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ABSTRACT 
 

Hydrogenation and dehydrogenation transformations are fundamental in chemical synthesis and 

are used in a wide variety of industrial processes for manufacturing pharmaceutical drugs, 

agrochemicals, and liquid fuels. Over the past decade, homogeneous transition-metal catalyst 

mediated dehydrogenation reactions have emerged as an atom-economical and selective 

methodology to either promote H2 release from suitable biomass feedstocks for chemical energy 

storage applications or reveal a reactive unsaturated synthon that can undergo tandem 

functionalization reactivity to construct new C–C, C–O, or C–N bonds. In this dissertation, 

transition metal complexes supported by bpi-type (bpi = 1,3-bis(2’-pyridylimino)isoindolate) 

ligands were designed and synthesized to study their activity, selectivity, and stability in 

hydrogenation and dehydrogenation reactions and to determine the role of the bpi ligand in these 

transformations. A new family of Ru–bpi complexes capable of catalyzing promoterless and 

chemoselective dehydrogenation of alcohols and amines with liberation of H2 were developed. In 

particular, the HRu(bMepi)(PPh3)2 (bMepi = 1,3-bis(6’-methyl-2’-pyridylimino)isoindolate) 

system mediates dehydrogenation of secondary alcohols to ketones, dehydrogenative coupling of 

primary alcohols to esters, and double dehydrogenation of primary amines to nitriles with high 

conversion efficiencies. An unusual feature of this catalyst system is the high selectivity for 

secondary alcohol dehydrogenation in the presence of primary alcohols and the chemoselective 

dehydrogenation of primary amines with –CH2NH2 functionality in the presence of primary 

amines without α hydrogens. By avoiding the use of hazardous reagents and harsh oxidants, 

these dehydrogenative transformations provide environmentally benign methodologies for fine 

and commodity chemical synthesis with high atom economy. Furthermore, to understand the 

relationship between catalyst structure and reactivity, the catalytic mechanism of acceptorless 

alcohol dehydrogenation was elucidated by a series of kinetic and isotopic labeling studies, 

isolation of intermediates, and evaluation of new ligand variants. The new chemical knowledge 

acquired in the mechanistic investigation was applied to conceptualize and develop three new 



xvi 

projects: (1) Fe–bMepi systems that feature control over catalytic alkene hydroboration activity 

and regioselectivity by remote site modifications, (2) Ru–bpi complexes capable of upgrading 

ethanol to 1-butanol with state-of-the-art activity (53% conversion and 265 turnovers per hour), 

and (3) a new series of multifunctional Ru complexes with appended Lewis acidic BR2 sites via 

B–H bond activation for studying how Lewis acidity influences the reactivity of the Ru hydride 

moiety and biases the system for cis-selective semi-hydrogenation of alkynes. Collectively, the 

studies presented in this dissertation demonstrate the new development of highly active and 

chemoselective catalysts capable of promoting challenging dehydrogenation reactions and 

showcase how precise structural, electronic, and cooperative interactions in the secondary 

coordination environment can be used to regulate metal-based catalysis. 

 



 

1 

CHAPTER 1 

Introduction 

 

Portions of this chapter have been published: 

Tseng, K.-N. T.; Szymczak, N. K. Synlett 2014, 25, 2385. Reprinted with permission; Copyright 

(2014) Georg Thieme Verlag Stuttgart. 

1.1 Homogeneous Transition Metal Catalyzed Dehydrogenative Reactions 

1.1.1 Dehydrogenative Activation of Organic Substrates 

Hydrogenation and dehydrogenation reactions are fundamental in synthetic organic chemistry 

and are used in a variety of industrial- and small- processes for manufacturing fine and 

commodity chemicals.1 Homogeneous transition-metal catalyst mediated dehydrogenative 

reactions have evolved as an atom-economical and selective methodology for upgrading small 

molecules into higher order products.2 In general, the initial dehydrogenation reaction reveals a 

more reactive organic synthon that can undergo tandem functionalization reactivity to construct 

new C–C and/or C–E (E = O, N) bonds. The H2 that is released as a byproduct can be used in a 

hydrogenation reaction to reduce the functionalized intermediate or a sacrificial hydrogen 

acceptor. This reaction class is termed “hydrogen borrowing” chemistry and is commonly used 

in hydrogen-transfer catalysis and processes such as alkane metathesis and amine alkylation 

(Figure 1-1, left panel).3 Alternatively when H2 is liberated, this class of reactions is termed 

acceptorless dehydrogenative coupling (ADC), which has led to coupling reactions of alcohol–

alcohol to form esters and lactones and alcohol–amine to generate amides, imines, and 

heterocyclic amines (Figure 1-1, right panel).4 



2 

 

Figure 1-1 General schemes for hydrogen borrowing chemistry and acceptorless 
dehydrogenative coupling reactions. 

1.1.2 Hydrogen Borrowing Chemistry 

Over a hundred years ago, the Guerbet reaction was the earliest reported example related 

to hydrogen borrowing chemistry.5 The Guerbet sequence applies a series of reactions for the 

coupling of linear primary alcohols into β-branched primary alcohols (Figure 1-2).6 The 

mechanism initiates with the dehydrogenation of the alcohol to generate the corresponding 

aldehyde, which undergoes nucleophilic attack by the aldehyde enolate in an aldol condensation. 

Loss of H2O affords an α,β-unsaturated aldehyde that is hydrogenated by hydrogen transfer from 

the starting alcohols. The final hydrogenation step provides high atom economy by borrowing 

hydrogens from the initial alcohol dehydrogenation reaction. Thermodynamically, the process of 

H2 formation from alcohols is generally unfavorable. For instance, the dehydrogenation of 

isopropanol (iPrOH) to acetone and H2 is endothermic by 16.5 kcal/mol.7  Because the final 

hydrogenation is exothermic to approximately the same magnitude as the initial dehydrogenation, 

the hydrogenation reaction helps drive the dehydrogenation step by establishing thermodynamic 

neutrality for the sum for the first and last steps. 

 

Figure 1-2 The three-step reaction sequence for the Guerbet process. 
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 Recent developments in hydrogen-transfer catalysis have stemmed from studies in the 

area of alcohol oxidation since 1925.8 The oxidation of a C–O bond to a carbonyl unit is 

thermodynamically unfavorable; hence the reduction of a sacrificial reagent has accompanied the 

traditional alcohol oxidation methods to drive the reaction toward full conversion. Meerwein–

Ponndorf–Verley (MPV) reductions use aluminum alkoxides to mediate the hydrogenation of 

aldehydes and ketones by formally transferring hydrogen atoms borrowed from alcohols (Figure 

1-3).9 Secondary alcohols (e.g., iPrOH) are commonly used as H2 surrogates because of greater 

reducing potential than primary alcohols10 and the corresponding ketone products are unlikely to 

deactivate the metal center via a decarbonylation pathway, which is commonly observed for 

aldehydes.11 In particular, the MVP method chemoselectively reduces aldehydes before ketones. 

The reverse reaction of MVP reduction is the Oppenauer oxidation (Figure 1-3), which 

dehydrogenates alcohols to aldehydes or ketones with the requirement of added hydrogen 

acceptors (e.g., acetone).12 In addition to aluminum-based alkoxides, alkali metal13 and 

lanthanide14 alkoxides are capable bases in this transformation. Oppenauer oxidation uses less 

toxic reagents and milder reaction conditions than the typical oxidation routes (e.g., Dess–Martin 

periodiane,15 Jones’s oxidant,16 and Swern’s methodology17) and chemoselectively oxidizes 

secondary alcohols faster than primary alcohols. However, MPV reduction and Oppenauer 

oxidation often require stoichiometric amounts of metal alkoxides, which decrease the atom 

economy by contributing to unwanted waste products. Thus, catalytically active systems that 

operate under base-free and acceptorless conditions are highly appealing. 

 

Figure 1-3 Hydrogen-transfer reactions using an alcohol as a H2 surrogate. 

1.1.3 Base-Free and Acceptorless Alcohol Dehydrogenation Catalyzed by Bifunctional 

Systems 

In the 1970s, several reports demonstrated that transition-metal complexes incorporating 

Rh,18 Ru,19 or Ir20 centers catalyzed Oppenauer-type alcohol oxidation reactions. These early 

examples required the addition of super-stoichiometric quantities of an acidic21 or basic22 reagent 
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with respect to the metal complex or high temperatures (195 °C)19b for efficient catalysis. In 

contrast, recent reports have shown that bifunctional systems can catalyze acceptorless alcohol 

dehydrogenation (AAD) reactions under neutral conditions at lower temperatures (90–

110 °C).4a,8a,23 This class of catalysts operates via a metal–ligand cooperative pathway that 

differs from the classical inner-sphere mechanism by not requiring coordination of the substrate, 

thus enabling outer-sphere proton transfer to a ligand-based basic site with concurrent hydride 

transfer to the metal center.4b,8g,24 

 

Figure 1-4 Bifunctional catalysts that operate through metal–ligand cooperative pathways for 
alcohol dehydrogenation. 

 In 1986, Shvo introduced a Ru dimer system for dehydrogenation and hydrogenation 

reactions that uses cyclopentadienone ligands to assist in outer-sphere proton transfer (Figure 1-4, 
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top left panel).8b,25 Shvo’s bifunctional catalyst (0.5 mol%) promoted dehydrogenation of 

primary and secondary alcohols to the corresponding aldehydes and ketones under neutral 

condition in refluxing (56 °C) acetone, which functioned as a hydrogen acceptor.26 Detailed 

kinetic and isotopic labeling experiments, trapping of intermediates and catalyst modifications 

have supported an outer-sphere, concerted pathway in which a proton is transferred to the enone 

ligand and a hydride transfers to the metal center.8b,27 In 2010, Guan and co-workers showed that 

analogous Fe catalysts (Knölker complex) were also efficient for the Oppenauer-type oxidation 

of primary and secondary alcohols using 3 mol% catalyst loading in acetone at 60 °C.28 

A year later, Milstein’s group developed a series of PNE (E = NEt2 or PtBu2) Ru 

complexes (2, HRu(tBuPNNEt)CO) capable of catalyzing alcohol dehydrogenation reactions 

without the requirements of added hydrogen acceptor or base.4,24,29 Although Milstein’s systems 

operated at a higher temperature (110 °C) than Shvo’s catalyst, the reaction conditions used a 

lower catalyst loading (0.1 mol%) without any hydrogen acceptors. Computational studies 

revealed that 2 favors an outer-sphere bifunctional hydrogen transfer pathway that employ 

cooperation of the metal center with the ligand via aromatization–dearomatization sequences of 

the central pyridinyl group concomitant with protonation–deprotonation of the adjacent 

methylene arm (Figure 1-4, top right panel).23b,30 

Also in 2011, Beller and co-workers demonstrated unprecedented activity for the 

promoterless dehydrogenation of ethanol (EtOH) and iPrOH catalyzed by Ru(H)2(PNPiPr)CO 

(3),23a,31 which features a Ru–amine/amide motif that bears a high resemblance to Noyori’s 

asymmetric hydrogenation catalysts.1a,8h,32 For instance, 3 exhibited a turnover number (TON) of 

more than 40,000 after 12 h for the catalytic conversion of iPrOH to acetone using 4.0 ppm 

catalyst loading at 90 °C. The operating alcohol dehydrogenation mechanism for 3 was 

postulated to proceed via an outer-sphere pathway involving metal–ligand cooperativity that 

requires proton transfer to the central amide nitrogen of the pincer ligand and hydride transfer to 

the metal center (Figure 1-4, bottom left panel).33 

Later that year, Yamaguchi, Fujita, and Kawahara reported a new water-soluble 

Cp*Ir(bpyO) (4, α,α’-bipyridonate) catalyst for the dehydrogenation of primary and secondary 

alcohols which can be performed in water with no additives.34 The advantage of using 4 (1 

mol%) in aqueous media was demonstrated by easily recovering the catalyst in the aqueous 
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phase to allow for eight consecutive dehydrogenation of 1-(4-methoxyphenyl)ethanol with 

minimal loss in catalytic activity (94–98% yield). Computation studies showed that 4 also 

operates via an outer-sphere pathway, where the metal center and the bipyridonate motif work 

synergistically to oxidize the alcohol en route to H2 elimination with the aid of an alcohol bridge 

(Figure 1-4, bottom right panel).35 

In summary, collectively, these and related studies establish the importance of a 

cooperative mechanism to achieve efficient alcohol dehydrogenation activity with high atom 

economy. The field of alcohol oxidation using homogeneous catalysis has transitioned from 

performing the reaction using hazardous/energy-intensive oxidants under harsh reaction 

conditions to promoter- and activator-less conditions at 90–110 °C. TONs have significantly 

improved from less than 100 to more than 40,000 for dehydrogenation of model substrates, 

hereof especially iPrOH and 1-phenylethanol (1PhEtOH) derivatives. However, most of these 

catalytic systems required precious metals such as Ru and Ir. The development of new efficient 

systems containing non-toxic, abundant, and inexpensive metals for catalytic dehydrogenation of 

alcohols is highly desirable. 

1.1.4 Acceptorless Dehydrogenative Coupling 

 Because C–E (E = O, N) bonds are ubiquitous in natural products, pharmaceutical drugs, 

and many other commodity chemicals, ADC reactions have emerged as an environmentally 

benign and atom-economical synthetic strategy for the preparation of a diverse collection of 

useful products.4a In this context, dehydrogenated products from AAD reactions can undergo 

follow up reactivity to form new C–E bonds without the requirement of stoichiometric amounts 

of activating reagents or pre-functionalization of substrates. For example, AAD of primary 

alcohols exposes an electrophilic aldehyde group that can undergo nucleophilic attack by 

alcohols or amines to generate ester or amide products with concomitant release of H2. 

Thermodynamically analogous to alcohol dehydrogenation (vide supra), the formation of these 

coupling products and H2 from alcohols/amines is generally unfavorable. For instance, the 

homocoupling of EtOH to generate ethyl acetate and 2 equiv of H2 is endothermic by 17.4 

kcal/mol. Thus, ADC reactions are only possible at elevated temperatures or if the hydrogen gas 

produced are expelled from the system. 
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Table 1-1 ADC of Primary Alcohols to Esters 

 

entry alcohol or diol catalyst (mol%) T (°C) solvent time (h) TON 
1 1-butanol 2 mol% Ru(H)2(PPh3)4 180 PhMe 24 40 
2a 1,4-butanediol 2 mol% Ru(H)2(PPh3)4 180 PhMe 3 50 
3 1-butanol 0.1 mol% 2 117 neat 5 900 
4 1-butanol 0.1 mol% Ru(H)2(PPh3)4 117 neat 72 0 
5 benzyl alcohol 0.1 mol% Shvo’s Ru dimer 115 neat 24 0 
6 1-butanol 0.1 mol% 2-BH4 110 PhMe 24 960 
7 1,4-butanediol 0.3 mol% 2-BH4 115 PhMe 48 258 

aAdded 1 equiv of acetone. 

 

Figure 1-5 Selective lactonization or esterification catalyzed by Ru(H)2(PPh3)4. 

In 1981, Murahashi’s group demonstrated the first example of ADC reactivity with 

primary alcohols. Aliphatic and aromatic primary alcohols and diols were converted to ester and 

lactone products in 52–88% yield using 2 mol% Ru(H)2(PPh3)4 (5) in PhMe heated to 180 °C in 

a sealed vessel (Table 1-1, entries 1 and 2).36 The conversion of diols to lactones required 

exogenous 1–3 equiv of acetone as a hydrogen acceptor. In the absence of acetone, the 

conversion was limited to 40–50% (TON of 20–25). Four years later, Shvo and Blum described a 

single example of ADC of benzyl alcohol to benzoate catalyzed by Shvo’s Ru dimer with a TON 

of 225 at 145 °C in a closed system.37 Unfortunately, no further experimental details or substrate 

scope has since been reported using Shvo’s catalyst. In 1987, Murahashi and co-workers 

followed up on the 1981 Letter and showed that perfume esters such as 2-methylpentyl 2-

methylpentanoate (60% yield) were obtained using a similar protocol.38 In addition, selective 

lactonization or esterification was achieved using 1,5-pentanediol and 2 mol% 5 in PhMe heated 
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to 180 °C for 24 h (Figure 1-5). With no additives, intramolecular ADC coupling of 1,5-

pentanediol generated δ-valerolactone in 82% yield. However, addition of 1 equiv of ACN to the 

reaction mixture inhibited lactonization and exclusively synthesized 5-hydroxypentyl 5-

hydroxypentanoate in 41% yield. 

 The field of ADC remained stagnant until 2005 when Milstein and co-workers reported 2 

for efficient catalytic dehydrogenation of primary alcohols to esters with liberation of H2 under 

mild conditions.39 A TON of 900 was measured for the conversion of 1-butanol (1-BuOH) to 

butyl butyrate in the presence of 0.1 mol% 2 in neat alcohol heated to 117 °C for 5 h (Table 1, 

entry 3). Under the same reaction conditions, Milstein illustrated that no ester product and 2% 

aldehyde products were observed when 5 or Shvo’s catalyst was used instead of 2 (Table 1-1, 

entries 4 and 5). In addition, Milstein’s group developed a borohydride variant (2-BH4, 
HRu(HRu(tBuPNNEt)BH4) of 2 by substituting the carbonyl ligand for a η2-BH4 ligand on the Ru 

center.29 2-BH4 was found to catalyze ADC reactivity of primary alcohols and diols (Table 1-1, 

entries 6 and 7). For instance, 72–90% yields of lactones were obtained from acceptorless 

dehydrogenative cyclization of diols mediated by 2-BH4 under base-free conditions in refluxing 

PhMe. 

 

Figure 1-6 Generalized examples of ADC of alcohols with amines to form amides. 

Since 2005, Milstein’s group has been investigating ADC reactions for a variety of 

synthetic applications by expanding the scope of the coupling partners to include amines.4a In 

2007, Gunanathan, Ben-David, and Milstein introduced the first example of amide synthesis 

using ADC of primary alcohols with amines catalyzed by 2 (Figure 1-6, top equation).40 The 

substrate scope included coupling of aliphatic alcohols with alkyl and aryl amines and diamines 

to produce the corresponding amides and diamides in 58–99% yield with release of 2 equiv of H2 
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under 0.1 mol% 2 in refluxing PhMe for 7–12 h. ADC reactions of alcohols with activated 

amines generally resulted in lower yields due to the decrease in nucleophilicity of aryl amines. 

Following this report, a number of Ru systems incorporating carbene and/or phosphine ligands 

were found to catalyze this transformation with higher catalyst loading (5 mol%) and the 

requirement of added base (10–35 mol%).41 In 2011, Milstein and co-workers examined 

intramolecular ADC reactions of alkanolamines.42 For instance, complex 2 catalyzed the 

conversion of various alkanolamines with substituents larger than methyl α to the amine group to 

the corresponding cyclic dipeptides (diketopiperazines) as the sole products in 64–92% yields 

(Figure 1-6, bottom equation).42b 

  In summary, the synthetic applications of ADC have broadened considerably since the 

seminal work from Murahashi and co-workers in 1981. An assortment of useful products, which 

include esters, lactones, acetals, amides, lactams, peptides, polyamides, imides, imines, indoles, 

pyrroles, and pyrazines, can be synthesized using ADC methodologies. These examples 

demonstrate the versatility of dehydrogenation as an activation strategy to generate a more 

reactive unsaturated intermediate that can undergo tandem functionalization under mild 

conditions with no waste products. Future goals would target catalyst systems with enhanced 

activity and stability to deploy these reactions on an industrial scale. 

1.1.5 Dehydrogenative Oxidation of Amines to Nitriles 

Amine oxidation is a widely used synthetic strategy to generate key building blocks and 

synthons for further elaboration.43 Metal-based oxidants incorporating mid–high valent metals 

(Cr, Mn, Pb) and/or metal oxides (MnO2, Ag2O) are typically used as the hydrogen and/or 

electron acceptor.44 In some cases, these routes exhibit moderate to low selectivity and/or 

functional group tolerance, which may be overcome with milder oxidative protocols such as 

organic hydroperoxides, Dess-Martin periodinane, and Swern oxidation.45 However, all of these 

methods require stoichiometric or greater quantities, which necessarily are followed by the co-

production of waste byproducts that may be environmentally deleterious. These constraints have 

guided the development of transition-metal catalysts that mediate aerobic and dehydrogenative 

oxidation of polar N–H bonds (Figure 1-7).2,46 
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Figure 1-7 Oxidation of primary amines to nitriles using transition-metal catalysts under aerobic 
and dehydrogenative conditions. 

Transition-metal catalyzed amine oxidation has recently emerged as a complementary 

route that can achieve high selectivity and produce minimal waste.46a,46b The conversion of 

amines to nitriles can be promoted in either an oxidative46c-e or reductive46f-i environment. Using 

an oxidative catalyst protocol (exogenous O-atom donors and/or O2), water is formed as a 

byproduct.46c An alternative strategy is to use transition metal catalyzed dehydrogenative 

oxidation, wherein the release of H2 (a reductant) accompanies substrate oxidation.  

Although amine oxidation using dehydrogenative protocols may be conceptually 

analogous to alcohol oxidation,2,31c,47 few examples of transition-metal catalyzed amine 

dehydrogenation have been reported.34b,46f-i,48 The distinct reactivity likely stems from 

differences in nucleophilicity (required to coordinate to a transition metal and to initiate 

oxidation) and electrophilicity of the intermediate oxidation products having carbonyl and imine 

units. For instance, the imine intermediate that is generated following dehydrogenative activation 

of amines is more electrophilic than the corresponding carbonyl; thus, the imine unit is more 

likely to undergo nucleophilic attack by amines or alcohols/alkoxides under basic conditions. 

This unproductive pathway results in a decreased selectivity for the targeted oxidized product. 

Furthermore, ligand exchange and β-hydride elimination reactions from amino and/or amido 

complexes are generally slow, which presents a challenging scenario for catalysis.  

Most reported systems that catalyze amine dehydrogenation are limited to secondary 

amine substrates, where the corresponding secondary aldimine is less susceptible to nucleophilic 

attack.49 In contrast to secondary amines, when primary amines containing α-CH2 groups are 

subjected to dehydrogenative conditions, alkylation often ensues. Instead of double 

dehydrogenation to afford the nitrile, a secondary aldimine and/or secondary amine is formed in 

a reaction known as transamination (Figure 1-8),2 which is a type of hydrogen borrowing 

chemistry. Analogous to ADC of primary alcohols, the amine–amine coupling (transamination) 
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reaction operates via a similar pathway: dehydrogenation of a primary amine affords an imine 

intermediate that is susceptible to nucleophilic attack by an amine. Following elimination of 

ammonia, the corresponding secondary aldimine can be isolated, or more typically, is further 

hydrogenated to afford a secondary amine. This strategy can be used to synthesize tertiary 

amines when secondary amines are used as the nucleophilic partner. Following the initial report 

of transamination by Murahashi using Pd black,50 various late metal complexes containing Ru, 

Os, Ir, Pd, and Pt were also found to be active.51 In transamination reactions, nucleophilic attack 

of an amine on the transiently formed imine intermediate diverts the imine from a second 

dehydrogenation event. This competitive side reaction has so far limited the double 

dehydrogenation of primary amines to nitriles. Thus, a current challenge in dehydrogenative 

oxidation is the double dehydrogenation of primary amines to nitriles. 

 

Figure 1-8 Primary amine dehydrogenative pathways. 

In contrast to the myriad reports detailing transition metal catalyzed dehydrogenation of 

alcohols, analogous reports for amine dehydrogenation are scarce and even fewer are reported 

for the double dehydrogenation of primary amines.46f-i In 1979, the first example of amine 

double dehydrogenation catalyzed by HRh(PiPr3)3 was reported by Yoshida and co-workers.46f 

Their report described a single example of the dehydrogenation of benzyl amine to benzonitrile 

in 27% yield after 24 h at 110 °C using 1 mol% catalyst loading. Unfortunately, no further 

experimental details or substrate scope has since been reported that uses this intriguing system.  

 Almost 30 years later, Brookhart and Bernskoetter reported that an Ir-dihydride pincer 

complex (6) promoted the dehydrogenation of isobutylamine to form isobutyronitrile in the 

presence of excess hydrogen acceptor (tert-butylethylene) at 200 °C after 24 h (Figure 1-9).46g 
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The proposed catalytic cycle, supported by a series of kinetic rate data and isotopic labeling 

experiments, is consistent with a reversible N–H oxidative addition reaction followed by rate-

determining β-hydride elimination to generate an Ir-dihydride imine intermediate. Subsequent 

steps to afford an Ir-nitrile complex, which is the resting state of the catalyst, proceed rapidly 

with no dependence on the hydrogen acceptor.  

 

Figure 1-9 Primary amine dehydrogenation studies by Brookhart and Jensen. 

Later work by Jensen and co-workers showed that a hydrogen acceptor was not required 

for dehydrogenative reactivity by 6, and was reported for cyclohexanemethylamine (Figure 1-

9).46h In the absence of additives, they noted that nitrile, imine, and transamination products were 

formed. The product selectivity was not significantly affected by changing the reaction 

temperature (postulated to inhibit transamination). However, the selectivity for nitrile formation 

was improved in the presence of NaOtBu. When 10 mol% of NaOtBu was added, complex 6 

catalyzed the double dehydrogenation of cyclohexanemethylamine to cyclohexanecarbonitrile in 

95% yield, with trace amounts of the dialkylamine and imine products. Although these studies 

demonstrated the viability of amine dehydrogenation using 6 and either a hydrogen acceptor or 

an added base, a catalyst system that can accomplish this transformation without any additives 

and in good conversions remains highly attractive. 
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1.2 Bis(pyridylimino)isoindolate Transition Metal Complexes 

1.2.1 Introduction 

 The coordination chemistry of transition-metal complexes is dictated by the ancillary 

ligands, which also define their physical and chemical properties.23b,52 Since the late 1970s, 

pincer-type ligands have been extensively studied in organometallic chemistry and homogeneous 

catalysis.53 The term “pincer” is commonly used for all meridionally coordinating tridentate 

chelate ligands. The use of pincer frameworks in metal complexes has led to remarkable 

achievements in the field of small-molecule bond activation, which is relevant for catalytic 

applications.53a-c 

 

Figure 1-10 Coordination modes of bis(pyridylimino)isoindoline ligand. 

In 1952, Elvidge and Linstead introduced the first 1,3-bis(2’-pyridylimino)isoindoline 

(bpi) ligand as a byproduct of research into phthalocyanine derivatives, which are used as 

organic dyes/pigments.54 The bpi framework contains a central isoindoline group that is linked to 

two pyridyl rings with imine moieties.55 Investigation into the coordination chemistry of metal–

bpi complexes started in the 1970s,56 and bpi-type ligands typically coordinate in a meridional 

tridentate (N,N,N) fashion to the metal center as a L2X- or L3-type donor.57 Other denticities, 

such as κ2-(N,N), and coordination modes have also been characterized to afford homoleptic or 
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binuclear complexes (Figure 1-10).57c,57h,58 To date, bpi scaffolds have been employed as pincer 

ligands with almost the full range of transition metals, including Mn,58a,58d,59 

Fe,57d,57e,57g,57m,58a,58e,58h Co,57d,57f,57g,57i,57m,58a Ni,58a,60 Cu,57l,58a,61 Zn,58a,60,61c,62 Mo,58i,63 Ru,64 

Pd,57k,62a Cd,62,65 Rh,66 Os,57b Ir,57c,57h,66 Pt,67 and Hg68. Recent developments demonstrated bpi 

metal complexes as tunable and versatile structural building blocks for appealing applications 

ranging from material science (e.g., ion sensors,67b photoactive materials,69 and molecular 

electronics70) to enzyme modeling (e.g., phenoxazinone synthase,59,71 catalase,58d,72 catechol 

oxidase,58c,59,73 catechol dioxygenase,57n,61a,74 and superoxide dismutase75). In some cases, these 

transition-metal complexes have emerged as molecular catalysts in oxidation,57h,57k,57m,57n,58h,76 

hydrogenation,57k and asymmetric hydrosilylation57f,57j reactions. 

1.2.2 Synthesis and Characterization of Bis(pyridylimino)isoindoline Compounds 

 

Figure 1-11 Synthesis of bis(pyridylimino)isoindoline compounds. 

The synthesis of bpi derivatives is highly modular and readily achieved from cheap, 

commercially available starting materials to easily access a large variety of compounds. The 

original synthetic route was a two-step process that initiated with the condensation of 

phthalonitrile with ammonia in dry methanol to generate diiminoisoindoline, which undergoes 

condensation with 2 equiv of 2-aminopyridine in refluxing 1-BuOH (117 °C) to afford bpi 

(Linstead’s method, Figure 1-11).54 However, in 1974, Siegl found that bpi compounds could be 

synthesized directly from the condensation of phthalonitrile with 2 equiv of 2-aminopyridine in 

the presence of Lewis acidic CaCl2 (10 mol%) to activate the nitrile groups and to template the 

condensation reaction (Siegl’s method, Figure 1-11).60,77 To obtain higher yields, particularly for 

sterically crowded ligand environments, the condensation reaction could be performed in 1-

hexanol instead of 1-butanol, which allows for higher reaction temperatures (boiling point of 1-

hexanol is 155–159 °C).57l Because of the modular assembly of bpi compounds, functional 
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groups on both the isoindolato backbone and the pyridyl rings are easily installed by 

modifications of the starting materials.57j 

 

Figure 1-12 General 1H NMR and IR characterization trends for bis(pyridylimino)isoindolines. 

The imine motifs on the bpi framework strongly influence the structural and electronic 

properties of the free ligand and the coordinated complexes.55 The double bond of the imine 

linkers extends the π system throughout the bpi scaffold, which forces a planar structure and 

enhances the rigidity and robustness of the system.78 Depending on the substitution pattern in the 

pyridyl rings (e.g., sterically encumbered groups ortho to the pyridyl nitrogens), this planar 

conformation may be disrupted by the twisting of the pyridyl groups out of the molecular plane. 

In addition, the N–H proton lies in the plane of the molecule and exhibits hydrogen bonding to 

the pyridyl nitrogen atoms, which is revealed by a downfield chemical shift of the N–H 

hydrogens (12–14 ppm) in the 1H NMR spectrum. The N–H functionality coupled with imine 

groups, whose lone electron pair can be engaged upon protonation, enable proton-responsive 

activity in bpi compounds depending on the pH environment.79 In coordination chemistry, the 

bpi ligand can function as a monoanionic L2X donor when the N–H proton is deprotonated or a 

neutral L3-type donor when the N–H proton is shifted onto one of the imine arms (Figure 1-10). 

In general, the IR spectra of bpi compounds exhibit a very strong νCN band in the 1650–1600 

cm−1 region and four moderate–strong bands in the 1600–1400 cm−1, which are assigned to 

pyridyl skeletal vibrations.77 The donor properties of the bpi ligand can be easily distinguished 

using IR spectroscopy. For instance, strong bands are detected in the 1660–1600 cm−1 region 

when the bpi ligand act as a L3-type ligand and weak bands above 1600 cm−1 for a L2X bpi 

ligand. In most cases, the aromatic hydrogens on bpi compounds are well separated in the 1H 
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NMR spectra and assignments can be made. On the isoindolato ring, H5 appear more downfield 

than H6 due to deshielding by the imino π-electron cloud. The hydrogens on the pyridyl ring 

typically shift more downfield in the following order: H1 > H3 > H4 > H2 (Figure 1-12).77 

1.2.3 Oxidation Reactions Catalyzed by Bis(pyridylimino)isoindoline Complexes 

 Following the investigation of the coordination chemistry of transition-metal bpi 

complexes, several groups reported on the catalytic capabilities of these complexes in oxidative 

catalysis. In 1984, Gagné and Marks demonstrated aerobic oxidation of primary and secondary 

alcohols catalyzed by Ru(Hb4Mepi)Cl3 (Hb4Mepi = 1,3-bis(4’-methyl-2’-

pyridylimino)isoindoline) at room temperature to 90 °C.76a Catalytic aerobic oxidation of 

aliphatic primary and secondary alcohols was general to afford the corresponding aldehydes and 

acetals and ketones, respectively (Figure 1-13). For example, 7 demonstrated 100 turnovers in 24 

h for the conversion of 1-BuOH to a mixture of butyraldehyde and 1,1-dibutoxybutane, and the 

oxidation of 2-butanol to 2-butanone. Unfortunately, the product distribution or selectivity for 

primary alcohol oxidation was not reported. Under the same reaction conditions, no reactivity 

was observed when Co(Hb4Mepi)Br2 or Fe(b4Mepi)Cl2 was used instead of Ru(Hb4Mepi)Cl3. 

 

Figure 1-13 Aerobic alcohol oxidation catalyzed by Ru(Hb4Mepi)Cl3. 

 A year later, Mimoun and co-workers described a detailed study of hydroxylation of 

alkanes and peroxylation alkenes using Co(bpi)(OAc) precursors, which included structural 

characterization of Co alkylperoxy complexes (8)  as the catalytically-active species (Figure 1-

14).76b Unfortunately, oxidation of hydrocarbons formed a mixture of t-butyl peroxide, alcohol, 

and carbonyl compounds with no selectivity using 97% pure tBuOOH as the oxidant in the 

presence of 8 at 20–80 °C. In the case of alkane substrates, complex 8 catalyzed the oxidation of 
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cyclohexane to a mixture of cyclohexanol (33%), cyclohexanone (20%), and t-

butylperoxycyclohexane (6%) at 80 °C for 1.5 h. In 2003, this transformation was mediated by a 

less active binuclear Fe–bpi catalyst (9) that showed 15% yields of cyclohexanol and 

cyclohexanone using 1 mol% catalyst loading and H2O2 in ACN at room temperature for 10 h 

(Figure 1-14).58h 

 

Figure 1-14 Hydroxylation of alkanes and peroxylation of alkenes catalyzed by first row metal–
bpi complexes. 

 For alkene substrates, only stoichiometric oxidation reactions were performed using 8 

and tBuOOH. For instance, cyclohexene was converted to a mixture of cyclohex-2-en-1-one 

(35%), cyclohex-2-ene-1-t-butylperoxide (30%), cyclohex-2-en-1-ol (7%), and epoxy-

cyclohexane (3%) at 60 °C.76b Subsequently, Gade and co-workers optimized the reaction 

conditions to using 0.17 mol% 8 and 70% aqueous solution of tBuOOH at room temperature to 

catalytically oxidize cyclohexene to cyclohex-2-ene-1-t-butylperoxide with 85% conversion and 

95% selectivity.57m In addition, the activity and selectivity of the Co catalysts were not 

influenced by electron-donating and -withdrawing groups para and/or meta to the pyridyl 
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nitrogen atoms on the bpi ligand. Furthermore, under identical reaction conditions, an analogous 

Cu complex (10, Figure 1-14) exhibited similar oxidation activity as 8 with lower selectivity.57l 

The decrease in selectivity was attributed to a slower secondary reaction which oxidized the 

dialkyl peroxide product to cyclohex-2-en-1-one. 

In addition to peroxylation of unsaturated hydrocarbons, Gade’s group also reported on 

epoxidation of alkenes using Ir complexes with bpi-type ligands (Figure 1-15).57h Complex 11 

featured κ2-(N,N) coordination mode of the bpi ligand where one of the pyridine units is twisted 

away from the Ir center. In contrast, the synthesis of 12 using sterically less demanding ethylene 

ligands than 1,5-cyclooctadiene ligand led to the anticipated meridional coordination of the bpi 

ligand, which resulted in trigonal bipyramidal geometry about Ir. The two Ir–bpi complexes 

displayed similar activities for the catalytic epoxidation of alkenes using PPO, which is a highly 

reactive oxaziridine-type oxidizing reagent. Screening of other oxygen-transfer agents such as 

H2O2 and iodosobenzene showed either rapid catalyst deactivation or incomplete conversion. 

Epoxidation of a wide range of aliphatic cyclic and acyclic alkenes (18 examples) was general to 

afford the corresponding epoxides in 24–96% yields using 1 mol% catalyst loading and 1.5 equiv 

of PPO in DCM for 7–48 h (Figure 1-15). For example, trans-stilbene was converted to the 

corresponding epoxide in 91% isolated yield after 24 h.  

 

Figure 1-15 Epoxidation of alkenes catalyzed by Ir–b4tBupi complexes. 

 More recently in 2013, Que, Kaizer, Speier, and co-workers developed a 

Fe(Hbpi)(ACN)3[ClO4]2 (13) system capable of catalytic oxidation of thioanisoles and benzyl 
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alcohols using H2O2.57n Complex 13 was isolated by allowing Hbpi to react with Fe(ClO4)2 in 

ACN, and the X-ray structure revealed an octahedral geometry around the Fe center with an 

asymmetric neutral bpi ligand meridionally coordinated and three ACN ligands. Investigation of 

13 as a catalyst for the oxidation of thioanisoles and benzyl alcohols demonstrated that 13 is 

capable of catalyzing both oxygen-atom transfer and hydrogen-atom abstraction. For instance, 

oxidation of thioanisole to the corresponding sulfoxide and sulfone required 1 mol% 13 and 2.5 

equiv of H2O2 in ACN at 25 °C for 1 h (Figure 1-16). Analysis of isotopic labeling and Hammett 

studies suggested that 13 operates via a direct oxygen-atom transfer pathway with an 

electrophilic metal-centered oxidant as an intermediate in the mechanism. 

 

Figure 1-16 Thioanisole and benzyl alcohol oxidation catalyzed by Fe–Hbpi complex. 

1.2.4 Reduction Reactions Catalyzed by Bis(pyridylimino)isoindoline Complexes  

Although oxidation catalysis has been widely studied using first, second, and third row 

metal–bpi complexes, few examples of reductive catalysis with bpi ligand have been 

reported.57f,57j,57k In 2004, Gade’s group developed a series of Pd complexes with meta-

substituted bpi pincer ligands, including Me, Br, and alkyne functional groups.57k In particular, 

Pd(b5Mepi)Cl (14, b5Mepi = 1,3-bis(5’methyl-2’-pyridylimino)isoindolate) was examined as a 

alkene hydrogenation catalyst using H2 at room temperature (Figure 1-17). Hydrogenation of 

styrene under 1 atm of H2 and 2 mol% 14 in THF at 25 °C for 9 h afford ethylbenzene in 80% 

conversion. The stability of this system was demonstrated by recycling the catalyst in multiple 

hydrogenation cycles with minimal loss of catalytic activity. The mechanism of hydrogenation 

was proposed to operate through bifunctional metal–ligand catalysis, in which H2 heterolysis is 

cleaved across the backbone imine group on the bpi ligand and the metal center. Unfortunately, 

the proposed metal–ligand cooperative pathway was not supported by any experimental or 

computational evidence.  



20 

 

Figure 1-17 Alkene hydrogenation catalyzed by Pd–b5Mepi complex. 

 

Figure 1-18 Asymmetric hydrosilylation of ketones catalyzed by Fe and Co complexes with 
chiral bpi ligands. 

Recent developments in the use of bpi ligands have targeted chiral derivatives for 

enantioselective hydrosilylation catalysis. Chiral bpi variants can be prepared by installing the 

chiral information onto the pyridyl rings that are in close proximity to the metal center. In 2008, 

Langoltaz, Wadepohl, and Gade reported the synthesis of chiral bpi ligands from chiral 

aminopyridines derived from commercially available terpenes.57j This new family of chiral bpi 

ligands was metalated with Fe(OAc)2 and Co(OAc)2 to generate distorted octahedral 

M(bpi)(OAc)L type complexes (L = MeOH or THF). Of particular note, complex 15 

demonstrated the highest enantiomeric excess (50–93%) for the asymmetric hydrosilylation of 

ketones with yields of 50–92% using 5 mol% 15 in THF at 40–65 °C for 16–40 h (Figure 1-18). 

In general, higher yields and enantioselectivities were achieved when aryl alkyl ketones were 

used instead of dialkyl ketone substrates. In addition, this transformation was also promoted by 

Co–CH2SiMe3 systems with a different family of chiral bpi ligands (16) using lower catalyst 
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loading (2.5 mol%) and temperature (15 °C) for a shorter amount of time (8 h).57f For example, 

aryl alkyl ketones were reduced to the corresponding chiral hydrosilylated products in 58–100% 

yields with 25–90% enantioselectivities (Figure 1-18). 

1.2.5 Outlook for Catalytic Applications Using Bis(pyridylimino)isoindoline Ligands 

 Pincer scaffolds provide a versatile framework to control the steric and electronic 

properties of transition metal complexes as well as enhance the stability in part due to the rigid 

and robust nature of most pincer ligands. The bpi pincer ligand incorporates amine/amide and 

imine functionalities, which were demonstrated to participate in bifunctional metal–ligand 

catalysis on other pincer scaffolds. In addition, the lone electron pair on the imine linkers can be 

engaged upon protonation, thus enabling ligand tautomerization to use the bpi pincer ligands as 

monoanionic L2X or neutral L3 donors. Although prior reports developed metal–bpi complexes 

for oxidative and reductive catalysis, the activity and selectivity in these transformations were 

often unremarkable and mirrored the behavior of previously established metal-based systems. 

Furthermore, the relationship between catalyst structure and reactivity remains ambiguous and 

underdeveloped, specifically the role of the bpi pincer ligand during catalysis. Because of the 

potential participation of the backbone amine and imines on the bpi ligand in bifunctional metal–

ligand catalysis, the use of bpi-type ligands in dehydrogenative transformations might uncover 

new reactivity profiles. Moreover, the prior use of bpi ligands often contain no functional groups 

ortho to the pyridyl nitrogen atoms, therefore appending functionalities at that position, which is 

in close proximity to the metal center, might enable new synergistic interactions for small 

molecule activation. 

1.3 Dissertation Outline and Scope 

 This dissertation is framed around the synthesis, structure, and reactivity of transition-

metal complexes supported by bMepi-derived (1,3-bis(6’-methyl-2’-pyridylimino)isoindolate) 

architectures. In Chapter 2, the development of dehydrogenative transformations of alcohols 

catalyzed by Ru–bpi complexes is described. The hydride variant of Ru–bMepi complex 

(HRu(bMepi)(PPh3)2) is capable of catalyzing dehydrogenation and dehydrogenative coupling 

reactions of secondary and primary alcohols/diols, respectively, without requirements of 

exogenous base or acceptor additives. Additionally, unprecedented catalytic activity for 
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upgrading EtOH to 1-BuOH via the Guerbet sequence using Ru(bpi)(PPh3)2Cl precursors is 

highlighted. Chapter 3 discloses a detailed mechanistic analysis of AAD mediated by 

HRu(bMepi)(PPh3)2 using a series of kinetic and isotopic labeling studies, isolation of 

intermediates, and catalytic modifications. Chapter 4 accounts the development of 

HRu(bMepi)(PPh3)2 as a catalyst for oxidant-free, acceptorless, and chemoselective 

dehydrogenation of primary and secondary amines to the corresponding nitriles and imines with 

liberation of H2. The amine dehydrogenation methodology is noteworthy because this system 

catalyzes the chemoselective oxidation of primary amines with –CH2NH2 functionality in the 

presence of primary amines without α hydrogens. In Chapter 5, the principles of 

dehydrogenation and hydrogenation are extended to functionalization reactions such as 

hydroboration and hydrosilylation promoted by Fe–bMepi complexes. Alkylation of the imine 

backbone of the bMepi framework is used to as a late-stage modification to confer a more 

electrophilic complex. The alkylated Fe system, compared to the parent complex, catalyzes 

olefin hydroboration with an increased reaction rate and exhibits distinct regioselectivity for 

internal alkene hydroboration. Chapter 6 details the development of a new series of 

multifunctional Ru complexes with appended BR2 groups via B–H bond activation and 

demonstrate by variation of the borane moiety how Lewis acidity influences the reactivity of the 

Ru hydride and biases the system for Z-selective semi-hydrogenation of alkynes. Lastly, 

perspective and prospects on new applications using bpi-based transition metal systems are 

discussed in Chapter 7. 
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CHAPTER 2 

Dehydrogenative Activation of Alcohol Substrates 

 

Portions of this chapter have been published: 

Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K. Organometallics 2013, 32, 2046. Reprinted 

with permission; Copyright (2013) American Chemical Society. 

Tseng, K.-N. T.; Lin, S.; Kampf, J. W.; Szymczak, N. K. Chem. Commun. 2016, 52, 2901. 

Reprinted with permission; Copyright (2016) The Royal Society of Chemistry. 

2.1 Promoterless and Chemoselective Alcohol Dehydrogenation 

2.1.1 Introduction 

In the past decade, catalytic alcohol dehydrogenation reactions have evolved as an atom-

economical methodology to generate H2 from biologically relevant alcohols1 and/or to reveal a 

reactive organic fragment that can undergo follow up reactivity to form higher order liquid 

products.2 In the absence of an added H2 acceptor, primary alcohols can couple to form esters, 

with concomitant release of H2, which is a variant of acceptorless dehydrogenative coupling 

(ADC) reactivity. Recently, this reaction class has seen substantial growth, typified by catalytic 

systems incorporating bifunctional metal–ligand scaffolds capable of promoting ADC.3 To 

achieve high atom economy, reactions that function in the absence of exogenous additives are 

particularly desirable, when this trait is coupled with mild reaction conditions. However, many 

alcohol dehydrogenation catalysts require the addition of superstoichiometric quantities (with 

respect to Ru catalyst) of a basic reagent for efficient catalysis.4 The bases (e.g., KOtBu) are 

highly caustic, require specialized equipment, and also contribute to unwanted waste products; 

thus, systems that operate under base-free conditions are highly desirable. 
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Most known catalysts that effect alcohol dehydrogenation and/or ADC reactivity 

incorporate pincer-type ligand frameworks that can operate by a metal–ligand cooperative 

mechanism. Often containing a central pyridine ring, the pincer framework can exhibit 

multifunctionality by dearomatization–aromatization of the pyridinyl group, which ensues from 

the deprotonation–protonation of a methylene spacer.3,5 We targeted an alternative anionic N,N,N 

pincer framework that substitutes the methylene spacer groups with an imine linker whose 

orbitals preclude concerted hydrogen transfer to an adjacent acceptor, in order to probe whether a 

cooperative mechanism is required for efficient dehydrogenation.6 Herein, we report the 

synthesis and characterization of new pincer-ligated Ru complexes, which efficiently catalyze 

the dehydrogenation of primary and secondary alcohols without the requirement of added 

hydrogen acceptor or base. 

2.1.2 Synthesis and Characterization of Ru(bMepi)(PPh3)Cl and HRu(bMepi)(PPh3)2 

To promote rapid dehydrogenation reactivity, we targeted amide-derived N,N,N pincer 

Ru complexes that incorporate the bMepi (1,3-bis(6’methyl-2’-pyridylimino)isoindolate) 

ligand.6,7 Metalation was achieved by addition of the deprotonated bMepi ligand to Ru(PPh3)3Cl2 

over 21 h in THF solvent, which afforded Ru(bMepi)(PPh3)Cl (1)8 in 92% yield (Figure 2-1). 

The 31P{1H} NMR spectrum of 1 exhibits a singlet at 43.5 ppm, while the 1H NMR spectrum 

features a single set of ligand based resonances, including a singlet at 1.71 ppm, consistent with 

symmetric binding of the bMepi ligand. This molecule represents the first reported Ru complex 

with a bpi (1,3-bis(2’-pyridylimino)isoindolate) ligand having substituents ortho to the pyridyl 

nitrogens.7b,9 

Ru–H complexes are implicated as catalytic intermediates in alcohol dehydrogenation 

with pincer-type ligands 3b–d,5,10 thus, we targeted hydride variants of Ru–bMepi complexes. The 

complex HRu(bMepi)(PPh3)2 (2) was isolated in 89% yield by allowing 1 to react with 1.05 

equiv of NaHBEt3 and 1.2 equiv of PPh3 in THF solution at room temperature for 2 h (Figure 2-

1). The 31P{1H} NMR spectrum of 2 exhibits a singlet at 50.9 ppm, and the 1H NMR spectrum 

revealed a solution structure consistent with C2 symmetry. A single peak for the ortho-

substituted CH3 units was visualized at 3.12 ppm, in addition to a high-field triplet resonance at 

−9.58 ppm (JPH = 20.0 Hz); the latter resonance is consistent with a hydride ligand trans to an 

amido nitrogen.11 Crystals suitable for single-crystal X-ray diffraction were obtained from vapor 
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diffusion of pentane into a THF solution of 2, and the solid-state structure of 2 (Figure 2-1) 

confirmed the proposed geometry, exposing a distorted-octahedral geometry around the Ru(II) 

center with a hydride ligand (located from the difference map) trans to the pyrrolidine nitrogen 

atom. 

 

Figure 2-1 Synthesis and crystal structure (thermal ellipsoids depicted at 50% probability) of 
HRu(bMepi)(PPh3)2. 

2.1.3 Transfer Hydrogenation of Ketones Catalyzed by HRu(bMepi)(PPh3)2 

The ability of 1 and 2 to effect catalytic transfer hydrogenation with iPrOH was evaluated 

using acetophenone as the substrate. Heating a 0.1 M acetophenone iPrOH solution containing 

0.5 mol% of 1 and 1.0 mol% of KOtBu to 80 °C for 1 h resulted in quantitative conversion 

(>99%) of acetophenone to 1-phenylethanol (1PhEtOH). No reaction took place in the absence 

of a base. Complex 2 effected similar hydrogenative transformations with fewer required 

reagents. For example, without added base, under the reaction conditions listed above, complex 2 

catalytically reduced acetophenone to 1PhEtOH in >99% conversion within 1 h. 
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2.1.4 Base-Free and Acceptorless Alcohol Dehydrogenation 

In addition to transfer hydrogenation reactivity by 2, we hypothesized that 

dehydrogenation of iPrOH should also be possible without an added hydrogen acceptor. Indeed, 

in the absence of an exogenous ketone, such as acetophenone, iPrOH was consumed within 2 h at 

80 °C using 10 mol% of 2 in C6D6. H2 and acetone were confirmed as the sole reaction products 

by in situ examination of the reaction mixture in a sealed NMR tube.12 1H NMR spectroscopic 

analyses revealed the formation of acetone and H2 in equimolar quantities after 1 h at 80 °C, 

observed as singlets at 1.55 and 4.47 ppm, respectively.13 This catalyst system was found to be 

remarkably active, and when using 20 ppm of 2 (Figure 2-2), a turnover number (TON) of 314 

and turnover frequency (TOF) of 51 h−1 were obtained, on heating to reflux for 6 h.14 In situ 

analysis of the dehydrogenation reaction revealed the release of free PPh3 during catalysis, as 

visualized by 31P NMR spectroscopy. Phosphine dissociation from 2 under catalytic conditions is 

consistent with an inner-sphere type pathway, which requires an open coordination site for 

substrate binding. 

 

Figure 2-2 Reaction profiles of iPrOH dehydrogenation with low catalyst loading. 

2.1.5 Poisoning Experiments for Acceptorless Alcohol Dehydrogenation 

In order to investigate contributors to the overall reaction efficiency, 1PhEtOH was 

chosen as a model secondary alcohol substrate (Figure 2-3). This substrate exhibits a 

dehydrogenation reaction profile similar to that of iPrOH and, due to its low volatility, is 

amenable to reaction sampling by GC-MS and/or 1H NMR spectroscopy. When the 
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dehydrogenation reaction was monitored over 24 h in an open system inside an inert atmosphere 

glovebox, the reaction profile displayed two regions: a linear region (where the maximum rate 

was measured) and culmination. The reaction profile was linear after 4 min (Figure 2-4)15 and 

reached culmination after approximately 12 h. 

 

 

Figure 2-3 Reaction profiles of 1PhEtOH dehydrogenation with and without added catalyst 
poisons. 

The catalyst identity of Ru-catalyzed transfer hydrogenation reactions with alcohols was 

recently reported to be distinct from that of a presumed homogeneous precursor, which formed 

catalytically active heterogeneous Ru nano-sized clusters.16 Accordingly, we undertook initial 

experiments to probe whether complex 2 participates as a homogeneous catalyst or as a precursor 

to a heterogeneous species. Among the myriad techniques that collectively can be used to 

establish the catalyst identity, reproducible kinetic data and poisoning experiments are regarded 

as highly supportive evidence for homogeneous catalysis.17 Consistent with an operative 

homogeneous system, the catalytic activity was unaffected by Hg(0) (~800 equiv) addition 

(Figure 2-3, Hg), when added during catalysis. Additionally, a substoichiometric ligand 

poisoning experiment was conducted.18 Complete poisoning with 1,10-phenanthroline (phen) 

required 1 equiv (~25% decrease in the rate was observed with 0.25 equiv), inconsistent with a 

heterogeneous system, where low surface area aggregates are typically poisoned by ≪1 equiv of 
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added ligand poison.18 Finally, in the absence of any poisoning reagent, highly reproducible and 

nonsigmoidal reaction kinetic profiles were observed. The combined results of these tests 

suggest that the active catalytic species is indeed a homogeneous Ru complex. 

 

Figure 2-4 The initial 10 min of 1PhEtOH dehydrogenation catalyzed by HRu(bMepi)(PPh3)2. 

2.1.6 Base Dependence  

 

Figure 2-5 Reaction profiles of base dependence experiments. 

The rates of alcohol dehydrogenation by structurally related Ru–PNP complexes are 

often dramatically increased by base additives.4 and thus we examined whether complex 2 

exhibited similar reactivity toward bases. Addition of 1–1000 equiv of KOtBu to the 

dehydrogenation reaction noted above (Figure 2-5) modified the reaction rate in a manner 

dependent on the quantity of base additive. Increasing the amount of base up to 100 equiv nearly 



34 

doubled the reaction rate; however, at 1000 equiv, the reaction rate was suppressed. We 

hypothesized that, in the presence of excess base, KOtBu or tBuOH could compete with 

1PhEtOH coordination, thus impeding catalytic activity by diverting a competitive β-hydride 

elimination pathway. In support, a control experiment using 1000 equiv of tBuOH also exhibited 

a decreased reaction rate (Figure 2-5), consistent with rate suppression by tBuOH. 

2.1.7 Initial H2 Pressure Dependence 

 

Figure 2-6 Dependence of 1PhEtOH dehydrogenation catalyzed by HRu(bMepi)(PPh3)2 on the 
initial H2 pressure. 

The release of H2 provides a large entropic contribution to the overall thermodynamic 

profile of acceptorless alcohol dehydrogenation at a given temperature.19 Thus, we probed H2 

pressure effects on 1-phenylethanol dehydrogenations (Figure 2-6) to examine how the overall 

conversion efficiency would be attenuated by elevated pressure. As expected, the reaction was 

found to be highly sensitive to pressure, and the dehydrogenation reaction was significantly 

inhibited (66% decrease in TON) when it was performed in a sealed vessel (80 mL headspace). 

Under as little as 2.5 psig of H2 initial pressure, we observed a further, sharp decrease in TON 

(81%), which continued to decrease with increased pressure up to 80 psig (0% conversion). Note 

that complete product inhibition was not observed at moderate pressures (40 psig of H2; 10 

turnovers for dehydrogenation in 24 h). To determine whether the H2 pressure effect was the 

result of rapid equilibration or a kinetic effect (inhibiting H2 release), a dehydrogenation 

experiment was performed in a sealed NMR tube using 0.15 mol% of 2 in 2-propanol-d8. HD 

was not observed in the 1H NMR spectrum after the reaction mixture was heated to 90 °C for 24 
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h, suggesting that equilibration of H2/D2 is not an operative pathway under the operating 

conditions and instead inhibition is likely due to a kinetic effect that inhibits H2 release with 

increasing pressure. Furthermore, although dehydrogenations are inhibited by product release, 

pressures of at least 8 psig could be obtained from vessels (5 mL of alcohol; 80 mL of 

headspace) sealed at room pressure. This observation is noteworthy if considering 

dehydrogenation of bio-renewable alcohols as a means to release H2 for use as an energy carrier, 

where elevated pressures are required for H2 transport.20 

2.1.8 Acceptorless Dehydrogenative Coupling Catalyzed by HRu(bMepi)(PPh3)2 

We next sought to explore the ADC reactivity of primary alcohols and diols, whose 

dehydrogenation products contain highly reactive aldehyde fragments. Consistent with our 

results for the dehydrogenation of secondary alcohols, primary alcohols were similarly 

dehydrogenated to afford esters with no required additives under moderate reaction conditions. 

For instance, when 1-butanol was used as a substrate, butyl butyrate was generated in 99% yield 

after 7 h at 111 °C (Table 2-1, entry 2). High yields of ester products were not general, and when 

benzyl alcohol was used as a substrate, 50% conversion to benzyl benzoate and 8% conversion to 

the aldehyde were noted. Furthermore, the conversion of ethanol, a biorelevant alcohol, to ethyl 

acetate proceeded with low conversion (Table 2-1, entry 1).21 

Table 2-1 Dehydrogenation of Primary Alcohols to Esters and Diols to Lactones Catalyzed by 
HRu(bMepi)(PPh3)2 

 

entry alcohol or diol 2 (mol%) time (h) conversion (%) yield (%) 

1 ethanol 1 24 9 9 

2 1-butanol 1 7 99 99 

3 benzyl alcohol 5 24 58 50 

4 1,4-butanediol 1 24 88 88 

5 1,5-pentanediol 5 24 99 99 
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Intramolecular reactivity was explored with aliphatic diol substrates, which were 

converted in high yields to the corresponding lactones. For instance, yields of 88% and 99% 

were obtained for γ-butyrolactone and δ-valerolactone (Table 2-1, entries 4 and 5), respectively, 

from 1,4-butanediol and 1,5-pentanediol. Several groups have previously reported homogeneous 

base-free catalytic oxidation of diols to lactones using a hydrogen acceptor (e.g., acetone) as the 

solvent.22 However, to the best of our knowledge, only three accounts3c,10a,23 of acceptorless and 

base-free catalytic oxidation of diols to lactones have been reported, and two3c,10a of these reports 

require significantly high temperatures (>200 °C). Thus, complex 2 is only the second reported 

example of catalytic ADC reactivity of diols to lactones that does not require an added hydrogen 

acceptor and base and occurs under moderate (<120 °C) conditions. 

2.1.9 Chemoselective Dehydrogenation of Secondary Alcohols in the Presence of Primary 

Alcohols 

 

Figure 2-7 Chemoselective dehydrogenation of secondary alcohols in the presence of primary 
alcohols. 

Guided by our results that demonstrated distinct conditions were required for the 

oxidation of primary and secondary alcohols, we reasoned that 2 should be capable of 

chemoselective oxidations of secondary alcohols in the presence of primary alcohols. Indeed, 

using temperatures lower than those required for ADC reactivity (90 °C), 2 chemoselectively 

oxidized the secondary alcohol moiety in 1-phenyl-1,2-ethanediol (3) in the absence of 

exogenous base or hydrogen acceptor additives and 4 was obtained as the only product in 70% 

yield, which demonstrates the high chemoselectivity of 2 for alcohol dehydrogenation (Figure 2-

7). Because the methine C–H bond of 3 is weakened with respect to the primary alcohol due to 

the adjacent phenyl group, we investigated whether alkanediols of less disparate bond strengths 

can be similarly oxidized chemoselectively. Gratifyingly, when 1,3-butanediol (5) was subjected 

to modified dehydrogenation conditions (15 mol% of 2, 100 °C) selective oxidation of the 

secondary alcohol was achieved (Figure 2-7) as the sole reaction product in 52% yield. To the 



37 

best of our knowledge, such chemoselective oxidations of secondary alcohols in the presence of 

primary alcohols by homogeneous catalysis are exceptionally rare.24 

2.1.10 Summary 

In conclusion, we have developed an amide-derived Ru(II) hydride complex capable of 

catalyzing acceptorless dehydrogenation and dehydrogenative couplings of secondary and 

primary alcohols/diols, respectively, without requirements of added exogenous base or acceptor 

additives. Although prior reports demonstrated ADC reactivity of primary alcohols to esters and 

H2, few catalysts accomplish this without base or acceptor additives.3a,d,5,22a,25 Thus, when base-

free, acceptorless alcohol oxidation catalysts under moderate (<120 °C) conditions are compared, 

the activity of 2 ranks among the best known ADC catalysts. In addition, 2 is particularly 

noteworthy because it mediates the chemoselective oxidation of secondary alcohols in the 

presence of primary alcohols without exogenous base or hydrogen acceptor additives, a difficult 

selective transformation.24b 

2.2 Upgrading Ethanol to 1-Butanol 

2.2.1 Introduction 

Interest in alternative energy solutions for the transportation sector is driven largely by 

the finite supply of fossil fuels.26 One potentially interim approach is to replace or blend gasoline 

with sustainable biofuels, such as alcohols.27 Ethanol (EtOH), which is a direct product of 

biomass fermentation, has been widely used as a blend additive with gasoline.28 However, 

several of the inherent properties of EtOH have limited broad implementation in the global 

transportation sector. Key roadblocks are that EtOH: (1) has ~70% energy density of gasoline, 

(2) is corrosive to engine technology and fuel pipelines, and (3) forms an azeotrope with H2O, 

and over extended timeframes, separates from gasoline blends; both leading to storage 

problems.29 These disadvantages are generally mitigated for higher order alcohols, including 1-

butanol (1-BuOH), whose fuel properties more closely resemble those of gasoline (~90% energy 

density of gasoline). Furthermore 1-BuOH can be blended in higher 1-BuOH:gasoline ratios, and 

is immiscible with water.30 Although 1-BuOH is a highly desirable biofuel, the large-scale 
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synthesis (fermentative production) from bio-feedstocks has been fraught with low conversion 

and poor selectivity.31 

As an alternative to fermentation, an atom-economical approach for the bulk synthesis of 

1-BuOH is the Guerbet reaction.32 This route applies a series of reactions related to “borrowed 

hydrogen” chemistry for the conversion of primary alcohols into higher order alcohol products.33 

For upgrading EtOH to 1-BuOH, EtOH dehydrogenation affords acetaldehyde, which undergoes 

aldol coupling to generate crotonaldehyde. Hydrogenation of crotonaldehyde produces 1-BuOH. 

Key parameters used to evaluate this reaction are the TON, TOF, and selectivity (yield of 1-

BuOH divided by the total yield of Guerbet products). A few recent reports have demonstrated 

this reaction with heterogeneous34,35 and homogeneous36 catalysts. To date, the best TONs 

reported with >30% conversion are 458,36d 314,36b 340,36a and 304,36c while the highest TOF 

reported was 79 h-1 (314 TONs), using a Ru(II) complex with a bidentate P–N ligand.36b A recent 

report demonstrated extremely high selectivity at the sacrifice of activity using a two-component 

Ir catalyst (TON = 185, TOF = 8 h−1).36a However, for large-scale applications required for the 

transportation sector, higher conversion and turnover are required. 

 

Figure 2-8 Previous work demonstrated reversible transformations between ketones and alcohols 
via sequential hydrogenation–dehydrogenation reactions mediated by HRu(bMepi)(PPh3)2. This 
work presents the catalytic conversion of EtOH to 1-BuOH. 
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We recently reported an N,N,N-bMepi Ru(II) hydride complex (2, HRu(bMepi)(PPh3)2) 

capable of mediating reversible transformations between ketones and alcohols via sequential 

hydrogenation-acceptorless dehydrogenation reactions (Figure 2-8).37 Mechanistic analysis of 

the acceptorless alcohol dehydrogenation (AAD)38 revealed that 2 operated via an inner-sphere 

β-H elimination pathway where β-H elimination is the turnover-limiting step at high alcohol 

concentration. Because of the steric hindrance of the methyl groups on the β-H elimination 

process, higher catalytic AAD activity was observed when Ru–b4Rpi complexes (7-R) were 

used. As a result of the ability of 2 to promote successive hydrogenation–dehydrogenation 

reactions, we hypothesized that, if using our family of Ru(II)–bpi complexes,37a similar  

“borrowed hydrogen” chemistry might be adapted for alcohol upgrading reactions. Herein, we 

report the application of 7-R as homogeneous catalysts that promote the conversion of EtOH to 

1-BuOH with unprecedented activity and high selectivity. 

2.2.2 Upgrading EtOH to 1-BuOH Catalyzed by Ru(bpi)(PPh3)2Cl 

Table 2-2 Catalytic Conversion of EtOH to 1-BuOH 
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1 Ru(bMepi)(PPh3)Cl - 10 0 1 0 0 11 91 118 59 
2 HRu(bMepi)(PPh3)2 - 10 0 0 0 0 10 100 101 51 
3 Ru(bpi)(PPh3)2Cl  25 1 3 0 0 30 91 296 148 
4 Ru(b4OMepi)(PPh3)2Cl - 24 1 3 0 0 28 89 284 142 
5 Ru(b4Clpi)(PPh3)2Cl - 21 1 3 0 0 25 89 251 126 
6 Ru(bpi)(PPh3)2Cl 5 mol% LiOEt 4 0 0 0 0 4 100 39 20 
7 Ru(bpi)(PPh3)2Cl 5 mol% KOEt 19 1 2 0 0 23 89 226 113 
8 Ru(bpi)(PPh3)2Cl 5 mol% NaOH 26 1 3 0 0 30 90 300 150 
9 Ru(bpi)(PPh3)2Cl 10 mol% NaOEt 31 2 6 1 1 42 82 422 211 

10 Ru(bpi)(PPh3)2Cl 180 °C 28 4 6 2 1 41 78 410 205 
11 Ru(bpi)(PPh3)2Cl 0.3 mol % Ru 23 1 3 0 0 27 89 92 46 
12 Ru(bpi)(PPh3)2Cl 0.05 mol% Ru 20 2 3 0 0 25 81 501 250 
13 Ru(bpi)(PPh3)2Cl 0.01 mol% Ru 5 0 1 0 0 6 86 625 313 
14 Ru(bpi)(PPh3)2Cl 0.001 mol% Ru 1 0 0 0 0 1 100 1423 711 
15 Ru(bpi)(PPh3)2Cl Set up under air 27 2 5 0 0 34 83 342 171 
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16 Ru(bpi)(PPh3)2Cl 10 mol% NaOEt 
under air 29 3 6 0 0 38 80 385 192 

17 Ru(bpi)(PPh3)2Cl 0.5 h 3 0 0 0 0 3 100 31 62 
18 Ru(bpi)(PPh3)2Cl 1 h 11 0 1 0 0 12 96 116 116 
19 Ru(bpi)(PPh3)2Cl 4 h 31 3 6 1 1 45 81 448 112 
20 Ru(bpi)(PPh3)2Cl 6 h 32 4 7 2 1 46 80 457 76 
21 Ru(bpi)(PPh3)2Cl 24 h 33 4 7 1 1 46 80 460 19 

22 Ru(bpi)(PPh3)2Cl 20% v/v 1-
BuOH 23 3 7 1 1 35 85 348 174 

23 Ru(bpi)(PPh3)2Cl 0.1 mol% PPh3 38 3 8 0 0 49 84 489 245 
24 Ru(bpi)(PPh3)2Cl 0.2 mol% PPh3 36 3 8 1 1 49 81 489 245 
25 Ru(bpi)(PPh3)2Cl 0.4 mol% PPh3 37 3 10 1 2 53 78 529 265 

26 Ru(bpi)(PPh3)2Cl 10 mol% NaOEt 
0.4 mol% PPh3 

35 3 12 0 0 50 73 505 253 

27 Ru(bpi)(PPh3)2Cl 0.4 mol% AsPh3 30 3 6 0 0 39 82 391 195 

28 Ru(bpi)(PPh3)2Cl 0.4 mol% AsPh3 
24 h 34 4 7 0 0 45 81 455 19 

29 Ru(bpi)(PPh3)2Cl 0.025 mol% 
PBu3 

25 1 3 0 0 30 88 299 150 

30 Ru(bpi)(PPh3)2Cl 0.1 mol% PBu3 25 2 4 0 0 30 86 298 149 
31 Ru(bpi)(PPh3)2Cl 0.2 mol% PBu3 3 0 0 0 0 3 100 31 16 
32 Ru(bpi)(PPh3)2Cl ~20 mol% Hg(0) 26 2 4 0 0 31 87 312 156 
33 Ru(bpi)(PPh3)2Cl 5% v/v Water 24 1 2 0 0 28 90 279 140 
34 Ru(bpi)(PPh3)2Cl 10% v/v Water 4 0 0 0 0 4 100 40 20 
35 Ru(bpi)(PPh3)2Cl 20% v/v Water 8 0 0 0 0 8 100 81 41 
36 Ru(bpi)(PPh3)2Cl No base 0 0 0 0 0 0 0 0 0 
37 No catalyst - 0 0 0 0 0 0 0 0 0 

38 Ru(bpi)(PPh3)2Cl 5 mol% NaOEt 
5 mol% Ti(OEt)4 

28 2 4 0 0 34 87 335 168 

39 Ru(bpi)(PPh3)2Cl 10 mol % 
Ti(OEt)4 

1 0 0 0 0 1 100 7 4 

40 Ru(bpi)(PPh3)2Cl 5 mol% NaOEt 
5 mol% TlOEt 15 0 1 0 0 16 96 157 79 

41 Ru(bpi)(PPh3)2Cl 10 mol % TlOEt 3 0 0 0 0 3 100 27 13 
42 Ru(bpi)(PPh3)2Cl 0 psig H2 7 0 1 0 0 8 90 78 39 
43 Ru(bpi)(PPh3)2Cl 45 psig H2 28 4 7 2 1 42 76 421 211 
44 Ru(bpi)(PPh3)2Cl 90 psig H2 23 4 5 3 1 36 73 365 182 
45 Ru(bpi)(PPh3)2Cl No Stirring 29 2 4 0 0 35 88 347 174 

46 Ru(bpi)(PPh3)2Cl Teflon vessel in 
Parr bomb 30 3 6 1 1 40 82 397 199 

47 Ru(bMepi)(PPh3)(Cl)CO - 16 0 1 0 0 17 95 168 84 
48 Ru(bpi)(CO)2Cl - 3 0 0 0 0 3 100 31 16 
49 Ru(bMepiMe)(PPh3)(OTf)2 - 6 0 0 0 0 6 100 60 30 
50 Ru(bMepi)(PMe3)2Cl - 3 1 1 1 0 6 70 55 28 
51 Os(bMepi)(Cl)(PPh3) - 4 0 0 0 0 4 100 38 19 
52 Ir2(H)4(bMepi)(PPh3)4[PF6] - 1 0 0 0 0 1 100 5 3 
53 Co(bMepi)(CH2SiMe3) - 1 0 0 0 0 1 100 5 3 

54 Ru(bpi)(PPh3)2Cl 1 mol% 
Sc(OTf)3 

10 0 0 0 0 10 100 107 53 

55 Ru(bpi)(PPh3)2Cl 2 mol% 
Sc(OTf)3 

1 0 0 0 0 1 100 10 5 

56 Ru(bpi)(PPh3)2Cl 0.1 mol% ZnCl2 5 0 0 0 0 5 100 53 27 

57 Ru(bpi)(PPh3)2Cl 0.1 mol% 
Sc(OTf)3 

29 2 4 0 0 35 87 351 176 

58 Ru(bpi)(PPh3)2Cl 0.5 mol% 
LiBArF

4 
29 2 4 0 0 35 88 353 176 
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59 Ru(bpi)(PPh3)2Cl 0.5 mol% LiBF4 29 1 3 0 0 33 89 340 170 
60 Ru(bpi)(PPh3)2Cl 0.5 mol% LiPF6 31 3 5 1 1 41 83 404 202 

61 Ru(bpi)(PPh3)2Cl 0.2 mol% 
Yb(OTf)3 

21 1 2 0 0 24 93 234 117 

62 Ru(bpi)(PPh3)2Cl 0.4 mol% PPh3  
0.1 mol% CrCl2 

23 1 4 0 1 29 86 279 139 

63 Ru(bpi)(PPh3)2Cl 
0.4 mol% PPh3 

 0.1 mol% 
MnBr2 

36 3 9 0 0 48 80 477 239 

64 Ru(bpi)(PPh3)2Cl 0.4 mol% PPh3 
0.1 mol% FeBr2 

7 0 1 0 0 8 88 79 40 

65 Ru(bpi)(PPh3)2Cl 0.4 mol% PPh3 
0.1 mol% CoBr2 

24 1 6 1 1 33 81 322 161 

66 Ru(bpi)(PPh3)2Cl 0.4 mol% PPh3 
0.1 mol% NiBr2 

19 1 4 1 1 26 83 246 123 

67 Ru(bpi)(PPh3)2Cl 0.4 mol% PPh3 
0.1 mol% CuBr2 

2 0 0 0 0 2 100 18 9 

68 Ru(bpi)(PPh3)2Cl 0.4 mol% PPh3 
0.1 mol% FeCl3 

29 1 5 0 0 35 87 348 174 

69 Ru(bpi)(PPh3)2Cl 0.1 mol% 
Co(TPP) 30 3 6 0 0 39 81 393 197 

70 Ru(bpi)(PPh3)2Cl 0.1 mol% 
Co(TPP) 4 h 31 2 3 0 0 36 89 361 90 

71 Ru(bpi)(PPh3)2Cl 0.3 mol% 
Co(TPP) 4 h 31 2 5 0 0 38 85 380 95 

72 Ru(b4Mepi)Py2Cl - 12 0 1 0 0 13 94 133 67 
73 Ru(b4Mepi)Py2Cl 0.1 mol% PPh3 15 1 2 0 0 18 87 177 88 
74 Ru(b4Mepi)Py2Cl 0.2 mol% PPh3 21 1 2 0 0 24 91 240 120 
75 Ru(b4Mepi)Py2Cl 0.3 mol% PPh3 3 0 0 0 0 3 100 32 16 
76 Ru(b4Mepi)Py2Cl 0.1 mol% IMes 23 1 2 0 0 26 89 266 133 
77 Ru(b4Mepi)Py2Cl 0.2 mol% IMes 18 1 1 0 0 20 93 194 97 
78 Ru(b4Mepi)Py2Cl 0.1 mol% IPr 14 0 1 0 0 15 96 148 74 
79 Ru(b4Mepi)Py2Cl 0.2 mol% IPr 14 0 1 0 0 15 95 147 74 
80 Ru(b4Mepi)Py2Cl 0.1 mol% ICy 5 0 0 0 0 5 100 52 26 
81 Ru(b4Mepi)Py2Cl 0.1 mol% IAd 13 0 0 0 0 13 100 134 67 
82 Ru(b4Mepi)Py2Cl 0.1 mol% ITol 13 0 1 0 0 14 96 135 68 
83 Ru(b4Mepi)Py2Cl 0.1 mol% SIMes 13 0 0 0 0 13 100 132 66 
84 Ru(b4Mepi)Py2Cl 0.1 mol% SIPr 12 0 0 0 0 12 100 122 61 

85 Ru(b4Mepi)Py2Cl 
0.1 mol% NHC 

(3,4- Me, R= 
Me) 

6 0 0 0 0 6 100 64 32 

86 Ru(b4Mepi)Py2Cl 0.1 mol% NHC 
(3,4- Me, R= iPr) 12 0 1 0 0 13 93 131 66 

87 Ru(bpi)(PPh3)2Cl 1 mL Heptane 20 1 2 0 0 23 91 235 117 
88 Ru(bpi)(PPh3)2Cl 1 mL HDMSO 17 1 2 0 0 20 85 210 105 

89 Ru(bpi)(PPh3)2Cl 1 mL 
Perfluorodecalin 23 1 0 0 0 24 93 245 122 

 

We initiated studies on Guerbet catalysis with EtOH using our previously reported Ru–

bpi complexes (2 and 7-R). Standard reaction conditions employed a 10 mL vial containing 17.1 

mmol of EtOH, 5 mol% NaOEt base, and 0.1 mol% Ru(II) precatalyst.39 After the reaction 

mixture was heated to 150 °C for 2 h, the product distribution was determined by GC-FID using 
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naphthalene as an internal standard. Higher activity (>3×) was found when 7-H (Table 2-2, entry 

3) was used instead of Ru(bMepi)(PPh3)Cl or HRu(bMepi)(PPh3)2 (Table 2-2, entries 1 and 2). 

Analysis of the reaction products (Table 2-2, entry 3) showed high selectivity (91%) for the 

production of 1-BuOH and 4% yield of C6 alcohols (2-ethylbutanol and 1-hexanol, Table 2-2) as 

side products, consistent with Guerbet coupling of 1-BuOH with EtOH. Control experiments 

showed that 7-H and NaOEt were both required for catalysis (Table 2-2, entries 36 and 37). In 

addition, electronic modifications of the pincer scaffold had no effect on the activity and 

selectivity. For instance, the conversion and selectivity were within the experimental error 

(±3%)40 when 7-OMe (Table 2-2, entry 4) or 7-Cl (Table 2-2, entry 5) was used instead of 7-H. 

However, modifications to the bMepi backbone (Table 2-2, entry 50) and changing the identity 

of the auxiliary ligand (PMe3; Table 2-2, entry 51) or transition metal (Os, Ir, or Co; Table 2-2, 

entries 52-54) decreased the conversion of upgrading EtOH. 

 Guided by the high selectivity for 1-BuOH exhibited by 7-H, we investigated conditions 

to improve the activity. The identity of the alkali metal had a significant effect. For example, 

lower activities were observed when LiOEt (Table 2-2, entry 6) or KOEt (Table 2-2, entry 7) was 

used instead of NaOEt, while NaOH (Table 2-2, entry 8) produced the same results as NaOEt 

(consistent with solvent leveling effects). Although a higher catalyst loading (0.3 mol%; Table 2-

2, entry 11) did not improve activity and selectivity, higher TONs and TOFs (1400 turnovers at 

10 ppm; Table 2-2, entries 12–14) were achieved at low catalyst loadings. Furthermore, at high 

temperature (180 °C; Table 2-2, entry 10) or higher NaOEt base loading (10 mol%; Table 2-2, 

entry 9), the conversion increased, with concomitant decrease in selectivity for 1-BuOH. For 

instance, when 10 mol% NaOEt was used, 42% conversion of EtOH to Guerbet alcohols was 

noted with 82% selectivity for 1-BuOH. Analysis of the reaction products showed higher yield of 

side products, which included C6 alcohols (10%) and C8 alcohols (2% yield of 2-ethylhexanol 

and 1-octanol, Table 2-2). Note that further attempts to enhance the process of EtOH upgrading 

catalyzed by Ru(bpi)(PPh3)2Cl via increasing the base concentration by adding liquid bases 

(TiOEt or TlOEt; Table 2-2, entries 38–41), performing the reaction under excess initial H2 

pressure (45 and 90 psig, Table 2-2, entries 42–44), adding exogenous Lewis acids or metal salts 

(Table 2-2, entries 54–71), and diluting the reaction mixture with nonpolar solvents (Table 2-2, 

entries 87–89) were unsuccessful. 
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Air-stable catalysts provide significant practical advantages, and are more easily 

deployed on an industrial-scale. We found that the activity of 7-H was retained when set up 

under room conditions. For example, when weighing all reagents in the air and adding air 

saturated solvents followed by heating the sealed vessel containing 17.1 mmol EtOH, 0.1 mol% 

7-H, and 5 or 10 mol% NaOEt to 150 °C for 2 h (Table 2-2, entries 15 and 16), we obtained 34% 

and 39% conversion (30% under N2) respectively. These results demonstrate that catalytic 

performance is unaffected in the presence of O2, which suggests that the active species is neither 

decomposed nor oxidized to a higher-valent Ru complex. Based on known reports of upgrading 

EtOH to 1-BuOH, 2-H is the first Ru catalyst to mediate this reaction under air. 

2.2.3 Reaction Profile of Upgrading EtOH Catalyzed by Ru(bpi)(PPh3)2Cl 

 

Figure 2-9 Reaction profile of conversion of EtOH to 1-BuOH catalyzed by Ru(bpi)(PPh3)2Cl. 

To assess the overall reaction efficiency, a time dependence study was conducted by 

varying the reaction time at 150 °C (Figure 2-9 and Table 2-2, entries 17–21). When evaluated 

over 24 h, the reaction profile displayed a linear region and reached culmination after 

approximately 4 h. Analysis of the reaction profile and the reaction products revealed an increase 

in production of higher order alcohols (10% to 14% C6 and C8 Guerbet products from 4 to 6 h) 

while the yield of 1-BuOH remained constant. We hypothesized that high concentration (ca. 2.1 

M or 25% yield) of 1-BuOH could compete with EtOH as a substrate, and thus impede 

production of 1-BuOH by competitive Guerbet pathways to generate longer chain alcohols. In 

support, a control experiment using 20% of 1-BuOH by volume (Table 2-2, entry 22) afforded 

similar conversion and yield. Furthermore, the yield of longer chain alcohols increased from 4% 
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to 12% and the yield of 1-BuOH remained 23% (25% without the addition of 1-BuOH), which is 

consistent with competitive 1-BuOH binding/reactivity at high concentration. 

2.2.4 Catalyst Deactivation via Decarbonylation Pathway 

To complement the time dependence study that demonstrated minimal catalyst activity 

after 6 h, we targeted Ru–bpi compounds with CO ligands that likely bear similarity to the 

catalyst deactivation product (νCO band at 1923 cm−1 observed by IR spectroscopy).41–43 Three 

different types of CO complexes were prepared from bpi variants to aid in the assignment of the 

decomposition products. The addition of CO (30 psig) to a solution of Ru(bMepi)(PPh3)Cl 

resulted in the clean conversion to Ru(bMepi)(PPh3)(Cl)CO (8). The 31P{1H} NMR spectrum 

exhibited a singlet at 43.5 ppm, and the IR spectrum displayed a νCO band at 1929 cm−1. The 

solid-state structure revealed CO ligand trans to the isoindolate nitrogen atom (Figure 2-10).  

 

Figure 2-10 Crystal structures (thermal ellipsoids depicted at 50% probability) of 
Ru(bMepi)(PPh3)(Cl)CO, Ru(b4OMepi)(PPh3)(Cl)CO, and Ru(bpi)(CO)2Cl. 
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Carbonyl complexes with the bpi ligand were prepared using a similar method. The 

addition of 30 psig CO to a solution of 7-H resulted in a mixture of 9a-H and 9b in a 37:1 ratio. 

The 31P{1H} NMR spectrum displayed one major resonance at 10.7 ppm with concomitant 

formation of free PPh3, and the IR spectrum showed one major νCO band at 1966 cm−1. After 24 

h, the mixture fully converted to the bis-CO complex (9b), and the IR spectrum exhibited new 

νCO bands at 2046 and 1977 cm−1, while the solid state structure revealed a Ru(II) center 

coordinated to two cis CO ligands and a chloride (Figure 2-10). Although a crystal structure of 

9a could not be obtained, a substituted variant (9a-OMe)44 that featured a very similar νCO band 

(1958 cm−1) was structurally characterized by X-ray (Figure 2-10). Because of the close 

proximity of the νCO bands between 8 and the decomposition product from Guerbet reactions 

(1929 versus 1923 cm−1), we propose that the deactivated catalyst contains a CO ligand 

(resulting from decarbonylation) trans to the isoindolate nitrogen atom.  

To optimize activity by preventing a competitive EtOH decarbonylation pathway, excess 

PPh3 was added to suppress phosphine dissociation.  Addition of 1 equiv of PPh3 (with respect to 

catalyst) to the standard reaction conditions (0.1 mol% 2-H, 5 mol% NaOEt, 150 °C; Table 2-2, 

entry 23) enhanced the catalyst activity to 49% conversion (an increase of 76% based on 

conversion and 72% based on TOF). Increasing the PPh3 loading to 4 equiv had a minimal 

increase on the catalyst activity (53%; Table 2-2, entry 25). When the reaction was performed 

using excess base (10 mol%; Table 2-2, entry 26) in the presence of excess PPh3 or AsPh3 

instead of PPh3 (Table 2-2, entries 27 and 28), no further enhancement of the catalyst activity 

was observed. Prior state-of-the-art catalysts afforded a TON of 458 (46% conversion; TOF = 19 

h−1)36d or 314 (31% conversion; TOF = 79 h−1).36b Thus, our system surpasses the activity of the 

previous premier systems by exhibiting a higher TON of 530, with a TOF of 265 h−1 at 53% 

conversion for catalytically upgrading EtOH.  

2.2.5 Poisoning Experiments for Upgrading EtOH 

The Guerbet reactions can be catalyzed by both heterogeneous or homogeneous species, 

and the active species of precursor 7-H was probed using catalyst-poisoning studies.16–18 When 

Hg(0) was added to the reaction mixture 30 min after the reaction was initiated, the catalytic 

activity was unaffected, which is consistent with an operative homogeneous system (Table 2-2, 

entry 32). To further interrogate the active catalytic species, substoichiometric ligand poisoning 
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experiments were performed. In the presence of 0.25 or 1 equiv of PBu3, the catalyst activity 

remained unchanged (Table 2-2, entries 29 and 30). In contrast, complete poisoning was 

achieved using 2 equiv of PBu3 (Table 2-2, entry 31). These results are inconsistent with a 

heterogeneous system, where low surface area aggregates are typically poisoned by ≪1 equiv of 

ligand poison, and suggest that the active catalyst for upgrading ethanol in this system is a 

homogeneous catalyst. Note that excess water also acts as a catalyst poison. The standard 

reaction (Table 2-2, entry 3) generated ~150 equiv H2O with respect to catalyst. In a control 

experiment, the activity of 7-H was not diminished in the presence of 5% H2O by volume (~160 

equiv; Table 2-2, entry 33). However, trace yields of 1-BuOH were observed in the presence of 

10% or 20 % H2O by volume (Table 2-2, entries 34 and 35). In addition, the activity of 7-H was 

not improved in the presence of exogenous molecular sieves. 

2.2.6 Summary 

In conclusion, we have developed Ru–bpi complexes (7-R) capable of converting EtOH 

to 1-BuOH with up to 91% selectivity. Higher activity (>50% conversion) was obtained at the 

sacrifice of selectivity (~80%) when using 1–4 additional equiv of PPh3. Note that currently used 

liquid fuels such as gasoline, are blends of hydrocarbons rather than single components. Thus, 

mixtures of higher order alcohols can likely serve a similar role as drop-in gasoline additives. 

Although prior studies have demonstrated homogeneous catalysts for EtOH upgrading, to our 

knowledge, our system is the most active, with a TOF of 265 h−1 at over 50% conversion. Of 

particular note, complex 7-H upgrades EtOH to 1-BuOH when set up in air with minimal loss of 

catalytic activity.  

2.3 Experimental Section 

2.3.1 General Considerations 

All manipulations were conducted under a nitrogen atmosphere on a Schlenk manifold or 

in a glovebox using standard Schlenk techniques, unless otherwise stated. All reagents were 

purchased from commercial vendors. 1-Phenylethanol (1PhEtOH) and phenyltrimethylsilane 

(PhTMS) were distilled from CaH2 under a nitrogen atmosphere, and then stored over 3Å 

molecular sieves for at least 24 h. The 3Å Molecular sieves were dried at 250 °C under dynamic 
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vacuum for 24 h. Dichloromethane (DCM), diethyl ether (Et2O), pentane, benzene (C6H6), and 

tetrahydrofuran (THF) were purified using a Glass Contour solvent purification system 

consisting of a copper catalyst, neutral alumina, and activated molecular sieves, then passed 

through an in-line, 2 µm filter immediately before being dispensed.  

NMR spectra were recorded on Varian Inova 500, Varian MR400, Varian vnmrs 500, and 

Varian vnmrs 700 spectrometers at room temperature. 1H and 13C shifts are reported in parts per 

million (ppm) relative to TMS, with the residual solvent peak used as an internal reference. 31P 

NMR spectra were referenced on a unified scale to their respective 1H NMR spectra. The 

following abbreviations are reported as follows: broad (br) singlet (s), doublet (d), doublet of 

doublets (dd), triplet (t), quartet (q), and multiplet (m). 13C NMR resonances were observed as 

singlets unless otherwise stated.  

Solid-state IR spectra were collected using a Nicolet iS10 spectrometer equipped with a 

diamond attenuated total reflectance (ATR) accessory. Elemental analyses were performed by 

Midwest Microlab, LLC. GC-MS analyses were performed using a Shimadzu QP-2010 GC/MS; 

the GC contains a 30 m long DB-5 column with a 0.25 mm I.D. 

GC-FID analyses were performed using a Shimadzu GC-2014 GC/FID; the GC contains 

a 15 m long SH-Rxi-5ms column with a 0.25 mm I.D. and utilized H2 as the carrier gas. GC 

measurements were conducted using the following method: 50 °C hold for the first 2 min, ramp 

to 250 °C at 35 °C/min and hold for 2 min. A calibration curve for the Guerbet products was 

obtained by GC analysis by plotting the ratios of the areas, Asample/Astandard, against the known the 

concentrations. 

2.3.2 Preparation of Ru(bMepi)(PPh3)Cl, Ru(bMepi)(PMe3)2[Cl], HRu(bMepi)(PR3)2 (R = 

Ph, Me), Ru(b4Mepi)Py2Cl, and Carbonyl Complexes 

KbMepi. THF (15 mL) was added to a 20 mL vial charged with KHMDS (439 mg, 2.21 

mmol), HbMepi (756 mg, 2.31 mmol), and a stir bar at room temperature. The resulting solution 

was stirred at room temperature for 4.5 h. After 1 h, the product started to precipitate from 

solution. The precipitates were filtered and washed with Et2O (4 × 5 mL) and pentane (4 × 5 mL). 

Yield: 799 mg (99%) of yellow powder. The product was used without further purification. 1H 
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NMR (400 MHz, THF): δ 7.76 (br s, 2H), 7.41 (br s, 2H), 7.30 (t, JHH = 7.6 Hz, 2H), 6.85 (br s, 

2H), 6.52 (d, JHH = 7.2 Hz, 2H), 2.32 (s, 6H). 

Ru(bMepi)(PPh3)Cl. THF (15 mL) was added to a 20 mL vial charged with KbMepi 

(309 mg, 0.847 mmol), RuCl2(PPh3)3 (773 mg, 0.807 mmol), and a stir bar at room temperature. 

The resulting solution was stirred at room temperature for 21 h. THF was removed under 

vacuum. The crude product was washed with Et2O (4 × 5 mL) and extracted with DCM (4 × 5 

mL). DCM was removed under vacuum affording the product as a lavender powder. Yield: 527 

mg (90%). Crystals were obtained by allowing pentane to diffuse into a C6H6 solution. 1H NMR 

(400 MHz, CDCl3): δ 7.81-7.76 (m, 4H), 7.59 (d, JHH = 8.0 Hz, 2H), 7.35 (dd, JHH = 5.6, 3.2 Hz, 

2H), 7.12 (t, JHH = 7.6 Hz, 2H) 6.92 (t, JHH = 8.0 Hz, 9H), 6.64 (t, JHH = 8.0 Hz, 6H), 1.72 (s, 6H). 
13C{1H} NMR (176 MHz, CDCl3): δ 158.8, 155.0, 153.0, 141.1, 135.2, 133.5, 132.6, 129.2, 

128.5, 127.9, 125.4, 119.9, 119.2, 23.0. 31P{1H} NMR (162 MHz, CDCl3): δ 43.50. IR (ATR, 

cm−1): 3047, 2160, 1979, 1573, 1515, 1435, 1186, 1111, 795, 741, 693. LCT-MS: m/z = 726.0 

(100%, MH+). 

HRu(bMepi)(PPh3)2. Ru(bMepi)(PPh3)Cl (445 mg, 0.614 mmol) was dissolved in THF 

(100 mL) at room temperature in a 125 mL round bottom flask charged with a stir bar. The 

solution was filtered to insure all of Ru(bMepi)(PPh3)Cl was dissolved. Then PPh3 (193 mg, 

0.737 mmol) was added to the solution. The mixture was stirred for 10 min before adding 

NaHBEt3 (0.645 mL, 0.645 mmol). The reaction solution color changed from blue to green 

immediately. The reaction solution was allowed to stir for 2 h before removing THF under 

vacuum. The crude product was washed with pentane (4 × 15 mL), and then extracted with C6H6 

(4 × 20 mL). C6H6 was removed under vacuum affording the product as a green powder. Yield: 

524 mg (89%). Crystals were obtained by allowing pentane to diffuse into a THF solution. 1H 

NMR (400 MHz, C6D6): δ 8.27 (dd, JHH = 5.6, 3.2 Hz, 2H), 7.30 (16H), 6.88 (t, JHH = 6.8 Hz, 

6H), 6.81 (t, JHH = 7.6 Hz, 12H), 6.67 (t, JHH = 7.6 Hz, 2H), 5.91 (d, JHH = 7.2 Hz, 2H), 3.12 (s, 

6H), −9.58 (t, JPH = 20.2 Hz, 1H). 13C{1H} NMR (176 MHz, CDCl3): δ 164.1, 161.2, 152.3, 

142.7, 133.7, 131.3, 128.1, 127.9, 127.0, 126.9, 120.6, 116.7, 34.3. 31P{1H} NMR (162 MHz, 

C6D6): δ 50.97. IR (ATR, cm−1): 3047, 2170, 2043, 1575, 1508, 1429, 1188, 1110, 789, 742, 695. 

Anal. Calculated (found): C, 70.58 (70.39); H, 4.97 (4.77); N, 7.35 (7.27). 
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Figure 2-11 Synthesis and crystal structure (thermal ellipsoids depicted at 50% probability) of 
HRu(bMepi)(PMe3)2. 

Ru(bMepi)(PMe3)2[Cl]. THF (10 mL) was added to a 20 mL vial charged with 

Ru(bMepi)(PPh3)Cl (230 mg, 0.317 mmol) and a stir bar. Then PMe3 (0.330 mL, 3.17 mmol) 

was added to the solution. After 20 h at room temperature, the precipitates were collected and 

washed with THF (4 × 5 mL) and Et2O (4 × 5 mL). Evaporation of the volatiles under vacuum 

afforded the product as a purple powder. Crystals were obtained by allowing Et2O to diffuse into 

a DCM solution. Yield: 171 mg (88%). 1H NMR (400 MHz, CDCl3): δ 8.03 (dd, JHH = 5.6, 3.2 

Hz, 2H), 7.89 (t, JHH = 7.6 Hz, 2H), 7.66 (d, JHH = 7.6 Hz, 2H), 7.56 (dd, JHH = 5.6, 3.2 Hz, 2H), 

7.23 (d, JHH = 7.2 Hz, 2H), 1.84 (s, 6H), 0.71 (t, JPH = 3.0 Hz,  18H). 31P{1H} NMR (162 MHz, 

CDCl3): δ −3.17. 

HRu(bMepi)(PMe3)2. C6H6 (5 mL) was added to a 20 mL vial charged with 

Ru(bMepi)(PMe3)2[Cl] (28 mg, 0.045 mmol) and a stir bar. Then NaHEt3B (0.047 mL, 0.047 

mmol) was added to the solution. The reaction solution color changed from purple to green 

immediately. The reaction solution was allowed to stir for 3 h. The C6H6 solvent was removed 

under vacuum, and the crude product was extracted with pentane (4 × 5 mL). Evaporation of the 

volatiles under vacuum afforded the product as a green powder. Crystals were obtained by 

cooling a pentane solution to −35 °C. 1H NMR (400 MHz, C6D6): δ 8.48 (dd, JHH = 5.6, 3.2 Hz, 

2H), 7.78 (dd, JHH = 8.0, 1.2 Hz, 2H), 7.35 (dd, JHH = 5.6, 3.2 Hz, 2H), 7.11 (t, JHH = 7.6 Hz, 2H), 
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6.63 (dd, JHH = 7.2, 1.6 Hz, 2H), 3.17 (s, 6H), 0.27 (t, JHH = 2.4 Hz, 18H), −10.77 (t, JPH = 23.0 

Hz, 1H). 31P NMR (162 MHz, CDCl3): δ 2.14 (d, JPH = 22.7 Hz). IR (ATR, cm−1): 3066, 2962, 

2918, 2885, 2796, 2105, 1969, 1605, 1569, 1505, 1418, 1374, 1197, 1123, 772, 713, 683, 658. 

Ru(bMepi)(PPh3)(Cl)CO. DCM (5 mL) was added to a Fischer–Porter tube containing 

Ru(bMepi)(PPh3)Cl (101.1 mg, 0.139 mmol) and a stir bar. The reaction vessel was charged with 

CO (30 psig) and allowed to stir at room temperature for 15 h. The DCM solution was layered 

with pentane (15 mL). After 24 h at room temperature, the precipitates were collected and 

washed with pentane (4 × 10 mL). Evaporation of the volatiles under vacuum afforded the 

product as a dark orange solid. Crystals were obtained from vapor diffusion of pentane into a 

C6H6 solution at room temperature. Yield: 79 mg (75%). 1H NMR (400 MHz, CD2Cl2): δ 7.76 

(dd, JHH = 5.6, 2.4 Hz, 2H), 7.52 (dd, JHH = 5.6, 2.4 Hz, 2H), 7.49 (t, JHH = 7.8 Hz, 2H), 7.16 (t, 

JHH = 7.6 Hz, 3H), 7.09 (d, JHH = 7.2 Hz, 2H), 7.03 (d, JHH = 7.8 Hz, 2H), 6.93-6.89 (m, 6H), 

6.55-6.50 (m, 6H). 13C{1H} (126 MHz, CD2Cl2): δ 206.03 (d, JCP = 19.2 Hz), 165.45, 160.55, 

155.63, 141.08, 136.91, 133.24 (d, JCP = 9.6 Hz), 130.78, 130.41, 130.27 (t, JCP = 3.3 Hz), 

128.28 (d, JCP = 9.6 Hz), 125.92, 121.72 (d, JCP = 8.6 Hz), 31.71. 31P{1H} (162 MHz, CD2Cl2): δ 

43.48 (s). IR (ATR, cm−1): 3066, 3015, 1929, 1639, 1604, 1577, 1545, 1519, 1474, 1432, 1393, 

1371, 1318, 1286, 1236, 1187, 1156, 1117, 1094, 992, 903, 882, 800, 782, 750, 735, 714, 688. 

Anal. Calculated (found): C, 62.19 (62.15); H, 4.15 (4.14); N, 9.30 (9.12). 

Ru(bpi)(CO)2Cl. C6H6 (8 mL) was added to a Fischer–Porter tube containing 

Ru(bpi)(CO)2Cl (81.5 mg, 0.0849 mmol) and a stir bar. The reaction vessel was charged with 

CO (30 psig) and allowed to stir at room temperature for 24 h. The precipitates were collected on 

a frit and washed with Et2O (5 mL) and pentane (4 × 10 mL). The product was dried under 

vacuum to afford a yellow solid. Crystals were obtained from vapor diffusion of Et2O into a 

DCM solution at 5 °C. Yield: 33 mg (79%). 1H NMR (500 MHz, CD2Cl2): δ 8.76 (d, JHH = 6.0 

Hz, 2H), 8.07 (dd, JHH = 5.2, 3.2 Hz, 2H), 7.86 (t, JHH = 7.6 Hz, 2H), 7.69-7.65 (m, 4H), 7.04 (t, 

JHH = 6.0 Hz, 2H). 13C{1H} (126 MHz, CD2Cl2): δ 196.27, 192.31, 157.49, 156.84, 156.78, 

138.94, 138.89, 131.19, 128.75, 122.00, 120.07. IR (ATR, cm−1): 3091, 3069, 2046, 1977, 1647, 

1603, 1577, 1528, 1459, 1428, 1381, 1321, 1307, 1287, 1201, 1184, 1150, 1121, 1101, 1011, 910, 

875, 869, 846, 771, 745, 702. Anal. Calculated (found): C, 48.94 (48.73); H, 2.46 (2.45); N, 

14.27 (13.71). 
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Ru(b4Mepi)Py2Cl. Pyridine (10 mL) was added to a 20 mL vial charged with 

[Ru(COD)Cl2]x (183 mg, 0.654 mmol), Hb4Mepi (204 mg, 0.623), NaOtBu (59.9 mg, 0.623 

mmol), and a stir bar. The reaction solution was allowed to stir at 80 °C for 16 h. After the 

solution cooled to room temperature, NaCl was filtered using a fine frit and the crude product 

left on the frit was extracted with excess pyridine (50 mL). The pyridine solvent was removed 

under vacuum and the crude product was washed with Et2O (4 × 20 mL) and pentane (4 × 20 

mL). The product was recrystallized at −35 °C from a DCM solution layered with pentane. After 

2 days, the precipitates were collected and washed with pentane (4 × 10 mL). Evaporation of the 

volatiles under vacuum afforded the product as a green powder.  Yield: 273 mg (71%). 1H NMR 

(400 MHz, CD2Cl2): δ 10.56 (d, JHH = 6.4 Hz, 2H), 8.00 (dd, JHH = 5.2, 3.2 Hz, 2H), 7.79 (d, JHH 

= 5.2 Hz, 4H, Py), 7.52 (dd, JHH = 5.2, 3.2 Hz, 2H), 7.41 (s, 2H), 7.29 (t, JHH = 7.4 Hz, 2H, Py), 

6.75-6.69 (m, 6H, Py), 2.37 (s, 6H). 

2.3.3 General Procedure for the Dehydrogenation of iPrOH Catalyzed by 

HRu(bMepi)(PPh3)2 

iPrOH (5 mL) was added to a 10 mL Schlenk flask charged with 2 (dependent on the 

catalyst loading; the appropriate amount was transferred from a 2.7 mM PhMe stock solution), 

PhMe (varying amount depending on the catalyst loading; all iPrOH dehydrogenation reactions 

had a total volume of 0.5 mL PhMe), and a stir bar. The Schlenk flask was fitted with a reflux 

condenser capped with a septum that was connected to a line of Tygon tubing that connected to 

an inverted burette filled with H2O. The entire reaction setup was purged with N2 for 5 min 

before heating the Schlenk flask to 90 °C. After heating the Schlenk flask for 20 min to 

equilibrate the gas temperature, the burette level at 0 h was measured. At pre-determined time 

intervals, the gas volume was measured during the reaction course. To confirm reproducibility 

and to determine the rate, all reactions were performed in triplicate. 

2.3.4 General Procedure for the Dehydrogenation of 1PhEtOH Catalyzed by 

HRu(bMepi)(PPh3)2 

1PhEtOH (5 mL, 41.4 mmol) was added to a 20 mL vial charged with 2 (3.9 mg, 0.00409 

mmol), PhTMS (0.5 mL, 2.9 mmol), and a stir bar. The vial was capped with a septum pierced 

with a needle to vent the evolved gas. The vial was heated to the desired temperature (90, 100, 
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110, 120, or 130 °C) using an aluminum heating block inside an inert-atmosphere glovebox. The 

formation of acetophenone was monitored by sampling 0.5 mL aliquots, and then analyzed by 1H 

NMR spectroscopy against PhTMS as an internal standard. To confirm reproducibility and to 

determine the rates, all reactions were performed in triplicate. 

2.3.5 General Procedure for 1,10-Phenanthroline Poisoning Experiments 

Following the procedure for the dehydrogenation of 1PhEtOH, the 1,10-phenanthroline 

poisoning experiment was conducted by first allowing the reaction solution to proceed for 2 h. 

Then 1,10-phenanthroline was added to the reaction solution while stirring at 120 °C. 

2.3.6 General Procedure for the Initial H2 Pressure Dependence Experiments 

A Fischer–Porter tube was first rinsed with 1PhEtOH (3 × 1 mL). 1PhEtOH (5 mL, 41.4 

mmol) was added to the tube charged followed by 2 (3.9 mg, 0.00409 mmol), PhTMS (0.5 mL, 

2.9 mmol), and a stir bar. The tube was charged with H2 (2.5, 5, 10, 20, 40, or 80 psig), and 

heated to 120 °C in an oil bath stirring at 1500 RPM. The reaction was allowed to stir for 24 h. 

To determine the acetophenone concentration, 0.5 mL aliquot of the reaction solution was 

analyzed by 1H NMR spectroscopy against PhTMS as an internal standard. 

2.3.7 General Procedure for the Dehydrogenation of Primary Alcohols and Diols and 

Chemoselective Dehydrogenation of Secondary Alcohols 

PhMe (2 mL) was added to a 10 mL Schlenk flask charged with 2 (1 mol%, 4.8 mg, 

0.005 mmol; 5 mol%, 23.8 mg, 0.025 mmol; 10 mol%, 47.6 mg, 0.05 mmol; dependent on the 

catalyst loading), n-docosane (31.1 mg, 0.1 mmol), and a stir bar. The alcohol substrate (0.046 

mL n-butanol, 0.052 mL benzyl alcohol, 0.029 mL EtOH, 0.044 mL 1,4-butanediol, 0.055 mL 

1,5-pentanediol, 69.1 mg 1-phenyl-1,2-ethanediol, 0.045 mL 1,3-butanediol; 0.5 mmol) was 

added to the mixture. A reflux condenser (cooling finger was used for EtOH) was connected to 

the Schlenk flask, and the reaction solution was heated to the desired temperature using an 

aluminum heating block and stirred at 1500 RPM. After the reaction was complete, a 0.020 mL 

aliquot was diluted with 1 mL DCM, and the product(s) and yield were determined by GC-MS 

using the following method: 30 °C hold for the first 5 min, ramp to 270 °C at 20 °C/min and hold 

for 15 min, solvent cut was set at 2.5 min and data was collected starting at 2.6 min. For the 
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EtOH and 1,3-butanediol experiments, the product(s) and yield were determined using 1H NMR 

spectroscopy with 0.005 mL PhTMS added to the NMR tube for internal referencing. 

2.3.8 General Procedure for Upgrading EtOH under N2 

Inside an inert-atmosphere glovebox, ethanol (1 mL, 17.1 mmol) was added to a 10 mL 

Biotage microwave vial (Product No. 351521) containing catalyst (0.1 mol%, 0.0172 mmol), 

base (5 mol%, 0.858 mmol), and a stir bar. Unless otherwise stated, Ru(bpi)(PPh3)2Cl (16.4 mg, 

0.0172 mmol) and NaOEt (58.3 mg, 0.858 mmol) were used. The vial was crimped with a 

septum, heated to 150 °C using an aluminum-heating block, and stirred at 1500 RPM. After 2 h, 

the vial was removed from the aluminum-heating block and cooled to room temperature. The 

solution was diluted with CHCl3 to 25 mL and filtered through celite. The products and yields 

were analyzed using GC-FID against naphthalene as an internal standard. 

2.3.9 General Procedure for Upgrading EtOH under Air 

On the benchtop, ethanol (1 mL, 17.1 mmol) was added to a 10 mL Biotage microwave 

vial (Product No. 351521) containing Ru(bpi)(PPh3)2Cl (0.1 mol%, 0.0172 mmol, 16.4 mg), 

NaOEt (5 mol%, 0.858 mmol, 58.3 mg), and a stir bar. The vial was crimped with a septum, 

heated to 150 °C using an aluminum-heating block, and stirred at 1500 RPM. After 2 h, the vial 

was removed from the aluminum-heating block and cooled to room temperature. The solution 

was diluted with CHCl3 to 25 mL and filtered through celite. The products and yields were 

analyzed using GC-FID against naphthalene as an internal standard. 

2.3.10 General Procedure for Poisoning Experiments of EtOH Upgrading 

Following the general procedure for upgrading EtOH under N2, the experiment was 

conducted by allowing the reaction to proceed for 30 min. The reaction was removed from the 

aluminum-heating block and cooled for 15 min at room temperature. Then PBu3 or Hg(0) was 

added to the reaction. The reaction was crimped and reheated to 150 °C for 1.5 h. 
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CHAPTER 3 

On the Mechanism of N,N,N-Amide Ruthenium(II) Hydride 

Mediated Acceptorless Alcohol Dehydrogenation 

 

Portions of this chapter have been published: 

Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K. ACS Catal. 2015, 5, 5468. Reprinted with 

permission; Copyright (2015) American Chemical Society. 

3.1 Introduction 

 

Figure 3-1 Generalized catalytic cycles for the inner-sphere and outer-sphere dehydrogenation 
pathways. 

Transition-metal catalyzed acceptorless alcohol dehydrogenation (AAD) with the liberation of 

H2 is an atom-economical and selective route to generate a variety of organic carbonyl synthons.1 

In the context of the “hydrogen energy economy”, AAD also provides a highly desirable strategy 
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for promoting H2 release from suitable biomass feedstocks for chemical energy storage 

applications.2 

 

Figure 3-2 Proposed AAD reaction pathway mediated by bifunctional catalysts developed by 
Milstein and Yamaguchi. 

To achieve high atom economy (no exogenous additives), promoterless AAD reactions 

are most often mediated by bifunctional catalysts that operate via a metal–ligand cooperative 

mechanism. This ligand-assisted, transition-metal catalyzed process differs from the classical 

inner-sphere mechanism by not requiring coordination of the substrate, thus enabling outer-

sphere proton transfer to a ligand-based basic site with concurrent hydride transfer to the metal 

center (Figure 3-1).3 For example, Milstein’s group developed a series of pyridyl PNE (E = PR2 

or NR2) Ru pincer complexes (1, HRu(PNE)(CO)) that employ cooperation of the metal center 

with the ligand via aromatization–dearomatization of the central pyridinyl group concomitant 

with protonation–deprotonation of the methylene arm (Figure 3-2, left panel).1a,4 Computational 

studies revealed that 1 favors an outer-sphere bifunctional double hydrogen transfer pathway 

rather than an inner-sphere β-H elimination process.5 More recently, a computational study by 
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Yamaguchi, Fujita, and co-workers demonstrated that the AAD reaction of benzyl alcohol 

catalyzed by Cp*Ir(bpyO) (2, bpyO = α,α’-bipyridonate) also operates via an outer-sphere 

pathway, where the metal center and the bipyridonate motif work synergistically to oxidize 

benzyl alcohol en route to H2 elimination with the aid of an alcohol bridge (Figure 3-2, right 

panel).6 Collectively, these and related studies establish the importance of a cooperative 

mechanism to achieve efficient dehydrogenation activity. However, in systems that contain 

bifunctional groups, it may be ambiguous whether a cooperative pathway is actually required for 

efficient dehydrogenation.7 

We recently reported an N,N,N-bMepi (bMepi = 1,3-bis(6’-methyl-2’-

pyridylimino)isoindolate) Ru(II) hydride complex (3, HRu(bMepi)(PPh3)2) capable of catalyzing 

promoterless and chemoselective AAD reactions.8,9 Of particular note, precatalyst 3 promotes 

acceptorless dehydrogenation of secondary alcohols to ketones, acceptorless dehydrogenative 

coupling of primary alcohols to esters, and diols to lactone products with high conversion 

efficiencies. Importantly, neither of these reactions requires exogenous base or hydrogen 

acceptor additives, and the catalyst system is unusually selective for the dehydrogenation of 

secondary alcohols in the presence of primary alcohols. Preliminary analysis of the alcohol 

dehydrogenation reaction revealed two key findings: 1) a homogeneous active catalyst, as 

assessed by mercury and substoichiometric ligand poisoning experiments, and 2) the release of 

PPh3 under catalytic conditions. In this article, we use these observations as an entry point to 

disclose a detailed mechanistic analysis of a series of kinetic rate data including isotopic labeling 

studies, stoichiometric reactions to probe catalytic intermediate species, and new ligand variants 

to understand the steric and electronic effects of the bMepi pincer ligand on the activity of the Ru 

complex. We aim to answer the following key questions: 1) Does precatalyst 3 participate in an 

inner- or outer-sphere dehydrogenation pathway? 2) What are the details of the intermediates in 

the dehydrogenation catalytic cycle? 3) What impact do the steric (ortho-substituted methyl 

groups) and electronic (electron donating and -withdrawing groups in the secondary coordination 

sphere) profiles of the bMepi pincer ligand have on alcohol dehydrogenation? 
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3.2 Results and Discussion 

3.2.1 Limiting Mechanistic Scenarios for Acceptorless Alcohol Dehydrogenation Catalyzed 

by HRu(bMepi)(PPh3)2 

 

Figure 3-3 1PhEtOH dehydrogenation rate dependence on the concentration of 
HRu(bMepi)(PPh3)2. 

Based on prior PPh3 studies8 and the observation of a first-order dependence of the rate of 

1-phenylethanol (1PhEtOH) dehydrogenation on [3] (Figure 3-3),10 two limiting monometallic 

alcohol dehydrogenation pathways mediated by 3 are proposed in Figure 3-4. For either pathway, 

phosphine dissociation from 3 generates a coordinately unsaturated Ru species that is able to 

participate in either an inner-sphere β-H elimination pathway (Figure 3-4, top panel) or an outer-

sphere concerted pathway (Figure 3-4, bottom panel). In the inner-sphere cycle, proton transfer 

from the alcohol to the Ru hydride affords a Ru-alkoxide species (likely via a transient Ru–H2 

intermediate), which undergoes β-H elimination to complete the cycle. An alternative pathway to 

the inner-sphere β-H elimination mechanism is the outer-sphere pathway, where both proton and 

hydride transfer occur without requiring coordination to Ru. Complex 3 operating via this 

pathway may involve proton transfer to the imine (or isoindolate) group on the bMepi-ligand 

backbone with concurrent hydride transfer to the Ru-metal center. Both of these AAD 

mechanistic scenarios are evaluated by a series of kinetic experiments, catalyst modifications, as 

well as isolation of proposed intermediates. 
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Figure 3-4 Proposed inner-sphere and outer-sphere dehydrogenation pathways. 

3.2.2 Standard Conditions for Kinetic Studies 

 

Figure 3-5 Standard reaction conditions for AAD of 1PhEtOH catalyzed by HRu(bMepi)(PPh3)2. 

In order to examine the operative pathway for catalysis by 3, 1PhEtOH was selected as a 

standard substrate because its low volatility permits heating in an open system. Additionally, the 
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reverse reaction, reduction of acetophenone to 1PhEtOH, is generally accepted as a standard test 

for (transfer) hydrogenation catalysis.3,11 The dehydrogenation reaction was performed in an 

open system inside an inert-atmosphere glovebox and the conversion of 1PhEtOH to 

acetophenone was monitored by 1H NMR spectroscopy using phenyltrimethylsilane (PhTMS) as 

an internal standard (Figure 3-5). The observed reaction rates were obtained using the method of 

initial rates. All kinetic experiments were simultaneously performed in triplicate. Standard 

reaction conditions for kinetic studies employed a vial containing 7.5 M 1PhEtOH and 0.01 

mol% 3. After the reaction mixture was heated to 120 °C for 4 h, acetophenone was observed in 

11.6% conversion, which corresponds to an initial rate of 5.2(2) × 10−5 M·s−1, a turnover number 

(TON) of 1213, and a turnover frequency (TOF) of 303 h−1. To establish confidence in the 

method of initial rates in this system, a reaction rate of 5.8 × 10−5 M·s−1 (within 10% error of the 

initial rate) at 4 h was obtained from the first derivative of an exponential fit of the complete 

dehydrogenation reaction profile (Figure 3-6). 

 

Figure 3-6 Complete reaction profile of 1PhEtOH dehydrogenation. 

3.2.3 Triphenylphosphine Dependence 

Based on our prior studies that showed free PPh3 during catalysis, the dependence on 

PPh3 concentration was examined to determine whether PPh3 dissociation contributed to a 

turnover-limiting step in either of the proposed alcohol dehydrogenation cycles. The order in 

[PPh3] was determined by measuring the observed rates for 1PhEtOH dehydrogenation over 

several PPh3 concentrations under the reaction conditions listed in Figure 3-5. No dependence on 
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the rate of 1PhEtOH dehydrogenation was observed up to 20 equiv of PPh3 (14.5 mM) relative to 

3 (Figure 3-7). 

 

Figure 3-7 Influence of [PPh3] on the reaction rates for 1PhEtOH dehydrogenation catalyzed by 
HRu(bMepi)(PPh3)2. 

The zero-order [PPh3] dependence (up to 20 equiv) suggests that PPh3 dissociation from 

3 is not included in the turnover-limiting step and furthermore that phosphine binding/release is 

not in equilibrium with the turnover-limiting step under these conditions. Therefore, the 

turnover-limiting step must be either β-H elimination (inner-sphere) or H2 formation reaction 

(outer-sphere). Alternatively, for this to be true for a proton/hydrogen transfer turnover-limiting 

step, the alcohol binding would have to be irreversible, which is highly improbable.12 

3.2.4 1-Phenylethanol Dependence 

In both the inner- and outer-sphere dehydrogenation scenarios (Figure 3-4), the next step 

following PPh3 dissociation involves the alcohol substrate. A rate dependence on [1PhEtOH] 

would be anticipated if the turnover-limiting step was alcohol binding followed by deprotonation 

(inner-sphere) or proton and hydride transfer from the alcohol (outer-sphere). The influence of 

1PhEtOH concentration on the catalytic rate was examined by changing the [1PhEtOH] while 

holding the initial concentration of 3 constant. Over the range of 6.5–8 M 1PhEtOH, the 

observed reaction rate profile displayed a linear dependence on [1PhEtOH] from 6.5 to 7.5 M 

1PhEtOH, then the rate reached culmination after 7.5 M 1PhEtOH with an averaged catalytic 

rate of 5.2(2) × 10−5 M·s−1 (Figure 3-8).13 The reaction rate dependence on [1PhEtOH] suggests a 
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pre-equilibrium model in which at high [1PhEtOH] the equilibrium is driven to the right, and the 

dependence on [1PhEtOH] drops from the rate law. This model could fit either the inner- or 

outer-sphere pathways, where a pre-equilibrium alcohol binding and proton/hydrogen transfer is 

followed by a slow metal-based reaction (e.g., β-H elimination or H2 formation). Given that two 

different mechanistic regimes exist at high and low [1PhEtOH], it is important to note that the 

kinetic experiments were performed at an initial [1PhEtOH] of 7.5 M (Figure 3-5, unless 

otherwise stated) and under these conditions, the catalyst operated in the linear regime when the 

reaction proceeded 10–15%. 

 

Figure 3-8 Influence of [1PhEtOH] on the reaction rates for 1PhEtOH dehydrogenation 
catalyzed by HRu(bMepi)(PPh3)2. 

3.2.5 Temperature Dependence 

The activation parameters for 1PhEtOH dehydrogenation mediated by 3 at low and high 

[1PhEtOH] were analyzed to interrogate the transition-state structures. The reaction rates were 

measured over a 40 °C temperature range and plotted according to an Eyring analysis (Figure 3-

9). In the low [1PhEtOH] regime, analysis of the Eyring plot revealed a free energy activation 

barrier (ΔG‡) of 31(3) kcal/mol at 120 °C, an activation enthalpy (ΔH‡) of 18(1) kcal/mol, and an 

activation entropy (ΔS‡) of −32(3) eu.14 In the high [1PhEtOH] regime, analysis of the Eyring 

plot revealed a ΔG‡ of 31(3) kcal/mol at 120 °C, an ΔH‡ of 15(1) kcal/mol, and an ΔS‡ of −41(3) 

eu. An activation enthalpy of this magnitude is consistent with bond-breaking character in the 

turnover-limiting transition structure.15 In addition, the relatively large negative entropy of 

activation suggests not only an associative process but also a higher degree of organization in the 
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transition state than in the ground state. Analysis of the activation parameters at low and high 

[1PhEtOH] revealed equivalent ΔG‡ values.  However, between the low and high [1PhEtOH] 

regimes, the magnitude of ΔH‡ decreases, whereas that of ΔS‡ increases. This implies that at high 

[1PhEtOH] the AAD catalysis is entropically controlled. Unfortunately, these Eyring data could 

not be used to unambiguously differentiate between the two proposed mechanisms. For example, 

a highly ordered transition structure could be expected for an alcohol-assisted proton/hydrogen 

transfer turnover-limiting step in the two pathways as proposed in Figure 3-10.16 Furthermore, a 

range of ΔS‡	
  values (+12 to −30 eu) have been reported for a β-H elimination turnover-limiting 

step from metal-alkoxide species.17 

 

Figure 3-9 Eyring plots for 1PhEtOH dehydrogenation catalyzed by HRu(bMepi)(PPh3)2. Left 
panel [1PhEtOH]0 = 7.5 M. Right panel [1PhEtOH]0 = 8.2 M. 
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Figure 3-10 Proposed 1-PhEtOH deprotonation with 1PhEtOH as a proton-transfer shuttle in the 
inner-sphere and outer-sphere pathways. 

3.2.6 Isotopic Labeling Studies 

A series of deuterium isotopic substitutions of 1PhEtOH were used to interrogate proton 

and hydride transfer and inner- versus outer-sphere pathways. The scenario of 1PhEtOH 

deprotonation as the turnover-limiting step was examined by monitoring the dehydrogenation of 

the 1PhEtOH isotopologue, 1PhEtOD, catalyzed by 3. A normal primary kinetic isotope effect 

(KIE) would be anticipated if the O–H bond cleavage is involved in the turnover-liming step or 
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precedes it. Dehydrogenation of 1PhEtOD at 120 °C in the presence of 0.01 mol% 3 yielded an 

observed rate of 2.7(1) × 10−5 M·s−1 (Figure 3-11, eq 4). This reduced reaction rate, compared to 

the rate for the perprotio isotopologue, afforded a KIE (rOHCH/rODCH) of 1.9(2), thus supporting 

either O–H bond cleavage in the turnover-limiting step (inner- or outer-sphere) or a β-H 

elimination turnover-limiting step with a proton-transfer pre-equilibrium (inner-sphere). Hence, 

it should be noted that the observed isotope effect is likely a composite of both equilibrium and 

kinetic isotope effects.18 

 

Figure 3-11 Isotopic labeling experiments for the dehydrogenation of 1PhEtOH. 

Another set of isotopic labeling experiments were performed with a second isotopologue 

of 1PhEtOH, 1PhCH3CDOH. An observed reaction rate of 3.6(1) × 10−5 M·s−1 was obtained for 

the dehydrogenation of 1PhCH3CDOH at 120 °C resulting in a KIE (rOHCH/rOHCD) of 1.4(1) 

(Figure3-11, eq 5). This observed KIE is consistent with the cleavage of the C–H bond in the 

turnover-limiting step (β-H elimination or outer-sphere pathway) and is too large for a secondary 

isotope effect. Depending on the nature of the transition state, varying magnitudes of KIE (>1.3) 

have been measured for β-H elimination from metal-alkoxides.18c However, a KIE with a larger 

magnitude (2.6) was observed for an outer-sphere concerted pathway.19 In addition, the 

measured KIE is also consistent with a proton-transfer turnover-limiting step where a Ru–H(D) 

species could participate in deprotonation of the alcohol after the first turnover in an inner-sphere 

pathway. 

The outer-sphere concerted pathway can be evaluated using a series of isotopic labeling 

experiments. For example, Bäckvall and Johnson demonstrated that Shvo’s catalyst operated via 

an outer-sphere concerted mechanism by analyzing the KIE for the doubly deuterium labeled 
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isotopologue of 1PhEtOH, 1PhCH3CDOD.19 For a concerted pathway, the observed isotope 

effect for 1PhCH3CDOD should be the product of the two individual isotope effects 

(rOHCH/rODCH × rOHCH/rOHCD). When 1PhCH3CDOD was subjected to the standard 

dehydrogenation conditions, a reaction rate of 2.6(1) × 10−5 M·s−1
 was observed, providing a 

kinetic isotope effect (rOHCH/rODCD) of 2.0(2) (Figure3-11, eq 6). In contrast, the product of the 

individual isotope effects is 2.7 (1.9 × 1.4) and thus inconsistent with the measured combined 

KIE. Furthermore, to normalize for any secondary isotope effects on the C–H KIE, we averaged 

the rOHCH/rOHCD (1.44) and rODCH/rODCD(1.04) values to provide a C–H KIE of 1.24. The product 

of the O–H and averaged C–H KIE is 2.4(1), which also does not match the observed 

rOHCH/rODCD. These analyses provide strong evidence against pathways in which both proton and 

hydride transfer in a concerted manner and are in support of an inner-sphere, stepwise pathway. 

3.2.7 Synthesis and Reactivity of Ru(bMepiMe)(PPh3)(OTf)2 

To complement the kinetic isotope studies that discounted an outer-sphere concerted 

pathway, we targeted Ru(II) compounds with the ligand bMepiMe, in which one of the imine 

groups is methylated. Prior studies from our laboratory found that a late stage modification can 

be used to alkylate the imine backbone, thus providing complementary complexes that feature 

similar primary coordination environments yet differ in charge of the pincer ligand.20 

Furthermore, the site of protonation or alkylation in these and related complexes21 is the imine 

nitrogen, rather than the amido nitrogen, which indicates the former as the favored kinetic site 

for protonation. Hence, metal–ligand cooperative pathways involving proton transfer to the 

central isoindoline nitrogen are unlikely AAD mechanisms for the bis(pyridylimino)isoindolate 

framework. 

Ru(bMepiMe)(PPh3)OTf2 (5) was prepared by treating a DCM solution of 

Ru(bMepi)(PPh3)Cl (4) with 10 equiv of MeOTf at room temperature for 18 h. Complex 5 was 

isolated in 62% yield and characterized by 1H and 31P NMR spectroscopy, elemental analysis, 

and X-ray crystallography. The 31P{1H} spectrum displays a singlet at 47.8 ppm, and the 1H 

NMR spectrum is consistent with the asymmetry of the bMepiMe ligand. In particular, two 

distinct resonances for the ortho-CH3 groups were located at 1.57 and 1.78 ppm and a singlet 

was detected at 3.71 ppm and assigned as the methyl group on the ligand backbone. Complex 5 
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has a slightly distorted square-based pyramid (τ = 0.10)22 structure, which contains a triflate 

anion trans to the PPh3 ligand (Figure 3-12). 

 

Figure 3-12 Synthesis and crystal structure (thermal ellipsoids depicted at 50% probability) of 
Ru(bMepiMe)(PPh3)OTf2. 

In addition to the covalent methylated imine bond in 5, noncovalent interactions of the 

ortho-methyl groups were found. Agostic M–H–C interactions are characterized by relatively 

short M–H distances (1.8 to 2.3 Å), small M–H–C bond angles (90 to 140°), and upfield 

chemical shifts of the agostic hydrogen atoms.23 All three criteria for an agostic interaction are 

met in complex 5. The crystal structure of 5 reveals a short M–H distance of 2.29 Å24 and a small 

M–H–C bond angle of 119° from one hydrogen of the ortho-CH3 groups. In addition, the two 

singlet resonances for the methyl groups are upfield of the free HbMepi ligand (the hydrogen 

atoms of the methyl groups on the free HbMepi ligand were observed in the 1H NMR spectrum 

as a singlet at 2.50 ppm, Δ = 0.93, 0.72 ppm). The analogous protonated complex 

(Ru(HbMepi)(PPh3)Cl[PF6]) was also synthesized by heating a THF solution containing HbMepi, 

RuCl2(PPh3)3, and TlPF6 (Figure 3-13). In contrast to sharp ligand resonances observed in the 1H 

NMR spectrum of 5, the analogous protonated complex, Ru(HbMepi)(PPh3)Cl[PF6], contains 

broad ligand resonances at room temperature, which are consistent with a dynamic protonation 
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equilibrium between the imine nitrogens. The solid-state structure shows square-based pyramid 

geometry about the Ru center with a chloride ligand trans to PPh3. For 

Ru(HbMepi)(PPh3)Cl[PF6], two out of the three criteria are met for an agostic interaction; the 

M–H distance is slightly longer (2.44 Å). However, the M–H–C bond angle of 107° and the 

upfield shift of the ortho-CH3 groups (1.78 and 1.70 ppm, Δ = 0.72, 0.80 ppm) are consistent 

with an agostic M–H–C interaction. Complex 4 exhibited similar structural and spectroscopic 

properties as the protonated complex, such as the M–H distance (2.41 Å), a M–H–C bond angle 

of 113°, and the upfield shift of the ortho-CH3 groups (1.72 ppm, Δ = 0.78 ppm). 

 

Figure 3-13 Synthesis and crystal structure (thermal ellipsoids depicted at 50% probability) of 
Ru(HbMepi)(PPh3)Cl[PF6]. 

Because the isotopic labeling studies were not consistent with a concerted 

dehydrogenation pathway (vide supra), a stepwise, hybrid metal–ligand cooperative pathway 

was evaluated. This bifunctional hybrid mechanism is a combination of the inner-sphere β-H 

elimination and the outer-sphere bifunctional pathway, in which proton transfer takes place at the 

backbone imine group on the bMepi ligand, affording a Ru-alkoxide intermediate (Figure3-14, 

eq 7) that could undergo β-H elimination. Unless H2 is eliminated, this pathway is not probable 

because the Ru-alkoxide intermediate is an 18 e− species and could not undergo β-H elimination 

without losing another ligand (or dissociation of the alkoxide or a pyridine arm). Dissociation of 

the PPh3 ligand would deviate from the observed zero-order [PPh3] dependence. 
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Figure 3-14 Proposed proton transfer via stepwise metal–ligand cooperativity. 

To assess the potential participation of the backbone imine group on the bMepi ligand in 

the dehydrogenation of alcohols via bifunctional metal–ligand catalysis, the dehydrogenation of 

1PhEtOH catalyzed by 5 was evaluated. Of key importance to a bifunctional metal–ligand 

pathway is proton transfer to the backbone imine nitrogen. This protonation event would seem 

energetically unfavorable for the alkylated complex (Figure 3-14, eq 8) given that heating 4 in 

excess MeOTf afforded only the monomethylated complex, which suggests that the remaining 

imine functionality is less basic in the bMepiMe ligand than in the parent bMepi ligand. 

The proposed hybrid metal–ligand cooperative pathway was evaluated by comparing the 

reaction rates of 1PhEtOH dehydrogenation catalyzed by 4 and 5 (Figure 3-15). Heating a 7.8 M 

1PhEtOH solution containing 0.024 mol% of 4 and 0.048 mol% NaOtBu to 120 °C for 4 h 

resulted in an averaged TON of 1441, which corresponds to a reaction rate of 7.7(3) × 10−5 M·s−1. 

The alkylated Ru complex (5) was also a competent dehydrogenation precatalyst. For instance, 

under the same reaction conditions, complex 5 oxidized 1PhEtOH to acetophenone and H2 with a 

reaction rate of 8.7(1) × 10−5 M·s−1.25 These results demonstrate that a cooperative interaction 

involving the imine functionality is not necessary to achieve efficient rates for catalytic AAD 

reaction.26 
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Figure 3-15 Reaction rate comparison between the bMepi and bMepiMe ligated Ru complexes. 

3.2.8 Hammett Studies 

 

Figure 3-16 Hammett plot for 1PhEtOH dehydrogenation catalyzed by HRu(bMepi)(PPh3)2. 

The electronic character of the turnover-limiting transition state in catalytic AAD 

promoted by 3 was investigated by conducting a linear free energy analysis using initial rates of 

dehydrogenation of para-substituted 1PhEtOH substrates (Figure 3-16). The ρ value has 

previously been used to differentiate between limiting mechanistic regimes of alcohol 

dehydrogenation (Figure 3-17). For instance, distinct ρ values were reported for Ru-catalyzed 

alcohol dehydrogenation reactions that operate through turnover-limiting β-H elimination (ρ = 

−0.43),27 free-radical H atom transfer (ρ = −0.30),28 or outer-sphere pathway (ρ = −0.89)29. In 

contrast to these values, the Hammett analysis for 3 afforded a ρ value of −1.69(5). The negative 

ρ value signifies a positive charge buildup in the transition state, supporting a β-H elimination 
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turnover-limiting step in the inner-sphere pathway. Although 3 and the heterogeneous Ru-

hydroxyapatite system are proposed to undergo a β-H elimination turnover-limiting step, the 

difference in magnitude of the ρ values may be explained by the nature of the transition state. 

The smaller ρ value of −0.43 observed for Ru-hydroxyapatite indicates that electronic changes 

have a subtle effect on β-H elimination, which is consistent with a late transition state with 

almost complete C–H bond cleavage and Ru–H bond formation.  For our system 3, electron-

donating groups increase the nucleophilicity of the benzylic hydrogen atom, which acquires 

hydridic character during β-H elimination. Stabilization of the positive charge buildup at the 

benzylic carbon as the hydride is transferred in the transition state suggests an early transition-

state model. 

 

Figure 3-17 Comparison of Hammett parameters derived from Ru-catalyzed alcohol oxidation. 
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3.2.9 Isolation of a Ruthenium(II)-Alkoxide Complex 

 

Figure 3-18 Synthesis and crystal structure (thermal ellipsoids depicted at 50% probability) of 
Ru(bMepi)(PPh3)(OCH2CF3). 

Following the kinetic experiments, which support an inner-sphere β-H elimination 

pathway, stoichiometric reactions were performed to examine the intermediate species during 

catalysis. In particular, a Ru-alkoxide species was implicated as the catalyst resting state that 

undergoes β-H elimination in an inner-sphere pathway. To trap such a species prior to β-H 

elimination, trifluoroethanol, whose conjugate base is resistant to β-H elimination,30 was selected. 

The addition of 1.1 equiv of trifluoroethanol to a solution of 3 in THF resulted in the clean 

conversion to Ru(bMepi)(PPh3)(OCH3CF3) (6), which was isolated as a dark blue solid in 76% 

yield after heating at 70 °C for 2 days (Figure 3-18). The 1H NMR spectrum features a single set 

of bMepi resonances with the methyl resonances at 1.75 ppm and the 31P{1H} NMR spectrum of 

6 exhibits a singlet at 43.8 ppm, which is similar to the 31P spectrum observed for 

Ru(bMepi)(PPh3)Cl (4, 43.5 ppm). Crystals suitable for single-crystal X-ray diffraction were 

obtained from vapor diffusion of pentane into a PhMe solution of 6. The solid-state structure 

shows a square-based pyramid geometry about the Ru(II) center (τ = 0.01)22 with the –OCH2CF3 

ligand trans to PPh3 (Figure 3-18). The shortest M–H distance is 2.69 Å with a M–H–C bond 
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angle of 99° and the chemical shift of the methyl groups is upfield of the free HbMpi ligand. The 

structural and spectroscopic properties satisfy two out of three criteria for determining an agostic 

interaction between the Ru center and the methyl C–H group. 

Given that complex 6 is similar to the proposed Ru-alkoxide intermediate in the AAD 

catalytic cycle, intermediates species prior to H2 liberation were investigated by allowing 6 to 

react with H2. When a J. Young NMR tube containing a toluene-d8 solution of 6 and PPh3 was 

charged with 30 psig of H2, the immediate formation of trifluoroethanol was detected as a triplet 

at −76.5 ppm in the proton-coupled 19F spectrum, and 6 and 3 were the only complexes observed 

by 1H and 31P NMR spectroscopy. In addition, no reaction was observed when the same 

experiment was performed at −75 °C. Upon slowly warming the J. Young tube in the NMR 

spectrometer, the formation of trifluoroethanol and 3 resulted from the clean conversion of 6 and 

H2. No Ru intermediate species were observed at low temperature and 3 was the only Ru species 

observed when 6 reacted with H2. These observations suggest that both alcohol and η2-H2 

adducts are short-lived intermediates with respect to the alkoxide and/or 3. Furthermore, no 

reaction (β-H elimination or decomposition) was observed when a solution of 6 with and without 

100 equiv of trifluoroethanol in C6D6 was heated to operating temperatures for catalytic AAD 

reaction (120 °C for 3 h), which is consistent with an increase (~15 kcal/mol) in the activation 

barrier effected by the trifluoromethyl group.30a 

3.2.10 Catalyst Resting State and Mechanistic Discussion 

With known spectroscopic features of a Ru–bMepi alkoxide species in hand, NMR 

experiments were performed to observe the catalyst resting state in situ. A solution of 8.3 M 

1PhEtOH containing 0.1 mol% of 3 inside a J. Young tube was monitored by 1H and 31P NMR 

spectroscopy at room temperature and 100 °C. After 10 min at room temperature 73% of 3 was 

converted to a new species with a 31P resonance at 41.7 ppm with concomitant formation of free 

PPh3. The hydride region of the 1H NMR spectrum showed no new species. This new species at 

41.7 ppm is consistent with the chemical shift of the isolated Ru alkoxide (6) and thus is 

proposed as Ru(bMepi)(PPh3)(OCHPhMe).31 Heating the J. Young tube inside the NMR 

spectrometer for 10 min at 100 °C resulted in the full conversion of 3 to the proposed Ru 

alkoxide. At 100 °C the 31P NMR spectrum exhibited only two resonances corresponding to the 

Ru alkoxide (40.6 ppm) and free PPh3 with 1:1 integration values. Observation of the catalyst 
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resting state as Ru-alkoxide species at high [1PhEtOH] further supports a β-H elimination 

turnover-limiting step during catalysis. 

The catalyst resting state was also examined at low [1PhEtOH]. A C6D6 solution 

containing 0.83 M 1PhEtOH and 0.1 mol% of 3 was monitored by 1H and 31P NMR 

spectroscopy at room temperature and 100 °C. After 10 min at room temperature, 13% of a 

species consistent with formulation of the proposed alkoxide (31P = 41.7 ppm) was observed by 
31P NMR spectroscopy. The hydride region of the 1H NMR spectrum showed only the hydride 

resonance of 3 as a triplet, which was broadened and suggestive of a dynamic process associated 

with ligand substitution and/or proton transfer. The equilibrium constant between 3 and the 

proposed Ru-alkoxide species is invariant from 0.83 to 6.0 M 1PhEtOH, which is consistent with 

a pre-equilibrium process. After the NMR tube was heated for 10 min at 100 °C, a 1:1 ratio of 

the Ru alkoxide to 3 was observed. Continued monitoring of the reaction mixture at 100 °C for 1 

h (corresponding to ca. 0.3% acetophenone) resulted in no change in the ratio of the alkoxide 

species to 3. This suggests that at low alcohol concentrations proton transfer is much slower and 

becomes competitive with β-H elimination. Thus, as reactant alcohol is consumed during 

catalysis, the turnover-limiting step is proposed to change from β-H elimination to proton 

transfer. 

With the results of catalyst resting state at low and high [1PhEtOH] in hand, an in-depth 

analysis of [PPh3] dependence, [1PhEtOH] dependence, and activation parameters was pursued. 

The reaction rate dependence on [1PhEtOH] fits a pre-equilibrium model with an equilibrium 

proton-transfer step occurring before turnover-limiting β-H elimination. This is consistent with 

the zero-order dependence on [PPh3] and our previous analysis showing that phosphine binding 

is not in equilibrium with the turnover-limiting step. At high [1PhEtOH], the forward rate of 

proton transfer is fast and β-H elimination is the turnover-limiting step. As [1PhEtOH] decreases, 

proton transfer becomes slower and eventually becomes turnover-limiting. This implies that the 

Eyring data collected at low [1PhEtOH] contains contributions from both proton transfer and β-

H elimination with β-H elimination as the major component. Hence, the activation parameters 

(ΔH‡ = 15 kcal/mol and ΔS‡ = −41 eu) determined at high [1PhEtOH] exclusively describe the 

transition state structure for a β-H elimination turnover-limiting step. 
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Although experimental evidence supports a β-H elimination turnover-limiting step, the 

large negative ΔS‡ differs significantly from the previously reported values for β-H elimination 

from metal-alkoxide species.17 The classic β-H elimination process involves cleavage of a β-C–H 

of the coordinated alkoxide, with concomitant formation of hydride on an empty cis coordination 

site and coordinated ketone (or aldehyde) ligand. It follows that β-H elimination reactions are 

typically unimolecular and largely enthalpically controlled (considerable bond making and 

breaking character in the transition state). To account for the atypical activation parameters for 3, 

alternative mechanisms, such as binuclear hydride abstraction32 and alcohol-assisted alkoxide 

dissociation,33 for β-H elimination were considered. Our kinetic experiments discredit both 

processes as possible β-H elimination pathways for our catalyst. A binuclear mechanism is 

inconsistent with the observed first-order dependence on [3]. An alcohol-assisted alkoxide 

dissociative pathway is also unlikely because of the zero-order dependence on [1PhEtOH] at 

high [1PhEtOH]. Alternatively, we propose that 3 operates under a traditional β-H elimination 

process in which the highly negative activation entropy reflects contributions from solvent 

reorganization likely imparted by hydrogen bonding.34 Such large entropic contributions are 

consistent with the reactions performed in neat alcohol solvent that allows the formation of a 

network of hydrogen bonds with a coordinated alkoxide ligand. Comparison of the activation 

parameters at low and high [1PhEtOH] revealed that entropy, not enthalpy, is the main 

contributor to the β-H elimination process. Thus, reorganization in the transition state, as 

reflected by the negative and large ΔS‡, must be due to rearrangement of the hydrogen bonds 

interacting with the Ru-alkoxide species in order for the β-C–H to migrate onto the Ru center. 

3.2.11 Proposed Mechanism 

Based on the series of kinetic and isotopic labeling experiments, an inner-sphere catalytic 

cycle for 1PhEtOH dehydrogenation mediated by 3 is implicated. We propose that a single PPh3 

dissociation from 3 generates a coordinatively unsaturated Ru–H species that can reversibly bind 

1PhEtOH. This species likely undergoes a fast proton-transfer event in equilibrium with a β-H 

elimination turnover-limiting step to yield the ketone product and generate the coordinatively 

unsaturated Ru–H species to re-enter in the dehydrogenation cycle (Figure 3-19). 
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Figure 3-19 Proposed mechanism for AAD catalyzed by HRu(bMepi)(PPh3)2. 

3.2.12 Primary versus Secondary Alcohol Dehydrogenation 

An unusual feature of precatalyst 3 is the high selectivity for secondary alcohol 

dehydrogenation in the presence of primary alcohols.35 To a first approximation, thermodynamic 

arguments might be invoked to support the formation of the ketone over the aldehyde product.36 

However, this consideration assumes equilibrium conditions are met, which is not likely under 

the catalytic conditions. To gain further insight into the origin of the chemoselectivity bias, we 

evaluated competition experiments between benzyl alcohol (BnOH) and 1PhEtOH. Heating an 

equimolar (0.5 mmol) mixture of BnOH and 1PhEtOH containing 5 mol% 3 to 100 °C for 3 h 

resulted in the quantitative conversion of 1PhEtOH to acetophenone, while BnOH remained 

unreacted (Figure 3-20, eq 10). This result is consistent with our previously reported findings 
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that dehydrogenation of secondary alcohols is favored in the presence of primary alcohols when 

using temperatures lower than those required for acceptorless dehydrogenative coupling 

reactivity to afford esters.8 However, because these conditions do not afford coupling reactivity 

of primary alcohols, more forcing conditions were used to promote dehydrogenation activity of 

primary and secondary alcohols. Heating a PhMe solution containing BnOH and 3 (5 mol%) to 

120 °C for 3 h afforded 65% benzyl benzoate and 5% benzaldehyde (Figure 3-20, eq 12). 

 

Figure 3-20 Competition experiments between BnOH and 1PhEtOH. 

When a competition experiment using BnOH and 1PhEtOH was performed under 

identical reaction conditions, 10% benzyl benzoate and >99% acetophenone were observed 

(Figure 3-20, eq 11). These results demonstrate that 3 chemoselectively dehydrogenates 

secondary alcohols in the presence of primary alcohols under conditions which promote the 

dehydrogenation of both primary and secondary alcohols. The origin of this preference was 

considered to arise from differences in rates of either (a) proton transfer or (b) β-H elimination. 

In addition to implications of β-H elimination, rather than proton transfer, as the turnover-

limiting step, the pKa difference between primary (pKa(n-PrOH) = 16.0) and secondary 

(pKa(iPrOH) = 16.5) alcohols also cannot account for the observed chemoselectivity because 

primary alcohols are more acidic and should be easily deprotonated.37 To further support this 

hypothesis, in situ examination of the catalyst resting state by 31P NMR spectroscopy revealed 

the quantitative formation of a primary Ru-alkoxide species (31P = 42.5 ppm) when 0.2 mol% of 

3 was dissolved in a 4.3 M BnOH C6D6 solution at room temperature. In a different experiment 

under identical conditions using 4.3 M 1PhEtOH, only 45% of 3 was converted to the secondary 
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Ru-alkoxide species as observed in the 31P NMR spectrum. Thus, the origin of the observed 

chemoselectivity must occur after the formation of the Ru alkoxide intermediate. 

To address chemoselectivity-inducing β-H elimination dependent reactions, we 

monitored the catalyst resting state and product(s) formation of an AAD reaction of a 1:1 

mixture of BnOH (4.3 M) to 1PhEtOH (4.3 M) catalyzed by 0.2 mol% of 3. Prior to heating the 

reaction to 120 °C, the 31P NMR spectrum exhibited only two resonances: one for free PPh3 and 

another at 42.5 ppm, which was previously identified as the primary Ru-alkoxide species 

(Ru(bMepi)(PPh3)(OCH2Ph). Upon heating the reaction to 120 °C, a 9:1 ratio of the primary to 

secondary alkoxide species were observed. Continuous monitoring of the reaction showed no 

change in the ratio of the primary to secondary alkoxides species in the 31P NMR spectrum and 

only the production of acetophenone (34 turnovers in 30 min) was observed in the 1H NMR 

spectrum (Figure 3-21). 

 

Figure 3-21 Catalyst resting state and activity for competitive experiment between BnOH and 
1PhEtOH. 

The competition experiments implicate slower β-H elimination from the primary alkoxide 

compared to the secondary alkoxide, which is consistent with the absence of BnOH 

dehydrogenation activity at lower (< 120 °C) temperatures, and the stronger BDE of the C–H 

bond cleaved.38 In addition, the activation parameters at high alcohol concentration for β-H 



82 

elimination suggests that hydride transfer is dominated by entropic factors derived from 

hydrogen-bonding solvation effects. Hydrogen bonding with the alcohol solvent would be more 

favorable for the primary alkoxide species because of the decreased steric environment 

surrounding the oxygen atom (–OCPhH2 versus –OCPhMeH). Therefore, a higher degree of 

reorganization in the transition state for β-H elimination would be anticipated for the primary 

alkoxide species, thus leading to a larger kinetic barrier. 

3.2.13 Steric and Electronic Effects of the bMepi Ligand on Dehydrogenation Activity 

 

Figure 3-22 Synthesis and crystal structures (thermal ellipsoids depicted at 50% probability) of 
Ru(b4Rpi)(PPh3)2Cl. 

The requirement of the ortho-methyl units around the primary coordination sphere was 

interrogated with the ligands 1,3-bis(4’,6’-methyl-2’-pyridylimino)isoindolate (b4,6-Mepi) and 

1,3-bis(2’-pyridylimino)isoindolate (bpi). Complementary to evaluation of a steric effect, the 

effects of electronically rich and deficient ligands were also examined using para-substituted 

variants, b4Rpi (R = H, Cl, Me, OMe, OH). A series of Ru(b4Rpi)(PPh3)2Cl (7-R, R = H, Cl, Me, 

OMe) complexes were synthesized by heating a THF solution containing Hb4Rpi, RuCl2(PPh3)3, 

and TlPF6 to 60–70 °C for 16–24 h, followed by the addition of 1.05 equiv of NaOtBu (Figure 3-

22). After isolation of complexes 7-R, the composition and purity were confirmed by 1H, 13C, 
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and 31P NMR spectroscopy, infrared spectroscopy, and elemental analysis. The 1H NMR spectra 

of 7-R feature a single set of ligand-based resonances with the absence of the isoindole proton, 

and the 31P{1H} NMR spectra exhibit a singlet at 26.1, 25.1, 26.1, and 26.4 ppm (7-R, R = H, Cl, 

Me, OMe, respectively), consistent with trans disposed phosphorous atoms and meridional 

binding of the b4Rpi ligand. Single crystals of 7-H and 7-CH3 were subjected to X-ray 

diffraction experiments, and the solid-state structures confirm octahedral geometry around the 

Ru(II) center with a chloride ligands trans to the isoindolate nitrogen atom (Figure 3-22). 

 

Figure 3-23 Synthesis and crystal structure (thermal ellipsoids depicted at 50% probability) of 
Ru(b4OHpi)(PPh3)2Cl. 

 To enhance the stability of a coordinatively unsaturated Ru species during AAD catalysis, 

we targeted an electron-rich metal environment by synthesizing a Ru compound with the ligand 

b4OHpi, in which strongly electron-donating hydroxyl groups are substituted para to the pyridyl 

nitrogens. Deprotonation of the hydroxyl groups to generate aryl-oxide groups in situ would 

further enhance the electron-richness of the metal environment. Ru(b4OHpi)(PPh3)2Cl (7-OH) 

was prepared by allowing a THF solution containing Hb4OHpi, RuCl2(PPh3)3, and NaOtBu to 

stir at 70 °C for 16 h. 7-OH was isolated in 79% yield as a dark blue solid with only slight 

solubility in THF. The 1H NMR spectrum reveals multiple broad resonances, and the 31P{1H} 

NMR spectrum in THF displays resonances at 68.38, 26.19, and −5.51 ppm (free PPh3), 
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suggesting a dynamic process likely caused by the dissociation of one of the PPh3 ligands in 

solution. This solution dissociation dynamics was suppressed with the addition of excess PPh3. 

For example, in the presence of 1 equiv of PPh3, the singlet at 68.38 ppm was absent in the 
31P{1H} NMR spectrum. Crystals suitable for single-crystal X-ray diffraction were obtained 

from vapor diffusion of pentane into a THF solution of 7-OH at −35 °C. Analogous to the 

single-crystal structures for 7-H and 7-Me, the solid-structure reveals an octahedral geometry 

around the Ru(II) center with the b4OHpi ligand meridionally coordinated with two trans PPh3 

ligands and a chloride, thus confirming the identity of the product (Figure 3-23). 

Table 3-1 Reaction Rates of 1PhEtOH Dehydrogenation 

entry catalyst rate (× 10−5 M·s−1) 

1 4 7.7(3) 

2 4-Me 7.7(3) 

3 7-H 10.9(2) 

4 7-Me 10.9(2) 

5 7-Cl 8.0(5) 

6 7-OMe 11.8(2) 

7 7-OH 12.0(2) 

8 7-OH 13.3(2) 

9 7-H 12.4(2) 
 

 

In the proposed AAD mechanism shown in Figure 3-19, the steric profile of the methyl 

groups may play a blocking role to impede hydride transfer in the turnover-limiting step. This 

steric effect imposed by the methyl groups was examined by comparing the reaction rates of 

1PhEtOH dehydrogenation catalyzed by 4, 4-Me (Ru(b4,6-Mepi)(PPh3)Cl), 7-H, and 7-Me 

(Table 3-1). The reaction rates for 4 (7.7(3) × 10−5 M·s−1) and 4-Me (7.7(3) × 10−5 M·s−1) were 

identical (Table 3-1, entries 1 and 2), which suggests that the weakly electron-donating methyl 
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groups have no electronic effect on the dehydrogenation activity. This observation allowed 

evaluation of the steric influence of the ortho-methyl substituents of the bMepi ligand by 

comparing the reaction rates of 4 and 7-H. The reaction rate was increased by 42% when 7-H 

(10.9(2) × 10−5 M·s−1, Table 3-1, entry 3) or 7-Me (10.9(2) × 10−5 M·s−1, Table 3-1, entry 4) was 

used instead of 4. The rate enhancement is consistent with a sterically blocking effect of the 

methyl groups, which hinders β-H elimination in the turnover-limiting step (Figure 3-19). 

While the addition of a modestly donating methyl group in the para-position had no 

effect on the overall rate, we evaluated the effect of adding highly donating substituents to the 

flanking pyridine rings. Increased electron donor strength of the ligand is expected to 

concomitantly enhance the hydricity of any metal-based hydrides.39 However, because the 

turnover-limiting step is β-H elimination, the ligand electronic effect on the turnover-limiting 

step may be less than dramatic.  

  The electronic variations at the Ru center imposed by electronically rich and deficient 

bpi ligands were evaluated by examining the dehydrogenation rates of 1PhEtOH. The reaction 

rate was increased when 7-OMe (11.8(2) × 10−5 M·s−1; σpara(OMe) = −0.27;40 Table 3-1, entry 6) 

and 7-OH (12.0(2) × 10−5 M·s−1; σpara(OH) = −0.37;40 Table 3-1, entry 7) were used instead of 7-

Cl (8.0(5) × 10−5 M·s−1; σpara(Cl) = 0.23;40 Table 3-1, entry 5). To further enhance the donor 

strength, the aryl-oxide (7-O−; σpara(O−) = −0.81)40 was prepared.  7-OH was allowed to react 

with 5 equiv of NaOtBu, which resulted in a further 11% increase in rate (13.3(2) × 10−5 M·s−1, 

Table 3-1, entry 8) of 1PhEtOH dehydrogenation. Although, these results indicate that a more 

electron-rich Ru environment exhibits higher AAD activity, the changes to the reaction rate are 

small; thus, the electronic environment at the Ru center has a minimal effect on the turnover-

limiting step in the AAD catalytic cycle. 

3.2.14 Base-Promoted Acceptorless Alcohol  Dehydrogenation Catalysis 

Benchtop-stable reagents provide greater synthetic utility and accessibility and thus are 

more commonly and easily handled by most synthetic laboratories. The air-sensitive precatalyst 

3 is capable of mediating promoterless AAD reactions, likely due in part to the Ru–H, an internal 

basic site. Alternatively, entry into the AAD catalytic cycle should also be possible using the air-

stable complex 4 in the presence of an external base or using an in situ preparation of the Ru–
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bMepi catalytic species. Indeed, when a toluene solution containing 0.5 mmol of 1PhEtOH, 1 

mol% of 4, and 2 mol% of NaOtBu was heated to reflux for 4 h, acetophenone was observed in 

quantitative (>99%) yield (Figure 3-24, eq 13). This reactivity demonstrates the synthetic 

applicability of 4 as a dehydrogenation catalyst that can be prepared using air-stable reagents. 

Furthermore, AAD catalysis by in situ formation of the catalytically active Ru–bMepi species 

was evaluated. In the presence of 1 mol% RuCl2(PPh3)3, 1 mol% HbMepi, and 3 mol% NaOtBu, 

1PhEtOH was converted to acetophenone in >99% yield after heating for 4 h in refluxing toluene 

(Figure 3-24, eq 14). Control experiments showed no reaction in the absence of HbMepi. 

Therefore, the broad applicability of our system to promote dehydrogenation by well-defined 

precatalysts as well as in situ generation from air-stable precursors highlights the robustness of 

the system. 

 

Figure 3-24 Base-promoted AAD catalysis. 

In addition to the alcohol dehydrogenation activity of the in situ prepared catalyst, 

stoichiometric reactions were performed to uncover intermediates en route to the well-defined 

precatalyst 4. Allowing HbMepi and RuCl2(PPh3)3 to react in dichloroethane at 70 °C for 4 h 

generated Ru(HbMepi)(PPh3)2Cl2 (8) in 70% yield as a green solid (Figure 3-25). The 31P{1H} 

spectrum displays a singlet at 24.9 ppm, and the 1H NMR spectrum reveals a solution structure 

consistent with asymmetric binding of the HbMepi ligand. For example, two resonances for the 

ortho-CH3 substituents were observed at 0.99 and 2.31 ppm, and nine distinct resonances were 

observed for the HbMepi scaffold in the aromatic region of the 1H NMR spectrum. Crystals 

suitable for a single X-ray diffraction experiment were obtained from slow evaporation of a 

DCM solution of 8 at 5 °C. The solid-state structure exposes an octahedral geometry around the 

Ru(II) center, supported by a κ2-HbMepi, two PPh3 and two chloride ligands. Addition of 1.05 
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equiv of NaOtBu to a THF solution containing 8 cleanly afforded complex 4, which is a 

benchtop-stable precatalyst in the base-promoted AAD reaction. 

 

Figure 3-25 Synthesis and crystal structure (thermal ellipsoids depicted at 50% probability) of 
Ru(HbMepi)(PPh3)2Cl2. 

3.2.15 Isolation of an Alternative Promoterless Alcohol Dehydrogenation Catalyst 

In (de)hydrogenation catalysis, active Ru complexes are often generated using exogenous 

base additives.41 We previously showed that 4 was activated in the presence of NaOtBu to 

provide an active dehydrogenation catalyst; however, the mechanism of activation was unclear. 

Stoichiometric reactions between 4 and base were performed to examine the reaction pathway. 

Under basic conditions, deprotonation of the ortho-methyl group was achieved by −OtBu base, 

and the deprotonated intermediate was subsequently trapped by coordination with another Ru 

complex to afford a dimer (9), which was isolated in 78% yield (Figure 3-26). Crystals suitable 

for single-crystal X-ray diffraction were obtained from vapor diffusion of pentane into a benzene 

solution of 9, and the solid-state structure reveals a square-based pyramidal geometry about the 

Ru center (τ = 0.02, 0.03)22 with the pincer ligand meridionally coordinated and the 

pyridinylmethanide motif coordinated to another Ru(II) center (Figure 3-26). The asymmetry of 

the pincer ligand is confirmed in solution by >10 distinct resonances in the aromatic region of the 
1H NMR spectrum. 
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Figure 3-26 Synthesis and crystal structure (thermal ellipsoids depicted at 50% probability) of 
[Ru(CH2Mepi)(PPh3)]2. 

To investigate complex 9 as a precursor en route to the catalytically-active 

HRu(bMepi)(PPh3) species, a reaction with H2 was examined. H2 was heterolytically cleaved by 

the pyridinylmethanide group and the Ru center at low pressure (30 psig) and reacted with 

another PPh3 molecule to afford 3 (Figure 3-26). This demonstrates that complex 9 is a precursor 

to the HRu(bMepi)(PPh3) species and that the methanide motif is an internal basic site that may 

promote dehydrogenation reactions without requiring any additives. To illustrate the latter point, 

refluxing a 0.25 M 1PhEtOH toluene solution containing 0.5 mol% 9 for 4 h resulted in 

quantitative conversion (>99%) of 1PhEtOH to acetophenone (Figure 3-27). Hence, complex 9 is 

a precursor to generate a catalytically-active HRu(bMepi)(PPh3) species that operates via the 

AAD catalytic cycle proposed in Figure 3-19 

 

Figure 3-27 [Ru(CH2Mepi)(PPh3)]2 promoted AAD catalysis. 
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3.2.16 Reversible Catalytic Hydrogenation–Dehydrogenation Reactions 

Catalytic hydrogenation and dehydrogenations reactions are attractive candidates to 

target for reversible energy storage.2,42 Although a myriad of catalysts can mediate the forward 

or reverse reaction, very few systems are capable of catalyzing reversible hydrogenation–

dehydrogenation reactions.2a,7,43 The ability of 3 to effect a catalytic transfer hydrogenation 

reaction using iPrOH as the H2 surrogate was previously demonstrated.8 Thus, we hypothesized 

that the hydrogenation reactions should be possible using H2 given that entry to 3 was also 

gained by treating the Ru-alkoxide (6) with H2. Indeed, acetophenone was completely consumed 

to afford 1PhEtOH within 1 h at 110 °C using 1 mol% 3 and 30 psig H2 in PhMe-d8 inside a J. 

Young NMR tube. Following the hydrogenation reaction, the solution was transferred from the J. 

Young NMR tube to a Schlenk flask to assess the ability to promote the dehydrogenation of 

1PhEtOH. Refluxing the toluene solution under an inert atmosphere for 4 h restored 

acetophenone quantitatively (Figure 3-28). This demonstrates the complete and reversible 

transformations between acetophenone and 1PhEtOH via successive hydrogenation–

dehydrogenation reactions using complex 3 as the single catalyst. 

 

Figure 3-28 Reversible hydrogenation–dehydrogenation reactions catalyzed by 
HRu(bMepi)(PPh3)2. 
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3.2.17 Summary 

 

Figure 3-29 Proposed cycle for catalytic acceptorless alcohol dehydrogenation and isolation of 
precursors. 

The mechanism of the AAD reaction catalyzed by complex 3 was studied by a series of 

kinetic and isotopic labeling experiments, isolation of intermediates, and catalyst modifications. 
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Experimental evidence supported an inner-sphere, stepwise pathway for proton and hydride 

transfers with a β-H elimination turnover-limiting step. Selective isotopic labeling experiments 

combined with catalyst modification (methylation of the pincer ligand backbone) demonstrated 

that a cooperative metal–ligand pathway involving the imine functionality is not necessary for 

efficient dehydrogenation. The activation parameters suggested an associative pathway involving 

a highly ordered transition-state structure. Thus, we propose that a single PPh3 dissociation event 

from 3 generates a coordinatively unsaturated HRu(bMepi)(PPh3) species, which undergoes a 

proton-transfer equilibrium to generate a transient Ru-H2 alkoxide species. H2 loss affords a Ru-

alkoxide intermediate that can participate in a turnover-limiting β-H elimination reaction to 

complete the catalytic cycle (Figure3-29). Moreover, modifications to the pincer ligand revealed 

that the steric profiles of the methyl groups on bMepi slightly impeded catalytic activity, while 

electronic modifications of the pincer ligand have a minimal effect on the rate of catalytic 

dehydrogenation.  

In addition to delineating a detailed mechanistic understanding of dehydrogenative 

catalysis mediated by 3, we also showed 3 as an efficient hydrogenation precatalyst. By coupling 

the hydrogenation and the dehydrogenation abilities of 3, we have thus demonstrated that 

completely reversible transformations between ketones and alcohols are achieved and are 

dictated by hydrogen input or release. Overall, such reversible catalytic reactions are of broad 

interest to the field of hydrogen storage as well as chemical synthesis. 

3.3 Experimental Section 

3.3.1 General Considerations 

All manipulations were conducted under a nitrogen atmosphere on a Schlenk manifold or 

in a glovebox using standard Schlenk techniques, unless otherwise stated. All reagents were 

purchased from commercial vendors. Anhydrous dichloroethane (DCE, Acros), NaOtBu (Sigma-

Aldrich), and MeOTf (Sigma-Aldrich) were used without further purification. 1-Phenylethanol, 

phenyltrimethylsilane, acetophenone, 1-(4-methylphenyl)ethanol, 1-(4-methoxyphenyl)ethanol, 

1-(4-fluorophenyl)ethanol, 1PhEtOD, 1PhCH3CDOH, 1PhCH3CDOD, and 2,2,2-trifluoroethanol 

were distilled from CaH2 under a nitrogen atmosphere, and then stored over 3Å molecular sieves 

for at least 24 h. The following compounds were synthesized according to literature methods: 
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HRu(bMepi)(PPh3)2 (3),8 Ru(bMepi)(PPh3)Cl (4),8 1PhEtOH isotopologues,19 and the Hb4Rpi 

ligands.44 The 3Å Molecular sieves were dried at 250 °C under dynamic vacuum for 24 h. 

Dichloromethane (DCM), diethyl ether (Et2O), pentane, benzene (C6H6), dimethoxyethane 

(DME), and tetrahydrofuran (THF) were purified using a Glass Contour solvent purification 

system consisting of a copper catalyst, neutral alumina, and activated molecular sieves, then 

passed through an in-line, 2 µm filter immediately before being dispensed. Toluene (PhMe) and 

hexanes (Hex) were sparged using nitrogen and then stored over 3Å molecular sieves for at least 

24 h. 

NMR spectra were recorded on Varian Inova 500, Varian MR400, Varian vnmrs 500, and 

Varian vnmrs 700 spectrometers at room temperature. 1H and 13C shifts are reported in parts per 

million (ppm) relative to TMS, with the residual solvent peak used as an internal reference. 31P 

and 19F NMR spectra were referenced on a unified scale to their respective 1H NMR spectra. At 

elevated temperatures, 31P spectra were referenced relative to an internal standard of PPh3 at –5.6 

ppm. The following abbreviations are reported as follows: broad (br), singlet (s), doublet (d), 

doublet of doublets (dd), triplet (t), quartet (q), multiplet (m), methyl (Me), methoxy (OMe), and 

triphenylphosphine (PPh3). 13C NMR resonances were observed as singlets unless otherwise 

stated. For atom numbering of the bpi ligand in complexes 4–7, see Figure 3-30. 

 

Figure 3-30 Atom numbering of the bpi ligand for NMR characterizations. 

Solid-state IR spectra were collected using a Nicolet iS10 spectrometer equipped with a 

diamond attenuated total reflectance (ATR) accessory. Elemental analyses were performed by 

Midwest Microlab, LLC. 

3.3.2 General Procedure for 1PhEtOH Dehydrogenation Catalyzed by HRu(bMepi)(PPh3)2 

1PhEtOH (5 mL, 41.4 mmol) was added to a 20 mL vial charged with 3 (3.9 mg, 0.00409 

mmol), PhTMS (0.5 mL, 2.9 mmol), and a stir bar. The vial was capped with a septum and 
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pierced with a 27-gauge needle. Then the vial was heated to the desired temperature (90, 100, 

110, 120, or 130 °C) using an aluminum heating block inside an inert-atmosphere glovebox. The 

formation of acetophenone was monitored by sampling 0.5 mL aliquots and then analyzed by 1H 

NMR spectroscopy against PhTMS as an internal standard. To confirm reproducibility, all 

kinetic experiments were performed in triplicate. 

3.3.3 General Procedure for Base-Promoted 1PhEtOH Dehydrogenation 

PhMe (2 mL) was added to a 10 mL Schlenk flask charged with [Ru] (0.005 mmol; 4, 3.6 

mg; 5, 5.0 mg; RuCl2(PPh3)3, 4.8 mg; and HbMepi, 1.6 mg), NaOtBu (2 mol%, 0.01 mmol, 1.0 

mg; 3 mol%, 0.015 mmol, 1.4 mg), and a stir bar. 1PhEtOH (60 µL, 0.5 mmol) was added to the 

mixture. A reflux condenser was connected to the Schlenk flask, capped with a septum, and 

pierced with a 27-gauge needle in addition to a nitrogen inlet 16-gauge needle. The reaction 

solution was heated to 120 °C using an aluminum heating block. After 4 h, the reaction mixture 

was cooled to room temperature and exposed to air to quench the reaction. The solvent was 

evaporated under vacuum, and the residue was purified through a plug of silica gel eluting with 

Et2O (5 mL). Evaporation of the Et2O solution afforded acetophenone as a colorless oil. The 

purity and identity were confirmed by comparison to previously reported NMR data. 

3.3.4 Preparation and Characterization of Ruthenium HbMepi, bMepi, bpi, b4Rpi, and 

bMepiMe Complexes. 

Ru(HbMepi)(PPh3)Cl[PF6]. THF (3 mL) was added to a vial charged with HbMepi 

(51.6 mg, 0.158 mmol), RuCl2(PPh3)3 (137.4 mg, 0.143 mmol), TlPF6 (50.1 mg, 0.143 mmol), 

and a stir bar. The reaction solution was allowed to stir at 70 °C for 2 days. After the solution 

cooled to room temperature, TlCl was filtered using a fine frit and the THF solvent was removed 

under vacuum. The crude product was washed with C6H6 (4 × 10 mL) and Et2O (4 × 10 mL). 

The crude product was dissolved in minimum DCM and layered with Et2O. After 24 h at room 

temperature, the precipitates were collected and washed with Et2O (4 × 10 mL). Evaporation of 

the volatiles under vacuum afforded the product as a dark blue solid. Crystals were obtained 

from vapor diffusion of Et2O into a DCM solution at room temperature. Yield: 94 mg (75%). 1H 

NMR (700 MHz, CD2Cl2): δ 10.85 (s, 1H, NH), 8.17 (t, JHH = 7.0 Hz, 1H), 7.94 (d, JHH = 7.7 Hz, 

1H), 7.69 (d, JHH = 5.6 Hz, 1H) 7.62 (br s, 1H), 7.51 (br s, 1H), 7.45-7.44 (m, 2H), 7.34 (d, JHH = 
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7.0 Hz, 1H), 7.27 (br s, 1H), 7.17 (t, JHH = 7.0 Hz, 3H, PPh3), 6.92 (t, JHH = 7.0 Hz, 6H, PPh3), 

6.52 (t, JHH = 9.1 Hz, 6H, PPh3), 1.78 (s, 3H, Me), 1.70 (s, 3H, Me). 13C{1H} (176 MHz, 

CD2Cl2): δ 160.99, 160.90, 156.363, 153.37, 147.34, 146.49, 139.11, 138.98, 138.57, 132.71, 

132.58, 132.53, 131.93, 131.04, 130.86, 129.65, 129.13, 129.08, 124.43, 123.46, 122.55, 121.30, 

115.64, 23.56, 22.76. 31P{1H} NMR (162 MHz, CD2Cl2): δ 39.17 (s, PPh3), −144.30 (septet, JPF 

= 710 Hz, PF6). 19F NMR (376 MHz, CD2Cl2): δ −72.77 (d, JFP = 710 Hz, PF6). IR (ATR, cm−1): 

3331, 3059, 1631, 1600, 1552, 1532, 1463, 1449, 1433, 1372, 1292, 1210, 1163, 1104, 1088, 998, 

833, 795, 740, 692. Anal. Calculated (found): C, 52.39 (52.51); H, 3.70 (3.80); N, 8.04 (7.85). 

Preparation of Ru(bMepi)(PPh3)Cl from Ru(HbMepi)(PPh3)Cl[PF6]. THF (5 mL) 

was added to a 20 mL vial charged with Ru(HbMepi)(PPh3)Cl[PF6] (10 mg, 0.0115 mmol), 

NaOtBu (1.1 mg, 0.0115 mmol), and a stir bar. The reaction solution was allowed to stir at room 

temperature for 30 min. Solvent was removed under vacuum and the crude product was extracted 

with DCM (10 mL). The DCM solvent was removed under vacuum and the product was washed 

with Et2O (4 × 10 mL). Evaporation of the volatiles under vacuum afforded the product as a dark 

purple powder. The purity and identity were confirmed by comparison to previously reported 

NMR data. Yield: 7.5 mg (90%). 

Ru(b4,6-Mepi)(PPh3)Cl. THF (10 mL) was added to a 20 mL vial charged with Kb4,6-

Mepi (103.7 mg, 0.264 mmol), RuCl2(PPh3)3 (240.6 mg, 0.251 mmol), and a stir bar. The 

resulting solution was stirred at room temperature for 17 h. Solvent was removed under vacuum. 

The crude product was washed with Et2O (4 × 5 mL) and extracted with DCM (4 × 5 mL). The 

DCM solvent was removed under vacuum, and the product was washed with pentane (4 × 10 

mL), affording the product as a dark blue powder. The product was recrystallized from layering 

pentane on top of a DCM solution at −35 °C. Yield: 126 mg (68%). 1H NMR (400 MHz, C6D6): 

δ 7.98 (dd, JHH = 5.6, 3.2 Hz, 2H, H5), 7.51 (s, 2H, H4), 7.05 (dd, JHH = 5.2, 2.8 Hz, 2H, H6), 6.86 

(t, JHH = 8.4 Hz, 6H, PPh3), 6.77 (t, JHH = 7.2 Hz, 3H, PPh3), 6.67 (t, JHH = 6.8 Hz, 6H, PPh3), 

6.24 (s, 2H, H2), 1.98 (s, 6H, p-Me), 1.78 (s, 6H, o-Me). 13C{1H} (176 MHz, CD2Cl2): δ 158.69, 

154.87, 153.30, 147.36, 141.48, 134.26, 134.03, 133.01, 129.53, 128.92, 128.20, 125.82, 121.44, 

119.96. 31P{1H} NMR (162 MHz, C6D6): δ 45.34 (s, PPh3). IR (ATR, cm−1): 3052, 1622, 1566, 

1498, 1447, 1430, 1372, 1327, 1289, 1251, 1229, 1204, 1182, 1109, 1087, 1030, 1001, 969, 900, 
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843, 773, 745, 726, 694. Anal. Calculated (found): C, 63.78 (63.59); H, 4.68 (4.48); N, 9.30 

(9.17). 

Ru(bMepiMe)(PPh3)(OTf)2. MeOTf (150 µL, 1.39 mmol) was added to a 20 mL vial 

containing DCM solution of Ru(bMepi)(PPh3)Cl (101 mg, 0.139 mmol) and a stir bar. The 

reaction solution was allowed to stir at room temperature for 16 h. The DCM solvent was 

removed under vacuum, and the crude product was washed with Et2O (4 × 10 mL). The crude 

product was dissolved in minimum DCM and layered with Et2O. After 24 h at room temperature, 

the precipitates were collected and washed with Et2O (4 × 10 mL). Evaporation of the volatiles 

under vacuum afforded the product as a dark purple crystalline solid. Crystals were obtained 

from vapor diffusion of pentane into a DCM/C6H6 solution at room temperature. Yield: 111 mg 

(79%). 1H NMR (500 MHz, CD2Cl2): δ 8.30-8.27 (m, 2H), 8.13 (t, JHH = 7.5 Hz, 1H), 7.95 (d, 

JHH = 8.0 Hz, 1H), 7.83-7.80 (m, 2H), 7.72-7.65 (m, 2H), 7.39-7.35 (m, 5H), 7.14 (t, JHH = 8.0 

Hz, 6H, PPh3), 6.81 (t, JHH = 10.5 Hz, 6H, PPh3), 3.73 (s, 3H, N-Me), 1.78 (s, 3H, Me), 1.57 (s, 

3H, Me). 13C{1H} (176 MHz, CD2Cl2): δ 165.67, 160.83, 160.25, 153.97, 152.62, 148.97, 141.13, 

140.89, 139.70, 134.86, 132.81, 132.76, 132.39, 131.55, 131.05, 130.77, 129.55, 129.49, 124.94, 

124.59, 124.44, 123.76, 116.42, 44.46, 22.97, 21.76. 31P{1H} NMR (202 MHz, CD2Cl2): δ 47.84 

(s, PPh3). IR (ATR, cm−1): 3062, 1609, 1565, 1519, 1459, 1435, 1400, 1308, 1266, 1230, 1206, 

1187, 1156, 1117, 1090, 1015, 909, 811, 797, 779, 742, 696. Anal. Calculated (found): C, 49.10 

(48.97); H, 3.42 (3.51); N, 6.98 (6.88). 

Ru(bMepi)(PPh3)(OCH2CF3). CF3CH2OH (4.3 µL, 0.0563 mmol) was added to a 20 

mL vial containing THF solution of HRu(bMepi)(PPh3)2 (48.8 mg, 0.051 mmol) and a stir bar. 

The reaction solution was allowed to stir at 70 °C for 2 days. After the solution cooled to room 

temperature, the THF solvent was removed under vacuum and the crude product was washed 

with Et2O (4 × 10 mL) and pentane (4 × 10 mL). The product was extracted with C6H6 (15 mL). 

The C6H6 solution was lyophilized, affording the product as a purple powder. Crystals were 

obtained from vapor diffusion of pentane into a PhMe solution at 5 °C. Yield: 22 mg (55%). 1H 

NMR (700 MHz, C6D6): δ 8.09 (dd, JHH = 5.6, 3.5 Hz, 2H, H5), 7.69 (d, JHH = 7.7 Hz, 2H, H4), 

7.19 (t, JHH = 7.7 Hz, 2H, H3), 7.06 (dd, JHH = 5.6, 2.8 Hz, 2H, H6), 6.77-6.72 (m, 9H, PPh3), 

6.65 (t, JHH = 7.0 Hz, 6H), 6.35 (d, JHH = 7.0 Hz, 2H, H2), 3.28 (q, JHF = 7.7, JHH = 2.1 Hz, 2H, 

OCH2CF3), 1.75 (s, 6H, Me). 13C{1H} (176 MHz, C6D6): δ 159.69, 155.41, 152.68, 142.22, 
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136.03, 135.83, 134.59, 132.92, 132.86, 125.59, 120.31, 118.69, 67.59, 23.48. 31P{1H} NMR 

(283 MHz, PhMe-d8): δ 43.88 (s, PPh3). 19F{1H} NMR (376 MHz, PhMe-d8) δ −76.52 (s, 

OCH2CF3). IR (ATR, cm−1): 3041, 2814, 2714, 1568, 1538, 1512, 1460, 1433, 1388, 1264, 1184, 

1153, 1121, 1107, 1009, 949, 905, 794, 769, 742, 693. Anal. Calculated (found): C, 60.91 

(60.88); H, 4.22 (4.29); N, 8.88 (8.63). 

Ru(bpi)(PPh3)2Cl. THF (15 mL) was added to a 20 mL vial charged with Hbpi (319.4 

mg, 1.07 mmol), RuCl2(PPh3)3 (974.4 mg, 1.02 mmol), TlPF6 (355 mg, 1.02 mmol), and a stir 

bar. The reaction solution was allowed to stir at 70 °C for 21 h. After the solution cooled to room 

temperature, TlCl was filtered using a fine frit and the THF solvent was removed under vacuum. 

The crude product was washed with Et2O (4 × 20 mL), affording Ru(Hbpi)(PPh3)2Cl[PF6] in 

83% yield (932 mg). THF (15 mL) was added to a 20 mL vial charged with 

Ru(Hbpi)(PPh3)2Cl[PF6] (925.5 mg, 0.837 mmol), NaOtBu (84.5 mg, 0.879 mmol), and a stir bar. 

The reaction solution was allowed to stir at room temperature for 30 min. The THF solvent was 

removed under vacuum, and the crude product was extracted with C6H6 (50 mL). The C6H6 

solution was lyophilized, and the product was washed with pentane (4 × 20 mL). Evaporation of 

the volatiles under vacuum afforded the product as a green powder. Crystals were obtained from 

slow evaporation of a DCM solution at room temperature (DCM/Hex). Yield: 562 mg (70%). 1H 

NMR (400 MHz, C6D6): δ 10.60 (d, JHH = 6.4 Hz, 2H, H1), 7.95 (dd, JHH = 4.8, 2.4 Hz, 2H, H5), 

7.37-7.33 (m, 14H), 6.88 (t, JHH = 8.4 Hz, 2H, H3), 6.81-6.71 (m, 18H), 6.00 (t, JHH = 8.8 Hz, 2H, 

H2). 13C{1H} (176 MHz, CD2Cl2): δ 158.47, 157.43, 152.63, 141.83, 134.43, 133.89, 132.69 (t, 

JCP = 17.2 Hz, ipso-CP), 128.86, 128.56, 127.59, 127.21, 119.93, 116.59. 31P{1H} NMR (162 

MHz, C6D6): δ 26.09 (s, PPh3). IR (ATR, cm−1): 3053, 1568, 1552, 1513, 1454, 1434, 1378, 

1305, 1290, 1210, 1186, 1105, 1087, 1007, 909, 843, 770, 744, 696. Anal. Calculated (found): C, 

67.60 (67.25); H, 4.41 (4.40); N, 7.30 (7.20). 

Ru(b4Mepi)(PPh3)2Cl. THF (10 mL) was added to a 20 mL vial charged with Hb4Mepi 

(103.7 mg, 0.317 mmol), RuCl2(PPh3)3 (303.7 mg, 0.317 mmol), TlPF6 (110.7 mg, 0.317 mmol), 

and a stir bar. The reaction solution was allowed to stir at 60 °C for 24 h. After the solution 

cooled to room temperature, TlCl was filtered using a fine frit and the THF solvent was removed 

under vacuum. The crude product was washed with Et2O (4 × 10 mL), affording 

Ru(Hb4Mepi)(PPh3)2Cl[PF6] in 87% yield (312 mg). THF (15 mL) was added to a 20 mL vial 
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charged with Ru(Hb4Mepi)(PPh3)2Cl[PF6] (122 mg, 0.108 mmol), NaOtBu (10.9 mg, 0.113 

mmol), and a stir bar. The reaction solution was allowed to stir at room temperature for 30 min. 

The THF solvent was removed under vacuum, and the crude product was extracted with C6H6. 

The C6H6 solution was lyophilized, and the product was washed with pentane (4 × 10 mL). 

Evaporation of the volatiles under vacuum afforded the product as a green powder. Crystals were 

obtained from layering pentane on top of a DCM solution at −35 °C. Yield: 90 mg (85%). 1H 

NMR (400 MHz, C6D6): δ 10.44 (d, JHH = 6.4 Hz, 2H, H1), 7.98 (dd, JHH = 5.2, 2.8 Hz, 2H, H5), 

7.44-7.39 (m, 12H, PPh3), 7.26 (s, 2H, H4), 6.81-6.73 (m, 18H, PPh3), 5.92 (d, JHH = 6.8 Hz, 2H, 

H2), 1.76 (s, 6H, Me). 13C{1H} (176 MHz, CD2Cl2): δ 157.44, 156.94, 152.95, 145.93, 141.85, 

133.96, 133.08 (t, JCP = 17.0 Hz, ipso-CP), 128.72, 128.45, 127.49, 119.75, 118.50. 31P{1H} 

NMR (162 MHz, C6D6): δ 26.14 (s, PPh3). IR (ATR, cm−1): 3053, 1552, 1501, 1481, 1462, 1431, 

1403, 1375, 1293, 1189, 1102, 1088, 1007, 941, 840, 817, 746, 693. Anal. Calculated (found): C, 

68.11 (68.38); H, 4.70 (4.79); N, 7.09 (6.99). 

Ru(b4Clpi)(PPh3)2Cl. THF (10 mL) was added to a 20 mL vial charged with Hb4Clpi 

(88 mg, 0.239 mmol), RuCl2(PPh3)3 (218.2 mg, 0.228 mmol), TlPF6 (79.5 mg, 0.228 mmol), and 

a stir bar. The reaction solution was allowed to stir at 60 °C for 18 h. After the solution cooled to 

room temperature, TlCl was filtered using a fine frit and the THF solvent was removed under 

vacuum. The crude product was washed with Et2O (4 × 10 mL), affording 

Ru(Hb4Clpi)(PPh3)2Cl[PF6] in 91% yield (242 mg). THF (10 mL) was added to a 20 mL vial 

charged with Ru(Hb4Clpi)(PPh3)2Cl[PF6] (242 mg, 0.206 mmol), NaOtBu (20.8 mg, 0.216 

mmol), and a stir bar. The reaction solution was allowed to stir at room temperature for 30 min. 

The THF solvent was removed under vacuum, and the crude product was extracted with C6H6. 

The C6H6 solution was lyophilized, and the product was washed with pentane (4 × 10 mL). 

Evaporation of the volatiles under vacuum afforded the product as a green powder. Yield: 131 

mg (62%). 1H NMR (700 MHz, CD2Cl2): δ 9.87 (d, JHH = 7.0 Hz, 2H, H1), 7.60 (dd, JHH = 5.6, 

2.8 Hz, 2H, H5), 7.39 (dd, JHH = 5.6, 2.8 Hz, 2H, H6), 7.17 (d, JHH = 2.1 Hz, H4), 7.07 (t, JHH = 

7.0 Hz, 6H, PPh3), 6.94-6.88 (m, 24H, PPh3), 6.27 (dd, JHH = 7.0, 2.8 Hz, 2H, H2). 13C{1H} (176 

MHz, CD2Cl2): δ 158.61, 157.72, 153.38, 141.84, 141.55, 133.84, 132.46 (t, JCP = 17.5 Hz, ipso-

CP), 129.11, 129.02, 127.72, 126.49, 120.25, 116.92. 31P{1H} NMR (162 MHz, C6D6): δ 25.13 

(s, PPh3). IR (ATR, cm−1): 3056, 1544, 1514, 1492, 1446, 1372, 1318, 1299, 1210, 1186, 1121, 
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1089, 1001, 914, 887, 868, 808, 776, 737, 694. Anal. Calculated (found): C, 63.07 (62.64); H, 

3.92 (4.02); N, 6.81 (6.63). 

Ru(b4OMepi)(PPh3)2Cl. THF (10 mL) was added to a 20 mL vial charged with 

Hb4OMepi (99 mg, 0.276 mmol), RuCl2(PPh3)3 (251.6 mg, 0.262 mmol), TlPF6 (91.7 mg, 0.262 

mmol), and a stir bar. The reaction solution was allowed to stir at 60 °C for 16 h. After the 

solution cooled to room temperature, TlCl was filtered using a fine frit and the THF solvent was 

removed under vacuum. The crude product was washed with Et2O (4 × 10 mL), affording 

Ru(Hb4OMepi)(PPh3)2Cl[PF6] in 87% yield (267 mg). THF (10 mL) was added to a 20 mL vial 

charged with Ru(Hb4OMepi)(PPh3)2Cl[PF6] (264 mg, 0.227 mmol), NaOtBu (22.9 mg, 0.238 

mmol), and a stir bar. The reaction solution was allowed to stir at room temperature for 30 min. 

The THF solvent was removed under vacuum, and the crude product was extracted with C6H6. 

The C6H6 solution was lyophilized, and the product was washed with pentane (4 × 10 mL). 

Evaporation of the volatiles under vacuum afforded the product as a dark blue powder. Yield: 

192 mg (83%). 1H NMR (400 MHz, C6D6): δ 10.32 (d, JHH = 7.2 Hz, 2H, H1), 7.99 (dd, JHH = 

5.6, 3.2 Hz, 2H, H5), 7.50-7.46 (m, 12H, PPh3), 6.99 (d, JHH = 2.8 Hz, 2H, H4), 6.79-6.78 (m, 

18H, PPh3), 5.86 (dd, JHH = 7.2, 3.2 Hz, 2H, H2), 3.10 (s, 6H). 13C{1H} (176 MHz, CD2Cl2): δ 

165.35, 158.46, 158.10, 153.57, 141.82, 133.99, 133.23 (t, JCP = 16.6 Hz, ipso-CP), 128.76, 

128.57, 127.55, 119.76, 109.69, 106.69, 55.76. 31P{1H} NMR (162 MHz, C6D6): δ 26.40 (s, 

PPh3). IR (ATR, cm−1): 3050, 1619, 1558, 1509, 1467, 1436, 1378, 1328, 1178, 1091, 1039, 

1002, 845, 744, 694. Anal. Calculated (found): C, 65.98 (65.45); H, 4.55 (4.44); N, 6.87 (6.86). 

Ru(b4OHpi)(PPh3)2Cl. THF (10 mL) was added to a 20 mL vial charged with Hb4OHpi 

(63.6 mg, 0.192 mmol), RuCl2(PPh3)3 (184.1 mg, 0.192 mmol), NaOtBu (19.4 mg, 0.202 mmol), 

and a stir bar. The reaction solution was allowed to stir at 70 °C for 16 h. After the solution was 

cooled to room temperature, the THF solvent was removed under vacuum. The crude product 

was washed with DCM (4 × 10 mL), H2O (4 × 10 mL), and Et2O (4 × 10 mL). Evaporation of 

the volatiles under vacuum afforded the product as a dark blue powder. Crystals were obtained 

from vapor diffusion of pentane into a THF solution at −35 °C. Yield: 151 mg (79%). 31P{1H} 

NMR (162 MHz, THF): δ 26.40 (s, PPh3). IR (ATR, cm−1): 3046, 1555, 1517, 1478, 1432, 1324, 

1296, 1186, 1103, 1091, 1017, 972, 912, 862, 795, 744, 693. Anal. Calculated (found): C, 65.42 

(65.45); H, 4.27 (4.13); N, 7.06 (7.12). 
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Ru(HbMepi)(PPh3)2Cl2. DCE (5 mL) was added to a vial charged with HbMepi (51.2 

mg, 0.156 mmol), RuCl2(PPh3)3 (136.3 mg, 0.142 mmol), and a stir bar. The reaction solution 

was allowed to stir at room temperature for 24 h. The precipitates were collected on a frit and 

washed with Et2O (4 × 10 mL), and the product was extracted with DCM. Evaporation of the 

volatiles under vacuum afforded the product as a green solid. Crystals were obtained from slow 

evaporation of a DCM solution at 5 °C (DCM/Hex). Yield: 113 mg (78%). 1H NMR (400 MHz, 

CD2Cl2): δ 10.78 (s, 1H), 7.79 (d, JHH = 7.6 Hz, 1H), 7.73-7.69 (m, 12H), 7.57 (t, JHH = 7.6 Hz, 

1H), 7.51 (t, JHH = 7.6 Hz, 2H), 7.30 (t, JHH = 7.8 Hz, 1H), 7.22 (t, JHH = 7.8 Hz, 1H), 7.13-7.04 

(m, 19H), 6.89 (d, JHH = 7.6 Hz, 1H), 6.30 (d, JHH = 8.0 Hz, 1H), 6.21 (d, JHH = 8.0 Hz, 1H), 2.31 

(s, 3H, Me), 0.99 (s, 3H, Me). 13C{1H} (176 MHz, CD2Cl2): δ 159.83, 159.34, 148.76, 138.27, 

136.19, 135.56, 135.02, 134.19, 131.71, 131.10, 130.14, 129.86, 129.17, 128.76, 127.65, 127.09, 

124.64, 123.27, 120.49, 118.49, 108.24, 24.23, 20.54. 31P{1H} NMR (162 MHz, CD2Cl2): δ 

24.94 (s, PPh3). IR (ATR, cm−1): 3170, 3056, 1640, 1609, 1581, 1548, 1482, 1467, 1432, 1305, 

1270, 1214, 1150, 1107, 1089, 1030, 1007, 805, 760, 748, 685, 655. Anal. Calculated (found): C, 

65.69 (65.46); H, 4.63 (4.65); N, 6.84 (6.65). 

[Ru(CH2Mepi)(PPh3)]2. THF (5 mL) was added to a 20 mL vial charged with 4 (110 mg, 

0.152 mmol), NaOtBu (18.9 mg, 0.197 mmol), and a stir bar. The reaction solution was allowed 

to stir at room temperature for 18 h. The THF solvent was removed under vacuum, and the crude 

product was washed with pentane (4 × 20 mL) then extracted with C6H6. The C6H6 solution was 

lyophilized, and the product was washed with Et2O (5 mL) and pentane (4 × 10 mL). 

Evaporation of the volatiles under vacuum afforded the product as a green powder. Crystals were 

obtained from vapor diffusion of pentane into a C6H6 solution at room temperature. Yield: 64 mg 

(62%). 1H NMR (700 MHz, C6D6): δ 8.46 (t, JHH = 7.0 Hz), 7.23-7.18 (m), 6.09-6.86 (m, PPh3), 

6.75-6.71 (m, PPh3), 6.62-6.57 (m, PPh3); Major species: 7.99 (d, JHH = 7.7 Hz, 1H), 7.94 (d, JHH 

= 7.0 Hz, 1H), 7.14 (t, JHH = 7.0 Hz, 1H), 6.81 (d, JHH = 7.7 Hz, 1H), 6.68 (t, JHH = 7.7 Hz, 1H), 

6.10 (d, JHH = 7.0 Hz, 1H), 5.41 (d, JHH = 7.7 Hz, 1H), 2.37 (t, J = 9.1 Hz, 1H), 1.78 (s, 3H, Me), 

−2.62 (t, J = 9.1 Hz, 1H); Minor species: 7.98 (d, JHH = 7.0 Hz, 1H), 7.92 (d, JHH = 7.7 Hz, 1H), 

7.09-7.06 (m, 2H), 7.00 (d, JHH = 7.7 Hz, 1H), 6.65 (t, JHH = 7.7 Hz, 1H), 5.83 (d, JHH = 7.0 Hz, 

1H), 5.69 (d, JHH = 7.7 Hz, 1H), 3.10 (t, J = 9.1 Hz, 1H), 0.70 (s, 3H, Me), −2.77 (t, J = 9.1 Hz, 

1H). 13C{1H} (176 MHz, CD2Cl2): δ 174.34, 159.04, 157.10, 151.97, 150.29, 149.06, 142.89, 

141.59, 134.77, 134.62, 133.51, 133.45, 133.13, 132.49, 126.08, 120.14, 119.67, 118.20, 116.30, 
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112.59, 27.60, 24.78, 20.37, 19.95. 31P{1H} NMR (283 MHz, C6D6): δ 33.05 (s, minor), 31.34 (s, 

major). IR (ATR, cm−1): 3046, 2968, 2900, 2613, 1533, 1560, 1504, 1461, 1431, 1387, 1324, 

1286, 1239, 1188, 1159, 1112, 1090, 1030, 998, 976, 903, 792, 764, 739, 693. Anal. Calculated 

(found): C, 66.27 (66.06); H, 4.39 (4.35); N, 10.17 (10.16). 
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CHAPTER 4 

Oxidant-Free Conversion of Primary Amines to Nitriles 

 

Portions of this chapter have been published: 

Tseng, K.-N. T.; Rizzi, A. R.; Szymczak, N. K. J. Am. Chem. Soc. 2013, 135, 16352. Reprinted 

with permission; Copyright (2013) American Chemical Society. 

4.1 Introduction 

Nitriles are a prominent class of organic molecules included in a wide variety of natural 

products,1 biologically active compounds,2 industrial processes (polymers, agrochemicals, and 

dyes/pigments),3 and used as synthons for further synthetic elaboration.4 Typical routes to 

prepare nitriles proceed with low atom economy, require toxic reagents, and/or have limited 

selectivity. Common laboratory-scale syntheses include Sandmeyer-type reactivity,5 cyanation of 

alkyl or aryl halides,6 dehydration of amides/aldoximes,7 and metal-catalyzed cyanation/ 

cyanomethylation,8 among others.9 In contrast, industrial syntheses typically rely on 

ammoxidation protocols that operate at high temperatures (300–550 ˚C).3, 10 All of the above 

synthetic methodologies require either the use of hazardous/energy-intensive reagents, harsh 

reaction conditions, and/or produce stoichiometric waste. Moreover, reagents and conditions 

required for these transformations often show limited compatibility with other functional groups. 

Another methodology for nitrile synthesis that does not introduce a carbon unit is the oxidation 

of primary amines,11 which can be mediated using stoichiometric inorganic12 or iodine-based 

oxidants,13 or a transition metal catalyst and O2.14 Unfortunately, many transition-metal catalyzed 

oxidation protocols require excess quantities of oxidant and/or basic reagent for efficient 

catalysis, which decreases atom economy by contributing to unwanted waste 

products.11b,13b,13c,14a,14b Furthermore, the use of an external oxidant limits selectivity and 



104 

functional group tolerance, because oxidant-incompatible functionality must then be protected 

prior to the nitrile formation step.14 

An alternative procedure for amine oxidation is to use transition-metal catalyzed 

dehydrogenation, which has been widely exploited for alcohol oxidation.15 However, reports 

detailing oxidant-free amine dehydrogenation are limited and either proceed with low 

conversion,16 or require exogenous additives and harsh reaction conditions (160–200 °C).17 Our 

laboratory recently reported base-free, acceptorless, and chemoselective dehydrogenation and 

dehydrogenative coupling reactions of secondary and primary alcohols/diols, respectively, 

catalyzed by an amide-derived N,N,N-Ru(II) hydride complex (1, HRu(bMepi)(PPh3)2; bMepi = 

1,3-bis(6’methyl-2’-pyridylimino)isoindolate).18 Because of the ability of 1 to promote rapid H2 

release from alcohol groups without product inhibition, we surmised that 1 might also 

dehydrogenate other polar substrates by a similar mechanistic pathway. Herein, we report the 

application of 1 as a catalyst that efficiently promotes dehydrogenation of primary and secondary 

amines to nitriles and imines, respectively, without the requirement of exogenous oxidant or 

hydrogen acceptor. 

4.2 Results and Discussion 

4.2.1 Dehydrogenation of n-Octylamine to n-Octanenitrile 

In contrast to the growing number of reports detailing catalytic dehydrogenation of 

alcohols, analogous dehydrogenative reactivity of amines is sparse,15f,19 and even less reported 

for the double dehydrogenation to afford the corresponding nitrile.16,17 Moreover, one of the only 

well-defined examples of direct amine dehydrogenation employed an olefin as a hydrogen 

acceptor17a or excess base17b to drive the reaction at high temperatures (160–200 ˚C).17 In light of 

this precedent, we initiated investigations by examining transfer dehydrogenation of n-

octylamine with cyclohexene catalyzed by 1. When a toluene solution containing 0.5 mmol n-

octylamine, 5 mmol (10 equiv) of cyclohexene and 1 mol% of 1 was heated to 110 °C for 24 h in 

a sealed vessel, n-octanenitrile was observed (40%) with concomitant formation of cyclohexane, 

as determined by GC-MS analysis (Figure 4-1, eq 1). 
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Figure 4-1. Transfer and acceptorless dehydrogenation of n-octylamine. 

 Under these conditions, the added hydrogen acceptor (cyclohexene) was critical to 

promote the reaction, and in the absence of a hydrogen acceptor (3.5 mL headspace), less than 

4% conversion to n-octanenitrile was observed. The conversion efficiency was found to be 

sensitive to the overall reaction volume (liquid plus headspace), consistent with a reaction in 

which a gas is generated. In the limiting regime of an infinitely large headspace (i.e. an open 

system), the efficiency of 1 was further improved. For example, in the presence of 1 (1 mol%),20 

n-octylamine was converted to n-octanenitrile in 76% yield after heating for 24 h in refluxing 

toluene open to a N2 atmosphere (Figure 4-1, eq 2). H2 and n-octanenitrile were confirmed as the 

sole reaction products by in situ examination of the reaction mixture in a sealed NMR tube and 

control experiments showed no reaction in the absence of 1. 

4.2.2 Dependence of n-Octylamine Dehydrogenation on H2 pressure 

 

Figure 4-2 Dependence of n-octylamine dehydrogenation catalyzed by HRu(bMepi)(PPh3)2. 

In order to evaluate the extent to which the release of H2 mediates the dehydrogenation 

reaction, we assessed the product profile under elevated H2 pressures (Figure 4-2). Consistent 
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with prior dehydrogenative alcohol oxidation studies,18 the conversion efficiency of the reaction 

was found to be highly sensitive to pressure and the dehydrogenation reaction was significantly 

suppressed (33% yield) when performed in a sealed Fischer–Porter tube (84.5 mL headspace). 

The conversion decreased with increased H2 pressure: halving at 10, 20, 40, and 80 psig. 

4.2.2 Scope of Amine Dehydrogenation 

 

Figure 4-3 Dehydrogenation of amines catalyzed by HRu(bMepi)(PPh3)2. 

Dehydrogenation of aliphatic amines was general to afford the corresponding nitriles as 

the exclusive product (2–7). For instance, when 1-cyclohexylmethanamine was used as a 

substrate, cyclohexanecarbonitrile (4) was generated in 74% yield. Furthermore, the 

dehydrogenation of 2-phenethylamine to 2-phenylacetonitrile (8), an important precursor to 

several pharmaceutical drugs,3 proceeded with 76% yield. When ortho- and para- substituted 

phenethylamines were used as substrates, conversions to the corresponding phenylacetonitriles 

depended on the electron-donating and -withdrawing groups on the benzene ring (8a–c). A 

modest (33%) yield was observed for the ortho-substituted chlorophenethylamine, however, 

replacing the chloro group for an electron-donating methoxy substituent increased the yield to 

53%. The proximity of the methoxy substituent to the –CH2NH2 group had little effect on the 
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conversion efficiency, since both the ortho- and para- substituted methoxyphenethylamines gave 

similar yields. 

Dehydrogenation reactions of activated amines were investigated with benzylic substrates, 

which were converted cleanly to the corresponding benzonitriles. Substituent effects were 

examined using a series of functionalized benzylamines. While electron-donating groups were 

tolerated (9a), electron-withdrawing groups decreased the yields, regardless of the substitution 

pattern on the aromatic ring. For instance, deactivating chloro groups at either the ortho-, meta-, 

or para- positions led to decreased conversions (9b–d). 

Because we observed high selectivity for primary amines, we investigated whether 1 

could also catalyze the selective dehydrogenation of secondary amines. Oxidative protocols for 

primary and secondary amines have been reported using O2; however, selectivity is generally 

low with this methodology.14 For example, oxidation of secondary amines affords mixtures of 

products that include aldehydes and alcohols in addition to nitrogen-containing species.14e-h In 

contrast, a single product was obtained from the dehydrogenation of secondary and heterocyclic 

amines with –CH2NRH functionalities catalyzed by 1. In the case of secondary amines, 

secondary aldimines (10 and 11) were obtained in moderate yields, and indoline was cleanly 

converted to indole (12) in high (81%) yield. Thus, in addition to primary amine oxidation, 1 

exhibits high selectivity for the catalytic dehydrogenation of secondary and select heterocyclic 

amines. 

The oxidation of amines to nitriles without any required additives allows our system to 

tolerate potentially oxidizable functional groups; a limitation of traditional amine to nitrile 

conversions. To highlight the utility of the amine oxidation under the reducing conditions used 

by 1, we examined primary amine dehydrogenation in the presence of a thioether functionality, a 

motif typically susceptible to oxidation.29 Indeed, when 3-(methylthio)propylamine was 

subjected to 1, only the amino moiety was oxidized under the standard reaction conditions and 3-

(methylthio)propanenitrile (7) was obtained as the single product, produced in 66% yield. This 

reactivity demonstrates the utility of 1 as an amine oxidation catalyst that is compatible with an 

oxidant intolerant functionality.  
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4.2.3 Comparison of Common Transfer Hydrogenation Catalysts for n-Octylamine 

Dehydrogenation 

In contrast to (transfer) dehydrogenation reactivity of alcohols,15h,21 reports of analogous 

reactivity with amines are limited.16,17 Consistent with the lack of literature precedent, we 

observed only trace (1–3%) nitrile formation from n-octylamine using several common transfer 

hydrogenation catalysts (Noyori’s HRuCl(PPh3)2(en) catalyst,22 Ru(H)2(PPh3)4,23 

HRuCl(PPh3)3,24 and HRuCl(PPh3)3CO25). Similar results (<1% n-octanenitrile) were obtained 

when HRh(PiPr3)3 and n-octylamine were subjected to identical condition as for the 

dehydrogenation by 1.26 Shvo’s catalyst27 exhibited a reaction profile consistent with amine 

coupling, affording dioctylamine in 22% yield after 24 h with no conversion to n-octanenitrile.28 

Based on known reports as well as our own comparative experiments, the double 

dehydrogenation reactivity mediated by 1 is atypical in terms of conversion and product 

selectivity. 

4.2.4 Chemoselective Oxidation of Primary Amines 

The preparation of aryl nitriles is typically achieved using Sandmeyer-type5 or 

Rosenmund-von Braun6 methodologies, but conditions necessary to promote these 

transformations also limit chemoselectivity. Because α-CH hydrogens are required to eliminate 

H2, an amine double dehydrogenative methodology allows the differentiation of a substrate 

containing two chemically distinct amino functional groups (–CH2NH2 versus –CR2NH2). To 

highlight this difference, complex 1 selectively oxidized the benzyl amine moiety of 3-

aminobenzylamine in the presence of the aromatic amino group, which afforded 3-

aminobenzonitrile (13) as the sole product in 58% yield (54% isolated yield), demonstrating the 

high chemoselectivity of 1 (Figure 4-4). Furthermore, this illustrates the utility of 

dehydrogenative oxidation reactions mediated by 1; instead of requiring an oxidant, amine 

oxidation is achieved by H2 elimination. 

 

Figure 4-4 Chemoselective oxidation of 3-aminobenzylamine. 
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4.2.5 Preliminary Results for the Mechanism of Amine Dehydrogenation 

Catalytic dehydrogenation reactions can be mediated by either heterogeneous or 

homogenous pathways, and the catalytically-active form of 1 was initially probed using catalyst 

poisoning studies.30 Consistent with an operative homogeneous system, the catalytic activity of 

n-octanenitrile formation was unaffected by the addition of Hg(0) (∼800 equiv) when added 

during catalysis. A substoichiometric ligand poisoning experiment was conducted to further 

interrogate the active catalytic species.31 In the presence of 0.25 equiv of 1,10-phenanthroline, no 

change in the product distribution was noted, however, complete poisoning was achieved using 1 

equiv of 1,10-phenanthroline, inconsistent with a heterogeneous system, where low surface area 

aggregates are typically poisoned by ≪1 equiv of added ligand poison.32 

Further investigations into the identity of catalytically-active species are currently 

underway, and preliminary analyses suggest a catalytic cycle similar to alcohol 

dehydrogenation.15h In situ analysis of the amine dehydrogenation reaction revealed the release 

of PPh3 from 1 during catalysis, as visualized by 31P NMR spectroscopy and GC-MS analysis. 

Furthermore, catalytic reactions using Ru(bMepi)(PPh3)Cl (14) exhibited a similar 

dehydrogenation profile to 1 in the presence of KOtBu (Figure 4-5), and free PPh3 was not 

observed. This is consistent with a single PPh3 dissociation event from 1 to generate a 

catalytically-active 16 e− Ru(II) species, able to participate in an inner-sphere type 

dehydrogenation pathway.33 

 

Figure 4-5 Ru(bMepi)(PPh3)Cl mediated n-octylamine dehydrogenation in the presence of base. 

When the dehydrogenation of n-octylamine was monitored in situ by GC-MS and 1H 

NMR spectroscopy over 24 h in an open system (Figure 4-6),34 unreacted n-octylamine and n-

octanenitrile were the only species observed. Because an imine or imine-derived products were 

not detected, a fast secondary dehydrogenation event is proposed to yield the nitrile product.35 
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Since nitriles are competent ligands for transition metals, nitrile coordination might be an 

operative inhibition pathway at high nitrile concentrations. To probe this possibility, the 

dehydrogenation of n-octylamine was performed in the presence of n-octanenitrile (50 equiv).36 

Under the standard reaction conditions, 54% conversion was noted, consistent with competitive 

binding of nitrile to the catalytically-active Ru species. This trend continued at 75 equiv of n-

octanenitrile, where only 12% conversion was noted. These results are consistent with catalyst 

inhibition at high concentrations of nitrile, where an irreversible nitrile-coordination event likely 

occurs, diverting the catalyst from a productive dehydrogenation pathway. Hence, we propose 

that following amine coordination, H2 loss affords an imine intermediate that remains 

coordinated to Ru. This species likely undergoes a further fast dehydrogenation reaction to afford 

a Ru-nitrile adduct that is substitutionally labile at low nitrile concentrations, but inert at high 

nitrile concentrations. 

 

Figure 4-6 Reaction profile of n-octylamine dehydrogenation catalyzed by HRu(bMepi)(PPh3)2. 

4.2.5 Summary 

In conclusion, we have developed a selective dehydrogenative amine oxidation protocol 

that requires no oxidant or hydrogen acceptor additives, tolerates oxidizable functionality, and 

liberates H2 as a product. Although, prior reports demonstrated oxidative reactivity of primary 

amines to nitriles, our system is the only reported homogeneous catalyst to accomplish this 

without any additives and in good yields. Additionally, the amine dehydrogenation methodology 

is notable because 1 mediates the chemoselective oxidation of primary amines with –CH2NH2 

functionality in the presence of primary amines without α-CH hydrogens. 
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4.3 Experimental Section 

4.3.1 General Considerations 

All reagents were purchased from commercial vendors. The 3Å Molecular sieves were 

dried at 250 °C under dynamic vacuum for 24 h. All liquid amines were distilled from CaH2 

under a nitrogen atmosphere, and then stored over 3Å molecular sieves for 4 days. 3-

aminobenzylamine was sublimed under vacuum at room temperature for 12 h. All manipulations 

were conducted under a nitrogen atmosphere unless otherwise stated. Dichloromethane (DCM) 

was purified using a Glass Contour solvent purification system consisting of a Cu(II) catalyst, 

neutral alumina, and activated molecular sieves, then passed through an in-line, 2 µm filter 

immediately before being dispensed. Toluene was sparged with N2 for 2 h, and then stored over 

3Å molecular sieves for 48 h. HRu(bMepi)(PPh3)2 (1),18 Ru(bMepi)(PPh3)Cl (14),18 

Ru(H)2(PPh3)4,38 HRuCl(PPh3)3,39 HRuCl(PPh3)2(en),39 HRuCl(PPh3)3CO,40 Ru2(η5-

C5Ph4O)2(H)2(CO)4,41 HRh(PiPr3)3,42 were prepared according to previously reported methods. 

NMR spectra were obtained on Varian Inova 500 or Varian MR400 spectrometer. GC-

MS analyses were performed using a Shimadzu QP-2010 GC/MS; the GC contains a 30 m long 

DB-5 column with a 0.25 mm I.D. GC measurements were conducted using the following 

method: 30 °C hold for the first 5 min, ramp to 270 °C at 20 °C/min and hold for 2 min and the 

solvent cutoff was set for 2.5 min. The respective response factor was obtained by the GC 

analysis of a series of samples of known concentration, plotting the ratio of the areas, 

Asample/Astandard of each versus the ratio of the concentrations, [Sample]/[Standard]. 

4.3.2 General Procedure for Amine Dehydrogenation Catalyzed by HRu(bMepi)(PPh3)2 

The amine (0.5 mmol) was added to a NMR tube containing a solution of 1 (1 mol%, 
0.005 mmol) in PhMe (0.5 mL). The NMR tube was capped with a septum and pierced with a 27 

gauge needle, and then heated to 110 °C inside an inert-atmosphere glovebox. After 24 h, a 0.005 

mL aliquot was diluted with 1 mL DCM, and the product(s) and yield were determined by GC-

MS analysis. After cooling to room temperature, the solvent was evaporated under reduced 

pressure. Purification by silica gel chromatography (5 cm × 0.5 cm) using 4-5 mL hexanes:ethyl 

acetate (3:1) afforded the corresponding nitrile as the isolated product in 16-75% yield. The 
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identity of the nitrile product was confirmed by comparison to the reported NMR spectra of 

known compounds. 

4.3.3 Procedure for n-Octylamine Dehydrogenation Catalyzed by Ru(bMepi)(PPh3)Cl 

n-Octylamine (0.5 mmol) was added to a NMR tube containing a solution of 14 (1 mol%, 
0.005 mmol) and KOtBu (20 mol%, 0.1 mmol) in PhMe (0.5 mL). The NMR tube was capped 

with a septum and pierced with a 27 gauge needle, and then heated to 110 °C inside an inert-

atmosphere glovebox. After 24 h, a 0.005 mL aliquot was diluted with 1 mL DCM, and the 

product(s) and yield were determined by GC-MS analysis. 

4.3.4 General Procedure for the H2 Pressure Dependence Experiments 

A Fischer–Porter tube was rinsed with PhMe (3 × 1 mL). n-Octylamine (0.5 mmol) was 

added to the tube containing a solution of 1 (1 mol%, 0.005 mmol) in PhMe (0.5 mL) and a stir 

bar. The tube was subjected to three charge/vent cycles with H2 at a given pressure (5, 10, 20, 40, 

or 80 psig), and then heated to 110 °C in an oil bath, while stirring at 1500 RPM. After 24 h, the 

tube was vented and a sample was prepared by diluting a 0.005 mL aliquot with 1 mL DCM, and 

the product(s) and yield were determined by GC-MS analysis. 

4.3.5 General Procedure for Poisoning Experiments 

Following the general procedure for the dehydrogenation of amines, the poisoning 

experiments were conducted by allowing the reaction to proceed for 1 h, and then the additives 

were added to the reaction solution at 110 ˚C. For the H2O and n-octanenitrile poisoning 

experiments, H2O and n-octanenitrile were introduced concomitant with n-octylamine. 

4.3.6 Procedure for Mercury Poisoning Experiment 

n-Octylamine (0.5 mmol) was added to a 10 mL Schlenk flask containing a solution of 1 

(1 mol%, 0.005 mmol) in PhMe (2 mL). The Schlenk flask was fitted with a reflux condenser 

capped with an adapter connected to the Schlenk line. The reaction solution was heated to 

110 °C using an aluminum heating block and stirred at 1500 RPM. After the reaction had 

progressed for 1 h, one drop of mercury was added to the reaction solution at 110 ˚C. After 24 h, 
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a 0.005 mL aliquot was diluted with 1 mL DCM, and the product(s) and yield were determined 

by GC-MS analysis. 
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CHAPTER 5 

Iron-Catalyzed Hydrofunctionalization Reactions 

 

Portions of this chapter have been published: 

Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K. ACS Catal. 2015, 5, 411. Reprinted with 

permission; Copyright (2015) American Chemical Society. 

5.1 Introduction 

 

Figure 5-1 Electronic tunability of a pincer ligand via backbone alkylation. 

Regulation of catalysis by an applied chemical, electrochemical, or photochemical response is 

broadly used in biology,1 yet these principles are not widely adapted in synthetic systems.2,3 In 

some cases, modifications at a site far removed from a metal’s active site can have dramatic 

effects on reactivity, substrate turnover, and importantly, can turn reactions on or off.4 To mimic 

such functions, metal complexes containing redox active and/or proton responsive ligands have 

been shown to work synergistically for selective bond activation and cooperative catalysis.5,6 

Many multifunctional complexes direct reactivity by presenting groups at a site proximal to a 

metal’s primary coordination sphere.7 Alternatively, a remote site removed from the primary 

coordination sphere environment can also serve to modify the electronic properties of a metal 

center without perturbing the primary coordination environment.6a,8 Our group is working to 

evaluate how the precise structural, electronic, and cooperative modes of a metal’s secondary 
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coordination sphere can be used to regulate reactivity,6f,9 and herein, we report a system where 

the ligand’s donor properties can be tuned by modifying a remote site (Figure 5-1). 

We recently reported a series of Ru complexes containing an N,N,N-bMepi pincer ligand 

(bMepi = 1,3-bis(6’-methyl-2’-pyridylimino)isoindolate), which are precatalysts for the 

dehydrogenation of alcohols and amines.10 The backbone of the isoindoline framework contains 

imine linkers whose lone pair can be engaged upon protonation.11 Alternatively, alkylation or 

binding a Lewis acid to the imine may also be used to confer a more electrophilic metal 

environment to bias catalytic reactivity. 

One class of reactions to test these reactivity concepts are hydrogenation12 and/or 

hydrofunctionalization13 reactions because the rate-limiting steps are largely influenced by 

electronics at the metal. In particular, transition-metal catalyzed olefin hydroboration is an atom-

economical and selective methodology to generate alkyl boronate esters,14 which are widely used 

as intermediates in organic synthesis.15 Although this reaction has classically required expensive 

Rh or Ir catalysts,14b,16 a few recent reports have shown that a select few low-valent Fe 

complexes can also catalyze olefin hydroboration.17 In this communication, we report the 

synthesis and characterization of Fe–bMepi complexes and showcase the ligand’s electronic 

tunability by modifying a remote site within the secondary coordination sphere in order to 

control activity and selectivity in olefin hydroboration reactions. 

5.2 Results and Discussion 

5.2.1 Syntheses and Characterization of Iron–bMepi Complexes 

The Fe(bMepi)Br complex18 was synthesized using a similar methodology to that 

reported for bMepi-ligated Ru complexes recently reported by our laboratory.10a Addition of 1.05 

equiv of the K(bMepi) to FeBr2 over 17 h in THF solvent afforded the desired complex, 

Fe(bMepi)Br, as an orange solid in 83% yield (Figure 5-2). The 1H NMR spectrum features six 

paramagnetically shifted resonances, which is consistent with symmetric binding of the ligand. 

Crystals suitable for single-crystal X-ray diffraction were obtained from vapor diffusion of 

pentane into a THF solution of Fe(bMepi)Br, and the solid-state structure reveals a distorted 

trigonal monopyramidal geometry around the Fe(II) center (τ’ = 1.10).19 The solution magnetic 
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moment of Fe(bMepi)Br is 5.1 µB, as assessed using the Evans method in CD2Cl2, which is 

consistent with a high spin, S = 2 molecule. The analogous triflate (OTf = –CF3SO3) complex, 

Fe(bMepi)(THF)OTf, was isolated as a brown solid in 84% yield by allowing equimolar amounts 

of Fe(bMepi)Br and TlOTf to react in THF solvent for 2 h (Figure 5-2). 1H NMR spectroscopy 

revealed six paramagnetically shifted resonances (µeff = 5.1 µB), distinct from those observed for 

Fe(bMepi)Br. A brown crystal of Fe(bMepi)(THF)OTf was subjected to an X-ray diffraction 

experiment, and the solid-state structure exposed a square-based pyramid geometry around the 

Fe(II) center (τ = 0.06)20 with a THF ligand trans to the triflate anion (Figure 5-2). 

 

Figure 5-2 Synthesis of Fe(bMepi)(THF)OTf (left) and Fe(bMepiMe)OTf2 (right) with thermal 
ellipsoids depicted at 50% probability. 
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We next examined the viability of modifying the bMepi pincer scaffold by treatment with 

an electrophile, which we predicted would induce a change from an L2X-type to an L3-type 

ligand. When Fe(bMepi)Br was subjected to a Brønsted acid such as HOTf, a mixture of 

products was obtained, which is likely due to multiple reversible protonation events. In contrast, 

the addition of 4 equiv of MeOTf to a suspension of Fe(bMepi)Br in CH2Cl2 resulted in the clean 

conversion to Fe(bMepiMe)OTf2 after 21 h, isolated in 86% yield as brown crystalline plates 

(Figure 5-2). The solid-state structure reveals a distorted square-based pyramid geometry about 

Fe (τ = 0.21)20 with an asymmetric neutral bMepiMe ligand meridionally coordinated with two 

trans triflate ligands. The asymmetry of the bMepiMe ligand is retained in solution, confirmed by 

13 distinct paramagnetically shifted resonances in the 1H NMR spectrum, and the solution 

magnetic moment of 5.1 µB is consistent with a high spin S = 2 Fe(II) complex. 

 

Figure 5-3 Synthesis and crystal structure (thermal ellipsoids depicted at 30% probability) of 
Fe2(bMepi)2Br[BF4]. 

Prior to the formation of Fe(bMepiMe)OTf2, CH3Br loss afforded an intermediate dimer 

(Fe2(bMepi)2[BF4]). The addition of 1.05 equiv O(CH3)3BF4 to a DCM solution of Fe(bMepi)Br 

resulted in the conversion to Fe2(bMepi)2[BF4]  after 3 h. The 1H NMR spectrum features 12 

distinct paramagnetically shifted resonances, which is consistent with asymmetric binding of the 
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ligand. Crystals suitable for single-crystal X-ray diffraction were obtained from layering pentane 

on top of a DCM solution of Fe2(bMepi)2[BF4] at 5 °C. The solid-state structure shows distorted 

square-based pyramid geometries about the Fe centers (Fe1, τ = 0.09; Fe2, τ = 0.05)20 with 2 

bMepi ligands coordinated across the Fe centers and a bridging Br ligand (Figure 5-3).  

 

Figure 5-4 DPV of Fe(bMepi)Br and Fe(bMepi)(THF)OTf. 

 

Figure 5-5 DPV of Fe(bMepi)(THF)OTf and Fe(bMepiMe)OTf2. 

The electronic differences at the Fe center imposed by bMepi and bMepiMe were assessed 

by electrochemical studies. Differential pulse voltammetry (DPV) was used to evaluate the 

reduction potentials cathodic of the open-circuit potential for the three Fe complexes at a Pt 

electrode in 0.1 M [nBu4N]PF6 in THF. The potentials for the first reduction event of 

Fe(bMepi)Br and Fe(bMepi)(THF)OTf are within 60 mV (−1.26 and −1.20 V versus SCE, 
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respectively; Figure 5-4), which is consistent with similar ligand donor strength of Br− and OTf−  

ligands.21 In contrast, Fe(bMepiMe)OTf2 exhibits a reductive wave anodically shifted by 390 mV 

(−0.81 V versus SCE; Figure 5-5) from Fe(bMepi)(THF)OTf, suggesting that the bMepiMe 

ligand furnishes a more stable reduced species.22 

5.2.2 Hydroboration of 1-Octene Catalyzed by Fe(bMepi)Br 

As quantified by electrochemical experiments, Fe(bMepiMe)OTf2 features a metal center 

that is more electrophilic than Fe(bMepi)(THF)OTf and thus easier to reduce. The difference in 

electrophilicity might be exploited by a catalytic hydrofunctionalization reaction whose rate-

determining steps are perturbed by electronics at a metal site.8a We initiated studies by 

examining the hydroboration of 1-octene, a transformation most commonly performed with Rh 

or Ir complexes.14b,16,23 When a vial containing Fe(bMepi)Br (2.5 mol%) in neat 1-octene (1.0 

mmol) was charged with 2.0 mmol of catecholborane (HBCat) or pinacolborane (HBPin), 

NaHBEt3 (7.5 mol%) and stirred at 23 ˚C for 20 h, the anti-Markovnikov hydroboration product 

(1 and 2) was isolated in 99% and 90% yield, respectively (Figure 5-6).24 In situ examination of 

the reaction mixture revealed no branched or dehydrogenative borylation products, determined 

by GC-MS, and control experiments showed that Fe(bMepi)Br and NaHBEt3 were both required 

for catalysis. 

 

Figure 5-6 Hydroboration of 1-octene catalyzed by Fe(bMepi)Br. 

5.2.3 Olefin and Alkyne Hydroboration Catalyzed by Electronically Distinct Iron 

Complexes 

In order to evaluate the catalytic competence of the electronically distinct Fe complexes, 

as well as the generality of the hydroboration reaction, the reaction products of hydroboration 

mediated by both Fe(bMepi)(THF)OTf and Fe(bMepiMe)OTf2 systems were assessed. 

Hydroboration reactivity with acyclic and cyclic olefins was investigated, and both were 
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converted to the boronate ester as the sole product (Figure 5-7). For instance, when either 

Fe(bMepi)(THF)OTf or Fe(bMepiMe)OTf2 was used, the hydroboration of 1-octene afforded the 

corresponding anti-Markovnikov product 2 in high yields (88% and 91%, respectively). 

Furthermore, cyclooctyl boronate ester (3) was formed from cyclooctene (COE) in high isolated 

yields, 84% and 90% for Fe(bMepi)(THF)OTf and Fe(bMepiMe)OTf2, respectively.25
 

 

Figure 5-7 Hydroboration of unsaturated hydrocarbons catalyzed by Fe(bMepi)(THF)OTf or 
Fe(bMepiMe)OTf2. 

Guided by the high selectivity for anti-Markovnikov hydroboration of aliphatic olefins, 

we examined whether regioselective hydroboration was possible with styrene (Figure 5-7), an 

activated alkene that has proven challenging for Rh and Fe catalysts.14b,17b When the 

hydroboration of styrene was performed with Fe(bMepi)(THF)OTf, the anti-Markovnikov 

hydroboration product was generated in 75% yield, however dehydrogenative borylation and 

hydrogenation products were also detected by 1H NMR spectroscopy.26 In contrast, 4 was 

obtained in 81% isolated yield as the exclusive product when using Fe(bMepiMe)OTf2 under the 

same reaction conditions. The hydroboration of internal and terminal alkynes also afforded high 

conversions of the corresponding vinyl boronate esters with stereoselectivity dependent on the 

substrate (Figure 5-7). For example, the conversion of 1-octyne to 6 proceeded with a 
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regioselectivity of 86:14 and 85:15 E/Z for Fe(bMepi)(THF)OTf and Fe(bMepiMe)OTf2 

precatalysts, respectively. In contrast, when 4-octyne was used as the substrate, a single 

regioisomer (5) was formed in high yields (94% and 97%) when using either precatalyst. 

5.2.4 The Effect of the Metal Environment on Rate of Hydroboration 

In addition to the reaction regioselectivity, we evaluated the effect of the metal–ligand 

electronic environment on reaction rate. The rates of 1-octene hydroboration catalyzed by 

Fe(bMepi)Br, Fe(bMepi)(THF)OTf, and Fe(bMepiMe)OTf2 were obtained by using the method of 

initial rates. The reaction rates for Fe(bMepi)Br (5.2(3) × 10−4 M/s, Figure 5-8) and 

Fe(bMepi)(THF)OTf (5.2(4) × 10−4 M/s, Figure 5-9) were identical, which is consistent with the 

similar reduction potentials, vide supra. Electron-deficient metal complexes can accelerate 

certain organometallic transformations including reductive elimination,8a which is a key step in 

catalytic hydroboration reactions. The reaction rate was significantly increased (>4×) when 

Fe(bMepiMe)OTf2 (2.2(3) × 10−3 M/s, Figure 5-10) was used instead of Fe(bMepi)X (X = Br, 

OTf). Furthermore, an identical reaction rate (5.4(4) × 10−4 M/s) was obtained for 

Fe(bMepi)(THF)OTf when sodium naphthalenide was used as the reductant, which suggests that 

the alkylation state affects an elementary step within the catalytic cycle, rather than reduction to 

a low valent state. The enhancement of catalytic rates demonstrates the dramatic impact that may 

be realized through simple electronic modifications of a ligand’s secondary coordination 

environment. 

 

Figure 5-8 Initial rate of 1-octene hydroboration for Fe(bMepi)Br. 
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Figure 5-9 Initial rate of 1-octene hydroboration for Fe(bMepi)(THF)OTf. 

 

Figure 5-10 Initial rate of 1-octene hydroboration for Fe(bMepiMe)OTf2. 

5.2.5 Distinct Selectivity for Internal Alkene Hydroboration 

The synthesis of branched alkyl boronate esters using HBPin from acyclic internal olefins 

remains a limitation of metal-catalyzed hydroboration reactions,14b,27 and only one Fe catalyst 

has been reported for this transformation.17c During catalysis, chain walking is often fast and 

reversible, relative to C–B bond formation at the terminal position of an aliphatic acyclic 

substrate, which affords linear boronate esters.17c,28 Based on the reaction rate enhancement 

observed for the hydroboration of 1-octene, we hypothesized that the hydroboration of an acyclic 

internal olefin catalyzed by Fe(bMepiMe)OTf2 should yield branched hydroboration products due 

to acceleration of the rate-limiting reductive elimination step (Figure 5-11). Indeed, when cis-4-

octene was subjected to Fe(bMepiMe)OTf2, a mixture of 7, 8, 9, and 10 was isolated in a 4:1 ratio 
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of branched to linear hydroboration products. In contrast, only the linear product (7) was 

obtained in when using Fe(bMepi)(THF)OTf. Hence, in addition to enhanced reaction rates, the 

regioselectivity of olefin hydroboration was also affected by tuning the electrophilicity of Fe 

complexes from a remote site in the secondary coordination sphere. 

 

Figure 5-11 Selectivity of internal alkene hydroboration. 

5.2.6 Poisoning Experiments for Iron-Catalyzed Alkene Hydroboration 

Fe nanoparticles, formed from molecular Fe(II) precatalysts, have been implicated as the 

catalytically-active species in several Fe-mediated reductive reactions.29 Because catalyst 

structure/function re-optimization is predicated on the knowledge (or assumption) of active 

catalyst structure, the elucidation of catalyst nuclearity is critical. In contrast to irreproducible 

kinetic data often associated with heterogeneous catalysts, reproducible kinetic data has been 

observed from reactions catalyzed by homogeneous catalysts as well as nanoparticles.30 We 

probed the active catalyst identity of Fe(bMepiMe)OTf2 promoted 1-octene hydroboration to 

interrogate the nature of the observed catalysis. Although classic mercury poisoning experiments 

are an ineffective method of catalyst identification with Fe catalysis,29,31 substoichiometric ligand 

poisoning experiments are a simple and effective means of assessing whether a given precatalyst 

forms a catalyst of higher nuclearity.32 Complete poisoning of catalysis was observed with 2 

equiv of PMe3 (Figure 5-12). In contrast, in the presence of 0.1 and 0.5 equiv of PMe3, the 
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product distribution remained unchanged. These results are inconsistent with a heterogeneous or 

nanoparticle system where low surface area aggregates are typically poisoned by ≪1 equiv of 

ligand poison. Finally, in the absence of any poisoning reagent, nonsigmoidal reaction profiles 

and a lack of induction period are consistent with a homogeneous iron complex as the active 

catalytic species. 

 

Figure 5-12 Reaction profiles of 1-octene hydroboration with and without added PMe3. 

5.2.7 Iron-Catalyzed Hydrosilylation of Ketones  

Given the same principles of hydroboration reactions can be applied to hydrosilylation 

reactions, we initiated studies by examining the hydrosilylation of 1-octene. Unfortunately no 

hydrosilylation was observed when a vial containing 5 mol% Fe(bMepi)X (X = Br, I, OTf, or 

CH2SiMe3) and 15 mol% NaHBEt3 in neat 1-octene and silane (PhSiH3, HSiEt3, HSi(OEt)3, or 

H2SiMePh) was stirred at 100 °C for 24 h. However, we hypothesized that hydrosilylation of 

ketones should be possible because prior literature report demonstrated asymmetric 

hydrosilylation of ketones catalyzed by Co with chiral ligands based on the bMepi framework.33 

Indeed, when a benzene solution containing acetophenone, 5 mol% Fe(bMepi)(CH2SiMe3), and 

silane (HSi(OEt)3 or H2SiMePh) was heated to 50 °C for 17 h, the corresponding hydrosilylation 

product, determined by 1H NMR spectroscopy, was observed in quantitative (>99%) yield 

(Figure 5-13). Control experiments showed no reaction in the absence of Fe(bMepi)(CH2SiMe3). 

Furthermore, no reaction took place in the absence of an internal basic site. For instance, under 

the reaction conditions listed above, no hydrosilylation product was detected when Fe(bMepi)Br 

or Fe(bMepi)(THF)OTf was employed.  
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Figure 5-13 Hydrosilylation of acetophenone catalyzed by Fe(bMepi)(CH2SiMe3). 

5.2.8 Summary 

In conclusion, this work demonstrates the application of using a catalyst’s secondary 

coordination environment to facilitate facile electronic modifications that can change reaction 

activity and selectivity. We have developed Fe–bMepi complexes capable of catalyzing the 

hydroboration of olefins and alkynes at room temperature and hydrosilylation of ketones. 

Although prior reports demonstrated Fe-catalyzed olefin hydroboration, our systems are unique 

because they feature control over activity and regioselectivity by modifications at a remote site 

on the ligand backbone, which serve to tune the ligand’s electronic environment. Of particular 

note, higher reaction rate and distinct regioselectivity were observed for olefin hydroboration 

when using the more electrophilic Fe(bMepiMe)OTf2 complex.  

5.3 Experimental Section 

5.3.1 General Considerations 

All manipulations were conducted under a nitrogen atmosphere on a Schlenk manifold or 

in a glovebox using standard Schlenk techniques, unless otherwise stated. All reagents were 

purchased from commercial vendors. HBPin (Aldrich), HBCat (Aldrich), NaHBEt3 (1.0 M in 

toluene, Aldrich), KHMDS (Aldrich), FeBr2 (Alfa Aesar), TlOTf (Aldrich), TfOH (Aldrich) and 

MeOTf (Aldrich) were used without further purification. All hydroboration substrates (1-octene, 

Aldrich; COE, Aldrich; styrene, Aldrich; 4-octyne, Aldrich; 1-octyne, Aldrich; cis-4-octene, Alfa 

Aesar) were distilled from CaH2 under a nitrogen atmosphere, and then stored over 3Å molecular 

sieves for 24 h. The 3Å Molecular sieves were dried at 250 °C under dynamic vacuum for 24 h. 

Dichloromethane (DCM), diethyl ether (Et2O), pentane, and tetrahydrofuran (THF) was purified 

using a Glass Contour solvent purification system consisting of a copper catalyst, neutral 
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alumina, and activated molecular sieves, then passed through an in-line, 2 µm filter immediately 

before being dispensed.  

NMR spectra were recorded on Varian Inova 500, Varian MR400, and Varian vnmrs 500 

spectrometers. To collect the 1H NMR spectra of the Fe complexes, the relation delay was set to 

0.05 s and the acquisition time was set to 0.2 s. Elemental Analyses were performed by Midwest 

Microlab, LLC. Solution magnetic moments were measured using Evans method;34 for these 

measurements, concentrations were typically around 10 mM. GC-MS analyses were performed 

using a Shimadzu QP-2010 GC/MS; the GC contains a 30 m long DB-5 column with a 0.25 mm 

I.D. GC measurements were conducted using the following method: 30 °C hold for the first 8 

min, ramp to 270 °C at 10 °C/min,  and the solvent cutoff was set for 3 min. The respective 

response factor was obtained by the GC analysis of a series of samples of known concentration, 

plotting the ratio of the areas, Asample/Astandard of each versus the ratio of the concentrations, 

[Sample]/[Standard]. 

For electrochemical measurements, the electrochemical cell consisted of a modified three 

electrode set-up with a glassy carbon working electrode, a Pt counter electrode, and an Ag wire 

pseudo-reference electrode. Differential pulse voltammetry (DPV) was measured in THF with 

0.1 M NBu4PF6 as the supporting electrolyte. Ferrocene was used as an internal reference and 

introduced at the end of the experiment, and then the voltammograms were referenced to SCE 

(ferrocene/ferrocenium = 0.56 V versus SCE in THF).35 

5.3.2 Preparation of Iron–bMepi Complexes 

Fe(bMepi)Br. THF (10 mL) was added to a 20 mL vial charged with K(bMepi) (521 mg, 

1.429 mmol), FeBr2 (294 mg, 1.361 mmol), and a stir bar. The resulting solution was stirred at 

room temperature for 17 h and the THF solvent was removed under vacuum. The crude product 

was washed with Et2O (4 × 20 mL) and extracted with DCM (4 × 25 mL) to afford an orange 

solution. The DCM extractions were combined and concentrated under vacuum to 10 mL and 

then layered with Et2O (90 mL). After 24 h at room temperature, the precipitates were collected 

and washed with Et2O (4 × 20 mL) to afford the product as an orange powder. Yield: 522 mg 

(83%). Crystals were obtained from vapor diffusion of pentane into a THF solution at room 

temperature. 1H NMR (500 MHz, THF): δ 51.37 (s, 2H), 26.86 (br s, 8H), 10.86 (s, 2H), 10.11 (s, 
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2H), −2.42 (s, 2H). IR (ATR, cm−1): 3053, 2971, 1660, 1592, 1538, 1444, 1363, 1288, 1239, 

1191, 1160, 1077, 996, 818, 784, 709. Anal. Calculated for C20H16BrFeN5 (found): C, 51.98 

(51.77); H, 3.49 (3.59); N, 15.15 (14.97). Solution effective magnetic moment (CD2Cl2) = 5.1 µB. 

Fe(bMepi)(THF)OTf. THF (10 mL) was added to a 20 mL vial charged with 

Fe(bMepi)Br (114 mg, 0.246 mmol), TlOTf (87 mg, 0.246 mmol), and a stir bar. The reaction 

solution was stirred at room temperature for 2 h and then filtered to remove TlBr. The filtered 

solution was concentrated to 2 mL and then layered with pentane and placed at −35 °C to 

precipitate out the product. After 24 h, the precipitates were collected and washed with pentane 

(4 × 10 mL) to afford the product as a brown powder. Yield: 125 mg (84%). Crystals were 

obtained from vapor diffusion of pentane into a THF solution at 5 °C. 1H NMR (500 MHz, 

THF): δ 60.56 (s, 2H), 32.92 (s, 2H), 23.42 (br s, 6 H), 7.21 (s 2H), 6.85 (s, 2H), 4.87 (s, 2H). IR 

(ATR, cm−1): 3288, 3072, 1635, 1581, 1530, 1438, 1312, 1290, 1207, 1185, 1100, 1028, 897, 

801, 780, 713. Anal. Calculated for C25H24F3FeN5O4S (found): C, 49.76 (49.78); H, 4.01 (4.00); 

N, 11.61 (11.53). Solution effective magnetic moment (THF) = 5.1 µB. 

Fe(bMepiMe)OTf2. MeOTf (100 µL, 0.926 mmol) was added to Fe(bMepi)Br (107 mg, 

0.232 mmol) suspended in DCM (10 mL) charged with a stir bar. The reaction solution was 

allowed to stir at room temperature for 21 h and the DCM solvent was removed under vacuum. 

The crude product was washed with Et2O (4 × 10 mL) and extracted with DCM (5 mL). The 

DCM solution was layered with Et2O (45 mL). After 24 h at −35 °C, brown crystalline plates 

were collected and washed with Et2O (4 × 10 mL) to afford crystals suitable for X-Ray 

diffraction experiment. Yield: 138 mg (86%). 1H NMR (400 MHz, CD2Cl2): δ 60.17 (s, 1H), 

55.19 (br s, 3H), 50.74 (s, 1H), 44.91 (s, 1H), 40.62 (s, 1H), 26.92 (s, 3H), 18.89 (br s, 3H), 

10.56 (s, 1H), 6.00 (s, 1H), 2.45 (s, 1H), −0.93 (s, 1H), −6.73 (s, 1H), −7.38 (s, 1H). IR (ATR, 

cm−1): 3094, 1660, 1606, 1520, 1456, 1406, 1311, 1233, 1204, 1165, 1114, 1007, 903, 809, 775, 

710. Anal. Calculated for C23H19F6FeN5O6S2 (found): C, 39.73 (39.54); H, 2.75 (2.85); N, 10.07 

(10.12). Solution effective magnetic moment (CD2Cl2) = 5.1 µB. 

Fe(bMepi)I. THF (10 mL) was added to a 20 mL vial charged with K(bMepi) (214 mg, 

0.586 mmol), FeI2(CO)4 (235 mg, 0.558 mmol), and a stir bar. The resulting solution was 

allowed to stir at room temperature for 21 h and the THF solvent was removed under vacuum. 

The crude product was washed with Et2O (4 × 20 mL), and then extracted with DCM (4 × 25 
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mL) to afford an orange solution. The DCM extractions were combined and concentrated under 

vacuum to 10 mL and then layered with Et2O (90 mL). After 24 h at room temperature, the 

precipitates were collected and washed with Et2O (4 × 20 mL) to afford the product as an orange 

powder. Yield: 256 mg (90%). Crystals were obtained from vapor diffusion of pentane into a 

THF solution at 5 °C. 1H NMR (500 MHz, THF): δ 58.07 (s, 2H), 37.78 (br s, 8H), 29.34 (s, 2H), 

12.15 (s, 2H), 10.88 (s, 2H), −0.42 (s, 2H). IR (ATR, cm−1): 3050, 2974, 2844, 1663, 1591, 1539, 

1444, 1356, 1287, 1236, 1190, 1157, 1077, 995, 812, 777, 709. Anal. Calculated for C20H16FeIN5 

(found): C, 47.18 (47.16); H, 3.17 (3.30); N, 13.76 (13.65). Solution effective magnetic moment 

(CD2Cl2) = 4.7 µB. 

Fe2(bMepi)2Br[BF4]. DCM (5 mL) was added to a 20 mL vial charged with 

Fe(bMepi)Br (50.5 mg, 0.109 mmol), O(CH3)3BF4 (17.0 mg, 0.115 mmol), and a stir bar. The 

resulting solution was allowed to stir at room temperature for 3 h. The volatiles were removed 

under vacuum, and the crude product was washed with C6H6 (4 × 10 mL), DME (4 × 10 mL), 

and pentane (4 × 10 mL). Evaporation of the volatiles under vacuum afforded the product as a 

brown powder. Crystals were obtained from layering pentane on top of a DCM solution at 5 °C. 

Yield: 27 mg (42%). 1H NMR (400 MHz, CD2Cl2): δ 81.94 (s, 4H), 68.87 (s, 4H), 54.56 (s, 4H), 

53.68 (s, 4H), 40.04 (s, 4H), 35.20 (s, 4H), 34.92 (s, 4H), 23.44 (s, 4H), 9.73 (s, 4H), −6.06 (s, 

4H), −40.94 (s, 6H), −56.37 (br s, 6H). 

5.3.3 General Procedure for Catalytic Hydroboration 

An 8 mL vial was charged with 0.025 mmol of the Fe precatalysts (Fe(bMepi)Br, 11.6 

mg; Fe(bMepi)(THF)OTf, 15.1 mg; Fe(bMepiMe)OTf2, 17.4 mg), 2 mmol of borane (HBCat, 215 

µL; HBPin 290 µL), and NaHBEt3 (75 µL, 0.075 mmol). The mixture was stirred for 3 min then 

1 mmol of substrate (1-octene, 155 µL; COE, 130 µL; styrene 115 µL; 4-octyne 145 µL; 1-octyne 

145 µL; cis-4-octene, 155 µL) was added. The vial was then capped and stirred for 14 h. The 

reaction was quenched by exposing the mixture to air. The solvent was evaporated under vacuum, 

and the residue was purified through a plug of silica gel eluting with pentane (5 mL). In the case 

of 1-octyne, E-6 was purified by flash column chromatography using hexanes:ethyl acetate (9:1). 

A colorless oil was obtained after evaporation of pentane under vacuum. The identity of the 

hydroboration product was confirmed by comparison to previously reported 1H NMR data of 

known compounds. 
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5.3.4 General Procedure for Hydroboration–Oxidation 

The reaction of cis-4-octene with HBPin using Fe(bMepiMe)OTf2 yielded multiple 

products. To confirm the identity of the hydroboration products, oxidation with hydrogen 

peroxide was performed according to a previously reported procedure.36 The oxidized mixture 

contained 1-octanol (7), 2-octanol (8), 3-octanol (9), and 4-octanol (10) as determined by GC-

MS analysis. 

5.3.5 General Procedure for Kinetic Experiments 

Following the general procedure for catalytic olefin hydroboration, the kinetic 

experiments were conducted by sampling 5 µL aliquots into a GC-MS vial containing 5 µL 1-

phenylethanol, which immediately quenched the reaction. The aliquots were diluted with 1 mL 

DCM and the yields were determined by GC-MS analysis. To confirm reproducibility and 

determine the initial rate, all kinetic experiments were performed in triplicate. 

5.3.6 General Procedure for Poisoning Experiments 

Following the general procedure for the kinetic experiments, the poisoning experiments 

were conducted by allowing the reaction to proceed for 4 min, and then PMe3 was added to the 

reaction solution. 
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CHAPTER 6 

Modular Attachment of Appended Boron Lewis Acids to a 

Ruthenium Pincer Catalyst: Metal–Ligand Cooperativity Enables 

Selective Alkyne Hydrogenation 

 

6.1 Introduction 

For homogeneous catalysts, the selection and design of appropriate ancillary ligands serves an 

important role to control both the activity and the selectivity in subsequent catalytic reactions.1 

Although the steric and electronic properties of the primary coordination sphere are most often 

modified during catalyst optimization, secondary groups can also play a key role to promote 

substrate binding/activation.2 Elaboration of an active catalyst’s secondary structure often 

requires extensive synthetic redesign prior to metalation, which limits rapid evaluation of 

structure/function details. In contrast, late-stage modification of an already active catalyst can 

also be used to install appended groups and it offers several advantages: (1) functionalization of 

the ligand’s secondary coordination sphere without perturbing the primary coordination 

environment, (2) methodical variation of the pendent group(s) for precise control over the steric 

and electronic properties, and (3) minimal need to re-optimize metalation conditions to ensure 

reaction compatibility (deleterious inter-ligand acid–base interactions). 

Homogeneous hydrogenation/dehydrogenation reactions are an ideal platform to probe 

metal–ligand cooperative activation pathways because of their broad use in the manufacture of 

fine and commodity chemicals.3 Bifunctional transition-metal complexes have been shown to 

synergistically activate small molecules, such as H2, via a metal–ligand cooperative pathway.4 

Although such ligand-facilitated reactivity has emerged as a prominent reaction theme within 

catalysts for alkene, ketone, and imine hydrogenation reactions, highly selective and efficient 
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hydrogenation catalysts that employ Lewis acid–metal cooperativity remain underdeveloped.5 

Complementary to the role that Brønsted acidic groups can serve in bifunctional 

activation/transfer,6  boron-based Lewis acids can also modulate substrate binding,7 in addition 

to promoting insertion-type reactions. Our group is working to evaluate how the precise 

structural, electronic, and cooperative modes in the secondary coordination sphere can be used to 

regulate reactivity,5e,8 and herein we report a multifunctional Ru catalyst where an appended 

borane group can be systematically varied as a means to tune subsequent reactivity (Figure 6-1). 

 

Figure 6-1 Conceptual development of late-stage catalyst redesign to introduce Lewis acidic 
sites for metal–ligand cooperativity. 

We recently reported an N,N,N-bMepi (bMepi = 1,3-bis(6’-methyl-2’-

pyridylimino)isoindolate) Ru–H complex (1, HRu(bMepi)(PPh3)2) capable of mediating 

promoterless dehydrogenation of alcohols,9 amines,10 and upgrading ethanol to 1-butanol.11 In 

addition to the hydrogenation and dehydrogenation of polar bonds, 1 also is an active catalyst for 

alkene hydrogenation.12 We recently found that a simple perturbation to this ligand framework 

(replacing ortho –CH3 with –OH units prior to metalation) enabled distinct catalytic reactivity: 

rapid H–E (H2 and HBPin) activation and catalytic nitrile hydroboration.8c To further elucidate 

the changes in reactivity that can be imparted by appended groups, we have targeted a ligand 

variant that replaces the Brønsted acidic –OH group(s) with a boron-based Lewis acid that 

importantly can be readily installed post metalation.13 These appended groups may be used to 

bias selectivity for a given catalytic reaction when unselective catalysis is observed for an 

unmodified variant. In this Communication, we report the development of a new series of 

bifunctional Ru complexes with appended BR2 groups via B–H bond activation and demonstrate 

that the Lewis acidity of the borane influences the reactivity of the Ru hydride and promotes Z-

selective semi-hydrogenation of alkynes. 
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6.2 Results and Discussion 

6.2.1 Synthesis and Characterization of Bifunctional Ruthenium Complexes with 

Appended Boron Lewis Acids 

To evaluate the strategy of installing appended boron-based Lewis acids to provide 

borane-appended derivatives of 1, we assessed the reaction with boranes following deprotonation. 

The addition of catecholborane (HBCat) to a C6H6 solution of [Ru(CH2Mepi)PPh3]2 (2) resulted 

in the clean conversion to HRu(CH2BCatMepi)PPh3 (3), which was isolated as a brown powder 

in 71% yield (Figure 6-2). The 1H NMR spectrum confirmed the asymmetry of the appended 

BCat group on the pincer ligand and featured a broad peak for the hydride ligand at −8.8 ppm.14 

The 31P{1H} NMR spectrum exhibited a singlet at 79.8 ppm, and the 11B{1H} NMR spectrum 

contained a broad signal at 14.6 ppm. The solid-state structure revealed a distorted octahedral 

geometry around the Ru center with the phosphorous and oxygen atoms in pseudo-axial 

positions [P1–Ru1–O2: 164.83(7)°] and the hydride ligand (located from the difference map) 

trans to the isoindolate nitrogen atom in the equatorial plane. The hydride–boron atom distance 

of ca. 1.37 Å is consistent with a B–H interaction, which is further supported by the high degree 

of pyramidalization at boron [∑Bα = 339.3(3)°].15 

The reaction between 2 and HBPin afforded a distinct product that incorporated two BPin 

units. Ru(CBPin2Mepi)PPh3 (4) was isolated as a brown solid in 69% yield by allowing 4 equiv 

of pinacolborane (HBPin) and 2 to react in C6H6 solvent at 80 °C for 20 h (Figure 6-2). The 
31P{1H} NMR spectrum displayed a singlet at 73.8 ppm, and the 1H NMR spectrum supported 

the presence of two BPin groups. In particular, three singlets for the BPin methyl groups were 

located at 0.33, 1.29, and 1.33 ppm and a broad peak was detected at 0.44 ppm. The 11B{1H} 

NMR spectrum exhibited a broad signal at 28.1 ppm, consistent with minimal pyramidalization 

at both the boron centers. The X-ray crystal structure revealed the Ru atom in an octahedral 

environment with a bis(borylated) carbon atom cyclometalated trans to the isoindolate nitrogen 

atom. The appended BPin units retain trigonal planar geometries at B3 and B4 [∑B3α = 359(1)°, 

∑B4α = 360(1)°], and overall, illustrate markedly different structures. 
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Figure 6-2 Synthesis and crystal structures (thermal ellipsoids depicted at 50% probability) of 
HRu(CH2BCatMepi)PPh3 and Ru(CBPin2Mepi)PPh3. The hydrogen atoms, except the hydride, 
and PPh3 phenyl groups are omitted for clarity. 

The stronger boron-based Lewis acid 9-borabicyclo[3.3.1]nonane (9-BBN)16 afforded a 

distinct product, complex 5 (Ru(CH9BBNMepi)PPh3) in 78% yield, when using analogous 

reaction conditions as those to prepare 3 (Figure 6-3). The X-ray crystal structure revealed a 

distorted octahedral environment about the Ru center with a rare Ru–(η2-B–C) interaction that 

may be viewed in one of two limiting resonance form of a borata-alkene, analogous to the 

Dewar–Chatt–Duncanson description of alkene coordination (Figure 6-4).17 This unit results 
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from loss of H2 from the ligand CH2 (C20) and the B–H unit and represents a form of ligand-

enabled H2 elimination that is reminiscent of bifunctional complexes developed by Milstein’s 

group.18 In those cases, bifunctional activation is achieved via aromatization–dearomatization of 

the pyridine group concomitant with protonation–deprotonation of the methylene arm. However, 

in contrast to aromatization–dearomatization observed in prior cases, we note retention of 

aromaticity in the pyridine ring, based on the normal C=C and C=N bonds as well as the distance 

between C19–C20 (1.490(3) Å), which is consistent with a single bond. Thus, by tuning the 

Lewis acidity of a pendent borane (BPin < BCat < 9-BBN), a cooperative bifunctional H2 release 

step is enabled, which also serves to provide a Lewis acid in close proximity to a metal-

coordinated substrate. Although the degree of pyramidalization at boron is considerably high 

[∑Bα = 339.2(2)°], the Ru1–B1 distance of 2.592(3) Å is longer than the Ru–B distances (2.093–

2.176 Å)19 found in reported Ru–BR3 complexes, which suggest a weak Ru→B interaction. 

Complementary to the solid-state characterization, the solution dynamic exchange 

process of 5 was investigated using variable temperature NMR spectroscopy. At 25 °C, the 1H 

NMR spectrum exhibited broad signals in the alkyl region and a broad signal at −3.5 ppm, the 
31P{1H}NMR spectrum displayed a broad signal at 44.6 ppm, and the 11B{1H} NMR spectrum 

was featureless. However, upon cooling a CD2Cl2 solution of 5 to −80 °C, the 1H and 31P signals 

sharpened and the 11B{1H} NMR spectrum showed a broad signal at −8.5 ppm, indicative of a 

fluxional structure at room temperature. Moreover, in the 1H NMR spectrum at −80 °C, the 

signal at −3.87 ppm appeared as a well-resolved doublet with a coupling constant of 16.5 Hz that 

appeared concomitantly with a doublet at 2.06 ppm with the same coupling constant and a 

T1(min) of 211 ms (−40 °C, 500 MHz) (Figure 6-4). This observation is consistent with an 

agostic interaction of a geminal –CH2 group with Ru.7e Thus, we propose two reversible 

coordination modes of the 9-BBN motif to the Ru center (Ru–(η2-B–C) and Ru–(η2-C–H)) at 

room temperature (Figure 6-4). 
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Figure 6-3 Synthesis and crystal structures (thermal ellipsoids depicted at 50% probability) of 
Ru(CH9BBNMepi)PPh3 and HRu(CH29BBNMepi)(PPh3)CO. The hydrogen atoms, except the 
hydride, and PPh3 phenyl groups are omitted for clarity. 

To interrogate the capabilities of the pendent 9-BBN Lewis acid and Ru in 5 to 

cooperatively promote H–H activation, we evaluated the H2 reactivity in the presence of a π-

acidic ligand. The addition of H2 (15 psig) and CO (15 psig) to a C6H6 solution of 5 yielded a 

new orange product, HRu(CH29BBNMepi)(PPh3)CO (6; Figure 6-3). The 31P{1H} NMR 

spectrum displayed a singlet at 38.6 ppm, and the IR spectrum exhibited a νCO band at 1935 cm−1 

and a broad Ru–H–B peak at 1820 cm−1, which falls within the 1864–1780 cm−1 range of 

previously reported complexes.20 In the 1H NMR spectrum, the hydride ligand was visualized as 

a broad doublet at −9.83 ppm with a JHP of 97.5 Hz, consistent with a hydride ligand trans to a 

phosphine ligand. The X-ray crystal structure revealed the products of H2 heterolysis: a Ru–H 

(located from the difference map), and a sp3 carbon adjacent to the boron. Similar to 3, the Ru–H 

unit is capped by the appended borane, forming a Ru–H–B bridge. Furthermore, the boron atom 

(B1) in 6 is pyramidalized at boron [∑Bα = 339.2(3)°], consistent with the 11B NMR resonance at 

−6.5 ppm. The structural characterization of 6 is consistent with H2 heterolysis across the metal–
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ligand framework promoted either by the basic methanide moiety, which is similar to Milstein’s 

bifunctional complexes,4a or with assistance from the pendent boron Lewis acid in concert with 

the metal.21 

 

 

Figure 6-4 Limiting resonance description and solution equilibrium process for 
Ru(CH9BBNMepi)PPh3. 

6.2.2 Reactivity of Bifunctional Ruthenium Complexes Toward H2 and Chlorinated 

Hydrocarbons 

The effect of the varied appended borane groups were evaluated by examining the 

reactivity of 3–5 toward H2 (Figure 6-5). When a J. Young tube containing a C6D6 solution of 4 

and PPh3 was charged with 30 psig of H2, the immediate formation of 1 (the only Ru-containing 

product) was detected by 1H and 31P NMR spectroscopy. In contrast to the reactivity observed 
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with 4, 1 was not observed when allowing 3 or 5 to react with H2 under identical conditions even 

after 48 h, consistent with equilibrium of formation strongly favoring 3 or 5. Moreover, these 

results suggest that both Ru–H and η2-H2 adducts with appended BPin groups are unstable 

intermediates and the weak Lewis acidic BPin group cannot stabilize the Ru–H species 

analogous to 3 (Figure 6-6). 

 

Figure 6-5 Influence of appended Lewis acids on the reactivity of Ruthenium hydride toward 
dihydrogen and dichloromethane. 

The reactivity of the Ru–H unit was significantly suppressed when intramolecularly 

coordinated to a borane (Figure 6-5). H/Cl exchange has been used to evaluate the 

nucleophilicity of a given metal hydride, where facile exchange corresponds to a strong H− 

donor.7g When 1 and 1 equiv of CH2Cl2 or CHCl3 were allowed to react in C6D6, 

Ru(bMepi)(PPh3)Cl (7) was immediately formed in quantitative yield. In contrast, no H/Cl 

exchange was observed when 3 was used under the same conditions, or in the presence of excess 

PPh3. 7 was also generated quantitatively when performing a control experiment using 1, 1 equiv 

of (9-BBN)CH2CH2Ph,22 and either CH2Cl2 or CHCl3, which illustrates that the proximity of the 

intramolecular pendent BCat unit plays a critical role in regulating reactivity. Thus, the Lewis 

acidic properties of the borane moiety, when appropriately placed in the secondary coordination 

sphere has a significant effect on the reactivity of the hydride; the BCat–hydride (Lewis acid–

base) interaction likely reduces the hydricity of the Ru–H and thus prevents the substitution 

reaction. 
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Figure 6-6 Proposed pathway for B–H bond activation via H2elimination . 

6.2.3 Hydrogenation Catalysis Mediated by Bifunctional Ruthenium Complexes 

In addition to the stoichiometric H2 reactivity, we evaluated the catalytic activity of 3 and 

5 for hydrogen-transfer. When a J. Young tube containing a C6D6 solution of 0.1 mmol of 

diphenylacetylene and 1 mol% of 3 or 5 was charged with H2 (30 psig) at room temperature for 

24 h, cis-stilbene (Z-8), was formed in 12% and 14% yields respectively, as assessed by 1H 

NMR spectroscopy (Table 1, entries 1 and 2). In contrast to the catalysis observed with 3 and 5, 

no reaction was observed when using 1 under identical conditions, even after a week (Table 6-1, 

entry 3) and in the presence of 1 equiv of (9-BBN)CH2CH2Ph. These results suggest that 

bifunctional metal–ligand catalysis might be accessed when the bMepi ligand is functionalized 

with a Lewis acidic borane center in close contacts with the metal center. 



145 

Table 6-1 Alkyne Semi-Hydrogenation Catalyzed by Bifunctional Ruthenium Complexes 

 

entry [Ru] T (°C) conversion (%)a Z-8:E-8:9 selectivity (%)b 
1 3 23 12 12:0:0 100 
2 5 23 14 14:0:0 100 
3c 1 23 0 0:0:0 0 
4 1 80 65 31:18:16 48 
5 3 80 56 48:7:1 86 
6d 5 80 100 98:2:0 98 
7 8e 80 65 34:21:10 52 

aConversion determined by 1H NMR integration versus phenyltrimethylsilane as an internal 
standard. bSelectivity determined by conversion of Z-8 per total conversion. cNo change after 1 
week. dNo change in the presence of Hg. eHRu(biPrpi)(PPh3)2. 

Table 6-2 Catalytic Hydrogenations Promoted by Ru(CH9BBNMepi)PPh3 with H2 

entry substrate product yield (%)a 
1 4-octyne Z-4-octeneb 100 
2 1-octyne 1-octene 100 
3 phenylacetylene styrene 100 
4 Z-4-octene octane 100 
5 1-octene octane 100 
6 cyclooctene cyclooctane 100 
7 styrene ethylbenzene 100 

aReactions performed on 0.1 mmol scale with 1 mol% 5 and 30 psig of H2 in C6D6 at 80 °C for 2 
h. Yields determined from 1H NMR integration versus phenyltrimethylsilane as an internal 
standard. b100% selectivity. 

To examine the extent to which the appended borane groups influence alkyne 

hydrogenation, we investigated the selectivity and reaction rate of diphenylacetylene 

hydrogenation at 80 °C. When the hydrogenation reaction was performed with 1, 

diphenylacetylene was converted to a mixture of Z-8 (31%), E-8 (18%), and 9 (16%) with low 

selectivity (48%) for Z-8 (Table 6-1, entry 4). In contrast, high selectivity for the semi-

hydrogenation of diphenylacetylene to Z-8 was achieved using either 3 or 5. Selectivities of 86% 

and 98% were obtained when 3 and 5, respectively, were used instead of 1 (Table 6-1, entries 5 
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and 6).23 Furthermore, significantly higher conversion (100%) and faster reaction rate (4×) were 

found when 5 (2.6(3) × 10−3 M⁄s) was used instead of 3 (5.6(5) × 10−4 M⁄s) and 1 (6.5(5) × 10−4 

M⁄s). Catalytic hydrogenation of alkynes and alkenes with 5 was general to afford the 

corresponding (cis-) alkenes and alkanes as the exclusive products in quantitative yields (Table 

6-2). For instance, 5 mediated hydrogenation of internal and terminal alkynes as well as aliphatic 

(linear and cyclic) and aromatic alkenes. Thus, we found that incorporation of a sufficiently 

strong appended Lewis acidic site, such as 9-BBN, introduces a dramatic bias for three aspects 

related to alkyne hydrogenation: (1) selectivity for a single olefin stereoisomer, (2) selectivity for 

the reduction of alkynes over alkenes, and (3) enhanced reaction rate. 

6.2.4 Origin of Selective Alkyne Reduction 

To gain further insight into the origin of the preference for the alkyne over alkene, we 

evaluated stoichiometric competition experiments between 1-octyne and 1-octene. The addition 

of a C6D6 solution containing a mixture 1 equiv of 1-octyne and 1-octene to 3 resulted in the 

clean conversion to new species with 31P resonances at 21.5 and 41.8 ppm. In the 1H NMR 

spectrum, the hydride region showed no resonances and the alkene region displayed two new 

peaks at 4.64 and 4.70 ppm in a 1:1 ratio. Identical 31P and 1H NMR spectra were obtained when 

3 was allowed to react with 2 equiv of 1-octyne. These two new products are proposed as 

isomeric species of Ru hydride insertion into 1-octyne. Furthermore, insertion reaction of alkyne 

was also maintained even when using 1000:1 mixtures of 1-octene to 1-octyne. In contrast, when 

the competition experiments were performed using 1 in the presence of 1000:1 of 1-octene to 1-

octyne, the 31P NMR spectrum featured a broad peak at −5.4 ppm (free PPh3) and the 1H NMR 

spectrum showed broad peaks that were not resolved at low temperatures. This is consistent with 

a very fast dynamic equilibrium process between hydride insertion into the alkene and alkyne. In 

addition to Lewis acidic character of the appended borane units, they also impose increased 

steric profiles, compared to a CH3 unit, and the distinct steric environments may determine 

selectivity. To evaluate whether a similar steric effect influences the preference for a single 

stereoisomer, alkyne hydrogenation was examined using HRu(biPrpi)(PPh3)2 (8), which contains 

isopropyl groups that are more sterically encumbering around the Ru center than the ortho-

substituents in 1–7. For diphenylacetylene hydrogenation, the product distribution and 

conversion were strikingly similar to 1 (52% selectivity, 65% conversion; Table 1, entry 7). Thus, 
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the origin of the selective semi-hydrogenation of alkynes most likely arises from the acidic 

character of the pendent boranes to direct cooperative substrate binding of alkynes over alkenes. 

This preference for alkynes is consistent with prior hydroboration studies which similarly 

demonstrated enhanced rates for alkyne substrates, which likely engages in a stronger interaction 

with the boron atom .24 

6.2.5 Proposed Mechanism for Alkyne Hydrogenation Mediated by Bifunctional 

Ruthenium Complexes 

Overall, the appended boron Lewis acid was demonstrated to play a multifunctional role 

to promote stereoselective hydrogenation of alkynes. We propose that H2 heterolysis across the 

metal–ligand scaffold generates a hydride intermediate stabilized by the borane unit via the 

formation of a Ru–H–B bridge. The breaking of the B–H interaction allows the Lewis acidic 

boron to direct alkyne binding, which is thermodynamically driven by the strengths of B–C (107 

kcal/mol) versus B–H (81 kcal/mol) bond, for hydride insertion. Finally, addition of H2 affords 

the cis-alkene product and the Ru–H–B species, which re-enters the hydrogenation cycle (Figure 

6-7). 

 

Figure 6-7 Proposed mechanism for stereoselective alkyne hydrogenation catalyzed by 
bifunctional complexes. 
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6.2.6 Summary 

In conclusion, we have developed a new class of bifunctional Ru complexes with 

appended Lewis acidic BR2 groups. This work demonstrates the use of the Lewis acidic 

properties of the boranes in the secondary coordination environment to modulate the reactivity of 

the Ru hydride group and turn on a metal–ligand cooperative pathway for hydrogenation 

catalysis. Of particular note, higher reaction rate, conversion, and selectivity were noted for the 

Z-selective semi-hydrogenation of alkynes when using the bifunctional complex 3 appended with 

the most Lewis acidic site. Comparison with the unfunctionalized complexes containing only 

inert groups illustrates the critical role of the Lewis acids in the secondary coordination sphere to 

synergistically mediate and regulate alkyne hydrogenation by (1) facilitating H–H heterolysis, 

(2) stabilizing the hydride intermediate via the formation of a Ru–H–B bridge, and (3) 

selectively reducing alkynes over alkenes.  

6.3 Experimental Section 

6.3.1 General Considerations 

All manipulations were conducted under a nitrogen atmosphere on a Schlenk manifold or 

in a glovebox using standard Schlenk techniques, unless otherwise stated. All reagents were 

purchased from commercial vendors. Pinacolborane (HBPin; Aldrich), borabicyclo[3.3.1]nonane 

(9-BBN; Aldrich), and catecholborane (HBCat; Aldrich) were used without further purification. 

Substrates (1-octene, Aldrich; cyclooctene, Aldrich; styrene, Aldrich; 4-octyne, Aldrich; 1-

octyne, Aldrich; cis-4-octene, Alfa Aesar) were distilled from CaH2 under a nitrogen atmosphere, 

and then stored over 3Å molecular sieves for 24 h. The following compounds were synthesized 

according to literature methods: HRu(bMepi)(PPh3)2 (1)9 and [Ru(CH2Mepi)PPh3]2 (2)13. The 

3Å Molecular sieves were dried at 250 °C under dynamic vacuum for 24 h. Dichloromethane 

(DCM), diethyl ether (Et2O),  pentane, and benzene (C6H6) were purified using a Glass Contour 

solvent purification system consisting of a copper catalyst, neutral alumina, and activated 

molecular sieves, then passed through an in-line, 2 µm filter immediately before being dispensed. 

Toluene (PhMe) was sparged using nitrogen and then stored over 3Å molecular sieves for at 

least 24 h. 
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NMR spectra were recorded on Varian Inova 500, Varian MR400, Varian vnmrs 500, and 

Varian vnmrs 700 spectrometers at room temperature. 1H and 13C shifts are reported in parts per 

million (ppm) relative to TMS, with the residual solvent peak used as an internal reference. 31P 

NMR spectra were referenced on a unified scale to their respective 1H NMR spectra. The 

following abbreviations are reported as follows: broad (br), singlet (s), doublet (d), doublet of 

doublets (dd), triplet (t), quartet (q), multiplet (m), methyl (Me), and triphenylphosphine (PPh3). 
13C NMR resonances were observed as singlets unless otherwise stated. Solid-state IR spectra 

were collected using a Nicolet iS10 spectrometer equipped with a diamond attenuated total 

reflectance (ATR) accessory. Elemental analyses were performed by Midwest Microlab, LLC. 

6.3.2 General Procedure for Hydrogenation Reactions Catalyzed by 

Ru(CH9BBNMepi)PPh3 

Alkynes or alkenes (0.1 mmol) were added to a J. Young NMR tube containing a C6D6 

solution of 3 (1 mol%, 0.001 mmol, 0.8 mg). The J. Young NMR tube was capped with a Teflon 

key and charged with 30 psig of H2. After 2 h at 80 °C, the products and yields were determined 

by 1H NMR spectroscopy against phenyltrimethylsilane as an internal standard. The identity of 

the product was confirmed by comparison to the reported NMR spectra of known compounds. 

6.3.3 Preparation of Bifunctional Ruthenium Complexes with Appended Boron Lewis 

Acids 

Ru(CH9BBNMepi)PPh3. C6H6 (10 mL) was added to a 20 mL vial containing 

[Ru(CH2Mepi)PPh3]2 (98 mg, 0.0571 mmol), 9-BBN (34.7 mg, 0.142 mmol), and a stir bar. The 

reaction solution was allowed to stir at 80 °C for 20 h. After the solution cooled to room 

temperature, the C6H6 solvent was removed under vacuum and the crude product was washed 

with pentane (4 × 20 mL). Evaporation of the volatiles under vacuum afforded the product as a 

dark green powder. Crystals were obtained from vapor diffusion of pentane into a C6H6 solution 

at room temperature. Yield: 90 mg (78%). 1H NMR (500 MHz, CD2Cl2): δ 7.95 (d, JHH = 7.5 Hz, 

1H), 7.60–7.52 (m, 4H), 7.46 (t, JHH = 7.5 Hz, 1H), 7.37 (t, JHH = 7.5 Hz, 1H), 7.17 (t, JHH = 7.5 

Hz, 3H, PPh3), 7.02–6.96 (m, 7H), 6.85 (t, JHH = 8.5 Hz, 6H, PPh3), 6.69 (d, JHH = 7.5 Hz, 1H), 

6.60 (d, JHH = 5.5 Hz, 1H), 2.14 (br d, JHH = 15 Hz, 1H), 2.00 (s, 3H, Me), 1.80–1.67 (m, 2H), 

1.59–1.52 (m, 2H), 1.42–1.17 (m, 6H), 0.99 (br t, JHH = 6.8 Hz, 1H) 0.52–0.41 (br m, 2 H), 
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−1.16 (s, 1H), −3.5 (br s). 13C{1H} (176 MHz, CD2Cl2): δ 172.37, 153.03, 141.63, 140.45, 

134.94, 134.59, 133.64 (d, JCP = 9.5 Hz), 133.44, 129.69, 128.97, 128.70, 128.33 (d, JCP = 8.4 

Hz), 125.86, 120.35, 119.05, 35.67 (br), 34.29, 34.07, 33.83, 33.64, 27.17 (br), 25.55. 31P{1H} 

NMR (202 MHz, CD2Cl2): δ 44.6 (br s, PPh3). 31P{1H} NMR (202 MHz, CD2Cl2, −80 °C): δ 

44.6 (s, PPh3). 11B{1H} NMR (160 MHz, CD2Cl2, −80 °C) δ −8.5 (br s, 9-BBN). Anal. 

Calculated (found): C, 68.32 (68.63); H, 5.36 (5.55); N, 8.66 (8.70). 

HRu(CH2BCatMepi)PPh3. C6H6 (10 mL) was added to a 20 mL vial containing 

[Ru(CH2Mepi)PPh3]2 (94.2 mg, 0.0684 mmol), HBCat (32.8 mg, 0.274 mmol), and a stir bar. 

The reaction solution was allowed to stir at 80 °C for 4 h. After the solution cooled to room 

temperature, the C6H6 solvent was removed under vacuum and the crude product was washed 

with Et2O (5 mL) and  pentane (4 × 20 mL). Evaporation of the volatiles under vacuum afforded 

the product as a brown powder. Crystals were obtained from vapor diffusion of pentane into a 

C6H6 solution at room temperature. Yield: 79 mg (71%). 1H NMR (500 MHz, CD2Cl2): δ 8.15 

(br d, JHH = 6.5 Hz, 1H), 7.72 (br d, JHH = 6.5 Hz, 1H), 7.63 (t, JHH = 7.0 Hz, 1H), 7.54 (t, JHH = 

7.3 Hz, 1H), 7.42 (t, JHH = 7.5 Hz, 1H), 7.18 (t, JHH = 7.5 Hz, 3H, PPh3), 7.12 (br d, JHH = 7.5 Hz, 

1H), 7.03–6.94 (m, 14H), 6.56 (d, JHH = 7.5 Hz, 2H), 6.49 (t, JHH = 7.5 Hz, 1H), 6.23 (t, JHH = 

7.5 Hz, 1H), 6.10 (d, JHH = 7.5 Hz, 1H), 5.98 (d, JHH = 6.5 Hz, 1H), 3.51 (d, JHH = 18.5 Hz, 1H), 

2.66 (dd, JHH = 18.5, 4.8 Hz, 1H), 2.22 (s, 3H, Me), −8.83 (br s, 1H, hydride). 13C{1H} (176 

MHz, CD2Cl2): δ 167.38, 164.38, 152.53, 151.55, 148.37, 135.35, 134.88, 133.81 (d, JCP = 9.3 

Hz), 132.92, 129.74, 127.81(d, JCP = 8.3 Hz), 125.93 (br), 121.78 (br), 120.14, 119.43 (br), 

118.59 (br), 112.81, 110.71, 108.99, 33.17, 31.02. 31P{1H} NMR (202 MHz, CD2Cl2): δ 79.9 (s, 

PPh3). 11B{1H} NMR (160 MHz, CD2Cl2) δ 14.6 (br s, BCat). Anal. Calculated (found): C, 65.35 

(65.16); H, 4.36 (4.13); N, 8.66 (8.46). 

Ru(CBPin2Mepi)PPh3. HBPin (14.2 µL, 0.0981 mmol) was added to a 20 mL vial 

containing a C6H6 (10 mL) solution of [Ru(CH2Mepi)PPh3]2 (30.7 mg, 0.0223 mmol) and a stir 

bar. The reaction solution was allowed to stir at 80 °C for 20 h. After the solution cooled to room 

temperature, the C6H6 solvent was removed under vacuum and the crude product was washed 

with pentane (4 × 10 mL). The crude product was dissolved in minimum DCM and layered with 

pentane. After 24 h at −35 °C, the precipitates were collected and washed with cold pentane. 

Evaporation of the volatiles under vacuum afforded the product as a brown solid. Crystals were 
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obtained from evaporation of a C6H6 solution at room temperature. Yield: 29 mg (69%). 1H 

NMR (500 MHz, C6D6): δ 8.30 (d, JHH = 7.5 Hz, 1H), 8.15 (d, JHH = 7.0 Hz, 1H), 7.87 (d, JHH = 

8.0 Hz, 1H), 7.37 (t, JHH = 7.8 Hz, 1H), 7.30–7.27 (m, 2 H), 6.86–6.84 (m, 9H), 6.45 (d, JHH = 

7.5 Hz, 1H), 2.60 (s, 3H, Me), 1.33 (s, 6H, BPin), 1.29 (s, 6H, BPin), 1.33 (s, 6H, BPin), 0.44 (br 

s, 6H, BPin), 0.33 (s, 6H, BPin). 13C{1H} (176 MHz, CD2Cl2): δ 175.26, 165.80, 158.26, 153.17, 

152.29, 150.76, 142.62, 141.25, 134.89, 134.57, 134.33, 133.68 (d, JCP = 8.4 Hz), 128.90, 128.75, 

127.63 (d, JCP = 8.4 Hz), 126.21, 120.25, 119.47, 116.62, 116.45, 81.68, 31.69, 26.19 (br), 24.25. 
31P{1H} NMR (162 MHz, C6D6): δ 73.8 (s, PPh3). 11B{1H} NMR (160 MHz, C6D6) δ 28.1 (br s, 

BPin). Anal. Calculated (found): C, 63.84 (63.70); H, 5.57 (5.76); N, 7.45 (7.54). 

HRu(CH29BBNMepi)(PPh3)CO. A J. Young tube containing a C6H6 solution of 3 (8.8 

mg, 0.0109 mmol) was charged with H2 (15 psig) and CO (30 psig). After 1 h at room 

temperature, the C6H6 solvent was removed under vacuum and the crude product was extracted 

with pentane. After 48 h at −35 °C, the precipitates were collected and dried under vacuum to 

afford the product as orange needles. Yield: 5 mg (55%). 1H NMR (700 MHz C6D6): δ 7.70 (d, 

JHH = 7.0 Hz, 1H), 7.61 (t, JHH = 7.4 Hz, 1H), 7.56 (t, JHH = 7.4 Hz, 1H), 7.47 (d, JHH = 7.7 Hz, 

2H), 7.41 (t, JHH = 7.0 Hz, 1H), 7.34 (t, JHH = 7.0 Hz, 1H), 7.14–7.09 (m, 4H), 6.97 (t, JHH = 7.0 

Hz, 6H, PPh3), 6.91–6.85 (m, 8H), 3.64 (d, JHH = 16.1 Hz, 1H), 2.64 (d, JHH = 19.6 Hz, 1H), 2.23 

(s, 3H, Me), 1.81 (br s, 1H), 1.57 (br s, 2H), 1.45 (br s, 1H), 1.34–1.23 (br m, 3H), 1.09 (br s, 

3H), 1.01 (br s, 1H), 0.93 (br s, 1H), 0.23 (br s, 1H), −0.37 (br s, 1H), −10.38 (br d, JHP = 91.7 

Hz, 1H, hydride). 13C{1H} (176 MHz, CD2Cl2): δ 160.89, 160.74, 156.20, 140.53, 137.17, 

136.91, 133.83 (d, JCP = 9.2 Hz), 133.05, 130.12, 130.02, 129.58, 129.15, 128.70, 128.15 (d, JCP 

= 8.1 Hz), 127.43, 126.47, 121.70, 121.58, 121.48, 120.41, 120.13, 34.04, 33.83, 32.61, 31.97, 

26.22, 25.64. 31P{1H} NMR (202 MHz, C6D6): δ 38.6 (s, PPh3). 11B{1H} NMR (160 MHz, C6D6) 

δ −6.5 (br s, 9-BBN). Anal. Calculated (found): C, 67.30 (66.88); H, 5.41 (5.33); N, 8.35 (7.85). 
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CHAPTER 7 

Outlook 
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7.2 Outlook 

7.2.1 Development of Next Generation Catalysts for Sustainable Energy Applications 

Derived from Biomass Feedstocks 

Acceptorless dehydrogenation is a rapidly expanding field in homogeneous catalysis due 

to broad interest across several areas including sustainable energy applications and chemical 

synthesis. Chapter 1 highlights the importance of metal–ligand cooperation in the development 

of bifunctional systems capable of catalyzing promoterless dehydrogenation and 

dehydrogenative coupling reactions. However, in systems that contain bifunctional groups, it 

may be ambiguous whether a cooperative pathway is actually required for efficient 

dehydrogenation. In studying the mechanism of acceptorless alcohol dehydrogenation reactions 

using Ru 1,3-bis(2’-pyridylimino)isoindolate (bpi) complexes, experimental evidence support an 

inner-sphere, stepwise pathway for proton and hydride transfer with a β-H elimination turnover 

limiting step, which was presented in Chapter 3. A metal–ligand cooperative pathway is not 

necessary for alcohol dehydrogenation catalysis as demonstrated by the high efficiency of these 

systems in dehydrogenation of secondary alcohols to ketones, dehydrogenative coupling of 

primary alcohols to esters, and upgrading ethanol to 1-butanol (Chapter 2).  

To our knowledge, Ru(bpi)(PPh3)2Cl exhibits state-of-the-art activity for ethanol 

upgrading by a homogeneous catalyst. This improvement in catalyst performance represents a 

substantial step forward toward processes that use bio-derived feedstocks for one-step fuel-

forming reactions with minimal intervention required to the existing transportation infrastructure. 

Ongoing efforts are focused on obtaining a mechanistic understanding in Guerbet-type reactions 

to guide the development of next generation catalysts with improved stability and activity. 

Preliminary analysis of the deactivated Ru species from Guerbet reactions reveals the presence 

of a carbonyl ligand as observed by IR spectroscopy. This observation and the comprehensive 

mechanistic study of acceptorless alcohol dehydrogenation will be used as an entry point to 

evaluate the Guerbet mechanism by a series of stoichiometric reactions to probe catalytic 

intermediates, examining competition experiments and product distribution to identify 

contributors to aldol condensation, and analyzing the impact of low and high hydrogen pressure 

on catalyst activity and selectivity. These experimental studies will aim to answer the following 

mechanistic questions: (1) What are the details of the intermediates? (2) What key parameters 
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govern selectivity for the aldol condensation? (3) Is hydrogenation or dehydrogenation involved 

in the rate-determining step? (4) How will catalyst decarbonylation be prevented? The 

mechanistic findings will be used to guide catalyst redesign efforts to optimize catalytic biomass-

relevant reactions using hydrogen transfer. 

7.2.2 Hydrogen Storage Based on Primary Amine–Nitrile Couples 

 In addition to the impressive alcohol dehydrogenation capabilities, the 

HRu(bMepi)(PPh3)2 (bMepi = 1,3-bis(6’-methyl-2’-pyridylimino)isoindolate) complex, to our 

knowledge, is the best homogenous catalyst for double dehydrogenation of amines to nitriles that 

requires no oxidant or any promoter, such as hydrogen acceptor or base, additives (Chapter 4). 

Prior to this study, there were no well-defined examples of catalysts that effect this 

transformation with such selectivity and efficiency. While catalytic amine dehydrogenation 

presents a selective, atom-efficient methodology for organic synthesis, this reaction may also 

find application in alternative energy solutions. For example, amines can act as potential 

hydrogen carriers within the context of a “hydrogen energy economy” cycle. Liquid chemical 

hydrogen carriers might be more readily implemented within the current transportation/storage 

infrastructure than solid or gaseous systems. A major challenge for any future hydrogen 

storage/delivery system is an appropriate energy density (gravimetric and/or volumetric) 

contained within the fuel and storage components. High hydrogen gravimetric densities (mass of 

H2 that can be removed divided by the overall mass of molecule) are possible with low molecular 

weight amines or polyamines. As a tutorial example using 1,4-diaminobutane, the elimination of 

4 equiv of H2 would provide a 9.1 wt% material, which surpasses the gravimetric density target 

(5.5 wt%) set by the United States Department of Energy for 2017. Although prior efforts have 

examined liquid amines as hydrogen carriers, selective dehydrogenation was identified as the 

major roadblock. Given that nitrile hydrogenation catalysis can now be mediated under relatively 

mild conditions, using RCH2NH2–RCN couples for hydrogen storage may be achievable. Efforts 

to understand the mechanism of our current system will provide a foundation for improving the 

design, activity, and stability that might be translated to both arenas of synthetic methodology 

and hydrogen storage. 
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7.2.3 Late-State Functionalization Strategy Opens up New Possibilities in Small Molecule 

Transformations 

A part of my doctoral research is to evaluate how the precise structural, electronic, and 

cooperative modes in the secondary coordination sphere can be used to regulate metal-based 

catalysis. Specifically in Chapter 5, the secondary coordination environment of a Fe–bMepi 

system was chemically modified to facilitate facile electronic modifications to bias activity and 

selectivity of hydroboration reactions. Although prior reports demonstrated Fe-catalyzed olefin 

hydroboration, our systems are unique because they feature control over activity and 

regioselectivity by modifications at a remote site on the bMepi ligand backbone. Methylating the 

imine moiety on the pincer ligand was used as a late-stage modification to provide a more 

electrophilic complex as determined by electrochemical studies. The alkylated variant, compared 

to the parent complex, catalyzes alkene hydroboration with an increased reaction rate and 

exhibits distinct regioselectivity for internal alkene hydroboration. 

In a separate study described in Chapter 6, the development of a new class of bifunctional 

Ru complexes with appended Lewis acidic borane centers demonstrated the use of the Lewis 

acidic properties of the boranes in the secondary coordination environment to tune the reactivity 

of the Ru hydride motif and turn on a metal–ligand cooperative pathway for hydrogenation 

catalysis. Comparison with the unfunctionalized complexes containing only inert alkyl groups 

illustrates the critical role of the Lewis acids in the secondary coordination sphere to 

synergistically mediate and regulate alkyne hydrogenation by (1) facilitating H–H heterolysis, 

(2) stabilizing the hydride intermediate via the formation of a Ru–H–B bridge, and (3) 

selectively reducing alkynes over alkenes. Given that the principles of hydrogenation can be 

applied to hydrofunctionalization reactions, a potential application would be to use these 

bifunctional complexes to achieve cis-selectivity in hydrosilylation and hydroboration of alkenes, 

which is a rare stereoselectivity mode in these types of catalysis. Furthermore, this late-stage 

approach of installing appended boron-based Lewis acids might be extended to the analogous 

Fe–bMepi systems to develop new bifunctional catalysts that are non-toxic, abundant, and 

inexpensive. 

In general, both of these projects use a late-stage functionalization strategy to modify an 

already active catalyst to bias activity and selectivity. This highly modular approach offers 
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several advantages over the more traditional synthesis of specialized ligands: (1) 

functionalization in the secondary coordination sphere without perturbing the primary 

coordination environment, (2) methodical variation of the pendent group(s) for precise control 

over the steric and electronic properties, (3) the simplicity of changing functional (directing) 

group(s) to achieve the desired transformation, and (4) minimal need to re-optimize metalation 

conditions to limit unwanted coordination modes or multinuclear metal–ligand ensembles. In 

addition, because installation of the pendent groups occurred at the last step, this synthetic 

strategy may be exploited as a versatile protocol to access a large variety of appended functional 

groups with a wide range of steric and electronic properties. For instance, incorporation of 

pendent Lewis acidic and basic groups in the secondary coordination environment would 

construct multifunctional ligand architectures to work in concert with a metal site for synergistic 

activation of small molecules. Such frameworks have potential applications in biomimetic 

studies, catalysis, and organic synthesis. Future efforts can also explore this late-stage method to 

install chiral information on the ligand for asymmetric catalysis. Finally, the long-term goal of 

this research is to discover fundamental principles and develop a knowledge base that can used 

to predict structure–reactivity properties to design catalysts for a targeted application. 
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APPENDIX 

Preparation of Related Bis(pyridylimino)isoindoline Compounds 

 

Ru(HbMepi)(PPh3)(Cl)CO[PF6]. DCM (5 mL) was added to a Fischer–Porter tube 

containing Ru(HbMepi)(PPh3)Cl[PF6] (23.4 mg, 0.0269 mmol) and a stir bar. The reaction vessel 

was charged with CO (30 psig) and allowed to stir at room temperature for 18 h. The DCM 

solution was layered with Et2O (15 mL) in a 20 mL vial. After 24 h at room temperature, the 

precipitates were collected on a fine frit and washed with Et2O (4 × 10 mL). Evaporation of the 

volatiles under vacuum afforded the product as an orange solid. Crystals were obtained from 

vapor diffusion of Et2O into a DCM solution at room temperature. Yield: 20 mg (83%). 1H NMR 

(700 MHz, CD2Cl2): δ 9.72 (s, 1H, NH), 8.09 (br m, 1H), 7.82-7.78 (br m, 3H), 7.68-7.60 (br m, 

2H), 7.42-7.37 (br m, 4H), 7.23 (t, JHH = 7.7 Hz, 3H, PPh3), 6.98 (m, 6H, PPh3), 6.55 (t, JHH = 

9.8 Hz, 6H, PPh3), 3.71 (s, 3H), 3.65 (s, 3H). 31P{1H} (283 MHz, CD2Cl2): δ 40.22 (s).  

Ru(bMepi)(PPh3)2[BArF]. THF (5 mL) was added to a 20 mL vial charged with 

HRu(bMepi)(PPh3)2 (21.2 mg, 0.0222 mmol), HB(C6H3(CF3)2)4·(Et2O)2 (24.8 mg, 0.0245), and a 

stir bar. The reaction solution was allowed to stir at room temperature for 24 h. The THF solvent 

was removed under vacuum and the crude product was extracted with Et2O. Evaporation of the 

volatiles under vacuum overnight afforded the product as a bright purple solid. 1H NMR (400 

MHz, CD2Cl2): δ 7.75-7.71 (m, 11H), 7.64 (dd, JHH = 5.2, 3.2 Hz, 2H), 7.56 (s, 3H), 7.47 (d, JHH 

= 7.6 Hz, 2H), 7.41 (dd, JHH = 5.6, 3.2 Hz, 2H), 7.20 (t, JHH = 7.4 Hz, 6H, PPh3), 6.97 (t, JHH = 

7.8 Hz, 12H, PPh3), 6.64-6.59 (m, 14 H), 1.21 (s, 6H). 31P{1H} (162 MHz, CD2Cl2): δ 20.78 (s). 
19F{1H} (377 MHz, CD2Cl2): δ 62.93 (s). 

Purification of Ru(bOMepi)(PPh3)Cl. The crude product was washed with Et2O (4 × 10 

mL), C6H6 (4 × 10 mL), and THF (1 mL). Evaporation of the volatiles under vacuum afforded 

the product as a dark blue powder. 1H NMR (400 MHz, CD2Cl2): δ 7.82 (dd, JHH = 5.6, 3.2 Hz, 
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2H), 7.77 (t, JHH = 8.0 Hz, 2H), 7.40 (dd, JHH = 5.6, 3.2 Hz, 2H), 7.28 (d, JHH = 7.6 Hz, 2H), 7.19 

(t, JHH = 7.6 Hz, 3H, PPh3), 7.02 (t, JHH = 7.8 Hz, 6H, PPh3), 6.72 (t, JHH = 8.4 Hz, 6H, PPh3), 

6.41 (d, JHH = 7.6 Hz, 2H), 3.94 (s, 6H). 31P{1H} (162 MHz, CD2Cl2): δ 53.82 (s). 

KbBrpi. THF (10 mL) was added to a 20 mL vial charged with HbBrpi (243 mg, 0.532 

mmol), KHMDS (101 mg, 0.507 mmol), and a stir bar. The reaction solution was allowed to stir 

at room temperature for 18 h. The precipitates were collected on a medium frit and washed with 

Et2O (4 × 20 mL). Evaporation of the volatiles under vacuum afforded the product as a yellow 

powder. Yield: 221 mg (88%). 1H NMR (400 MHz, THF): δ 7.53 (br s, 2H), 7.44-7.35 (m, 4H), 

7.19-7.18 (br m, 2H), 6.91 (d, JHH = 7.2 Hz, 2H). 

 

Ru(bBrpi)(PPh3)Cl. THF (10 mL) was added to a 20 mL vial charged with KbBrpi (221 

mg, 0.446 mmol), RuCl2(PPh3)3 (408 mg, 0.425 mmol), and a stir bar. The reaction solution was 

allowed to stir at room temperature for 24 h. The precipitates were collected on a fine frit and 

washed with C6H6 (4 × 20 mL) and Et2O (4 × 20 mL). The crude product was extracted with 

DCM. The DCM solvent was removed under vacuum, and the crude product was washed with 

C6H6 (4 × 10 mL) and Et2O (4 × 10 mL). Evaporation of the volatiles under vacuum afforded the 

product as a violet powder. Crystals were obtained from slow evaporation of a DCM solution at 

5 °C. Yield: 260 mg (73%). 1H NMR (400 MHz, CD2Cl2): δ 7.82 (m, 2H), 7.61 (t, JHH = 7.6 Hz, 

2H), 7.52 (d, JHH = 7.6 Hz, 2H), 7.44 (m, 2H), 7.17 (t, JHH = 7.2 Hz, 3H, PPh3), 7.09 (d, JHH = 

7.2 Hz, 2H), 6.99 (t, JHH = 6.8 Hz, 6H, PPh3), 6.88 (t, JHH = 8.6 Hz, 6H, PPh3). 31P{1H} (162 

MHz, CD2Cl2): δ 47.22 (s). 
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 Ir(bMepi)(PPh3)COD. THF (5 mL) was added to a 20 mL vial charged with KbMepi 

(26.3 mg, 0.0722 mmol), Ir(COD)(PPh3)2[PF6] (66.7 mg, 0.0687 mmol), and a stir bar. The 

reaction solution was allowed to stir at room temperature for 20 h. The THF solvent was 

removed under vacuum, and the crude product was washed with pentane (4 × 10 mL) and 

extracted with Et2O (20 mL). Evaporation of the volatiles under vacuum afforded the product as 

a red solid. Crystals were obtained from slow evaporation of a DCM solution at 5 °C. 1H NMR 

(400 MHz, C6D6): δ 7.40 (br s), 7.03 (br s), 6.93 (br s), 2.47-2.17 (br m). 

 

[Ir2(H)4(bMepi)(PPh3)4]+. Method A: DCM (10 mL) was added to a 20 mL vial charged 

with HbMepi (29.3 mg, 0.0895 mmol), Ir(H)5(PPh3)2 (71.8 mg, 0.0994 mmol), and a stir bar. The 

reaction solution was allowed to stir at room temperature for 24 h. The DCM solution was 

filtered and removed under vacuum. The crude product was washed with Et2O (4 × 10 mL). 

Evaporation of the volatiles under vacuum afforded the product as a red solid. Crystals were 

obtained vapor diffusion of Et2O into a DCM solution at 5 °C. Method B: PhMe (5 mL) was 

added to a 20 mL vial charged with HbMepi (19.5 mg, 0.0595 mmol), Ir(H)2(THF)2(PPh3)2[PF6] 

(60 mg, 0.0595 mmol), and a stir bar. The reaction solution was allowed to stir at 90 °C for 30 

min. After the solution cooled to room temperature, the precipitates were collected on a fine and 

washed with Et2O (4 × 10 mL). Evaporation of the volatiles under vacuum afforded the product 

as a red solid. Yield: 50 mg (84%). 1H NMR (400 MHz, CD2Cl2): δ 8.25 (dd, JHH = 5.2, 3.2 Hz, 

2H), 7.52 (d, JHH = 8.0 Hz, 2H), 7.45-7.40 (m, 24H, PPh3), 7.35 (t, JHH = 7.8 Hz, 2H, PPh3), 7.20 
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(t, JHH = 7.4 Hz, 12H, PPh3), 7.09 (t, JHH = 7.4 Hz, 24H, PPh3), 6.91 (dd, JHH = 5.6, 2.8 Hz, 2H), 

6.41 (d, JHH = 7.6 Hz, 2H), 1.53 (s, 6H), −21.68 (dt, JHP = 16.0 Hz, JHH = 8.0 Hz, 2H), −24.20 (dt, 

JHP = 16.0 Hz, JHH = 8.4 Hz, 2H). 31P{1H} (162 MHz, CD2Cl2): δ 21.36 (s). 

 


