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ABSTRACT

Computational Models of Algorithmic Trading in Financial Markets

by

Elaine Wah

Chair: Michael P. Wellman

Today’s trading landscape is a fragmented and complex system of interconnected elec-

tronic markets in which algorithmic traders are responsible for the majority of trading ac-

tivity. Questions about the effects of algorithmic trading naturally lend themselves to a

computational approach, given the nature of the algorithms involved and the electronic

systems in place for processing and matching orders. To better understand the economic

implications of algorithmic trading, I construct computational agent-based models of sce-

narios with investors interacting with various algorithmic traders. I employ the simulation-

based methodology of empirical game-theoretic analysis to characterize trader behavior in

equilibrium under different market conditions.

I evaluate the impact of algorithmic trading and market structure within three different

scenarios. First, I examine the impact of a market maker on trading gains in a variety of

environments. A market maker facilitates trade and supplies liquidity by simultaneously

maintaining offers to buy and sell. I find that market making strongly tends to increase

total welfare and the market maker is itself profitable. Market making may or may not

benefit investors, however, depending on market thickness, investor impatience, and the

number of trading opportunities. Second, I investigate the interplay between market frag-

xiv



mentation and latency arbitrage, a type of algorithmic trading strategy in which traders

exercise superior speed in order to exploit price disparities between exchanges. I show that

the presence of a latency arbitrageur degrades allocative efficiency in continuous markets.

Periodic clearing at regular intervals, as in a frequent call market, not only eliminates the

opportunity for latency arbitrage but also significantly improves welfare. Lastly, I study

whether frequent call markets could potentially coexist alongside the continuous trading

mechanisms employed by virtually all modern exchanges. I examine the strategic behavior

of fast and slow traders who submit orders to either a frequent call market or a continuous

double auction. I model this as a game of market choice, and I find strong evidence of a

predator-prey relationship between fast and slow traders: the fast traders prefer to be with

slower agents regardless of market, and slow traders ultimately seek the protection of the

frequent call market.

xv



CHAPTER I

Introduction

kbThe predominantly electronic infrastructure of the U.S. stock market has come under

intense scrutiny in recent years, during which several major technology-related disruptions

have roiled the markets. In August 2013, for example, an overflow of market quotes caused

a three-hour halt in trading at Nasdaq (De La Merced, 2013) and, in a separate incident,

Goldman Sachs unintentionally flooded U.S. exchanges with a large number of erroneous

stock-option orders (Gammeltoft and Griffin, 2013). Nasdaq’s computer systems were

similarly overwhelmed during the Facebook IPO on May 18, 2012, when a surge in order

cancellations and updates delayed the opening of the shares for trading (Mehta, 2012).

These events are reminiscent of the tumultuous trading activity caused by technological

problems at Knight Capital in August 2012 (Popper, 2012) and the so-called “Flash Crash”

of May 6, 2010, during which the Dow Jones Industrial Average exhibited its largest single-

day decline (approximately 1,000 points) (Bowley, 2010).

These episodes of market turbulence are symptomatic of today’s trading landscape, a

fragmented and complex system of interconnected electronic markets that compete with

each other for order flow. There are over 40 trading venues for stocks in the U.S. alone

(O’Hara and Ye, 2011). The majority of activity on these markets comes from algorithmic

trading, which employs computational and mathematical tools to automate the process of

making trading decisions in financial markets. Algorithmic trading has been the subject
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of much discussion and research, particularly regarding its benefits and drawbacks (Gov-

ernment Office for Science, London, 2012). Controversies about algorithmic trading in

today’s financial markets reached a critical point with the publication of Flash Boys by

Michael Lewis, which discusses the ways in which many algorithmic traders strive for

speed advantages in the pursuit of profit. Flash Boys tells the story of IEX, a trading venue

designed specifically in response to such activity (Lewis, 2014).

Trading practices that exploit latency advantages in market access and execution in

order to enhance profits are collectively called high-frequency trading (HFT), and are esti-

mated to account for over half of daily trading volume (Cardella et al., 2014). Latency refers

to the time needed to receive, process, and act upon new information. There is no formal

regulatory definition of HFT, and the term itself encompasses a broad array of strategies—

including but not limited to latency arbitrage, in which HFTs use their speed advantages to

exploit price disparities in the same or correlated securities. General attributes of HFT in-

clude high daily trading volume, extremely short holding periods (on the order of microsec-

onds), and liquidation rather than carrying significant open positions overnight (Wheatley,

2010). Proponents of high-speed traders posit that HFT activity reduces trading costs for

market participants. Others argue that these traders harm investors and that practices to re-

duce latency contribute to a wasteful latency arms race, in which HFTs compete to access

and respond to information faster than their competitors (Goldstein et al., 2014).

High-frequency traders gain latency advantages through various means. One method is

co-location, in which HFT firms pay a premium to place their computers in the same data

center that houses an exchange’s servers. Many HFT firms also pay for direct data feeds in

order to receive market data and market-moving information faster than non-HF investors.

However, firms may spend millions of dollars to build a new, faster communication line

only to be made obsolete by technology improvements that shave off additional millisec-

onds. One example of this rapid antiquation is Spread Networks’ fiber optic cable, which

was deprecated less than two years after its completion by the introduction of a network

2



reliant on microwave beams through air (Adler, 2012). According to estimates by the Tabb

Group, firms spent approximately $1.5 billion in 2013 on technology to reduce latency

(Patterson, 2014).

The ubiquity of algorithmic trading and the perpetuation of the latency arms race have

been facilitated in no small part by the complex and fragmented nature of current markets.

Clearly, a more comprehensive understanding of the dynamics between algorithmic trad-

ing and market structure—as well as their effects on market participants—is essential for

ensuring the efficiency and integrity of U.S. financial markets.

Previous work on the effects of algorithmic trading and market structure has relied

primarily on either analytical models or examination of historical order and transaction

data. Historical market data alone is insufficient as it cannot be used to answer coun-

terfactual questions about the impact of modifying strategies or market rules. Analytical

models, on the other hand, can capture essential aspects of market structure, but would

require stifling complexity to specify the interactions between multiple entities or the pre-

cise timing of event occurrences (such as the propagation of information between markets

and participants)—at which point a closed-form solution or any other reasoning would be

rendered infeasible or otherwise unhelpful.

Questions about the interplay between algorithmic trading and market structure natu-

rally lend themselves to a computational approach. Indeed, these questions are inherently

computational due to the very nature of the trading algorithms involved and the electronic

systems in place for processing and matching orders. Algorithmic traders are prime exam-

ples of autonomous agents: they are highly responsive to changes in their environment, they

often learn from historical performance, and they direct their activity towards achieving an

objective. In the case of algorithmic traders, their goal is to maximize profit. The study of

the economic implications of these intelligent systems is therefore extremely well-suited for

the methodologies and approaches honed within the field of computer science: paradigms

such as agent-based modeling and simulation provide the ability to specify agent objectives

3



individually rather than in aggregate, and game theory offers a framework for evaluating

strategic behavior in a multiagent environment.

To better understand the impact of algorithmic trading and market structure on mar-

ket outcomes, I construct computational agent-based models of market scenarios in which

investors interact with various forms of algorithmic traders, and I characterize trader be-

havior in equilibrium under different market conditions. What follows is an overview of

this dissertation.

In Chapter II, I present the class of financial market models I use. I focus on two types

of markets: the continuous double auction, in which orders are matched as they arrive,

and the frequent call market, in which orders are matched at periodic, fixed intervals. I

also present the background traders (representing investors in the market) who populate

my models, and I define the market performance characteristics I measure.

In Chapter III, I describe the simulation-based approach I employ to study the interac-

tions of competing trading algorithms in different market environments. I employ discrete-

event simulation, a paradigm that facilitates the exploration of interactions between traders

by treating each change in system state at a given time as an event, with all events main-

tained in a queue ordered by time of occurrence. I also present the methodology of empiri-

cal game-theoretic analysis, which I use to compute equilibria in various market scenarios.

In Chapter IV, I present a study on equilibrium outcomes given the presence of a market

maker, or MM. A market maker facilitates trade by simultaneously maintaining offers to

buy and sell, and it is generally considered to perform a valuable function in continuous

markets. However, I find that the impact of market making on welfare depends on the

market environment. In this work, I compare settings both with and without MM in a

variety of market environments. I model a single security traded in a continuous double

auction populated by multiple background traders, and I characterize the strategic play

in equilibrium. I find that presence of the market maker strongly tends to increase total

welfare across a variety of environments. Market making may or may not be beneficial to
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background investors, depending on market thickness, investor impatience, and the number

of trading opportunities.

In Chapter V, I investigate the interplay between market fragmentation and latency

arbitrage, a certain type of HFT strategy in which traders exercise superior speed to exploit

price disparities between exchanges. I present a two-market model that captures market

fragmentation, current U.S. securities regulations, and market clearing rules. In my model,

latency arbitrage opportunities arise due to order routing based on outdated information

as reflected in a global price quote that is updated with some delay. My results show that

the presence of a latency arbitrageur can significantly degrade overall gains from trade.

Switching to a centralized frequent call market not only eliminates the opportunity for

latency arbitrage but also significantly increases welfare. Fragmentation can provide some

benefit to welfare, but this effect depends on factors related to market conditions, such as

the number of trading opportunities.

In Chapter VI, I investigate the potential for widespread adoption of frequent call mar-

kets as a market design solution to the latency arms race. That is, will traders prefer to

submit limit orders to a frequent call market over a continuous double auction market, and

if so, under what conditions? I model this question as a game of strategic market choice

with fast and slow traders. Traders select a market type (continuous or discrete, as in the

frequent call market) as part of their strategy. I find strong evidence of a predator-prey

relationship between fast and slow traders: the fast traders prefer to be with slower agents

regardless of market, and slow traders ultimately seek the protection of the frequent call

market. My results demonstrate that frequent call markets are potentially a viable alterna-

tive to the continuous markets that dominate today’s trading landscape.

By characterizing trader and market performance in these three case studies, my disser-

tation offers a closer look at the interplay between algorithmic trading and market structure

in different scenarios. This thesis also presents a framework for modeling and analyzing

algorithmic trading in financial markets: I construct agent-based models of markets popu-
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lated by various market participants, and I employ a computational methodology coupling

simulation with game-theoretic analysis in order to compare outcomes in equilibrium.
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CHAPTER II

Financial Market Models

My thesis explores the impact of market structure modifications on traders and the

markets themselves, with the goal of analyzing the impact of algorithmic trading and de-

signing market rules that mitigate any detrimental effects of such trading. Comparing mod-

els of various market configurations facilitates the identification of weaknesses in current

markets—which may be regulatory or more fundamentally structural—and the study of

how certain advantaged traders may exploit these vulnerabilities to extract profits from

other market participants.

I focus on two types of markets in this thesis. The continuous double auction (CDA), in

which orders are matched as they arrive, is used in virtually all stock markets today. This

is in contrast to a periodic or frequent call market, in which orders are matched to trade at

regular, fixed intervals (on the order of tenths of a second). I describe these two types of

markets in Section 2.1.

My market models are populated by background traders, who represent investors in

the market. This is in contrast to market participants who exclusively pursue trading profit

(Chapters IV and V). I describe the valuation model of background traders in Section 2.2,

and I discuss the class of background-trader strategies in Section 2.3.

As with any simulation model, my results are valid only to the extent my assumptions

capture the essence of real-world markets. My financial market models generally rely on
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simple characterizations of trader behavior, and they consider a limited range of regula-

tory mechanisms and responses, as I focus much of this thesis on the relationship between

algorithmic trading and market clearing rules. While some modeling choices (e.g., those

specifying the trader valuation model or agent arrivals into a market) are somewhat arbi-

trary, they are largely based on prior studies in the literature. In general, I seek to ensure

my models capture the structural details and trader behaviors of interest, without adding

unnecessary complexity.

2.1 Market Clearing Mechanisms

The continuous double auction is a simple and standard two-sided market that forms

the basis for most financial and commodities markets (Friedman, 1993). Agents submit

bids, or limit orders, specifying the maximum price at which they would be willing to buy

a unit of the security, or the minimum price at which they would be willing to sell (hence,

the CDA is often referred to as a limit-order market in the finance literature). CDAs are

continuous in the sense that when a new order matches an existing incumbent order in the

order book, the market clears immediately and the trade is executed at the price of the

incumbent order—which is then removed from the book. Orders may be submitted at any

time, and a buy order matches and transacts with a sell order when the limits of both parties

can be mutually satisfied.

An alternative to continuous trading is a frequent call market or frequent batch auction,

in which order matching is performed only at discrete, periodic intervals (e.g., on the order

of tenths of a second). A discrete-time market facilitates more efficient trading by aggre-

gating supply and demand and matching orders to trade at a uniform price (Biais et al.,

2005; Gode and Sunder, 1997; Wah and Wellman, 2013). As in the CDA, traders in the

frequent call market can arrive and submit orders at any time. The submitted limit orders

remain in the order book until executed or canceled. In a frequent call market, orders are

accumulated over a series of fixed-length clearing intervals. Orders are processed in batch

8



via a uniform-price auction: at the end of each interval, the market computes the aggre-

gate supply and demand functions based on current outstanding orders. No trade occurs

if supply and demand do not intersect. If supply and demand intersect, the market clears

at a uniform price that best matches the aggregated buy and sell orders, i.e., where supply

equals demand. Buy orders strictly greater than the computed price, as well as sell orders

strictly less than this price, will execute and subsequently be removed from the order book.

If supply and demand intersect horizontally or at a single point, there exists a unique clear-

ing price for the given interval. Orders that do not trade in the current period will remain

outstanding and carry over to the next clearing interval.

A frequent call market effectively eliminates the latency advantages of HFTs by hiding

all submitted orders within each clearing interval, as in a sealed-bid auction. The removal

of time priority within each batch period helps ensure that standing offers cannot be read-

ily picked off by incoming orders, thereby transforming the competition on speed into a

competition on price. This ensures that there is no significant advantage to receiving and

responding to information faster than other traders, because all orders within a clearing

interval are processed and matched at the same time. Periodic clears every second or so

would be imperceptible to most investors but would prevent the exploitation of small speed

advantages, thus curbing HFT participation in the latency arms race.

In my implementation of these market models, prices are fine-grained but discrete,

taking values at integer multiples of the tick size pts = 1. Agents arrive at designated times,

and submit limit orders to their associated market(s). Each market continually publishes a

price quote consisting of two parts, the BID and the ASK. Other bids in the order book are

not visible to traders. CDA price quotes reflect the best current outstanding orders, while

the frequent call market quotes reflect the best outstanding orders immediately following

the most recent market clear. Specifically, for the CDA, BIDt is the price of the highest

buy offer at time t and ASKt is the price of the lowest offer to sell. For the frequent call

market, BIDt corresponds to the highest outstanding buy offer after the clear at the most
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recent clear time c, such that BIDt1 = BIDt2 for any c ≤ t1 < t2 ≤ t. Similarly, ASKt

is the lowest outstanding offer to sell, such that ASKt1 = ASKt2 for any c ≤ t1 < t2 ≤ t.

The difference between the two quote components is called the BID-ASK spread. An

invariant for both the CDA and the call market is that BID < ASK. Otherwise, the orders

would have matched and been removed from the order book—either immediately in the

case of the CDA or upon the clear in the frequent call market.

2.2 Valuation Model

Each background trader possesses a individual valuation for the security in question,

which is comprised of private and common components. The common component is de-

fined as follows. I denote by rt the common fundamental value for the security at time t.

The fundamental time series is generated by a mean-reverting stochastic process:

rt = max {0, κr̄ + (1− κ) rt−1 + ut} .

Parameter κ ∈ [0, 1] specifies the degree to which the fundamental reverts back to the mean

r̄, and parameter ut ∼ N (0, σ2
s) is a random shock at time t.

The private component for agent i is a vector Θi representing differences in the agent’s

private benefits of trading given its net position, similar to the model of Goettler et al.

(2009). This private valuation vector reflects individual preferences in the marginal value

of the security (e.g., due to risk aversion, outside portfolio holdings of related securities, or

immediate liquidity needs), as well as preferences regarding urgency to trade. The vector

is of size 2qmax, where qmax = 10 is the maximum number of units the agent can be long

or short at any time, with

Θi =
(
θ−qmax+1
i , . . . , θ0i , θ

+1
i , . . . , θqmax

i

)
.
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Element θqi is the incremental private benefit obtained from selling one unit of the security

given current position q, where positive (negative) q indicates a long (short) position. Sim-

ilarly, θq+1
i is the marginal private gain from buying an additional unit given current net

position q.

I generate Θi from a set of 2qmax values drawn independently from a Gaussian distri-

bution. Let θ̂ ∼ N (0, σ2
PV ) denote one of these drawn values. To ensure that the valuation

reflects diminishing marginal utility, that is, θq′ ≥ θq for all q′ ≤ q, I sort the θ̂ and set the

θqi to respective values in the sorted list.

Background trader i’s valuation v for the security at time t is based on its current posi-

tion qt and the value of the global fundamental at time T , the end of the trading horizon:

vi(t) = rT +


θqt+1
i if buying 1 unit

θqti if selling 1 unit.

For a single-quantity limit order transacting at time t and price p, a trader obtains surplus:


vi(t)− p for buy transactions, or

p− vi(t) for sell transactions.

Since the price and fundamental terms cancel out in exchange, the total surplus achieved

when agentB buys from agent S is θq(B)+1
B −θq(S)S , where q(i) denotes the pre-trade position

of agent i.

2.3 Background-Trader Strategies

There is an extensive literature on autonomous bidding strategies for CDAs (Das et al.,

2001; Friedman, 1993; Wellman, 2011). In this thesis, I consider trading strategies in the

so-called Zero Intelligence (ZI) family (Gode and Sunder, 1993).
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The background traders arrive at the market according to a Poisson process with rate λBG.

On each arrival, they are assigned to buy or sell (with equal probability), and accordingly

submit an order to buy or sell a single unit. (A trader is randomly reassigned to buy or to

sell each time it arrives.) Background traders subsequently reenter the market, with time

between entries distributed exponentially at the same rate λBG—in other words, each trader

reenters the market according to an independent Poisson process, just like its arrival pro-

cess. Background traders are notified of all transactions and current price quotes with zero

delay, and may use this information in computing their bids. Agents may trade any number

of times, as long as their net positions do not exceed qmax (either long or short).

Recall that each background trader has an individual valuation for the security com-

prised of private and common components, as described in the previous section. Based on

this valuation, each background trader obtains a payoff at the end of the simulation period.

This payoff is computed as the sum of the private value of the trader’s holdings, the net

cash flow from trading, and the liquidation proceeds of any accumulated inventory at the

end-time fundamental value rT (i.e., the common component of the valuation).

A ZI trader assesses its valuation vi(t) at the time of market entry t, using an estimate

r̂t of the terminal fundamental rT . The estimate is based on the current fundamental, rt,

adjusted to account for mean reversion:

r̂t =
(
1− (1− κ)T−t

)
r̄ + (1− κ)T−trt. (2.1)

The ZI agent then submits a bid shaded from this estimate by a random offset—the degree

of surplus it demands from the trade. The amount of shading is drawn uniformly from

range [Rmin, Rmax]. Specifically, a ZI trader i arriving at time t with current position q
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submits a limit order for a single unit of the security at price

pi ∼


U
[
r̂t + θq+1

i −Rmax, r̂t + θq+1
i −Rmin

]
if buying

U [r̂t + θqi +Rmin, r̂t + θqi +Rmax] if selling.

I extend ZI by including a threshold parameter η ∈ [0, 1], whereby if the agent could

achieve a fraction η of its requested surplus at the current price quote, it would simply take

that quote rather than posting a limit order to the book. Setting η = 1 is equivalent to the

strategy without employing the threshold.

In my setting, background traders are permitted to reenter the market. Upon each entry,

the trader withdraws its previous order (if not transacted yet) before executing the extended

ZI strategy described above.

2.4 Performance Measures

In exploring the relationship between trader behavior and market structure, I am inter-

ested in the following performance characteristics:

Allocative efficiency Total surplus (welfare) is my key measure of market performance.

Welfare indicates how well the market allocates trades according to underlying private

valuations.

Liquidity Markets are liquid to the extent they maintain availability of opportunities to

trade at prevailing prices. Two liquidity metrics are fast execution and tight BID-ASK

spreads. I measure execution time by the difference in time between order submission

and transaction for orders that eventually trade. Execution time is potentially important

to investors for many reasons, including the risk of changes in valuation while an order

is pending, the effect of transaction delay on other contingent decisions, and general time
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preference. I also measure spread, which is the distance between prices quoted to buyers

and sellers (Section 2.1).

Price discovery This reflects how well prices incorporate information. I measure price

discovery using the root mean square deviation (RMSD) between the midquote price (mid-

point of the BID-ASK spread) and fundamental value at every time step.
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CHAPTER III

Computational Approach

To answer questions regarding the interplay between trader behavior and market struc-

ture, I employ a computational approach that comprises agent-based modeling, simulation,

and equilibrium computation. Using real-world financial data is infeasible and inadequate

for this type of analysis: not only is data containing the necessary level of detail at the

requisite time scale simply not available, but historical data also does not permit the mea-

surement of trading gains (as trader valuations are unknown) or any evaluation of the effects

of modifying market rules.

I employ agent-based modeling, or ABM, to represent the interactions between traders

in one or more markets. In ABM, autonomous agents interact dynamically based on al-

gorithmic rules specified ahead of time. These rules govern each agent’s actions and re-

sponses, but do not explicitly define or specify the interactions between traders; instead,

emergent phenomena can be observed from collective agent behavior. I simulate inter-

actions between agents in a variety of market environments to study the effect of market

structure and trader strategies on market performance. Simulation modeling enables me to

incorporate causal premises, specifically presumptions of how trading behavior is shaped

by environmental conditions. I present my simulation system in Section 3.1.

Using trader performance assessed from simulation runs, I employ game-theoretic anal-

ysis to evaluate traders’ strategic interactions with each other under a variety of market
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settings. I focus on trader behavior in equilibrium, when all market participants are best

responding to each other’s strategies in order to optimize their own gains from trade. Equi-

librium outcomes offer a basis for predicting an agent’s actions when it is faced with strate-

gic decisions. I explore various market scenarios and environments in order to characterize

trader behavior in equilibrium under different market conditions. I describe the methodol-

ogy of empirical game-theoretic analysis that I employ to compute equilibria in Section 3.2.

In order to mitigate the stochasticity in my simulations and reduce sampling error, I

collect large numbers of observations for each environment setting and trader population

of interest. I utilize the EGTAOnline infrastructure (Cassell and Wellman, 2013) to conduct

and manage my experiments, and I run my simulations on the high-performance computing

cluster at the University of Michigan.

3.1 Discrete-Event Simulation

The financial markets I study are stochastic, dynamic systems with discrete states that

change in response to communication events. These events occur at high frequency, often

on the order of microseconds. To faithfully model such systems in simulation, ensuring

the unambiguous timing of agent and market interactions is paramount. This necessitates

fine-grained modeling at the level of communication.

I therefore design my system based on principles of discrete-event simulation (DES),

which affords the precise specification of temporal changes in system state. In the DES

framework, a simulation run is modeled as a sequence of events (Banks et al., 2005). Each

event is an instantaneous occurrence that marks a change to the system state at a given time,

and events are maintained in a queue ordered by time of occurrence.

My DES system simulates the interactions among traders in a set of markets. An event

in my system consists of a sequence of activities that are to be executed by various entities

(e.g., traders, markets, and information processors). The events are ordered in a priority

queue by event time and executed sequentially until the event queue is empty. Multiple
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events may be scheduled for the same time step, in which case they are executed determin-

istically in the order in which they are enqueued. Each event’s list of activities is sequenced

by priority; activities with matching priorities are inserted in the order they arrive. Priorities

are assigned based on activity type (e.g., bid submission, market clearing). This guarantees

determinism in the sequential execution of activities and the correct operation of markets.

To illustrate event sequencing in my simulation system, I present an example of quote

aggregation across two markets. U.S. securities regulations require exchanges to report

their best buy and sell orders to an entity called the Security Information Processor, or SIP

(Blume, 2007; Securities and Exchange Commission, 2005). Given order information from

exchanges, the SIP continually publishes a public price quote called the “National Best Bid

and Offer” (NBBO). This process of computing and disseminating the NBBO takes some

finite time, say δ time steps.

To control the latency of the SIP within my simulation system, I specify three activ-

ities: SendToSIP, ProcessQuote, and UpdateNBBO. The SendToSIP activity is

inserted when a market publishes a quote at time t; upon execution of this activity, the

market sends its updated quote to the SIP entity and inserts a ProcessQuote and an

UpdateNBBO activity, both to execute at time t + δ. When ProcessQuote is exe-

cuted, the SIP updates its information on the best quotes in the markets. It then computes

and publishes an updated NBBO based on this information during the execution of the

UpdateNBBO activity.

In this way, activities in my simulation system are sequenced to reflect the communi-

cation latencies arising as a consequence of market fragmentation. In Figure 3.1, market 1

clears and publishes an updated quote at time t1. Market 2 publishes its new quote at time

t2. For δ > t2 − t1, a ProcessQuote followed by an UpdateNBBO activity is exe-

cuted sequentially at t1 + δ, as well as at time t2 + δ. The UpdateNBBO executing at

t1 + δ does not incorporate market 2’s updated quote, as the ProcessQuote activity to

add market 2’s best quote is not executed until t2 + δ. This process serves to model the
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behavior of the SIP with a delay of δ.

My financial market simulation system affords sufficient versatility to model a wide

range of market environments, including variform populations of market participants, as

well as different market structures (e.g., varying in the number of markets or types of

market mechanisms employed). The simulator has been extended by other members of

the Strategic Reasoning Group at the University of Michigan, and it is in current use in a

number of other studies.
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Figure 3.1: Discrete-event simulation system event queue during the dissemination and processing of updated market quotes for NBBO
computation, given latency δ > t2 − t1. There are two markets, M1 and M2. When the NBBO update activity executes at time t1 + δ,
the SIP has just processed market 1’s best quote (BID1,ASK1) at time t1; this is therefore the most up-to-date information that could
be reflected in the NBBO at time t1 + δ.
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3.2 Empirical Game-Theoretic Analysis

Game theory offers a framework for analyzing strategic behavior within multiagent

environments. A game is a model of interactions between two or more agents, or players,

with outcomes dependent on the players’ actions. Each player makes strategic decisions

within the game, and a player’s strategy specifies its actions. A pure strategy provides a

complete, deterministic specification of the agent’s actions. Players can also adopt a mixed

strategy, which is a probability distribution over the strategy set (which is comprised of

all pure strategies). A strategy profile specifies player-strategy assignments for all agents

in the game. A pure-strategy profile consists of all players adopting pure strategies. In a

mixed-strategy profile, at least one player adopts a mixed strategy. The support is defined

as the set of strategies played with nonzero probability (hence, the size of the support of a

pure-strategy profile is 1). The outcome of a game is defined as the set of strategies adopted

by players, and a player’s payoff is a number representing the desirability of an outcome.

The simulation system discussed in the previous section takes as input a strategy profile

and generates as output a sample outcome, which depends on the combination of strategies

played by traders. Traders can select from a set of strategies, where each strategy is a

parameterization of a class of trading strategies, such as Zero Intelligence (Section 2.3).

Traders may improve individual payoffs (i.e., surplus) by adopting certain strategies over

others, but performance may vary depending on the environment and on what the other

traders are doing.

Empirical-game theoretic analysis (EGTA) is a simulation-based process that facili-

tates strategy selection for agents by comparing the payoffs of different combinations of

player and strategy assignments. Developed by Wellman (2006) and the Strategic Reason-

ing Group at the University of Michigan, EGTA entails systematic simulation of many strat-

egy profiles, accumulating payoff observations, and inducing an empirical game model. To

guide strategy choice, I apply the notion of game-theoretic equilibrium, which provides a

rule for predicting agent behavior. More specifically, I focus on Nash equilibrium, in which
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each player selects the strategy that maximizes its payoff, given the strategies of the other

players. Given this equilibrium concept, solving the induced empirical game then gives

optimal strategy assignments for the players.

In this thesis, I model a financial market as a role-symmetric game, in which players are

partitioned into multiple roles, each with a specified strategy set. Payoffs in such a game

are completely determined by role membership and by the number playing each strategy

in each role. A symmetric game, in which payoffs depend only on the number of agents

playing each strategy, can be modeled as a role-symmetric game with a single role. A role-

symmetric Nash equilibrium (RSNE) assigns a strategy profile to every role, such that all

agents in a role have the same mixed strategy, and no agent can benefit in expectation by

unilaterally switching to a different strategy.

3.2.1 EGTA Process

The goal in this process is to identify Nash equilibria, and I focus my search on role-

symmetric Nash equilibria, in pure or mixed strategies. To analyze a game, I apply EGTA

in an iterative manner, interleaving exploration of the profile space with analysis of the

empirical game model induced by average payoffs in simulation. I start by simulating all

the role-symmetric pure-strategy profiles, where a single strategy is shared by all players

in a role. Exploration then spreads through their neighbors, that is, those profiles related by

single-agent deviations.

Observed payoffs from simulation runs of a given profile are added incrementally to the

empirical game’s payoff matrix. For this reason, the game is incomplete at any point during

the EGTA process, as some profiles have been empirically evaluated whereas others have

not. Each update to the empirical game’s payoff matrix generates an intermediate game

model. As payoffs from simulation are incorporated into the empirical game, I analyze each

successive intermediate game model by computing (mixed) equilibria for each complete

subgame. A subgame is the game obtained by restricting the set of strategies for each
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role, and a complete subgame is defined as a subgame for which all profiles have been

evaluated by simulation. The role-symmetric Nash equilibria of the complete subgames

are candidates for equilibria in the full game. If I can identify a strategy in the full strategy

set that beneficially deviates from the candidate, I say the candidate is refuted. A candidate

profile is confirmed as an RSNE when all possible deviations have been evaluated, and

none are beneficial. I confirm or refute each candidate by evaluating deviations to strategies

outside their subgames. If a candidate is refuted, I construct a new subgame by adding the

best response to its support, and proceed to explore the corresponding subgame.

I simulate additional profiles for a game until I have confirmed at least one RSNE,

evaluated every pure-strategy symmetric profile (i.e., where the players in each role play a

strategy with probability 1), and pursued with some degree of diligence every equilibrium

candidate encountered. More specifically, I continue to refine the empirical game with

additional simulations until the following conditions are met:

1. at least one equilibrium is confirmed,

2. all non-confirmed candidates are refuted (up to a threshold support size), and

3. for all refuted candidates (up to the threshold support size), we have explored sub-

games formed by adding the best response to the candidate’s support.

When this process reaches quiescence, I consider the search to have satisfied the diligence

requirement.

The procedure described above seeks to either confirm or refute the equilibrium can-

didates detected in my exploration of the strategy space. As I am not able to exhaustively

search the entire profile space, however, additional qualitatively distinct equilibria are al-

ways possible. In addition, the equilibria I find are subject to refutation by other strate-

gies outside the specified set. My search process described above attempts to evaluate all

promising equilibrium candidates (e.g., by exploring subgames extending the support of a

refuted candidate with the best response), but identifying these is not guaranteed.

22



3.2.2 Game Reduction

Even with a moderate number of players, the game size (number of possible strategy

profiles) grows exponentially with the number of players and strategies, rendering analysis

of the full game computationally infeasible. As such, I apply aggregation to approximate

the many-player games as games with fewer players: I employ the technique of deviation-

preserving reduction (DPR) developed by Wiedenbeck and Wellman (2012) to construct a

reduced-game approximation of the full game.

DPR preserves the payoffs from single-player, unilateral deviations, and maintains in

the reduced game the same proportion of opponents playing each strategy as in the full

game. In a deviation-preserving reduced game, each player views itself as controlling one

full-game agent and views the other-agent profile in the reduced game as an aggregation of

all other players in the full game. Although the equilibrium approximations obtained via

DPR are not guaranteed estimates, DPR has been shown to produce good approximations

in other games (Wiedenbeck and Wellman, 2012).

DPR defines reduced-game payoffs in terms of payoffs in the full game as follows.1

Consider first an N -player symmetric game, reduced to a k-player game, for k < N . The

payoff for playing strategy s1 in the reduced game, with other agents playing strategies

(s2, . . . , sk), is given by the payoff of playing s1 in the full N -player game when the other

N − 1 agents are evenly divided (N−1
k−1 each) among strategies s2, . . . , sk.

Now consider an (NA, NB)-player role-symmetric game with two roles A and B, re-

duced to a (kA, kB)-player game for kA < NA, kB < NB. Given the other agents in role

A play strategies (a2, . . . , akA) and the agents in role B play strategies (b1, . . . , bkB), the

payoff for an agent in role A playing strategy a1 in the reduced game is given by the payoff

of playing a1 in the full (NA, NB)-player game when the other NA − 1 traders in role A

1With the exception of one environment, in all the case studies presented in this thesis the number of
players N in the full game and the number of reduced-game players k are selected to ensure that the DPR
definitions result in integer numbers of players. See the original paper by Wiedenbeck and Wellman (2012)
for the complete definition of the number of reduced-game players within each role when divisibility does
not hold.
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are divided evenly (NA−1
kA−1

) among the strategies a2, . . . , akA and the other-role (i.e., role B)

players are divided evenly (NB

kB
) among their strategies b1, . . . , bkB . The payoff for a single

agent in role B is analogous.
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CHAPTER IV

Welfare Effects of Market Making in Continuous

Double Auctions

In this chapter, I present a study investigating the effects of market making on market

performance, focusing on allocative efficiency as well as gains from trade accrued by back-

ground traders. The results from this case study have been reported in other papers (Wah

and Wellman, 2015; Wah et al., 2016). I employ the empirical simulation-based meth-

ods described in Chapter III to evaluate heuristic strategies for market makers as well as

background investors in a variety of complex trading environments. I compare the surplus

achieved by background traders in strategic equilibrium, with and without a market maker.

My findings indicate that the presence of the market maker strongly tends to increase total

welfare across a variety of environments. Market making may or may not be beneficial

to background investors, depending on characteristics of the market environment. I find

that the benefit tends to accrue in relatively thin markets, and situations where investors are

impatient, due to limited trading opportunities. Comparison across environments reveals

factors that influence the existence and magnitude of benefits provided by the market maker

function.
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4.1 Introduction

A market maker (MM) facilitates trade in a two-sided auction market by simultaneously

maintaining offers to buy and sell. An ever-present MM supplies liquidity to the market.

Liquidity refers to the availability of immediate trading opportunities at prices that reason-

ably reflect current market conditions. In compensation for liquidity provision, MMs profit

from the spread, the difference between their buy and sell offers. MM activity is gener-

ally understood to stabilize prices and facilitate discovery of accurate prices in the market

(Schwartz and Peng, 2013).

The exact role of market makers varies across market institutions. In a pure dealer mar-

ket, multiple MMs competitively quote prices, and incoming market orders from investors

trade at the best available MM price (Huang and Stoll, 1996). In a pure limit-order market,

both investors and MMs submit orders with price limits, and whenever an incoming order

matches an existing order, they trade at the incumbent order’s limit price. This market

mechanism is also called a continuous double auction (CDA), the name I use here. In a

specialist market, there is a single MM designated to act as dealer, with an affirmative obli-

gation to maintain fair and orderly markets (Saar, 2010). With the transition to electronic

markets, pure limit-order markets are becoming predominant (Frey and Grammig, 2006;

Glosten, 1994), thus this is the market mechanism I employ in my study.

Providing liquidity can generate profits from investors, but also runs the risk of adverse

selection: when traders with newer or otherwise better information take advantage of the

MM’s standing offers. Much of the market making literature focuses on this tradeoff and its

implications for MM strategies (Glosten and Milgrom, 1985; Kyle, 1985); other prior re-

search has investigated the effects of MM on liquidity (e.g., as measured by price spreads)

(Das and Magdon-Ismail, 2008) and price discovery (Leach and Madhavan, 1992). Al-

though liquidity and price discovery are generally expected to be positive factors for mar-

ket performance and therefore welfare, there has been a notable dearth of prior research

modeling this directly. Of the existing work addressing welfare, the focus has been on the
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need for affirmative MM obligation due to adverse selection (Bessembinder et al., 2011,

2015), the cost structure of market participation in supplying liquidity (Huang and Wang,

2010), and trading mechanisms to incentivize market making (Brusco and Jackson, 1999).

In this study, I investigate the effects of MM on market performance, focusing on al-

locative efficiency as well as gains from trade accrued by background investors. In the

specific model I examine in this chapter, a single security is traded via CDA mechanism in

a market environment comprising a single market maker and multiple background traders.

Recall that my financial market models incorporate private and common valuation ele-

ments, with dynamic fundamental value and asymmetric information (Section 2.2). The

background traders each possess an individual valuation for the security. They enter and

reenter according to a stochastic arrival process, each time to offer to buy or sell a single

unit of the security (Section 2.3). The single MM has no private value, and thus aims to

profit by maintaining buy and sell offers with a positive price spread.

To compare outcomes both with and without market making, I search for strategy con-

figurations where traders best-respond to the environment and other-agent behavior. As

analytic game-theoretic solution of this rich dynamic model appears intractable, I employ

empirical simulation-based methods (Section 3.2) to derive equilibria over a restricted strat-

egy space. For background traders, I consider parameterized strategies based on Zero Intel-

ligence agents (Section 2.3). For the MM, I consider heuristic strategies loosely based on

that defined by Chakraborty and Kearns (2011). From extensive simulation over thousands

of strategy profiles, I estimate game models for various instances of the target scenario.

Analysis of the empirical games provides strong support for overall welfare benefits

of market making. I derive empirical equilibria with and without market making in 21

environments, finding that the mix of background-trader strategies in equilibrium varies

depending on the presence and strategy choice of the MM. In all of my environments, the

single market maker is profitable in equilibrium, and in all but three equilibrium compar-

isons, the presence of MM increases overall welfare (background-trader surplus combined
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with MM profit).

Whether market making benefits background traders (i.e., increases welfare net of MM

profits) is more ambiguous, however. A single market maker makes investors better off

in the majority of environments tested, and tends to do so particularly in relatively thin

markets. For impatient investors with relatively infrequent trading opportunities, the MM

is more beneficial the shorter the trading horizon.

In the next section I explain by way of example the potential role of market makers in

alleviating allocative inefficiencies. I describe relevant work in Section 4.3. Section 4.4

discusses the market environment, and Section 4.5 describes my MM strategies. I present

my experiments and results in Sections 4.6 and 4.7, respectively. I conclude in Section 4.8.

4.2 Motivating Example

I illustrate the problem of allocative inefficiency in CDAs, and the influence of mar-

ket makers, with the following simple example. Suppose a market with four background

traders: two buyers and two sellers. The buyers have values b1 and b2, and seller values

are s1 and s2, with b1 > s1 > b2 > s2. Let me further assume for this illustration that the

traders submit orders at their valuations.

Suppose that the orders arrive at the market in the order shown in Figure 4.1. Then

buyer 1 trades with seller 1, and buyer 2 with seller 2, achieving a total surplus of (b1 −

s1) + (b2 − s2). The socially optimal allocation, in contrast, would have buyer 1 trading

with seller 2, for a total surplus of b1−s2. The difference between the optimal and achieved

surplus is ∆ = s1− b2 > 0. This loss can be attributed to the vagaries of the sequencing of

limit orders, combined with the greedy matching implemented by the CDA mechanism. I

choose to depict in the figure a sequence that leads to a suboptimal allocation; however, this

is not the only one. In fact, only one-third of the possible orderings of these bids (8 out of

24) would result in the optimal allocation, with the remaining two-thirds under-performing

by ∆.
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Figure 4.1: A sequence of CDA orders leading to a suboptimal allocation.

Now suppose there is a market maker who continually maintains buy and sell offers in

the auction, with difference δ between them. As long as the MM’s offer to buy is within

the interval (s2, s1), and its offer to sell falls within (b2, b1), then for this sequence of order

arrivals, buyer 1 and seller 2 will trade with the MM, and the allocation will be efficient. If

the MM quotes lie within the narrower interval of competitive equilibrium prices1 [b2, s1],

then the efficient allocation is achieved for any sequence. In such cases, the MM accrues a

profit of δ, with the remaining surplus divided among background traders.

The MM promotes efficiency in this example by providing liquidity to the market. In

the absence of MM, when buyer 1 arrives, it has nobody to trade with. Seller 1 fills the

vacuum and makes a profitable trade with this buyer, but at a price quite removed from

that which would match supply and demand aggregated over time. An MM with quotes

approximating this long-run price, in contrast, allows arriving bidders to trade near pre-

vailing prices. Equally important, it prevents bidders who should not trade based on their

valuations from doing so.2

Even assuming that the MM improves overall efficiency, does it make the background

traders better off? In the specific scenario of Figure 4.1, the background traders benefit

(in aggregate) if δ < ∆. If instead I consider the same set of four bids, but submitted in

1A competitive equilibrium price balances supply and demand with price-taking bidders. Here the balance
is with respect to cumulative orders over the time horizon.

2A modest amount of bid shading can also prevent inefficient trades, and indeed equilibrium shading
strategies often lead to more efficient outcomes than truthful bidding in CDAs (Zhan and Friedman, 2007).
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random order, then the background traders are clearly worse off in the third of instances

where they would have achieved the efficient allocation without the MM’s help. With

random sequencing, the background traders benefit in expectation if and only if δ < 2
3
∆.

More generally, it is clear that the question of whether MM presence is welfare-improving

for background traders depends on specific details of the market setting. For background

traders, the MM contribution may be sensitive to the distribution of valuations and bids, as

well as their pattern of arrival over time. It also depends pivotally on the MM strategy—

how well it tracks the prevailing market price and how large a spread the MM maintains

between its buy and sell offers. In realistic environments, valuations include a combination

of common and private elements and may evolve over time. Based on time and role, agents

may have differential information about the common-value component. Thus for time-

varying environments, I cannot assume the MM knows the underlying market equilibrium;

it must instead act adaptively based on observations and statistical assumptions.

Moreover, individual traders may reenter the market to revise bids or reverse transac-

tions, or to trade multiple units of the good. If such reentry were costless, market mak-

ing would not be necessary to achieve allocative efficiency, as the traders could exchange

among themselves to quiescence (Huang and Wang, 2010). As long as the traders do not

indefinitely hold out for strict profits, the market would converge to an efficient allocation.

In other words, liquidity has economic value only to the extent that patience and market

participation have costs or limits.

With such complications, establishing general analytical conditions for the benefits of

MM seems unlikely. Instead, I employ the empirical game-theoretic techniques presented

in Section 3.2, which facilitate the search for strategically stable background-trader and

MM strategies. My model includes all of the elements listed above, within an extensible

framework, presented in Section 2.3, that could incorporate (in future work) additional

relevant features of financial markets.
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4.3 Related Work

Literature on market making lies predominantly within the field of market microstruc-

ture, which examines the process by which prices, information, and transactions are formed

by detailed interactions of traders in a market mechanism (Biais et al., 2005; Madhavan,

2000; O’Hara, 1995). Early work focused on dealer markets, in which a monopolistic

MM (the dealer) controls trading by acting as the middleman. Garman (1976) presents

an explicit formulation of the market maker’s optimization problem. O’Hara and Oldfield

(1986) and Amihud and Mendelson (1980) concentrate on the impact of dealer inventory

on spreads, while the seminal model of Glosten and Milgrom (1985) frames spread as aris-

ing from adverse selection. Others focus on the consequences of informed trading on MM

(Chowhdry and Nanda, 1991; Das, 2008; Kyle, 1985), as well as the role of market makers

as liquidity providers (Grossman and Miller, 1988; Seppi, 1997).

Much of the relevant theoretical literature, however, relies on simplifying assumptions

of MM behavior and trader interactions (Biais et al., 2005). Empirical studies have pro-

vided insight on the effects of market makers in real-world markets (Frey and Grammig,

2006; Hasbrouck and Sofianos, 1993; Manaster and Mann, 1996; Menkveld, 2013; Sandås,

2001). Historical data alone, however, cannot elucidate the strategic choices faced by mar-

ket participants. Agent-based modeling (ABM) and simulation of financial markets has

proven conducive to exploring these questions (LeBaron, 2006); however, only a handful

of ABM finance papers focus on market making (Chan and Shelton, 2001; Darley et al.,

2000; Das, 2008).

Outside of microstructure, researchers have developed MM strategies for a variety of

settings, including prediction markets (Abernethy et al., 2011; Chen and Pennock, 2007;

Hanson, 2007), dealer-mediated markets (Das, 2005; Jumadinova and Dasgupta, 2010),

CDAs (Feng et al., 2004), and environments where prices are generated exogenously (Aber-

nethy and Kale, 2013). In this last category, Chakraborty and Kearns (2011) demonstrate

the profitability of market making given a mean-reverting price series series. They propose
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a simple MM algorithm to submit a ladder of prices; the market makers I investigate can

be viewed as variations on this strategy.

None of these studies, however, address questions about allocative efficiency in the mar-

ket. To my knowledge, the literature on welfare effects of MM behavior is quite limited,

and existing studies are largely concerned with how adverse selection affects allocative effi-

ciency. For example, Bessembinder et al. (2011) demonstrate that restricting spread widths

improves allocative efficiency and encourages more traders to become informed. Their

results suggest that MMs enhance efficiency primarily when information asymmetries are

significant. Brusco and Jackson (1999) illustrate the inefficiencies of competitive markets

in a two-period model in which the market maker position is designated via an auction.

They also design a system of trading rules to reach an efficient allocation by identifying and

incentivizing MM agents. Huang and Wang (2010) propose a model in which provision of

liquidity is endogenous, finding that mandating participation tends to improve welfare, but

that the welfare effects of lowering costs for liquidity provision per se are ambiguous. In a

similar vein, Bessembinder et al. (2015) present a model in which a firm can sell an asset

to an investor in an IPO, with the option of paying a designated market maker (DMM)

in exchange for liquidity provision in a secondary market. When the secondary market is

illiquid due to asymmetric information and uncertainty regarding the asset’s fundamental

value, social welfare can be improved if the firm enters into a DMM contract.

4.4 Market Environment

To investigate the effect of market making on allocative efficiency, I construct a sim-

ple model of a single security traded in a continuous double auction market. The market

environment is populated by multiple background traders, representing investors, and (op-

tionally) one market maker. Background traders each have an individual valuation for the

security (described in Section 2.2), and they employ parameterizations of the Zero Intelli-

gence (ZI) strategy described in Section 2.3. At any given time, the background investors
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are restricted to a single order to buy or sell one unit, whereas the MM may maintain orders

to buy and sell any number of units at various prices.

4.5 Market Maker Strategies

Much of the prior work on MM strategies treats the market maker as a dealer (Das,

2005; Glosten and Milgrom, 1985), which must take one side of each trade. In my model,

however, all trades execute through the CDA order book, therefore the MM submits limit

orders just as background traders do. I consider a family of MM strategies that submit at

time t a ladder of single-quantity buy and sell orders, comprised of K rungs spaced ξ ticks

apart: 
[St, St + ξ, St + 2ξ, . . . , St +Kξ] for sell orders

[Bt −Kξ, . . . , Bt − 2ξ, Bt − ξ, Bt] for buy orders

with St > Bt and K, ξ > 0. The MM arrives at time 0 and reenters the market according

to a Poisson process with rate λMM . On reentry at time t, the MM observes the current

fundamental rt, which it may use in determining its ladder of buy and sell orders. It cancels

any standing orders remaining from its previous ladder when submitting a new ladder.

Like the background traders, the MM liquidates its inventory at the end of the trading

horizon. The liquidation price is the global fundamental value rT . The MM’s total profit is

defined by the sum of trading cash flow plus liquidation proceeds.

To avoid crossing the current BID-ASK quote, the MM truncates its ladder. Specif-

ically, if BIDt > St (or similarly, Bt > ASKt), the agent cuts the ladder off at the rung

that is at or above (below) the current BID (ASK) price. The truncated ladder is:


[St + (K − x)ξ, . . . , St +Kξ] if BIDt > St

[Bt −Kξ, . . . , Bt − (K − x)ξ] if Bt > ASKt,

where x > 0 specifies the rung immediately above BID (for sell orders) or below ASK
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(for buy orders). That is, x satisfies the condition St+(K−x−1)ξ < BIDt < St+(K−x)ξ

for sell orders in the ladder, and Bt − (K − x)ξ < ASKt < Bt − (K − x − 1)ξ for buy

orders.

The MM uses its observation of the current fundamental rt to inform its ladder construc-

tion. Specifically, the MM strategies I implement compute an estimate r̂t of the terminal

fundamental rT via (2.1), and center the ladder around this estimate. The spread ω is set by

a strategy parameter. The central ladder prices are:

St = r̂t +
1

2
ω, Bt = r̂t −

1

2
ω.

4.6 Experiments

Generally speaking, I am most interested in the effect of market making in equilibrium,

when all agents are doing their best to generate profit. For the present study, I employ

the discrete-event market simulation system described in Section 3.1. I consider only a

restricted set of available strategy choices, defined by selected parameterized versions of

the background-trader and MM strategies. I generate data for various combinations of

the strategies introduced in Sections 2.3 and 4.5, each sampled over many runs (at least

20,000 per profile, often many more) to account for stochastic effects (valuation schedules,

trajectories of the market fundamental, agent arrival patterns). I determine equilibria among

these strategies through empirical game-theoretic analysis (described in Section 3.2). I then

take these equilibria as the basis for evaluating MM welfare effects.

The experiments conducted for the present study supersede those reported in AAMAS

2015 Conference Proceedings (Wah and Wellman, 2015). The present results incorporate

an expanded strategy set (Table 4.1) and subtle changes to the background-trader arrival

process. I also more thoroughly sample the profile space, covering more profiles and with

more simulations per profile. The results are qualitatively consistent with the previous

findings, though with a more ambiguous relationship between trading horizon and MM
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impact on surplus gains. The expanded strategy set includes background traders who persist

in strict shading indefinitely, which affords greater scope for MM benefit even over long

trading horizons.

4.6.1 Environment Settings

I evaluate the performance of background traders and the MM within 21 parametrically

distinct environments. For each environment, I analyze two empirical games that differ in

whether the MM is present. In all settings, there are N ∈ {25, 66} background traders.

Each simulation run lasts T time steps, for T ∈ {1, 4, 12, 24} × 103. If present, the MM

in each environment enters the market at the start of the simulation and reenters with rate

λMM = 0.005, or on average once every 200 time steps. The global fundamental has a

mean value r̄ = 105 and mean-reversion parameter κ = 0.05. The variance for the private

value vector is σ2
PV = 5× 106.

The environments differ in number of background traders (N ), background-trader reen-

try rate (λBG), fundamental shock variance (σ2
s ), and time horizon (T ). The configurations

of parameter settings for N ∈ {25, 66} background traders are as follows.

A λBG = 0.0005, σ2
s = 1× 106

B λBG = 0.005, σ2
s = 1× 106

C λBG = 0.005, σ2
s = 5× 105

I describe each environment by its configuration label, followed by time horizon (in thou-

sands). For example, B12 is the environment labeled B above with T = 12000.

4.6.2 EGTA Process

Recall that I model a financial market as a role-symmetric game, in which players

are partitioned into roles, each with a specified strategy set (Section 3.2). The two roles

in my model are background trader (25 or 66 players) and market maker (one player). As
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game size grows exponentially with the number of players and strategies, I apply deviation-

preserving reduction (described in Section 3.2.2) to approximate the many-player game as a

game with fewer players. I choose values for N in this study to facilitate DPR by ensuring

that the required aggregations come out as integers: the approximation of an (N, 1)-size

game (i.e., N background traders and 1 MM) by a (k, 1)-player reduced game works best

when k divides N and k − 1 divides N − 1. Specifically, I use simulation data from

the (66, 1)-agent environments to estimate reduced (6, 1)-player games, where six players

represent the 66 background traders in the simulated environment. I similarly estimate

(5, 1)-player games from the (25, 1)-agent cases.

I iteratively apply EGTA to guide my exploration of the strategy space. In this study, I

successfully found at least one and at most four non-trivial RSNEs for each game evaluated,

with support sizes up to four for background traders and up to two for MMs. The process

accumulates a dataset of profile simulation results, which I use to estimate payoff values

for strategy profiles in the game.

For all the games I model, there exists a trivial pure RSNE in which all agents play

a “NOOP” strategy that refrains from bidding. This exists because if none of the other

agents (background traders or MM) submit limit orders, then there is nobody to trade with

and there will be no transactions regardless of the strategy the subject agent employs. In

my discussion below, I ignore this degenerate equilibrium, which obviously has payoff zero

for all agents.

4.6.3 Social Optimum

To provide a benchmark for efficiency, I calculate the social optimum based on the

trader population and valuation distribution used in my environments (i.e., N ∈ {25, 66}

background traders with parameters qmax = 10 and σ2
PV = 5× 106). I determine the opti-

mum for a particular draw of N valuation vectors by treating each as a demand curve and

finding a uniform competitive equilibrium price. This is conveniently implemented in my
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Figure 4.2: Histograms of the net position (i.e., number of units traded) of N background
traders in the socially optimal allocations. The distributions (shown superimposed) are
compiled from 20,000 samples.

simulation environment, where valuation vector Θi is represented by a background trader i,

who submits qmax single-unit sell orders at prices r̄+θsi , s ∈ {−qmax + 1, . . . , 0}, and qmax

single-unit buy orders at prices r̄ + θbi , b ∈ {+1, . . . , qmax}. A call market computes a

uniform clearing price to match supply and demand, which defines the optimal allocation

for the sample. From 20,000 samples, I find a mean social welfare of 44155 and 16306 for

66 and 25 background traders, respectively. Figure 4.2 presents histograms of trades per

background trader in the social optima.

4.7 Results

4.7.1 Game without Market Making

The empirical games without MM cover 14 background-trader strategies: 13 versions

of ZI (see Table 4.1), and (implicitly) the no-trade strategy NOOP. I identified 1–3 ZI

equilibria for each of my 21 environments as listed in Tables 4.2 and 4.3 (see Tables A.1

and A.2 for complete specifications of the equilibria found). For each equilibrium, I esti-

mated background-trader surplus by sampling 2,500 profiles according to the equilibrium

mixture, running 25–100 simulations per sampled profile (at least 62,500 full-game simu-
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Table 4.1: ZI strategy combinations included in empirical game-theoretic analysis of games
with and without a market maker.

Rmin Rmax η

0 65 0.8
0 125 0.8
0 125 1
0 250 0.8
0 250 1
0 500 1
0 1000 0.8
0 1000 1
0 1500 0.6
0 2500 1

250 500 1
500 1000 0.4

1000 2000 0.4

Table 4.2: Symmetric equilibria for games without market makers, N = 66, calculated
from the 6-player DPR approximation. Each row of the table describes one equilibrium
found and its average values for total surplus and two strategy parameters: Rmid (the mid-
point of ZI range [Rmin, Rmax]) and threshold η. Values presented are the average over
strategies in the profile, weighted by mixture probabilities. Surplus values are means from
thousands of simulations of the full game, where strategies are randomly sampled from the
equilibrium mixed-strategy profile.

Env Surplus Rmid η

A1 3712 750 0.4
A1 4439 374 0.980
A4 16578 340 0.977
A4 16551 353 1
A12 33741 267 0.955
B1 29150 441 0.894
B4 40392 411 0.961
B12 40102 494 0.810
C1 30803 250 1
C1 29726 375 1
C4 41130 500 0.8
C4 39901 390 0.976
C12 41410 446 0.923

lations in total) and then recording the aggregate surplus.
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Table 4.3: Symmetric equilibria for games without market makers, N = 25, calculated
from the 5-player DPR approximation. Data presented is as for Table 4.2.

Env Surplus Rmid η

A1 1041 750 0.404
A1 1351 371 1
A4 5616 350 0.986
A12 11670 335 1
A24 13697 375 1
A24 15162 218 0.949
A24 15543 117 0.826
B1 8752 750 0.4
B4 14041 517 0.773
B12 14256 553 0.715
B24 14478 556 0.710
C1 10378 375 1
C4 14225 476 0.838
C12 14617 441 0.894
C24 14618 490 0.816

4.7.2 Game with Market Making

My games with MM include the 14 background-trader strategies from the no-MM treat-

ment above, plus 5–7 strategies for the MM role. The MMs employed in my game analysis

are as described in Section 4.5, with K = 100 rungs spaced ξ ∈ {25, 50, 100} units apart.

Each MM strategy type employs a fixed spread ω ∈ {64, 128, 256, 512, 1024}. Rung size

ξ is 50, plus one variant with ξ = 25 for ω = 256 and another variant with ξ = 100 for

ω = 512. The set of all MM strategies employed is in Table 4.4. Note that in some environ-

ments, only a subset of five of these strategies is used. The equilibria found are presented in

Tables 4.5 and 4.6 (see Tables A.3 and A.4 for complete specifications of the RSNE found).

Background-trader surplus and MM profit are estimated for each equilibrium based on the

sampling method described for the no-MM game above.
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Table 4.4: MM strategy parameter combinations explored. Strategies specified by the first
two rows were omitted for some environments.

K ξ ω

100 25 256
100 50 64
100 50 128
100 50 256
100 50 512
100 50 1024
100 100 512

Table 4.5: Role-symmetric equilibria for games with one market maker,N = 66, calculated
from the (6, 1)-player DPR approximation. Each row of the table describes one equilibrium
found and its average values for background-trader surplus, MM profit, and four strategy
parameters: Rmid (the midpoint of ZI range [Rmin, Rmax]), threshold η, MM spread ω, and
rung size ξ. Values presented are the average over strategies in the profile, weighted by
mixture probabilities.

Env Surplus Profit Rmid η ω ξ

A1 4545 461 238 0.933 512 61
A1 4553 485 205 1 512 100
A1 4465 382 298 0.943 512 50
A4 16503 1890 139 0.834 256 50
A12 32984 3196 109 0.948 256 50
A12 31920 3231 116 0.949 256 50
B1 29238 21 433 0.907 931 59
B4 40041 196 431 0.942 512 100
B12 40575 113 400 0.974 512 100
B12 42304 820 492 0.806 491 50
C1 29507 302 375 1 512 50
C4 39669 878 421 0.954 256 50
C4 41416 1715 240 0.984 256 50
C12 41658 2003 500 0.864 256 50
C12 40836 1233 431 0.911 256 50
C12 42037 1572 455 0.976 256 50

4.7.3 Comparison of Market Performance

My findings with regard to the central question in this chapter are presented in Fig-

ure 4.3. For each environment, I compare equilibrium outcomes, with and without an MM,
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Table 4.6: Role-symmetric equilibria for games with one market maker,N = 25, calculated
from the (5, 1)-player DPR approximation. Data presented is as for Table 4.5.

Env Surplus Profit Rmid η ω ξ

A1 1593 285 164 0.863 512 50
A1 1596 320 115 0.940 512 100
A4 5711 852 188 0.896 512 100
A4 5773 961 125 0.956 512 100
A4 5701 874 186 0.916 512 50
A4 5797 934 117 1 512 100
A12 11975 1696 88 0.883 512 25
A12 11907 1728 111 0.803 512 25
A12 12014 1606 103 1 512 47
A24 14103 1802 151 0.822 430 50
A24 14406 1899 57 0.8 256 50
B1 10666 220 329 1 512 100
B1 10292 113 446 0.886 512 100
B4 14813 671 478 0.818 294 50
B12 14560 341 444 0.889 512 67
B24 15423 716 552 0.825 256 50
B24 15219 330 424 0.994 512 100
C1 10251 348 375 1 512 100
C4 14055 577 365 1 512 50
C12 15121 1343 382 0.863 256 25
C12 14933 1292 254 0.931 512 50
C12 15344 1166 225 0.996 256 50
C24 15191 1163 502 0.814 256 50
C24 14552 524 388 0.979 512 50

on two measures: social welfare and background-trader surplus. Since there are often

multiple equilibria, the differences are presented as ranges, delimiting the most and least

favorable comparisons.

In the scenarios with 66 background traders (Figure 4.3(a)), the change in overall wel-

fare is generally positive, with only three environments (B4, C1, and C4) providing small

exceptions. The change in background-trader surplus, in contrast, varies widely across en-

vironments, with multiple examples of both positive and negative changes. The effect is

strongly negative in the A environments with longer trading horizons, which may be ex-

plained by the significant information advantage of the MM over background traders due
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Figure 4.3: The effect of presence of a single MM on background-trader surplus and so-
cial welfare in equilibrium, across all environments. Differences are presented as ranges,
reflecting the multiplicity of equilibria found in some environments. The left point of each
range is the minimum gain (in some cases a loss), that is, the lowest value observed with an
equilibrium with MM minus the highest value observed in any equilibrium without MM.
The right point is the maximum improvement observed: the difference between the highest
value with a MM and the lowest without MM.
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to their disparate reentry rates (λMM = 0.005 versus λr = 0.0005). For environments B4,

B12, C4, and C12, the total social welfare without MM is over 90% of the socially efficient

outcome of 44155. That is, the ZI background traders in these environments extract a high

fraction of the potential surplus in the market on their own. Intuitively, given sufficient

time for reentry (as governed by horizon T and reentry rate λr), agents with private values

on the right side of competitive prices will eventually trade, and any inefficient trades can

effectively be reversed. When the background traders have sufficient time to reach efficient

outcomes, the MM may provide little benefit to overall welfare, and its profits tend to come

out of background-trader surplus. Accordingly, I observe that the MM degrades investor

surplus for some or all equilibria in three of these four cases (see Figure 4.4 for surplus

comparison across environments with N = 66).

The trading horizon T reflects whatever might limit an investor’s patience (liquidity

needs, portfolio hedging, cost of monitoring, etc.). By curbing agents’ ability to find ef-

ficient trades, the time constraint limits their ability to extract all potential surplus solely

by trading with each other. This problem is exacerbated in a thin market, where agents

encounter fewer potential counterparties per unit time. Both factors increase the likeli-

hood that agents trade inefficiently, as they lack sufficient time and opportunity to reverse

poor transactions. In such scenarios, the MM can boost not only overall welfare but also

background-trader surplus by facilitating trade among impatient investors arriving at differ-

ent times. In my study, for markets populated by 25 background traders (Figure 4.3(b)), the

market maker improves welfare in all twelve test environments. It improves background-

trader surplus unambiguously in eight, and with a range mostly on the positive side in one

more. Two more cases exhibit small negative effects, and one (environment A24, a long

horizon with slow traders) exhibits a large predominantly negative effect.

I observe that background traders are prone to shade less (i.e., midpoint Rmid of the ZI

bid range is lower) when MM is present, particularly for N = 25 and the A environments

with N = 66. These are also the environments where MM tends to improve background-
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Figure 4.4: Comparison of background-trader surplus (with and without market making)
and MM profit for N = 66. The dotted line is the optimal social welfare available (44155).
Error bars indicate the 95% confidence interval for total welfare in the maximum-welfare
role-symmetric Nash equilibrium in each environment, with and without MM. Each bar is
compiled from 10,000 samples.

trader surplus (see Figure 4.5 for surplus comparison across environments with N = 25).

This indicates that the MM facilitates optimal allocations: with MM present, background

investors can demand less surplus per trade, yet still achieve greater payoff than without

the market maker. I also find that MM spread ω tends to be larger for environments with

shorter trading horizons, as would be expected when traders are more impatient.

Finally, I evaluate liquidity for the maximum-welfare RSNE (Figure 4.6), with and

without MM, by sampling results from profiles at the RSNE proportions. I measure liquid-

ity via the BID-ASK spread (narrower spreads reflect greater liquidity) and background-

trader execution time (interval between order submission and transaction). In general,

both spreads and execution times drop with MM, which is indicative of the liquidity-

provisioning capacity of the MM. In the thinner markets, spreads without MM are sig-

nificantly wider than in the thicker markets, as would be expected. The presence of the

MM serves to significantly narrow spreads nearly down to the levels present in the more

populous environments.
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Figure 4.5: Comparison of background-trader surplus (with and without market making)
and MM profit for N = 25. The dotted line is the optimal social welfare available (16306).
Error bars indicate the 95% confidence interval for total welfare in the maximum-welfare
role-symmetric Nash equilibrium in each environment, with and without MM. Each bar is
compiled from 10,000 samples.
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Figure 4.6: Comparison of background-trader execution time (Figures 4.6(a) and 4.6(b)) and median spread (Figures 4.6(c) and 4.6(d))
for the maximum-welfare RSNE in each environment, with and without MM. Mixed-strategy RSNE are approximated by profiles with
trader population proportions corresponding to the strategy probabilities. Each bar is compiled from 10,000 samples.
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4.7.4 Liquidity Measures as Proxies for Welfare

The fact that the liquidity proxy measures reported in the previous section improve with

MM in environments where background-trader surplus does not, however, underscores that

these measures are not adequate substitutes for direct evaluation of investor welfare. To ad-

dress this question, I compare two spread measures to welfare in five pure-strategy profiles.

The findings here are also reported in a paper to appear in the Russell Sage Foundation

Journal of the Social Sciences (Wellman and Wah, 2016).

One way to estimate welfare is the spread measure (also called quoted spread) defined

in Section 2.4. Recall that spread is measured as the difference between the BID and

ASK quotes for a given point in time. Quotes may vary significantly over time, however,

and in such cases, aggregating quoted spreads over all time steps may not be an accurate

reflection of changes in welfare. An alternative measure is the effective spread, which

focuses on spreads at the time of trade (Bessembinder, 2003; Madhavan et al., 2002).

To examine the correspondence between spreads and and welfare, I simulate 10,000

samples of five pure-strategy profiles for N = 66 and N = 25 under configuration B12.

The strategies all belong to the ZI family, with the following ranges (η = 1 unless otherwise

stated):

• B12a: ZI [0, 125] with η = 0.8

• B12b: ZI [0,250]

• B12c: ZI [0, 1000]

• B12d: ZI [0, 2500]

• B12e: ZI [500, 1000] with η = 0.4

In each of these profiles, all N traders play the specified strategy. The surplus of each

profile is shown in Figure 4.7, and the corresponding spread measures are in Figure 4.8. I

summarize quoted spread for a scenario run as the median spread over all time steps, and
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Figure 4.7: Overall surplus in five pure-strategy profiles for N = 66 and N = 25 in
configuration B12. The ZI strategies are written in the form [Rmin, Rmax; η], unless η = 1,
in which case it is omitted from the label.
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Figure 4.8: Quoted spread and effective spread in five pure-strategy profiles for N = 66
and N = 25 in configuration B12. The ZI strategies are written in the form [Rmin, Rmax; η],
unless η = 1, in which case it is omitted from the label.

I take the mean BID-ASK difference over all times when a trade occurs as my aggregate

measure of effective spread. I find that for both N = 66 and N = 25, the lowest surplus

is observed in B12e, whereas surplus is relatively constant for B12a–c. Both spread mea-

sures, however, widen significantly going from B12a to B12e, which accurately reflects the

welfare improvement in B12c–e, but fails to capture the flat welfare across profiles B12a–

c. These results demonstrate that the accuracy of quoted and effective spread measures as

predictors of welfare can be limited.
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4.8 Conclusions

Market makers are generally considered to serve a valuable function in continuous mar-

ket mechanisms by providing liquidity to bridge ebbs and flows of trader orders. The pre-

cise impact of this behavior, however, depends on specific features of market environments

and trading strategies. I conducted a systematic agent-based simulation study to compare

several parameterized environments with and without market-maker agents. I modeled a

single security traded in a CDA populated by multiple background traders, and I character-

ized the strategic play in the induced empirical game model. This enabled the comparison

of outcomes in equilibrium, that is, allowing the background traders and market makers to

strategically react to each others’ presence.

My analysis demonstrates the generally beneficial effects of market making on effi-

ciency, and shows that whether these benefits accrue to background investors depends on

market characteristics. Specifically, I find a tendency of a market maker to improve the

welfare of impatient investors (those in thin markets or relatively few opportunities to trade

with each other), but not in general. My results also show that liquidity proxy measures

such as spread are inadequate substitutes for direct evaluation of investor welfare.

My study has several limitations, which must be taken into account in assessing my

conclusions. First, my methods involve sampling, approximation, and limited search, all

of which bear on the accuracy of equilibrium determinations. Sampling error is mitigated

through the large number of simulation runs I gather over a breadth of environments and

profiles, so not a fundamental concern for my conclusions here. The player reduction

method I employ (DPR) has been shown to produce good approximate equilibrium es-

timates on other problems (Wiedenbeck and Wellman, 2012), and for my purposes ap-

proximate equilibria provide a sufficient basis for outcome comparison. However, DPR

estimates are not guaranteed approximations. Even within the DPR game, I am unable to

evaluate all profiles and cannot be sure that I have found all equilibria.

A second area of limitation is the relatively narrow exploration of strategies. The equili-
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bration process selects a combination of ZI parameters (from those included in the strategy

set) that is best suited for the given environment. Nevertheless, further investigation may

yield improved versions of ZI or other strategies (for example adaptive variants (Cliff, 2009;

Vytelingum et al., 2008)) that could alter equilibrium findings. Similar improvements may

be found on the MM side, for instance with strategies incorporating learning (Abernethy

and Kale, 2013). I include only one MM in the analysis reported here, but Mason Wright

has led an extension of this study to evaluate market maker competition, finding that this

leads to further background-trader gains (Wah et al., 2016).

Finally, my exploration of environments is also far from exhaustive. Whereas covering

all plausible environments is infeasible, a broader range of variation on number of players,

valuation distributions, and fundamental dynamics could go a long way in illuminating and

validating robust conditions for qualitative welfare effects of market making in continuous

double auctions.
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CHAPTER V

Latency Arbitrage, Market Fragmentation, and

Efficiency: A Two-Market Model

In this chapter, I present a study on the impact of latency arbitrage, a type of high-

frequency trading strategy in which traders exercise superior speed in order to exploit price

disparities between markets. I examine the effect of latency arbitrage on allocative effi-

ciency and liquidity in fragmented financial markets. I propose a simple model of latency

arbitrage in which a single security is traded on two exchanges, with aggregate informa-

tion available to regular traders only after some delay. An infinitely fast arbitrageur profits

from market fragmentation by reaping the surplus when the two markets diverge due to

this latency in cross-market communication. I employ the discrete-event simulation system

presented in Section 3.1 to capture this processing and information transfer delay, and I sim-

ulate the interactions between high-frequency and Zero Intelligence trading agents within

three different market environments. I then evaluate allocative efficiency and market liq-

uidity arising from the simulated order streams, and I find that market fragmentation and

the presence of a latency arbitrageur reduces total surplus and negatively impacts liquidity.

Replacing continuous-time markets with frequent call markets eliminates latency arbitrage

opportunities and achieves further efficiency gains through the aggregation of orders over

short time periods.

This chapter extends and supersedes a paper by Wah and Wellman (2013) presented
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at the 14th ACM Conference on Electronic Commerce. In that study, traders employed a

fixed strategy for all market configurations and latency settings. The analysis presented in

this chapter employs empirical game-theoretic methods (Section 3.2) to perform strategy

selection for traders. The qualitative conclusions presented by Wah and Wellman (2013)

still hold; the results I report here serve to confirm those main points in a more strategically

valid evaluation.

5.1 Introduction

Although algorithmic trading has been a reality for many years now, the pervasiveness,

speed, and autonomy of trading algorithms are reaching new heights. High-frequency trad-

ing (HFT)—characterized by large numbers of small orders in compressed periods, with

positions held for extremely short durations—is estimated to have accounted for as much as

78% of total trading volume in 2009, up from nearly zero in 1995 (Schneider, 2012).1 The

practice of HFT has generated several public controversies regarding its ramifications for

the transparency and fairness of market operations as well as its effects on market volatility

and stability.

Many HFT strategies exploit advantages in latency—the time it takes to access and

respond to market information. Trading on these advantages has been estimated to account

for $21 billion in profit per year (Schneider, 2012).2 HF traders achieve such advantages by

investing in specialized computer hardware and software, co-locating servers in exchanges’

data centers, and constructing dedicated communication lines (Goldstein et al., 2014).

The HFT strategy I examine here is latency arbitrage, where an advantage in access

and response time enables the trader to book a certain profit. Arbitrage is the practice of

1Definitive figures are elusive, but proportions exceeding two-thirds are widely reported, for instance 73%
in “SEC runs eye over high-speed trading,” Financial Times, 29 July 2009. This no doubt includes straight-
forward monitoring for arbitrage opportunities—for example between index securities and their defining
constituents, which itself has long represented a large fraction of exchange trading volume.

2Profit figures are considerably more uncertain than volume estimates. Kearns et al. (2010) present an
interesting approach to derive an upper bound on HFT profits. Presumably the billions HFT firms invest
annually in technology and infrastructure (Adler, 2012) represent a lower bound on gross trading profit.
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Figure 5.1: Exploitation of latency differential. Rapid processing of the order stream en-
ables private computation of the NBBO before it is reflected in the public quote from the
SIP.

exploiting disparities in the price at which equivalent goods can be traded in different mar-

kets. Such disparities can arise in financial markets in several ways, and the term “latency

arbitrage” has been applied to a variety of practices that exploit speed advantages. Cross-

market latency arbitrage opportunities are quite prevalent across U.S. stock exchanges,

with total potential yearly profit in 2014 exceeding $3 billion (Wah, 2016). In this chapter,

I model a specific type of latency arbitrage in which disparities arise from the fragmenta-

tion of securities markets across multiple exchanges. This fragmentation has been a major

trend, particularly in the United States over the last decade (Arnuk and Saluzzi, 2012).

U.S. securities regulations have attempted to mitigate the effect of fragmentation through

the formulation of Regulation NMS, which mandates cross-market communication and the

routing of orders for best execution (Blume, 2007; Securities and Exchange Commission,

2005). Orders stream into exchanges, which are required to feed summary information

about their best buy and sell orders to an entity called the Security Information Processor

(SIP). The SIP continually updates public price quotes called the “National Best Bid and

Offer” (NBBO).

I illustrate this process and the potential for latency arbitrage in Figure 5.1. Given order

information from exchanges, the SIP takes some finite time, say δ milliseconds, to compute

and disseminate the NBBO. A computationally advantaged trader who can process the or-
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der stream in less than δ milliseconds can simply out-compute the SIP to derive NBBO*,

a projection of the future NBBO that will be seen by the public. By anticipating future

NBBO, an HFT algorithm can capitalize on cross-market disparities before they are re-

flected in the public price quote, in effect jumping ahead of incoming orders to pocket a

small but sure profit. Naturally this precipitates an arms race, as an even faster trader can

calculate an NBBO** to see the future of NBBO*, and so on.

The latency arms race as sketched above is fundamentally an outgrowth of continuous

trading: a property of mechanisms that distinguish precedence according to arbitrarily

small time differences. By moving to a discrete-time model—which introduces short but

finite clearing intervals (as in a frequent call market, or frequent batch auction)—I can

neutralize small disparities in information access and response time. A driving question of

this work is how such a mechanism-design intervention would affect market performance.

More broadly, I seek to understand not only the effects of latency arbitrage on mar-

ket efficiency and liquidity, but also the interplay between fragmentation, clearing mecha-

nisms, and latency arbitrage strategies in producing this performance. Such questions about

HFT implications are inherently computational, as the very speed of operation renders de-

tails of internal market operations—especially the structure of communication channels—

systematically relevant to market performance. In particular, the latencies between market

events (transactions, price updates, order submissions) and when market participants ob-

serve these activities become pivotal, as even the smallest latency differential can signifi-

cantly affect trading outcomes. Lacking suitable data to study these questions empirically,3

I pursue a simulation approach.

I present a simple model that captures the effect of latency across two markets with a

single security. My model captures the interplay of latency and fragmentation as well as

3Order activity at the temporal granularity of interest here is generally unavailable for public research, and
it is unclear whether data on communication latencies and the end-to-end routing of orders among brokers
and exchanges is available from any source. What high-frequency trading data does exist commercially is
prohibitively expensive. Moreover, even full details on conceivably observable trading activity could not
directly resolve counterfactual questions, such as the response of financial markets to possible shocks or the
effects of alternative market rules and regulations.
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the regulatory environment responsible for current equity market structure, and I have the

first results quantifying the effect of latency arbitrage on surplus allocation as a function

of latency and market rules. Using an agent-based approach, I simulate the interactions

between high-frequency and background traders, and I employ empirical game-theoretic

analysis to identify equilibria under different market conditions. I evaluate efficiency (as

measured by total surplus) arising from the simulated orders, under a range of latency set-

tings. My main finding is that latency arbitrage not only reduces profits of the background

traders, but also diminishes surplus overall. Perhaps surprisingly, market fragmentation

per se does not harm efficiency; in fact some degree of fragmentation mitigates inefficient

trades that are often executed by a continuous mechanism. The discrete-time frequent call

market eliminates latency arbitrage by construction and, by virtue of temporal aggregation,

yet more effectively matches orders, producing significantly greater surplus.

This chapter is structured as follows. In Section 5.2, I discuss related work on agent-

based financial markets and models of HFT and market structure. I describe my two-market

model in Section 5.3. In Section 5.4, I discuss my experiments. I present my results in

Section 5.5 and conclude in Section 5.6.

5.2 Related Work

5.2.1 Agent-Based Financial Markets

There is a substantial literature on agent-based modeling (ABM) of financial markets

(Buchanan, 2009; Farmer and Foley, 2009; LeBaron, 2006), much of it geared to reproduce

and thereby explain stylized facts from empirical studies of market behavior. For example,

simulated markets have been constructed to reproduce phenomena observed in real stock

markets, such as bubbles and crashes (LeBaron et al., 1999; Lee et al., 2011). Because

agent behavior is shaped by the market environment, which includes interactions with other

agents over time, such models can support causal reasoning (as in the study by Thurner et al.
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(2012) establishing the effect of leverage on price volatility). One prominent example of

an agent-based financial market is the Santa Fe artificial stock market (Palmer et al., 1994;

LeBaron, 2004). ABM has also been used to model financial markets for applications such

as portfolio selection (Jacobs et al., 2004) and determining the distributions of order and

trading waiting times in a limit order book (Raberto and Cincotti, 2005).

5.2.2 High-Frequency Trading Models

Much of the current literature on the effects of HFT relies on the evaluation of historical

order data. Hasbrouck and Saar (2013) use NASDAQ order data to construct sequences

of linked messages describing trading strategies. They find that this low-latency activity

improves short-term volatility, spreads, and market depth. Brogaard (2010) analyzes a 120-

stock NASDAQ dataset that distinguishes HFT from non-HFT activity in order to assess

the impact of high-frequency trading on liquidity, price discovery, and volatility. Prior

work suggests that algorithmic trading improves liquidity (Hendershott et al., 2011); Angel

et al. (2011) reach similar conclusions, finding that the emergence of automated trading

and HFT has improved various market measures such as execution speed and spreads.

Additional work suggests a link between HFT and increased volatility (Arnuk and Saluzzi,

2012). Foucault et al. (2015) examine latency arbitrage opportunities in currency markets,

and provide evidence of a tradeoff between pricing efficiency and liquidity. In another

study, Baron et al. (2012) find that some kinds of HFT activities directly harm ordinary

investors.

Others rely on theoretical analysis to determine the optimal behavior of high-frequency

traders. Avellaneda and Stoikov (2008) derive an optimal limit order submission strategy

for a single high-frequency trader acting as a liquidity provider, running numerical sim-

ulations to assess the agent’s performance under varying strategies. Cohen and Szpruch

(2012) propose a single-market model of latency arbitrage with one limit order book and

two investors operating at different speeds. The fast trader employs a strategy that deter-
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mines in advance the quantity the slow investor intends to trade, using this information to

generate a risk-free profit. Jarrow and Protter (2012) develop a model of traders with dif-

ferentials in speed and access to information, showing that HFT transactions can degrade

price discovery, exacerbate volatility and increase mispricings—which HF arbitrageurs can

then exploit.

In a rare application of ABM to HFT, Hanson (2012) finds that market liquidity and

total surplus vary directly with the number of HF traders.

5.2.3 Modeling Market Structure and Clearing Rules

Several prior works seek to identify the effects of market fragmentation and clearing

rules, mainly via anecdotal evidence elicited from historical data. On the theoretical side,

Mendelson (1987) investigates the effect of consolidation versus fragmentation of periodic

call markets, without consideration of arbitrage between the submarkets. O’Hara and Ye

(2011) use historical quote data and execution metrics to demonstrate that market fragmen-

tation does not appear to harm measures such as spreads, execution speed, and efficiency.

Bennett and Wei (2006) compare the execution costs of stocks that have switched from the

NASDAQ to the more consolidated NYSE, finding evidence that execution costs decline

with order flow consolidation. Amihud et al. (2003) examine the response of equities on

the Tel Aviv Stock Exchange to the exercise of corporate warrants, concluding that consol-

idation improves liquidity.

However, few prior studies attempt to directly model the communication latencies aris-

ing from market fragmentation and the resultant arbitrage opportunities, with the exception

of Ding et al. (2014), who analyze NBBO latencies and the ability of HFTs to generate a

synthetic NBBO. They conclude that price dislocations between the official and synthetic

NBBOs can be exploited by HFTs for profit.

Switching to a discrete-time clearing mechanism, as in a frequent call market, has al-

ready been proposed as a means to eliminate the exploitation of latency differentials across
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multiple exchanges (Wellman, 2009; Schwartz and Peng, 2013; Sparrow, 2012). Budish

et al. (2015) analyze a theoretical model of a continuous limit order book, showing that

HFT profits in equilibrium come from investors via wider spreads and that frequent batch

auctions reduce the value of very small speed advantages. Others have proposed variants

on the frequent call market with randomized clearing intervals (Sellberg, 2010; Industry

Super Network, 2013), or randomized batching in conjunction with pro rata trade alloca-

tion rules, which may promote more equitable allocation of trades among investors (Farmer

and Skouras, 2012; McPartland, 2013).

A number of other studies have focused not on the role of call markets in mitigating the

harmful effects of HFT, but on the differences in market quality offered in a discrete-time

versus a continuous market (Pancs, 2013; Pellizzari and Dal Forno, 2007) or an alternative

market rule such as selective delay, in which cancellation orders are processed immediately

but all other order types have a small delay (Baldauf and Mollner, 2014).

Empirical work on the effects of switching to periodic clearing is limited and again re-

lies largely on the analysis of historical events (Webb et al., 2007; Kalay et al., 2002). For

example, Amihud et al. (1997) find that switching from a daily call auction to a combina-

tion of discrete and continuous trading in the Tel Aviv Stock Exchange is associated with

improvements in liquidity.

5.2.4 Two-Market Model in Relation to Prior Work

To study latency arbitrage as made possible by market fragmentation, I construct an

agent-based model populated by representative trading strategies interacting within care-

fully specified market mechanisms. My model comprises a latency arbitrageur and multi-

ple non-HF traders, with a single security whose trading is fragmented across two markets.

This two-market model captures the connections between market fragmentation, commu-

nication latencies, regulations, and latency arbitrage. As discussed above, previous analyt-

ical or agent-based HFT models employ a single market or order book—rendering them
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incapable of capturing the effect of fragmentation—and they fail to incorporate the com-

munication delays enabling cross-exchange arbitrage.

I implement my model in the discrete-event simulation system described in Section

3.1, which explicitly models the communication patterns between background investors,

exchanges, and the SIP operating in current U.S. equity markets. I then compare allocative

efficiency in equilibrium in the two-market model with the welfare in other models of

market structure, including a centralized continuous double auction market and a frequent

call market.

5.3 Two-Market Model

I present a simple model for latency arbitrage across two markets populated by a sin-

gle high-frequency trader and multiple background traders. I describe the specifics of this

model in Section 5.3.1. The valuation model and class of strategies employed by the back-

ground investors are described in Sections 2.2 and 2.3, respectively. In Section 5.3.2, I

discuss the behavior of the latency arbitrageur. I present an example of how a latency

arbitrage opportunity may arise in this two-market model in Section 5.3.3.

5.3.1 Model Description

My model of latency arbitrage consists of one security traded on two markets, each

employing a continuous double auction mechanism (Section 2.1). The two markets are

linked by a public NBBO signal (see Figure 5.2). Limit orders lodged in either market are

forwarded to the SIP, which calculates and reports an NBBO—based on the quotes from

the two markets—with some finite delay δ. This latency reflects the time required to receive

information about activities in the two markets and compute an updated public price signal.

Retail and institutional investors generate limit orders according to an evolving fun-

damental (driven by news) and other private factors. Each non-HF investor is primarily

associated with one of the markets. An order is sent to the trader’s primary market unless
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Market	  1	   Market	  2	  
SIP	  

NBBO	  

Investors	   Investors	  

Latency	  Arbitrageur	  

δ	


Figure 5.2: Two-market model with one infinitely fast latency arbitrageur and multiple
background investors. A single security is traded on the two markets. Each background
investor is associated primarily with one of the two markets, and its order is routed to its
alternate market if and only if the NBBO quote indicates an immediate execution. The
latency arbitrageur has undelayed access to both markets, so it can immediately detect
arbitrage opportunities arising from the delay in NBBO calculation.

the NBBO indicates that it could be executed in the alternate market at a price better than

that available on the primary market.

More precisely, let BIDj and ASKj , where j ∈ {1, 2}, denote the current BID and

ASK quotes, respectively, in market j. Similarly, let BIDN and ASKN represent the

NBBO quote. Background traders have direct access to the quotes on their primary market

and the NBBO, but not to those on the alternate market. Suppose a trader associated with

market 1 generates a limit order to buy a unit at price p. This order is routed to market 2

if and only if p ≥ ASKN and ASKN < ASK1. Otherwise, the order goes to market 1,

the trader’s primary market. Note that the conditions for submitting to the alternate market

entail that the trader’s order would execute there immediately, if in fact the NBBO reflects

the current global state. If the order is routed to the primary market, it may execute right

away (if p ≥ ASK1); otherwise, it is added to market 1’s order book. The rule for routing

sell orders is analogous.

The latency arbitrageur in this model can determine the best prices in each market

before the NBBO updates, due to its ability to receive and process order streams faster than

background investors. It can thus immediately detect an arbitrage situation, which occurs
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whenever BID1 > ASK2 or BID2 > ASK1. I assume the arbitrageur can respond

infinitely fast, so it quickly takes the profit from such arbitrage situations by submitting

executable orders to the two markets. Note that the arbitrage opportunity can arise only to

the extent that the NBBO information is out of date. If the SIP were able to compute and

publish the NBBO with zero latency, then a new order would always be routed correctly and

would thereby execute immediately if there were a matching order in either market. Any

finite delay, however, opens the possibility that an order is routed to the investor’s primary

market, despite there being a matching order in the alternate market that had arrived too

recently to be admitted in the available NBBO. An out-of-date NBBO can also cause an

order to be improperly routed to the alternate market despite it no longer matching there,

even if there is a matching order in the primary market.

5.3.2 Latency Arbitrageur

The latency arbitrageur (LA) in the two-market model operates as follows. LA first

obtains current price quotes in both markets, then checks whether an arbitrage situation

exists. I denote the best price available to sell at by

BID∗ ≡ max{BID1,BID2},

and I denote the best price available to buy by

ASK∗ ≡ min{ASK1,ASK2}.

Given a threshold α ≥ 0, LA deems the current state a worthwhile arbitrage opportunity if

and only if BID∗ > (1+α)ASK∗. To execute the arbitrage, LA submits orders exploiting

the price differential to the two markets simultaneously. Under my assumption that LA is

infinitely fast, bidding any price at or better than the current quote would lead to successful

execution at the quoted prices. In my implementation, LA calculates the midpoint m be-
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tween BID∗ and ASK∗, then submits an order to buy at bmc to the market with the better

ASK price and an order to sell at price dme to the market with the better BID price. LA

surplus (i.e., profit) for these trades is BID∗ − ASK∗.

5.3.3 Example

Figure 5.3 illustrates how a latency arbitrage opportunity may arise in my two-market

model. At time t, the NBBO quote is BIDN = 104 and ASKN = 110. Consider back-

ground trader i, who wishes to submit a sell order at 105 to market 1, its primary market.

To determine the order routing, BID1 is compared with the NBBO. As BIDN > BID1,

the alternate market appears to be superior. However, a sell offer at 105 would not transact

immediately (since BIDN = 104), so agent i’s order is routed to market 1. At the begin-

ning of time t+ 1, for latency δ > 1, the SIP has not yet updated the NBBO to include the

order submitted at time t. Thus, the NBBO available to background investors is out of date:

the correct quote would be (104, 105), but the NBBO at time t + 1 is still (104, 110) and

matches ASK2 in market 2, incoming agent i + 1’s primary market. Consequently, agent

i+ 1’s buy order at price 109 is routed to its primary market. At this point, BID2 (at price

109, submitted by agent i + 1) exceeds ASK1 (at price 105, submitted by agent i), which

defines an arbitrage opportunity. Since LA is infinitely fast, it capitalizes on this disparity

by submitting bids to buy at 107 in market 1 and sell at 107 in market 2, realizing a profit

of 4.
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ASK: 110 
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ASK: 111 
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ASK: 110 
BID: 104 
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BID: 109 
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NBBO (104, 110) 
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LA: arbitrage 
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primary market: 2 

Time t Time t + 1 
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Figure 5.3: Emergence of a latency arbitrage opportunity over two time steps in the two-market model. All orders are for single-unit
quantities. A red, bolded price highlights a discrepancy between the actual market state and the NBBO, represented in the diagram as(
BIDN , ASKN

)
. At time t, the NBBO is up to date. Background trader i wishes to sell at price 105. Since BIDN < 105 (which

indicates non-immediate execution), the investor’s order is routed to market 1. At time t+ 1, the NBBO is out of date, as the SIP updates
the public quote with some delay δ. Background trader i + 1 wishes to buy at 109; based on the NBBO, its order is routed to market 2,
its primary market. (Had its order been routed to market 1, its bid would have transacted immediately.) The submission of its order to
the inferior market opens up an arbitrage opportunity between the two markets (BID2 > ASK1), which LA immediately exploits for a
guaranteed profit.
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5.4 Experiments

To isolate the ramifications of market fragmentation, I consider two forms of central-

ized market configurations in my simulations: a CDA and a frequent call market. Recall

that in contrast to a continuous-time market, clearing in a frequent call market takes place

at designated intervals (Section 2.1). A frequent call market eliminates latency arbitrage

opportunities, as the periodic clearing mechanism makes it impossible to gain or exploit

informational advantages over other market participants within the clearing interval.

My experiments evaluate a variety of market configurations with respect to several per-

formance measures described in Section 2.4. The configurations address the following

central issues:

• Presence of latency arbitrage: I include configurations of the two-market model

with and without LA.

• Market fragmentation: Along with the two-market model, I evaluate a centralized

configuration where the two markets are consolidated as one.

• Market clearing rules: Along with continuous markets, I include a discrete-time

call market setting. To facilitate direct comparison, in each run I set the clearing

interval of the call market to equal the NBBO update latency.

5.4.1 Environment Settings

I evaluate and compare the performance of the four market structure configurations

(two-market model with and without LA, CDA, and frequent call market) within three

distinct environments. For the fragmented cases, an equal proportion of background traders

is assigned primary affiliation with each market in a model. In the centralized call market,

orders transact at a uniform price each time the market clears; this price is computed to best

match supply and demand (Section 2.1).
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In defining my environments, I selected environment parameters that generate suffi-

cient arbitrage opportunities and also replicate the original findings for fixed-strategy, non-

equilibrium comparisons from my previous study (Wah and Wellman, 2013). To do so, I

explored a number of environments, varying the number of traders, trading horizon length,

degree of mean reversion, and variance in both the fundamental and private values. In these

runs, all traders employed a fixed strategy with η = 1, similar to the agents in the EC 2013

paper. I selected the environments reproducing the qualitative effects previously observed,

and analyzed the impact of latency arbitrage, fragmentation, and discrete-time clearing in

equilibrium via EGTA.

The threshold α for LA is fixed at 0.001. I set the mean fundamental value r̄ = 105,

and the variance parameters σ2
PV = 5 × 106 and σ2

s = 5 × 106. All bids have single-unit

quantities, and I assume zero transaction costs. Background traders play strategies from

the set listed in Table 5.1.

The environments differ in number of background traders (N ), background-trader reen-

try rate (λBG), value of the mean-reversion parameter (κ), and time horizon (T ). For each

market configuration in an environment, I explore a range of latency settings, with a mini-

mum difference (or order of magnitude) of ∆δ ∈ {10, 100}. The configurations of param-

eter settings are as follows.

Environment 1 N = 24, λBG = 0.05, κ = 0.05, T = 15000, ∆δ = 100

Environment 2 N = 238, λBG = 0.005, κ = 0.02, T = 10000, ∆δ = 10

Environment 3 N = 58, λBG = 0.005, κ = 0.02, T = 5000, ∆δ = 10

The arrival rate parameter is either λBG = 0.05 or λBG = 0.005; each ZI agent arrives, on

average, every 20 or 200 time steps.
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Table 5.1: ZI strategy combinations included in empirical game-theoretic analysis of mar-
ket structure games with varying latencies.

Rmin Rmax η

0 125 1
0 250 1
0 500 1

250 500 1
0 1000 1

500 1000 0.4
500 1000 1
0 1500 0.6

1000 2000 0.4
0 2500 0.4
0 2500 1

5.4.2 EGTA Process

I examine 23 empirical games within environment 1, which cover the four market con-

figurations across 8 latency settings, with latency δ ∈ {0, 100, 200, 300, 400, 600, 700, 900}.

For environment 2, I include 8 empirical games (with latency δ ∈ {0, 50, 100}), and I ex-

amine 14 games within environment 3 (with latency δ ∈ {0, 25, 50, 75, 100}). The games

in a given environment include one centralized CDA game (which is independent of la-

tency), and one game for each of the other three market configurations (two fragmented

cases and one with periodic clears) per latency setting simulated. At latency 0, the central-

ized frequent call market is equivalent to the CDA, and the two models with fragmentation

are equivalent as there are no arbitrage opportunities at zero latency.

The market structure games are modeled as role-symmetric games with a single role,

or equivalently as symmetric games (Section 3.2). I apply deviation-preserving reduction

(Section 3.2.2) to generate an approximation of the full game with fewer players. In gen-

eral, I choose the number of traders N to facilitate reduction to a k-player game. I estimate

4-player reduced games from full games with N ∈ {24, 238, 58} players.
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5.5 Results

I find that the presence of a latency arbitrageur reduces total surplus (Section 5.5.1)

and has a mixed effect on market liquidity (Section 5.5.2). Eliminating fragmentation can

improve surplus and execution metrics. Replacing continuous markets with frequent call

markets eliminates latency arbitrage opportunities and achieves substantial efficiency gains

in all three environments (Section 5.5.3).

I identified 1–3 equilibria for each of the 23 games in environment 1 (Tables 5.2 and B.1),

the 8 games in environment 2 (Tables 5.3 and B.2), and the 14 games in environment 3 (Ta-

bles 5.4 and B.3). For each equilibrium, I estimated background-trader surplus, as well as

LA profit if applicable, by sampling 500 profiles according to the equilibrium mixture, and

running 100 simulations per sampled profile (50,000 full-game simulations in total).

Table 5.2: Symmetric equilibria for market structure games for environment 1, one per
latency (or clearing interval) setting per market configuration, N = 24, calculated from the
4-player DPR approximation. Each row of the table describes one equilibrium found and
its average values for background-trader surplus, LA profit, and two strategy parameters:
Rmid (the midpoint of ZI range [Rmin, Rmax]) and threshold η. Values presented are the
average over strategies in the profile, weighted by mixture probabilities. Surplus values
are means from thousands of simulations of the full game, where strategies are randomly
sampled from the equilibrium mixed strategy profile.

Model Latency Surplus Profit Rmid η

CDA – 10114 – 1298 0.458
CDA – 10383 – 1377 0.4
2M 0 11807 – 1250 0.4
2M 0 11393 – 1034 0.506
Call 100 13471 – 682 0.695
2M (no LA) 100 9400 – 1439 0.4
2M (no LA) 100 10373 – 1008 0.4
2M (LA) 100 5919 3487 1266 0.4
Call 200 13308 – 687 0.703
2M (no LA) 200 10621 – 1144 0.4
2M (LA) 200 6358 3164 1420 0.4
Call 300 13107 – 721 0.679
2M (no LA) 300 10386 – 1402 0.4

Continued on next page
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Table 5.2 – Continued from previous page

Model Latency Surplus Profit Rmid η

2M (no LA) 300 11244 – 913 0.4
2M (LA) 300 6398 3224 1414 0.4
Call 400 13004 – 383 1
Call 400 12771 – 640 0.747
Call 400 12686 – 460 0.961
2M (no LA) 400 10438 – 1399 0.4
2M (LA) 400 6130 4018 1080 0.4
Call 600 12932 – 321 1
Call 600 12403 – 704 0.76
Call 600 12526 – 675 0.701
2M (no LA) 600 10182 – 750 0.4
2M (no LA) 600 11128 – 845 0.4
2M (LA) 600 7459 4349 1257 0.429
2M (LA) 600 6457 4460 932 0.4
2M (LA) 600 6509 3276 1411 0.429
Call 700 12910 – 294 0.957
Call 700 12868 – 287 0.958
2M (no LA) 700 9138 – 1343 0.442
2M (no LA) 700 11302 – 881 0.4
2M (LA) 700 5256 2958 1453 0.4
Call 900 12613 – 251 1
2M (no LA) 900 8641 – 1459 0.498
2M (no LA) 900 12358 – 1250 0.4
2M (no LA) 900 10710 – 1384 0.4
2M (LA) 900 4807 3121 1403 0.426
2M (LA) 900 6819 4825 1184 0.479

Table 5.3: Symmetric equilibria for market structure games for environment 2, one per
latency (or clearing interval) setting per market configuration, N = 238, calculated from
the 4-player DPR approximation. Data presented is as for Table 5.2.

Model Latency Surplus Profit Rmid η

CDA – 136079 – 1250 0.565
CDA – 136140 – 1250 0.605
2M 0 134339 – 1077 0.488
Call 50 141816 – 1250 0.4

Continued on next page
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Table 5.3 – Continued from previous page

Model Latency Surplus Profit Rmid η

2M (no LA) 50 135789 – 1068 0.497
2M (LA) 50 133177 2417 1062 0.513
Call 100 136961 – 1275 0.496
2M (no LA) 100 136542 – 1189 0.544
2M (LA) 100 124012 2888 1308 0.4

Table 5.4: Symmetric equilibria for market structure games for environment 3, one per
latency (or clearing interval) setting per market configuration, N = 58, calculated from the
4-player DPR approximation. Data presented is as for Table 5.2.

Model Latency Surplus Profit Rmid η

CDA – 27482 – 1312 0.4
2M 0 29424 – 1234 0.41
Call 25 30136 – 1191 0.559
2M (no LA) 25 29347 – 1250 0.487
2M (LA) 25 12300 161 1412 0.4
2M (LA) 25 26612 538 1303 0.4
Call 50 30310 – 1250 0.4
2M (no LA) 50 18704 – 1445 0.531
2M (no LA) 50 29479 – 1250 0.431
2M (LA) 50 16720 523 1377 0.524
2M (LA) 50 27953 1154 1228 0.413
Call 75 30587 – 1115 0.472
2M (no LA) 75 29271 – 1250 0.506
2M (LA) 75 26388 1470 1285 0.4
Call 100 27665 – 1295 0.4
2M (no LA) 100 19833 – 1430 0.565
2M (no LA) 100 29277 – 1250 0.497
2M (LA) 100 15965 1142 1398 0.449
2M (LA) 100 25070 1763 1292 0.409
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Figure 5.4: Total surplus in the two-market (2M) model, both with and without a latency
arbitrageur, and in the centralized CDA market, for the three environments. In the two-
market model with LA, both the total surplus (ZI + LA) and background-trader surplus
(ZI only) are plotted. Each point reflects the average over 50,000 simulation runs of the
maximum-welfare equilibrium for each market configuration and latency setting.

5.5.1 Effect of LA on Market Efficiency

Figure 5.4 shows the total surplus, for the centralized CDA and the two-market model

with and without a latency arbitrageur, over multiple latency settings in the three environ-

ments. The total surplus of the two-market model without LA, as well as that of the cen-

tralized CDA market (an unfragmented continuous-time market), generally exceeds that of

the two-market model with LA, whether or not the profits of LA are counted. This holds

across the three environments. In other words, the latency arbitrageur takes surplus away

from the background investors, and the amount it deducts exceeds the gross trading profit
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it accrues.

Note that when latency is zero, the two fragmented models and the CDA market are

effectively identical. The NBBO is always correct if there is no delay, so it is not possi-

ble for any latency arbitrage opportunities to emerge. It follows that the various market

configurations at zero latency produce similar total surplus in equilibrium. Differences

in equilibrium between the centralized and fragmented models may arise at zero latency

when traders employ strategies with η < 1. In fragmented markets, traders decide whether

to submit executable orders based on the current best quote in their assigned market, not

the NBBO, so trader performance in the two-market model may differ from the centralized

CDA.

In environment 1, LA significantly degrades efficiency in the two-market model, and

total LA profit accounts for half of aggregate surplus once nonzero latency is introduced.

Environments 2 and 3, however, have reduced mean reversion, which increases background

traders’ risk of adverse selection and having the LA pick off their standing orders. As a

result, background traders in these two environments shade more in response to the LA.

This can be seen by higher Rmid values in the RSNE found. Prior work by Zhan and

Friedman (2007) has shown that some degree of bid shading can mitigate inefficient trades

in CDAs. The infinitely fast arbitrageur immediately exploits arbitrage opportunities due to

orders that are routed incorrectly; the LA’s trades tend to be inefficient, contributing to the

lower overall welfare observed in the two-market model with LA. Therefore, increased bid

shading in the low mean reversion environments can alleviate some of these inefficiencies,

which improves background-trader surplus and reduces LA profits.

Centralizing the markets in a consolidated CDA generally outperforms the fragmented

market with LA in environments 1 and 2. This effect is muted in thinner markets when

there are fewer trading opportunities, such as environment 3. As for the case without la-

tency arbitrage, it may seem counterintuitive that welfare in the two-market model without

LA is higher than in the centralized CDA in some environments. As discussed by Wah and
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Wellman (2013), it turns out that fragmentation can actually provide a benefit for continu-

ous markets, as the separated markets are less likely to admit inefficient trades (i.e., where

both traders’ values fall on the same side of the longer-term equilibrium price) that arise

due to the vagaries of arrival sequences. LA can defeat this benefit by ensuring that any

orders that would match in the central CDA also trade in the fragmented case, albeit with

LA rather than with a counterpart investor (see Section 4.2 for an example illustrating the

problem of allocative inefficiency in CDAs). This primarily applies in environment with

sufficient trading opportunities, such as environments 1 and 2. In a thicker market as in en-

vironment 2, fragmentation does not always boost surplus in the two-market model without

LA, as there are many traders in each market who can act as counterparties for trade.

5.5.2 Effect of LA on Liquidity

I also evaluate the effect of latency arbitrage on market liquidity, as measured via ex-

ecution times and BID-ASK spreads. Figure 5.5 shows that execution time tends to be

highest in the two-market model with LA. The fastest trade execution in environment 1 is

achieved in the two-market model without LA, which differs from findings in the literature

that trading at lower latencies improves overall execution time (Angel et al., 2011; Garvey

and Wu, 2010; Riordan and Storkenmaier, 2012). This is largely due to the different strate-

gies selected in equilibrium in this environment; traders tend to shade their bids less (i.e.,

Rmid is lower) in the fragmented model without LA, hence orders are more likely to execute

sooner rather than later. The improvement in execution time is at best approximately 1–2

time steps, however, which is generally unobservable by non-HF traders.

Traders in the other two environments, however, do not shade more in equilibrium in

the two-market model without LA. In these cases, the fastest execution is achieved in the

centralized CDA, which makes sense, given the absence of communication latencies and

thinness induced by fragmentation.

Spreads are a measure of liquidity costs in the market, as the BID-ASK differential
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Figure 5.5: Mean execution time in the two-market (2M) model, both with and without a
latency arbitrageur, and in the centralized CDA market, for the three environments. Execu-
tion time is the difference between bid submission and transaction times.

will be smaller in a more liquid market (see Section 4.7.4 for a discussion of their effective-

ness as a proxy measure of welfare). A tighter spread indicates lower liquidity cost, which

directly translates to greater market liquidity. The widest spreads are generally in the two-

market model with LA (Figure 5.6). LA also slightly exacerbates NBBO spreads, which

are as a whole narrower than spreads of individual markets. The increase in spread could

reflect an implicit transaction cost responsible for part of the surplus reduction observed

above.
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5.5.3 Frequent Call Market

Lastly, I evaluate the effect of switching to a discrete-time frequent call market. In my

frequent call market configuration, the latency setting dictates the clearing period. Fig-

ure 5.7 shows that the total surplus in the centralized call market far exceeds that of the

two-market model with LA, and the call market surplus is higher for all latency settings

greater than 0 (there are only two market configurations at zero latency, the fragmented

model without LA and the centralized CDA). By aggregating orders over time, call mar-

kets perform a more informed clear. They increase the probability that trades occur between

intra-marginal traders—those with private valuations inside the equilibrium price range—

and thus are less prone to executing inefficient trades than CDAs (Gode and Sunder, 1997).

As shown in Figure 5.8, the mean execution time in the centralized call market is much

higher than that of the two-market model with LA. Unsurprisingly, I find that execution

time in the centralized call market is higher than that observed in the other market configu-

rations. As market clears occur less frequently in this market configuration, it takes longer

for a bid to match and be removed from the order book. In environment 1, execution time in

the frequent call market plateaus at approximately 20 time steps, which is equivalent to the

average time between trader reentries. In the other two environments, the execution time

in the call market increases monotonically with the length of the clearing interval, since

trader reentries occur less frequently than market clears.

In Figure 5.9, I observe that the tightest spread is realized in the centralized call market,

for all three environments. Spreads in the frequent call market are measured at the end

of each market clear. They represent the market liquidity after orders have traded in each

interval. Since the call market generally matches orders to trade more efficiently than the

CDA, the spreads in the centralized call market tend to be tighter. The median spread

decreases to some degree with latency due to the accumulation of bids in the order book,

which is indicative of greater liquidity in the market. The temporal aggregation in the

centralized call market is also responsible for similarly tight NBBO spreads (Figure 5.9(b)).
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5.5.4 Relationship between Transactions and Surplus

Figure 5.10 shows the total number of transactions in each market configuration, for the

three environments, averaged over all observations at a given latency. In all three environ-

ments, the total number of transactions in the centralized CDA and the two-market model

without LA are generally comparable, though slightly lower in the latter. This is consistent

with my observations of surplus patterns in Figure 5.4. The two-market model without LA

results in higher surplus despite a reduction in number of transactions, indicating that each

transaction in the fragmented model is associated with more surplus on average than in the

centralized CDA.

The number of LA transactions does not increase with latency, although the number of

arbitrage opportunities grows as the NBBO update delay increases. Since the background

traders strategically respond to the presence of the LA by submitting executable orders over

limit orders, they are less likely to be picked off by the LA.

In addition, the highest number of trades for a market configuration at a given latency

setting in environment 1 is generally (although not always) observed in the call market.

This is a result of the reduced Rmid values observed in the call market equilibria; traders

in the frequent call market tend to shade their bids less in equilibrium, and consequently

are more likely to trade. In contrast, transaction volume is generally lower in the frequent

call market in the low mean reversion environments. Given the corresponding surplus

improvement (Figure 5.4), this indicates that discrete-time clearing leads to higher surplus

per trade.

5.6 Conclusions

To understand an important phenomenon in high-frequency trading, I presented a two-

market model of latency arbitrage. I implemented this model in a system combining agent-

based modeling and discrete-event simulation. I employed empirical game-theoretic anal-
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ysis to compute equilibria in games with variations in market structure and within three

parametrically distinct environments, and I compared equilibrium outcomes in order to

evaluate the interplay of latency arbitrage, market fragmentation, and market design, as

well as their consequences for market performance. My results demonstrate that market

efficiency in equilibrium is negatively affected by the actions of a latency arbitrageur, with

no countervailing benefit in liquidity or any other measured market performance character-

istic. Taking into consideration the substantial operational costs of the latency arms race

would only amplify my conclusions about the harmful implications of this practice.

Virtually all modern financial markets employ continuous trading, which enables speed-

advantaged traders to make risk-free profits over fragmented markets and which degrades

overall efficiency. A frequent call market prevents high-frequency traders from gaining a

latency advantage, thereby eliminating latency arbitrage opportunities and increasing sur-

plus for background traders. Aggregating orders over small, regular time intervals provides

efficiency gains over fragmented and continuous markets, and in fact these benefits appear

to overshadow the gains attributable specifically to neutralizing latency arbitrage.

As with any simulation model, my results are valid only to the extent my assumptions

capture the essence of real-world markets. Additional avenues for further study include

examining the effect of more sophisticated HFT and background-trader strategies (such as

those using historical information or responding to LA price signals), introducing other

types of traders such as market makers, and further quantifying the impact of price discov-

ery on efficiency.
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Figure 5.6: Median spread and NBBO spread in the two-market (2M) model, both with and
without a latency arbitrageur, and in the centralized CDA market. Spread is the amount by
which ASK exceeds BID. NBBO spread is the difference between BID and ASK of the
NBBO quote. The spreads in the two-market models (2M) are the average of the median
spread in the individual markets. Each point reflects the average over 50,000 simulation
runs of the maximum-welfare equilibrium for the market configuration and latency setting.
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Figure 5.7: Total surplus for the centralized frequent call market and the two-market (2M)
model with LA, for the three environments. Each point reflects the average over 50,000
simulation runs of the maximum-welfare equilibrium for each market configuration and
latency setting.
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Figure 5.8: Execution time for the centralized frequent call market and the two-market
(2M) model with LA, for the three environments. Each point reflects the average over
50,000 simulation runs of the maximum-welfare equilibrium for each market configuration
and latency setting.
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Figure 5.9: Median spread and NBBO spread for the centralized call market and the two-
market (2M) model with LA, for the three environments. Each point reflects the average
over 50,000 simulation runs of the maximum-welfare equilibrium for each market config-
uration and latency setting.

80



0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 600 700 900

# 
tr

an
sa

ct
io

n
s

latency

CALL CDA 2M no LA 2M LA (ZI + LA) 2M LA (LA only)
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Figure 5.10: Total number of transactions in each of the four market configurations, as
well as the number of LA transactions in the two-market model with LA, for the three
environments. Each bar reflects the average over 50,000 simulation runs of the maximum-
welfare equilibrium for each market configuration and latency setting.
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CHAPTER VI

Strategic Market Choice: Frequent Call Markets versus

Continuous Double Auctions for Fast and Slow Traders

Frequent call markets have been proposed as a market design solution to the latency

arms race perpetuated by high-frequency traders in continuous markets, but the path to

widespread adoption of such markets is unclear. If such trading mechanisms were available,

would anyone want to use them? This is ultimately a question of market choice, thus I

model it as a game of strategic market selection. My market environment is populated by

fast and slow traders who choose to trade in either a frequent call market or a continuous

double auction. I employ the empirical game-theoretic methods presented in Section 3.2

to determine the market type selected in equilibrium. I also analyze best-response patterns

to characterize the frequent call market’s basin of attraction. My findings show that in

equilibrium, welfare of slow traders is generally higher in the call market. I also find strong

evidence of a predator-prey relation between fast and slow traders: the fast traders prefer

to be with slower agents, and slow traders seek the protection of the frequent call market.

The results in this chapter were presented at the 3rd EAI Conference on Auctions, Market

Mechanisms, and their Applications (Wah et al., 2015).
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6.1 Introduction

Incremental speed yields advantage in trading due to the continuous nature of mar-

ket mechanisms. Currently, most stock markets operate as continuous double auctions or

CDAs (Friedman, 1993). Recall that in a CDA, orders are matched strictly on a first-come

basis. This time priority rule induces a winner-take-all scenario, where the fastest trader

can readily expropriate all gains from new information. The speed differential between

high-frequency traders and slower, non-HF investors subjects the latter to adverse selec-

tion, in which the slower traders’ resting orders are more likely to trade when information

moves against them.

An alternative to the continuous double auction is a frequent call market (or frequent

batch auction) described in Section 2.1. Recall that in a frequent call market, orders are

matched at discrete, regular intervals, and there is no time-priority within each clearing

interval. Each interval is a sealed-bid auction: participants do not know what orders other

traders have submitted, ergo orders in the frequent call market cannot be targeted specifi-

cally by incoming informed orders. Even if a fast trader knew somehow about a stale order

sitting in the book, it could not exploit that completely because the prices are set via a

competition among all traders able to submit orders within the clearing interval.

Allowing orders to accumulate over short time periods in a frequent call market has

already been advocated as a means to impede harmful HFT strategies that exploit other

traders through speed (Wellman, 2009; Sparrow, 2012; Schwartz and Wu, 2013). Not only

do frequent call markets offer significant gains in social welfare over CDA markets by

aggregating multiple orders and matching at a uniform price (Wah and Wellman, 2013),

they effectively eliminate the advantage of almost imperceptible improvements in latency

by shrinking the window of speed advantage to a tiny fraction of each clearing interval

(Budish et al., 2015). Since the order book is not visible—each clearing interval is sealed-

bid—and the best prices in the frequent call market are only available after orders have

been matched and cleared, traders in a frequent call market are incentivized to compete not
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on time but rather on price.

In recent years, frequent call markets have steadily gained traction as a potential mech-

anism design solution to the exigencies of today’s financial markets. Budish et al. (2015)

show how correlations of related securities break down at small time scales, opening up

opportunities for arbitrage based on tiny speed advantages. They present a model with

competitive HFTs in a call auction, and show how the frequent batch design neutralizes

such speed advantages. Farmer and Skouras (2012) likewise advocate frequent sealed-bid

auctions as a means to end the technological arms race, suggesting that clear times be ran-

domized. McPartland (2013) proposes matching orders every half-second and switching

to a cardinal time-weighted pro rata trade allocation formula to eliminate the advantage

of speed in tie-breaking. This author also recommends randomization of the trade match

algorithm, that is, matching orders to trade at a random time within each fixed-length clear-

ing interval. Other variants of randomized frequent call markets to deter HFT sniping have

been suggested by Sellberg (2010) and Industry Super Network (2013).

Regulators are starting to take notice. For instance, U.S. Securities and Exchange Com-

mission Chair Mary Jo White has indicated receptiveness towards “flexible competitive

solutions. . . [which] could include frequent batch auctions or other mechanisms designed

to minimize speed advantages” (White, 2014). New York Attorney General Eric Schnei-

derman endorsed frequent batch auctions in remarks during a March 2014 New York Law

School panel on Insider Trading 2.0 (Schneiderman, 2014):

Currently, on our exchanges, securities are traded continuously, which means

that orders are constantly accepted and matched with ties broken based on

which orders arrived first. This system rewards high-frequency traders who

continuously flood the market with orders, emphasizing speed over price. . . . If

you had frequent batch auctions, there’s no point in trying to get faster than

whatever the interval is. It would discourage the risk taking that can cause

flash crashes because, in the quest for greater and greater speed, there is, in
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and of itself, a threat to market stability.

Skeptics of frequent call markets raise various objections to their feasibility. Some

doubt whether continuous- and discrete-time markets can coexist, and posit that it will be

necessary to ensure that fragmented call markets clear in a synchronized manner (Rosov,

2014). Others question the ease of implementing these call markets (Baldauf and Mollner,

2015). Featherstone (2014) argues that frequent batch auctions are an unattractive alter-

native to current continuous markets, contending that discrete-time markets will diminish

trading and adversely affect price stability, while simultaneously creating the incentive to

snipe within the clearing interval in the event of new information arriving before the clear.

Similarly, Ross (2014) surmises that the introduction of frequent batch auctions would en-

gender a race to place the first order in the book for each call auction.

These and most other arguments I have encountered appear to be based on misconcep-

tions or unfounded speculation. The call market does not need to give time priority for

orders within the clearing interval, and so it is easy to avoid races to submit orders and

to instead channel competition to the price dimension. Traders submitting the best price,

whether fast or slow, will execute, and orders clear at a uniform price that no market par-

ticipant knows in advance, making ties in price unlikely anyway (especially if prices are

fine-grained). For the same reason, synchronization of multiple frequent call markets is

unnecessary, given that the gain from a speed advantage is already reduced by the lack

of visibility into the order book. In addition, implementation of frequent call markets is

clearly feasible; many modern stock markets open and close trading each day with a call

auction (Madhavan, 1992; Vives, 2010).

Yet frequent call markets have hitherto not been widely adopted. This may be simply a

matter of inertia; as markets have evolved from in-person to electronic, imposing an explicit

time delay would take a deliberate intervention. Such time delays are intuitively retrograde

to many, as they seem to compromise the general investor demand for trading immediacy

(Economides and Schwartz, 1995).
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This explains why existing continuous markets might not change their policies, but what

about introducing new markets with the frequent call mechanism? I see no economic reason

why a discrete-time market could not coexist alongside continuous market mechanisms

(Wah et al., 2013), but admittedly the burden of demonstration may rest on those of us

arguing for feasibility. To provide such a demonstration, I consider the question of market

choice: given availability of both mechanisms, will traders elect to submit orders to a

frequent call market over a continuous market, and if so, under what conditions?

These are the questions addressed by my study. I formulate the frequent call market vs.

CDA scenario as a game of market choice in which fast and slow traders—who differ on

the frequency with which they arrive to trade—specify, as part of their strategy, a selected

market mechanism. This strategic market choice game is described in the following section.

I discuss my experiments in Section 6.3 and my results in Section 6.4. I survey additional

related work in Section 6.5. Section 6.6 offers my conclusions.

6.2 Strategic Market Choice

To determine whether a frequent call market operating alongside a continuous market

can successfully attract investors, I present a market choice game in which traders specify

the preferred trading mechanism as part of their strategy. The players in my game are

traders, grouped in two roles: FAST and SLOW. These roles differ only in the frequency

with which traders enter to submit an order.

In my model, there is a single security traded simultaneously in a continuous double

auction market (CDA) and a frequent call market (CALL). The environment is populated

by multiple trading agents, representing investors. The trader valuation model and the class

of strategies employed are described in detail in Section 2.2. Traders can elect to submit

to either the frequent call market or the continuous market. Resting orders in the book are

subject to adverse selection, since newly arriving traders have more current information

about the fundamental, which they can exploit to pick off stale orders. Since SLOW traders
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arrive less frequently into the market than their FAST counterparts, SLOW-agent orders are

on average based on older information, and thus are exposed to a greater degree of adverse

selection.

I select a fixed, deterministic rate of clearing for the frequent call market in my market

choice game. Though several have proposed randomizing the clearing interval to deter

sniping (Farmer and Skouras, 2012; Industry Super Network, 2013; Sellberg, 2010), I have

argued (Wah et al., 2013) that such randomization accomplishes no reduction in incentive

for HFT speed advantages. A deterministic clear time offers the prospect of sniping within

a small time window at the end of the clear interval, whereas a random clear time offers

a small probabilistic prospect for advantage over the entire interval. In expectation, the

value of this advantage is the same. Moreover, as the model in this paper does not include

strategic timing, sniping is effectively ruled out by assumption.

In a market choice game with players who strategically decide among market mech-

anisms, there trivially exist equilibria in which all traders select any one given market,

regardless of its merits. These equilibria arise because when all other agents are in that

market, the remaining trader has no possibility to trade anywhere else. Thus the trader’s

only option for positive payoff is to join the focal market. To render these equilibria non-

inevitable, I introduce to each market a set of environment agents, providing a base set of

available trading partners. The environment traders follow designated strategies for their

assigned market and are not considered players in my game model. As such, their behav-

ior plays no part in game-theoretic analysis and their trading gains are ignored in surplus

calculations. I denote the number of environment agents in each market by E.

I employ an empirical simulation-based approach (presented in Chapter III) to explore

the strategy space. This facilitates identification of the market conditions under which

traders may prefer one market mechanism over the other. From the empirical game induced

over thousands of simulations of selected strategy profiles, I determine the market chosen in

equilibrium, and I analyze the corresponding gains from trade. I characterize the frequent
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call market’s basin of attraction through analysis of trader best responses that specify the

frequent call market over the CDA.

My findings show that in equilibrium, welfare of SLOW traders is generally higher in

the frequent call market than in the continuous double auction. I also find strong evidence

of a predator-prey interaction between FAST and SLOW traders. The FAST traders prefer to

be in the same market as their prey, whereas the SLOW traders congregate in the frequent

call market as long as it is sufficiently thick.

6.3 Experiments

6.3.1 Environment Settings

I evaluate the performance of traders in four environments. Recall that agents arrive

according to a Poisson process, and on each arrival they submit a single-unit limit order

to their associated market—replacing any prior outstanding order. Reentry rates are fixed

across the environments, with FAST traders arriving in the market at rate λF = 0.004,

and SLOW traders entering at rate λS = 0.002. In all settings, there is one CDA and

one frequent call market, which clears every 100 time steps. Each simulation run lasts

T = 12000 time steps. The mean-reverting global fundamental has a mean value r̄ = 105.

The variance for the private value vector is σ2
PV = 5×106. The fundamental shock variance

is σ2
s = 1× 106.

The strategy of environment agents is fixed; they play a ZI strategy with range [0, 1000]

and η = 1. The environment agents enter their respective markets with rate λE = 0.005.

The environments differ in the value of the mean-reversion parameter (κ) and the number

of environment agents E ∈ {8, 14, 42}. The configurations are as follows:

Environment I E = 8, κ = 0.05

Environment II E = 8, κ = 0.01

88



Environment III E = 14, κ = 0.01

Environment IV E = 42, κ = 0.01

The empirical games for these environments include 12 strategies (Table 6.1) for traders,

6 in each market. The market choice decision is made before trading commences at time 0,

and once selected, the market for a given agent is fixed for the duration of the trading hori-

zon T . Player agents choose between CDA and CALL, and environment agents are each

assigned to one of these.

6.3.2 EGTA Process

In the market choice game, players are partitioned into roles R = {FAST, SLOW}, and

players in either role can select among a set of strategies S. I determine equilibria for my

game of strategic market choice through empirical game-theoretic analysis, described in

Section 3.2. I collect data for multiple combinations of the trader strategies: a minimum of

5,000 samples per profile evaluated, with 20,000 samples for most profiles and averaging

at least 10,739 samples per profile in each environment. From these payoff estimates, I

compute RSNE for each environment, and use these as a foundation for my analysis of

the welfare effects in equilibrium for FAST versus SLOW traders, the attractiveness of the

CALL over the CDA, and the loss in deviating from the equilibrium market type.

I apply deviation-preserving reduction (Section 3.2.2) to reduce an (NFAST, NSLOW)-

player game to a (kFAST, kSLOW)-player reduced game. I deliberately select values for Nr

and kr, r ∈ {FAST, SLOW}, to ensure that the fractions defining the game reduction come

out as integers. Specifically, my market choice game is comprised of 42 players, with

NFAST = NSLOW = 21, which I approximate by a DPR game with kFAST = kSLOW = 3. I

use simulation data from the full (21, 21)-player game to estimate the payoffs of the (3, 3)-

player reduced game.
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Table 6.1: ZI strategy combinations included in empirical game-theoretic analysis of mar-
ket choice games.

Rmin Rmax η Market type

0 125 1 Both
0 250 1 Both
0 500 1 Both
0 1000 1 Both

500 1000 0.4 CDA
500 1000 1 CALL
0 2500 1 Both

6.3.3 Social Optimum

I assess efficiency by comparison of market outcomes with the social optimum. I de-

fine this optimum for a population of 42 traders, based on the distribution of the private

component of agents’ valuations, with parameters qmax = 10 and σ2
PV = 5 × 106. To

calculate an optimal allocation for a particular array of draws from this distribution, I sim-

ply find the competitive equilibrium using the call market clearing function. Each trader

submits its valuation vector as a demand curve, with qmax sell orders at prices r̄ + θsi ,

s ∈ {−qmax + 1, . . . , 0} and qmax buy orders at prices r̄ + θbi , b ∈ {+1, . . . , qmax}, with

each order for a single unit of the security. Over 20,000 samples, I find a mean social

welfare of 27887. As they are not considered players in the market choice game, I do not

include environment agents in the determination of the socially optimal allocation. Fig-

ure 6.1 shows the histogram of trades per player in the social optimum.

6.4 Results

6.4.1 Basin of Attraction

The main results of this study are shown in the heat maps of Figure 6.2, which illustrate

the trader population conditions under which the CALL serves as an attractor. I characterize

the frequent call market’s basin of attraction by categorizing the market type a trader selects
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Figure 6.1: Histogram of the net position (i.e., number of units traded) of traders in the
socially optimal allocation. The distribution is compiled from 20,000 samples.

when the other traders’ strategies are fixed; in other words, I identify and classify the

trading mechanism selected in the trader’s best response.

Given a trader, I fix the other-agent profile (i.e., the set of strategy counts for the 20

players in the same role and for the 21 players in the other role), and I identify the market

type selected in the trader’s best response. Since I selectively sample full-game profiles for

the (3, 3)-player DPR approximation, I can bucket all other-agent profiles into 12 unique

categories by role, based on the population of traders in each market type.

For example, if I examine a SLOW trader in the CALL, the 20 other SLOW traders

may all be in the same market (CDA or CALL) or they may be equally split between the

two markets (10 in the CALL and 10 in the CDA). No other cross-market divisions of

same-role players are possible because I selectively collect profiles to reduce via DPR to a

(3, 3)-player game. The 21 traders in the other role (FAST) may all be in the same market

(CDA or CALL), or they may be split between the two markets, with 7 agents in one market

and 14 in the other.

For each of the 12 categories of trader population distributions across markets, I count

the number of other-agent profiles for which the given player’s best response specifies the

CALL over the CDA. I report the corresponding percentages in two best-response heat
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maps, one per role, for each market choice game.

To ensure full coverage of all population categories, I construct a complete subgame. In

each subgame I include the strategies played with the highest probabilities across all RSNE

found in that environment. The strategy sets of the complete subgames used to characterize

the frequent call market’s basin of attraction for each environment are given in Table 6.2.

My results for these subgames are illustrated in the heat maps of Figure 6.2; these

characterize the frequent call market’s basin of attraction from the perspective of a single

trader in each role (SLOW on the left, FAST on the right). For example, the top left entry in

a SLOW trader heat map reports the percentage of all other-agent profiles comprised of 20

SLOW traders in the CDA and 21 FAST traders also in the CDA in which a SLOW trader’s

best response specifies the CALL.

The higher mean reversion in environment I implies that slower traders are less likely

to be picked off by speed-advantaged traders, and therefore I find that the SLOW traders

display no strong preference to switch to the CALL unless the majority of other traders

(regardless of speed) are in the frequent call market as well. When the degree of mean

reversion is reduced, the SLOW agents face greater risk of being picked off by FAST agents

with newer and better information. Therefore, environments II through IV are much more

salient in answering questions about strategic market choice under adverse selection, and I

focus the rest of this section on those corresponding subgames.

I see from the environment II–IV heat maps that there is safety in numbers for a single

SLOW trader deciding between the CALL and CDA: if 20 of the SLOW traders are in a

given market, the best response is more often than not to pick the same market as everyone

else, whether that is the CDA or CALL. When the SLOW agent population is equally

divided between the two markets, however, I observe a gradual mass exodus of SLOW

traders from the frequent call market as more FAST traders enter the CALL. The percentage

of SLOW-trader best responses selecting the CALL decreases monotonically from around

90% to below 40% as FAST traders leave the CDA for the frequent call market. Despite the
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protection afforded to them in the CALL, the SLOW traders would rather take their chances

in the CDA than remain in the same market as the FAST traders. However, if the CALL

is sufficiently thick (as in environment IV), the SLOW traders prefer the sanctuary of the

frequent call market, regardless of where the FAST traders are.

On the other hand, FAST traders clearly stand to gain from the informationally dis-

advantaged orders submitted by their slower counterparts. Therefore, they exhibit a strong

preference for the market selected by the majority of SLOW traders, and they readily follow

the SLOW traders to either market. I observe that their preference for the CALL increases

strictly monotonically, from 0% to nearly 100%, as the number of SLOW traders in the

CALL increases.

These results reveal the dynamics of the predator-prey interaction between the FAST

and SLOW traders. The SLOW traders face less risk as part of a large group, but once they

are split up between the two markets, those in the CDA tend to flee to the CALL to get

away from the FAST traders, while the FAST traders relentlessly pursue the SLOW traders,

regardless of market.

I also analyze the collected profiles in the full games, shown in Figure 6.3. The heat

maps for the SLOW traders are similar to those in the complete subgames, but the results

for FAST traders are markedly different. This is due to the bias in sampling full-game

profiles for my game-theoretic analysis. As sampling all 681,264 profiles in the full game

(given two roles, with 12 strategies each) is intractable, my coverage of the profile space is

primarily determined by the more promising subgames identified during EGTA.
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(c) Environment III
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(d) Environment IV

Figure 6.2: Basin of attraction for CALL, as characterized by best-response heat maps of
complete subgames for environments I–IV. The subgame for environment III has a 6 × 6
strategy space, with three strategies in each market, for each role; the subgames for the
other environments have strategy spaces of size 4 × 4. The matrices on the left (in green)
are from the perspective of a single SLOW trader; the matrices on the right (in red) are from
that of a FAST trader. The rows in each matrix specify the distribution of same-role agents
across the two markets, and the columns specify the cross-market distribution of other-role
agents. Each entry in the heat map matrix gives the percentage of all other-agent profiles
in which a single agent’s best response specifies CALL. Heat map colors follow a scale
where light corresponds to 0% and dark to 100%.
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(d) Environment IV

Figure 6.3: Basin of attraction for CALL, as characterized by best-response heat maps of
sampled full-game profiles for environments I–IV. Data presented is as for Figure 6.2.
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Table 6.2: Complete subgames, one each for environments I–IV, used to analyze the frequent call market’s basin of attraction. Each row
of the table describes a complete subgame, which includes the strategies played with the highest probabilities across all RSNE found in
that environment. The numeric column headings give Rmax values for the ZI strategies, for each role. All strategies employ Rmin = 0,
with the exception of the double starred and double dagger (‡) values which use Rmin = 1

2
Rmax = 500. All strategies employ η = 1,

except for the double dagger (‡) values which use η = 0.4. Strategies in the table cells are specified according to the market type. The
subgame for Environment III has a 6 × 6 strategy space, with three strategies per market, per role; the subgames for the three other
environments each have a 4× 4 strategy space.

Env
FAST SLOW

125 250 500 1000 1000‡ 1000** 2500 125 250 500 1000 1000‡ 1000** 2500

I CALL Both CDA Both CALL CDA
II CALL CDA Both CALL CDA Both
III CALL Both CDA Both CALL Both CDA Both
IV Both Both Both Both96



6.4.2 Equilibrium Analysis

My equilibrium results are shown in Table 6.3 (see Table C.1 for complete specifica-

tions of the equilibria found). For each RSNE, I compute surplus for traders in each role

by sampling 10,000 full-game profiles based on the equilibrium mixture probabilities, with

one simulation run per sampled profile. I successfully find at least one and up to six RSNE

in each environment; each equilibrium has one to three strategies played with positive prob-

ability for a given role. There is at least one all-CALL RSNE in each environment; all but

one environment has at least one all-CDA equilibrium.

I find empirical support for the general welfare benefits of the CALL market, but pri-

marily for SLOW traders: the mean total SLOW-agent surplus accrued over the all-CALL

equilibria in a given environment is uniformly higher than that over the all-CDA equilibria

in the same environment. Environments I and II have the same environment-agent popu-

lation, but the lower mean reversion in the latter makes SLOW traders more susceptible to

adverse selection. This is reflected in the significant reduction in total SLOW-agent surplus

in environment II versus environment I. FAST traders accrue approximately the same level

of surplus in both environments. I also observe that although the total welfare in environ-

ment I is close to the social optimum described in Section 6.3.3, increased adverse selection

reduces overall surplus, and it is in this setting that the CALL provides significant welfare

improvement over the CDA.

Within the same environment and with reduced mean reversion, FAST traders also gen-

erally shade their bids less in the frequent call market versus the CDA, as can be evidenced

by reduced Rmid values. This effect does not hold for the SLOW traders, who shade ap-

proximately the same regardless of market type. The reduction in FAST-trader bid shading

is indicative of the shift from a competition on speed in the CDA to a competition on price

in the CALL.

I find at least one all-CDA RSNE in environments I through III. This is due to the low

number of environment agents in these games. When there are only 4 environment agents in
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each market, as in environments I and II, the CALL market is not thick enough—sufficient

volume is required for the call auction to deliver on its promise of welfare improvement.

But in environment IV, where E = 42, there is ample volume and order activity in the

CALL market for traders to strongly prefer it over the CDA, hence I find no all-CDA

RSNE in this environment.

Notably, I only find RSNE in which both FAST and SLOW agents select the same mar-

ket. I can definitively rule out two-market equilibria—in which all agents in one role choose

the CALL and all those in the other role choose the CDA—by exploiting an independence

property of market choice games. In these games, the payoff for any given strategy depends

only on the strategies of traders in the same market. I identify CALL-CDA equilibrium

candidates by exploring four subgames for each environment. In each of these subgames,

I limit the 21 traders in one role to a single strategy in the first market, while permitting

traders in the other role to select any of the six strategies specifying the other market. In

essence, I limit these subgames to one market and one role. I compute the equilibria in each

of these subgames and form equilibrium candidates of the target form; I can then confirm

or refute these candidates within the full strategy space.

For example, I explore a subgame with SLOW traders playing CALL strategies from

Table 6.1 and FAST traders playing some strategy sCDA in the CDA. I also explore a sub-

game with FAST agents playing CDA strategies and SLOW agents playing a fixed strategy

sCALL in the CALL market. Analysis of the first (second) subgame gives the equilibria for

FAST (SLOW) traders in the CDA assuming no SLOW (FAST) traders are present. I can

then form a CALL-CDA equilibrium candidate from any equilibrium in the first subgame

(which specifies the strategies for FAST traders in the CDA) and any equilibrium in the

second subgame (which specifies the strategies for SLOW agents in the CALL).

I refute all such candidate equilibria in all four environments, hence there are no RSNE

in which all FAST traders are in the CDA and all SLOW traders are in the CALL. Such

equilibria might be expected given that FAST traders benefit from picking off stale orders
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Table 6.3: Role-symmetric equilibria for the four strategic market choice games (one each
for environments I–IV), calculated from the (3, 3)-player DPR approximation. Each row of
the table describes one equilibrium found, including, for each role in the RSNE, the selected
market mechanism (CALL or CDA) and the average values for total surplus of players in
the role and for two strategy parameters: Rmid (the midpoint of ZI range [Rmin, Rmax])
and threshold η. Values presented are averages over strategies in the profile, weighted
by mixture probabilities. There is at least one all-CALL RSNE in each environment and
one all-CDA RSNE in environments I to III, but I did not find any all-CDA equilibria in
environment IV.

Env Total
FAST SLOW

Market Surplus Rmid η Market Surplus Rmid η

I 27288 CALL 14469 129 1 CALL 12819 230 1
I 26697 CALL 14384 210 1 CALL 12314 486 1
I 27261 CDA 14598 250 1 CDA 12662 198 1
I 26785 CDA 14136 435 0.769 CDA 12649 250 1
I 25321 CDA 13502 418 0.943 CDA 11819 750 0.4
I 26133 CDA 13969 559 0.630 CDA 12165 500 1

II 21050 CALL 14697 703 1 CALL 6353 1250 1
II 21242 CDA 15355 710 0.448 CDA 5887 1250 1

III 19992 CALL 13790 644 1 CALL 6202 1250 1
III 20441 CALL 13909 500 1 CALL 6532 1111 1
III 19734 CDA 14483 750 0.4 CDA 5251 1250 1

IV 18067 CALL 12856 970 1 CALL 5211 1250 1

in the CDA. Ultimately, I find no such RSNE because the FAST traders benefit from being

in the same market as the SLOW traders. The SLOW traders face greater risk of adverse

selection in the CDA, so they select the frequent call market, followed close behind by the

FAST traders.

6.4.3 Regret Analysis

I also evaluate the degree to which a trader is attracted to the CALL versus the CDA.

To that end, I compute NE regret (Jordan et al., 2010), which captures the loss of utility

for a player who deviates from a Nash equilibrium to a specified strategy. The NE regret

of a given strategy s is defined as the utility to the player in equilibrium less the payoff it
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accrues when it deviates to s. Accordingly, the NE regret of any equilibrium strategy is

zero.

To compute the NE regret of deviating to the other market, I use the sampled surplus

values in Table 6.3 to determine the per-agent surplus for a trader in a given role, and I

subtract from that the payoff of the best-performing strategy in the other market. Again,

I can exploit the independence of the two markets in my model, this time to determine

the best other-market strategy. For example, for an all-CALL RSNE, I can measure the

payoff to an agent that deviates to strategy sCDA in the CDA via the payoff in any profile

in which a single trader plays sCDA and the other traders are in the CALL. I average

the payoffs accumulated across all such profiles to determine the maximum-payoff other-

market strategy for each RSNE, and I use these to compute the minimum NE regret for

deviating to the non-RSNE market.

My results are shown in Figure 6.4. SLOW traders generally have lower regret if devi-

ating to the CALL from an all-CDA RSNE than if deviating to a CDA from an all-CALL

RSNE. This is indicative of the greater loss they face if they leave the CALL market, as

they are at high risk of being picked off by the faster traders in the CDA. The FAST traders,

on the other hand, stand to lose more if they deviate from an all-CDA RSNE to the CALL,

versus deviating to the CDA from an all-CALL RSNE, because their payoffs are based on

exploiting their speed advantage over the SLOW traders. In short, SLOW traders would

much rather stay in the CALL market, while FAST traders exhibit a stronger preference for

the continuous market. I observe that FAST traders have universally greater regret than the

SLOW traders; this is because they already accrue the lion’s share of overall welfare, hence

they have greater profits to lose. The negative regrets in my results are indicative of the

limitations of the DPR approximations I use in deriving equilibria.

Also notable is that the best strategy when deviating to the CDA from an all-CALL

RSNE is always the one strategy in which the threshold η < 1, regardless of environment or

trader speed. Because environment agents arrive even more frequently than FAST traders,
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Figure 6.4: NE regret of equilibria in environments I–IV, computed for each RSNE as
the per-agent surplus in a role, less the maximum payoff possible if a player in that role
deviates to the other market. Os indicate the NE regret in deviating to the CDA from an
all-CALL RSNE; Xs indicate the NE regret in deviating to the CALL from an all-CDA
RSNE. Note that the FAST and SLOW trader NE regrets in environment IV are overlaid as
they are nearly identical.

any player faces significant adverse selection if alone with the environment agents in the

CDA market. Adopting a lower η decreases the tendency to leave standing orders, thus

avoiding some of the pick-off risk.

6.4.4 Game without Mean Reversion

As discussed in Section 6.4.1, the reduced mean reversion in environments II through IV

increases the SLOW traders’ risk of adverse selection. I introduce an additional three en-

vironments to explore the attractiveness of the CALL market when there is zero mean

reversion in the fundamental:

Environment V E = 8, κ = 0

Environment VI E = 14, κ = 0

Environment VII E = 42, κ = 0

In order to for traders to accrue positive gains in my simulations given no mean reversion,
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I reduce the variance in the fundamental to σ2
s = 1 × 103. This also means that the spe-

cific payoffs of traders in these environments cannot be compared directly to results in the

previous sections.

As with the first four environments, I construct complete subgames; the strategy sets of

the complete subgames for environments V–VII are given in Table 6.4. Figure 6.6 shows

the heat maps for these subgames, and the results for the sampled profiles from the full

games are shown in Figure 6.5.

In the settings without mean reversion, I observe qualitatively different results from

the previous four environments, particularly for the cases with more environment agents.

Both FAST and SLOW traders exhibit a much weaker preference for the CALL market, and

this preference only exists under certain market conditions. This is also reflected in the

equilibrium results for environments V–VII (Table 6.5): I find one all-CDA RSNE in each

environment, in addition to an equilibrium with FAST traders split between the CALL and

CDA and all SLOW traders in the CALL (see Table C.2 for complete specifications of the

equilibria found).

The essence of the predator-prey relationship observed in environments I–IV still re-

mains, most visibly in environment V. A SLOW trader has a greater preference for the

CALL when the 20 other SLOW traders are also in the CALL and all 21 FAST traders are in

the CDA. Similarly, a FAST trader tends to prefer the CALL when all 21 SLOW traders are

also in the CALL. However, this effect diminishes as the number of environment agents E

increases from environment V to VII.

Traders in these environments come quite close (or surpass) the social optimum of

27887. As described in Section 6.3.3, this social optimum is based on the 42 traders sub-

mitting orders corresponding to their demand curves. Traders can, in aggregate, exceed the

social optimum by extracting additional surplus from the environment agents in the CDA.

They do so by exploiting the fixed strategy of the environment agents. Despite being faster

than the strategic traders, environment agents employ a strategy with threshold parameter
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η = 1, which means these agents generally submit standing orders (i.e., orders that rest

in the order book and do not immediately execute) rather than executable orders. There

exists a pure-strategy RSNE in each zero mean reversion environment where both FAST

and SLOW traders select the only strategy with η < 1. This reflects an increased number of

opportunities—when mean reversion is eliminated—in which strategic traders can take the

current price quote over submitting a limit order, so both FAST and SLOW traders can pick

off standing orders submitted by the environment agents in these zero mean reversion envi-

ronments. The number of such opportunities grows with the number of environment agents

E, as their fixed strategy ensures they generally submit standing orders. The opportunity

to exploit environment-agent orders exists to a much greater degree in the CDA, since any

resting order can be readily picked off by submitting an order that will immediately match

and trade with the resting order in question. This drastically reduces the incentive of strate-

gic traders to switch to the CALL. In other words, when there is no mean reversion in

my games of market choice, the environment agents become the prey in the CDA, and the

strategic traders act as predators by picking off standing limit orders.
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Figure 6.5: Basin of attraction for CALL, as characterized by best-response heat maps of
complete subgames for environments V–VII. The subgame for environment VI has a 6× 6
strategy space, with three strategies in each market, for each role; the subgames for the
other environments have strategy spaces of size 4× 4. Data presented is as for Figure 6.3.
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(c) Environment VII

Figure 6.6: Basin of attraction for CALL, as characterized by best-response heat maps of
sampled full-game profiles for environments V–VII. Data presented is as for Figure 6.5.

105



Table 6.4: Complete subgames, one each for environments V–VII, used to analyze the frequent call market’s basin of attraction with zero
mean reversion. Data presented is as for Table 6.2. The subgame for Environment VI has a 6 × 6 strategy space, with three strategies
per market, per role; the subgames for the two other environments each have a 4× 4 strategy space.

Env
FAST SLOW

125 250 500 1000 1000‡ 1000** 2500 125 250 500 1000 1000‡ 1000** 2500

V CALL Both CDA Both CDA CALL
VI CALL CDA CDA CDA CALL CALL CALL CDA CDA CDA CALL CALL
VII CALL Both CDA CDA CDA CALL CALL
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Table 6.5: Role-symmetric equilibria for the three strategic market choice games without
mean reversion (one each for environments V–VII), calculated from the (3, 3)-player DPR
approximation. Data presented is as for Table 6.3. There is at least one all-CDA RSNE in
each environment. Environment V has one equilibrium in which the FAST traders are in
both the CALL and the CDA, and all SLOW traders are in the CALL.

Env Total
FAST SLOW

Market Surplus Rmid η Market Surplus Rmid η

V 24038 Both 17698 345 0.849 CALL 6430 750 1
V 26457 CDA 18962 750 0.4 CDA 7495 750 0.4

VI 28681 CDA 20012 750 0.4 CDA 8669 750 0.4

VII 29412 CDA 20339 750 0.4 CDA 9073 750 0.4

6.5 Related Work

There are only a few isolated examples of call markets in today’s financial markets,

most of which clear on a semi-frequent basis. The Taiwan Stock Exchange matches orders

by call auction, with clears occurring every 60 to 90 seconds, depending on trading activ-

ity (Lee et al., 2004). From mid-1998 to 2002, the Taiwan Futures Exchange employed a

periodic call market to match orders; the clearing interval in the auction was incrementally

reduced from 30 seconds to 20 and then 10, before finally being eliminated in favor of

a predominantly continuous market mechanism (Webb et al., 2007). More recently, both

the London Stock Exchange and the NYSE have announced plans to introduce a midday

batch auction in hopes of encouraging institutional investors to trade large blocks of shares

on their exchanges (Hope, 2015; Stafford, 2014). An intraday call auction has been stan-

dard for the past 15 years on Xetra, an electronic trading system for securities operated by

Deutsche Börse (Budimir, 2014). Outside the equities space, batching to prevent exploita-

tion by fast traders is currently in place on several foreign-exchange platforms. EBS, one

of the largest currency trading platforms, has introduced a so-called latency floor, in which

orders are batched in randomized clearing intervals (of lengths ranging from one to three

milliseconds) in an effort to curb the advantages of super-fast traders (Clark, 2014). The
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competing ParFX platform applies a randomized delay of 20 to 80 milliseconds to all order

elements, and Thomson Reuters is currently trialling randomization of order execution on

its foreign-exchange platform (Clark, 2014).

Several prior works, already presented in Section 5.2, have argued for frequent call mar-

kets as a means to end the latency arms race (Budish et al., 2015; Farmer and Skouras, 2012;

McPartland, 2013; Sellberg, 2010; Industry Super Network, 2013). Recall that Budish et al.

(2015) show that frequent batch auctions can potentially eliminate the latency arms race by

reducing the value of very small speed advantages. Using millisecond-level exchange data,

they demonstrate the breakdown of correlation between securities at high frequency, argu-

ing that this phenomenon creates arbitrage opportunities that can be exploited by the fastest

traders. In a complementary analysis, Budish et al. (2014) discuss the implementation de-

tails of frequent batch auctions in today’s regulatory environment. Farmer and Skouras

(2012) likewise advocate frequent sealed-bid auctions as a means to end the technological

arms race, suggesting that clear times be randomized, whereas McPartland (2013) proposes

matching orders every half-second and switching to a cardinal time-weighted pro rata trade

allocation formula to eliminate the advantage of speed in tie-breaking.

In a recent study, Li and Das (2016) build an agent-based model with informed high-

frequency and slow traders, as well as uninformed liquidity traders, to study the competition

between a frequent call market and a CDA market. In their model, traders can pick their

preferred market mechanism upon each arrival. By comparing welfare as measured by the

price of immediacy, they find that traders are better off in the frequent call market, which

also attracts the bulk of order flow.

Others have focused not on the role of call markets in mitigating the harmful effects of

HFT, but on the difference in market quality offered in a discrete-time versus a continuous

market. Pancs (2013) compares three models—a dark pool, a continuous market, and a

periodic call auction—focusing on both allocative efficiency and informational efficiency

(which is high when observed transactions reveal traders’ private information). This study
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finds that the periodic auction is more allocatively efficient than the continuous protocol

when the demand for immediacy is low. Pellizzari and Dal Forno (2007) use an agent-

based model to compare the efficiency of a call auction (clearing only once), a continuous

double auction, and a dealership. They find that the dealer market is the most efficient

market structure of the three, offering the lowest volatility and the highest perceived gains

by traders.

Baldauf and Mollner (2015) develop a model of order anticipation to examine the im-

pact of exchange competition on the spreads faced by investors. They study selective delay,

an alternative trading mechanism in which cancellation orders are processed immediately

but all other order types have a small delay, showing that selective delay reduces adverse se-

lection by allowing liquidity providers to cancel stale quotes before being sniped by HFTs.

In the specific setting of their work, they demonstrate that selective delay leads to the same

outcome as a frequent batch auction. In another study, Baldauf and Mollner (2014) consider

a setting in which selective delay and frequent batch auctions result in different equilibrium

outcomes. They show that a frequent batch auction in this case results in wider spreads than

both selective delay and a continuous market.

Another relevant question is the frequency of clearing in a periodic call market, with

some prior work suggesting that more frequent trading leads to increased volatility (Lang

and Lee, 1999; Webb et al., 2007). Fricke and Gerig (2015) argue that the optimal speed

at which a security clears is related to volatility, trading intensity, and correlation of the

security’s value with other securities. They estimate that a range of 0.2 to 0.9 seconds is

optimal. Du and Zhu (2014) study the effects of trading speed on overall welfare via a series

of uniform-price double auctions held at discrete time intervals. They find that the optimal

trading frequency varies depending on trader speed: fast traders prefer a higher trading fre-

quency, whereas slow traders prefer a lower frequency (and consequently thicker) market.

Much of the empirical work in the call auction literature examines the effects of discrete-

time trading through natural experiments. For example, Kalay et al. (2002) analyze the
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move of stocks on the Tel Aviv Stock Exchange from discrete-time trading to continuous

trading. They argue that investors prefer stocks that trade continuously, based on observed

losses in volume in stocks that trade by call auction. Webb et al. (2007) examine the effect

of the decision of TAIFEX, at the time a periodic call auction, to match the trading hours

of the Singapore Exchange (SGX), a continuous market, finding that this switch led to a

statistically significant reduction in volatility on the SGX. They attribute these results to

better price formation in the discrete-time market.

6.6 Conclusions

I examined strategic market choice in four environments with both FAST and SLOW

traders who must decide between two market mechanisms: a frequent call market and a

continuous double auction. I modeled this interaction as a game of market selection. I em-

ployed empirical simulation methods to compare the market type selected in equilibrium,

the trading gains accrued, and the regret of deviating from equilibrium. I also analyzed

best-response patterns in order to characterize the frequent call market’s basin of attraction

in multiple environments.

This study offers the first analysis of adoption of frequent call markets, framed as a

question of strategic market choice. My findings demonstrate that in equilibrium, SLOW-

trader welfare is generally higher in the discrete-time market—further evidence that fre-

quent call markets offer both increased gains from trade as well as protection from speed-

advantaged HFTs capable of picking off resting orders. I also find strong evidence of a

predator-prey interaction between FAST and SLOW traders. The FAST traders prefer to be

in the same market as the SLOW traders, regardless of market, whereas the SLOW traders

ultimately seek the protection and efficiency gains of the frequent call market, as long as

the CALL is sufficiently thick.

Overall, my results demonstrate that a frequent call market functions as an attractor for

SLOW traders, as FAST traders are willing to follow the SLOW traders to either market. The
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predators (e.g., the HFT real-world counterparts to FAST traders) will always pursue their

prey (e.g., institutional and retail investors), but in a frequent call market, the SLOW traders

will be better protected from adverse selection and sniping. This suggests that frequent call

markets in the wild could attract sufficient volume for viability, while deterring the wasteful

pursuit of tiny latency advantages.

Several limitations should be taken into account in evaluating my results. My trader

strategy set is fairly limited, with both FAST and SLOW traders employing the same set of

strategies. One particularly unrealistic restriction is that traders cannot alter their market

choice once it has been made. In addition, my results in settings without mean rever-

sion demonstrate that fixed strategies are problematic for the environment agents, who can

be exploited by strategic traders in the CDA. Interesting extensions might include strate-

gies that permit learning or adaptive selection of the market mechanism, or formulating an

iterated form of my market choice game. Similarly, analysis of a broader range of envi-

ronments could provide further insight on the relative attractiveness of alternative market

mechanisms. Additional market conditions of interest include slower environment agents,

as well as different clearing frequencies.
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CHAPTER VII

Conclusions

Over the past decade, algorithmic trading has become a dominant force in today’s frag-

mented and complex financial marketplace. The highly computerized nature of such trading

has made it possible to operate at speeds well beyond human perception: high-frequency

traders exploit microsecond-level latency advantages in order to capitalize on opportunities

for risk-free profit. The pursuit of higher speed in market access and response has perpet-

uated a latency arms race in which many market participants have spent (and continue to

spend) billions of dollars. Speed offers a competitive edge due to the continuous nature

of current markets, and market fragmentation and securities regulations have inadvertently

spawned price disparities that can be exploited by the fastest traders. Modifications to cur-

rent market structure have been proposed in efforts to mitigate the latency arms race, but

the full extent of their impact is unclear. As such, characterizing the interrelationship be-

tween algorithmic trading and market structure, as well as its economic significance, is of

paramount concern.

In this dissertation, I examined the interplay between algorithmic trading and market

structure through a computational lens. I designed models to capture core aspects of cur-

rent financial markets as well as various algorithmic trading strategies. I focused on two

trading mechanisms: the continuous double auction, in which orders are matched as they

arrive, and the frequent call market, in which orders are matched to trade at regular, pe-
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riodic intervals. My market models are populated by background traders, who represent

investors—in contrast to market participants whose sole objective is maximizing trading

profit. Background traders are permitted to reenter to trade based on an individual valua-

tion (comprised of both private and common components) for the security in question.

I employed a simulation-based approach to model, analyze, and characterize the rela-

tionship between trader behavior and market structure. Agent-based modeling facilitated

the representation and encoding of markets and traders, and discrete-event simulation al-

lowed me to precisely specify communication latencies and the flow of information in my

models. I employed the methodology of empirical game-theoretic analysis to compare

strategic interactions and market outcomes in equilibrium.

I explored a variety of market configurations in order to better characterize the impact of

algorithmic trading and market structure on allocative efficiency, a measure of how well the

market is distributing trades according to underlying private valuations, in addition to other

market performance characteristics such as liquidity and price discovery. What follows is

a summary of my contributions from the three case studies presented in this thesis.

Welfare Effects of Market Making This study examined the effects of market making

on market performance, focusing on allocative efficiency as well as total background-trader

surplus. Through liquidity provision, market making is generally considered to perform a

valuable function in continuous markets, but the impact of this behavior on welfare de-

pends on the specific market conditions. I modeled a single security traded in a continuous

double auction market populated by multiple background traders. I employed empirical

simulation-based methods to derive equilibria with and without a single market maker in

a number of different market environments. My results show that not only is the mar-

ket maker profitable in equilibrium, but its presence also significantly improves efficiency.

Whether this effect is also reflected in background-trader gains depends on characteristics

of the environment, such as market thinness (as captured by the number of traders) and
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investor impatience (as captured by the length of the trading horizon and the background-

trader reentry rate). I find that market making tends to improve welfare of impatient in-

vestors, but not in all cases. In addition, my analysis demonstrates that liquidity proxy

measures, such as spreads and execution times, are not adequate substitutes for directly

evaluating investor welfare.

A Two-Market Model of Latency Arbitrage and Market Fragmentation In this study,

I developed a simple two-market model of latency arbitrage that captures the effects of

market fragmentation, current U.S. securities regulations, and market clearing rules. These

arbitrage opportunities arise due to the fragmentation of markets across multiple exchanges

and delays in updating the public price quote, which can cause orders to be routed to the

incorrect market. I show that the presence of a latency arbitrageur significantly degrades

overall allocative efficiency, and I present frequent call markets as a means to eliminate the

speed advantages of HFTs. My results demonstrate that periodic clearing, as in a frequent

call market, not only eliminates latency arbitrage opportunities, but also improves welfare

by aggregating orders over each clearing interval.

Frequent Call Markets vs. Continuous Double Auctions for Fast and Slow Traders

In my third and final study, I investigated the potential for frequent call markets to coex-

ist with continuous trading—the dominant mechanism in current financial markets—via a

game of strategic market choice. I constructed a model of a single security traded simulta-

neously in a CDA market and a frequent call market. The market environment is populated

by multiple investors, grouped in one of two roles (FAST and SLOW) that differ only in the

reentry frequency. Traders select a market type (frequent call market or CDA) as part of

their strategy. My results provide strong evidence that a frequent call market could coexist

and attract sufficient volume alongside continuous markets. In equilibrium, the welfare of

slower traders is generally higher in the frequent call market. I also identify a predator-

prey relationship between the two types of traders: the faster traders prefer to be where
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the slower traders are, whereas the slow traders achieve greater welfare in the discrete-time

market.

Through computational modeling of algorithmic traders and current financial market

structure, my dissertation provides a characterization of the market conditions under which

algorithmic trading activity can benefit or harm investors. This work also presents an analy-

sis of the feasibility and efficacy of market-design interventions—such as periodic clearing

at regular intervals, as in a frequent call market—to mitigate adverse effects of certain al-

gorithmic trading strategies. Research of this nature is of potential importance to market

participants, policymakers, and regulators, as algorithmic traders now operate at timescales

faster than the speed of human response. Such trading activity can lead to significant eco-

nomic consequences within a matter of seconds. The computational approach I employed

in this thesis offers an effective framework for analyzing the social welfare implications of

algorithmic traders in today’s financial trading landscape. Although my thesis covers only

three case studies, the methodology I have presented here has much wider scope, and can

be readily applied to investigate a broad spectrum of market scenarios, both current and

potential. The nature of trading has changed significantly within the last decade, and no

doubt it will continue to evolve. This dissertation lays the groundwork for further study of

the relationship between trader behavior and market structure, as both evolve in the years

to come.
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A.1 Equilibria in Games without a Market Maker

Table A.1: Symmetric equilibria for games without market making, N = 66, calculated from the 6-player DPR approximation. The
numeric column headings give Rmax values for the ZI strategies. All employ Rmin = 0 with the exception of the double star and double
dagger (‡) values which use Rmin = 1

2
Rmax. All employ η = 1, except for the single starred values which use η = 0.8, the dagger (†)

value which uses η = 0.6, and the double dagger (‡) values which use η = 0.4. Each row of the table describes the mixture probabilities
for strategies for one equilibrium, and corresponds to the matching row in Table 4.2.

Env 65* 125* 125 250* 250 500 500** 1000* 1000 1000‡ 1500† 2000‡ 2500

A1 0 0 0 0 0 0 0 0 0 1 0 0 0
A4 0 0 0 0.223 0 0.106 0.861 0 0 0.033 0 0 0
A4 0 0.113 0 0 0.209 0 0.568 0 0 0 0 0 0
A12 0 0 0 0 0 0 0.887 0 0 0 0 0 0
B1 0 0 0 0 0.029 0.115 0.856 0 0 0 0 0 0
B4 0 0 0 0 0 0 0.824 0 0 0.176 0 0 0
B12 0 0 0 0 0 0 0.683 0 0 0.317 0 0 0
C1 0 0 0 0 0 0 0.714 0.193 0.093 0 0 0 0
C1 0 0 0 0 0 1 0 0 0 0 0 0 0
C4 0 0 0 0 0 0 1 0 0 0 0.193 0 0
C4 0 0 0 0 0 0.011 0.796 1 0 0 0 0 0
C12 0 0 0 0 0 0 0.960 0 0 0.040 0 0 0
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Table A.2: Symmetric equilibria for games without market making, N = 25, calculated from the 5-player DPR approximation. Data
presented is as for Table A.1. Each row corresponds to the matching row in Table 4.3.

Env 65* 125* 125 250* 250 500 500** 1000* 1000 1000‡ 1500† 2000‡ 2500

A1 0 0 0 0 0 0 0 0 0 0.978 0.022 0 0
A1 0 0 0 0 0 0.035 0.965 0 0 0 0 0 0
A4 0 0 0 0 0 0.318 0.682 0 0 0 0 0 0
A12 0 0 0 0 0 0 1 0 0 0 0 0 0
A24 0 0 0 0.256 0 0.744 0 0 0 0 0 0 0
A24 0 0 0.132 0.868 0 0 0 0 0 0 0 0 0
A1 0.072 0 0 0 0 0 0.928 0 0 0 0 0 0
B1 0 0 0 0 0 0 0 0 0 1 0 0 0
B4 0 0 0 0 0 0 0.525 0 0 0.475 0 0 0
B12 0 0 0 0 0 0 0.491 0.039 0 0.470 0 0 0
B24 0 0 0 0 0 0 0.621 0 0 0.379 0 0 0
C1 0 0 0 0 0 0 1 0 0 0 0 0 0
C4 0 0 0 0 0 0 0.823 0 0 0.177 0 0 0
C12 0 0 0 0 0 0 0.694 0 0 0.306 0 0 0
C24 0 0 0 0 0 0 0.730 0 0 0.270 0 0 0
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A.2 Equilibria in Games with a Market Maker

Table A.3: Role-symmetric equilibria for games with a market maker, N = 66, calculated from the (6, 1)-player DPR approximation.
The numeric column headings give Rmax values for the ZI strategies as in Table A.1, followed by ω values for the MM strategies. All
MM strategies use K = 100 and ξ = 50 except those with subscripts indicating the ξ used. Each row of the table corresponds to the
matching row in Table 4.5 and describes one equilibrium found. The columns for Rmax values of 2000‡ and 2500, as well as MM ω
values of 64, 128, and 25625, are not listed in the table as these strategies are not played in any of the equilibria found.

Env
Background-trader Rmax Market maker ω

65* 125* 125 250* 250 500 500** 1000* 1000 1000‡ 1500† 256 512 512100 1024

A1 0 0 0 0.337 0.076 0.273 0.314 0 0 0 0 0 0.787 0.213 0
A1 0 0 0.116 0 0.185 0.699 0 0 0 0 0 0 0 1 0
A1 0.061 0 0 0.225 0 0 0.714 0 0 0 0 0 1 0 0
A4 0.034 0.072 0 0.724 0 0.171 0 0 0 0 0 1 0 0 0
A12 0 0.261 0 0 0.739 0 0 0 0 0 0 1 0 0 0
A12 0 0 0.144 0.254 0.602 0 0 0 0 0 0 1 0 0 0
B1 0 0 0 0 0 0 0.845 0 0 0.155 0 0 0 0.181 0.819
B4 0 0 0 0 0 0 0.843 0 0.012 0 0.145 0 0 1 0
B12 0 0 0 0 0 0 0.934 0 0 0 0.066 0 0 1 0
B12 0 0 0 0 0 0.032 0 0.968 0 0 0 0.082 0.918 0 0
C1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
C4 0 0 0 0 0 0 0.634 0.23 0.136 0 0 1 0 0 0
C4 0 0 0 0.081 0 0.919 0 0 0 0 0 1 0 0 0
C12 0 0 0 0 0 0 0 0.678 0.322 0 0 1 0 0 0
C12 0 0 0 0 0 0 0.554 0.446 0 0 0 1 0 0 0
C12 0 0 0 0.119 0 0 0 0 0.881 0 0 1 0 0 0
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Table A.4: Role-symmetric equilibria for games with a market maker, N = 25, calculated from the (5, 1)-player DPR approximation.
Each row of the table corresponds to the matching row in Table 4.6 and describes one equilibrium found. Data presented is as for
Table A.3, but with columns for Rmax values of 2000‡ and 2500 and MM ω values of 64, 128, and 1024 excluded from the table as these
strategies are not played in any of the equilibria found.

Env
Background-trader Rmax Market maker ω

65* 125* 125 250* 250 500 500** 1000* 1000 1000‡ 1500† 25625 256 512 512100

A1 0 0 0 0.687 0 0.313 0 0 0 0 0 0 0 1 0
A1 0 0 0.156 0.300 0.544 0 0 0 0 0 0 0 0 0 1
A4 0 0 0 0.519 0 0.462 0.019 0 0 0 0 0 0 0 1
A4 0 0 0 0.221 0.779 0 0 0 0 0 0 0 0 0 1
A4 0 0 0 0.419 0.127 0.42 0.034 0 0 0 0 0 0 1 0
A4 0 0 0.130 0 0.870 0 0 0 0 0 0 0 0 0 1
A12 0 0.587 0 0 0.413 0 0 0 0 0 0 1 0 0 0
A12 0.149 0 0 0.835 0.016 0 0 0 0 0 0 1 0 0 0
A12 0 0 0.349 0 0.651 0 0 0 0 0 0 0.139 0.861 0 0
A24 0 0 0 0.856 0 0.112 0 0.32 0 0 0 0 0.321 0.679 0
A24 0.170 0.830 0 0 0 0 0 0 0 0 0 0 1 0 0
B1 0 0 0 0 0 0.367 0.633 0 0 0 0 0 0 0 1
B1 0 0 0 0 0 0 0.81 0 0 0.19 0 0 0 0 1
B4 0 0 0 0 0 0.088 0 0.912 0 0 0 0 0.852 0.148 0
B12 0 0 0 0 0 0 0.754 0.092 0 0.154 0 0 0 0.669 0.331
B24 0 0 0 0 0 0 0 0.256 0.537 0.208 0 0 1 0 0
B24 0 0 0 0 0 0 0.61 0.031 0.359 0 0 0 0 0 1
C1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1

Continued on next page
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Table A.4 – Continued from previous page

Env
Background-trader Rmax Market maker ω

65* 125* 125 250* 250 500 500** 1000* 1000 1000‡ 1500† 25625 256 512 512100

C4 0 0 0 0 0 0.083 0.917 0 0 0 0 0 0 1 0
C12 0 0 0 0 0.315 0 0 0.685 0 0 0 1 0 0 0
C12 0 0 0 0 0.656 0 0 0.344 0 0 0 0 0 1 0
C12 0 0 0 0 0.239 0.742 0 0.019 0 0 0 0 1 0 0
C24 0 0 0 0 0 0 0.155 0.761 0 0 0.084 0 1 0 0
C24 0 0 0 0 0 0 0.897 0.103 0 0 0 0 0 1 0
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Table B.1: Symmetric equilibria for market structure games for environment 1, N = 24, calculated from the 4-player DPR approxima-
tion. There is one game per latency δ ∈ {0, 100, 200, 300, 400, 600, 700, 900} per market configuration, which includes the two-market
model (2M) both with and without LA, the centralized CDA, and the frequent call market (for which latency is equivalent to the length
of the clearing interval). Each row of the table describes the mixture probabilities for strategies for one equilibrium, and corresponds to
the matching row in Table 5.2. The numeric column headings give Rmax values for the ZI strategies, for each role. All strategies employ
Rmin = 0, with the exception of the double star and double dagger (‡) values which use Rmin = 1

2
Rmax. All strategies employ η = 1,

except for the dagger (†) value which uses η = 0.6, and the circle (◦) and double dagger (‡) values which both use η = 0.4.

Model Latency 125 250 500 500** 1000 1000‡ 1000** 1500† 2000‡ 2500◦ 2500

CDA – 0 0 0 0.096 0 0 0 0 0.528 0.376 0
CDA – 0 0 0 0 0 0 0 0 0.507 0.493 0
2M 0 0 0 0 0 0 0 0 0 0 1 0
2M 0 0 0 0 0.177 0 0.123 0 0 0 0.7 0
Call 100 0.15 0.324 0 0 0 0 0 0.052 0 0.474 0
2M (no LA) 100 0 0 0 0 0 0 0 0 0.758 0.242 0
2M (no LA) 100 0 0 0 0 0 0.602 0 0 0.239 0.159 0
2M (LA) 100 0 0 0 0 0 0.237 0 0 0.537 0.226 0
Call 200 0.368 0 0.094 0 0.042 0 0 0 0 0.496 0
2M (no LA) 200 0 0 0 0 0 0.381 0 0 0.338 0.281 0
2M (LA) 200 0 0 0 0 0 0 0 0 0.679 0.321 0
Call 300 0.094 0.371 0 0 0 0 0 0 0 0.535 0
2M (no LA) 300 0 0 0 0 0 0 0 0 0.608 0.392 0
2M (no LA) 300 0 0 0 0 0 0.692 0 0 0.036 0.272 0
2M (LA) 300 0 0 0 0 0 0 0 0 0.655 0.345 0
Call 400 0 0 0.835 0.036 0 0 0 0 0 0 0.129
Call 400 0 0.416 0 0.163 0 0 0 0 0 0.421 0
Call 400 0 0.055 0 0.347 0.501 0 0 0.097 0 0 0
2M (no LA) 400 0 0 0 0 0 0 0 0 0.595 0.405 0

Continued on next page
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Table B.1 – Continued from previous page

Model Latency 125 250 500 500** 1000 1000‡ 1000** 1500† 2000‡ 2500◦ 2500

2M (LA) 400 0 0 0 0 0 0.47 0 0 0.258 0.272 0
Call 600 0 0.477 0 0 0.523 0 0 0 0 0 0
Call 600 0.22 0 0 0 0.379 0 0 0 0 0.401 0
Call 600 0.271 0.207 0 0.023 0 0 0 0 0 0.499 0
2M (no LA) 600 0 0 0 0 0 1 0 0 0 0 0
2M (no LA) 600 0 0 0 0 0 0.81 0 0 0 0.19 0
2M (LA) 600 0 0 0 0 0 0 0.029 0 0 0.971 0
2M (LA) 600 0 0 0 0 0 0.635 0 0 0 0.365 0
2M (LA) 600 0 0 0 0 0 0 0 0 0.643 0.308 0.049
Call 700 0.162 0.484 0.022 0 0.258 0 0 0.008 0 0.066 0
Call 700 0.185 0.471 0 0.059 0.216 0 0 0 0 0.069 0
2M (no LA) 700 0 0 0 0 0 0 0 0.209 0.791 0 0
2M (no LA) 700 0 0 0 0 0 0.739 0 0 0 0.261 0
2M (LA) 700 0 0 0 0 0 0.006 0 0 0.826 0.168 0
Call 900 0 0.246 0.498 0.256 0 0 0 0 0 0 0
2M (no LA) 900 0 0 0 0 0 0 0 0 0.836 0 0.164
2M (no LA) 900 0 0 0 0 0 0 0 0 0 1 0
2M (no LA) 900 0 0 0 0 0 0 0 0 0.537 0.463 0
2M (LA) 900 0 0 0 0 0 0 0.129 0.871 0 0 0
2M (LA) 900 0 0 0 0 0 0.131 0 0 0 0.869 0
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Table B.2: Symmetric equilibria for market structure games for environment 2, N = 238, calculated from the 4-player DPR approx-
imation. There is one game per latency δ ∈ {0, 50, 100} per market configuration, which includes the two-market model (2M) both
with and without LA, the centralized CDA, and the frequent call market (for which latency is equivalent to the length of the clearing
interval). Each row of the table describes the mixture probabilities for strategies for one equilibrium, and corresponds to the matching
row in Table 5.3. Data presented is as for Table B.1.

Model Latency 125 250 500 500** 1000 1000‡ 1000** 1500† 2000‡ 2500◦ 2500

CDA – 0 0 0 0 0 0 0 0 0 0.726 0.274
CDA – 0 0 0 0 0 0 0 0 0 0.659 0.341
2M 0 0.146 0 0 0 0 0 0 0 0 0.854 0
Call 50 0 0 0 0 0 0 0 0 0 1 0
2M (no LA) 50 0 0.162 0 0 0 0 0 0 0 0.838 0
2M (LA) 50 0 0 0.188 0 0 0 0 0 0 0.812 0
Call 100 0 0 0 0 0 0 0 0 0.1 0.739 0.161
2M (no LA) 100 0.051 0 0 0 0 0 0 0 0 0.76 0.189
2M (LA) 100 0 0 0 0 0 0 0 0 0.233 0.767 0

Table B.3: Symmetric equilibria for market structure games for environment 3, N = 58, calculated from the 4-player DPR approxima-
tion. There is one game per latency δ ∈ {0, 25, 50, 75, 100} per market configuration, which includes the two-market model (2M) both
with and without LA, the centralized CDA, and the frequent call market (for which latency is equivalent to the length of the clearing
interval). Each row of the table describes the mixture probabilities for strategies for one equilibrium, and corresponds to the matching
row in Table 5.4. Data presented is as for Table B.1.

Model Latency 125 250 500 500** 1000 1000‡ 1000** 1500† 2000‡ 2500◦ 2500

CDA – 0 0 0 0 0 0 0 0 0.248 0.752 0
2M 0 0 0 0.017 0 0 0 0 0 0.004 0.979 0

Continued on next page

126



Table B.3 – Continued from previous page

Model Latency 125 250 500 500** 1000 1000‡ 1000** 1500† 2000‡ 2500◦ 2500

Call 25 0 0 0.06 0 0 0 0 0 0 0.735 0.205
2M (no LA) 25 0 0 0 0 0 0 0 0 0 0.854 0.146
2M (LA) 25 0 0 0 0 0 0.117 0 0 0.883 0 0
2M (LA) 25 0 0 0 0 0 0 0 0 0.21 0.79 0
Call 50 0 0 0 0 0 0 0 0 0 1 0
2M (no LA) 50 0 0 0 0 0 0 0 0 0.782 0 0.218
2M (no LA) 50 0 0 0 0 0 0 0 0 0 0.948 0.052
2M (LA) 50 0 0 0 0 0 0 0.142 0 0.793 0 0.065
2M (LA) 50 0 0 0 0 0 0 0 0.065 0.043 0.892 0
Call 75 0 0.12 0 0 0 0 0 0 0 0.88 0
2M (no LA) 75 0 0 0 0 0 0 0 0 0 0.823 0.177
2M (LA) 75 0 0 0 0 0 0 0 0 0.142 0.858 0
Call 100 0 0 0 0 0 0 0 0 0.18 0.82 0
2M (no LA) 100 0 0 0 0 0 0 0 0 0.722 0.002 0.276
2M (no LA) 100 0 0 0 0 0 0 0 0 0 0.839 0.161
2M (LA) 100 0 0 0.082 0 0 0 0 0 0.918 0 0
2M (LA) 100 0 0 0.015 0 0 0 0 0 0.231 0.754 0
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Table C.1: Role-symmetric equilibria for the first four strategic market choice games (one each for environments I–IV), NFAST =
NSLOW = 21, calculated from the (3, 3)-player DPR approximation. Each row of the table describes one equilibrium found, the selected
market mechanism (CALL or CDA), the welfare (total surplus of all players), and the mixture probabilities of strategies for each role in
the RSNE. The numeric column headings give Rmax values for the ZI strategies, for each role. All strategies employ Rmin = 0, with the
exception of the double star and double dagger (‡) values which use Rmin = 1

2
Rmax = 500. All strategies employ η = 1, except for the

double dagger (‡) values which use η = 0.4. A dash indicates that a strategy is not available for the specified market type. There is at
least one all-CALL RSNE in each environment; all but environment IV have at least one all-CDA equilibrium.

Env Market Welfare
FAST SLOW

125 250 500 1000 1000‡ 1000** 2500 125 250 500 1000 1000‡ 1000** 2500

I CALL 27288 0 .965 .035 0 – 0 0 .106 0 .894 0 – 0 0
I CALL 26697 .212 0 .788 0 – 0 0 0 .037 0 .963 – 0 0
I CDA 27261 0 0 1 0 0 – 0 .277 0 .723 0 0 – 0
I CDA 26785 0 .064 .551 0 .385 – 0 0 0 1 0 0 – 0
I CDA 25321 0 0 .422 .483 .095 – 0 0 0 0 0 1 – 0
I CDA 26133 0 0 .383 0 .617 – 0 0 0 0 1 0 – 0

II CALL 21050 .347 .120 0 0 – 0 .533 0 0 0 0 – 0 1
II CDA 21242 0 0 .080 0 .920 – 0 0 0 0 0 0 – 1

III CALL 19992 .510 0 0 0 – 0 .490 0 0 0 0 – 0 1
III CALL 20441 0 0 0 1 – 0 0 .117 0 0 0 – 0 .883
III CDA 19734 0 0 0 0 1 – 0 0 0 0 0 0 – 1

IV CALL 18067 .236 0 0 0 – 0 .764 0 0 0 0 – 0 1
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Table C.2: Role-symmetric equilibria for the three strategic market choice games without mean reversion (one each for environments
V–VII), NFAST = NSLOW = 21, calculated from the (3, 3)-player DPR approximation. Data presented is as for Table C.1. There is at least
one all-CDA RSNE in each environment. Environment V has one equilibrium in which the FAST traders are in both the CALL and the
CDA, and all SLOW traders are in the CALL; all reported mixture probabilities for this RSNE are for the CALL, with the exception of
column Rmax = 1000‡ (which is the only strategy in the CDA in this equilibrium).

Env Market Welfare
FAST SLOW

125 250 500 1000 1000‡ 1000** 2500 125 250 500 1000 1000‡ 1000** 2500

V Both 24038 0 .243 .506 0 .251 0 0 0 0 0 0 – 1 0
V CDA 26457 0 0 0 0 1 – 0 0 0 0 0 1 – 0

VI CDA 28681 0 0 0 0 1 – 0 0 0 0 0 1 – 0

VII CDA 29412 0 0 0 0 1 – 0 0 0 0 0 1 – 0
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