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F̄Ū(Ū0, x(0)), corresponds to the Jacobian at simulation time 1210 sec. . . . . 165

5.11 Simulations over the NEDC comparing Newton's method and Kantorovich's
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.12 Simulation over the NEDC using Kantorovich's method demonstrating intake
pressure maximum constraint satisfaction, p̄in = 170kPa. . . . . . . . . . . . 166

5.13 4 zones of the piecewise polynomial model of the GD engine. . . . . . . . . . 173
5.14 Nominal settings for VGT position and EGR valve position at di�erent oper-

ating conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.15 Transient comparison between the mean-value-model and polynomial model

in zone 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.16 Steady state comparison between the mean-value-model and polynomial model

at the nominal control settings. . . . . . . . . . . . . . . . . . . . . . . . . . 175
5.17 DC gain comparison between the mean-value-model and polynomial model

around the nominal control settings. . . . . . . . . . . . . . . . . . . . . . . 176
5.18 Closed-loop simulation using discrete-time rate-based NMPC on the GD en-

gine mean-value-model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.19 Closed-loop simulation using discrete-time rate-based NMPC on the GD en-

gine mean-value-model with either χEGR or pin measurement o�sets. . . . . . 179
5.20 Closed-loop simulation using discrete-time rate-based NMPC on the GD en-

gine mean-value-model with both χEGR and pin measurement o�sets. . . . . 180
5.21 Closed-loop simulation using discrete-time rate-based NMPC on the GD en-

gine mean-value-model with �rst order �lters placed on the χEGR and pin
measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.22 Sparsity pattern of the Jacobian of the necessary conditions using discrete time
rate-based NMPC and non-rate-based NMPC, both with multiple-shooting
and horizon N = 5. The number of non-zero entries are 232 and 160 with
rate-based NMPC and non-rate-based NMPC respectively. . . . . . . . . . . 181

5.23 Simulations using CNMPC with soft contractive constraint enforcement in
loop with the mean-value GD engine model at di�erent operating conditions. 184

5.24 Simulations using HNNMPC with soft terminal set constraint enforcement in
loop with the mean-value GD engine model at di�erent operating conditions. 184

x



LIST OF TABLES

1.1 Fleet-wide emissions standards under the footprint-based CO2 standards [g/mi]
and corresponding fuel economy [mpg]. Source: [105]. . . . . . . . . . . . . . 2

1.2 MY 2025 CO2 and fuel economy targets for representative MY 2012 vehicles.
Source: [105]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Evaluation of methods for powertrain control: , � good, ∆ � intermediate,
and × � bad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Evaluation of QP solution methods: , � good, ∆ � intermediate, and × �
bad. Source: [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Computational complexity of various MPC designs for the diesel air path. . . 62

3.1 Comparison of tracking error and memory usage of MPC without gain schedul-
ing, seMPC, and gsMPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 Comparison of tracking performance, constraint handling, and worst-case
computation time for various methods over the NEDC. . . . . . . . . . . . . 150

5.2 Comparison of computation time for various NMPC methods. . . . . . . . . 186

xi



LIST OF ABBREVIATIONS

χEGR exhaust gas recirculation rate
γ speci�c heat ratio
ωt turbocharger speed
cp speci�c heat at constant pressure
cv speci�c heat at constant volume
dc compressor diameter
Ne engine speed
pa ambient pressure
pex absolute exhaust pressure
pin absolute intake pressure
ppre prethrottle pressure
Rair speci�c gas constant for air
Ta ambient temperature
Teco exhaust gas recirculation cooler out temperature
Tico intercooler out temperature
Tin intake temperature
uEGR exhaust gas recirculation valve position
uth exhaust gas recirculation throttle position
uV GT variable geometry turbine position
Wc compressor �ow
Wf fuel rate
Wcyl cylinder �ow
WEGR exhaust gas recirculation valve �ow
Wth throttle �ow
C/GMRES Continuation and Generalized Minimum Residual Method
CAFE Corporate Average Fuel Economy
CI Compression Ignition
CLF Control Lyapunov Function
CMPC Contractive Model Predictive Control
CPU Central Processing Unit
DAP Diesel Air Path
ECU Engine Control Unit
EMPC Economic Model Predictive Control
EPA Environmental Protection Agency
GHG Greenhouse Gas
ICE Intermittent Constraint Enforcement

xii



IMEP Indicated Mean E�ective Pressure
KKT Karush-Kuhn-Tucker
LMPC Linear Model Predictive Control
LP Linear Program
LPV Linear Parameter Varying
MAF Mass Air Flow
MAP Manifold Absolute Pressure
MIMO Multiple-input Multiple-output
MIQP Mixed Integer Quadratic Program
MPC Model Predictive Control
MY Model Year
NEDC New European Drive Cycle
NHTSA National Highway Tra�c Safety Administration
NMOG Non-methane Organic Gases
NMPC Nonlinear Model Predictive Control
NOx Nitrogen Oxides
PM Particulate Matter
PMP Pontrygin Maximum Principle
PWA Piecewise-A�ne
PWM Pulse-Width-Modulation
QP Quadratic Program
RPI Robust Postively Invariant
SI Spark Ignition
SISO Single-input Single-output
SQP Sequential Quadratic Program
VGT Variable Geometry Turbocharger
WLTP World harmonized Light vehicles Test Procedure

xiii



ABSTRACT

Low Complexity Model Predictive Control of a Diesel Engine Airpath

by

Mike Huang

Chair: Ilya V. Kolmanovsky

The diesel air path (DAP) system has been traditionally challenging to control due to

its highly coupled nonlinear behavior and the need for constraints to be considered for

driveability and emissions. An advanced control technology, model predictive control (MPC),

has been viewed as a way to handle these challenges, however, current MPC strategies for

the DAP are still limited due to the very limited computational resources in engine control

units (ECU). A low complexity MPC controller for the DAP system is developed in this

dissertation where, by �low complexity,� it is meant that the MPC controller achieves tracking

and constraint enforcement objectives and can be executed on a modern ECU within 200

µsec, a computation budget set by Toyota Motor Corporation.

First, an explicit MPC design is developed for the DAP. Compared to previous explicit

MPC examples for the DAP, a signi�cant reduction in computational complexity is achieved.

This complexity reduction is accomplished through, �rst, a novel strategy of intermittent

constraint enforcement. Then, through a novel strategy of gain scheduling explicit MPC, the

memory usage of the controller is further reduced and closed-loop tracking performance is

improved. Finally, a robust version of the MPC design is developed which is able to enforce
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constraints in the presence of disturbances without a signi�cant increase in computational

complexity compared to non-robust MPC. The ability of the controller to track set-points

and enforce constraints is demonstrated in both simulations and experiments. A number of

theoretical results pertaining to the gain scheduling strategy is also developed.

Second, a nonlinear MPC (NMPC) strategy for the DAP is developed. Through various

innovations, a NMPC controller for the DAP is constructed that is not necessarily any more

computationally complex than linear explicit MPC and is characterized by a very streamlined

process for implementation and calibration. A signi�cant reduction in computational com-

plexity is achieved through the novel combination of Kantorovich's method and constrained

NMPC. Zero-o�set steady state tracking is achieved through a novel NMPC problem for-

mulation, rate-based NMPC. A comparison of various NMPC strategies and developments

is presented illustrating how a low complexity NMPC strategy can be achieved.
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Chapter 1

Introduction

Emissions and fuel economy regulations for modern automobiles are becoming increas-

ingly stringent. On April 1, 2010, the U.S. Environmental Protection Agency (EPA) and the

National Highway Tra�c Safety Administration (NHTSA) established a national program

of standards for greenhouse gas (GHG) emissions and Corporate Average Fuel Economy

(CAFE) for Model Year (MY) 2012 - 2016 light-duty vehicles [104]. These light-duty ve-

hicles include passenger cars, light-duty trucks, and medium-duty passenger vehicles and

are currently responsible for nearly 60% of U.S. transportation related petroleum use and

GHG emissions [105]. These standards require light-duty vehicles to meet an estimated com-

bined average of 250 grams per mile of carbon dioxide (CO2) by MY 2016 which translates

to 35.5 miles per gallon (mpg) if the CO2 level is to be met purely through fuel economy

improvements.

Following the establishment of GHG and CAFE regulations for MY 2012 - 2016, President

Obama, on May 21, 2010, issued a continued request to the EPA and NHTSA to create a

program for national fuel economy standards for vehicle MY 2017 - 2025:

�I [President Barack Obama] request that the Administrators of the EPA

and NHTSA develop, through notice and comment rulemaking, a coordinated

national program under the CAA [Clean Air Act] and the EISA [Energy Inde-

pendence and Security Act of 2007] to improve fuel e�ciency and to reduce green-
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Table 1.1: Fleet-wide emissions standards under the footprint-based CO2 standards [g/mi]
and corresponding fuel economy [mpg]. Source: [105].

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
Passenger cars

[g/mi]
225 212 202 191 183 172 164 157 150 143

Light trucks
[g/mi]

298 295 285 277 269 249 237 225 214 203

Combined cars &
light trucks [g/mi]

250 243 232 222 213 199 190 180 171 163

Combined cars &
light trucks [mpg]

35.5 36.6 38.3 40.0 41.7 44.7 46.8 49.4 52.0 54.5

house gas emissions of passenger cars and light-duty trucks of model years 2017

- 2025... The program should also seek to achieve substantial annual progress in

reducing transportation sector greenhouse gas emissions and fossil fuel consump-

tion, consistent with my Administration's overall energy and climate security

goals, through the increased domestic production and use of existing, advanced,

and emerging technologies [81]...�

In response to the Presidential Memorandum [81] the EPA and NHTSA have established

the much publicized standard of 54.5 mpg for MY 2025 light-duty vehicle �eet average fuel

economy [105]. Table 1.1 shows the GHG and CAFE standards progression from MY 2016

to MY 2025 for di�erent vehicle classes based on vehicle footprint. Table 1.2 shows the MY

2025 GHG and fuel economy standards for representative MY 2012 vehicles of various sizes.

The reports [3, 4, 59] survey the outlook of meeting the MY 2025 fuel economy targets

and give an overview of strategies that would be necessary, including regulatory actions,

behavioral shifts of consumers and automotive manufacturers, and technological advance-

ments. In [3], it was concluded that a 30%�50% improvement in vehicle fuel economy can

be achieved by 2035. This improvement can be achieved in the short term through im-

provements in gasoline and diesel engines, transmissions, gasoline hybrid technologies, and

reductions in vehicle weight and drag. In the long term, plug-in hybrid and hydrogen fuel

cell vehicles would need to achieve enough market penetration to begin to make an impact
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Table 1.2: MY 2025 CO2 and fuel economy targets for representative MY 2012 vehicles.
Source: [105].

Vehicle Type Example
Model

Example Model
Footprint [sq. ft.]

EPA CO2

Standard
[g/mi]

NHTSA Fuel
Economy
Standard
[mpg]

Example Passenger Cars
Compact car Honda Fit 40 131 61.1
Mid-size car Ford Fusion 46 147 54.9
Full-size car Chrysler 300 53 170 48.0
Example Light-duty Trucks
Small SUV 4WD Ford

Escape
43 170 47.5

Midsize
crossover

Nissan
Murano

49 188 43.4

Minivan Toyota
Sienna

56 209 39.2

Large pickup
truck

Chevy
Silverado

67 252 33.0

on �eet average fuel economy.

Currently, only about 18%�25% of the energy from fuel is actually transferred to the

wheels in a conventional gasoline automobile during combined city and highway driving [107].

Of the energy delivered to the wheels, 9%�12% of the total fuel energy is dissipated as wind

resistance, 5%�7% is dissipated as rolling resistance, and only 5%�7% is used to overcome the

vehicle inertia, i.e., drive. The majority of the losses between the fuel tank and the wheels

occur in the engine (68%�72%) due to thermal (58%�61%), combustion (3%), engine friction

(3%), and pumping losses (3%). Thus there is a very large opportunity to improve vehicle

fuel e�ciency through improving engine e�ciency. As it has been in the past, advanced

control technologies in synergy with advanced hardware technologies will be a key component

for meeting the strict and challenging regulatory standards of the future [15]. The work

described in this dissertation focuses on the development of an advanced control technology

that would enable more e�cient use of engines by enabling them to operate close to their

limits. Speci�cally, the control technology that is enhanced through the work described in
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this dissertation is Model Predictive Control (MPC). In this work, MPC will be applied to

diesel engines which are used in many di�erent domains besides automotive transportation,

including marine and locomotive, and accounts for more than 95 percent of all U.S. freight

transportation [99].

The remainder of this chapter is organized as follows. Section 1.1 describes current trends

in powertrain control: both engine hardware trends and the current state of powertrain con-

trol in industry. Section 1.2 gives a brief introduction to MPC and addresses the question

�why should MPC be used for engine control?� Section 1.3 describes the main diesel air path

(DAP) application example and control objective that will be used throughout this disserta-

tion, the associated history, and the associated challenges. Section 1.4 gives an overview of

the research contributions that overcome, in part, those aforementioned challenges. Finally,

Section 1.5 gives an outline of the remaining chapters of this dissertation.

1.1 Trends in Powertrain Control

Engine downsizing has been a popular trend that can lead to higher fuel economy through

reduced weight, friction losses, heat losses, and pumping losses. In fact, according to [59],

aggressive vehicle-wide downsizing is required to meet current and future CAFE standards.

The results in [59] suggest that if vehicle weight and horsepower were kept at constants levels

between 1980 and 2006, fuel economy could have risen by nearly 60% due to progress in fuel

economy related technologies. In contrast, the actual fuel economy increase was less than

6.5% from 1980 to 2004 as U.S. market preferences drove average horsepower up by 80% and

99% for cars and light-duty trucks, respectively, and average vehicle weight up by 12% and

26% for cars and light-duty trucks, respectively. Additionally, from 1980 to 2004, light-duty

truck sales rose from 20% of total passenger vehicles to over 51%.

To maintain the horsepower that customers currently demand, downsized engines are

now commonly coupled with turbochargers, [21, 29, 88, 100, 103, 117], which are able to con-
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vert the energy that would typically be lost as exhaust heat, [29, 103], to air boosting and

higher engine torque. In one extreme case, [103], a turbocharged and supercharged engine

with a downsizing factor of 60% was able to achieve the same steady-state torque output as

a naturally aspirated Jaguar Land Rover AJ133 5.0 liter V8 engine with 23% improved fuel

consumption. As was noted in [103], the limit of extreme downsizing is not the combustion

system but rather the air charge system. The challenge is to develop a system that can

provide su�cient boost at low speed and low load without overboosting at high speed and

high load [15,116]. Actuators such as wastegates or variable geometry turbochargers (VGT)

could be used to overcome this challenge, however the use of these actuators introduce in-

creased complexity in control design and calibration. Achieving adequately fast transient

response with turbochargers is another challenge, commonly referred to �turbo-lag.� The

turbo-lag is a delay caused by the turbocharger inertia and a�ects the time required to spin

up the turbine and provide boost. Controllers aimed at reducing turbo-lag need to simul-

taneously meet boost pressure overshoot limits which would otherwise lead to undesirable

torque disturbances [15,57,66,91].

In addition to increasingly stringent CAFE standards, the EPA will also begin to phase

in Tier 3 tailpipe emissions standards which, by 2025, will reduce the sum of non-methane

organic gases (NMOG) and nitrogen oxides (NOx) by approximately 80% compared to to-

day's �eet average standard and reduce particulate matter (PM) by 70% compared to today's

standard [106]. Exhaust gas recirculation (EGR) is a popular strategy in reducing NOx in

both spark ignition (SI) and compression ignition (CI, e.g., diesel) engines [91]. This strat-

egy recirculates cooled exhaust gas back into the intake manifold and cylinders replacing

O2 with CO2 which reduces the speci�c heat capacity of the in-cylinder gas mixture and

peak in-cylinder temperature during combustion. This results in reduced NOx emissions.

However, the NOx reduction achieved through EGR simultaneously increases PM [34, 91].

Furthermore, emissions reductions typically result in decreased fuel economy [3].

Diesel engines are also an attractive option to meet future fuel economy regulations be-
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cause they are more fuel e�cient compared to their gasoline counterparts by about 30% [3].

However, diesel engines typically utilize both turbocharger technologies and EGR technolo-

gies which lead to complex nonlinear interactions, e.g., DC gain reversal [38, 113], and per-

formance and emissions trade-o�s.

Regardless of the engine con�guration, the industry trend has been to add new actuators

and sensors to meet regulatory requirements. The interactions between the many components

are di�cult to optimize using current control methods. The current practice is based on

wrapping individual feedback loops, e.g., PID, around subsystem actuators and sensors. The

dynamic interactions are then reduced by detuning those system controllers. Furthermore

many maps, e.g., for feed-forward commands and feedback gains, are required to handle the

highly nonlinear nature of the engine. In addition, a large calibration e�ort from experienced

calibrators is required. Thus there has been recent and growing interest in the utilization

of MPC for its ability to simultaneously coordinate multiple actuators and objectives to

improve performance, enforce reliability and emissions constraints, and operate near system

boundaries without detuning, all in a systematic manner.

1.2 Why Model Predictive Control?

MPC is an optimization based control method that has been used in many applications

in industry, primarily for chemical process control, see [12, 90] and references therein. The

fundamental idea is that a model of the plant is used to predict future outputs with respect

to a sequence of future inputs. Then, numerical optimization methods are used to compute

the future inputs that minimize a cost function that captures the desired system behavior.

The �rst element of the control sequence is then applied to to the plant. This procedure

is then repeated at the next time step and all future time steps. Figure 1.1 illustrates the

MPC process at time step k where the control objective is to drive the system output, y,

to a desired set-point, yref . The process is then repeated at the next time step, k + 1, see
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Figure 1.1: Illustration of the model predictive control process at time step k. The output
is measured at time k. An optimization algorithm then chooses nc + 1 control moves, ui|k,
at future steps in the control horizon i ∈ {0, 1, ...nc} which minimizes cumulative the error

to the target, yi|k − yref , over the prediction horizon i ∈ {0, 1, ...nc}, np ≤ nc. This
optimization is performed subject to control and output constraints. The optimal control
u0|k, i.e., the �rst element of the optimized control sequence, is then applied at time step k.

Figure 1.2. Throughout this dissertation, the subscript notation i|k will be used where k

denotes the current sample time and i denotes the time step in the prediction horizon where

i = 0 corresponds to the current sample time k.

There are numerous advantages of using MPC for engine control versus traditional control

methods, e.g., PID.

• Complex multiple-input multiple-output (MIMO) interactions, e.g., those occurring in

modern engines, are inherently handled through model based optimization. This leads

to better closed-loop performance compared to detuned coupled single-input single-

output (SISO) control strategies. The required calibration time will also be reduced,

e.g., the detuning process necessary for SISO strategies is not necessary for MIMO

strategies.

• Closed-loop performance can be maximized while enforcing to constraints directly

through the optimization process. Other control strategies often require detuning to

7



Figure 1.2: Illustration of the model predictive control process at time step k + 1. The
output is measured at time k + 1. An optimization algorithm then chooses nc + 1 control

moves, ui|k+1, at future steps in the control horizon i ∈ {0, 1, ...nc} which minimizes
cumulative the error to the target, yi|k+1 − yref , over the prediction horizon i ∈ {0, 1, ...nc},
np ≤ nc. This optimization is performed subject to control and output constraints. The
optimal control u0|k+1, i.e., the �rst element of the optimized control sequence, is then

applied at time step k + 1.

avoid constraint violations. Note that reference governors have also been recently used

for diesel engine control to handle constraints [79]. However, the ultimate goal is to si-

multaneously maximize performance and enforce constraints, while reference governors

only enforce constraints.

• There is typically a direct correlation between terms in the cost function and desired

closed-loop behavior which facilitates tuning/calibration.

There are also challenges in exploiting MPC for practical applications. First a model

needs to be developed that can be used for prediction. Assuming that a model can be

obtained, it is still non-trivial to implement the control law, particularly when constraints

are considered, because of the potentially large amount of computations and memory that is

required to solve the associated optimization problem online at every time step. Note that

embedded micro-controllers are very limited compared to the computing power of modern
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Table 1.3: Evaluation of methods for powertrain control: , � good, ∆ � intermediate, and
× � bad.

Control
Method

Objective
Formula-
tion

MIMO Control of
Nonlinear
Systems

Constraint
Enforce-
ment

Computation
Cost

Maturity

LQR ,− , ∆ × , ,
H∞ ,− , ∆ × , ,

Linear
Reference
Governor

× , ∆ , ,- ,

Nonlinear
Reference
Governor

× , , , ∆+ ∆

Linear
MPC

,− , ∆ , ∆+ ,−

Nonlinear
MPC

, , , , ∆ ∆

Economic
MPC

,+ , , ,+ ∆- ×

Feedback
Lineariza-

tion

× , , × , ,

PID × ∆ ∆ × , ,
Heuristic × ∆− ∆ × , ,

computers, e.g., a modern mid-range engine control unit (ECU) has on the order of 10 times

slower clock speed compared to modern personal computers [26].

Table 1.3 shows an evaluation of various methods that can be used for powertrain con-

trol. Methods that are currently used in industry are quite basic, exploit primarily PID and

heuristic-rule-based control, and require large calibration e�orts to achieve the desired behav-

ior for strongly coupled multivariable plants such as the DAP. Of the methods considered in

Table 1.3, reference governors and MPC can be used to enforce constraints, however reference

governors are used only to enforce constraints rather than improve closed-loop performance

in general. Hereafter, linear MPC (LMPC) refers to MPC design based on a linear model,

a quadratic or linear cost function, and linear constraints. Note that LMPC is actually a

nonlinear controller, unless the system has no constraints. LMPC is a fairly mature control

9



technology, insofar as the implementation framework and supporting theoretical results are

available. For example, o�set-free, steady-state tracking versions of LMPC are available

which typically utilize a disturbance observer or a linear-velocity form (referred to as rate-

based form in this dissertation), [85,114]. Robust versions, in the sense that constraints can

be satis�ed under model uncertainties, are available through tube-MPC, [64, 75]. A priori

stability guarantees using terminal state penalties and terminal state constraints exist [72],

and a posteriori stability analysis techniques are also available [89]. Explicit MPC can also

be used to improve online computation times, [5]. LMPC typically reduces to solving a

quadratic program (QP) or linear program (LP). Solving the QP or LP for applications that

require fast sampling, e.g., powertrain control, is still non-trivial, particularly under many

constraints. Naturally, nonlinear MPC (NMPC), see [30] and references therein, can o�er

better closed-loop performance when the underlying system is nonlinear compared to LMPC

which typically handles nonlinearities through ad hoc methods. However, NMPC is less

mature in contrast to LMPC. For example, it is not yet clear how o�set-free, steady-state

tracking can be accomplished with NMPC. Furthermore, the NMPC optimization problem is

more di�cult to solve within real-time limitations. Economic MPC (EMPC) is an emerging

area of research which has been viewed as an enabling technology for the next industrial

revolution, [2], or �Industry 4.0,� a term originally used by the German government to pro-

mote the vision of the �Smart Factory.� With EMPC the traditional objective functions, e.g.,

for set-point tracking, are replaced by ones that directly target some economical value. For

powertrain control, this means that actuators will be coordinated to directly improve fuel

economy and reduce emissions, rather than traditionally track some intermediate set-points

which are separately calibrated to achieve economic goals.

The work presented in this dissertation focuses on overcoming the current challenges,

particularly the computational challenges, of applying LMPC and NMPC to powertrain

control. This work can be viewed as a stepping stone toward an ultimate goal of EMPC

for the powertrain. The following Sections 1.2.1-1.2.3 give a brief introduction to MPC.
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Throughout this dissertation, complexity analysis of various MPC strategies will be given

using Big-O and little-o notation.

De�nition 1.1 : For a function f : R → R and g : R → R, f(x) is O(g(x)) if and only if

there exists M ≥ 0 and x0 ≥ 0 such that f(x) ≤Mg(x) for all x ≥ x0.

Typically Big-O notation, O in De�nition 1.1, is used for complexity analysis of algo-

rithms, however, Big-O notation is not well suited for functions of multiple variables and the

existing de�nitions for Big-O notation of multiple variables are commonly inconsistent, [37].

Furthermore, one of the main strategies that will be used in this dissertation for managing

computational complexity of MPC is to keep the problem size small, thus it is not partic-

ularly insightful to only examine the asymptotic complexity of algorithms. Thus we will

also introduce little-o notation in this dissertation for the purpose of gaining insight into the

computational complexity of algorithms for small problem sizes.

De�nition 1.2 : For a function f : Rn → R and g : Rn → R, f(x) is o(g(x)) if and only if

there exists M ≥ 0 such that f(x) ≤Mg(x) for all x ≥ 0.

1.2.1 Model Predictive Control

MPC is developed for a the discrete time plant model of the form,

xk+1 = f(xk, uk), (1.1)

where k is the current sample instant and xk ∈ Rnx , uk ∈ Rnu , and f : Rnx × Rnu → Rnx .

MPC is based on minimizing a cost functional of the form,

J = φ(xN |k) +
N−1∑
i=0

l(xi|k, ui|k), (1.2)

where l : Rnx × Rnu → R is the incremental cost function, φ : Rnx → R is the terminal

cost function, and N is the prediction horizon. The minimization of (1.2) with respect to

xi|k with i ∈ {1, ..., N} and ui|k with i ∈ {0, ..., N − 1} is performed subject to equality and
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inequality constraints,

xi+1|k = f(xi|k, ui|k), i ∈ {0, ..., N − 1}, (1.3)

x0|k = xk, (1.4)

g(xi|k, ui|k) = 0, i ∈ {0, ..., N − 1}, (1.5)

h(xi|k, ui|k) ≤ 0, i ∈ {0, ..., N − 1}, (1.6)

ψ(xN |k) ≤ 0, (1.7)

where i is the running time (discrete) over the prediction horizon N and g : Rnx×Rnu → Rng ,

h : Rnx × Rnu → Rnh , and ψ : Rnx × Rnu → Rnψ . The equality constraint (1.3) enforces the

state dynamics over the prediction horizon. The equality constraint (1.4) embeds the initial

condition. The equality constraint (1.5) can be made more general and, e.g., used to hold the

control input at some given constant value at some instances of i ∈ {0, ..., N − 1}, typically

referred to as move-blocking. The constraint (1.6) enforces any desired inequality constraints,

e.g, keeping the control and state sequences inside a �safe� set. The constraint (1.7) enforces a

terminal state constraint which can, e.g., be used to enforce stability. Note that more general

and/or special forms of the MPC optimization problem can be written. The optimization

problem (1.2)-(1.7) is typically solved trough forming the associated Karush-Kuhn-Tucker

(KKT) conditions for optimality. This converts (1.2)-(1.7) into a root �nding problem which

can be solved using a Newton method for xi|k, i ∈ {1, ..., N}, and ui|k, i ∈ {0, ..., N − 1}.

Once (1.2)-(1.7) is solved, u0|k is applied at the the sample instant k. This process is then

repeated at the next time step.

1.2.2 Linear Model Predictive Control

One special case of the MPC formulation (1.2)-(1.7) is the case where f is linear, g, h,

and ψ are a�ne, and l and φ are quadratic. This gives the typical formulation for LMPC
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where the cost functional,

J = xTN |kPxN |k +
N−1∑
i=0

xTi|kQxi|k + uTi|kRui|k, (1.8)

is minimized subject to the a�ne constraints,

xi+1|k = Axi|k +Bui|k, i ∈ {0, ..., N − 1}, (1.9)

Gxxi|k +Guui|k −G0 = 0, i ∈ {0, ..., N − 1}, (1.10)

Hxxi|k +Huui|k −H0 ≤ 0, i ∈ {0, ..., N − 1}, (1.11)

ψxxN |k + ψ0 ≤ 0, (1.12)

and initial condition embedding (1.4). The cost functional (1.8) corresponds to a regulation

objective with the matrices P = P T ≥ 0, Q = QT ≥ 0, and R = RT > 0. The matrices

A and B in (1.9) are the linear system dynamic matrices. The matrices Gx and Gu and

vector G0 in (1.10) correspond to an a�ne equality constraint. The matrices Hx and Hu

and vector H0 in (1.11) correspond to an a�ne inequality constraint. The matrix ψx and

vector ψ0 in (1.12) correspond to an a�ne terminal state constraint. The LMPC formulation

(1.8)-(1.12) and (1.4) is a QP. There are a variety of methods that can be used to solve the

QP. An evaluation of various QP solution methods is summarized in Table 1.4. Table 1.4

evaluates QP solver characteristics such as central processing unit (CPU) computation times

and memory usage, code simplicity, typical optimization problem size use cases, and etc.

1.2.3 Explicit Linear Model Predictive Control

Due to the highly limited computational resources available in the ECU for powertrain

applications, MPC formulations with small problem sizes are typically used. Explicit MPC,

which is especially fast in CPU computation time for the small problem sizes, i.e., about 6

to 8 control moves and 8 to 12 parameters [1, 7], is then used as the QP solution technique.
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Table 1.4: Evaluation of QP solution methods: , � good, ∆ � intermediate, and × � bad.
Source: [7].

Explicit
MPC Implicit (on-line QP)

active set interior
point

gradient
projection

CPU computation time , ∆ ∆ ∆
CPU memory usage × , , ,

control code , ∆ × ,
ability to estimate tight
bounds for worst case
computation time

, × × ∆

amount of o�-line
computation

× , , ,

generates feasible and
optimal solutions

, , ∆ ∆

problem size small medium large medium

Explicit MPC is a solution method that can be used when the system dynamics, (A,B,C,D),

are known a priori and do not change online. Then the solution to the QP (1.8)-(1.12) and

(1.4) can be computed o�-line for all initial conditions for prediction, xk. Explicit MPC is

essentially an active set QP method where the solution to the associated KKT conditions

are precomputed for all possible combinations of active constraints [5, 23]. This results in a

piecewise-a�ne (PWA) control law with the following form,

u?0|k = Gjxk + Fj if Kjxk ≤ Lj, j ∈ {1, .., Nr}, (1.13)

where u?0|k is the control to be applied and is the �rst element of the optimal control sequence

associated with the QP (1.8)-(1.12), xk is the current sampled state, and Nr is the number

of regions of the PWA control law (1.13) resulting from the di�erent combinations of active

constraints. Because the regions are generated through a combinatorial process, Nr will be

o(C(Nnh +nψ, Nnu)), where Nnu is the total number of optimization variables, Nnh +nψ is

the total number of inequality constraints, and C(x, y) denotes the operation x choose y [23].
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Figure 1.3: Diesel engine schematic.

1.3 Control Objective, History, and Challenges

The diesel air path (DAP) is pursued in this work as a representative system within

automotive powertrains which has been traditionally challenging to control due to its highly

coupled nonlinear behavior, the need for constraints to be considered for driveability and

emissions, and the very limited computational resources in ECUs. The challenges that will be

addressed are common in not only automotive engine control, but also control of gas turbine

engines in aircraft, e.g., the challenges of improving transient response and reduce turbo-

lag, coordinating multiple actuators to handle multiple objectives, handling constraints, and

managing computational complexity.

The diesel engine schematic is shown in Figure 1.3. The engine consists of a cylinder

block, intake and exhaust manifolds, exhaust gas recirculation (EGR) path, and a variable

geometry turbocharger (VGT). The �ows in the engine are controlled using a VGT, EGR

valve, and EGR throttle. The control objective is to track set-points for intake manifold

pressure, commonly referred to as manifold absolute pressure (MAP) or boost, and EGR

rate (the ratio of EGR �ow to cylinder �ow). These set-points are provided by maps, i.e,

look-up tables, as functions of the engine operating condition, i.e., the current engine speed

and load (typically indicated by fuel rate). State and output constraints are to be imposed
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on MAP, EGR rate, exhaust pressure, and turbine speed. Control constraints must also

be enforced on the VGT, EGR valve, and EGR throttle. Furthermore, the computational

complexity of the controller must meet stringent computation budget requirements.

Speci�cally, it is desired that the control can be computed within 200 µsec on a modern

ECU, e.g., Freescale's MPC5644A microcontroller [26]. The 200 µsec execution time budget

has been set by the sponsors of this research, Toyota Motor Corporation, and is based on a

typical sampling period 32 msec for DAP control and the fact that the air path controller

is only able to occupy a fraction of the ECU's computational resources which must be used

for many other tasks. Throughout this dissertation, �low complexity MPC� refers to a MPC

controller for the DAP that is able to track set-points and enforce input, state, and output

constraints and whose control can be computed within 200 µsec on a modern ECU.

1.3.1 History of Linear MPC for the DAP

There has been growing interest in the use of MPC for the DAP. This has been driven

by the need to be able to systematically handle MIMO control objectives and constraints

derived from driveability and emissions requirements. Furthermore, the use of MPC for the

DAP, and powertrain control in general, has been enabled by increases in the computational

power of industry ECUs, albeit slower increases compared to CPUs in general. Use cases of

LMPC for the DAP began to appear in 2007.

• Ortner and del Re in 2007, [84], �rst applied LMPC to the DAP. Their work utilized

a two state linear model. The inputs were EGR position, VGT position, engine speed,

and fuel rate. The tracked outputs were MAP and mass air �ow (MAF, also referred to

as compressor �ow). Control was performed with EGR position and VGT position and

the engine speed and fuel rate were treated as external measured disturbances. A two

state linear model was generated using system identi�cation [65]. To handle the DAP

nonlinearities, the engine operating range, i.e, the engine speed and fuel rate range, was

split into 12 zones, each with its own identi�ed model and MPC controller. To achieve
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zero-o�set, steady-state tracking, an output disturbance estimator was used along with

an input-velocity MPC formulation. Constraints were used to enforce control input

limits and slew rate limits. Explicit MPC was used as the QP solution method. A

control horizon of 1 was used with a 5 sec prediction horizon, i.e., only a single control

move was allowed at time step i = 0 and held constant for the remainder of the 5

sec prediction horizon. The control horizon of 1 was chosen because Nr = 25 for

the explicit MPC representation and became Nr = 433 with a control horizon of 2.

The controller was implemented with dSPACE with a sampling rate of 50 msec. The

controller was able to achieve 50% improvement in NOx and 10% improvement in PM

emissions without a net increase in fuel consumption over the New European Drive

Cycle (NEDC).

• Stewart and Borrelli in 2008, [101], applied MPC to the DAP. The system inputs and

outputs are the same as in [84] with the exception that NOx was also considered as an

output for the purpose of including a soft maximum NOx constraint. A PWA model

approximation of a physics based nonlinear model of the DAP was obtained for predic-

tion. With the PWA model, the linear model dynamics (A,B,C,D) were held constant

at the PWA region at time step i = 0 for the remainder of the prediction horizon. An

active set semi-explicit MPC1 strategy was used to solve the associated QPs [10]. Han-

dling the PWA model region switches during the prediction horizon would lead to a

mixed integer quadratic program (MIQP) which is currently too computationally ex-

pensive to handle on an ECU. O�set-free, steady-state tracking is obtained through

the combination of a disturbance estimator and input-velocity form MPC as was done

in [84]. The resulting controller was able to demonstrate NOx constraint enforcement,

albeit soft enforcement.

• Wang et al. in 2009, [115], also applied MPC to the DAP using a linear parameter

1The semi-explicit MPC solver precomputes and stores partial solutions to the associated KKT conditions
rather than full solutions as in the explicit MPC case. This allows for a more e�cient search through active
set combinations compared to explicit MPC.
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varying (LPV) model where the linear model dynamics (A,B,C,D) are scheduled

continuously on engine speed and fuel rate rather than by zones as in [84]. Again,

the controlled inputs are EGR position and VGT position and the tracked outputs are

MAP and MAF. O�set-free, steady-state tracking is achieved through a disturbance

estimator and input-velocity form MPC. An online QP solver rather than explicit MPC

is used because (A,B,C,D) is continuously variable as a function of engine speed and

fuel. A sampling time of 50 msec was used with a control horizon of 3 and prediction

horizon of 120. Constraint enforcement was not demonstrated in the results of this

work.

• Karlsson et al. in 2010, [56], applied MPC to the DAP utilizing more actuators and sen-

sors relative to [84,101,115] and targets directly high-level objectives such as tracking

engine torque and reducing NOx. The actuators that are used are crank angle degree

of start of injection, fuel injection duration, EGR valve position, and VGT position.

In-cylinder pressure measurements were used to compute indicated mean e�ective pres-

sure (IMEP), combustion phasing, and maximum pressure derivative. NOx and soot

sensors were also used in the control strategy. A sixth-order linear model was used

for prediction around a single operating condition. Control moves were allowed in the

prediction at steps i ∈ {0, 2, 4} with a total prediction horizon of 100. High tracking

weight was placed on IMEP to achieve fast engine torque response. A NOx set-point

of 0 was used to reduce NOx as far as possible. A constant set point for combustion

phasing was used. Soft constraints were placed on soot and maximum pressure deriva-

tive. The goal of this work was to illustrate the potential for MPC to meet high-level

objectives when more degrees of freedom from the actuators are available and when

more sensors are available. However, this proposed strategy relies on sensors that are

not currently available in consumer engines.

• Recently, commercial software, Honeywell's OnRAMP Design Suite, [36], has become
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available for systematic design of MPC controllers for powertrain applications. This

software stems from [101].

Of the LMPC methods employed in the past, the strategy that is viable for implemen-

tation in current ECUs is characterized by, one, partitioning of the engine operating range

into zones with a di�erent LMPC controller per zone, and, two, utilizing explicit MPC as

the solution method to the associated QPs. However there are still some drawbacks and

challenges to using this strategy.

• This strategy leads to a larger than desired calibration e�ort since there is no well

de�ned method for partitioning a plant operating range into zones and separate LMPC

controller calibrations must be done in each zone. PWA models as in [101] could be

used, however, this could lead to large memory usage in the ECU.

• The control can be discontinuous along the zone boundaries.

• Because explicit MPC is used, the partitioning strategy can lead to large memory

usage, o(NzC(Nnh +nψ, Nnu)), where Nz refers to the number of zones or the number

of regions in the PWA plant model, see Section 1.2.3.

1.3.2 History of Nonlinear Model Predictive Control for the Diesel

Air Path

With the maturation of LMPC for the DAP, research focus has now shifted toward

developing NMPC for the DAP. However, the feasibility of NMPC, in the sense of being

able to achieve viable ECU computation times for the DAP, is questionable at best at the

moment.

• Herceg et al. in 2006, [33], �rst demonstrated the use of NMPC to systematically

achieve good transient performance while satisfying state and control constraints. The

controlled inputs were EGR position and VGT position. The tracked outputs were
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intake pressure, exhaust pressure, and compressor power. Minimum and maximum

constraints were placed on intake pressure and exhaust pressure as well as on the

controlled inputs. A three state nonlinear physics based model, [53], was used for pre-

diction. Zero-o�set, steady-state tracking in the presence of plant/model mismatch was

not considered. While the tracking and constraint enforcement results were promising,

�currently [in 2006] it is not possible to implement NMPC in real-time due to the lim-

ited computational power available on today's embedded control systems, which are

not suitable for the required fast solution of the resulting �nite-time optimal control

problem.�

• The opinion of [33] is bolstered in Wang et al. in 2009, [115], where the claim is made

that using a nonlinear model �leads in general to a non convex problem which may be

di�cult to solve and usually needs a sequential approximation with quadratic programs

at each time step, which is computationally expensive.� Thus, LPV models were used

in [115].

• More recently, Gaglieardi et al. in 2014, [27], demonstrated improved computation

times (required around 50 msec for an update), contrary to [33], utilizing a discrete

time polynomial model, [35], and the Continuation and Generalized Minimum Residual

method (C/GMRES), [82]. The controlled inputs were EGR position and VGT position

and the tracked outputs were MAP and MAF. Zero-o�set, steady-state tracking was

not considered.

• In 2014, Murilo et al., [78], demonstrated computation times of under 10 msec for the

DAP application. Again, the controlled inputs were EGR position and VGT position

and the tracked outputs were MAP and MAF. A 6 state nonlinear physics based model

was used for prediction. A parametrization, utilizing exponential decay functions,

of the discretized control sequence was used to reduce the number of optimization

variables and a sequential quadratic program (SQP) was solved at each time step.
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• Explicit NMPC has also been developed in the SI engine case, [31]. The control objec-

tive was to track MAP using a throttle and a turbocharger with a wastegate. A 10,000

times reduction in online computation time compared to online NMPC was achieved

leading to sub-millisecond computation times on an i7 CPU. However, as the authors

note, the complexity of explicit NMPC su�ers from the �curse of dimensionality� with

respect to the number of input parameters and does not scale well with even the addi-

tion of integral action. Furthermore, with explicit NMPC, controller recon�gurability

to model changes and ability to incorporate adaptive models is largely lost.

While the 10 to 50 msec computation times demonstrated in [27, 78] for NMPC applied

to the DAP may seem reasonable (the DAP control update is typically applied every 10 to 50

msec), in practice, the available ECU computation time allotment for DAP control is much

smaller than the DAP control update rate because the ECU performs many other functions

besides air path control and thus a sub-millisecond computation time for air path control is

highly desirable. Furthermore it is not clear how zero-o�set, steady-state tracking can be

obtained with NMPC. Thus, there are still many challenges to overcome to apply NMPC to

the DAP in practice.

1.4 Contributions

This dissertation focuses on overcoming the challenges of applying MPC to the DAP as

outlined in Section 1.3. Namely, in the LMPC case, the need for partitioning the engine

operating range is reduced. Furthermore, the number of constraints that are handled in

this work are greater than in previously published cases [84, 101, 115] without a signi�cant

increase in the computational footprint of the associated explicit MPC controller. In the

NMPC case, a number of strategies are developed that together achieve the desired sub-

millisecond computation time required for current ECU implementation.

Most of the results outlined in the following have been published in or submitted to
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journals, conferences proceedings, and patent applications, [38, 39,41�45,47�49].

1.4.1 Linear Model Predictive Control for the Diesel Air Path

The contributions made toward LMPC applied to the DAP are summarized as follows.

• A low complexity LMPC for the DAP, compared to [84,101,115], has been developed,

[38, 39, 43, 49]. The controller is able to handle more constraints, a primary source of

computational complexity, than in previous application of LMPC to the DAP. This is

done with improved computation time and dramatically reduced memory usage. This

complexity reduction is achieved through

� partial nonlinear inversion through the choice of EGR �ow as a control input,

� rate-based MPC,

� constraint remodeling,

� and intermittent tightened constraint enforcement.

• Integral action is introduced to Contractive MPC (CMPC), [24, 32], a low complexity

MPC formulation with stability guarantees, through the rate-based method [41,44].

• A new, low complexity method for gain scheduling explicit MPC has been developed,

[45, 48]. Traditionally, explicit MPC is thought of as non-recon�gurable, i.e., it is

not able to accommodate changes in the model (A,B,C,D) matrices. The new gain

scheduling method exploits an operating condition dependent gain on the controller

output. The chosen gain improves the match between the nominal model and actual

plant. In order to enforce control constraints, the method is implemented utilizing

a switching structure similar to Pulse-Width-Modulation (PWM). Theoretical results

show that as the switching frequency increases, the desired gain is recovered.

• Tube-MPC, a robust MPC method, is demonstrated in the DAP application [42]. It

was found that a rate-based formulation reduces the conservativeness of tube-MPC.
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The robust MPC controller was demonstrated in experiments using an ad hoc, approx-

imate tube-MPC method to reduce computational complexity. Following the experi-

ments, a new split tube-MPC method is introduced to formally reduce computational

complexity.

Of these contributions, intermittent constraint enforcement, gain scheduling explicit MPC,

and the split tube-MPC method are regarded as major innovations that also have broad

applicability beyond the DAP example.

• The novel intermittent constraint enforcement strategy can be generally used to greatly

reduce computational complexity of explicit MPC. The intermittent constraint enforce-

ment strategy involves the application of constraints at only a subset of instances in

the constraint horizon rather than, typically, over the full constraint horizon. This

leads to an overall reduction in the number of constraints, a reduction in the number

of regions of the associated explicit MPC controller, and a reduction in the worst case

ECU computation time and memory usage. A procedure is also developed to choose

the instances of constraint enforcement, i.e., the subset of the full constraint horizon.

• Gain scheduling, [28], can generally be used to improve the performance and reduce

calibration e�ort of a linear based controller in loop with a nonlinear plant. This has

previously been done for non-MPC DAP controllers, [108,109], and for turbofan engine

controllers, [28]. However, this gain scheduling strategy has never been considered in

coordination with explicit MPC with input constraints. To handle the input constraints

within explicit MPC, a non-trivial, novel extension of the gain scheduling strategy is

developed.

• A novel split tube-MPC strategy is developed that maintains the same constrained

domain of attraction as standard tube-MPC with reduced computational complexity.

Compared to non-tube-MPC, standard tube-MPC is much more computationally com-

plex due to an increase in the number of optimization variables and constraints used
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to enforce constraints robustly, i.e., under disturbances. The novel split tube-MPC

strategy reduces the computational complexity of tube-MPC onto the same level as

non-tube-MPC making the application of tube-MPC more computationally tractable.

1.4.2 Nonlinear Model Predictive Control for the Diesel Air Path

The contributions made toward NMPC applied to the DAP are summarized as follows.

• A NMPC design for the DAP with sub-millisecond update times is achieved, [47]. This

is accomplished with a data driven modeling approach similar to [27, 35] to obtain

a simple piecewise polynomial model that facilitates fast propagations of the state

and co-state equations used in NMPC. C/GMRES is then applied with the polyno-

mial model which represents the baseline design. With C/GMRES, it was previously

unknown how inequality constraints, e.g., on states and controls, could be handled.

Di�erent inequality constraint handling techniques are explored and a solution that

has considerable computational and performance advantages compared to C/GMRES

is obtained. Furthermore, zero-o�set set-point tracking is achieved with NMPC for the

DAP. This is done through adaptation of the polynomial model.

• Kantorovich's method is used to freeze the Jacobian associated with the NMPC update,

e.g., the Jacobians are precomputed and frozen for all time or computed only at the

�rst iteration. By bypassing the Jacobian computation, the computational complexity

is reduced. This is done in a way that can handle inequality constraints with little

computational overhead.

• With linear MPC, it has been known that rate-based MPC achieves zero-o�set, steady-

state tracking while improving overall performance and mitigating the disadvantages

of other strategies, see [18, 39, 85]. With NMPC, it is currently not well understood

how to achieve zero-o�set, steady-state tracking. Toward this end, the rate-based idea

is used with NMPC. With rate-based NMPC, adaptation or disturbance estimation to
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achieve zero-o�set, steady-state tracking are no longer needed. This is advantageous

for a number of reasons.

� The integral action does not need to be tuned separately from the controller,

e.g., adaptation rates, and thus there are no concerns regarding the interactions

between the control and estimation loops.

� Discontinuous control actions at zone boundaries are mitigated. This is because

estimators, which would otherwise have to be reinitialized during zone switches,

are not required in the proposed rate-based NMPC controller formulation for the

DAP.

Of these contributions, Kantorovich's method applied to constrained NMPC and rate-based

NMPC are regarded as major innovations that also have broad applicability beyond the DAP

example.

1.5 Outline of Chapters

The remainder of this dissertation is organized as follows.

Chapter 2 describes the steps by which a low complexity LMPC for the DAP is achieved.

A number of complexity reduction techniques are explained including partial nonlinear in-

version, rate-based MPC, constraint remodeling, and intermittent tightened constraint en-

forcement. The computational complexity of the resulting LMPC controller is discussed and

experimental results are shown. A tracking version of CMPC which guarantees local stability

is also developed. An a posteriori stability analysis tool for MPC is also developed.

Chapter 3 describes the gain scheduling strategy for explicit MPC. This strategy achieves

control constraint enforcement through a PWM-like strategy. Theoretical results prove that

as the switching frequency increases, the originally desired behavior is recovered. A per-

formance comparison to traditional gain scheduling strategies is given through simulations.

The computational complexity of this gain scheduling strategy is also discussed.
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Chapter 4 describes a robust LMPC, i.e., tube-MPC, design for the DAP. Furthermore,

tube-MPC with zero-o�set, steady-state tracking is achieved through a rate-based design

which has not previously been done. An ad hoc approximation of the tube-MPC controller

is then given to facilitate experimental implementation. After the experimental results, the

chapter concludes with the introduction of a new reduced-complexity tube-MPC strategy.

Chapter 5 describes the steps by which a NMPC design for the DAP is achieved with sub-

millisecond update times. This is achieved primarily through non-traditional handling of the

inequality constraints. The performance and computational complexity for various inequality

constraint handling techniques is compared. Kantorovich's method is also introduced to

further reduce computational complexity. Finally, rate-based NMPC is introduced which

achieves zero-o�set, steady-state tracking.

Finally, Chapter 6 provides conclusions, acknowledges open questions, and discusses fu-

ture research directions.
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Chapter 2

Linear Model Predictive Control

This chapter presents the development and results of a LMPC controller for the diesel

engine air path. The objective is to regulate the MAP measurement and EGR �ow estimate

to speci�ed set-points by coordinated control of the VGT, EGR valve, and EGR throttle

actuators. See Figure 1.3 for a schematic of the diesel engine. The steps by which a controller

with low computational complexity, good tracking performance, and capability to enforce

multiple constraints can be obtained is presented. Through the employed strategies, the need

to cover the operating range with multiple linear models and to use a complicated switching

controller structure is avoided. Experimental results are presented that demonstrate the

ability of the LMPC controller to follow speci�ed set-points while satisfying state and control

constraints throughout the engine operating range.

2.1 Introduction

Prior research on the application of LMPC to the diesel engine air path (DAP) has

been reported in [56,84,101], where the control strategy involves switching between multiple

LMPC controller designs that cover the engine operating range. This work also focuses on

applying LMPC to the DAP, however, the approach described in this chapter has several

di�erences. Speci�cally, the strategies of partial inversion, [38, 113], and rate-based MPC

(also refereed to as velocity form MPC), [18, 39, 43, 49, 85, 114], are combined. With this
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approach, it is found that a single LMPC controller is su�cient to cover the engine operating

range.

For the control implementation, explicit MPC, [5], is used to represent the solution to the

underlying QP problem which is suitable given the small QP problem sizes that the strategy

employs, i.e., a small number of constraints and optimization variables, [1, 7].

One possible choice of control inputs is to use VGT position (percent closed) and EGR

valve position (percent open). In this work, however, the use of EGR valve �ow as a control

input rather than EGR valve position is considered. Partial nonlinear inversion is then used

to backtrack both EGR valve position and EGR throttle position. Treating EGR �ow as a

control input has previously been found to alleviate the e�ect of DC gain reversal, [38,113].

The approach of treating EGR �ow as a control input has also been previously employed

in [53] for diesel engines and in [54] for gasoline engines.

A rate-based framework will be used for the MPC design to achieve zero-o�set, steady-

state tracking. The rate-based strategy avoids windup issues evident in methods that rely

on augmenting an integrator [41,49]. Disturbance estimators are also commonly used in air

path control [84, 95], however, require a disturbance model. Rate-based MPC avoids these

issues which leads to overall better tracking performance and further extension of a single

controller's operating range.

The contributions of the work to LMPC applied to the DAP discussed in this chapter

are summarized as follows.

• A single zone LMPC strategy for the DAP is developed. This is achieved through

� partial nonlinear inversion of the EGR valve ori�ce �ow equation which makes

the DAP plant appear more linear to the linear MPC controller,

� and rate-based MPC.

• Further computational complexity reduction is achieved through constraint remapping

and intermittent constraint enforcement.
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• An o�set-free version of MPC with stability guarantees, i.e., an o�set-free version of

CMPC, is developed.

The remainder of this chapter is organized as follows. Section 2.2 describes the partial

inversion strategy that renders the plant more linear and the linear DAP model obtained

through system identi�cation. Section 2.3 describes the LMPC design for the DAP and

complexity reduction techniques. Section 2.4 discusses stability of rate-based LMPC. Section

2.5 contains concluding remarks on LMPC.

Extensions of LMPC that target improved tracking performance through gain scheduling

and robustness with respect to constraints through tube-MPC are described in Chapters 3

and 4, respectively.

2.2 Linear DAP Prediction Model

A linear DAP model is required for the subsequent MPC design. Similar to [36, 84],

the engine operating range is split into zones centered at selected operating points and a

linear model is identi�ed to represent engine response in each zone. For example, a control

designer may want to split the operating range into a low engine speed zone where dynamics

are slower and a high engine speed zone where dynamics are faster. Based on initial closed

loop nonlinear model simulations, [38, 39], it was found that only a single zone and a single

MPC controller are su�cient. This has important advantages: computational overhead is

reduced and the need to manage the controller switching is eliminated. One of the main

strategies used to achieve a single zone design is the choice of EGR �ow as a control input

and the use of partial nonlinear inversion to obtain the corresponding EGR valve position

which renders the plant more linear compared to choosing EGR valve position as a control

input. Particularly, this choice has previously been found to alleviate the e�ect of DC gain

reversal, [38, 113].
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Figure 2.1: Gain reversal in MAP, EGR �ow, and EGR rate when VGT and EGR valve
position are used as control inputs. The data is obtained from a high �delity physics based

model.

2.2.1 Partial Nonlinear Inversion

The combination of feedback linearization and MPC has been explored in other applica-

tions, [19, 32, 80, 98]. To apply feedback linearization, a simple DAP model is required. A

simple three state nonlinear model of the DAP, [53], has been considered, however, it was

found that this model does not �t to experimental data adequately. Thus only a partial

nonlinear inversion strategy will be used.

A steady-state map of the inputs to outputs of the diesel air path reveals a DC gain

reversal. The DC gain reversal presents a serious impediment in multivariable diesel engine

control design. This can be observed in Figure 2.1. When the EGR valve is past 60% open,

MAP increases as the VGT closes toward 80% closed. However, further closing the VGT

reduces MAP. Similarly, the EGR �ow output also exhibits DC gain reversal. As the VGT

closes from 40% to 50%, EGR �ow �rst decreases. Continued closure of the VGT increases

the EGR �ow. Similar DC gain reversal behavior can also be seen on the EGR rate output.

Since the region in which this gain reversal occurs is uncertain, controllers that incorporate

integral control have to be carefully designed. By rede�ning the input as EGR valve �ow

rather than EGR position, i.e., by commanding EGR valve �ow and determining the EGR

valve position to replicate this commanded �ow, the DC gain reversal disappears, see Figure

2.2.

Taking advantage of the reduced degree of nonlinearity, EGR �ow is chosen as the control
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Figure 2.2: Monotonic behavior in MAP, EGR �ow, and EGR rate when VGT position
and EGR �ow are used as control inputs. The data is obtained from a high �delity physics

based model.

input instead of EGR valve position. To actually achieve control using EGR �ow, however,

the EGR �ow command, denoted as vEGR, must be mapped to an EGR valve position

command, uEGR. This can be done by inversion of the EGR valve ori�ce �ow equation. The

EGR valve ori�ce �ow model follows,

WEGR =
pex√
RairTeco

Cd(uEGR, Ne)φ

(
pin
pex

)
, (2.1)

φ(τ) =


√(

(γ−1)(1−τ)
2γ

+ τ
)

(1− τ) τ > 1
γ+1√

γ
2(γ+1)

τ ≤ 1
γ+1

, (2.2)

where Cd is a nonlinear function that encompasses the discharge coe�cient and ori�ce area,

see [22], and the nonlinear function φ handles choked �ow. Then, based on current mea-

surements or estimates of exhaust pressure (pex), intake pressure (pin), EGR cooler out

temperature (Teco), engine speed (Ne), and commanded EGR �ow (vEGR), the EGR valve

position (uEGR) command can be obtained,

uEGR = C−1
d

Ne,
vEGR

√
RairTeco

pexφ
(
pin
pex

)
 , (2.3)

assuming that Cd is invertible.
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The strategy of obtaining uEGR from vEGR and the inversion of the ori�ce �ow equation

(2.3) had previously been employed in [38, 39] in simulation assuming that the signals pex

and Teco were available for direct use in the strategy. However, in practice, these values are

not measured, thus estimators are needed. A reliable measurement and estimate forWEGR is

also unavailable which eliminates the possibility of using an inner-loop controller, e.g., PID.

While estimators for these values can be developed, see Section 2.3.4, it was found that using

an estimator based strategy with (2.3) is unreliable, i.e., it is di�cult to tune the complex

interactions between the estimators and controller.

Thus, for implementation in practice, a strategy similar to [110] is used. The strategy

combines the EGR valve and EGR throttle into a single actuator. This is done in a manner

such that the EGR throttle only closes after the EGR valve is is fully open. A combined EGR

valve and EGR throttle strategy for the DAP has a number of advantages: a square system is

obtained from inputs to tracked outputs without having to de�ne a separate strategy for the

EGR throttle controller, and cylinder backpressure is reduced because the throttle is only

closed when more EGR is needed (to meet set-points stemming from emissions regulations)

than the EGR valve can provide.

The combined EGR valve command, uEGR, and EGR throttle, uth, command is denoted

as θEGR. From θEGR, the EGR valve and EGR throttle position command can be obtained

as

uEGR =


0, if θEGR ≤ 0,

θEGR, if 0 < θEGR < ūEGR,

ūEGR, if ūEGR ≤ θEGR,

(2.4)

uth =


0, if θEGR ≤ ūEGR,

θEGR − ūEGR, if ūEGR < θEGR < ūEGR + ūth,

ūth, if ūEGR + ūth < θEGR,

(2.5)

where ūEGR and ūth are the maximum EGR valve and EGR throttle positions, respectively.
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Figure 2.3: Steady-state EGR �ow vs. combined EGR valve and EGR throttle position
command, θEGR.

Figure 2.3 shows θEGR versus experimentally estimated WEGR at di�erent engine speeds in

steady-state. The EGR valve �rst opens as θEGR changes from 0 to ūEGR = 70%. Then the

EGR throttle closes from 0 to ūth = 80%. The maximum limits, ūEGR and ūth, are chosen

as 70% and 80%, respectively, since, for the experimental engine, the output responses are

not sensitive to any EGR valve and EGR throttle variations past these values. Based on

steady-state experimental data, a table-lookup scheduled on engine speed and fueling rate is

constructed to invert the EGR �ow command, vEGR, to θEGR, i.e., the nonlinear map shown

in Figure 2.3 is inverted. The maximum EGR �ow that can be commanded, v̄EGR, which

will be used by the MPC controller, is evaluated by looking up the maximum �ow at a given

engine speed and fueling rate.

2.2.2 Linear DAP Model Identi�cation

For the controller presented in this chapter, system identi�cation, [71], of the engine

experimental hardware (plant) is performed to obtain a local seventh order linear model.

The nominal operating point is chosen as 1600 rpm engine speed and 30 mm3/st. fueling
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rate. This point is at the center of the New European Drive Cycle (NEDC) range (from

800 rpm to 2400 rpm engine speed, and 0 mm3/st. to 60 mm3/st. fuel rate). Balanced

truncation, [14,67], is then applied to reduce the model order while preserving the system's

DC gain.1 Lowering the order of the linear prediction model is advantageous: this reduces

the input parameter size of explicit MPC and its ROM and chronometric footprint. In fact,

the computational cost of evaluating the explicit MPC controller in each region (1.13) is

o(nx(Nnh + nψ)), where nx is the number of states and Nnh + nψ is the total number of

inequality constraints. This complexity arises from the size of the matrix Kj in (1.13) which

is determined by the number of states and the number of inequality constraints, [5, 23].

The input sequence for the system identi�cation process is composed of steps in com-

manded VGT position (uvgt) and commanded EGR �ow (vEGR). The considered outputs

are the intake manifold pressure (pin), estimated EGR �ow (ŴEGR), and estimated exhaust

manifold pressure (p̂ex). Note that the input, vEGR, is not the same as the output, ŴEGR.

There are dynamics introduced between the two through the inversion of vEGR to uEGR and

uth, which is inexact and is based on steady-state maps only. Note that the EGR �ow is cho-

sen as an output rather than EGR rate. This is done to reduce the degree of nonlinearlity of

the plant through bypassing the nonlinear EGR rate relationship, χEGR = (Wcyl−Wc)/Wcyl.

Set-points for ŴEGR can easily be obtained through steady-state maps of χEGR, Wcyl, and

Wc.

The estimators for EGR �ow and exhaust pressure are described in Section 2.3.4. A

constraint on turbocharger speed will also be imposed, however, will be remapped to an

intake manifold pressure constraint. Thus an identi�ed dynamic model for turbocharger

speed is not required. Figure 2.4 shows a comparison between the system identi�cation

data, 7 state model, and 4 state reduced model. These responses show that a 4 state model

is su�cient to match the dynamics of the 7 state model and experimental data.

1It has been observed that the modeling error is smaller when a higher order linear model is �rst identi�ed
and is then reduced compared to directly identifying a reduced order model. The analysis of this empirically
observed property is left to future research.
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Figure 2.4: Comparison of MAP, EGR �ow, and exhaust pressure response to changes in
VGT position command and EGR �ow command between a 7 state model, 4 state model,

and experimental data.

The resulting linear diesel air path model has the following form,

xk+1 = Axk +Buk, (2.6)

yk = Cxk +Duk, (2.7)

where uk = [ uV GT,k vEGR,k ]T and yk = [ pin,k ŴEGR,k p̂ex,k ]T .

2.3 Linear MPC Design

The diesel air path control objective is to regulate the intake pressure and EGR �ow to

speci�ed set-points through coordinated control of the VGT, EGR valve, and EGR throttle

subject to actuator constraints on the VGT, EGR valve, and EGR throttle ranges. Output

constraints on maximum intake pressure, EGR �ow, exhaust pressure, and turbocharger

speed must also be enforced. These output constraints are dictated by driveability, safety,

reliability, noise, vibration, and harshness requirements.

Figure 2.5 shows the overall closed-loop diesel air path plant and controller structure.

The engine speed (Ne) and fueling rate (Wf ) are inputs to the diesel air path plant. The
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Figure 2.5: Controller structure.

set-points for MAP (rpin) and EGR �ow (rWEGR) are functions of engine speed and fueling

rate. Because sensors are not available for EGR �ow (WEGR) and exhaust pressure (pex),

estimators for these signals are used. The measured intake pressure and estimated EGR

�ow are used by a state observer to estimate the states for MPC feedback. This is required

because the process of system identi�cation and model order reduction renders the states

non-physical. The state estimate (ξ̂) is used by the rate-based explicit MPC controller

to determine incremental changes in the EGR �ow command (vEGR) and VGT position

command (uV GT ). The incremental changes in the control signals are integrated to generate

values for the EGR �ow command and VGT position command. The partial nonlinear

inversion block then inverts the virtual EGR �ow command to a corresponding combined

EGR valve and EGR throttle command (θEGR). The combined EGR valve and EGR throttle

command is then mapped to individual commands for the EGR valve position and EGR

throttle position.

In the remainder of this section, the controller design details are explained. First, rate-

based MPC is described which will be used to obtain zero-o�set, steady-state tracking. Two

main pathways for computational complexity reduction are then discussed: intermittent con-

straint enforcement and constraint remapping. Estimators for various signals are described.

The experimental diesel air path MPC formulation is then given and experimental results
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are presented. This section closes with a discussion of the computational complexity.

2.3.1 Rate-based MPC

It is desirable for MPC applied to the diesel air path to incorporate integral type action

to compensate for the mismatch between the model and true plant. In conventional MPC,

the direct addition of an integrator may expose the controller to issues of integral windup.

Note that constraints on integrator states could be added, however, it is unclear how to set

the integrator limits for multiple-input multiple-output (MIMO) systems. This implies that

an anti-windup scheme is required.

Another common strategy to achieve o�set-free tracking with MPC is to use a disturbance

estimator [84,95]. The disturbance estimator is typically coupled with an input-velocity form

of the MPC controller so that the steady-state control values corresponding to the reference

signal do not need to be known a priori. The disadvantage of using a disturbance estimator

is that it requires a disturbance model, [85], and requires augmentation of both disturbance

states and control states (from using input-velocity form MPC).

Alternate to integrator augmentation or disturbance estimators, a rate-based strategy can

be used (also called velocity-form MPC, [85, 114]). A comparison between the augmented

integrator and disturbance estimator strategies is presented in [95]. A comparison between

augmented integrator and rate-based strategies is presented in [39]. The advantages and

disadvantages of a rate-based strategy versus disturbance estimators are described in [85].

Of most importance to the DAP application, is that rate-based MPC achieves o�set-free

steady-state tracking without the need to deal with integrator windup. If instead, integrator

augmentation were utilized in the presence of constraints and signi�cant nonlinearities, the

integrators would be consistently wound up, as was observed in [39], particularly when the

engine is in transient operation. The windup can be mitigated by utilizing more local models

and MPC controllers which leads to better plant/model matching and less �work� for the

integrators. Furthermore, rate-based MPC achieves o�set-free steady-state tracking without
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disturbance models. The choice of disturbance models becomes more di�cult in the presence

of nonlinearities and multiple local linear disturbance models may be required. Thus, rate-

based MPC can be viewed as not only a strategy to achieve o�set-free steady-state tracking

but also as a strategy to reduce computational complexity and calibration e�ort because

fewer local models and controllers may be needed.

In rate-based MPC, the state and control increments and the augmented state vector are

�rst de�ned,

∆uk = uk − uk−1, (2.8)

∆xk = xk − xk−1, (2.9)

ek = yk−1 − rk−1, (2.10)

ξk =

 xk

ek

 , (2.11)

where ek is the output tracking error. The rate-based model then has the form,

ξk+1 = Āξk + B̄∆uk, (2.12)

ek = C̄ξk, (2.13)

Ā =

 A 0

C I

 , B̄ =

 B

D

 , C̄ =

[
0 I

]
. (2.14)

A rate-based MPC quadratic programming problem, assuming the prediction, control, and
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constraint horizons are equal to N , can be expressed as follows,

min
∆ui|k, i∈{0,...N−1}

ξTN |kPξN |k +
N−1∑
i=0

eTi|kQei|k + ∆uTi|kR∆ui|k,

subject to : ξi+1|k = Āξi|k + B̄∆ui|k,

ei|k = C̄ξi|k,

ei|k + rk−1 ∈ Y, uk−1 +
i∑

j=0

∆uj|k ∈ U,

ξ0|k = ξk,

(2.15)

where k is the current time step and i ∈ {0, ..., N − 1}. In the rate-based MPC problem,

(2.15), the objective function penalizes the tracking error through the term eTi|kQei|k with

Q = QT ≥ 0, and control increments through the term ∆uTi|kR∆ui|k with R = RT > 0.

A terminal state cost can be incorporated through the term ξTN |kPξN |k with P = P T ≥ 0.

Output and control constraints are enforced through ei|k + rk−1 ∈ Y and uk−1 +
i∑

j=0

∆uj|k ∈

U, where uk−1 is the control applied at the previous time step, k − 1. State constraints,

xi|k ∈ X, though not explicitly shown in (2.15), can be added through additional outputs

which would be integrators of the corresponding predicted state increments ∆xi|k. In rate-

based MPC, the tracking objective naturally becomes a regulation objective. Once the

optimization problem (2.15) is solved, the optimized �rst control increment, ∆u?0|k is applied

to the previously applied control, uk−1, to obtain the control to be applied at the current time

instant, uk = uk−1 +∆u?0|k. If zone switching is required with rate-based MPC, discontinuous

control changes will be less apparent because the strategy determines the control value by

integrating control increments which smooths discontinuous changes.

2.3.2 Intermittent Constraint Enforcement

The number of regions of explicit MPC is directly related to the number of constraints

and optimization variables [23]. With intermittent constraint enforcement (ICE), the number

of constraints is reduced by choosing to only enforce the output constraints intermittently,
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i.e., at certain, but not all, time instants over the prediction horizon. In the ICE strategy,

the intermittent constraints are tightened. Then during the intermediate steps over the

prediction horizon, the originally imposed constraints are approximately satis�ed. Note that

the number of optimization variables can also be reduced by analyzing the impact of each

optimization variable on the predicted state trajectories [83,94]. However, for the DAP MPC

strategy, the number of optimization variables will be managed through using a short control

horizon.

To gain insight into ICE, a simple second order system example illustrates the e�ect on

the maximal output admissible set (MOAS), [60], as the intermittent output constraint is

tightened. Consider the case where soft output constraints are used and observe the e�ect on

the MOAS as the intermittent output constraints are tightened or relaxed. The MOAS, O∞ ,

for the closed loop system with a MPC designed with intermittent constraints, xk+1 = fcl(xk)

and yk = gcl(xk), and output constraint y ∈ Y is de�ned by,

O∞ =
{
x0 ∈ Rnx : xk+1 = fcl(xk), yk = gcl(xk) ∈ Y, ∀k ∈ Z+

}
. (2.16)

The set O∞ corresponds to the constrained domain of attraction of the closed loop sys-

tem. Thus, the goal is to grow O∞ by tightening the soft output constraints to achieve

approximately the same constrained domain of attraction as when a full output constraint

horizon is used. In the second order system setup, A =

 1 1

0 1

 , B =

 1

1

 , C =

[
1 1

]
and D = 0. The control constraint is −1 ≤ uk ≤ 1 and the output constraint is −1 ≤ yk ≤ 1.

A single step prediction is used with the terminal state penalty P corresponding to state

weight Q = I2×2 and control weight R = 100. The output constraint is enforced only during

the time steps in the ICE constraint set, NICE ⊂ Z+, and treated as soft with a slack vari-

able, ε, and weight M . The amount of output constraint tightening is set through the term
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α. The example MPC problem has the following form,

min
u0|k,ε

(
Ax0 +Bu0|k

)T
P
(
Ax0 +Bu0|k

)
+ uT0|kRu0|k +Mε2

subject to : −1 ≤ u0|k ≤ 1, ui|k = u0|k ∀i ≥ 1,

xi+1|k = Axi|k +Bui|k, yi|k = Cxi|k,

−α− ε ≤ yi|k ≤ α + ε, ∀i ∈ NICE.

(2.17)

Once the explicit solution to (2.17) is computed, a closed loop PWA system can be

formed,

xk+1 = (A+BGj)xk +BFj if Hjxk ≤ Kj, for j ∈ {1, ..., Nr} . (2.18)

For di�erent values of the constraint set, NICE, and slack weight, M , the MOAS, O∞, is

computed for the PWA system (2.18) using Multi Parametric Toolbox (MPT) [63,92]. The

maximal control invariant set, C∞, for the original (open loop) second order system with

xk+1 = fol(xk) and yk = gol(xk) can also be computed,

C∞ =
{
x0 ∈ Rnx : ∃uk ∈ U, xk+1 = fol(xk, uk), yk = gol(xk, uk), yk ∈ Y ∀k ∈ Z+

}
. (2.19)

Figure 2.6: Maximal output admissible sets for NICE = {1, 2, 3, 4, 5}, NICE = {3} and
M = 1.
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Figure 2.7: Maximal output admissible sets for NICE = {1, 2, 3, 4, 5}, NICE = {3} and
M = 3.

Figure 2.6 shows O∞ computed for a full horizon of output constraints, NICE = {1, 2, 3,

4, 5}, and for various levels of constraint tightening with intermittent constraint enforcement,

NICE = {3}. Observe that as the intermittent constraints are tightened, O∞ grows. While

this is somewhat counter-intuitive, it is a result of treating constraints as soft and more

aggressive control action taken to drive the state into the tightened constraint set. Further-

more, as the slack weight is increased in Figure 2.7, observe that O∞ actually approaches

C∞ for the second order system example. Note that in this example, the explicit controller

with NICE = {1, 2, 3, 4, 5} has 13 regions and 5 regions with NICE = {3}.

For simple systems, e.g., a second order system, the following procedure can be used to

choose the set NICE.

1. Determine the maximum number of instances in the constraint horizon where the

constraints will be enforced given the computational budget by looking at the number

of regions of the explicit MPC controller and the corresponding worst case execution

time and memory usage.

2. Given the maximum number of constraint enforcement instances in the constraint

horizon from Step 1, compute the MOAS for each possible combination of constraint
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Figure 2.8: Normalized worst case execution time of the DAP explicit MPC controller as a
function of the number of elements in NICE.

enforcement instances.

3. Choose NICE corresponding to the largest MOAS.

For systems where the MOAS cannot be explicitly computed and/or where there exists

plant/model missmatch, as in the DAP application, NICE should be chosen through extensive

simulations. The following procedure can be used to choose the set NICE.

1. Determine the maximum number of instances in the constraint horizon where the con-

straints will be enforced given the computational budget by looking at the number of

regions of the explicit MPC controller and the corresponding worst case execution time

and memory usage. For example, Figure 2.8 illustrates the growth in worst case exe-

cution time as a function of the number of elements in NICE for the DAP application.

In the DAP application, a single instance of intermittent constraint enforcement was

chosen to reduce the worst case execution time as much as possible.

2. Through simulations, analyze the constraint enforcement behavior for each possible

combination of constraint enforcement instances and choose the �best� NICE. Figures

2.9 and 2.10 show the MAP overshoot constraint enforcement behavior for di�erent

cases of NICE for the DAP application where simulations were performed on a large

fuel step from 10 mm3/st. to 50 mm3/st. at 2400 rpm. For the DAP application,
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Figure 2.9: MAP overshoot comparison of di�erence choices of NICE during a fuel step
from 10 mm3/st. to 50 mm3/st. at 2400 rpm.

where there is plant/model missmatch and a signi�cant disturbance in fuel, the con-

straint enforcement behavior is counter-intuitive. For example, Figure 2.9 shows that

using NICE = {10} reduces the MAP overshoot more than using NICE = {1, ..., 10}.

Based on a number of simulations using a single instance of intermittent constraint

enforcement, it was observed that enforcing the single constraint near steady state,

i.e., far out in the horizon, reduces the MAP overshoot the most.

2.3.3 Constraint Remapping

In addition to ICE, constraint remapping can be used to reduce the number of constraints

and thus computational complexity. Consider the following, possibly nonlinear constraints,

h1(xk, uk) ≤ h̄1,

h2(xk, uk) ≤ h̄2.
(2.20)

The goal of constraint remapping is to change the constraint h2 into a constraint for h1,

thus reducing the total number of constraints. That is, the strategy of constraint remapping

looks for a function fr(h̄2, xk, uk) such that
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Figure 2.10: MAP overshoot comparison of di�erence choices of NICE with the maximum
number of intermittent constraint enforcement equal to one.

h1(xk, uk) ≤ fr(h̄2, xk, uk)⇒ h2(xk, uk) ≤ h̄2. (2.21)

Then (2.20) is satis�ed through a reduced constraint of the form

h1(xk, uk) ≤ min{fr(h̄2, xk, uk), h̄1}. (2.22)

For the DAP, constraint remapping can be accomplished a number of ways. Consider

�rst a constraint on the maximum EGR �ow output,

WEGR,k ≤ W̄EGR. (2.23)

If the inversion from vEGR,k to θEGR,k is exact, i.e., when θEGR,k is applied, WEGR,k = vEGR,k,

then (2.23) is equivalent to a constraint on the EGR �ow command,

vEGR,k ≤ W̄EGR. (2.24)

If the inversion is inexact, W̄EGR can be calibrated such that the EGR �ow near steady-

state remains below the originally desired constraint, e.g., a look-up table can be made
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for W̄EGR as a function of the operating condition, W̄EGR(Ne,k,Wf,k). Thus the EGR �ow

output constraint and virtual EGR �ow command constraint can be combined into a single

constraint,

0 ≤ vEGR,k ≤ min
{
W̄EGR(Ne,k,Wf,k), v̄EGR,k

}
, (2.25)

where the maximum EGR �ow command is taken as the minimum between the EGR �ow

output constraint, W̄EGR, and the maximum EGR �ow command allowed at the current

operating condition, v̄EGR,k (see Section 2.2.1).

Secondly, a constraint on the maximum turbocharger speed (ωt,k),

ωt,k ≤ ω̄t, (2.26)

can be remapped to a constraint on the maximum intake pressure, (p̄remapin,k ). Since a constraint

on the intake pressure, pin,k ≤ p̄in, will also be enforced, it can serve the dual purpose of also

enforcing the turbocharger speed constraint,

pin,k ≤ min{p̄, p̄remapin,k }. (2.27)

The turbocharger constraint remapping is performed through the inversion of the compressor

�ow [77] and throttle �ow models [22]. Consider �rst the compressor �ow model,

Wc,k =
π

4

k3Γk − k1

k2 + Γk
ρad

2
cUc,k, (2.28)

Γk =

2cpTa

((
ppre,k
pa

) γ−1
γ − 1

)
Uc,k

, (2.29)

Uc,k =
π

60
dcωt,k. (2.30)

where Wc,k is the compressor �ow, Ta is the ambient temperature which is assumed to be

constant, ppre,k is the prethrottle pressure, pa is the ambient pressure which is assumed to
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be constant, Γk is the head parameter, and Uc,k is the blade tip speed. The maximum

turbocharger speed, ω̄t, is �rst mapped to a maximum prethrottle pressure, p̄pre,k, based

on current measured compressor �ow, Wc,k, maximum blade tip speed, Ūc = π
60
dcω̄t, and

(2.28)-(2.30),

p̄pre,k =

(((
Ūc
)2

2cpTa

)( π
4
k1pad

2
cŪc +Wc,kk2

Wc,k − π
4
ρad2

cŪck3

)
+ 1

) γ
γ−1

pa. (2.31)

From the maximum prethrottle pressure, p̄pre,k, the throttle �ow model can be inverted

to obtain the maximum intake pressure. The throttle �ow model follows [22],

Wth,k =
ppre,k√
RairTico

Cd (uth,k, Ne,k)φ

(
pin,k
ppre,k

)
, (2.32)

where φ is the same as in (2.2). The intercooler out temperature, Tico, is assumed to be

constant (30oC is used for the simulations and experiments that will be shown), and the

throttle �ow is modeled as a �rst order lag of compressor �ow to approximate the prethrottle

�lling dynamics,

Wth,k = αpreWth,k−1 + (1− αpre)Wc,k. (2.33)

Let

φ̄k =
Wth,k

√
RairTico

Cd(uth,k, Ne,k)ppre,k
. (2.34)

Then to enforce the turbocharger speed constraint, the intake pressure should remain below

p̄remapin,k =


p̄pre,k

− 1
γ
−
√

1
γ2−4( γ−1

2γ
−φ̄2

k)(
−γ−1

2γ )
−γ−1
γ

if
p̄remapin,k

ppre,k
> 1

γ+1
,

1
γ+1

p̄pre,k if
p̄remapin,k

ppre,k
≤ 1

γ+1
.

(2.35)

2.3.4 Estimators

Several estimators are required to implement MPC on the DAP. The only measurements

that are available on the target engine are compressor �ow (Wc), intake pressure (pin), and

intake temperature (Tin). The production ECU estimate of cylinder �ow (Wcyl) will also be
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used directly. The signals that must be estimated are (i) the non-physical rate-based model

state, ∆xk in (2.9), (ii) the EGR �ow, WEGR, and (iii) the exhaust pressure, pex.

The non-physical rate-based state, ∆xk is estimated using a Kalman �lter,

∆x̂k = A∆x̂k−1 +B∆uk−1 + L
(
∆ỹmeask−1 − C∆x̂k−1

)
, (2.36)

where the gain, L, is designed for the incremental state and incremental output system and

accounting for direct feed-through, i.e., based on the model,

∆xk+1 = A∆xk +B∆uk, (2.37)

∆ỹk = ∆yk −D∆uk = C∆xk. (2.38)

The EGR �ow estimate is based on steady-state �ow balance,

ŴEGR,k = Wcyl,k −Wc,k. (2.39)

An input observer based estimator for EGR �ow [102] was also investigated to improve tran-

sient estimation of EGR �ow, however, it did not provide reliable results due to inaccuracies

in the ECU estimated cylinder �ow, sensor dynamics, and ECU signal conditioning.

The exhaust pressure is estimated by inverting the EGR �ow model (2.1)-(2.2) given the

current EGR �ow estimate, EGR valve position, engine speed, and intake pressure. Because

the EGR cooler out temperature is not measured, it is modeled as an a�ne function of intake

temperature,

T̂eco,k = β1Tin,k + β2. (2.40)

A damped version of the model inversion is used to avoid a singularity when the EGR

valve position is near zero. This is done by solving the following optimization problem,

min
∆pex cl,k

1

2

(
ŴEGR,k −WEGR (p̂ex,k(∆pex cl,k))

)2

+
1

2
κ∆p2

ex cl,k, (2.41)
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in which ŴEGR,k denotes the current EGR �ow estimate (2.39) andWEGR(pex) denotes, with

slight abuse of notation, the EGR �ow as a function of exhaust pressure (2.1)-(2.2). The

�nal exhaust pressure estimate is p̂ex,k(∆pex cl,k) = pex ol,k + pex cl,k−1 + ∆pex cl,k which is the

summation of an open loop estimate (pex ol), the previous �closed loop� estimate (pex cl,k−1),

and the �closed loop� estimate increment (∆pex cl,k). The term κ∆p2
ex cl,k in (2.41) provides

a calibratable estimator �gain.� Adding the open loop estimate is bene�cial as it will allow

the total estimate to update when the EGR valve is closed; also, its use lowers the necessary

closed loop estimator gain. The open loop estimate of the exhaust pressure is based on a

polynomial model �tted to steady-state experimental data,

pex ol,k = β3 + β4pin,k + β5p
2
in,k + β6pin,kNe,k + β7N

2
e,k + β8Ne,k. (2.42)

The optimization problem (2.41) is solved using Newton's Method which gives the following

update for the exhaust pressure estimate,

∆pex cl,k =

(
∂WEGR

∂pex
(p̂ex,k−1)

)
ŴEGR −WEGR (p̂ex,k−1)(
∂WEGR

∂pex
(p̂ex,k−1)

)2

+ κ
, (2.43)

pex cl,k = pex cl,k−1 + ∆pex cl,k, (2.44)

p̂ex,k = pex ol,k + pex cl,k. (2.45)

The exhaust pressure estimate updates (2.43)-(2.45) are applied once per time step.

2.3.5 Experimental Controller Setup

In the following, the experimental LMPC controller setup is described using a rate-

based strategy with ICE, constraint remapping, and associated estimators. The control

objective is to regulate the intake pressure and EGR �ow to prescribed set-points, rk =[
rpin,k rWEGR,k

]T
, through coordinated control of the VGT, EGR valve, and EGR throt-

tle. The constraints considered are the actuator limits and output constraints on MAP, EGR
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�ow, exhaust pressure, and turbocharger speed. The four state model obtained after system

identi�cation and model order reduction (2.6)-(2.7) will be used, where the control inputs

contain the VGT position command and EGR �ow command, u =

[
uV GT vEGR

]T
. The

outputs contain the intake pressure, estimated EGR �ow, and estimated exhaust pressure,

y =

[
pin ŴEGR p̂ex

]T
. Following (2.8)-(2.14), the linear rate-based model for the diesel

air path can be formed with

ξk =



∆xk

pin,k−1 − rpin,k−1

ŴEGR,k−1 − rWEGR,k−1

p̂ex,k−1


=



∆xk

epin,k

eWEGR,k

p̂ex,k−1


,∆uk =

 ∆uV GT,k

∆vEGR,k

 , ek =

 epin,k

eWEGR,k

 .
(2.46)

For notational purposes, let Ã and B̃ be sub-matrices of Ā and B̄ in (2.14) with (2.46)

corresponding to the states

[
∆xTk eTpin,k eTWEGR,k

]T
.

A single step control horizon is chosen to reduce the number of optimization variables

and computational complexity as much as possible. Through an appropriate choice of the

terminal state penalty weight matrix, P , the in�nite horizon Linear Quadratic Regulator

(LQR) gain is recovered when constraints are not active. A slack variable, ε, is used to treat

the output constraints as soft. This ensures feasibility of the optimization problem which

could otherwise be lost due to disturbances and plant/model mismatch. The rate-based

MPC cost functional has the following form,

J =
(
Ãξ0 + B̃∆u0|k

)T
P
(
Ãξ0 + B̃∆u0|k

)
+ ∆uT0|kR∆u0|k +Mε2, (2.47)

where the control increment, ∆u0|k, and slack variable, ε, are optimization variables with

M > 0. The state penalty, P , is chosen to be the solution to the Discrete Algebraic Riccati

Equation (DARE) corresponding to the the system (2.12)-(2.13) and (2.46) and uncon-

strained cost,
∑∞

i=0 e
T
i|kQei|k + ∆uTi|kR∆ui|k, with weights R > 0, and Q ≥ 0. Given this
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choice of P , the unconstrained minimization of (2.47) with respect to ∆u0|k results in a

control law,

∆u0|k = −
(
B̃TPB̃ +R

)−1

B̃TPÃξk = KLQRξk, (2.48)

which exactly recovers the unconstrained LQR gain,KLQR. Note that unconstrained stability

is obtained through this choice of cost (2.47) and the unconstrained controller inherits all

properties of the associated LQR controller.

Constraints on the control increment, ∆u0|k, are added to ensure that the applied control

with the optimized control increment, uk = ∆u?0|k + uk−1, satis�es the control constraints,

uV GT − uV GT,k−1 ≤ ∆uV GT,0|k ≤ ūV GT − uV GT,k−1,

−vEGR,k−1 ≤ ∆vEGR,0|k ≤ min
{
W̄EGR(Ne,k,Wf.k), v̄EGR.k

}
− vEGR,k−1,

(2.49)

where uV GT,k−1 and vEGR,k−1 are the VGT command and EGR �ow command applied at

the previous sample instant. Next, output constraints are added as

epin,i ≤ min{p̄in − rpin,k−1, p̄
remap
in,k − rpin,k−1}+ α1ε, ∀i ∈ NICE,pin ⊂ Z+,

p̂ex,i ≤ p̄ex + α2ε, ∀i ∈ NICE,pex ⊂ Z+,
(2.50)

where Z+ denotes the set of positive integers and where α1, α2, > 0 are slack weights which

can be used to assign priority to the di�erent output constraints while using a single slack

variable, ε. Smaller α's correspond to higher priority. For prediction, it is assumed that

the controls are constant after the initial predicted time step, i.e., ∆ui|k = 0, ∀i ≥ 1. The

constraint values, W̄EGR,k, v̄EGR,k, and p̄
remap
in,k are assumed to be constant over the predic-

tion/constraint horizon. Linear approximations of these constraint values as functions of

states could be made as in [54,98], however this adds unnecessary computational complexity

from a practical standpoint.

In order to achieve drastic reduction in the computational complexity for the diesel air

path application, the tightened output constraints on intake pressure and exhaust pressure
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are enforced at only a single time step so that NICE,pin = NICE,pex = {78} (2.5 sec ahead

based on a 32 msec sampling period). This choice of intermittent constraint is placed near

steady state part of the predicted response, which is a reasonable choice because no overshoot

to open loop step responses is exhibited in the primary measured output of interest, MAP,

and a control horizon of one is used.

The resulting MPC optimization for the diesel air path application follows,

min
∆u0,ε

cost function (2.47),

subject to : state equations (2.12)− (2.13) and (2.46),

control constraints (2.49) ,

output constraints (2.50) ,

∆ui|k = 0, ∀i ≥ 1,

ξ0|k =

[
∆x̂Tk pin,k−1 − rpin,k−1 ŴEGR,k−1 − rWEGR,k−1 p̂ex,k−1

]T
.

(2.51)

In the implementation of the explicit MPC solution to (2.51), the constraints as well as the

states are treated as input parameters, ζk. This results in an input parameter vector of size

13,

ζk =



∆x̂k

pin,k−1 − rpin,k−1

ŴEGR,k−1 − rWEGR,k−1

p̂ex,k−1

ūV GT − uV GT,k−1

uV GT,k−1 − uV GT

min
{
W̄EGR(Ne,k,Wf,k), v̄EGR,k

}
− vEGR,k−1

vEGR,k−1

min{p̄in − rpin,k−1, p̄
remap
in − rpin,k−1}

p̄ex



. (2.52)
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The explicit piecewise a�ne (PWA) control law with parameters ζk has the form

∆u?0|k = Gjζk + Fj if Kjζk ≤ Lj, for j ∈ {1, ..., Nr} , (2.53)

where Nr denotes the number of regions generated. The control to be applied to the plant

is uk = ∆u?0|k + uk−1.

Remark: Stabilizing terminal set constraints can formally be added to the rate-based

MPC optimization problem (2.51), see [8]. However, the addition of a terminal set constraint

with a short control horizon greatly limits the size of the feasible region of the optimization

problem. In the presence of large fuel disturbances along with model uncertainty, states can

easily be pushed outside of the feasible region. Guaranteeing recursive feasibility under all

possible uncertainties (and reference changes) would result in a very conservative controller.

Robust design can also be considered, i.e., constraint enforcement under bounded distur-

bances [9, 75]. Such a robust design has been explored in our previous work for the diesel

air path [42] and is further developed in Chapter 4 of this dissertation. The controller so far

developed in this chapter relies on soft constraints to guarantee recursive feasibility of the

optimization problem and a posteriori analysis to establish stability, see Section 2.4. Further

developments on a single step rate-based MPC controller with stability guarantees based on

a Control Lyapunov Function (CLF) is also described in Section 2.4.

2.3.6 Experimental Results

Experiments with rate-based MPC have been conducted on a 3L displacement 4 cylinder

diesel engine with a dSPACE rapid prototyping unit at Toyota Motor Corporation. The test

results indicate good tracking performance of requested intake manifold pressure (MAP) and

estimated EGR �ow set-points on the New European Drive Cycle (NEDC) and Worldwide

harmonized Light vehicles Test Procedure (WLTP). The ability to handle constraints on

maximum MAP, and exhaust pressure in response to fuel steps, which also correspond to

53



steps in intake pressure and EGR �ow set-points, is demonstrated. The turbocharger speed

constraint handling is demonstrated on the NEDC. The sampling period is 32 msec.
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Figure 2.11: Fuel step experiments conducted at 1200 rpm.

All of the following results were conducted with a single rate-based MPC controller, with

a control horizon of one, and whose nominal operating point and single linear design model

are at 1600 rpm engine speed and 30 mm3/st. fueling rate in the center of the NEDC range.

The tuning matrices, Q and R, are tuned based on engine response to ±5 mm3/st. fuel steps

and corresponding reference steps around the nominal operating point. The tuning was

done emphasizing MAP tracking response over EGR �ow because the EGR �ow estimator,

(2.39), is only valid at steady state. The Kalman �lter (2.36) is not tuned assuming that

the associated covariance matrices are identity. The exhaust pressure estimator gain, κ in

(2.43), is tuned such that the estimator response to EGR valve and VGT steps around the

nominal operating point is as fast as possible without exhibiting overshoot. The EGR �ow

estimator, (2.39), is based on measured MAF and ECU estimated cylinder �ow. The latter

is based on measured intake pressure and volumetric e�ciency maps.

Remark: For the experiments that are presented here, a simpli�ed version of the gain
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Figure 2.12: Fuel step experiments conducted at 1600 rpm.

scheduling strategy presented in Chapter 3 is used where only a diagonal gain is placed

at the output of the explicit MPC controller. This was done in order to quickly calibrate

the controller and improve tracking performance in limited experiment time. This does

not diminish the claim that only a single rate-based MPC controller is su�cient to cover

the entire engine operating range. Simulations without gain scheduling performed in loop

with a high �delity physics based nonlinear model will also be shown demonstrating that

indeed a single zone is su�cient. This has also been shown in simulation in a previous

publication, [39], and in preliminary experiments presented in [40].

Figure 2.11 shows the results of an experiment conducted at 1200 rpm with the fueling

rate varying between 5 and 60 mm3/st. The fuel pro�le is constructed through small 5

mm3/st. steps. Between 0 and 25 sec and between 57 and 65 sec, tracking in both MAP

and EGR �ow channels is lost. This is because the combination of the two set-points is

infeasible and at least one actuator (uV GT and/or θEGR) is saturated. Otherwise, steady

state tracking is demonstrated. Figure 2.12 shows the results of an experiment conducted at

1600 rpm with the fueling rate varying between 5 and 60 mm3/st. In this case, tracking of
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Figure 2.13: Fuel step experiment conducted at 2400 rpm.

EGR �ow is slow because the VGT is saturated and the EGR valve is primarily being used

to improve MAP tracking. This re�ects the tuning choice which emphasizes MAP tracking

and discounts transient EGR �ow tracking because the EGR �ow estimate (2.39) is only

valid at steady state.

Figure 2.13 shows the results of an experiment conducted at 2400 rpm. Figure 2.14 shows

a zoomed view of the MAP response at 70 sec overlaid with the MAP response at 100 sec

from Figure 2.13 that compares an unconstrained response versus a response with a MAP

constraint imposed. The overshoot is reduced in the constrained case as compared to the

unconstrained case. In the constrained case, the constraint is momentarily violated because

(i) the fuel step acts as a large disturbance that the air path MPC controller has no control

over, (ii) the constraint is treated as soft, and (iii) there is a di�erence between the linear

prediction model and true nonlinear plant. This behavior could be improved by including a

disturbance model with respect to the measured fuel rate and through the gain scheduling

strategy described in Chapter 3. Note that output constraints are always treated as soft to

maintain feasibility. Figure 2.15 shows an experiment conducted at 1600 rpm demonstrating
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Figure 2.14: Comparison of constrained vs. unconstrained MAP response to a fuel step at
2400 rpm.

exhaust pressure constraint enforcement during a fueling rate step from 20 to 40 mm3/st.

Again, slight violation of the constraint is seen during the transient due to the fuel step,

and a small violation is observed at steady state because the model predictive controller

is trying to balance the cost of the soft constraint and tracking objectives. Figure 2.16

shows the results of an experiment conducted during the Extra Urban Drive Cycle portion

of the NEDC demonstrating turbocharger speed constraint enforcement. This experiment

demonstrates both intake pressure and turbocharger speed constraint enforcement. It can be

seen that the strategy of remapping the turbocharger speed constraint to an intake pressure

constraint is e�ective. Note that the VGT is already very oscillatory during the tip-in before

the constraint activates. This is due to an aggressive controller tuning used during this

experiment. These oscillations disappear in Figure 2.17, see between 500 and 600 sec, once

the controller is re-tuned.

Finally, Figure 2.17 shows the tracking performance of the controller (with lower con-

troller gain compared to Figure 2.16) during a portion of the NEDC containing the last
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Figure 2.15: Demonstration of exhaust pressure constraint handling during a fuel step at
1600 rpm.

portion of the Urban Drive Cycle and full Extra Urban Drive Cycle and Figure 2.18 shows

the last 500 sec of the WLTP. Note that feed-forward is not used in these experiments to

fully test the ability of the feedback controller. The controller demonstrates very good track-

ing performance on intake pressure. There is a graceful loss of tracking at idle, e.g., at the

beginning and end of the NEDC experiment, due to actuator saturation and loss of control

authority. EGR �ow tracking is good in slow transients, however performance su�ers during

large, faster transients. This is due to a tuning choice to de-emphasize EGR tracking cost

due to the lack of a good transient EGR �ow estimator. Highly oscillatory/noisy behavior

is seen, for example, at 50 sec of the NEDC which is due to high sensitivity of the set-point

maps to variations in engine speed. High activity in the VGT can be seen over the WLTP

where the the VGT position swings between the minimum position and maximum position,

e.g., between 1500 and 1550 sec. This high VGT activity may be undesirable and can be

mitigated through changing the Q and R weights. This retuning is investigated in further

simulations. The tuning that was used in the experiments in Figure 2.17 is Q = diag([5, 1])

and R = diag([70, 20]). When the controller is run with this tuning in loop with the high
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Figure 2.16: Demonstration of turbocharger speed constraint handling during the NEDC.

�delity nonlinear model, similarly high VGT activity can be seen between 1550 sec and 1560

sec which also results in a oscillatory response in MAP, see Figures 2.19 and 2.20. When the

controller is re-tuned with Q = diag([1, 5]) and R = diag([300, 20]), which now emphasizes

WEGR tracking and increases the penalty on VGT e�ort, the oscillations in VGT and MAP

between 1550 sec and 1560 sec is smoothed out. Furthermore, the WEGR tracking is much

improved over the WLTP. Also note that no gain scheduling is used in these simulations,

which indicates that a single controller is able to cover the entire engine operating range.

2.3.7 Computational Complexity

Table 2.1 compares the computational complexity of various MPC designs. MPC-A

represents the direct application of integral augmented MPC to the diesel air path. MPC-B

represents a design that utilizes partial nonlinear inversion of EGR �ow to EGR valve position

in the approach used by [38]. In [38], additional strategies such as elimination of rarely visited

regions are employed for complexity reduction of MPC-A and MPC-B. These strategies are

not re�ected in Table 2.1 to provide a direct comparison to rate-based MPC (RB-MPC). Nz
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Figure 2.17: Experiments conducted on the NEDC demonstrate MAP and EGR �ow
tracking using a single zone LMPC controller.

denotes the number of zones used to split the engine operating range and number of local

MPC controllers designed. Ny denotes the number of output constraints considered. In the

cases of MPC-A and MPC-B, where Ny = 1, only the maximum intake pressure constraint is

considered. In the RB-MPC case where Ny = 4, constraints are considered for the maximum

intake pressure, exhaust pressure, remapped turbocharger speed, and remapped EGR �ow

constraint. The variable Np denotes the number of input parameters to the explicit MPC

controller, i.e., number of states, outputs, references, constraint settings, and etc. The

Nc denotes the total number of constraints used per zone, i.e., the number of inequality

constraints in (2.51). The control horizon for all of the compared MPC strategies is one.

As previously noted in Section 1.2.3 the number of regions per zone, Nr, is o(C(Nc, No)),

see De�nition 1.2, where No, the number of optimization variables, is three (two incremental

control variables and one slack variable) for MPC-A, MPC-B, and RB-MPC. The complexity

of storing the associated explicit MPC PWA control law over all zones is o(NzNrNcNp), where

Np = 15 for MPC-A and MPC-B. The number of parameters, Np, is composed of 4 states,

4 control constraint values, 1 output constraint value, 2 references, 2 integrator states, and
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Figure 2.18: Experiments conducted on the WLTP demonstrate MAP and EGR �ow
tracking using a single zone LMPC controller.

2 control states. The number of parameters, Np, is 13 for RB-MPC and is composed of

4 states, 4 control constraint values, 2 output constraint values, and 3 augmented output

states. The complexity of evaluating the PWA control law is o(NrNcNp). Note that the

computational cost of determining the zone is marginal compared to the rest of the cost,

since zones are typically boxes rather than general polytopes as is the case for regions.

The computation time is estimated for a mid-range ECU, e.g., Freescale's MPC5644A

microcontroller [26], with a 160MHz clock speed based on a worst case Floating Point Op-

erations (FLOPS) count.2 Note that ECU's typically perform many other functions beside

air path control. With RB-MPC, less than 1% of the ECU's capability is used based on a

32 msec sampling period, see Table 2.1. Further computation time gains can be made by

exploiting the simple structure of explicit MPC together with the Multiply and Accumulate

(MAC) speci�c hardware inside the ECU which is not accounted for in Table 2.1.

2The worst case FLOPS count is a combined number of addition and multiply operations, which can be
explicitly counted as the control is a PWA function (2.53) assuming that all regions must be checked before
the control is applied. The computation time can then be obtained through ECU speci�cations, [26], e.g.,
clock speed, and number of �oating point instructions per cycle.
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Figure 2.19: Simulations conducted on the WLTP comparing di�erent Q and R tunings.

Nz, Ny, Nc, Np, ΣNr ROM[kB] Time [µs]
MPC-A 15, 1, 34, 15, 945 548.1 725.6
MPC-B 2, 1, 6, 15, 65 37.7 374.1
RB-MPC 1, 4, 6, 13, 29 11.2 222.2

Table 2.1: Computational complexity of various MPC designs for the diesel air path.

Table 2.1 compares the computational complexity of the various methods without esti-

mators, i.e., considering only the cost of evaluation the PWA control law (2.53). MPC-A

enforces the intake pressure constraint through the entirety of a 30-step constraint horizon

leading to a large computational complexity. Two zones are used with MPC-B since the

diesel air path plant becomes �more linear� when treating EGR �ow as a control input. The

two zones separate a high engine speed zone from a low engine speed zone. Only two steps of

intermittent constraint enforcement are used to enforce the intake pressure constraint which

results in a dramatic computation time reduction compared to MPC-A. The �nal RB-MPC

design presented in this chapter utilizes only a single zone and remaps the turbocharger

and EGR �ow constraints to existing constraints, leading to a lower computation time and

ROM size, while enforcing more constraints. With only a single instance of intermittent con-

straint enforcement per output constraint, the total number of constraints, Nc, is the same
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Figure 2.20: Zoomed view of simulations conducted on the WLTP comparing di�erent Q
and R tunings.

for RB-MPC and MPC-B. However, computation time for MPC-B is still larger because the

references must be added as additional parameters to the optimization problem, leading to

a larger PWA representation. This not the case for RB-MPC where the augmented state

only needs to be driven to zero. Further, note that when all of the output constraints are

considered, the estimators would be the same for MPC-A, MPC-B, and RB-MPC.

2.4 Stability of the DAP MPC Controller

For the diesel air path application, the optimization problem is kept small, with a small

number of optimization variables and constraints, as an approach toward developing a com-

putationally feasible model predictive controller. As remarked in Section 2.3.5, the designed

controller does not incorporate a priori stability guarantees. Including a stability guarantee

through incorporating a terminal set constraint, [72], may greatly increase the computa-

tional complexity of the explicit representation of the controller and limit the feasible region

of the optimization problem. Furthermore, a terminal set constraint is typically used with
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a long control horizon so that the feasible region of the optimization problem is not overly

conservative, i.e, small. Instead, with the DAP MPC controller, local stability is guaranteed

through a terminal penalty, P in (2.47), that is obtained from the corresponding solution to

the in�nite horizon unconstrained LQ problem.

This section presents another approach, contractive MPC (CMPC) [17, 24, 32], to guar-

antee local stability when a control and prediction horizon of 1 is to used. CMPC relies on

explicitly enforcing a decay condition on a Lyapunov function. With CMPC, it has previously

been unknown how to achieve zero-o�set, steady-state tracking. An augmented integrator or

disturbance estimator strategy will not work because the equilibrium state must be known

a priori in order to use a Lyapunov function. A novel approach using rate-based CMPC

avoids the issues of requiring a known equilibrium and is thus able to achieve zero-o�set,

steady-state tracking.

Even with CMPC, only local stability is achieved. Thus an a posteriori stability analysis

tool is also developed to check the stability of an MPC controller and estimate the constrained

domain of attraction.

2.4.1 Rate-based Contractive MPC

Contractive MPC (CMPC) utilizes the explicit enforcement of a Control Lyapunov Func-

tion (CLF) based constraint to achieve stability of the resulting MPC controller. Further-

more, a rate-based framework will be used to achieve zero-o�set, steady-state tracking. Even

though both CMPC and the MPC strategy described in Section 2.3 utilize a single step hori-

zon and both guarantee local stability, CMPC has an advantage. With standard MPC, the

cost functional must be chosen such that it also serves as an Lyapunov function to guaran-

tee local stability, e.g., the terminal penalty, P , is chosen as the solution to the associated

DARE, [72]. With CMPC, the cost functional can be chosen independently from the need

to guarantee stability. This provides more freedom to tune the controller.

Let ξk ∈ X ⊆ Rnx+ny , where ξk is the rate-based state in (2.12) and uk ∈ U ⊆ Rnu with
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uk = ∆uk + uk−1 where X and U are speci�ed sets. A function V is a local CLF in X̄ ⊆ X,

for the system (2.12)-(2.14) if there exists a control law ∆uk = π(ξk) such that

V (ξk+1) ≤ V (ξk), ∀ξ ∈ X̄. (2.54)

Flexibility in the Lyapunov stability condition (2.54) can be introduced by using a re-

laxation parameter τ . This allows the usage of the local CLF in a much larger subset of

X, see [32]. The enforcement of the CLF decay is done in the following manner. At each

time step, k, a cost functional J(τk), a strictly increasing function of τk over ∆uk and τk, is

minimized subject to the following constraints:

uk ∈ U, ξk+1 ∈ X, τk ≥ 0,

V (ξk+1)− ρV (ξk) ≤ τk,
(2.55)

where ρ ∈ [0, 1) is the decay rate.

An in�nity-norm CLF candidate for the construction of either an LP or QP implemen-

tation of the optimization problem subject to the constraints (2.55) is considered,

V (ξ) = ||Pξ||∞, (2.56)

where P ∈ Rp×(nx+ny) is a full column-rank matrix which can be determined by constructing

a Lyapunov function for the pre-stabilized unconstrained system ξk+1 = (Ā+ B̄K)ξk, where

the stabilizing gain K can be the result of an unconstrained LQR design. An in�nity-norm

Lyapunov function can then be generated using techniques in [63]. With an in�nity-norm

CLF candidate, the CLF decay condition in the constraint (2.55) becomes

||P (Āξk + B̄∆uk)||∞ − ρ||Pξk||∞ ≤ τk. (2.57)

A constraint of the form ||Pξ||∞ ≤ c can be replaced by an equivalent set of linear
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inequalities ±(Pξ)m ≤ c, where m denotes the m-th row of Pξ. This results in constraints

composed of 2p linear inequalities,

±(P (Āξk + B̄∆uk))m − ρ||Pξk||∞ ≤ τk. (2.58)

At each time instant k, the term ρ||Pξk||∞ in the equation (2.58) is computed outside

the optimization problem and can be considered as an input parameter, e.g., to the PWA

representation of the associated explicit MPC control law.

Simulations have been performed using CMPC in the loop with the high �delity physics

based model. The controlled inputs are VGT position and EGR �ow. The tracked outputs

are intake pressure and EGR rate. For the CMPC controller, the inversion of EGR �ow to

EGR valve position is done through inversion of the ori�ce for equation (2.3).3 The maximum

EGR �ow, v̄EGR(ūEGR, Ne, pin, p̂ex, T̂eco), is obtained by evaluating the ori�ce equation (2.1)-

(2.2) with the maximum valve position, ūEGR, and current measurements or ECU estimates

of engine speed, intake pressure, exhaust pressure, and EGR cooler out temperature. The

constraints considered on the controls for the CMPC implementation are

uV GT − uV GT,k−1 ≤ ∆uV GT,0|k ≤ ūV GT − uV GT,k−1,

−vEGR,k−1 ≤ ∆vEGR,0|k ≤ v̄EGR(ūEGR, Ne,k, pin,k, p̂ex,k, T̂eco,k)− vEGR,k−1.
(2.59)

Note that the maximum EGR �ow constraint in (2.59) is a nonlinear function of states,

as opposed to v̄EGR,k in (2.49) which is just based on a table-lookup as a function of the

operating condition. The nonlinear EGR �ow constraint (2.59) is easily handled in CMPC

as, over a single time step, the constraint is a�ne with respect to the control.

A soft overshoot constraint is also imposed on intake pressure,

epin,1|k ≤ ε+ p̄in − rpin,k−1, (2.60)

3Note that this implementation of CMPC pre-dates some of the observations and developments that led to
the controller design described in Section 2.3. The target engine is also di�erent. The CMPC implementation
targets Toyota's AD engine rather than Toyota's KD engine. See [38,41] for further details.
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where ε is a slack variable and p̄in is the intake pressure overshoot limit.

The cost functional in the CMPC problem is of the form,

J = (Āξ̂k + B̄∆u0|k)
TQ(Āξ̂k + B̄∆u0|k) + ∆uT0|kR∆u0|k +M1τ

2
k +M2ε

2, (2.61)

and is minimized subject to the constraints,

±(P (Āξ̂k + B̄∆u0|k))m − ρ||Pξk||∞ ≤ τk, (2.62)

and (2.59)-(2.60). The cost functional penalizes the one step error through the term (Āξ̂k +

B̄∆u0|k)
TQ(Āξ̂k + B̄∆u0|k) with Q = QT ≥ 0, the control e�ort through ∆uT0|kR∆u0|k with

R = RT > 0, the Lyapunov decay constraint violation through M1τ
2
k with M1 > 0, and the

overshoot constraint violation through M2ε
2 with M2 > 0.

The �nal set of input parameters ζk for the explicit form of the CMPC controller is

ζk =



ξ̂k

ρ||Pξk||∞

ūV GT − uV GT,k−1

uV GT − uV GT,k−1

v̄EGR(ūEGR, Ne,k, pin,k, p̂ex,k, T̂eco,k)− vEGR,k−1

−vEGR,k−1

p̄in − rpin



. (2.63)

In total for CMPC, there are 10 input parameters with ξ̂k ∈ R4, 4 optimization variables

composed of the control increments and slacks, and 15 constraints composed of 8 from the

CLF decay condition with p = 4 and 4 total min/max control constraints, and 1 overshoot

constraint, and τk, εk ≥ 0. Note that a QP problem is formed in equation (2.61) rather than

a LP as is done in [32]. This is because the QP formulation typically results in fewer regions
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of the explicit control representation compared to a LP formulation. With a LP formulation,

additional constraints and slacks are required to handle a step cost of in�nity-norm type.

The number of regions with the QP and LP formulations are 229 regions and 628 regions,

respectively.

Simulation results of the CMPC controller in the loop with the high �delity nonlinear

DAP model are shown in Figures 2.21-2.24. The single linearization point for the CMPC

prediction model is at 1750 rpm engine speed and 45mm3/st. fuel rate. Figure 2.21 shows

responses to fuel steps of 25 mm3/st. ± 20mm3/st. The decay rate, ρ, in (2.63) is set to

0.95, and the intake pressure overshoot constraint is set to +5 kPa. Feed-forward has not

been added to demonstrate the capability of the feedback part of the controller. The time-

constant for intake pressure response is fast, on the order of 1 sec and zero-o�set, steady-state

tracking error is achieved. The overshoot constraint can be seen to become active at 22 sec.

Figure 2.22 shows the CLF decay after each fuel disturbance and reference change. Through

NEDC simulations it can be seen that a single CMPC controller is able to stably control a

large range of operating conditions (de�ned by fuel rate and engine speed). Figures 2.23-2.24

show a portion of a drive cycle simulation. The portion shown is characterized by engine

speed ramps and fuel cuts. The fuel rate and engine speed vary between 0 mm3/st. - 35

mm3/st. and 1000 rpm - 2300 rpm, respectively. In Figure 2.24, the four spikes of EGR rate

reference where there is a loss of EGR rate tracking corresponds to fuel cut events. EGR

rate tracking is momentarily lost because the fuel �ow instantaneously drops and exhaust

pressure immediately drops to a point where intake pressure is greater than exhaust pressure

so that no EGR �ow is possible.

2.4.2 A Posteriori Stability Analysis

With the rate-based MPC controller described in Section 2.3 and with the CMPC con-

troller described in Section 2.4.1, only local stability is guaranteed. Thus a tool is still desired

to check for stability a posteriori, i.e., after the controller has been de�ned, and estimate
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Figure 2.21: Responses of tracked outputs, MAP and EGR rate, to fuel steps.
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Figure 2.22: Response of CLF value to fuel steps.

820 830 840 850 860 870 880 890
0

20

40

60

80

100

120

140

160

time [s]

ou
tp

ut
s

 

 

MAP reference [kPa]
EGR Rate reference [%]
MAP [kPa]
EGR Rate[%]

Figure 2.23: Responses of tracked outputs, MAP and EGR rate, on the NEDC.
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Figure 2.24: Response of CLF value on the NEDC.
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Figure 2.25: Algorithm for computing the exponential decay condition violation.

the closed loop region of attraction. There are di�erent approaches to a posteriori stability

analysis. The Multi-Parametric Toolbox (MPT) [63] includes tools that attempt to �nd a

quadratic or piece-wise quadratic Lyapunov function to certify stability. One could also try

to �nd a quadratic Lyapunov function through solving a Linear Matrix Inequality (LMI) fol-

lowing the method in [89]. Both of these methods were not successful in �nding a Lyapunov

function for rate-based MPC controller described in Section 2.3 due to a large state-space

size including both the states and state estimates, delayed states arising from a rate-based

formulation, and the need to handle references as parameters. Thus, a di�erent approach

is taken that directly tries to establish exponential stability rather than trying to establish

Lyapunov stability.

De�nition 2.1: The origin is exponentially stable for a system, xk+1 = f(xk), if there

exists M > 0 and ρ ∈ (0, 1) such that ||xk|| ≤Mρk||x0|| for all k ≥ 0.
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Rather than trying to construct a Lyapunov function, simulations can be performed

to check for an exponential bound. Speci�cally, a nonlinear optimization problem can

be solved that tries to �nd an initial condition that falsi�es the exponential decay con-

dition. If no such initial condition exists then the system is stable. In the following, let

(A,B,C,D) correspond to the system matrices of the non-rate-based nominal model and let

(Ai, Bi, Ci, Di) correspond to system matrices of a non-rate-based o�-nominal model. Let

∆u? = f ?(∆x̂0, e0,U,Y, u−1) be the optimal control law which is a function of the current

state estimate increment, ∆x̂0, error, e0, control constraint set U0, output constraint set

Y, and previously applied control, u−1. Also let L be the observer gain. Given an initial

condition for the state, x−1, state estimate x̂−1, control u−1, and the expected steady state

control uss corresponding to some reference, the procedure in Figure 2.25 can be used to

determine if an exponential decay condition is violated.

When the nonlinear optimization problem is posed, linear constraints are required on the

initial condition to ensure that the initial condition for the control u−1 is feasible and that

the reference is reachable. Assume that the control constraints, U = {u : ū ≤ u ≤ u}, and

output constraints, Y = {y : ȳ ≤ y ≤ y}, are of box type,

V



x−1

x̂−1

u−1

uss


≤



ū

ū

−u

−u

ȳ

−y


, V =



0 0 I 0

0 0 0 I

0 0 −I 0

0 0 0 −I

0 0 0 (Ci(I − Ai)−1Bi +Di)

0 0 0 −(Ci(I − Ai)−1Bi +Di)


. (2.64)

Then for a given M and ρ, the following nonlinear optimization problem is solved,

max
x−1,x̂−1,u−1,uss

DECAY VIOLATION,

subject to : (2.64).

(2.65)
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If (2.65) is negative, then the system is stable. The optimization problem (2.65) is solved

with multiple initial guesses and a nonlinear optimizer, e.g., MATLAB's fmincon. Using this

method, it has been found that the controller is asymptotically stable for the set of initial

conditions described by (2.64) at the nominal condition withM = 10000 and ρ = 0.95. Note

that the set of initial conditions described by (2.64) is large and only requires that u−1 ∈ U

and that there exists a steady state control uss ∈ U such that the corresponding yss ∈

Y. Extensive nonlinear simulations and engine hardware experiments at various operating

conditions have also con�rmed closed-loop system stability properties.

2.5 Conclusions

A rate-based model predictive controller for diesel engine air path management by coordi-

nating VGT, EGR valve, and EGR throttle actuators has been designed and experimentally

validated. Using a rate-based MPC strategy, the engine operating range does not need to be

partitioned into zones with a di�erent controller designed and stored per zone (as in previous

approaches). This reduces ECU memory requirements and calibration e�ort and avoids the

need to address bumpless transfer as the controller can be discontinuous across zone bound-

aries. Compared to the augmented integral or disturbance estimator strategies, rate-based

MPC does not require a disturbance model and does not require the previously applied con-

trol or reference to be treated as parameters to the optimization problem, thereby reducing

the computation time and memory of the corresponding explicit MPC. Further computa-

tional complexity reduction can be achieved through the use of constraint remapping and

the novel strategy of intermittent constraint enforcement. Furthermore, the control strategy

enforces more constraints than has previously been demonstrated, e.g., a single constraint

on soot in [56] or constraint on NOx in [101], with comparable computation time and lower

ROM usage. Experimental tests have demonstrated that a controller based on a single zone

can successfully accomplish both reference tracking and constraint enforcement. Stability of
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rate-based MPC was also investigated. When a horizon of one is used, CMPC is an attrac-

tive way to obtain stability because performance tuning can be decoupled from providing

a stability guarantee. A novel approach to CMPC using a rate-based form was used to

achieve zero-o�set steady-state tracking. With both standard rate-based MPC and CMPC

controllers, only local stability is guaranteed. Thus an a posteriori stability analysis tool

is also developed to check the stability of an MPC controller and estimate the closed loop

region of attraction.
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Chapter 3

Gain Scheduled Linear Model Predictive Control

This chapter describes a gain scheduling strategy that can be used in conjunction with

explicit Model Predictive Control (MPC). Traditionally, explicit MPC is not recon�gurable

to online model changes. To handle o�-nominal plant conditions, a common practice is to

design multiple explicit MPC's which are each valid locally around their respective operating

points. This inevitably requires large amounts of memory to store the explicit MPC's and

implementation of switching logic and observers. The gain scheduling strategy presented in

this chapter bypasses the need to store multiple explicit MPC's. This is done by multiplying

the control signal obtained from the nominal explicit MPC by a gain scheduling matrix such

that the plant at o�-nominal operating conditions is approximately matched to the nominal

plant. This is further accomplished in a manner such that the original control constraints

are satis�ed. The gain scheduling strategy is demonstrated in simulations on a nonlinear

diesel air path model over the New European Drive Cycle (NEDC).

3.1 Introduction

A common strategy when using linear model based explicit MPC for control of nonlinear

plants is to de�ne multiple operating conditions, design an explicit MPC [5] for each operating

condition, and switch between the multiple MPC's as the operating condition changes [68].

This approach has been employed in previous diesel air path control applications [38,56,84].
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It is also used by Honeywell's OnRAMP software [36] for systematic MPC design applied

to powertrain control. This strategy comes at the cost of increased embedded processor

memory usage for each additional o�-nominal explicit MPC and calibration time for each

controller. Furthermore, bumpless switching between controllers must be implemented.

The general design process of gain scheduled explicit MPC consists of the following main

steps.

1. De�ne and tune a nominal explicit MPC for the nominal operating condition.

2. Through simulations or experiments, determine at which conditions the nominal ex-

plicit MPC no longer satis�es performance requirements.

3. Compute through linearization or system identi�cation a linear model for the o�-

nominal condition.

4. Continue de�ning new operating conditions and linear models until the operating range

is fully covered.

Performing this gain scheduling procedure can be cumbersome as there is no well-de�ned

method for determining how to partition the plant operational space. The judgment of the

engineer or calibrator with intuition of the nonlinear plant dynamics is typically required.

In addition to a reduction of memory requirements, as will be shown, the proposed gain

scheduling method described in this chapter will reduce the need for de�ning operational

zones of the plant.

The di�erence between the traditional strategy for gain scheduling explicit MPC and the

strategy proposed in this chapter is that instead of modifying the controller to accommodate

o�-nominal operating conditions, the plant is pre-compensated at the input to resemble the

nominal plant and to accommodate the nominal controller as is done in [28].

The gain scheduling strategy in [28] can be applied to unconstrained multi-input multi-

output controllers, where an intermediate gain is placed between the nominal controller
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output and the nonlinear plant. In this way, the combination of the intermediate gain and

the o�-nominal plant is made to approximate the nominal plant. See also [108, 109] where

this strategy was employed with non-MPC controllers for diesel engines. While relatively

simple, this technique has proven to be remarkably e�ective in engine control applications.

When considering the use of explicit MPC as the nominal controller, the implementation

of the approach of [28] is impeded by control constraints, as no guarantee exists that the

control signal will satisfy them. This issue is successfully addressed and resolved in the new

proposed strategy.

It will �rst be shown that, for 2 input, 2 output systems, diagonal or anti-diagonal 2× 2

gain matrices on the output of the explicit MPC can be accommodated by treating control

bounds as parameters in the explicit MPC formulation. A switching structure between the

diagonal and anti-diagonal gains will be used to approximate the strategy of [28]. The

switched explicit MPC (seMPC) converges to the strategy in [28] as the sampling frequency

increases. The mechanism is similar to the well-known Pulse-Width-Modulation (PWM); the

applied signal achieves the originally desired signal on average, or through natural �ltering

by plant dynamics. As will also be discussed, the method can be extended to systems with

more inputs (and more outputs) at the cost of needing to either increase the sampling rate

or reduce the control update frequency.

The seMPC strategy is simpler than conventional gain scheduled explicit MPC (gsMPC)

in terms of microcontroller memory usage and calibration e�ort needed. While the perfor-

mance of seMPC may, in general, be worse than gsMPC due to having fewer degrees of

freedom to manipulate the model and closed-loop dynamics, it is found that for the highly

nonlinear diesel air path application [61], the seMPC strategy with a single nominal linear

model is su�cient for covering the entire engine operating range and performs comparably

to gsMPC.

In the following, the seMPC strategy is developed for the 2 input, 2 output, diesel air path

control application described in Chapter 2. The seMPC strategy is developed in a rate-based
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framework to facilitate set-point tracking, however can easily be modi�ed for non-rate-based

MPC.

This chapter is organized as follows. Section 3.2 motivates the need for a switched gain

scheduling structure for constraint handling in the context of explicit MPC and develops the

seMPC strategy. Section 3.3 develops local stability results for seMPC. Finally Section 3.4

demonstrates the seMPC strategy in both linear and nonlinear diesel air path simulations.

Section 3.5 contains concluding remarks on gain scheduling explicit MPC.

3.2 Switched Gain Scheduled Explicit MPC

This section begins by brie�y describing rate-based explicit MPC [5,114] and, speci�cally,

how extra input parameters can be added to the explicit MPC formulation to handle time-

varying constraints. This section then develops the switched explicit MPC (seMPC) strategy.

3.2.1 Rate-Based Explicit MPC

In the following, a representative linear prediction model is considered for the nonlinear

plant, assuming that the system is square,

xk+1 = Axk +Buk, (3.1)

yk = Cxk +Duk, (3.2)

with box type control constraints,

uk ≤ uk ≤ uk, (3.3)

where uk and uk designate the lower and upper limits, respectively, which will be assumed

to be constant over the prediction horizon.

Following the steps outlined in Chapter 2, a rate-based MPC optimization problem can

be de�ned for the box control constrained system (3.1)-(3.3) that has the following form,
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min
∆ui|k, i∈{0,...N−1}

ξTN |kPξN |k +
N−1∑
i=0

ξTi|kQξi|k + ∆uTi|kR∆ui|k,

subject to : ξi+1|k = Āξi|k + B̄∆ui|k,

ũi|k =
i∑

j=0

∆uj|k,

uk − uk−1 ≤ ũi|k ≤ uk − uk−1,

ξ0|k = ξk.

(3.4)

Once the optimization problem (3.4) is solved at the current time step, the solution for

∆u0|k, denoted by ∆u?0|k, is applied to the plant.

Explicit MPC can be used to represent the solution to the optimization problem (3.4)

with speci�ed matrices, Ā, B̄, P,Q, and R, that is computed o�-line for all possible states,

ξk, and takes the form of a Piecewise-A�ne (PWA) function [5],

∆u?0|k = Kjξk + Fj if Hjξk ≤ Gj for j ∈ {1, ..., Nr}, (3.5)

where ξk is the PWA function input, ∆u?0|k is the output, and j denotes the j-th polyhe-

dral region of the PWA function. Then the control increment is integrated to generate the

absolute control command, uk = uk−1 + ∆u?0|k. Explicit MPC has been shown to be com-

putationally faster compared to on-line Quadratic Programming (QP) solvers for small QP

problems, i.e., small number of optimization variables and constraints [1,7]. The PWA solu-

tion (3.5) to the MPC optimization problem (3.4) can be computed using Hybrid Toolbox [6]

or Multi-Parametric Toolbox [63]. Note that uk−1 is an input parameter to the optimization

problem (3.4) but is not treated as an input to (3.5). This will be handled in the following

discussion.

Commonly, the state space model (Ā, B̄) is extended with additional states represent-

ing the control constraint values to accommodate nonlinear or time varying control con-

straints. This has been done previously in [32, 38, 39] with explicit MPC, where constraint

values are nonlinear functions of the current state measurement or estimate and must be
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recomputed at each time step and treated as constant over the prediction horizon. Let

ζk be the extended state vector containing the original states and the control constraints,

ζk =
[
ξTk , u

T
k − uTk−1, u

T
k − uTk−1

]T
. The explicit MPC controller is then formed for the

augmented system,

ζk+1 = Aζk + B∆uk, (3.6)

A =


Ā 0 0

0 I 0

0 0 I

 , B =


B̄

0

0

 , (3.7)

ξk = Cξζk, uk − uk−1 = Cuζk, uk − uk−1 = Cuζk, (3.8)

where the control bounds uk − uk−1 and uk − uk−1 are incorporated as non-dynamic states

in (3.6)-(3.7) and the matrices Cξ, Cu, and Cu in (3.8) extract the appropriate elements of ζk.

Using the augmented system (3.6)-(3.8), the following MPC optimization problem is de�ned,

min
∆ui|k, i∈{0,...,N−1}

ζTN |kCTξ PCξζN |k +
N−1∑
i=0

ζTi|kCTξ QCξζi|k + ∆uTi|kR∆ui|k,

subject to: ζi+1|k = Aζi|k + B∆ui|k,

ũi|k =
i∑

j=0

∆uj|k,

Cuζk ≤ ũi|k ≤ Cuζk,

ξ0|k = ξk.

(3.9)

The explicit MPC can then be computed where the control constraint values can be recon-

�gured through ζk at each time step,

∆u?0|k = Kjζk + Fj if Hjζk ≤ Gj for j ∈ {1, ..., Nr}. (3.10)

3.2.2 Switched Explicit MPC

Let P0(z) represent the plant at the nominal operating point and Pθ(z) represent the
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plant at o�-nominal operating points where θ is the scheduling parameter, e.g., engine speed

and fuel rate in the diesel air path case. The goal of the switched explicit MPC (seMPC)

strategy is to match o�-nominal plants, Pθ(z) in Figure 3.2, to the nominal plant, P0(z)

in Figure 3.1, by introducing a scheduled gain, Sθ, between the explicit MPC and plant.

The gain Sθ is chosen such that the combination of the scheduled gain and the o�-nominal

plant, SθPθ(z), is made to approximate the nominal plant, P0(z), i.e., SθPθ(z) ≈ P0(z). In

the simulation results that will be presented in Section 3.4, Sθ is chosen to match the DC

gain of the nominal plant, Sθ = P0(1)P−1
θ (1). This type of scheduling based on DC gain has

previously been used for decentralized PI control of a EGR-VGT diesel engine [108,109]. The

scheduled gain, Sθ, can also be chosen to minimize a closed loop transfer function di�erence

as done in [28] or could be adapted in real-time.

Figure 3.1: Nominal plant, P0(z), and control.

Figure 3.2: O�-nominal plant, Pθ(z), and control with scheduled gain Sθ.

When the scheduled gain, Sθ, is applied to explicit MPC, special considerations must

be made to ensure control constraint enforcement. Explicit MPC will guarantee that the

control, uk = ∆u?0|k +uk−1, satis�es control constraints. However, after the scheduled gain is

applied, there is no guarantee that the resulting control signal, uk = Sθ∆u
?
0|k +uk−1, satis�es

control constraints. Figure 3.3 illustrates how the control constraints are violated when the

scheduled gain is directly applied to a 2 input system.

Consider the control constraints for a 2 input system, where ũ1,i|k and ũ2,i|k are the �rst

and second inputs at the i-th time step in the horizon at sample time k, and u1,k−1 and
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Figure 3.3: Direct application of the scheduled gain leads to constraint violation.

u2,k−1 are the controls applied at the previous time step,



1 0

0 1

−1 0

0 −1


 ũ1,i|k

ũ2,i|k

 ≤


u1 − u1,k−1

u2 − u2,k−1

−u1 + u1,k−1

−u2 + u2,k−1


. (3.11)

In order to enforce the control constraints after the scheduled gain, the constraint (3.11)

that must be enforced by MPC should become,



1 0

0 1

−1 0

0 −1


Sθ

 ũ1,i|k

ũ2,i|k

 ≤


u1 − u1,k−1

u2 − u2,k−1

−u1 + u1,k−1

−u2 + u2,k−1


. (3.12)

However, once the explicit MPC is computed for the nominal plant with nominal control

constraint (3.11), only the right hand side of the control constraint inequality (3.11) can be

accessed online (through the extended state vector, ζk). Thus the constraint (3.12) cannot

be implemented unless Sθ is removed from the left hand side of (3.12). For a 2 input system,

there are two cases of Sθ where it can be removed from the left hand side of (3.12). The �rst

is if Sθ is diagonal which is illustrated in Figure 3.4.
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Figure 3.4: Diagonal only scheduled gain maintains constraint satisfaction.

Figure 3.5: Anti-diagonal only scheduled gain maintains constraint satisfaction.

Let Sθ = diag(s11, s22) and denote this as Sdθ . With Sdθ , the constraint (3.12) becomes,



1 0

0 1

−1 0

0 −1


Sdθ

 ũ1,i|k

ũ2,i|k

 ≤


u1 − u1,k−1

u2 − u2,k−1

−u1 + u1,k−1

−u2 + u2,k−1


, (3.13)

which, assuming s11, s22 > 0, can be rewritten as,



1 0

0 1

−1 0

0 −1


 ũ1,i|k

ũ2,i|k

 ≤


s−1
11 (u1 − u1,k−1)

s−1
22 (u2 − u2,k−1)

−s−1
11 (u1 + u1,k−1)

−s−1
22 (u2 + u2,k−1)


, (3.14)

where the extended state vector ζk should be set with the values of the right hand side of

the inequality (3.14) rather than the original control constraint values in (3.11). Note that

the inequality (3.14) is formed assuming that s11, s22 > 0. If either s11 or s22 are negative,
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then the corresponding minimum and maximum constraints should be switched, e.g.,

 1

−1

 ũ1,i|k ≤

 s−1
11 (u1 − u1,k−1)

−s−1
11 (u1 + u1,k−1)

 if s11 > 0,

 1

−1

 ũ1,i|k ≤

 s−1
11 (u1 − u1,k−1)

−s−1
11 (u1 + u1,k−1)

 if s11 < 0.

(3.15)

If either s11 or s22 are zero, then the corresponding constraints can be set to in�nity or an

appropriately large value.

The second case where Sθ can be removed from the left hand side of (3.12) is if it is an

anti-diagonal only matrix,

Sθ =

 0 s12

s21 0

 . (3.16)

We denote the anti-diagonal scheduled gain (3.16) as Soθ . With Soθ , the constraint (3.12) in

the anti-diagonal case, assuming s12, s21 > 0, becomes,



1 0

0 1

−1 0

0 −1


 ũ1,i|k

ũ2,i|k

 ≤


s−1
12 (u1 − u1,k−1)

s−1
12 (u2 − u2,k−1)

−s−1
21 (u1 + u1,k−1)

−s−1
21 (u2 + u2,k−1)


. (3.17)

If either s12 or s21 are negative or zero, the change of sign or singularity needs to be accounted

for similar to the diagonal case.

Let the desired scheduling gain be S?θ , which can be a fully populated matrix. This can

be computed, for example, by matching the DC gain of the o�-nominal plant to the nominal

plant or by minimizing a closed-loop transfer function di�erence. The seMPC strategy aims

to recover S?θ , particularly as the sampling frequency increases, by switching between the
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diagonal scheduled gain Sdθ and anti-diagonal scheduled gain S
o
θ every �half� time step, where

Sdθ + Soθ = S?θ . (3.18)

To implement this strategy, the discrete time nominal prediction model (3.1) should have the

same sampling period, ∆T , as if no scheduling strategy is used. The explicit MPC should

be evaluated every half time step, i.e., every ∆T/2, with Sdθ and constraints (3.14) on the

even half-step, and with Soθ and constraints (3.17) on the odd half-step. Measurements or

state estimates should only occur on the even half-step so that the states used in ζk on the

odd half-step are the same as was used on the previous even half-step.

This strategy can be extended to systems with more inputs. For example, in the case of

3 inputs, the desired scheduled gain could be split into three,

S1
θ =


s11 0 0

0 s22 0

0 0 s33

 , S2
θ =


0 0 s13

s21 0 0

0 s32 0

 , S3
θ =


0 s12 0

0 0 s23

s31 0 0

 . (3.19)

However, the explicit MPC needs to be evaluated an extra time per additional input per

sampling period.

Note that the observer and constraints on tracked outputs may not require special treat-

ment in the proposed switching strategy. Typically, output constraints are treated as soft

to guarantee feasibility in the presence of plant/model mismatch and disturbances. Further-

more, it is reasonable to expect that estimation error and violations of constraints on tracked

outputs will be smaller with seMPC than without any scheduling strategy because the o�-

nominal condition has been made to look like the nominal condition/prediction model. The

handling of general state constraints requires further analysis because the system may not

be square from inputs to constrained states. This analysis will be pursued in future work.
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3.3 Analysis of Switched Explicit MPC

In this section, conditions for stability of seMPC are developed. The subscript θ has been

dropped to simplify notation. Let �target system� refer to the closed-loop system where S?

is used and ∆uk is the result of a MPC optimization problem (MPC1) with the constraint

(3.12) directly applied,

ξk+1 = Āξk + B̄S?∆uk,

ξk+2 = Ā2ξk + ĀB̄S?∆uk.
(3.20)

Note the control, ∆uk in (3.20) is computed and applied at the �even" half-step, k, and is

zero during the �odd� half-step, k + 1. The system dynamic matrices, Ā and B̄ in (3.20),

correspond to the half-step sampling period, ∆T/2.

The state update equations for the seMPC system with states, ξ̄k, can be written as

ξ̄k+1 = Āξ̄k + B̄Sd∆udk,

ξ̄k+2 = Ā2ξ̄k + ĀB̄Sd∆udk + B̄So∆uok,
(3.21)

where ∆udk and ∆uok are the result of MPC optimization problems (MPC2 and MPC3)

formulated with constraints (3.14) and (3.17), respectively. Note that locally, i.e., if all

constraints are inactive, ∆uk, ∆udk, and ∆uok represent the same control policy with the

same linear gain K because the cost function is the same for all three MPC controllers. The

local closed loop state equations are

ξk+2 = (Ā2 + ĀB̄S?K)ξk, (3.22)

ξ̄k+2 =
(
Ā2 +

(
ĀB̄Sd + B̄So

)
K
)
ξ̄k. (3.23)
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The local error between the target system and the switched strategy system satis�es

ek = ξ̄k − ξk,

ek+2 =
(
Ā2 +

(
ĀB̄Sd + B̄So

)
K
)
ek +

(
ĀB̄Sd + B̄So − ĀB̄S?

)
Kξk.

(3.24)

Proposition 3.1: If Ā2 + ĀB̄S?K and Ā2 +
(
ĀB̄Sd + B̄So

)
K are asymptotically stable,

the control constraint set, U , is closed and bounded and has non-empty interior, and MPC1,

MPC2, and MPC3 have the same objective function, then there exists a set Ω such that if

ξ0 ∈ Ω and ξ0 = ξ̄0, then lim
k→∞

ξk = 0 and lim
k→∞

ξ̄k = 0.

Proof: A maximal output admissible set, O∞, exists and has non-empty interior for the

ξk system with MPC1 and constraints H0ξk ≤ G0 (region zero of the explicit MPC where the

unconstrained gain is obtained, ∆uk = Kξk). Similarly, maximal output admissible sets Od
∞

and Oo
∞ exist for the ξ̄k system with MPC2 and MPC3, respectively. Under our assumptions,

a set Ω can be chosen to satisfy the following properties:

(
Ā2 +

(
ĀB̄Sd + B̄So

)
K
)

Ω ⊂ Ω, (3.25)

Ω ⊂ O∞, (3.26)

Ω ⊂ Od
∞, (3.27)

Ω ⊂ Oo
∞. (3.28)

Then ∆uk = Kξk for all even k. ∆ud0 = ∆uo0 = Kξ̄0 and (3.25) implies ∆udk = ∆uok = Kξ̄k

for all even k. Consequently, lim
k→∞

ξk = 0 and lim
k→∞

ξ̄k = 0 because Ā2 + ĀB̄S?K in (3.22) and

Ā2 +
(
ĀB̄Sd + B̄So

)
K in (3.23) are asymptotically stable. �

A local (unconstrained) error bound can also be established between the seMPC strategy

and a continuous time target system, or �averaged� system, as the sampling period, ∆T , goes

to zero. Let Ac and Bc be continuous time system matrices corresponding to the discrete time

system matrices, A and B with a sampling period of ∆T . The continuous time rate-based
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system [18] with seMPC is

˙̄z = Ãz̄ + B̃ ˙̄u (3.29)

z̄ =

 ¨̄x

˙̄y

 , Ã =

 Ac 0

C 0

 , B̃ =

 Bc

D

 . (3.30)

The discrete time control update for seMPC can be expressed in continuous time as

˙̄u =



SdK

 x̄(tk)− x̄(tk−1)

ȳ(tk−1)

 δ(tk), tk ≤ t < tk + ∆T
2

SoK

 x̄(tk)− x̄(tk−1)

ȳ(tk−1)

 δ(tk + ∆T
2

), tk + ∆T
2
≤ t < tk+1

, (3.31)

where δ(t) is the dirac-delta function applied at time t.

The continuous time averaged system is

ż = Ãz + B̃u̇, (3.32)

where the control, u̇ = S?Kcz, is applied continuously rather than sampled. The discrete

time update for z is

z(tk+1) = eΓ∆T z(tk), Γ = Ã+ B̃S?Kc. (3.33)

Using the Taylor series expansion of the matrix exponential, (3.33) can be expressed as

z(tk+1) = (I + Γ∆T +O1(∆T 2))z(tk), (3.34)

where Oi(∆T
m) denotes terms of order ∆Tm and higher and i denotes an unique function

Oi. Let K and Kc have the form

K = [KP KI ] = [KP,c +O2(∆T ) KI,c∆T +O3(∆T 2)],

Kc = [KP,c KI,c],
(3.35)
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where KP and KI denote proportional and integral terms respectively. It is reasonable to

assume that KP → KP,c as ∆T → 0 and that KI is O(∆T ). If, instead, KI is O(1), then

u(t)→∞ as ∆T → 0.

Returning to the seMPC system (3.29)-(3.30), the discrete time update is

z̄(tk+1) = eÃ∆T z̄(tk) + eÃ∆T B̃SdK

 x̄(tk)− x̄(tk−1)

ȳ(tk−1)

+ eÃ
∆T
2 B̃SoK

 x̄(tk)− x̄(tk−1)

ȳ(tk−1)

 .
(3.36)

Using Euler integration,

 x̄(tk)− x̄(tk−1)

ȳ(tk−1)

 =

 ∆T ˙̄x(tk) +O4,k(∆T
2)

ȳ(tk) +O5,k(∆T )

 , (3.37)

where Oi,k(∆T
m) are the Euler integration truncation errors from time step tk to tk−1. Using

(3.18), (3.35) and (3.37), the discrete time update for seMPC (3.36) can be written as

z̄(tk+1) = (I + Γ∆T +O6(∆T 2))z̄(tk) +O7,k(∆T
2), (3.38)

where O7,k(∆T
2) in (3.38) is a function of O4,k(∆T

2) and O5,k(∆T ) in (3.37).

The error system, ε = z̄ − z, can then be formed,

ε(tk+1) = (I + Γ∆T +O6(∆T 2))ε(tk) +O8(T 2)z(tk) +O7,k(∆T
2). (3.39)

Proposition 3.2: Let H(∆T ) = I + Γ∆T + O1(∆T 2) and γ 6= 0 such that ||H(∆T )|| ≤

q(∆T ) = 1 + γ∆T +O8(∆T 2). Then lim
∆T→0+

|ε(t)| ≤ eγt|ε(0)|.

Proof: Let n(t) = bt/∆T c, tn = n(t)∆T . The error system (3.39) can be bounded by

|ε(tk+1)| ≤ q|ε(tk)|+ r, where r is O(∆T 2) and

r = ||O8(∆T 2)||
(

max
0≤τ≤t

||eΓτ ||
)
|z(0)|+ max

0≤k≤n
|O7,k(∆T

2)|. (3.40)
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Then

|ε(tn)| ≤ qn|ε(0)|+ qn − 1

q − 1
r. (3.41)

Note that lim
∆T→0+

qn = eγt, lim
∆T→0+

r/(q − 1) = 0, and lim
∆T→0+

tn = t. Thus lim
∆T→0+

|ε(t)| =

lim∆T→0+ |ε(tn)| ≤ eγt|ε(0)|. �

Remark 1: Proposition 3.2 does not require stability and furthermore, if ε(0) = 0, then

lim
∆T→0+

ε(t) = 0.

Remark 2: Suppose the assumptions of Proposition 3.2 hold with γ < 0 for a certain

induced norm || · || corresponding to a vector norm | · |. This is a reasonable expectation if

Γ is Hurwitz. Then for any ε(0), lim
t→∞

lim
∆T→0+

ε(t) = 0.

3.4 Diesel Air Path Simulation Results

The diesel air path can have di�erent dynamics depending on the operating condition,

e.g., low engine speed vs. high engine speed. However, the choice has been made to only

design a single linear MPC to cover the entire engine operating range due to stringent Engine

Control Unit (ECU) memory usage constraints and, furthermore, to simplify the calibration

process, see Chapter 2. The controller in Chapter 2 has been tuned conservatively to be

robust to di�erent engine dynamics.

The control objective is to track set-points for intake manifold pressure (MAP) and Ex-

haust Gas Recirculation (EGR) rate. The set-points are provided by maps as functions of the

engine operating conditions, i.e., the current engine speed and fueling rate. The controlled

inputs are the Variable Geometry Turbocharger (VGT) position and commanded EGR �ow.

The EGR �ow command is subsequently converted to EGR valve and EGR throttle position

commands through partial nonlinear inversion. The explicit MPC is designed exploiting a

rate-based model.

In the simulation results presented in this section, the scheduled gain S?θ is chosen to
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match the o�-nominal plant DC gain to the nominal plant DC gain,

S?θ = P0(1)P−1
θ (1). (3.42)

The nominal model operating condition is at 1600 rpm engine speed and 30 mm3/st.

fuel rate. O�-nominal model linearizations are taken every 400 rpm between 800 rpm and

4000 rpm and every 10 mm3/st. between 10 mm3/st. and 50 mm3/st. to populate the S?θ

elements stored in a linear interpolation based look-up table. The base sampling rate before

the switched gain scheduling strategy is applied is ∆T = 32 msec.

The rate-based MPC cost functional utilizes a control and prediction horizon of 1,

J =
(
Āξ0 + B̄∆u0|k

)T
P
(
Āξ0 + B̄∆u0|k

)
+ ∆uT0|kR∆u0|k. (3.43)

There are control constraints on both the VGT position and EGR �ow,

u ≤ uk ≤ u. (3.44)

Figure 3.6 shows a linear simulation of a MAP set-point step response where δ denotes

the deviation from the nominal equilibrium. This �gure illustrates that the seMPC strat-

egy is able to successfully approximate a strategy where the full gain scheduling matrix is

directly applied, i.e., uk = S?θ∆u0|k + uk−1. Figure 3.7 shows a zoomed in view of Figure

3.6 highlighting that there is only a very small discrepancy between the full matrix gain

scheduling and seMPC strategies.

Figures 3.8-3.9 show reference step responses around each operating condition of the

nonlinear model without any gain scheduling strategy (left), with seMPC (middle), and

with the traditional gsMPC strategy (right). In the gsMPC strategy, the tuning matrices, Q

and R, are the same for each operating condition. In Figures 3.8-3.9, δ denotes the deviation

from the set-point at that condition. Figure 3.8 shows that MAP responses are closer to the
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nominal step response designed at 1600 rpm and 30 mm3/st. when seMPC is used. The

thicker gold line highlights the nominal MAP step response. The dotted cyan and green lines

highlight the extreme conditions at 3200 rpm and 30 mm3/st. and 800 rpm and 5 mm3/st.

With seMPC, the highly underdamped response seen at 3200 rpm and 30 mm3/st. without

seMPC disappears, and the slow response seen at 800 rpm and 5 mm3/st. without seMPC

is sped up. The response without any gain scheduling strategy at 3200 rpm and 50 mm3/st.

is not shown because it is unstable. The instability is stabilized with seMPC, and likewise

gsMPC. Overall, the responses at the various conditions are drawn closer to the nominal step

response. Figure 3.9 shows EGR rate reference steps at each condition. Again the highly

underdamped response seen without seMPC at 3200 rpm and 30 mm3/st. is removed with

seMPC. There is some performance degradation in the 800 rpm and 5 mm3/st. case which

can be due to an inaccurate linear model at this condition or may suggest that DC gain

matching is not the best choice for S?θ . However, overall, the responses are drawn closer to

the nominal step response.

Table 3.1 shows a comparison of the cumulative absolute tracking error over the step

responses shown in Figures 3.8-3.9 utilizing MPC (no scheduling), seMPC, and gsMPC, and

their respective ROM usage. Note that ROM usage is o(NzNrNcNp), where Nz is the number

of zones and Nz = 1 in the seMPC case and Nz = 9 in the gsMPC case. Np, Nr, and Nc,

see Section 2.3.7, are the same for seMPC and gsMPC. Also note that the computation time

of the scaled constraints (3.14) and (3.17) is marginal compared to the evaluation of the

PWA control law (3.10), thus the computation time of seMPC and gsMPC are essentially

the same.

As expected, both seMPC and gsMPC are able to track signi�cantly better than MPC.

Even with fewer degrees of freedom to modify the closed loop dynamics, the performance of

seMPC is comparable to gsMPC. The ROM usage of seMPC is only slightly larger than MPC

due to the storage of four 9 × 5 lookup tables (one table per element of S?). Nine explicit

MPC's are used for this gsMPC implementation which is similar to previously published
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Table 3.1: Comparison of tracking error and memory usage of MPC without gain
scheduling, seMPC, and gsMPC.

Controller MAP error EGR rate error ROM [kB]
MPC 2343 1115 73.6
seMPC 1172 716 74.3
gsMPC 1402 636 708.4

gsMPC strategies for diesel air path control, e.g., 12 explicit MPC's are used in [84]. The

need to store multiple explicit MPC's dramatically increases the ROM usage for gsMPC.

Figure 3.10 shows the MAP response on a portion of the New European Drive Cycle with

and without seMPC in closed loop with with nonlinear model. We observe that with seMPC,

MAP is able to rise faster during the acceleration phases, e.g., from 844 sec to 849 sec and

from 854 sec to 857 sec. The MAP response can be seen in Figure 3.12 to be approximately

100 msec faster during the acceleration phases with seMPC than without.

Figure 3.11 shows the EGR rate response on the same portion of the New European

Drive Cycle with and without seMPC. We observe that with seMPC, the EGR rate response

is signi�cantly better able to track the EGR rate set-point at 854 sec. Figure 3.13 shows

a zoomed view of the EGR rate response around 843 sec. With the seMPC design, the

controller is able to recover EGR rate set-point tracking to the set-point at 843.5 sec while

without seMPC the controller is not able to recover tracking.

Figure 3.14 shows the values of the elements of S?θ that are used during the NEDC. These

values are obtained from 2D, linear interpolation based, lookup tables with the engine speed

and fueling rate as inputs. The table values are computed o�ine systematically by matching

the DC gain of the o�-nominal operating conditions to the nominal condition.

3.5 Conclusions

A gain scheduling strategy that can be used in conjunction with explicit MPC has been

developed and validated in simulation for the diesel engine airpath. In a traditional strat-
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Figure 3.8: MAP set-point steps using MPC without gain scheduling (left), seMPC,
(middle), and gsMPC (right) at di�erent operating conditions of the high �delity nonlinear

model.
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Figure 3.14: Switched gain scheduling elements on the NEDC.

egy for gain scheduled explicit MPC, multiple complex piecewise-a�ne functions need to

be stored in memory and bumpless transfer across possibly discontinuous controller zone

boundaries needs to be handled. In the novel scheduling strategy proposed in this chapter,

simple lookup tables are used to store all of the scheduling parameters. The calibration

of the scheduling parameters is performed in a systematic manner whereas in a traditional

strategy, one has to individually tune the MPC cost function at each operating condition.

A switching implementation has been proposed to satisfy original control constraints with

the gain scheduled MPC. From a broader perspective, the scheduling strategy proposed in

this chapter gives a degree of �exibility (recon�gurability to model changes) to explicit MPC

which is traditionally rigid. In future work, the handling of general state constraints will be

investigated. The limitations of the seMPC strategy, which o�ers fewer degrees of freedom

to modify the closed-loop dynamics versus gsMPC, will also be explored.
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Chapter 4

Robust Linear Model Predictive Control

This chapter describes an extension of model predictive control (MPC) for the diesel air

path that is able to robustly enforce constraints in the presence of disturbances, commonly

known as tube MPC. A rate-based tube MPC formulation is used to accomplish o�set-free

steady-state tracking. As a consequence, it is found that a rate-based formulation reduces

the conservativeness of tube MPC, i.e., the amount of constraint tightening that is typically

required with tube MPC is reduced. Approximations are then made to the rate-based tube

MPC strategy to achieve a design that is viable for a diesel engine air path control application

which has very limited computational resources. Simulation and experimental results are

then presented using the approximate rate-based tube MPC strategy. A low-complexity

tube MPC strategy is also developed that achieves the same maximal output admissible set

as tube MPC, which is motivated by the need to formally reduce computational complexity,

rather than in an approximate manner.

4.1 Introduction

The goal of this chapter is to develop a robust model predictive control (MPC) strategy

that can can be used for diesel engine air path (DAP) control, [27,33,38,39,49,56,84,101]. In

addition, a strategy is desired that does not signi�cantly increase computational complexity

compared to non-robust MPC. The �rst goal is achieved through the combination of rate-
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based MPC (also referred to as velocity-form MPC), [8, 18, 39, 43, 49, 85, 114], and tube

MPC, [9, 64, 74, 75]. The second goal is achieved through a novel strategy of splitting the

standard tube MPC optimization problem into two smaller sub-problems while maintaining

the same maximal output admissible set (MOAS), [60], as when a standard tube MPC

controller is used.

Tube MPC is a variant of MPC that is able to handle state and output constraints

in systems with bounded additive state disturbances. The strategy is to �rst consider a

nominal controller with state feedback gain, K. Under this nominal controller, a robust

positively invariant (RPI) set can be constructed for the closed loop system which is used

to form the �tube.� The MPC optimization problem is then solved to compute a center for

the tube which will contain the true state. The center of the tube is deemed the nominal

initial state from which prediction begins. The state constraints are tightened such that all

possible trajectories inside the tube satisfy the desired constraints. Furthermore, the control

constraints are tightened to account for the nominal controller gain that is applied on top of

the MPC solution.

In many applications, it is desirable to incorporate integral type action into controllers

to compensate for the mismatch between the model and true plant and achieve disturbance

rejection. With MPC, three common strategies exist to achieve integral type action, hereafter

referred to zero-o�set steady-state tracking. The �rst approach is to directly incorporate an

integrator on the tracking error. The second approach is to augment the nominal model with

a disturbance model and estimate the disturbance online [69, 70, 86]. The third approach is

to use a rate-based form [18,85,114].

As noted in [76], when a disturbance state is augmented to the original system, the

resulting augmented system is not stabilizable. This renders the computation of an RPI set

for the augmented system with disturbance states impossible. This is not the case for the

augmented system when a rate-based form is used. Furthermore, achieving stability of tube

MPC typically relies on a stabilizing terminal set constraint, [64, 72, 75]. The use of such a
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terminal set constraint is di�cult for the case of tracking MPC when integrators are directly

added or disturbance estimators are used because the steady-state states corresponding to

the references must be known a priori. Again, this is not the case with rate-based MPC. As a

result of the rate-based tube MPC strategy described in this chapter, which builds from the

rate-based tube MPC work of [9] and utilizes observations from [42], the conservativeness of

the robust MPC controller is reduced because the e�ective disturbances are typically smaller

with rate-based tube MPC than with conventional tube MPC.

The rate-based tube MPC strategy is applied to the diesel air path (DAP) control prob-

lem. See Figure 1.3 for a schematic of the diesel engine. One motivation for the application of

MPC to diesel engine air path control is the ability of MPC to explicitly enforce constraints.

For example, constraints which manifest from drivability requirements, e.g., a constraint on

boost pressure overshoot to limit undesired engine torque �uctuations [15], must be consid-

ered. Furthermore, these constraints must be enforced in a robust manner when disturbances

are present. The disadvantage of tube MPC is a potentially dramatic increase in compu-

tation time associated with the addition of extra constraints associated with the tube. In

order to implement rate-based tube MPC, the computational complexity of the controller

must be considered due to the limited computational resources available in engine control

units (ECU). To manage the increase in computational complexity of tube MPC compared

to standard MPC, approximations to the tube MPC strategy are made. Simulation of the

controller in closed-loop with a nonlinear, physics based, DAP model are presented along

with experimental results using the approximate rate-based tube MPC strategy.

While the approximate tube MPC strategy is e�ective in practice, the constraint sat-

isfaction guarantees of tube MPC are lost. Thus, a low-complexity tube MPC strategy is

also developed in this work which maintains the same MOAS as standard tube MPC. This

is achieved through splitting the tube MPC optimization problem into more easily solv-

able sub-problems. The resulting computational complexity, in both computation time and

memory usage, is on the same order as standard MPC.
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The remainder of this chapter is organized as follows. Section 4.2 describes rate-based

tube MPC. Section 4.3 describes the application to the DAP example and the associated ap-

proximations made to achieve an implementable design with low computational complexity.

Section 4.4 gives a novel reduced complexity formulation of tube MPC. Finally, Section 4.5

contains concluding remarks on tube MPC.

Nomenclature: In the following, given two sets U ⊂ Rn and V ⊂ Rn, the Minkowski

set addition is de�ned by U ⊕ V = {u + v|u ∈ U, v ∈ V} and the Minkowski (Pontryagin)

set di�erence is de�ned by U 	 V = {x|{x} ⊕ V ⊆ U}. Let Z+ = {1, 2, 3, ...} be the set of

strictly positive integers. The distance of a point z ∈ Rn to a set Z ⊆ Rn is denoted by

d(z, Z) = infx∈Z ||x− z||.

De�nition 4.1 : A set Ω ⊂ Rn is robust positively invariant (RPI) for the system xk+1 =

f(x,w) and the constraint set (X,W) if Ω ⊆ X and f(x,w) ∈ Ω,∀w ∈W,∀x ∈ Ω.

De�nition 4.2: A set O∞ ⊂ Rn is a maximal output admissible set (MOAS) for the

closed loop system, xk+1 = fcl(xk) and yk = gcl(xk), and output constraint y ∈ Y if for all

x0 ∈ O∞ and k ∈ Z+, xk+1 = fcl(xk) and yk = gcl(xk) ∈ Y.

De�nition 4.3: The origin is exponentially stable for a system, xk+1 = f(xk), with a

region of attraction of XN if there exists M > 0 and ρ ∈ (0, 1) such that if x0 ∈ XN , then

||xk|| ≤Mρk||x0|| for all k ≥ 0.

De�nition 4.4 : A set Z is robustly exponentially stable, [74], for a system, xk+1 =

f(xk, wk), wk ∈ W, with a region of attraction of XN if there exists M > 0 and ρ ∈ (0, 1)

such that any solution of xk+1 = f(xk, wk) with an initial state, x0 ∈ XN , and any admissible

disturbance sequence, wk ∈W ∀k ≥ 0, satis�es d(xk,Z) ≤Mρkd(x0,Z).

4.2 Rate-Based Tube MPC

A rate-based formulation will be used in order to achieve zero-o�set steady-state tracking
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with tube MPC. The plant dynamics are assumed to have the form,

xk+1 = Axk +B1uk +B2wk, (4.1)

yk = Cxk +D1uk +D2wk, (4.2)

where it is desired to enforce state and control constraints of the form xk ∈ X ⊂ Rnx and

uk ∈ U ⊂ Rnu . Additionally, it is assumed that y ∈ Rny and w ∈ W ⊂ Rnw where nu = ny

and X, U, andW are compact, convex polytopes which contain the origin. With a rate-based

formulation, control, state, and disturbance increments are de�ned as ∆uk = uk − uk−1,

∆xk = xk − xk−1, and ∆wk = wk − wk−1 respectively. The error to an output reference r,

assumed to be constant, is de�ned as ek = yk − r. Let the augmented state vector be

ξk =

 ∆xk

ek−1

 . (4.3)

Note that, unlike [8, 9, 85, 114], direct feedthrough is included in the plant model (4.1)-(4.2)

through the terms D1uk and D2wk. For this reason ek−1 instead of ek is used in ξk. The

rate-based plant has the following form

ξk+1 = Āξk + B̄1∆uk + B̄2∆wk, (4.4)

ek = C̄ξk, (4.5)

Ā =

 A 0

C I

 , B̄1 =

 B1

D1

 , B̄2 =

 B2

D2

 , C̄ =

[
0 I

]
. (4.6)

With tube MPC, a nominal model, i.e., without disturbances wk, is de�ned with nominal
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states, x̄k, nominal controls, ūk, and nominal outputs, ȳk. The nominal model has the form,

x̄k+1 = Ax̄k +B1ūk, (4.7)

ȳk = Cx̄k +D1ūk, (4.8)

and the nominal model has the associated rate-based form,

ξ̄k+1 = Āξ̄k + B̄1∆ūk, (4.9)

ēk = C̄ξ̄k. (4.10)

With tube MPC, the control policy is composed of a nominal control term, to be deter-

mined by an optimization problem, and a state feedback term performed on the di�erence

between the nominal state trajectory and true state trajectory,

∆uk = ∆ūk +Kηk, (4.11)

where the error, ηk, is de�ned as ηk = ξk − ξ̄k, and K is a stabilizing gain for the pair

(Ā, B̄1) which can be chosen as the unconstrained Linear Quadratic Regulator (LQR) gain

with weighting matrices Q = QT ≥ 0 and R = RT > 0. Let AK = Ā + B̄1KThe error, ηk,

satis�es the di�erence equation,

ηk+1 = AKηk + B̄2∆wk. (4.12)

The next step is to establish a bound on the error between the nominal state and true

state, ηk, i.e., a robust positively invariant (RPI) set for the system (4.12). Towards this end,

in [9], it was assumed that wk ∈W. However, when a rate-based form is used, additional in-

formation/assumptions can be used. Speci�cally, as was done in [42], it will also be assumed

that, in addition to magnitude, rate bounds exist, i.e., ∆wk ∈ D, where D is a compact,
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convex polytope containing the origin. This is advantageous because a rate bounded distur-

bance set can be much smaller than a magnitude bounded disturbance set in many physical

systems. For example, for the DAP application in [42], the considered disturbances for the

DAP system are the engine speed and fuel rate, which cannot change arbitrarily (within W

which is �large�) between sample times due to physical limitations. This leads to a set D

that is much �smaller� than W. With ∆wk ∈ D, a RPI set, F∞, can be constructed such

that ηk ∈ F∞ ⊂ Rnx+ny ∀k, where

F∞ =
∞⊕
i=0

AiKB̄2D. (4.13)

Typically a polytopic RPI outer approximation of F∞ is used which can be computed in

�nite time through [93] assuming that AK has eigenvalues inside the unit circle.

When disturbances are considered, the constraint sets, xk ∈ X and uk ∈ U, for the

nominal system must be tightened to ensure that that constraints are satis�ed for the true

system. With a rate-based design, xk ∈ X and uk ∈ U must be converted into constraints on

ξk. This can be done, as shown in [9] (without direct feedthrough), through manipulating

(4.2), i.e., ∆xk = xk − xk−1 = Axk−1 + B1uk−1 + B2wk−1 − xk−1 = (A− I)xk−1 + B1uk−1 +

B2wk−1. This leads to the connection between the rate-based states,

[
∆xTk yTk−1

]T
, and

the constrained states and controls,

[
xTk−1 uTk−1

]T
,

 xk−1

uk−1

 =

 A− I B1

C D1


−1  ∆xk

yk−1

+

 A− I B1

C D1


−1  B2

D2

wk−1, (4.14)

where it is assumed that

 A− I B1

C D1

 is invertible. From xk−1, uk−1, and wk−1, the
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equation,

 xk

uk−1

 = Π

 ∆xk

yk−1

+

Π

 B2

D2

+

 B2

0


wk−1, (4.15)

Π =

 A B1

0 I


 A− I B1

C D1


−1

, (4.16)

is obtained. Similarly, the relationship between

[
∆x̄Tk ȳTk−1

]T
and

[
x̄Tk ūTk−1

]T
is

 x̄k

ūk−1

 = Π

 ∆x̄k

ȳk−1

 . (4.17)

With (4.15) and (4.17), the error between

[
xTk uTk−1

]T
and

[
x̄Tk ūTk−1

]T
can be estab-

lished,  xk

uk−1

−
 x̄k

ūk−1

 = Πηk +

Π

 B2

D2

+

 B2

0


wk−1, (4.18)

and  xk

uk−1

−
 x̄k

ūk−1

 ∈ ΠF∞ ⊕

Π

 B2

D2

+

 B2

0


W ∀k. (4.19)

So long as the constraint,

 x̄k

ūk−1

 = Π

ξ̄k +

 0

r


 ∈ X̄, (4.20)

where

X̄ = (X× U)	

ΠF∞ ⊕

Π

 B2

D2

+

 B2

0


W

 , (4.21)
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is satis�ed, then

[
xTk uTk−1

]T
∈ X× U. Note that X̄, in (4.21), will generally be �larger�

with ∆w ∈ D than with only wk ∈W because F∞ with ∆w ∈ D is generally �smaller� than

with only w ∈W.

A MOAS is typically used to impose a terminal state constraint in MPC for the purposes

of establishing recursive feasibility and stability. This can be done as well with rate-based

tube MPC. Let K̄ be a stabilizing gain for the nominal system (4.9) and (4.10). A MOAS,

O∞, can then be computed for the asymptotically stable closed loop system

ξ̄k+1 =
(
Ā+ B̄1K̄

)
ξ̄k (4.22)

subject to the constraint,

Πξ̄k ∈ X̄	

Π

 0

r


 , (4.23)

assuming X̄	

Π

 0

r


 contains the origin.

Assumption 4.1: The sets O∞ and X̄ are non-empty, the assumptions required to compute

O∞ and X̄ are satis�ed, P = P T ≥ 0, Q = QT ≥ 0, and R = RT > 0.

Given Assumption 4.1, the rate-based tube MPC optimization problem can now be

formed as

min
ξ̄0|k,∆ūi|k, i∈{0,...N−1}

ξ̄TN |kP ξ̄N |k +
N−1∑
i=0

ξ̄Ti|kQξ̄i|k + ∆ūTi|kR∆ūi|k,

subject to : ξ̄i+1|k = Āξ̄i|k + B̄∆ūi|k,

Π

ξ̄i|k +

 0

r


 ∈ X̄,

ξ̄N |k ∈ O∞,

ξk − ξ̄0|k ∈ F∞,

(4.24)

where the true rate-based state, ξk, and reference, r, are inputs to (4.24). Let ξ̄?0|k and ∆ū?|k
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denote the optimal solution for ξ̄0|k and ∆ūi|k in (4.24). The control increment to be applied

to the true system is ∆uk = ∆ū?0|k +K
(
ξk − ξ̄?0|k

)
.

Let ∆ūl:m|k, with 0 ≤ l ≤ m, denote the sequence
{

∆ūl|k, ...,∆ūm|k
}
and let ∆ū?l:m|k

denote the optimal sequence,
{

∆ū?l|k, ...,∆ū
?
m|k

}
, for (4.24) at time k. Let ξ̄?0|k denote the

optimal initial nominal state for (4.24) at time k.

Let X̄N be the set of nominal states, ξ̄0|k, for which there exists an admissible nominal

control sequence for (4.24),

X̄N =


ξ̄0 ∈ Rnx+ny | ∃∆ū0:N−1 : ξ̄k+1 = Āξ̄k + B̄∆ūk, Π

ξ̄k +

 0

r


 ∈ X̄

∀k ∈ {0, ..., N − 1}, ξ̄N ∈ O∞

 . (4.25)

Proposition 4.1: Given Assumption 4.1 and assuming that ξ0 ∈ F∞ ⊕ X̄N , then (4.24) is

feasible and

[
xTk uTk−1

]T
∈ X× U for all future time steps, k ∈ Z+. The set F∞ ⊕ X̄N is

the MOAS for the plant, (4.4) and (4.5), under the nominal control de�ned by (4.24) and

∆uk = ∆ū?0|k +K
(
ξk − ξ̄?0|k

)
.

Proof: Because ξ0 ∈ F∞ ⊕ X̄N , there exists a ξ̄0|0 ∈ X̄N such that (4.24) is feasible.

By (4.24), Π

ξ̄1|0 +

 0

r


 ∈ X̄ implies that

[
xT1 uT0

]
∈ X× U. At time k = 1,

ξ̄0|1 = ξ̄?1|0 and ∆ū0:N−1|1 =
{

∆ū?1:N−1|0, K̄ξ̄
?
N |0

}
is an admissible initial nominal state and

control sequence, respectively, for (4.24), where ξ̄?j|0 denotes the solution to (4.9) at step j

given the initial condition ξ̄?0|0 and control sequence ∆ū?0:j−1|0. Then by induction, (4.24) is

feasible and

[
xTk uTk−1

]
∈ X× U ∀k ∈ Z+ and F∞ ⊕ X̄N is the MOAS for the plant, (4.4)

and (4.5), under the control de�ned by (4.24) and ∆uk = ∆ū?0|k +K
(
ξk − ξ̄?0|k

)
. �

Assumption 4.2: The matrix Q = QT > 0 in (4.24). The matrix P in (4.24) is the solution

to the Riccati equation corresponding to the system (4.9) and (4.10) and unconstrained

in�nite horizon cost,
∑∞

i=0 ξ̄
T
i|kQξ̄i|k + ∆ūTi|kR∆ūi|k with Q = QT > 0 and R = RT > 0. The

matrix, K̄ in (4.22), is the associated feedback gain, and O∞ in (4.24) is constructed for the
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system (4.22) subject to the constraint (4.23).

Theorem 4.1: Given the assumptions of Proposition 4.1 and Assumption 4.2, the set F∞

is robustly exponentially stable (see De�nition 4.4) for the true system (4.4) with a domain

of attraction of F∞ ⊕ X̄N .

Proof: Let

Vj|k
(
ξ̄0|k,

{
∆ū0|k, ...,∆ūj−1|k

})
= ξ̄Tj|kP ξ̄j|k +

j−1∑
i=0

ξ̄Ti|kQξ̄i|k + ∆ūTi|kQ∆ūi|k, (4.26)

where ξ̄i+1|k = Āξ̄i|k+B̄∆ūi|k. Let ξ̄
?
0|k and ∆ū?0:N−1|k be the solution to (4.24) with a horizon

length of N . Using the standard arguments of [72], the monotonicity property,

VN |k+1

(
ξ̄?0|k+1,∆ū

?
0:N−1|k+1

)
− VN |k

(
ξ̄?0|k,∆ū

?
0:N−1|k

)
≤ −ξ̄T0|kQξ̄0|k −∆ūT0|kR∆ū0|k, (4.27)

is established. Then, using (4.27), Proposition 4.1, and the standard arguments of [74], the

set F∞ is robustly exponentially stable for the true system (4.4) with a domain of attraction

of F∞ ⊕ X̄N . �

Remark: The state trajectories of the true system (4.4) approach the set F∞ around

the origin, which is generally smaller when ∆w ∈ D than when it is only guaranteed that

wk ∈W.

4.3 Approximate Rate-Based Tube MPC

As an example, rate-based tube MPC is now applied to the diesel air path (DAP). A

schematic of the DAP is shown in Figure 1.3, where the �ows in the engine are controlled

using a VGT, EGR valve, and EGR throttle. The control objective is to track set-points for

intake manifold pressure, commonly referred to as manifold absolute pressure (MAP), pin,

and EGR rate (the ratio of EGR �ow to cylinder �ow), χEGR. The set-points are provided

by maps (look-up tables) as functions of the engine operating condition, i.e., the current
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engine speed and load (indicated by fuel rate). An output constraint must be enforced on

maximum MAP (the EGR rate output constraint will be remapped to an EGR �ow input

constraint, see Section 2.3.3). The choice of inputs, to be determined by the MPC controller,

are the VGT position (speci�cally, the VGT duty cycle command), uV GT , and EGR �ow,

WEGR. The desired EGR �ow, determined by the MPC controller, is inverted to the EGR

valve position based on the EGR valve ori�ce �ow equation, [38,39]. The choice of EGR �ow

instead of EGR valve position is motivated by the observation that the DAP plant becomes

�more linear� when EGR �ow is used, [38,113]. Control constraints must also be enforced on

the VGT position and EGR �ow. The EGR throttle is controlled through only feed-forward

values obtained from a lookup-table.

Due to computational limitations of production engine control units, [26], the general

tube MPC described in Section 4.2 cannot be applied directly. An increase in computational

complexity of tube MPC compared to standard MPC, particularly when a short control

horizon is used, results from the increased number of optimization variables, i.e., for ξ̄0|k in

(4.24), and additional constraints, i.e., ξk − ξ̄0|k ∈ F∞ in (4.24). For the DAP example, a

control horizon of 1-3 steps is typically used, [49, 56, 84, 101, 115]. Thus, the addition of ξ̄0|k

as an optimization variable signi�cantly increases the total number of optimization variables

and, as a result, may signi�cantly increase computation time and memory, particularly when

explicit MPC, [5,23], is used. Thus an approximate rate-based tube MPC formulation is now

introduced with lower computational overhead compared to (4.24) and is less conservative

than (4.24). However, with this approach, there will be no a priori guarantee of recursive

feasibility and stability. Having a guarantee of this kind is only partly valuable since (i)

the ultimate implementation is for the nonlinear diesel air path system rather than for a

linear system, (ii) the ultimate implementation uses soft output constraints so feasibility

is guaranteed as the result of the problem reformulation, and (iii) the assumption that

the reference, r, is constant is not valid, i.e., r changes as a function of the operating

condition. The constrained domain of attraction with the approximate rate-based tube
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Figure 4.1: Comparison of MAP response to VGT position and EGR �ow between the full
state, 2 state, and 1 state linear model.

MPC formulation can be established by a posteriori analysis, e.g., based on linear matrix

inequalities, [89], or through simulation, [49,55].

For prediction, a single state model will be used because it is important to reduce the

number of additional optimizations variables, i.e., ξ̄0|k, to manage computational complexity.

The single state model is obtained through linearization of a high �delity nonlinear DAP

model and model order reduction, [14, 67]. The resulting model has the form of (4.1)-(4.2)

where xk is a non-physical state, yk is composed of MAP and EGR rate, uk is composed of

VGT position and EGR �ow, and wk is composed of engine speed and fuel rate which are

unknown, but bounded, in prediction. The EGR �ow input is delivered by inversion of the

EGR valve ori�ce �ow equation (2.3). Figures 4.1 and 4.2 shows a comparison between the

full state model model, 2 state reduced model, and 1 state reduced model. The outputs,

MAP and EGR rate, respond to steps in VGT position and EGR �ow where δ denotes the

deviation from the equilibrium of the chosen linearization point. These responses show that

a 1 state model is su�cient to approximately match the input-output response of the full

state model.

The proposed approximate MPC formulation for the DAP has the following form,
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Figure 4.2: Comparison of EGR rate response to VGT position and EGR �ow between the
full state, 2 state, and 1 state linear model.

min
ξ̄0|k,∆ūi|k, i∈{0,...N−1}

ξ̄TN |kP ξ̄N |k +
N−1∑
i=0

ξ̄Ti|kQξ̄i|k + ∆ūTi|kR∆ūi|k,

subject to : ξ̄i+1|k = Āξ̄i|k + B̄∆ūi|k,

C̄

ξ̄i|k +

 0

r


 ∈ Y	 C̄F∞,

uk−1 +
i∑

j=0

∆ūj|k ∈ U	 (i+ 1)KF∞,

ξk − ξ̄0|k ∈ F∞,

(4.28)

where only output constraints are considered because the states are non-physical as a result of

model order reduction and/or system identi�cation. The constraint C̄ξ̄i|k ∈ Y	C̄F∞ in (4.28)

guarantees that output constraints are satis�ed over the prediction horizon for the true rate-

based system (4.4), i.e., C̄ξi|k ∈ Y. The constraint uk−1+
i∑

j=0

∆ūj|k ∈ U	(i+1)KF∞ in (4.28)

guarantees that ui|k ∈ U over the prediction horizon, where the term (i+1) is needed because

the additional control increment, Kηi|k, must be applied at each predicted step to keep

ηi|k ∈ F∞. Additionally, the prediction horizon must be limited, or K chosen appropriately,

such that NKF∞ ⊆ U for the MPC optimization problem to be feasible. Note that the

terminal set constraint is no longer used, thus recursive feasibility of (4.28) and stability of

the resulting closed loop system are no longer a priori guaranteed. However, assuming that P
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is the solution to the Riccati equation associated with the corresponding LQR controller and

K is the associated feedback, F∞ is robustly exponentially stable with a domain of attraction

that can be computed a posteriori. This is because the optimized policy for the nominal

control will be ∆ū?0|k = Kξ̄?0|k and the true control will be ∆uk = ∆ū?0|k+K(ξk− ξ̄?0|k) = Kξk.

The key di�erence between the approximate formulation (4.28) and the original formu-

lation (4.24), is that the step, (4.14)-(4.21), of converting the constraints from the true

states and controls,

[
xTk uTk−1

]T
, to constraints on the nominal rate-based state, ξ̄k, is

completely bypassed. The advantage of the approximate formulation is that only bounds

for disturbances increments, D, are required. The bounds for the absolute disturbances,

W, are completely unused, leading to a less conservative robust controller with (4.28) com-

pared to (4.24). Additionally, the terminal set constraint is not used in (4.28) which reduces

the computational complexity, see Chapter 2. Currently, it is unknown how O∞ can be

computed when there are absolute control constraints and uncertain disturbances without

explicitly using the fact that wk ∈ W, i.e., only using ∆wk ∈ D. Not using the terminal

set constraint to guarantee recursive feasibility and stability can be justi�ed as previously

discussed. Furthermore using a terminal set constraint in addition to a short horizon, e.g.,

N = 1, would greatly limit the set of states for which (4.28) and (4.24) is feasible, which is

undesirable. For example, the use of a terminal set constraint is investigated in Chapter 5

and it is demonstrated through simulations that a MPC controller with a stabilizing terminal

constraint can be infeasible even if the same MPC controller without a stabilizing terminal

constraint is already stabilizing.

The main disadvantage of the approximate formulation (4.28) compared to the original

formulation (4.24) is that only constraints on the tracked outputs can be used, rather than

general state and output constraints. Note that for rate-based non-tube MPC, state con-

straints can be added through adding constraints on additional outputs which are integrators

of state increments [49]. However, if this were done in rate-based tube MPC, AK in (4.12)

would not be asymptotically stable, and F∞ cannot be computed.
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4.3.1 Approximate Tube MPC Applied to the DAP

For the DAP, the optimization problem is set up with a control horizon of 1 and ∆ūi|k = 0

for i ≥ 1 in (4.28). The output constraint is enforced not at every time step, but rather at

only at selected steps, i = 12 and i = 40 in (4.28). The details of the DAP optimization

problem setup follows.

First, F∞ is approximated. The process described in [93] can be used to compute a

polytopic RPI outer approximation of F∞. However, it was found in [42] that when AK has

eigenvalues close to the unit circle, the approximation of [93] becomes numerically di�cult to

compute due to the need to construct the convex hull of progressively increasing number of

points. Furthermore the number of facets, i.e., number of linear constraints which describe

the polytope, for the approximation of [93] would be prohibitively large and cannot be used

for the DAP application, [42]. Thus, a simple box shaped approximation of F∞ is constructed

through simulations. The box approximation is not RPI. However, the approximate tube

MPC formulation (4.28) already does not guarantee stability or recursive feasibility and the

ultimate application will use soft constraints to guarantee feasibility. Then the fact that

the box approximation is not RPI does not a�ect the properties of (4.28), e.g., F∞ is still

robustly exponentially stable and the domain of attraction can be computed a posteriori.

The box approximation of F∞, hereby denoted Fbox, is constructed by computing interior

points of F∞ based on randomly generated trajectories of for the error system (4.12). The

bounds for ∆wk ∈ D are chosen based on the 95-th percentile of the sample to sample

engine speed and fueling rate changes during the New European Drive Cycle (NEDC). An

enclosing ellipse, ξTE−1ξ ≤ 1, is then computed using the Ellipsoidal Toolbox [62]. Let

E = UΣV T be the singular value decomposition of E. The ellipse can be enclosed by a box,

Fbox = {ξ|Hboxξ ≤ Gbox}, where

Hbox =

 V T

−V T

 , Gbox =

 √Σ1nx+ny×1

√
Σ1nx+ny×1

 , (4.29)
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and 1nx+ny×1 denotes a column vector of ones with nx + ny elements. The cost function is

reformulated with N = 1,

J = ξ̄T1|kP ξ̄1|k + ξ̄T0|kQξ̄0|k + ∆ūT0|kR∆ū0|k +Mε2, (4.30)

where ε is a slack variable used to treat the output constraint as soft.

The output constraints that are considered for this DAP application are on the maximum

MAP overshoot and maximum EGR rate. The EGR rate is de�ned as the ratio of EGR

�ow, WEGR, to cylinder �ow, Wcyl, χEGR = WEGR/Wcyl. Because the EGR �ow is treated

as a control input, the EGR rate constraint is remapped to a maximum EGR �ow control

constraint,

uEGR,k ≤ χmaxEGRWcyl,k. (4.31)

This way, only a single output constraint needs to be considered. As in [49], intermittent

constraint enforcement is used to reduce computational complexity. The output constraint

is implemented as

C̄MAP ξ̄i|k + ε ≤ pmaxin − max
ξ∈Fbox

C̄MAP ξ, ∀i ∈ NICE ⊂ N+, (4.32)

where pmaxin in (4.32) is the MAP overshoot limit, NICE denotes the set of indices of intermit-

tently enforced constraints, and C̄MAP corresponds to the row of C̄ that extracts the MAP

output. For this DAP application, NICE = {12, 40}, see Chapter 2.

The nominal VGT position, ūV GT,k, constraint is implemented as,

uV GT,k−1 + ∆ūV GT,0|k ≤ V GTmax −maxξ∈Fbox KV GT ξ,

uV GT,k−1 + ∆ūV GT,0|k ≥ V GTmin −minξ∈Fbox KV GT ξ,
(4.33)

where KV GT corresponds to the row of K that contributes to VGT control. Similarly, the
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EGR �ow control constraint is implemented as,

uEGR,k−1 + ∆ūEGR,0|k ≤ min{Wmax
EGR, χ

max
EGRWcyl} −maxξ∈Fbox KV GT ξ,

uEGR,k−1 + ∆ūEGR,0|k ≥ Wmin
EGR −minξ∈Fbox KEGRξ,

(4.34)

where KEGR corresponds to the row of K that contributes to EGR control.

The resulting optimization problem minimizes the cost (4.30) subject to the constraints

(4.32)-(4.34), the tube constraint, ξk − ξ̄0|k ∈ Fbox, the nominal dynamics, ξ̄i+1|k = Āξ̄i|k +

B̄∆ūi|k, and a constraint that holds ∆ūi|k = 0 for i ≥ 1.

Previous applications of MPC to the DAP, [49,56,84,101], utilize explicit MPC, [5], which

precomputes and stores the solution to the MPC QP problem as a piecewise a�ne (PWA)

function. However, the PWA map for approximate rate-based tube MPC has on the order of

2,000 regions compared to 20-30 regions for standard rate-based MPC. Thus an online QP

solver will be used.

The approximate rate-based tube MPC problem can be compactly expressed as a QP

problem,

min
z

1
2
zTQz

subject to : Hz ≤ G,
(4.35)

where z =

[
∆ūT0|k ξ̄T0|k ε

]T
. The dual problem of (4.35) has the form,

min
λ

1
2
λTHQ−1HTλ+ λTG

subject to : λ ≥ 0.
(4.36)

The algorithm of [97] is used to solve the dual problem (4.36). The primal variables, z,

are recovered after the completion of a prede�ned number of iterations as z = −Q−1HTλ.

The simulations that will be presented in Section 4.3.2 were conducted using both 200 and

12 solver iterations. The maximum di�erence in the MAP and EGR rate trajectories when

di�erent solver iterations are used is 0.4kPa and 0.6%, respectively, while 12 solver iterations
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Figure 4.3: MAP response during NEDC simulation.
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Figure 4.4: EGR rate response during NEDC simulation.

results in lower chronometric load. The experimental results, also shown in Section 4.3.2,

use 12 solver iterations.

4.3.2 Simulation and Experimental Results Using Approximate Tube

MPC
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Figure 4.5: VGT response during NEDC simulation.

116



820 830 840 850 860 870 880
0

0.005

0.01

0.015

0.02

time [s]

[k
g/

s]

 

 

WEGR
max

WEGR (200 iterations)

WEGR (12 iterations)

WEGR
min

Figure 4.6: EGR �ow response during NEDC simulation.
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Figure 4.7: MAP response to fuel rate changes at 2,000 rpm.
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Figure 4.8: EGR rate response to fuel rate changes at 2,000 rpm.
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Figure 4.9: VGT response to fuel rate changes at 2,000 rpm.
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Figure 4.10: EGR �ow response to fuel rate changes at 2,000 rpm.
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Simulations using the approximate rate-based tube MPC controller have been performed

in the loop with the high �delity nonlinear DAP model over the NEDC. A portion of the

NEDC closed loop response is shown in Figures 4.3-4.6. This portion of the NEDC is charac-

terized by acceleration phases followed by fuel cuts and shift events. In general, the controller

exhibits good tracking performance. Figure 4.3 shows the MAP constraint becoming active

at 865 sec. Because the entire tube, {ξ̄k} ⊕ Fbox, must lie under the constraint, some o�set

can be seen between the achieved trajectory and the constraint upper bound. During this

period, the engine speed and fueling rate continue to increase which the nominal controller

is able to counteract. The EGR rate trajectory loses tracking at this time. This is because

the controller will command a higher EGR �ow to reduce MAP to satisfy the constraint.

The EGR rate constraint is also satis�ed with small violation. This is because the EGR �ow

command must be inverted to recover the EGR valve command, which is not exact. There

is a loss of tracking in both MAP and EGR rate at 823 sec. This is due to an arti�cial DC

gain reversal at near idle speed conditions inside the model. It has been veri�ed that this

DC gain reversal does not occur in the experimental engine.

Experimental results have been obtained using the approximate rate-based tube MPC

controller on the diesel engine. These experiments were conducted on a steady state dy-

namometer at di�erent engine speeds at Toyota Motor Corporation. The results presented

in this chapter were conducted at 2,000 rpm engine speed. Figures 4.7-4.10 show the re-

sponse to di�erent fueling rate changes. The controller exhibits good tracking. As shown in

Figure 4.7, the controller is able to enforce the MAP constraint with small violation at 125

sec. The small violation occurs because the MAP constraint is treated as soft and as such,

the controller must weigh the opposing objectives of tracking and constraint satisfaction.

Additionally, the discrepancy between the linear model and nonlinear engine behavior can

contribute to constraint violation. At this time, EGR rate looses tracking to drive down

MAP. At 25 sec, there is an instantaneous change in the MAP constraint and the controller

is able to quickly drive down MAP, though with small violation due to similar reasons as at

119



125 sec. At 75 sec MAP tracking is lost because the EGR rate constraint becomes active

and the VGT has no more authority to open further.

4.4 Reduced Complexity Tube MPC

The approximate tube MPC strategy presented in Section 4.3 was able to reduce the

computational complexity of tube MPC by eliminating the terminal set constraint. Further-

more, for the application to the DAP, F∞, was approximated by a non-RPI box set to obtain

a simple polytopic representation for the tube. Despite the limitations of the approximate

formulation (4.28), i.e., the MOAS for the closed loop system is not known explicitly, it

indeed works quite well for the DAP application, insofar as it is able to enforce the desired

MAP constraint in the presence of disturbances throughout simulations and experiments.

However, one may wish for a technique that maintains the same MOAS as tube MPC with

reduced complexity compared to tube MPC. Toward this end, a reduced complexity tube

MPC strategy is developed in the following. The idea is to split the conventional tube

optimization problem into two parts where the sum of the computation cost is less than

the original. While this procedure will be formulated for rate-based tube MPC, the devel-

oped technique can easily be employed with approximate rate-based tube MPC and with

conventional tube MPC.

To achieve complexity reduction of tube MPC, consider the situation when the nominal

state, ξ̄0|k, is not chosen by the tube MPC optimization problem but rather by some external

supplementary function. The optimization problem where ξ̄0|k is determined externally will
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be referred to as the �open loop� tube MPC problem, which has the following form,

min
∆ūi|k, i∈{0,...N−1}

ξ̄TN |kP ξ̄N |k +
N−1∑
i=0

ξ̄Ti|kQξ̄i|k + ∆ūTi|kR∆ūi|k,

subject to : ξ̄i+1|k = Āξ̄i|k + B̄∆ūi|k,

Π

ξ̄i|k +

 0

r


 ∈ X̄,

ξ̄N |k ∈ O∞,

(4.37)

where, compared to the standard tube problem (4.24), ξ̄0|k is no longer an optimization

variable but rather treated as an input parameter to (4.37), and the tube constraint, ξk−ξ̄0|k ∈

F∞, has also been removed. As in (4.24), the tightened constraints, X̄ in (4.37), is de�ned

through (4.21) and O∞ in (4.37) is the MOAS for the system (4.22) and constraint (4.23).

Open loop tube MPC has the same computational complexity as non-tube MPC. This is

because the Minkowski set di�erence operation of polytopic sets, in (4.21), does not increase

the number of facets from the original set, X× U. Thus the number of total inequality con-

straints will remain the same or be less than in non-tube MPC. The number of optimization

variables is the same for open loop tube MPC as with non-tube MPC. Particularly with

active-set methods, the computational complexity of solving a QP is purely a function of the

number of optimization variables and number of inequality constraints, see Chapter 2.

One way to choose ξ̄0|k for the open loop tube MPC problem is to set ξ̄0|k = ξ̄1|k−1, and

set ξ̄0|0 = ξ0. Then the open loop tube MPC strategy just evolves the nominal trajectory

with no knowledge of the true state. Then the nominal controller, Kηk in (4.11), keeps the

true state close (within the RPI tube, F∞) to the nominal trajectory. This strategy is exactly

the strategy of [73]. Figure 4.11 shows a simulation of using this open loop strategy with the

approximate rate-based tube MPC for the DAP. The MAP constraint is enforced at 865 sec

in a manner similar to the situation shown in Figure 4.3. There is a momentary violation of

the nominal MAP trajectory at 865 sec. This is because the constraints are only enforced

at steps 12 and 40; NICE = {12, 40} in (4.32). Even though the nominal MAP trajectory,
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Figure 4.11: MAP response during NEDC simulation using open loop tube MPC.

ξ̄0|k, does not satisfy the constraint, ξ̄12|k and ξ̄40|k does.

Note that the set of ξ̄0 for which (4.37) is recursively feasible is X̄N , (4.25). Unfortunately,

the set X̄N is smaller than the MOAS for the initial true state under conventional tube MPC

control which is X̄N ⊕ F∞, see Proposition 4.1.

Rather than just choosing, ξ̄0|k = ξ̄1|k−1, a supplemental optimization problem can be

de�ned to choose ξ̄0|k, which, in combination with (4.37), will recover the MOAS under

conventional tube MPC control. This supplemental optimization problem follows,

min
ξ̄0|k

J̃(ξ̄0|k, ξk),

subject to : ξ̄0|k ∈ X̄N ,

ξk − ξ̄0|k ∈ F∞,

(4.38)

where the constraint ξ̄0|k ∈ X̄N ensures feasibility of (4.37) and ξk − ξ̄0|k ∈ F∞ is the con-

ventional tube constraint. Then, by construction, the MOAS under conventional tube MPC

control, X̄N ⊕ F∞, will be recovered.

4.4.1 Example

Here, two choices for J̃(ξ̄0|k, ξk) are examined. The �rst, denoted as con�guration 1 with
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J̃1(ξ̄0|k, ξk), is

J̃1(ξ̄0|k, ξk) =
(
ξ̄0|k − ξk

)T (
ξ̄0|k − ξk

)
, (4.39)

and the second, denoted as con�guration 2 with J̃2(ξ̄0|k, ξk), is

J̃2(ξ̄0|k, ξk) = ξ̄T0|kP ξ̄0|k. (4.40)

A simple second order system example will be used to illustrate the e�ect of using the

reduced complexity tube strategies, e.g., open loop, con�g. 1, and con�g. 2, versus conven-

tional tube MPC. The baseline conventional tube MPC controller utilizes a non-rate-based

formulation, [64, 74]. The model, tuning, and constraint parameters follow:

xk+1 = Axk +Buk + wk,

A =

 1 1

0 1

 , B =

 1

1

 , Q =

 1 0

0 1

 , R = 0.1,

 −50

−50

 ≤ xk ≤

 3

3

 ,
3 ≤ uk ≤ 3, −0.5

−0.5

 ≤ wk ≤

 0.5

0.5

 .

(4.41)

Figures 4.12-4.15 show closed loop responses for the second order system (4.41) with

di�erent tube MPC controllers with respective illustrations of their explicit representations.

Figure 4.12 shows this for conventional tube MPC. Figure 4.13 shows the closed loop response

with �open loop� tube MPC and the associated explicit representation. Because the nominal

state is no longer treated as an optimization variable and the tube constraint does not need

to be explicitly considered, the computational complexity, i.e., the number of regions of the

explicit controller, for �open loop� tube MPC is clearly less than for conventional tube MPC.

However the feasible region for �open loop� tube MPC, which is the union of all of the regions
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in Figure 4.13-right, is smaller than for conventional tube MPC. Figure 4.14 shows the closed

loop response with tube MPC with con�g. 1 and the explicit representation of the associated

auxiliary function, (4.38) and (4.39). The total number of regions for the controller is the

sum of the regions for the open loop tube controller 4.13-right and the number of regions for

the auxiliary function used to choose ξ̄0|k, (4.38) and (4.39). Notice that, as long as ξk ∈ X̄N ,

then ξ̄0|k = ξk. This leads to a very simple explicit representation for (4.38) and (4.39).

Furthermore, as long as ξk ∈ X̄N ⊕F∞, which is also the MOAS for conventional tube MPC,

then (4.38) and (4.39) is recursively feasible. The closed loop trajectory of tube MPC with

con�g. 1 is very similar to �open loop� tube MPC. Figure 4.15 shows the closed loop response

with tube MPC with con�g. 2 and the explicit representation of the associated auxiliary

function, (4.38) and (4.40). In this case, the regulation performance more closely resembles

conventional tube MPC, however the explicit representation of the auxiliary function with

con�g. 2 has more regions than with con�g. 1. This is because it is no longer guaranteed

that ξ̄0|k 6= ξk if ξk ∈ X̄N . Finally, Figure 4.16 shows the total number of regions for the

explicit representation of di�erent types of tube MPC controllers. The number of regions

grow at the same rate (slope in Figure 4.16) for �open loop� tube MPC, con�g. 1, and con�g

2. This is because the number of regions representing of the auxiliary function does not

change as a function of the horizon length. Because conventional tube MPC includes the

nominal state as an optimization variable and extra inequality constraints associated with

the tube constraint, the rate of growth in the number of regions as a function of the horizon

length is signi�cantly faster.

4.5 Conclusions

This chapter describes the development of a robust model predictive controller for the

diesel engine air path. The approach utilizes a rate-based formulation for tube MPC, with

the novel observation that if rate bounds are known for the disturbances, then the conserva-
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Figure 4.12: Conventional tube MPC example for the second order system (4.41): closed
loop simulation (left) and explicit controller representation (right).
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Figure 4.13: Open loop tube MPC example for the second order system (4.41): closed loop
simulation (left) and explicit nominal controller representation (right).
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Figure 4.14: Tube MPC with con�g. 1 example for the second order system (4.41): closed
loop simulation (left) and explicit representation of the auxiliary function (4.38) (right).
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Figure 4.15: Tube MPC with con�g. 2 example for the second order system (4.41): closed
loop simulation (left) and explicit representation of the auxiliary function (4.38) (right).
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Figure 4.16: Number of total regions, including the number of regions of the auxiliary
function (4.38), of di�erent tube MPC strategies.

tiveness for tube MPC can be reduced. In an e�ort to reduce the computational complexity

for standard tube MPC for the diesel air path application, various approximations were used

which lead to a tube MPC design that does not explicitly guarantee constraint enforcement,

however does in fact enforce constraints in practice as demonstrated in simulations and ex-

periments. Additionally, a novel method to reduce the computational complexity of tube

MPC, through splitting of the the MPC optimization problem, is developed which still main-

tains a guarantee of recursive constraint satisfaction and exactly the same maximal output

admissible set as conventional tube MPC.
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Chapter 5

Nonlinear Model Predictive Control

This chapter describes the development of a Nonlinear Model Predictive Controller

(NMPC) for the diesel air path. The use of NMPC for the diesel engine air path is mo-

tivated by the ability of the controller to deal with nonlinear engine dynamics and handle

input and output constraints. However, the Engine Control Unit (ECU) has limited com-

putational resources and the addition of constraints can greatly increase the computational

complexity of NMPC. A comparative assessment of the computation time and constraint vio-

lation for di�erent NMPC problem formulations, constraint handling techniques, and solver

techniques is presented. The ability of NMPC to regulate to speci�ed set-points and to

enforce constraints is demonstrated through nonlinear model simulations.

5.1 Introduction

The constrained multi-input multi-output nature of the diesel engine air path (DAP)

control problem has motivated research into applications of Model Predictive Control (MPC),

primarily linear MPC, to improve transient performance, reduce emissions, and ensure that

constraints on actuators and on other engine variables are satis�ed, see [36,38,41,49,56,84,

101]. The linear MPC strategies typically rely on identi�cation of multiple linear models valid

locally around speci�ed operating conditions and a separate MPC design for each operating

condition. Explicit MPC, [5], is typically used for online implementation. Many of the
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developments in this dissertation on linear MPC for the DAP, see Chapters 2-3, sought to

reduce the degree of nonlinearity of the plant in order to facilitate the use of a single linear

model and single explicit MPC design.

Recently, interest in nonlinear MPC (NMPC), see [30] and references therein, for DAP

control has been increasing with the goal of providing better performance with lower cali-

bration e�ort compared to linear MPC and conventional PID control. NMPC for diesel air

path control has previously been thought to be computationally intractable, [33]. However,

a recent study, [27], utilizing the Continuation and Generalized Minimum Residual method

(C/GMRES) from [82] to solve the optimal control problem, has demonstrated improved

computation times, compared to [33], requiring around 50 msec for an update. In [78], a

sub-10 msec computation time for NMPC of the DAP was demonstrated, however, perfor-

mance may be sacri�ced due to its reliance on a simplifying parametrization of the predicted

control sequence.

It must be recognized that, in practice, the available ECU computation time allotment is

much smaller than the DAP control update period because the ECU performs many other

functions besides air path control. Thus, considering that a standard DAP control update is

applied every 10 msec to 50 msec, a sub-millisecond computation time for the DAP control

is highly desirable. Explicit NMPC has been used in [31] for a turbocharged gasoline engine

with a sub-millisecond computation time, however, as the authors note, the complexity of

explicit NMPC su�ers from the �curse of dimensionality� with respect to the number of input

parameters and does not scale well with even the addition of integral action. Furthermore,

with explicit NMPC, controller recon�gurability to model changes and ability to incorporate

adaptive models is largely lost.

In the following, a C/GMRES strategy is considered, similar to [27], as the benchmark

strategy because the utilization of C/GMRES has, so far, resulted in the fastest computation

time for NMPC applied to the DAP without any of the apparent disadvantages of [31, 78].

Using the C/GMRES strategy as a launching point, the following main research contributions
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have been made that together are able to achieve sub-millisecond computation times and

demonstrate set-point tracking and constraint enforcement in the DAP.

• A data driven modeling approach similar to [27,35] is used to obtain a simple piecewise

polynomial model that facilitates fast propagations of the state and co-state equations

used in NMPC. C/GMRES is then applied with the polynomial model which represents

the baseline design. Within C/GMRES, it was not previously known how inequality

constraints, e.g., on states and controls, are handled. Di�erent inequality constraint

handling techniques are explored and a strategy that has considerable computational

and performance advantages compared to C/GMRES is obtained. Furthermore, it is

shown that zero-o�set set-point tracking is achieved, which has not previously been

demonstrated with NMPC for the DAP. This zero-o�set set-point tracking is achieved

through adaptation of the polynomial model. This work is also presented in [47].

Additional observations are also reported in this chapter that are not contained in [47].

• Kantorovich's method, [51], will be used where the Jacobian used in the solver is

frozen, e.g., precomputed and frozen for all time or computed only at the �rst iteration.

By bypassing the Jacobian computation, the computational complexity is reduced.

Furthermore, this is done in a way that can handle inequality constraints with little

computational overhead.

• With linear MPC, it has been known that rate-based MPC (also referred to as velocity-

form MPC, [114]) achieves zero-o�set set-point tracking while improving overall per-

formance and mitigating the disadvantages of other strategies, see [18, 49, 85]. With

NMPC, it is currently not well understood how to achieve zero-o�set set-point track-

ing. Toward this end, a rate-based formulation is proposed for NMPC. With rate-based

NMPC, adaptation or disturbance estimation is no longer needed to achieve zero-o�set

set-point tracking. This is advantageous for a number of reasons.

� The integral action does not need to be tuned separately from the controller,
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e.g., tuning adaptation parameters, and thus the control and estimation loop

interactions are reduced.

� Discontinuous control actions at zone boundaries are mitigated. This is because

estimators, which would otherwise have to be reinitialized during zone switches,

are not required in the rate-based NMPC formulation for the DAP.

Simulation results for the various NMPC strategies in loop with engine mean-value-

models are presented. In all of the simulations, only NMPC feedback is used, i.e., there is

no feedforward so as to fully demonstrate the capability of the NMPC feedback controller.1

Computational complexities of the various strategies are also discussed.

The remainder of this chapter is organized as follows. Section 5.2 describes the base-

line NMPC design using C/GMRES, various constraint handling techniques within the

C/GMRES framework, and the NMPC application to the DAP. Sections 5.3 and 5.4 de-

scribe variations of NMPC strategies and highlight their similarities and di�erences. Section

5.5 describes Kantorovich's method and its application to NMPC problems. Section 5.6

describes rate-based NMPC. Section 5.7 discusses the use of terminal set constraints to

guarantee stability. Section 5.8 contains concluding remarks regarding NMPC for the DAP.

Note that the engine (Toyota KD engine) and model used in Section 5.2 are di�erent than

the engine (Toyota GD engine) and model used in Section 5.6 and the considered outputs

are di�erent. The prediction model used in Section 5.2 is a preliminary model used as a

proof of concept and is made for the KD engine. The prediction model used in Section 5.6

is a re�nement of the preliminary model in Section 5.2: it covers a larger area of the engine

operating range and is updated for the GD engine and associated control objectives. The

change to the GD engine has also been dictated by the fact that this engine represents a

more recent technology that has been of interest on the application end. Modeling results

are presented for both KD and GD engine in their respective sections.

1The potential issues of feedforward-feedback interactions are not addressed in this dissertation and
require further research.

131



5.2 NMPCUsing C/GMRES with Inequality Constraints

In the following, the application of NMPC is investigated for the DAP. One of the general

approaches to NMPC is to transform the underlying optimization problem into an equality

constrained root �nding problem through the associated necessary conditions for optimality.

In the context of nonlinear MPC, an interior point reformulation of the objective function

is frequently used to handle inequality constraints, and a Newton type method is used to

solve the root �nding problem, [20]. Several methods for handling inequality constraints are

investigated in this work. These methods include an exterior penalty method, the auxiliary

variable method from [82], and semi-smooth transformations, [25,51].

To work with the baseline strategy of C/GMRES, a continuous time nonlinear system is

considered with the state equations,

ẋ(t) = f(x(t), u(t)), (5.1)

where x(t) ∈ Rnx and u(t) ∈ Rnu . Additionally, consider a NMPC problem based on

minimizing a cost functional of the form,

J = φ(x(T, t)) +

ˆ T

0

l(x(τ, t), u(τ, t))dτ, (5.2)

where t is the current time, T is the prediction horizon, φ is the terminal penalty, l is the

instantaneous state and control penalty, and τ , 0 ≤ τ ≤ T , is the running time over the

prediction horizon. The minimization of (5.2) is performed subject to equality and inequality
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constraints,

xτ (τ, t) = f(x(τ, t), u(τ, t)), (5.3)

x(0, t) = x(t), (5.4)

g(x(τ, t), u(τ, t)) = 0 ∈ Rng , (5.5)

h(x(τ, t), u(τ, t)) ≤ 0 ∈ Rnh , (5.6)

ψ(x(T, t)) ≤ 0 ∈ Rnψ , (5.7)

where xτ = ∂x/∂τ , g = 0 is an equality constraint, h ≤ 0 is an inequality constraint, and

ψ ≤ 0 is a terminal state constraint. Let H denote the Hamiltonian,

H = l + pTf + µTg + λTh, (5.8)

where p are Lagrange multipliers for the dynamic constraints (5.3), commonly referred to as

co-states, µ are Lagrange multipliers for the equality constraint (5.5), and λ are Lagrange

multipliers for the inequality constraint (5.6). The necessary conditions for optimality from
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Pontrygin Maximum Principle (PMP), [13], are

xτ = Hp = f, 0 ≤ τ ≤ T, (5.9)

pτ = −Hx = −
(
lx + fTx p+ gTx µ+ hTxλ

)
, 0 ≤ τ ≤ T, (5.10)

Hu = lu + fTu p+ gTu µ+ hTuλ = 0, 0 ≤ τ ≤ T, (5.11)

g = 0, 0 ≤ τ ≤ T, (5.12)

h ≤ 0, 0 ≤ τ ≤ T, (5.13)

λ ≥ 0, 0 ≤ τ ≤ T, (5.14)

λTh = 0, 0 ≤ τ ≤ T, (5.15)

x(0, t) = x(t), (5.16)

0 = p(T, t)− φx(x(T, t))− ψx(x(T, t))Tv, (5.17)

ψ(x(T, t)) ≤ 0, (5.18)

v ≥ 0, (5.19)

vTψ(x(T, t)) = 0, (5.20)

where subscripts x, p, and u denote partial derivatives with respect to x, p, and u, respec-

tively, and v are Lagrange multipliers for the terminal inequality constraint (5.7).

Once the continuous time necessary conditions (5.9)-(5.20) are formed, they are dis-

cretized to facilitate the application of a numerical solver. The discretized conditions using
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Euler discretization with a step size of ∆τ , assuming that T/∆τ = N ∈ Z+, are

xi+1 = xi + ∆τf(xi, ui), i ∈ {0, ..., N − 1} , (5.21)

x0 = x(t), (5.22)

pi = pi+1 + ∆τ(lx(xi, ui) + fTx (xi, ui)pi+1 + gTx (xi, ui)µi

+hTx (xi, ui)λi), i ∈ {0, ..., N − 1} ,
(5.23)

0 = pN − φx(xN)− ψx(xN)Tv, (5.24)

0 = lu(xi, ui) + fTu (xi, ui)pi+1 + gTu (xi, ui)µi

+hTu (xi, ui)λi, i ∈ {0, ..., N − 1} ,
(5.25)

0 = g(xi, ui), i ∈ {0, ..., N − 1} , (5.26)

0 ≥ h(xi, ui), i ∈ {0, ..., N − 1} , (5.27)

λi ≥ 0, i ∈ {0, ..., N − 1} , (5.28)

0 = λTi h(xi, ui), i ∈ {0, ..., N − 1} , (5.29)

ψ(xN) ≤ 0, (5.30)

v ≥ 0, (5.31)

vTψ(xN) = 0. (5.32)

In (5.21)-(5.32), xi = x(τi), where τi is a time instant in the chosen time discretization mesh.

The discretized control variables and Lagrange multipliers are denoted similarly with ui, pi,

µi, and λi.

Now consider only the equality constrained NMPC problem without state, control, and

terminal state inequality constraints. This will allow us to perform Newton type iterations to

solve the necessary conditions and work in the framework of C/GMRES as a starting point.

The necessary conditions without inequality constraints are (5.21), (5.22), (5.24), (5.26), and
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the conditions,

pi = pi+1 + ∆τ(lx(xi, ui) + fTx (xi, ui)pi+1 + gTx (xi, ui)µi),

i ∈ {0, ..., N − 1} ,
(5.33)

0 = lu(xi, ui) + fTu (xi, ui)pi+1 + gTu (xi, ui)µi, i ∈ {0, ..., N − 1} . (5.34)

The discretized inputs and Lagrange multipliers can be collected into a vector U ,

U =

[
uT0 µT0 ... uTN−1 µTN−1

]T
∈ RN(nu+ng). (5.35)

The necessary conditions for the equality constrained NMPC problem can be written as

an equation,

F (U, x(t)) =



lu(x0, u0) + fTu (x0, u0)p1 + gTu (x0, u0)µ0

g(x0, u0)

...

lu(xN−1, uN−1) + fTu (xN−1, uN−1)pN + gTu (xN−1, uN−1)µN−1

g(xN−1, uN−1)


= 0 ∈ RN(nu+ng),

(5.36)

where x0, ..., xN and pN , ..., p1 implicitly satisfy (5.21), (5.22), (5.24), and (5.33) given U and

x(t). Newton's method, [58], can then be used to solve the root �nding problem, F = 0, and

�nd a solution to the necessary conditions. The Newton iteration is

FU(Uk, x(t))∆Uk = −F (Uk, x(t)), (5.37)

Uk+1 = Uk + ∆Uk, (5.38)

where Uk+1 is the next iterate of Uk, and FU is the Jacobian of F with respect to U .

A Krylov space method, speci�cally the Forward Di�erence Generalized Minimal Residual
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(FD-GMRES) method, can be used to e�ciently solve (5.37) for ∆Uk without the need to

explicit compute FU , see [58].

Let s denote the cost of computing (5.21), (5.33), and (5.34) at stage i in the horizon.

The complexity of computing F (Uk, x(t)) is O(N). FD-GMRES, see Algorithm 6.2.1 in [58],

is an iterative solver which takes a maximum of N(nu + ng) steps where, during each step,

F is computed once and O(N) operations are used to construct the basis for the Krylov

space. The �nal step of the algorithm attempts to �nd the minimum residual of a linear

equation requiring O(N3) computations. In total, the complexity of FD-GMRES is O(N3)

for su�ciently large N . With FD-GMRES, (5.37) does not need to be solved exactly, and

if residuals are tolerable in the control strategy, i.e., controller performance is acceptable,

then FD-GMRES can be terminated in kmax steps with 1 ≤ kmax < N(nu + ng). Choosing

kmax = N(nu + ng) solves (5.37) exactly. With both kmax and N as design parameters,

the complexity of FD-GMRES is o(k3
max + k2

max + (kmax + 1)Ns). See [58] for convergence

properties of FD-GMRES.

Note that with MPC of the DAP, parameters a�ecting the computational complexity are

typically kept small, see Chapter 2. Thus, it is important to examine the computational

complexity using both the Big-O and little-o notation, see De�nitions 1.1 and 1.2.

A predictor-corrector strategy such as the Continuation/GMRES algorithm in [82] can

also be used to solve the root �nding problem. The goal of the continuation part of

C/GMRES is to �nd a control U that drives F (U, x(t)) to zero in time, i.e., the follow-

ing is satis�ed,

Ḟ (U, x(t)) = AsF (U, x(t)), (5.39)

where As is a stable matrix used for tuning. By di�erentiating F with respect to time, t, on

the left hand side of (5.39), the expression,

FU(U, x(t))U̇ = AsF (U, x(t))− Fx(U, x(t))ẋ, (5.40)
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is obtained. This is essentially a Newton step in continuous-time where Fx(U, x(t))ẋ is a

predictor term. FD-GMRES can also be used to solve (5.40) for U̇ . The complexity of

solving (5.40) with FD-GMRES is o(k3
max + k2

max + (kmax + 2)Ns) due to the additional

computation of Fx(U, x(t))ẋ and the complexity of solving (5.40) is O(N3) for su�ciently

large N .

5.2.1 Inequality Constraints

A major motivation for the use of MPC is the ability to handle inequality constraints.

However, Newton type strategies such as FD-GMRES, C/GMRES, and etc. do not in-

corporate inequality conditions (5.27)-(5.32) directly. In the following, several methods for

incorporating inequality constraints are considered. The methods investigated are the auxil-

iary variable method as in C/GMRES, [82], an exterior penalty method, and a semi-smooth

transformation using Fischer-Burmeister functions, [25, 51]. In the following, let hj denote

the j-th row of the inequality constraint (5.6), h(x(τ, t), u(τ, t)) ≤ 0.

Auxiliary Variable Method

In the auxiliary variable method used in C/GMRES, additional optimization variables are

included to transform inequality constraints into equality constraints. The transformation is

often referred to as Valentine's transformation, [52]. Let η(τ, t) ∈ Rnh be a vector of auxiliary

variables that is used to transform the inequality constraint (5.6) into an equality constraint,

h(x(τ, t), u(τ, t)) + η(τ, t)2 = 0, (5.41)

where η(τ, t)2 denotes a vector with components that are square of elements of η(τ, t). A

penalty, −rTη(τ, t), with r ≥ 0, is added to keep the optimization problem well-conditioned.2

2As noted in [20], the auxiliary variable method can be viewed as an interior penalty method since the
auxiliary variable can be written as η(τ, t) =

√
−h(x(τ, t), u(τ, t)) and substituted into the cost function,

with r acting as an interior penalty weight. Further, note that the Jacobian of the necessary conditions will
be singular when h(xi, ui) = 0, hence the need for a penalty to keep h(xi, ui) 6= 0.
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This leads to an approximate objective function,

JAV = φ(x(T, t)) +

ˆ T

0

l(x(τ, t), u(τ, t))− rTη(τ, t)dτ. (5.42)

The equality constraints (5.5) and (5.41) can be concatenated into

g̃(x(τ, t), u(τ, t)) =

 g(x(τ, t), u(τ, t))

h(x(τ, t), u(τ, t)) + η(τ, t)2

 = 0 ∈ Rnh+ng , (5.43)

with corresponding Lagrange multipliers, µ̃ ∈ Rnh+ng . The optimization problem is then

to minimize (5.42) subject to equality constraints (5.3), (5.4), and (5.43). The vector of

collected optimization variables becomes

Ũ =

[
uT0 ηT0 µ̃T0 ... uTN−1 ηTN−1 µ̃TN−1

]T
∈ RN(nu+ng+2nh) (5.44)

and the complexity of FD-GMRES becomes o(k3
max + k2

max + (kmax + 1)Ns̃), where 1 ≤

kmax ≤ N(nu + ng + 2nh) and s̃ > s accounts for the additional stage complexity associated

with the extra equality constraint (5.41). Again for su�ciently large N , the complexity of

FD-GMRES remains O(N3).

Exterior Penalty Method

The exterior penalty method adds a penalty on constraint violations to the cost function.

Then the inequality constrained optimization problem is approximated by replacing the

objective function (5.2) with

JEP = φ(x(T, t)) +

ˆ T

0

l(x(τ, t), u(τ, t)) + Σnh
j=1γj(x(τ, t), u(τ, t))dτ, (5.45)
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where

γj(x, u) =


0, hj(x, u) ≤ 0,

1
2
rjhj(x, u)2 hj(x, u) > 0,

(5.46)

with r ≥ 0. The objective function (5.45) is then minimized subject to equality constraints

(5.3)-(5.5). Unlike the auxiliary variable method, no extra optimization variables are added

to U in (5.35) and the worst case complexity of FD-GMRES is o(k3
max+k2

max+(kmax+1)Nsγ),

where 1 ≤ kmax ≤ N(nu + ng) and sγ > s accounts for the additional stage complexity

associated with the penalty (5.46), and is O(N3) for su�ciently large N .

Semi-Smooth Transformation Method

Another strategy for handling inequality constraints is to transform the complementarity

conditions (5.13)-(5.15) into an equality condition using the Fischer-Burmeister function,

[25],

ΦFB(a, b) = a+ b−
√
a2 + b2. (5.47)

The complementarity conditions are satis�ed if and only if the following condition using the

Fischer-Burmeister function is satis�ed,

ΦFB(λ,−h) = 0, (5.48)
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where ΦFB is applied element-wise. The discretized necessary conditions become

F (Û , x(t)) =



lu(x0, u0) + fTu (x0, u0)p1 + gTu (x0, u0)µ0 + hTu (x0, u0)λ0

g(x0, u0)

ΦFB(λ0,−h(x0, u0))

...

lu(xN−1, uN−1) + fTu (xN−1, uN−1)pN + gTu (xN−1, uN−1)µN−1

+hTu (xN−1, uN−1)λN−1

g(xN−1, uN−1)

ΦFB(λN−1,−h(xN−1, uN−1))


= 0 ∈ RN(nu+ng+nh),

(5.49)

where

Ũ =

[
uT0 µT0 λT0 ... uTN−1 µTN−1 λTN−1

]T
∈ RN(nu+ng+nh). (5.50)

Like the auxiliary variable method, additional Lagrange multipliers must be added to U ,

however, there are no auxiliary variables, η. This leads to a smaller optimization problem

compared to the auxiliary variable method. Note that the semi-smooth transformation pro-

vides an equivalent optimization problem to the original inequality constrained optimization

problem while the exterior and auxiliary variable methods do not. The complexity of FD-

GMRES using the semi-smooth transformation method is o(k3
max + k2

max + (kmax + 1)Nŝ),

where 1 ≤ kmax ≤ N(nu + ng + nh) and ŝ > s accounts for the additional stage complexity

associated with the additional constraint (5.48), and is O(N3) for su�ciently large N .

Remark: The Fischer-Burmeister function is Lipschitz continuous though non-di�eren-

tiable at (0, 0) and formally a semi-smooth Newton method should be used, [51]. This

requires the B-di�erential of a function.

Let Φ : Rn → Rm be locally Lipschitz continuous at z ∈ Rn and SΦ be the set of all

points where Φ is di�erentiable.

141



De�nition 5.1: The set

∂BΦ(z) =
{
J ∈ Rm×n|∃{zk} ⊂ SΦ : {zk} → z,Φz(z

k)→ J
}

(5.51)

is the B-di�erential of Φ at z, where Φz denotes the Jacobian of Φ, see [51].

The generalization of Newton's method for semi-smooth functions results in the following

iteration,

Jk∆zk = −Φ(zk), (5.52)

zk+1 = zk + ∆zk, (5.53)

for some Jk ∈ ∂BΦ(zk). For the Fischer-Burmeister function, ΦFB([a b]T ), the matrix J ∈

∂BΦFB([a b]T ) satis�es

J =


[αβ], if a = b = 0,[

1− a√
a2+b2

1− b√
a2+b2

]
, else,

(5.54)

with some α and β such that (α− 1)2 + (β − 1)2 = 1, [51].

Also note that when the exterior penalty method is used, the penalty function

γj(z) =


0, hj(z) ≤ 0,

1
2
rjhj(z)2 hj(z) > 0,

j ∈ {1, ..., nh}, (5.55)

is only once continuously di�erentiable. It is assumed that h(z) is twice continuously di�er-

entiable. Since γj,z(z), denoting the partial di�erential of γj(z) with respect to z, will appear
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in the necessary conditions, the B-di�erential of γj,z(z) is needed,

∂Bγj,z(z) =


0, if hj(z) < 0,{

0, rj
∂2h2

j (z)

∂z2

}
, if hj(z) = 0,

rj
∂2h2

j (z)

∂z2 , if hj(z) > 0.

. (5.56)

While formally, attention should be paid to the non-di�erentiability of the Fischer-

Burmeister function at (0, 0) or the non-di�erentiability of exterior penalty functions at

h = 0, it is found that, in practice, when gradients and Jacobians are computed numerically,

e.g., through forward di�erences, no special handling of these cases needs to be done. Specif-

ically, the B-di�erential is not used with FD-GMRES but will be used when other algorithms

are considered where the Jacobian is computed analytically, see Section 5.3.

5.2.2 Nonlinear DAP Model

To reduce NMPC computational complexity, a simple model of engine response is neces-

sary. Towards this end, a data driven modeling approach was pursued in this work, similar

to [27,35]. A reduced order physics based model, [53], was also investigated, however resulted

in a poor �t to data. This could be due to a variety of reasons: a lack of sensors for obtaining

modeling data, e.g., the EGR �ow and cylinder �ow data are obtained from ECU estimates

rather than measurements, and the throttle pressure ratio stays consistently near 1 where the

ori�ce �ow equations are very sensitive to measurement errors. In this section, a continuous

time data driven model is identi�ed in order to directly use the C/GMRES NMPC formu-

lation of [82]. The data driven model utilized in this section relies purely on the measured

inputs (throttle, EGR valve, and VGT positions, engine speed, and fuel �ow) and represents

the response of measured outputs (MAP and MAF). Furthermore, the data driven model is

simple to obtain, and has a simple structure conducive to NMPC implementation.
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The data driven model takes a polynomial form,

ẋ = θTf l(x, u), (5.57)

where x is a vector of measured outputs, i.e., x = y, u is a vector of inputs, θ is a matrix of

coe�cients to be estimated, and f l(x, u) is a vector of polynomial terms up to order l. For

example, with x ∈ R1, u ∈ R1, and l = 2,

f 2(x, u) = [ 1 x u xu x2 u2 ]T . (5.58)

For the diesel air path model in this section, the outputs/states are MAP and MAF,

x = [pinWc]
T , and the inputs are EGR throttle [% closed], EGR valve [% open], VGT

[% closed], engine speed [rpm], and fuel �ow [mm3/st.], u = [uth uEGR uV GT NeWf ]
T . A

polynomial order of l = 2 is used in the following. This leads to a total of 72 coe�cients

with 36 per state. For modeling, it is assumed that the states, x, and inputs, u, are measured.

If the state derivatives, ẋ, are directly measured, then all information is available to estimate

the coe�cients θ, e.g., through linear least squares. In the case where ẋ is not measured, it

can be approximated by a �ltered derivative. Speci�cally, applying 1/(s + τ) to both sides

of the polynomial model (5.57), the equation,

{
s

s+ τ

}
x = θT

{
1

s+ τ

}
f l(x, u), (5.59)

is obtained. Then the left had side of (5.59) can be generated through measurements of x

and performing the operation z = {1/(s+ τ)}x. This yields a parametric model to which

linear least squares can be applied to estimate θ. For the diesel air path application, the

parametric model is,

z1 = θT1 φ
r, z1 =

{
s

s+ τ

}
pin, (5.60)
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z2 = θT2 φ
r, z2 =

{
s

s+ τ

}
Wc, (5.61)

φr =

{
1

s+ τ

}
f 2

([
pin Wc

]T
,

[
uth uEGR uV GT Ne Wf

]T)
, (5.62)

where θ ∈ R36×2 and θi denotes the i-th column of θ. As a �rst pass plausibility check, the

coe�cients, θ, are estimated using least squares with measurements, z, and regressors, φr,

generated from NEDC data obtained from a high �delity physics based model. Note that

this black box polynomial model is used for preliminary NMPC design applied to the DAP

and evaluation of the various constraint handling techniques described in Section 5.2.1. This

model will be further re�ned in Section 5.6 to target more speci�c control objectives.

The training data set for model identi�cation is generated using the full NEDC and,

afterward, repeating the high speed, high fuel region multiple times (�nal repetition of the

Urban Drive Cycle (UDC) and Extra Urban Drive Cycle (EUDC)). Additional sinusoidal

excitations were further superimposed onto the repeated cycle. Note that, in the future,

optimal design of the input sequence, [35], should be considered. Figure 5.1 shows a simu-

lation of the black box model on the extended NEDC versus the high �delity model. The

training and validation data sets are the same extended NEDC. The black box model is

stable throughout the extended NEDC and there is good transient matching on the whole

sequence.

Note that a polynomial model of order 1, i.e., a linear model, was also evaluated and

found to be stable but provides a poor match to data. Polynomial orders greater than 2

have not yet been investigated, however, a polynomial order of 2 seems to be su�cient for

control design.

Because the model is of black box type, one can question what the model actually learned

in the extended NEDC. To check that the black box model behaves reasonably, step responses

to the various actuators were simulated at various operating conditions. Figure 5.2 shows

step responses to VGT opening between 0 and 5 sec, throttle opening between 10 and 15

sec, valve closing between 20 and 25 sec, fuel rate increase between 30 and 35 sec, and
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Figure 5.1: Simulation of the black box model versus high �delity physics based model on
the NEDC extended with additional excitations. Intake pressure (left), compressor �ow

(right), and zoomed views (bottom).
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Figure 5.2: Step responses of intake pressure (left) and compressor �ow (right) to VGT
opening, valve closing, fuel rate increase, and engine speed increase comparing the high

�delity model and polynomial model.

engine speed increase between 40 and 45 sec. The steps shown were conducted around an

operating condition of 2500 rpm. The �gure shows the intake pressure and compressor �ow

responses using the coe�cients learned during the extended NEDC. For both intake pressure

and compressor �ow, the sign of the DC gain is correct compared to the high �delity model

and the response size looks reasonable. The black box model was also able to learn that there

is a non-minimum phase behavior from the EGR valve to intake pressure. This is physically

correct. When the valve closes, �ow into the intake manifold immediately decreases. Intake

pressure then rises because closing the EGR valve increases exhaust pressure to spin up the

turbocharger and, in the long term, provides greater boost, see [38,113].

To achieve DC gain matching, which will be important for achieving zero-o�set set-point

tracking, the a�ne term in the polynomial model can be estimated online. This can be

viewed as an additive disturbance estimator and is done through rearranging the parametric

model,

z̃1 = θT1,1φ
r
1, z̃1 =

{
s

s+ τ

}
pin − θT1,2:36φ

r
2:36, (5.63)

z̃2 = θT2,1φ
r
1, z̃2 =

{
s

s+ τ

}
Wc − θT2,2:36φ

r
2:36, (5.64)

where φr in (5.63) and (5.64) is the same as in (5.62), θi,1 denotes the �rst element in the
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Figure 5.3: Step responses with gradient algorithm of intake pressure (left) and compressor
�ow (right) to VGT opening, valve closing, fuel rate increase, and engine speed increase

comparing the high �delity model and polynomial model.

i-th column of θ, and θi,2:36 denotes the remaining elements of the i-th column of θ. The

a�ne terms are then estimated online through a gradient algorithm, [50],

˙̃θi,1 = Γiεiφ
r
1, εi = z̃i − θ̃Ti,1φr1, (5.65)

where Γi ≥ 0 is the adaptation gain and θ̃i,1 is the current estimate of the i-th a�ne term,

i ∈ {1, 2}.

Figure 5.3 shows the same step responses as shown in Figure 5.2 but with online esti-

mation of the a�ne terms with a gradient algorithm. With online estimation of the a�ne

terms both the DC gains for intake pressure and compressor �ow are matched.

5.2.3 DAP Simulation Results and Computational Comparison

The cost functional for the diesel air path application is as follows,

J =
´ T

0
r1(uV GT (τ, t)− uV GT (t))2 + r2(uEGR(τ, t)− uEGR(t))2

+q1(pin(τ, t)− rpin(t))2 + q2(Wc(τ, t)− rWc(t))
2

+γpin(pin(τ, t))

dτ,

(5.66)

148



where

γpin(pin(τ, t)) =


0, if pin(τ, t) ≤ p̄in,

r3(pin(τ, t)− p̄in)2, else.

(5.67)

The cost functional (5.66) is minimized with respect to uV GT and uEGR subject to constraints,

xτ (τ, t) = θTf 2(x(τ, t), u(τ, t)), (5.68)

h(uV GT (τ, t), uEGR(τ, t)) ≤ 0, (5.69)

where the inequality constraint, de�ned by the function h in (5.69) are speci�c hard con-

straints corresponding to the more general form in (5.6),

h(uV GT (τ, t), uEGR(τ, t)) =



uV GT (τ, t)− ūV GT

uV GT − uV GT (τ, t)

uEGR(τ, t)− ūEGR

uEGR − uEGR(τ, t)


, (5.70)

and where x = [pinWc]
T and u = [uth uEGR uV GT NeWf ]

T . The measured disturbances, uth,

Ne, and Wf are treated as constant over the prediction horizon, as are the references, rpin

and rWc. The terms uV GT (t) and uEGR(t) in (5.66) are the values of the controls applied

at the current sample time before the NMPC feedback is calculated and applied. A soft

constraint is placed on MAP to ensure feasibility. Note that an exterior penalty is used for

the MAP constraint but di�erent strategies are considered for handling the control inequal-

ity constraints (5.69). This is done to prevent infeasibility in the presence of plant/model

mismatch and disturbances.

Using uV GT (t) and uEGR(t) rather than the typical steady states, uV GT,ss and uEGR,ss,

associated with the references gives an NMPC problem formulation is similar to the input-

velocity form used in linear MPC, [6]. This gives zero-o�set steady-state tracking if the model
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Table 5.1: Comparison of tracking performance, constraint handling, and worst-case
computation time for various methods over the NEDC.

Method epin eWc vpin vV GT vEGR Nf ECU [ms]
fsolve 335.9 347.7 61.27 3.3e-6 4.46e-6 N/A N/A

SS-GMRES 333.6 340.2 62.03 1.55 0.46 21 6.1
AV-GMRES, r = 0.1 3224 1863 24.21 0,47 0 31 9.0
AV-GMRES, r = 0.01 425.7 454.3 47.27 1.10 0.02 31 9.0

AV-C/GMRES, r = 0.01 426.5 453.7 48.41 1.19 0.01 32 9.3
EP-GMRES 333.5 340.1 61.62 0.40 0.12 11 3.2
EP-GMRES 2 334.0 341.1 61.87 0.39 0.11 3 0.9
EP-GMRES 1 427.4 422.5 66.48 0.27 0.10 2 0.6
EP-C/GMRES 374.6 394.2 82.0 0.38 0.16 12 3.8

matches the plant exactly at steady state, which is obtained through parameter estimation

(5.65).

The resulting controller is run in the loop with the high �delity nonlinear model on

the NEDC. The VGT position constraint set is [40 90] % closed. The EGR valve position

constraint set is [0 55] % open. The control constraints are tighter than typically used to

demonstrate constraint activation. The maximum MAP constraint is applied with the upper

bound of p̄in = 170kPa. The integration step size for the state and co-state equations is 32

msec. A control update is made every 64 msec. The prediction horizon is 320 msec (i.e.,

5 control steps). The sampling period is 32 msec. The prediction horizon is chosen as the

shortest horizon that results in a stable and not under-damped response over the NEDC.

The gradient algorithm (5.65) for estimation of the a�ne terms in the polynomial model uses

an adaptation gain, Γ, of 4 corresponding to a time constant of 0.25 sec for the adaptation

rate. In all of the following simulations presented in this chapter, the VGT and EGR valve

operates purely through feedback provided by the NMPC and no feed-forward is used.

Figure 5.4 shows a comparison between using Newton's method directly to solve F = 0

and when continuation is used, i.e., the predictor part using Fx is added. In the continuation

strategy, the stabilization matrix, As, has been set such that without the predictor part,

Newton's method is exactly recovered. In both cases, the exterior penalty method is used
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Figure 5.4: Closed loop response comparison for NMPC between Newton's method and
Newton's method with continuation (exterior penalty).

Figure 5.5: Zoomed view of closed loop response comparison for NMPC between Newton's
method and Newton's method with continuation (exterior penalty).
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Figure 5.6: Closed loop response comparison for NMPC between Newton's method and
inexact Newton's method using FD-GMRES with 2 and 1 inner iterations (exterior

penalty).

Figure 5.7: Closed loop response comparison for NMPC using the auxiliary variable
method for inequality constraint handling with di�erent interior weights, r.
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Figure 5.8: Comparison of NMPC controllers on the NEDC with di�erent adaptation rates,
Γ.

with only a single Newton step per time step. The solution from the previous time step is

used as the initial condition for the Newton step at the current time. Tracking performance

is very good except when the actuators are saturated, e.g., between 900 sec and 930 sec.

Figure 5.5 shows a zoomed view of Figure 5.4. MAP does not increase past 170kPa due

to the maximum MAP constraint. There is little di�erence between Newton's method and

the continuation strategy, i.e., the predictor portion contributes little. In both cases there is

signi�cant violation of the maximum VGT constraint for a single step at 1203.2 sec. This is

due to a rapid change in the parameters due to both the fuel cut and change in references

at that time. This violation is tolerable since recovery to the constraint only takes a few

time steps and a simple saturation can be used in the interim. Because a continuation

strategy does not appear to o�er much performance improvement compared to the direct

application of Newton's method, subsequent investigations shown in this section will not use

continuation. Note that continuation can be added to any strategy discussed.

Figure 5.6 compares the results when using inexact Newton with di�erent numbers of

FD-GMRES inner iterations, i.e., di�erent kmax. The di�erence between using kmax = 2 and
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a full Newton step, kmax = 10, is minimal. With kmax = 1, FD-GMRES 1, performance

dramatically su�ers, particularly near idle conditions. See Table 5.1 for a quantitative com-

parison of performance and computation time.

Figure 5.7 shows the controller performance using the auxiliary variable method with

di�erent interior weights. The performance is highly sensitive to the interior penalty weight,

where using a penalty weight of r = 0.01 most closely resembles the exterior penalty method.

Using r = 0.1 dramatically changes the steady state tracking performance. Using r = 0.001

or r = 0 leads to ill-conditioning of the Jacobian. With interior point methods (and exterior

penalty methods) the penalty weight is typically decreased (increased with exterior penalty)

over multiple Newton iterations to ensure convergence. However, due to the highly limited

DAP NMPC computational allotment, it is not desirable to perform multiple Newton steps

per sample time. Due to issues related to choice of the interior penalty, the use of the

auxiliary variable method does not appear to be straight-forward for this application.

The semi-smooth method performs qualitatively similar to the exterior penalty method.

Thus simulation �gures are not shown. The results in Table 5.1 include a quantitative

assessment of the semi-smooth method.

Table 5.1 summarizes the tracking performance, constraint handling, and computation

time of the various methods. MATLAB's fsolve is representative of the nominal performance.

SS refers to semi-smooth, AV refers to auxiliary variable with interior weight r, and AV-

C/GMRES refers to continuation with FD-GMRES and auxiliary variables as in [82] and

with FD-GMRES run to completion. EP refers to exterior penalty, FD-GMRES 2 refers to

the use of kmax = 2 with FD-GMRES. The integrated normed tracking errors are denoted

by epin and eWc. The integrated normed constraint violation for MAP, VGT position, and

EGR position are denoted by vpin, vV GT , and vEGR, respectively. The number of times

F needs to be computed for forward di�erence calculations is denoted by NF . The ECU

computation time is estimated through explicitly counting the number of operations inside

the generated code, [112], e.g., additions, multiplications, and divides, and mid-range, e.g.,
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160MHz, ECU speci�cations.3 Note that the computation of F is dominated by the need to

propagate forward and backward the state and co-state equation. Thus the model structure

and integration step size are important with respect to computations.

Generally, all methods perform similarly except FD-GMRES 1 and the AV methods.

As expected from Figure 5.6, FD-GMRES 1 has larger tracking error than other methods

because FD-GMRES does not utilize enough iterations to accurately solve for the Newton

step in (5.37). Also, as expected from the AV simulations, tracking performance su�ers

greatly due to the interior penalty. Since the control and state trajectories with the AV

method are far o� from nominal, the constraint violation statistics carry little value. Despite

the poor performance of the AVmethod, it is still an important case for comparison as it is the

strategy employed in recent publications, [27], which is considered the benchmark strategy.

From the simulation, EP-GMRES is currently the best option with both a low computation

time and good ability to track references and enforce constraints over the NEDC.

Figure 5.8 shows a comparison of NMPC controllers on the NEDC with di�erent adap-

tation rates, Γ. The time constant associated with the adaptation rate is 1/Γ sec. Note

that the controller update rate is 32 msec. Figure 5.8 shows that if the adaptation rate is

too large, e.g., with Γ = 200 and Γ = 1000, the controller is not able to track the reference

at the beginning of the simulation (820 sec through 845 sec). However, reference tracking

is recovered in these cases after 845 sec. This indicates that the adaptation, speci�cally

the adaptation of an additive disturbance term, can be made arbitrarily fast if the adaptive

model is su�ciently close to the nominal model. However, if the states, e.g., at the initial

condition, are inside a poor extrapolation region of the nominal model, then the the adap-

tive model can enter the poor extrapolation region if the adaptation rate is too fast, e.g.,

before the initial dynamics are able to settle out. This can lead to instability and a loss of

tracking. Note that with linear MPC, deadbeat additive disturbance estimation/adaptation

can be used and achieves the same control law as rate-based linear MPC, [87]. However, the

3With the NMPC strategies considered in this chapter there is only one �xed path for code execution.
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conditions for which deadbeat additive disturbance estimation/adaptation can be used with

NMPC requires further investigation.

5.3 Multiple-Shooting versus Single-shooting

The NMPC formulation that is presented in the beginning of Section 5.2 is considered a

�single-shooting� method, [20]. By single-shooting, it is meant that the states and co-states,

x0, . . . , xN , and pN , . . . , p1, in the discretized necessary conditions (5.36) implicitly satisfy

(5.21), (5.22), (5.24), and (5.33), i.e., the state and co-state equations are propagated in one

�shot.�

Another approach is to utilize a �multiple-shooting� method, [20]. With multiple-shooting

x1, . . . , xN (and x0 depending on the choice of problem setup) and pN , . . . , p1 are treated as

independent variables, and the conditions (5.21), (5.24), and (5.33) are included explicitly in

the discretized necessary conditions. With multiple-shooting and only equality constraints,

the discretized necessary conditions become,

F̄ (Ū , x(t)) =



∆τ(lu(x0, u0) + fTu (x0, u0)p1 + gTu (x0, u0)µ0)

∆τg(x0, u0)

p2 − p1 + ∆τ(lx(x0, u0) + fTx (x0, u0)p1 + gTx (x0, u0)µ0)

x0 − x1 + ∆τf(x0, u0)

...

∆τ(lu(xN−1, uN−1) + fTu (xN−1, uN−1)pN + gTu (xN−1, uN−1)µN−1)

∆τg(xN−1, uN−1)

pN − φx(xN)

xN−1 − xN + ∆τf(xN−1, uN−1)


= 0 ∈ RN(nu+ng+2nx),

(5.71)
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where

Ū =

[
uT0 µT0 xT1 pT1 ... uTN−1 µTN−1 xTN pTN

]T
∈ RN(nu+ng+2nx) (5.72)

and x0 implicitly satis�es x0 = x(t). Note that x0 = x(t) can also be added to the conditions

(5.71) and x0 is added as an optimization variable to Ū in (5.72). The multiple shooting

method leads to a larger optimization problem, however, in this form, the Jacobian of F̄ , FŪ ,

can be computed analytically and easily. Note that the conditions Hu = 0 and g = 0 in (5.36)

have been changed to the equivalent conditions ∆τHu = 0 and ∆τg = 0 in (5.71). This will

lead to a symmetric Jacobian and facilitate the use of algorithms such as the well-known

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm if so desired.

Let Huu,i = Huu(xi, ui, pi+1, µi), Hxx,i = Hxx(xi, ui, pi+1, µi), Hux,i = Hux(xi, ui, pi+1, µi),

gu,i = gu(xi, ui), gx,i = gx(xi, ui) and fu,i = fu(xi, ui). The Jacobain, FŪ , has the following

form,

Ai =



∆τHuu,i ∆τgTu,i 0 ∆τfTu,i

∆τgu,i 0 0 0

0 0 ∆τHxx,i+1 −I

∆τfu,i 0 −I 0


, i ∈ {0, ..., N − 2}, (5.73)

AN−1 =



∆τHuu,N−1 ∆τgTu,N−1 0 ∆τfTu,N−1

∆τgu,N−1 0 0 0

0 0 φxx(xN) −I

∆τfu,N−1 0 −I 0


, (5.74)
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Bi =



0 0 ∆τHux,i 0

0 0 ∆τgx,i 0

0 0 0 0

0 0 I 0


, i ∈ {1, ..., N − 1}, (5.75)

F̄Ū =



A0 BT
1

B1 A1 B2T

B2
. . .

. . . BT
N−2

BN−2 AN−2 BT
N−1

BN−1 AN−1


, (5.76)

and the Newton step is obtained from

F̄Ū(Ūk, x(t))∆Ūk = −F̄ (Ūk, x(t)). (5.77)

The computational complexity of computing F̄ in (5.71) is O(N) which is the same as

computing F in (5.36). Let sJ denote the computational cost of computing Ai and Bi at

stage i using (5.73)-(5.75). The total computational complexity of computing the Newton

step, e.g., through GMRES or LU decomposition, is O(N3) for su�ciently large N . For

small problem sizes, e.g., with small N , the computational complexity of computing the

Newton step is o(N(s + sJ) + N2(nu + ng + 2nx)
2 + N3(nu + ng + 2nx)

3) where the term

N(s + sJ) is the complexity contribution from the computation of F̄ and F̄Ū and the term

N2(nu + ng + 2nx)
2 + N3(nu + ng + 2nx)

3 is from the linear solve. When N is small, the

complexity contribution from computing F̄ and F̄Ū can dominate the complexity of the linear

solve. Figure 5.9 shows a comparison of the computational cost of evaluating F̄ and F̄Ū and

solving the linear equation (5.77) for di�erent horizon lengths. In fact, solving the linear

equation (5.77) is cheaper than evaluating the nonlinear equations composing F̄ and F̄Ū due

to the sparse structure of F̄Ū . The estimated computation time for a mid-range, 160MHz
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Figure 5.9: Comparison of computation times of F̄ , F̄Ū , and the linear solve in (5.77) for
di�erent horizon lengths using MATLAB on an i5 processor. Note: the implementation of
multiple-shooting uses MATLAB's Symbolic Toolbox to compute F̄ and F̄Ū , the uses
MATLAB's matlabfunction command to autogenerate executable MATLAB code. The
sharp increase in computation between N = 4 and N = 5 for the computation of F̄ and

similarly for F̄Ū is likely due to bloating in the code generation process.

ECU with the same horizon as in Table 5.1, N = 5, is 0.55 msec (compared to 0.9 msec with

EP-GMRES 2 in Table 5.1).

5.4 Direct NMPC versus Indirect NMPC

The NMPC formulation that is presented in the beginning of Section 5.2 is considered

�indirect NMPC,� [20]. By indirect NMPC, it is meant that the necessary conditions, (5.9)-

(5.20), are �rst formed for the continuous time system and continuous time optimization

problem. The necessary conditions are then discretized leading to (5.21)-(5.32), which can

then be solved using some form of Newton's method.

An alternative approach, �direct NMPC,� [20], to NMPC is to �rst discretize the con-

tinuous time system dynamics, then form the root �nding problem through deriving the

Karush-Kuhn-Tucker (KKT) necessary conditions.

This section shows that the root �nding problem is the same for indirect and direct

NMPC when Euler discretization is used, as is the case in this work.

Consider the Euler discretized system dynamics, where f(x, u) are the continuous time
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dynamics,

xk+1 = xk + ∆τf(xk, uk). (5.78)

The discrete time NMPC problem is based on minimizing a cost functional of the form,

J = φ(xN |k) +
N−1∑
i=0

∆τ l(xi|k, ui|k), (5.79)

The minimization of (5.79) is performed subject to equality and inequality constraints,

xi+1|k = xi|k + ∆τf(xik, ui|k), (5.80)

x0|k = xk, (5.81)

g(xi|k, ui|k) = 0, (5.82)

h(xi|k, ui|k) ≤ 0, (5.83)

ψ(xN |k) ≤ 0, (5.84)

where k is the current discrete sampling time, and i is the running time over the prediction

horizon. To simplify notation for this discussion, let k = 0 be the current time step and drop

the subscripts |k. Let L denote the Lagrangian,

L = φ(xN) +
∑N−1

i=0 ∆τ l(xi, ui) + pTi+1(xi − xi+1 + ∆τf(xi, ui))

+µTi g(xi, ui) + λTi h(xi, ui),
(5.85)
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The necessary conditions for optimality through KKT are

xi+1 = xi + ∆τf(xi, ui), i ∈ {0, ..., N − 1}, (5.86)

Lxi = ∆τ lx(xi, ui) + ∆τfTx (xi, ui)pi+1 − pi + gTx (xi, ui)µi + hTx (xi, ui)λi = 0,

i ∈ {0, ...N − 1},
(5.87)

pN − φx(xN)− ψx(xN)Tv = 0, (5.88)

Lui = ∆τ lu(xi, ui) + ∆τfTu (xi, ui)pi+1 + gTu (xi|k, ui|k)µi|k + hTu (xi, ui)λi = 0,

i ∈ {0, ...N − 1},
(5.89)

h(xi, ui) ≤ 0, λi ≥ 0, λTi h(xi, ui) = 0, i ∈ {0, ..., N − 1}, (5.90)

ψ(xN) ≤ 0, v ≥ 0, vTψ(xN) = 0. (5.91)

Note that xk = x(t) at sample times k and the equality and inequality constraints g and h

can be scaled by ∆τ . Then the necessary conditions (5.86)-(5.91) for the direct approach

are exactly the same as the discretized necessary conditions (5.9)-(5.20) for the indirect

approach.

Remark: There is a di�erence between indirect and direct NMPC during the modeling

stage. When direct NMPC is used, the system can be modeled in discrete time rather than

relying on some discretization strategy. For example when data-driven modeling is used,

as is the case in this work, a discrete time model rather than a continuous time model can

be directly identi�ed. This can be advantageous since move blocking is typically used to

reduce the number of optimization variables, e.g., control decisions are only made every b

steps and held constant between those steps. It may be possible to directly �t a discrete

model, without changing the model structure, with a sampling period of ∆τb. Then, the

costly computations of propagating Euler discretized continuous time dynamics for b steps

are forgone (and partial derivatives when an analytical Jacobian is used).
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5.5 Kantorovich's Method

This section considers the application of Kantorovich's method, [51], to NMPC. The goal

is to reduce the need to compute the Jacobian (of the discretized necessary conditions), thus

reducing dramatically the computational burden of computing the Newton step. Recall that

the Newton iteration solves

0 = F (zk) + Fz(zk)(zk+1 − zk) (5.92)

for xk+1, where F is a continuous function from Rn to Rn and Fz is the Jacobian of F with

respect to z. Commonly, an approximate Jacobian is used. One choice for an approximate

Jacobian is to use the Jacobian at the �rst iteration, Fx(z0), and use this same Jacobian for

all subsequent iterations. This is called Kantorovich's method. The Kantorovich iteration

solves

0 = F (zk) + Fz(z0)(zk+1 − zk) (5.93)

for zk+1. One unclear aspect of Kantorovich's method is how it can be applied to optimal

control problems, speci�cally inequality constrained optimal control problems. With inequal-

ity constraints, the Jacobian can change dramatically when constraints become active. For

example, consider any type of penalty method used for constraint handling. Typically, the

gradient of the cost function approaches in�nity and the Jacobian becomes near singular at

the constraint boundaries. In such a case, using the Jacobian Fz(z0) may not be suitable.

The novel idea here is to freeze only a portion of the Jacobian, Fz(zk), at z0, preferentially

a portion that is expensive to calculate, and only update the remaining, preferentially cheap

to compute, portion at every iteration k.

Here, the case when exterior penalty functions are used to enforce the inequality con-

straints is examined. Note that such an approach can used with other constraint enforcement

methods, e.g., interior penalty, active set strategies, mixed complementarity solvers, and etc.

The exterior penalty method is used here because it has already demonstrated good per-
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formance in the DAP example with a very limited computational footprint, see Section 5.2,

and provides a good benchmarking point.

A multiple-shooting framework will be used, see Section 5.3, for organizing the discretized

necessary conditions. This will allow for easy handling of not only control constraints, but

also state constraints and/or mixed constraints. The discretized necessary conditions with

exterior penalty for the constraints h(x, u) ≤ 0 can be written in the following form,

F̄ (Ū , x(t)) + FC(Ū , x(t)) = 0, (5.94)

FC(Ū , x(t)) =



∆τΓu(x0, u0)

0

∆τΓx(x1, u1)

0

...

∆τΓu(xN−1, uN−1)

0

0

0



, (5.95)

where F̄ (Ū , x(t)) in (5.94) is the same as in (5.71) and Γ in (5.95) is the exterior penalty

function,

Γ =
∑nh

j=1 γj(x, u),

γj(x, u) =


0, hj(x, u) ≤ 0,

1
2
rjhj(x, u)2 hj(x, u) > 0.

(5.96)

Note that the computation of F̄ (Ū , x(t)) in (5.94) and the associated Jacobian, F̄Ū(Ū , x(t)),

see (5.73)-(5.76), can be expensive since it requires propagating the nonlinear state and co-

state equations. Instead of computing the Jacobian, F̄Ū(Ūk, x(t)), at every Newton iteration,

it can be frozen at F̄Ū(Ū0, x(0)) as would be done in an unconstrained Kantorovich method.
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Then, FC(Ū , x(t)) and the associated Jacobian, FC
Ū

(Ū , x(t)), is computed at every iteration

of Ū since the local geometry of Γ can change very rapidly at during set changes. Assum-

ing that the inequality constraints, h(x, u) ≤ 0, have a simple form, e.g., a linear form,

FC(Ū , x(t)) and FC
Ū

(Ū , x(t)) should be computationally simple to compute where

FC
Ū (Ū , x(t)) = diag





∆τΓuu(x0, u0)

0

∆τΓxx(x1, u1)

0

...

∆τΓuu(xN−1, uN−1)

0

0

0





, (5.97)

and where Γuu(x, u) ∈ ∂B,u

(∑nh
j=1 γj,u(x, u)

)
, Γxx(x, u) ∈ ∂B,x

(∑nh
j=1 γj,x(x, u)

)
, and ∂B,u

and ∂B,x refers to the B-di�erential of a function to u and x respectively and has the form

of (5.56).

The Newton iteration associated with applying Kantorovich's method to the equation

(5.94) is

(
F̄Ū(Ū0, x(0)) + FC

Ū (Ūk, x(t))
)

(Ūk+1 − Ūk) = −
(
F̄ (Ūk, x(t)) + FC(Ūk, x(t))

)
. (5.98)

Figures 5.10-5.12 show simulation results using Kantorovich's method (5.98) to solve the

discretized necessary conditions (5.94). Only a single step of (5.98) is performed at each

sampling time. The NMPC follows the model setup of Section 5.2.2, optimization problem

setup of Section 5.2.3, and utilizes exterior penalty/soft constraints for all of the control and

state constraints.
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Figure 5.10: Simulation over the NEDC using Kantorovich's method where the Jacobian,
F̄Ū(Ū0, x(0)), corresponds to the Jacobian at simulation time 1210 sec.
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Figure 5.11: Simulations over the NEDC comparing Newton's method and Kantorovich's
method.
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Figure 5.12: Simulation over the NEDC using Kantorovich's method demonstrating intake
pressure maximum constraint satisfaction, p̄in = 170kPa.

In the simulations shown in Figures 5.10-5.12, F̄Ū(Ū0, x(0)) in (5.98) is taken as the exact

Jacobian at simulation time 1210 sec and used for the entirety of the drive cycle. As can be

seen in Figure 5.10, the performance of the implementation based on Kantorovich's method

is similar to Newton's method. The response of modi�ed Newton iterations is slower than

exact Newton at 1105 sec which can be seen in Figure 5.11. This sluggish response can

be improved by precomputing a few Jacobians at di�erent engine operating conditions and

looking them up as the condition changes. Figure 5.12 shows that Kantorovich's method is

also e�ective when the state constraint, p̄in = 170kPa, is active.

The complexity of solving (5.98) for Ūk+1 is o(N(s+ sC) +N2(nu +ng + 2nx)
2 +N3(nu +

ng+2nx)
3) where sC accounts for the complexity of computing FC(Ūk, x(t)) and FC

Ū
(Ūk, x(t))

for the i-th stage. Furthermore, when h(x, u)≤0 has a simple form, e.g., linear, it is a

reasonable assumption that sC < sJ where sJ is the i stage cost of computing F̄Ū(Ūk, x(t)).

The estimated computation time using Kantorovich's method with a mid-range, 160MHz

ECU with a the same horizon as in Table 5.1, N = 5, is 0.41 msec (compared to 0.55 msec

with Newton's method and a multiple-shooting framework, see Section 5.3, and 0.9 msec

with EP-GMRES 2 in Section 5.2, Table 5.1).
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5.6 Rate-Based NMPC

In Section 5.2, zero-o�set steady-state tracking was introduced through the use of pa-

rameter estimation (5.65) and an input-velocity-like form of the cost functional (5.66). As

is known in the linear MPC case, the strategy of input-velocity form MPC and parame-

ter/disturbance estimation has a number of disadvantages, [85]. These disadvantages include

the need to design a disturbance model and estimator which also requires additional tuning

parameters. Dynamic interactions between the controller and estimator may also need to be

considered. Furthermore, if multiple zones, models, controllers, and estimators are required

to cover a plant operating range, then initializations of the estimators must be considered to

mitigate discontinuous control actions during zone switches. The NMPC design presented in

Section 5.2 su�ers from similar issues, e.g., the adapted parameters must be switched/reset

somehow during zone switches.

In the linear MPC case, rate-based MPC has been shown to mitigate the above issues,

[18,39,85,114]. What is unknown is how similar ideas can be applied to NMPC. The following

discussion describes how rate-based NMPC can be developed. A few variants of rate-based

NMPC are possible, including continuous time rate-based NMPC and discrete time rate-

based NMPC. Simulation results on the GD engine high �delity nonlinear model are then

presented.

5.6.1 Continuous Time Rate-Based NMPC

For continuous time rate-based NMPC, the same idea as in [18] is used. Essentially,

what is required is to take the time derivative of the model, ẋ = f(x, u) and y = f y(x, u),

which gives the following model with an augmented state vector ξ =

[
ẋT xT yT uT

]T
∈

R2nx+ny+nu ,

ξ̇ = Ā(ξ)ξ + B̄(ξ)u̇, (5.99)
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Ā(ξ) =



fx(x, u) 0 0 0

I 0 0 0

f yx (x, u) 0 0 0

0 0 0 0


, B̄(ξ) =



fu(x, u)

0

f yu(x, u)

I


. (5.100)

The continuous time rate-based NMPC optimization problem can then be formed, where

the cost function,

JCRB = φ(ẋ(T ), y(T )− r) +

ˆ T

0

(y(τ)− r)TQ(y(τ)− r) + u̇(τ)TRu̇(τ), (5.101)

φ(ẋ(T ), y(T )− r) =

 ẋ(T )

y(T )− r


T

P

 ẋ(T )

y(T )− r

 , (5.102)

is minimized subject to the constraints,

ξτ (τ) = Ā(ξ(τ))ξ(τ) + B̄(ξ(τ))u̇(τ) ∈ R2nx+ny+nu , (5.103)

g(x(τ), u(τ)) = 0 ∈ Rng , (5.104)

h(x(τ), u(τ)) ≤ 0 ∈ Rnh , (5.105)

ψ(ẋ(T ), y(T )− r) ≤ 0 ∈ Rnψ , (5.106)

ẋ(0) = x(t), x(0) = x(t), y(0) = y(t), u(0) = u(t), (5.107)

where Q = QT > 0, R = RT > 0, P = P T ≥ 0, the reference, r, is treated as constant over

the horizon, and it is assumed that the system is square, i.e., y, u ∈ Rnu . Now consider the

simpli�ed case where x = y, as is the case for the DAP prediction model framework (Section
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5.2). Then, ξ becomes ξ =

[
ẋT xT uT

]T
∈ R2nx+nu and

Ā(ξ) =


fx(x, u) 0 0

I 0 0

0 0 0

 , B̄(ξ) =


fu(x, u)

0

I

 . (5.108)

Furthermore, consider the case where multiple-shooting is used, as this allows for simple

calculation of the Jacobian of the discretized necessary conditions, see Section 5.3, and allows

for simple handling of state constraints while using Kantorovich's method, see Section 5.5.

While the NMPC formulation (5.101)-(5.107) will give o�set-free set-point tracking, the

optimization problem, speci�cally the associated Newton iteration complexity will become

larger compared to non-rate-based NMPC because many states and co-states need to be

added as optimization variables. Again, let N = T/∆τ ∈ Z+, where ∆τ is the discretization

period. The computational complexity of a Newton step (not Kantorovich) for the equality

constrained discretized necessary conditions associated with (5.101)-(5.104) and (5.107) is

o(N(s̃ + s̃J) + N2(nu + ng + 2nx)
2 + N3(nu + ng + 2nx)

3) and O(N3) for su�ciently large

N , where s̃ > s and s̃J > sJ account for the additional stage cost associated with the extra

states.

Here, continuous time rate-based NMPC has been introduced. However, it su�ers from

a number of issues inasmuch as the implementation is concerned due to (i) the bloating

in the number of optimization variables, (ii) considerations for the limited computation

time allotted for the DAP control problem, and (iii) advantages of data-driven discrete time

modeling as discussed in the remark in Section 5.4. Instead, a discrete time rate-based NMPC

formulation will be used to reduce the amount of bloating in the number of optimization

variables.
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5.6.2 Discrete Time Rate-Based NMPC

For discrete time rate-based NMPC, ideas similar to linear discrete time rate-based MPC

will be used, see [85, 114]. What will be needed are state update equations for ∆xk =

xk − xk−1. Let the discrete time model have the form,

xk+1 = fd(xk, uk), (5.109)

yk = f y(xk, uk). (5.110)

Recall that the state and output equations (5.109) and (5.110) are equality constraints from

the standpoint of the optimal control problem. An equivalent constraint to (5.109) and

(5.110) is

∆xk+1 = xk+1 − xk = fd(xk, uk)− fd(xk−1, uk−1), (5.111)

∆yk = yk − yk−1 = f y(xk, uk)− f y(xk−1, uk−1). (5.112)

Using the constraint (5.111) and (5.112), the following discrete time rate-based NMPC

cost functional,

JDRB = φ(xN |k−xN−1|k, yN |k−r)+
N−1∑
i=0

(yi|k − r)TQ(yi|k − r) + (ui|k − ui−1|k)
TR(ui|k − ui−1|k),

(5.113)

φ(xN |k − xN−1|k, yN |k − r) =

 xN |k − xN−1|k

yN |k − r


T

P

 xN |k − xN−1|k

yN |k − r

 , (5.114)
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is minimized subject to the constraints,

xi+1|k − xi|k = fd(xi|k, ui|k)− fd(xi−1|k, ui−1|k), (5.115)

yi|k − yi−1|k = f y(xi|k, ui|k)− f y(xi−1|k, ui−1|k), (5.116)

g(xi|k, ui|k) = 0, (5.117)

h(xi|k, ui|k) ≤ 0, (5.118)

ψ(xN |k − xN−1|k, yN |k − r) ≤ 0. (5.119)

x0|k = xk, x−1|k = xk−1, y0|k = yk, y−1|k = yk−1, u−1|k = uk−1. (5.120)

Again, consider the case where yk = xk, which is true for the DAP prediction model.

Then (5.112) and (5.116), are no longer required. The computational complexity of a Newton

step for the necessary conditions associated with the optimization problem (5.113), (5.115),

(5.117), and (5.120) is o(N(s+sJ)+N2(nu+ng+2nx)
2 +N3(nu+ng+2nx)

3) and O(N3) for

su�ciently large N , which is the same as for the non-rate-based NMPC implementation in a

multiple-shooting framework because the number of optimization variables does not change,

i.e., because ui|k's and xi|k's are directly solved for rather than going through an intermediate

step with ∆ui|k's and ∆xi|k's as would be the case in the linear MPC. Furthermore, the stage

costs of computing the necessary conditions and associated Jacobian is the same as in the non-

rate based case. This is because once fd(xi|k, ui|k) is computed at stage i, fd(xi−1|k, ui−1|k)

does not need to be computed at stage i+ 1 and similarly with partial derivatives. However,

the bandwidth of the sparse Jacobian will be about twice as large with rate-based NMPC

compared with non-rate-based NMPC because xi+1|k in (5.111) is a function of xi|k, ui|k,

xi−1|k, and ui−1|k rather than just xi|k and ui|k.

Remark: In the continuous time rate-based case, the number of optimization variables

can be condensed by using the substitution ∆τ u̇i = ui+1 − ui and ∆τ ẋi = xi+1 − xi after

the necessary conditions are discretized. However this will generally not result in the same

necessary conditions as the second order derivatives, fxx, fux, and fuu, will appear in the
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necessary conditions for the continuous time case which do not appear in the discrete time

case. For the case where f is linear, the necessary conditions will be the same because

the second order derivatives disappear. Note that this does not contradict the discussion

in Section 5.4 because the models are fundamentally di�erent, i.e., the discretization of the

continuous time rate-based dynamics (5.99) does not result in the discrete time rate-based

dynamics (5.111), unless f is linear.

Let f̄d(x, u) and f̄ y(x, u), not necessarily equal to fd(x, u) and f y(x, u), describe the true

plant. Let ζk+1 =

 xk+1

xk

 =

 f̄d(xk, uk)

xk

.
Proposition 5.1: Let Q = QT > 0, R = RT > 0, and P ≥ 0 in (5.113) and (5.114),

and there exists xss ∈ X and uss ∈ U such that xss = f̄d(xss, uss) and r = f̄ y(xss, uss), then[
xTss xTss

]T
is an equilibrium for the closed loop system with the states ζk under under

the closed loop unconstrained NMPC control de�ned by (5.113), (5.115), and (5.120).

Proof: Let ζk =
[
xTk x

T
k−1

]
=
[
xTss x

T
ss

]T
. Then it is always possible to choose ui|k =

uk−1 = uss for i ∈ {0, ..., N − 1} which results in xi|k = xk = xss for i ∈ {0, ..., N} in

the optimization problem (5.113), (5.115), and (5.120). This results in the cost, JDRB =

φ(xN |k − xN−1|k, yN |k − r) +
N−1∑
i=0

(yi|k − r)TQ(yi|k − r) + (ui|k − ui−1|k)
TR(ui|k − ui−1|k) = 0.

Because JDRB > 0, ui|k = uk−1 = uss for i ∈ {0, ..., N − 1} and xi|k = xk = xss for

i ∈ {0, ..., N} is a minimizer of (5.113), (5.115), and (5.120). With NMPC, the �rst control

element, u0|k, is applied which yields xk+1 = xk = xss. Thus
[
xTss x

T
ss

]
is an equilibrium of the

closed loop system with the states ζk under the closed loop unconstrained NMPC control

de�ned by (5.113), (5.115), and (5.120). �

Remark: Proposition 5.1 does not require or conclude anything regarding the stability

of x = xss. In contrast, if non-rate-based NMPC is used, then it may not be the case that

u0|k = uk−1 can be chosen and simultaneously satisfy xi+1|k = fd(xi|k, ui|k) = xk = xss for

i ∈ {0, ..., N}. Then u0|k 6= uk−1 may be a minimizer and, once applied, xk+1 may not

equal xk = xss. Appropriate terminal penalties and terminal set constraints can be used to
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Figure 5.13: 4 zones of the piecewise polynomial model of the GD engine.

guarantee local stability, see Section 5.7.

5.6.3 DAP Simulation Results Using Rate-based NMPC

Simulations using discrete time rate-based NMPC have been conducted on the Toyota

GD engine high �delity nonlinear mean-value-model. The prediction model for the GD

engine is identi�ed directly in discrete time. The model uses a second order polynomial

model similar to the continuous time case. The modeled outputs/states for the GD engine

are MAP [kPa] and EGR rate [%], x = [pin χEGR]T , and the inputs are EGR throttle [%

closed], EGR valve [% open], VGT [% closed], engine speed [rpm], and fuel �ow [mm3/st.],

u = [uth uEGR uV GT NeWf ]
T . The discrete time model has the following form,

xk+1 = θf 2(xk, uk). (5.121)

For the GD engine, the engine operating range is split into four zones, see Figure 5.13.

As with rate-based linear MPC, zone switches, when a rate-based formulation is used, are

not a concern. With the diesel air path rate-based NMPC formulation there are no inte-

grators/estimators/adaptive parameters that need to be reset during zone switches. In each

of the four zones, the polynomial model (5.121) is trained on the mean-value-model using

a randomly generated step input trajectory that remains within ±40% of the full actuator
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Figure 5.14: Nominal settings for VGT position and EGR valve position at di�erent
operating conditions.

range of the nominal production control settings. This is to ensure that the trajectory does

not venture into poor extrapolation zones of the mean-value-model. The nominal settings

obtained from an existing controller for the VGT position and EGR valve position are shown

in Figure 5.14.

Figure 5.15 shows a transient comparison between the mean-value-model and polyno-

mial model in zone 2. Indeed, the polynomial model is able to accurately represent the

engine dynamics. The overall transient matching behavior between the mean-value-model

and polynomial model is consistent over all four zones. Figure 5.16 shows good matching

for the steady state values for pin and χEGR using the nominal production control settings

between the mean-value-model and polynomial model. Figure 5.17 shows good matching of

DC gains around the nominal production control settings between the mean-value-model and

polynomial model which indicates that the data-driven polynomial model learned something

reasonable.

Figure 5.18 shows the closed loop simulation using discrete time rate-based NMPC (with

polynomial prediction model) in loop with the GD engine mean-value-model. The control

objective is to track pin and χEGR through coordinated control of uV GT and uEGR. The

prediction horizon is N = 5 with a sampling period and discretization period of ∆T = ∆τ =

32 msec. The controller uses the rate-based formulation (5.113)-(5.118) and (5.120) with
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zone 2.

Figure 5.16: Steady state comparison between the mean-value-model and polynomial
model at the nominal control settings.
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Figure 5.17: DC gain comparison between the mean-value-model and polynomial model
around the nominal control settings.

176



the exterior penalties for control constraint enforcement, multiple-shooting to facilitate easy

generation the Jacobian of the necessary conditions, and a single Newton (not Kantorovich)

step per sample instant. As can be seen, rate-based NMPC is able to successfully achieve

zero-o�set steady-state tracking. Again this is done without any estimators, adaptation, or

feed-forward.

Figure 5.19 tests the robustness of the rate-based NMPC controller in loop with the

GD mean-value-model with measurement o�sets on either ±5% in χEGR or ±10 kPa in

pin. The test pattern corresponds to 15 mm3/st. fuel steps from 0 to 90 mm3/st. at each

engine speed between 800 rpm and 4400 rpm in 200 rpm intervals. In all of these cases, the

closed loop system is stable. In some cases, there are non-zero steady state o�sets between

the measurement and reference. In these cases, the actuators are saturating in the correct

direction, e.g., the uV GT is saturated closed when pin is under the reference and the uEGR

is saturated closed when χEGR is above the reference. Figure 5.19 shows the controller

performance when there are measurement o�sets in both χEGR and pin. The �gure only

shows the fuel steps at 800 rpm and 1000 rpm as the controller behaves stably and as

expected for higher engine speeds. The controller begins to experience numerical issues,

e.g., the Jacobian of the necessary conditions become singular, in the cases where there is

a +10 kPa o�set in pin. For example, this can be seen as discontinuous control actions at

2.5 sec when there is a +10 kPa o�set in pin and +5 % o�set in χEGR. Figure 5.21 shows

the controller performance when there are lags, speci�cally �rst order �lters, placed on the

measurements of χEGR and pin. The �gure only shows the fuel steps at 800 rpm, 1000 rpm,

and 1200 rpm as the controller behaves stably and as expected for higher engine speeds.

The controller is robust to signi�cant lags in χEGR with a time constant, τχEGR, up to 1

sec. The controller is robust to small lags in pin with a time constant, τp in, up to 0.1 sec.

Figure 5.21 shows the controller is unstable at low engine speeds (800 rpm to 1200 rpm)

when τp in is 0.15 sec. In future work, the polynomial model at low engine speeds will be

improved, e.g., to improve extrapolation, to improve tracking performance and robustness
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Figure 5.18: Closed-loop simulation using discrete-time rate-based NMPC on the GD
engine mean-value-model.

at low engine speeds.

Figure 5.22 shows the sparsity pattern of the Jacobians of the necessary conditions with

rate-based NMPC and non-rate-based NMPC using a multiple-shooting framework and hori-

zon length N = 5. The estimated time computation time for a mid-range 160MHz ECU

using discrete time rate-based NMPC is 0.87 msec (compared to 0.55 msec with non-rate-

based multiple-shooting, see Section 5.3). This estimate is based on relative execution times

of rate-based versus non-rate-based using MATLAB and an i5 processor. With a horizon

of N = 5, the time required to solve the linear equation for the Newton step for rate-based

NMPC is 0.115 msec and 0.109 msec with non-rate-based NMPC. This implies that the

discrepancy between the 0.87 msec with rate-based and 0.55 msec with non-rate-based is

primarily due to bloating in the code generation process, since stage costs of computing the

necessary conditions and Jacobian of the necessary conditions are ideally the same.

5.7 Terminal Constraints for Stability with NMPC

Stability guarantees for NMPC, similar to linear MPC, are typically obtained through
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Figure 5.19: Closed-loop simulation using discrete-time rate-based NMPC on the GD
engine mean-value-model with either χEGR or pin measurement o�sets.

the use of a terminal constraint and an associated terminal cost, see [16] and references

therein. In this section, these types of constraints are applied to the DAP NMPC problem.

Simulations using these stabilizing terminal set constraints are conducted in the loop with

the high-�delity mean-value-model of the GD engine at di�erent operating conditions.

In the following, a discrete time system, xk+1 = fd(xk, uk) with 0 = fd(0, 0), is considered.

The NMPC control law will be obtained from minimizing a cost functional of the form,

J(xk, u0:N−1|k, N) = φ(xN |k) +
N−1∑
i=0

xTi|kQxi|k + uTi|kRui|k, (5.122)

subject to the constraints,

xi|k+1 = fd(xi|k, ui|k), x0|k = xk, (5.123)

ψ(xN |k) ≤ 0, (5.124)
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Figure 5.20: Closed-loop simulation using discrete-time rate-based NMPC on the GD
engine mean-value-model with both χEGR and pin measurement o�sets.
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Figure 5.21: Closed-loop simulation using discrete-time rate-based NMPC on the GD
engine mean-value-model with �rst order �lters placed on the χEGR and pin measurements.
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Figure 5.22: Sparsity pattern of the Jacobian of the necessary conditions using discrete
time rate-based NMPC and non-rate-based NMPC, both with multiple-shooting and

horizon N = 5. The number of non-zero entries are 232 and 160 with rate-based NMPC
and non-rate-based NMPC respectively.
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where Q = QT ≥ 0 and R = RT > 0. One way to obtain local stability is to use a con-

tractive type of constraint combined with a single step horizon, i.e., N = 1. The contractive

constraint has the following form,

ψ(x1|k) = xT1|kPx1|k − αxTkPxk, α ∈ [0, 1), P = P T > 0. (5.125)

Let Contractive NMPC (CNMPC) denote a controller obtained from the optimization

problem (5.122)-(5.125) with N = 1.

Assumption 5.1: There exists, X̃1, a nonempty neighborhood of the origin such that the

optimization problem, (5.122)-(5.125), is recursively feasible.

Proposition 5.2: Under Assumption 5.1 and assuming that x0 ∈ X̃1, the origin is asymp-

totically stable for the system, xk+1 = fd(xk, uk), under the CNMPC controller.

The proof of Proposition 5.2 follows directly from the fact that xkPxk is a Lyapunov

function for the closed loop by virtue of the contractive constraint (5.124)-(5.125) and it is

explicitly assumed that x0 ∈ X̃1, see [16].

Another choice for the terminal constraint and terminal cost when N ≥ 1 is to choose,

ψ(xN |k) = fd(xN |k, KxN |k)
TPfd(xN |k, KxN |k)− xTN |kPxN |k + xTN |k(Q+KTRK)xN |k,

φ(xN |k) = xTN |kPxN |k,

P = P T > 0, Q = QT > 0, R = RT > 0,

(5.126)

where P and K are chosen as the solution to the associated Discrete Algebraic Riccati

Equation (DARE) for the linearized system and associated feedback gain, respectively.

Let Horizon N NMPC (HNNMPC) denote a controller obtained from the optimization

problem (5.122)-(5.124) and (5.126) with N > 1.

Assumption 5.2: There exists, X̃FH , a nonempty neighborhood of the origin such that

the optimization problem, (5.122)-(5.124) and (5.126), is recursively feasible.

Proposition 5.3: Under Assumption 5.2 and assuming that x0 ∈ X̃FH , the origin is
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asymptotically stable for the system, xk+1 = fd(xk, uk), under the HNNMPC controller.

The proof of Proposition 5.3 is the same as for the Quasi-In�nite controller in [16] where

the cost functional (5.122) serves as a Lyapunov function for the closed loop system.

Remark: Note that no maximal output admissible set (MOAS) was used as the terminal

set as is typically done, [16]. Rather, it is explicitly assumed that x0 belongs to a set such

that the optimization problem is recursively feasible. The constrained domain of attraction

can always be computed a posteriori. Furthermore, in practice, soft state and soft terminal

state constraints are always used to guarantee feasibility in the presence of plant/model

mismatch and disturbances. The following simulations demonstrate that the constrained

domain of attraction with soft stabilizing constraints may be larger than with hard stabilizing

constraints.

Both CNMPC and HNNMPC have been implemented with rate-based NMPC, see Section

5.7, in loop with the mean-value GD engine model. Let xk+1 = Axk + Buk and yk = Ixk

be the result of a linearization of (5.123). In these simulations with rate-based NMPC,

P , is chosen as the solution to the Riccati equation based on the linear rate-based system,

ξTk = [∆xk ek] = [xk − xk−1 yk−1 − r], ∆uk = uk − uk−1,ξk+1 =

 A 0

I I

 ξk +

 B

0

∆uk,

and ek = [0 I]ξk, see [85,114].

Simulations have been performed using CNMPC and HNNMPC and are shown in Figures

5.23 and 5.24 with the same optimization problem setup as in Section 5.7 with the addition

of a soft CNMPC or HNNMPC terminal set constraint. Di�erent simulations have been

conducted showing how the closed loop behavior changes as the slack weights associated

with the soft terminal set constraints increase (slack weight = 0 corresponds to completely

inactive terminal set constraint). As can be seen in Figures 5.23 and 5.24, as the slack

weights become large, i.e., when the soft constraints better approximate hard constraints,

performance dramatically su�ers, and, actually, stability is lost. This is because the use of

terminal set constraints greatly limits the feasible region of the optimization problem. When

183



0 20 40 60 80 100 120 140

120

140

160

180

200

220

240

p in
 [k

P
a]

0 20 40 60 80 100 120 140
−10

0

10

20

30

40

50

time [s]

χ E
G

R
 [%

]

 

 

slack weight = 10
slack weight = 1
slack weight = 0.1
slack weight = 0
reference

Figure 5.23: Simulations using CNMPC with soft contractive constraint enforcement in
loop with the mean-value GD engine model at di�erent operating conditions.
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Figure 5.24: Simulations using HNNMPC with soft terminal set constraint enforcement in
loop with the mean-value GD engine model at di�erent operating conditions.
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the optimization based controller is not feasible, the control is not de�ned. This infeasibility

numerically leads to a singular Jacobian for the Newton step and zig-zagging behavior in

the control and response. This can be seen at 10 sec in the CNMPC case and at 105 sec in

both the CNMPC and HNNMPC case.

5.8 Conclusion

This chapter described the development of a Nonlinear Model Predictive Controller

(NMPC) for the diesel air path. In total, through the various strategies described in this

chapter, it has been shown that NMPC for engine control is indeed computationally possible,

contrary to [33], and performs well throughout the engine operating range with minimal tun-

ing e�ort. Furthermore, estimates of the ECU computation times for the NMPC strategies

developed in this chapter (< 1 msec) are at least an order of magnitude faster than recently

published work on the subject (on the order of 10's of msec), [27,78], and are not signi�cantly

slower than linear explicit MPC, see Chapter 2. Table 5.2 summarizes the computational

progression of NMPC for the diesel air path with respect to the various strategies investigated

and developed. Note that for all of the NMPC strategies in Table 5.2, the computational

complexity is O(N3) for su�ciently large N , however, it is more bene�cial to analyze the

computational complexity for small N , which is the case for the DAP application. The com-

bination of Kantorovich's method with constrained NMPC is a major innovation that is able

to reduce the computational complexity of NMPC. Furthermore, zero-o�set set-point track-

ing is achieved through a novel rate-based NMPC strategy. Additional bene�ts of rate-based

NMPC of the DAP are that (i) adaptation, which can lead to a complex dynamic interaction

with the NMPC controller, is not required to achieve zero-o�set set-point tracking and (ii)

discontinuities at zone switches are mitigated because there are no adapted parameters to be

reset/switched at the zone boundary, meaning that we can use more zones leading to more

accurate models.
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Table 5.2: Comparison of computation time for various NMPC methods.

Method ECU [msec] Complexity Notes

AV-C/GMRES,
r = 0.01

9.3

o(k3
max + k2

max

+(kmax + 1)Ns̃),
1 ≤ kmax

≤ N(nu + ng + 2nh)

Benchmark
strategy of [27], see

Section 5.2.

EP-GMRES,
kmax = 2

0.9

o(k3
max + k2

max

+(kmax + 1)Nsγ),
1 ≤ kmax

≤ N(nu + ng)

With penalty
function, no extra

optimization
variables need to
be added, see
Section 5.2

Multiple-shooting
with analytical

Jacobain

0.55
o(N(s+ sJ)

+N2(nu + ng + 2nx)
2

+N3(nu + ng + 2nx)
3)

Note that
complexity

analysis does not
account for the
fact that the

Jacobian is sparse,
see Section 5.3.

Kantorovich's
method with

multiple-shooting

0.41
o(N(s+ sC)

+N2(nu + ng + 2nx)
2

+N3(nu + ng + 2nx)
3)

Forgo computing
the Jacobian and

assume that
sC ≤ sJ , see
Section 5.5.

Rate-based with
multiple-shooting

(w/o
Kantorovich)

0.87
o(N(s+ sJ)

+N2(nu + ng + 2nx)
2

+N3(nu + ng + 2nx)
3)

Complexity is the
same as

multiple-shooting.
The increase in

ECU time is due to
code generation
bloating, see
Section 5.6.

Explicit linear
MPC

0.22 o(NrNcNp) See Chapter 2.
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Chapter 6

Conclusions and Future Work

An advanced control technology, model predictive control (MPC), has been developed for

the diesel air path (DAP) in this dissertation. Development of advanced control strategies,

in the powertrain arena, has been motivated by the need to meet increasingly stringent fuel

economy and emissions regulations, both current and on the horizon. The DAP is used as an

exemplary powertrain system for which advanced control technologies must be developed.

The DAP application has been traditionally challenging to control due to its highly

coupled nonlinear behavior, the need for constraints to be considered for driveability and

emissions, and the very limited computational resources in engine control units (ECU). MPC

has been viewed as a way to handle these challenges, however, current MPC solutions for the

DAP are still limited. In the linear MPC (LMPC) case, the strategy of zoning, i.e., dividing

a nonlinear operating range into multiple locally linear zones, is typically used. However,

there are drawbacks to this strategy, as it can lead to a large calibration e�ort and memory

usage in the ECU. In the nonlinear MPC (NMPC) case, it has previously been unknown if

NMPC would be feasible for the DAP given the limited computational resources of ECUs

and the perceived computational burden of NMPC.

This dissertation has focused on overcoming the challenges of applying MPC to the

DAP, both in the linear and nonlinear case, and primarily addresses the need to reduce

the computational complexity of MPC for DAP control. Even though the DAP is used as
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the application in the work described in this dissertation, many of the developments have

wider applicability. For example, the challenges of DAP control are analogous to those in

gas turbine engine control in aircraft. Control of the DAP, in itself, has wide applicability

as diesel engines power 95% of all U.S. freight transportation.

The main developments and results of this dissertation are summarized as follows.

• Chapter 2 described a rate-based MPC controller for the DAP. The use of rate-based

MPC reduced the need to partition the nonlinear DAP operating range into zones,

where, typically, a di�erent model, controller, and calibration are needed for each zone.

The use of partial inversion reduced the degree of nonlinearity of the nonlinear DAP

plant. Combined with rate-based MPC, it was found that a single zone MPC controller

was su�cient to cover the entire DAP operating range. Constraint remapping and the

novel strategy of intermittent constraint enforcement were used to reduce the memory

usage and chronometric load of the single zone controller. The resulting controller was

used in simulations and in experiments throughout the engine operating range and has

demonstrated good tracking and constraint enforcement performance.

• Chapter 3 described a novel gain scheduling strategy for explicit MPC. Typically, when

gain scheduling explicit MPC, a di�erent prediction model and resulting explicit MPC

control law are stored per operating zone, which requires a large amount of ECU

memory usage. To reduce the ECU memory usage, a simple gain block was placed

between the output of the controller and input to the plant. Thus, only a simple �xed

linear gain needs to be stored per zone, rather than a full explicit MPC controller.

This reduced complexity gain scheduling strategy has been developed in a manner

that is able to non-trivially enforce control constraints. This gain scheduling strategy

was used successfully in closed loop simulations with a high �delity nonlinear DAP

model. It was demonstrated that the novel gain scheduling strategy resulted in similar

tracking performance compared to the standard gain scheduling strategy with lower

ECU memory usage. From a broader perspective, the scheduling strategy proposed in
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this chapter gives a degree of �exibility (recon�gurability to model changes) to explicit

MPC which is traditionally rigid.

• Chapter 4 described a robust linear MPC strategy for the DAP, i.e., a tube MPC

strategy. Enhancements to the standard tube MPC strategy were made which takes

into consideration that disturbances may not only be bounded in magnitude, but also

that their rates-of-change may also be bounded. For example, the engine speed and fuel

rate in the the DAP problem are treated as disturbances. However, these disturbances

cannot change arbitrarily, and are in fact rate limited as a result of physical limitations.

Taking these rate limits into account, the conservativeness of tube MPC is reduced,

i.e., the amount of constraint tightening is reduced. This strategy demonstrated robust

constraint enforcement for the DAP application in both simulations and experiments.

The drawback of using tube MPC is that the computational complexity of the controller

grows, and, in the case of the DAP, grows signi�cantly. Motivated by the need to

reduce computational complexity for tube MPC in general, i.e., not just for the DAP,

a novel strategy of splitting the tube MPC optimization problem has been developed.

As a result, the computational complexity for tube MPC with the split optimization

problem is on the same order as for non-tube MPC.

• Chapter 5 described a nonlinear MPC strategy for the DAP. The conclusion is that

NMPC is indeed viable for the DAP despite previous thoughts on the subject. This

computationally simple NMPC strategy for the DAP was obtained through a number

of strategies: a simple polynomial prediction model, exterior penalties for inequality

constraint handling, multiple-shooting which simpli�es the computation of the Jaco-

bian, and the novel combination of Kantorovich's method with constrained NMPC

which dictates that the Jacobian does not need to computed at every Newton iter-

ation/time step. In fact, it was demonstrated in simulation that the Jacobian only

needs to be computed at a single operating condition and good tracking performance
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can still be achieved. Additionally, rate-based ideas, for which results are well known

in the linear MPC case, have been extended to nonlinear MPC. Utilizing this novel

rate-based NMPC strategy has a number advantages similar to the linear case: the

integral action does not need to be tuned separately from the feedback controller, e.g.,

versus using disturbance estimation, and discontinuous zone switches are mitigated

which means more zones can be used which can lead to a more accurate prediction

model.

Of the developments on lMPC, intermittent constraint enforcement, gain scheduling ex-

plicit MPC, and the split tube-MPC method are regarded as major innovations that also

have broad applicability beyond the DAP example. Of the developments on NMPC, Kan-

torovich's method applied to constrained NMPC and rate-based NMPC are regarded as

major innovations that also have broad applicability beyond the DAP example.

Through the developments described in this dissertation, many of the computational

challenges of applying MPC to the DAP have been overcome to the extent that MPC can be

implemented on today's ECUs. While the rate-based MPC strategy for the DAP described

in Chapter 2 was able to achieve low computational complexity, some performance was

sacri�ced. In order to improve the performance, e.g., for tracking, the gain scheduling

strategy of Chapter 3 was developed and it was found that the performance of the gain

scheduling strategy of Chapter 3 is comparable to a zoning strategy. Robust constraint

enforcement, i.e., tube MPC, for the DAP was investigated in Chapter 4 and various methods

for managing the computational complexity of tube MPC were developed.

While many performance and computational complexity gains were achieved through the

linear MPC work described in this dissertation compared to existing methods, many methods

speci�c to the DAP were used to render the DAP plant �more linear.� Thus, NMPC was

investigated in an e�ort to streamline the development of MPC for general nonlinear systems.

Towards this end, a NMPC strategy has been developed for the DAP that, in addition to
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the observations previously described, is very simple to implement. The rate-based NMPC

has been run successfully �out-of-the-box� in loop with Toyota's GT-POWER based model

of the GD engine and evaluations of real world impact are currently underway, [46], e.g., on

fuel economy and emissions. E�orts to optimize the code generation process for the various

NMPC strategies described in Chapter 5 are also underway, [112].

Throughout the work comprising this dissertation, a number of observations were made

that require further research. The future research directions, some speci�c to the methods

used in this dissertation and some more general, are summarized as follows.

• When intermittent constraint enforcement is used with hard constraints, how much

do the constraints need to be tightened to guarantee that the original constraints are

satis�ed? Can recursive feasibility be guaranteed? Furthermore, is there a systematic

way to choose the instances in the prediction horizon to enforce the constraints?

• Stability results for the switched explicit gain scheduling strategy were developed for

the unconstrained case. Further work needs to be done to consider the case where

constraints are active. For example, can an error bound between the nominal system

and switched system be established when a constraint is active? If an error bound

can be established, can the state and output constraints be appropriately tightened to

guarantee enforcement of the original constraints. Furthermore, what are the limita-

tions of the gain scheduling strategies considering that there fewer degrees of freedom

to modify the closed loop dynamics compared to changing the prediction model online?

• With the reduced complexity tube MPC strategy, the same maximal output admissible

set as with standard tube MPC can be established. However, stability of the reduced

complexity of tube MPC strategy has yet to be established.

• Stability properties of NMPC when the optimality conditions are not solved to com-

pletion need to be established, e.g., when a limited number of Newton iterations is

used.
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• For the DAP NMPC formulation, exterior penalties were found to be quite successful,

e.g., only a few Newton iterations are required to handle active set changes. However,

fast, strictly feasible optimization methods for NMPC should also be investigated.

• More generally, the following question should be investigated; how accurate does the

prediction model actually need to be to satisfy performance speci�cations?

• It has been demonstrated in this dissertation that NMPC for the DAP is feasible.

Can the same be said for economic MPC where the goals of maximizing fuel economy,

satisfying emissions regulations, and maintaining drivability are directly optimized?

In light of current events regarding Volkswagon's use of defeat devices during EPA

testing, [111], it will become increasingly important that those aforementioned goals

are met in real world driving scenarios and economic MPC may be one of the key tools

for achieving those goals.
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