possible, drfx require that the context switch be delayed until the subsequent soft

fence instruction. As regions are bounded in the number of memory instructions,

most well-behaved programs will eventually execute a soft fence after a finite amount

of time. To account for adversarial programs that can perform unbounded compu-

tation (while still performing a bounded number of memory accesses), drfx requires

that a drfx-compliant compiler inserts additional soft fences in regions that could

potentially execute unbounded number of instructions. By doing so, it is possible to

delay scheduler-induced thread context switches without affecting the fairness of the

operating system scheduler. For such delayed context switches, the hardware waits

until all prior regions are committed and performs the context switch when the region

buffer is empty.

Certain context switches, such as those induced by page faults and device inter-

rupts, are critical and cannot be delayed. drfx-style conflict detection should be

disabled for low-level system operations such as the page-fault handler. It is unclear

if halting such critical functionality with a memory-model exception is a good de-

sign choice. Instead, such low-level code be (either manually or statically) verified to

be data-race free. This observation leads to a simple solution that does not require

virtualizing the region buffer.

When critical context switches occur, the processor retains the region buffer entries

46

for the switched out thread. When the processor is executing the page-fault or the

interrupt handler, it continues to perform conflict detection on behalf of the switched-

out thread. Since conflict detection is disabled for the handler, no new entries are

added to the region buffer. When the handler has finished, the operating system is

required to schedule the switched-out thread on the same processor core to avoid false

detection. At this point, the thread continues using the region buffer, which contains

the same entries it had at the time it was switched out.

While a page fault is being serviced for a thread, a processor can execute other

threads instead of waiting for the data to be fetched from the disk. Processor core

can can allow N context switches while handling a page-fault by provisioning a region

buffer with a size that is N times that of the maximum bound specified by the compiler.

For example, if the compiler bounds the region size to 64 locations and region buffer

size is 512, drfx hardware can allow 8 context switches.

3.5.9 Debugging Support

When a program is terminated with an MM exception, the processor provides the

addresses of the starting and ending fence instructions of each conflicting region to

assist in debugging.

A processor may encounter non-MM exceptions such as a null-pointer dereference,

division by zero, etc., while the current region is yet to complete. In this scenario, the

processor stalls the execution of the current region and performs conflict detection for

the partially executed region. If the conflict check succeeds, indicating no data race,

it raises the non-MM exception. But if a conflict is detected, the processor throws an

47

MM exception instead.

An MM exception in proposed design is imprecise in the sense that the state of

the program when an exception is raised may not be SC. Because, the compiler or

hardware could have already performed SC-violating optimizations in regions that

contain racing accesses. Even an eager conflict detection scheme can only guarantee

that the program state at the time of an exception is SC with respect to the compiled,

binary program [73]. The state could still be non-SC with respect to the source

program due to compiler optimizations.

3.5.10 System Calls and Safety

The drfx compiler places each system call in its own region, separated from

other regions by hard fences. Furthermore, the compiler generates code to ensure

that system calls only access thread-local storage. Any user data potentially read by

a system call is copied to thread-local storage before executing the preceding hard

fence, and any user data written by the system call is copied out of thread-local

storage after the succeeding hard fence.

An adversarial program may not obey the drfx compiler requirement that every

region’s size be bounded to a predefined limit. When a program executes a region

that exceeds the bound, the drfx hardware can trivially detect that condition and

raise an MM exception to ensure safety.

48

V
region
Done?

numPending
Stores

region-
Size

RBI-
begin

RBI-
end

Region-
beginPC

Region-
endPC

Read
Sig

Write
Sig

SBI RBI Instruction

I1: x = 1

Instruction

I2: t1= x

I3: soft-fence

I4: y = 1

I5: soft-fence

I6: t2 = z

Store Buffer Re-order buffer
(ROB)

Signature Buffer

I0

I1

Conflict detection Check Queues

block
address

read-bit
vector

write-bit
vector

read-
safe

write-
safe

E

I5
I6

I2
I4

Region Buffer

I1: x = 1

I2: t1= x

I3: soft-fence

I4: y = 1

I5: soft-fence

I6: t2 = z

Sample Program

Head Tail
R1

R2

R3

..

rFree

Current
SBI register

Conflict
Controller

..

I2 rs

I6

Load Queue

Figure 3.8: Architecture support for drfx (shown in gray).

3.5.11 drfx Hardware Design Details

Region and signature buffers for each processor core are the main extensions to

the baseline hardware structures. This design assumes a snoop-based architecture

which is extended with additional messages to support conflict checking. Conflict

check messages are independent of coherence messages. Figure 3.8 shows the drfx

hardware extensions to a baseline out-of-order processor with store buffer. In the

proposed design, regions are committed in-order, and locality in memory accesses

is exploited as discussed in Section 3.5.7. A detailed description of these extension

follows.

When a hard fence is committed from the ROB, a new region is created by first

finding a free entry in the signature buffer (one with its valid bit unset), initializing

49

the entry’s fields, and storing its index in the current Signature Buffer Index (SBI)

register. The SBI register keeps track of the signature buffer entry corresponding to

the region that is currently being executed. When a soft fence is committed from the

ROB, a new region is created only if the current region size (stored in the region-Size

field of the region’s signature buffer entry) exceeds a predetermined threshold T (32

in this design). If a hard or soft fence starts a new region, its instruction address is

stored in the Region-beginPC field of the new region’s signature buffer entry. This

information is used while reporting an MM exception.

When a memory instruction commits from the ROB, it searches the region buffer

to check if there is an entry for same cache block address already present for current

region. If no such entry exists, a region buffer entry is allocated for it. The register

rFree keeps track of the total number of free entries in the region buffer. If no free

region entry is available, the memory access is stalled at the commit stage of the

pipeline. Free region buffer entries are organized as a free-list. The head and tail

registers point to the first and last entries in the free list respectively. The head and

tail of a region is stored in the RBI-begin and RBI-end fields in the signature buffer

entry of that region (RBI stands for Region Buffer Index).

A region buffer entry contains following fields: cache block address, read and

write bit vectors to keep track of bytes accessed within the cache block, read-safe

and write-safe bits, and E bit that is set when corresponding cache block has been

evicted from the cache. When a memory instruction commits from the ROB, it

updates appropriate bits in the region buffer entry. If entry is a newly allocated,

read-safe or write-safe are set according to the read/write-safe bits observed

50

by the instruction. The read/write-safe bits are reset when either corresponding

cache block is evicted or a memory instruction with read/write-safe bit not set is

inserted into this region buffer entry. When a region commits without detecting a

conflict in signatures, it sets safe bits in the cache only if E bit in the region buffer

entry is not set.

When a load reads from the cache, it needs to remember whether the accessed

cache block had either of read-safe or write-safe bits set or not. To this end,

load queue entries are extended to have additional bit: rs, which is set if either of

read-safe or write-safe bits were set in the cache block. On cache block invalida-

tions, load queue is searched and rs bit is reset. When load is committed from ROB,

it uses rs bit to update its region buffer entry. Load’s cache block address is inserted

into read signature if rs bit is not set. Stores update write-safe bit when they retire

from the store buffer. To update the region buffer entry directly, region buffer index

(RBI) of the corresponding region buffer entry is saved in the store buffer. Similar to

loads, they update write signature if write-safe bit is not set in the cache.

In order to determine when all stores from a regions have completed, a counter

numPendingStores is kept in region’s signature buffer entry. This counter is incre-

mented when an store is put into the store buffer and is decremented when a pending

store retires from the store buffer.

When a hard or a soft fence commits from the ROB, its region’s regionDone bit

is set in the signature buffer. Also, its region’s Region-endPC is updated with its

instruction address. A region is ready to commit, if its regionDone bit is set and

numPendingStores is zero. Before committing a region, its addresses need to be

51

conflict checked with all the in-flight regions in remote processor cores. During this

process, the region’s SBI is used as its identifier in the conflict check messages.

If the conflict check succeeds, the region is committed by deallocating its entries

in the signature and region buffers. The signature buffer entry is identified using the

region’s SBI used during its conflict check. The start and end of a region’s entries

in the region buffer are determined using the RBI-begin and RBI-end fields stored

in that region’s signature buffer entry. Committed region’s region buffer entries are

added to the free list.

3.6 Performance Evaluation

This section presents some performance results comparing the performance of

programs compiled and executed under the drfx memory model to those compiled

and executed under a DRF0 model.

3.6.1 Methodology

The baseline compiler is the LLVM [70] compiler with all optimizations enabled

(similar to compiling with the -O3 flag in gcc) and with fences inserted before and

after each call to a synchronization function and each access to a volatile variable.3

The drfx compiler is the implementation described in the Section 3.4: hard fences

are inserted before each call to a synchronization function and each access to a volatile
3The unmodified LLVM compiler using its x86 backend targets hardware obeying the TSO mem-

ory model. The baseline simulated architecture uses a weaker memory model which permits ad-
ditional reorderings not allowed by TSO. As such, compiler inserts the additional fences around
synchronization accesses to ensure that the program behaves correctly on the weaker model. The
benchmarks run slightly faster in this baseline, DRF0 configuration than on a simulated TSO archi-
tecture running code compiled with unmodified LLVM.

52

Table 3.1: Processor Configuration

Processor 4-core CMP. Each core operating at 2Ghz.
Fetch/Exec/
Commit
width

4 instructions (maximum 2 loads or 1 store) per cycle in each core.

Store Buffer
TSO: 64 entry FIFO buffer with 8 byte granularity.
DRF0, drfx: 8 entry unordered coalescing buffer with 64 byte
granularity.

L1 Cache 64 KB per-core (private), 4-way set associative, 64B block size,
2-cycle hit latency, write-back.

L2 Cache 1MB private, 4-way set associative, 64B block size, 10-cycle hit
latency.

Coherence MOESI snoop protocol
InterconnectionHierarchical switch, fan-out degree 4, 512-bit link width, 2-cycle

link latency.
Memory 80-cycle DRAM lookup latency.

Region buffer 544 entry, 8 banks, 2-cycle CAM access.

Bloom filter

1024 bits. 2 banks indexed by 9 bit field after address
permutation[27].
2-cycle access latency.

variable, optimizations that perform speculative reads or writes are disabled, and soft

fences are inserted to conservatively bound region size to 512 memory accesses.

Both the baseline and drfx architectures are simulated using a cycle-accurate,

execution driven, Simics based x86_64 simulator called FeS2 [37]. The baseline ar-

chitecture is a 4-core chip multiprocessor operating at 2GHz (Table 3.1). It allows

both loads and stores to execute out of order between fences. The drfx architec-

ture adds support for soft fences and conflict detection as described in the previous

section, using a region buffer of size 512 (compiler bound) + 32 (to support region

coalescing).

Performance is measured over a subset of the PARSEC [15] and SPLASH-2 [117]

53

0.8

0.9

1

1.1

1.2

1.3

1.4

Sp
e

ed
u

p
 w

rt
 D

R
F0

 H
W

 +
 s

to
ck

co

m
p

ile
r

TSO HW, stock compiler DRF0 HW, Stock compiler + hard fence DRF0 HW, DRFx compiler DRFx HW, DRFx compiler

Figure 3.9: Slowdown of benchmark programs run under the drfx model compared to a
baseline DRF0 model, broken down in terms of cost of lost compiler optimization and cost
of hardware race detection.

benchmarks. All of these benchmarks are run to completion. For PARSEC bench-

marks (blackscholes, bodytrack, facesim, ferret, fluidanimate, streamcluster, swap-

tions), the simmedium input set was used. For SPLASH-2 applications (barnes,

cholesky, lu (contiguous), radix, raytrace, water-spatial, and volerand) the default

inputs were used.

3.6.2 Comparison of drfx with Other Relaxed Memory Models

Figure 3.9 compares the performance of TSO, DRF0 and drfx memory mod-

els. The results are normalized to the execution time of DRF0 hardware executing

a binary produced by stock LLVM compiler. Since stock compiler is for x86 (TSO

memory model), fences were added before and after synchronization operations to

ensure correct memory ordering on DRF0 hardware. For drfx, we measured both

the cost of lost compiler optimizations and the cost of conflict detection in hard-

ware. To measure the cost of lost compiler optimizations, we executed the binaries

produced by drfx-compliant compiler on DRF0 hardware that treats soft-fences as

no-op. To measure the cost of conflict detection, we evaluate a processor configura-

54

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Sp
e

ed
u

p
 w

rt
 D

R
F0

 H
W

 +
 D

R
Fx

 c
o

m
p

ile
r

"DRFx: io exec, io commit" "DRFx: ooo exec, io commit" "DRFx: ooo exec, ooo commit"

"DRFx: ooo exec, ooo commit, coalescing" "DRFx: ooo exec, io commit, coalescing, exploit locality"

4.1 3.6 3.2 2.8 4.1 3.9 4.1 3.6 4.3 3.8 5.9 5.8 4.6 4.6 2.6 6.3 5.6 4.6 3.9 3.1 2.7

Figure 3.10: Effectiveness of Region Coalescing, and Out-Of-Order Region Execution and
Commit Optimizations.

tion that employs optimizations discussed in Section 3.5. In Figure 3.9, we see that

a drfx-compliant compiler (labeled as “DRF0 HW, drfx Compiler”) incurs about

6.2% overhead on average due to restricted compiler optimizations. Conflict detec-

tion in hardware adds about 3.4% overhead. In following sections we’ll show how

optimizations proposed in Section 3.5 are crucial for low conflict detection overhead.

3.6.3 Effectiveness of drfx Hardware Optimizations

Figure 3.10 demonstrates the importance of distinguishing soft fences and imple-

menting the optimizations described in the Section 3.5. Here performance is measured

as execution time normalized to that of DRF0 hardware. When soft fences are treated

like hard fences (label “drfx: io exec, io commit”), the benchmarks experience slow-

down of more than 3× on average. Enabling out-of-order execution and commit for

soft-fence-bounded region significantly reduces this overhead to about 35.3% on aver-

age. Coalescing soft-fenced regions further reduces this overhead to 4.0%. Coalescing

of soft-fenced regions is highly effective in increasing the average region size. Av-

erage soft-fenced region size without coalescing is about only 8 memory operations.

55

0%

10%

20%

30%

40%

50%

60%

70%

D
R
F0

D
R
Fx

D
R
F0

D
R
Fx

D
R
F0

D
R
Fx

D
R
F0

D
R
Fx

D
R
F0

D
R
Fx

D
R
F0

D
R
Fx

D
R
F0

D
R
Fx

D
R
F0

D
R
Fx

D
R
F0

D
R
Fx

D
R
F0

D
R
Fx

D
R
F0

D
R
Fx

D
R
F0

D
R
Fx

D
R
F0

D
R
Fx

D
R
F0

D
R
Fx

black-
scholes

bodytrack facesim ferret fluid-
animate

swaptions stream-
cluster

barnes cholesky lu_cb radix raytrace water-
spatial

volrend

%
 o

f
ex

e
cu

ti
o

n
 t

im
e

 w
rt

 D
R

F0
 H

W
 e

xe
cu

ti
o

n

CacheMiss StoreBufferFull StoreBufferDrainFence RegionBufferFull HardFenceCommitStall

Figure 3.11: Profile of commit stage stall.

Enabling coalescing for soft-fenced region increases their average size to about 1200

memory operations. Increased region size results in lowering the frequency of conflict

detection and thus lowering the cost of conflict detection. Enabling optimization for

exploiting locality in memory accesses (Section 3.5.7) results in overall best design and

has about 3.1% performance overhead. Note that as mention earlier in Section 3.5.7,

out-of-order commit is not compatible with optimization for exploiting locality of

memory accesses.

To understand the sources of overhead involved in conflict detection, we profile

cycles during which commit stage is stalled (Figure 3.11). Since we insert entries into

region buffer at commit stage, processor’s commit could be stalled if region buffer is

full and can not accept any new entry. Such stall is labeled as “RegionBufferFull”

in Figure 3.11. Hard fences in drfx can also introduce additional stall while wait-

ing for all preceding regions (including region ended by the hard-fence) to complete

their conflict detection. This stall is labeled as HardFenceCommitStall. For some

applications, however, conflict detection increases stall cycles up to 17% of the total

execution time of DRF0 hardware. High overhead for fluidanimate is due to its

56

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Sp
e

e
d

u
p

 w
rt

 D
R

F0
 H

W
 +

 S
to

ck
 c

o
m

p
ile

r

4 8 16

Figure 3.12: Scalability of drfx with increasing number of cores.

usage of a lot of locks (and hence hard-fences). We also see that finite size of the

region buffer has very limited impact on overall execution time (RegionBufferFull

being almost negligible) primarily due to coalescing of soft-fenced regions.

3.6.4 Scalability

Figure 3.12 shows the scalability of drfx over 4, 8, and 16 cores. With increasing

number of cores, broadcast latency and probability of false conflicts in signatures in-

creases, which in turn results in higher cost of conflict detection. For fluidanimate,

barnes, and radix increase in conflict detection overhead with increasing number of

cores is attributed mostly to the increase in rate of false conflicts in signatures. On

other hand, for streamcluster, region size decreases with increasing number of cores.

This reduction is attributed to very frequent hard-fences in the program. Smaller re-

gions result in more hard-fences waiting for conflict detection more frequently. This

increases the cost of conflict detection as we increase the number of processors. For

remaining benchmarks, we observe small increase in conflict detection overhead.

57

3.7 Conclusion

The drfx memory model for concurrent programming languages gives program-

mers simple, strong guarantees for all programs. Like prior data-race-free memory

models, drfx guarantees that all executions of a race-free program will be sequentially

consistent. However, while data-race-free models typically give weak or no guarantees

for racy programs, drfx guarantees that the execution of a racy program will also

be sequentially consistent as long as a memory model exception is not thrown. In

this way, drfx guarantees safety and enables programmers to easily reason about

all programs using the intuitive SC semantics. Furthermore, the minor restrictions

drfx places on compiler optimizations are straightforward, allowing compiler writers

to easily establish the correctness of their optimizations.

drfx capitalizes on the fact that sequentially-valid compiler optimizations preserve

SC as long as they do not interact with concurrent accesses on other threads. Since

performing precise data race detection is impractically slow in software and complex

in hardware, drfx allows the compiler to specify code regions in which optimizations

were performed. The hardware can then efficiently target data race detection only

at regions of code that execute concurrently. This allows drfx-compliant compiler

and hardware to cooperate, terminating executions of racy programs that may violate

SC. The formal development establishes a set of requirements for the compiler and

the hardware that are sufficient to obey the drfx model. The implementation and

evaluation indicate that a high-performance implementation of drfx is possible.

58

CHAPTER IV

SC-preserving Hardware

Previous chapter described how SC can be preserved in the compiler efficiently.

However, to support SC at language level, binaries produced by an SC-preserving

compiler must be executed on a SC hardware. This chapter focuses on building an

efficient SC-preserving hardware. In past, several efficient SC hardware designs have

been proposed, but most of them rely on fairly complex hardware support. The

research described in this chapter presents an efficient SC-hardware design that has

lower complexity overhead in comparison to earlier proposed SC designs. The key

is to treat all accesses as potentially “unsafe” and use static and dynamic techniques

to identify “safe” accesses. Relaxing memory ordering constraints for safe accesses

does not require complex hardware support. Along with SC-preserving compiler,

SC-hardware provides SC guarantees for all programs and addresses the safety and

debuggability problem discussed in Chapter II.

59

4.1 Introduction

Past work has produced efficient SC hardware designs [7, 41, 97, 55, 43, 26, 114, 17]

by introducing novel techniques for speculatively reordering memory accesses and re-

covering when there is a possible SC violation. In-window speculation [41] is relatively

simple as it only reorders memory instructions before they are are committed from

the reorder buffer (ROB). Commercial processors already implement this optimiza-

tion to efficiently support x86’s Total Store Order (TSO) consistency model [60].

However, in-window speculation alone is insufficient to attain high performance in

SC hardware, as loads still cannot be committed until the store buffer is drained.

To reap the benefits of a store buffer in SC hardware, researchers have proposed a

more aggressive out-of-window speculation technique that reorders even committed

memory instructions [97, 43, 26, 17, 114]. But out-of-window speculation and the ac-

companying recovery mechanisms are arguably quite complex and have not yet been

realized in any practical processor implementation.

This chapter presents an SC hardware design that is more complexity-effective

than past out-of-window speculation techniques, but still results in an efficient de-

sign. It leverages the simple observation that memory model constraints need not be

enforced for private locations and shared read-only locations [103, 79, 2]. Since most

memory accesses are to private or read-only data [48, 30], this observation provides

an opportunity to design an efficient SC hardware by simply relaxing the ordering

constraints on many memory accesses, obviating the need for complex speculation

techniques.

60

A modern TSO processor design (which already supports in-window specula-

tion [41]) is extended to exploit the above idea to support SC efficiently. Store buffer

is divided into two structures: one is the regular FIFO store buffer that orders stores

to shared locations, and the other is a private, unordered store buffer to fast-track

stores to private locations. This design allows private and shared, read-only loads to

commit from the ROB without a store buffer drain. It also allows a load to a shared

read-write location to commit from the ROB without waiting for the private store

buffer to drain. Therefore, when compared to the TSO design implemented in today’s

processors, the only additional memory ordering restriction that proposed SC design

imposes is that loads to shared read-write locations are stalled until the FIFO store

buffer containing shared stores is drained.

Two complementary techniques are discussed to enable a processor to identify

private and shared read-only accesses. The first technique is based on static compiler

analysis. An SC-preserving compiler (discussed in previous chapter) is extended to

conservatively identify all memory accesses to function locals whose references do not

escape their functions. These memory accesses are guaranteed to be private to a

thread. The compiler communicates this information to the processor by setting a

bit in a memory instruction’s machine code.

The compiler analysis necessarily needs to be conservative in classifying a mem-

ory access as private. A complementary dynamic technique is employed that extends

the hardware memory management unit and operating system’s page tables to keep

track of private and shared, read-only pages. During address translation, a proces-

sor determines the type of a memory access and decides whether or not to enforce

61

memory model constraints for that access. Past work employed a similar dynamic

technique to track private pages, but used it to optimize cache performance [48, 66]

and directory-based coherence [30] rather than to reduce the overhead due to memory

model constraints.

Experimental study on the PARSEC [15], SPLASH [117] and Apache benchmarks

shows that the overhead of proposed SC hardware over TSO is less than 5.0% on

average. It also shows that the overhead of providing end-to-end SC (running the

SC-preserving compiler’s output on our SC hardware) when compared to running the

stock LLVM compiler’s output on a TSO hardware is 7.5% on average.

Although this chapter focuses on designing an efficient SC hardware, the obser-

vation that memory model constraints need not be enforced for private and shared,

read-only accesses could be similarly exploited to improve the performance of any

memory model implementation.

4.2 Efficient and Complexity-Effective SC Hardware Remains

a Challenge

Prior to discussing the challenges of designing SC hardware, few commonly used

terms that are also used in this chapter are clarified. In a modern out-of-order pro-

cessor, instructions can execute out-of-order but must commit from the reorder buffer

in program order. If allowed by the memory model, a store may commit from the

reorder buffer and be placed in a store buffer before its value has been written to

cache or memory. The stored value is made visible to other threads only when a store

62

retires from the store buffer, which is when its value is written to the appropriate

memory location in the cache. Two memory accesses in different threads are said to

conflict if they access the same memory location and at least one of them is a write.

SC hardware needs to guarantee that the memory accesses of a program appear

to have executed in a global sequential order that is consistent with the per-thread

program order. A naïve SC hardware design would force loads and stores to be

executed and committed in program order. Also, a store’s value would need to be

made visible to all threads atomically when committed. This naïve design disallows

most hardware optimizations including out-of-order execution and store buffers.

Even x86 processors’ TSO memory model disallows loads from executing out-of-

order. As mentioned earlier in previous chapter, modern x86 processor implementa-

tions support in-window speculation [41] to reduce the overhead due to this load-load

memory ordering constraint of TSO [60]. Loads are allowed to be speculatively ex-

ecuted out-of-order. The processor still commits them in-order and recovers when

a possible memory ordering violation is detected between the execution and commit

of a load. A violation is detected when a processor core receives a cache coherence

invalidation request for a location accessed by a load that has already executed but

has not yet committed. The logic that supports recovery from branch misprediction

is mostly sufficient to recover from in-window memory ordering violations as well.

The primary performance overhead in TSO, when compared to weaker relaxed

consistency models [4], is the cost of enforcing store-store ordering. TSO requires a

global total order for all stores, which is guaranteed by committing stores to a FIFO

store buffer and retiring them to memory atomically in the program order. As a

63

result, a processor core may have to stall the commit of a store from ROB if the store

buffer is full. However, this overhead tends to be small for most programs.

In-window speculation is also useful for optimizing SC hardware since it allows

many loads to execute out of order, eliminating much of the overhead in ensuring

SC. However, unlike TSO which permits loads to be reordered before stores, SC can

not take full advantage of store-buffer optimization. While SC hardware can commit

a store from the ROB and place it in the store buffer, any following load cannot be

committed from the ROB until the store buffer is drained. That is, all preceding

stores need to be retired and their values made visible to other threads before a later

load can commit. In-window speculation does not help reduce this costly overhead in

an SC hardware design.

Past research has proposed aggressive speculation techniques to allow store-buffer

optimization in SC hardware [97, 44, 43, 46, 26, 114, 17]. These designs extend the

idea of in-window speculation to speculatively commit loads from the ROB even when

the store buffer is not empty. This requires fairly complex hardware that keeps track

of the register and memory state before each committed load, detects potential SC

violations by comparing incoming coherence invalidation requests with the addresses

of committed loads, and performs a rollback when a potential SC violation is detected.

To avoid speculation, Lin et al. [72] proposed to check if there is any conflict with

pending accesses in remote cores before committing a memory instruction from the

ROB. While this design eliminates the need for out-of-window checkpoint and rollback

support, it still requires significant changes to the coherence protocol to efficiently

perform conflict detection before committing a memory instruction from the ROB.

64

This chapter proposes an alternative mechanism to reap the benefits store-buffer

optimization for a certain class of memory accesses while preserving SC.

4.3 Relaxing Memory Model Constraints for Safe Accesses

Processors enforce memory ordering constraints in order to prevent other proces-

sors from being able to observe reordering not allowed by the memory model. Past

SC hardware designs have uniformly enforced memory model constraints on all non-

atomic memory accesses, distinguishing only between stores and loads. This is overly

conservative and unnecessary for a significant fraction of memory accesses.

If either the compiler or the runtime system can guarantee that there can be no

conflicting memory access on another thread which could observe or alter the result of

a particular memory access, then the processor can safely reorder that access in any

manner that preserves intra-thread data dependencies. We refer to memory accesses

with this property as safe accesses and the rest as unsafe accesses.

For instance, if a memory access is to a location that is private to the current

thread, then clearly there can be no conflicting memory accesses, so the access is safe.

A compiler can guarantee this property for all dynamic instances of a static memory

instruction that accesses only thread-local data. A runtime system can guarantee

this property for any access to a location that it knows has only been accessed by

the current thread so far during execution. Once a memory location is accessed by a

second thread, the runtime system must detect this situation and require that this and

future accesses obey memory model constraints on the processor. A similar idea can

65

be used to identify shared read-only memory locations accessed by multiple threads

as safe.

The above observation is exploited to design an efficient and complexity-effective

SC hardware. Proposed SC hardware design can be understood in relation to out-

of-window speculation techniques proposed in the past for reducing the overhead of

enforcing memory model constraints. The key insight of those past techniques was

to speculatively relax memory ordering restrictions on memory accesses as they are

rarely violated. Unfortunately, the required support for recovery is costly in terms of

processor complexity. In contrast, memory ordering restrictions are relaxed only for

those memory accesses which are guaranteed to be safe by the compiler or runtime

system. Since this relaxation is always correct, hardware support for misspeculation

recovery is no longer needed, hence resulting in a low-complexity solution.

Over 45% of memory accesses are found to be safe for benchmarks studied (Sec-

tion 4.8.1). Relaxing of SC memory ordering restrictions is focused on these accesses.

But this approach is generally applicable to any memory model. For example, TSO

requires that stores be retired in program order from the store buffer, but that re-

striction need not be enforced for safe stores.

4.4 Design: Memory Access Type Driven SC Hardware

This section discusses a low-complexity, efficient, SC hardware design based on

exploiting memory access type information. Figure 4.1 shows the extensions we pro-

pose to a baseline TSO processor and operating system used today. Before delving

66

into SC hardware design, we briefly describe the two techniques we use to determine

safe memory accesses and how that information is communicated to the hardware.

To simplify the discussion, we assume that a memory instruction accesses only

one location in memory. Section 4.5.3 discusses how memory instructions in a CISC

architecture that can read or write to multiple locations are handled.

4.4.1 Two Techniques to Determine Memory Access Type

The proposed processor design relies on two complementary techniques to deter-

mine safe accesses: a static compiler analysis and a dynamic analysis based on the

page protection mechanism.

The static analysis determines memory instructions in a program that are guar-

anteed to access private or read-only locations (safe locations). It does this using a

conservative, intra-procedural analysis to identify function-local variables that do not

escape the scope of their functions (safe variables). At run-time, the memory loca-

tions of such variables will be private to the thread that invokes the function, so all

accesses to these variables are considered safe. 1 Our analysis also considers accesses

to constant literals as safe. The Instruction Set Architecture (ISA) is extended to

allow a compiler to communicate to the hardware which accesses it guarantees are

safe. When a processor core decodes a memory instruction and allocates an ROB

entry, it sets a bit (ss) in the ROB (Figure 4.1) if that instruction is flagged as safe

by the compiler, which is later used to relax memory model constraints. This static

approach incurs little runtime complexity, but it has to be conservative and may clas-
1Care must be taken to ensure correctness as two function-local variables in different functions

may be allocated to the same stack location (Section 4.5).

67

sify accesses to locations (especially those on the heap) that are actually private as

unsafe.

A dynamic technique is also employed that leverages operating system (OS) sup-

port for classifying accesses at the page granularity [48]. The OS protects pages at

the process-level, which is extended to support thread-level page protection by adding

a few fields to the page table entry (Figure 4.1). The first read and/or the first write

from a thread will trigger an exception to the OS, which allows the OS to keep track

of the state of the page (private, shared read-only, or shared read-write). The TLB

entry for a page is also extended with an additional safe bit, which is used to deter-

mine if it is a safe page or not. During address translation for a memory access in the

execution stage, a processor core determines if the access is to a safe page, and sets

the ds bit in the ROB, which is later used to relax memory model constraints. Care

must be taken to preserve memory ordering constraints between memory accesses

when the state of the page changes (Section 4.6).

Even if a page contains only one shared read-write byte, accesses to any part of

the page will be treated as unsafe by the dynamic scheme described above. Thus, a

static analysis that classifies locations at finer granularity complements the dynamic

analysis. In the proposed design, a hybrid scheme is used. Since both static and

dynamic classification schemes are conservative, it is correct for the hybrid scheme to

consider a memory access to be safe if either one of the two methods classifies that

access as safe (i.e. either ss or ds is set in the ROB entry).

68

Physical address

Safe

Physical address tID

Page Table Entry

Shared

Read-onlytID: thread-ID of the

last accessor

... ...

FIFO

Unsafe

Unordered

Safe

Store Buffer

ss: static safe

ds ss

...

Re-order Buffer

O
S

 E
x
te

n
s
io

n
A

rc
h

it
e
c
tu

ra
l
E

x
te

n
s
io

n

TLB Entry

ds: dynamic safe

Figure 4.1: Memory Access Type Driven SC Processor and OS

4.4.2 SC Architecture Design

As pointed out in Section 4.2, TSO allows loads to be reordered before stores,

which enables store buffer optimization. SC, however, disallows this optimization,

which is the only performance cost of SC hardware when compared to TSO hardware

(assuming in-window speculation [41] for both designs).

A simple extension can reduce this cost significantly: divide the store buffer into

two parts as shown in Figure 4.1. One part is the traditional FIFO store buffer for

handling unsafe stores. The second is an unordered store buffer for fast-tracking

safe stores. A processor core can determine whether a load/store is safe or not by

examining the ss and ds bits in its ROB entry. This design has the following three

main performance advantages when compared to the baseline SC design.

• A safe load can commit from the ROB even when there are pending stores in

either or both of the two store buffers (perhaps waiting for their cache misses to

be serviced). Thus, proposed design provides TSO performance for safe loads.

69

• An unsafe load can commit from the ROB even when there are pending stores

in the unordered store buffer containing safe stores. Thus, if a safe store is

waiting for a cache miss, following unsafe loads need not wait to commit.

• Stores in the unordered store buffer can be coalesced if they access the same

cache line. Also, they can be retired out of order. As a result, a safe store need

not wait for a pending (safe or unsafe) store to retire. This decreases pressure

on store buffer capacity. This property could also be exploited to improve a

TSO hardware’s performance.

4.4.3 Store-to-Load Forwarding with Two Store Buffers

Having two store buffers could potentially complicate store-to-load forwarding

logic. This complication is avoided by ensuring that all bytes accessed by a memory

instruction are of the same type (safe or unsafe). This property is referred as the

memory-type guarantee. Furthermore, compiler ensures that for any valid read-after-

write dependency the two memory accesses are of the same type. Therefore, to detect

store-to-load forwarding for a safe load, only the unordered store buffer needs to be

searched. Similarly, an unsafe load needs to search FIFO store buffer only.

The static analysis ensures that all the variables accessed by a memory instruction

are of the same type as follows. If any memory instruction could access both safe

and unsafe variables, then the static analysis conservatively marks that instruction

as unsafe. In addition, any safe variable accessed by that instruction is reclassified

as unsafe, as are all other instructions that access those reclassified variables. The

70

read-after-write dependency guarantee is ensured since the compiler uniquely classifies

each variable as either safe or unsafe, so both stores and loads to the variable will

use the same access type. A discussion of an interesting corner case arising from

distinct logical variables being mapped to the same physical address can be found in

Section 4.5.2.

The dynamic analysis could violate the memory-type guarantee only when an

instruction accesses memory locations that span multiple pages. Fortunately, cur-

rent architectures produce multiple micro-operations to execute such unaligned load

accesses [61]. As a result, memory-type guarantee is preserved for each load/store

micro-operation, which is sufficient to ensure correct store-to-load forwarding. The

read-after-write dependency guarantee could only be violated when a page transitions

from private or shared-read-only to shared-read-write. But such a transition entails

flushing the store buffers (see Section 4.6), thus the guarantee is maintained.

4.4.4 Illustration

Figure 4.2 depicts an example to illustrate the performance advantages of the

proposed SC hardware design. The top half of the picture illustrates a baseline

SC hardware design and the bottom half illustrates the workings of proposed design.

Figure 4.2a represents the initial states of the ROB and the store buffers for a program,

and Figure 4.2b shows the events that take place in the store buffer and in the ROB

along a timeline. Shaded cells represent safe accesses. Assume that only St(X)

incurred a cache miss and the rest are cache hits. Finally, for simplicity, assume that

the cache has one read and one write port.

71

B
a

s
e

lin
e

-S
C

P
ro

p
o

s
e

d
-S

C

ready to

commit

(a) Processor States

(b) Execution timeline

Figure 4.2: Comparison of a program’s execution in baseline SC (top) and proposed SC
hardware (bottom) designs.

72

The figure shows that, in the baseline design, St(X) is safe but is stalled at the

head of the store buffer. This unnecessarily stalls the retirement of the following

stores and also prevents the loads in the ROB from being committed. The loads in

the ROB must wait to commit until after the cache miss is resolved and the store

buffer is drained.

In proposed SC design (bottom half of the picture), the long latency St(X) is

sent to the unordered store buffer. This allows all the following safe (St(Y)) and

unsafe (St(A)) stores to retire. Also, it allows safe (Ld(Z)) and unsafe (Ld(B)) loads

to commit from the reorder buffer. Finally, observe that safe load Ld(Z) is allowed

to commit even before the preceding unsafe store St(A) retires. The only memory

ordering enforced is that unsafe load Ld(B)must wait to commit until the unsafe store

St(A) retires, which results in a one cycle stall for the ROB commit. In contrast, in

the SC baseline, ROB commit is stalled until the FIFO store buffer becomes empty.

This stall can be significant depending on the number of pending stores that miss in

the cache and the cache miss latency.

4.4.5 SC Memory Model Guarantees

The SC memory model requires that any program state that is made “externally”

visible is SC-reachable in the sense that the state is reachable through an SC execu-

tion of the source program. We consider the program state read by a synchronous

system call and the final program state to be externally visible. By construction,

SC-preserving hardware and compiler guarantee that the final program state is SC-

reachable. To guarantee that any program state visible to a system call handler is

73

SC-reachable, hardware only needs to ensure that the store buffers of the processor

core invoking the system call are drained before the system call handler is executed.

This is already the case even with conventional processor designs that support precise

context switches.

However, at an asynchronous interrupt (e.g., interrupt from an interactive debug-

ger), hardware can only guarantee that the program state is SC-reachable for the

shared variables but not for the private variables. For the private variables, hardware

can only guarantee SC with respect to the compiled binary, because accesses to pri-

vate variables may have been optimized and reordered by the SC-preserving compiler.

But guaranteeing that the program state at an asynchronous interrupt is precise with

respect to the source program is a more general problem that is known to be an issue

even for sequential programs in the presence of compiler optimizations [1].

4.5 Static Classification of Memory Accesses

This section describes a static approach to classify memory instructions as either

safe or unsafe. The compiler communicates this information to the hardware through

dedicated bits in a memory instruction’s machine code.

In the dynamic scheme described in Section 4.6, implementation efficiency requires

that access patterns are tracked at the granularity of a memory page. This means

that if a single byte on a page is accessed by multiple threads, then all locations on

that page must be treated as shared and suffer the performance consequences of strict

ordering requirements when accessed. The static scheme described in this section has

74

no runtime detection cost, and as such, nothing prevents us from treating an access

to one byte as safe while treating an adjacent byte on the same page as unsafe.

4.5.1 Classification of Memory Accesses

Proposed static analysis runs at compile time and conservatively determines mem-

ory accesses that could potentially access mutable shared variables and marks them as

unsafe. The remaining accesses to private and read-only shared variables are marked

as safe.

The analysis first classifies program variables:

• Safe variable: A variable is classified as safe only if the compiler can statically

guarantee that it is either a read-only variable or will be accessed by only a

single thread during its lifetime.

• Unsafe variable: A variable that is not safe is classified as unsafe. It may be

accessed by multiple threads during its lifetime.

Once program variables have been classified, the analysis can classify memory

accesses:

• Safe access: A memory instruction that accesses one or more safe variables

and does not access any unsafe variables is classified as safe.

• Unsafe access: A memory instruction that accesses one or more unsafe vari-

ables and does not access any safe variables is classified as unsafe.

It is possible that a memory instruction accesses both safe and unsafe variables

(e.g., an instruction dereferencing a pointer that can map to variables of both types).

75

We refer to such instructions as “mixed accesses”. In order to ensure correct store-

to-load forwarding on proposed hardware, all accesses to a variable must be either

safe or unsafe. To accomplish this, compiler marks a mixed-access as unsafe and also

demotes any mutable safe variable that it accesses to an unsafe variable. This step

may now cause some safe accesses to become mixed or unsafe accesses. We iterate

this step till all accesses are either classified as safe or unsafe.

Sophisticated sharing and thread escape analysis [32, 100] could be used to perform

the initial classification of program variables. But rather than use a heavyweight,

inter-procedural analysis, the static analysis relies on simple modular information to

conservatively determine if an access is safe. Non-constant global variables, static

variables, and dynamically allocated heap objects are all considered unsafe. This

leaves only function parameters, function locals, and constants as potentially safe

variables.

Proposed compiler analysis is built on top of LLVM which already performs a

simple analysis to identify non-escaping, function-local variables (i.e. those variables

whose address is not taken using the & operator). Modified compiler takes advan-

tage of this existing analysis and marks these non-escaping variables as safe. Stack

locations used by the compiler for register spilling are also classified as safe. Finally,

literals (shared or private) are classified as safe as well.

4.5.2 Ensuring Correctness for Hardware with Two Store Buffers

As mentioned in Section 4.4.3, store-to-load forwarding is only performed between

loads and stores of the same memory access type. For instance, an unsafe store to

76

void f(){
int x;
x=1;
printf("%d\n",x);

}

void g(){
int y;
y=2;
external_fn(&y);
printf("%d\n",y);

}

void u(){
union {

int i;
char * p;

};
p = (char *) ’’SC’’;
printf(‘‘%d\n’’,i);
external_fn(&i);

}
(a) (b) (c)

Figure 4.3: Local variables (x, y and z) in different functions in a program may map to
the same physical location, complicating the unsafe versus safe distinction. Union members
(i and p in function u()) must have same memory access type.

a memory location L which is queued in the unsafe FIFO store buffer will not be

forwarded to a safe load from L. Thus, maintaining correct program semantics requires

that the compiler mark a load and a store that access the same memory location with

the same access type.

The algorithm described above maintains this invariant for accesses to a loca-

tion within a function: only non-escaping local variables and compiler temporaries,

neither of which can have aliases, are marked as safe. Furthermore, demoting safe

variables touched by mixed accesses to unsafe and reclassifying the variables’ accesses

guarantees that all accesses are either entirely to safe or unsafe variables.

However, this intra-procedural analysis does not account for location reuse across

different functions. Consider the example functions shown in Figures 4.3a and 4.3b.

Both function f and g contain a single local variable. In f, compiler marks x as safe,

while in g, it must mark y as unsafe since it escapes the function and may be accessed

77

by another thread. Compiler may store both x and y on the stack.2 Now consider

some code that calls function f and then calls g. Both x and y will be stored in the

same physical location due to the runtime call stack growing and shrinking on function

call and return. Furthermore, it is essential that the write to y complete (retire from

the store buffer) after the write to x, otherwise we risk violating sequential program

semantics even in the absence of concurrent threads.

In order to ensure that such code executes correctly, compiler is extended to emit

special instructions to drain safe or unsafe store buffers selectively. At the beginning of

a function, that has at least one local variable escaping the function scope (function

g in the example), compiler inserts an instruction to drain the safe store buffer.

Draining the safe store buffer ensures that all safe stores from earlier functions have

updated the respective cache blocks. In the example, draining the safe store buffer

ensures that write to y is performed after write to x. Similarly, at the end of function

g, compiler also inserts another instruction to drain unsafe store buffer. Draining

unsafe store buffer is performed to ensure that if a stack location (that is mapped

to y in function g) is reused and is marked safe in some later functions, safe stores

to that location will be performed after unsafe stores in function g. Draining store

buffers could be expensive, but it is done only for functions in which function local

variables escape the function’s scope. If none of function local escape the function’s

scope, we do not incur any overhead. We also extended ISA to have such special

instructions for draining store buffers selectively.
2In function f, the compiler might use a register for x and never assign it a physical memory

location. Nevertheless, it is valid behavior to store x on the stack.

78

Alternatively, hardware could be extended to perform an additional check for

every store. Before committing a safe store from the ROB, the processor checks the

FIFO store buffer with unsafe stores for any conflicting store (a store with the same

address), and vice versa. If a conflicting store is found in the other buffer, the commit

is delayed until the conflicting store retires. This scenario is a rare occurrence, because

it is unlikely that two function-local variables mapped to the same physical location

will be of different type and both have stores in-flight at the same time.

This approach of extending hardware to check for conflicts on store was rejected

as it requires an additional CAM lookup for each store that is committed. This

expensive CAM lookup would be required for every store even though conflicts would

rarely be found. In comparison, draining store buffers is effective and incurs additional

overhead only in rare cases.

Additional care must also be taken with local variables of union type. For instance,

notice that the address of p is never taken in Figure 4.3c. But, because it is essentially

an alias for i which does have its address taken, the static analysis must classify both

variables as unsafe.

4.5.3 CISC Architecture

We have so far assumed that a memory instruction in a program’s binary can

access only one variable. However, in the CISC architecture an instruction may

access multiple variables. For such instructions, we propose to extend the ISA to

provide one extra bit per memory operand in the instruction’s machine code. This

will allow compiler to mark each memory access in a memory instruction as safe or

79

unsafe. A processor can use this information to classify a micro-operation generated

for each memory access in a CISC instruction as safe or unsafe.

4.6 Dynamic Classification of Memory Accesses

A static technique does not have the benefit of observing the actual runtime stream

of memory accesses. It must conservatively classify accesses at compile time. There-

fore, a complementary dynamic technique for determining if a memory access is safe

or not is discussed below. As described in Section 4.3, an access to private or shared,

read-only locations is safe. To determine safe accesses, we leverage the hardware mem-

ory management unit (MMU) and the OS page protection mechanism [48, 30, 35].

4.6.1 Background: Process-Level Page Protection

Current systems provide page protection at the process level. Each process has

a page table that is shared among all the threads of the process. Each page table

entry contains the read and write access permissions for a page. In the execute stage

of a memory operation, after its effective address is resolved, this virtual address is

translated by the processor to the corresponding physical address. To assist in fast

translation, the processor uses a Translation Lookaside Buffer (TLB) in each core.

Each TLB entry caches a page table entry for a thread executing on its processor core.

It includes read and write permission bits, which are checked by the processor when it

executes loads and stores respectively. A page-fault exception is raised to the OS on

detecting a permission violation. On a TLB miss for an address, a TLB miss handler

80

(hardware assisted page-table walker) is executed, which fetches the page entry from

the main memory, and allocates and initializes a TLB entry for it.

4.6.2 Proposed Extension: Thread-Level Page Protection

A page table is shared by all the threads in the process. In order to detect page

sharing among threads and determine safe accesses at runtime, page table entries are

extended to keep track of the sharing state for pages. Figure 4.4 shows the sharing

states that a page can be in. Following fields are added to keep track of these states:

(a) a thread identifier (tID), (b) a Read-Only bit, and (c) a Shared bit. Any access

to a page in 〈shared, rw〉state is considered unsafe, and all the others are considered

to be safe.

TLB entry is also extended with an additional Safe bit. A processor consults this

bit during address translation to determine if an access to a page is safe, and if it is,

it sets the ds bit for the access in the ROB.

The rest of the section describes how the above states are maintained and how

memory ordering constraints are guaranteed when a page changes its state.

4.6.3 State Transitions and Guaranteeing Memory Ordering Constraints

When a page is allocated by a page fault handler, its state is set to 〈untouched〉

(Figure 4.4). Its tID is set to INV to indicate that no thread has executed a read or

write to this page yet. Also, its Read-Only bit is set and Shared bit is reset.

The first thread to issue a read to a page will trigger a TLB miss. The TLB miss

handler checks if the page has already been allocated. If so, it checks the tID of the

81

page and determines that this read is the first access. It then sets the page state

to 〈private, ro〉 by setting its tID field. It allocates a TLB entry, sets the safe bit,

but resets the write permission in the TLB entry, irrespective of the write permission

bit’s value in the page table entry. This allows the system to detect when the same

thread attempts a write to this page, as that would cause a page fault. The page

fault handler can then check the write permission for the page in its corresponding

page table entry. If the attempted write is legal, the page fault handler changes the

state of the page to 〈private, rw〉. Also, the write permission for the page is enabled

in the TLB entry to allow future writes from the same thread. The safe bit in the

TLB entry would remain set.

When another thread issues a read to a page in the 〈private, ro〉 state, it would

also incur a TLB miss. The TLB miss handler determines that the page has been read

by another thread, and changes the state of the page to 〈shared, ro〉. An entry in the

local TLB is allocated with the safe bit set, but the write permission is disabled.

The state of a page can transition to the unsafe 〈shared, rw〉state from three

different safe states as shown in Figure 4.4. Care must be taken during these state

transitions to guarantee memory ordering constraints. Let us assume a thread P owns

a page in 〈private, ro〉 state, and a remote thread R issues a store to that page. The

TLB miss handler in the remote processor core running R determines that the page

needs to be transitioned into the 〈shared, rw〉state, because the tID in the page table

entry would be different from R. Before modifying the state of the page table entry,

the handler issues an inter-processor-interrupt (IPI) to the processor core running

82

<untouched>

tID = INV

Read-only = 1

Shared = 0

<private, ro>

tID = t0
Read-only = 1

Shared = 0

<shared, ro>

tID = don’t

care

Read-only = 1

Shared = 1

<private, rw>

tID = t0
Read-only = 0

Shared = 0

<shared, rw>

tID = don’t

care

Read-only = 0

Shared = 1

t0 , W
rite

t 0
,
R

e
a
d

t0 , W
rite

T, Read; T != t0

T, W
rite; T != t0

T
, W

rite

T, Read/Write, T != t0

Invalidate TLB
 entry, D

rain

R
O

B
 and S

tore-buffer at t0

In
v
a
lid

a
te

 T
L
B

 e
n

try
,

D
ra

in
 R

O
B

 a
n
d
 S

to
re

-

b
u
ffe

r a
t a

ll p
ro

c
e
s
s
o

rs

Invalidate TLB entry,

Drain ROB and

Store-buffer at t0

T, Read

t0, Read/Write T, Read/Write

t0, Read

Initial

state

Figure 4.4: State transition of a page. Accesses to the shaded state are unsafe.

P.3 When the processor core running P receives the IPI, the interrupt handler inval-

idates the corresponding entry in its local TLB, and sends an acknowledgment back

to the core running R. Note that before any interrupt handler begins its execution,

the processor flushes both the ROB and the store buffers in order to support a precise

context switch. This behavior ensures correct memory ordering when a page transi-

tions to the unsafe state. On receiving the acknowledgment, the TLB miss handler of

R updates the state of the page to 〈shared, rw〉 , and allocates a TLB entry for the

page by initializing it to the permission bits in the page table entry, but resets the

Safe bit. Thereafter, all accesses to the page will be treated as unsafe and ordered

correctly.
3The TLB miss handler can determine the processor core running P by checking P’s Thread-

Control-Block (TCB) maintained by the OS.

83

The state transition from 〈private, rw〉 to 〈shared, rw〉 is handled similarly. The

state transition from 〈shared, ro〉 to 〈shared, rw〉 is also similar, except that an IPI

needs to be broadcast to all processor cores. To prevent races between page state

updates, the TLB miss handler and the page fault handler always acquire a lock for

a page before updating its page table entry.

TLB invalidations through inter-processor-interrupts could be expensive. Fortu-

nately, this cost is incurred only once per page during an execution of a program.

This allows us to provide a low-complexity hardware solution. Notice that other than

the maintenance and use of the Safe bit, the changes required are restricted to the

system software and TLB miss handler implementation.

4.6.4 Initialization Phase

Usually in a parallel program, the main thread initializes several data-structures

before spawning threads. We do not want to classify a page as 〈shared, rw〉just

because it was modified by the main thread during initialization. Therefore, state

of all pages is reset to 〈untouched〉 just before the main thread creates the second

thread for the process.

4.6.5 Context Switches

TLB entries do not store the tID information. Therefore, when a thread is context

switched out, the processor core cannot determine that the Safe bits in the TLB

entries belong to the older thread. This problem of virtualizing the TLB across

context switches is also a problem for supporting process-level page protection. Many

84

processor implementations employ a simple solution that flushes the TLB entries on

a context switch, which is sufficient to ensure correctness for proposed design as well.

However, some newer implementations maintain additional tags in each TLB entry

to efficiently support virtualization [29, 86, 10]. A similar hardware design could also

allow us to support TLB virtualization while providing thread-level page protection.

4.6.6 Direct Memory Accesses (DMA)

Modern systems support Direct Memory Access (DMA) to efficiently transfer

data from a slower physical device directly to main memory without involving the

processor core’s computational resources. However, this raises the question of what

semantics the system should provide in case of a data race between the DMA transfer

and concurrent accesses within the processor cores [56]. Proposed design leverages

the observation made by Dunlap et al. [35] that the DMA transfer occurs between

well-defined boundaries, and none of the processor cores should access the affected

locations during that interval. This property can be explicitly enforced by the OS by

acquiring access privileges to pages on behalf of the device and releasing them once the

transaction is completed [35]. Another alternative is to temporarily change the state

of pages that DMA can access to the unsafe state, and then restore the original state

after the DMA transfer completes. Both of these alternatives would ensure SC even

in the presence of DMA accesses. Another simpler option would be to assume that

the system is properly synchronized with respect to DMA, and make no guarantee

when races exist between DMA accesses and regular processor core accesses.

85

4.7 Evaluation

This section presents the evaluation of SC-preserving hardware. The evaluation

tries to answer following questions:

• What is the performance overhead of SC hardware design when compared to

TSO? What are the advantages over baseline SC?

• What is the accuracy of static and dynamic classification schemes when com-

pared to a byte-level dynamic classification scheme?

• What is the performance overhead of guaranteeing end-to-end SC when com-

pared to executing stock compiler’s binary on TSO hardware?

4.8 Methodology

Proposed SC design is modeled using a cycle-accurate, execution-driven, Simics-

based, full-system simulator called FeS2 [37]. The system models a 64-bit 16-core

processor with an on-chip network. Details of the processor configuration are listed

in Table 4.1. For baseline SC and TSO processor, a 64-entry FIFO store buffer with

8-byte (one word) entries is assumed. For the proposed SC design, in addition to

the 64-entry FIFO store buffer, another 8-entry unordered store buffer with 64-byte

(one L1 cache block) entries is modeled. The unordered store buffer allows out-

of-order retirement of stores and coalesces multiple stores to the same cache block.

Section 4.8.3 evaluates the sensitivity of proposed design to various store buffer sizes.

86

Table 4.1: Processor Configuration

Processor 16 cores operating at 4 GHz

Fetch/Exec/Commit 4 instructions (maximum 2 loads or 1 store)
per cycle in each core

FIFO Store Buffer 64 8-byte entries
Unordered Store
Buffer

8 64-byte entries; coalescing

L1 Cache 64 KB per-core private, 4-way set associative, 64 byte block size,
2-cycle hit latency, write-back

L2 Cache 512 KB private, 4-way set associative, 64 byte block size, 10-cycle
hit latency.

Coherence MOESI directory protocol
Interconnection Torus-2D topology, 512-bit link width, 8-cycle link latency.
Memory 160 cycles (40 ns) DRAM lookup latency.

For all of the SC and TSO designs, in-window speculative load execution is imple-

mented as described in [41]. For stores, exclusive prefetch [41] are also modeled which

can reduce the latency of a store by obtaining the necessary write permission before

the store is able to retire from the store buffer and write the cache block. TSO and

SC simulations are functionally equivalent, because our front-end Simics functional

simulator is SC. However, back-end timing simulator enforces the appropriate set of

memory ordering constraints depending on the simulated memory model.

To implement the static classification scheme, the SC-preserving compiler is ex-

tended to classify private accesses and communicate this information to the hardware

through an ISA extension. Currently, static classification is performed only for ap-

plication code, because we were not able to recompile the Linux kernel and glibc

using our compiler. Therefore, evaluation underestimates the potential benefits of

the static and hybrid classification schemes.

Three variants of the proposed SC design are evaluated which are based on

memory access classification scheme: static only (SC-staticOnly), dynamic only

87

(SC-dynamicOnly), and hybrid (SC-hybrid). These schemes are conservative in clas-

sifying a memory access as safe. Therefore, they may misclassify a safe memory access

as unsafe. To understand the accuracy of our classification schemes, a hypothetical

system was evaluated that dynamically tracked the type of a memory location at

the byte granularity (SC-ideal), which solves the false sharing problem in page-level

dynamic scheme. This fourth variant would be too expensive to realize in an actual

hardware, but it is useful as a limit study.

Studied benchmarks include the Apache web server and applications from the

PARSEC [15] and SPLASH-2 [117] benchmark suites. PARSEC benchmarks were

run with the “simlarge” input set. For barnes, 65536 nbody was simulated. For

Apache, the SURGE [14] benchmark was used to benchmark the server. For the

SPLASH-2 benchmarks, complete parallel section was simulated. For Apache, caches

and micro-architectural structures were warmed up for 20000 transactions, and then

performance was measured for the next 20000 transactions. It was not feasible to

simulate the entire parallel section for the PARSEC benchmarks due to their long

execution times. Therefore, for these programs, a sampling approach was used. In

this approach, five sampled checkpoints were created that span across the entire

parallel section of the program . For each checkpoint, after the warmup phase (100K

stores per core), timing was done for at least 10 million stores for each processor core.

This sampling approach was employed for comparing hardware designs running the

same binary. However, measuring progress in terms of stores may not be accurate

while comparing the performance of binaries produced by two different compilers (SC-

preserving and stock compiler). Therefore, for such comparisons, entire execution of

88

0%

5%

10%

15%

20%

blackscholes bodytrack facesim fluidanimate swaptions barnes apache Average

P
e

rf
o

rm
an

ce
 O

ve
rh

e
ad

 w
rt

TS

O
 H

W
 +

 S
C

 c
o

m
p

ile
r

SC-Baseline SC-staticOnly SC-dynamicOnly SC-hybrid SC-ideal(byte)
22.5%

Figure 4.5: Performance of the baseline SC and variants of the proposed SC designs
compared to TSO.

the parallel section was simulated. While simulating the dynamic and hybrid schemes,

tracking the state of a page was started only after the parallel section starts executing.

Evaluation measures the performance of both user-level and system execution in full-

system simulation using instructions-per-cycle (IPC) as the performance metric.

4.8.1 Performance of Memory Access Type Driven SC Hardware

Figure 4.5 compares the performance of the proposed SC hardware to a baseline

SC hardware design. The performance overhead of all configurations is shown relative

to a TSO hardware design that is similar to modern x86 processor implementations.

All the configurations use the SC-preserving compiler implementation. Therefore, SC

hardware provides end-to-end SC and TSO hardware provides end-to-end TSO.

While proposed optimizations may not have an effect on programs that already

provide good SC performance, they significantly reduce the overhead for those pro-

grams that do suffer a high performance penalty due to SC constraints. On average,

SC-baseline has a performance overhead of about 10.2%. The maximum overhead

89

0

20

40

60

80

100

d h b d h b d h b d h b d h b d h b d h b d h b

blackscholes bodytrack facesim fluidanimate swaptions barnes apache Average

%
 M

e
m

o
ry

 A
cc

e
ss

e
s

Private Shared, read only Shared, read-write d: SC-dynamic, h: SC-hybrid, b: SC-ideal(byte)

Figure 4.6: Classification of memory accesses by various methods.

for SC-baseline, however, is much higher: 22.5% (facesim). SC-staticOnly reduces

the overhead to 7.5% on average, with a maximum of 16.5%. SC-dynamicOnly incurs

only 5.3% overhead on average. The proposed SC design, SC-hybrid, which uses both

static and dynamic classification schemes, has an average overhead of 4.5%. Worst

case overhead for SC-hybrid is 13.6% (apache) which is a significant reduction from

the 22.5% (facesim) observed for SC-baseline. The proposed design’s performance is

close to that of SC-ideal , which uses a byte-level classification scheme. We conclude

that our optimizations are effective in reducing the SC memory ordering overhead

when it is present.

Figure 4.6 compares the accuracy of classification schemes, which determines the

effectiveness of our SC hardware optimizations. On average, our page-based dynamic

scheme (SC-dynamicOnly) classifies 38.7% of memory accesses as safe. Combining

this with the static scheme improves the accuracy further to 45.6%. Classifying

access at byte granularity (practically not feasible to implement) reveals that 75.0%

of total memory access were to safe locations.

90

-10%

0%

10%

20%

30%

40%

blackscholes bodytrack facesim fluidanimate swaptions barnes apache Average

P
e

rf
o

rm
an

ce
 o

ve
rh

e
ad

 w
rt

TS

O
 H

W
 +

 S
to

ck
 c

o
m

p
ile

r

SC-baseline HW + SC-compiler SC-hybrid HW + SC-compiler

TSO HW + SC-compiler RMO HW + Stock compiler

Figure 4.7: Comparison of our proposed system with baseline SC, TSO, and RMO hard-
ware.

Applications with a higher proportion of safe accesses (96% for facesim) benefit

significantly from proposed optimization as discussed earlier. However, proportion

of unsafe accesses is not the only factor that determine the final SC hardware over-

head. Cache miss rate of unsafe accesses have a more direct influence. For example,

SC-hybrid’s overhead for bodytrack is lower than that of swaptions even though

they have about similar fraction of unsafe accesses. This is because bodytrack’s has

lower cache miss rate than swaptions.

4.8.2 Cost of End-to-End SC

The cost of end-to-end SC is shown in Figure 4.7. Baseline is chosen as a TSO

processor running the binary produced by the stock LLVM compiler as it represents

the most commonly used systems today. End-to-end SC has two sources of overhead:

1) the cost of preserving SC in the compiler, and 2) the cost of enforcing SC in the

hardware. In Figure 4.7, we observe that the cost of preserving SC in the compiler is

on average about 3.4% (TSO HW + SC compiler). If baseline SC hardware is used,

91

the total end-to-end SC cost is about 12.8% on average. However, by using the

hybrid classification scheme, proposed SC design reduces the cost to 7.5% on average.

This overhead is only slightly higher (9.2%) when compared to a relaxed memory

model (RMO) hardware (which is sufficient to support C++ or Java memory model)

executing the stock LLVM compiler’s output.

4.8.3 Sensitivity to Store Buffer Sizes

SC-hybrid design assumed an additional unordered store buffer when compared

to the SC-baseline. When the size of the two store buffers was halved in SC-hybrid,

which made them area neutral with the store buffer in SC-baseline, the increase in

performance overhead was negligible (less than 1%).

It is important to note that for a store buffer, the dominant cost is not area, but

rather the latency and power cost of associative lookups. An associative lookup of

the store buffer is necessary for each load to support store-to-load forwarding. In our

design, a load has to search only one of the two store buffers. Thus, the additional

unordered store buffer in SC design does not aggravate this dominant overhead.

4.8.4 Processors with Limited Instruction Level Parallelism

In earlier sections, overhead of end-to-end SC was discussed for out-of-order issue

processors. It also interesting to measure this cost for processors with limited ILP

(e.g in-order cores). Because of limited ILP, in-order issue cores have very limited

opportunity to hide the cache miss latency. Figure 4.8 presents the overhead of end-to-

end SC for in-order processors. With baseline SC implementation, cost of end-to-end

92

0%

2%

4%

6%

8%

10%

blackscholes bodytrack swaptions apache Average

P
e

rf
o

rm
a

n
ce

 O
v

e
rh

e
a

d
 w

rt
 T

S
O

H
W

 +
 S

to
ck

 c
o

m
p

il
e

r

SC-baseline HW + SC-compiler SC HW + SC-compiler TSO HW + SC-compiler

Figure 4.8: Comparison of our proposed system with baseline SC, TSO, and RMO hard-
ware with in-order cores .

providing SC is about 6.1% compared to a system with TSO HW + Stock-compiler.

Proposed SC-hybrid design reduces this cost to 4.9% on average. In the case of in-

order cores, a core is not able to exploit the relaxation offered by relaxed memory

models because it gets stalled owing to low available ILP. Different memory models,

therefore, are likely to not exhibit significant performance difference.

4.9 Conclusion

The research in this chapter exploited an important opportunity that has been

overlooked in the past while designing SC hardware: no memory model constraints

need to be enforced on accesses to private locations and shared, read-only locations.

By exploiting this observation, a low-complexity SC hardware design is derived that

obviates the need for aggressive speculation to obtain high performance. It uses a

combination of static analysis and the page protection mechanism to identify safe

accesses and relax SC constraints on them. Apart from an additional unordered store

93

buffer, there is very little hardware modification needed to support our design. Our

end result is promising: SC hardware is only 4.5% slower than TSO, and end-to-end

SC costs only about 7.5% when compared to the performance of a state-of-the-art

compiler and TSO hardware.

For the SC memory model to be adopted at the language level, all the compilers

and processors that support the language should be made SC-preserving. While our

study considered one of the most widely used processor designs as baseline (an out-

of-order TSO processor), further study is needed to understand the overhead due to

end-to-end SC in other classes of systems (e.g., a low power in-order architecture may

be important for embedded systems).

94

CHAPTER V

Efficiently Enforcing Strong Memory Ordering in

GPUs

Earlier chapters have targeted a shared memory parallel systems built out of

multi-core CPUs. This chapter focuses on Graphics Processing Units (GPUs) that

have emerged as a new platform for parallel computing and are significantly different

from traditional multi-cores. GPUs are now deployed across a wide range of systems

that vary from mobile platforms to super computers. Modern GPUs are no longer lim-

ited to graphics applications, and are also being used as data parallel accelerators for

general purpose programs. Programming models such as CUDA [87] and OpenCL [81]

have enabled developers to exploit data-parallelism in general-purpose applications

using GPUs (referred as GPGPU applications). Most of these GPGPU applications

are not purely data-parallel and involve inter-thread communications. Ensuring cor-

rectness of these applications in the presence of wild shared-memory communication

remains a challenge. This chapter explores how strong memory ordering constraints

can be efficiently supported in GPUs.

95

5.1 Introduction

As is the case with any shared-memory multi-processor system, complexity of

GPU parallel programming critically depends on the memory model of the GPU

platform. Conventionally it is believed that weak memory models are suited for

graphics applications. However, for GPGPU applications, this assumption may not

be entirely true. Unfortunately, GPU vendors have largely ignored the need for

formally defining the memory model semantics of their devices. Even today, GPU

vendors’ programming guides only provide informal descriptions about their memory

model, leaving programmers with no choice but to rely on folklore assumptions. Not

surprisingly, researchers are starting to find some serious mismatches between the

memory model assumptions commonly made by the GPU programmers and what

the hardware implementations end up providing [8].

Recently, there have been efforts to standardize OpenCL’s [82] memory model

based on C11’s [62] data-race-free-0 (DRF-0) [4] model. It guarantees sequential

consistency (SC) for data-race-free programs, but does not provide any semantics for

programs with data-races. Researchers have refined this model for CPU-GPU devices

by defining heterogeneous data-races [57], which is based on a revised happens-before

model that accounts for different thread-visibility scopes for memory operations.

Before adopting a weaker memory model (DRF-0) for GPUs, it is imperative that

we understand the costs of a stronger memory model such as TSO and SC for GPUs.

A recent study investigated the cost of various memory models in a high-throughput

processor with several in-order cores [52]. However, for a GPU architecture, several

96

questions remain unanswered, which we seek to answer in this paper.

• What are the architectural mechanisms necessary in GPUs to enforce various

types of memory ordering constraints (DRF-0, TSO, SC)? What are their per-

formance costs?

• What is the interplay between the common GPU architectural design choices

such as warp-scheduling and write-through caches, and the memory ordering

constraints?

• Prefetching and in-window speculation [41] work remarkably well for CPUs. Are

they feasible in GPUs? Are they equally effective in mitigating the performance

overhead of memory ordering constraints in GPUs?

• How do we engineer a GPU-specific optimization for reducing strong SC memory

ordering constraints?

A GPU core is typically assigned to tens of warps, where each warp contains as

many threads as the number of SIMD lanes. Memory ordering constraint (RMO,

TSO, or SC) can be naïvely implemented in GPUs by restricting the warp scheduling

policy. To support SC, a core can issue a memory operation from a warp only if all of

its preceding memory operations from the warp have completed. If a warp is stalled

due to a memory ordering constraint, the core can issue instructions from another

ready warp. Thus, warp-level-parallelism is effective in reducing memory ordering

stalls. Furthermore, GPU’s in-order core is limited in its capability in exposing intra-

thread memory-level-parallelism. In GPUs with write-back caches, these two factors

97

combine together to effectively nullify the performance overhead of SC as compared

to RMO (which supports DRF-0 model) for a majority of applications we studied.

Surprisingly, for some applications, SC outperformed RMO. We analyze this anomaly

in depth in Section 5.6.1.

However, for a few challenging applications, overhead of SC is quite significant

(maximum is ~3x). We also found that overhead of TSO was also significant in

these applications (maximum is 88%). When we employed store-buffer optimization,

maximum TSO overhead reduced to about 50%. This optimization relied on one large

store-buffer per warp – a significant area cost (48 KB). Given that the TSO overhead

is still significant for the challenging applications, we do not see a compelling case to

weaken the SC guarantees and choose TSO.

Replacing write-back caches with write-through caches eliminated the perfor-

mance gap between SC and RMO for all applications, including the challenging ap-

plications we discussed above. We analyze the reasons in Section 5.6.5.

For GPUs with write-back caches, we need an efficient solution for reducing the

SC overhead for the challenging applications noted above. In-window speculation [41]

is inapplicable for simple GPU cores. Prefetching [41] cache blocks while waiting

to resolve memory ordering constraints is a cheaper alternative, and is commonly

employed in CPUs. However, to our surprise, we found that it is ineffective in reducing

SC or TSO overhead, and in some cases it even reduced the performance. The reason

is that, in a GPU core that multiplexes between numerous threads, there are too

many premature prefetches, where a prefetched cache block gets evicted before it is

used, that increase contention in memory hierarchy and can also evict useful blocks.

98

To reduce the SC overhead for applications with high overhead, we devise a non-

speculative design based on Shasha and Snir’s observation that memory ordering

constraints can be relaxed for accesses to locations that are private to a thread or are

shared in read-only fashion [103] (referred as safe accesses and locations respectively).

We follow the memory access classification scheme used in Chapter 4.6, but at a much

larger granularity (16KB). We can afford a larger granularity because data accessed

by a GPU core typically exhibit very high spatial locality [93].

Despite similarities in memory access classification schemes, significant micro-

architectural differences between GPUs and CPUs necessitate building a GPU specific

solution (Section 5.4). These differences pertain to virtual memory support, instruc-

tion execution, number of concurrent threads per core (SM for GPU), presence of a

shared memory in SM and partitioned address space, etc. We show that our proposed

solution eliminates almost all the SC overhead in the applications we studied.

5.2 Background

5.2.1 GPU Architecture

Computation on GPU consists of functions or kernels that have a hierarchy of

threads (Figure 5.1). Following the CUDA terminology, this hierarchy comprises a

grid of thread blocks (or NDRange of work-groups in OpenCL terminology). Each

thread block contains one or more warps (sub-groups in OpenCL), which is a hardware

specific grouping of scalar threads (work-items in OpenCL) that execute in a lock step

manner.

99

Figure 5.1: Organization of threads (work-item) in thread block (work-group) and grid
(NDRange) in GPU kernel. Image is borrowed from HSA Whitepaper [67].

Memory space in CUDA follows this thread hierarchy and is partitioned with

different levels of sharing among the threads. CUDA provisions for per thread local

memory space which is private to a thread. Threads within a block cooperate by

sharing data using shared memory space. Finally, CUDA also provisions for global

and read-only constant and texture memory spaces which are visible to all threads in

a kernel. While texture memory space is specific to CUDA, local, shared, global and

constant spaces are termed private, local, global and constant in OpenCL respectively.

A GPU includes a small number of streaming multi-processors (SM) (Figure 5.5).

Each SM has a large number of in-order compute cores, multiple load/store units and

special function units. An SM executes instructions from a thread in the program

order. A memory operation is issued to L1 cache when it reaches at the head of the

memory pipeline and is then removed from the pipeline. Thus, a cache miss does not

100

block the memory pipeline and subsequent memory operations can be issued to L1

cache as they reach at the head of the memory pipeline. A MSHR explicitly keeps

track of all outstanding cache misses in an SM.

Each SM houses a shared memory, a private L1 data cache and a constant cache.

All SMs on a GPU share a L2 data cache. L1 cache holds data from local and

global address space. Current GPUs (NVIDIA Fermi [88], AMD GCN [11]) do not

support coherent L1 data caches. Lack of hardware support for coherence burdens

the programmer to explicitly manage coherency of global data that is shared among

threads. Programmers are expected to add a volatile keyword (in CUDA) that dis-

allows caching of such global data in L1 cache. Inability to cache global data hurts

all memory models when an application exhibits temporal locality for this data (i.e.

memory accesses are non-streaming type).

In contrast, ARM’s Mali GPU [106] supports coherent L1 caches. Recent hard-

ware proposals [105, 51] have also advocated for coherent L1 caches in GPUs. Future

GPGPU applications could be expected to have higher communication among threads

than what is present in today’s data parallel applications. Simply disallowing caching

of shared global data may not be an optimal approach for these GPGPU applications

that exhibit temporal and spatial locality in their access pattern. All memory models

benefit from hardware coherence as it enables private L1 caches to cache global data

that is shared among threads. The choice of a memory model may impact how hard-

ware cache coherence support is implemented; with relax memory models affording

more flexibility in the implementation. In our subsequent discussion we assume that

our baseline GPU implements a cache coherent memory hierarchy.

101

Table 5.1: Synchronization functions in GPGPU programming models. Notations: S:
synchronization, R: read, W: write

(a) OpenCL

Synchronization
operations (S)

Memory ordering
parameter

Ordering enforced Visibility scope

relaxed
acquire S→ R; S→ W

Fence,
Atomic
Operation

release W→ S; R→ S Work-group,
Device,
System

acq_rel S→ R; S→ W
R→ S; W→ S

seq_cst

S→ R; S→ W
R→ S; W→ S
(& total order
on accesses)

(b) CUDA

Fence

R→ R
(code: R;S;R)

W→ W
(code: W ;S;W)

Thread block,
Device,
System

Atomic function Device

5.2.2 CUDA and OpenCL Memory Consistency Models

GPGPU programming models such as CUDA and OpenCL support weak consis-

tency models based on data-race-free-0 (DRF-0) [4] memory model. These memory

models match weakly ordered [34] memory models supported by GPU hardware. Un-

der DRF-0, a SC execution is guaranteed only if program is data-race free. Current

GPGPU programming models support two kind of synchronization operations: fences

and atomic operations. These synchronization operations can be used to construct

high level synchronization primitives.

102

Table 5.1 lists the synchronization operations provided under OpenCL [82] and

CUDA programming models [87, Section B.5, B.6 and B.12]. A synchronization op-

eration in OpenCL has an argument “Memory ordering parameter” which decides

the memory ordering constraints enforced by the synchronization operation. The

“Ordering enforced” column lists memory ordering constraints enforced by a synchro-

nization operation for a given memory ordering parameter. There are four possi-

ble orderings for loads and stores with respect to a synchronization operation (S):

S → R, S → W, R → S and W → S. The ordering S → W indicates that later stores

(in the program order) cannot complete before an earlier synchronization operation.

In OpenCL, default memory ordering constraint for a synchronization operation is

memory_order_seq_cst which guarantees that memory accesses before and after the

synchronization operation are not reordered with it and there exists a total order on

all accesses with this constraint. To support weaker ordering constraints for low level

atomic operations, OpenCL allows programmers to specify relaxed constraints such

as acquire, release and acq_rel. Note that acq_rel provides read and write ordering

relative to the variable, whereas, seq_cst provides read and write ordering globally.

CUDA programming model also supports fences and atomic functions to facilitate

synchronization among threads, but the memory ordering constraints associated with

them are very different from OpenCL. A fence in CUDA only enforces R → R and

W → W memory ordering when these two reads or writes are separated by the fence.

This constraint is different from either acquire or release constraints. Furthermore,

atomic functions (read-modify-write operations) in CUDA do not have any memory

ordering constraints associated with them.

103

The last column in Table 5.1 shows different visibility scopes that can be associated

with synchronization operations. The visibility scope of a synchronization operation

governs which threads observe its effects. Effects of a synchronization operation with

device visibility scope are visible to all threads running on a GPU device. On the other

hand, the effects of a system scope synchronization operation are visible to threads

in the current GPU device, host CPU and other compute devices present in the

system. Finally, thread block/work-group scope limits the effects of a synchronization

operation to a thread block/work-group of threads only.

Achieving SC in OpenCL and CUDA: In order to guarantee SC, OpenCL

requires that all data-races be marked as synchronization operations and recommends

that programmer usememory_order_seq_cst and system visibility scope for synchro-

nization operations. While achieving SC with relaxed ordering constraints or smaller

visibility scope is possible, such optimizations require significant care on part of the

programmer and are highly prone to errors. On the other hand, the fence primitive

alone as supported in CUDA is not sufficient to build high-level synchronization op-

eration because it does not enforce S→ R (for acquire) or R→ S (for release) ordering

constraint which is required for protecting critical sections. To enforce these miss-

ing memory ordering constraint, an atomic operation (a read-modify-write operation)

could be used before or after the fence instruction for acquire and release semantics

respectively.

104

5.3 Enforcing Memory Ordering Constraints in a GPU

In this section we discuss mechanisms for enforcing memory model constraints in

GPUs. First, we discuss when and how two memory accesses can appear to have

executed in an order different from their program order. Then, we describe how

different memory models can be supported in hardware by controlling how warps are

executed in an SM. Finally, we also describe how a memory model may affect other

architectural features like warp scheduling.

5.3.1 Violation of Ordering Constraints

In-order execution does not imply in-order completion of memory operations. Re-

call that a memory operation that misses in L1 cache does not stall the execution.

Therefore, a thread could have multiple memory requests outstanding. Two mem-

ory requests in out-of-order fashion for variety of reasons: data caching at L1 cache,

interconnect delivering requests in out-of-order manner, requests going to different

partitions. However, in context of memory models, we are interested in how reorder-

ing of access can be observed by other threads.

Reordering of memory accesses in one thread could be visible to another thread

running on different SM for following reasons:

Caching at L1 data cache: In a cache coherent system, a thread can observe

reordering of memory accesses in a thread running on different SM. Figure 5.2a shows

an example wherein two threads T1 and T2 are synchronizing with each other. As-

sume that T1 and T2 are running on streaming processors SM0 and SM1 which are

105

X = Y = Z = 0

T1
I1: X = 1
I2: Y = 1

T2
I3: if(Y)
I4: r1 = X

rf

(a) Direct synchronization

SM0 SM1

T1
I1: X = 1
I2: Z = 1

T2
I3: if(Z)
I4: Y = 1

T3
I5: if(Y)
I6: r1 = X

rf rf

(b) Indirect synchronization

Figure 5.2: Direct and indirect synchronization. rf is reads-from relation that associates a
read with a unique write that supplies the value. Locations X and Y are in global memory
and Z is in shared memory.

caching Y and X respectively in their L1 cache. Even though T1 executes I1 and I2

in program order, I2 completes before I1 as I1 misses in L1 cache. The read in I3

reads-from I2 and returns 1. At this time, T2 is ready to execute I4, but there is no

guarantee that I1 has been performed yet; I4 returns an old value of X. Thus, T2

has observed the out-of-order completion of access in T1.

Reordering in interconnect: The shared L2 cache in a GPU is typically parti-

tioned into multiple banks. If GPU interconnect delivers two requests from different

SMs, but to same L2 bank in an order different from their issue order, reordering

of memory access could be visible across different SMs. Continuing with our earlier

example, assume that X and Y map to different L2 banks and are not cached in any

L1 cache. T1 executes two stores which are sent to their L2 banks after missing in L1

cache. In meantime, T2 executes I3 and issues a read request to L2 cache. Assume

106

that I3 reads-from I2 . After the branch in I3 has been resolved, T2 executes I4

and issues a read miss request to L2 cache. If the read request for X reaches the L2

bank containing X before the write request for X (possibly due to different latency

to reach the L2 bank), T2 will end up with an old value of X, exposing out-of-order

completion of accesses in T1.

Current NVIDIA and AMD GPUs [89, 11] employ a crossbar as their interconnect.

A crossbar interconnect does not reorder two requests going to the same destination.

However, if future GPUs adopt a mesh or other interconnects, such reordering of cache

requests would make out-of-order completion of memory accesses visible to other SMs.

In our designs, we do not rely on such ordering guarantees from the interconnect as

we explicitly keep track of pending accesses.

Multiple address spaces: Both CUDA and OpenCL provide partitioned ad-

dress spaces to their programs. Current GPUs have distinct pipelines for different

address spaces; accesses from different address space are unordered. Threads synchro-

nizing via accesses in different address spaces need to use appropriate fences to achieve

correct synchronization. For example, Figure 5.2b shows an execution in which two

threads T1 and T3, running on different SM synchronize indirectly via thread T2.

Assume both T1 and T2 are running on same SM and synchronize through accesses to

Z which is in shared memory. T2 and T3 synchronize through accesses to Y in global

memory space. It is possible for I6 to read an old value of X in this program. Under

SC, I1 happens-before I6, whereas, this example contains a heterogeneous race [57]

under weaker memory models and requires either fences with device or larger scope

or sequentially consistent atomic accesses for Z and Y (in OpenCL).

107

Memory reorderings not visible to threads on same SM: So far, we have

discussed how one thread could observe reordering of memory accesses in another

thread executing on a different SM. However, when threads are running on same

SM, out-of-order completion of memory accesses in one thread is not visible to other

threads. This is because threads running on same SM share memory hierarchy (e.g.

shared memory and L1 data cache). Therefore, L1 cache and shared memory act as

serialization points for all global and shared memory accesses respectively within an

SM. Since each thread issues memory operations in the program order, the serializa-

tion order of accesses at L1 cache is consistent with the program order. Therefore, a

cycle cannot exist in the total order of memory accesses from an SM.

To see why this is the case, consider the example shown in Figure 5.2a where two

threads T1 and T2 are running on same SM. First, T1 issues cache request for I1 and

I2 in program order. Afterwards, when T2 executes I3 it returns the value written

in I2. Therefore, when I4 is sent to L1 cache, it is guaranteed to return a value that

is written by either I1 or a later access because I4 is serialized after I1 at L1 cache.

Therefore, T2 is not able observe out-of-order completion in T1. This is also true

when either one or both locations are in shared memory.

This claim is true only if GPU guarantees SC per location. This principle ensures

that value taken by a location are the same as if on SC. Nearly all CPU models

guarantee this except SPARC RMO [113, Chap. D.4]. NVIDIA GPUs are known for

not guaranteeing read-read coherence for a single location [8]. Therefore, two con-

secutive reads might return inconsistent values if they have different cache operators

provided in CUDA. These cache operators specify if a memory access cache the data

108

at different cache levels or not.

In our baseline system model, we assume that it guarantees SC for accesses to a

single location. Therefore, two consecutive reads to a single location in a thread must

return consistent values. This is why I4 must observe the value of I1 because I4 is

issued after I1 and both of them access the same memory location.

5.3.2 Relaxed Memory Ordering

Relaxed memory models mandate memory ordering constraints for synchroniza-

tion operations which then can be used to order execution of memory accesses. Fur-

thermore, as described in Section 5.2.2, synchronization operations have concomitant

visibility scope which mandates to which threads their effects are visible. There

is very little public information on synchronization operations are implemented in

modern GPUs that support RMO. Following text describes our way of supporting

synchronization operations in our baseline GPU.

Accesses to local address space do not require any ordering constraint because they

are private to each thread. Thus, we only have to worry about accesses to shared and

global address space. Thread block/work-group visibility scope is naturally supported

in GPU hardware because all threads from a thread block are executed in one SM and

reordering of memory accesses in a thread is not observable in other threads running on

same SM because all threads share same path to memory hierarchy. While conveying

synchronization operations with thread block visibility seem redundant from hardware

perspective, they are used by GPU programmers to prevent compiler re-ordering of

memory accesses.

109

Other visibility scopes such as device or system require that a synchronization

operation’s effect is made visible to all threads running on a device. This can be done

by maintaining two per warp counters (for loads and stores) to keep track of pending

accesses to global memory address space. Then, based on the memory ordering con-

straint desired by the synchronization operation, its issue can be stalled till relevant

counters become zero. Delaying issue of a synchronization operation is preferable over

allowing it to execute and then stalling the memory pipeline. Such delaying prevents

this warp from interfering with other warps that share the memory pipeline. Simi-

larly, the aforementioned counters are per warp to avoid a synchronization operation

in a warp from interfering with operations of other warps.

To support indirect synchronization (Figure 5.2b), accesses to Z and Y needs

be marked as synchronization operations with device scope. This will ensure that

before a synchronizing shared space access is executed, preceding global accesses in

its thread have been performed.

5.3.3 Total Store Order

Today, most common desktop and server processors support total store order

(TSO) memory model which provisions for store buffer allowing loads to bypass pre-

ceding stores. The key insight behind TSO is that loads are more critical for perfor-

mance and they should not be delayed by pending stores which are off the critical

path. For desktop and server workloads, TSO represents a good design point and we

investigate its efficacy for GPUs.

The naïve approach to support TSO would be to leverage per warp counters to

110

keep track of pending loads and stores. Based on values of these counters, loads can

be stalled at issue for preceding pending loads, while stores can be stalled at issue

for preceding pending loads and stores. Stalling at issue, while preferable, will cause

loads following a delayed store to also get delayed. This unnecessarily constrains

TSO.

For such situations, CPUs typically employ a store buffer that holds stores which

are not yet ready to be issued to cache due to memory ordering constraints. This

optimization allows processors to commit stores from reorder buffer (ROB) and allow

later loads to get completed. Thus, to avoid stalling of load operations due to an

earlier store, we can extend the naïve TSO design with per warp store buffers.

In our evaluation, we find that TSO does not provide any significant perfor-

mance advantage (Section 5.6) over SC. Our naïve SC design, which we describe

next, matches the performance of TSO for most benchmarks. For rest of the bench-

marks, both SC and TSO perform poorly in comparison to RMO. While TSO has

small performance advantage over SC, we believe this advantage is often not large

enough to warrant weakening of concurrency semantics.

5.3.4 Sequential Consistency

While SC is the most constrained of all memory models we discuss, it provides

concurrency semantics that naturally match with programmer’s intuition. This boosts

programmability which makes SC an attractive choice for CPUs [55].

SC requires that loads and stores appear to have completed in the program order.

It could be trivially achieved by utilizing per warp counters for pending loads/stores

111

to global memory space. To support indirect synchronization (Figure 5.2b), shared

memory accesses wait for preceding global memory accesses to get completed before

they can be executed. Though simple in nature, we find that this design performs very

close to RMO for most of the benchmarks that we study (Section 5.6). The primary

reason for effectiveness of this naïve design is availability of warp-level-parallelism

(WLP) in GPGPU applications.

Unlike CPU applications, where typically only a very small number of threads

are executing simultaneously in any core, GPGPU applications have a large number

of warps concurrently executing in an SM. Due to large number of available warps,

an SM is able to issue memory accesses from different warps to hide overhead of

SC ordering constraints. Even though a single warp would observe high cost of SC

ordering, an SM incurs only a small overhead.

Although higher WLP helps SC by having multiple warps to issue memory accesses

from, it could also result in poorer SC performance. This is because increasing the

number of threads per SM typically reduces available per thread cache capacity and

this could result in higher cache miss rates. While high cache miss rates will affect

performance of both SC and RMO, if the application has intra-thread MLP, RMO

can exploit that by overlapping cache misses thus hiding their latency. However,

even RMO is constrained in completely exploiting intra-thread MLP due to in-order

execution in GPU which stalls an instruction if it has unsatisfied data dependencies.

Figure 5.3 shows an example that depicts this scenario. In this example three in-

dependent loads L1, L3, and L4 can be issued in parallel by an out-of-order processor,

but L2 cannot be issued before L1 completes due to its true dependency on L1. Due

112

L1 L2 L3 L4

L1 L2 L3 L4

RMO

Naïve SC

Time

stalled
. . ..

.
stalled stalled

Cache miss

Cache hit

L1

L3

L2

L4

Figure 5.3: Utility of relaxed ordering constraints in an in-order GPU.

to in-order execution, loads L3 and L4 also get stalled until L2 is executed. Therefore,

even RMO may not able to exploit all intra-thread MLP available in a program.

However in absence of such data dependency induced stalls, RMO can issue mul-

tiple memory requests, whereas SC can issue just one request per thread. This inad-

equacy of SC is exhibited as huge performance overhead (up to 3x) for SC in some of

our experiments.

5.3.5 Common Memory Ordering Optimizations

In-window speculation [41] is commonly employed in CPUs to reduce TSO and

SC overhead, but it is not suitable for GPUs as execution window contains only small

number memory instructions from a warp.

Prefetching [41] is another common optimization to reduce the cost of memory

ordering overhead. While a memory access is waiting for a memory ordering constraint

to be resolved, its cache block can be prefetched. We can support this optimization in

GPUs by extending our naïve SC design with a per warp FIFO buffer to hold memory

accesses while they wait for their ordering constraints to get resolved. Meanwhile, an

SM can issue prefetch requests for these waiting memory accesses to lower the miss

113

latency. As we will see in Section 5.6, this does not help much in bringing down the

overhead of SC in GPUs because an SM switches frequently between different warps,

and many prefetched blocks end up getting evicted before they are used.

5.3.6 Impact of GPU Architectural Features

We have discussed how threads issue individual memory operations under different

memory models. Here we discuss how other common GPU architectural features

impact the cost of memory ordering constraints.

5.3.6.1 Warp Scheduling

A warp scheduling policy’s performance is greatly affected by memory model

because the memory model determines when a thread can execute memory opera-

tions. This interplay of thread scheduling and memory model is largely absent from

CPU memory model tradeoffs because each core has only small number of concurrent

threads, often one or two.

The simplest warp scheduling policies include round-robin and greedy-then-oldest

(GTO). Under GTO, a warp is run until it stalls and then the oldest ready warp

is selected to execute next. Current GPUs use warp scheduling policy similar to

GTO [80]. Recent proposals [98, 99, 64, 63, 102] improve upon these simple schedul-

ing policies by leveraging intra-thread MLP and weak consistency model of GPUs.

Stronger memory model implementations (e.g. naïve SC or TSO) could reduce efficacy

of these proposals by restricting threads from exploiting intra-thread MLP. Neverthe-

less, optimizations that allow threads to expose intra-thread MLP while preserving

114

for (each edge e of a graph node)
if (! g_graph_visited)

g_cost[e] = g_cost[tid] + 1;

(a) Streaming stores in bfs.
for (k=0; k < NK; k++) // NK = 512

c[tid] += ALPHA * a [i*NK+k] * b[k*NJ+j];

(b) Non-streaming stores in gemm

Figure 5.4: Example of streaming and non-streaming stores in GPGPU programs

SC could regain most of the benefits of these proposals. Section 5.4 describes one

such implementation of SC in GPU.

5.3.6.2 Cache-Write Policy

Current GPUs typically include write-through L1 caches with no-write allocate

policy. To understand how memory ordering constraints are affected by cache write

policy, we evaluate performance of different memory models on a cache coherent GPU

system with write-through L1 caches that use no-write allocate policy. Performance

impact of cache write policy depends on store locality present in the program. If a

large fraction of stores are streaming (i.e., no reuse, e.g., Figure 5.4a), no-write allo-

cate policy results in performance improvement due to an increase in effective cache

capacity for loads. However, if a majority of stores are non-streaming (e.g., Fig-

ure 5.4b), sending all writes to L2 cache will increase pressure on memory bandwidth

and could result in a performance loss.

Performance gap between RMO and SC is expected to be higher for write-through

caches [90], but our evaluation of GPGPU programs shows evidence contrary to this

115

expectation (Section 5.6.5).

5.4 Efficient SC for GPU

This section describes an optimized non-speculative solution to support SC in

GPUs while achieving performance close to RMO. First, it provides an overview of

key ideas behind this solution, then discusses implementation details.

5.4.1 Overview

To improve performance of the naïve SC design, we again exploit the observation

that memory ordering constraints can be relaxed for accesses to locations that are

either private to a thread or shared with other threads in read-only fashion [103].

Memory reordering of such accesses cannot be observed or altered by other threads.

We refer to accesses with this property as safe accesses and rest as unsafe in the

following discussion.

Safe accesses can be freely reordered with other accesses provided intra-thread

data dependencies are preserved. Unsafe accesses, however, are completed in the

program order to ensure SC. To ensure correctness, accesses must be classified as

either safe or unsafe in their program order.

We can identify safe accesses by observing thread-level data sharing at runtime.

First, we classify memory locations at word granularity as safe or unsafe; then accesses

are classified as safe if they access safe locations (Section 4.6). GPGPU applications

typically exhibit high spatial locality [93] in memory accesses. We exploit this obser-

116

vation by keeping track of sharing of memory locations at a large granularity (referred

to as sectors), thereby saving required hardware space.

Recording sharing information at thread granularity is prohibitively expensive in

GPUs because of huge number of concurrent threads in GPUs. To keep hardware cost

under control, we record this information for each SM instead of each thread. This

gives us a set of potentially safe accesses (referred to as SM-safe). Similarly, shared

memory accesses can also be treated as SM-safe accesses. These accesses are only

potentially safe because multiple threads from same SM could be performing con-

flicting accesses to an SM-safe location. We treat SM-safe accesses as “safe” accesses

and relax ordering constraints for them, but enforce strong ordering on conflicting

accesses to an SM-safe location.

Classification of memory accesses: In CPUs, accesses are classified during

virtual to physical address translation [48, 30, 104] by leveraging page tables and

translation lookaside buffer (TLB). Recent GPU virtual memory proposals [93, 91]

also provide a CPU like virtual memory support for GPUs. These proposals can be

extended to also provide classification of accesses during address translation stage.

Although current GPUs implement virtual memory support, there is very little

public information about them [31, 109]. It is not clear whether address translation

is carried out prior to L1 cache access or not. Intel and AMD GPUs have Input

Output Memory Management Units (IOMMU) [58, 9, 12] equipped with their own

page tables and TLBs, but these IOMMUs are placed in memory controller and are

accessed only after a miss in L1 cache. In this paper we have assumed a baseline

GPU that does not perform address translation prior to accessing L1 data cache.

117

Therefore, extending TLB and page tables to support access classification is not very

useful for such GPUs.

To enable access classification prior to accessing L1 cache, we add a memory

access classifier (MAC) at each memory partition that keeps track of how sectors are

shared among SMs. These classifiers are statically partitioned; all requests for a given

address go to a single classifier. A sector is said to be unsafe if it is being accessed

by multiple SMs and at least one of them is writing to it. Sector level classification

is also cached at each SM in a Type-cache to quickly determine SM-safe or unsafe

nature of memory accesses.

Preserving SC during a sector’s transition to unsafe state: A sector starts

in one of safe states and may eventually transition to the unsafe state (labeled as

〈shared, rw〉 , Figure 5.6). During transition to unsafe state, a sector cannot imme-

diately complete the transition because there could still be pending unsafe accesses

that precede already completed safe accesses to this sector in program order. In order

to satisfy SC ordering constraints, these unsafe accesses must be completed before

transition to the unsafe state is completed. During this transition, all new requests

to this sector are delayed till the sector has completed its state transition.

Preserving SC for SM-safe accesses: In SM level classification of accesses,

it is possible that an SM-safe location is not “safe” at thread level. Therefore, freely

reordering SM-safe accesses could result in an SC violation if multiple threads are

performing conflicting accesses to SM-safe locations. Consider our earlier example

from Figure 5.2b and assume that all locations are in global memory with X, Y as

unsafe and Z as SM-safe. Since accesses to Z can get completed before preceding

118

unsafe accesses, an SC violation occurs when T3 receives old value of X after reading

latest value of Z because unsafe accesses from different threads get completed inde-

pendently. This violation also occurs when Z is in shared memory because accesses

to global and shared memory are not ordered with each other.

To guarantee SC execution, we need to identify when threads are performing

conflicting accesses to an SM-safe location and delay conflicting accesses such that

preceding unsafe accesses have been completed. In our previous example, we delay

the read of Z in T2 till unsafe accesses in T1 prior to I2 (previous access of Z) are

completed. To this end, we envision a small table (referred to as synchronization

table) that keeps track of SM-safe accesses that have bypassed earlier unsafe accesses

from same warp. This table is used to delay later conflicting accesses from getting

performed until it is safe to do so.

Synchronization table only keeps track of SM-safe accesses that have gotten re-

ordered with preceding unsafe accesses. We do not need to consider earlier SM-safe

accesses (e.g. if X is classified as SM-safe) because in the proposed design all threads

have same path to memory hierarchy (either to L1 cache or to shared memory banks).

Due to this common path, threads running on an SM cannot observe reordering of

two SM-safe accesses from another thread running on the same SM. Furthermore, if

a thread from another SM attempts to access a SM-safe location, it will trigger state

transition for the sector; resulting in completion of pending SM-safe accesses to this

sector, and thereby preserving SC.

119

Warp
scheduler

Reg file

Fetch,
Decode
and Issue

ALU

SFU

L1T & L1C

Shared memory

Coal-
escing .

Type-
Cache

M
A

C
 0

Memory Ordering
Buffer (MoB)

Safe queue

Unsafe queue

M
A

C
 m

L2
 m

o
d

u
le 1

L2
 m

o
d

u
le m

D
R

A
M

 m
o

d
u

le 1
D

R
A

M
 m

o
d

u
le m

L1D

Tags &
data

MSHR

In
terco

n
n

ect

Streaming multiprocessor 1

Streaming multiprocessor n

Type-wait
Queue (TQ)

.

...

Fetch Decode Issue Execute
Addr

coalescing

Type-cache &
Sync. table

TQ MoB Memory

(a) Proposed architectural extensions

(b) Pipeline stages for a memory operation

Sync.
table

Figure 5.5: (a) Optimized SC GPU design with proposed changes highlighted in blue, (b)
Pipeline stages for memory operations in proposed design.

120

5.4.2 Implementation

Figure 5.5a shows proposed extensions to a baseline GPU architecture. These

changes include addition of Type-cache and memory access classifier (MAC) for clas-

sifying memory accesses, a synchronization table to ensure correct ordering for intra-

SM conflicting accesses to an SM-safe location, and a memory ordering buffer to

guarantee in-order commit of unsafe accesses. Figure 5.5b highlights how memory

pipeline is extended to accommodate different functionalities.

5.4.2.1 Memory Access Classification:

As a first step, an SM needs to determine the type of a memory access prior to

accessing L1 cache. Access type resolution cannot be carried out in parallel with the

data cache access because this could lead to a SC violation. This can happen if the

sector for this access needs to undergo a state transition. Such a transition has to

happen before the cache access is done. Note that data cache is decoupled from access

classification mechanism.

As mentioned earlier, we cannot rely on current GPU’s virtual memory support for

access classification. To facilitate access classification, we have extended each memory

partition with a small memory access classifier (MAC). These classifiers keep track

of SM level data sharing at sector granularity. Each entry in MAC stores identifier of

previous accessor and state of the sector. An entry in MAC can be in one of following

states: 〈private, ro〉 , 〈private, rw〉 , 〈shared, ro〉 , and 〈shared, rw〉(Figure 5.6). In

〈shared, ro〉state, individual sharers are not tracked. Only the 〈shared, rw〉state

121

untou-
 ched

 private,
 roread

 private,
 rw

write

read,
 id == owner

write,
 id == owner

 shared,
 roread,

 id != owner

 shared,
 rw

write,
 id != owner

read / write,
 id == owner write,

 id != owner

read

write read / write

Figure 5.6: State transition diagram of sectors in MAC

is treated as unsafe state. This classification scheme is similar to schemes in prior

proposals [48, 30, 104] that classified accesses at page granularity.

Accessing MAC incurs huge latency as requests have to cross interconnect. To

make obtaining classification faster, we also cache a sector’s information in a Type-

cache in each SM. A Type-cache is analogous to TLB in CPUs. Besides a sector’s

classification, an entry in Type-cache also records an SM’s write eligibility for this

sector. If an SM does not have write privilege for a sector, it needs to send an request

to MAC asking the same. These Type-caches are kept coherent through explicit

messages on a sector’s safe to unsafe state transition (invalidation message) and its

eviction from MAC (recall message).

After a memory instruction is executed, addresses from different threads in a warp

are coalesced before being sent to L1 cache to minimize L1 cache accesses. In parallel

with address coalescing, an SM also accesses its Type-cache with address from a

122

thread in the warp (Figure 5.5(b)). In the common case all threads are accessing only

one cache block, their access type is already resolved without any additional delay. If

multiple cache accesses are required for a memory instruction, their type resolution

is also pipelined in the same way these accesses get sent to L1 cache. If an access

misses in Type-cache, the SM sends a request to MAC to obtain the classification of

the accessed sector.

On a miss in Type-cache, an access is moved to a type-wait queue (TQ stage)

instead of blocking the pipeline. Type-wait queue is implemented as a per warp

FIFO queue to avoid interference among different warps. FIFO queues ensure that

accesses get their classification in program order. If a warp’s type-wait queue is not

empty, accesses from this warp are also sent to the type-wait queue even if they hit

in Type-cache.

5.4.2.2 Ordering constraints for unsafe accesses

Once an access has been classified as SM-safe or unsafe, it can proceed with L1

cache access. Unsafe accesses are completed in their program order to guarantee SC.

If an unsafe access cannot get issued to data cache because of ordering constraints,

it is moved to unsafe FIFO queue for its warp in memory ordering buffer (MoB) to

avoid pipeline stall (MoB pipeline stage). Once an access reaches at the head of its

queue, it can be issued to cache.

Once an unsafe access has been issued to L1 cache, its entry is immediately re-

claimed. To keep track of pending unsafe accesses, we can simply use per warp

counters instead of keeping issued entries in unsafe queues. If a warp instruction

123

accesses multiple cache blocks, these accesses can be issued to L1 cache in parallel

because there is no ordering requirement on accesses from different threads running in

a lock-step manner. However, unsafe accesses from later instructions are not allowed

to access L1 cache till all preceding unsafe accesses have been completed.

5.4.2.3 Ordering constraints for SM-safe accesses

Ordering constraints for SM-safe accesses are relaxed except for conflicting ac-

cesses to an SM-safe location. We use synchronization table to identify when SM-safe

accesses require strong ordering constraints. An SM-safe access at the head of type-

wait queue searches synchronization table for conflicting accesses. If a match is found,

this access needs to wait until the matching entry is deleted from the table. Oth-

erwise, it can proceed with its L1 cache access. If an access is delayed due to a

conflicting entry in the synchronization table, its warp is also restricted from issuing

further memory requests till this wait is over.

Synchronization table is a small fully associative cache in each SM and supports

a single writer or multiple readers for a cache block. An entry in this table has a

pending count, access type (load or store) and warp identifier of previous accessor.

An entry in the table is created when an SM-safe access bypasses pending unsafe

accesses. An SM-safe access is said to have bypassed preceding unsafe accesses when

it leaves the type-wait-queue and prior unsafe accesses in its warp are still pending.

Furthermore, a marker entry is also inserted in the unsafe queue of this warp to

determine when these unsafe accesses have been completed. This marker is deleted

from the unsafe queue when all earlier pending unsafe accesses are completed. At

124

this time, corresponding entry from synchronization table is also deleted because

subsequent conflicting accesses do not need to wait anymore.

Synchronization table is also used to enforce ordering constraints for conflicting

accesses in shared memory because shared memory accesses are akin to SM-safe ac-

cesses. Similar to SM-safe accesses in global memory space, shared memory accesses

also search this table for conflicting entry and get delayed accordingly if a match is

found. In our baseline GPU, shared memory accesses do not go through address coa-

lescing stage. However, in our proposed design we also send shared memory accesses

through an address coalescing stage to get 128 byte level unique addresses which are

then used to index in the synchronization table. If a shared memory access needs to

wait for a conflicting entry to get deleted from the table, its warp is also prevented

from issuing further memory accesses to preserve intra-thread data dependencies.

Unlike for SM-safe accesses in global memory, additional markers are not inserted

in an unsafe queue for shared memory accesses to get apprised of completion of

pending unsafe stores. This avoids filling up of the unsafe queue with marker entries

and keeps it available for unsafe accesses. Instead, we record an identifier for the latest

unsafe access from this warp. This identifier is unique across all type-wait queues

and unsafe queue entries. Once this unsafe entry is completed, synchronization table

entries with this identifier are deleted from the table. In the case of multiple readers,

each entry records one identifier per warp that has accessed the location pointed by

this entry.

MoB also includes a safe queue for SM-safe accesses that could not be issued to

L1 cache in this cycle due to cache port unavailability. The cache port could be

125

unavailable if an access from either memory pipeline or from an unsafe queue wins

arbitration for cache port. In the proposed design the safe queue is modeled as a

FIFO queue even though there is no ordering requirement. We opted FIFO buffer to

keep complexity low for the safe queue.

A memory operation can bypass TQ or MoB pipeline stages, if it hits in the

Type-cache and there are no preceding pending unsafe accesses in its warp.

5.4.2.4 Preserving SC execution state on transition from safe to unsafe

When MAC detects a transition to the 〈shared, rw〉state, it sends an invalidation

message to the SM that had previously accessed this sector (or a broadcast if the sector

was in 〈shared, ro〉state). On receiving an invalidation request from MAC, an SM

updates its Type-cache entry and other entries to this sector in its type-wait queue.

It also needs to complete outstanding SM-safe accesses in the safe queue and drain

its unsafe queues to ensure that all unsafe accesses that were bypassed by an SM-safe

access to the sector indicated in the invalidation message have been completed. Once

these queues have been drained, the SM sends an acknowledgment to MAC.

Draining all unsafe queues in MoB naïvely could be fairly expensive as there

can many pending unsafe accesses from different warps that are not required to be

completed in response to an invalidation message. In order to efficiently determine

unsafe accesses that need to be completed, we reuse markers that are inserted in unsafe

queues for SM-safe accesses. On receiving an invalidation request, an SM searches

for markers to this sector in its unsafe queues. The SM needs to drain unsafe queues

with a matching marker before sending an acknowledgment.

126

After receiving all acknowledgments (multiple acknowledgments for 〈shared, ro〉

state), MAC completes the safe to unsafe transition. To avoid races during this tran-

sition, all subsequent requests to this sector undergoing safe to unsafe state transition

are not processed till this transition is completed.

5.5 Experimental Methodology

5.5.1 Simulation environment

We used GPGPU-sim [13] v3.2.1 to simulate the baseline NVIDIA Fermi architec-

ture (GTX 480) and our proposed design for efficient SC. To simulate cache hierarchy

of data caches we used Ruby memory systems from GEMS [78]. The baseline co-

herence protocol is MESI with write-allocate policy. The MESI coherence protocol

we simulate is from gem5 [16]. We also evaluate a system configuration with write-

through protocol with no-write allocate policy. This setup is based on the simulation

infrastructure used in GPU-coherence [105] work.

Our baseline GPU system includes 16 multi-processors each with 32 KB of L1

data cache. The default warp scheduling policy is greedy-then-oldest-first (“GTO”)

present in GPGPU-sim as it performs better than loose round-robin (“LRR”) policy.

The optimized SC design uses GTO and gives higher priority to warps that do not

have pending unsafe accesses.

We modeled a crossbar interconnect network using detailed fixed pipeline network

model in Garnet [6]. Each SM is connected with the crossbar interconnect through

private ports. We modeled minimum L2 and DRAM access latencies to be 340 and 460

127

cycles (in core cycles) respectively. These latencies are in accordance with latencies

used in earlier work [105] and observed latencies on Fermi GPU via micro-benchmarks

by Wong et al. [116]. Other relevant simulator parameters are listed in Table 5.2.

The proposed Type-cache and MAC are small caches and are connected through

the interconnect. Messages for resolving an access’ type can use the three existing

virtual channels (request, forward, and reply) to achieve deadlock freedom.

Queues in type-wait queue and MoB hold both loads and stores. However, an store

entry could be as large as a cache block size (128 bytes). To keep area requirements

of these queues low, we limit the number of outstanding stores in these queues to 64

stores and keep the store data in a separate data array. This allows entries in queues

to not provision for large store data. Since, there is no load-to-store forwarding,

keeping store data in a separate buffer does not pose any additional challenge.

5.5.2 Benchmarks

To evaluate different SC/TSO designs, we studied applications from Rodinia [28]

and Polybench [45] benchmarks suites, an GPU implementation of memcached [54].

Additionally, we also studied benchmarks used by Singh et al. [105] as these bench-

marks exhibit a higher degree of inter thread block communication.

5.6 Experimental Results

In this section we compare the performance of TSO and SC (both naïve and

optimized) against the baseline RMO memory model. We also show the impact of

128

Table 5.2: Simulator Configuration

GPGPU-sim Core Model
GPU Cores 16

Core Config

48 Wavefronts/core, 32 threads/wavefront, 1.4Ghz, Pipeline
width:32,
#Reg: 32768 Scheduling: Loose Round Robin. Shared
Mem.: 48KB

Ruby Memory Model
L1 Private Data$ 32KB, 128B line, 4-way assoc. 128 MSHRs
L2 Shared Bank 128KB, 8-way, 128B line, 128 MSHRs. Minimum Latency:

340 cycles, 700 MHz
Mem. Partitions 8
Interconnect 1 Crossbar/Direction. Flit: 32bytes Clock: 700 MHz. BW:

32 (Bytes/Cycle). (175GB/s/Direction)
Virtual Networks MESI: 5
GDDR Clock 1400 Mhz
Memory Channel
BW

8 (Bytes/Cycle) (175GB/s peak). Minimum Latency: 460
cycles

Type-aware SC parameters
Type-cache 64 entries, 4 way associative
Memory access clas-
sifier (MAC)

512 entries, 8 way associative, sector size: 16384 Bytes

Type-wait queue 48 FIFO queues with 4 entry per queue
Memory ordering
buffer (MoB)

Safe queue: 16 entry FIFO;
Unsafe queues: 48 FIFO queues with 4 entry per queue

Outstanding Stores
in queues

64

Synchronization
Table

64 entries

129

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e
w

rt
b

as
el

in
e

R
M

O
 (

W
B

, G
TO

) naïve TSO TSO with store buffer

naïve SC Type-aware SC

1.8 2.7 1.8 2.9

Figure 5.7: Normalized execution time of naïve TSO and naïve SC(write-back cache,
GTO warp scheduler)

.

write-policy, warp scheduling policy on observed overhead of a given memory model.

5.6.1 Comparison of naïve SC, naïve TSO and RMO

Figure 5.7 shows normalized execution time of naïve SC and TSO designs with

respect to a baseline GPU that implements RMO memory model. This graph reveals

that for a majority of applications, naïve SC or TSO designs perform as good as

baseline. There are two main reasons for this low performance gap between RMO and

SC: warp-level-parallelism (WLP) and in-order execution. WLP helps in reducing the

overhead of memory ordering constraints by allowing an SM to continue execution

with different warps. Furthermore, the in-order execution could also limit RMO’s

ability to exploit intra-thread MLP (Section 5.3.4).

Although a majority of applications exhibit small performance difference for stronger

memory models, there are benchmarks that incur huge performance overheads (up

to 1.84x under TSO and up to 2.93x under SC for gemm). The primary sources of

this performance gap is RMO’s ability to take advantage of intra-thread MLP to

overcome high cache miss rates. If a program has fairly low cache miss rates or lacks

130

per MSHR entry
merge limit : 2

a b c d p r s

a p b q c r d s

q
RMO

Naïve SC

Time

W1: a: ld X; b: ld X; c: ld X; d: st X
W2: p: ld Y; q: ld Y; r: ld Y; s: st Y

pipeline
stalled

pipeline
stalled

.

. . ..

c r
stalled stalled

. . ..

Cache miss Cache hit MSHR hit MSHR not available

Figure 5.8: An example to demonstrate how naïve SC could perform better than RMO

intra-thread MLP, SC can perform on par with RMO. For example, if we restrict

each SM to execute only one thread block, these two benchmarks exhibit low cache

miss rates (about 3%) which result in much smaller performance gap between SC and

RMO. When an SM is allowed to execute up to 8 thread blocks, cache miss rates

increase drastically (about 35%) due to higher contention at L1 cache. Under high

cache miss rates, RMO performs better by exploiting intra-thread MLP in addition

to WLP. Whereas, naïve SC is limited to exploiting just WLP.

Intuitively we expect RMO to outperform SC because it places fewer restrictions

on execution. However, this may not always be true for GPGPU programs because

there are many threads that could cause contention in memory hierarchy. For exam-

ple, naïve SC and TSO outperform RMO for streamcluster (Figure 5.7).

To understand why SC outperforms RMO, consider an execution of code from

streamcluster (Figure 5.8), where two warps W1 and W2 execute three independent

loads and one store. Assume that all these warps access two distinct cache blocks

that are not present in L1 cache. The first load from W1 misses in the L1 cache and

allocates an entry in MSHR. In RMO baseline, the GTO warp scheduler executes the

second load from W1 that hits in MSHR and gets merged with the existing entry in

131

MSHR. If each MSHR entry can merge only two memory requests, the third load from

W1 gets stalled because it cannot be merged into the existing MSHR entry, resulting

in a stall in the memory pipeline. At this time, the SM cannot issue any new memory

access until this stall is resolved even if it switches to other warps (e.g. W2). Once the

first cache miss satisfied, the SM can issue the third load and complete it. However,

it runs into the same problem again when the third load from W2 is not able to get

merged into a existing MSHR entry.

In contrast, under SC the warp scheduler switches to warp W2 after the load

from W1 has missed in the cache. However, after issuing one load from each warp,

execution is stalled till these caches misses gets satisfied. In this case, the execution

is stalled due to memory ordering constraints instead of resource contention. Once

these loads have been completed, all subsequent loads accesses hit in the cache and

get completed without any delay.

This example demonstrates how unrestricted issue of memory accesses can cause

RMO to perform worse than SC (streamcluster). When we increase the limit on

number of accesses that can be merged into an MSHR entry from 32 to 1024, RMO

and SC have almost same performance. This is also the reason why our optimized

Type-aware SC too performs worse than naïve SC.

5.6.2 Benefits of TSO over SC are Small

TSO enables store buffer optimization by allowing loads to bypass preceding

stores. A store buffer can be organized either as an unified buffer or as a set per

warp buffers. We find that unified store-buffer optimization performs significantly

132

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e
w

rt
b

as
el

in
e

R
M

O
 (

W
B

, G
TO

) naïve SC naïve SC + load prefetch naïve SC + store & load prefetch

2.7 2.9

Figure 5.9: Normalized execution time of SC with prefetching (write-back cache, GTO
warp scheduler)

.

worse than per warp configuration due to contention from different warps. Further-

more, Figure 5.7 shows that adding a large per warp store buffer (48 queues with 8

entries each with 128 bytes data) improves naïve TSO’s performance only marginally.

For a majority of benchmarks both naïve SC and naïve TSO perform as good as

RMO. Though TSO with store buffer performs better than naïve SC for other bench-

marks, its overhead is still quite high in comparison to RMO. Marginal performance

benefits of TSO for a few programs does not justify weakening SC guarantees.

5.6.3 Prefetching is Ineffective

In Section 5.3.5 we described an extension to naïve SC to take advantage of

prefetching for accesses that cannot be issued to cache due to ordering constraints.

Figure 5.9 shows the result for such a design. We find that prefetching helps very little

in improving SC’s performance. Whereas, some benchmarks (e.g., streamcluster,

fdtd-2d) incur a performance loss due to prefetches being premature.

In CPUs, prefetches are used with in-window speculation to reduce memory order-

ing overhead. In window-speculation allows loads to consume prefetched data even

133

if ordering constraints are not satisfied yet. However, in GPUs loads must still wait

for ordering constraints to be satisfied due to lack of in-window speculation support.

Furthermore, the probability of a prefetched data getting evicted before being read

is also higher in GPUs due to large number of threads running on an SM.

Premature prefetches do not provide much benefit; at the same time they still

consume limited resources like MSHR entries, space in L1 and L2 caches and band-

width between L1 and L2 caches. Therefore, premature prefetches leads to poorer

performance.

5.6.4 Type-aware design is Effective

Now, we evaluate performance of access type aware design presented in Section 5.4.

Figure 5.7 shows normalized execution time of Type-aware SC with respect to a RMO

baseline. From this graph, we find that Type-aware SC successfully brings down large

naïve SC overheads in 3mm and gemm. We also observe that the proposed design is not

only able to reduce overheads of SC, but on average it performs very close to RMO.

The primary source of this performance improvement is relaxing ordering constraints

for SM-safe accesses.

Although Type-aware SC typically improves performance over naïve SC, it could

also end up hurting performance. For example, for b+tree benchmark Type-aware

design performs worse than a naïve design. The primary reason for this slowdown is

unsafe queues being too small. A full unsafe queue can lead to memory pipeline stall

if type-wait queue also become full. Increasing the size of unsafe queues alleviates this

problem and, Type-aware SC performs very close to RMO. In case of streamcluster,

134

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e

w
rt

b
as

el
in

e
R

M
O

 (
W

B
, G

TO
)

RMO naïve SC Type-aware SC

Figure 5.10: Performance of various memory models with a write-through L1 cache (GTO
warp scheduler)

Type-aware SC also suffers from the same resource contention in MSHR that is present

for baseline RMO.

Our sensitivity studies (not shown here) show that increasing the size of type

wait queues and unsafe queues to more than four entries per warp provides very little

performance improvement. Similarly, MAC and Type-cache also benefit very little

from larger size due to bigger sectors and small shared L2 cache. The shared L2 cache

in GPUs is small (less than 1 MB) in comparison to CPUs with even small core count.

A smaller L2 cache results in a smaller set of locations that need to be tracked in

MAC at any time.

5.6.5 Impact of cache-write policy

Current GPUs support write-through L1 data caches. To understand how a cache

write policy affects the cost of memory ordering constraints, we evaluate performance

of different memory models on a cache coherent GPU system with write-through and

write no-allocate L1 caches.

Figure 5.10 shows performance impact of tradeoffs for write-through cache policy

which are described earlier in Section 5.3.6. All execution times have been normalized

135

to a system with RMO memory model and write-back caches. For the baseline RMO

memory model, applications with streaming stores enjoy performance boost due to

increased effective cache capacity for loads. However, some applications with non-

streaming stores end up loosing performance due to increased contention in memory

hierarchy (e.g., gemm).

The write-no allocate policy increases effective cache capacity because stores do

not take any space in the cache. Both the baseline RMO and the naïve SC benefit

from this increase in cache capacity and incur fewer load misses in comparison to

write-back caches.

Intuitively, we expect performance gap between RMO and SC to be wider in write-

through caches than the gap in write-back caches because stores have larger latency

in write-through caches [90]. However, Figure 5.10 shows that this gap becomes

narrower for write-through caches, e.g. naïve SC performs very close to RMO for

gemm and heartwall benchmarks. Whereas, for write-back L1 cache, naïve SC has

much higher overhead for these applications (Figure 5.7).

In applications with non-streaming stores, naïve SC still issues memory accesses

in a restricted manner and typically experiences very small contention in memory

hierarchy. Whereas, RMO could suffer from higher contention in memory hierarchy

caused by additional stores being sent to L2 cache. This is indeed the case for gemm

where RMO performs worse with write-through cache than with write-back cache.

Due to these reasons there is very little difference in performance of RMO and SC for

gemm. On the other hand, applications like mvt are hurt by higher store latency and

exhibit larger difference between RMO and naïve SC under write-through caches.

136

For applications with streaming stores, sending stores to L2 cache on a write does

not necessarily result in a performance loss because most of these stores will miss in

L1 cache and get sent to L2 cache even with write-back L1 caches. On the other

hand, both RMO and SC enjoy an increase in effective cache capacity. Therefore,

relative performance difference between RMO and SC remains similar to that under

write-back L1 caches.

5.7 Conclusion

In this work, we describe how stronger memory models (e.g. SC, TSO) can be im-

plemented in GPUs. Despite GPUs executing instructions in order, they can violate

memory ordering constraints by allowing out-of-order completion of memory accesses

in a cache coherent system. We show that the inherent thread level parallelism preva-

lent in GPGPU programs helps close the performance gap between various memory

models for many if not all benchmarks. We demonstrate using experimental eval-

uation, benchmarks which exhibit considerable performance overhead for stronger

memory models and thus motivate the need to design optimizations which will help

obviate this overhead. Furthermore, we also demonstrated that TSO memory model

may not be an attractive alternative for GPUs as it does not provide significant ben-

efits over SC. We evaluate efficacy of prefetching in bridging the performance gap

of stronger memory models and find it to be insufficient. Finally, we adapt a non-

speculative technique proposed for multi-cores to GPU architectures and show that

it successfully eliminates the performance overhead for stronger memory models.

137

CHAPTER VI

Related Work

6.1 Efficiently Supporting Sequential Consistency

SC at language level can be provided by either compiler or a combination of

SC-preserving compiler and hardware. In this section we discuss earlier works on

supporting SC efficiently.

6.1.1 Compiler based approaches

In their seminal work Shasha and Snir [103] proposed “delay set analysis”, which

finds the minimum number of fences required for an SC execution. A fence incurs

significant performance penalty on current processors. To optimize this cost, Sura et

al. [107] and Kamil et al. [65] used static analyses to identify shared accesses and insert

fences only for these accesses. More recently, Lin et al. [71] proposed conditional

fence. They employ hardware support to enforce a fence ordering only when there

is a possibility that SC may be violated. These static approaches use some form of

whole program analysis that are hard to scale to large programs.

138

6.1.2 Data-Race Freedom by Construction

Since DRF-0 based memory models provide SC for only data race free programs,

in order to provide SC, researchers have proposed to reject the racy programs during

compile time. Several static type systems have been proposed for this purpose (e.g.,

[23, 18, 39]). While type systems provide a useful discipline on programmers to ensure

race-freedom, they typically only account for lock-based synchronization and will

reject race-free programs that use other synchronization mechanisms. Further, many

correct programs that employ locks will be conservatively rejected due to imprecise

information about pointer aliasing. More precision in static race detection can be

achieved through inter-procedural analysis [94], but such whole-program analyses

that tend to be heavyweight. In spite of recent advances [23, 22], a scalable and

practically feasible technique for implementing a sound static data race detector also

remains an unsolved problem, as all the techniques require complex, whole-program

analysis.

6.1.3 Efficient SC hardware

In past several proposals have been made for efficiently supporting SC in hardware.

Techniques used by these proposals can be classified in two categories: in-window

speculation and out-of-window speculation. In-window speculation technique [41]

allows loads in execution pipeline to execute speculatively even if there are earlier

pending memory operations present in the pipeline. To detect a misspeculation,

processor core snoops on cache invalidation requests. If there is no invalidation request

139

to the cache block accessed by a speculative load, speculation is successful and load

can be completed when it reaches at the head of ROB. In case of a misspeculation,

processor pipeline is flushed and load is re-executed. Similarly for stores, eager read-

exclusive prefetch requests can be issued as soon as store’s address is known. Eager

prefetch requests reduce the latency of store misses. In-window speculation can also

be used to relax load-load ordering constraint in a TSO processor. Hardware support

required for this technique is similar to that required for recovering from branch

misprediction and ability to snoop on cache invalidations. This technique is relatively

simple and modern processors already implement this technique [118, 60].

Second class of proposals use out-of-window speculation based techniques. With

in-window speculation, a SC processor is able to relax memory ordering constraints

for memory operation in pipeline. However, it must wait for earlier stores to get

completed before it can commit next memory operation. To reduce this overhead,

these proposals allow the processor to speculatively commit instructions if there are

still stores pending [97, 44, 43, 46, 26, 114, 17]. To recover from misspeculation, pro-

cessor needs to checkpoint not only register state, but also memory state. Processor

snoops on coherence invalidation requests to detect a misspeculation. The checkpoint

and rollback support required for this technique is fairly complex hardware support

as it has to keep track of instructions even after they haven been committed from

ROB. To avoid speculation, Lin et al. [72] proposed to check if there is any conflict

with pending accesses in remote cores before committing a memory instruction from

the ROB. While this design eliminates the need for out-of-window checkpoint and

rollback support, it still requires significant changes to the coherence protocol to effi-

140

ciently perform conflict detection before committing a memory instruction from the

ROB.

In comparison to out-of-window speculation, SC hardware presented in Chapter IV

avoids speculation by relaxing memory ordering constraints only when it is safe to do

so without requiring a rollback of the execution. It uses a hybrid classification scheme

to identify safe accesses and relaxes memory ordering constraint only for them. This

design, therefore, does not require any complex checkpoint and rollback support.

Splitting of store-buffer is almost straight forward as discussed in Chapter IV.

6.2 End-to-end Sequential Consistency

6.2.1 Transactional Memory

Hammond et al. [47] proposed transactional coherency and consistency (TCC)

memory model based on a transactional programming model [53]. The programmer

and the compiler ensure that every instruction is part of some transaction. The run-

time guarantees serializability of transactions, which in turn guarantees SC at the

language level. Unlike this approach, drfx is useful for any multi-threaded program

written using common synchronization operations like locks, and it does not require

additional programmer effort to construct regions. TCC also requires unbounded re-

gion and speculation support. TCC suggests that hardware could break large regions

into smaller regions, but that could violate SC at the language level.

Lazy conflict detection algorithm in drfx is similar to the one proposed by Ham-

mond et al. [47] but without the need for speculation and conflict detection over un-

141

bounded regions. Also, drfx employs signatures to reduce the cost of conflict checks.

Unlike TM, drfx cannot afford false conflicts, which proposed drfx design takes care

to eliminate. But lazy conflict detectors like TCC assume some form of a commit

arbiter to regulate concurrent commit requests for regions in different processors. As

discussed earlier, drfx can allow all regions to be conflict checked in parallel with the

execution of current regions, which could be simpler. Also, soft-fenced regions can be

executed and committed out-of-order.

6.2.2 BulkSC

BulkCompiler [7] and BulkSC [26] also provide end-to-end SC, but unlike program-

mer specified transactions, the BulkCompiler automatically partitions a program into

regions called “chunks”. These region-based solutions provide SC, but rely on fairly

expensive speculation hardware (checkpointing, versioning, conflict detection, and

recovery) to guarantee serializability of regions.

drfx hardware could be simpler than Bulk hardware as it avoids the need for

speculation (especially across I/O) and unbounded region sizes which have been the

two main issues in realizing a practical transactional memory system. However, drfx

requires precise conflict detection, whereas Bulk can afford false conflicts. Our obser-

vations that certain regions can execute and commit out-of-order, and that conflict

checks and region execution in different processors can all proceed in parallel is unique.

It may help improve the efficiency and complexity of Bulk system as well.

SC-preserving compiler [76] and hardware (Chapter IV) together provide language

level SC guarantees. SC-preserving hardware is much simpler than a HTM or BulkSC

142

hardware because it does not require any complex checkpointing and rollback support,

conflict detection mechanism found in these solutions.

6.3 Memory Models With Exceptions

The C++ memory model [20] and the Java memory model [74] are based on DRF-

0 [3] and share its limitations for racy programs which we discussed in Chapter II.

Concurrently with work on drfx, Lucia et al. [73] defined conflict exceptions,

which also use a notion of regions to detect language-level SC violations in hardware.

Their approach can be viewed as a realization of drfx-compliant hardware, but it

differs in important ways from our design. First, in their approach a conflict exception

is reported precisely, just before the second of the conflicting operations is to be

executed.

Precise conflict detection is arguably complex in hardware as one has to track

access state for each cache word and continue to track it even when a cache block

migrates to a different processor core. Further, when a region commits, its access

state needs to be cleared in remote processors. Finally, while this approach delivers

a precise exception with respect to the binary, the exception is not guaranteed to be

precise with respect to the original source program.

Second, in their approach region boundaries are placed only around synchroniza-

tion operations, thereby ensuring serializability of maximal synchronization-free re-

gions, which is a stronger guarantee than SC. While this property could be useful

for programmers, it can result in unbounded-size regions and thereby considerably

143

complicates the hardware detection scheme and system software.

Adve et al. [5] proposed to detect data races at runtime using hardware support.

Elmas et al. [36] augment the Java virtual machine to dynamically detect bytecode-

level data races and raise a DataRaceException. Boehm et al. [19] provided an

informal argument for integrating an efficient always-on data-race detector to extend

the DRF-0 model by throwing an exception on a data race. However, detecting data

races either incurs 8x or more performance overhead in software [38] or incurs signifi-

cant hardware complexity [95, 84]. A full data-race detector is inherently complex as

it has to dynamically build the happens-before graph [68] to determine racy memory

accesses. It is further complicated by the fact that racy accesses could be executed

arbitrarily “far” away from each other in time, which implies the need for performing

conflict detection across events like cache evictions, context switches, etc. In contrast,

drfx hardware is inherently simpler as it requires that we track memory access state

and perform conflict detection over only the uncommitted, bounded regions.

Gharachorloo and Gibbons [40] observed that it suffices to detect SC violations

directly rather than data races. Their goal was to detect potential violations of SC

due to a data-race and report that to the programmer. However, their detection was

with respect to the compiled version of a program. drfx incorporates the notion

of compiler-constructed regions and allows the compiler and hardware to optimize

within regions while still allowing us to dynamically detect potential SC violations at

the language level.

More recently, Muzahid et al. [83] and Qian et al. [96] proposed hardware solutions

to detect SC violation at the runtime. Instead of relying on data-races as proxy SC

144

violations, they record some metadata about memory accesses, that complete before

all earlier accesses have been completed, and pass on this metadata to other processors

with coherence messages to detect cyclic dependence chains. These solutions detect

SC violations with respect to execution of a given binary and do not account for

reorderings performed by the compiler. They are, however, inadequate for detecting

conflicts among regions as region serializability is strictly stronger property than

sequential consistency. In absence of the notion of regions, it is not clear how these

solutions would account for memory reordering done by compiler. These solutions,

therefore, are not sufficient for guaranteeing language-level SC.

6.4 Private and Shared Data Driven Architectures

Trachsel et al. [110] proposed selective fences to optimize the overhead of fences

in a RMO processor. In their proposal, a fence only needs to wait for stores to shared

data (heap locations) get drained from store buffer. To keep track of stores to shared

data, they proposed to split the store buffer into two separate store buffers. Our

SC-hardware’s proposal to split store buffer for tracking of shared stores is similar to

selective fences, but our proposal provides more detailed design discussion on problems

arising from having two store buffers (e.g. store-to-load forwarding, a escaped stack

variable, etc.). SC-hardware also uses a more sophisticated classification scheme to

identify safe accesses.

Past work has leveraged the page-protection mechanism for improving data place-

ment in a processor cache [48], reducing snoops in a token-based coherence proto-

145

col [66], detecting thread dependencies to support replay [35], and more recently to

improve the efficiency of directory caches [30]. Unlike these solutions, the goal of my

research is to relax memory model constraints, which requires carefully orchestration

of the state transitions of a page to ensure that memory ordering constraints are not

violated. SC-hardware also employs a complementary static analysis technique to

classify memory accesses.

6.5 Memory Consistency Models for GPUs

For throughput oriented processors with in-order cores, Hechtman et al. [52] ob-

serve that thread-level parallelism can mask the stalls due to strict memory ordering

constraints. While this observation is valid for many GPU applications, we report sev-

eral applications with significant SC overhead. Also, we study the interplay between

memory ordering constraints and features common in GPUs such as write-through

caches and warp-scheduling policies. Furthermore, in contrast to MTTOP systems

they study, presence of a shared memory in GPUs allows threads in a thread-block

to synchronize efficiently without increasing memory contention. Their observations

on increased frequency of synchronization operations and memory contention issues

due to them are less applicable for GPGPU programs.

Finally, we observe the ineffectiveness of prefetching optimization in reducing SC

overhead. We propose an alternative optimization for GPUs that exploit spatial

locality and “GPU-core locality” (data private to a core).

146

CHAPTER VII

Conclusion

The memory model of a concurrent language defines what values a load instruc-

tion can return. Semantics as fundamental as this should have a clean definition that

matches the intuition of programmers. While the benefits of language-level sequen-

tial consistency are well known, an efficient and practically feasible solution for SC

hardware has remained elusive.

The research in this dissertation demonstrates a safety-first approach for memory

consistency models, whereby SC execution guarantee is provided to all programs, pre-

venting unsafe execution behaviors arising from the presence of data-races in weaker

memory models. The drfx memory model and SC-preserving hardware (both CPU

and GPU) are different instantiations of this approach and differ in how they handle

unsafe accesses. The drfx memory model allows common compiler and hardware

optimizations on unsafe accesses and uses a runtime system to catch potential SC vi-

olations arising from reordering of unsafe accesses. Whereas, SC-preserving hardware

focuses on enforcing SC instead of detecting SC violations.

The drfx memory model for concurrent programming languages gives program-

147

mers simple, strong guarantees for all programs. Like DRF-0 based memory models,

drfx guarantees that all executions of a race-free program will be sequentially con-

sistent. However, while DRF-0 based memory models typically give weak or no guar-

antees for racy programs, drfx guarantees that the execution of a racy program will

also be sequentially consistent as long as a memory model exception is not thrown.

drfx capitalizes on the fact that sequentially-valid compiler optimizations preserve

SC as long as they do not interact with concurrent accesses on other threads. Since

performing precise data race detection is impractically slow in software and complex

in hardware, drfx allows the compiler to specify code regions in which optimizations

were performed. The hardware can then efficiently target data race detection only at

regions of code that execute concurrently. This allows drfx-compliant compiler and

hardware to cooperate, terminating executions of racy programs that may violate SC.

The implementation and evaluation indicate that a high-performance implementation

of drfx is possible.

SC-preserving hardware (in CPU) exploits an important opportunity that has

been overlooked in the past while designing SC hardware: memory model constraints

need not be enforced on accesses to private locations and shared, read-only locations.

By exploiting this observation, SC-preserving hardware incurs low-complexity cost

and obviates the need for aggressive speculation to obtain high performance. It uses

a combination of static analysis and the page protection mechanism to identify safe

accesses and relax SC constraints on them. Apart from an additional unordered store

buffer, there is very little hardware modification needed to support our design. The

end result is promising: SC hardware is only 4.5% slower than TSO, and end-to-end

148

SC costs only about 7.5% when compared to the performance of a state-of-the-art

compiler and TSO hardware.

Further research extends our safety-first approach to data-parallel accelerators

(e.g. GPUs) that are significantly different from CPU multi-cores. It also reveals that

TSO, a widely used memory model in CPUs, has only a little performance advantage

over SC, thereby giving little incentive to adopt TSO over SC for these accelerators.

To support SC for these architectures, an SC-preserving design specific to GPUs is

proposed that incurs only small performance overhead (about 3%) over baseline RMO.

This work is not limited to only GPUs, but can also be applied to other throughput

oriented engines such as Intel MIC, etc. Future heterogeneous systems will provide

seamless integration of CPU and GPU; SC-preserving solutions for CPU and GPU

can be combined in a novel way to provide strong SC guarantees for a heterogeneous

system.

149

BIBLIOGRAPHY

150

BIBLIOGRAPHY

[1] A.-R. Adl-Tabatabai and T. Gross. Source-Level Debugging of Scalar Opti-

mized Code. In Proceeding of the ’96 Conference on Programming Language

Design and Implementation, 1996. 74

[2] S. Adve. Designing Memory Consistency Models for Shared-Memory Multipro-

cessors. PhD thesis, University of Wisconsin–Madison, 1993. 60

[3] S. V. Adve and K. Gharachorloo. Shared memory consistency models: a tuto-

rial. Computer, 29(12), 1996. 8, 143

[4] S. V. Adve and M. D. Hill. Weak Ordering—A New Definition. In Proceeding

of the 17th Annual International Symposium on Computer Architecture, 1990.

3, 10, 20, 21, 63, 96, 102

[5] S. V. Adve, M. D. Hill, B. P. Miller, and R. H. B. Netzer. Detecting Data Races

on Weak Memory Systems. In Proceeding of the 18th Annual International

Symposium on Computer Architecture, 1991. 14, 15, 22, 144

[6] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha. Garnet: A detailed on-chip

network model inside a full-system simulator. In Proceeding of the 2009 IEEE

151

Symposium on Performance Analysis of Systems and Software, pages 33–42,

2009. 127

[7] W. Ahn, S. Qi, J.-W. Lee, M. Nicolaides, X. Fang, J. Torrellas, D. Wong, and

S. Midkiff. BulkCompiler: High-Performance Sequential Consistency through

Cooperative Compiler and Hardware Support. In Proceeding of the 42nd Annual

International Symposium on Microarchitecture, pages 133–144. ACM, 2009. 60,

142

[8] J. Alglave, M. Batty, A. F. Donaldson, G. Gopalakrishnan, J. Ketema, D. Po-

etzl, T. Sorensen, and J. Wickerson. Gpu concurrency: Weak behaviours and

programming assumptions. In Proceeding of the 20th International Conference

on Architectural Support for Programming Languages and Operating Systems,

pages 577–591, 2015. 96, 108

[9] AMD. AMD I/O Virtualization Technology (IOMMU) Specification, 2006. 117

[10] AMD. AMD-V Nested Paging. White paper. http://sites.amd.com/us/

business/it-solutions/virtualization/Pages/amd-v.aspx, 2008. 85

[11] AMD. AMD Graphics Core Next. http://www.amd.com/Documents/GCN_

Architecture_whitepaper.pdf, 2011. 101, 107

[12] N. Amit, M. B. Yehuda, and B.-A. Yassour. Strategies for mitigating the iotlb

bottleneck. In Workshop on the Interaction between Operationg Systems and

Computer Architecture, 2010. 117

152

http://sites.amd.com/us/business/it-solutions/virtualization/Pages/amd-v.aspx
http://sites.amd.com/us/business/it-solutions/virtualization/Pages/amd-v.aspx
http://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf
http://www.amd.com/Documents/GCN_Architecture_whitepaper.pdf

[13] A. Bakhoda, G. L. Yuan, W. W. Fung, H. Wong, and T. M. Aamodt. Analyzing

cuda workloads using a detailed gpu simulator. In Proceeding of the 2009 IEEE

Symposium on Performance Analysis of Systems and Software, pages 163–174,

2009. 127

[14] P. Barford and M. Crovella. Generating Representative Web Workloads for

Network and Server Performance Evaluation. In SIGMETRICS, 1998. 88

[15] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC Benchmark Suite:

Characterization and Architectural Implications. In Proceeding of the 17th In-

ternational Conference on Parallel Architectures and Compilation Techniques,

2008. 53, 62, 88

[16] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-

tness, D. R. Hower, T. Krishna, S. Sardashti, et al. The gem5 simulator. ACM

SIGARCH Computer Architecture News, 39(2):1–7, 2011. 127

[17] C. Blundell, M. Martin, and T. Wenisch. InvisiFence: Performance-Transparent

Memory Ordering in Conventional Multiprocessors. In Proceeding of the 36th

Annual International Symposium on Computer Architecture, pages 233–244.

ACM, 2009. 60, 64, 140

[18] R. Bocchino, V. Adve, D. Dig, S. Adve, S. Heumann, R. Komuravelli, J. Over-

bey, P. Simmons, H. Sung, and M. Vakilian. A type and effect system for

Deterministic Parallel Java. In Proceeding of the 25th annual ACM SIGPLAN

conference on Object-Oriented Systems and applications, 2009. 139

153

[19] H. J. Boehm. Simple thread semantics require race detection. In FIT session

at PLDI, 2009. 14, 22, 144

[20] H. J. Boehm and S. V. Adve. Foundations of the C++ Concurrency Memory

Model. In Proceeding of the 2008 ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 68–78, 2008. 3, 4, 11, 21, 31, 143

[21] M. D. Bond, K. E. Coons, and K. S. McKinley. Pacer: proportional detection

of data races. In Proceeding of the ’10 Conference on Programming Language

Design and Implementation, pages 255–268, New York, NY, USA, 2010. ACM.

24

[22] C. Boyapati, R. Lee, and M. Rinard. Ownership Types for Safe Programming:

Preventing Data Races and Deadlocks. In Proceeding of the 17th annual ACM

SIGPLAN conference on Object-Oriented Systems and applications, 2002. 139

[23] C. Boyapati and M. Rinard. A Parameterized Type System for Race-Free Java

Programs. In Proceeding of the 16th annual ACM SIGPLAN conference on

Object-Oriented Systems and applications, 2001. 139

[24] P. Cenciarelli, A. Knapp, and E. Sibilio. The java memory model: Oper-

ationally, denotationally, axiomatically. In Proceeding of the 16th European

Symposium on Programming, pages 331–346, 2007. 14

[25] L. Ceze, J. Devietti, B. Lucia, and S. Qadeer. The case for system support for

concurrency exceptions. In USENIX HotPar, 2009. 17

154

[26] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk Enforcement

of Sequential Consistency. In Proceeding of the 34th Annual International Sym-

posium on Computer Architecture, pages 278–289. ACM, 2007. 60, 64, 140,

142

[27] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk disambiguation of specula-

tive threads in multiprocessors. In Proceeding of the 33rd Annual International

Symposium on Computer Architecture, pages 227–238. IEEE Computer Society,

2006. 35, 38, 53

[28] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and K. Skadron.

Rodinia: A benchmark suite for heterogeneous computing. In Proceeding of the

2009 Workload Characterization, pages 44–54, 2009. 128

[29] Compaq Computer Corporation. Alpha 21264 Microprocessor Hardware Ref-

erence Manual. Technical report, 1999. 85

[30] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato. Increasing the Ef-

fectiveness of Directory Caches by Deactivating Coherence for Private Memory

Blocks. In Proceeding of the 38th Annual International Symposium on Com-

puter Architecture, 2011. 60, 62, 80, 117, 122, 146

[31] R. Danilak. System and method for hardware-based gpu paging to system

memory, Nov. 24 2009. US Patent 7,623,134. 117

[32] J. deok Choi, M. Gupta, M. J. Serrano, V. C, and S. P. Midkiff. Stack Alloca-

155

tion and Synchronization Optimizations for Java using Escape Analysis. ACM

Trans. on Programming Languages and Systems, 2003. 76

[33] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with a commer-

cial hardware transactional memory implementation. In Proceeding of the 14th

International Conference on Architectural Support for Programming Languages

and Operating Systems, 2009. 18, 29

[34] M. Dubois, C. Scheurich, and F. A. Briggs. Memory access buffering in mul-

tiprocessors. In Proceeding of the 13th Annual International Symposium on

Computer Architecture, pages 434–442, 1986. 9, 102

[35] G. W. Dunlap, D. G. Lucchetti, M. Fetterman, and P. M. Chen. Execution

Replay on Multiprocessor Virtual Machines. In VEE, 2008. 80, 85, 146

[36] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: A Race and Transaction-

Aware Java Runtime. In Proceeding of the ’07 Conference on Programming

Language Design and Implementation, 2007. 22, 144

[37] The FeS2 simulator. http://fes2.cs.uiuc.edu/. 19, 53, 86

[38] C. Flanagan and S. Freund. FastTrack: Efficient and precise dynamic race de-

tection. In Proceeding of the ’09 Conference on Programming Language Design

and Implementation, 2009. 15, 23, 144

[39] C. Flanagan and S. N. Freund. Type-Based Race Detection for Java. In Pro-

ceeding of the ’00 Conference on Programming Language Design and Implemen-

tation, pages 219–232, 2000. 139

156

http://fes2.cs.uiuc.edu/

[40] K. Gharachorloo and P. Gibbons. Detecting violations of sequential consistency.

In Proc. of the Third Annual ACM Symposium on Parallel Algorithms and

Architectures, pages 316–326, 1991. 15, 17, 24, 144

[41] K. Gharachorloo, A. Gupta, and J. Hennessy. Two Techniques to Enhance the

Performance of Memory Consistency Models. In Proceeding of the International

Conference on Parallel Processing, pages 355–364, 1991. 39, 60, 61, 63, 69, 87,

97, 98, 113, 139

[42] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hen-

nessy. Memory consistency and event ordering in scalable shared-memory mul-

tiprocessors. In Proceeding of the 17th Annual International Symposium on

Computer Architecture, pages 15–26, 1990. 9, 20

[43] C. Gniady and B. Falsafi. Speculative Sequential Consistency with Little Cus-

tom Storage. In PACT, 2002. 60, 64, 140

[44] C. Gniady, B. Falsafi, and T. N. Vijaykumar. Is SC + ILP=RC? In Proceeding

of the 26th Annual International Symposium on Computer Architecture, pages

162–171. IEEE Computer Society, 1999. 64, 140

[45] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos. Auto-

tuning a high-level language targeted to gpu codes. In Innovative Parallel Com-

puting (InPar), 2012, pages 1–10, May 2012. 128

[46] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg, M. Chen, C. Kozyrakis,

and K. Olukotun. Programming with Transactional Coherence and Consistency

157

(TCC). In Proceeding of the 11th International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 1–13. ACM,

2004. 64, 140

[47] L. Hammond, V. Wong, M. K. Chen, B. D. Carlstrom, J. D. Davis,

B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Trans-

actional Memory Coherence and Consistency. In Proceeding of the 31st Annual

International Symposium on Computer Architecture, 2004. 35, 141

[48] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Reactive NUCA:

Near-Optimal Block Placement and Replication in Distributed Caches. In Pro-

ceeding of the 36th Annual International Symposium on Computer Architecture,

pages 184–195. ACM, 2009. 60, 62, 68, 80, 117, 122, 145

[49] R. Haring, M. Ohmacht, T. Fox, M. Gschwind, D. Satterfield, K. Sugavanam,

P. Coteus, P. Heidelberger, M. Blumrich, R. Wisniewski, A. Gara, G.-T. Chiu,

P. Boyle, N. Chist, and C. Kim. The ibm blue gene/q compute chip. Micro,

IEEE, 32(2):48–60, 2012. 18, 29

[50] T. Harris, J. R. Larus, and R. Rajwar. Transactional Memory, 2nd edition.

Synthesis Lectures on Computer Architecture. 2010. 2

[51] B. Hechtman, S. Che, D. Hower, Y. Tian, B. Beckmann, M. Hill, S. Reinhardt,

and D. Wood. QuickRelease: A throughput-oriented approach to release con-

sistency on GPUs. In High Performance Computer Architecture (HPCA), 2014

IEEE 20th International Symposium on, pages 189–200, Feb 2014. 101

158

[52] B. A. Hechtman and D. J. Sorin. Exploring memory consistency for massively-

threaded throughput-oriented processors. pages 201–212. ACM, 2013. 96, 146

[53] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support

for Lock-Free Data Structures. In Proceeding of the 20th Annual International

Symposium on Computer Architecture, 1993. 18, 141

[54] T. Hetherington, T. Rogers, L. Hsu, M. O’Connor, and T. Aamodt. Charac-

terizing and evaluating a key-value store application on heterogeneous cpu-gpu

systems. In Proceeding of the 2012 IEEE Symposium on Performance Analysis

of Systems and Software, pages 88–98, April 2012. 128

[55] M. D. Hill. Multiprocessors Should Support Simple Memory-Consistency Mod-

els. IEEE Computer, 31:28–34, 1998. 60, 111

[56] M. D. Hill, A. E. Condon, M. Plakal, and D. J. Sorin. A System-Level Specifi-

cation Framework for I/O Architectures. 1999. 85

[57] D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster, M. D. Hill,

S. K. Reinhardt, and D. A. Wood. Heterogeneous-race-free memory models.

In Proceeding of the 19th International Conference on Architectural Support for

Programming Languages and Operating Systems, 2014. 96, 107

[58] Intel. Intel Virtualization Technology for Directed I/O Architecture Specifica-

tion, 2006. 117

[59] Intel Corporation . Intel architecture instruction set extensions programming

reference. 319433-012 edition, Feb. 2012. 18, 29

159

[60] Intel® Corporation. Pentium® Pro Family Developer’s Manual. 1996. 60, 63,

140

[61] Intel® Corporation. Intel® 64 and IA-32 Architectures Optimization Reference

Manual. Order Number: 248966-025, 2011. 71

[62] ISO/IEC 9899:2011. Programming language C. http://www.iso.org/iso/

iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853,

2011. 96

[63] W. Jia, K. Shaw, and M. Martonosi. MRPB: Memory request prioritization for

massively parallel processors. In Proceeding of the 20th International Sympo-

sium on High-Performance Computer Architecture, pages 272–283, 2014. 114

[64] A. Jog, O. Kayiran, N. Chidambaram Nachiappan, A. K. Mishra, M. T. Kan-

demir, O. Mutlu, R. Iyer, and C. R. Das. Owl: Cooperative thread array

aware scheduling techniques for improving gpgpu performance. In Proceeding

of the 18th International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 395–406, 2013. 114

[65] A. Kamil, J. Su, and K. Yelick. Making Sequential Consistency Practical in Ti-

tanium. In Proceeding of the 2005 ACM/IEEE conference on Supercomputing,

pages 15–. IEEE Computer Society, 2005. 138

[66] D. Kim, J. Ahn, J. Kim, and J. Huh. Subspace Snooping: Filtering Snoops

with Operating System Support. In PACT, 2010. 62, 146

160

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853

[67] G. Kyriazis. Heterogeneous System Architecture: A Technical Review. AMD,

2012. 100

[68] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558–565, 1978. 23, 144

[69] L. Lamport. How to Make a Multiprocessor Computer that Correctly Executes

Multiprocess Programs. IEEE Computer, 28(9):690–691, Sept. 1979. 2

[70] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Pro-

gram Analysis & Transformation. In Proceeding of the 2004 International Sym-

posium on Code Generation and Optimization, 2004. 19, 31, 52

[71] C. Lin, V. Nagarajan, and R. Gupta. Efficient Sequential Consistency Using

Conditional Fences. In Proceeding of the 19th International Conference on

Parallel Architectures and Compilation Techniques, 2010. 138

[72] C. Lin, V. Nagarajan, R. Gupta, and B. Rajaram. Efficient Sequential Consis-

tency via Conflict Ordering. In Proceeding of the 17th International Conference

on Architectural Support for Programming Languages and Operating Systems,

pages 273–286. ACM, 2012. 64, 140

[73] B. Lucia, L. Ceze, K. Strauss, S. Qadeer, and H. Boehm. Conflict Exceptions:

Providing Simple Parallel Language Semantics with Precise Hardware Excep-

tions. In Proceeding of the 37th Annual International Symposium on Computer

Architecture, 2010. 35, 48, 143

161

[74] J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In Proceeding

of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of Program-

ming Languages, 2005. 3, 10, 20, 143

[75] D. Marino, M. Musuvathi, and S. Narayanasamy. LiteRace: effective sampling

for lightweight data-race detection. 2009. 24

[76] D. Marino, A. Singh, T. Millstein, M. Musuvathi, and S. Narayanasamy. A Case

for an SC-Preserving Compiler. In Proceeding of the 32nd ACM SIGPLAN

Conference on Programming Language Design and Implementation, 2011. 6,

142

[77] D. L. Marino. Simplified semantics and debugging of concurrent programs via

targeted race detection, 2011. Copyright - Copyright ProQuest, UMI Disserta-

tions Publishing 2011; Last updated - 2015-08-22; First page - n/a. 6

[78] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.

Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifacet’s gen-

eral execution-driven multiprocessor simulator (gems) toolset. ACM SIGARCH

Computer Architecture News, pages 92–99, 2005. 127

[79] S. P. Midkiff, D. A. Padua, and R. Cytron. Compiling Programs with User Par-

allelism. In Selected papers of the second workshop on Languages and compilers

for parallel computing, 1990. 60

[80] P. Mills, J. Lindholm, B. Coon, G. Tarolli, and J. Burgess. Scheduler in multi-

162

threaded processor prioritizing instructions passing qualification rule, May 24

2011. US Patent 7,949,855. 114

[81] A. Munshi et al. The OpenCL specification. Khronos OpenCL Working Group,

1:l1–15, 2009. 7, 95

[82] A. Munshi et al. The OpenCL specification. Khronos OpenCL Working Group,

2.0, 2013. 96, 103

[83] A. Muzahid, S. Qi, and J. Torrellas. Vulcan: Hardware support for detecting

sequential consistency violations dynamically. In Proceedings of the 2012 45th

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO

’12, pages 363–375, Washington, DC, USA, 2012. IEEE Computer Society. 144

[84] A. Muzahid, D. Suarez, S. Qi, and J. Torrellas. SigRace: Signature-based Data

Race Detection. In Proceeding of the 36th Annual International Symposium on

Computer Architecture, 2009. 15, 23, 144

[85] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder. Automat-

ically Classifying Benign and Harmful Data Races using Replay Analysis. In

Proceeding of the ’07 Conference on Programming Language Design and Imple-

mentation, 2007. 6

[86] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig. Intel Virtualization

Technology: Hardware Support for Efficient Processor Virtualization. Intel

Technology Journal, 10(3), 2006. 85

163

[87] NVIDIA. CUDA C Programming Guide. http://docs.nvidia.com/cuda/

pdf/CUDA_C_Programming_Guide.pdf. Retrieved September, 2015. 7, 95, 103

[88] NVIDIA. NVIDIA’s next generation CUDA compute architecture: Fermi,

White Paper. http://www.nvidia.com/content/pdf/fermi_white_papers/

nvidia_fermi_compute_architecture_whitepaper.pdf, 2009. 101

[89] NVIDIA. NVIDIA’s next generation CUDA compute architecture: Kepler

GK110. whitepaper, 2012. 107

[90] V. S. Pai, P. Ranganathan, S. V. Adve, and T. Harton. An evaluation of

memory consistency models for shared-memory systems with ilp processors. In

Proceeding of the Seventh International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 12–23, 1996. 115, 136

[91] B. Pichai, L. Hsu, and A. Bhattacharjee. Architectural support for address

translation on gpus: Designing memory management units for cpu/gpus with

unified address spaces. In Proceeding of the 19th International Conference

on Architectural Support for Programming Languages and Operating Systems,

pages 743–758, 2014. 117

[92] B. C. Pierce. Types and programming languages. MIT press, 2002. 4

[93] J. Power, M. Hill, and D. Wood. Supporting x86-64 address translation for

100s of gpu lanes. In Proceeding of the 20th International Symposium on High-

Performance Computer Architecture, pages 568–578, 2014. 99, 116, 117

164

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf

[94] P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH: Context-sensitive

correlation analysis for race detection. In Proceeding of the ’06 Conference on

Programming Language Design and Implementation, pages 320–331, 2006. 139

[95] M. Prvulovic and J. Torrelas. ReEnact: Using Thread-Level Speculation Mech-

anisms to Debug Data Races in Multithreaded codes. In Proceeding of the 30th

Annual International Symposium on Computer Architecture, June 2003. 23,

144

[96] X. Qian, J. Torrellas, B. Sahelices, and D. Qian. Volition: scalable and precise

sequential consistency violation detection. In Proceeding of the 18th Interna-

tional Conference on Architectural Support for Programming Languages and

Operating Systems, pages 535–548, New York, NY, USA, 2013. ACM. 144

[97] P. Ranganathan, V. Pai, and S. Adve. Using Speculative Retirement and Larger

Instruction Windows to Narrow the Performance Gap between Memory Consis-

tency Models. In Proceeding of the ninth Annual ACM Symposium on Parallel

Algorithms and Architectures, pages 199–210. ACM, 1997. 60, 64, 140

[98] T. Rogers, M. O’Connor, and T. Aamodt. Cache-conscious wavefront schedul-

ing. In Proceeding of the 45th Annual International Symposium on Microarchi-

tecture, pages 72–83, 2012. 114

[99] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Divergence-aware warp

scheduling. In Proceeding of the 46th Annual International Symposium on Mi-

croarchitecture, pages 99–110, 2013. 114

165

[100] A. Salcianu and M. Rinard. Pointer and escape analysis for multithreaded

programs. In PPoPP, 2001. 76

[101] K. Sen. Race directed random testing of concurrent programs. In Proceeding

of the 2008 ACM SIGPLAN Conference on Programming Language Design and

Implementation, pages 11–21, New York, NY, USA, 2008. ACM. 24

[102] A. Sethia, D. A. Jamshidi, and S. Mahlke. Mascar: Speeding up gpu warps by

reducing memory pitstops. In Proceeding of the 21st International Symposium

on High-Performance Computer Architecture, pages 174–185, 2015. 114

[103] D. Shasha and M. Snir. Efficient and Correct Execution of Parallel Programs

that Share Memory. ACM Trans. on Programming Languages and Systems,

10(2):282–312, Apr. 1988. 60, 99, 116, 138

[104] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and M. Musuvathi. End-

to-end Sequential Consistency. In Proceeding of the 39th Annual International

Symposium on Computer Architecture, pages 524 –535, june 2012. 117, 122

[105] I. Singh, A. Shriraman, W. Fung, M. O’Connor, and T. Aamodt. Cache coher-

ence for gpu architectures. In Proceeding of the 19th International Symposium

on High-Performance Computer Architecture, pages 578–590, 2013. 101, 127,

128

[106] S. Steele. ARM GPUs: Now and in the Future. 2011. 101

[107] Z. Sura, X. Fang, C. Wong, S. Midkiff, J. Lee, and D. Padua. Compiler Tech-

niques for High Performance Sequentially Consistent Java Programs. In Pro-

166

ceeding of the 10th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, 2005. 138

[108] H. Sutter. The free lunch is over: A fundamental turn toward concurrency in

software. http://www.gotw.ca/publications/concurrency-ddj.htm. 1

[109] P. Tong, S. Yeoh, K. Kranzusch, G. Lorensen, K. Woo, A. Kaul, C. Case,

S. Gottschalk, and D. Ma. Dedicated mechanism for page mapping in a gpu,

Jan. 31 2008. US Patent App. 11/689,485. 117

[110] O. Trachsel, C. v. Praun, and T. R. Gross. On the Effectiveness of Speculative

and Selective Memory Fences. In Proceeding of the 2006 IEEE International

Symposium on Parallel and Distributed Processing, Apr. 2006. 145

[111] W. Triebel, J. Bissell, and R. Booth. Programming Itanium-based Systems.

2001. 34

[112] J. Ševčík and D. Aspinall. On validity of program transformations in the Java

memory model. In Proceeding of the 22nd European conference on Object-

Oriented Programming, pages 27–51, 2008. 14

[113] D. Weaver and T. Germond. The SPARC architecture manual. 1994. 8, 108

[114] T. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Mechanisms for Store-

wait-free Multiprocessors. In Proceeding of the 34th Annual International Sym-

posium on Computer Architecture, pages 266–277. ACM, 2007. 60, 64, 140

[115] M. Wolfe. More iteration space tiling. In Proceedings of the 1989 ACM/IEEE

167

http://www.gotw.ca/publications/concurrency-ddj.htm

conference on Supercomputing, Supercomputing ’89, pages 655–664, New York,

NY, USA, 1989. ACM. 33

[116] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. De-

mystifying gpu microarchitecture through microbenchmarking. In Proceeding of

the 2010 IEEE Symposium on Performance Analysis of Systems and Software,

pages 235–246, 2010. 128

[117] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The SPLASH-2

Programs: Characterization and Methodological Considerations. In Proceeding

of the 22nd Annual International Symposium on Computer Architecture, pages

24–36. ACM, 1995. 53, 62, 88

[118] K. Yeager. The MIPS R10000 superscalar microprocessor. Micro, IEEE,

16(2):28–41, 2002. 140

168

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Background
	Relaxed Memory Models at ISA Level
	High Level Language Memory Model
	Data-Race-Free-0 (DRF-0) Memory Model
	C++ and Java Memory Model

	Problems with Relaxed memory models

	DRFx Memory Model
	The DRFx Memory Model
	A Compiler and Hardware Design for drfx
	Contributions

	Overview of drfx
	Compiler Transformations in the Presence of Races
	Writing Race-Free Programs is Hard
	Detecting Data Races Is Expensive
	Detecting SC Violations is Enough
	Enforcing the drfx Model
	From Region Conflicts to drfx
	The Compiler and the Hardware Contract

	Compiler and Hardware Implementation
	drfx-compliant Compiler
	Inserting Hard Fences for DRFx-compliance
	Inserting Soft Fences to Bound Regions
	Compiler Optimization

	drfx-compliant Hardware: Design and Implementation
	Overview
	Signature-based Lazy Conflict Detection
	Concurrent Region Conflict Check and Region Execution
	Coalescing Soft-Fence-Bounded Regions
	Out-of-Order Execution of Regions
	Out-of-order Commit of Regions
	Exploiting Locality in Memory Accesses
	Handling Context Switches
	Debugging Support
	System Calls and Safety
	drfx Hardware Design Details

	Performance Evaluation
	Methodology
	Comparison of drfx with Other Relaxed Memory Models
	Effectiveness of drfx Hardware Optimizations
	Scalability

	Conclusion

	SC-preserving Hardware
	Introduction
	Efficient and Complexity-Effective SC Hardware Remains a Challenge
	Relaxing Memory Model Constraints for Safe Accesses
	Design: Memory Access Type Driven SC Hardware
	Two Techniques to Determine Memory Access Type
	SC Architecture Design
	Store-to-Load Forwarding with Two Store Buffers
	Illustration
	SC Memory Model Guarantees

	Static Classification of Memory Accesses
	Classification of Memory Accesses
	Ensuring Correctness for Hardware with Two Store Buffers
	CISC Architecture

	Dynamic Classification of Memory Accesses
	Background: Process-Level Page Protection
	Proposed Extension: Thread-Level Page Protection
	State Transitions and Guaranteeing Memory Ordering Constraints
	Initialization Phase
	Context Switches
	Direct Memory Accesses (DMA)

	Evaluation
	Methodology
	Performance of Memory Access Type Driven SC Hardware
	Cost of End-to-End SC
	Sensitivity to Store Buffer Sizes
	Processors with Limited Instruction Level Parallelism

	Conclusion

	Efficiently Enforcing Strong Memory Ordering in GPUs
	Introduction
	Background
	GPU Architecture
	CUDA and OpenCL Memory Consistency Models

	Enforcing Memory Ordering Constraints in a GPU
	Violation of Ordering Constraints
	Relaxed Memory Ordering
	Total Store Order
	Sequential Consistency
	Common Memory Ordering Optimizations
	Impact of GPU Architectural Features
	Warp Scheduling
	Cache-Write Policy

	Efficient SC for GPU
	Overview
	Implementation
	Memory Access Classification:
	Ordering constraints for unsafe accesses
	Ordering constraints for SM-safe accesses
	Preserving SC execution state on transition from safe to unsafe

	Experimental Methodology
	Simulation environment
	Benchmarks

	Experimental Results
	Comparison of naïve SC, naïve TSO and RMO
	Benefits of TSO over SC are Small
	Prefetching is Ineffective
	Type-aware design is Effective
	Impact of cache-write policy

	Conclusion

	Related Work
	Efficiently Supporting Sequential Consistency
	Compiler based approaches
	Data-Race Freedom by Construction
	Efficient SC hardware

	End-to-end Sequential Consistency
	Transactional Memory
	BulkSC

	Memory Models With Exceptions
	Private and Shared Data Driven Architectures
	Memory Consistency Models for GPUs

	Conclusion
	BIBLIOGRAPHY

