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Preface 
 

 The work represented in this dissertation centers around the use of high-

throughput sequencing technology to study cancer-associated long ribonucleic acid 

(RNA) molecules transcribed from the human genome. Therefore, for an introduction I 

give an overview of the emerging appreciation of the role of RNA in cancer biology, the 

molecular profiling technologies used to sequence and quantitate RNA levels, and the 

computational and bioinformatics challenges associated with these technologies. Chapter 

Two describes the development of ChimeraScan, a software package for detecting 

cancer-promoting gene fusion events, and its application to studies of breast cancer, 

solitary fibrous tumors, and clinical sequencing of patients with metastatic cancer. 

ChimeraScan was published in Bioinformatics in 2011, and the use of ChimeraScan to 

discover of recurrent families of gene fusions in breast cancers resulted in a mid-author 

publication in Nature Medicine in 2011. Further, the chapter details the implementation 

of a personalized clinical sequencing project called MI-ONCOSEQ at the University of 

Michigan. This resulted in a co-first-author publication in Science Translational Medicine 

in 2011. Notably, ChimeraScan detected a NAB2-STAT6 gene fusion in a MI-

ONCOSEQ patient who suffered from hemangiopericytoma. This gene fusion was found 

to be highly recurrent in solitary fibrous tumors and the discovery resulted in a mid-

author publication in Nature Genetics in 2013.  
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Chapter Three describes the creation of AssemblyLine, a software package that 

automatically and accurately annotates the transcriptome from RNA sequencing 

experiments. The AssemblyLine algorithm established a novel method for filtering 

sources of contamination from RNA sequencing datasets, as well as a new dynamic 

programming algorithm for predicting abundant transcript isoforms of a gene. When 

compared to an existing approach, AssemblyLine produced a more concise and precise 

transcriptome assembly while still discovering thousands of unannotated long RNAs. 

This chapter is currently being prepared for submission. 

Chapters Four and Five detail the application of AssemblyLine to a prostate 

cancer RNA sequencing cohort. We identify and characterize thousands of previously 

undiscovered long RNAs in the human transcriptome, some of which were dysregulated 

in prostate cancer when compared to benign tissues. In collaboration with experimental 

biologists John Prensner and Anirban Sahu, we studied the functional roles of two of 

these RNAs - PCAT-1 and SChLAP1 - in greater detail. These studies have resulted in 

two co-first author publications in Nature Biotechnology in 2011 and Nature Genetics in 

2013 (manuscript in press). The dissertation concludes with a discussion of how our 

findings in prostate cancer can be extended to other diseases, thoughts on the future of 

RNA sequencing, and a discussion of remaining challenges and opportunities for 

bioinformatics algorithms to derive useful information from RNA sequencing 

experiments. 
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Abstract 
 

High-throughput sequencing of poly-adenylated RNA (RNA-Seq) in human 

cancers shows remarkable potential to identify uncharacterized aspects of tumor biology, 

including gene fusions with therapeutic significance and novel disease markers such as 

long non-coding RNA (lncRNA) species. However, the analysis of RNA-Seq data places 

unprecedented demands upon computational infrastructures and algorithms, requiring 

novel bioinformatics approaches optimized for accuracy and efficiency. To meet these 

demands, we present two new open-source software packages - ChimeraScan and 

AssemblyLine - designed to detect gene fusion events and novel lncRNAs, respectively. 

RNA-Seq studies utilizing ChimeraScan, an exquisitely sensitive tool in head-to-

head comparisons with similar bioinformatics programs, led to groundbreaking 

discoveries of new families of recurrent gene fusions in breast cancers and solitary 

fibrous tumors. Further, ChimeraScan was one of the key components of the repertoire of 

computational tools utilized in data analysis for MI-ONCOSEQ, a clinical sequencing 

initiative to identify potentially informative and actionable mutations in cancer patients’ 

tumors in a clinically relevant time frame. 

AssemblyLine, by contrast, is a novel algorithm that reassembles RNA 

sequencing data into full-length transcripts ab initio. Head-to-head analyses showed that 

AssemblyLine compared favorably to existing ab initio approaches, and the application 

of AssemblyLine to human tissues and cell lines unveiled abundant novel lncRNAs, 



 xviii 

including antisense and intronic lncRNAs disregarded by previous studies. Moreover, in 

a first-of-its-kind study, we used AssemblyLine to define the prostate cancer 

transcriptome from a large patient cohort and discovered myriad lncRNAs, including 

over a hundred prostate cancer-associated transcripts (PCATs) that could potentially 

serve as novel disease markers. In-depth functional studies of two PCATs - PCAT-1 and 

SChLAP1 - revealed cancer-promoting roles for these lncRNAs. PCAT1, a multi-exonic 

lncRNA expressed in a ‘gene desert’ on chromosome 8q24, promotes cell proliferation 

through transcriptional regulation of target genes and represses the tumor suppressor 

BRCA2. SChLAP1, one of several multi-exonic lncRNAs expressed in a chromosome 

2q31 ‘gene desert’, independently predicts poor patient outcomes, including metastasis 

and cancer-specific mortality. Mechanistically, SChLAP1 antagonizes the genome-wide 

localization and regulatory functions of the SWI/SNF chromatin-modifying complex.  

Collectively, this work demonstrates the utility of ChimeraScan and 

AssemblyLine as powerful open-source bioinformatics tools. Our applications of 

ChimeraScan and AssemblyLine led to the discovery of new classes of recurrent and 

clinically informative gene fusions, and established a prominent role for lncRNAs in 

coordinating aggressive prostate cancer, respectively. We expect that the methods and 

findings described herein will establish a precedent for RNA-Seq-based studies in cancer 

biology and assist the research community at large in making similar discoveries. 
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Chapter 1: Introduction 
 

The central role of RNA in cellular biology 

The transcriptome is defined as the complete set of ribonucleic acid (RNA) transcripts 

produced by a cell in a given developmental stage or condition1. The transcriptome forms 

a layer of complexity that links the genome (the complete set DNA sequences in a cell) 

and the proteome (the complete set of proteins present in a cell) through messenger 

RNAs (mRNAs). The expansive role of RNA in cellular biology far exceeds its role in 

transferring messages from the nucleus to the ribosome. The many classes of non-coding 

transcripts carry out myriad biological functions2, supporting the idea that RNA preceded 

DNA in the origin of life3. Therefore, furthering our understanding of the transcriptome 

promises to lend unique insights into the mechanisms of development and disease. 

Methods for profiling the transcriptome 

Technologies for RNA analysis aim to achieve quantitative measurements of RNA levels 

or underlying sequence information. Microarray technologies assess the amount of 

hybridization to predefined antisense oligonucleotide probes and provide a high-

throughput method for quantitating gene expression levels4. Microarray technology can 

be applied in an unbiased fashion by designing sets of probes that tile large genomic 

regions5. Although it has important limitations, the approach established the pervasive 
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nature of non-coding transcription in areas of the genome originally thought to be devoid 

of genes6, 7. By contrast, capillary sequencing based technologies (also known as Sanger 

sequencing) were used to sequence thousands of randomly selected complementary DNA 

(cDNA) clones as expressed sequence tags (EST)8 and led to the discovery of thousands 

of new genes9. Also, serial analysis of gene expression (SAGE)10 and cap analysis of 

gene expression (CAGE)11 generated sequence information from short (<25bp) tags to 

quantitate abundance at the 3’ and 5’ ends of transcripts, respectively. CAGE sequencing 

efforts led to the identification of transcriptional start sites throughout the genome and 

constitute a key technology used by the ENCODE project12, 13.  

The emergence of high-throughput sequencing 

Protocols for assaying the transcriptome were initially limited by the cost and relatively 

low throughput of Sanger sequencing14, 15. In the 2000s a new breed of technologies 

known as high-throughput sequencing (HTS) (also referred to as next-generation 

sequencing (NGS) or massively parallel sequencing (MPS)) emerged with promises of 

vastly higher throughput16. The first of these approaches, the 454 platform, achieved 7.4-

fold coverage of a human genome in two months17, surpassing the Human Genome 

Project in dramatic fashion. The 454 platform was rapidly followed by competing 

technologies from Applied Biosystems (ABI)/SOLID, Solexa/Illumina, and Helicos18, 19. 

These technologies offered various advantages and disadvantages that led to significant 

competition within the industry19. 
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High-throughput RNA sequencing offers an unprecedented view of the 

transcriptome 

Initial demonstrations of high-throughput sequencing technologies used human genome 

sequencing as a benchmark17, 19, but the technology was rapidly adapted to assess RNA20, 

21. This method, called RNA-Seq, captured poly-adenylated long RNA, fragmented the 

RNA to an average length of 200nt by magnesium-catalyzed hydrolysis, and then 

converted the product to cDNA by random priming and reverse transcription. The cDNA 

could then by prepared into a library for sequencing using existing protocols22. RNA-Seq 

displayed a number of distinct advantages over previous transcriptome profiling 

techniques21: (1) concurrent sequencing and quantification of abundance levels in a single 

experiment, (2) extraordinary dynamic range allowing accurate measurement of a wide-

range of expression levels, (3) unbiased profiling that captures previously 

uncharacterized transcripts, and (4) relatively low background noise1. Applications of 

RNA-Seq in mammals established a robust experimental protocol and defined 

fundamental steps required for data analysis, including the Reads Per Kilobase per 

Million (RPKM) metric for transcript abundance levels22. The approach matured further 

due to a number of key developments23: (1) the ability to sequence both ends of a long 

DNA fragment (known as paired-end sequencing)24, (2) the creation of libraries that 

preserve RNA strandedness (also known as strand-specific RNA-Seq)25, (3) the 

capability to produce longer reads up to and exceeding 100nt26, and (4) continued 

increases in throughput. 

Although RNA-Seq is just a few years old, it has already deepened our 

understanding of alternative splicing, uncovered functional relationships between DNA 
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and RNA, detected gene fusions in cancer and identified myriad noncoding RNAs27-30. 

Collectively, these studies reveal an enormously complex eukaryotic transcriptional 

landscape that might give pause to even the most committed supporters of molecular 

biology's central dogma. Most of these insights were generated using older sequencing 

instruments that yield orders-of-magnitude fewer reads and substantially shorter read 

lengths compared with current technology. Because of these technical limitations, the 

first RNA-Seq analysis methods generally relied on existing Sanger-sequenced reference 

genomes as a foundation for probing the transcriptome. 

RNA-Seq poses computational challenges 

The swift increase in sequence data generation has placed escalating demands upon 

computational platforms. In fact, the rate of sequence data growth continues to exceed 

Moore’s law, leading to a growing worry that resources such as disk storage, processing 

power, and data transfer time may become the bottleneck for genomics research31. To 

mitigate this worry, increased emphasis is being placed on efficient algorithm design, and 

a new collections of bioinformatics tools specifically optimized for high-throughput 

sequencing have appeared32. The development of accurate and efficient bioinformatics 

algorithms for high-throughput sequencing analysis continues to be an area of great 

interest. 

Algorithms for RNA-Seq data analysis 

RNA-Seq is an information rich modality capable of interrogating many aspects of 

genome biology simultaneously, including gene, isoform, and allele-specific expression 

levels26, 33-38, changes in transcripts levels across conditions33, 34, 39-41, gene fusions24, 30, 

single nucleotide variants and short indels42-44, and pathogens such as bacteria and 
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viruses45. Perhaps the most promising aspect of RNA sequencing is the ability to 

delineate the entire set of transcriptional aberrations in a disease, including novel 

transcripts and long non-coding RNAs (lncRNAs) not measured by conventional 

analyses26, 45-51. To facilitate interpretation of sequence read data, existing computational 

methods typically process individual samples using either spliced read alignment52-60 

followed by ab initio reconstruction26, 47, 61-66 or de novo assembly46, 50, 67-69 of read 

sequences followed by genome alignment70. 

The intricate process of computationally assembling sequence reads into full-

length transcripts remains an open problem. With improvements in RNA sequencing 

throughput, algorithm design has become more flexible. In 2010, mammalian 

transcriptomes were automatically reconstructed for the first time using two software 

packages, Cufflinks and Scripture, which require reference genomes (referred to as ab 

initio transcriptome assembly)48. Several months later, mouse transcripts were assembled 

without a reference genome using software called Trans-ABySS50, 61. More recently, an 

algorithm called Trinity was introduced that makes it possible to assemble a complete 

transcriptome in the absence of a reference genome (referred to as de novo transcriptome 

assembly)46. The method should prove especially useful for the study of cells with highly 

rearranged genomes such as cancer cells. 

Annotating gene models using RNA-Seq data 

Until recently, efforts to annotate gene models used EST sequences as the chief source of 

data9. Millions of ESTs have been assimilated into gene models by a combination of 

manual and automated efforts such as VEGA, HAVANA, GENCODE, Ensembl, 

AceView, and RefSeq71-77. However, recent reports of thousands of non-coding genes 
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missing from these databases suggest that gene catalogs are far from complete13, 27, 78-81. 

Given the limited bandwidth of manual annotation services, new emphasis has been 

placed on developing automated transcriptome assembly methods to handle the 

anticipated growth in RNA-Seq data. Several algorithms are readily available to assist 

with gene annotation from RNA-Seq datasets41, 71, 75, 82, 83, and reference databases for 

model organisms including Danio rerio (zebrafish), Drosophila melanogaster (fly), and 

Caenorhabditis elegans (worm) have successfully incorporated aspects of RNA-Seq data 

into gene models82, 84-86. Initial efforts to include RNA-Seq in human gene annotations 

have been encouraging, but discrepancies among the published gene catalogs suggest that 

the annotation efforts remain incomplete13, 75, 78, 87, 88. 

RNA sequencing to study cancer 

Cancers are the second leading cause of death in the United States after heart disease, 

with over 580,000 deaths related to cancers projected to occur in 201389. Cancer cells 

arise due to the accumulation of genetic changes that occur in the DNA sequence that 

drive or permit uncontrolled cell growth90. Discovering and characterizing these genetic 

changes has led to new clinical approaches in the diagnosis and management of the 

disease91-97. Studying the transcriptional output of cells provides key insight into 

underlying genetic changes in cancers and the mechanisms by which these changes 

contribute to carcinogenesis and human disease. Unlike modalities confined to monitor 

predefined molecular lesions, RNA-Seq is uniquely capable of capturing the specific 

functional products of somatic changes in an unbiased manner and thus promises to 

further our understanding of cancer biology. To date, numerous cancer genomics studies 

applied RNA-Seq as a modality for detecting gene fusions (see Chapter 2)30, 98-103, 
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discovering long non-coding RNAs (see Chapters 3-5)27, 81, 104, characterizing expressed 

somatic variants, and monitoring gene expression changes105-113. 

This thesis describes new methods for RNA-Seq data analysis and their 

application to study cancer biology. In Chapter 2, we present a software package called 

ChimeraScan for detecting gene fusions and demonstrate its utility across a variety of 

cancer profiling studies. Chapter 3 discusses a new bioinformatics tool called 

AssemblyLine that mitigates the problem of background noise in RNA-Seq data and 

presents an automated algorithm for annotation of gene models from transcriptome 

assemblies. Chapter 4 shows the successful application of the AssemblyLine algorithm to 

discover over 1,800 unannotated lncRNAs in prostate cancers, including 121 Prostate 

Cancer Associated Transcripts (PCATs) that are aberrantly expressed in the disease. In 

Chapter 5 we present the extensive characterization of two exemplary PCATs and 

provide evidence that lncRNAs coordinate the development of aggressive prostate 

cancers. Finally, we conclude in Chapter 6 and offer an optimistic forecast of discoveries 

to come. 
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Gene fusions as a molecular mechanism for carcinogenesis 

Cancers are genetic diseases that arise when accumulated mutations and epigenetic 

alternations lead to uncontrolled cell growth90. Many kinds of mutations are known to 

promote cancer and range from single nucleotide changes to large-scale alterations in 

chromosome structure114. Structural alterations that result in the colocalization of distant 

gene elements may allow for the production of new chimeric transcripts, or gene 

fusions115. In 1960, Nowell and Hungerford conducted chromosomal assays in patients 

with chronic myelogenous leukemia (CML) and described a recurrently abnormal 

“minute chromosome” known as the Philadelphia chromosome116. Their discovery was 

further characterized by modern cytogenetic assays as a reciprocal translocation causing 

the first part of the BCR gene on chromosome 22 to be positioned immediately upstream 

from the last part of the ABL kinase on chromosome 9117. The chimeric BCR-ABL 

transcript had produced a fusion protein with constitutively active kinase activity that 

promoted neoplasia. The discovery of the BCR-ABL chimera established a paradigm for 

how chromosomal aberrations could promote tumorigenesis and spurred systematic 

efforts to discover and cataloguing of gene fusions in cancers115, 118. It is now commonly 

understood that gene fusions may be found in most malignancies and could account for 

up to 20% of cancer morbidity115. 

Transcriptome sequencing to discover gene fusions 

Molecular cytogenetics technologies such as fluorescence in situ hybridization (FISH) 

and comparative genomic hybridization (CGH) greatly facilitated the discovery of new 

gene fusion events, but have important limitations119, 120. Standard FISH experiments 

employ fluorophore-labeled DNA probes designed from bacterial artificial chromosomes 
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(BACs) approximately 100kb in length, and may lack sufficient resolution to capture 

focal intrachromosomal aberrations such as inversions. Furthermore, FISH relies on 

predesigned probes and may be better suited for validation or diagnostic purposes rather 

than discovery. By contrast, sequencing-based approaches provide an unbiased means for 

observing chromosomal aberrations and chimeric transcripts at single-nucleotide 

resolution121, 122. In particular, high-throughput RNA sequencing (RNA-Seq) captures the 

expressed chimeric transcripts emanating from aberrant genomes and helps distinguish 

‘driver’ gene fusion events that potentially contribute to cancer causation from 

‘passenger’ events with irrelevant functional consequences24, 30. Thus, RNA-Seq serves 

as a powerful tool that complements molecular cytogenetics and DNA-based sequencing 

approaches for gene fusion discovery. 

Available algorithms for detecting gene fusions in RNA-Seq data 

Interpreting the vast quantities of data from high-throughput RNA-Seq depends upon 

computational algorithms that can accurately map sequences emanating from chimeric 

transcripts across the fusion boundary. This has led to the development of a fleet of 

bioinformatics tools that attempt to predict true gene fusions while discounting sources of 

artifacts and noise52, 123-134. Notably, the FusionSeq package enabled the discovery of 

novel gene fusions in melanoma105, the deFuse tool uncovered a recurrent class of gene 

fusion partners in lymphoid cancers100, and the unpublished tool GSTRUCT-fusions 

discovered recurrent R-spondin fusions in colon cancers99. Moreover, a preliminary 

version of ChimeraScan, the tool developed as part of this thesis work, identified 

recurrent rearrangements of the RAF kinase pathway in multiple cancer types101. 

Although these software tools vary in their underlying architecture, most share a common 
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workflow whereby (1) all sequences are compared to a set of genomic and/or 

transcriptomic references, (2) sequences that do not support chimeras are designated 

concordant and not analyzed further, (3) the set of putative chimeric sequences are 

searched for evidence that they span the junction between disparate genes, (4) multiple 

sequences supporting the same chimeric transcript are grouped together, (5) the set of 

chimeric transcripts are further prioritized and/or filtered, and (6) a final set of chimeric 

transcripts are reported (Figure 2.1). Variation within this algorithmic framework 

typically involves (1) the underlying alignment approach used to compare sequences to a 

set of references, (2) support for single-end or paired-end sequences, (3) the approach for 

mapping fusion reads across the chimeric junction, (4) handling of ambiguously mapping 

sequences, (5) filtering steps employed to reduce sources of error, (6) efficiency and 

computational performance, and (7) information provided as summary reports. 
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Figure 2.1: Gene fusion discovery workflow. 
Paired-end reads failing an initial alignment step are trimmed and realigned to detect discordant reads. 
Discordant reads that pass filtering criteria are realigned across putative chimeric junctions. Chimeras with 
encompassing (blue) and spanning (red) fragments may be detected during realignment. 

 

ChimeraScan: a tool for identifying chimeric transcription in sequencing data 

Given the promise of RNA-Seq to uncover recurrent classes of clinically relevant gene 

fusions, we developed a software tool called ChimeraScan to offer as an open-source 

package for the community to utilize124. The development of ChimeraScan emerged from 

the initial studies by Maher et al. that established the utility of RNA-Seq for gene fusion 
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discovery24, 30, and proceeded largely in parallel with comparable tools from other labs52, 

125, 128-130, 132, 134. The software, documentation, and user’s guide are hosted online 

(http://chimerascan.googlecode.com). At the time of this writing the tool was 

downloaded 436 times and was cited by 10 studies, 8 of which were transcriptome 

profiling studies that employed ChimeraScan for making novel discoveries, and 2 of 

which were other bioinformatics methods studies. Furthermore, the commercial software 

GeneSifter from GeoSpiza incorporates ChimeraScan into its RNA-Seq analysis package. 

These successful implementations of ChimeraScan are a marker of its impact to the field 

of cancer genomics, and we believe the tool will continue to be useful in the future. 

A guide to the ChimeraScan algorithm 

ChimeraScan broadly implements the steps in the generic fusion discovery workflow 

(Figure 2.1). It was engineered for processing paired-end reads and employs the 

established and markedly efficient Bowtie aligner135. Here, we describe ChimeraScan 

workflow as a series of steps. Prior to running ChimeraScan, users must successfully 

download the software and construct a set of genomic and transcriptomic references. 

Step-by-step commands for installing ChimeraScan are described online 

(https://code.google.com/p/chimerascan/wiki/Installation). The included python script 

called chimerascan_index.py constructs the underlying references files needed to run the 

Bowtie aligner135. It expects genomic sequences (FASTA) as well as a transcriptome 

annotation file (GTF/GFF or GenePred). The process takes several hours but need only 

be run once for a particular organism. Detailed instructions can be found online.  

Step 1: Pre-process reads before alignment 
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ChimeraScan processes FASTQ files containing the original read sequences and performs 

the following: 1) converts non-standard quality scores to Sanger format (Phred + 33), 2) 

replaces the arbitrarily long read name field with a single unique integer, and adds the 

suffix “/1” and “/2” to denote read 1 or read 2, respectively (Figure 2.2). This pre-

processing step dramatically reduces the storage and memory requirements of subsequent 

steps. 

 
Figure 2.2: Conversion of quality scores and read identifiers in FASTQ files. 
ChimeraScan standardizes quality scores to the common Sanger (Phred + 33) format, and renames read 
identifiers to single integers to conserve memory in subsequent steps of the algorithm. 
 
Step 2: Align paired-end reads 

In this step ChimeraScan uses Bowtie to search for a valid genomic or transcriptomic 

alignment for each read in the dataset135. This initial alignment is performed in paired-end 

mode where both reads from the fragment must align within a distance range. The default 

settings use a fragment length range 0-1000bp. This alignment step aims for maximal 

sensitivity because more correctly mapped paired-end alignments implies fewer 
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potentially false positive chimeras. Users can modify the following parameters to control 

the behavior of this step: 

1. A number of bases may be trimmed from the 5’ or 3’ end of all reads (--trim5 

and --trim3, default 0). This is recommended if sequence quality scores are 

low at the ends of reads. 

2. The number of mismatches tolerated in alignments (--mismatches, default 3) 

3. The distance range within which alignments are considered valid (--min-

fragment-length and --max-fragment-length, default 0-100bp). 

A sorted, indexed BAM file is created from the valid alignments using the pysam library 

(http://pysam.googlecode.com) and enables fast lookup of aligned reads by subsequent 

steps of the workflow44. Sequence fragments lacking a valid paired-end alignment are 

saved separately for further analysis (Figure 2.3). 

 
Figure 2.3: Definition of concordant and discordant read pairs. 
Concordant reads align as a pair to the genome or a single gene (black). Discordant reads map to 
independent genes and/or large genomic distances (red). 
 
Step 3: Estimate fragment size distribution 

ChimeraScan samples unique paired-end alignments from Step 2 and estimates the 

empirical distribution of fragment sizes in the library. The fragment size distribution aids 

in filtering chimeric transcripts in later stages of the workflow (Figure 2.4). 
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Figure 2.4: Distribution of insert sizes measured by ChimeraScan. 
To assess the insert size distribution ChimeraScan considers read pairs that map uniquely to a single 
transcript isoform. A typical distribution has a mean insert size of 200bp and a standard deviation of 40bp. 
 
Step 4: Realign initially unmapped reads 

Read pairs that successfully align are considered concordant reads. They do not support 

chimeras and need not be processed further. The remaining unmapped fragments could 

be explained by (1) poor quality sequences with many errors, (2) unannotated collinear 

transcripts or splicing patterns, (3) foreign sequences such as viruses, (4) “dark matter” 

missing from the reference genome, or (5) non-collinear chimeric transcripts. To resolve 

these fragments ChimeraScan realigns them as unpaired reads. Additionally, the reads are 

trimmed such that only the sequences at the ends of the fragment are aligned. The size of 

the trimmed segment can be specified by the user using the --segment-length option 

(default 25bp). Setting segment length to a larger number increases the specificity of the 

mapping process but decreases sensitivity to detect chimeras, since a larger percentage of 

reads will contain fusion breakpoints and fail alignment. If a library contains relatively 
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small DNA fragments sequenced at long read lengths, then a considerable fraction of the 

fragments may be sequenced in their entirety with overlapping reads at the center. For 

example, an average fragment size of 180bp sequenced with 2x100bp reads will generate 

fragments with an average of 20bp of overlap. To mitigate this overlap it is essential that 

the segment length be set smaller than half the fragment size (less than 90bp in this 

example). If not specified by the user, ChimeraScan automatically chooses a segment 

length that is one-third the size of the fragment length. 

Step 5: Discover discordant fragments 

A discordant fragment occurs when the two ends of the fragment align to different 

transcripts. The realigned reads from Step 4 are searched for evidence of discordant pairs. 

To be considered discordant, both reads in the pair must not align to the same transcript 

or any of its isoforms. Discordant reads are sorted by reference name and position and 

stored in an intermediate file format called BEDPE136. 

 
Figure 2.5: Refinement of discordant fragments 
Concordant reads (black) align to a single transcript.  Though not strictly concordant, reads that align to 
different transcript isoforms (green) are not considered discordant.  A discordant fragment must align to 
distinct non-overlapping genes (red). 
 
Step 6: Nominate chimeras 

Given that the vast majority of chromosomal aberrations occur in introns or intergenic 

regions, ChimeraScan only searches for chimeric transcripts that contain fully intact 

exons. This greatly simplifies the computational complexity of searching for junction 
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spanning reads. In this step the most likely exon boundaries are computed for each 

discordant fragment using the fragment size distribution information. If a pair of exon 

boundaries cannot be found within the 99th percentile of fragment sizes, the discordant 

fragment is discarded as an artifact. Fragments that share the same putative junction 

boundaries then grouped together. 

 
Figure 2.6: Fusion junction prediction.  
Discordant read alignments are compared to the fragment size distribution to predict the optimal breakpoint 
location on each two genes. For each discordant read pair, the most likely pair exon junction is chosen. All 
putative breakpoints are used in a subsequent realignment phase. 
 
Step 7: Extract chimeric junction sequences 

The upstream and downstream sequences surrounding each chimeric junction are 

extracted from the reference FASTA file, and the bowtie-build indexing program is used 

to create a new alignment index from these junction sequences135. In addition, the 

homology between the 5’ and 3’ genes at the junction is computed and annotated. 

Knowledge of the extent of the homology between the two transcripts enables 

downstream filtering of junction spanning reads. 
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Figure 2.7: Extracting junction spanning sequences. 
Combinations of 5’ and 3’ gene breakpoints are spliced together to form fusion genes in silico. The 
junction sequence is then extracted from the fusion gene. The sequences on either side of the breakpoint are 
compared to the sequences of the wild-type 5’ and 3’ genes to determine if homology exists at the junction. 
Characterizing the upstream and downstream homology aids in filtering junction-spanning reads. 
 
Step 8: Nominate reads that could span chimeric junctions 

Two classes of fragments may span chimera junctions: 1) the junction resides in the 

central portion of the fragment such that both reads in the pair align successfully, and 2) 

the junction resides on one end of the fragment such that only one of the reads align 

successfully. Both classes of reads are converted to FASTQ format and aligned to the 

new junction sequence reference constructed in Step 7. 

 
Figure 2.8: Classes of junction spanning reads. 
Three classes of reads provide support for chimeras: 1) Reads where the unsequenced inner portion of the 
fragment spans the breakpoint, 2) Reads where the sequenced portion of the fragment spans the junction 
near to the center of the fragment and 3) Reads where the sequenced portion of the fragment spans the 
junction near one of the ends of the fragment.  Only classes 2 and 3 are nominated for realignment against a 
breakpoint junction index. 
 
The alignment results are inspected and reads that aligned to the junction reference are 

considered spanning according to the following criteria: 
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1. The alignment overlaps the junction by a minimum number of base pairs 

(specified by –anchor-min, default 11bp). The minimum number of anchoring 

bases must also be greater than the number of bases of homologous sequence at 

the junction between the two transcripts constituting the chimera. 

2. No more than --anchor-mismatches mismatches (default: 0) are found within the 

first --anchor-min bases (default: 11bp) of the alignment. 

 
Figure 2.9: Filtering spanning reads in anchor regions. 
Reads that align to the junction reference are discarded if the overlap is small (less than anchor_min bases) 
or have larger overlap but contain mismatches (red reads).  Reads overlapping the breakpoint by more than 
anchor_length bases are retained (green read). 
 
Step 9: Filter and report chimeras 

Junction-spanning alignments from Step 8 are merged with existing chimera information. 

The chimeras are then categorized and passed through a number of additional filters in 

order to remove artifacts. These include:  

1. Chimeras with low coverage (specified with --filter-unique-frags, default 2) that 

may have arisen from ligation artifacts during library preparation 

2. Chimeric transcripts expressed at levels significantly lower than the expression of 

either of the wild-type alleles in the sample (specified with --filter-isoform-

fraction, default 0.10). 
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3. Chimeras that match a list of false positives provided by the user (specified with -

-filter-false-pos as a path to a file containing false positives). A list of false 

positives was generated from normal human tissue data from the Illumina 

Bodymap 2.0 project and made available for download on the ChimeraScan 

website. 

Finally, a tab-delimited text file with information about each chimera is generated. 

Optionally, users may run a companion script (chimerascan_html_table.py) to generate 

an HTML page with results for further investigation. 

Evaluation of performance on published data from cell lines 

To evaluate the results from ChimeraScan, we applied it to three well characterized 

cancer cell lines known to harbor multiple chimeric transcripts: VCaP (prostate cancer, 

2x53bp)137, LNCaP (prostate cancer, 2x34bp), and MCF7 (breast cancer, 2x35bp)138, 139. 

Sequence data are deposited in GenBank under the accession number GSE29098. We 

aligned to human genome version hg19 and the UCSC known transcripts database 

downloaded in December, 2010, allowing for up to 2 mismatches and no more than 100 

alignments per read.  The trimmed alignment step was performed with 25bp segments.  

 As our initial benchmark, we confirmed that the current version of ChimeraScan was 

able to recapitulate the experimentally validated candidates from Maher et al., our ‘gold 

standard’ (Appendix A)24. ChimeraScan detected 9/10, 4/4, and 12/13 chimeras from 

VCaP, LNCaP, and MCF-7, respectively. 

In addition to recapitulating our previous results, we identified additional 

candidates that demonstrate ChimeraScan’s ability to identify and prioritize high-quality 

chimeras. Overall, we nominated 335 novel chimeras (78 in VCaP, 105 in LNCaP, and 
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152 in MCF7) from the three cell lines (Appendix B).  Interestingly, we detected an inter-

chromosomal rearrangement TBL1XR1-RGS17 in the MCF-7 cell line. While our 

previous version paired-end approach was not able to detect TBL1XR1-RGS17, this 

fusion event was previously detected by a paired-end diTag approach and experimentally 

confirmed140. Another example of the improved sensitivity was the identification of an 

intra-chromosomal rearrangement, NDUFAF2-MAST4, in VCaP. Although just two 

fragments supported the NDUFAF2-MAST4 chimera, one of them was high-quality 

junction spanning read that uniquely confirmed the fusion junction. 

We next compared ChimeraScan with the publicly available tools deFuse125, 

ShortFuse132, and MapSplice52 using the 10 experimentally validated VCaP chimeras 

(Appendix C). DeFuse nominated the fewest chimeras, and it only detected 6/10 of the 

true positives. In comparison, ChimeraScan detection 9/10 of the true positives from 78 

predicted chimeras. Of the remaining programs, MapSplice nominated 400 chimeras 

while detecting 6/10 of the true positives and ShortFuse nominated 245 chimeras while 

confirming 7/10 of the true positives. Overall, these results suggest that ChimeraScan is 

both sensitive and relatively specific compared to other recently published methods. 

Applications of ChimeraScan 

Functionally recurrent rearrangements of the MAST kinase and Notch gene 

families in breast cancers  

Since the discovery of the TMPRSS2-ERG gene fusion in approximately 50% of prostate 

cancers, emerging evidence has suggested that recurrent gene fusions have a more 

substantial role in common solid tumors than was previously appreciated137. To search 

for new classes of recurrent gene fusions, we used paired-end transcriptome sequencing 
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on a panel of 89 breast cancer cell lines and tumors and then applied ChimeraScan and 

another in-house fusion discovery algorithm124. Although individual breast cancers 

harbored a wide variety of gene fusions, we discovered five instances of fusions 

involving microtubule-associated serine-threonine kinase (MAST) and eight instances of 

fusions members of the Notch family. Overexpression and knockdown of MAST fusion 

transcripts in breast cancer cell lines demonstrated that MAST fusions positive and 

negatively regulated cell proliferation in vitro, respectively. Furthermore, cell lines 

harboring Notch gene rearrangements were uniquely sensitive to treatment with the !-

secretase inhibitor N-[(3,5-difluorophenyl)acetyl]-L-al anyl-2-phenyl]glycine-1,1-

dimethylethyl ester (DAPT)141. These findings indicate that recurrent gene 

rearrangements have key roles in subsets of breast carcinomas and suggest that 

transcriptome sequencing could identify individuals with rare but therapeutically 

targetable gene fusions102. 

Integrative clinical sequencing 

Cancers arise from diverse genetic alterations including nucleic acid substitutions, gene 

fusions and rearrangements, amplifications and deletions, and other aberrations that 

perturb gene expression90. We designed a clinical sequencing strategy called MI-

ONCOSEQ that comprehensively identifies informative genomic alterations while 

remaining cost-effective. We included (i) shallow (5X to 15X) paired-end whole-genome 

sequencing of the tumor, (ii) targeted exome sequencing of the tumor and matched 

germline samples (blood or buccal smear), and (iii) paired-end transcriptome sequencing 

of the tumor (Figure 2.10). Whole-genome sequencing can identify copy number 

alterations (CNAs) and structural rearrangements at relatively shallow depth142, but 
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accurate point mutation identification requires significantly higher coverage143. To fill 

this niche, we used targeted whole-exome sequencing to capture most human protein-

coding exons, including clinically informative and actionable genes in cancer such as 

BRAF, EGFR, JAK2, PIK3CA, and ALK144. Because tumors are often admixtures with 

normal tissue or contain multiple tumor clones, the high sequencing depth afforded by 

exome sequencing was advantageous for the detection of variants. Finally, transcriptome 

sequencing (RNA-Seq) captured the functional or “expressed” genome of a tumor sample 

and enabled detection of dysregulated genes and the functional products of genomic 

alterations101.  

 
Figure 2.10: Integrative sequencing strategy. 
Integration of whole genome sequencing (blue), whole exome capture sequencing for 1-2% of the genome 
(red), and transcriptome or messenger RNA sequencing (green). Each sequencing strategy can be integrated 
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(bottom) for analysis of tumor aberrations including structural rearrangements, copy number alteration, 
point mutations, and gene expression. 

 
We first tested our sequencing strategy on human prostate cancer xenografts, and 

then applied it to patients with advanced or refractory cancers who were eligible for 

clinical trials. With this approach, we detected several classes of cancer mutations 

including copy number alterations, point mutations, and chromosomal aberrations leading 

to gene fusions145. Analysis of the integrative sequencing data relied upon a variety of 

bioinformatics algorithms (Figure 2.11). 

 
Figure 2.11: Bioinformatics workflow diagram.  
DNA and RNA sequences are transferred to a high performance computer cluster and aligned to the human 
genome using DNA or RNA alignment strategies. Alignment results then feed into multiple analysis 
pipelines that produce gene expression (RPKM tabulation), gene fusions (ChimeraScan), structural 
rearrangement (BreakDancer pipeline), copy number alterations (ReadDepth and customized exome copy 
number assessment), and point mutations (BWA/GATK and Bowtie/in-house pipelines). The results are 
intersected in a gene-centric manner with a curated list of informative genes. The final results are tabulated 
for presentation to the Sequencing Tumor Board. 

 
As part of this workflow, ChimeraScan played an essential role in the discovery 

of gene fusions and uncovered multiple novel fusions in each patient (Appendix D). 
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Patient 1 is a 67-year-old man with castrate-resistant metastatic prostate cancer. A 

xenograft derived from the patient’s tumor harbored the canonical prostate cancer–

specific rearrangement of TMPRSS2 (transmembrane protease, serine 2) and ERG (ETS 

transcription factor) and a novel gene fusion between copine IV (CPNE4, a calcium-

dependent membrane-binding protein) and NEK11 (NIMA-related kinase 11) (Figure 

2.12A-C). The fusion product preserved the full NEK11 open reading frame and resulted 

in marked up-regulation of NEK11 expression (Figure 2.12D). Patient 2 is a 60-year-old 

man with metastatic prostate cancer not yet treated with hormonal therapies. His 

xenograft also harbored the TMPRSS2-ERG gene fusion, as well as other molecular 

aberrations (Figure 2.12E,F). Patient 3 is a 46-year-old man diagnosed with colorectal 

cancer (CRC) in March 2009, who presented with metastatic disease in the liver, bladder 

perforation, and innumerable polyps upon flexible sigmoidoscopy. ChimeraScan revealed 

an intrachromosomal gene fusion between acetylserotonin O-methyltransferase–like 

antisense RNA 1 (ASMTL-AS1) and protein phosphatase regulatory subunit 2 (PPP2R3B) 

on chromosome X that abrogated the open reading frame of PPP2R3B (Figure 2.12G). 

Patient 4 is a 48-year-old woman diagnosed with metastatic melanoma who underwent 

wide local excision for ulcerated spitzoid-type melanoma on her right heel. Her tumor 

harbored multiple structural aberrations, including a complex interchromosomal 

rearrangement abolishing the open reading frame of cyclin-dependent kinase inhibitor 2C 

(CDKN2C or p18INK4C) (Figure 2.12H). 
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Figure 2.12: Gene fusions nominated in patients from the MI-ONCOSEQ pilot project. 
(A) Patient 1 harbored the canonical TMPRSS2-ERG gene fusion with (B) prominent overexpression of 
ERG. (C) Patient 1 also harbored a novel rearrangement CPNE4-NEK11 that (D) dramatically upregulated 
NEK11 levels. (E-F) Patient 2 also harbored the TMPRSS2-ERG fusion. (G) ASMTL-AS1-PPP2R3B fusion 
in Patient 3. (H) Complex rearrangement WIPI1-FSHR-CDKN2C in Patient 4. 
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The MI-ONCOSEQ pilot study used a combination of DNA and RNA sequencing 

to reveal a broad view of an individual’s genetic aberrations. In patient xenografts and 

tumor samples, ChimeraScan consistently identified gene fusions with high-quality 

junction spanning reads, including known fusions such as TMPRSS2-ERG and novel 

fusions such as CPNE4-NEK11. ChimeraScan served an important role in this integrative 

bioinformatics setting and should be considered a viable tool for the analysis of RNA-Seq 

from patient tumor tissues. 

Identification of recurrent NAB2-STAT6 gene fusions in solitary fibrous tumors 

In 2011, a 44-year-old woman who had a malignant solitary fibrous tumor (SFT), a rare 

neoplasm of mesenchymal origin, enrolled in the MI-ONCOSEQ clinical study145. 

Computed tomography (CT)-guided core needle biopsies harvested tissue from a 

metastatic site in her liver, and whole-exome and transcriptome sequencing were 

performed. Notably, ChimeraScan identified an intrachromosomal fusion between NAB2 

and STAT6. The NAB2-STAT6 fusion was represented by 1,104 paired-end reads either 

spanning or encompassing the fusion junction of exon 6 of NAB2 to exon 18 of STAT6 

(Figure 2.13). In the normal genome, NAB2 and STAT6 are adjacent genes on 

chromosome 12q13 that are transcribed in opposite directions. Transcriptome sequencing 

of 27 additional SFTs was performed, and both ChimeraScan and another in-house 

algorithm identified the presence of a NAB2-STAT6 gene fusion in all tumors, indicating 

high levels of recurrence. Expression of NAB2-STAT6 fusion proteins was confirmed in 

SFT, and the predicted fusion products harbor the early growth response (EGR)-binding 

domain of NAB2 fused to the activation domain of STAT6. Overexpression of the NAB2-

STAT6 gene fusion induced proliferation in cultured cells and activated the expression of 
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EGR-responsive genes. This study established NAB2-STAT6 as the defining driver 

mutation of SFT and provided an example of how neoplasia can be initiated by 

converting a transcriptional repressor of mitogenic pathways into a transcriptional 

activator103. 

 
Figure 2.13: NAB2-STAT6 gene fusion detected solitary fibrous tumor patient. 
Schematic of the NAB2-STAT6 gene fusion detected in the index case by paired-end sequencing. The has 
region indicates exons not shown. 

 

Conclusions and future work 

In this chapter we described the utility of RNA-Seq for discovering gene fusions that may 

impact cancer causation and outlined the challenges that must be met by computational 

methods for gene fusion detection. To address these challenges we developed 

ChimeraScan124, a refinement of the original paired-end gene fusion detection 

methodology developed by Maher et al.24. Our tests of ChimeraScan suggested that it 

produces a stringent list of predictions that are enriched with true positives. Our lab and 

others utilized ChimeraScan to discover recurrent families of gene fusions across 

multiple cancer types, suggesting that it may continue to serve as a valuable tool for both 

discovery and clinical RNA-Seq projects103, 107, 145-148. 
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 Ongoing maintenance and improvement of ChimeraScan will be essential if it is 

to remain a useful tool for gene fusion discovery. We have identified a number of current 

issues, feature requests, and enhancements and track them using Google Code issue 

tracker. An updated release is currently planned that includes migration to the Bowtie 2 

alignment tool149, support for single read datasets, reduced memory requirements for 

large datasets, outputting a BAM file with fusion alignments, and inclusion of a junction 

spanning read detection method that supports genomic breakpoints in the middle of exons 

in addition to introns. Furthermore, we plan to offer new transcriptome references that 

incorporate new gene annotations provided by Ensembl75 and GENCODE87. Testing will 

be performed using a variety of read lengths and library types and a robust set of default 

parameter settings will be established. 

 The emergence of RNA-Seq as a molecular profiling strategy has fueled the 

development of a barrage of gene fusion discovery tools, including BreakFusion123, 

ChimeraScan124, deFuse125, EricScript126, FusionFinder127, FusionHunter128, 

FusionMap129, FusionSeq130, MapSplice52, ShortFuse132, SOAPfuse133, Tophat-Fusion134,  

and SnowShoes-FTD131. The individual manuscripts describe the creation of a new tool 

and demonstrate its performance advantages over other tools when tested on a common 

set of test cases. The performance claims made by each manuscript are likely biased 

because authors have a chance to optimize their tool on the test datasets while running 

third-party tools with default parameter settings. Therefore, the field of gene fusion 

discovery is badly in need of a comprehensive assessment of current tools. This would 

involve the establishment of a large database of experimentally validated gene fusions 

from many datasets, as well as a set of simulated gene fusion fragments to enable the 



 34 

measurement of the specificity of algorithms. Each algorithm could then be compared 

using the large aggregation of test cases and simulated gene fusions. Completing such a 

study would likely be the most effective way to understand the capabilities of the 

available tools and inform biologists about how to choose an appropriate tool for a 

project. A comparative study of gene fusion programs could be modeled after a similar 

studies done to evaluate ChIP-Seq peak calling programs150. 

 Chimeric transcripts detected by RNA-Seq do not necessarily imply chromosomal 

aberrations; the former may arise due to collinear read-through transcription of adjacent 

genes, errors in gene annotations, artifacts of the library preparation process, or non-

collinear trans-splicing of distant genes151. Methods that integrate RNA and DNA 

sequencing data have been shown to accurately discern chromosomal aberrations from 

other sources of chimeras152, 153, and such methods may fit nicely into integrative 

sequencing approaches such as MI-ONCOSEQ. 

 Despite the fact that RNA sequencing technologies are continuing to mature, the 

rapid rate of discovery of novel classes of recurrent gene fusions made by existing 

approaches stakes an irrefutable claim that varieties of RNA sequencing protocols will be 

a lasting component of cancer genomics studies for years to come. We look forward to 

future discoveries from this branch of high-throughput sequence data analysis with great 

anticipation. 
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Abstract 

RNA sequencing technologies enable de novo reconstruction of full-length transcripts, 

but establishing a consensus reference transcriptome from collections of RNA-Seq 

experiments poses numerous challenges. We present AssemblyLine, a meta-assembly 

algorithm that assimilates transcript predictions from RNA-Seq experiments to produce a 

merged reference. Innovative features of AssemblyLine include filtering of artifacts 

arising from incompletely processed RNA and genomic DNA contamination, 

prioritization of transcript isoforms by abundance level, and inclusion of splicing pattern 

information into the merging process. In direct comparisons with the Cufflinks meta-

assembler AssemblyLine constructed a concise set of transcript predictions with higher 

precision at a marginal cost in sensitivity. When applied to an existing dataset from 
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human cell lines and tissues, AssemblyLine nominated an additional 6,397 transcripts 

that were previously unreported, suggesting that current catalogs of human transcripts are 

far from complete. Altogether AssemblyLine makes important strides towards the 

incorporation of RNA-Seq data into mainstream gene databases and the eventual 

completion of the human transcriptome reference. 

 

Introduction 

High-throughput RNA sequencing of eukaryotic organisms has enabled a deeper 

understanding of the intricate nature of transcription8, 13, 20, 22, 27, 47, 51, 154. Intergenic “gene 

deserts” once thought to be transcriptionally silent express myriad long non-coding 

RNAs, genic loci once thought to be distinct possess an milieu of overlapping, 

interleaving, and antisense genes, and catalogs of alternatively spliced protein coding 

isoforms continue to expand. These discoveries have relied upon transcriptome assembly 

algorithms that produce full-length transcripts from initial pools of short sequence 

fragments26, 46, 47, 61, 63, 64. The astounding growth rate of RNA-Seq data repositories and 

continued maturation of assembly strategies forecasts the eventual completion of 

reference transcriptomes for model organisms, but remaining computational challenges 

include (1) discerning true transcript expression from sources of background noise and 

(2) deriving a consensus set of transcript models from independent biological samples. 

Here we present AssemblyLine, a software package that addresses these challenges and 

facilitates robust gene model annotation from RNA-Seq data.  
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Sources of noise in RNA-Seq data 

RNA sequencing experiments that isolate poly-adenylated RNA from whole cells 

inadvertently capture variable amounts of incompletely processed RNA and genomic 

DNA13 (Table 3.1). These sources of artifacts pervade transcriptome assemblies as lowly 

expressed, unreliable transcript fragments78 (Figure: assemblyline_noise_schematic.png).  

 

 
 
Figure 3.1: Schematic of noise in RNA-Seq data. 
Genomic DNA contamination (pink) and incompletely processed RNA (cyan) populate RNA sequencing 
libraries at variable levels. DNA contamination manifests as spurious reads in both genic and intergenic 
regions, whereas incompletely processed RNA localized to genic regions only. 
 

Source Manifestation in assembly 
Incompletely processed RNA 

• Levels vary markedly among libraries for 
reasons that are incompletely understood 

• Intron retention artifacts 
• Mono-exonic intronic transcripts with 

sense orientation 
Genomic DNA contamination 

• Relatively higher levels in libraries with 
low amounts of input RNA 

• Mono-exonic transcripts dispersed 
throughout the genome 

Adaptor ligation artifacts 
• Inefficient A-tailing of blunt ended cDNA 

• Chimeras involving highly abundant 
transcripts 

Table 3.1: Source of noise in RNA-Seq libraries.  
Chimeric transcripts resulting from inefficiencies in library construction can also produce artifacts but are 
not relevant to the discovery of collinear transcripts. 

 
To characterize this noise, we partitioned transcripts from ab initio assemblies into 

five categories based on their genomic relationship to reference genes (Figure 3.2):  

• Well annotated - transcript matches exact splicing pattern of a reference model 

• Partially annotated - transcript matches a portion of a reference model but misses 

some introns 

• Intronic - transcript lies within intron of a reference model 
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• Antisense - transcript overlaps portion of a reference model in the opposite 

orientation 

• Intergenic - transcript has no overlap with exons or introns of reference models 

 
Figure 3.2: Transcript categories based on genomic proximity to known gene models.  
A well-annotated transcript matches the exact splicing pattern of a reference model. Transcripts that 
overlap one or more reference models but disagree with splicing patterns are deemed partially annotated. 
Intronic transcripts lie completely within introns, whereas antisense transcripts overlap reference exons in 
the opposite orientation. Finally, intergenic transcripts have no overlap with reference models. 
 
We then compared the category fractions of 1,140 RNA-Seq libraries and witnessed 

striking variability in the fraction of well-annotated transcripts in each library (Figure 

3.3). As the fraction of well-annotated transcripts decreased, the fractions of partially 

annotated and intronic transcripts increased dramatically relative to the fractions of 

intergenic and antisense transcripts. This pattern implicated incompletely processed RNA 

as the most variable source of noise, followed by genomic DNA contamination. 
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Figure 3.3: Relative fraction of transcript categories across 1,140 RNA-Seq libraries. 
Line graph of the relative fraction (y-axis) of transcript categories across 1,140 RNA-Seq libraries. The x-
axis contains individual samples sorted by the fraction of well-annotated transcripts in each sample.  

 

Previous attempts at annotating genes using RNA-Seq circumvented background 

noise by restricting predictions to multi-exonic transcripts or intergenic regions27, 47, 75, 78, 

82. Given that over 5% of RefSeq transcripts longer than 200nt are mono-exonic155 and 

lncRNAs generally have fewer exons than protein-coding genes156, a significant 

population of expressed mono-exonic transcripts may be missing from gene catalogs. 

Furthermore, the high degree of overlapping and interleaving transcription in eukaryotic 

genomes demands approaches that analyze intronic regions as well. 

Apart from excluding areas of the genome, previous studies contended with 

background noise by designing filtering strategies. Ramskold et al. compared the 

expression levels of exons and intergenic regions to determine an empirical threshold for 

calling a gene expressed157. Similarly, Cabili et al. derived empirical detection thresholds 

by comparing the coverage of full length versus partial length transcripts corresponding 
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to known genes, and further defined a high-confidence set of transcripts that were 

detected in multiple samples or by independent ab initio assembly programs78. A recent 

effort to incorporate zebrafish RNA-Seq data into the Ensembl genebuild discarded exon 

regions with relatively low coverage82. In contrast to empirical filtering methods, 

Guttman et al. developed a statistical approach that models background noise as though 

read alignments were randomly permuted throughout the genome47. Although all of these 

strategies enrich for expressed genes, they do not account for classes of transcripts that 

are robustly expressed at relatively low levels78, 158. The recent ENCODE study employed 

a statistic called the non-parametric irreproducible detection rate (npIDR)13, 55. This 

statistic embodies the notion that purposeful transcription should be observable by 

independent experiments. The study filtered novel transcripts that were less than 90% 

recurrent (npIDR < 0.1) between biological replicates of the same sample but still 

detected an alarming number of novel mono-exonic transcripts. The authors 

acknowledged the possibility of artifacts due to low levels of DNA contamination but did 

not compare npIDR values between novel and annotated transcripts to credential their 

chosen detection threshold. Altogether the aforementioned schemes establish the use of 

noise thresholds based on expressed levels and reproducibility.  

In this work we present a machine learning approach for filtering background 

noise that exploits synergy between transcript expression levels and reproducibility 

across biological samples. We accommodate variation in noise levels between intergenic 

and intronic regions by modeling each set of genomic regions independently. Our method 

weights its predictions by the total amount of noise in each library relative to other 

libraries such that noisier libraries are handled more stringently. 
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Meta-assembly 

Meta-assembly refers to merging together two or more assemblies to produce a consensus 

assembly. Establishing a consensus assembly is vital to downstream analysis because it 

provides a common foundation for comparing transcriptional dynamics40, 41. Previously, 

we developed a merging approach that clustered isoforms into a single set of exon 

regions per gene27. This strategy facilitated the discovery of novel cancer-associated loci 

but abolished alternative splicing information and relied upon additional assays such as 

RACE for precise delineation of transcript structure. An earlier generation of algorithms 

was developed for EST assembly and introduced splicing graphs as an effective 

representation of the isoform problem71, 159. Building on these approaches, Trapnell et al. 

released a meta-assembly utility within the Cufflinks package called Cuffmerge41. 

Cuffmerge converts transcripts from ab initio assemblies into faux read alignments and 

reruns Cufflinks on these alignments in a modified mode. Cufflinks then emits a minimal 

set of merged transcripts that explains the input transcripts. Alternatively, aggregating the 

raw sequences from multiple RNA-Seq samples before running standard ab initio or de 

novo assembly programs can produce a consensus assembly46. However, naively 

aggregating the raw sequences compounds background noise and forces the choice of a 

single set of parameters for all samples. Moreover, transcripts specific to a small subset 

of samples may be unintentionally pruned along with other minor isoforms. We 

anticipate that the tremendous memory and computational time required to complete 

large assemblies may also limit the feasibility of this approach. 

Here, we present a meta-assembly algorithm that produces isoforms from splicing 

graphs after pruning sources of noise such as intron retentions and inappropriately long 
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exons. We use a greedy dynamic programming approach that reports the most highly 

abundant transcripts and optionally discards minor isoforms. Studies of alternative 

splicing have revealed a tightly controlled system where often only a small number of 

possible isoforms is observed from loci with innumerable splicing possibilities28, 160. Our 

algorithm incorporates correlative splicing patterns by traversing path graphs built from 

the original splice graphs. 

Methods 

AssemblyLine (http://assemblyline.googlecode.com) is a software package written in 

Python and R that (1) characterizes and filters sources of background noise in RNA-Seq 

assemblies and (2) performs meta-assembly. We designed the two algorithms to be used 

together as part of a gene discovery workflow, but they can also be separated or 

combined with other software tools. Several utility scripts are also included in the 

package that prepare input data, assess assembly performance, characterize aspects of the 

consensus assembly, prepare genome browser tracks for visualization, and facilitate 

downstream analysis. In this section we outline the steps and algorithmic details of the 

tool. 

Aggregating individual transcriptome assemblies 

The first stage of AssemblyLine combines a set reference transcripts with distinct 

transcriptome assemblies together into a single position-sorted GTF file. To run this step, 

users must provide a list containing sample names, replicate groupings, and paths to 

individual GTF files as a tab-delimited text file. If the filtering algorithm will be used a 

set of reference transcripts must also be provided. Users may specify the GTF attribute 

containing transcript abundance information using the --gtf-score-attr parameter (by 
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default this assumes an attribute called “FPKM”). Abundance computation from poor 

quality RNA-Seq libraries sequenced at shallow depth may be highly inaccurate; 

therefore, AssemblyLine normalizes abundance values by converting them to percentile 

ranks to mitigate the impact of outliers. Finally, a transcript length filter can be applied in 

this step to eliminate artifacts. Certain ab initio assemblers are prone to overinflate 

FPKM values for very short transcripts for reasons that are incompletely understood161. 

Furthermore, transcripts shorter than the average fragment size of the library may 

correspond to mapping artifacts because such small fragments should have been size-

selected away during library preparation. Therefore, users may specify a length cutoff 

using the --min-transcript-length option. The conventional size cutoff used to define long 

RNAs is 250nt and is the default value for this parameter. 

When a reference GTF file is provided a percentage of annotated transcripts are 

labeled as tests (set using the --random-test-frac parameter). In the filtering step of 

AssemblyLine transcripts that correspond to tests are held out of the training process and 

are instead used to measure the performance of the classifier. If the user does not specify 

a list of specific gene identifiers to use as test data using the --tests parameter, 

AssemblyLine will randomly label a fraction of reference transcripts as tests. 

Filtering noise from transcriptome assemblies 

The AssemblyLine filtering algorithm consists of the following steps: (1) computing 

transcript annotation status, genomic category, and recurrence (2) modeling noise 

properties of individual libraries, and (3) predicting whether each transcript is ‘expressed’ 

or ‘background’ noise (Figure 3.4). 
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Figure 3.4: AssemblyLine filtering workflow. 
Individual RNA-Seq datasets are processed using ab initio assembly. The resulting GTF files are 
aggregated and compared to a set of known transcript models. A machine learning approach classifies each 
dataset separately, and the robustly expressed transcript “signal” is separated from the “noise”.   
 
The filtering algorithm relies on a set of high confidence known transcripts provided by 

the user. Assembled transcripts that overlap known transcripts in the sense orientation are 

denoted “annotated”. The remaining transcripts are categorized based on their position 

relative to known transcripts (Figure 3.2). Annotated transcripts that were initially 

marked as tests are treated as unannotated genes and categorized appropriately. We also 

compute a new measure of recurrence similar to npIDR by averaging the number of times 

each base of a transcript was observed in transcripts from independent biological samples 

(Figure 3.5). The recurrence measure was a powerful differentiator of known and 

unannotated transcripts in data downloaded from the human lincRNA catalog study78 

(Figure 3.6). 
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Figure 3.5: Computation of transcript recurrence across multiple independent samples 
(top) Transcript models from assemblies of four samples are shown. (middle) A pileup graph is created 
where the height at each base corresponds to the integer number of samples with transcripts that overlap 
that base. (bottom) For each transcript the recurrence equals the average recurrence per base. Thus, 
recurrence scores range from 1.0 <= R <= N, where N is the number of biological samples being analyzed.  
 

 
Figure 3.6: Transcript recurrence and abundance distinguish unannotated transcripts 
Transcript recurrence (left) and abundance (right) distinguished well-annotated from unannotated 
transcripts in assemblies from the Human BodyMap 2.0 study. 
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Discerning novel transcripts from genomic contamination or incompletely processed 

RNA is problematic because there is no source of true noise with which to train a 

classifier. To address this concern AssemblyLine treats all unannotated transcripts as 

pseudo-noise and trains a classifier to predict the likelihood that a transcript is known. 

Separate classifiers are created for transcripts compatible with incompletely processed 

RNA and intergenic transcripts. A classifier is trained by computing bivariate kernel 

density estimates of transcript abundance and recurrence on a square grid for known and 

unannotated transcripts (Figure 3.7). 

 
Figure 3.7: Schematic of transcript classification approach. 
A bivariate kernel density estimation function (kde2d in R) models transcript recurrence and relative 
abundance. Density landscapes are modulated by prior knowledge of library quality. The classifier outputs 
expressed (green) and background (noise) transcripts as separate files.  
   

We then compute a grid of log-likelihoods by dividing the known density by the 

unannotated density at each grid point after adding a nominal value to avoid floating 

point overflow errors: 

! !!! ! !"#!"
!"#$"!!"#$%&' !!! ! !

!"#""$%#%&'!!"#$%&' !!! ! !  

To account for the total noise present in the library, we weight the log-likelihood 

estimates by a relative measure of total noise in the library when compared to all libraries 
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in the analysis. This weight equals the ratio of the fraction of known to unannotated 

transcripts in a library divided by the ratio of the medians of these fractions in all 

libraries: 

!! !
!"#$%&'(!!"#$"!

!"#$%&'(!!"#""$%#%&'!
!"#$%& !!"#$%&'!!"#$"!""

!"#$%& !"#$%&!"!!"#""$%#%&'!""
 

!! ! !!!"#!" !!  

For each transcript in the assembly we compute the weighted log-likelihood of the 

transcript being annotated by linearly interpolating the transcript abundance and 

recurrence onto the grid. We then determine a log-likelihood threshold by optimizing the 

balanced accuracy (average of sensitivity and specificity) of the classifier performance on 

test transcripts. Transcripts with log-likelihood below this threshold are labeled 

‘background’ and the remainder ‘expressed’. A number of performance reports and 

visualizations are also generated during this process. Results from individual libraries are 

then combined to produce background and expressed files as output. In a typical analysis 

the transcripts classified as background noise are discarded and meta-assembly is carried 

out on the expressed fraction. 

Meta-assembly 

The AssemblyLine meta-assembly program accepts a position-sorted GTF file containing 

transcript fragments (transfrags) as input. The file is parsed and transfrags are assigned a 

score according to the --gtf-score-attr parameter (default: “FPKM”). Transfrags are then 

bundled into non-overlapping loci and partitioned by strand. Transfrags lacking strand 

information are assigned to the strand with the best supporting abundance score. If there 

are no supporting stranded transcripts the strand is left unknown. Meta-assembly is then  
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carried out on each strand separately (Figure 3.8). 

 
Figure 3.8: Meta-assembly workflow. 
A splicing graph (a directed acyclic graph) is produced from the set of input transcripts at each locus. 
Expression levels are used to apply heuristics that prune or trim lowly expressed intron retentions and 
transcript ends. A dynamic programming traverses the pruned graph and produces transcript isoforms. 

 
We create directed acyclic splicing graphs where nodes in the graph reflect 

contiguous exonic regions and edges correspond to alternative splicing possibilities. 

Nodes in the splicing graph are then pruned according to several criteria. First, we trim 

low scoring ends in the graph that correspond to extraneously long exons or overhanging 

exons that extend into introns. The parameter --trim-utr-fraction sets the relative score 

threshold for trimming (default 0.1). Second, nodes within introns are trimmed when 

their scores are less than a fraction of neighboring exons (set using the --trim-intron-

fraction parameter, default 0.25). Weakly connected components of the pruned splicing 

graphs are then extracted and processed independently. 

A splicing graph encompasses the milieu of possible isoforms that could be 

transcribed. Enumerating all possible paths through splicing graphs is impractical; many 
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graphs have millions of paths only minute fractions of which are observed in vivo. The 

initial input transfrags provide paths through the splicing graph and also indicate which 

parts of the graph are more abundant. Our approach incorporates this path information by 

building a path graph that subsumes the original splice graph. The path graph is a De 

Bruijn graph162 where each node represents a contiguous path of length k through the 

splice graph, and edges connect paths with k-1 nodes in common. As k increases so does 

the amount of correlative path information retained in the graph but at the cost of losing 

short transfrags with length less than k. Thus for each splice graph the partial path length 

k is optimized to maximize the number of nodes in the path graph with the constraint that 

the summed scores of transfrags with path length greater than or equal to k is above a 

fraction of the total score of all transfrags. This fraction is called ksensitivity and is set to 

0.90 by default. After the path graph has been constructed, we effectively extend every 

partial length transfrag into a full-length transcript by transmitting the transfrag’s score 

along incoming and outgoing edges. Scores are allocated proportionally at nodes with 

multiple incoming or outgoing edges. This smoothing process assures that the sum of 

incoming node scores and outgoing node scores are equivalent at every node.  

Finally, a set of isoforms is predicted from the graph using a greedy algorithm. 

The algorithm finds and reports the highest abundance transcript by traversing the graph 

using dynamic programming. The score of the path equals the minimum score of all 

nodes in the path. The path score is then subtracted from every node in the path and the 

dynamic programming procedure is repeated. Suboptimal transcripts are enumerated until 

a path score falls below a fraction of the highest scoring transcript (set by the --fraction-

major-isoform parameter). The total number of isoforms produced from each gene can 
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also be explicitly constrained using the --max-paths parameter. The meta-assembled 

isoforms are reported in GTF and/or BED format. The genomic landscape of transfrag 

scores can optionally be reported in BedGraph track format as well. 

Results 

We assessed the AssemblyLine meta-assembler using transcript assemblies made 

available as part of the human lincRNA catalog study by Cabili et al.78 

(http://www.broadinstitute.org/genome_bio/human_lincrnas). We henceforth refer to this 

dataset as the Cabili dataset. The transcript assemblies were created by aligning reads to 

the human genome using TopHat and assembling the alignments ab initio with Cufflinks. 

The dataset consisted of 25 libraries from 21 different human cell and tissue types and 

contained 4,268,910 transcript fragments (transfrags) in aggregate.  

Filtering 

A typical filtering procedure was performed on the Cabili assemblies. A large number 

(2,512,734 out of 4,268,910 or 58.8%) of the transfrags in the assemblies were shorter 

than 250bp and discarded during the aggregation step. Short transfrags can often occur in 

abundance when the underlying ab initio or de novo assembly process performs little or 

no filtering. The remaining 1,756,176 transcripts were subjected to categorization and 

filtering steps. Transcripts were compared to the GENCODE v15 reference and 10% of 

GENCODE genes were randomly selected as tests. The fraction of GENCODE v15 

annotated transfrags ranged from 0.27 to 0.71 indicating significant variation in library 

noise levels (Figure 3.9). We noticed that the library with the highest fraction of 

annotated transfrags, denoted liver_R, was one of two samples eliminated from 
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expression analysis in the Cabili et al. study due to its low coverage. The other sample 

removed, hela_R, also had a high fraction of annotated transcripts. 

 
Figure 3.9: Relative fraction of transcript categories in the Cabili assemblies.  
Transcripts in each assembly were categorized as Annotated (green), Intergenic/Antisense (red), or Intronic 
(blue). The fraction of annotated transcripts varies from 0.27 to 0.71 across the cohort. 
  

The bivariate kernel density classifier was applied to individual libraries in the Cabili 

dataset. For each library a series of contour plots were produced indicating the 

distribution of transcript abundance and recurrence values (Figure 3.10). Known 

transfrags were more highly expressed and recurrent relative to unannotated transfrags 

(Figure 3.10 left and middle). The resulting log-likelihood landscape reflected the 

highly disjoint nature of the two distributions (Figure 3.10 right panel).  
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Figure 3.10: Bivariate kernel density classifier example. 
(left and middle) Contour plots depicting density of recurrence and abundance (measured as expression 
percentile rank) for the ‘heart’ sample from the Cabili dataset across known (left) and unannotated 
intergenic (middle) transcripts. (right) Contour map depicting the log-likelihood of a transcript being 
‘Known’ created by superimposing the density plots from known and intergenic transcripts. In this plot 
transcripts with low recurrence and abundance have a low likelihood of being from the pool of known 
transcripts. 
 

Classifier performance was measured on test transcripts, visualized using 

receiver-operator characteristic (ROC) curves, and quantified using the area under the 

curve (AUC) metric (Figure 3.11a). The AUC values ranged from 0.83 to 0.90 (average 

0.88) for intergenic classifiers and 0.73 to (average 0.77) 0.87 for intronic classifiers 

(Figure 3.11b). A log-likelihood cutoff was chosen for each classifier by optimizing 

balanced accuracy (average of sensitivity and specificity) (Figure 3.11c). Balanced 

accuracy values were 0.76-0.83 for intergenic classification and 0.66-0.78 for intronic 

classification (Figure 3.11d). For example, a log-likelihood cutoff of -0.99 
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(corresponding to a probability < 0.10 of being known) was chosen to partition intergenic 

transfrags from heart tissue (Figure 3.12).  

 
Figure 3.11: Filtering performance on Cabili dataset. 
(a) Receiver operating characteristic (ROC) curve showing classifier performance on both training and test 
datasets for the ‘heart’ sample from the Cabili dataset. (b) Boxplot showing range of area under the curve 
(AUC) values for intergenic (red) and intronic (blue) transcripts. (c) Line plot showing the relationship 
between the log-likelihood cutoff and the balanced accuracy for the ‘heart’ sample. (d) Scatter plot showing 
the sensitivity and specificity values at the optimal cutoff point after classification of intergenic and intronic 
transcripts.  
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Figure 3.12: Log-likelihood density distribution 
Density of the log-likelihood metric across unannotated (green), known (blue) and test (red) transcripts 
from the Cabili ‘heart’ sample. The dashed blue line showed the optimal threshold for distinguishing 
known from unannotated transcripts based on balanced accuracy. 
 

Given that the RNA-Seq libraries were not strand-specific we additionally 

required intronic transfrags compatible with incompletely processed RNA to be multi-

exonic. The filtered transfrags from each library were merged into a set containing 

1,017,606 (58%) of the original transfrags, of which 80.8% corresponded to GENCODE 

v15 transcripts and 19.2% were unannotated (Table 3.2). 

Category Filtered transfrags (percentage) 
Known 822,446 (80.8%) 
Unannotated 195,160 (19.2%) 

• Antisense 65,181 (6.4%) 
• Intronic same strand (multi-exonic) 6,039 (0.59%) 
• Intronic opposite strand (multi-exonic) 8,674 (0.85%) 
• Intronic ambiguous strand (multi-exonic) 6,981 (0.69%) 
• Interleaving 50,028 (4.9%) 
• Intergenic 58,258 (5.7%) 
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Table 3.2: Filtered transfrag statistics 

Meta-assembly performance 

We assessed the AssemblyLine and Cuffmerge meta-assemblers on the unfiltered Cabili 

et al. assemblies. We enumerated all isoforms expressed at greater than or equal to one 

percent of the major isoform for each gene (for AssemblyLine we set --fraction-major-

isoform=0.01 and for Cuffmerge we set --min-isoform-fraction=0.01). AssemblyLine 

produced a much smaller assembly than Cuffmerge (317,795 versus 854,666 genes, 

404,768 versus 978,660 transcripts, and 669,560 versus 1,220,668 exons) with a higher 

average number of isoform per gene (1.27 versus 1.14) and exons per transcript (1.65 

versus 1.25) (Figure 3.13). 

 
Figure 3.13: Comparison of merged assembly size 
Bar plots showing the total assembly size in genes, transcripts, and exons for AssemblyLine (blue and red) 
and Cuffmerge (green) meta-assemblies. AssemblyLine was run in two modes: ‘single-best’ (blue) 
nominated a single isoform for every gene, and ‘all’ (red) retained all isoforms. The size of the GENCODE 
v15 reference is provided as a comparison. 
 

Next we compared the ability of the tools to detect reference transcripts from the 

GENCODE v15 database87. We mirrored the approach described by Grabherr et al. to 



 56 

predict an empirical upper sensitivity limit called the ‘Oracle Set’46. The ‘Oracle Set’ 

reflects the subset of covered based, introns, and splicing patterns present within the 

initial unmerged transfrags (it is theoretically possible to outperform the Oracle Set for 

the detection of splicing patterns because meta-assembly can potentially create new 

patterns not present in the initial transfrags). AssemblyLine detected slightly fewer 

reference-covered positions, introns, and splicing patterns than Cuffmerge, but a higher 

percentage of AssemblyLine predictions matched reference gene models (Figure 3.14). 

AssemblyLine was even more precise when only the major isoform (single-best) at each 

gene was considered. 

 
Figure 3.14: Performance of AssemblyLine and Cuffmerge across Cabili dataset 
The sensitivity (left) and precision (right) for detection of GENCODE v15 annotated bases, introns, and 
splicing patterns was assessed. The ‘Oracle’ sensitivity (purple) predicts the maximum attainable 
performance from the initial transfrags. 
 

A catalog of human lincRNAs redefined 

Despite the fact that the Cabili et al. lincRNA BodyMap catalogued 8,195 intergenic long 

RNAs, including 4,819 that were absent from gene databases, we hypothesized that 
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additional long RNAs remain to be discovered. Therefore, we ran the AssemblyLine 

workflow on the Cabili dataset to create a consensus assembly. Remarkably, 12% of the 

53,506 multi-exonic genes in the consensus assembly were novel, including 1,104 

intronic, 2,902 antisense, and 2,391 intergenic loci (Figure 3.15). Perusal of the assembly 

confirmed the presence of many high quality candidates, indicating that the human long 

RNA transcriptome remains incomplete (Figure 3.16). 

 
Figure 3.15: Discovery of novel transcripts in the Cabili dataset 
(left) Pie chart showing the proportions of transcripts corresponding to known protein or ncrna models as 
well as novel antisense, intergenic, or intronic regions. (right) Table showing the number of transcripts 
from each category of the meta-assembly. 
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Figure 3.16: Examples of novel transcripts present in the Cabili dataset. 
(a) Multi-exonic intergenic transcripts on the negative strand proximal to the EBF3 gene, (b) Antisense 
transcription at the SP140L locus generating several multi-exonic long RNAs, (c) Interleaving transcription 
generating multiple isoforms antisense to the 3’ end of the AGL gene. 

Discussion 

Assembly of data from high-throughput RNA sequencing experiments has revealed an 

unanticipated layer of complexity in eukaryotic transcriptomes, but incorporating RNA-

Seq transcript models into gene annotation catalogs requires (1) mitigating noise in 

datasets and (2) condensing the vast amount of data into a concise set of gene models. 

GENCODE, Ensembl, and other groups are forecasting the incorporation of RNA-Seq 

data into their catalogs, but the means for doing so remain obscure75, 82. Efforts to 

annotate gene models from collections of RNA-Seq data have had limited success 

mitigating background DNA contamination and incompletely processed RNA artifacts, 

and often omitted entire classes of transcripts based on their structure or genomic location 

in order to simplify the noise problem. Gene discovery pipelines have been created and 
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employed in published works, but few tools have emerged as production-level utilities for 

RNA-Seq meta-assembly13, 27, 78. Thus, the field of RNA-Seq analysis would strongly 

benefit from a gene discovery software package that could efficiently and confidently 

delineate a precise set of expressed transcripts in a dataset. AssemblyLine overcomes 

sources of noise and contamination in the data and employs a meta-assembly strategy that 

prioritizes the reconstruction of highly abundant isoforms. 

 The kernel density estimation (KDE) approach used in AssemblyLine has several 

advantages. It relies on a single bandwidth parameter h that controls the degree of 

smoothing. By contrast, other machine learning methods often require multiple 

parameters that may be computationally expensive to tune. Currently we use a rule of 

thumb to select the default bandwidth, but further optimization of bandwidth selection 

may improve performance further163. Additionally, a KDE-based classifier smoothens 

density estimates and thus may be more robust for datasets with small numbers of 

transfrags. KDE approaches are certainly appropriate for modeling continuous variables 

such as transcript abundance and recurrence. Finally, the density landscape lends itself to 

an intuitive visualization of the patterns of abundance and recurrence in a dataset using 

contour maps or 3D surface plots. 

 The balanced accuracy (average of sensitivity and specificity) metric is an 

intuitive way to select likelihood thresholds for classification, but other measures of 

accuracy such as the F-measure could be easily substituted. However, the nature of the 

problem precludes the use of false discovery rate (FDR) as a method to control the error 

rate. While it may be possible to control the filtering process using simulated noise or by 
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generating matched genomic DNA or nascent RNA sequencing data, we leave these 

possibilities as future work164. 

 The filtering algorithm relies on a robust set of known transcript models. If no 

reference transcriptome is available it may still be possible to use AssemblyLine. In this 

case one should run the meta-assembly algorithm first and then employ heuristic filtering 

to select robust gene models. A second run of AssemblyLine could then use these models 

as a training set. In this way AssemblyLine could be used iteratively to “bootstrap” the 

gene discovery process. It is crucial that training models be precisely annotated, and 

therefore other assays such as RT-PCR-Seq may be useful as complementary assays for 

validation88. If erroneous gene models are used to train the classifier, the results may be 

unpredictable. 

 The greedy dynamic programming algorithm used to enumerate paths during 

meta-assembly assures that the highest scoring path will always be predicted. In the ideal 

case the high scoring paths match the most abundance isoforms, but highly fragmented or 

erroneous transfrags can make this difficult. Studies on patterns of alternative splicing 

lend credence to our greedy approach. It was observed that the number of expressed 

isoforms plateaus at 10-12 per gene per sample, and the most abundant isoform rarely 

decreases below 40% of the total gene expression even for genes with large numbers of 

annotated isoforms13. Thus, a greedy approach will recover the most common isoforms at 

the expense of missing minor isoforms. The problem of splice graph assembly closely 

resembles the maximum flow problem from optimization theory. Comparison of our 

dynamic programming solution against other algorithms for computing flow networks 

remains an area of ongoing study. 
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 AssemblyLine currently utilizes genomic alignment positions and transcript 

abundance information in its algorithm, but other sources of information may further 

improve meta-assembly performance. Transcription start site (TSS) information obtained 

from ChIP-Seq datasets or other sources could be easily incorporated into the meta-

assembly program by adding edges between the source node in the splice graph and each 

known TSS. Similarly, transcription termination sites (TTS) could be incorporated into 

the splice graph by adding additional edges from poly-adenylation sites to the sink node 

of the splice graph. Optional incorporation of TSS and TTS data from public databases is 

considered an important area of future work. 

 Applying AssemblyLine to the Cabili et al. dataset revealed numerous long RNAs 

absent from GENCODE and the published lincRNA catalog, suggesting that current gene 

model databases remain incomplete. Indeed, the multifarious nature of cell and types 

tissues suggests the need for large scale spatiotemporal profiling of transcriptional 

complexity in both normal and disease states. We believe that after amassing such data 

AssemblyLine could effectively distill robust transcripts and lead to the eventual 

completion of reference gene databases. 
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Abstract 

Long non-coding RNAs (lncRNAs) are emerging as key molecules in human cancer, 

with the potential to serve as novel markers of disease and to reveal uncharacterized 

aspects of tumor biology. Here we perform poly-A+ long RNA sequencing across a 

cohort of 102 prostate cancer cell lines and tissues followed by ab initio transcriptome 

assembly and delineate 1,859 unannotated long RNAs throughout the human genome. 

Among these we define 121 prostate cancer–associated ncRNA transcripts (PCATs) as 

long non-coding RNAs aberrantly expressed in the disease. These findings establish the 

utility of RNA-Seq to identify disease-associated ncRNAs that may improve the 

stratification of cancer subtypes. 

Introduction 

Recently, RNA-Seq has provided a method to delineate the entire set of transcriptional 

aberrations in a disease, including novel transcripts not measured by conventional 

analyses26, 47, 50, 162, 165. To facilitate interpretation of sequence read data, existing 

computational methods typically process individual samples using either short read 

gapped alignment followed by ab initio reconstruction26, 47 or de novo assembly of read 

sequences followed by sequence alignment46, 50. These methods provide a powerful 

framework to uncover uncharacterized long non-coding RNAs (lncRNAs) >250bp. 

Although still largely unexplored, long non-coding RNAs have emerged as a new aspect 

of biology, with evidence suggesting that they are frequently cell-type specific, contribute 

important functions to numerous systems166, 167 and interact with known cancer genes 

such as EZH2168. Indeed, several well-described examples, such as HOTAIR168, 169 and 

ANRIL170, 171, indicate that lncRNAs may be essential actors in cancer biology, typically 
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facilitating epigenetic gene repression through chromatin-modifying complexes172, 173. 

Moreover, lncRNA expression may confer clinical information about disease outcomes 

and have utility as diagnostic tests169, 174. The characterization of RNA species, their 

functions and their clinical applicability is therefore a major area of biological and 

clinical importance. 

Here, we describe a comprehensive analysis of lncRNAs in 102 prostate cancer 

tissue samples and cell lines by RNA-Seq. We apply ab initio computational approaches 

to delineate the annotated and unannotated transcripts in this disease, and we find 121 

lncRNAs, termed PCATs, whose expression patterns distinguish benign, localized cancer 

and metastatic cancer samples. To our knowledge, our findings describe the first 

comprehensive study of lncRNAs in prostate cancer, provide a computational framework 

for large-scale RNA-Seq analyses and highlight prostate cancer lncRNAs associated with 

disease progression. 

Results 

RNA-Seq analysis of the prostate cancer transcriptome 

Over two decades of research have generated a genetic model of prostate cancer based on 

numerous neoplastic events, such as loss of the PTEN175 tumor suppressor gene and gain 

of oncogenic ETS family transcription factor gene fusions98, 137, 176 in large subsets of 

prostate cancer patients. As some patients lack these genetic aberrations, we hypothesized 

that prostate cancer similarly harbored disease-associated lncRNAs that characterized 

specific molecular subtypes. 

To pursue this hypothesis, we applied transcriptome sequencing on a cohort of 

102 prostate tissues and cell lines that included 20 benign adjacent prostates (benign), 47 
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localized prostate cancers (PCA), 14 metastatic tumors (MET) and 21 prostate cell lines. 

In total, 1.723 billion fragments were generated from 201 lanes of sequencing on the 

Illumina Genome Analyzer and Illumina Genome Analyzer II. We developed a 

bioinformatics workflow to define a consensus set of transcript models from this cohort 

(Figure 4.1a). 

Ab initio assembly and quantification with TopHat and Cufflinks 

Reads were mapped using TopHat v1.0.1356 to the human genome (hg18)155 with a 

maximum of two mismatches. We obtained 1.418 billion unique alignments including 

114.4 million that spanned splice junctions, with a median of 14.7 million mapped reads 

per sample. Ambiguous alignments were discarded in this analysis. Aligned reads from 

TopHat were assembled with Cufflinks version 0.8.226. Cufflinks assembles exonic and 

splice-junction reads into transcripts using their alignment coordinates. After assembling 

transcripts, Cufflinks computes isoform-level abundances by finding a parsimonious 

allocation of reads to the transcripts within a locus. We filtered transcripts with 

abundance less than 15% of the major transcript in the locus, and minor isoforms with 

abundance less than 5% of the major isoform. Default settings were used for the 

remaining parameters. The Cufflinks assembly stage yielded a set of transcript 

annotations for each of the sequenced libraries. We partitioned the transcripts by 

chromosome and used the Cuffcompare utility provided by Cufflinks to merge the 

transcripts into a combined set of annotations. The Cuffcompare program performs a 

union of all transcripts by merging transcripts that share all introns and exons. The 5' and 

3' exons of transcripts were allowed to vary by up to 100nt during the comparison 

process. Cuffcompare reported a total of 8.25 million distinct transcripts.  
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Distinguishing transcripts from background signal 

As expected from a large tumor tissue cohort, individual transcript assemblies may have 

sources of noise, such as artifacts of the sequence alignment process, unspliced intronic 

pre-mRNA and genomic DNA contamination. To exclude these from our analyses, we 

trained a decision tree to classify transcripts as expressed versus background (the 

approach presented here has matured over the course of several years into what is now 

the AssemblyLine software package described in Chapter 3). The approach rests on the 

premise that a manually curated gene database could represent a reliable set of true 

positives with which to train a classifier. We used the AceView annotations72 which we 

believed had an adequate representation of low abundance lncRNA transcripts that may 

be cell-type specific. For each transcript predicted by Cufflinks we collected the 

following statistics: length (bp), number of exons, recurrence (number of samples in 

which the transcript was predicted), 95th percentile of abundance (measured in 

Fragments per Kilobase per Million reads (FPKM)) across all samples, and uniqueness of 

genomic DNA harboring the transcript (measured using the Rosetta uniqueness track 

from UCSC). Using this information, we used recursive partitioning and regression trees 

in R (package rpart) to predict, for each transcript, whether its expression patterns and 

structural properties resembled those of annotated genes. Classification was performed 

independently for each chromosome in order to incorporate the effect of gene density 

variability on expression thresholds. Examination of decision trees indicated that 

expression level and recurrence were most frequently the best predictors of known 

transcripts (Figure 4.1b). Transcripts not classified as background noise were used for 

further analysis. 
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Refinement of transcript fragments  

The decision tree demonstrated a sensitivity of 70.8% and specificity of 88.3% in our 

cohort, and 2.88 million (34.9%) unannotated transcript fragments were classified as 

“expressed”. We then developed a program to extend and merge intron-redundant 

transcripts to produce a minimum set of transcripts that could possibly explain the 

assemblies produced by Cufflinks. By merging transcripts in this manner we relinquished 

the ability to detect some types of alternative TSSs, but drastically reduced the total 

number of independent transcripts in our assembly. We believe merging all intron-

redundant transcripts is suitable for qualitative detection of transcriptionally active 

regions, but more sophisticated methods would be necessary for the study of alternative 

splicing, alternative TSSs, and alternative poly-adenylation site usage within well 

characterized regions (the merging approach used here subsequently evolved into the 

AssemblyLine meta-assembly algorithm presented in Chapter 3). The merging step 

produced a total of 123,554 independent transcripts. We then re-computed transcript 

abundance levels for these revised transcripts in Reads per Kilobase per Million (RPKM) 

units. These expression levels were used for the remainder of the study. 
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Figure 4.1: Analysis of transcriptome data for the detection of unannotated transcripts 
(a) Schematic overview of the methodology employed in this study. (b) Graphical representation of the 
bioinformatics filters used to merge individual transcriptome libraries into a single consensus 
transcriptome. The merged consensus transcriptome was generated by compiling all individual 
transcriptome libraries and using individual decision tree classifiers for each chromosome to define high-
confidence 'expressed' transcripts and low-confidence 'background' transcripts, which were discarded. The 
example decision tree on the left was trained on transcripts on chromosome 1. The graphics on the right 
illustrate the application of the informatics filtration pipeline to sample assembled transcripts. (c) After 
informatic processing and filtration of the sequencing data, transcripts were categorized to identify 
unannotated ncRNAs. Transcribed pseudogenes were isolated, and the remaining transcripts were 
categorized based on overlap with an aggregated set of known gene annotations into annotated protein 
coding, noncoding and unannotated. Both annotated and unannotated ncRNA transcripts were then 
separated into intronic, intergenic and antisense categories based on their relationship to protein-coding 
genes. 
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We applied several additional filtering steps to isolate the most robust transcripts. 

First, we discarded transcripts with a total length less than 200nt. Our size selection 

protocol isolates RNA molecules larger than this, and small RNA sequencing protocols 

would likely be needed to quantify smaller molecules with high confidence. Second, we 

discarded single exon transcripts with greater than 75% overlap to another longer 

transcript. We believe many of these are produced from unspliced pre-mRNA molecules 

and do not represent functional RNA products. Third, we removed transcripts that lacked 

a completely unambiguous genomic DNA stretch of at least 40nt. We measured genomic 

uniqueness using the Rosetta uniqueness track downloaded from the UCSC genome 

browser website. We believe transcripts spanning poorly mappable regions are more 

likely to occur due to mapping artifacts and the availability of longer reads would 

alleviate the need for this filtering step. Finally, we retained transcripts that were not 

present in at least 5% of our cohort (>5 samples) at more than 5.0 RPKM. It is possible 

that certain subtypes of prostate cancer may express highly specific transcripts, and future 

studies to characterize these transcripts could provide additional insight into the biology 

of tumor subtypes. 

In certain instances we observed transcripts that were interrupted by poorly 

mappable genomic regions. Additionally, for low abundance genes we observed 

fragmentation due to the lack of splice junction or paired-end read evidence needed to 

connect nearby fragments. We reasoned that expression profiles of these fragmented 

transcripts should be highly correlated. To demonstrate this, we measured the difference 

in the Pearson correlation between expression of randomly chosen exons on the same 

transcript versus expression of spatially proximal exons on different transcripts. We 
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found that in our cohort, a Pearson correlation >0.8 had a positive predictive value (PPV) 

of >95% for distinct exons to be part of the same transcript. Using this criteria, we 

performed hierarchical agglomerative clustering to extend transcript fragments into larger 

transcriptional units. Pairs of transcripts further than 100kb apart, transcripts on opposite 

strands, and overlapping transcripts were not considered for clustering. Groups of 

correlated transcripts were merged, and introns <40nt in length were removed. 

Comparison with gene annotation databases  

The 44,534 transcripts produced by the bioinformatics pipeline were classified by 

comparison with a comprehensive list of “annotated” transcripts from UCSC, RefSeq, 

ENCODE, Vega, and Ensembl (Figure 4.1c). First, transcripts corresponding to 

processed pseudogenes were separated. This was done to circumvent a known source of 

bias in older versions of TopHat. Until recently TopHat mapped reads to genomic DNA 

in its first step, predisposing exon-exon junction reads to align to their spliced retroposed 

pseudogene homologues. Future improvements to the algorithm eliminated this bias by 

mapping reads to known transcripts first. Next, transcripts with >1bp of overlap with at 

least one annotated gene on the correct strand were designated “annotated”, and the 

remainder were deemed “unannotated”. Transcripts with no overlap with protein coding 

genes were subdivided into intronic, intergenic, or partially intronic antisense categories 

based on their relative genomic locations. 

Informatics filtering of unspliced pre-mRNA isoforms  

We observed a significant increase in the percentage of intronic transcripts in our 

assembly relative to known intronic ncRNAs. This led us to observe that in many cases 

unspliced pre- mRNAs may appear at sufficient levels to escape the filtering steps 
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employed by Cufflinks during the assembly stage. We then removed intronic and 

antisense transcripts that were correlated (Pearson correlation >0.5) to their overlapping 

protein coding genes in order to better approximate the true number of intronic or 

antisense transcripts in the transcriptome. In effect, these steps produced a consensus set 

of 35,415 transcripts supporting long poly-adenylated RNA molecules in human prostate 

tissues and cell lines. Overall we detected a similar number of transcripts as present in the 

either the RefSeq or UCSC databases177. To assess the quality of the assembly, we 

monitored known reference transcripts and noticed that reconstruction quality improves 

to >90% for transcripts expression levels >10.0 RPKM (Figure 4.2). Several examples of 

accurately reconstructed transcripts are shown, including the known prostate cancer 

biomarkers SPINK1 and PCA3 (Figure 4.3). 

 
Figure 4.2: Transcriptome reconstruction quality.  
We evaluated the quality of our transcriptome reconstruction approach on the set of 20,409 canonical 
protein-coding genes downloaded from the UCSC Genome Browser version hg18 (knownCanonical). For 
each UCSC gene, we recorded the transcript with maximal overlap (measured in base pairs) along with the 
95th percentile expression level across samples (measured in RPKM). The X axis shows binned expression 
level windows, and the Y axis shows the fraction of each gene that was encapsulated by our assembly. 
There were 6,535 genes that were detected at extremely low levels and were not reconstructed. These genes 
may not be expressed in prostate epithelial cells. The reconstruction quality improves rapidly at expression 
levels >10.0 RPKM, suggesting that unannotated transcripts detected at levels >10.0 RPKM are likely to be 
accurately reconstructed. 
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Figure 4.3: Transcript assembly of known genes.  
We employed ab initio transcript assembly on prostate transcriptome sequencing data to reconstruct the 
known prostate transcriptome. Four examples of transcriptome reassembly are displayed above. (a) 
SPINK1, a biomarker for prostate cancer. (b) PRUNE2 with the PCA3 non-coding RNA within its intronic 
regions. Note that PCA3 is a prostate cancer biomarker while PRUNE2 is not. The two transcripts remain 
independent. (c) NFKB1. (d) COL9A2. 
 

Discovery of prostate cancer lncRNAs 

We compared the assembled prostate cancer transcriptome to the UCSC, Ensembl, 

RefSeq, Vega and ENCODE gene databases to identify and categorize transcripts. The 

majority of the transcripts (77.3%) corresponded to annotated protein coding genes 

(72.1%) and noncoding RNAs (5.2%), but a substantial percentage (19.8%) lacked any 
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overlap and were designated unannotated (Figure 4.4). These included partially intronic 

antisense (2.44%), totally intronic (12.1%) and intergenic transcripts (5.25%), consistent 

with previous reports of unannotated transcription5, 178, 179. Because of the added 

complexity of characterizing antisense or partially intronic transcripts without strand-

specific RNA-Seq libraries, we focused on totally intronic and intergenic transcripts. 

 
Figure 4.4: Global overview of transcription in prostate cancer.  
The pie chart on the left displays transcript distribution in prostate cancer. The pie charts on the right 
display unannotated (upper) or annotated (lower) ncRNAs categorized as sense transcripts (intergenic and 
intronic) and antisense transcripts, respectively. 

Characterization of unannotated lncRNAs 

We extracted the DNA sequences for each transcript and searched for open reading 

frames (ORFs) using the txCdsPredict program from the UCSC source tool set180. This 

program produces a score corresponding to the protein coding capacity of a given 

sequence, where scores >800 are ~90% predictive of protein coding genes. We used this 

threshold to count transcripts with coding potential, and found only 5 of 6,641 

unannotated genes with scores >800, compared with 1,669 of 25,414 protein coding 

transcripts. Additionally, we observed that protein coding genes possess consistently 

longer ORFs than either unannotated or annotated lncRNA transcripts, suggesting that the 

vast majority of the unannotated transcripts represent lncRNAs (Figure 4.5). 
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Unannotated transcripts also had greater overlap with expressed sequence tags (ESTs) 

than randomly permuted controls (Figure 4.6). 

 
Figure 4.5: Analysis of coding potential of unannotated transcripts. 
DNA sequences for each transcript were extracted and searched for open reading frames (ORFs) using the 
txCdsPredict program from the UCSC source tool set. Using these methods, novel transcripts showed poor 
protein-coding capacity compared to protein-coding genes, and novel transcripts scored similarly to known 
ncRNAs, suggesting that the vast majority of unannotated transcripts in prostate cancer represent ncRNAs. 
 

 
Figure 4.6: Analysis of EST support for novel transcripts.  
ESTs from the UCSC database table “Human ESTs” were used to evaluate the amount of overlap between 
ESTs and novel transcripts. (a) A line graph showing the fraction of genes whose transcripts are supported 
by a particular fraction of ESTs. Over 20% of novel transcripts have no support by ESTs. (b) A table 
displaying the number of ESTs supporting each class of transcripts. Percent of all ESTs was calculated 
using the total number of annotated ESTs (8,089,356), not the total number of observed ESTs in the 
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transcriptome data (4,869,378). 
 

Characterization of unannotated transcripts demonstrated that they were more highly 

expressed than randomly permuted controls (Figure 4.7a). Further, we used the SiPhy 

package181 to estimate the locate rate of variation (") of non-repetitive transcript exons 

across 29 placental mammals (Figure 4.7b). Unannotated transcripts displayed a clear 

but subtle increase in conservation over randomly permuted controls (intergenic 

transcripts P = 2.7 # 10$4 ± 0.0002 for 0.4 < " < 0.8; intronic transcripts P = 2.6 # 10$5 

± 0.0017 for 0 < " < 0.4, Fisher's exact test). By contrast, unannotated transcripts scored 

lower than protein-coding genes for these metrics, which corroborates data in previous 

reports2, 24. Notably, a small subset of unannotated intronic transcripts showed a 

profound degree of conservation (Figure 4.7b, inset). 

 

Figure 4.7: Expression and conservation analysis 
(a) Line graph showing that unannotated transcripts are more highly expressed (reads per kilobase of 
transcript per million mapped reads; RPKM) than control regions. Negative control intervals were 
generated by randomly permuting the genomic positions of the transcripts. (b) Conservation analysis 
comparing unannotated transcripts to known genes and intronic controls shows a subtle degree of purifying 
selection among unannotated transcripts. The inset on the right shows an enlarged view. 
 

To determine whether our unannotated transcripts were supported by histone 

modifications defining active transcriptional units, we used published prostate cancer 
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chromatin immunoprecipitation (ChIP)-Seq data for the prostate cell lines VCaP and 

LNCaP (GSM353632)182. We analyzed the raw ChIP-Seq data (H3K4me2, H3K4me3, 

Acetylated H3, RNA polymerase II, and Pan-H3) using the MACS peak finder program 

with default settings183. These analyses were performed with the bx-python libraries 

distributed as part of the Galaxy bioinformatics infrastructure184. After filtering our data 

set for transcribed repetitive elements known to display alternative patterns of histone 

modifications185, we observed a strong enrichment for histone modifications 

characterizing transcriptional start sites (TSSs) and active transcription (Figure 4.8). 

Notably, intergenic lncRNAs showed greater enrichment compared to intronic lncRNAs 

in these analyses. 

 

Figure 4.8: ChIP-Seq data supports active transcription of unannotated lncRNAs 
Intersection plots displaying the fraction of unannotated transcripts enriched for H3K4me2 (a), H3K4me3 
(b), acetyl-H3 (d) or RNA polymerase II (e) at their transcriptional start site (TSS) using ChIP-Seq and 
RNA-Seq data for the VCaP prostate cancer cell line. 
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Differential Expression Analysis 

To elucidate global changes in transcript abundance in prostate cancer, we analyzed 

differential expression for all transcripts. We first prepared a matrix of log2-transformed, 

normalized RPKM expression values after adding a nominal constant 0.1 to all RPKM 

values. After centering by subtracting the median expression of the benign samples from 

each transcript, we used the Significance Analysis of Microarrays (SAM) method186 with 

250 permutations of the Tusher et al. S0 selection method to predict differentially 

expressed genes. We chose a delta value corresponding to the 90th percentile FDR 

desired for individual analyses. The MultiExperiment Viewer application187 was used to 

run SAM and generate heatmaps. We found 836 genes differentially expressed between 

benign samples and localized tumors (false-discovery rate (FDR) < 0.01), with annotated 

protein-coding and lncRNA genes constituting 82.8% and 7.4% of differentially 

expressed genes, respectively, including known prostate cancer biomarkers such 

AMACR188, HPN189 and PCA3174 (Figure 4.9). Finally, 9.8% of differentially expressed 

genes corresponded to unannotated ncRNAs, including 3.2% within gene introns and 

6.6% in intergenic regions. 

 

Figure 4.9: Differentially expressed genes in prostate cancers. 
A heatmap generated by unsupervised clustering yields 836 differentially expressed transcripts in prostate 
cancer.  Expression is plotted as log2 fold change relative to the median of the benign samples.  Transcripts 
are organized by class (annotated proteins, annotated ncRNAs, unannotated RNAs).  Red: upregulated 
compared to benign; Blue: downregulated compared to benign. 
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Nomination of Prostate Cancer Associated Transcripts (PCATs) 

As lncRNAs may contribute to human disease166, 169, we identified aberrantly expressed 

uncharacterized lncRNAs in prostate cancer. We found a total of 1,859 unannotated 

lncRNAs throughout the human genome. Overall, these intergenic RNAs resided 

approximately halfway between two protein coding genes (Figure 4.10), and over one-

third (34.1%) were %10 kb from the nearest protein-coding gene, which is consistent with 

previous reports190 and supports the independence of intergenic lncRNAs genes. For 

example, visualizing the Chr15q arm using the Circos program191 illustrated genomic 

positions of 89 unannotated intergenic transcripts, including one differentially expressed 

gene centromeric to TLE3 (Figure 4.11) that we validated by RT-PCR. 

 
Figure 4.10: Distribution of distances between intergenic unannotated genes and protein-coding 
genes 
The distance between intergenic unannotated ncRNAs to the closest protein-coding gene was calculated, 
forming a normal distribution around a mean of 4,292 kb. For comparison the distance between protein-
coding genes was likewise calculated, forming a normal distribution around a mean of 8,559 kb. These data 
suggest that, on average, novel intergenic genes are located approximately halfway between protein-coding 
genes 
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Figure 4.11: Validation of a novel transcript on chromosome 15. 
(a) A Circos plot displaying the location of annotated transcripts (grey middle ring) and unannotated 
transcripts (red inner ring) on Chr15q. Annotated transcripts are represented by 4 individual grey rings 
representing Ensembl, RefSeq, UCSC, and ENCODE annotations. Unannotated transcripts are widely 
distributed across the chromosomal arm. Intensity of color indicates relative expression level. (b) Coverage 
maps showing the average expression levels (RPKM) across the benign, localized tumor, and metastatic 
samples shows upregulation of a novel transcript. (c) Several predicted isoforms of this transcript were 
nominated which retained common exons 1 and 2. (d) The exon-exon boundary between exons 1 and 2, as 
well as an internal portion of exon 3, was validated by RT-PCR in prostate cell line models. (e) Sanger 
sequencing of the RT-PCR product confirmed the junction of exon 1 and exon 2. 
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A focused analysis of the 1,859 unannotated intergenic RNAs yielded 106 that 

were differentially expressed in localized tumors (FDR < 0.05, Figure 4.12a). We also 

applied the Cancer Outlier Profile Analysis (COPA) procedure on the tissue samples and 

nominated numerous unannotated ncRNA outliers (Figure 4.12b) as well as known 

prostate cancer outliers, such as ERG137, ETV1137, 176, SPINK1192 and CRISP3193. 

Merging these results produced a set of 121 unannotated transcripts that accurately 

discriminated benign, localized tumor and metastatic prostate samples by unsupervised 

clustering (Figure 4.12a). These transcripts were ranked and named as PCATs according 

to their fold-change in localized tumor versus benign tissue (Appendix E). 
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Figure 4.12: Unannotated intergenic transcripts differentiate prostate cancer and benign prostate 
samples. 
(a) Unsupervised clustering analyses of differentially expressed or outlier unannotated intergenic transcripts 
clusters benign samples, localized tumors and metastatic cancers. Expression is plotted as log2 fold-change 
relative to the median of the benign samples. The four transcripts detailed in this study are indicated on the 
side. (b) Cancer outlier expression analysis for the prostate cancer transcriptome ranks unannotated 
transcripts prominently. (c–f) qPCR on an independent cohort of prostate and nonprostate samples (benign 
(n = 19), PCA (n = 35), metastatic (MET) (n = 31), prostate cell lines (n = 7), breast cell lines (n = 14), lung 
cell lines (n = 16), other normal samples (n = 19)) measures expression levels of four nominated 
ncRNAs—PCAT-14 (c), PCAT-43 (d), PCAT-114 (e), PCAT-1 (f)—and upregulated in prostate cancer. 
Inset tables on the right quantify 'positive' and 'negative' expressing samples using the cut-off value (shown 
as a black dashed lines). Statistical significance was determined using a Fisher's exact test. qPCR analysis 
was performed by normalizing to GAPDH and the median expression of the benign samples. 
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Validation of novel lncRNAs 

To gain confidence in our transcript nominations, we validated multiple unannotated 

transcripts in vitro by reverse transcription PCR (RT-PCR) and quantitative real-time 

PCR (qPCR). Assays for four transcripts (PCAT-114, PCAT-14, PCAT-43 and PCAT-1) 

on two independent cohorts of prostate tissues confirmed predicted cancer-specific 

expression patterns (Figure 4.12c-f). Notably, all four are prostate-specific, with minimal 

expression seen by qPCR in breast (n = 14) or lung cancer (n = 16) cell lines or in 19 

normal tissue types. This is further supported by expression analysis of these transcripts 

in our RNA-Seq compendium of 13 tumor types, representing 325 samples (Figure 

4.13). This tissue specificity was not necessarily due to regulation by androgen receptor 

signaling, as only PCAT-14 expression was induced when androgen responsive VCaP 

and LNCaP cells were treated with the synthetic androgen R1881, consistent with 

previous data from this locus176 (Figure 4.14). PCAT-1 and PCAT-14 also showed 

cancer-specific upregulation when tested on a panel of matched tumor-normal pair 

samples (Figure 4.15). 
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Figure 4.13: Expression of PCATs across tissue types.  
RNA- Seq was performed on a compendium of 325 cell lines and tissues, and gene expression was 
quantified in RPKM. Evaluation of expression levels for PCAT-1, PCAT-14, PCAT-114, or PCAT-43 
indicates prostate-specific expression of these transcripts. 
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Figure 4.14: PCAT-14 is upregulated by androgen signaling.  
VCaP and LNCaP cells were grown in charcoal-stripped serum for 48 hours prior to treatment with 5nM 
R1881 or vehicle (ethanol) control. 24 hours after treatment, cells were harvested, total RNA and cDNA 
were generated, and cells were assayed for expression levels of unannotated non- coding RNAs. No 
consistent change is seen in PCAT-1, PCAT-43 and PCAT-114 expression upon addition of R1881. 
However, PCAT-14 shows consistent upregulation in both VCaP and LNCaP cells treated with R1881. 
TMPRSS2 serves as a control androgen-regulated gene. All experiments are normalized to GAPDH and the 
relative expression of the corresponding ethanol- treated sample. All error bars are mean ± S.E.M. 
 

 
Figure 4.15: PCAT-1 and PCAT-14 are upregulated in matched tumor tissues. 
Four matched tumor-normal patient tissue samples were assayed for PCAT-1 and PCAT-14 expression by 
qPCR. Expression levels were normalized to GAPDH and to the median of the benign samples. All error 
bars are mean ± S.E.M. 
 

Of note, PCAT-114, which ranks as the fifth best outlier, just ahead of ERG 

(Figure 4.12b and Appendix E), appears as part of a large, >500 kb locus of expression 

in a gene desert in Chr2q31. We termed this region 'second chromosome locus associated 

with prostate (SChLAP) (Figure 4.16). Careful analysis of the SChLAP locus revealed 
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both discrete transcripts and intronic transcription, highlighting this region as an 

intriguing aspect of the prostate cancer transcriptome. 

 
Figure 4.16: The SChLAP locus spans >500 kb.  
Visualization of transcriptome sequencing data in the UCSC genome browser indicates that a large, almost 
1 Mb section of chromosome 2 is highly activated in cancer, contributing to many individual transcripts 
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regulated in a coordinated fashion. For reference, the two flanking protein-coding genes, UBE2E3 and 
CWC22, are shown. Neither UBE2E3 nor CWC22 appears differentially regulated in prostate cancer. 

Discussion 

At the time of publication, this study represented the largest RNA-Seq analysis and the 

first to comprehensively analyze a common epithelial cancer from a large cohort of 

human tissue samples. As such, our study has adapted existing computational tools 

intended for small-scale use26 and developed new methods to distill large numbers of 

transcriptome data sets into a single consensus transcriptome assembly that accurately 

represents disease biology. The bioinformatics methods presented here formed the 

foundation for the AssemblyLine software package described in Chapter 3 of this thesis. 

Among the numerous uncharacterized lncRNA species detected by our study, we 

have focused on 121 PCATs, which we believe represent a set of uncharacterized 

lncRNAs that may have important biological functions in this disease. In this regard, 

these data contribute to a growing body of literature supporting the importance of 

unannotated lncRNA species in cellular biology and oncogenesis166, 169-172 and broadly 

our study confirms the utility of RNA-Seq in defining functionally important elements of 

the genome26, 47, 50. Of particular interest is our discovery of the prostate-specific lncRNA 

gene PCAT-1, which is markedly overexpressed in a subset of prostate cancers, 

particularly metastases, as well as the SChLAP1 locus (a region of chromosome 2 

containing PCAT-111, PCAT-114, and PCAT-118, among others), which features 

prominent overexpression in 15-30% of the disease. We describe our extensive follow-up 

studies of these two genes as Chapter 5 of this thesis. 

Recent preclinical efforts to detect prostate cancer noninvasively through the 

collection of patient urine samples have shown promise for several urine-based prostate 
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cancer biomarkers, including the lncRNA PCA3194, 195. Although additional studies are 

needed, our identification of lncRNA biomarkers for prostate cancer suggests that urine-

based assays for these lncRNAs may also warrant investigation, particularly for those that 

may stratify patient molecular subtypes.  

Our findings support an important role for tissue-specific lncRNAs in prostate 

cancer and suggest that cancer-specific functions of these lncRNAs may help to drive 

tumorigenesis. We further speculate that specific lncRNA signatures may occur 

universally in all disease states and that applying these methodologies to other diseases 

may reveal key aspects of disease biology and clinically important biomarkers. 
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Abstract 

Prostate cancer is a clinically heterogeneous disease in which only a subset of patients 

has aggressive cancer whereas others have indolent disease89, 196, 197.  However, the 

molecular basis for this heterogeneity remains incompletely understood198, 199. Previously, 

we used RNA sequencing and transcriptome assembly methods to define novel 

transcripts overexpressed in subsets of prostate cancer27. Here, we characterize two of 

these lncRNAs, PCAT1 and SChLAP1 (Second Chromosome Locus Associated with 

Prostate-1). PCAT1, a multi-exonic lncRNA expressed in a ‘gene desert’ on chromosome 

8q24, promotes cell proliferation through transcriptional regulation of target genes and 

represses the tumor suppressor BRCA2. SChLAP1, one of several multi-exonic lncRNAs 

expressed in a chromosome 2q31 ‘gene desert’, independently predicts for poor patient 

outcomes, including metastasis and cancer specific mortality. Mechanistically, SChLAP1 

antagonizes the genome-wide localization and regulatory functions of the SWI/SNF 

chromatin-modifying complex. These results establish the role of lncRNAs in 
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coordinating aggressive prostate cancer and as potential prognostic biomarkers for the 

disease. 

Introduction 

Prostate cancer is the most common non-cutaneous cancer in U.S. men, with over 

200,000 prostate cancer diagnoses per year89.  However, while 1 in 6 men are diagnosed 

with prostate cancer, only 1 in 32 men die from this disease196, 200, and it is estimated that 

only 20% of prostate cancer patients have a high-risk cancer197.  Thus, most prostate 

cancer patients die with their disease, but not from it.  While mutational events in key 

genes characterizes a subset of lethal prostate cancers198, 199, 201, the molecular basis for 

aggressive disease remains poorly understood. 

Long non-coding RNAs (lncRNAs) are polyadenylated RNA species >200bp in 

length commonly characterized by splicing of multiple exons, H3K4me3 promoter 

methylation, and transcription by RNA polymerase II79, 202.  lncRNA-mediated biology 

has been implicated in a wide variety of cellular processes, including pluripotency in 

stem cells203 and X chromosome inactivation204.  In cancer, lncRNAs are emerging as a 

prominent layer of previously underappreciated transcriptional regulation, often by 

collaborating with epigenetic complexes such as Polycomb Repressive Complex 1171, 173 

(PRC1) and Polycomb Repressive Complex 2 (PRC2)169, 172, 173, 205, among others. 

Despite reports showing that upregulation of the lncRNA HOTAIR participates in PRC2 

function in breast cancer169, we do not observe strong expression of this lncRNA in 

prostate (Figure 5.1), suggesting that other lncRNAs may be important in this cancer. 
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Figure 5.1: HOTAIR is not upregulated in prostate cancer.  
(a) qPCR analysis of a panel of breast cell lines and prostate cell lines for HOTAIR expression shows 
upregulation of HOTAIR in numerous breast cancer cell lines but not prostate cancer cell lines. Expression 
levels are normalized to GAPDH and the median expression of benign breast cell lines. (b) RPKM 
expression levels of HOTAIR in the prostate RNA-Seq cohort. Preferential upregulation of HOTAIR is not 
observed in prostate cancer and metastases samples. 
 

We hypothesized that prostate cancer aggressiveness was governed by 

uncharacterized lncRNAs and sought to discover lncRNAs whose expression 

characterized the subset of prostate cancer patients with aggressive disease. In Chapter 5, 

we described our use of RNA-Seq profiling across a prostate cancer cohort to discover 

121 lncRNA loci (out of >1,800) that were aberrantly expressed in this disease27. Of 

particular interest was our discovery of the prostate-specific lncRNA gene PCAT-1, 

which was markedly over-expressed in a subset of prostate cancers, particularly 
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metastases (Figure 4.12f). PCAT-1 resides in the well-studied 8q24 genome ‘hotspot’ 

associated with development of prostate cancer206, 207. Additionally, we observed that a 

group of PCATs, including PCAT-109, PCAT-114, and PCAT-118 showed striking 

outlier profiles and ranked among the best outliers in prostate cancer when compared to 

protein-coding genes (Figure 4.12b,e). These PCATs were localized in a “gene desert” 

region on chromosome 2q31.3 with previously unknown ties to prostate cancer that we 

subsequently named the SChLAP locus (Figure 4.16). Here, we explore these loci more 

closely and discover remarkable roles for lncRNAs in coordinating the pathogenesis of 

prostate cancer. 

PCAT-1 represses distinct target genes and controls cell cycle proliferation 

To interrogate PCAT-1, we carried out 5’ and 3’ rapid amplification of cDNA ends 

(RACE) to define the full-length PCAT-1 transcript. We cloned the full-length PCAT-1 

transcript and performed in vitro translational assays, which were negative as expected 

(Figure 5.2).  

 
Figure 5.2: In vitro translation of PCAT-1 confirms ncRNA status.  
Full length PCAT-1 transcript was cloned into the PCR2.1 vector (Invitrogen) and expressed using the TnT 
Quick Coupled Transcription/Translation System (Promega). Western blot analysis resolving the proteins 
by SDS-PAGE indicated that PCAT-1 is a non-coding RNA with no protein-coding capacity. GUS and 
ERG protein in vitro translation served as positive controls. 
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Interestingly, PCAT-1 incorporates portions of a mariner family transposase208, 209, 

an Alu and a viral long terminal repeat promoter region (Figure 5.3a). Because PCAT-1 

was strikingly upregulated in a subset of metastatic and high-grade localized (Gleason 

score %7) cancers (Figure 4.12f), we hypothesized that PCAT-1 may have coordinated 

expression with the oncoprotein EZH2, a core PRC2 protein that is upregulated in solid 

tumors and contributes to a metastatic phenotype210, 211. Surprisingly, we found that 

PCAT-1 and EZH2 expression were nearly mutually exclusive (Figure 5.3b), with only 

one patient showing outlier expression of both. This suggests that outlier PCAT-1 and 

EZH2 expression may define two subsets of high-grade disease. To determine the 

mechanism for the expression profiles of PCAT-1 and EZH2, we inhibited EZH2 activity 

in VCaP cells, which express low-to-moderate levels of PCAT-1. Knockdown of EZH2 

by short hairpin (sh)RNA or pharmacologic inhibition of EZH2 with the inhibitor 3-

deazaneplanocin A (DZNep) caused a dramatic upregulation in PCAT-1 expression levels 

(Figure 5.3c,d), as did treatment of VCaP cells with the demethylating agent 5’-

deoxyazacytidine, the histone deacetylase inhibitor SAHA or both (Figure 5.3e). ChIP 

assays also demonstrated that SUZ12, a core PRC2 protein, directly binds the PCAT-1 

promoter ~1 kb upstream of the TSS (Figure 5.3f). By contrast, LNCaP cells, which 

express PCAT-1 at relatively high levels, did not exhibit PRC2-mediated repression of 

PCAT-1 (Figure 5.4a,b). 
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Figure 5.3: PCAT-1 is a marker of aggressive cancer and a PRC2-repressed lncRNA.  
(a) The genomic location of PCAT-1 determined by 5’ and 3’ RACE, with DNA sequence features 
indicated by the colored boxes. (b) qPCR for PCAT-1 (y axis) and EZH2 (x axis) on a cohort of benign (n = 
19), localized tumor (n = 35) and metastatic cancer (n = 31) samples. The inset table quantifies patient 
subsets demarcated by the gray dashed lines. (c) Knockdown of EZH2 in VCaP resulted in upregulation of 
PCAT-1. Data were normalized to GAPDH and represented as fold-change. ERG and B-actin serve as 
negative controls. The inset western blot indicates EZH2 knockdown. (d) Treatment of VCaP cells with 0.1 
µM of the EZH2 inhibitor DZNep or vehicle control (DMSO) shows increased expression of PCAT-1 
transcript after EZH2 inhibition. (e) PCAT-1 expression is increased upon treatment of VCaP cells with the 
demethylating agent 5-azacytidine (5-Aza), the histone deacetylase inhibitor SAHA or a combination of 
both. qPCR data were normalized to the average of (GAPDH + β-actin) and represented as fold-change. 
GSTP1 and FKBP5 are positive and negative controls, respectively. (f) ChIP assays for SUZ12 
demonstrated direct binding of SUZ12 to the PCAT-1 promoter. Primer locations are indicated (boxed 
numbers) in the PCAT-1 schematic. 
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Figure 5.4: PCAT-1 is not a PRC2 target in LNCaP cells. 
(a) LNCaP cells were infected with lentivirus for EZH2 or scrambled control. qPCR showed no change in 
PCAT- 1 expression. IGFBP3 and HMBS serve as positive and negative controls, respectively. (b) ChIP 
analysis of SUZ12 in LNCaP cells does not show direct binding of PRC2 proteins upstream of the PCAT-1 
transcriptional start site (refer to fig. 3E for comparison). KRT17 serves as a positive control. (c) RNA-IP 
analysis of in LNCaP cells does not indicate binding of PCAT-1 transcript to PRC2 (compare to 
Supplementary Figure 23). lincGARS serves as a positive control. (d) A representative image of SUZ12 
RNA-IP pulldown efficiency. Equal fractions of LNCaP nuclear lysate were treated with either IgG or 
SUZ12 antibodies and, following washing, probed for SUZ12 protein. Treating nuclear lysates with no 
antibody serves as a negative control. 
 

To explore the functional role of PCAT-1 in prostate cancer, we stably 

overexpressed full-length PCAT-1 or controls in RWPE benign immortalized prostate 

cells (Figure 5.4). Additionally, we designed short interfering (si)RNA oligos to PCAT-1 

and performed knockdown experiments in LNCaP cells (Figure 5.5). 
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Figure 5.4: PCAT-1 overexpression in RWPE cells.  
Full length PCAT-1 transcript was cloned into a lentiviral vector, and, following lentivirus production, 
RWPE benign immortalized prostate cells stably overexpressing PCAT-1 were generated by selection with 
blasticidin. PCAT-1 overexpression compared to the LacZ control cells was confirmed by qPCR. LNCaP 
serves as a positive control. 

 
Figure 5.5: qPCR validation of PCAT-1 knockdown in LNCaP cells 
 

We observed a consistent increase in cell proliferation when PCAT-1 was overexpressed 

at physiological levels (Figure 5.6a). Supporting our overexpression data, knockdown of 

PCAT-1 with three independent siRNA oligos resulted in a 25–50% decrease in cell 

proliferation in LNCaP cells (Figure 5.6b). As expected, knockdown of PCAT-1 in 

VCaP cells, in which PCAT-1 is suppressed by PRC2, did not affect cell proliferation 

(Figure 5.7). 
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Figure 5.6: PCAT-1 promotes cell proliferation. 
(a) Cell proliferation assays for RWPE benign immortalized prostate cells stably infected with PCAT-1 
lentivirus or RFP and LacZ control lentiviruses. An asterisk (*) indicates P & 0.02 by a two-tailed Student's 
t-test. (b) Cell proliferation assays in LNCaP using PCAT-1 siRNAs. An asterisk (*) indicates P & 0.005 by 
a two-tailed Student's t-test. (c) Gene ontology analysis of PCAT-1 knockdown microarray data using the 
DAVID program. Blue bars represent the top hits for upregulated genes. Red bars represent the top hits for 
downregulated genes. DAVID enrichment scores are represented with Benjamini-Hochberg-adjusted P 
values. All error bars in this figure are mean ± s.e.m. 
 

 
Figure 5.7: PCAT-1 knockdown in VCAP cells. 
VCaP cells were treated with three unique PCAT-1 siRNA oligos. (a) PCAT-1 knockdown was confirmed 
by qPCR. (b) Cell proliferation assays in VCaP cells treated with PCAT-1 siRNAs show no significant 
difference from cells treated with controls. 
 

Gene expression profiling of LNCaP knockdown samples on cDNA microarrays 

indicated that PCAT-1 modulates the transcriptional regulation of 370 genes (255 

upregulated, 115 downregulated; FDR & 0.01) (Figure 5.8). Gene ontology analysis of 

the upregulated genes showed preferential enrichment for gene set concepts such as 
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mitosis and cell cycle, whereas the downregulated genes had no concepts showing 

statistical significance (Figure 5.9). These results suggest that the function of PCAT-1 is 

predominantly repressive in nature. 

 
Figure 5.8: Gene expression profiling of PCAT-1 knockdown samples 
PCAT-1 knockdown LNCaP samples were run in triplicate against a non-targeting siRNA control sample. 
Data were analyzed with SAM analysis, producing a signature of 562 differentially-expressed probes (FDR 
& 0.01; 395 upregulated, 167 downregulated). Concordance between biological and technical replicates was 
high. 
 

 
Figure 5.9: Gene ontology analysis of PCAT-1. 
PCAT-1 knockdown microarray data was analyzed using the DAVID program. Blue bars represent the top 
hits for upregulated genes. Red bars represent the top hits for downregulated genes. DAVID enrichment 
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scores are represented with Benjamini-Hochberg-adjusted P values. All error bars in this figure are mean ± 
s.e.m. 
 

PCAT-1 signatures in prostate cancer 

We next validated expression changes in three key PCAT-1 target genes (BRCA2, 

CENPE and CENPF) whose expression is upregulated upon PCAT-1 knockdown (Figure 

5.10a) in LNCaP and VCaP cells, the latter of which appear less sensitive to PCAT-1 

knockdown likely due to lower overall expression levels of this transcript. Because of the 

regulation of PCAT-1 by PRC2 in VCaP cells, we hypothesized that knockdown of EZH2 

would also downregulate PCAT-1 targets as a secondary phenomenon owing to the 

subsequent upregulation of PCAT-1. Simultaneous knockdown of PCAT-1 and EZH2 

would thus abrogate expression changes in PCAT-1 target genes. Carrying out this 

experiment in VCaP cells demonstrated that PCAT-1 target genes were indeed 

downregulated by EZH2 knockdown, and that this change was either partially or 

completely reversed using siRNA oligos to PCAT-1 (Figure 5.10a), lending support to 

the role of PCAT-1 as a transcriptional repressor. Taken together, these results suggest 

that PCAT-1 biology may exhibit two distinct modalities: one in which PRC2 represses 

PCAT-1 and a second in which active PCAT-1 promotes cell proliferation. PCAT-1 and 

PRC2 may therefore characterize distinct subsets of prostate cancer. 

To examine these findings, we used qPCR to measure expression of BRCA2, CENPE and 

CENPF in our cohort of tissue samples. Consistent with our model, we found that 

samples expressing PCAT-1 tended to have low expression of PCAT-1 target genes 

(Figure 5.10b). Moreover, comparing EZH2-outlier and PCAT-1-outlier patients, we 

found that two distinct phenotypes emerged. Individuals with high EZH2 tended to have 

high levels of PCAT-1 target genes, and those with high expression of PCAT-1 itself 
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displayed the opposite expression pattern of target genes (Figure 5.10c). Network 

analysis of the top 20 upregulated genes after PCAT-1 knockdown with the HefaLMP 

tool212 further suggested that these genes form a coordinated network (Figure 5.10d), 

corroborating our previous observations. The interplay between PRC2 and PCAT-1 

further suggests that this lncRNA may have an important role in prostate cancer 

progression (Figure 5.10e) 

 
Figure 5.10: Prostate cancer tissues recapitulate PCAT-1 signaling. 
(a) qPCR expression of three PCAT-1 target genes after PCAT-1 knockdown in VCaP and LNCaP cells, as 
well as following EZH2 knockdown or dual EZH2 and PCAT-1 knockdown in VCaP cells. qPCR data were 
normalized to the average of (GAPDH + '-actin) and represented as fold change. Error bars represent mean 
± s.e.m. (b) Standardized log2-transformed qPCR expression of a set of tumors and metastases with outlier 
expression of either PCAT-1 or EZH2. The shaded squares in the lower left show Spearman correlation 
values between the indicated genes (* indicates P < 0.05). Blue and red indicate negative or positive 
correlation, respectively. The upper squares show the scatter plot matrix and fitted trend lines for the same 
comparisons. (c) A heatmap of PCAT-1 target genes (BRCA2, CENPF, CENPE) in EZH2-outlier and 
PCAT-1-outlier patient samples (see Fig. 4b). Expression was determined by qPCR and normalized as in b. 
(d) A predicted network generated by the HefaLMP program for 7 of 20 top upregulated genes following 
PCAT-1 knockdown in LNCaP cells. Gray nodes are genes found following PCAT-1 knockdown. Red 
edges indicate co-expressed genes; black edges indicate predicted protein-protein interactions; and purple 
edges indicate verified protein-protein interactions. (e) A proposed schematic representing PCAT-1 
upregulation, function and relationship to PRC2. 
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SChLAP1 contributes to the development of aggressive prostate cancer by 

antagonizing the SWI/SNF complex 

The SChLAP locus harbors several novel cancer-specific transcripts, including PCAT-

109, PCAT-113, PCAT-114, PCAT-115, and PCAT-118. These PCATs were prominently 

expressed in a subset of disease, and were nominated by COPA analysis to detect highly 

juxtaposed expression patterns. In fact, PCATs contained in the SChLAP locus scored 

higher in this analysis than any other novel transcripts (Figure 5.11a). We began 

investigating the SChLAP locus by employing RACE on the PCATs in the region, 

including PCAT-109 and PCAT-114. Efforts to validate PCAT-109 by PCR and rapid 

amplification of cDNA ends (RACE) failed, partly due to the fact that this gene was not 

robustly expressed in any prostate cell lines. By contrast, in the PCAT-114 region, PCR 

experiments and 5’ and 3’ RACE defined a 1.4 kb, poly-adenylated gene composed of up 

to seven exons and spanning nearly 200kb on Ch2q31.3 (Figure 5.11b). We found that 

this gene linked together multiple PCATs that were initially assembled independently, 

and so we renamed the gene Second Chromosome Locus Associated with Prostate-1 

(SChLAP1). 

We employed a published ChIP-Seq dataset of prostate cancer182 to confirm that 

the transcriptional start site (TSS) of SChLAP1 was marked by tri-methylation of H3K4 

(H3K4me3) and its gene body harbored tri-methylation of H3K36 (H3K36me3) (Figure 

5.11b), an epigenetic signature consistent with canonical protein-coding genes and 

lncRNAs79.  PCR assays defined numerous splicing isoforms of this gene of which three 

(termed isoforms #1, #2, and #3, respectively) constituted the vast majority (>90%) of 

transcripts in the cell (data not shown). 
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Using quantitative PCR (qPCR), we validated that SChLAP1 was highly 

expressed in ~20% of prostate cancers, including metastatic prostate cancer (Figure 

5.11c), but that SChLAP1 expression was low in benign prostate tissues.  To establish 

SChLAP1 as a non-coding gene, we cloned three isoforms (isoforms 1, 2 and 3) and 

performed in vitro translation assays, which were negative (data not shown).  Consistent 

with this, we found that SChLAP1 expression in prostate cell lines was located in the 

nucleus (Figure 5.11d), whereas protein-coding mRNAs are located in the cytoplasm in 

order to engage the ribosomal machinery.  To confirm the nuclear localization of 

SChLAP1 in human samples, we optimized an in situ hybridization (ISH) assay to 

visualize SChLAP1 expression in formalin-fixed paraffin-embedded (FFPE) prostate 

cancer samples using a training set and a test set of tissues. We similarly observed that 

expression of SChLAP1 was almost exclusively found in the cell nucleus in both 

localized and metastatic prostate cancers (Figure 5.11e).   
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Figure 5.11: Discovery of SChLAP1 as a prostate cancer lncRNA.  
(a) Cancer outlier profile analysis (COPA) for intergenic lncRNAs in prostate cancer nominates two 
transcripts, PCAT-109 and PCAT-114, as prominent outliers. (b) A representation of the SChLAP1 gene 
and its annotations in current databases.  SChLAP1 may consist of up to seven exons on Chr2q31.3.  An 
aggregated representation of current gene annotations for Ensembl, ENCODE, UCSC, Ref-Seq, and Vega 
shows no annotation for SChLAP1.  No spliced ESTs represent SChLAP1.  ChIP-Seq data for H3K4me3, 
RNA-Pol II, and H3K36me3 show enrichment at the SChLAP1 gene.  Also, RNA-Seq data showing an 
outlier sample for SChLAP1 illustrates its expression. (c) qPCR for SChLAP1 on a panel of benign prostate 
(n=33), localized prostate cancer (n=82), and metastatic prostate cancer (n=33) samples.  qPCR data is 
normalized to the average of (GAPDH + HMBS) and represented as standardized expression values. (d) 
SChLAP1 expression is predominantly nuclear.  Prostate cell lysates were fractionated and nuclear and 
cytoplasmic fractions were tested for RNA expression.  U1 is a positive control for nuclear gene 
expression. (e) In situ hybridization of SChLAP1 in human prostate cancer.  SChLAP1 staining is shown for 
both localized and metastatic tissues, and is nuclear in cellular localization. 
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In silico analysis suggests SChLAP1 associates with aggressive prostate cancer  

Given that SChLAP1 is not measured by gene expression microarray platforms, we 

explored a link between SChLAP1 and aggressive prostate cancer by defining signatures 

of SChLAP1-correlated or anti-correlated genes. To develop these signatures, we 

augmented our original RNA-Seq cohort with data from 12 primary tumors and 5 benign 

tissues published in GEO as GSE2226018, and 16 primary tumors and 3 benign tissues 

released in dbGAP as study phs000310.v1.p119. We reanalyzed the sequencing data 

using Tophat version 1.3.156 against the Ensembl GRCh37 human genome build. Known 

introns (Ensembl release 63) were provided to Tophat. Gene expression across the 

Ensembl version 63 genes and the SChLAP1 transcript was quantified by HT-Seq version 

0.5.3p3 using the script htseq-count (www- huber.embl.de/users/anders/HTSeq). Reads 

were counted without respect to strand to avoid bias between unstranded and strand-

specific library preparation methods. This bias results from the inability to resolve reads 

in regions where two genes on opposite strands overlap in the genome.  

 Using the count data from this augmented cohort, we developed signatures 

distinguishing cancers from benign samples, metastatic from primary tumors, and high-

grade from low-grade tumors (Figure 5.12). Differential expression analysis was 

performed using R package DESeq version 1.6.133. We called differentially expressed 

genes by imposing adjusted p-value cutoffs for cancer versus benign (padj < 0.05), 

metastasis versus primary (padj < 0.05), and Gleason 8+ versus 6 (padj < 0.10). 
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Figure 5.12: Generation of prostate cancer gene signatures from RNA- Seq data. 
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Heatmap visualizations of RNA-Seq gene signatures distinguishing (a) benign prostate tissues and 
localized prostate cancer tissues, (b) low grade from high grade localized prostate cancer tissues, and (c) 
localized prostate cancer tissues from metastatic cancers. 

 

Next we used the count data to derive signatures of correlated and anti-correlated 

genes to SChLAP1. Read count data from HT-Seq were normalized and converted to 

pseudo-counts using functions from DESeq33. Gene expression levels were then mean-

centered and standardized using the scale function in R. Pearson correlation coefficients 

were computed between each gene of interest and all other genes. Statistical significance 

of Pearson correlations was determined by comparison to correlation coefficients 

achieved by 1,000 random permutations of the expression data. We controlled for 

multiple hypothesis testing using the qvalue package in R. A 253-gene SChLAP1 

correlation signature was then determined by imposing a cutoff of q < 0.05 on the 

correlation results.  

We interrogated the SChLAP1 gene signature across published prostate cancer 

microarray data curated using Oncomine concept analysis213, 214. We separated the 253 

genes with expression levels significantly correlated to SChLAP1 into positively and 

negatively correlated gene lists. We imported these gene lists into Oncomine as custom 

concepts. We then nominated significantly associated Prostate Cancer concepts with 

Odds Ratio > 3.0 and p-value < 10-6. We exported these results as nodes and edges of a 

concept association network, and visualized the network using Cytoscape version 

2.8.2215. The node positions were computed using the Force Directed Layout algorithm in 

Cytoscape using the odds ratio as the edge weight (node positions were subtly altered 

manually to enable better visualization of text labels) 
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Network analysis representing the significantly enriched concepts (p-value < 1e-6, 

odds ratio > 3.0) revealed a striking association with concepts related to prostate cancer 

progression (Figure 5.13a). Genes positively correlated with SChLAP1 were over-

expressed in metastatic and high-grade localized tumors.  Conversely, genes negatively 

correlated with SChLAP1 were under-expressed in metastatic and high-grade localized 

tumors.  

 Although Oncomine allows users to import custom gene signatures, it limits the 

user to select a number of predefined microarray platforms. Therefore, we developed an 

independent concept association analysis in order to make robust statistical claims based 

on data from our RNA sequencing cohort. We expanded our correlation analysis to 

include additional known prostate cancer genes: EZH2, a metastasis gene210, 211, PCA3, an 

over-expressed lncRNA biomarker174, AMACR, a tissue biomarker188, and B-actin 

(ACTB) as a control gene. For each gene we created signatures from the top 5 percent of 

positively and negatively correlated genes. We performed a large meta-analysis of these 

correlation signatures across Oncomine datasets corresponding to disease outcome 

(Glinsky Prostate, Setlur Prostate), metastatic disease (Holzbeierlein Prostate, Lapointe 

Prostate, LaTulippe Prostate, Taylor Prostate 3, Vanaja Prostate, Varambally Prostate, 

and Yu Prostate), advanced gleason score (Bittner Prostate, Glinsky Prostate, Lapointe 

Prostate, LaTulippe Prostate, Setlur Prostate, Taylor Prostate 3, and Yu Prostate), and 

localized cancer (Arredouani Prostate, Holzbeierlein Prostate, Lapointe Prostate, 

LaTulippe Prostate, Taylor Prostate 3, Varambally Prostate, and Yu Prostate). We also 

incorporated our own concept signatures for metastasis, advanced Gleason score, and 

localized cancer determined from our RNA-Seq data (Figure 5.12). For each concept we 
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downloaded the gene signatures corresponding to the top 5 percent of genes up- and 

down-regulated from the Oncomine web site. Pairwise signature comparisons were 

performed using a one-sided Fisher’s Exact Test. We controlled for multiple hypothesis 

testing using the “qvalue” package in R. We considered concept pairs with q < 0.01 and 

odds ratio > 2.0 as significant. 

A heat-map visualization of statistically significant comparisons (q-value < 0.01) 

confirmed a strong association of SChLAP1-correlated genes with high-grade and 

metastatic cancers as well as poor clinical outcomes (Figure 5.13b).  In this respect, 

SChLAP1 was highly similar to EZH2, a control metastasis gene.  By contrast, PCA3 and 

AMACR, two biomarkers not associated with disease progression, strongly associated 

with Cancer vs. Normal concepts but not concepts associated with aggressive disease.   
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Figure 5.13: SChLAP1 expression characterizes aggressive prostate cancer.  
(a) Network representation of Oncomine concepts analysis of genes positively and negatively correlated 
with SChLAP1 expression levels in localized prostate cancers profiled by RNA-Seq. The network was 
drawn using the Force Directed Layout algorithm in the Cytoscape215 tool and subtly altered such that text 
labels could be visualized aesthetically. Node sizes reflect the number of genes that comprise each 
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molecular concept. The nodes are colored according to the concept category: SChLAP1 (yellow), Cancer 
vs. Normal (cyan), High Grade Cancer (orange), Metastasis (red), and Clinical Outcome (magenta). Edges 
are drawn between nodes with statistically significant enrichment (p-value < 1e-6, odds ratio > 3.0) and 
darker edge shading implies higher odds ratio. (b) Heatmap representation of comparisons between co-
expression gene signatures and molecular concepts. Comparisons to positively (top portion) and negatively 
correlated (bottom portion) gene signatures are shown separately. Comparisons that do not reach statistical 
significance (q > 0.01 or odds ratio < 2) are shown in grey. In cases where a gene signature associates with 
both the over- and under-expression gene sets from a single concept, only the most significant result (as 
determined by odds ratio) is shown. Associations with over-expression concepts are colored red, and under-
expression concepts blue. The color shade reflects the base-2 logarithm of the odds ratio. (c-e) Kaplan-
Meier analyses of prostate cancer outcomes in the Mayo Clinic cohort.  SChLAP1 expression was 
measured using Affymetrix exon arrays and patients were stratified according to their SChLAP1 
expression.  Patient outcomes were analyzed for biochemical recurrence (c), clinical progression to 
systemic disease (d), and prostate cancer-specific mortality (e). The shaded regions represent the 95% 
confidence interval.   
 

We complemented this analysis, which was based on significantly overlapping gene 

signatures, with Kaplan-Meier Survival Analysis based on SChLAP1 gene signature. We 

downloaded prostate cancer expression profiling data and clinical annotations from 

GSE8402 published by Setlur et al.216 and found that 80 of the 253 genes in the SChLAP1 

signature had been assayed in the study. We then assigned SChLAP1 expression scores to 

each patient sample in the cohort using the un-weighted sum of standardized expression 

levels across the 80 genes. Given that we observed SChLAP1 expression in 

approximately 20% of prostate cancer samples, we used the 80th percentile of SChLAP1 

expression scores as the threshold for “high” versus “low” scores. We then performed 10-

year survival analysis using the survival package in R and computed statistical 

significance using the log-rank test. Additionally, we imported the 253-gene SChLAP1 

signature into Oncomine in order to download the expression data for 167 of the 253 

genes profiled by the Glinsky prostate dataset217. We assigned SChLAP1 expression 

scores in a similar fashion and designated the top 20% of patients as “high” for 

SChLAP1. We performed survival analysis using the time to biochemical PSA recurrence 

and computed statistical significance as above. Kaplan-Meier analysis of each dataset 
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similarly showed significant associations (log rank test, p < 0.01) between the SChLAP1 

signature and more rapid disease recurrence and decreased survival probability (Figure 

5.14). 

 
Figure 5.14: SChLAP1 expression stratifies prostate cancer patient outcomes.  
(a) Kaplan-Meier analysis of prostate cancer outcomes. Patients were stratified according to their 
SChLAP1 signature score. Signature scores at or above the 80th percentile were deemed ‘High’, and the 
rest ‘Low’. Statistical significance was determined by the log rank test. Analysis of the 10-year overall 
survival probability for prostate cancer patients from the Setlur et al. study. (b) As in (a), Analysis of the 
biochemical recurrence probability for prostate cancer patients from the Glinksy et al. study. 
 

SChLAP1 levels associate with aggressive disease in a cohort of high risk prostate 

cancer patients 

To implicate SChLAP1 expression with clinical outcomes directly, we used Affymetrix 

exon microarrays, which harbor probes mapping to SChLAP1 exons (see Methods), to 

profile its expression in a prospectively-designed study of 235 high-risk prostate cancer 

patients who underwent radical prostatectomy between 2000-2006 at the Mayo Clinic218.  

Samples were defined as SChLAP1-low or SChLAP1-high according to unsupervised 

clustering by the PAM function in R and evaluated for three clinical endpoints: 

biochemical recurrence (BCR), clinical progression to systemic disease (CP), and 

prostate cancer-specific mortality (PCSM).  At the time of this analysis, patients had a 

median follow-up of 8.1 years.   
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We found that SChLAP1 was a powerful single-gene predictor of aggressive prostate 

cancer (Fig. 2c-e).  SChLAP1 expression was highly significant when distinguishing CP 

and PCSM (p = 0.00005 and p = 0.002, respectively) (Figure 5.13d,e).  For the BCR 

endpoint, high SChLAP1 expression in patient primary tumor specimens was associated 

with a rapid median time-to-progression (1.9 vs 5.5 years for SChLAP1 high and low 

patients, respectively) (Figure 5.13c).  To validate these findings, we confirmed that 

SChLAP1-positive patients are at markedly higher risk for BCR using qPCR on an 

independent cohort (Figure 5.15).  Multivariable and univariable regression analyses of 

the Mayo Clinic data demonstrated that SChLAP1 expression is an independent predictor 

of prostate cancer aggressiveness with highly significant hazard ratios for predicting 

BCR, CP, and PCSM (HR or 3.045, 3.563, and 4.339, respectively, p < 0.01) which were 

comparable to other clinical factors such as advanced clinical stage and the Gleason 

histopathological score (Figure 5.16).  Taken together, our data suggest that SChLAP1 

expression is a powerful indicator of aggressive cancer that either out-performs, or is 

comparable to, standard clinical parameters for the prediction of CP, PCSM, and BCR. 

 
Figure 5.15: SChLAP1 predicts biochemical recurrence in the University of Michigan cohort.  
SChLAP1 expression was measured using qPCR on a cohort of fresh-frozen prostate cancer tissue samples 
from radical prostatectomy patients for whom follow-up for biochemical recurrence was available. 
Statistical significance was determined by the log- rank test. 
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Figure 5.16: SChLAP1 expression is an independent predictor of patient clinical parameters.  
(a-f) Multivariate and univariate analyses for SChLAP1 and disease outcomes. (a-c) Multivariate survival 
analyses demonstrate that SChLAP1 is an independent predictor of prostate cancer biochemical recurrence 
(a), clinical progression (b), and prostate cancer-specific mortality (c) following radical prostatectomy. (d-f) 
Univariate survival analyses for SChLAP1 for biochemical recurrence (d), clinical progression (e), and 
prostate cancer-specific mortality (f) as in (a- c). For these analyses, clinical significance was adjusted for 
confounding adjuvant treatment, and Gleason score was dichotomized between those samples &7 %8. Red 
diamonds indicate the median hazard ratio for each factor and blue lines indicate the 95% confidence 
interval 

SChLAP1 controls cell invasiveness in vitro and in vivo 

To explore a functional role for SChLAP1, we performed siRNA knockdowns of this 

gene using two independent siRNAs as well as siRNA to EZH2, a positive control 

essential for cancer cell invasion210, 211.  Remarkably, knockdown of SChLAP1 

dramatically impaired cell invasion in vitro at a level comparable to EZH2 (Figure 5.17a 

and Figure 5.18a).  SChLAP1 knockdown also impaired cell proliferation (Figure 

5.18b).  Overexpression of SChLAP1 isoform 2, which lacks the binding site for siRNA-
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2, rescued the in vitro invasive phenotype of 22Rv1 cells treated with siRNA-2 (Figure 

5.18c,d), confirming the specificity of our siRNA experiments.  Next, we overexpressed 

the three most abundant SChLAP1 isoforms in RWPE benign immortalized prostate cells 

at physiologic levels similar to the LNCaP cell line (Figure 5.18e).  While SChLAP1 

overexpression did not impact cell proliferation (Figure 5.18f), we found that RWPE 

cells expressing all three SChLAP1 isoforms, but not control cells, exhibited a dramatic 

ability to invade through Matrigel model basement membrane matrix in vitro (Figure 

5.17b). 

To assess the role of SChLAP1 on cancer cells in vivo, we employed a xenograft 

model using 22Rv1 cells stably knocking down SChLAP1 (Figure 5.19a) and confirmed 

that this gene is necessary for appropriate cancer cell metastatic seeding in vivo. 

Specifically, we performed intracardiac injection of tumor cells and monitored luciferase 

signal from mouse lungs and distant metastases.  These experiments showed that 22Rv1 

shSChLAP1 cells displayed impaired metastatic seeding and growth at both proximal 

(lungs) and distal sites (Figure 5.17c,d).  Indeed, 22Rv1 shSChLAP1 cells displayed 

both fewer gross metastatic sites overall (an average 3.66 metastatic sites in shNT mice 

vs. 2.07 metastatic sites in shSChLAP1 #1 and 1.07 sites in shSChLAP1 #2 mice, p < 

0.05, Student’s t-test) as well as smaller metastatic tumors when they did form (Figure 

5.17d,e).  Histopathological analysis of the metastatic 22Rv1 tumors, regardless of 

SChLAP1 knockdown, showed uniformly high-grade epithelial cancer with frequent 

mitosis noted (Figure 5.19b).  Interestingly, shSChLAP1 subcutaneous xenografts 

displayed slower tumor progression in vivo (Figure 5.19c); however this was due to 
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delayed tumor engraftment rather than decreased tumor growth kinetics and we observed 

no change in Ki67 staining between shSChLAP1 and shNT cells (Figure 5.19d-i).  

Next, we used the chick chorioallantoic membrane (CAM) assay210 to examine 

the metastatic process more closely.  Specifically, this assay measures cancer cell 

metastasis into a chicken embryo and enables analysis of multiple neoplastic capabilities 

required for metastasis, including the ability to invade local tissues, intravasate into and 

extravasate out of blood vessels, seed distant organs, and grow in a foreign 

microenvironment31.  We found that 22Rv1 shSChLAP1 cells demonstrated a greatly 

reduced ability to invade (Figure 5.17f), intravasate (Figure 5.17g) and metastasize 

distant organs (Figure 5.17h).  Additionally, 22Rv1 shSChLAP1 cells also showed 

decreased tumor growth in the chick embryo (Figure 5.17i).  Importantly, RWPE-

SChLAP1 overexpression cells partially recapitulated these results, displaying a 

markedly increased ability to intravasate (Figure 5.17j).  Together, the murine metastasis 

and CAM data suggest that the primary function of SChLAP1 may be to promote 

invasion and metastasis through cancer cell intravasation, extravasation, and subsequent 

tumor cell seeding. 
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Figure 5.17: SChLAP1 coordinates cancer cell invasion in vitro and metastatic seeding in vivo.  
(a) siRNA knockdown of SChLAP1 in vitro.  Three prostate cell lines (LNCaP, 22Rv1, Du145) were 
treated with two independent siRNAs for SChLAP1 and invasion through Matrigel in a Boyden chamber 
assay was monitored.  EZH2 siRNA serves as a positive control.  Data are represented as normalized mean 
+/- S.E.M.  An asterisk (*) indicated p < 0.05 by Student’s T-test. (b) Overexpression of SChLAP1 in 
RWPE cells.  Benign RWPE prostate cells overexpressing three isoforms of SChLAP1, but not controls, 
demonstrate increased cellular invasion.  Data are represented as normalized mean +/- S.E.M. (c) 
Intracardiac injection of 22Rv1 cells with stable SChLAP1 knockdown was performed in severe combined 
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immunodeficient (SCID) mice, and metastatic seeding and growth of tumor cells was monitored.  Example 
luciferase bioluminescence images from 22Rv1 shNT, shSChLAP1 #1, and shSChLAP1 #2 mice five 
weeks following intracardiac injection.  Mouse IDs are given above each image. (d) The relative intensity 
of whole-mouse luciferase signal is plotted for 22Rv1 intracardiac injection experiments.  Data are 
represented as mean +/- S.E.M.  An asterisk (*) indicates p < 0.05 by a two-tailed Student’s T-test. (e) The 
number of gross metastatic sites observed by luciferase signal in 22Rv1 shSChLAP1 cells or shNT 
controls.  Independent foci of luciferase signal were averaged for shNT (n=9), shSChLAP1 #1 (n=14) and 
shSChLAP1 #2 (n=14) mice.  Statistical significance was determined by a two-tailed Student’s t-test. (f) 
Invasion of 22Rv1-shNT and 22Rv1 shSChLAP1 #2 cells across the chorioallantoic membrane in the chick 
chorioallantoic membrane (CAM) assay.  22Rv1 cells are labeled with GFP.  The image is counterstained 
with chicken collagen IV for vasculature (RFP) and DAPI for nuclei. (g) Quantification of intravasation of 
22Rv1-shNT and 22Rv1 shSChLAP1 #2 cells in the CAM assay. (h) Quantification of metastasis to liver 
and lungs for 22Rv1-shNT and 22Rv1 shSChLAP1 #2 cells in the CAM assay. (i) Quantification of tumor 
weight of 22Rv1-shNT and 22Rv1 shSChLAP1 #2 cells in the CAM assay. (j) Quantification of 
intravasation of RWPE-LacZ and RWPE-SChLAP1 cells in the CAM assay.   All data are represented as 
mean +/- S.E.M. Statistical significance was determined by a two-tailed Student’s t-test. 
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Figure 5.18: In vitro knockdown and overexpression of SChLAP1.  
(a) 22Rv1, LNCaP, and Du145 cells were treated with siRNAs against SChLAP1. qPCR indicates relative 
knockdown efficiency in these cell lines. Error bars represent S.E.M. (b) Expression of SChLAP1 in 22Rv1 
cells treated with non- targeting, siRNA #2 for SChLAP1, or siRNA #2 with exogenous overexpression of 
SChLAP1 isoform 2. (c) Boyden chamber invasion assay data for 22Rv1 cells treated with non-targeting, 
siRNA #2 for SChLAP1, or siRNA #2 with exogenous overexpression of SChLAP1 isoform 2. Data are 
represented as absorbance at 560nM. Error bars represent S.E.M. (e) Overexpression of SChLAP1 isoforms 
1-3 in RWPE cells was confirmed using qPCR, which demonstrated that the overexpression resulted in 
comparable levels of SChLAP1 transcript to LNCaP cells that express this gene endogenously. HMBS 
serves as a negative control. Error bars represent S.E.M. (f) Cell proliferation assays for RWPE cells 
overexpressing SChLAP1 isoforms. No significant change in cell proliferation is observed. Error bars 
represent S.E.M. 
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Figure 5.19: Knockdown of SChLAP1 delays tumor engraftment but not tumor growth kinetics.  
(a) Knockdown efficiencies for the shRNA knockdown of SChLAP1 in LNCAP and 22Rv1 cells. Error 
bars indicate S.E.M. (b) Histolopathology of murine tumors formed by intracardiac injection of 22Rv1 
shNT or 22Rv1 sh-SChLAP1 cells. Images are taken from the lungs and livers or mice with tumors. Slides 
are stained with H&E. (c) The fraction of mice surviving following subcutaneous injection of the 22Rv1 
cell lines. This plot represents tumor-specific death of mice sacrificed when the tumor volume reached the 
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maximum allowable volume. (d) 22Rv1 cells infected with lentivirus for shNT, sh-SChLAP1 #1, and sh-
SChLAP1 #2 were injected subcutaneously in mouse flanks and tumor growth was monitored by caliper 
measurements. N = 10 mice for shNT cells, n = 12 mice for sh-SChLAP1 #1 cells, n = 9 mice for sh-
SChLAP1 #2 cells. Absolute tumor volume for 22Rv1 shNT, sh-SChLAP1 #1 and sh-SChLAP1 #2 cells. 
Errors bars represent S.E.M. (e) Percent of mice with tumor engraftment over time. Knockdown of 
SChLAP1 delays the onset of tumor engraftment. (f) The percent change in tumor volume per cell line 
normalized to the time of tumor engraftment. Errors bars represent S.E.M. (g) Tumor volume normalized to 
the time of tumor engraftment. Errors bars represent S.E.M. (h) Immunohistochemistry staining for Ki67 in 
22Rv1 shNT and sh-SChLAP1 liver metastases. (i) Summary of Ki67 tumor staining for 22Rv1 shNT and 
sh-SChLAP1 murine tumors show significant difference in Ki67 staining intensity. 

SChLAP1 opposes gene expression regulation by the SWI/SNF complex 

To interrogate potential mechanisms of SChLAP1 function, we performed microarray 

profiling of 22Rv1 and LNCaP prostate cancer cells treated with SChLAP1 or control 

siRNAs, which revealed 165 upregulated and 264 downregulated genes in a highly 

significant manner (q-value < 0.001) (Figure 5.20a).  After ranking genes according to 

differential expression by Significance Analysis of Microarrays (SAM)186, we employed 

Gene Set Enrichment Analysis (GSEA)219 to search for enrichment across the Molecular 

Signatures Database (MSigDB)220. Among the highest ranked concepts we noticed genes 

positively or negatively correlated with the SWI/SNF complex (Figure 5.20a)221, which 

was independently confirmed using gene signatures generated from our RNA-Seq data 

(Figure 5.20c-e).  Importantly, SChLAP1-regulated genes were inversely correlated with 

these datasets, suggesting that SChLAP1 and SWI/SNF regulate gene transcription in 

opposing manners, leading to an antagonism of SWI/SNF activity by SChLAP1. 
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Figure 5.20: SChLAP1 and the SWI/SNF complex regulate gene expression in an opposing manner.  
(a) Transcriptome profiling following SChLAP1 knockdown in vitro. Differentially expressed genes were 
determined by SAM analysis and represented as a heatmap. (b-c) Gene set enrichment analysis (GSEA) of 
LNCaP and 22Rv1 cells treated with SChLAP1 siRNAs. GSEA results indicate that SChLAP1 knockdown 
results are inversely correlated with SWI/SNF-associated genes using data from Shen et al. (b) or using 
RNA-seq data (c). (d) Comparison of positively correlated BRM-associated gene signatures in prostate 
cancer. The BRM-derived signature from RNA-seq samples was compared to the Shen et al. signature by 
GSEA. A highly significant overlap between the signatures is observed. (e) Comparison of negatively 
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correlated BRM-associated gene signatures in prostate cancer. The BRM-derived signature from RNA-seq 
samples was compared to the Shen et al. signature by GSEA. A highly significant overlap between the 
signatures is observed. (f) Knockdown efficiency of SNF5 siRNAs in 22Rv1 and LNCaP. Error bars 
represent S.E.M. (g) GSEA analysis of SChLAP1 and SNF5 knockdowns. Across two cell lines (LNCaP 
and 22Rv1), SChLAP1 knockdown had the opposite effect on gene expression as knockdown of SNF5. 
Here, a positive GSEA normalized enrichment score (NES) indicates genes up-regulated upon SChLAP1 
knockdown, and a negative GSEA NES indicates genes down-regulated upon SChLAP1 knockdown. (h) 
GSEA results from comparisons of SChLAP1 and SNF5 knockdown in 22Rv1 cells. SChLAP1 was 
knocked-down using siRNAs in 22Rv1 cells. Gene expression changes were compared using GSEA to 
expression changes observed using SNF5 siRNAs in LNCaP or 22Rv1 cells. The enrichment plots of these 
comparisons are shown. (i) GSEA results from comparisons of SChLAP1 and SNF5 knockdown in LNCaP 
cells. SChLAP1 was knocked-down using siRNAs in LNCaP cells. Gene expression changes were 
compared using GSEA to expression changes observed using SNF5 siRNAs in LNCaP or 22Rv1 cells. The 
enrichment plots of these comparisons are shown. 
 

The SWI/SNF complex operates as a large, multi-protein system that utilizes ATPase 

enzymatic activity to physically move nucleosomes and, in doing so, regulates gene 

transcription222. Several SWI/SNF complex members are the target of recurrent, 

inactivating mutations in cancer, including ARID1A223, 224, PBRM1225, and SNF5226, and 

numerous studies suggest that loss of SWI/SNF functionality promotes cancer 

progression222, 227.  SWI/SNF mutations do occur in prostate cancer albeit not 

commonly198.  Several reports suggest that down-regulation of SWI/SNF complex 

members characterizes subsets of prostate cancer221, 228.  Thus, antagonism of SWI/SNF 

activity by SChLAP1 would be consistent with the oncogenic behavior of SChLAP1 and 

the tumor suppressive behavior of the SWI-SNF complex. 

To directly test whether SChLAP1 antagonizes SWI/SNF-mediated gene 

expression regulation, we performed siRNA knockdown of SNF5 (also known as 

SMARCB1) (Figure 5.20f), an essential subunit of the SWI/SNF complex necessary for 

its function by facilitating histone protein binding221, 227, 229.  Using two independent cell 

lines (22Rvl and LNCaP), a comparison of genes regulated by knockdown of SNF5 to 

genes regulated by SChLAP1 demonstrated an antagonistic relationship where SChLAP1 

knockdown affected the same genes as SNF5 but in the opposing direction.  
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Quantification of this overlap between SNF5- and SChLAP1-regulated genes was 

performed using GSEA, which demonstrated that SNF5 and SChLAP1 affect gene 

expression in a highly significant and opposing manner in LNCaP and 22Rv1 (FDR < 

0.05) (Figure 5.20g-i, and Figure 5.22a).  Here, we also found that a shared SNF5-

SChLAP1 signature of co-regulated genes was highly enriched for prostate cancer clinical 

signatures for disease aggressiveness, supporting our observations that SChLAP1 

promotes aggressive cancer (Figure 5.21).  

 
Figure 5.21: SChLAP1 and SNF5 co-regulate genes associated with prostate cancer aggressiveness.  
The top 10% of up- or down-regulated genes for SNF5-knockdown or SChLAP1-knockdown microarrays 
in 22Rv1 and LNCaP were intersected to generate an overlapping gene signature for these knockdown 
experiments. This signature was analyzed for overlap with the Taylor Prostate 3 Oncomine Concept29 for 
disease aggressiveness. Left, Venn diagrams demonstrating overlap of SChLAP1 and SNF5-knockdown 
experiments. Right, a heatmap visualization showing statistical (q < 0.05) overlap of gene signatures from 
the SNF5 and SChLAP1 knockdowns with prostate cancer aggressiveness concepts from Oncomine. Odds 
ratios from the comparisons with q-values <0.05 are shown. One-sided Fisher’s exact tests were used for 
significance. 
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SChLAP1 co-immunoprecipitates with the SWI/SNF complex 

To examine the mechanism of SChLAP1 regulation of the SWI/SNF complex, we next 

assessed whether SChLAP1 regulated SNF5 itself. Although SChLAP1 and SNF5 mRNA 

levels were comparable in our cohort of human prostate samples (Figure 5.23a), we 

failed to detect any change in SNF5 protein abundance by Western blot following 

SChLAP1 knockdown or overexpression (Figure 5.23b), suggesting that SChLAP1 

regulates SWI/SNF activity post-translationally.   

As lncRNAs are known to coordinate the function of epigenetic complexes 

through direct RNA-protein binding, we performed RNA immunoprecipitation assays 

(RIP) for SNF5 in 22Rv1 and LNCaP cells.  We found that endogenous SChLAP1, but 

not other cytoplasmic or nuclear lncRNAs such as PCA3, PCAT-1, MEG3, ANRIL, and 

MALAT1156, 202, robustly co-immunoprecipitated with SNF5 protein under both native 

conditions (Figure 5.22b) and UV-crosslinked conditions (Figure 5.23c).  In addition, 

we observed that SChLAP1 did not co-immunoprecipitate with androgen receptor 

(Figure 5.22b), another abundant nuclear protein in prostate cells.  Furthermore, we 

found that both SChLAP1 isoform #1 and isoform #2 robustly co-immunoprecipitated 

with SNF5 in our RWPE overexpression models (Figure 5.22c), but not other lncRNAs, 

including AK093002 and LOC145837, two prostate lncRNAs expressed in RWPE 

(Figure 5.23d).  As controls, RIP experiments for SNRNP70 demonstrated strong binding 

of this protein to U1 in all cell lines evaluated (Figure 5.23e,f). 

SChLAP1 impairs SNF5 genomic binding 

Given that SChLAP1 robustly bound and antagonized the activity of the SWI/SNF 

complex in vitro, we hypothesized that SChLAP1 may attenuate the ability of SWI/SNF 
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proteins to bind genomic DNA.  To investigate this possibility we performed ChIP-Seq of 

SNF5 in our RWPE-LacZ and RWPE-SChLAP1 overexpression models.  We validated 

our ChIP pull-down with Western Blots for SNF5 (Figure 5.24a), and sequenced ChIP-

Seq libraries using an Illumina Hi-Seq 2000.  We aligned the sequence reads to the 

human genome, called significantly enriched peaks with respect to an IgG control, and 

aggregated peaks from all samples.  This analysis resulted in 6,235 genome-wide binding 

sites for SNF5 (FDR < 0.05), which were highly statistically enriched for binding sites 

near gene promoters (Figure 5.24b), supporting other recent genome-wide studies of 

SWI/SNF complex binding230-232. 

To determine whether SChLAP1 expression modified SNF5 genomic binding, we 

compared the strength of SNF5 binding across these 6,235 genomic sites in RWPE cells 

overexpressing LacZ or SChLAP1 isoform #1 or #2.  We found a dramatic decrease in 

SNF5 genomic binding as a result of SChLAP1 overexpression (Figure 5.22d and Figure 

5.24c).  A summary of the sequence reads surrounding each peak confirmed the 

considerable attenuation of SNF5 binding in RWPE cells expressing either SChLAP1 

isoform #1 or #2 (Figure 5.22e).  Of the 1,299 SNF5 peaks occurring within 1kb of a 

gene promoter, 390 of these promoters decreased %2-fold in relative SNF5 binding 

(Figure 5.24d).  To verify these findings independently, we next performed ChIP for 

SNF5 in 22Rv1-shNT and 22Rv1 sh-SChLAP1 cells, with the hypothesis that inhibition 

of SChLAP1 should increase SNF5 genomic binding.  Using ChIP-PCR, we found that 3 

of 4 SNF5 target genes showed a dramatic increase in SNF5 binding (Figure 5.24e), 

confirming our predictions.   
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Finally, we sought to characterize the relationship between SNF5 genomic 

binding and SChLAP1-mediated gene expression changes.  We performed gene 

expression microarrays of RWPE cells overexpressing LacZ or these two SChLAP1 

isoforms, defined genes with highly significant changes in expression, and intersected the 

microarray data with the ChIP-Seq data.  We observed that a significant subset of genes 

with %2-fold relative decrease in SNF5 genomic binding were dysregulated when 

SChLAP1 was overexpressed (Figure 5.24f). Decreased SNF5 binding was primarily 

associated with downregulation of target gene expression, although a smaller subset of 

genes was upregulated, consistent with the fact that SWI/SNF binding can regulate gene 

expression in both directions227.  We next performed integrative analysis of the 

microarray data with the SNF5 ChIP-Seq data using GSEA and observed a significant 

enrichment for genes that were repressed when SChLAP1 was overexpressed (q-value = 

0.003, Figure 5.22f). Overall, these data argue that SChLAP1 overexpression antagonizes 

SWI/SNF complex function by attenuating the genomic binding of this complex, thereby 

impairing its ability to regulate gene expression properly. 
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Figure 5.22: SChLAP1 antagonizes SNF5 function and attenuates SNF5 genome-wide localization.   
(a) Heatmap results for SChLAP1 or SNF5 knockdown in LNCaP and 22Rv1 cells demonstrates opposing 
effects on gene expression regulation by SNF5 and SChLAP1. (b) RNA immunoprecipitation (RIP) of 
SNF5 demonstrates SChLAP1 binding to SNF5 in 22Rv1 and LNCaP cells. Other lncRNAs serve as 
negative controls.  Data are mean +/- S.E.M. (c) RIP analysis of SNF5 in RWPE cells overexpressing LacZ, 
SChLAP1 isoform #1, or SChLAP1 isoform #2.  Other lncRNAs serve as negative controls.  Data are mean 
+/- S.E.M.  (d) ChIP-Seq for SNF5 demonstrates genome-wide loss of SNF5 binding upon overexpression 
of SChLAP1 in RWPE prostate cells.  A heatmap represents the interval ±1kb surrounding the called SNF5 
peak. (e) Summary of heatmap data in (d) shown for a ±2kb window surrounding SNF5 ChIP-Seq peaks. 
(f) Gene set enrichment analysis results showing significant enrichment of ChIP-Seq promoter peaks with 
>2-fold loss of SNF5 binding for underexpressed genes in RWPE-SChLAP1 cells. (g) A model of 
SChLAP1 activity in prostate cancer. 
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Figure 5.23: SChLAP1 and SNF5 expression level and RNA-protein binding of SChLAP1 with SNF5.  
(a) Relative abundance of SChLAP1 compared to the SWI/SNF complex in human prostate tissues. qPCR 
cycle threshold (Ct) values for SChLAP1, SNF5, GAPDH, and HMBS are shown. SChLAP1-positive 
samples display Ct values in the low 20s, which is consistent with the abundance of SNF5. (b) Western blot 
analysis of SNF5 protein abundance in prostate cancer cells either overexpressing SChLAP1 (RWPE) or 
with stable knockdown of SChLAP1 (22Rv1, LNCaP). (c) SChLAP1 binding to SNF5 protein by UV-
crosslinked RIP assays using UV at 254nM. (d) Expression of AK093002 and LOC145837 in prostate cell 
lines. qPCR data were normalized to the average of GAPDH + B-actin and compared to PREC primary 
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non- immortalized prostate cells. Error bars indicate S.E.M. Expression of these genes in RWPE is 
comparable to their expression in 22Rv1. (e) RNA-IP experiments for SNRNP70 in LNCaP and 22Rv1 
shows binding of SNRNP70 to the U1 ncRNA, indicating specificity of the RNA-IP experiments. Error bars 
indicate S.E.M. (f) Control SNRNP70 experiments in the RWPE-SChLAP1 overexpression models. 
Enrichment of U1 is shown as a control for SNRNP70 IP experiments. Error bars indicate S.E.M. 
 

 
Figure 5.24: SChLAP1 expression disrupts genomic binding of SNF5.  
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(a) ChIP for SNF5 protein followed by Western blot. (b) Bar plots showing enrichment for SNF5 ChIP-Seq 
reads at RefSeq gene promoters across the RWPE-LacZ, RWPE- SChLAP1-Isoform-1 and RWPE-
SChLAP1-Isoform-2 samples. Blue bars indicate percentage of genomic DNA and red bars indicate 
percentage of all ChIP-Seq reads in each sample along with the p-value corresponding to the statistical 
significance of the difference between the blue and red bars. The CEAS software233 was used to generate 
these plots and compute the enrichment. (c) Histogram showing the relative log2 fold-change between 
RWPE-LacZ and RWPE-SChLAP1 (average of both isoforms) coverage across 6,235 genome-wide peaks. 
(d) Example ChIP-Seq binding sites for SNF5 on gene promoters. SNF5 binding is higher at gene 
promoters in RWPE-LacZ cells and decreased upon SChLAP1 overexpression. (e) ChIP for SNF5 in 22Rv1 
shNT and 22Rv1 sh- SChLAP1 #2. ChIP-PCR for 3 of 4 target genes of SNF5 in RWPE demonstrates an 
increase in SNF5 binding upon SChLAP1 knockdown. KIAA0841 and Chr6 Alu serve as negative controls. 
Data are represented as percent change in genomic binding relative to shNT after being normalized to IgG 
controls. The inset western blot indicates immunoprecipitation efficiency for SNF5. (f) Heatmap showing 
the showing the gene expression of RWPE-SChLAP1 cells (Isoform 1 is labeled as Iso-1 and Isoform 2 is 
labeled as Iso-2) across 250 genes that exhibited a >2-fold decrease in SNF5 binding upon SChLAP1 
overexpression. Gene expression is shown as log2 fold-change relative to RWPE-LacZ. 

Discussion 

Here, we characterized two previously undescribed non-coding regions of the 

human genome that emerged from our ab initio assembly and analysis of poly-A+ RNA 

from a cohort of prostate cancers27 (Chapter 4). PCAT-1, which is expressed from the 

8q24 ‘hotspot’ implicated by GWAS studies, was markedly overexpressed in primary 

tumors and metastases. In certain cases PCAT-1 transcript was repressed by PRC2, and 

patterns of PCAT-1 and PRC2 expression stratified patient tissues into molecular 

subtypes distinguished by expression signatures of PCAT-1–repressed target genes. In 

cases where PCAT-1 was not repressed by PRC2, it promoted cell proliferation through 

transcriptional regulation of distinct target genes, including the BRCA2 tumor 

suppressor234(Figure 5.10e). Taken together, our findings suggested that PCAT-1 is a 

transcriptional repressor implicated in a subset of prostate cancer patients.  

Furthermore, we have discovered SChLAP1, a highly prognostic lncRNA that is 

abundantly expressed in 15-30% of prostate cancers and aided the discrimination of 

aggressive from indolent forms of this disease.  Mechanistically, we find that SChLAP1 

coordinates cancer cell invasion in vitro and metastatic spread in vivo.  Moreover, we 
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characterize an antagonistic SChLAP1-SWI/SNF axis in which SChLAP1 impairs SNF5-

mediated gene expression regulation and genomic binding (Figure 5.22g).  Thus, while 

other lncRNAs such as HOTAIR and HOTTIP are known to assist epigenetic complexes 

such as PRC2 and MLL by facilitating their genomic binding and enhancing their 

functions168, 169, 172, 235, SChLAP1 is the first lncRNA, to our knowledge, that impairs a 

major epigenetic complex with well-documented tumor suppressor function221, 222, 225, 227, 

228, 236. Taken together, our discovery of SChLAP1 has broad implications for cancer 

biology and provides evidence for the role of lncRNAs in the progression of aggressive 

cancers. 
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Chapter 6: Concluding Remarks 
 

Utilizing RNA-Seq-based discovery algorithms for pan-cancer analyses 

As described in Chapters 2-5, applying our novel algorithms ChimeraScan and 

AssemblyLine to studies of single cancer types to led to the discovery of recurrent classes 

of gene fusions and lncRNAs that may serve as novel disease markers, respectively. 

Given these successes, applying these methodologies to pan-cancer studies would likely 

yield similar insights and may expose overarching patterns of disease biology. However, 

extending the work presented in this dissertation to large compendia studies places 

unprecedented demands upon computational infrastructures. In the following sections, we 

discuss these challenges and propose an automated framework called Oncoseq that 

addresses the need for a standardized RNA-Seq analysis pipeline that can be deployed on 

large-scale supercomputing systems. 

Exponential increases in RNA-Seq data generation will place unprecedented 

demands on computational infrastructures and bioinformatics algorithms 

Today we are faced with an onslaught of RNA-Seq data large enough to overwhelm 

existing computational infrastructures. As of November 2012, our lab had compiled 

1,140 RNA-Seq libraries from many cancer types (Figures 6.1 and 6.2). Analyzing these 

libraries required 60-500 processor core-hours per sample, which amounted to 

approximately 136,000 processor core-hours for the entire compendia. We accomplished 
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this analysis at a cost of approximately $3,000 USD on supercomputing resources 

provided by the University of Michigan Center for Advanced Computing (CAC). The 

University of Michigan Medical School heavily subsidized the cost of this analysis. 

 
Figure 6.1: Composition of the MCTP compendia as of November, 2012 
Pie chart showing the number of samples contributed by MCTP and various public sources 

 
Figure 6.2: Tissue types represented by the MCTP compendia as of November, 2012 
Bar graph showing the number of libraries analyzed by tissue type 
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The Cancer Genome Atlas (TCGA) (http://cancergenome.nih.gov) has recently made 

RNA-Seq data from over 5,000 samples available for download at the new Cancer 

Genomics Hub (CGHub) facility (https://cghub.ucsc.edu) with plans to expand to over 

10,000 samples in the near future. Additionally, the Cancer Genome Characterization 

Initiative (CGCI) (http://cgap.nci.nih.gov/cgci.html) and the Therapeutically Applicable 

Research to Generate Effective Treatments (TARGET) initiative expect to generate 

cohorts with hundreds of samples as well. Aside from large consortiums, smaller labs and 

pharmaceutical companies will likely produce equal if not greater amounts of data with 

the help of sequencing services such as the Beijing Genomics Institute (BGI). These 

samples are being sequenced at greater depth than before using instruments such as the 

Illumina HiSeq 2000. Test analysis of these samples often required more than 300 

processor-hours per sample, and we roughly approximate that the full TCGA dataset 

could require more than 8,300 processor-months. At the subsidized University of 

Michigan rate this analysis would likely cost well over $100,000 USD in raw 

computational time, not including the cost of data storage. Such expenses would likely be 

prohibitive for many labs and requires access to large supercomputing facilities. We note 

that accomplishing such analysis on pay-as-you-go cloud computing environments would 

be substantially more expensive as these services charge many times more per processor 

hour and tack on fees for data transfer. 

Given the overwhelming cost of data analysis and storage we envision the need 

for new federally funded programs that make computational resources available. Instead 

of burdening small labs, computational loads should be farmed out to large cloud-
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computing facilities and administrated by specialized groups in order to decrease the 

technical burden of entry into the field. 

Improvements in algorithmic efficiency may mitigate computational demand 

In addition to political changes that make data analysis more affordable, the field of 

bioinformatics must continue to improve algorithm efficiency. For example, the 

Bowtie135, 149 and BWA algorithms237, 238 innovated the use of the novel genome indexing 

schemes that vastly improved the efficiency of short read alignment. Recently, a new 

algorithm called STAR appears to produce phenomenal efficiency gains for RNA 

sequencing datasets, outperforming the Tophat algorithm by a factor of >5055. 

Algorithmic innovations such as this may thus allow computers to keep pace with 

genomics. We expect that increased involvement by computer engineers could also 

improve to the performance of genomics algorithms. Graphics processing units (GPUs) 

based algorithms and field programmable gate array (FPGAs) show remarkable promise 

for bioinformatics applications that could benefit from extensive parallelization. 

Establishing standards for RNA-Seq analysis 

Over the past four years, a trend in the field of bioinformatics algorithms has been the 

parallel and redundant development of software tools. As described in Chapter 2, a 

growing suite of tools for gene fusion detection now exists, but little is known about the 

comparative advantages and disadvantages of the tools. With time one expects that ease-

of-use, performance, and continued maintenance of the tools will determine their 

usefulness. To facilitate the evaluation of software tools, we propose the establishment of 

standardized benchmarks for testing multiple types of algorithms. For gene fusion 

discovery, such benchmarks would incorporate simulated chimeras in addition to 
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numerous examples of independently validated gene fusion candidates. If such a 

benchmark dataset existed, existing software tools could be vetted and forthcoming tools 

could optimize their approaches in a robust and unbiased manner. Creation of such a 

dataset would involve curating the published literature and performing additional 

validation experiments where necessary. The idea of standardized benchmarks has been 

successfully adopted by the field of computer architecture by the Standard Performance 

Evaluation Corporation (SPEC), a group that manages the selection of benchmarks and 

the publication of performance results (http://www.spec.org). Mirroring such an approach 

could greatly benefit high-throughput sequencing data analysis. 

The Oncoseq framework for RNA-Seq analysis 

In light of the recognized need for a standardized analysis pipeline for processing large 

number of RNA sequencing experiments, including datasets from TCGA, we prototyped 

a standardized and comprehensive RNA-Seq analysis workflow called Oncoseq. Oncoseq 

is unlike frameworks such as Galaxy or Firehose 

(http://www.broadinstitute.org/cancer/cga/Firehose) that permit extensive customization 

and selection from a wide array of tools239. Instead, Oncoseq represents a curated, tested, 

and tightly integrated set of analyses that includes third-party tools such as Tophat and 

Cufflinks as well as tools developed by our lab (Figure 6.3). Achieving a standardized 

analysis framework has a number of important advantages: (1) many nuances of 

individual software tools can be abstracted away, (2) common steps shared by multiple 

tools can be shared, (3) data reproducibility can be guaranteed, (4) the approach can be 

scaled to process large amounts of data. 
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Figure 6.3: Overview of the Oncoseq RNA-Seq analysis framework 
Unmapped FASTQ or BAM files feed into the Oncoseq pipeline. (left) Flow chart showing the Oncoseq 
workflow. (right) Output files produced after each stage of the pipeline. 
 

The primary analyses achieved by Oncoseq are gene fusion detection, ab initio 

transcriptome assembly, gene and transcript abundance assessment, variant calling, 

pathogen screening, and quantification of repetitive element sequences (Figure 6.3). We 

also expect to accommodate new analysis modules and updates as they become available. 

A number of additional files provide visualization tracks for the UCSC genome 

browser155. The Oncoseq pipeline is still a work in progress, but to date it has been used 

to analyze over 1,000 RNA-Seq libraries. In the near future we expect to make the 

workflow available for other groups to utilize. 



 139 

Furthering the characterization of cancer-associated RNAs 

The establishment of robust computational pipelines such as Oncoseq will facilitate meta-

analysis of large cohorts of cancer RNA sequencing datasets. In this section, we discuss 

unique opportunities for RNA sequencing studies and potential paths forward to making 

these analyses a reality. 

Towards completion of the human transcriptome reference 

Given the promise of meta-assembly algorithms such as AssemblyLine (Chapter 3) we 

believe that the full long RNA complement of human cells can now be defined. However, 

observing the sequence and genomic location of every transcript capable of being 

produced by an organism requires myriad sequencing datasets that account for gene 

expression variation across cell lineages, developmental stages, and disease states. 

Amassing data of this magnitude will likely require years of effort by multiple groups, 

but poses no additional methodological challenges. In anticipation of large datasets, 

AssemblyLine has been carefully architected for scalability and each of its steps has been 

parallelized to take advantage of multi-processor computing systems. A demonstration of 

the algorithm has now been completed on a set of 1,140 ab initio assemblies from a 

version of our growing RNA-Seq compendia (Figure 6.2). 

Given the imminent release of thousands of RNA-Seq datasets by the TCGA, we 

plan to employ AssemblyLine to define the cancer transcriptome at unprecedented depth. 

Whereas our study of prostate cancers (Chapter 4) utilized less than 2 billion mapped 

reads and the Cabili et al. study78 compiled about 4 billion reads, we anticipate a 

transcriptome assembly effort with over 250 billion reads. We envision that the reference 

transcriptomes constructed by AssemblyLine will complement current gene databases. As 
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methods improve and new datasets become available, we hope to continually update 

these transcript models. We speculate that these efforts will play an important role in 

shaping our understanding of the human transcriptome. 

Incorporation of de novo transcriptome assembly 

The AssemblyLine algorithm was built upon an ab initio assembly approach that relies 

on reliably aligning sequencing reads to the human genome. By contrast, de novo 

assembly approaches construct full-length transcripts from sequencing reads in the 

absence of a genome. Results from the recently developed Trinity algorithm suggest that 

de novo assembly will have considerable impact and will be especially useful in the field 

of cancer genetics46. Highly mutated cancer genomes can contain many structural 

aberrations that deviate from the reference genome. In extreme cases, cancers arise 

following chromothripsis, a catastrophic shattering of the genome that may generate 

many fusion genes240. Although alignment-based analyses can cope with some of these 

abnormalities, de novo assemblers should be better at deconvoluting aberrant 

transcriptomes. In principle, de novo assembly requires no special considerations to 

detect events such as cryptic splicing, micro-exons, tiny introns, indels, alternative poly-

adenylation, tandem duplications, exogenous pathogens or gene fusions. Although the 

assembly process does not require a reference genome, detecting these events requires the 

assembled contigs to be long enough to be aligned to an available reference genome. It 

should be noted that de novo assembly requires substantially more computational 

resources than were previously needed for RNA-Seq analysis. Software optimization will 

therefore be a key priority in making de novo assembly more accessible. Regardless, the 
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initial successes of de novo assembly point toward a future where this approach subsumes 

the need for specialized gene fusion detection or ab initio assembly algorithms. 

Complementary and alternative RNA sequencing protocols 

High-throughput sequencing of size-selected poly-A-selected RNA from whole cells has 

several important limitations: (1) it neglects classes of non-polyadenylated or bimorphic 

transcripts such as enhancer RNA167, (2) it captures steady state RNA levels that cannot 

infer rates of production and degradation, (3) it does not distinguish protein-coding from 

non-coding RNA, and (4) RNAs smaller than ~200nt are neglected. Therefore, after 

defining the human transcriptome by RNA-Seq, we anticipate the need to alternative 

modalities that provide complementary information. For example, subcellular 

fractionation followed by ribosome depleted total RNA sequencing has revealed 

enrichment for transcripts absent from standard RNA-Seq13, 241, 242. Also, nascent RNA 

sequencing can be employed to infer rates of transcription and splicing164. Isolation of 

ribosome-bound mRNA followed by high-throughput sequencing provided evidence for 

short peptides and non-canonical open reading frames residing in RNAs catalogued as 

non-coding243. Finally, integration of small RNA sequencing data would assist in 

determining whether long RNAs functions as small RNA precursors. These protocols will 

serve as complementary tools for RNA interrogation and should be incorporated along 

with standard RNA-Seq for the global characterization of RNA landscapes in cancer. 

The recently appreciated role of lncRNAs in molecular biology suggests the need 

for techniques to accurately determine global patterns of RNA structure. One such 

strategy called parallel analysis of RNA structure (PARS) treats RNA with structure-

specific enzymes prior to high-throughput sequencing244. The results can be used to infer 
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base pairing at nucleotide resolution and can greatly improve the accuracy of RNA 

structure prediction algorithms. Knowledge of RNA structures is a first step in 

understanding the interface between lncRNAs and protein complexes. If lncRNAs indeed 

act as molecular scaffolds, then we expect RNA structural motifs to emerge from these 

global analyses. The interactions between specific protein complexes and lncRNAs can 

be complemented by RNA immunopreciptation following by sequencing (RIP-Seq)245. 

We expect that RIP-Seq will provide valuable supporting evidence for the well-

established role of lncRNAs as adaptors for chromatin modifying enzymes. In particular, 

ongoing studies of the interaction between the SChLAP1 lncRNA (presented in Chapter 

5) and its interaction with the SWI/SNF complex could be greatly facilitated by RIP-Seq. 

Underexplored dimensions of RNA-Seq data 

The field of cancer genomics should continue to pursue aspects of RNA-Seq data that 

may lead to the discovery of new disease-specific events. In particular the appreciation of 

widespread RNA and DNA sequence differences suggested the possibility of cancer-

specific RNA editing events246. Confirming these suspicions, the recent discovery of 

RNA editing event in the encoding antizyme inhibitor 1 (AZIN1) that predisposes to 

hepatocellular carcinoma (HCC) provides a glimpse at what could likely be a global 

phenomenon247, 248. RNA editing in cancer could easily be explored using pairs of 

matched normal and tumor tissue. Such data is available in abundance from the TCGA 

and other sources, and methods for detecting these events have been proposed249, 250. 

Detecting RNA editing events requires monitoring changes in allele frequencies 

between conditions. This class of events can be broadly characterized as allele-specific 

expression (ASE). By expanding the use of the underlying sequencing information 
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provided by RNA-Seq it is possible to detect ASE events on a global scale251-253. 

Although detecting statistically significant ASE requires high coverage depth, we believe 

that ASE may provide important clues and supporting evidence of intricate isoform-level 

regulation that may be associated with disease. 

A bright future for RNA sequencing 

In the past five years RNA-Seq has revolutionized the study of transcriptomes and 

fostered the emergence of a squadron of new bioinformatics methods. As the size of the 

data grows and the quality improves, so will the demand for innovative computational 

solutions. We expect that the algorithms developed for this thesis work will need to 

evolve considerably to keep pace with improvements in technology, and may one day 

become obsolete. Nevertheless, we hope that the ideas encapsulated by these methods 

will continue to be useful to others. 

If nothing else, the discoveries of cancer-associated transcripts present in this 

thesis provide glimpses into the multitudinous roles of RNA in cellular biology. Our 

observations of highly prognostic lncRNAs motivate the expanded study of this 

underappreciated layer of biological complexity and the development of novel 

therapeutic approaches for targeting RNA. We enthusiastically anticipate these 

innovations and look forward to future roles for RNA sequencing in the diagnosis and 

treatment of disease. 
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Appendices 
 

Appendix A: Gold-standard chimeras used to evaluate ChimeraScan 
 

Cell line Class Chimera Detected 

VCaP Intra-chromosomal TMPRSS2-ERG Yes 
VCaP Intra-chromosomal INPP4A-HJURP Yes 
VCaP Inter-chromosomal USP10-ZDHHC7 Yes 
VCaP Intra-chromosomal HJURP-EIF4E2 Yes 
VCaP Intra-chromosomal RC3H2-RGS3 Yes 
VCaP Read-through ZNF577-ZNF649 Yes 
VCaP Intra-chromosomal LMAN2-AP3S1 Yes 
VCaP Intra-chromosomal SPOCK1-TBC1D9B No 
VCaP Inter-chromosomal ZDHHC7-ABCB9 Yes 
VCaP Inter-chromosomal TIA1-DIRC2 Yes 
VCaP Intra-chromosomal PIK3C2A-TEAD1 Yes 

LNCaP Inter-chromosomal MIPOL1-DGKB Yes 
LNCaP Inter-chromosomal MRPS10-HPR Yes 
LNCaP Read-through C19orf25-APC2 Yes 
LNCaP Read-through SLC45A3-ELK4 Yes 
LNCaP Intra-chromosomal BMSUN-PSPC1 Yes 
LNCaP Intra-chromosomal RERE-PIK3CD Yes 
MCF7 Inter-chromosomal BCAS4-BCAS3 Yes 
MCF7 Intra-chromosomal ARFGEF2-SULF2 Yes 
MCF7 Inter-chromosomal AHCYL1-RAD51C Yes 
MCF7 Inter-chromosomal ARHGAP19-DRG1 Yes 
MCF7 Intra-chromosomal MYO9B-FCHO1 Yes 
MCF7 Intra-chromosomal BC017255-TMEM49 Yes 
MCF7 Read-through DEPDC1B-ELOVL7 Yes 
MCF7 Read-through PAPOLA-AK7 Yes 
MCF7 Intra-chromosomal STK11-MIDN Yes 
MCF7 Inter-chromosomal TEX14-PTPRG No 
MCF7 Inter-chromosomal SULF2-PRICKLE2 Yes 
MCF7 Read-through RPS6KB1-TMEM49 Yes 
MCF7 Read-through CXorf15-SYAP1 Yes 
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Appendix B: Novel chimeras discovered by ChimeraScan 
 

sample name 5' gene 3' gene type fragments spanning 

VCAP TMPRSS2 ERG Intrachromosomal 206 85 
VCAP ZDHHC7 ABCB9 Interchromosomal 18 8 
VCAP MAML3 MED12,TNRC11 Interchromosomal 9 8 
VCAP INPP4A HJURP Intrachromosomal_Complex 11 9 
VCAP RC3H2,DKFZp667B165 RGS3 Intrachromosomal_Complex 14 5 
VCAP LENEP KLK2 Interchromosomal 14 13 
VCAP HJURP EIF4E2 Intrachromosomal_Complex 11 5 
VCAP PDGFA WASH1 Interchromosomal 8 4 
VCAP PDGFA DKFZp434K1323,WASH1 Interchromosomal 8 4 
VCAP PDGFA WASH1 Interchromosomal 8 4 
VCAP PDGFA WASH,DKFZp434K1323 Interchromosomal 8 4 
VCAP PIK3C2A TEAD1 Intrachromosomal_Complex 9 5 
VCAP LMAN2 AP3S1 Intrachromosomal_Complex 4 3 
VCAP ZDHHC7 H3F3B Interchromosomal 4 3 
VCAP KIAA1267 ARL17P1 Intrachromosomal 4 3 
VCAP KIAA1267 ARL17P1,ARL17 Read_Through 4 3 
VCAP VWA2 PRKCH Interchromosomal 5 2 
VCAP AK311578 G3BP2 Read_Through 5 2 
VCAP HSF1 RERE,KIAA0458 Interchromosomal 3 2 
VCAP TLK1,TLK2 AX747598 Interchromosomal 7 2 
VCAP TLK1,TLK2 BC006361 Interchromosomal 7 2 
VCAP TLK1,TLK2 AL137655 Interchromosomal 7 2 
VCAP TLK1,TLK2 AL137733 Interchromosomal 7 2 
VCAP TLK1,TLK2 FAM157A Interchromosomal 7 2 
VCAP ZNF57 LPPR2 Intrachromosomal 6 1 
VCAP EEF1DP3 FRY Read_Through 5 1 
VCAP TIA1 DIRC2 Interchromosomal 5 1 
VCAP KIAA1592,CNNM4 PARD3B Intrachromosomal 3 1 
VCAP C16orf70 C16orf48 Intrachromosomal_Complex 3 1 
VCAP NBPF3 NBPF1 Intrachromosomal_Complex 5 1 
VCAP HNRNPK,HNRPK RPS3 Interchromosomal 3 2 
VCAP PDIA6 PTEN Interchromosomal 3 1 
VCAP NCKIPSD CELSR3 Read_Through 2 1 
VCAP NDUFAF2 MAST4 Intrachromosomal 2 1 
VCAP GNAS RPLP0 Interchromosomal 2 1 
VCAP FZR1 CTBP1 Interchromosomal 2 2 
VCAP TYMP SCO2 Read_Through 2 1 
VCAP MAP7 APP Interchromosomal 2 1 
VCAP STIP1 CFL1 Intrachromosomal_Complex 2 1 
VCAP RPL10 FGFRL1 Interchromosomal 2 1 
VCAP COBRA1 C9orf167 Read_Through 2 1 
VCAP NUCKS1 ITPR1 Interchromosomal 2 1 
VCAP SHANK2 SHANK1 Interchromosomal 10 0 
VCAP USP10 ZDHHC7 Intrachromosomal_Complex 8 0 
VCAP BC110060 LRFN1 Read_Through 8 0 
VCAP EEF1A2 HSD11B2 Interchromosomal 15 0 
VCAP PDE4DN2,PDE4D C5orf47 Intrachromosomal_Complex 7 0 
VCAP SH3D20 ARHGAP27 Read_Through 7 0 
VCAP PTEN PTENP1 Interchromosomal 7 0 
VCAP FMR1 TM9SF3 Interchromosomal 15 0 

VCAP 
DKFZp666P032,RANBP1

7 DOCK2 Intrachromosomal 6 0 
VCAP LOC148189 AK094188 Read_Through 5 0 
VCAP KLK2 KLK3 Read_Through 5 0 
VCAP CR597916 BNIP3 Interchromosomal 7 0 
VCAP BC090058,LOC554248 POM121 Intrachromosomal 8 0 
VCAP OK/SW-cl.16 CR615613 Interchromosomal 5 0 
VCAP TTTY15 USP9Y Read_Through 4 0 
VCAP KIAA0464,NOS1AP C1orf226 Read_Through 4 0 
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VCAP LOC387647 RAB18 Intrachromosomal 6 0 
VCAP PRELID1 PX19 Interchromosomal 6 0 
VCAP PTMA LOC441454 Interchromosomal 9 0 
VCAP EEF1A2 ATP5S Interchromosomal 6 0 
VCAP PRKRIP1,PMS2L3 POM121 Intrachromosomal 7 0 
VCAP HLA-G hla-b Intrachromosomal_Complex 5 0 
VCAP SON PEA15 Interchromosomal 2 0 
VCAP EEF1A2 TECPR1 Interchromosomal 5 0 
VCAP SRP14 FOXP2 Interchromosomal 7 0 
VCAP SRP14 RBMS3 Interchromosomal 7 0 
VCAP HLA-C,hla-b,HLA-B HLA-A,HLA-G,HLA-F Intrachromosomal_Complex 6 0 
VCAP HNRNPUL1 WASL Interchromosomal 5 0 
VCAP PRELID1 PX19 Interchromosomal 5 0 
VCAP UNC13B UNC13A Interchromosomal 3 0 
VCAP GAS2L1 PPP1R9B Interchromosomal 3 0 
VCAP SSSCA1 FAM89B Read_Through 3 0 
VCAP KLK2 TNK2 Interchromosomal 3 0 
VCAP KLK3 KLK2 Read_Through 3 0 
VCAP hCPE-R,CLDN4 LASS2 Interchromosomal 3 0 
VCAP SF3A2 AMH Read_Through 3 0 

sample name 5' gene 3' gene type fragments spanning 

LNCAP RERE,KIAA0458 PIK3CD Intrachromosomal_Complex 16 7 
LNCAP NCOR1 SELENBP1 Interchromosomal 6 6 
LNCAP GPS2,KIAA1787 MPP2 Intrachromosomal 18 5 
LNCAP SMA4 NAIP Intrachromosomal_Complex 11 7 
LNCAP BCL8 NBEA Interchromosomal 4 4 
LNCAP VMAC CAPS Read_Through 6 3 
LNCAP SNX9 CYP2C19 Interchromosomal 6 4 
LNCAP LOC728411 GUSBL2 Interchromosomal 6 5 
LNCAP BC035411 NAIP Intrachromosomal 8 4 
LNCAP HLA-A,HLA-H HLA-B,hla-b Intrachromosomal_Complex 4 3 
LNCAP ZNF92 ZNF680 Intrachromosomal_Complex 3 3 
LNCAP KLK4 KRSP1 Read_Through 5 3 
LNCAP BC039389 GATM Read_Through 5 2 
LNCAP CHCHD10 VPREB3 Read_Through 3 2 
LNCAP FAM117B BMPR2 Read_Through 9 1 
LNCAP TFDP1 GRK1 Read_Through 11 1 
LNCAP KIAA1128,FAM190B CYP2C19 Intrachromosomal 7 1 
LNCAP STX16 GAS5 Interchromosomal 5 4 
LNCAP LQK1 C1orf227 Read_Through 5 1 
LNCAP FAM177B SOD2 Interchromosomal 4 1 
LNCAP MIPOL1 DGKB Interchromosomal 3 1 
LNCAP NIPSNAP3A RPL4 Interchromosomal 3 2 
LNCAP STRF6 ARL2BP Interchromosomal 3 2 
LNCAP PPP2CA SKP1 Read_Through 3 1 
LNCAP ATP1A1 EEF1A2 Interchromosomal 2 1 
LNCAP derp10,COPS7A TVAS5 Interchromosomal 2 1 
LNCAP CCNI MTND5 Interchromosomal 2 1 
LNCAP TM7SF2 PLEKHB1 Intrachromosomal 2 1 
LNCAP GUK1 N4BP2L2 Interchromosomal 2 1 
LNCAP CHMP5 GAPD,GAPDH Interchromosomal 2 1 
LNCAP RNF40 DNAJC14 Interchromosomal 2 1 
LNCAP CDH12 AK310013,AK123868 Intrachromosomal 67 0 
LNCAP RLN2 RLN1 Read_Through 31 0 
LNCAP TVAS5 DQ597482 Interchromosomal 65 0 
LNCAP CLDN12 PFTK1 Read_Through 17 0 
LNCAP DQ597482 TVAS5 Interchromosomal 37 0 
LNCAP LOC387647 RAB18 Intrachromosomal 16 0 
LNCAP CR597916 BNIP3 Interchromosomal 14 0 
LNCAP LOC645166 LOC654342 Interchromosomal 18 0 
LNCAP AK311578 G3BP2 Read_Through 9 0 
LNCAP BC110060 LRFN1 Read_Through 9 0 
LNCAP SCNN1A TNFRSF1A Read_Through 9 0 
LNCAP BC018860 BC018860 Interchromosomal 11 0 
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LNCAP C1QTNF3 AMACR Read_Through 7 0 
LNCAP EEF1A2 HSD11B2 Interchromosomal 10 0 
LNCAP MRPS10 HPR,HP Interchromosomal 10 0 
LNCAP BCMSUN PSPC1 Intrachromosomal 7 0 
LNCAP ATXN3 TRIP11,Trip230 Intrachromosomal 5 0 
LNCAP BC035340 MCF2L Read_Through 5 0 
LNCAP CR615613 OK/SW-cl.16 Interchromosomal 5 0 
LNCAP LSP1 LOC654342 Interchromosomal 13 0 
LNCAP ANKRD42 RPL32 Interchromosomal 11 0 
LNCAP HSP90Bb HSP90AB1,HSP90AB3P Interchromosomal 5 0 
LNCAP GAPD,GAPDH BC009500 Interchromosomal 11 0 
LNCAP VAMP8 VAMP5 Read_Through 4 0 
LNCAP CIRBP C19orf24 Read_Through 4 0 
LNCAP KLHL23 SNX22 Interchromosomal 4 0 
LNCAP RPL38 TTYH2 Read_Through 4 0 
LNCAP COPG2 COPG Interchromosomal 4 0 
LNCAP CR596118 STRF6 Interchromosomal 4 0 
LNCAP LOC100134368 NME4 Read_Through 4 0 
LNCAP DEAF1 SCT Read_Through 4 0 

LNCAP 
MKSTYX,STYXL1,DKF

Zp686O05147 TMEM120A Read_Through 4 0 
LNCAP OK/SW-cl.16 TVAS5 Intrachromosomal 5 0 
LNCAP AK127238 TNFSF4 Read_Through 5 0 
LNCAP CECR7 AK129567,AK302545 Intrachromosomal_Complex 17 0 
LNCAP LOC643648 MLL3 Interchromosomal 9 0 
LNCAP ADCK4 NUMBL Read_Through 4 0 
LNCAP UBB UBB Interchromosomal 5 0 
LNCAP BAGE5,BAGE2,BAGE LOC643648 Interchromosomal 7 0 
LNCAP LOC148189 AK094188 Read_Through 4 0 
LNCAP CR615453,AK311167 FRG1B Interchromosomal 6 0 
LNCAP AK311167 FRG1B Interchromosomal 6 0 
LNCAP NBPF3 NBPF1 Intrachromosomal_Complex 5 0 
LNCAP RP3-365I19.1-001 SRGAP2 Intrachromosomal 8 0 
LNCAP RPL32 ANKRD42 Interchromosomal 5 0 
LNCAP LOC643648 BAGE1 Interchromosomal 8 0 
LNCAP ZNF83 ZNF765 Intrachromosomal_Complex 6 0 
LNCAP CECR7 AK302545 Intrachromosomal 16 0 
LNCAP NOC2L LOC401010 Interchromosomal 5 0 
LNCAP PTMS TVAS5 Interchromosomal 4 0 
LNCAP LOC728855 BC065231 Intrachromosomal_Complex 19 0 
LNCAP LOC728855 BC065231 Intrachromosomal 19 0 
LNCAP BC110832 BC065231 Intrachromosomal_Complex 19 0 
LNCAP CR622584 LOC442028 Interchromosomal 28 0 
LNCAP Z49985 TBL1X Interchromosomal 3 0 
LNCAP BEX1 BEX2 Intrachromosomal 3 0 
LNCAP TRADD B3GNT9 Read_Through 3 0 
LNCAP YAF2 RYBP Interchromosomal 3 0 
LNCAP ZNF264 AURKC Read_Through 3 0 
LNCAP AX747640 SLC9A7 Interchromosomal 3 0 
LNCAP INCA1 CAMTA2 Read_Through 3 0 
LNCAP AF113016 STRF6 Interchromosomal 3 0 
LNCAP ARNT CTSK Read_Through 3 0 
LNCAP HIST1H2BO OR2B6 Read_Through 3 0 
LNCAP PRKAA1 PPIL1 Interchromosomal 3 0 
LNCAP ITPKC PPFIA3,KIAA0654 Intrachromosomal 3 0 
LNCAP KIAA1049,TCF25 BC160930 Read_Through 3 0 
LNCAP PIK3CD TNFRSF8 Intrachromosomal 3 0 
LNCAP CXorf40B CXorf40A Intrachromosomal_Complex 3 0 
LNCAP ZMYM2 ZMYM5 Intrachromosomal_Complex 3 0 
LNCAP FAM119B TSFM Read_Through 3 0 
LNCAP LOC388789 DTD1 Read_Through 3 0 
LNCAP CATSPER2 BC052612,CATSPER2P1 Intrachromosomal 3 0 
LNCAP IFRD1 C7orf53 Read_Through 3 0 

sample name 5' gene 3' gene type fragments spanning 
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MCF7 BCAS4 BCAS3 Interchromosomal 361 72 
MCF7 BC017255 TDC1,TMEM49,DM119428 Intrachromosomal 66 25 
MCF7 ARFGEF2 RP5-1049G16.1,SULF2 Intrachromosomal_Complex 173 15 
MCF7 CSNK1E ZNF217 Interchromosomal 18 17 
MCF7 STK11 MIDN Intrachromosomal 31 7 
MCF7 PAPOLA AK7 Read_Through 19 4 
MCF7 DEPDC1B ELOVL7 Read_Through 18 5 
MCF7 AHCYL1 RAD51C Interchromosomal 17 4 
MCF7 AK297683 AK297683 Read_Through 14 4 
MCF7 CXorf15 SYAP1,DKFZp686K221 Read_Through 14 5 
MCF7 RRM2 C2orf48 Read_Through 12 4 
MCF7 SMARCA4 CARM1 Intrachromosomal 11 4 
MCF7 MFSD1,smap-4 GFM1,EFG Intrachromosomal 8 4 
MCF7 OK/SW-cl.16 TPT1,FLJ44635 Interchromosomal 8 7 
MCF7 STRF6 CCDC34 Interchromosomal 8 7 
MCF7 OK/SW-cl.16 ACTR6 Interchromosomal 4 3 
MCF7 FRG1 FAM122C Interchromosomal 4 3 
MCF7 FRG1B FAM122C Interchromosomal 4 3 
MCF7 MYO9B FCHO1 Intrachromosomal 16 2 
MCF7 YTHDC1 GNAS Interchromosomal 11 10 
MCF7 ZCCHC7 BC067112 Read_Through 12 2 
MCF7 BC041486 CR607999 Interchromosomal 6 5 
MCF7 TRIM37 RNFT1 Intrachromosomal 4 2 
MCF7 TBL1XR1 RGS17 Interchromosomal 4 2 
MCF7 PILRB STAG3 Intrachromosomal 4 2 
MCF7 PARD6G C18orf1 Intrachromosomal_Complex 3 2 
MCF7 X64709 TVAS5 Interchromosomal 4 3 
MCF7 X64709 OK/SW-cl.16 Read_Through 9 8 
MCF7 KRT79 KRT8 Intrachromosomal 3 2 
MCF7 XBP1 SCAND1 Interchromosomal 3 2 
MCF7 X64709 OK/SW-cl.5,TPM3 Interchromosomal 9 8 
MCF7 EP300 MRFAP1 Interchromosomal 19 1 
MCF7 ADAMTS19 SLC27A6 Intrachromosomal 6 1 
MCF7 RAB27A DYX1C1,CCPG1,EKN1 Intrachromosomal 6 2 
MCF7 POP1 MATN2 Intrachromosomal 6 1 
MCF7 STRF6 DHX40 Interchromosomal 6 5 
MCF7 ATXN7L3 FAM171A2 Intrachromosomal 4 1 
MCF7 SULF2 PRICKLE2 Interchromosomal 3 1 
MCF7 CLDN3 CLDN4 Adjacent_Diverging 3 1 
MCF7 ZNF580 CCDC106 Intrachromosomal 3 1 
MCF7 ARHGEF7,Nbla10314 C13orf16 Read_Through 3 1 
MCF7 SF3B3 EEF1A2 Interchromosomal 3 2 
MCF7 CALR MMS19 Interchromosomal 3 2 
MCF7 ADCY3 SLC25A3,OK/SW-cl.48 Interchromosomal 3 2 
MCF7 MYC MYC Read_Through 3 1 
MCF7 GRIK3 EIF1AX Interchromosomal 3 2 
MCF7 X64709 UFSP2 Interchromosomal 9 8 
MCF7 STRF6 AB055772 Interchromosomal 3 2 
MCF7 X64709 PCBP1 Interchromosomal 8 7 
MCF7 RPS16 MAK10 Interchromosomal 2 1 
MCF7 RPS9 KIF1C Interchromosomal 2 1 
MCF7 CANX NUDT7 Interchromosomal 2 1 
MCF7 ZNF609 RPL8 Interchromosomal 2 1 
MCF7 GRIK3 COPB2 Interchromosomal 2 1 
MCF7 CDR2L EEF2 Interchromosomal 2 1 
MCF7 HNRNPU FBL Interchromosomal 2 1 
MCF7 mccb,MCCC2 SYNE2 Interchromosomal 2 1 
MCF7 FOXM1 RNF40 Interchromosomal 2 1 
MCF7 SFRS9 MBD3 Interchromosomal 2 1 
MCF7 RNF40 AGR2 Interchromosomal 2 1 
MCF7 PLEKHG5 RPS16 Interchromosomal 2 1 
MCF7 SNX30 DNM2 Interchromosomal 2 1 
MCF7 ZBTB41 STRF6 Interchromosomal 2 1 
MCF7 PNPLA7 WDR85 Read_Through 2 1 
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MCF7 IGSF1 EIF4A3 Interchromosomal 2 1 

MCF7 
DKFZp781M17165,PPP2

R4 cytochrome_b Interchromosomal 2 1 
MCF7 hSIPL1A,SHARPIN ARPC5 Interchromosomal 2 1 
MCF7 CSTF3 CAT Intrachromosomal_Complex 2 1 
MCF7 RPL37 PMPCA Interchromosomal 2 1 
MCF7 CSDE1,KIAA0885 SETD1B Interchromosomal 2 1 
MCF7 NQO1 PRNPIP,ERI3 Interchromosomal 2 1 
MCF7 KLK10 SLC35A1 Interchromosomal 2 1 
MCF7 CLTC S100A14 Interchromosomal 2 1 
MCF7 RPS3 DDX42 Interchromosomal 2 1 
MCF7 PRMT2 EEF1A2 Interchromosomal 2 1 
MCF7 EDF1 RPL8 Interchromosomal 2 1 
MCF7 H2AFJ H3F3B Interchromosomal 2 1 
MCF7 SLC39A6 PREX1 Interchromosomal 2 1 
MCF7 NACC1 AK056267 Interchromosomal 2 1 
MCF7 KRT18 EEF1A2 Interchromosomal 2 1 
MCF7 FLJ00383,ATP6AP1 STRF6 Interchromosomal 2 1 
MCF7 OK/SW-cl.16 CA12 Interchromosomal 2 1 
MCF7 PHPT1 PRKCSH Interchromosomal 2 1 
MCF7 EGR3 MTND5 Interchromosomal 2 1 
MCF7 UBA52 GNAS Interchromosomal 2 1 
MCF7 BC071809 WDR62,DKFZp686G1024 Read_Through 2 1 
MCF7 RPS6KB1 TDC1,TMEM49,DM119428 Read_Through 50 0 
MCF7 TVAS5 DQ597482 Interchromosomal 139 0 
MCF7 FLJ00194,ARHGAP19 DRG1 Interchromosomal 25 0 
MCF7 OK/SW-cl.16 CR615613 Interchromosomal 24 0 
MCF7 RSBN1 AK123199 Adjacent_Diverging 14 0 
MCF7 TANC2 CA4 Intrachromosomal 12 0 
MCF7 TMSB4X BC113076 Interchromosomal 22 0 
MCF7 TMSL3 BC113076 Interchromosomal 22 0 
MCF7 TPT1,FLJ44635 FLJ44635 Interchromosomal 14 0 
MCF7 RPL31 RPL31P11 Interchromosomal 18 0 
MCF7 GATAD2B DKFZp434E2118,NUP210L Intrachromosomal 9 0 
MCF7 BTCC-1,CD9,5H9 TSPAN18 Interchromosomal 8 0 
MCF7 HLA-A,HLA-H,HLA-F hla-b,HLA-B Intrachromosomal_Complex 8 0 
MCF7 REV3L RPL28 Interchromosomal 7 0 
MCF7 LOC148189 AK094188 Read_Through 7 0 
MCF7 EEF1A2 HSD11B2 Interchromosomal 12 0 
MCF7 KIAA1049,TCF25 BC160930 Read_Through 6 0 
MCF7 TRFP,MED20 CCND3 Read_Through 6 0 
MCF7 SNX27 HNRNPA0 Interchromosomal 7 0 
MCF7 LOC387647 RAB18 Intrachromosomal 7 0 
MCF7 CR610404 PDIA3P Read_Through 5 0 
MCF7 NAV1 GPR37L1 Intrachromosomal 5 0 
MCF7 UBC UBB Interchromosomal 12 0 
MCF7 AK311578 G3BP2 Read_Through 5 0 
MCF7 PTMS ANP32B Interchromosomal 5 0 
MCF7 BC110832 BC065231 Intrachromosomal_Complex 18 0 
MCF7 EEF1D NAPRT1 Read_Through 7 0 
MCF7 CDC10L CR610292 Interchromosomal 10 0 
MCF7 RPS18 BC039356 Interchromosomal 13 0 
MCF7 SHANK2 SHANK1 Interchromosomal 5 0 
MCF7 SHANK2 SHANK3 Interchromosomal 5 0 
MCF7 VAX2 ATP6V1B1 Read_Through 4 0 
MCF7 HSP90Bb HSP90AB1,HSP90AB3P Interchromosomal 4 0 
MCF7 RYR1 C16orf35 Interchromosomal 4 0 
MCF7 ABCA5 PPP4R1L Interchromosomal 4 0 
MCF7 BC036544 NCRNA00164 Interchromosomal 4 0 
MCF7 MTG1 FLJ00268 Read_Through 4 0 
MCF7 GGA2 ZFAND5 Interchromosomal 4 0 
MCF7 HLA-B HLA-A Intrachromosomal_Complex 4 0 
MCF7 TAF15 FUS/CHOP Interchromosomal 4 0 
MCF7 LOC389333 MGC29506,PACAP Read_Through 4 0 
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MCF7 BC036909 GNAS Interchromosomal 4 0 
MCF7 X64709 X64709 Interchromosomal 4 0 

MCF7 
LOC728875,BC021732,L

OC728855 BC065231 Intrachromosomal_Complex 17 0 
MCF7 FLJ39739 BC065231 Intrachromosomal_Complex 17 0 
MCF7 BC110832,LOC728855 BC065231 Intrachromosomal 17 0 
MCF7 RPS16 ZNF90 Intrachromosomal_Complex 5 0 
MCF7 NBPF1 NBPF3 Intrachromosomal_Complex 6 0 
MCF7 HLA-B,hla-b HLA-B Intrachromosomal_Complex 7 0 
MCF7 EP300 MRFAP1L1 Interchromosomal 5 0 
MCF7 HLA-B hla-b Intrachromosomal_Complex 5 0 
MCF7 EEF1G EEF1G Interchromosomal 4 0 
MCF7 SARS SNHG8 Interchromosomal 3 0 
MCF7 SPATA21 SORT1 Intrachromosomal 3 0 
MCF7 DQ786213 TEKT4 Interchromosomal 3 0 
MCF7 PTMS NCL Interchromosomal 3 0 
MCF7 RPL35 RAB7A Interchromosomal 3 0 
MCF7 BC150535 VMO1 Read_Through 3 0 
MCF7 CYTH3 pp9943,CYTH2 Interchromosomal 3 0 
MCF7 SMG5 PAQR6 Read_Through 3 0 
MCF7 NUCKS1 ARCN1 Interchromosomal 3 0 
MCF7 TIRAP DCPS Read_Through 3 0 
MCF7 FAM119B TSFM Read_Through 3 0 
MCF7 ALDOA KRT18 Interchromosomal 3 0 
MCF7 HSPA1B,HSPA1A HSPA1B Read_Through 3 0 
MCF7 CSDA OK/SW-cl.16 Interchromosomal 3 0 
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Appendix C: Comparison of ChimeraScan with other gene fusion 
discovery tools 

 

Fusion 
ChimeraScan 

(v0.4.0)* 
ShortFuse 
(v0.1)** 

DeFuse 
(v0.3.5)*** 

MapSplice 
(v1.15.2)**** 

TMPRSS2-ERG 1 1 1 1 
ZDHHC7-ABCB9 1 1 1 0 

RC3H2-RGS3 1 1 1 1 
HJURP-EIF4E2 1 1 1 1 

TIA1-DIRC2 1 1 1 0 
PIK3C2A-TEAD1 1 0 0 1 
USP10-ZDHHC7 1 1 1 0 

SPOCK1-TBC1D9B 0 0 0 0 
INPP4A-HJURP 1 1 0 1 
LMAN2-AP3S1 1 0 0 1 

Total positive controls confirmed 9 7 6 6 

Total chimeras nominated 78 245 56 400 

          
          

* ChimeraScan (http://code.google.com/p/chimerascan/) was run with the following parameters (a weighted score 
>= 3 or a weighted score >= 2 if there is also a spanning read confirming the fusion) 

** ShortFuse (http://exon.ucsd.edu/ShortFuse) was run with all default parameters 

*** DeFuse was run with Bowtie 0.12.7, max_insert_size = 1000; discord_read_trim = 50, and default values for 
remaining parameters 

**** MapSplice (http://www.netlab.uky.edu/p/bioinfo/MapSplice) was run using the following parameters: 
paired_end = yes; segment_length = 25; junction_type = canonical; fusion_junction_type = canonical; full_running 
= yes; do_fusion = yes; do_cluster = yes. The fusion_remap_junction.unique.chr_seq.extracted.repeat_filtered 
was processed using a Perl script to determine the HUGO gene symbols overlapping fusion junctions. If the 
acceptor and donor had the same gene symbol it was removed from further analysis. 
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Appendix D: Gene fusions nominated by ChimeraScan in a clinical 
sequencing study 

 

Patient 1: Xenograft from 67-year old male with prostate cancer 

 

Patient 2: Xenograft from 60-year old male with prostate cancer 

 

Patient 3: 46-year old man with metastatic colon cancer 

 

Patient 4: 48-year old woman with metastatic melanoma 

 

  

Table S14: Patient 1 Gene Fusions nominated by RNA-Seq

5' transcript 3' transcript Fusion Genes Type Distance
Total Supporting 

Reads
Breakpoint 

Spanning Reads
uc003eom.2 uc003enx.2 CPNE4|NEK11 Intrachromosomal_Complex -359604 754 186
uc003ehn.3 uc003eey.2 TMPRSS2|ERG Intrachromosomal_Complex -2347138 120 115
uc003jrh.3 uc001xdz.1 GPBP1|DAAM1 Interchromosomal NA 78 27
uc002yzj.2 uc002yxa.2 UMPS|CCDC58 Intrachromosomal -2966050 57 25
uc002ozv.2 uc002pnc.2 PVRL2|CD37 Intrachromosomal 4456230 43 3
uc003vrk.2 uc002hqd.2 EXOC4|SNIP Interchromosomal NA 30 21
uc002ilr.3 uc002jdz.2 NPEPPS|ERN1 Intrachromosomal_Complex 16419748 13 9

uc001xiw.2 uc010vwd.1 GPHN|PIGL Interchromosomal NA 9 4

Table S15: Patient 2 Gene Fusions nominated by RNA-Seq

5' transcript 3' transcript Fusion Genes Type Distance

Total 
Supporting 

Reads

Breakpoint 
Spanning 

Reads
uc002gij.2 uc001wqm.1 TP53|SCFD1 Interchromosomal NA 1622 530
uc010gor.2 uc002yxc.3 TMPRSS2|ERG Intrachromosomal -2802774 1466 414
uc001vqx.2 uc003tfu.3 COL4A2|TARP Interchromosomal NA 496 324
uc002vnj.2 uc002gmp.3 ACSL3|MYH2 Interchromosomal NA 285 169

uc001wqm.1 uc010cnk.1 SCFD1|TP53 Interchromosomal NA 130 82
uc003frq.1 uc003csj.1 BCL6|CAMP Intrachromosomal_Complex -139172189 52 0
uc002zdv.2 uc002yzj.2 AGPAT3|TMPRSS2 Intrachromosomal_Complex -2405030 48 5
uc002gkg.3 uc002vni.2 TMEM107|ACSL3 Interchromosomal NA 34 13
uc003qmj.2 uc003qmq.1 MAP3K7IP2|C6orf72 Read_Through 154779 27 22
uc009zrj.2 uc001sxq.1 FRS2|GLIPR1L2 Intrachromosomal 5811327 24 4
uc002vtg.2 uc002vvs.2 GIGYF2|AGAP1 Intrachromosomal 2718040 22 7
uc002lpp.2 uc001ztj.1 PTBP1|FRMD5 Interchromosomal NA 16 3
uc001yva.2 uc002mee.1 NIPA2|ACSBG2 Interchromosomal NA 10 1

Table S16: Patient 3 Gene Fusions nominated by RNA-Seq

5' transcript 3' transcript Fusion Genes Type Distance

Total 
Supporting 

Reads

Breakpoint 
Spanning 

Reads
!"##$"%&'( !"##$"%)'( **++,$-***(./0 12345"647879785:;<78%:=> ?+(+,@// +$A BC
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Table S17: Patient 4 Gene Fusions nominated by RNA-Seq

5' transcript 3' transcript Fusion Genes Type Distance

Total 
Supporting 

Reads
Breakpoint 

Spanning Reads
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Appendix E: Prostate Cancer Associated Transcripts (PCATs) 
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