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CHAPTER I

Introduction

When the Human Genome Project was launched 25 years ago, the stage was

set for an exciting era in biology and medicine. Pioneering discoveries of the most

fundamental information concerning gene structure, function, and regulation have

furthered our understanding of the role of genetics in health and disease. Technolog-

ical advances in high-throughput sequencing and methods for interpreting large-scale

genetic data are rapidly shaping the breadth of human genetics research. The com-

plexity and diversity of the human genome still presents considerable challenges,

however. We can harness the information from human genetic variation to address

enduring challenges in understanding complex disorders, the motivation for which I

present the following dissertation.

1.1 Population-based association studies

Complex traits are multifactorial, presenting complexities beyond single-gene dis-

orders with classic Mendelian inheritance patterns. The considerable challenges in

understanding complex phenotypes have driven the development of study designs

that rely on comparisons of unrelated affected and unaffected individuals. A genome

wide association study (GWAS) tests the relationship between genetic marker predic-

Modified from: Schmidt and Willer (2015)
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tors across the genome and a single case-control or quantitative phenotype response

by employing logistic or linear regression, respectively. Typically, each study partic-

ipant is genotyped for a set of genome-wide independent markers on a commercial

genotyping array. In humans there are stretches of DNA that segregate together more

often than is expected by chance, resulting in non-independent markers in linkage

disequilibrium (LD). To address multiple testing and LD properties, a typical GWAS

considers one million independent single nucleotide polymorphisms (SNPs), result-

ing in a Bonferroni significance cut-off of association P -value ≤ 5x10-8. Increasing

sample sizes provide greater power to detect associations at the genome-wide level.

Currently, there are catalogued over 10,000 single markers that reach genome-wide

significance for hundreds of phenotypes (Welter et al., 2014).

A major consideration in the design of case-control GWA studies is the choice

of a control group. For a trait with high prevalence for example, it is important

to carefully choose healthy matched controls rather than picking a random sample

of control individuals from the population. GWAS designs involving quantitative

traits should ensure that the trait is normally distributed, which often requires a

logarithmic or inverse normal transformation of the trait before association testing.

Appropriately adjusting for confounders such as age and sex can also be critical to

prevent spurious or false positive associations and to maximize power. Population

structure presents another challenge that is typically accounted for using principle

components (Price et al., 2006) or mixed-model approaches (Kang et al., 2010).

We expect association P -values that deviate from the null uniform distribution to

represent true positive associations. Inflation from the null distribution indicates

additional batch effect or population structure that was not accounted for in the

association analysis, and suggests that false positive results may be present. Test
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statistics can be inflated by a factor lambda (λ), which is defined as the ratio of

the median of the observed distribution of the test statistic to the median of the

expected distribution (0.455, χ2
df=1) (Devlin and Roeder, 1999). Genomic control

adjustment by this lambda reduces inflation and the risk of false positive associations.

With careful study design including consideration of confounding factors, GWAS is

a powerful tool to discover true causal relationships in which genetic marker alleles

or nearby linked alleles influence susceptibility.

Genome-wide screening for single marker associations is generally used for iden-

tifying common variation (minor allele frequency (MAF) > 5%), but loses power in

efforts to identify associations with low frequency (0.5% < MAF ≤ 5%) or rare (MAF

≤ 0.5%) variants. Protein-coding variants with deleterious function are likely to be

rarer in the human population due to natural selection acting against them, and

have mostly arisen recently in evolutionary history (Fu et al., 2013). Because of the

rare nature of most variants with functional consequence, studies carefully designed

to uncover rare variant associations are crucial (Lee et al., 2014; Zuk et al., 2014).

Recent advances in exome sequencing and exome array technologies have facilitated

larger and more accurate studies for interrogating the protein-coding 1-2% of the

genome. However, single variant association tests commonly used by GWAS carry a

heavy multiple testing burden and still lack power when applied to rare variants of

high impact. Additional challenges for finding rare variation using traditional GWAS

single-variant approaches include poor coverage on arrays and difficulties with im-

puting. Thus, aggregation-based tests that group multiple variants by a single gene

or functional unit have become standard for rare variant association testing.

Several regression-based approaches have been developed in recent years to op-

timize rare variant discovery. In a simple burden test, multiple rare variants are
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collapsed into a genetic score representing the cumulative effect of those variants

in a single unit. Then, the score is tested for association with a trait or disease.

This idea, which has been implemented by numerous investigators (Morgenthaler

and Thilly, 2007; Li and Leal, 2008; Madsen and Browning, 2009; Morris and Zeg-

gini, 2010; Asimit et al., 2012), assumes that all variants in a single unit are causal

and that all alleles affect the phenotype with the same magnitude and direction of

effect. More robust modifications of a simple burden test introduce adaptive weights

or thresholds (Han and Pan, 2010; Hoffmann et al., 2010; Liu and Leal, 2010; Price

et al., 2010; Ionita-Laza et al., 2011; Lin and Tang, 2011). We can account for the

protective or deleterious impact of alleles on phenotype by considering the magni-

tude and direction of effect using variance-component tests (Pan, 2009; Neale et al.,

2011; Wu et al., 2011). Finally, we can combine burden and component tests (Lee

et al., 2012; Derkach et al., 2013; Sun et al., 2013) or score statistics (Chen et al.,

2012) to achieve more robust power. Choosing the optimal strategy for grouping

rare variants is flexible and may depend on the genetic architecture of a particular

trait (Ladouceur et al., 2012).

Meta-analysis is a powerful tool to jointly analyze GWA datasets from multiple

studies, especially when individual-level data are not available (Chapman et al.,

2011). In fact, the statistical power achieved by meta-analysis of summary statistics

is quite comparable to that achieved from the cumbersome pooling of individual-

level data (Lin and Zeng, 2010). Fisher’s method (Fisher et al., 1970) for combining

P -values is one simple method, but it neither weights by sample size nor considers

magnitude or direction of effect. This approach is impractical when individual studies

are unequal in size and/or the number of studies becomes large. We can combine

evidence for association by converting P -values into a signed Z -score weighted by
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sample size, or by weighting effect size estimates by their estimated standard errors

(Stouffer et al., 1949; Willer et al., 2010). When studies provide score statistics

for each variant and a variance-covariance matrix, a fixed-effects meta-analysis will

achieve improved power (Hu et al., 2013; Lee et al., 2013; Liu et al., 2014).

The association findings from GWAS provide an initial guide for the develop-

ment of medical treatments by pointing to a genomic region of interest. Within a

single locus however, there may be several or more genes and hundreds of linked ge-

netic variants. Identifying the putative causal variant and unraveling the underlying

functional mechanism at a single locus often requires finer interrogation and experi-

mental follow-up. Given the non-independent nature of markers across the genome,

it is common to only genotype a subset of independent markers in a GWA study.

However, commercial SNP genotyping panels only assay a small fraction of variants

that contribute to complex disease. Meta-analysis of multiple GWA studies by as-

signing SNPs genotyped in one study as proxies for SNPs genotyped in another study

is complicated. Genome sequencing is more comprehensive, but can be expensive for

studies involving thousands of participants. Imputation provides a cost-effective in

silico strategy for accurately guessing un-typed markers without directly genotyping

every variant across the genome (Marchini et al., 2007; Li et al., 2010). Under the

assumption that unrelated individuals share short stretches of haplotypes inherited

from distant common ancestors, we can use a subset of typed markers measured in

only one individual to impute into another. Targeted dense genotyping of carefully

selected loci is an effective follow-up strategy, as demonstrated by arrays such as

Metabochip (Voight et al., 2012a) and Immunochip (Cortes and Brown, 2011) that

are tailored for trait-specific follow-up.
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1.2 Insights into plasma lipids from genetic discovery

Cardiovascular disease is the leading cause of death in the United States and

throughout the world, representing a significant human health burden (Mozaffarian

et al., 2015). Genetic studies of lipid levels, known risk factors for heart disease

with heritability ranging from 40% to 60% in humans (Weiss et al., 2006), are logical

targets in efforts to prevent and treat heart disease. Modulation of these quantitative

lipid traits, which include low-density lipoprotein cholesterol (LDL-C), high-density

lipoprotein cholesterol (HDL-C), triglycerides (TG), and total cholesterol (TC), can

be effective therapeutically. Lipid traits are not independent, making it challenging

to untangle the effects of specific lipids on disease risk. LDL-C and TC generally

act in the same direction of effect on heart disease risk since the majority of TC is

composed of LDL-C. In addition, high TG is associated with high LDL-C and low

HDL-C, while LDL-C and HDL-C are positively and inversely associated with heart

disease risk, respectively (Emerging Risk Factors Collaboration et al., 2009).

Much of our current understanding of the genetics of blood lipids and impli-

cations in human health has originated from genome-wide association discoveries.

Early GWA studies with modest sample sizes (<10,000) uncovered common variants

(MAF>5%) with large effect sizes (Kathiresan et al., 2008; Willer et al., 2008). The

power to discover new lipid-associated variants increased with sample size (Kathire-

san et al., 2009; Teslovich et al., 2010). In Chapter II, I describe a joint meta-analysis

of nearly 180,000 samples which uncovered 62 novel independent genetic loci con-

taining lipid-associated variants (Global Lipids Genetics Consortium et al., 2013).

Most of the associated variants are non-protein-coding, suggesting a regulatory role

(Welter et al., 2014). An illustration of the regulatory role of a noncoding LDL-
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C-associated variant is evident at the SORT1 locus. Researchers demonstrated in

human-derived hepatocytes that variant rs12740374 at an LDL-C-associated GWAS

locus creates a C/EBP transcription factor binding site, causing altered expression

of the nearby SORT1 gene (Musunuru et al., 2010). Still, common variants generally

have limited functional consequence.

Common variants identified by GWAS explain only a fraction (∼20-25%) of the

heritable trait variance for lipids (Teslovich et al., 2010). In effort to explain some of

the missing heritability, we turn to low frequency and rare variation. The Common

Disease-Rare Variant hypothesis proposes that the combined effect of a number of low

frequency variants with large effect sizes accounts for some of the missing heritability

(Pritchard and Cox, 2002). Indeed, early sequencing studies of candidate genes

supported the contribution of multiple rare alleles to plasma HDL-C levels (Cohen

et al., 2004).

Mendelian family studies involving large pedigrees are valuable for rare variant

genetic studies. In this design, the co-segregation of variants among affected fam-

ily members can be traced. Investigators recently used whole-exome sequencing in

a multi-generation family to uncover a rare variant in a highly conserved codon of

SLC25A40 that is associated with TG, giving insight into a previously unknown bi-

ological mechanism of hypertriglyceridemia (Rosenthal et al., 2013). My subsequent

focus will include findings from large-scale array and sequencing studies for complex

lipid traits.

Interrogating the protein-coding genome through re-sequencing coding regions

(Kryukov et al., 2009) and whole-exome sequencing (Do et al., 2012) can reveal rare

mutations with a large effect on phenotype. A splice variant in APOC3 associated

with TG was identified using whole-genome sequencing, representing one of the first
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rare variants of large effect to be found using this sequencing approach at the popu-

lation scale (Timpson et al., 2014). Sequencing the exome is more cost-effective than

whole-genome sequencing, however, and fewer statistical tests are performed, reduc-

ing the multiple testing burden. The potential of exome sequencing has resulted in

studies powered for the discovery of novel rare variation implicated in blood lipids.

For example, investigators of the National Heart, Lung, and Blood Institute Exome

Sequencing Project used exome sequencing to identify the burden of rare variants

in four genes (PNPLA5, PCSK9, LDLR and APOB) significantly associated with

LDL-C (Lange et al., 2014). By contrast to modest effect sizes observed from indi-

vidual SNPs identified by GWAS, the burdens of rare variants in these genes have

substantially higher effect sizes (Figure 1.1). Association testing using the more

cost-effective study design of genotyping and successfully imputing SNPs has also

led to novel insights into the impact of rare variants on lipids (Surakka et al., 2015).

Tables 1.1 and 1.2 summarize the contribution of low frequency and rare variation

to lipids from single variant and burden tests, respectively.

The exome chip custom genotyping array allows for large-scale efficient genotyping

of low frequency coding variants with large effect sizes. Exome wide association

studies for lipids and related diseases revealed several significant variants at both

established and previously unknown lipid loci. Rare variants at ANGPTL4, LIPC

and LIPG, for example, were found to be associated with TG and HDL-C (Holmen

et al., 2014) (Table 1.1). In addition, a more common variant in the protein-coding

gene, TM6SF2, was found to be associated with total cholesterol and myocardial

infarction risk (Holmen et al., 2014; Kozlitina et al., 2014). Functional follow-up

revealed that modulation of Tm6sf2 in mice alters lipid levels, providing the causal

gene at a GWAS locus that was previously intractable for follow-up due to a large
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number of genes in the associated region. These findings illustrate the value of

interrogating changes in the exome in guiding our exploration of the functional gene

at lipid loci.

Because we expect that rare variants of large effects are more likely to occur in

coding regions, detection of rare noncoding variants with comparable effect sizes will

generally require much larger sample sizes. Whole-genome sequencing of nearly 1,000

individuals revealed more about the genetic architecture of HDL-C (Morrison et al.,

2013). Morrison et al. (2013) found that common variation explains a whole 61.8%

of the trait heritability for HDL-C, and individuals with extreme HDL-C harbor

rare variants with large effect sizes. Dense genotyping on custom arrays can guide

discovery of rare functional variants that were not previously interrogated and help

narrow the association signal (Sanna et al., 2011; Wu et al., 2013). Fine mapping on

Metabochip in Europeans highlighted the LDL-C associated rare R46L (p.Arg46Leu)

variant (allele frequency 0.03) at PCSK9 to refine the GWAS signal (Global Lipids

Genetics Consortium et al., 2013). In addition, methods to evaluate enrichment of

noncoding variants in regulatory regions of the genome will give insight into the

biological mechanisms involved and help prioritize rare functional variants (Lo et al.,

2014; Schmidt et al., 2015).

1.3 Translation of plasma lipid levels to disease risk

Understanding the relationship between plasma lipid concentrations and heart

disease risk is paramount in addressing human health. Several lipid loci contain

variants associated with risk for diseases such as coronary artery disease (CAD)

(CARDIoGRAMplusC4D Consortium et al., 2013), highlighting the causal role of

blood lipids on CAD. Although the correlation between increased triglyceride levels
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and increased risk of CAD is well established (Sarwar et al., 2007), the causality

of this relationship is a separate question that has claimed recent attention. After

adjusting for the effects of both LDL-C and HDL-C, Do et al. (2013) found correlation

between the effect size of TG-associated SNPs and the magnitude of the effect on

CAD risk, suggesting causality. Exome sequencing revealed a set of rare variants,

including one missense and 3 loss-of-function driver mutations in APOC3 associated

with low plasma TG (TG and HDL Working Group of the Exome Sequencing Project,

National Heart, Lung, and Blood Institute et al., 2014). Carriers of such mutations

showed significantly reduced risk for CAD.

Although the causal relationship between low LDL-C and reduced risk for myocar-

dial infarction (MI) is well established and used in treatment (Baigent et al., 2005),

the causality of high HDL-C with a similar outcome has been challenged (Voight

et al., 2012b). A Mendelian randomization study (n >25,000 participants) involving

a low frequency variant p.Asn396Ser (allele frequency 0.026) in LIPG that is associ-

ated with high HDL-C showed that carriers did not have a significantly reduced risk

for MI (Voight et al., 2012b). This questions the utility of high plasma HDL-C to

either predict or treat heart disease.

Researchers sequenced the exons of the NPC1L1 gene and found naturally occur-

ring mutations that can mimic the activity of an LDL-C lowering drug and thus re-

duce coronary heart disease (CHD) risk (Myocardial Infarction Genetics Consortium

Investigators et al., 2014). Low frequency variants in PCSK9 are also known to be as-

sociated with low LDL-C and reduced CHD risk (Cohen et al., 2005, 2006; Cohen and

Hobbs, 2013). This prompted the interrogation of rare coding variation to find simi-

lar occurrences elsewhere in the genome. Using an exome array, researchers identified

four low-frequency variants associated with HDL-C (in ANGPTL8, PAFAH1B2, and
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PCSK7 ) and TG levels (in COL18A1 ), but not CHD (Peloso et al., 2014) (Table 1.1).

Lipid loci demonstrate a significant degree of pleiotropy, in which a single locus can

result in multiple phenotypes. Figure 1.2 illustrates the pleiotropic nature of lipid-

associated loci, many of which were discovered in studies described in this thesis.

This complexity introduces challenges for translation to human health, presenting

motivation for human genetics research of complex traits. Studies of heritable vari-

ation will be instrumental in guiding physicians toward appropriate risk prevention,

diagnosis, and treatment of cardiovascular disease.

1.4 Interpreting noncoding genetic variation

Understanding the underlying biology of noncoding human genetic variation and

translating association findings into clinical practice remains a universal challenge.

In contrast to protein-coding mutations that cause an amino acid change to poten-

tially alter protein function, noncoding variation typically acts by altering the DNA

sequence to which transcription factors (TF) and other proteins bind. Changing TF

binding affinity can affect gene expression levels, thus contributing to phenotypic vari-

ation. The noncoding nature of most trait-associated variation identified by GWAS

suggests that these polymorphisms play an important role in transcriptional regula-

tion (Hindorff et al., 2009). To understand this, we can explore epigenomic changes

across the genome such as histone modifications and DNA methylation that impact

gene expression levels by changing chromatin structure. High throughput technolo-

gies have allowed us to investigate protein interactions with DNA through chromatin

immunoprecipitation followed by massively parallel DNA sequencing (ChIP-Seq).

The information about protein binding sites together with noncoding trait-associated

variation from GWAS provides further insight into the mechanisms acting to alter
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phenotype (see Chapter III).

Several large-scale efforts such as the National Institutes of Health Roadmap Epig-

nomics Project (Roadmap Epigenomics Consortium et al., 2015) and the National

Human Genome Research Institute ENCODE Project (ENCODE Project Consor-

tium, 2012) have been launched with the goal of developing a comprehensive cata-

logue of all human genomic functional elements. The data generated by these public

repositories are key to addressing the challenges of interpreting noncoding variation.

We can harness the heritable nature of drug response to explore the genetic mech-

anisms of noncoding mutations contributing to drug response variability. For exam-

ple, genetic variation within regulatory elements can disrupt TF binding and drug

response by altering a drug-targeted affinity. This concept has been demonstrated by

Soccio et al. (2015), showing that variants within binding sites of PPARγ, a nuclear

receptor target for anti-diabetic therapy, alter PPARγ and cofactor occupancy. This

in turn alters response to the drug rosiglitazone, demonstrating a new mechanism by

which noncoding variation leads to drug response variability. Still, the heterogene-

ity in drug response remains a major challenge facing physicians when prescribing

treatment.

1.5 Discovery of structural variation

The complexity of the human genome extends beyond single nucleotide polymor-

phisms and indels to larger structural variation that can span thousands of bases.

This class of variation presents unique challenges in discovery and functional interpre-

tation. Structural variation (SV) historically refers to chromosomal rearrangements

of >1 kb in size, but due to sequencing technologies broadening the spectrum of

discovery, can now be expanded to events of >50 base pairs (bp) in length (Alkan
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et al., 2011). Structural variants can be balanced or unbalanced, changing the num-

ber of base pairs in the genome and thus referred to as copy number variants (CNVs).

Pang et al. (2010) estimates that CNVs within a single genome result in 1.2% dif-

ference from the consensus reference sequence. In contrast to ∼83% of the total

detected genetic variation in gene expression that results from SNPs, CNVs capture

∼17% (Stranger et al., 2007). Mills et al. (2011) found 22,025 deletions and 6,000

additional SVs including insertions and tandem duplications in 185 sequenced hu-

man genomes. The latest 1000 Genomes Project effort discovered and genotyped

∼14,000 large deletions (48bp-995kb) in a diverse set of over 1,000 sequenced indi-

viduals (1000 Genomes Project Consortium et al., 2012). The Database of Genomic

Variants archive (DGVa) catalogues structural variant data in a public repository

for dissemination to the wider research community (http://www.ebi.ac.uk/dgva).

Methods of detecting structural variation have evolved with changing technology

and study designs. Early studies used hybridization-based technologies such as ar-

ray CGH (comparative genomic hybridization) to capture CNVs (Iafrate et al., 2004;

McCarroll et al., 2008; Conrad et al., 2010). Although microarrays are cost-effective,

they are low throughput and low resolution technologies that cannot identify bal-

anced structural variants. Advances in next generation sequencing (NGS) technolo-

gies and the routine use of genome- and exome-sequencing data sets have allowed

us to call complex events with unprecedented resolution. For NGS-based discovery,

mapped sequence reads are compared to a reference genome to find patterns that

can be classified into various SV types such as deletions, duplications, inversions,

and translocations.

There are a number of NGS-based computational approaches for SV discovery,

all of which present bioinformatics challenges and each with its own set of strengths

http://www.ebi.ac.uk/dgva


14

and weaknesses (Mills et al., 2011; Alkan et al., 2011). The read-pair mapping ap-

proach compares the consistency of orientation of read pairs to a reference genome,

and can detect most classes of variation. Discordantly matched paired-ends with an

alignment distance, or insert size, that deviates significantly from the expected dis-

tance on the genome are used to estimate SV coordinates (Korbel et al., 2007; Chen

et al., 2009). Another method observes significantly higher or lower read depth com-

pared to a random distribution of mapping depth to call duplications or deletions,

respectively (Yoon et al., 2009). A split-read method identifies the exact break-

point of a structural variant by observing regions where the read alignment to the

genome is broken (Ye et al., 2009). GenomeSTRiP integrates read-depth, read-pair,

and split-read approaches for discovering and genotyping deletions in a population

(Handsaker et al., 2011, 2015). Another SV caller, DELLY, combines read-pair and

split-read analysis for calling both balanced and unbalanced events (Rausch et al.,

2012). Lastly, de novo assembly of contigs that are compared to a reference genome

can be used to discover various classes of SVs (Zerbino and Birney, 2008; Li, 2015).

When various NGS-based SV discovery approaches are directly compared on a dis-

tinct set of samples, the number of events called uniquely by a single method is as

high as 80% of all SVs discovered by that method (Mills et al., 2011; Alkan et al.,

2011). This comparison illustrates the complementary nature of these various dis-

covery techniques. In addition, there are sensitivity vs. specificity trade-offs among

popular tools, and a comparison of their performance on calling deletions over 100 bp

reveals false negative rates ranging from 0.31 to 0.79 and false positive rates ranging

from 0.09 to 0.37 (Li, 2015).
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1.6 Functional impact of structural variation in complex disorders

Our current understanding of the role of structural variation in health-related phe-

notypes is limited relative to less complex forms of genetic variation. Indeed, SVs are

known to contribute to many disease types ranging from Mendelian disorders (e.g.

Charcot-Marie-Tooth Disease (Lupski et al., 1991)) to sporadic developmental syn-

dromes (e.g. autism (Sebat et al., 2007)) to common complex disease (e.g. psoriasis

(Hollox et al., 2008), systemic lupus erythematosus (Yang et al., 2007)).

Genome-wide association studies, used primarily for identifying associations be-

tween SNPs and quantitative traits or disease phenotypes, are less commonly im-

plemented for association with structural variation. Our ability to sequence large

numbers of individuals and accurately call and genotype SVs has made genome-wide

SV associations more informative. Discovery and association analysis of the func-

tional impact of structural variation in myocardial infarction (MI) from whole genome

sequencing is the subject of Chapter IV. Previous discovery of SV’s using array CGH

found common copy number variants that are well tagged by trait-associated SNPs,

presenting plausible functional candidates (Conrad et al., 2010). For example, Con-

rad et al. (2010) identified a CNV in LD (r 2=1) with an MI-associated single variant

(rs6725887) at the WDR12 locus first reported by Myocardial Infarction Genet-

ics Consortium et al. (2009). With the improved resolution of SV detection from

sequencing technologies, we can develop a more comprehensive map of structural

variation to better understand the genetic landscape of complex disease.

1.7 Dissertation outline

My research objective is to understand how human genetic variation causes phe-

notypic differences and individual disease risk, even when only a small fraction of
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this variation is protein-coding. The subsequent chapters explore multiple facets of

human genetic variation to further our understanding of the genetic landscape of

quantitative lipid traits and cardiovascular disorders. From single genetic variants

with a focus on understanding noncoding transcriptional regulation to structural

variation classified from whole genome sequencing, this work contributes important

insights into complex disease and will help tailor strategies for translation to human

health.

Novel lipid-associated variants with small effect sizes can be identified

at genome-wide significance through targeted genotyping of additional in-

dividuals on Metabochip followed by meta-analysis with the original lipids

GWAS results. In Chapter II, I describe the largest genome-wide meta-analysis

for lipids to date, involving nearly 100,000 additional participants phenotyped for

lipids and genotyped on Metabochip. I report 62 novel genetic loci associated with

lipids and through various downstream bioinformatics analyses, provide evidence for

the biological relevance of these loci to help inform potential functional follow-up.

Because of the noncoding nature of most trait-associated variants iden-

tified by GWAS, including those associated with lipids examined in Chap-

ter II, I hypothesize that a majority are involved in transcriptional regu-

lation rather than altering protein function to induce phenotypic change.

I develop the open source tool GREGOR (Genomic Regulatory Elements and Gwas

Overlap AlgoRithm) to quantify enrichment of trait-specific GWAS variants in reg-

ulatory features. I find evidence of enrichment of lipid-associated variants in regula-

tory features in liver, and see analogous enrichment of other trait-associated variants

in features of biologically relevant tissues. This method, described in Chapter III,

gives further insight into the mechanisms of transcriptional regulation by which trait-
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associated variants are acting. In addition, I evaluate regulatory feature overlap of

linked variants at a set of individual lipid-associated loci to hypothesize the func-

tionality of particular variants, and present experimental results to support my com-

putational predictions.

Lastly, I hypothesize that there are different frequencies of genomic

structural variants in myocardial infarction cases compared to controls

and apply established and complementary SV detection algorithms to

identify and genotype deletions, duplications, and inversions. Chapter IV

examines the functional impact of structural variation on MI through whole genome

sequencing in a Norwegian sample, and provides the results of genome-wide associ-

ation testing of SVs for MI status and quantitative lipid traits.
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Figure 1.1: Power to detect lipid-associated loci for different study designs. Dotted lines represent
80% power curves and points represent lipid-associated loci from sequencing (Lange et al., 2014;
Timpson et al., 2014) (red), exome chip (Holmen et al., 2014) (blue), and GWAS (Global Lipids
Genetics Consortium et al., 2013) (black) study designs. Colored loci in red represent standardized
effect sizes and burden frequencies estimated from European American or British samples (Lange
et al., 2014; Timpson et al., 2014) (red) and Norwegian samples (Holmen et al., 2014) (blue). SD,
standard deviation units.



21

FG
T2D BM

I
SBP

DBP

HDL−
C TG

LD
L−

C TC
CAD

RBM5
PDE3A
CPS1
UBE2L3
VEGFA
SLC39A8
BRAP
TMEM176A
ZNF648
HDGF−PMVK
OR4C46
SETD2
ADH5
AMPD3
ABCA8
ANGPTL1
SBNO1
ZBTB42−AKT1
MOGAT2−DGAT2
MVK
ANGPTL4
TRPS1
LIPC
TTC39B
MARCH8−ALOX5
SCARB1
LOC55908
DAGLB
GSK3B
IKZF1
SNX13
PGS1
LILRA3
HAS1
STARD3
LCAT
AKR1C4
NAT2
CTF1
JMJD1C
MC4R
MSL2L1
IRS1
FTO
TYW1B
LPL
MPP3
PEPD
INSR
PLTP
CITED2
PLA2G6
GALNT2
ZNF664
PABPC4
MET
FAM13A
PDXDC1
LRP4
FRMD5
CMIP
LACTB
ATG7
CAPN3
RSPO3
MLXIPL
STAB1
KAT5
C4orf52
PINX1
LRP1
MAP3K1
KLF14
ARL15
GCKR
HMGCR
RAB3GAP1
SORT1
LDLR
APOE
TRIB1
APOA1
C6orf106
HBS1L
LIPG
BRCA2
GPR146
HNF4A
VIM−CUBN
UBASH3B
PPP1R3B
FADS1−2−3
COBLL1
KLHL8
CETP
MOSC1
GPAM
ANGPTL3
CYP26A1
ABCA1
PIGV−NR0B2
APOB
HNF1A
CILP2
TIMD4
LRPAP1
FLJ36070
MIR148A
ERGIC3
CYP7A1
FAM117B
HPR
FRK
NYNRIN
CMTM6
EVI5
OSBPL7
ABO
TOP1
MTMR3
IRF2BP2
PHC1−A2ML1
CSNK1G3
ABCG5/8
PPARA
VLDLR
MYLIP
SPTLC3
HLA
DLG4
MAFB
KCNK17
EHBP1
ANXA9−CERS2
PCSK9
SNX5
RAF1
ABCB11
NPC1L1
LOC84931
HFE
ACAD11
LPA
TOM1
PXK
DNAH11
FN1
LDLRAP1
PHLDB1
UGT1A1
ST3GAL4
PLEC1
ASAP3
INSIG2
SOX17
SPTY2D1
APOH−PRXCA

15
7 

Li
pi

d−
as

so
ci

at
ed

 lo
ci

Phenotype

Beta

 < 0

 > 0

not sig

Figure 1.2: Effects of lipid-associated loci on related phenotypes. Effect sizes were obtained from
Global Lipids Genetics Consortium et al. (2013) (HDL-C, LDL-C, TC, TG), Locke et al. (2015)
(BMI, body mass index), International Consortium for Blood Pressure Genome-Wide Association
Studies et al. (2011) (DBP and SBP, diastolic and systolic blood pressure), CARDIoGRAMplusC4D
Consortium et al. (2013) (CAD, coronary artery disease), Morris et al. (2012) (T2D, type 2 dia-
betes), and Scott et al. (2012) (FG, fasting glucose). Blue and red colors represent positive and
negative direction of effect, respectively; gray represents not significant after Bonferroni correction
for 157 independent lipid loci (P>0.0003); white represents missing data.



CHAPTER II

Metabochip meta-analysis for discovery and refinement of
genetic loci associated with plasma lipid levels

2.1 Abstract

Levels of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein

cholesterol (HDL-C), triglycerides (TG) and total cholesterol (TC) are heritable,

modifiable risk factors for coronary artery disease. To identify new loci and refine

known loci influencing these lipids, we examined 188,577 individuals using genome-

wide and custom genotyping arrays. We identify and annotate 157 loci associated

with lipid levels at P<5x10-8, including 62 loci not previously associated with lipid

levels in humans. Using dense genotyping in individuals of European, East Asian,

South Asian and African ancestry, we narrow association signals in 12 loci. We find

that loci associated with blood lipid levels are often associated with cardiovascular

and metabolic traits, including coronary artery disease, type 2 diabetes, blood pres-

sure, waist-hip ratio and body mass index. Our results demonstrate the value of

using genetic data from individuals of diverse ancestry and provide insights into the

biological mechanisms regulating blood lipids to guide future genetic, biological and

therapeutic research.

Official citation: Global Lipids Genetics Consortium et al. (2013)
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2.2 Introduction

Blood lipids are heritable, modifiable risk factors for coronary artery disease

(CAD) (Kannel et al., 1961; Castelli, 1988), a leading cause of death (Lloyd-Jones

et al., 2010). Human genetic studies of lipid levels can identify targets for new ther-

apies for cholesterol management and the prevention of heart disease and can com-

plement studies in model organisms (Teslovich et al., 2010; Barter and Rye, 2012).

Studies of naturally occurring genetic variation can proceed through large-scale as-

sociation analyses focused on unrelated individuals or through the investigation of

mendelian forms of dyslipidemia in families (Rahalkar and Hegele, 2008). We previ-

ously identified 95 loci associated with blood lipids, accounting for ∼10-12% of total

trait variance (Teslovich et al., 2010), and showed that variants with small effects can

indicate pathways and therapeutic targets that enable clinically important changes

in blood lipid levels (Teslovich et al., 2010; Musunuru et al., 2010).

Here we report on studies of naturally occurring variation in 188,577 European-

ancestry individuals and 7,898 non-European-ancestry individuals. Our analyses

identify 157 loci associated with lipid levels at P<5x10-8, including 62 new loci.

Thirty of the 62 loci do not include genes implicated in lipid biology by previous

literature. We tested lipid-associated SNPs for association with mRNA expression

levels, carried out pathway analyses to uncover relationships between loci and com-

pared the locations of lipid-associated SNPs with those of genes and other functional

elements in the genome. These results provide direction for biological and therapeu-

tic research into risk factors for CAD.



24

2.3 Results

2.3.1 New loci associated with blood lipid levels

We examined subjects of European ancestry, including 94,595 individuals from

23 studies genotyped with genome-wide association study (GWAS) arrays (Teslovich

et al., 2010) and 93,982 individuals from 37 studies genotyped with the Metabochip

array (Voight et al., 2012a) (Figure 2.1). The Metabochip includes variants rep-

resenting promising loci from our previous GWAS (14,886 SNPs) and from GWAS

of other CAD risk factors and related traits (50,459 SNPs), variants from the 1000

Genomes Project (1000 Genomes Project Consortium et al., 2010) and focused rese-

quencing (Sanna et al., 2011) efforts in 64 previously associated loci (28,923 SNPs)

and fine-mapping variants in 181 loci associated with other traits (93,308 SNPs). In

cases where Metabochip and GWAS array data were available for the same individ-

uals, we used Metabochip data to ensure that key variants were directly genotyped

rather than imputed.

We excluded individuals known to be on lipid-lowering medications and evaluated

the additive effect of each SNP on blood lipid levels after adjusting for age and sex.

Genomic control values (Devlin and Roeder, 1999) for the initial meta-analyses were

1.10-1.15, low for a sample of this size, indicating that population stratification should

have had only a minor impact on our results (Figure 2.2). After genomic control

correction, 157 loci associated with blood lipid levels were identified (P<5x108),

including 62 newly associated loci (Figure 2.3, Tables 2.1, 2.2, 2.3, and 2.4). Loci

were>1 Mb apart and nearly independent (r 2<0.10). Of the 62 newly associated loci,

24 demonstrated the strongest evidence of association with HDL cholesterol levels,

15 demonstrated the strongest evidence of association with LDL cholesterol levels,

8 demonstrated the strongest evidence of association with triglyceride levels, and 15
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demonstrated the strongest evidence of association with total cholesterol (Figure 2.4).

Several of these loci were validated by a similar extension based on published Global

Lipids Genetics Consortium GWAS results (Asselbergs et al., 2012).

The effects of newly identified loci were generally smaller than in earlier GWAS

(Figure 2.5). For the 62 newly identified variants, trait variance explained in the

Framingham offspring was 1.6% for HDL cholesterol levels, 2.1% for triglyceride

levels, 2.4% for LDL cholesterol levels and 2.6% for total cholesterol levels.

2.3.2 Overlap of genetic discoveries and previous knowledge

To investigate connections between our new loci and known lipid biology, we first

catalogued genes within 100 Kb of the peak associated SNPs and searched PubMed

and Online Mendelian Inheritance in Man (OMIM) for occurrences of these gene

names and their aliases in the context of relevant keywords. After manual curation,

we identified at least 1 strong candidate in 32 of the 62 loci (52%) (Tables S2.1

and S2.2). For the remaining 30 loci, we found no literature support for the role

of a nearby gene in regulating blood lipid levels. This search highlighted genes

whose connections to lipid metabolism have been extensively documented in mouse

models (such as VLDLR and LRPAP1 (Welch et al., 1996)) and human cell lines

(such as VIM (Sarria et al., 1992)), as well as candidates whose connection to lipid

levels is more recent, such as VEGFA. With respect to the latter, recent studies of

VEGFB have suggested that vascular endothelial growth factors have an unexpected

role in the targeting of lipids to peripheral tissues (Hagberg et al., 2010), which we

corroborate by associating variants near VEGFA with blood triglyceride and HDL

cholesterol levels.

Multiple types of evidence supported several literature-identified candidates (Ta-

bles S2.3 and S2.4. For example, VLDLR is categorized by Gene Ontology (GO)
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(Ashburner et al., 2000) in the retinoid X nuclear receptor (RXR) activation path-

way, which also includes genes (APOB, APOE, CYP7A1, APOA1, HNF1A and

HNF4A) in previously implicated loci (Teslovich et al., 2010). However, because

these additional sources of evidence build on overlapping knowledge, they are not

truly independent.

To estimate the probability of finding ≥32 literature-supported candidates after

automated search and manual review of results, we repeated our text-mining litera-

ture search using 100 permutations of SNPs matched for allele frequency, distance to

the nearest gene and number of proxies in linkage disequilibrium (LD). To approx-

imate manual curation of the text-mining results, we focused on genes implicated

by 3 or more publications (25 in observed data, 8.7 on average in control SNP sets,

P=8x108).

2.3.3 Pathway Analyses

We performed a gene set enrichment analysis, using MAGENTA (Segrè et al.,

2010) to evaluate the over-representation of biological pathways among associated

loci. Across the 157 loci, MAGENTA identified 71 enriched pathways. These path-

ways included at least 1 gene in 20 of our newly identified loci. Examples included

DAGLB (connected to previously associated loci by genes in the triglyceride lipase

activity pathway), INSIG2 (connected to previously associated loci by the choles-

terol and steroid metabolic process pathways), AKR1C4 (connected to previously

associated loci by the steroid metabolic process and bile acid biosynthesis pathways),

VLDLR (connected to previously associated loci by the retinoic X receptor activation

and lipid transport pathways, among others) and PPARA, ABCB11 and UGT1A1

(three genes assigned to pathways implicated in the activation of nuclear hormone

receptors, which have an important role in lipid metabolism through the transcrip-
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tional regulation of genes in sterol metabolic pathways (Fitzgerald et al., 2002)). Of

the 16 loci where literature review and pathway analysis both suggested a candidate,

the predictions overlapped 14 times (Tables S2.3 and S2.4; by chance, we expected

6.6 overlapping predictions; P=1x105).

2.3.4 Protein-protein interactions

We assessed evidence for physical interactions between proteins encoded near our

associated SNPs using DAPPLE (Rossin et al., 2011). We found an excess of direct

protein-protein interactions for genes in loci associated with LDL cholesterol levels

(ten interactions; P=0.0002), HDL cholesterol levels (eight interactions; P=0.002)

and total cholesterol levels (six interactions; P=0.017) but not for triglyceride levels

(two interactions; P=0.27). Most of the interactions involved genes at known loci

(such as the interaction network connecting PLTP, APOE, APOB and LIPC ) or

highlighted the same genes as the literature and pathway analyses (such as those

connecting VLDLR, APOE, APOB, CETP and LPL). Among the new loci, we iden-

tified a link between AKT1 and GSK3B. GSK3B has been shown to have a role in

energy metabolism (Plyte et al., 1992), and its activity is regulated by AKT1 through

phosphorylation (Toker and Cantley, 1997). Literature review also supported a role

in the regulation of blood lipid levels for these two genes.

2.3.5 Regulation of gene expression by associated variants

Many variants associated with complex traits act through the regulation of gene

expression. We examined whether our 62 newly identified variants were associated

with the expression levels of nearby genes in liver, omental fat or subcutaneous fat.

Fifteen variants were associated with the transcript levels of a nearby gene at a

significance of P<5x10-8 (Table S2.5), and seven lipid-associated variants were in
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strong LD (r 2>0.8) with the strongest expression quantitative trait locus (eQTL)

for the region (r 2>0.8). In three of these loci, literature searches also prioritized

candidate genes. In all three, eQTL analysis and literature review identified the

same candidate (DAGLB, SPTLC3 and PXK ; P=0.05). For the remaining four

loci (near RBM5, ADH5, TMEM176A and GPR146 ), analysis of expression levels

identified candidates that were not supported by literature or pathway analyses.

2.3.6 Coding variation

In some loci where previous association studies of coding variants were incon-

clusive, we now found convincing evidence of association, demonstrating the ben-

efits of the large sample sizes achievable through collaboration. For example, in

the APOH locus (Kaprio et al., 1991), our most strongly associated variant was

rs1801689 (APOH p.Cys325Gly; P=1x10-11 for LDL cholesterol levels). Overall, at

15 of the 62 new loci, there was at least 1 nonsynonymous variant within 100 kb

of and in strong LD (r 2>0.8) with the index SNP (Table S2.6) (18 loci when there

was no restriction on distance). This ∼30% overlap between associated loci and

coding variation is similar to that for other complex traits (1000 Genomes Project

Consortium et al., 2010). Unexpectedly, in the 11 loci where a candidate was sug-

gested by literature review and by examination of coding variation, the candidates

from these methods coincided 7 times (P=0.03 compared to the expected overlap by

chance of 3.8 times); thus, agreement between literature review and examination of

coding variation was less significant than for eQTL studies and analyses of pathways

or protein-protein interactions.
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2.3.7 Overlap between association signals and regulators of transcription in liver

Despite our efforts, 18 of the 62 newly identified loci remain without prioritized

candidate genes. The liver is an important hub of lipid biosynthesis, and there is

evidence that lipid-associated variants might be associated with changes in gene reg-

ulation in liver cells (Ernst et al., 2011). Using Encyclopedia of DNA Elements

(ENCODE) data (ENCODE Project Consortium, 2011), we evaluated whether as-

sociated SNPs overlapped experimentally annotated functional elements identified

in HepG2 cells, a commonly used model of human hepatocytes. To determine sig-

nificance, we generated 100,000 lists of permuted SNPs matched for minor allele

frequency (MAF), distance to the nearest gene and number of SNPs in LD (r 2>0.8)

(Section 2.5.12). In HepG2 cells, lipid-associated SNPs were enriched in 8 of the 15

functional chromatin states defined by Ernst et al. (2011) (P<1x10-5; Table S2.7).

The strongest enrichment was in regions with ‘strong enhancer activity’ (3.7-fold

enrichment; P=2x10-25; Table S2.8). In the other eight cell types examined by Ernst

et al. (2011), no more than three functional chromatin states showed evidence for

enrichment (and, when present, enrichment was weaker).

We proceeded to investigate the overlap between lipid-associated loci and func-

tional marks in HepG2 cells in more detail Table S2.8). Notable regulatory elements

showing significant overlap with lipid-associated loci included histone marks associ-

ated with active regulatory regions (acetylation of histone H3 at lysine 27 (H3K27ac),

P=3x10-20; acetylation of histone H3 at lysine 9 (H3K9ac), P=3x10-22), promoters

(trimethylation of histone H3 at lysine 4 (H3K4me3), P=2x10-15; dimethylation of

histone H3 at lysine 4 (H3K4me2), P=8x10-12), transcribed regions (trimethyla-

tion of histone H3 at lysine 36 (H3K36me3), P=4x10-14), indicators of open chro-

matin (FAIRE (formaldehyde-assisted isolation of regulatory elements), P=5x10-9;
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DNase I sensitivity, P=2x10-4) and regions that interact with the transcription fac-

tors HNF4A (P=6x10-10) and CEBP/B (P=1x10-5). Overall, 56 of our 62 new loci

contained at least 1 SNP that overlapped a functional mark (ENCODE Project Con-

sortium, 2011) and/or chromatin state (Ernst et al., 2011) highlighted in Table S2.8,

including all but 3 of the loci where no candidates were suggested by literature review

or analyses of pathways, coding variation or gene expression.

2.3.8 Initial fine mapping of 65 lipid-associated loci

Previous fine mapping of five LDL cholesterol-associated loci found that variants

with the strongest association were often substantially different in frequency and

effect size from those identified by GWAS (Sanna et al., 2011). Metabochip genotypes

enabled us to carry out an initial fine-mapping analysis for 65 loci: 60 selected for fine

mapping on the basis of our previous study (Teslovich et al., 2010) and 5 nominated

for fine mapping because of association with other traits.

For each of these loci, we identified the most strongly associated Metabochip

variant and evaluated whether it (i) reached genome-wide significant evidence for

association (to avoid chance fluctuations in regions where the signal was relatively

weak) and (ii) was different from the GWAS index SNP in terms of frequency and

effect size (operationalized to r 2<0.8 with the GWAS index SNP). In the European

samples, fine mapping identified eight loci where the fine-mapping signal was clearly

different from the GWAS signal (Table S2.9). The two largest differences were at the

loci near PCSK9 (top GWAS variant with MAF (f )=0.24, P=9x10-24; fine-mapping

variant with f =0.03, P=2x10-136) and APOE (GWAS variant f =0.20, P=3x10-44;

fine-mapping variant f =0.07, P=3x10-651), consistent with results from Sanna et al.

(2011). Large differences were also observed near LRP4 (GWAS f =0.17, P=8x10-14;

fine-mapping f =0.35, P=1x10-26), IGF2R (GWAS f =0.16, P=7x10-9; fine-mapping
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f =0.37, P=2x10-13), NPC1L1 (GWAS f =0.27, P=2x10-5; fine-mapping f =0.24,

P=1x10-12), ST3GAL4 (GWAS f =0.26, P=2x10-6; fine-mapping f =0.07, P=6x10-11),

MED1 (GWAS f =0.37, P=3x10-5; fine-mapping f =0.24, P=2x10-10) and COBLL1

(GWAS f =0.12, P=2x10-6; fine-mapping f =0.11, P=6x10-9). Thus, although the

large changes observed by Sanna et al. (2011) after fine mapping are by no means

unique, they are not typical. Except for the p.Arg46Leu variant encoded in PCSK9,

the variants showing the strongest association in fine-mapped loci all had MAF>0.05.

We also attempted fine mapping in samples with African (n=3,263), East Asian

(n=1,771) and South Asian (n=4,901) ancestry. Despite comparatively small sample

sizes, ancestry-specific analyses identified associated SNPs clearly distinct from the

original GWAS variant in five loci (Table S2.9). These loci included APOE, consistent

with the analyses in individuals of European ancestry, three loci where differences in

LD between populations enabled fine mapping in samples of African (SORT1 and

LDLR) or East Asian (APOA5 ) ancestry and CETP, where an African ancestry-

specific variant was present. For CETP, SORT1 and APOA5, results are consistent

with those of other fine-mapping and functional studies (Musunuru et al., 2010;

Buyske et al., 2012; Palmen et al., 2008).

2.3.9 Association of lipid-related loci with metabolic and cardiovascular traits

To evaluate the role of the 157 loci identified here in related traits, we evalu-

ated the most strongly associated SNPs for each locus in genetic studies of CAD

(n=114,590 including 37,653 cases) (Schunkert et al., 2011; Coronary Artery Disease

(C4D) Genetics Consortium, 2011), type 2 diabetes (T2D; n=47,117 including 8,130

cases), (Voight et al., 2010) body mass index (BMI; n=123,865 individuals) (Speliotes

et al., 2010) and waist-hip ratio (WHR; n=77,167 individuals) (Heid et al., 2010),

systolic and diastolic blood pressure (SBP and DBP; n=69,395 individuals) (Inter-
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national Consortium for Blood Pressure Genome-Wide Association Studies et al.,

2011) and fasting glucose levels (n=46,186 non-diabetic individuals) (Dupuis et al.,

2010). We observed an excess of SNPs nominally associated (P<0.05) with all these

traits, including a 5.1-fold excess for CAD (40 nominally significant loci; P=2x10-19),

a 4.1-fold excess for BMI (32 loci; P=1x10-11), a 3.7-fold excesses for DBP (29 loci;

P=1x10-9), a 3.4-fold excess for WHR (27 loci; P=1x10-9), a 2.5-fold excess for SBP

(20 loci; P=1x10-4), a 2.3-fold excess for T2D (18 loci; P=0.001) and a 2.2-fold

excess for fasting glucose levels (17 loci; P=3x10-3). Interestingly, for the new loci,

we observed greater overlap with BMI, SBP and DBP (nine overlapping loci each)

than with CAD (eight overlapping loci). Of the new loci, the two SNPs showing the

strongest association with CAD mapped near RBM5 (rs2013208: PHDL=9x10-12,

PCAD=7x10-5) and CMTM6 (rs7640978: PLDL=1x10-8, PCAD=4x10-4).

We tested whether the LDL cholesterol-, total cholesterol- or triglyceride- increas-

ing allele or the HDL cholesterol- decreasing allele was associated with increased risk

of cardiovascular disease or related metabolic outcomes; the direction of effect of

each locus was categorized according to the primary association signal at the locus,

as in Tables 2.1, 2.2, 2.3, and 2.4. We observed association with increased CAD

risk (104/149; P=1x10-6), SBP (96/155; P=2.7x10-3) and WHR adjusted for BMI

(92/154; P=0.019). There were many instances where a single locus was associated

with many traits. These included variants near FTO, consistent with previous re-

ports (Freathy et al., 2008); near VEGFA (associated with triglyceride levels, CAD,

T2D, SBP and DBP); near SLC39A8 (associated with HDL cholesterol levels, BMI,

SBP and DBP); and near MIR581 (associated with HDL cholesterol levels, BMI,

T2D and DBP). In some cases, such as FTO, a strong association with BMI or

another phenotype generated weaker association signals for other metabolic traits
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(Freathy et al., 2008). In other cases, such as SORT1, a primary effect on lipid lev-

els might mediate secondary association with other traits, such as CAD (Musunuru

et al., 2010).

2.3.10 Association of lipid traits with CAD

Epidemiological studies consistently show that high total cholesterol and LDL

cholesterol levels are associated with increased risk of CAD, whereas high HDL

cholesterol levels are associated with reduced risk of CAD (Clarke et al., 2007).

In genetic studies, the connection between LDL cholesterol levels and CAD is clear,

whereas the results for HDL cholesterol levels are more equivocal (Willer et al., 2008;

Voight et al., 2012b; Frikke-Schmidt et al., 2008). In our data, trait-increasing al-

leles at the loci showing the strongest association with LDL cholesterol levels (31

loci), triglyceride levels (30 loci) or total cholesterol levels (38 loci) were associated

with increased risk of CAD (P=2x10-12, 2x10-16 and 0.006, respectively). Conversely,

trait-decreasing alleles at loci showing the strongest association with HDL cholesterol

levels (64 loci) were associated with increased CAD risk at P=0.02. When we fo-

cused on loci uniquely associated with LDL cholesterol levels (12 loci where P>0.05

for other lipids), triglyceride levels (6 loci) or HDL cholesterol levels (14 loci), only

the association with LDL cholesterol remained significant (P=0.03).

To better explore how associations with individual lipid levels were related to CAD

risk, we used linear regression to test whether association with lipid levels could pre-

dict impact on CAD risk. In this analysis, the effect on CAD of 149 lipid-associated

loci (CAD results were not available for 8 SNPs) was correlated with LDL cholesterol

(Pearson’s r=0.74; P=7x10-6) and triglyceride (Pearson’s r=0.46; P=0.02) effect

sizes but not with HDL cholesterol effect sizes (Pearson’s r=-9x10-4; P=0.99; (Fig-

ure 2.6). Because most variants affect multiple lipid fractions (Figure 2.3), dissecting
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the relationship between lipid level and CAD effects requires multivariate analysis.

In a companion manuscript in this issue, we use multivariate analysis and detailed

examination of triglyceride-associated loci to show that increased LDL cholesterol

and triglyceride levels but not HDL cholesterol levels appear to be causally related

to CAD risk (Do et al., 2013).

2.3.11 Evidence for additional loci not yet reaching genome-wide significance

To evaluate evidence for loci not yet reaching genome-wide significance, we com-

pared the directions of effect in GWAS and Metabochip analyses of non-overlapping

samples outside the 157 genome-wide significant loci. For independent variants

(r 2<0.1) with association P<0.1 in the GWAS-only analysis, a significant excess was

concordant in the direction of effect for HDL cholesterol levels (62.9% of 1,847 SNPs;

P<1x10-16), LDL cholesterol levels (58.6% of 1,730 SNPs; P<1x10-16), triglyceride

levels (59.1% of 1,783 SNPs; P<1x10-16) and total cholesterol levels (61.0% of 1,904

SNPs; P<1x10-16), suggesting that there are many additional loci to be discovered

in future studies.

2.4 Discussion

Molecular understanding of the genes and pathways that modify blood lipid levels

in humans will facilitate the design of new therapies for cardiovascular and metabolic

disease. This understanding can be gained from studies of model organisms, in vitro

experiments, bioinformatic analyses and human genetic studies. Here we demon-

strate association between blood lipid levels and 62 new loci, bringing the total

number of lipid-associated loci to 157 (Tables 2.1, 2.2, 2.3, 2.4, and Figure 2.3). All

but one of the loci identified here include protein-coding genes within 100 kb of the

SNP showing the strongest association. Whereas 38 of the 62 new loci include genes



35

whose role in the regulation of blood lipid levels is supported by literature review or

analysis of curated pathway databases, the remainder include only genes whose role

in such regulation has not been documented.

In total, there are 240 genes within 100 kb of 1 of our 62 new lipid-associated

loci-providing a daunting challenge for future functional studies. Prioritizing on the

basis of literature review, pathway analysis, regulation of mRNA expression levels

and protein-altering variants suggests that 70 genes in 44 of the 62 new loci might

be the focus of the first round of functional studies (summarized in Tables S2.3

and S2.4). Although we found significant overlap, different sources of prioritization

sometimes disagreed. This result suggests that truly understanding causality will be

very challenging. We include an interpreted digest of genes highlighted by our study

in Table S2.10. Clearly, a range of approaches will be needed to follow up these

findings. To illustrate possibilities, consider US Patent Application 20090036394

disclosing that, in the mouse, knockout of Gpr146 modifies blood lipid levels. Here

we show that variants near the human homolog of this gene, GPR146, are associated

with the levels of total cholesterol-providing an added incentive for studies of GPR146

inhibitors in humans. GPR146 encodes a G protein-coupled receptor, an attractive

pharmaceutical target, so it is tempting to speculate that, one day, pharmaceutical

inhibition of GPR146 may modify cholesterol levels and reduce risk of heart disease.

Each associated locus typically includes many strongly associated (and potentially

causal) variants. Our fine-mapping results illustrate how genetic analysis of large

samples and individuals of diverse ancestry can help focus the search for causal

variants. In our fine-mapping analysis of 65 lipid-associated loci, we were able to

separate the strongest signal in a region from the previous GWAS-identified signal

in 12 instances. In 3 of these 12 instances, fine-mapping was enabled by the analysis
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of a few thousand individuals of African or East Asian ancestry, whereas, in the

remaining instances, fine mapping was possible through the examination of nearly

100,000 individuals of European ancestry. A more detailed fine-mapping exercise,

including imputation of variants from emerging, very large reference panels, may

help refine the locations of additional signals.

Lipid-associated loci were strongly associated with CAD, T2D, BMI, SBP and

DBP. In univariate analyses, we found that effects on LDL cholesterol and triglyc-

eride levels all predicted association with CAD, but HDL cholesterol levels did not.

In a companion paper, more detailed multivariate investigation shows that our data

are consistent with the hypothesis that both LDL cholesterol and triglyceride levels

but not HDL cholesterol levels are causally related to CAD risk. HDL cholesterol,

LDL cholesterol and triglyceride levels summarize aggregate levels of different lipid

particles, each with potentially distinct consequences for CAD risk. We evaluated

the association of our loci with lipid subfractions in 2,900 individuals from the Fram-

ingham Heart Study (Figure S2.1 and Table S2.11) and with sphingolipids, which are

components of lipid membranes in cells, in 4,034 individuals from 5 samples of Eu-

ropean ancestry (Table S2.12). The results suggest that HDL cholesterol-associated

variants can have a markedly different impact on these subphenotypes. For example,

among HDL cholesterol-associated loci, variants near LIPC were strongly associ-

ated with plasmalogen levels (P<1x10-40), variants near ABCA1 were associated

with sphingomyelin levels (P<1x10-5), and variants near CETP, which show the

strongest association with HDL cholesterol levels overall, were associated with nei-

ther of these. Detailed genetic dissection of these subphenotypes in larger samples

could lead to functional groupings of HDL cholesterol-associated variants that rec-

oncile the results of genetic studies (which show no clear connection between HDL
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cholesterol-associated variants and CAD risk) and epidemiological studies (which

show clear association between plasma HDL cholesterol levels and CAD risk).

In summary, we report the largest genetic association study of blood lipid levels

yet conducted. The large number of loci identified, the many candidate genes they

contain and the diverse proteins they encode generate new leads and insights into

lipid biology. It is our hope that the next round of genetic studies will build on these

results, using new sequencing, genotyping and imputation technologies to examine

rare loss-of-function alleles and other variants of clear functional impact to accelerate

the translation of these leads into mechanistic insights and improved treatments for

CAD.

2.5 Methods

2.5.1 Samples studied

We collected summary statistics for Metabochip SNPs from 45 studies. Of these,

37 studies consisted primarily of individuals of European ancestry, including both

population-based studies and case-control studies of CAD and T2D. Another 8 stud-

ies consisted primarily of individuals with non-European ancestry, including 2 stud-

ies of individuals of South Asian descent, AIDHS/SDS (n=1,516) and PROMIS

(n=3,385); 2 studies of individuals of East Asian descent, CLHNS (n=1,771) and

TAI-CHI (n=7,044); and 5 studies of individuals of recent African ancestry, MRC/UVRI

GPC (n=1,687) from Uganda, SEY (n=426) from the Caribbean, and FBPP (n=1,614;

triglyceride results unavailable), GXE (n=397) and SPT (n=838) from the United

States. Each contributing study individually obtained ethics approval for their data

generation and analyses.
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2.5.2 Genotyping

We genotyped 196,710 genetic variants prioritized on the basis of previous GWAS

for cardiovascular and metabolic phenotypes using the Illumina iSelect Metabochip

(Voight et al., 2012a) genotyping array. To design the Metabochip, we used our

previous GWAS of 100,000 individuals (Teslovich et al., 2010) to prioritize 5,023

SNPs for HDL cholesterol, 5,055 SNPs for LDL cholesterol, 5,056 SNPs for triglyc-

erides and 938 SNPs for total cholesterol. These independent SNPs represent most

loci with P<0.005 in our original GWAS for HDL cholesterol, LDL cholesterol and

triglycerides and with P<0.0005 for total cholesterol. An additional 28,923 SNPs

were selected for fine mapping of 65 previously identified lipid loci. The Metabochip

also included 50,459 SNPs prioritized on the basis of GWAS of non-lipid traits and

93,308 SNPs selected for fine mapping of loci associated with non-lipid traits (5 of

these loci were associated with blood lipids by the analyses described here).

2.5.3 Phenotypes

Blood lipid levels were typically measured after >8 hours of fasting. Individuals

known to be on lipid-lowering medication were excluded when possible. LDL choles-

terol levels were directly measured in ten studies (24% of total study individuals)

and were estimated using the Friedewald formula (Friedewald et al., 1972) in the

remaining studies. Trait residuals within each study cohort were adjusted for age,

age2 and sex and were then quantile normalized. Explicit adjustments for population

structure using principal-component (Price et al., 2006) or mixed-model approaches

(Kang et al., 2010) were carried out in 24 studies (35% of study individuals); all stud-

ies were adjusted using genomic control before meta-analysis (Devlin and Roeder,

1999). In studies ascertained on diabetes or cardiovascular disease status, cases and
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controls were analyzed separately. All meta-analyses were limited to a single ancestry

group (for example, European only).

2.5.4 Primary statistical analysis

Individual SNP association tests were performed using linear regression with the

inverse normal transformed trait values as the dependent variable and the expected

allele count for each individual as the independent variable. These analyses were per-

formed using PLINK (26 samples; 53% of the total number of individuals), SNPTEST

(4 samples; 20% of the total number of individuals), EMMAX (9 samples; 14% of

the total number of individuals), Merlin (4 samples; 9% of the total number of indi-

viduals), GENABEL (1 sample; 3% of the total number of individuals) and MMAP

(1 sample; 1% of the total number of individuals).

2.5.5 Meta-analysis

Meta-analysis was performed using the Stouffer method (Stouffer et al., 1949;

Willer et al., 2010) with weights proportional to the square root of the sample size

for each sample. To correct for inflated test statistics due to potential population

stratification, we first applied genomic control to each sample and then repeated

the procedure with initial meta-analysis results. For GWAS samples, we used all

available SNPs when estimating the median test statistic and inflation factor λ. For

Metabochip samples, we used a subset of SNPs (n=7,168) that had P -values of >0.50

for all lipid traits in the original GWAS, expecting that the majority of these would

not be associated with lipids and would behave as null variants in the Metabochip

samples. Signals were considered to be novel if they reached a P -value of <5x10-8

in the combined GWAS and Metabochip meta-analysis and were >1 Mb away from

the nearest previously described lipid-associated locus and other new loci. We used
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only European samples for the discovery of new genome-wide significant loci. Non-

European samples were used only for meta-analysis and examination of fine-mapping

analyses.

2.5.6 Quality control

To flag potentially erroneous analyses, we carried out a series of quality control

steps. Average standard errors for association statistics from each study were plotted

against study sample size to identify outlier studies. We inspected allele frequencies

to ensure all analyses used the same strand assignment of alleles. We evaluated

whether reported statistics and allelic effects were consistent with published findings

for known loci. Genomic control values for study-specific analyses were inspected,

and all were <1.20. Finally, within each study, we excluded variants for which the

minor allele was observed <7 times.

2.5.7 Proportion of trait variance explained

We estimated the increase in trait variance explained by new loci in the Framing-

ham cohort (n=7,132) using 3 models for each trait residual: (i) lead and secondary

SNPs from the previously published loci (Teslovich et al., 2010); (ii) previously pub-

lished lipid loci plus newly reported loci; and (iii) newly reported loci. We regressed

lipid residuals on these sets of SNPs using the lme kinship package in R.

2.5.8 Initial automated review of the published literature

An initial list of candidates within each locus was generated with Snipper and

then subjected to manual review. For each locus, Snipper first generates a list of

nearby genes and then checks for the co-occurrence of the corresponding gene names

and selected search terms (“cholesterol”, “lipids”, “HDL”, “LDL” or “triglycerides”)

in published literature and OMIM. We supplemented this approach with traditional
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literature searches using PubMed and Google.

2.5.9 Generating permuted sets of non-associated SNPs

To estimate the expected chance overlap between literature searches and our loci,

we generated lists of permuted SNPs. To generate these lists, we first identified

all non-associated lipid-related SNPs (P>0.10 for any of the four lipid traits) and

created bins on the basis of three statistics: MAF, distance to the nearest gene and

number of SNPs with r 2>0.8. For each index SNP, we identified 500 non-lipid-

associated SNPs that fell within the same 3 bins and randomly selected 1 SNP for

each permuted list.

2.5.10 Pathway analyses

To investigate whether lipid-associated variants overlapped previously annotated

pathways, we used gene set enrichment analysis (GSEA), as implemented in MA-

GENTA (Segrè et al., 2010) using the meta-analysis of all studies, including GWAS

and Metabochip SNPs. Briefly, MAGENTA first assigns SNPs to a given gene when

within 110 kb upstream or 40 kb downstream of transcript boundaries. The most

significant SNP P -value within this interval is then adjusted for confounders (gene

size, marker density and LD) to create a gene association score. When the same

SNP is assigned to multiple genes, only the gene with the lowest score is kept for

downstream analyses. Subsequently, MAGENTA attaches pathway terms to each

gene using several annotation resources, including GO, PANTHER, Ingenuity and

KEGG. Finally, the genes are ranked on the basis of their gene association scores, and

a modified GSEA test is used to test the null hypothesis that all gene score ranks

above a given rank cutoff are randomly distributed with regard to a given path-

way term (and compared to multiple randomly sampled gene sets of identical size).
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We evaluated enrichment using a rank cutoff of 5% of the total number of genes.

A minimum of 10,000 gene set permutations were performed, and up to 1,000,000

permutations were performed for GSEA P -values below 1x10-4.

We used the Disease Association Protein-Protein Link Evaluator package (DAP-

PLE) to examine evidence for protein-protein interaction networks connecting genes

across different lipid-related loci. This analysis included the 62 new loci as well as

the 95 previously known loci; we focus our discussion on pathways that included 1

or more genes from new loci.

2.5.11 Cis-expression quantitative trait locus analysis

To determine whether lipid-associated SNPs might act as cis regulators of nearby

genes, we examined association with the expression levels of 39,280 transcripts in 960

human liver samples, 741 human omental fat samples and 609 human subcutaneous

fat samples. Tissue samples were collected postmortem or during surgical resection

from donors; tissue collection, DNA and RNA isolation, expression profiling and

genotyping were performed as described (Keating et al., 2008). MACH was used to

obtain imputed genotypes for ∼2.6 million SNPs in HapMap release 22 for each of the

samples. We examined the correlation between each of the 62 new index SNPs and

all transcripts within 500 kb of the SNP position, performing association analyses as

previously described (Schadt et al., 2008).

2.5.12 Functional annotation of associated variants

We attempted to identify lipid-associated SNPs that fell in important regulatory

domains. We initially created a list of all potentially causal variants by selecting

index SNPs at loci identified in this study or in Teslovich et al. (2010). We then

selected any variant in strong LD (r 2>0.8 from the 1000 Genomes Project or HapMap
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data) with each index SNP. We compared the positions of the index SNPs and

their proxies to previously described functional marks (Ernst et al., 2011; ENCODE

Project Consortium, 2011). To assess the expected overlap with functional marks,

we created 100,000 permuted sets of non-associated SNPs (see Section 2.5.9) and

evaluated permuted SNP lists for overlap with functional domains. We estimated a

P -value for each functional domain as the proportion of permuted sets with an equal

or greater number of loci overlapping functional domains (for large P -values). For

small P -values, we used a normal approximation to the empirical overlap distribution

to estimate P -values.

2.5.13 Association with lipid subfractions

Lipoprotein fractions in samples from the Women’s Genome Health Study (WGHS)

(n=23,170) were measured using the LipoProtein-II assay (Liposcience), and Fram-

ingham Heart Study Offspring samples (n=2,900) were measured with the LipoProtein-

I assay (Liposcience) (Chasman et al., 2009). Additional information on subfraction

measurements can be found in Figures S2.1 and S2.2. Log transformations were

used for non-normalized traits. All models were adjusted for age, sex and principal

components. The genetic association analysis of WGHS used SNP genotypes im-

puted from the HapMap release 22 CEU (Utah residents of Northern and Western

European ancestry) reference panel using MACH. Of the 23,170 WGHS participants,

16,730 were fasting for 8 hours before blood draw (72.2%).

2.5.14 URLs

Summary results for our studies are available. We hope that they will facilitate

continued research into the genetics of blood lipid levels and, eventually, help iden-

tify improved treatments for CAD. To browse the full result set, go to http://www.

http://www.sph.umich.edu/csg/abecasis/public/lipids2013/
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sph.umich.edu/csg/abecasis/public/lipids2013/. Snipper, http://csg.sph.

umich.edu/boehnke/snipper/; DAPPLE, http://www.broadinstitute.org/mpg/

dapple/dapple.php.
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Table 2.1: New loci primarily associated with HDL cholesterol discovered from joint GWAS and
Metabochip meta-analysis

Locus Markername Chr. hg19 posi-
tion (Mb)

Associated
trait(s)

MAF Minor/
major
allele

Effect
of A1

Joint
n (x
1,000)

Joint
P-value

PIGV-
NR0B2

rs12748152 1 27.14 HDL-C,
LDL-C,
TG

0.09 T/C 0.051,
0.050,
0.037

187,
173,
178

1x10-15,
3x10-12,
1x10-9

HDGF-
PMVK

rs12145743 1 156.70 HDL-C 0.34 G/T 0.020 181 2x10-8

ANGPTL1 rs4650994 1 178.52 HDL-C 0.49 G/A 0.021 187 7x10-9

CPS1 rs1047891 2 211.54 HDL-C 0.33 A/C -0.027 182 9x10-10

ATG7 rs2606736 3 11.40 HDL-C 0.39 C/T 0.025 129 5x10-8

SETD2 rs2290547 3 47.06 HDL-C 0.20 A/G -0.030 187 4x10-9

RBM5 rs2013208 3 50.13 HDL-C 0.50 T/C 0.025 170 9x10-12

STAB1 rs13326165 3 52.53 HDL-C 0.21 A/G 0.029 187 9x10-11

GSK3B rs6805251 3 119.56 HDL-C 0.39 T/C 0.020 186 1x10-8

C4orf52 rs10019888 4 26.06 HDL-C 0.18 G/A -0.027 187 5x10-8

FAM13A rs3822072 4 89.74 HDL-C 0.46 A/G -0.025 187 4x10-12

ADH5 rs2602836 4 100.01 HDL-C 0.44 A/G 0.019 187 5x10-8

RSPO3 rs1936800 6 127.44 HDL-C,
TGa

0.49 C/T 0.020,
-0.020

187,
168

3x10-10,
3x10-8

DAGLB rs702485 7 6.45 HDL-C 0.45 G/A 0.024 187 6x10-12

SNX13 rs4142995 7 17.92 HDL-C 0.38 T/G -0.026 165 9x10-12

IKZF1 rs4917014 7 50.31 HDL-C 0.32 G/T 0.022 187 1x10-8

TMEM176A rs17173637 7 150.53 HDL-C 0.12 C/T -0.036 184 2x10-8

MARCH8-
ALOX5

rs970548 10 46.01 HDL-C,
TC

0.26 C/A 0.026,
0.025

187,
187

2x10-10,
8x10-9

OR4C46 rs11246602 11 51.51 HDL-C 0.15 C/T 0.034 176 2x10-10

KAT5 rs12801636 11 65.39 HDL-C 0.23 A/G 0.024 187 3x10-8

MOGAT2-
DGAT2

rs499974 11 75.46 HDL-C 0.19 A/C -0.026 187 1x10-8

ZBTB42-
AKT1

rs4983559 14 105.28 HDL-C 0.40 G/A 0.020 184 1x10-8

FTO rs1121980 16 53.81 HDL-C,
TGb

0.43 A/G -0.020,
0.021

186,
155

7x10-9,
3x10-8

HAS1 rs17695224 19 52.32 HDL-C 0.26 A/G -0.029 185 2x10-13

a The secondary trait TG was most strongly associated with a different SNP, rs719726 (within 1 Mb of
rs1936800, r2=0.74)
b The secondary trait TG was most strongly associated with a different SNP, rs9930333 (within 1 Mb of
rs1121980, r2=0.99)
* Effect sizes are given with respect to the minor allele (A1) in SD units. For loci associated with two or
more traits at genome-wide significance, the trait corresponding to the strongest P-value is listed first.
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Table 2.2: New loci primarily associated with LDL cholesterol discovered from joint GWAS and
Metabochip meta-analysis

Locus Markername Chr. hg19 posi-
tion (Mb)

Associated
trait(s)

MAF Minor/
major
allele

Effect
of A1

Joint
n (x
1,000)

Joint
P-value

ANXA9-
CERS2

rs267733 1 150.96 LDL-C 0.16 G/A -0.033 165 5x10-9

EHBP1 rs2710642 2 63.15 LDL-C 0.35 G/A -0.024 173 6x10-9

INSIG2 rs10490626 2 118.84 LDL-C,
TCa

0.08 A/G -0.051,
-0.042

173,
184

2x10-12,
6x10-9

LOC84931 rs2030746 2 121.31 LDL-C,
TC

0.40 T/C 0.021,
0.020

173,
187

9x10-9,
4x10-8

FN1 rs1250229 2 216.30 LDL-C 0.27 T/C -0.024 173 3x10-8

CMTM6 rs7640978 3 32.53 LDL-C,
TC

0.09 T/C -0.039,
-0.038

172,
186

1x10-8,
2x10-8

ACAD11 rs17404153 3 132.16 LDL-C,
HDL-Cb

0.14 T/G -0.034,
-0.028

172,
187

2x10-9,
5x10-9

CSNK1G3 rs4530754 5 122.86 LDL-C,
TC

0.46 G/A -0.028,
-0.023

173,
187

4x10-12,
2x10-9

MIR148A rs4722551 7 25.99 LDL-C,
TGc, TC

0.20 C/T 0.039,
0.023,
0.029

173,
178,
187

4x10-14,
9x10-11,
7.0x10-9

SOX17 rs10102164 8 55.42 LDL-C,
TC

0.21 A/G 0.032,
0.030

173,
187

4x10-11,
5x10-11

BRCA2 rs4942486 13 32.95 LDL-C 0.48 T/C 0.024 172 2x10-11

APOH-
PRXCA

rs1801689 17 64.21 LDL-C 0.04 C/A 0.103 111 1x10-11

SPTLC3 rs364585 20 12.96 LDL-C 0.38 A/G -0.025 172 4x10-10

SNX5 rs2328223 20 17.85 LDL-C 0.21 C/A 0.03 171 6x10-9

MTMR3 rs5763662 22 30.38 LDL-C 0.04 T/C 0.077 163 1x10-8

a The secondary trait TC was most strongly associated with a different SNP, rs17526895 (within 1 Mb of
rs10490626, r2=0.98)
b The secondary trait HDL-C was most strongly associated with a different SNP, rs13076253 (within 1 Mb
of rs17404153, r2=0.00)
c The secondary trait TG was most strongly associated with a different SNP rs4719841 (within 1 Mb of
rs4722551, r2=0.10)
* Effect sizes are given with respect to the minor allele (A1) in SD units. For loci associated with two or
more traits at genome-wide significance, the trait corresponding to the strongest P-value is listed first.
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Table 2.3: New loci primarily associated with total cholesterol discovered from joint GWAS and
Metabochip meta-analysis

Locus Markername Chr. hg19 posi-
tion (Mb)

Associated
trait(s)

MAF Minor/
major
allele

Effect
of A1

Joint
n (x
1,000)

Joint
P-value

ASAP3 rs1077514 1 23.77 TC 0.15 C/T -0.03 184 6x10-9

ABCB11 rs2287623 2 169.83 TC 0.41 G/A 0.027 184 4x10-12

FAM117B rs11694172 2 203.53 TC 0.25 G/A 0.028 187 2x10-9

UGT1A1 rs11563251 2 234.68 TC,
LDL-C

0.12 T/C 0.037,
0.034

187,
173

1x10-9,
5x10-8

PXK rs13315871 3 58.38 TC 0.10 A/G -0.036 187 4x10-8

KCNK17 rs2758886 6 39.25 TC 0.30 A/G 0.023 187 3x10-8

HBS1L rs9376090 6 135.41 TC 0.28 C/T -0.025 187 3x10-9

GPR146 rs1997243 7 1.08 TC 0.16 G/A 0.033 183 3x10-10

VLDLR rs3780181 9 2.64 TC,
LDL-C

0.08 G/A -0.044,
-0.044

186,
172

7x10-10,
2x10-9

VIM-
CUBN

rs10904908 10 17.26 TC 0.43 G/A 0.025 187 3x10-11

PHLDB1 rs11603023 11 118.49 TC 0.42 T/C 0.022 187 1x10-8

PHC1-
A2ML1

rs4883201 12 9.08 TC 0.12 G/A -0.035 187 2x10-9

DLG4 rs314253 17 7.09 TC,
LDL-C

0.37 C/T -0.023,
-0.024

184,
170

3x10-10,
3x10-10

TOM1 rs138777 22 35.71 TC 0.36 A/G 0.021 185 5x10-8

PPARA rs4253772 22 46.63 TC,
LDL-Ca

0.11 T/C 0.032,
0.031

185,
171

1x10-8,
3x10-8

a The secondary trait LDL-C was most strongly associated with a different SNP, rs4253776 (within 1 Mb
of rs4253772, r2=0.95)
* Effect sizes are given with respect to the minor allele (A1) in SD units. For loci associated with two or
more traits at genome-wide significance, the trait corresponding to the strongest P-value is listed first.

Table 2.4: New loci primarily associated with triglycerides discovered from joint GWAS and
Metabochip meta-analysis

Locus Markername Chr. hg19 posi-
tion (Mb)

Associated
trait(s)

MAF Minor/
major
allele

Effect
of A1

Joint
n (x
1,000)

Joint
P-value

LRPAP1 rs6831256 4 3.47 TG, TCa,
LDL-Ca

0.42 G/A 0.026,
0.025,
0.022

177,
187,
173

2x10-12,
1x10-10,
2x10-8

VEGFA rs998584 6 43.76 TG,
HDL-C

0.49 A/C 0.029,
-0.026

175,
184

3x10-15,
2x10-11

MET rs38855 7 116.36 TG 0.47 G/A -0.019 178 2x10-8

AKR1C4 rs1832007 10 5.25 TG 0.18 G/A -0.033 178 2x10-12

PDXDC1 rs3198697 16 15.13 TG 0.43 T/C -0.020 176 2x10-8

MPP3 rs8077889 17 41.88 TG 0.22 C/A 0.025 176 1x10-8

INSR rs7248104 19 7.22 TG 0.42 A/G -0.022 176 5x10-10

PEPD rs731839 19 33.90 TG,
HDL-C

0.35 G/A 0.022,
-0.022

176,
185

3x10-9,
3x10-9

a The secondary traits TC and LDL-C were most strongly associated with a different SNP, rs6818397
(within 1 Mb of rs6831256, r2=0.18)
* Effect sizes are given with respect to the minor allele (A1) in SD units. For loci associated with two or
more traits at genome-wide significance, the trait corresponding to the strongest P-value is listed first.
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Figure 2.1: GLGC metabochip meta-analysis study design.



49

Figure 2.2: Quantile-quantile plots of trait-specific meta-analysis P -value distributions for (A)
LDL cholesterol, (B) HDL cholesterol, (C) Triglycerides, and (D) Total cholesterol. Points in blue
represent the P -value distribution after removing ±1 Mb of previously known lipid loci. There
is reduced inflation of P -values after removing ±1 Mb of all genome-wide significant loci (shown
in green). Genomic control lambda (λGC) values for all Metabochip SNPs were between 1.19
(triglyceride levels) and 1.28 (HDL cholesterol) and reflect the enrichment of associated SNPs in
the genotyping array. After removing SNPs within 1 Mb of previously reported associated variants,
the lambda values ranged from 1.00 (LDL cholesterol) to 1.10 (HDL cholesterol). After removing
SNPs in newly genome-wide significant loci, lambda values reached 1.00 for LDL cholesterol and
triglycerides, 1.05 for total cholesterol, and 1.07 for HDL cholesterol.
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                    HDL cholesterol (45): 

HDGF-PMVK, ANGPTL1,  

CPS1, ATG7, SETD2, RBM5,  

STAB1, GSK3B, C4orf52, FAM13A,  

ADH5, DAGLB, SNX13, IKZF1,  

TMEM176A, OR4C46, KAT5,  

         MOGAT2-DGAT2, ZBTB42-AKT1,  

     HAS1, PABPC4, ZNF648, COBLL1,  

  SLC39A8, ARL15, CITED2, KLF14,  

TRPS1, AMPD3, LRP4, PDE3A, MVK,  

SBNO1, SCARB1, LACTB,  

LCAT, CMIP, STARD3, ABCA8,  

PGS1, MC4R, ANGPTL4,  

ANGPTL8, LILRA3,  

UBE2L3 

 

Triglycerides (16): 

MET, AKR1C4, PDXDC1, 

MPP3, INSR, MSL2L1, 

KLHL8, MAP3K1, TYW1B, 

PINX1, JMJD1C, CYP26A1, 

CAPN3, FRMD5, CTF1, 

PLA2G6 

Total cholesterol (18): 

ASAP3, ABCB11, FAM117B, 

PXK, KCNK17, HBS1L, GPR146, 

VIM-CUBN, PHLDB1, PHC1-

A2ML1, TOM1, EVI5, RAB3GAP1, 

RAF1, C6orf106, SPTY2D1, 

MAMSTR, ERGIC3 

           36 loci: 

INSIG2, LOC84931,  

CMTM6, CSNK1G3, SOX17,  

UGT1A1, VLDLR, DLG4,  

PPARA, PCSK9,  SORT1, APOB, 

ABCG5/8, MYLIP, HFE, LPA, 

PLEC1, ABO, ST3GAL4, OSBPL7, 

   LDLR, TOP1, LDLRAP1, MOSC1, 

     IRF2BP2, HMGCR, HLA, FRK, 

       DNAH11, NPC1L1,  

       CYP7A1, GPAM, 

        BRAP,HNF1A,  

        HPR, MAFB 

6 loci: 

MARCH8-ALOX5, 

TTC39B, ABCA1, 

LIPG, HNF4A, 

UBASH3B 

11 loci: 

RSPO3, FTO, 

VEGFA, PEPD, 

GALNT2, IRS1, 

PLTP, MLXIPL, LPL, 

LRP1, ZNF664 

5 loci: 

ANGPTL3, 

MIR148A, 

LRPAP1,    

  TIMD4,    

   CILP2   

 

    1 locus:  

PIGV-NR0B2 

 1 locus: 

LIPC 

 
4 loci: 

CETP, 

TRIB1, 

FADS1-2-3, 

APOA1 

  2 loci: 

PPP1R3B, 

APOE 

2 loci: GCKR, NAT2 

 

1 locus: ACAD11  

 

LDL cholesterol (9): 

ANXA9-CERS2, EHBP1, 

BRCA2, FN1, APOH-PRXCA, 

SPTLC3, SNX5, MTMR3, 

NYNRIN 

Figure 2.3: Schematic summary of known lipid-associated loci reported from GWAS. The Venn
diagram illustrates overlap of genetic loci associated with different lipid traits. The number of loci
primarily associated with only one trait is reported in parentheses after the trait name and locus
names are listed below in italics. Loci that show association with two or more traits are shown in
the appropriate overlapping segments.
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Figure 2.4: Manhattan plots highlighting novel genome-wide significant lipid loci. Trait-specific loci
that reach genome-wide significance (P<5x10-8) from the European joint meta-analysis are shown
in red for (A) LDL cholesterol, (B) HDL cholesterol, (C) Triglycerides, and (D) Total cholesterol.
P -values are truncated at 1x10-80.

A. LDL Cholesterol

B. HDL Cholesterol
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C. Triglycerides

D. Total cholesterol
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power curves for the minimum effect sizes that could be identified for a given effect-allele frequency
with 10%, 50%, and 90% power, assuming sample size 200,000 and alpha level 5x10-8.
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Figure 2.6: Effect size correlations of lipid- and CAD- associated variants. Plots show coronary
artery disease (CAD) effect sizes against lipid effect sizes for SNPs showing primary association
with each lipid trait. All effect sizes were oriented to the lipid trait-increasing (LDL-C, TG, TC) or
trait-decreasing (HDL-C) allele. Diagonal lines represent regressions of predictor lipid effect sizes by
outcome CAD effect sizes for SNPs that show primary association with each trait including both
previously known and newly reported index SNPs. LDL-C effect sizes were strongly associated
with CAD effect sizes (Pearson r=0.74, P=7x10-6). The correlation between CAD effect size and
triglyceride effect size (Pearson r=0.46, P=0.02) was higher than that observed for HDL-C (Pearson
r=-9x10-4, P=0.99). Lipid effect sizes were transformed into SD units.
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Figure S2.1: Association with lipid subfractions in Framingham Heart Study. Heatmaps show effect
sizes for association (P<0.10) with 23 lipid subfractions (Chasman et al., 2009) in Framingham
Heart Study (FHS) offspring with respect to the trait-decreasing allele of (A) HDL-C and trait-
increasing allele of (B) LDL-C, (C) TC, and (D) TG. Significant associations (P<0.05) of lipid-
associated SNPs with coronary artery disease (CAD) are annotated on the y-axis at both known
and novel genetic loci primarily associated with each trait. Dendrogram clustering of loci (y-axis)
and lipid subfraction phenotypes (x -axis) based on the effect sizes (beta) are also shown. Figure
(E) is a heatmap of correlations for the 23 lipid subfractions in Framingham.
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HDLSZ Weighted average for HDL size based on measurements of HDLP1 through HDLP6, Exam 4

Lapoeser5* ApoE concentrations in mg/dL using immunochemical technique by Servia, Exam 5

LCHYLO* Chylomicron particles size >220 nm (expressed as TG concentrations in mg/dl) and determined using NMR, Exam 4

LDLINT Medium particles of low density lipoprotein determined by NMR, Exam 4

LDLLG Large particles of low density lipoprotein determined by NMR, Exam 4

LDLSZ Weighted average for LDL size based on measurements of LDLP1 through LDLP6 determined by NMR, Exam 4
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Figure S2.2: Association with lipid subfractions in Women’s Genome Health Study. Heatmaps
show effect sizes for association (P<0.10) with 23 lipid subfractions (Chasman et al., 2009) in the
Women’s Genome Health Study (WGHS) with respect to the trait-decreasing allele of (A) HDL-C
and trait-increasing allele of (B) LDL-C, (C) TC, and (D) TG. Significant associations (P<0.05)
of lipid-associated SNPs with coronary artery disease (CAD) are annotated on the y-axis at both
known and novel genetic loci primarily associated with each trait. Dendrogram clustering of loci
(y-axis) and lipid subfraction phenotypes (x -axis) based on the effect sizes (beta) are also shown.
Figure (E) is a heatmap of correlations for the 23 lipid subfractions in WGHS.
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lsp: LDL small ln.hmp: ln[HDL medium] vz: VLDL mean size
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Table S2.7: Overlap of SNPs at known and novel lipid loci with chromatin states in 9 different cell
types

Cell Type Observed
Number of
Chromatin
States*
Showing
Excess
Overlap
with Lipid
Loci

Chromatin States* Showing Excess Over-
lap with Lipid Loci

H1 embryonic stem cells (H1 ES)
2 Transcription Transition (HMM9) P=4x10-10

Transcription Elongation (HMM10) P=5x10-10

B-lymphoblastoid cells (GM12878) 0

Umbilical vein endothelial cells (HUVEC)
2 Transcription Transition (HMM9) P=2x10-7

Transcription Elongation (HMM10) P=6x10-7

Skeletal muscle myoblasts (HSMM) 1 Transcription Elongation (HMM10) P=6x10-8

Mammary epithelial cells (HMEC)
2 Transcription Transition (HMM9) P=6x10-11

Transcription Elongation (HMM10) P=2x10-9

Normal epidermal keratinocytes (NHEK)
2 Transcription Elongation (HMM10) P=2x10-8

Weak Transcription (HMM11) P=3x10-6

Normal lung fibroblasts (NHLF)
2 Transcription Elongation (HMM10) P=2x10-10

Transcription Transition (HMM9) P=8x10-8

Erythrocyticleukaemia cells (K562)
3 Weak Transcription (HMM11) P=1x10-11

Weak Enhancer (HMM7) P=2x10-10

Strong Enhancer (HMM5) P=4x10-8

Hepatocellular carcinoma cells (HepG2)

8 Strong Enhancer (HMM4) P=2x10-25

Weak Enhancer (HMM7) P=4x10-14

Weak Transcription (HMM11) P=2x10-11

Strong Enhancer (HMM5) P=5x10-11

Transcription Elongation (HMM10) P=3x10-10

Weak Enhancer (HMM6) P=1x10-7

Active Promoter (HMM1) P=4x10-7

Weak Promoter (HMM2) P=7x10-7

*Chromatin states were described previously (Ernst et al., 2011) based on hidden Markov models (HMM) of
histone methylation and acetylation marks from 9 cell types. SNPs in high linkage disequilibrium (r2>0.8
in 1000 Genomes Project European ancestry samples) with known or novel lipid loci were compared to
matched sets of HapMap SNPs (see Section 2.5.12).
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Table S2.8: Overlap with chromatin states, histone marks and transcription factor ChIP-Seq in
HepG2 Cells

Known and Novel Lipid loci Only Novel Lipid Loci
(n=157) (n=62)

Observed
Num-
ber of
Loci
with ≥
1 SNP
in a
Regu-
latory
Region

Expected
Num-
ber of
Loci

P-
value

Observed
Num-
ber of
Loci
with ≥
1 SNP
in a
Regu-
latory
Region

Expected
Num-
ber of
Loci

P-
value

Overlap with Chromatin States from Ernst et al. (2011)* (13 tested)

Strong Enhancer (HMM4) 49 13.7 2x10-25 20 6.2 9x10-10

Weak Enhancer (HMM7) 60 26.9 4x10-14 25 11.9 3x10-5

Weak Transcription (HMM11) 99 62.1 2x10-11 41 26.4 9x10-5

Strong Enhancer (HMM5) 34 12.8 5x10-11 10 5.6 5x10-2

Transcription Elongation (HMM10) 65 35.4 3x10-10 26 15.4 1x10-3

Weak Enhancer (HMM6) 57 33.5 1x10-7 21 14.5 .013
Active Promoter (HMM1) 39 20.3 4x10-7 14 8.8 .039
Weak Promoter (HMM2) 45 24.8 7x10-7 15 10.6 .088
Transcription Transition (HMM9) 37 18.7 3x10-5 18 8.0 4x10-4

Overlap with Histone Marks (5 tested)

H3K9ac 97 47.3 3x10-22 37 20.1 6x10-8

H3K27ac 84 39.2 3x10-20 34 16.7 4x10-8

H3K4me3 88 47.9 2x10-15 34 20.1 7x10-5

H3K36me3 104 62.3 4x10-14 41 26.1 2x10-5

H3K4me2 111 74.3 8x10-12 44 31.1 7x10-5

Overlap with Open Chromatin (2 tested)

FAIRE 51 26.5 5x10-9 19 11.3 8x10-3

DNase hypersensitivity 33 18.3 2x10-4 12 8.1 .09

Overlap with Transcription Factor ChIP-Seq (11 tested)

HNF4 38 16.2 6x10-10 14 7.1 6x10-3

CEBP/β 40 20.4 1x10-5 16 9.1 .010
CTCF 55 37.6 4x10-4 21 16.2 .055
HSF1 9 2.6 1x10-3 4 1.1 .024
*Chromatin states were described previously (Ernst et al., 2011) based on hidden Markov models (HMM) of
histone methylation and acetylation marks from 9 cell types. Data for histone marks, open chromatin, and
transcription factor ChIP-seq were obtained from the ENCODE Project (ENCODE Project Consortium,
2011). SNPs in high linkage disequilibrium (r2>0.8 in 1000 Genomes Project European ancestry samples)
with known or novel lipid loci were compared to matched sets of HapMap SNPs (see Section 2.5.12). This
table lists only regulatory elements that exhibited a significant excess overlap (P<1x10-3 to account for 31
HepG2 regulatory elements tested). FAIRE, Formaldehyde-Assisted Isolation of Regulatory Elements.
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Table S2.10: Candidate genes at novel loci
ABCB11 (ATP-binding cassette, sub-family B, member 11) is involved in the ATP-dependent
secretion of bile salts (MIM 603201). Hepatic overexpression of Abcb11 in mice increased absorption
of cholesterol and promoted diet-induced obesity and hypercholesterolemia. G6PC2 encodes a glucose-
6-phosphatase catalytic subunit (MIM 608058). Variants at this locus have been implicated in liver
enzyme and fasting glucose levels.

ACAD11 (acyl-CoA dehydrogenase family, member 11) is involved in the β-oxidation of long-
chain fatty acids in muscle and heart (MIM 614288).

ADH5 (alcohol dehydrogenase 5 (class III), chi polypeptide) encodes a protein involved in
oxidation of long-chain primary alcohols and which catalyzes a step in the elimination of formaldehyde
(MIM 103710).

AKR1C4 (aldo-keto reductase family 1, member C4) encodes a protein that produces interme-
diates in bile acid biosynthesis and inactivates circulating steroid hormones (MIM 600451). AKR1C4 is
expressed exclusively in the liver and is transcriptionally regulated by LXRA.

ANGPTL1 (angiopoietin-like 1 gene) is a member of the angiopoietin family involved in angiogen-
esis, and widely expressed in highly vascularized tissues (MIM 603874).

ANXA9 (annexin A9) and CERS2 (ceramide synthase 2). ANXA9 is a calcium-dependent
phospholipid-binding protein (MIM 603319). CERS2 is involved in regulation of long acyl chain and
sphingolipid metabolism (MIM 606920).

APOH (Apolipoprotein H, also known as beta-2 glycoprotein I) and PRKCA (protein
kinase C, alpha). APOH is a glycoprotein that is involved in the activation of lipoprotein lipase and
which neutralizes negatively charged phospholipids (MIM 138700). PRKCA is activated by APOA1 and
diacylglycerol during cholesterol mobilization (MIM 176960).

ASAP3 (ArfGAP with SH3 domain, ankyrin repeat and PH domain 3) is a GTPase-activating
protein that promotes cell differentiation and migration and has been implicated in cancer cell invasion.

ATG7 (autophagy related 7) encodes a protein that is part of the autophagy machinery (MIM
608760). Dysfunction in autophagy canimpact systems related to intracellular energy utilization and
promote apoptotic cell death.

BRCA2 (breast cancer 2, early onset) is involved in maintenance of genome stability, specifically
the homologous recombination pathway for repair of double stranded DNA. Variants in the region can
increase risk of breast and other types of cancer (MIM 600185).

C4orf52 (chromosome 4 open reading frame 52). The nearest gene to the lead signal is an
uncharacterized gene with unknown function, and there are no other obvious candidate genes in the
locus.

CMTM6 (CKLF-like MARVEL). This gene belongs to the chemokine-like factor gene superfamily,
but the exact function of the encoded protein is unknown (MIM 607889).

CPS1 (carbamoyl-phosphate synthase 1, mitochondrial) encodes a mitochondrial enzyme that
catalyzes the first committed step of the urea cycle (MIM 608307). The lead variant encodes a threonine
to asparagine substitution previously associated with levels of homocysteine and fibrinogen.

CSNK1G3 (casein kinase 1, gamma 3) encodes a serine/threonine-protein kinase that is involved
in a number of cellular processes including DNA repair, cell division, nuclear localization and membrane
transport (MIM 604253).

DAGLB (diacylglycerol lipase, beta) catalyzes the hydrolysis of diacylglycerol (DAG) to 2-
arachidonoyl-glycerol, an abundant endocannabinoid (MIM 614016). Endocannabinoids function sig-
naling molecules, regulate axonal growth, and drive adult neurogenesis.

DLG4 (discs, large homolog 4) encodes a membrane-associated guanylate kinase and may function
at postsynaptic sites (MIM 602887). Nearby, DVL2 may also play a role in signal transduction (MIM
602151) and CTDNEP1 is involved in a phosphatase cascade regulating nuclear membrane biogene-
sis (MIM 610684). SLC2A4 is an insulin-regulated glucose transporter (MIM 138190). The variant
identified here was previously associated with alkaline phosphatase levels in plasma.

EHBP1 (EH domain binding protein 1). The mouse homologue of EHBP1 was down-regulated in
a transgenic Pcsk9 mouse model and up-regulated in a Pcsk9 knockout mouse.

FAM13A (family with sequence similarity 13, member A). FAM13A has a putative role in signal
transduction, and gene expression has been shown to be increased in response to hypoxia in cell lines
from several tissues (MIM 613299).

FAM117B (family with sequence similarity 117, member B) is an uncharacterized protein.
Nearby, BMPR2 encodes a bone morphogenetic protein receptor (MIM 600799). Defects in BMPR2
cause primary pulmonary hypertension.
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FN1 (fibronectin 1) is a glycoprotein involved in cell adhesion and migration processes including em-
bryogenesis, wound healing, blood coagulation, host defense, and metastasis (MIM 135600). Fibronectin
is one of the first extracellular matrix proteins deposited at atherosclerosis-prone sites, and is central in
the formation of atherosclerotic lesions.

FTO (fat mass and obesity associated) contributes to the regulation of the global metabolic rate,
energy expenditure and energy homeostasis (MIM 610966). Variants in this gene have been repeatedly
associated with obesity-related phenotypes, and it may act through hypothalamic regulation of food
intake.

GPR146 (G protein-coupled receptor 146) is an orphan G protein-coupled receptor. While no
ligand has yet been identified, knockout mice exhibit reduced cholesterol levels (U. S. Patent Filing
20090036394). The adjacent gene, GPER encodes the intracellular G protein-coupled estrogen receptor
1 (MIM 601805).

GSK3B (glycogen synthase kinase 3 beta) encodes a kinase involved in energy metabolism, neu-
ronal cell development, and body pattern formation (MIM 605004). In mice, Gsk3b activity regulates
pancreatic islet beta cell growth64. Nearby, NR1I2 encodes a nuclear receptor that can form a het-
erodimer with retinoic acid receptor RXR and involved with homeostasis of numerous metabolites,
including lipids (MIM 603065).

HAS1 (hyaluronan synthase 1) is one of three isozymes that synthesize hyaluronic acid, produced
during wound healing and tissue repair to provide a framework for growth of blood vessels and fibroblasts
(MIM 601463). The nearest gene, FPR3 (formyl peptide receptor 3) is involved in host defense and
inflammation (MIM 136539).

HBS1L (HBS1-like, S. cerevisiae) encodes a member of the GTP-binding elongation factor fam-
ily (MIM 612450). Variants at this locus regulate persistence of fetal hemoglobinin adults and other
haematological traits.

HDGF (hepatoma derived growth factor) and PMVK (phosphomevalonate kinase). HDGF
is a growth factor that may be involved in cell proliferation and differentiation (MIM 600339). PMVK
catalyzes the fifth reaction of the cholesterol biosynthetic pathway (MIM 607622). Nearby, CRABP2
(cellular retinoic acid binding protein 2) encodes a cytosol-to-nuclear shuttling protein involved in the
retinoid signaling pathway (MIM 180231).

IKZF1 (IKAROS family zinc finger 1) is a transcription factor that regulates the low-density
lipoprotein receptor in certain cell types.

INSIG2 (insulin induced gene 2). INSIG2 influences cholesterol metabolism, lipogenesis, and
glucose homeostasis in diverse tissues (MIM 608660).

INSR (insulin receptor) is a transmembrane tyrosine kinase receptor that binds insulin and stimulates
glucose uptake (MIM 147670). The receptor activates several downstream pathways.

LOC84931 (uncharacterized gene). The nearest gene to the lead signal is an uncharacterized gene
with unknown function, and there are no obvious candidate genes in the region.

LRPAP1 (low density lipoprotein receptor-related protein associated protein 1) encodes a
chaperone for the lipoprotein receptorrelated proteins (MIM 104225). Lrpap1 knockout mice exhibit
impaired export of LRP2 and VLDL receptors from the endoplasmic reticulum.

KAT5 (K(lysine) acetyltransferase 5). KAT5 is a positive regulator of PPARG transcription
involved in adipogenesis.

KCNK17 (potassium channel, subfamily K, member 17) passes outward current under physio-
logical potassium concentrations (MIM 607370). Variants 50 kb away at KCNK16 have been implicated
in type 2 diabetes.

MARCH8 (membrane-associated ring finger (C3HC4) 8, E3 ubiquitin protein ligase) and
ALOX5 (arachidonate 5-lipoxygenase). MARCH8 induces the internalization of several membrane
glycoproteins (MIM 613335). ALOX5 is a lipid metabolism enzyme that catalyzes the conversion of
arachidonic acid to leukotrienes, inflammatory mediators implicated in atherosclerosis and several cancers
(MIM 152390).

MET (met proto-oncogene (hepatocyte growth factor receptor)) encodes a receptor tyrosine
kinase that regulates hepatocyte cell proliferation, migration and survival (MIM 164860).

MIR148A (microRNA 148a). MicroRNAs are short non-coding RNAs involved in post-
transcriptional regulation of gene expression. miR-148a has been implicated in several cancers (MIM
613786).
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MOGAT2 (monoacylglycerol O-acyltransferase 2) and DGAT2 (diacylglycerol O-
acyltransferase 2). MOGAT2 plays a central role in absorption of dietary fat in the small intestine76.
DGAT2 encodes one of two enzymes that catalyze the final reaction in the synthesis of triglycerides, in
which diacylglycerol is covalently bound to long chain fatty acyl-CoA (MIM 606983).

MPP3 (membrane protein, palmitoylated 3) is a membrane-associated guanylate kinase that
regulates trafficking and processing of cell-cell adhesion molecule nectin-1/alpha (MIM 601114).

MTMR3 (myotubularin related protein 3) encodes a phosphatase that binds to phosphoinositide
lipids (MIM 603558).

OR4C46 (olfactory receptor, family 4, subfamily C, member 46). This signal is located in
a cluster of G-protein-coupled olfactory receptors, including OR5W2, OR5D13, and OR5AS1 (MIM
614273).

PDXDC1 (pyridoxal-dependent decarboxylase domain containing 1). Little is known about
this decarboxylase (MIM 614244). Variants at this locus have been shown previously to be associated
with circulating sphingolipid levels. About 300 kb away, PLA2G10 encodes a protein that releases
arachidonic acid from cell membrane phospholipids (MIM 603603).

PEPD (peptidase D) encodes an enzyme that hydrolyzes peptides with C-terminal proline or hydrox-
yproline residues and helps recycle proline (MIM 613230). Also at this locus are the genes encoding tran-
scription factors CCAAT/enhancer binding protein alpha and gamma (CEBPA (MIM 116897), CEBPG
(MIM 138972)), involved in adipogenesis. Variants in this locus are associated with adiponectin levels
and type 2 diabetes in East Asians.

PHC1 (polyhomeotic homolog 1) and A2ML1 (alpha-2-macroglobulin-like 1) is required to
maintain the transcriptionally repressed state of many genes (MIM 602978). A2ML1 is an inhibitor for
several proteases and binds to low density lipoprotein receptor-related protein 1 (MIM 610627).

PHLDB1 (pleckstrin homology-like domain, family B, member 1). PHLDB1 is an insulin-
responsive protein that enhances Akt activation, and PHLDB1 expression is increased during adipocyte
differentiation (MIM 612834).

PIGV (phosphatidylinositol glycan anchor biosynthesis, class V) and NR0B2 (nuclear
receptor subfamily 0, group B, member 2). PIGV is a mannosyltransferase that plays a role in
multiple cellular processes, including protein sorting and signal transduction (MIM 610274). NR0B2 is a
transcriptional regulator involved in cholesterol, bile acid, and fatty acid metabolism and glucose-energy
homeostasis.

PPARA (peroxisome proliferator activated receptor alpha) encodes a nuclear transcription
factor that regulates fatty acid synthesis, and oxidation and gluconeogenesis (MIM 170998). PPARA
regulates the expression of lipoprotein receptors and cholesterol transporters involved in the reverse
cholesterol transport pathway.

PXK (PX domain containing serine/threonine kinase) plays a critical role in epidermal growth
factor receptor trafficking by modulating ubiquitination of the receptor (MIM 611450).

RBM5 (RNA binding motif protein 5) is an hypothetical tumour suppressor gene encoding a nu-
clear RNA binding protein involved in the induction of cell cycle arrest and apoptosis (MIM 606884).
Nearby, MST1R encodes macrophage stimulating 1 receptor and is involved in host defense (MIM
600168).

RSPO3 (R-spondin 3). RSPO3 encodes a protein that regulates beta-catenin signaling, promotes
angiogenesis and vascular development (MIM 610574). In mouse, Rspo3 is required for Vegf expression
and endothelial cell proliferation. Variants in this locus are associated with waist-hip ratio, bone mineral
density and renal traits.

SETD2 (SET domain containing 2) encodes a histone methyltransferase specific for lysine-36
of histone H3, a mark associated with active chromatin (MIM 612778). Nearby, NBEAL2 encodes
neurobeachin-like 2, which may play a role in megakaryocyte alpha-granule biogenesis (MIM 614169).

SNX5 (sorting nexin 5) encodes a protein that binds to phosphatidylinositol 4,5-bisphosphate and is
involved in intracellular transport of cargo receptors from endosomes to the trans-Golgi network (MIM
605937).

SNX13 (sorting nexin 13). This gene belongs to the sorting nexin (SNX) family and the regulator
of G protein signaling (RGS) family (MIM 606589). It may be involved in several stages of intracellular
trafficking.

SOX17 (SRY (sex determining region Y)-box 17) encodes a transcription regulator that plays a
key role in the regulation of embryonic development and is required for normal looping of the embryonic
heart tube (MIM 610928).
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SPTLC3 (serine palmitoyltransferase, long chain base subunit 3). SPTLC3 catalyzes the rate-
limiting step of the de novo synthesis of sphingolipids (MIM 611120). Variants at this locus are associated
with circulating sphingolipid levels.

STAB1 (stabilin 1) encodes a large, transmembrane receptor involved in angiogenesis, lymphocyte
homing, cell adhesion, and receptor scavenging (MIM 608560). STAB1 mediates endocytosis of various
ligands, including low-density lipoprotein. Variants at this locus have been associated with waist-hip
ratio.

TMEM176A (transmembrane protein 176A) is a transmembrane protein (MIM 610334).

TOM1 (target of myb1). TOM1 shares its N-terminal domain in common with proteins associated
with vesicular trafficking at the endosomes (MIM 604700). Nearby, HMOX1 encodes an essential enzyme
in heme catabolism (MIM 141250). Hmox1 knockout mice have low plasma triglycerides and altered
composition of HDL.

UGT1A1 (UDP glucuronosyltransferase 1 family, polypeptide A1). This complex locus en-
codes several glycosyltransferases that transform small lipophilic molecules, such as steroids, bilirubin,
hormones, and drugs, into water-soluble excretable metabolites (MIM 191740). Variants at this locus
are associated with serum bilirubin levels.

VEGFA (vascular endothelial growth factor A) encodes a growth factor active in angiogenesis
and endothelial cell growth, promoting cell migration, and inhibiting apoptosis (MIM 192240). Variants
in this locus are associated with waist-hip ratio.

VIM (vimentin) and CUBN (cubilin, intrinsic factor-cobalamin receptor). VIM is an in-
termediate filament that controls the transport of LDL-derived cholesterol from a lysosome to the site
of esterification (MIM 193060). CUBN is a receptor for high-density lipoproteins/apolipoprotein A-I,
intrinsic factor-vitamin B12, and albumin (MIM 602997).

VLDLR (very low density lipoprotein receptor) binds VLDL and other lipoproteins and transports
them into cells (MIM 192977). VLDLR is expressed on the capillary endothelium of skeletal muscle,
heart, and adipose tissue.

ZBTB42 (zinc finger and BTB domain containing 42) and AKT1 (v-akt murine thymoma
viral oncogene homolog 1). ZBTB42 is a DNA-binding transcriptional repressor (MIM 613915).
AKT1 is a serine-threonine protein kinase that is activated by platelet-derived growth factor (MIM
164730). The Akt signaling pathway controls multiple cellular functions in the cardiovascular system,
and murine Akt1 has an atheroprotective role.
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CHAPTER III

GREGOR: evaluating global enrichment of trait-associated
variants in epigenomic features using a systematic,

data-driven approach

3.1 Abstract

The majority of variation identified by genome wide association studies falls in

non-coding genomic regions and is hypothesized to impact regulatory elements that

modulate gene expression. Here we present a statistically rigorous software tool

GREGOR (Genomic Regulatory Elements and Gwas Overlap algoRithm) for eval-

uating enrichment of any set of genetic variants with any set of regulatory features.

Using variants from five phenotypes, we describe a data-driven approach to deter-

mine the tissue and cell types most relevant to a trait of interest and to identify

the subset of regulatory features likely impacted by these variants. Last, we ex-

perimentally evaluate six predicted functional variants at six lipid-associated loci

and demonstrate significant evidence for allele-specific impact on expression levels.

GREGOR systematically evaluates enrichment of genetic variation with the vast col-

lection of regulatory data available to explore novel biological mechanisms of disease

and guide us toward the functional variant at trait-associated loci.

GREGOR, including source code, documentation, examples, and executables, is

Official citation: Schmidt et al. (2015)
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available at http://genome.sph.umich.edu/wiki/GREGOR.

3.2 Introduction

The list of common genetic variants associated with complex disease continues to

grow as a result of increasingly powered genome wide association studies (GWAS)

(Welter et al., 2014). A large proportion of the associated variants are non-coding

and it has proven difficult to identify the functional variant at loci with many vari-

ants in tight linkage disequilibrium (LD). In addition, these loci often account for

only a small percentage of the trait heritability which makes any minor alteration of

transcript levels difficult to detect. Although eQTLs (expression quantitative trait

loci) in relevant tissues can highlight loci where variants likely impact transcription

of nearby genes, fine-mapping of the causal variant is plagued by the same LD pat-

terns that impact disease association studies. Common variation located outside of

protein-coding regions modulates regulatory elements in a cell-type specific manner

(Claussnitzer et al., 2014; Ernst et al., 2011; Kichaev et al., 2014; Lo et al., 2014;

Maurano et al., 2012; Parker et al., 2013; Pickrell, 2014; Thurman et al., 2012; Trynka

et al., 2013). Examining disease-associated variants in relation to genomic regions

of functional importance can give insight into the molecular mechanisms leading

to disease phenotypes, particularly when all associated variants are considered in

aggregate.

Our understanding of the location of regulatory elements in the genome has ex-

panded with the advent of chromatin immunoprecipitation followed by high-throughput

DNA sequencing (ChIP-Seq) technology and the Encyclopedia of DNA Elements

(ENCODE) Project (ENCODE Project Consortium, 2012). However, it is challeng-

ing to untangle meaningful biological understanding in a systematic manner, given

http://genome.sph.umich.edu/wiki/GREGOR
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the diverse set of data available from hundreds of cell types and tissues. With the

notion that non-coding genetic variation plays a role in transcriptional regulation

via regulatory epigenomic features, we can harness these data to gain knowledge of

important biological mechanisms. For example, genetic variation that impacts local

chromatin or methylation states and DNA accessibility can impact transcription in

a given cell. In a majority of associated genomic regions, the SNP (single nucleotide

polymorphism) supported by ENCODE data is a SNP in strong LD with the top

reported GWAS SNP (Schaub et al., 2012). Systematic chromatin profiling has re-

vealed that variants linked with the GWAS index variant, defined here as the most

strongly associated variant, are often positioned within enhancer elements active in

relevant cell types (Ernst et al., 2011). Furthermore, the overlap of particular histone

methylation marks with trait associated variants is cell type-specific, suggesting that

gene regulation is influenced by trait alleles in a cell type-specific manner (Trynka

et al., 2013). Previous work has used chromatin profiles and other ChIP-seq exper-

imental data to investigate GWAS variation and predict the impact of candidate

variants in particular genomic regions (Boyle et al., 2012; Claussnitzer et al., 2014;

Kichaev et al., 2014; Lo et al., 2014; Maurano et al., 2012; Pickrell, 2014; Thurman

et al., 2012; Ward and Kellis, 2012). However, these methods often do not consider

an appropriate control set for evaluating enrichment and do not always carefully

evaluate the most relevant tissues or cell types for enrichment of trait-specific varia-

tion. Identifying causal variants and mechanisms at GWAS loci remains a universal

scientific challenge.

With this motivation, we developed a statistically rigorous approach to quantify

enrichment of trait-associated variants in experimentally annotated functional ele-

ments such as open chromatin states, histone marks and protein-binding sites in
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relevant cell types to develop a clearer understanding of the underlying regulatory

mechanisms. We apply an algorithm and systematic scientific method for prioritizing

functional candidate variants at genome-wide significant trait-associated loci. Our

aims are threefold:

(i) elucidate the important tissue/cell types in which genetic variation impacts tran-

scription for a particular trait,

(ii) narrow our focus of the regulatory features underlying transcription disrupted

by trait-associated variants, and

(iii) use positional overlap with selected regulatory domains to identify potential

functional candidates at trait-associated loci.

To address these aims, we evaluate genetic variation identified by GWAS for five

metabolic phenotypes: blood pressure (International Consortium for Blood Pressure

Genome-Wide Association Studies et al., 2011), (C. Newton-Cheh and P. Munroe,

unpublished data), body mass index (Locke et al., 2015), coronary artery disease

(Coronary Artery Disease (C4D) Genetics Consortium, 2011; Schunkert et al., 2011),

lipids (Global Lipids Genetics Consortium et al., 2013) and type 2 diabetes (Morris

et al., 2012). We present GREGOR (Genomic Regulatory Elements and Gwas

Overlap algoRithm), an open source tool for evaluating enrichment as a method

to query the vast array of ENCODE data for the design of functional experiments,

enabling scientists with non-computational backgrounds to prioritize variants and

loci for functional follow-up (Figure 3.1).
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3.3 Methods

We hypothesize that the index variant reported by GWAS is not necessarily the

causal variant, owing to LD at associated regions. To account for this, we first create

a list of all potential causal variants by selecting variants in strong LD (r 2>0.7)

with trait-associated index SNPs in whole genome sequenced samples: the 1000

Genomes Phase 1 version 2 European Panel (1000 Genomes Project Consortium

et al., 2010). Reference data from non-European populations from the 1000 Genomes

Project are also available with GREGOR for selection of LD proxies. Although

many indicators of regulatory potential exist for non-coding regions, we select DNase

hypersensitive sites (DHSs) as a general marker of functional importance to address

our first scientific question: which cell type shows strongest enrichment of trait-

associated loci? We gather data from the ENCODE Project and when experimental

replicates are available, we calculate the union of DHSs derived from the same tissue

(Table S3.1). We then examine overlap of these potential causal SNPs with DHSs

from various different tissue categories. By the same approach, we later evaluate

the position of the index SNPs and their LD proxies relative to histone methylation

marks and ChIP-seq transcription factor binding sites (TFBS) , as well as previously

defined functional chromatin states.

We calculate the total number of trait-associated loci at which either the index

SNP or at least one of its LD proxies overlaps with a regulatory region across the

genome. In order to evaluate the significance of this observed overlap at each individ-

ual regulatory feature, we estimate the probability of the observed overlap of GWAS

SNPs relative to expectation using a set of matched control variants. For each GWAS

index SNP, we identify a set of 500 control SNPs randomly selected from across the
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genome that match the index SNP for: (i) number of variants in LD, (ii) minor allele

frequency (±1%) and (iii) distance to the nearest gene. When two or more GWAS

index SNPs match each other following the three criteria above, they share a set

of control SNPs. We consider that the number of index SNPs within its matched

control set of SNPs that overlaps a given feature follows a binomial distribution with

two parameters: (i) the number of GWAS index SNPs present in the control set (1 or

greater), and (ii) the proportion of SNPs within the control set or their LD proxies

that physically overlaps a feature. Considering the number of index SNPs that over-

laps with a feature, we compute the sum of independent binomial random variables.

Then for each regulatory feature, we calculate the fold-enrichment over expectation

and an enrichment P -value that represents the probability that the overlap of control

SNPs represented as a cumulative probability distribution is greater than or equal to

the observed overlap that we see from GWAS index SNPs (Figure S3.1, Table 3.1).

We evaluated the performance of our method using a range of parameters includ-

ing different numbers of variants in LD in the matched control sets, and matched

control set size (Figure S3.2). The magnitude of enrichment is generally consis-

tent across ranges of these parameters, and the subsequent results use r 2=0.7 with

matched control set size of > 500. P -values generated based on randomly permuted

sets of non-associated matched control SNPs are highly concordant with estimated

P -values (Section 3.7.4, Figure S3.3).

We attempted to evaluate the type I error rate of our enrichment method. We

tested enrichment of 50 sets of randomly selected SNPs in DHSs of different tissues.

SNP sets were matched with lipid-associated SNPs on 3 properties: number of LD

proxies, minor allele frequency and distance to the nearest gene. A QQ plot reveals

P -values that closely follow the null uniform distribution, whereas the P -value dis-
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tribution for lipid-associated variants sharply deviates from the null (Figure 3.2a).

Additionally, we investigated type I error by first partitioning DHSs of each tissue

into genic landmark categories (Parker et al., 2013) and then randomly shuffling

within each category. After re-combining the DHS categories for each tissue, we

evaluated enrichment of the lipid-associated variants and again compared the results

to the original P -value distribution (Figure 3.2b).

3.4 Results

3.4.1 Prioritizing tissue types for five phenotypes using DNase hypersensitivity sites

Our first objective is to use available epigenomic data to identify which tissues

are the most biologically relevant to the trait-specific genetic variation identified by

GWAS. We evaluated enrichment of independent GWAS loci for five related phe-

notypes: 99 blood pressure loci (BP; 2.2% trait variance explained), 97 body mass

index loci (BMI; 2.7% trait variance explained) (Locke et al., 2015), 36 coronary

artery disease loci (CAD; 10% trait variance explained) (Schunkert et al., 2011), 157

lipid loci (high- and low- density lipoprotein cholesterol, total cholesterol and triglyc-

erides; 10-12% trait variance explained) (Global Lipids Genetics Consortium et al.,

2013) and 65 type 2 diabetes loci (T2D; 10.7% trait variance explained) (Morris

et al., 2012). DHSs are open regions of DNA accessible to protein binding, and are

important in the transcriptional activity within a given cell. ENCODE has exper-

imentally identified DHSs using DNase-seq in hundreds of cell types. We evaluate

enrichment of GWAS loci in the union DHSs of cell types derived from the same

tissue (Table S3.1). By testing five sets of trait-associated SNPs in DHSs of 41 tissue

types, we set a Bonferroni corrected threshold for significance at P<2.4x10-4.

GWAS loci were significantly enriched in DHSs of tissues that are remarkably

consistent with our biological understanding of the trait (Figure 3.3). For example,
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BP-associated variants are highly enriched in DHSs in cell types derived from blood

vessel (P=1.2x10-9; fold enrichment 1.5) and heart (P=5.3x10-8; fold enrichment

1.6); CAD-associated variants in DHSs from heart (P=2.3x10-5; fold enrichment 1.7)

and blood (P=5.6x10-5; fold enrichment 1.4); lipid-associated variants in DHSs from

liver (P=2.0x10-14; fold enrichment 1.6), monocytes (P=7.1x10-13; fold enrichment

1.9) and blood (P=4.7x10-11; fold enrichment 1.4); and BMI-associated variants in

DHSs in frontal cortex (P=8.8x10-5; fold enrichment 1.7). We also find enrichment

of BMI-associated variants in DHSs of human olfactory neurosphere-derived cells

from mucosal biopsies (P=4.2x10-5; fold enrichment 1.7), suggesting a plausible link

between olfaction and food intake. However, there are other cases in which we find

enrichment of trait-associated variants in unexpected tissue types. For example, al-

though we observe significant enrichment of T2D-associated variants in pancreatic

tissue as expected (P=1.0x10-4; fold enrichment 1.6), we see stronger evidence for en-

richment in heart tissue (P=1.4x10-6; fold enrichment 1.7) and embryonic stem cells

(P=2.5x10-6; fold enrichment 1.5). We used this knowledge to guide subsequent en-

richment analysis of other epigenomic features by focusing on the most significant cell

types to reduce the multiple testing burden in subsequent assessments of additional

regulatory features. This data-driven approach to reduction of a large set of poten-

tially relevant regulatory elements in a myriad of cell lines and tissues can be used

for phenotypes where little is known about the biology, and may also identify novel

tissues where these GWAS loci are actively transcribed. Alternatively, investigators

might bypass this step and instead use a priori biological knowledge to focus on a

specific tissue or cell type. One could also integrate the two approaches to choose

some empirically-selected cell types but up-weight biologically relevant cell types.

We additionally investigate whether enrichment is tissue type-specific. Given the
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wealth of DHS data available, often in replicates and for multiple cell types from the

same tissue type, we hypothesize that each cell type has some level of missing data

and artifacts. To address this, we define consensus regions of open chromatin that are

commonly shared among at least 50% of all cell types within a single tissue group, and

re-evaluate enrichment of lipid-associated GWAS variants. We additionally compare

results for consensus thresholds (proportion of cell types required to show a DHS

at that genomic position) of 100%, 75%, 25% and the union of cell types derived

from the same tissue. We found that when we used stricter definitions to select

functional regions (e.g. 100% of cell types were required to share the DHS), we

typically observed higher fold enrichment, but less significant enrichment P -values

(Figure S3.4). Conversely, when we relaxed the criterion to allow DHSs observed

in only 25% of cell types, we typically observed stronger P -values but lower fold

enrichment. This is likely due to inclusion of more artefactual DHSs using the relaxed

definition, but exclusion of true DHSs under the strict definition. In subsequent

analyses, we used the most relaxed definition of regulatory elements by including any

element observed in at least one replicate or cell type within each tissue category.

We opted to be more inclusive to allow for the most complete identification of DHSs.

3.4.2 Prioritizing regulatory elements in selected tissues

Following prioritization of important tissue types for GWAS of a specific pheno-

type, we next selected specific regulatory elements that were enriched for GWAS

variants in cell types derived from relevant tissues, focusing solely on the tissues se-

lected in Section 3.4.1. We evaluated enrichment of trait-associated variants in chro-

matin states predicted from histone methylation marks and a learned multivariate

hidden Markov model (Ernst et al., 2011) (Figure 3.4). Confirming previous reports

(Maurano et al., 2012), we found significant enrichment of genetic variation in weak
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and strong enhancer states for nearly all phenotypes tested. Trait-associated vari-

ants are most highly enriched in active promoters commonly marked by H3K4me2,

H3K4me3, acetylation, or H2A.Z. There is less striking enrichment in domains that

contain repressed genes such as H3K9me2, H3K9me3 or H3K27me3.

We further evaluated enrichment in TFBS and histone modifications identified by

ChIP-Seq. We investigated any Tier 1 or 2 ENCODE cell types available for relevant

tissues identified in Section 3.4.1, taking the union of experimental replicates when

available. For cell types HepG2, Monocytes CD14+ (RO01746), GM12878, K562

and CD20+ (RO01778), we find significant enrichment of lipid-associated variation

for key transcriptional machinery including RNA Polymerase II (P=6.2x10-24; fold

enrichment 2.0) and the ubiquitous transcription factor SP1 (P=1.510-15; fold en-

richment 3.0). In addition, lipid-associated variants are highly enriched in binding

sites of RCOR1 (P=1.8x10-16; fold enrichment 2.1), EP300 (P=1.2x10-14; fold enrich-

ment 2.0), JUND (P=2.2x10-14; fold enrichment 2.0) and H3K4me3 (P=1.4x10-13;

fold enrichment 2.1). We tested a total of 158 regulatory features, 75 of which reach

Bonferroni significance with P<3.2x10-4 (Table S3.2). We are particularly interested

in 15 known lipid gene regulators as well as 16 transcription factors and 4 histone

markers associated with lipid change in the literature. Of the 75 Bonferroni signifi-

cant regulatory features, 18 of these are among this a priori -defined lipid-related list

of 35 elements.

3.4.3 Prioritizing candidate functional variants using selected regulatory elements in
relevant tissues

As we gain knowledge about the transcriptional machinery that acts in concert

with trait-associated genetic variation, we can make more informed predictions about

potential functional variants at a single locus. We hypothesize that variants present
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within multiple regulatory domains are more likely to play a role in transcriptional

regulation within a cell. Subsequently, we can use this information in combination

with functional protein-coding information, transcript level annotation, and delete-

riousness scoring to prioritize loci and individual variants for functional follow-up.

We proceeded to prioritize potential functional variants in the 157 known lipid-

associated loci (Figure 3.5). With the assumption that a protein-coding variant

is likely the functional driver of transcription at a given locus, we excluded any

lipid-associated loci from follow-up consideration that contains at least one non-

synonymous variant in LD (r 2>0.7) with the GWAS index SNP. This resulted in

103 remaining loci for further evaluation. We next examined our results from Step

2 to focus on the selected transcription factors and histone marks, and prioritized

loci at which multiple transcription factors bind in blood, monocytes, or liver. In a

data-driven approach, we flagged variants that overlap with a subset of significantly

enriched regulatory domains as plausible functional candidate SNPs (n=23). We

evaluated overlap of GWAS variants at candidate loci in lipid gene regulators as

well as transcription factors and histone marks involved with lipid change in the

literature. Variants at a set of five of these loci that overlap with at least eight

(25%) lipid-related regulatory features were commonly found using both the data-

driven and biological-driven selection of regulatory features, including the known

functional variant rs12740374 at SORT1 (Musunuru et al., 2010). Many of these

candidate variants are also eQTLs in liver, omental fat or subcutaneous fat or had

at least one surrogate SNP in LD (r 2>0.7) with the eQTL SNP at that locus (eQTL

P<1x10-3) (Schadt et al., 2008). In addition to considering these various data, we

counted the number of variants at each locus and focused on loci with relatively few

numbers of variants to increase the likelihood of identifying the functional variant.
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Thus, we narrowed down the list of lipid loci that likely have a strong impact on

regulating transcription to guide us to promising candidates for functional follow-up.

After analyzing the overlap of non-coding variants with biological TFBS from

ChIP-seq and using our criteria of non-coding variants, eQTLs, and number of vari-

ants at a locus, we chose five loci and picked one SNP from each region that had

some evidence of being the functional variant due to overlap with the most reg-

ulatory regions for further study (FAM117B : rs11692610; ANGPTL8 : rs737337;

SPTLC3 : rs1321940; IRF2BP2 : rs526936; ADH5 : rs1800759) (Figure 3.6). At

each locus, we selected an additional variant with no predicted C/EBP binding site

overlapping as an internal control (FAM117B : rs11694172; ANGPTL8 : rs3810308;

SPTLC3 : rs364585; IRF2BP2 : rs514230; ADH5 : rs2602836). Variant rs12740374

from the SORT1 locus has previously been demonstrated to alter a C/EBP TFBS

(Musunuru et al., 2010), and thus was used as a positive control here (rs629301 as

the SORT1 locus internal control).

We next attempted to directly determine the allele-specific effects of the non-

coding SNP polymorphism on transcription factor binding at each of the six lipid

loci. We generated luciferase constructs containing ± 300-400 bp around each genetic

variant (generating the alternate allele with site-directed mutagenesis) and trans-

fected them into HepG2 cells over-expressing C/EBP-β. We normalized luciferase

activities to the pcDNA3.1-co-transfected groups (control construct with no C/EBP-

β DNA inserted), and found robust luciferase activity increase in the rs12740374-T

construct compared with rs12740374-G from the SORT1 locus (fold increase=1.8,

P=4x10-4), which was consistent with the previous report. Similarly, for the other

five loci examined, the single nucleotide changes in other predicted functional SNP

sites caused significant luciferase activity differences in response to C/EBP-β over-
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expression (P<0.05), indicating those non-coding variants may change transcription

factor binding activity in GWAS loci and possibly affect downstream gene expression

(Figure 3.7). After correction for 12 tests (2 SNPs at six loci), we still find signifi-

cant differences between the two alleles (P<0.05) at the candidate functional SNP for

five out of the six loci (SORT1 : rs12740374-T; ANGPTL8 : rs737337-C; FAM117B :

rs11692610-T; IRF2BP2 : rs526936-C; SPTLC3 : rs1321940-G). In contrast, the lu-

ciferase signal changes of the internal control SNP constructs were significant at

Bonferroni levels for only two of the six loci.

Our results are generally supported by post hoc annotations of predicted regula-

tory elements defined by RegulomeDB (Boyle et al., 2012). For example, the Regu-

lomeDB score of the GWAS HDL cholesterol-associated index SNP at the SPTLC3

locus (rs364585) is 5, indicating that there is TF binding or DNase peak epigenomic

data to support its functionality. In contrast, the RegulomeDB score of our pre-

dicted functional SNP at this locus (rs1321940) is 2a, indicating that it is likely to

affect binding based on evidence of TF binding, and the presence of a matched TF

motif, DNase footprint, and DNase peak. Among all 18 variants within r 2>0.7 of

the index SNP at this locus, only 2 SNPs have a score of 2b or better. We observe

similar trends for other loci at which we performed experimental follow-up (Fig-

ure 3.6). Counterintuitively, the known functional variant rs12740374 at the SORT1

locus has a RegulomeDB score of 2b, whereas the variant reported by GWAS in

that region, rs629301, has a higher score of 1f. This result emphasizes the need to

consider multiple sources of data when prioritizing functional candidates for experi-

mental follow-up. Although annotation of individual variants is useful in predicting

the potential impact of a single variant, GREGOR considers all trait-associated vari-

ants in aggregate to prioritize which functional elements and in which tissues they
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are most relevant for the trait being examined. An alternative is considering the

entirety of ENCODE data, much of which will represent irrelevant tissue types or

highly correlated data sets.

3.5 Discussion

We have developed a systematic approach for evaluating enrichment of trait-

associated variants in epigenomic features, allowing us to prioritize tissues, regulatory

elements, and potential functional variants that affect transcriptional regulation (Fig-

ure 3.1). Our method takes into account all potential causal variants at a locus due

to LD and estimates enrichment with particular regulatory features using matched

control variants. It is an unbiased approach that can be used to narrow the focus of

cell types and regulatory features that does not rely on a priori knowledge of biologi-

cal mechanisms. The resultant findings will guide us to a more global understanding

of the underlying epigenomic architecture leading to trait-specific variation.

We present here one reasonable approach for prioritizing the potential functional

variant at a locus. We attempted to select loci with the best chance of demonstrating

a functional variant for experimental follow-up. However, our approach is limited

to only one potential functional variant per locus and does not claim to definitively

identify the true or only functional variant at any locus. More comprehensive interro-

gation of variation within a locus will be required to fully understand the underlying

molecular mechanisms involved.

Different cell types and tissues are more easily accessible than others for sequenc-

ing. This approach will become even more impactful as we develop an increasingly

comprehensive and diverse interrogation of the epigenome to answer important bio-

logical questions about the regulatory role of non-coding variation. In all, this ap-
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proach will help guide our knowledge of the important mechanisms occurring outside

of protein-coding regions that underlie cell-type-specific transcriptional regulation.
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3.7 Supplementary Methods

3.7.1 Data acquisition and pre-processing

DNase-seq ENCODE data for all available cell types were downloaded in the pro-

cessed narrowPeak format. The local maxima of the tag density in broad, variable-

sized hotspot regions of chromatin accessibility were thresholded at FDR 1% with

peaks set to a fixed width of 150 bp. Individual cell types were further grouped into

41 broad tissue categories (http://genome.ucsc.edu/ENCODE/cellTypes.html) by

taking the union of DHSs for all related cell types and replicates (Table S3.1). We

also obtained a set of BED files in hg19 assembly from the Integrative Analysis

and original ENCODE analysis. These data include uniformly processed datasets

in 125 cell types generated by the “Open Chromatin” (Duke University) and Uni-

versity of Washington (UW) ENCODE groups. Data processed during the EN-

CODE Integrative Analysis were downloaded for available tissues. Otherwise, data

from the original ENCODE analysis were obtained. We examined the overlap of

http://genome.ucsc.edu/ENCODE/cellTypes.html
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DHSs across different cell types, and found that as expected, cell types derived

from related tissues generally clustered together. In addition, we examined chro-

matin state segmentation by HMM generated from ENCODE/Broad in nine human

cell types, as well as transcription factor binding sites by ChIP-seq from the EN-

CODE Analysis Working Group (AWG) including ENCODE/HudsonAlpha (HAIB),

ENCODE/Stanford/Yale/Davis/Harvard (SYDH), ENCODE/Univ of Chicago, EN-

CODE/Open Chrom (UT Austin), and ENCODE/Univ of Washington (UW). No

dataset analyzed was under embargo.

3.7.2 Selecting matched control SNPs for GWAS index SNPs

For each GWAS locus, we selected a set of matched control SNPs based on 3

criteria: i) number of variants in LD (r 2>0.7; ± 8 variants), ii) minor allele frequency

(± 1%), and iii) distance to nearest gene (± 11,655 bp). To calculate the distance

to the nearest gene, we calculated the distance to the 5’ flanking gene (start and end

position) and to the 3’ flanking gene and then used the minimum of these 4 values.

If the SNP fell within the transcribed region of a gene, the distance was 0.

3.7.3 Estimating probability of observed and expected overlap between a regulatory
feature and GWAS locus

We estimated the probability that a set of GWAS loci overlap with a regulatory

feature more often than we expect by chance using the following method. We con-

sidered a GWAS locus as the GWAS index SNP or a SNP in LD with the index

SNP (r 2>0.7). For each regulatory feature, we counted the number of GWAS loci in

which we observed physical overlap with at least one experimentally defined genomic

region of the feature. The number of GWAS index SNPs in the ith matched control

set that demonstrates positional overlap with a given epigenomic feature, written

as si, follows a binomial distribution with parameters ni and pi. The parameter ni
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is equal to the number of index SNPs present in the ith control set. The second

parameter pi is calculated as the number of variants in the ith control set or their

LD proxies that overlaps with the feature, divided by the total number of variants in

the ith control set. If we assume there are r control sets in total, the number of index

SNPs from all control sets that falls in a single feature is the sum of independent

non-identical binomial random variables:

(3.1) S =
r∑

i=1

si

In most cases only one index variant is assigned to a matched control set, but there

are some exceptions where more than one index SNP could match on the same 3

properties. We estimate an enrichment P -value for any given s as P(S ≥ s). P is

the cumulative right tail probability based on the distribution of S and is calculated

using a saddlepoint approximation method (Eisinga et al., 2013).

3.7.4 Permutation testing to evaluate estimated P-values

We performed up to 100,000 permutations to evaluate our enrichment P -value

estimation method and found the results to be highly concordant for permutation P -

values less than 1x10-5 that could be estimated (Figure S3.3). To assess the expected

overlap with a regulatory domain, we generated 100,000 random permuted sets of

non-associated matched control SNPs based on the criteria described above. We

selected a control variant from the control pool for each locus and identified the

variants in LD, resulting in 100,000 control sets. We evaluated the random SNP

lists for overlap with each functional domain by averaging the number of SNPs that

fell within the experimentally annotated regions from each control set that had at

least one variant overlapping a regulatory element. This approach assumes that

only one variant located in a regulatory region at each locus is responsible for the
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association signal. We calculated an empirical P -value for each regulatory dataset

as the proportion of random sets with an equal or greater number of loci overlapping

the regulatory domain than the observed set of trait-associated variants. For small

P -values that could not be estimated (e.g. P<1x10-5 for 100,000 permutations),

we used a normal approximation of the empirical overlap distribution to estimate

P -values.

3.7.5 Luciferase expression constructs

To characterize the intergenic region around the candidate SNPs, 600-800 bp

fragments containing the SNPs from human chromosomes were cloned into the pGL4-

Promoter vector (Promega), in the 5’-to-3’ orientation (toward the GWAS candidate

gene), upstream of the firefly luciferase gene (Table S3.3). The QuikChange Site-

Directed Mutagenesis Kit (Stratagene) was used to alter single nucleotides at the

targeted SNP sites. All constructs were verified by DNA sequencing.

3.7.6 Luciferase expression assays

HepG2 cultured human hepatoma cells were transfected at roughly 50% conflu-

ence and maintained in DMEM with 10% FBS. The firefly luciferase constructs were

co-transfected with either the C/EBP-β expression plasmid (pcDNA3.1-C/EBP-β)

or empty pcDNA3.1 vector, together with the Renilla luciferase pRL-null Vector

(Promega) as internal control, using the Lipofectamine 2000 transfection reagent

(Invitrogen) in the ratio 0.25µg:0.25ug:25ng:2.5µl mixed with Opti-MEM I Reduced

Serum Medium (Invitrogen) for a 50µl mix used for each well of 24-well plates. Forty-

eight hours after transfection, firefly and Renilla luciferase activities were measured

using the Dual-Luciferase Reporter Assay System (Promega) according to the man-

ufacturers protocol, using untransfected cells to adjust for background activity.
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3.7.7 Data Access

GREGOR documentation and software download,

http://genome.sph.umich.edu/wiki/GREGOR; ENCODE Consortium,

http://genome.ucsc.edu/ENCODE/dataMatrix/encodeDataMatrixHuman.html;

Chromatin state segmentation by HMM from ENCODE/Broad in 9 human cell types,

http://genome.ucsc.edu/cgibin/hgFileUi?g=wgEncodeBroadHmm&db=hg19;

GWAS results for all traits and diseases including those studied here,

http://www.genome.gov/gwastudies/. Data used from the latest blood pressure

GWAS are not yet published.

http://genome.sph.umich.edu/wiki/GREGOR
http://genome.ucsc.edu/ENCODE/dataMatrix/encodeDataMatrixHuman.html 
http://genome.ucsc.edu/cgibin/hgFileUi?g=wgEncodeBroadHmm&db=hg19
http://www.genome.gov/gwastudies/
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Figure 3.2: Type I error assessment of GREGOR algorithm performance. (A) The P -value distri-
bution of enrichment in DHSs is shown for 50 SNP proxy lists (pink) together with the enrichment
P -value distribution of the true lipid-associated variants (blue). Proxy lists were generated by
choosing SNPs that matched on i) number of LD proxies, ii) minor allele frequency, and iii) gene
proximity, but were otherwise randomly selected from across the genome. (B) DHSs were par-
titioned into mutually exclusive genic landmark categories based on GENCODE annotation (e.g.
3’UTR, 5’UTR, intron, coding exon, intergenic TSS distal and proximal) and randomly shuffled.
After re-combining the categories for each tissue, we evaluated enrichment of lipid-associated vari-
ants (pink) and compared with the P -value distribution in the original DHSs (blue). Abbreviations:
UTR, untranslated region; TSS, transcription start site.
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Figure 3.4: Enrichment of trait-associated variants in predicted chromatin states. Matrix of fold
enrichment for five sets of GWAS variants (A. body mass index, B. blood pressure, C. coronary
artery disease, D. lipids, E. type 2 diabetes) with boxes colored by -log10 enrichment P -value. White
boxes indicate not significant after Bonferroni correction for 15 chromatin states and nine human
tissues (Ernst et al., 2011). Abbreviations: HMM, hidden Markov model; txn, transcription; lo, low
signal; CNV, copy number variation.
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Lipid-­‐associated	
  loci	
  reported	
  from	
  GWAS	
  (Willer	
  et	
  al.,	
  2013)	
  
(n=157)	
  

Loci	
  without	
  any	
  non-­‐synonymous	
  SNPs	
  in	
  LD	
  (r2	
  >	
  0.7)	
  with	
  index	
  SNP	
  
(n=103)	
  

Loci	
  containing	
  a	
  SNP	
  that	
  overlaps	
  with	
  at	
  least	
  10%	
  of	
  
significantly	
  enriched	
  TFBSs	
  or	
  histone	
  marks	
  (n=23)	
  

Loci	
  with	
  less	
  than	
  32	
  SNPs	
  (n=14)	
  

Loci	
  that	
  contain	
  an	
  eQTL	
  and/or	
  a	
  SNP	
  that	
  overlaps	
  with	
  at	
  
least	
  25%	
  of	
  significantly	
  enriched	
  lipid-­‐related	
  features	
  (n=11)	
  

PosiSve	
  control	
  SORT1	
  and	
  randomly	
  selected	
  set	
  of	
  5	
  
addiSonal	
  loci:	
  

ADH5,	
  SPTLC3,	
  ANGPTL8,	
  FAM117B,	
  IRF2BP2	
  

Figure 3.5: Prioritization of lipid-associated loci for functional follow-up.
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Figure 3.6: Physical overlap of variants at six lipid loci with regulatory features. SNPs within r2 >
0.7 of the GWAS index SNP at each locus are shown with ChIP-seq or DNase-seq binding sites of
lipid-related regulatory features. GWAS -log10 P -values (Teslovich et al., 2010) are plotted in the
top panel. RegulomeDB SNP annotation scores of predicted regulatory elements are shown in the
second panel (Boyle et al., 2012). Purple dotted lines annotate the hypothesized functional variant
based on physical overlap prediction. Blue dotted lines annotate the control SNP, which is usually
the top most significant GWAS SNP. Regulatory elements highlighted in red annotate overlap with
the candidate functional variant.

A. SORT1 (sortilin 1). GWAS index SNP rs629301 is associated with LDL cholesterol and total
cholesterol.
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B. FAM117B (family with sequence similarity 117, member B). GWAS index SNP rs11694172
is associated with total cholesterol.
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C. ANGPTL8 (Angiopoietin-like protein 8; C19orf80: chromosome 19 open reading
frame 80). GWAS index SNP rs737337 is associated with HDL cholesterol, and the candidate
functional SNP.
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D. SPTLC3 (serine palmitoyltransferase, long chain base subunit 3). GWAS index SNP
rs364585 is associated with LDL cholesterol.
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E. ADH5 (alcohol dehydrogenase 5 (class III), chi polypeptide). GWAS index SNP
rs2602836 is associated with HDL cholesterol. GWAS P -values here are reported from Global
Lipids Genetics Consortium et al. (2013).
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F. IRF2BP2 (interferon regulatory factor 2 binding protein 2). GWAS index SNP rs514230
is associated with total cholesterol and LDL cholesterol.
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Figure 3.7: Luciferase assays with constructs containing non-coding SNP regions. Relative firefly
luciferase expression from constructs with haplotypes of 600-800 bp regions was transfected into
HepG2 cells. Single nucleotide alterations in each variant were introduced into constructs as indi-
cated and all luciferase activities were normalized to their pcDNA3.1 co-transfected control groups.
Nominal P -values and SD (n=8) for each SNP are shown. The PGL4 empty vector control is on
the far left, while the predicted functional variant and control variant follow next in each individual
locus figure.
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Table 3.1: Formulae for P -value calculation

Input
A SNP set of LD-pruned r GWAS index SNPs
Regulatory regions of interest formatted as BED files
m = number of control SNPs selected for each index SNP
SNP set i (1≤i≤r) = index SNP i and its m control SNPs

pi = number of SNPs in SNP set i that falls in regulatory regions of interest
m+1

Intermediate Si =

{
1, randomly drawn SNP from SNP set i falls in regulatory regions of interest

0, otherwise

Statistics Si ∼ Bernoulli(pi)
r∑

i=1

Si ∼ sum of r independent non-identical Bernoulli distribution

s = number of SNPs that falls in regulatory regions of interest in the input
GWAS index SNPs

Output Enrichment P -value = P

(
r∑

i=1

Si ≤ s

)
Expected value =

r∑
i=1

Si

A SNP is considered to fall in regulatory regions of interest if itself or any of its LD
proxies has positional overlap with the regions.
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Feature	
  1	
  

SNP1	
   SNP2	
   SNP3	
   SNP4	
   SNP5	
   SNP6	
  
Identify	
  set	
  of	
  independent	
  trait-­‐associated	
  SNPs	
  and	
  their	
  LD	
  proxies	
  (r2	
  >	
  0.7)	
  

Choose	
  a	
  feature	
  containing	
  experimentally	
  identiDied	
  regulatory	
  regions	
  identiDied	
  by	
  
DNase-­‐seq	
  or	
  ChIP-­‐seq	
  	
  

Count	
  observed	
  overlap	
  of	
  each	
  index	
  SNP	
  or	
  its	
  LD	
  proxies	
  with	
  feature	
  (k)	
  
Feature	
  1	
  

Assign	
  each	
  index	
  SNP	
  with	
  a	
  ‘matched	
  control	
  set’	
  based	
  on	
  3	
  properties:	
  
1.  Number	
  of	
  variants	
  in	
  linkage	
  disequilibrium	
  (LD)	
  
2.  Minor	
  allele	
  frequency	
  
3.  Distance	
  to	
  the	
  nearest	
  gene	
  

S = si
i=1

r

∑ Pval = P(S ≥ k)

The	
  number	
  of	
  index	
  SNPs	
  from	
  all	
  control	
  sets	
  that	
  falls	
  in	
  a	
  single	
  feature	
  is	
  the	
  sum	
  of	
  
independent	
  binomial	
  random	
  variables	
  

#	
  SNPs	
  in	
  the	
  ith	
  control	
  set	
  

ni	
  =	
  #	
  index	
  SNPs	
  in	
  the	
  ith	
  matched	
  control	
  set	
  

#	
  SNPs	
  or	
  their	
  LD	
  proxies	
  in	
  ith	
  control	
  set	
  that	
  falls	
  in	
  feature	
  pi	
  =	
  

si	
  =	
  #	
  index	
  SNPs	
  in	
  ith	
  control	
  set	
  that	
  overlaps	
  a	
  feature	
  	
  

Figure S3.1: Summary of GREGOR variant enrichment method.
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Figure S3.2: Enrichment of lipid-associated variation in DNase hypersensitive sites using different
parameter values. Tissues are ordered by decreasing P -value significance when using the parame-
ters r2=0.7 and matched control set size of 500.

(A) Magnitude of enrichment for a range of r2 thresholds. The r2 thresholds were used to select
1) the potential functional variants in LD with index variants using 1000 Genomes CEU and 2)
the control SNPs with approximately the same number of variants in LD as index variants (using
the same threshold as in 1). The higher the r2 value, the fewer variants in LD would be selected.
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(B) Magnitude of enrichment for matched control sets of various sizes. Matched control sets contain
variants that share the properties of 1) number of LD proxies, 2) minor allele frequency, and 3)
gene proximity. The more variants selected as controls, the less close the matching.
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Figure S3.3: Comparison of enrichment P -values estimated using 10,000 permutations and the
sum of binomial trials as implemented in GREGOR. P -values less than 1x10-5 cannot be precisely
estimated by permutation testing, and so are excluded from the figure.
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Figure S3.4: Fold enrichment and enrichment P -values for lipid-associated variation in DNase
hypersensitive sites (DHSs) of different tissues and at different consensus thresholds. A consensus
threshold is defined as the percentage of shared DHS regions among cell types derived from a given
tissue.

(A) Fold Enrichment
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(B) Enrichment P -values
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Table S3.1: Experimentally identified DNase hypersensitivity sites of various tissues from ENCODE
categorized into broader tissue groups

Broad
Tissue
Category

ENCODE
Tissue
Category

BED file

Blastula Blastula wgEncodeAwgDnaseDukeHtr8svnUniPk.narrowPeak
Blastula wgEncodeOpenChromDnaseHtr8Pk.narrowPeak

Blood Blood wgEncodeAwgDnaseDukeCllUniPk.narrowPeak
Blood wgEncodeAwgDnaseDukeGm12891UniPk.narrowPeak
Blood wgEncodeAwgDnaseDukeGm12892UniPk.narrowPeak
Blood wgEncodeAwgDnaseDukeGm18507UniPk.narrowPeak
Blood wgEncodeAwgDnaseDukeGm19238UniPk.narrowPeak
Blood wgEncodeAwgDnaseDukeGm19239UniPk.narrowPeak
Blood wgEncodeAwgDnaseDukeGm19240UniPk.narrowPeak
Blood wgEncodeAwgDnaseDukeTh0UniPk.narrowPeak
Blood wgEncodeAwgDnaseUwCd20UniPk.narrowPeak
Blood wgEncodeAwgDnaseUwCd34mobilizedUniPk.narrowPeak
Blood wgEncodeAwgDnaseUwCmkUniPk.narrowPeak
Blood wgEncodeAwgDnaseUwdukeGm12878UniPk.narrowPeak
Blood wgEncodeAwgDnaseUwdukeK562UniPk.narrowPeak
Blood wgEncodeAwgDnaseUwdukeTh1UniPk.narrowPeak
Blood wgEncodeAwgDnaseUwGm06990UniPk.narrowPeak
Blood wgEncodeAwgDnaseUwGm12864UniPk.narrowPeak
Blood wgEncodeAwgDnaseUwGm12865UniPk.narrowPeak
Blood wgEncodeAwgDnaseUwHl60UniPk.narrowPeak
Blood wgEncodeAwgDnaseUwJurkatUniPk.narrowPeak
Blood wgEncodeAwgDnaseUwNb4UniPk.narrowPeak
Blood wgEncodeAwgDnaseUwTh2UniPk.narrowPeak
Blood wgEncodeOpenChromDnaseAdultcd4th0Pk.narrowPeak
Blood wgEncodeOpenChromDnaseAdultcd4th1Pk.narrowPeak
Blood wgEncodeOpenChromDnaseCd20ro01794Pk.narrowPeak
Blood wgEncodeOpenChromDnaseCllPk.narrowPeak
Blood wgEncodeOpenChromDnaseGm10248Pk.narrowPeak
Blood wgEncodeOpenChromDnaseGm10266Pk.narrowPeak
Blood wgEncodeOpenChromDnaseGm12878Pk.narrowPeak
Blood wgEncodeOpenChromDnaseGm12891Pk.narrowPeak
Blood wgEncodeOpenChromDnaseGm12892Pk.narrowPeak
Blood wgEncodeOpenChromDnaseGm13976Pk.narrowPeak
Blood wgEncodeOpenChromDnaseGm13977Pk.narrowPeak
Blood wgEncodeOpenChromDnaseGm18507Pk.narrowPeak
Blood wgEncodeOpenChromDnaseGm19238Pk.narrowPeak
Blood wgEncodeOpenChromDnaseGm19239Pk.narrowPeak
Blood wgEncodeOpenChromDnaseGm19240Pk.narrowPeak
Blood wgEncodeOpenChromDnaseGm20000Pk.narrowPeak
Blood wgEncodeOpenChromDnaseK562G1phasePk.narrowPeak
Blood wgEncodeOpenChromDnaseK562G2mphasePk.narrowPeak
Blood wgEncodeOpenChromDnaseK562NabutPk.narrowPeak
Blood wgEncodeOpenChromDnaseK562PkV2.narrowPeak
Blood wgEncodeOpenChromDnaseK562Saha1u72hrPk.narrowPeak
Blood wgEncodeOpenChromDnaseK562SahactrlPk.narrowPeak
Blood wgEncodeUwDnaseCd20ro01778PkRep1.narrowPeak
Blood wgEncodeUwDnaseCd20ro01778PkRep2.narrowPeak
Blood wgEncodeUwDnaseCd34mobilizedPkRep1.narrowPeak
Blood wgEncodeUwDnaseCd4naivewb11970640PkRep1.narrowPeak
Blood wgEncodeUwDnaseCd4naivewb78495824PkRep1.narrowPeak
Blood wgEncodeUwDnaseCmkPkRep1.narrowPeak
Blood wgEncodeUwDnaseGm06990PkRep1.narrowPeak
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Blood Blood wgEncodeUwDnaseGm06990PkRep2.narrowPeak
Blood wgEncodeUwDnaseGm12864PkRep1.narrowPeak
Blood wgEncodeUwDnaseGm12865PkRep1.narrowPeak
Blood wgEncodeUwDnaseGm12865PkRep2.narrowPeak
Blood wgEncodeUwDnaseGm12878PkRep1.narrowPeak
Blood wgEncodeUwDnaseGm12878PkRep2.narrowPeak
Blood wgEncodeUwDnaseHl60PkRep1.narrowPeak
Blood wgEncodeUwDnaseHl60PkRep2.narrowPeak
Blood wgEncodeUwDnaseJurkatPkRep1.narrowPeak
Blood wgEncodeUwDnaseJurkatPkRep2.narrowPeak
Blood wgEncodeUwDnaseK562PkRep1.narrowPeak
Blood wgEncodeUwDnaseK562PkRep2.narrowPeak
Blood wgEncodeUwDnaseNb4PkRep1.narrowPeak
Blood wgEncodeUwDnaseNb4PkRep2.narrowPeak
Blood wgEncodeUwDnaseTh17PkRep1.narrowPeak
Blood wgEncodeUwDnaseTh1PkRep1.narrowPeak
Blood wgEncodeUwDnaseTh1PkRep2.narrowPeak
Blood wgEncodeUwDnaseTh1wb33676984PkRep1.narrowPeak
Blood wgEncodeUwDnaseTh1wb54553204PkRep1.narrowPeak
Blood wgEncodeUwDnaseTh1wb54553204PkRep2.narrowPeak
Blood wgEncodeUwDnaseTh2PkRep1.narrowPeak
Blood wgEncodeUwDnaseTh2PkRep2.narrowPeak
Blood wgEncodeUwDnaseTh2wb33676984PkRep1.narrowPeak
Blood wgEncodeUwDnaseTh2wb54553204PkRep1.narrowPeak
Blood wgEncodeUwDnaseTregwb78495824PkRep1.narrowPeak
Blood wgEncodeUwDnaseTregwb83319432PkRep1.narrowPeak

Blood Vessel Blood Vessel wgEncodeAwgDnaseDukeAosmcUniPk.narrowPeak
Blood Vessel wgEncodeAwgDnaseUwAoafUniPk.narrowPeak
Blood Vessel wgEncodeAwgDnaseUwdukeHuvecUniPk.narrowPeak
Blood Vessel wgEncodeAwgDnaseUwHbmecUniPk.narrowPeak
Blood Vessel wgEncodeAwgDnaseUwHmvecdadUniPk.narrowPeak
Blood Vessel wgEncodeAwgDnaseUwHmvecdbladUniPk.narrowPeak
Blood Vessel wgEncodeAwgDnaseUwHmvecdblneoUniPk.narrowPeak
Blood Vessel wgEncodeAwgDnaseUwHmvecdlyadUniPk.narrowPeak
Blood Vessel wgEncodeAwgDnaseUwHmvecdlyneoUniPk.narrowPeak
Blood Vessel wgEncodeAwgDnaseUwHmvecdneoUniPk.narrowPeak
Blood Vessel wgEncodeAwgDnaseUwHmveclblUniPk.narrowPeak
Blood Vessel wgEncodeAwgDnaseUwHmvecllyUniPk.narrowPeak
Blood Vessel wgEncodeAwgDnaseUwHpaecUniPk.narrowPeak
Blood Vessel wgEncodeAwgDnaseUwHpafUniPk.narrowPeak
Blood Vessel wgEncodeOpenChromDnaseAosmcSerumfreePk.narrowPeak
Blood Vessel wgEncodeOpenChromDnaseHuvecPk.narrowPeak
Blood Vessel wgEncodeUwDnaseAoafPkRep1.narrowPeak
Blood Vessel wgEncodeUwDnaseAoafPkRep2.narrowPeak
Blood Vessel wgEncodeUwDnaseHbmecPkRep1.narrowPeak
Blood Vessel wgEncodeUwDnaseHbmecPkRep2.narrowPeak
Blood Vessel wgEncodeUwDnaseHbvpPkRep1.narrowPeak
Blood Vessel wgEncodeUwDnaseHbvsmcPkRep1.narrowPeak
Blood Vessel wgEncodeUwDnaseHbvsmcPkRep2.narrowPeak
Blood Vessel wgEncodeUwDnaseHmvecdadPkRep1.narrowPeak
Blood Vessel wgEncodeUwDnaseHmvecdadPkRep2.narrowPeak
Blood Vessel wgEncodeUwDnaseHmvecdbladPkRep1.narrowPeak
Blood Vessel wgEncodeUwDnaseHmvecdbladPkRep2.narrowPeak
Blood Vessel wgEncodeUwDnaseHmvecdblneoPkRep1.narrowPeak
Blood Vessel wgEncodeUwDnaseHmvecdblneoPkRep2.narrowPeak
Blood Vessel wgEncodeUwDnaseHmvecdlyadPkRep1.narrowPeak
Blood Vessel wgEncodeUwDnaseHmvecdlyadPkRep2.narrowPeak
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Blood Vessel Blood Vessel wgEncodeUwDnaseHmvecdlyneoPkRep1.narrowPeak
Blood Vessel wgEncodeUwDnaseHmvecdlyneoPkRep2.narrowPeak
Blood Vessel wgEncodeUwDnaseHmvecdneoPkRep1.narrowPeak
Blood Vessel wgEncodeUwDnaseHmvecdneoPkRep2.narrowPeak
Blood Vessel wgEncodeUwDnaseHmveclblPkRep1.narrowPeak
Blood Vessel wgEncodeUwDnaseHmveclblPkRep2.narrowPeak
Blood Vessel wgEncodeUwDnaseHmvecllyPkRep1.narrowPeak
Blood Vessel wgEncodeUwDnaseHmvecllyPkRep2.narrowPeak
Blood Vessel wgEncodeUwDnaseHpaecPkRep1.narrowPeak
Blood Vessel wgEncodeUwDnaseHpafPkRep1.narrowPeak
Blood Vessel wgEncodeUwDnaseHpafPkRep2.narrowPeak
Blood Vessel wgEncodeUwDnaseHuvecPkRep1V2.narrowPeak
Blood Vessel wgEncodeUwDnaseHuvecPkRep2.narrowPeak

Bone Bone wgEncodeAwgDnaseDukeOsteoblUniPk.narrowPeak
Bone wgEncodeOpenChromDnaseOsteoblPk.narrowPeak

Bone Marrow Bone Marrow wgEncodeUwDnaseHs27aPkRep1.narrowPeak
Bone Marrow wgEncodeUwDnaseHs5PkRep1.narrowPeak
Bone Marrow wgEncodeUwDnaseMscPkRep1.narrowPeak
Bone Marrow wgEncodeUwDnaseMscPkRep2.narrowPeak

Brain Brain wgEncodeAwgDnaseDukeGlioblaUniPk.narrowPeak
Brain wgEncodeAwgDnaseDukeMedulloUniPk.narrowPeak
Brain wgEncodeAwgDnaseUwBe2cUniPk.narrowPeak
Brain wgEncodeAwgDnaseUwNhaUniPk.narrowPeak
Brain wgEncodeAwgDnaseUwSknmcUniPk.narrowPeak
Brain wgEncodeAwgDnaseUwSknshraUniPk.narrowPeak
Brain wgEncodeOpenChromDnaseGlioblaPk.narrowPeak
Brain wgEncodeOpenChromDnaseMedullod341Pk.narrowPeak
Brain wgEncodeOpenChromDnaseMedulloPk.narrowPeak
Brain wgEncodeOpenChromDnaseSknshPk.narrowPeak
Brain wgEncodeUwDnaseBe2cPkRep1.narrowPeak
Brain wgEncodeUwDnaseBe2cPkRep2.narrowPeak
Brain wgEncodeUwDnaseM059jPkRep1.narrowPeak
Brain wgEncodeUwDnaseM059jPkRep2.narrowPeak
Brain wgEncodeUwDnaseNhaPkRep1.narrowPeak
Brain wgEncodeUwDnaseNhaPkRep2.narrowPeak
Brain wgEncodeUwDnaseSknmcPkRep1.narrowPeak
Brain wgEncodeUwDnaseSknmcPkRep2.narrowPeak
Brain wgEncodeUwDnaseSknshraPkRep1.narrowPeak
Brain wgEncodeUwDnaseSknshraPkRep2.narrowPeak

Brain Hippocampus Brain Hippocampus wgEncodeAwgDnaseUwHahUniPk.narrowPeak
Brain Hippocampus wgEncodeUwDnaseHahPkRep1.narrowPeak
Brain Hippocampus wgEncodeUwDnaseHahPkRep2.narrowPeak

Breast Breast wgEncodeAwgDnaseDukeMcf7hypoxiaUniPk.narrowPeak
Breast wgEncodeAwgDnaseDukeT47dUniPk.narrowPeak
Breast wgEncodeAwgDnaseUwdukeHmecUniPk.narrowPeak
Breast wgEncodeAwgDnaseUwdukeMcf7UniPk.narrowPeak
Breast wgEncodeOpenChromDnaseHmecPk.narrowPeak
Breast wgEncodeOpenChromDnaseMcf7CtcfshrnaPk.narrowPeak
Breast wgEncodeOpenChromDnaseMcf7HypoxlacconPk.narrowPeak
Breast wgEncodeOpenChromDnaseMcf7HypoxlacPk.narrowPeak
Breast wgEncodeOpenChromDnaseMcf7Pk.narrowPeak
Breast wgEncodeOpenChromDnaseMcf7RandshrnaPk.narrowPeak
Breast wgEncodeOpenChromDnaseT47dEst10nm30mPk.narrowPeak
Breast wgEncodeOpenChromDnaseT47dPk.narrowPeak
Breast wgEncodeUwDnaseHmecPkRep1.narrowPeak
Breast wgEncodeUwDnaseHmecPkRep2.narrowPeak
Breast wgEncodeUwDnaseMcf7Est100nm1hPkRep1.narrowPeak
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Breast Breast wgEncodeUwDnaseMcf7Est100nm1hPkRep2.narrowPeak
Breast wgEncodeUwDnaseMcf7Estctrl0hPkRep1.narrowPeak
Breast wgEncodeUwDnaseMcf7Estctrl0hPkRep2.narrowPeak
Breast wgEncodeUwDnaseMcf7PkRep1.narrowPeak
Breast wgEncodeUwDnaseMcf7PkRep2.narrowPeak
Breast wgEncodeUwDnaseT47dPkRep1.narrowPeak
Breast wgEncodeUwDnaseT47dPkRep2.narrowPeak
Mammary wgEncodeAwgDnaseUwHmfUniPk.narrowPeak
Mammary wgEncodeUwDnaseHmfPkRep1.narrowPeak
Mammary wgEncodeUwDnaseHmfPkRep2.narrowPeak

Cerebellar Cerebellar wgEncodeAwgDnaseUwHacUniPk.narrowPeak
Cerebellar wgEncodeUwDnaseHacPkRep1.narrowPeak
Cerebellar wgEncodeUwDnaseHacPkRep2.narrowPeak
Cerebellum wgEncodeOpenChromDnaseCerebellumocPk.narrowPeak

Cervix Cervix wgEncodeAwgDnaseDukeHelas3ifna4hUniPk.narrowPeak
Cervix wgEncodeAwgDnaseUwdukeHelas3UniPk.narrowPeak
Cervix wgEncodeOpenChromDnaseHelas3Ifna4hPk.narrowPeak
Cervix wgEncodeOpenChromDnaseHelas3Pk.narrowPeak
Cervix wgEncodeUwDnaseHelas3PkRep1.narrowPeak
Cervix wgEncodeUwDnaseHelas3PkRep2.narrowPeak

Colon Colon wgEncodeAwgDnaseUwCaco2UniPk.narrowPeak
Colon wgEncodeAwgDnaseUwHct116UniPk.narrowPeak
Colon wgEncodeUwDnaseCaco2PkRep1.narrowPeak
Colon wgEncodeUwDnaseCaco2PkRep2.narrowPeak
Colon wgEncodeUwDnaseHct116PkRep1.narrowPeak
Colon wgEncodeUwDnaseHct116PkRep2.narrowPeak

Connective Connective wgEncodeAwgDnaseUwHvmfUniPk.narrowPeak
Connective wgEncodeUwDnaseHvmfPkRep1.narrowPeak
Connective wgEncodeUwDnaseHvmfPkRep2.narrowPeak

Embryonic Embryonic Lung wgEncodeAwgDnaseUwWi38tamoxifentamoxifenUniPk.narrowPeak
Lung Embryonic Lung wgEncodeAwgDnaseUwWi38UniPk.narrowPeak

Embryonic Lung wgEncodeUwDnaseWi38OhtamPkRep1.narrowPeak
Embryonic Lung wgEncodeUwDnaseWi38OhtamPkRep2.narrowPeak
Embryonic Lung wgEncodeUwDnaseWi38PkRep1.narrowPeak
Embryonic Lung wgEncodeUwDnaseWi38PkRep2.narrowPeak

Embryonic Embryonic Stem Cell wgEncodeAwgDnaseDukeH9esUniPk.narrowPeak
Stem Cell Embryonic Stem Cell wgEncodeAwgDnaseUwdukeH1hescUniPk.narrowPeak

Embryonic Stem Cell wgEncodeAwgDnaseUwH7hescUniPk.narrowPeak
Embryonic Stem Cell wgEncodeOpenChromDnaseH1hescPk.narrowPeak
Embryonic Stem Cell wgEncodeOpenChromDnaseH7esPk.narrowPeak
Embryonic Stem Cell wgEncodeOpenChromDnaseH9esPk.narrowPeak
Embryonic Stem Cell wgEncodeUwDnaseH1hescPkRep1.narrowPeak
Embryonic Stem Cell wgEncodeUwDnaseH7esDiffa14dPkRep1.narrowPeak
Embryonic Stem Cell wgEncodeUwDnaseH7esDiffa14dPkRep2.narrowPeak
Embryonic Stem Cell wgEncodeUwDnaseH7esDiffa2dPkRep1.narrowPeak
Embryonic Stem Cell wgEncodeUwDnaseH7esDiffa5dPkRep1.narrowPeak
Embryonic Stem Cell wgEncodeUwDnaseH7esDiffa5dPkRep2.narrowPeak
Embryonic Stem Cell wgEncodeUwDnaseH7esDiffa9dPkRep1.narrowPeak
Embryonic Stem Cell wgEncodeUwDnaseH7esPkRep1V2.narrowPeak
Embryonic Stem Cell wgEncodeUwDnaseH7esPkRep2.narrowPeak

Epithelium Bronchial Epithelium wgEncodeUwDnaseNhberaPkRep1.narrowPeak
Bronchial Epithelium wgEncodeUwDnaseNhberaPkRep2.narrowPeak
Epithelium wgEncodeAwgDnaseDukePhteUniPk.narrowPeak
Epithelium wgEncodeAwgDnaseUwdukeA549UniPk.narrowPeak
Epithelium wgEncodeAwgDnaseUwHaepicUniPk.narrowPeak
Epithelium wgEncodeAwgDnaseUwHcpepicUniPk.narrowPeak
Epithelium wgEncodeAwgDnaseUwHeepicUniPk.narrowPeak
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Epithelium Epithelium wgEncodeAwgDnaseUwHipepicUniPk.narrowPeak
Epithelium wgEncodeAwgDnaseUwHnpcepicUniPk.narrowPeak
Epithelium wgEncodeAwgDnaseUwHpdlfUniPk.narrowPeak
Epithelium wgEncodeAwgDnaseUwHrcepicUniPk.narrowPeak
Epithelium wgEncodeAwgDnaseUwHreUniPk.narrowPeak
Epithelium wgEncodeAwgDnaseUwHrpepicUniPk.narrowPeak
Epithelium wgEncodeAwgDnaseUwRptecUniPk.narrowPeak
Epithelium wgEncodeAwgDnaseUwSaecUniPk.narrowPeak
Epithelium wgEncodeOpenChromDnaseA549Pk.narrowPeak
Epithelium wgEncodeOpenChromDnasePhtePk.narrowPeak
Epithelium wgEncodeUwDnaseA549PkRep1.narrowPeak
Epithelium wgEncodeUwDnaseA549PkRep2.narrowPeak
Epithelium wgEncodeUwDnaseHaePkRep1.narrowPeak
Epithelium wgEncodeUwDnaseHaePkRep2.narrowPeak
Epithelium wgEncodeUwDnaseHcpePkRep1.narrowPeak
Epithelium wgEncodeUwDnaseHcpePkRep2.narrowPeak
Epithelium wgEncodeUwDnaseHeePkRep1.narrowPeak
Epithelium wgEncodeUwDnaseHeePkRep2.narrowPeak
Epithelium wgEncodeUwDnaseHipePkRep1.narrowPeak
Epithelium wgEncodeUwDnaseHipePkRep2.narrowPeak
Epithelium wgEncodeUwDnaseHnpcePkRep1.narrowPeak
Epithelium wgEncodeUwDnaseHnpcePkRep2V2.narrowPeak
Epithelium wgEncodeUwDnaseHpdlfPkRep1.narrowPeak
Epithelium wgEncodeUwDnaseHpdlfPkRep2.narrowPeak
Epithelium wgEncodeUwDnaseHrcePkRep1.narrowPeak
Epithelium wgEncodeUwDnaseHrcePkRep2.narrowPeak
Epithelium wgEncodeUwDnaseHrePkRep1V2.narrowPeak
Epithelium wgEncodeUwDnaseHrePkRep2V2.narrowPeak
Epithelium wgEncodeUwDnaseHrpePkRep1V2.narrowPeak
Epithelium wgEncodeUwDnaseHrpePkRep2V2.narrowPeak
Epithelium wgEncodeUwDnaseRptecPkRep1.narrowPeak
Epithelium wgEncodeUwDnaseRptecPkRep2.narrowPeak
Epithelium wgEncodeUwDnaseSaecPkRep1.narrowPeak
Epithelium wgEncodeUwDnaseSaecPkRep2.narrowPeak
Luminal Epithelium wgEncodeOpenChromDnaseEcc1Dm002p1hPk.narrowPeak
Luminal Epithelium wgEncodeOpenChromDnaseEcc1Est10nm30mPk.narrowPeak
Pancreatic Duct wgEncodeAwgDnaseDukeHpde6e6e7UniPk.narrowPeak
Pancreatic Duct wgEncodeOpenChromDnaseHpde6e6e7Pk.narrowPeak

Eye Eye wgEncodeAwgDnaseUwHconfUniPk.narrowPeak
Eye wgEncodeAwgDnaseUwWerirb1UniPk.narrowPeak
Eye wgEncodeUwDnaseHconfPkRep1.narrowPeak
Eye wgEncodeUwDnaseHconfPkRep2.narrowPeak
Eye wgEncodeUwDnaseWerirb1PkRep1.narrowPeak
Eye wgEncodeUwDnaseWerirb1PkRep2.narrowPeak

Fetal Membrane Fetal Membrane wgEncodeAwgDnaseDukeChorionUniPk.narrowPeak
Fetal Membrane wgEncodeOpenChromDnaseChorionPk.narrowPeak

Fibroblasts Lung Fibroblast wgEncodeOpenChromDnaseFibropag08396Pk.narrowPeak
Skin wgEncodeAwgDnaseDukeFibroblUniPk.narrowPeak
Skin wgEncodeAwgDnaseDukeFibropUniPk.narrowPeak
Skin wgEncodeOpenChromDnaseFibroblgm03348LenticonPk.narrowPeak
Skin wgEncodeOpenChromDnaseFibroblgm03348LentimyodPk.narrowPeak
Skin wgEncodeOpenChromDnaseFibroblgm03348Pk.narrowPeak
Skin wgEncodeOpenChromDnaseFibroblPk.narrowPeak
Skin wgEncodeOpenChromDnaseFibropPk.narrowPeak
Skin Fibroblast wgEncodeOpenChromDnaseFibropag08395Pk.narrowPeak
Skin Fibroblast wgEncodeOpenChromDnaseFibropag20443Pk.narrowPeak

Foreskin Foreskin wgEncodeAwgDnaseUwHffmycUniPk.narrowPeak
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Foreskin Foreskin wgEncodeAwgDnaseUwHffUniPk.narrowPeak
Foreskin wgEncodeUwDnaseHffmycPkRep1.narrowPeak
Foreskin wgEncodeUwDnaseHffmycPkRep2.narrowPeak
Foreskin wgEncodeUwDnaseHffPkRep1.narrowPeak
Foreskin wgEncodeUwDnaseHffPkRep2.narrowPeak

Frontal Cerebrum Frontal Cerebrum wgEncodeOpenChromDnaseCerebrumfrontalocPk.narrowPeak
Frontal Cortex Frontal Cortex wgEncodeOpenChromDnaseFrontalcortexocPk.narrowPeak
Gingival Gingiva wgEncodeAwgDnaseUwHgfUniPk.narrowPeak

Gingiva wgEncodeUwDnaseHgfPkRep1.narrowPeak
Gingiva wgEncodeUwDnaseHgfPkRep2.narrowPeak
Gingival wgEncodeAwgDnaseUwAg09319UniPk.narrowPeak
Gingival wgEncodeUwDnaseAg09319PkRep1V2.narrowPeak
Gingival wgEncodeUwDnaseAg09319PkRep2.narrowPeak

Heart Heart wgEncodeAwgDnaseUwHcfaaUniPk.narrowPeak
Heart wgEncodeAwgDnaseUwHcfUniPk.narrowPeak
Heart wgEncodeAwgDnaseUwHcmUniPk.narrowPeak
Heart wgEncodeOpenChromDnaseHeartocPk.narrowPeak
Heart wgEncodeUwDnaseHcfaaPkRep1.narrowPeak
Heart wgEncodeUwDnaseHcfaaPkRep2.narrowPeak
Heart wgEncodeUwDnaseHcfPkRep1.narrowPeak
Heart wgEncodeUwDnaseHcfPkRep2.narrowPeak
Heart wgEncodeUwDnaseHcmPkRep1.narrowPeak
Heart wgEncodeUwDnaseHcmPkRep2.narrowPeak

IPS Induced Pluripotent Cell IPS wgEncodeOpenChromDnaseIpscwru1Pk.narrowPeak
Induced Pluripotent Cell IPS wgEncodeOpenChromDnaseIpsnihi11Pk.narrowPeak
Induced Pluripotent Cell IPS wgEncodeOpenChromDnaseIpsnihi7Pk.narrowPeak
Induced Pluripotent Stem Cell wgEncodeAwgDnaseDukeIpsUniPk.narrowPeak
Induced Pluripotent Stem Cell wgEncodeOpenChromDnaseIpsPk.narrowPeak

Kidney Kidney wgEncodeAwgDnaseUwHrgecUniPk.narrowPeak
Kidney wgEncodeOpenChromDnaseHek293tPk.narrowPeak
Kidney wgEncodeUwDnaseHrgecPkRep1.narrowPeak
Kidney wgEncodeUwDnaseHrgecPkRep2.narrowPeak

Liver Liver wgEncodeAwgDnaseDuke8988tUniPk.narrowPeak
Liver wgEncodeAwgDnaseDukeHepatocytesUniPk.narrowPeak
Liver wgEncodeAwgDnaseDukeHuh75UniPk.narrowPeak
Liver wgEncodeAwgDnaseDukeHuh7UniPk.narrowPeak
Liver wgEncodeAwgDnaseDukeStellateUniPk.narrowPeak
Liver wgEncodeAwgDnaseUwdukeHepg2UniPk.narrowPeak
Liver wgEncodeOpenChromDnase8988tPk.narrowPeak
Liver wgEncodeOpenChromDnaseHepatocytesPk.narrowPeak
Liver wgEncodeOpenChromDnaseHepg2Pk.narrowPeak
Liver wgEncodeOpenChromDnaseHuh75Pk.narrowPeak
Liver wgEncodeOpenChromDnaseHuh7Pk.narrowPeak
Liver wgEncodeOpenChromDnaseStellatePk.narrowPeak
Liver wgEncodeUwDnaseHepg2PkRep1.narrowPeak
Liver wgEncodeUwDnaseHepg2PkRep2.narrowPeak

Lung Lung wgEncodeAwgDnaseUwAg04450UniPk.narrowPeak
Lung wgEncodeAwgDnaseUwHpfUniPk.narrowPeak
Lung wgEncodeAwgDnaseUwNhlfUniPk.narrowPeak
Lung wgEncodeOpenChromDnaseImr90Pk.narrowPeak
Lung wgEncodeUwDnaseAg04450PkRep1.narrowPeak
Lung wgEncodeUwDnaseAg04450PkRep2.narrowPeak
Lung wgEncodeUwDnaseHpfPkRep1.narrowPeak
Lung wgEncodeUwDnaseHpfPkRep2.narrowPeak
Lung wgEncodeUwDnaseNhlfPkRep1.narrowPeak
Lung wgEncodeUwDnaseNhlfPkRep2.narrowPeak

Melanoma Melanoma Cell Line derived
from Melanoma Metastasis

wgEncodeOpenChromDnaseMel2183Pk.narrowPeak
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Monocytes Monocytes wgEncodeAwgDnaseUwMonocytescd14ro01746UniPk.narrowPeak
Monocytes wgEncodeOpenChromDnaseMonocd14Pk.narrowPeak
Monocytes wgEncodeUwDnaseMonocd14ro1746PkRep2.narrowPeak

Muscle Muscle wgEncodeAwgDnaseDukeHsmmembUniPk.narrowPeak
Muscle wgEncodeAwgDnaseUwdukeHsmmtubeUniPk.narrowPeak
Muscle wgEncodeAwgDnaseUwSkmcUniPk.narrowPeak
Muscle wgEncodeOpenChromDnaseHsmmembPk.narrowPeak
Muscle wgEncodeOpenChromDnaseHsmmfshdPk.narrowPeak
Muscle wgEncodeOpenChromDnaseHsmmtPk.narrowPeak
Muscle wgEncodeUwDnaseHsmmtPkRep1.narrowPeak
Muscle wgEncodeUwDnaseHsmmtPkRep2.narrowPeak
Muscle wgEncodeUwDnaseSkmcPkRep1.narrowPeak
Muscle wgEncodeUwDnaseSkmcPkRep2.narrowPeak
Psoas Muscle wgEncodeOpenChromDnasePsoasmuscleocPk.narrowPeak

Myometrium Myometrium wgEncodeAwgDnaseDukeMyometrUniPk.narrowPeak
Myometrium wgEncodeOpenChromDnaseMyometrPk.narrowPeak

Nasal Biopsy Nasal Biopsy wgEncodeOpenChromDnaseOlfneurospherePk.narrowPeak
Pancreas Pancreas wgEncodeAwgDnaseDukePanisletdUniPk.narrowPeak

Pancreas wgEncodeAwgDnaseDukePanisletsUniPk.narrowPeak
Pancreas wgEncodeAwgDnaseUwPanc1UniPk.narrowPeak
Pancreas wgEncodeOpenChromDnasePanisdPk.narrowPeak
Pancreas wgEncodeOpenChromDnasePanisletsPk.narrowPeak
Pancreas wgEncodeUwDnasePanc1PkRep1.narrowPeak
Pancreas wgEncodeUwDnasePanc1PkRep2.narrowPeak

Prostate Prostate wgEncodeAwgDnaseDukeLncapandrogenUniPk.narrowPeak
Prostate wgEncodeAwgDnaseDukeRwpe1UniPk.narrowPeak
Prostate wgEncodeAwgDnaseUwdukeLncapUniPk.narrowPeak
Prostate wgEncodeAwgDnaseUwPrecUniPk.narrowPeak
Prostate wgEncodeOpenChromDnaseLncapAndroPk.narrowPeak
Prostate wgEncodeOpenChromDnaseLncapPk.narrowPeak
Prostate wgEncodeOpenChromDnaseRwpe1Pk.narrowPeak
Prostate wgEncodeUwDnaseLncapPkRep1.narrowPeak
Prostate wgEncodeUwDnaseLncapPkRep2.narrowPeak
Prostate wgEncodeUwDnasePrecPkRep1.narrowPeak
Prostate wgEncodeUwDnasePrecPkRep2.narrowPeak

Skeletal Skeletal Muscle Myoblast wgEncodeAwgDnaseUwdukeHsmmUniPk.narrowPeak
Muscle Skeletal Muscle Myoblast wgEncodeOpenChromDnaseHsmmPk.narrowPeak
Myoblast Skeletal Muscle Myoblast wgEncodeUwDnaseHsmmPkRep1.narrowPeak

Skeletal Muscle Myoblast wgEncodeUwDnaseHsmmPkRep2.narrowPeak
Skeletal Muscle Myoblast wgEncodeUwDnaseLhcnm2Diff4dPkRep1.narrowPeak
Skeletal Muscle Myoblast wgEncodeUwDnaseLhcnm2Diff4dPkRep2.narrowPeak
Skeletal Muscle Myoblast wgEncodeUwDnaseLhcnm2PkRep1.narrowPeak
Skeletal Muscle Myoblast wgEncodeUwDnaseLhcnm2PkRep2.narrowPeak

Skin Skin wgEncodeAwgDnaseDukeMelanoUniPk.narrowPeak
Skin wgEncodeAwgDnaseDukeProgfibUniPk.narrowPeak
Skin wgEncodeAwgDnaseUwAg04449UniPk.narrowPeak
Skin wgEncodeAwgDnaseUwAg09309UniPk.narrowPeak
Skin wgEncodeAwgDnaseUwAg10803UniPk.narrowPeak
Skin wgEncodeAwgDnaseUwBjUniPk.narrowPeak
Skin wgEncodeAwgDnaseUwdukeNhekUniPk.narrowPeak
Skin wgEncodeAwgDnaseUwNhdfadUniPk.narrowPeak
Skin wgEncodeAwgDnaseUwNhdfneoUniPk.narrowPeak
Skin wgEncodeOpenChromDnaseColo829Pk.narrowPeak
Skin wgEncodeOpenChromDnaseMelanoPk.narrowPeak
Skin wgEncodeOpenChromDnaseNhekPk.narrowPeak
Skin wgEncodeOpenChromDnaseProgfibPk.narrowPeak
Skin wgEncodeUwDnaseAg04449PkRep1.narrowPeak
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Skin Skin wgEncodeUwDnaseAg04449PkRep2.narrowPeak
Skin wgEncodeUwDnaseAg09309PkRep1.narrowPeak
Skin wgEncodeUwDnaseAg09309PkRep2.narrowPeak
Skin wgEncodeUwDnaseAg10803PkRep1.narrowPeak
Skin wgEncodeUwDnaseAg10803PkRep2.narrowPeak
Skin wgEncodeUwDnaseBjPkRep1.narrowPeak
Skin wgEncodeUwDnaseBjPkRep2.narrowPeak
Skin wgEncodeUwDnaseGm04503PkRep1.narrowPeak
Skin wgEncodeUwDnaseGm04503PkRep2.narrowPeak
Skin wgEncodeUwDnaseGm04504PkRep1.narrowPeak
Skin wgEncodeUwDnaseGm04504PkRep2.narrowPeak
Skin wgEncodeUwDnaseNhdfadPkRep1.narrowPeak
Skin wgEncodeUwDnaseNhdfadPkRep2.narrowPeak
Skin wgEncodeUwDnaseNhdfneoPkRep1.narrowPeak
Skin wgEncodeUwDnaseNhdfneoPkRep2.narrowPeak
Skin wgEncodeUwDnaseNhekPkRep1.narrowPeak
Skin wgEncodeUwDnaseNhekPkRep2.narrowPeak
Skin wgEncodeUwDnaseRpmi7951PkRep1.narrowPeak
Skin wgEncodeUwDnaseRpmi7951PkRep2.narrowPeak

Spinal Cord Spinal Cord wgEncodeAwgDnaseUwHaspUniPk.narrowPeak
Spinal Cord wgEncodeUwDnaseHaspPkRep1.narrowPeak
Spinal Cord wgEncodeUwDnaseHaspPkRep2.narrowPeak

Testis Testis wgEncodeAwgDnaseUwNt2d1UniPk.narrowPeak
Testis wgEncodeUwDnaseNt2d1PkRep1.narrowPeak
Testis wgEncodeUwDnaseNt2d1PkRep2.narrowPeak

Tonsil Tonsil wgEncodeOpenChromDnaseGcbcellPk.narrowPeak
Tonsil wgEncodeOpenChromDnaseNaivebcellPk.narrowPeak

Urothelium Urothelium wgEncodeAwgDnaseDukeUrotheliaUniPk.narrowPeak
Urothelium wgEncodeAwgDnaseDukeUrotheliaut189UniPk.narrowPeak
Urothelium wgEncodeOpenChromDnaseUrothelPkV2.narrowPeak
Urothelium wgEncodeOpenChromDnaseUrothelUt189PkV2.narrowPeak

Uterus Uterus wgEncodeAwgDnaseDukeIshikawaestradiolUniPk.narrowPeak
Uterus wgEncodeAwgDnaseDukeIshikawatamoxifenUniPk.narrowPeak
Uterus wgEncodeOpenChromDnaseIshikawaEst10nm30mPk.narrowPeak
Uterus wgEncodeOpenChromDnaseIshikawaTam10030Pk.narrowPeak
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Table S3.2: Enrichment of lipid loci in transcription factor binding sites and histone modifications
from relevant Tier 1 and Tier 2 cell types

Regulatory
Feature

Observed
Number of
index SNPs
in Feature

Expected
Number of
index SNPs
in Feature

Enrichment
P-value

Annotation

POLR2A 116 59.17 6.23x10-24

RCOR1 87 41.86 1.75x10-16

SP1 52 17.29 1.48x10-15

EP300 82 40.67 1.08x10-14 literature
eGFP JUND 86 43.98 2.20x10-14

H3K4me3 72 34.27 1.38x10-13 literature
MXI1 62 26.53 2.79x10-13

MYC 71 33.76 5.75x10-13

H3K36me3 52 20.55 1.07x10-12

MYBL2 39 11.69 1.17x10-12

TBL1XR1 63 29.30 8.89x10-12 lipid gene regulator
H3K9me1 111 70.65 2.11x10-11 literature
SMC3 63 30.21 2.57x10-11

ARID3A 68 34.44 3.44x10-11

H3k4me1 74 38.57 4.82x10-11

H3K9ac 56 25.49 1.25x10-10

MAZ 70 37.11 3.52x10-10

BHLHE40 67 34.86 4.42x10-10

TBP 57 27.07 4.95x10-10

eGFP GATA2 64 32.64 7.25x10-10

MAX 63 32.05 7.86x10-10

JUND 85 52.19 1.04x10-9

NCOR1 81 45.39 1.22x10-9 lipid gene regulator
FOXA1 46 20.41 5.00x10-9 lipid gene regulator
NFIC 48 21.88 6.26x10-9

TEAD4 44 19.11 7.09x10-9

TAL1 49 23.02 1.08x10-8

CEBPB 90 59.99 1.69x10-8 lipid gene regulator
CCNT2 49 23.51 1.99x10-8

HDAC2 33 12.05 2.13x10-8

HNF4G 26 7.82 2.19x10-8

RFX5 48 23.02 2.20x10-8

eGFP JUNB 52 25.73 2.39x10-8 literature
RXRA 25 7.50 4.23x10-8 lipid gene regulator
ELF1 40 17.21 4.38x10-8

JUN 61 34.37 1.08x10-7

CREB1 45 21.64 1.10x10-7 literature
CHD2 47 23.26 1.65x10-7

eGFP HDAC8 24 7.62 2.51x10-7

HMGN3 43 20.66 3.08x10-7

CUX1 40 18.64 4.04x10-7

ZNF143 51 27.20 4.49x10-7

CTCF 75 49.00 7.41x10-7

ZC3H11A 32 13.68 1.29x10-6

HNF4A 28 10.93 1.66x10-6 lipid gene regulator
IRF1 49 26.87 1.71x10-6

YY1 42 21.34 2.22x10-6 literature
TCF7L2 23 8.15 2.28x10-6 literature
USF2 30 12.76 2.98x10-6

MBD4 16 4.26 3.52x10-6

ZNF384 47 25.87 3.84x10-6
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Regulatory
Feature

Observed
Number of
index SNPs
in Feature

Expected
Number of
index SNPs
in Feature

Enrichment
P-value

Annotation

SIN3AK20 28 11.66 3.93x10-6

NFYA 20 6.79 7.28x10-6

SPI1 37 18.56 8.45x10-6

BRCA1 22 8.21 9.76x10-6

RAD21 52 31.14 1.22x10-5

SREBP1 11 2.29 1.40x10-5 lipid gene regulator
E2F6 35 17.56 1.48x10-5

HDAC1 22 8.52 1.85x10-5 literature
ZBTB7A 25 10.54 2.06x10-5

UBTF 32 15.91 3.31x10-5

HCFC1 38 20.75 4.65x10-5

TAF1 29 13.98 4.65x10-5

TCF12 20 7.85 7.83x10-5

E2F4 23 10.14 8.46x10-5

CEBPD 16 5.54 8.69x10-5 lipid gene regulator
EGR1 28 13.53 8.85x10-5

KDM5B 23 10.22 1.02x10-4

PML 32 17.10 1.42x10-4

RUNX3 40 23.82 2.09x10-4

USF1 26 12.74 2.12x10-4 lipid gene regulator
FOS 15 5.37 2.16x10-4

EBF1 31 16.38 2.26x10-4

FOXA2 29 15.33 2.86x10-4 lipid gene regulator
eGFP FOS 30 16.04 3.06x10-4

REST 25 12.46 3.30x10-4

FOSL2 20 8.83 3.60x10-4

GTF2F1 24 11.97 4.04x10-4

CHD1 20 9.14 4.59x10-4

eGFP NR4A1 11 3.50 6.68x10-4 literature
ATF1 35 21.01 6.95x10-4

POU2F2 21 10.12 7.41x10-4

SAP30 17 7.44 7.80x10-4

CEBPZ 6 1.17 9.52x10-4 literature
NR2F2 20 9.62 1.01x10-3

PHF8 25 13.65 1.24x10-3

MAFF 59 43.42 1.30x10-3

ELK1 20 10.04 1.66x10-3

MAFK 75 59.30 1.70x10-3

ATF3 16 7.46 2.48x10-3 literature
SREBP2 2 0.08 2.78x10-3 lipid gene regulator
GATA2 20 10.47 2.84x10-3

SIN3A 17 8.47 3.37x10-3

GTF2B 16 7.77 3.38x10-3

WRNIP1 16 7.77 3.60x10-3

ETS1 15 7.06 3.66x10-3

SIX5 9 3.16 3.80x10-3

KAP1 28 17.39 4.17x10-3

IRF4 16 8.10 5.70x10-3

CREBBP 87 70.93 5.90x10-3 lipid gene regulator
ZEB1 8 2.80 6.29x10-3

GTF3C2 7 2.27 6.98x10-3

PAX5 22 13.06 8.32x10-3

GABPA 18 10.15 1.01x10-2
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Regulatory
Feature

Observed
Number of
index SNPs
in Feature

Expected
Number of
index SNPs
in Feature

Enrichment
P-value

Annotation

NR2C2 8 3.08 1.10x10-2 literature
NFYB 24 15.13 1.19x10-2

STAT1 10 4.52 1.36x10-2

RBBP5 18 10.59 1.50x10-2

FOSL1 9 4.03 1.76x10-2

GATA1 17 10.02 2.01x10-2

MTA3 15 8.61 2.25x10-2

SMARCA4 7 2.90 2.39x10-2

NRF1 11 5.69 2.43x10-2 lipid gene regulator
SIRT6 5 1.67 2.49x10-2 lipid gene regulator
ATF2 20 12.81 2.56x10-2 literature
STAT2 7 2.92 2.60x10-2

PBX3 8 3.77 3.30x10-2

H3k27me3 46 35.95 3.44x10-2 literature
SP2 6 2.54 4.05x10-2

ZBTB33 7 3.23 4.07x10-2

NFE2 5 1.92 4.19x10-2

CTCFL 7 3.29 4.60x10-2

BCLAF1 11 6.32 4.75x10-2

RPC155 3 0.88 5.83x10-2

STAT5A 15 10.13 7.48x10-2

STAT3 7 3.71 7.70x10-2

GRp20 2 0.50 8.75x10-2

THAP1 5 2.46 9.66x10-2

ZNF274 9 5.55 1.01x10-1

MEF2A 13 8.91 1.03x10-1

BACH1 12 8.42 1.30x10-1 literature
TAF7 5 2.74 1.36x10-1

IRF3 2 0.67 1.45x10-1 literature
BATF 14 10.35 1.46x10-1

RELA 12 8.71 1.57x10-1

ESRRA 2 0.72 1.59x10-1

TCF3 10 7.04 1.64x10-1

EZH2 5 3.06 1.91x10-1 literature
BCL3 10 7.33 1.95x10-1

IKZF1 8 6.00 2.50x10-1

MEF2C 6 4.34 2.63x10-1

SMARCB1 3 1.84 2.79x10-1

TRIM28 10 8.17 2.98x10-1 literature
NFATC1 9 7.25 2.99x10-1

HSF1 2 1.15 3.19x10-1

FOXM1 15 13.35 3.54x10-1 literature
SETDB1 8 6.90 3.84x10-1

RDBP 1 0.49 3.95x10-1

HDAC6 1 0.54 4.27x10-1

SRF 6 5.34 4.46x10-1

ZNF263 3 2.73 5.18x10-1

H3K9me3 116 119.5 7.73x10-1 literature
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Table S3.3: Primers used in luciferase expression constructs

SPTLC3

rs1321940F GTGCTCACTGAAACGTGTCT
rs1321940R CAGTGCACAATGTCAATATGGA
rs364585F CACCTGACCATTTCTCCCCA
rs364585R ACGAAACACCCCTGAAGACA

ANGPTL8

rs3810308F AGAGGAGGCAGAAGTGAAGG
rs3810308R CCAGCTCTGAACTCTGGACA
rs737337F GGGTAGGGATGTGGAGTGAG
rs737337R ATTCCCATTGCCTCTCTGCT

FAM117B

rs11692610F TAAAAGCCCGAACGAGATGC
rs11692610R GGGTTTTGTTGTTGTTGGGC
rs11694172F TCCTGGGTTCAAGCAGTTCT
rs11694172R ATCCCAAAGGCCTCCAAAGA

SORT1

rs12740374F ACACATTTTCAGGGGAGCCT
rs12740374R AGGAGAGGTGGGGAGATGAT
rs629301F TCTCCTCAGTTTTGCCGACT
rs629301R CTCTCCCACCGTAGAAGTCC

IRF2BP2

rs526936F AAAACTAGCTGGGCGTGGTA
rs526936R CCCCGAGTAAAACACCCTCT
rs514230F CCCCAGACATGAGGACAAGT
rs514230R GCAGGCCGGTTTTCTTCTTT

ADH5

rs2602836F GCCAGCAATGAACAAGTGGA
rs2602836R CGCACATGTAACAAACCTGC
rs1800759F CTGGCATAGGGGTCACTCAT
rs1800759R AATGGGCGATTCTGAGGAGT



CHAPTER IV

Investigating the functional role of structural variation in
myocardial infarction risk from whole genome sequencing of

a Norwegian population

4.1 Abstract

Structural variation (SV) is a class of genetic variation whose implication in com-

plex disease is currently not well understood. We investigate the role of deletions,

duplications, and inversions in risk for heart disease within a cohort of 2,202 Norwe-

gians from The HUNT Study, which includes cases with myocardial infarction (MI)

and matched controls. Using complementary approaches for discovering structural

variation from whole genome sequencing data, we identify SVs in the Norwegian pop-

ulation and perform genome wide association analyses with myocardial infarction and

quantitative lipid traits. We confirm linkage disequilibrium between a deletion on

chromosome 2 and a single variant associated with MI at the WDR12 locus. Struc-

tural variants identified by this study can be used for imputation into the larger

HUNT cohort for increased power to detect significant associations.

4.2 Introduction

Early-onset myocardial infarction (MI) is a major cause of mortality in the U.S.

and throughout the world, with both common and rare genetic mutations contribut-

130
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ing to its multifactorial risk (Mozaffarian et al., 2015). GWAS efforts over the past

8 years have led to discoveries of over 50 single genetic risk variants associated with

coronary artery disease (CAD) or MI (McPherson et al., 2007; Samani et al., 2007;

Helgadottir et al., 2007; Myocardial Infarction Genetics Consortium et al., 2009;

Schunkert et al., 2011; Coronary Artery Disease (C4D) Genetics Consortium, 2011;

IBC 50K CAD Consortium, 2011; CARDIoGRAMplusC4D Consortium et al., 2013;

CARDIoGRAMplusC4D Consortium et al., 2015). According to the latest meta-

analysis involving nearly 185,000 participants, single variants identified by genome

wide association studies together explain 12.9 ± 0.4% of the trait heritability for

CAD (CARDIoGRAMplusC4D Consortium et al., 2015). Do et al. (2015) used ex-

ome sequencing to find that the burden of rare mutations in APOA5 and LDLR

explains 0.14% and 0.24% of the total variance for MI and roughly 0.28% and 0.48%

of the heritability, respectively. Many of these risk loci contain variants associated

with LDL cholesterol (LPA, APOB, SORT1, LDLR, APOE, ABCG5-ABCG8, and

PCSK9 ), HDL cholesterol (ANKS1A), and triglycides (TRIB1 and APOA5-A4-C3-

A1 ), suggesting a plausible role of lipid modulation in disease risk (Roberts, 2015).

Still, for other disease-associated loci, the risk mechanism remains unclear.

Our current understanding of the functional role of structural variation (SV) in

myocardial infarction is in its infancy relative to simpler forms of genetic variation.

These balanced or unbalanced copy number changes, typically defined as 50 base

pairs to several kb in size, have traditionally been discovered using array-based (Mc-

Carroll et al., 2008; Conrad et al., 2010) and clone-based methods (Kidd et al.,

2008). For example, Conrad et al. (2010) used array CGH to report a CNV in

LD with a variant at the MI-risk locus, WDR12. Advances in sequencing tech-

nology have prompted the development of methods for discovering and genotyping
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structural variants at higher resolution (Mills et al., 2011; Sudmant et al., 2015).

Whole-genome sequencing allows for a finer interrogation of the genome to discover

structural variants, including low frequency and rare copy number events.

Using whole-genome sequencing in a Norwegian population of 2,202 matched MI

cases and controls, we investigate whether structural variation plays a functional

role in myocardial infarction risk and regulation of quantitative lipid traits. We

hypothesize that there are different frequencies of structural variants in MI cases

compared to controls and apply established and complementary SV detection algo-

rithms to discover and genotype deletions, duplications, and inversions. We carry

out a genome wide association study framework to test for associations that will

implicate structural variation in heart disease risk.

4.3 Methods

4.3.1 Phenotype measurements

The population-based Nord-Trøndelag Health Study (The HUNT Study) is a col-

laboration between the HUNT Research Centre (Faculty of Medicine, Norwegian Uni-

versity of Science and Technology NTNU), Nord-Trøndelag County Council, Central

Norway Health Authority, and the Norwegian Institute of Public Health (Krokstad

et al., 2013). A set of 2,202 Norwegian individuals was chosen from the Nord-

Trøndelag Health study for whole genome sequencing. Sequenced participants were

composed of 1,101 cases with early-onset MI, and 1,101 healthy controls that were

one-to-one matched on age, sex, and birth municipality. The earliest-onset cases,

primarily from batch 1 (see Section 4.3.2), were defined as an MI event at age ≤ 55

years for males and ≤ 65 years for females (Figure 4.1). Controls were chosen from

cohort participants without self-reported and/or hospital diagnosed MI, MI in first-

or second-degree family members, cardiovascular disease, diabetes, or hypertension.
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No sequenced individuals had any known first- or second-degree relatives among the

others selected for sequencing.

We also collected directly-measured lipid phenotypes including non-fasting plasma

HDL cholesterol, triglycerides, and total cholesterol (Table 4.1). LDL cholesterol

levels for participants with triglyceride levels <400 mg/dL were estimated using the

Friedewald formula, as shown in Equation 4.1 (Friedewald et al., 1972).

(4.1) LDL-C = TC − HDL-C − TG

5

Lipid measurements were collected on the same samples at two time points approx-

imately 10 years apart as included in the HUNT2 (1995-97) and HUNT3 (2006-08)

efforts. Residuals estimated from each HUNT stage were averaged for the association

analysis (see Section 4.3.4).

4.3.2 Whole-genome sequencing

Illumina-based whole-genome sequencing (∼100 bp reads) of 2,202 samples was

performed at the University of Michigan DNA Sequencing Core in 3 batches over

a 3-year period. Equal numbers of MI cases and controls in batches 1 (n=602), 2

(n=800), and 3 (n=800) were sequenced with total average coverage of 5.9x, 5.4x,

and 4.3x, respectively. A subset of individuals (n=210) was also targeted for exome

sequencing, but the targeted sequencing was removed from these samples for the

subsequent analysis. Differences in library preparation protocol resulted in varying

insert size distributions between samples (Figure 4.2) and across batch (Figure 4.3),

with batch 1 samples generally having smaller insert sizes than batch 2 and 3 sam-

ples. Insert size standard deviations differ by batch but not by case-control sta-

tus (Figure 4.4). Sequence alignment was performed using the GotCloud pipeline

(http://genome.sph.umich.edu/wiki/GotCloud).

http://genome.sph.umich.edu/wiki/GotCloud
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4.3.3 Structural variant calling

Deletions were called and genotyped by integrating several technical features of

the sequence data as well as population-scale patterns across the 2,202 genomes

analyzed (GenomeSTRiP 2.0, Handsaker et al. (2015)). In brief, GenomeSTRiP in-

corporates information from break-point spanning reads, paired-end sequences, and

local variation in read depth coverage to discover deletions with improved sensitivity

and specificity relative to other algorithms that use only one or two of these fea-

tures. To improve upon the power to detect structural variation in a single genome,

GenomeSTRiP considers how alleles are shared across multiple genomes and patterns

of sequence heterogeneity to accurately determine the state of each variant in every

individual genome of the population. Six HUNT individuals with an outlier number

of variants by this method were removed from the subsequent association analysis

(Figure 4.5).

Deletions (DEL), tandem duplications (DUP), and inversions (INV) were also

called per individual whole-genome targeted sample using a read-pair and split-read

based method (DELLY, Rausch et al. (2012)). By integrating the paired-end and

split-read alignments, DELLY can delineate copy-number variable events as well as

balanced rearrangements such as inversions. The human reference genome containing

decoy sequence (to remove reads that would otherwise map with low quality in the

reference) was downloaded from ftp://ftp-trace.ncbi.nih.gov/1000genomes/

ftp/technical/reference/phase2_reference_assembly_sequence/, and telom-

eric and centromeric regions were excluded in SV calling. Counts of events called

by mean sequencing depth show that batch 1 samples with tighter insert size dis-

tributions generally called more deletions than samples from the other two batches

(Figure 4.6). Structural variants that passed the DELLY quality filter were com-

ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/ phase2_reference_assembly_sequence/
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/reference/ phase2_reference_assembly_sequence/
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bined across all 2,202 sequenced samples by merging events that overlapped by 80%

reciprocally. Genotypes were combined by assuming that the absence of a variant in

the overlapping region implies homozygous reference genotypes.

Finally, we used the HUNT metadata information from GenomeSTRiP to geno-

type the merged DELLY deletions, as well as those deletions called from the 1000

Genomes Project Phase 3 v5 (1000 Genomes Project Consortium et al., 2012).

We examined whether SVs were in strong linkage disequilibrium (LD) with previ-

ously reported CAD- or lipid-associated SNPs in the 2,202 sample HUNT population.

Pairwise r 2 was estimated between each SV and the GWAS-reported index SNP us-

ing best-guess unphased genotypes.

4.3.4 Association analysis

Association analyses were carried out separately for deletions, duplications, and

inversions using PLINK. We performed logistic regression of MI case-control response

and genotype predictors with minor allele frequency (MAF) >0.01 (minor allele count

>44). We adjusted for covariates age, sex, and batch, as well as the first 10 principle

components (PCs) estimated from sequence genotypes of the 2,202 sequenced samples

(Equation 4.2).

(4.2) MI status = SV genotype + birth year + sex+ batch+ PC1−PC10

We also performed association analysis of SV genotypes with quantitative lipid

traits HDL-C, LDL-C, TG, and TC. Inverse normalized residuals for each of the

four lipid traits were generated separately for each HUNT time point (HUNT2 and

HUNT3) with adjustment for birth year and sex. Estimated residuals from the two

HUNT stages were then averaged (Figure 4.7) and used as the response in a linear

regression (Wald test) with adjustment for covariates MI status, batch, and 10 PCs
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(Equation 4.3).

Birth year- and sex-adjusted inverse normalized residuals =

SV genotype + MI status + batch+ PC1−PC10

(4.3)

Association analyses in this manner were carried out separately for genotype calls

with MAF >0.01 for deletions (from DELLY, GenomeSTRiP, and 1000 Genomes

separately), duplications, and inversions that were <1Mb in size.

After checking for cryptic relatedness using genotype information, one individual

was found to be contaminated and removed from the association analysis in addition

to the six samples with outlier SV calls (see Section 4.3.3). Table 4.2 describes the

final counts of individuals used for association with each trait based on QC and

phenotype availability.

A schematic diagram of the overall SV analysis pipeline is provided in Figure 4.8.

4.4 Results

We discovered a set of 3,270 deletions (885 2kb-1Mb) with MAF>0.01 in the

HUNT population using GenomeSTRiP, as well as 5,564 deletions (1,209 2kb-1Mb),

723 duplications (218 2kb-1Mb), and 493 inversions (183 2kb-1Mb) with MAF>0.01

from DELLY (Table 4.3). We found 252 deletions called in the 1000 Genomes Project

Phase 3 v5 that overlapped by 80% reciprocally with those deletions discovered in

the HUNT population. Distributions of association P -values for MI status and each

quantitative lipid trait are shown in Figures 4.9-4.13. The red P -value distributions

in each of these figures represents SVs within 1Mb of any GWAS single variant,

while all other variants are shown in black. Known GWAS variants are defined

as published variants associated with any of the four lipid traits, published CAD-

associated variants, and a set of novel lipid-associated variants identified from an
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ongoing exome chip study (Liu and Global Lipids Genetics Consortium, 2014). We

did not observe genome-wide significant associations (based on Bonferroni correction

for the number of tests) with either MI status or lipids (see top significant results in

Tables 4.5-4.7).

Of those 34 CNVs reported by Conrad et al. (2010) with tagged GWAS SNPs,

we found 15 nearby CNVs in the HUNT population as well as in the 1000 Genomes

Project (Table 4.4). Both DELLY and GenomeSTRiP called a deletion (2:203898933-

203904481 and 2:203899034-203904285, respectively) near the Conrad et al. (2010)

deletion tagging an MI-associated SNP at the WDR12 locus. Estimation of linkage

disequilibrium between this SNP (rs6725887; chr2:203745885) and the GenomeSTRiP

genotypes at this deletion (DEL P0227 516; chr2:203899034-203904285) confirmed

their strong linkage disequilibrium (r 2=0.98) (Figure 4.14).

4.5 Discussion

Several conclusions can be drawn from this research including both biological

insights and computational lessons. Sequencing experimental protocol can largely

affect SV calling, particularly when there is insert size variability between samples.

In our study, the 210 samples that were targeted for exome sequencing in addition

to whole genome sequencing had systematically smaller insert sizes, which biased

deletion calling to smaller events. To eliminate this bias, we excluded the targeted

exome from these individual samples and kept only the sequenced whole genomes

for SV discovery, genotyping and subsequent analysis.

In addition, the differences in insert size distributions due to changes in library

preparation protocol over the sequencing time period resulted in a bias toward calling

more small deletions in batch 1 samples (Figure 4.2). Library construction with the
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epMotion robotic workstation used gel size selection, which resulted in more consis-

tent insert sizes of the first 576 batch 1 samples. In contrast, the IntegenX library

prep protocol used bead size selection for the remaining samples, which resulted in

much broader insert size distributions. In paired-end sequencing, fragments are ex-

pected to be consistently mapped a particular distance away from each other. A

discrepancy in this distance indicates a structural variation between the paired-end

tag sequences. For example, a deletion in a sequenced genome will have reads that

map further away than expected in the reference genome, since the reference genome

will have a DNA fragment that is missing in the sequenced genome. Consequently,

variability in size of the sequenced fragments, as produced in the IntegenX-prepped

samples, reduces the ability to distinguish small deletion events that deviate from the

reference genome. For duplications and inversions however, the numbers of events

called were more similar across batch. This is expected since these events were called

based on the orientation of mapped reads rather than relying on insert size. We ad-

dressed this technical sequencing artifact by adjusting for batch in the association

analysis.

Different genotyping approaches give variable results, suggesting the necessity to

explore more than one method when studying structural variation. Taking into ac-

count the sequence heterogeneity across multiple individuals gives GenomeSTRiP an

advantage over other methods, especially when sequencing a sizable cohort. Indeed,

we observed more significant deletions by this method than the alternative DELLY

approach. This supports the power of harnessing patterns of sequence heterogene-

ity within a population and integrating paired-end, split-read, and read-depth-based

analyses. Sequencing a large number of individuals is a study design that is becoming

increasingly more feasible as sequencing costs decline, and we have seen the success-
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ful performance of the GenomeSTRiP approach in the 1000 Genomes Project effort

(1000 Genomes Project Consortium et al., 2012). In addition to calling deletions,

however, the DELLY approach of integrating paired-end and split-read alignments is

advantageous in that it can call tandem duplications and balanced rearrangements.

Thus, by applying these complementary approaches, we were able to investigate a

broad spectrum of genomic rearrangements in the HUNT population.

The choice of algorithm for discovery and genotyping of structural variation may

depend on the goals and design of a particular study. For example, in a study for

which the primary objective is to discover novel events, taking the union of SV events

discovered by both DELLY and GenomeSTRiP would give the most comprehensive

set. Where accurate genotyping is of primary concern in a study, genotyping using

GenomeSTRiP is the superior choice. To illustrate this, we estimated linkage dise-

quilibrium in the HUNT samples between previously reported (Conrad et al., 2010)

trait-associated SNPs and their tagged CNV’s. DELLY genotypes consistently re-

sulted in low r 2 estimates (Table 4.4). On the other hand, GenomeSTRiP replicated

these LD relationships much more consistently. This suggests that DELLY geno-

types are less reliable and perhaps contain an excess of false negatives, calling events

as more rare than the truth. Given the insights from this study, thoughtful consid-

eration should be made when choosing a method for structural variation analysis of

sequencing data.

Careful study design of matched cases and controls, adjusting for appropriate

confounders such as age and sex, and applying the appropriate transformation of

quantitative lipid measurements are all critical for identifying true causal associa-

tions. Filtering sites based on the quality scores of the respective calling methods is

critical to identify a confident set of events and prevent false positive associations.
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Our regression results suggest that structural variation does not play a strong role in

MI risk and modulating lipid levels. However, the absence of significant large-effect

associations for MI and lipids does not suggest an absent role of structural varia-

tion in modulating these phenotypes, but rather that we are underpowered to detect

them. To increase our power for discovery in the future, structural variants identi-

fied here will be imputed into the larger HUNT cohort of 30,000 samples for further

study. A comprehensive survey of linkage disequilibrium between structural varia-

tion and GWAS-reported single markers did not reveal additional SV-single marker

LD relationships. Again, a larger cohort may be needed to identify SVs that tag

single markers to suggest novel plausible functional candidates.
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Figure 4.1: Distribution of age at MI onset in 1,101 affected individuals by batch.
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Figure 4.2: Insert size distributions for different library preparation methods. Most batch 1 samples
(n=576) were prepped using the epMotion robotic workstation and the remaining samples were
prepped using the IntegenX robotic workstation (batch 1, n=26; batch 2, n=800; batch 3, n=800).
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Figure 4.5: Number of structural variants called from GenomeSTRiP by lipid distributions.
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Figure 4.6: Number of structural variants called from DELLY by mean sequencing depth.



147

LDL Cholesterol

Inverse−Normalized Residuals

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
10

20
30

40
50

HDL Cholesterol

Inverse−Normalized Residuals

F
re

qu
en

cy

−2 −1 0 1 2

0
20

40
60

80

Total Cholesterol

Inverse−Normalized Residuals

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
10

20
30

40
50

Triglycerides

Inverse−Normalized Residuals

F
re

qu
en

cy

−3 −2 −1 0 1 2 3

0
10

20
30

40
50

Figure 4.7: Distribution of age- and sex-adjusted residuals for lipids. Residuals were estimated
separately for HUNT2 and HUNT3 time points and then averaged.
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Figure 4.9: SV association results for MI status. Logistic regression of HUNT genotypes with MI
status was carried out separately for (A) deletions discovered by GenomeSTRiP, DELLY, and the
1000 Genomes Project; (B) duplications discovered by DELLY; and (C) inversions discovered by
DELLY. QQplots show association P -values for structural variants within 1Mb (red) and outside
1Mb (black) of known CAD- or lipid-associated GWAS SNPs.
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Figure 4.10: SV association results for LDL cholesterol. Linear regression of HUNT genotypes
with LDL cholesterol was carried out separately for (A) deletions discovered by GenomeSTRiP,
DELLY, and the 1000 Genomes Project; (B) duplications discovered by DELLY; and (C) inversions
discovered by DELLY. QQplots show association P -values for structural variants within 1Mb (red)
and outside 1Mb (black) of known CAD- or lipid-associated GWAS SNPs.
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Figure 4.11: SV association results for HDL cholesterol. Linear regression of HUNT genotypes
with HDL cholesterol was carried out separately for (A) deletions discovered by GenomeSTRiP,
DELLY, and the 1000 Genomes Project; (B) duplications discovered by DELLY; and (C) inversions
discovered by DELLY. QQplots show association P -values for structural variants within 1Mb (red)
and outside 1Mb (black) of known CAD- or lipid-associated GWAS SNPs.

A. DELETIONS

Expected (− log10 p−value)

O
bs

er
ve

d 
(−

lo
g 1

0 
p−

va
lu

e)

1

2

3

4

1 2 3

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

Within 1Mb of GWAS SNPs
Other SVs

●

●

λGC = 0.95

GenomeSTRiP

Expected (− log10 p−value)
O

bs
er

ve
d 

(−
lo

g 1
0 

p−
va

lu
e)

1

2

3

4

1 2 3

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

Within 1Mb of GWAS SNPs
Other SVs

●

●

DELLY

λGC = 1.01

Expected (− log10 p−value)

O
bs

er
ve

d 
(−

lo
g 1

0 
p−

va
lu

e)

1

2

3

4

1 2 3

●●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

Within 1Mb of GWAS SNPs
Other SVs

●

●

1000 Genomes

λGC = 0.96

B. DUPLICATONS C. INVERSIONS

Expected (− log10 p−value)

O
bs

er
ve

d 
(−

lo
g 1

0 
p−

va
lu

e)

0.5

1.0

1.5

2.0

2.5

1 2 3

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●
●

●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● Within 1Mb of GWAS SNPs
Other SVs

●

●

DELLY

λGC = 0.99

Expected (− log10 p−value)

O
bs

er
ve

d 
(−

lo
g 1

0 
p−

va
lu

e)

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●●

●

Within 1Mb of GWAS SNPs
Other SVs

●

●

DELLY

λGC = 0.94



152

Figure 4.12: SV association results for triglycerides. Linear regression of HUNT genotypes with
triglycerides was carried out separately for (A) deletions discovered by GenomeSTRiP, DELLY, and
the 1000 Genomes Project; (B) duplications discovered by DELLY; and (C) inversions discovered
by DELLY. QQplots show association P -values for structural variants within 1Mb (red) and outside
1Mb (black) of known CAD- or lipid-associated GWAS SNPs.
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Figure 4.13: SV association results for total cholesterol. Linear regression of HUNT genotypes
with total cholesterol was carried out separately for (A) deletions discovered by GenomeSTRiP,
DELLY, and the 1000 Genomes Project; (B) duplications discovered by DELLY; and (C) inversions
discovered by DELLY. QQplots show association P -values for structural variants within 1Mb (red)
and outside 1Mb (black) of known CAD- or lipid-associated GWAS SNPs.
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WDR12 region (DEL chr2:203899034−203904285)
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Figure 4.14: HUNT single variant MI association results at the WDR12 locus. There is a 5,251 base-
pair deletion (highlighted in red) in linkage disequilibrium (r2=0.98) with the previously reported
MI-associated index SNP rs6725887 (colored in purple).
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Table 4.1: Phenotype descriptive statistics for HUNT sequenced samples

Descriptive statistics for sex
Male Female Overall

Sex Case 756 345 1101
Control 756 345 1101
Overall 1512 690 2202

Descriptive statistics for agea and quantitative lipid measurementsb

Min Mean Median Max
Age at participation (years) Case 20.00 54.55 54.00 82.00

Control 20.00 53.66 53.00 81.00
Overall 20.00 54.11 54.00 82.00

LDL cholesterol (mg/dL) Case 21.10 127.30 122.10 345.70
Control 43.32 148.20 145.90 293.90
Overall 21.1 138.0 135.4 345.7

HDL cholesterol (mg/dL) Case 19.3 45.9 42.5 104.2
Control 23.20 52.72 50.20 115.80
Overall 19.30 49.31 46.30 115.80

Triglycerides (mg/dL) Case 35.4 186.4 159.3 1443.0
Control 35.4 149.3 129.6 902.7
Overall 35.4 167.6 141.6 1443.0

Total cholesterol (mg/dL) Case 81.1 209.5 204.6 432.4
Control 123.6 230.2 227.8 382.2
Overall 81.1 219.9 216.2 432.4

aAge from HUNT2; HUNT3 age was used when HUNT2 age was not available.
bLipid measurements were averaged from HUNT2 and HUNT3;
HUNT3 measurements were used when HUNT2 data were not available.
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Table 4.2: Sample sizes for association analysis by trait

Trait Samples that pass QC Non-missing phenotypes Total samples in analysis
MI 2195 2202 2195
LDL-C 2195 2134 2127
HDL-C 2195 2201 2194
TC 2195 2201 2194
TG 2195 2175 2168
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Table 4.5: Top significant association results for deletions
Locus Chr Start End Trait OR/Effect Size P-value Source

OR5P2 11 7790133 7792078 MI 0.7857 1.49x10-4 DELLY
AGMO 7 15229569 15230065 MI 0.7224 3.50x10-4 DELLY
UBE2NL X 143406811 143410134 MI 0.7496 6.18x10-4 DELLY
PFDN4 20 52866065 52867491 MI 0.3224 7.79x10-4 DELLY
WDR47 1 109573112 109575345 MI 0.7800 1.21x10-3 DELLY
CDH6 5 30915523 30916059 MI 0.7668 2.16x10-4 GenomeSTRiP
LONP2 16 48311331 48311679 MI 0.7167 2.30x10-4 GenomeSTRiP
MIR548AE2 14 30817195 30819456 MI 1.9680 9.93x10-4 GenomeSTRiP
G2E3 7 52963199 52964915 MI 0.6465 1.69x10-3 GenomeSTRiP
POM121L12 9 22653155 22653781 MI 0.5957 2.21x10-3 GenomeSTRiP
LINC01239 11 5760086 5762366 MI 0.7813 1.02x10-4 1000G
OR56B1 5 30915526 30916063 MI 0.7702 2.69x10-4 1000G
CDH6 14 30817188 30819455 MI 1.9110 1.50x10-3 1000G
G2E3 1 188539457 188540228 MI 0.7600 2.05x10-3 1000G
BRINP3 19 23465135 23466785 MI 1.2360 2.63x10-3 1000G

IPO5P1 5 86245887 86247320 LDL-C -0.25 1.19x10-4 DELLY
MIR4280 9 19671646 19673613 LDL-C -0.26 1.97x10-4 DELLY
SLC24A2 X 124115599 124116298 LDL-C -0.32 4.98x10-4 DELLY
TENM1 13 85929413 85929777 LDL-C -0.27 8.91x10-4 DELLY
LINC00351 11 51340884 51363219 LDL-C -0.09 9.81x10-4 DELLY
OR4A5 4 92472837 92478295 LDL-C 0.64 6.41x10-7 GenomeSTRiP
CCSER1 10 42454653 42457078 LDL-C 0.44 4.97x10-6 GenomeSTRiP
LOC441666 10 91998535 92002030 LDL-C 0.52 5.14x10-5 GenomeSTRiP
RP11-15K3 5 45192227 45194396 LDL-C 0.56 8.49x10-5 GenomeSTRiP
HCN1 12 38335811 38341301 LDL-C 0.53 1.44x10-4 GenomeSTRiP
ALG10B 4 92472835 92478331 LDL-C 0.66 3.78x10-7 1000G
MLLT3 9 20380045 20386726 LDL-C 0.68 2.66x10-6 1000G
MIR1973 4 117499720 117503035 LDL-C 0.62 3.63x10-6 1000G
HCN1 5 46217822 46219362 LDL-C 0.46 1.77x10-5 1000G
RAB9BP1 5 104949722 104955603 HDL-C 0.59 2.42x10-5 1000G

UGT2B7 4 69959686 69960320 HDL-C -0.15 9.35x10-5 DELLY
TMPRSS11E 4 69373294 69491273 HDL-C -0.23 3.04x10-4 DELLY
PPP2R5E 14 63887380 63887889 HDL-C -0.26 3.17x10-4 DELLY
KIRREL3-AS3 11 127456167 127456578 HDL-C -0.19 6.08x10-4 DELLY
IL1RAPL1 X 29821144 29821508 HDL-C 0.38 7.88x10-4 DELLY
TMEM248 7 66397601 66397942 HDL-C 0.47 2.84x10-5 GenomeSTRiP
MIR5011 18 64959011 64967266 HDL-C -0.32 3.48x10-4 GenomeSTRiP
P2RY8 X 1667032 1667328 HDL-C 0.23 3.60x10-4 GenomeSTRiP
SCARB1 12 125334384 125334699 HDL-C -0.08 6.74x10-4 GenomeSTRiP
MYO9A 15 72126376 72126737 HDL-C 0.30 9.54x10-4 GenomeSTRiP
ZBTB11 3 101357527 101359730 HDL-C -0.13 5.41x10-5 1000G
MIR5011 18 64958984 64967256 HDL-C -0.32 3.48x10-4 1000G
LOC101928401 7 56652469 56658519 HDL-C 0.09 6.09x10-4 1000G
KIAA1257 3 128672140 128675334 HDL-C -0.40 8.30x10-4 1000G
SOX5 12 23939446 23940212 HDL-C 0.13 1.43x10-3 1000G

TRIM49B 11 48944428 48945723 TG -0.12 3.63x10-5 DELLY
TPO 2 1533816 1536862 TG -0.10 2.70x10-4 DELLY
TSHR 14 81596902 81597479 TG 0.33 5.93x10-4 DELLY
TRIM48 11 54869785 54871917 TG -0.22 8.97x10-4 DELLY
MIR5007 13 55634075 55634428 TG -0.25 9.66x10-4 DELLY
ARHGEF18 19 7451063 7454115 TG -0.47 1.33x10-4 GenomeSTRiP
SLC35F3 1 234318643 234319750 TG 0.14 1.06x10-3 GenomeSTRiP
GPC5 13 93000122 93000324 TG 0.13 1.11x10-3 GenomeSTRiP
PLOD2 3 145644968 145649191 TG 0.09 1.14x10-3 GenomeSTRiP
CACNA1A 19 13301205 13301539 TG -0.12 1.77x10-3 GenomeSTRiP
ARHGEF18 19 7451039 7454104 TG -0.47 1.33x10-4 1000G
LOC647859 5 70368390 70391629 TG -0.11 7.81x10-4 1000G
SLC35F3 1 234318645 234319749 TG 0.14 1.25x10-3 1000G
RASSF2 20 4807411 4808147 TG -0.24 1.55x10-3 1000G
PLOD2 3 145644966 145649185 TG 0.09 1.94x10-3 1000G

OR4A5 11 51340884 51363219 TC -0.09 3.40x10-4 DELLY
MIR4280 5 86245887 86247320 TC -0.22 3.42x10-4 DELLY
TENM1 X 124115599 124116298 TC -0.31 3.49x10-4 DELLY
LOC100129138 1 105667371 105668654 TC 0.18 4.98x10-4 DELLY
AKAP6 14 32953126 32954531 TC -0.23 7.87x10-4 DELLY
CCSER1 4 92472837 92478295 TC 0.66 3.68x10-8 GenomeSTRiP
ALG10 12 34709011 34715660 TC 0.36 6.34x10-6 GenomeSTRiP
RP11-15K3 10 91998535 92002030 TC 0.51 1.59x10-5 GenomeSTRiP
LOC441666 10 42454653 42457078 TC 0.39 1.63x10-5 GenomeSTRiP
ALG10 12 34685528 34696065 TC 0.37 1.97x10-5 GenomeSTRiP
CCSER1 4 92472835 92478331 TC 0.68 1.51x10-8 1000G
MLLT3 9 20380045 20386726 TC 0.71 1.30x10-7 1000G
RAB9BP1 5 104949722 104955603 TC 0.63 1.08x10-6 1000G
HCN1 5 46217822 46219362 TC 0.48 1.44x10-6 1000G
LINC00293 8 47216305 47233060 TC 0.56 1.62x10-6 1000G
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Table 4.6: Top significant association results for duplications

Locus Chr Start End Trait OR/Effect Size P -value Source
GALNT9 12 132973788 132974587 MI 1.6490 2.27x10-3 DELLY
GALNT9 12 132973707 132974587 MI 1.5790 4.44x10-3 DELLY
PDX1 13 28508684 28509249 MI 1.4260 5.68x10-3 DELLY
DNAH14 1 225133308 225248377 MI 0.6307 6.20x10-3 DELLY
C9orf106 9 132158710 132159317 MI 1.2630 6.99x10-3 DELLY
AKAP11 13 42947269 42947736 LDL-C 0.13 1.95x10-3 DELLY
AKAP11 13 42947268 42947736 LDL-C 0.13 2.01x10-3 DELLY
EPS8L2 11 711724 712153 LDL-C -0.41 3.73x10-3 DELLY
EPS8L2 11 711722 712153 LDL-C -0.38 5.19x10-3 DELLY
LINC00473 6 166253236 166253588 LDL-C -0.27 6.69x10-3 DELLY
COL5A1 9 137576794 137577726 HDL-C 0.10 1.59x10-3 DELLY
HLA-DRB5 6 32469530 32540210 HDL-C 0.06 3.17x10-3 DELLY
COL5A1 9 137576781 137577726 HDL-C 0.09 5.10x10-3 DELLY
ADARB1 21 46575840 46576486 HDL-C 0.07 5.39x10-3 DELLY
CNTNAP5 2 125766561 125768484 HDL-C 0.08 5.65x10-3 DELLY
SORBS1 10 97206785 97208113 TG -0.09 8.78x10-3 DELLY
TCEA3 1 23718825 23719261 TG -0.21 9.28x10-3 DELLY
PITRM1 10 3356380 3357458 TG -0.21 1.31x10-2 DELLY
KLK7 19 51484077 51484767 TG -0.09 1.39x10-2 DELLY
EPS8L2 11 711724 712153 TG -0.31 1.48x10-2 DELLY
EPS8L2 11 711724 712153 TC -0.41 2.15x10-3 DELLY
C3orf38 3 88547135 88547974 TC -0.23 3.68x10-3 DELLY
LMCD1 3 8601108 8601876 TC 0.18 4.43x10-3 DELLY
EPS8L2 11 711722 712153 TC -0.36 5.43x10-3 DELLY
LOC644172 17 43655785 44366773 TC 0.20 9.27x10-3 DELLY
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Table 4.7: Top significant association results for inversions

Locus Chr Start End Trait OR/Effect Size P -value Source
DPM3 1 155119792 155120021 MI 0.4367 3.47x10-4 DELLY
DPM3 1 155119740 155120021 MI 0.4374 7.16x10-4 DELLY
CCDC129 7 31586877 31590353 MI 1.3310 1.33x10-3 DELLY
DPM3 1 155119793 155120021 MI 0.5049 1.38x10-3 DELLY
ZNF626 19 20801073 20884244 MI 0.8509 2.27x10-3 DELLY
LCMT1 16 25204035 25204734 LDL-C -0.26 2.41x10-3 DELLY
SLC25A51P1 6 67492324 67492651 LDL-C -0.26 6.69x10-3 DELLY
RASGRP3 2 33764621 33768033 LDL-C -0.15 7.13x10-3 DELLY
TPTE2P6 13 25154598 25542722 LDL-C 0.07 9.87x10-3 DELLY
PLEKHB2 2 131886576 131887696 LDL-C 0.10 1.17x10-2 DELLY
KLC2 11 66019004 66020102 HDL-C 0.10 1.04x10-3 DELLY
SFTPA2 10 81316454 81374513 HDL-C 0.12 3.63x10-3 DELLY
MIR3924 10 59257657 59258202 HDL-C 0.05 5.66x10-3 DELLY
AUTS2 7 70420815 70438968 HDL-C 0.05 1.02x10-2 DELLY
RAD51B 14 68907825 69298024 HDL-C 0.16 1.16x10-2 DELLY
NCKAP5L 12 50182514 50183034 TG 0.12 1.49x10-4 DELLY
PRSS35 6 84207259 84610844 TG -0.28 4.72x10-3 DELLY
ASIC2 17 31683859 31684175 TG -0.27 6.83x10-3 DELLY
ARID1B 6 157559436 157641398 TG 0.13 6.91x10-3 DELLY
MGLL 3 127496284 127497985 TG -0.15 8.24x10-3 DELLY
RASGRP3 2 33764621 33768033 TC -0.15 3.18x10-3 DELLY
MYCN 2 16406391 16407874 TC -0.10 6.90x10-3 DELLY
LOC644172 17 43663171 44338245 TC 0.15 9.49x10-3 DELLY
SLC25A51P1 6 67492324 67492651 TC -0.23 1.01x10-2 DELLY
LCMT1 16 25204035 25204734 TC -0.20 1.28x10-2 DELLY



CHAPTER V

Discussion

5.1 Results Summary

Our collective knowledge of the role of human genetic variation in complex disease

has come a long way since the first published genome-wide association studies. As

a research community, we’ve catalogued over 150 common variants and at least 25

loci containing rare variants that influence lipid variability in humans. We’ve made

advances in identifying functional variants at associated loci and recognized the reg-

ulatory importance of noncoding variation. In addition, we’ve been able to leverage

genetic tools to answer questions about the clinical implications of lipid-associated

variants. Together, these insights provide the groundwork for individualized treat-

ment, diagnosis, and prevention of heart disease. Through this dissertation research,

I have advanced our understanding of lipid genetics and developed a tool that has ex-

panded our knowledge of the biological mechanisms underlying noncoding variation

associated with lipids as well as other complex traits.

In the manuscript Global Lipids Genetics Consortium et al. (2013), a follow-up

study of 100,000 individuals genotyped on Metabochip, we discovered 62 novel ge-

netic loci associated with lipids to contribute to the existing list of known associated

loci. Chapter II described the discovery of these loci and several downstream analy-
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ses including pathway analyses, investigation of regulation of mRNA expression, and

literature review that support the roles of 38 of these loci in regulation of plasma

lipids. The mechanistic role of the remaining loci is unknown, leaving considerable

opportunity for functional insights from genetic studies in the coming years. Given

the non-protein-coding role of so many lipid-associated variants reported by GWAS,

I developed a tool in Chapter III to evaluate the enrichment of GWAS variants

in tissue-specific chromatin states and regulatory features defined by bioinformatics

techniques and new sequencing approaches such as ChIP-seq (Schmidt et al., 2015).

Using a data-driven hypothesis, I selected particular variants at a set of five lipid

loci as the potential functional variant, and reported experimental luciferase results

to confirm my computational predictions. Lastly, in Chapter IV I performed discov-

ery and genotyping of insertions, duplications, and inversions from low-pass whole

genome sequencing of nearly 2,000 Norwegian MI-cases and controls. Although we

did not have the power to detect significant genome-wide associations with struc-

tural variants identified in this dataset, I learned many technical and computational

lessons including the importance of accurate sequencing library preparation for CNV

calling, and generating an optimal SV analysis pipeline using complementary geno-

typing approaches.

5.2 Interpreting GWAS: promises and challenges

Despite the strides we have made in understanding lipid genetics, there are still

shortcomings to traditional genome-wide association study designs and an incomplete

knowledge of the biological mechanisms underlying GWAS-identified signals. Firstly,

GWA studies are primarily designed for finding common trait-associated variation,

but natural selection has reduced the frequency of high-risk variants in the human
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population. Effect sizes of trait-associated variants discovered by GWAS are gener-

ally modest (e.g. odds ratio <1.5), conferring relatively small modulation in risk.

In addition, GWAS variants only explain a fraction of the trait variability, leaving

a large proportion of heritability unexplained (e.g. ∼90% unexplained heritability

for coronary artery disease (CARDIoGRAMplusC4D Consortium et al., 2013)). Fi-

nally, some of the largest GWA studies to date typically investigate European-only

populations, leaving complex trait genetics in non-Europeans less well understood.

Because rare variants are not captured well by GWAS with imputation, the role

of rare variants in complex traits is still largely unknown. More comprehensive scans

involving whole-genome or exome sequencing are promising for revealing rare risk

variants that may explain more of the missing heritability. For early-onset diseases

that are rare and highly-penetrant, the missing heritability will likely be found with

extremely low frequency variants of high effect. Although SNP genotyping coupled

with imputation is still more cost-effective today than whole-genome sequencing

(Yang et al., 2015), rare variants can be difficult to impute. This makes a strong

case for sequencing studies in diseases where rare variants are more likely to play a

role.

For more common diseases such as CAD however, the remaining missing heri-

tability will likely be found in common variants with small effects. Ongoing efforts

in genotyping thousands of unrelated individuals on exome chip are revealing more

coding variants with a role in modulation of lipid levels. Meta-analyses of large

non-European populations are currently underway, leading us to new discoveries of

population-specific variants associated with lipids that may not be significant in Eu-

ropeans. Fine mapping of lipid-associated loci in ethnically diverse groups will be

increasingly important to provide guidance toward identifying the causal variant.
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Complex traits and diseases can have variable genetic architectures, making study

design and results interpretation challenging. For example, it is possible that not all

carriers of an associated risk variant will display manifestation of the trait or disease,

suggesting genetic or environmental factors that confer resistance. In addition, some

genetic variants may depend on pre-existing environmental contexts, resulting in

context-dependent risk variants that don’t pass genome wide significance. For heart

disease in particular, these factors could include lifestyle elements such as smoking,

diet, physical activity, or sudden high-stress events (Peters et al., 2014; Chan et al.,

2013). Another caveat of a case-control GWAS design is that disease processes

might be active in control individuals, but the clinical symptoms may have not yet

manifested when they participate in the study. In this case, having a sufficiently

large number of controls or re-evaluating and assigning control individuals at a later

stage will improve the study.

An undisputed challenge in complex trait genetics is the interpretation of noncod-

ing variation. In Chapter III, I presented a practical tool for researchers to investigate

the biological mechanisms of GWAS signals for any phenotype and provide guidance

toward prioritizing the functional variant using epigenomic features. However, there

is still progress to be made in methods for refining the association signal to predict

functional variants and in understanding the mechanisms by which they act. An

improvement over prioritizing variants solely based on the number of overlapping

regulatory features could be assigning variants a score based on their likelihood of

being functional. This score could involve weighting by effect size or the presence

of a nearby motif, or be analogous to the SVM classifier used for filtering variants

from sequencing data. In addition, we can use Bayes theorem to determine the

likelihood of disease-causing SNPs based on prior probability (Maller et al., 2012).
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Integrating other sources of information including functional genomics, chromatin

states, evolutionary conservation, and quantitative trait loci to link noncoding se-

quence with regulation will also be supportive. Burden testing of noncoding variants

is another under-developed area that can shed new insight on transcriptional regula-

tion. Without a doubt, the future progress in understanding the noncoding genetic

variation implicated in complex disease will rely on the coupling of GWAS findings

with cell-type specific sequencing-based functional genomics data.

There is still debate in the genetics community about the clinical implications

of various plasma lipids. In particular, genetic studies describing the causal role of

triglycerides and HDL cholesterol in heart disease risk have contradicted previous

assumptions. In a companion paper published with the results from Global Lipids

Genetics Consortium et al. (2013), causality was established between triglycerides

and coronary artery disease risk through correlation of effect sizes of trait-associated

SNPs (Do et al., 2013). In addition, the study presented by Voight et al. (2012b)

concluded no relationship between HDL-C and risk of heart attack. These two impor-

tant papers have drawn considerable attention from the medical community, and give

direction and/or caution to physicians when considering triglycerides or HDL-C in

disease risk. Advances over traditional approaches of Mendelian randomization that

address the pleiotropy complicating these variants have helped support the causality

of triglycerides on heart disease risk, and can perhaps shed light on the relationships

of other traits and disorders in the future (Burgess and Thompson, 2015).

Given our limited understanding of pharmacogenetics and the effect that indi-

vidual genotypic variation plays in drug response, studies of complex trait genetics

are extremely relevant. An example illustrating the importance of improved phar-

macogenetics understanding is the impaired ability of carriers of CYP2C19 variants
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to metabolize the drug clopidogrel, increasing their risk for heart disease (Kaufman

et al., 2015).

5.3 Data integration and bioinformatics challenges

As we progress in our understanding of complex traits, a major theme emerg-

ing is data integration. Investigators are increasingly collaborating to build large

repositories of high-throughput genomics and epigenomics data for public use. This

openness encourages integrative analyses and presents more creative ways to address

hypotheses. As illustrated in Chapter III, combining GWAS findings with ENCODE

epignomic data can lead to mechanistic insights. Another example of a data-rich

repository is the Genotype-Tissue Expression (GTEx) Portal, which contains nor-

malized expression matrices from RNA-seq in a wide range of human tissues (GTEx

Consortium, 2015). These data can help answer ongoing questions about the non-

coding variation that likely acts through regulation of gene expression. The systems

genetics approach, or Genome Wide Network Study as coined by Björkegren et al.

(2015), puts emphasis on combining data from intermediate phenotypes such as

RNA, proteins, metabolites, and epigenetics in multiple disease-relevant tissues. To-

gether, the data generated by these and many other ongoing efforts will surely help fill

in some of the missing knowledge concerning the biological mechanisms underlying

trait-associated genetic variation.

The meta-analysis performed in Chapter II is one of many ongoing and future

collaborations that will rely heavily on data sharing. As scientists increasingly share

their data in public domains, there is a need for more consistent standards in data

formats and metadata annotation. Future genetic studies involving common complex

diseases that rely on large sample sizes will be particularly affected by the data
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sharing and dissemination practices of the larger scientific community. In addition,

large-scale studies of human genetic variation require voluntary cooperation from

the general public. Efforts such as Genes for Good (http://genesforgood.sph.

umich.edu/) utilize social media to collect individual genetic data and educate people

about the personal benefits and larger scientific contributions resulting from their

participation. Data collected in Norway through The HUNT Study (Krokstad et al.,

2013), the source from which data were used in Chapter IV, is an excellent model of

an extensive collection of volunteer-based personal health data. Health informatics

will be increasingly important for optimizing how these large volumes of biomedical

data are managed, stored, shared, and interpreted.

On January 30, 2015, President Obama announced an initiative to transform

healthcare into the era of big data and personalized medicine. The NIH Precision

Medicine Initiative aims to utilize individual risk factors including genetic variability

to develop treatment that is tailored to specific patients. The increasing ubiquity of

mobile devices that record health-related measures such as heart rate, calorie con-

sumption, and physical activity is revolutionizing the way we can monitor health,

reduce risk, and treat disease based on individual lifestyle. Research involving com-

plex trait genetics such as the work presented in this dissertation provides primary

foundational knowledge for facilitating the translation from ‘bench-to-bedside’ and

fulfilling this vision of personalized medicine.

http://genesforgood.sph.umich.edu/
http://genesforgood.sph.umich.edu/
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Matullo, G., Wu, Y., Gaunt, T. R., Onland-Moret, N. C., Cooper, M. N., Platou, C. G. P., Org,
E., Hardy, R., Dahgam, S., Palmen, J., Vitart, V., Braund, P. S., Kuznetsova, T., Uiterwaal,
C. S. P. M., Adeyemo, A., Palmas, W., Campbell, H., Ludwig, B., Tomaszewski, M., Tzoulaki,
I., Palmer, N. D., CARDIoGRAM consortium, CKDGen Consortium, KidneyGen Consortium,
EchoGen consortium, CHARGE-HF consortium, Aspelund, T., Garcia, M., Chang, Y.-P. C.,
O’Connell, J. R., Steinle, N. I., Grobbee, D. E., Arking, D. E., Kardia, S. L., Morrison, A. C.,
Hernandez, D., Najjar, S., McArdle, W. L., Hadley, D., Brown, M. J., Connell, J. M., Hingorani,
A. D., Day, I. N. M., Lawlor, D. A., Beilby, J. P., Lawrence, R. W., Clarke, R., Hopewell,
J. C., Ongen, H., Dreisbach, A. W., Li, Y., Young, J. H., Bis, J. C., Kähönen, M., Viikari, J.,
Adair, L. S., Lee, N. R., Chen, M.-H., Olden, M., Pattaro, C., Bolton, J. A. H., Köttgen, A.,
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garaja, R., Nöthen, M. M., Nolte, I. M., Pilz, S., Rayner, N. W., Renstrom, F., Rettig, R., Ried,
J. S., Ripke, S., Robertson, N. R., Rose, L. M., Sanna, S., Scharnagl, H., Scholtens, S., Schu-
macher, F. R., Scott, W. R., Seufferlein, T., Shi, J., Vernon Smith, A., Smolonska, J., Stanton,
A. V., Steinthorsdottir, V., Stirrups, K., Stringham, H. M., Sundström, J., Swertz, M. A., Swift,
A. J., Syvänen, A.-C., Tan, S.-T., Tayo, B. O., Thorand, B., Thorleifsson, G., Tyrer, J. P., Uh,
H.-W., Vandenput, L., Verhulst, F. C., Vermeulen, S. H., Verweij, N., Vonk, J. M., Waite, L. L.,
Warren, H. R., Waterworth, D., Weedon, M. N., Wilkens, L. R., Willenborg, C., Wilsgaard, T.,
Wojczynski, M. K., Wong, A., Wright, A. F., Zhang, Q., LifeLines Cohort Study, Brennan, E. P.,
Choi, M., Dastani, Z., Drong, A. W., Eriksson, P., Franco-Cereceda, A., G̊adin, J. R., Gharavi,
A. G., Goddard, M. E., Handsaker, R. E., Huang, J., Karpe, F., Kathiresan, S., Keildson, S.,
Kiryluk, K., Kubo, M., Lee, J.-Y., Liang, L., Lifton, R. P., Ma, B., McCarroll, S. A., McKnight,
A. J., Min, J. L., Moffatt, M. F., Montgomery, G. W., Murabito, J. M., Nicholson, G., Nyholt,
D. R., Okada, Y., Perry, J. R. B., Dorajoo, R., Reinmaa, E., Salem, R. M., Sandholm, N., Scott,
R. A., Stolk, L., Takahashi, A., Tanaka, T., Van’t Hooft, F. M., Vinkhuyzen, A. A. E., Wes-
tra, H.-J., Zheng, W., Zondervan, K. T., ADIPOGen Consortium, AGEN-BMI Working Group,
CARDIOGRAMplusC4D Consortium, CKDGen Consortium, GLGC, ICBP, MAGIC Investiga-
tors, MuTHER Consortium, MIGen Consortium, PAGE Consortium, ReproGen Consortium,



183

GENIE Consortium, International Endogene Consortium, Heath, A. C., Arveiler, D., Bakker, S.
J. L., Beilby, J., Bergman, R. N., Blangero, J., Bovet, P., Campbell, H., Caulfield, M. J., Cesana,
G., Chakravarti, A., Chasman, D. I., Chines, P. S., Collins, F. S., Crawford, D. C., Cupples,
L. A., Cusi, D., Danesh, J., de Faire, U., den Ruijter, H. M., Dominiczak, A. F., Erbel, R., Erd-
mann, J., Eriksson, J. G., Farrall, M., Felix, S. B., Ferrannini, E., Ferrières, J., Ford, I., Forouhi,
N. G., Forrester, T., Franco, O. H., Gansevoort, R. T., Gejman, P. V., Gieger, C., Gottesman,
O., Gudnason, V., Gyllensten, U., Hall, A. S., Harris, T. B., Hattersley, A. T., Hicks, A. A.,
Hindorff, L. A., Hingorani, A. D., Hofman, A., Homuth, G., Hovingh, G. K., Humphries, S. E.,
Hunt, S. C., Hyppönen, E., Illig, T., Jacobs, K. B., Jarvelin, M.-R., Jöckel, K.-H., Johansen, B.,
Jousilahti, P., Jukema, J. W., Jula, A. M., Kaprio,. Genetic studies of body mass index yield
new insights for obesity biology. Nature, 518(7538):197–206, 2015. 21, 84, 87

Lupski, J. R., de Oca-Luna, R. M., Slaugenhaupt, S., Pentao, L., Guzzetta, V., Trask, B. J.,
Saucedo-Cardenas, O., Barker, D. F., Killian, J. M., Garcia, C. A., Chakravarti, A. and Patel,
P. I. DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell, 66(2):219–232,
1991. 15

Madsen, B. E. and Browning, S. R. A groupwise association test for rare mutations using a weighted
sum statistic. PLoS Genet, 5(2):e1000384, 2009. 4

Maller, J. B., McVean, G., Byrnes, J., Vukcevic, D., Palin, K., Su, Z., Howson, J. M. M., Auton, A.,
Myers, S., Morris, A., Pirinen, M., Brown, M. A., Burton, P. R., Caulfield, M. J., Compston, A.,
Farrall, M., Hall, A. S., Hattersley, A. T., Hill, A. V. S., Mathew, C. G., Pembrey, M., Satsangi,
J., Stratton, M. R., Worthington, J., Craddock, N., Hurles, M., Ouwehand, W., Parkes, M.,
Rahman, N., Duncanson, A., Todd, J. A., Kwiatkowski, D. P., Samani, N. J., Gough, S. C. L.,
McCarthy, M. I., Deloukas, P. and Donnelly, P. Bayesian refinement of association signals for 14
loci in 3 common diseases. Nat Genet, 44(12):1294–1301, 2012. 165

Marchini, J., Howie, B., Myers, S., McVean, G. and Donnelly, P. A new multipoint method for
genome-wide association studies by imputation of genotypes. Nat Genet, 39(7):906–913, 2007. 5

Maurano, M. T., Humbert, R., Rynes, E., Thurman, R. E., Haugen, E., Wang, H., Reynolds, A. P.,
Sandstrom, R., Qu, H., Brody, J., Shafer, A., Neri, F., Lee, K., Kutyavin, T., Stehling-Sun,
S., Johnson, A. K., Canfield, T. K., Giste, E., Diegel, M., Bates, D., Hansen, R. S., Neph, S.,
Sabo, P. J., Heimfeld, S., Raubitschek, A., Ziegler, S., Cotsapas, C., Sotoodehnia, N., Glass, I.,
Sunyaev, S. R., Kaul, R. and Stamatoyannopoulos, J. A. Systematic localization of common
disease-associated variation in regulatory DNA. Science, 337(6099):1190–1195, 2012. 82, 83, 89

McCarroll, S. A., Kuruvilla, F. G., Korn, J. M., Cawley, S., Nemesh, J., Wysoker, A., Shapero,
M. H., de Bakker, P. I. W., Maller, J. B., Kirby, A., Elliott, A. L., Parkin, M., Hubbell, E.,
Webster, T., Mei, R., Veitch, J., Collins, P. J., Handsaker, R., Lincoln, S., Nizzari, M., Blume,
J., Jones, K. W., Rava, R., Daly, M. J., Gabriel, S. B. and Altshuler, D. Integrated detection and
population-genetic analysis of SNPs and copy number variation. Nat Genet, 40(10):1166–1174,
2008. 13, 131

McPherson, R., Pertsemlidis, A., Kavaslar, N., Stewart, A., Roberts, R., Cox, D. R., Hinds, D. A.,
Pennacchio, L. A., Tybjaerg-Hansen, A., Folsom, A. R., Boerwinkle, E., Hobbs, H. H. and
Cohen, J. C. A common allele on chromosome 9 associated with coronary heart disease. Science,
316(5830):1488–1491, 2007. 131

Mills, R. E., Walter, K., Stewart, C., Handsaker, R. E., Chen, K., Alkan, C., Abyzov, A., Yoon,
S. C., Ye, K., Cheetham, R. K., Chinwalla, A., Conrad, D. F., Fu, Y., Grubert, F., Hajirasouliha,
I., Hormozdiari, F., Iakoucheva, L. M., Iqbal, Z., Kang, S., Kidd, J. M., Konkel, M. K., Korn, J.,
Khurana, E., Kural, D., Lam, H. Y. K., Leng, J., Li, R., Li, Y., Lin, C.-Y., Luo, R., Mu, X. J.,
Nemesh, J., Peckham, H. E., Rausch, T., Scally, A., Shi, X., Stromberg, M. P., Stutz, A. M.,
Urban, A. E., Walker, J. A., Wu, J., Zhang, Y., Zhang, Z. D., Batzer, M. A., Ding, L., Marth,
G. T., McVean, G., Sebat, J., Snyder, M., Wang, J., Ye, K., Eichler, E. E., Gerstein, M. B.,



184

Hurles, M. E., Lee, C., McCarroll, S. A. and Korbel, J. O. Mapping copy number variation by
population-scale genome sequencing. Nature, 470(7332):59–65, 2011. 13, 14, 132

Morgenthaler, S. and Thilly, W. G. A strategy to discover genes that carry multi-allelic or
mono-allelic risk for common diseases: A cohort allelic sums test (CAST). Mutation Re-
search/Fundamental and Molecular Mechanisms of Mutagenesis, 615(1–2):28–56, 2007. 4

Morris, A. P., Voight, B. F., Teslovich, T. M., Ferreira, T., Segrè, A. V., Steinthorsdottir, V.,
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Schreiber, S., Schäfer, A., Danesh, J., Blankenberg, S., Roberts, R., McPherson, R., Watkins, H.,
Hall, A. S., Overvad, K., Rimm, E., Boerwinkle, E., Tybjaerg-Hansen, A., Cupples, L. A., Reilly,
M. P., Melander, O., Mannucci, P. M., Ardissino, D., Siscovick, D., Elosua, R., Stefansson,
K., O’Donnell, C. J., Salomaa, V., Rader, D. J., Peltonen, L., Schwartz, S. M., Altshuler, D.
and Kathiresan, S. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian
randomisation study. The Lancet, 380(9841):572–580, 2012b. 10, 33, 166

Voight, B. F., Scott, L. J., Steinthorsdottir, V., Morris, A. P., Dina, C., Welch, R. P., Zeggini,
E., Huth, C., Aulchenko, Y. S., Thorleifsson, G., McCulloch, L. J., Ferreira, T., Grallert, H.,
Amin, N., Wu, G., Willer, C. J., Raychaudhuri, S., McCarroll, S. A., Langenberg, C., Hofmann,
O. M., Dupuis, J., Qi, L., Segre, A. V., van Hoek, M., Navarro, P., Ardlie, K., Balkau, B.,



194

Benediktsson, R., Bennett, A. J., Blagieva, R., Boerwinkle, E., Bonnycastle, L. L., Bostrom,
K. B., Bravenboer, B., Bumpstead, S., Burtt, N. P., Charpentier, G., Chines, P. S., Cornelis,
M., Couper, D. J., Crawford, G., Doney, A. S. F., Elliott, K. S., Elliott, A. L., Erdos, M. R.,
Fox, C. S., Franklin, C. S., Ganser, M., Gieger, C., Grarup, N., Green, T., Griffin, S., Groves,
C. J., Guiducci, C., Hadjadj, S., Hassanali, N., Herder, C., Isomaa, B., Jackson, A. U., Johnson,
P. R. V., Jorgensen, T., Kao, W. H. L., Klopp, N., Kong, A., Kraft, P., Kuusisto, J., Lauritzen,
T., Li, M., Lieverse, A., Lindgren, C. M., Lyssenko, V., Marre, M., Meitinger, T., Midthjell,
K., Morken, M. A., Narisu, N., Nilsson, P., Owen, K. R., Payne, F., Perry, J. R. B., Petersen,
A.-K., Platou, C., Proenca, C., Prokopenko, I., Rathmann, W., Rayner, N. W., Robertson, N. R.,
Rocheleau, G., Roden, M., Sampson, M. J., Saxena, R., Shields, B. M., Shrader, P., Sigurdsson,
G., Sparso, T., Strassburger, K., Stringham, H. M., Sun, Q., Swift, A. J., Thorand, B., Tichet,
J., Tuomi, T., van Dam, R. M., van Haeften, T. W., van Herpt, T., van Vliet-Ostaptchouk, J. V.,
Walters, G. B., Weedon, M. N., Wijmenga, C., Witteman, J., Bergman, R. N., Cauchi, S., Collins,
F. S., Gloyn, A. L., Gyllensten, U., Hansen, T., Hide, W. A., Hitman, G. A., Hofman, A., Hunter,
D. J., Hveem, K., Laakso, M., Mohlke, K. L., Morris, A. D., Palmer, C. N. A., Pramstaller, P. P.,
Rudan, I., Sijbrands, E., Stein, L. D., Tuomilehto, J., Uitterlinden, A., Walker, M., Wareham,
N. J., Watanabe, R. M., Abecasis, G. R., Boehm, B. O., Campbell, H., Daly, M. J., Hattersley,
A. T., Hu, F. B., Meigs, J. B., Pankow, J. S., Pedersen, O., Wichmann, H.-E., Barroso, I.,
Florez, J. C., Frayling, T. M., Groop, L., Sladek, R., Thorsteinsdottir, U., Wilson, J. F., Illig, T.,
Froguel, P., van Duijn, C. M., Stefansson, K., Altshuler, D., Boehnke, M. and McCarthy, M. I.
Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat
Genet, 42(7):579–589, 2010. 31

Ward, L. D. and Kellis, M. HaploReg: a resource for exploring chromatin states, conservation,
and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res,
40(Database issue):D930–4, 2012. 83

Weiss, L. A., Pan, L., Abney, M. and Ober, C. The sex-specific genetic architecture of quantitative
traits in humans. Nat Genet, 38(2):218–222, 2006. 6

Welch, C. L., Xia, Y. R., Shechter, I., Farese, R., Mehrabian, M., Mehdizadeh, S., Warden, C. H.
and Lusis, A. J. Genetic regulation of cholesterol homeostasis: chromosomal organization of
candidate genes. Journal of Lipid Research, 37(7):1406–1421, 1996. 25

Welter, D., MacArthur, J., Morales, J., Burdett, T., Hall, P., Junkins, H., Klemm, A., Flicek, P.,
Manolio, T., Hindorff, L. and Parkinson, H. The NHGRI GWAS catalog, a curated resource of
SNP-trait associations. Nucleic Acids Res, 42(Database issue):D1001–6, 2014. 2, 6, 82

Willer, C. J., Li, Y. and Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide
association scans. Bioinformatics, 26(17):2190–2191, 2010. 5, 39

Willer, C. J., Sanna, S., Jackson, A. U., Scuteri, A., Bonnycastle, L. L., Clarke, R., Heath, S. C.,
Timpson, N. J., Najjar, S. S., Stringham, H. M., Strait, J., Duren, W. L., Maschio, A., Busonero,
F., Mulas, A., Albai, G., Swift, A. J., Morken, M. A., Narisu, N., Bennett, D., Parish, S., Shen,
H., Galan, P., Meneton, P., Hercberg, S., Zelenika, D., Chen, W.-M., Li, Y., Scott, L. J., Scheet,
P. A., Sundvall, J., Watanabe, R. M., Nagaraja, R., Ebrahim, S., Lawlor, D. A., Ben-Shlomo, Y.,
Davey-Smith, G., Shuldiner, A. R., Collins, R., Bergman, R. N., Uda, M., Tuomilehto, J., Cao,
A., Collins, F. S., Lakatta, E., Lathrop, G. M., Boehnke, M., Schlessinger, D., Mohlke, K. L.
and Abecasis, G. R. Newly identified loci that influence lipid concentrations and risk of coronary
artery disease. Nat Genet, 40(2):161–169, 2008. 6, 33

Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M. and Lin, X. Rare-variant association testing
for sequencing data with the sequence kernel association test. The American Journal of Human
Genetics, 89(1):82–93, 2011. 4

Wu, Y., Waite, L. L., Jackson, A. U., Sheu, W. H.-H., Buyske, S., Absher, D., Arnett, D. K.,
Boerwinkle, E., Bonnycastle, L. L., Carty, C. L., Cheng, I., Cochran, B., Croteau-Chonka, D. C.,



195

Dumitrescu, L., Eaton, C. B., Franceschini, N., Guo, X., Henderson, B. E., Hindorff, L. A.,
Kim, E., Kinnunen, L., Komulainen, P., Lee, W.-J., Le Marchand, L., Lin, Y., Lindström, J.,
Lingaas-Holmen, O., Mitchell, S. L., Narisu, N., Robinson, J. G., Schumacher, F., Stančáková,
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