
Robustness of mission plans for unmanned aircraft

by

Moritz Niendorf

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in the University of Michigan
2016

Doctoral Committee:

Associate Professor Anouck Renee Girard, Chair
Associate Professor Ryan M. Eustice
Professor Daniel J. Inman
Professor Pierre Tshimanga Kabamba (Deceased)
Professor Ilya Vladimir Kolmanovsky



v6

v1

v2

v3

v4

v5

-50 0 50 100 150 200

-50

0

50

100

150



©Moritz Niendorf

2016



To my family, friends, and mentors.

ii



ACKNOWLEDGEMENTS

I first and foremost would like to thank my advisors, Professors

Anouck Girard and Pierre Kabamba. Thank you for all the support

you have given me over the course of my graduate career. Your guid-

ance was instrumental to the success of this work and your mentoring

was invaluable to my personal and professional growth.

I am very grateful to Professors Ryan Eustice, Daniel Inman, and

Ilya Kolmanovsky for joining my committee and offering very useful

feedback about my research.

I am very appreciative of the help I have received over the years

from my lab mates, especially Ricardo Bencatel, Jonathan Las-

Fargeas, Dave Oyler, Johnhenri Richardson, and Jinwoo Seok, as

well as of the help I received from Shasha Magpantay and Christo-

pher Petersen. I would like to thank Florian Adolf of the German

Aerospace Center (DLR e.V.) for his valuable advice regarding mis-

sion planning for unmanned aircraft.

I would like to acknowledge the United States Air Force for fund-

ing my research. I would also like to thank the Air Force Research

Laboratory, the University of Michigan Department of Aerospace

Engineering, and the Rackham Graduate School for their support.

Furthermore, I would like to thank the staff in the Department of

Aerospace Engineering and the Rackham Graduate School for facil-

itating my studies.

Thank you to all the friends I made during my time in Ann Arbor.

You have supported me, entertained me, and taught me quite a bit

on top of what I learned in school. Completing this research would

not have been possible without the enjoyable life you created for me

outside of my studies.

Lastly and mostly, thank you to my family for all your support

over the duration of my graduate studies.

iii



TABLE OF CONTENTS

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Motivating examples . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 UAV mission planning in contested environments . . . . . . 7
1.3.2 Cargo aircraft mission planning . . . . . . . . . . . . . . . . 7
1.3.3 Multi-objective UAV mission planning . . . . . . . . . . . . 9
1.3.4 Communication topologies in multi-UAV missions . . . . . . 10

1.4 Technical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Traveling salesman problems . . . . . . . . . . . . . . . . . . . . . . 19
2.1.1 Application to unmanned aircraft routing . . . . . . . . . . 19
2.1.2 Sequence-dependent traveling salesman problems . . . . . . 20
2.1.3 Multi-objective traveling salesman problems . . . . . . . . . 21
2.1.4 Time-varying traveling salesman problems . . . . . . . . . . 21

2.2 Minimum spanning tree problems . . . . . . . . . . . . . . . . . . . 23
2.3 Sensitivity analysis of solutions to combinatorial optimization problems 23

2.3.1 Exact stability analysis for the TSP . . . . . . . . . . . . . . 25
2.3.2 Approximate stability analysis for the TSP . . . . . . . . . . 25

2.4 Research directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

iv



3.1 Traveling salesman problems . . . . . . . . . . . . . . . . . . . . . . 29
3.1.1 Variants of the traveling salesman problem . . . . . . . . . . 29
3.1.2 TSP stability analysis . . . . . . . . . . . . . . . . . . . . . 32

3.2 Minimum spanning tree problems . . . . . . . . . . . . . . . . . . . 33
3.2.1 Variants of the spanning tree problem . . . . . . . . . . . . . 33
3.2.2 MST stability analysis . . . . . . . . . . . . . . . . . . . . . 33

4 Stability analysis for the traveling salesman problem . . . . . . . . . 35

4.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Symmetric single objective TSPs . . . . . . . . . . . . . . . . . . . . 36

4.2.1 LP relaxation of the 0-1 ILP formulation . . . . . . . . . . . 39
4.2.2 Stability region based on T . . . . . . . . . . . . . . . . . . 40
4.2.3 Edge cost tolerances . . . . . . . . . . . . . . . . . . . . . . 43
4.2.4 Edge criticality . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.5 Vertex location stability . . . . . . . . . . . . . . . . . . . . 45
4.2.6 Vertex criticality . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Multi-objective traveling salesman problems . . . . . . . . . . . . . 48
4.3.1 Stability analysis with respect to changing weights . . . . . 48
4.3.2 Stability analysis with respect to changing objectives . . . . 50
4.3.3 Stability analysis with respect to simultaneously changing ob-

jectives and weights . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Generalization to shortest paths . . . . . . . . . . . . . . . . . . . . 51
4.5 Asymmetric single objective TSP . . . . . . . . . . . . . . . . . . . 52
4.6 Sequence-dependent TSP . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6.1 Stability regions . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6.2 Edge criticality . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6.3 Application of the k-opt heuristic to the

sequence-dependent TSP . . . . . . . . . . . . . . . . . . . . 59
4.6.4 Application to tours obtained by the k-opt heuristic . . . . . 59

4.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.7.1 Symmetric non sequence-dependent TSP . . . . . . . . . . . 60
4.7.2 Vertex location . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7.3 Weighted-sum multi-objective traveling salesman problems . 64
4.7.4 Sequence-dependent TSP . . . . . . . . . . . . . . . . . . . . 71

5 Stability analysis for the minimum spanning tree problem . . . . . 77

5.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Stability regions of a MST . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Properties of the MST stability region . . . . . . . . . . . . . . . . . 80
5.4 Perturbations in a single edge . . . . . . . . . . . . . . . . . . . . . 81
5.5 Stability balls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6 Approximate stability regions for eMST . . . . . . . . . . . . . . . . 84
5.7 Perturbations in the location of a single vertex for eMST . . . . . . 84
5.8 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Approximate stability analysis for the traveling salesman problem 91

v



6.1 Intractability of exact stability analysis . . . . . . . . . . . . . . . . 91
6.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.3 Over approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.3.1 Over approximation by subsets . . . . . . . . . . . . . . . . 94
6.3.2 Heuristic guidelines . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.3 Over approximation by T2 . . . . . . . . . . . . . . . . . . . 96
6.3.4 Over approximation of edge cost tolerances . . . . . . . . . . 99

6.4 Under approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.4.1 The M1T relaxation . . . . . . . . . . . . . . . . . . . . . . 102
6.4.2 Derivation of stability regions for M1T . . . . . . . . . . . . 103
6.4.3 Stability regions for M1T in half-space representation . . . . 106
6.4.4 Properties of stability regions of M1T . . . . . . . . . . . . . 106
6.4.5 Under approximation of a TSP stability using the M1T sta-

bility region . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4.6 Under approximation of a TSP stability region by unions of

M1T stability regions . . . . . . . . . . . . . . . . . . . . . . 108
6.4.7 Under approximation of edge cost tolerances . . . . . . . . . 108

6.5 Approximate vertex location stability based on approximate stability
regions for eTSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.6 Criticalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.6.1 Approximate edge criticality based on approximate tolerances 110
6.6.2 Approximate vertex criticality based on approximate stability

regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.7.1 Assessment of approximations by ellipsoids . . . . . . . . . . 113
6.7.2 Over approximation by subsets of tours . . . . . . . . . . . . 114
6.7.3 Under approximation by M1Ts . . . . . . . . . . . . . . . . 116
6.7.4 Over and under approximation of edge cost tolerances . . . . 117

7 Alternative applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.1 Stability analysis for ILP with Markovian problem data . . . . . . . 123
7.2 Stability analysis of runway schedules . . . . . . . . . . . . . . . . . 125

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.2 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.3 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

vi



LIST OF FIGURES

1.1 UAV mission planning example . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 UAV mission planning schematic . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Tactical planning and path planning interaction . . . . . . . . . . . . . . 5
1.4 Mission planning in contested environments . . . . . . . . . . . . . . . . 6
1.5 Mission planning for cargo aircraft . . . . . . . . . . . . . . . . . . . . . 8
1.6 Multi-objective mission planning . . . . . . . . . . . . . . . . . . . . . . 9
1.7 Communication topology planning . . . . . . . . . . . . . . . . . . . . . 10

4.1 Optimal solution for 6-vertex TSP . . . . . . . . . . . . . . . . . . . . . 60
4.2 Stability region for 6-vertex TSP . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Stability region for perturbed 6-vertex TSP . . . . . . . . . . . . . . . . 62
4.4 Optimal solution for perturbed 6-vertex TSP . . . . . . . . . . . . . . . 63
4.5 Edge criticalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6 Vertex criticalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7 Multi-objective TSP - shortest tour . . . . . . . . . . . . . . . . . . . . . 66
4.8 Multi-objective TSP - minimum radar exposure tour . . . . . . . . . . . 67
4.9 Multi-objective TSP - minimum communication disturbance tour . . . . 68
4.10 Multi-objective TSP - stability region . . . . . . . . . . . . . . . . . . . 70
4.11 Stability region for sequence-dependent TSP . . . . . . . . . . . . . . . . 73
4.12 Stability region without sequence-depenendent penalty . . . . . . . . . . 74
4.13 Sequence-dependent TSP with intelligent adversary . . . . . . . . . . . . 75
4.14 Stability region without communication . . . . . . . . . . . . . . . . . . 75
4.15 Stability region with communication . . . . . . . . . . . . . . . . . . . . 76

5.1 Communication topology planning in inertial frame . . . . . . . . . . . . 88
5.2 Stability region of the initial MST . . . . . . . . . . . . . . . . . . . . . 88
5.3 Projection of the stability region of the initial MST . . . . . . . . . . . . 89
5.4 Stability region of initial MST in non inertial frame . . . . . . . . . . . . 90

6.1 An optimal tour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Average approximation quality . . . . . . . . . . . . . . . . . . . . . . . 116
6.3 Approximation quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.4 Minimum 1 trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.5 Approximation quality for edge cost tolerances . . . . . . . . . . . . . . 122

7.1 Runway scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

vii



LIST OF TABLES

6.1 Numerical values for the approximate and exact upper edge cost toler-
ances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Numerical values for the approximate and exact lower edge cost tolerances. 119
6.3 Numerical values for the approximate upper edge cost tolerances obtained

for choices of vk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.4 Numerical values for the approximate lower edge cost tolerances obtained

for choices of vk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.5 Similarity metric φ for under approximations of the stability region ob-

tained through consideration of M1Tk by choice of vk. . . . . . . . . . . 120

viii



LIST OF ABBREVIATIONS

LP Linear programming

ILP Integer linear programming

UAV Unmanned aerial vehicle

TSP Traveling salesman problem

eTSP Euclidean TSP

snTSP Symmetric non sequence-dependent TSP

anTSP Asymmetric non sequence-dependent TSP

ssTSP Symmetric sequence-dependent TSP

asTSP Asymmetric sequence-dependent TSP

wsmoTSP Weighted-sum multi-objective TSP

MST Minimum spanning tree

eMST Euclidean minimum spanning tree

M1T Minimum 1-tree

ix



ABSTRACT

Robustness of mission plans for unmanned aircraft

by

Moritz Niendorf

Chair: Anouck Renee Girard

This thesis studies the robustness of optimal mission plans for un-

manned aircraft. Mission planning typically involves tactical planning and

path planning. Tactical planning refers to task scheduling and in multi

aircraft scenarios also includes establishing a communication topology.

Path planning refers to computing a feasible and collision-free trajectory.

For a prototypical mission planning problem, the traveling salesman

problem on a weighted graph, the robustness of an optimal tour is analyzed

with respect to changes to the edge costs. Specifically, the stability region

of an optimal tour is obtained, i.e., the set of all edge cost perturbations

for which that tour is optimal.

x



The exact stability region of solutions to variants of the traveling sales-

man problems is obtained from a linear programming relaxation of an

auxiliary problem. Edge cost tolerances and edge criticalities are derived

from the stability region. For Euclidean traveling salesman problems, ro-

bustness with respect to perturbations to vertex locations is considered

and safe radii and vertex criticalities are introduced. For weighted-sum

multi-objective problems, stability regions with respect to changes in the

objectives, weights, and simultaneous changes are given. Most critical

weight perturbations are derived.

Computing exact stability regions is intractable for large instances.

Therefore, tractable approximations are desirable. The stability region

of solutions to relaxations of the traveling salesman problem give under

approximations and sets of tours give over approximations. The appli-

cation of these results to the two-neighborhood and the minimum 1-tree

relaxation are discussed. Bounds on edge cost tolerances and approximate

criticalities are obtainable likewise.

A minimum spanning tree is an optimal communication topology for

minimizing the cumulative transmission power in multi aircraft missions.

The stability region of a minimum spanning tree is given and tolerances,

stability balls, and criticalities are derived. This analysis is extended to

Euclidean minimum spanning trees.

This thesis aims at enabling increased mission performance by pro-

viding means of assessing the robustness and optimality of a mission and

methods for identifying critical elements. Examples of the application to

mission planning in contested environments, cargo aircraft mission plan-

ning, multi-objective mission planning, and planning optimal communi-

cation topologies for teams of unmanned aircraft are given.

xi



CHAPTER 1

Introduction

1.1 Motivation

The use of unmanned aerial vehicles (UAVs) has grown steadily in recent years. With

the increase in their use and the advances in technology, these aircraft are tasked with

increasingly large and complex missions. Such missions include but are not limited

to surveillance of multiple points of interest over extended periods of time, search

and rescue applications, pipeline inspections, mapping, communication relaying, crop

dusting, and delivery tasks.

These missions are typically designed such that given the circumstances of the

mission, e.g., the tasks to be completed, vehicle specifications, and a model of the

environment, a flight path and sequence of actions to be performed by the aircraft

are selected such that they optimize a mission objective. If multiple vehicles are used

to jointly perform a mission, some communication between the UAVs to coordinate

the mission execution is typically required. The goal of this research is to enable

increased UAV mission performance by providing means to assess the robustness of a

given mission plan, by providing methods to detect suboptimality in mission plans due

to changes in the circumstances of the mission, and by identifying critical elements

of a mission.

Mission planning for UAVs is an inherently complex problem due to the high

1



dimensionality of the solution space. The addition of time-varying mission specifica-

tions such as a priori unknown changes in the environment or the flight performance

of the aircraft further increases the complexity of the problem.

Planning efficient missions for unmanned aircraft typically involves two steps:

1. Tactical planning refers to scheduling the order in which locations are visited

and the determination of a communication topology in multi-UAV missions;

2. Path planning is concerned with the computation of a feasible and collision-free

trajectory.

Figure 1.1 depicts one of many possible realizations of such a planning approach.

This specific approach is discussed in detail in Ref. [1]. An unmanned aircraft is

located at a and operates in a dense urban environment. Multiple waypoints (b – f)

indicated by the circled arrows are placed by the operator. A path planning algorithm

computes shortest paths between each waypoint pair. This step corresponds to solving

the path planning problem. The waypoints are then ordered such that the total

distance traveled is minimized. This step corresponds to solving the tactical planning

problem. The yellow flight path is collision-free, feasible for a simplified dynamics

model of the aircraft, and visits the waypoints in an optimal sequence. In a post-

processing step, this path is further optimized, which leads to the final flight path

shown in blue.

During mission execution the unmanned aircraft might encounter points where the

overall mission performance would benefit from modifying the original mission plan.

In these cases, the integration of tactical planning and path planning using feedback

between both of these layers may lead to faster, more efficient, and more reliable

mission completion even under changing conditions. Fig. 1.2 depicts the interaction

between tactical planning and path planning.

Consider the scenario in Fig. 1.3 that illustrates one example of the interaction of

2



a

b

c

d

e

f

Figure 1.1: UAV mission planning example: An unmanned aircraft is located at
a and operates in a dense urban environment. Multiple waypoints (b – f) indicated by
the circled arrows are placed by the operator. A path planning algorithm computes
shortest paths between each waypoint pair. The waypoints are then ordered such
that the total distance traveled is minimized. The yellow flight path is collision-free,
feasible for a simplified dynamics model of the aircraft, and visits the waypoints in
an optimal sequence. In a post-processing step, this path is further optimized, which
leads to the final flight path (blue) [1].

tactical planning and path planning for unmanned aircraft in the presence of obstacles.

An unmanned aircraft is located at location c. It is tasked to take off, visit multiple

locations of interest indicated by the green dots, and return to the airfield. Obstacles

are indicated by the polygons. Depending on the mission, these obstacles could be

storm cells in a large scale scenario, buildings in an urban scenario, or for example

areas in which manned aircraft operate that need to be avoided. First, the shortest

path between each location pair is computed. This corresponds to the path planning

in Fig. 1.2. Then, a tactical planning problem is solved using the previously computed

path cost information to obtain the optimal tactical plan, i.e., the order in which to

visit the locations. This corresponds to tactical planning in Fig. 1.2. If the obstacles

are moved, the shortest path between each location pair is recomputed and the tactical

planning problem is resolved. Given the obstacle locations in Fig. 1.3b, the nominal

3



Mission Planning

Tactical Planning

Path Planning

Figure 1.2: UAV mission planning schematic: A tactical planning layer com-
putes a sequence of tactical goals and determines a communication topology based
on the initial locations of the aircraft in multi-UAV scenarios. The path planning
layer computes a flight path that satisfies the tactical goals. If changes occur at the
tactical layer, they are propagated to the path planning layer and a new flight path is
computed. If changes at the path planning layer occur, such as replanning the flight
path between two tactical goals because of an unforeseen obstacle, this information
is provided to the tactical planning layer that adapts the tactical plan if beneficial.
Finally, in multi-UAV scenarios, the optimality of the communication topology is
assessed during mission execution and adapted to the current situation.

tactical plan remains optimal. This nominal plan contains the subsequence (a, b, c).

For the case depicted in Fig. 1.3c, the obstacle locations are altered again. In this

case, a different tactical plan containing the subsequence (a, c, b) is optimal.

Considering the scenario laid out in Fig. 1.3 raises the following two questions:

1. How robust is an optimal tactical plan with respect to changes in the environ-

ment?

2. Are tactical plans more susceptible to changes in the costs of certain paths than

to changes to the costs of other paths?

In multi-UAV scenarios, where tactical planning involves determining a communi-

cation topology, even just following the planned flight paths might lead to situations

where the initial communication topology becomes suboptimal.

Obtaining methods to assess the robustness of a mission plan has multiple poten-

tial benefits: First, by comparing robustness margins for individual elements of the

4



a

b

c

(a) Nominal

a

b

c

(b) Path changed

a

b

c

(c) Tactical plan changed

Figure 1.3: Tactical planning and path planning interaction: Consider the
nominal scenario in Fig. 1.3a. An aircraft is located at an airfield c. It is tasked to
take off, visit multiple locations of interest indicated by the green dots, and return
to the airfield. Obstacles are indicated by the polygons. First, the shortest path
between each location pair is computed. Then, a tactical planning problem is solved
using the path cost information to obtain the optimal tactical plan, i.e., the order in
which to visit the locations. If the obstacles are moved, the shortest path between
each location pair is recomputed and the tactical planning problem is resolved. Given
the obstacle locations in Fig. 1.3b, the nominal tactical plan remains optimal. This
nominal plan contains the subsequence (a, b, c). For the case depicted in Fig. 1.3c, the
obstacle locations are altered again. In this case a different tactical plan containing
the subsequence (a, c, b) is optimal.

problem data, the notion of criticality of an element of the problem data, which is

a dimensionless parameter, can be defined. Using criticality analysis, efforts in the

acquisition of problem data can be focused on the most critical elements. Second,

robustness analysis provides information about how robust the optimal solution is

with respect to modeling errors but also to changing conditions. Finally, by analyz-

ing the robustness of a given mission plan, expressions can be determined that allow

to ascertain the optimality of a mission plan without resolving the planning problem.

Therefore, this work aims at enabling adaptive and efficient mission planning for un-

manned aircraft in time-varying environments by addressing the problem stated in

the following section.

5



Tour I

Tour II

Tour III

v5 v6

v1

v2v3

v4

Figure 1.4: Mission planning in contested environments: The air defense unit
between task locations v3 and v4 increases the path cost. This raises the question of
how robust tour I (red - solid line) is with respect to such changes.

1.2 Problem Statement

The central problem addressed in this thesis can be stated as follows: Given the

circumstances of the mission (e.g., the tasks to be completed, vehicle specifications

and a model of the environment), and a performance metric, find methods to assess

the robustness and the optimality of a given mission plan such that the optimality

of a plan under changing conditions can be ascertained and critical elements of the

mission can be identified.

1.3 Motivating examples

The following four examples illustrate the type of mission planning problems and

scenarios considered in this work.
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1.3.1 UAV mission planning in contested environments

Consider the prototypical mission planning scenario in Fig. 1.4. An unmanned aircraft

starting from an airfield v1 is tasked to visit locations v2 - v6 and return to the

airfield. It is assumed that a path planning algorithm computes flight paths between

location pairs. The path length is assigned as edge weight to the edge connecting

that location pair in a representation of the problem as a weighted graph. Then,

tactical planning corresponds to solving a classical instance of the symmetric traveling

salesman problem (TSP) on the weighted graph.

Assume that the UAV operator provides and approves three alternative schedules

in the form of tours, where tour I (v1, v6, v5, v4, v3, v2, v1) is cost optimal and tours

II (v1, v6, v2, v3, v5, v4, v1) and III (v1, v6, v4, v5, v3, v2, v1) are backups. Shortly before

take-off, new intelligence suggests the presence of anti-aircraft units that must be

avoided between locations v3 and v4. The path planning algorithm computes a new

flight path between this location pair and updates the edge weight. This raises the

question of how robust the optimal schedule is with respect to changes in the problem

data.

1.3.2 Cargo aircraft mission planning

Consider the prototypical mission planning scenario in Fig. 1.5. A cargo aircraft

starting at location v1 visits three locations and delivers one distinct piece of cargo

at each location. The goal is to find a minimum time route. The travel time is

proportional to the distance traveled. The best tour is (v1, v2, v3, v4, v1) as indicated

in the figure. Furthermore, the cargo is stacked according to this itinerary in the cargo

aircraft to minimize time when unloading. Optimizing the load in a cargo aircraft

based on the anticipated itinerary is a common practice [2]. In this example, the

cargo for location v4 is at the bottom of the stack and the load for location v2 at the

top. If the aircraft deviates from the originally optimal tour, any cargo on top of the
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Figure 1.5: Mission planning for cargo aircraft: The load inside a delivery air-
craft following a time optimal tour v1, v2, v3, v4, v1 is stacked according to the travel
itinerary. If the aircraft deviates from the planned tour, for example to avoid unfavor-
able weather, additional time is needed to unload the cargo. This raises the question
under which conditions might such a deviation still result in a faster tour completion
than the original tour.

cargo for that location must be unloaded and reloaded back into the aircraft. The

unloading and loading operation is assumed to consume one time unit, where solely

unloading the cargo on top of the stack is assumed to not add additional time. Hence,

if the aircraft follows the original route, the time to complete the route is only the

travel time. If the aircraft, however, deviates from the original tour and first visits

location v4, an additional cost for unloading and reloading the freight for locations

v2 and v3 of two time units is added. Hence, the cost of traveling from one location

to another does not only depend on the location pair but also on the sequence of

locations visited a priori. This property makes this problem a sequence-dependent

problem. If the travel times between destinations are time-varying for example due

to weather conditions, the question arises under which conditions deviating from the

original route results in a faster tour completion than following the original tour in

spite of the time penalty due to unloading and reloading cargo.
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Figure 1.6: Multi-objective mission planning: An unmanned aircraft is used
to query multiple unattended ground sensors at multiple locations repeatedly. The
locations of the unattended ground sensor are enumerated v1 through v6. Hostile
radar sites as well as hostile communication jamming devices need to be avoided
while minimizing the distance traveled. The figure depicts the optimal tour to this
problem formulated as a wsmoTSP with respect to a certain choice of weights that
trade off the objectives.

1.3.3 Multi-objective UAV mission planning

Consider the prototypical mission planning scenario in Fig. 1.6 that is based upon

scenarios in Ref. [3] and Ref. [4]. An unmanned aircraft is used to query multiple

unattended ground sensors at multiple locations repeatedly. A traditional approach

to obtain optimized flight patterns in this case is to pose this problem as a symmetric

TSP, in which the unmanned aircraft is required to visit each unattended ground

sensors once, starting from any sensor and returning to the original place of departure

resulting in a tour. The locations of the unattended ground sensor are enumerated

v1 through v6. Hostile radar sites and hostile communication jamming devices are

present within the area of operation and need to be avoided while keeping the mission

time short and the flown path fuel efficient. This problem can be formulated as

an instance of a multi-objective TSP. Multi-objective optimization problems are
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Figure 1.7: Communication topology planning: Three UAVs follow elliptical
flight paths at a velocity that results in the same period for each trajectory. The
location of each aircraft along its trajectory at time t0 and the optimal choice of
communication links (dotted lines) at that time are shown.

often solved using a weighted-sum approach [5]. Fig. 1.6 depicts the optimal solution

with respect to a certain choice of weights that trade-off the different objectives and

are determined by a human operator. However, the operator faces the difficulty

of choosing and tuning these weighting parameters. It is therefore interesting to

characterize the robustness of an optimal tour with respect to the weights, because

in discrete optimization problems small changes in the problem data may lead to

significant changes in the solution [6].

1.3.4 Communication topologies in multi-UAV missions

Consider the prototypical mission planning scenario depicted in Fig. 1.7: Three UAVs

survey an area of interest by following elliptical flight paths at a velocity that results in

the same period for each trajectory. The location of each aircraft along its trajectory

at time t0 is shown in the figure.

While performing this mission all aircraft must maintain communication links
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between each other such that each aircraft can receive data from any other aircraft

by means of single or multi hop communication while minimizing the transmission

power to reduce energy expenditure and electromagnetic signature. The transmission

power to establish a connection between any pair of aircraft is inversely proportional to

a power of the Euclidean distance between these aircraft. An optimal communication

topology in this case with respect to cumulative transmission power is a minimum

spanning tree (MST) on the communication graph, where the UAVs correspond to the

vertices of that graph and the weight of an edge of that graph is the distance between

the two vertices covered by that edge. Specifically, this MST is an Euclidean minimum

spanning tree (eMST), where the edge weight is the Euclidean distance between the

vertices that are covered by that edge. The initial optimal communication topology

is depicted by the dotted lines in the figure.

As the aircraft move during the mission their relative positions with respect to

each other change. This results in changing weights of the edges of the communication

graph over time. Thus, the following questions are raised: How robust is the optimal

set of communication links and can the criticality of each individual communication

link be assessed.

1.4 Technical Approach

The three single vehicle scenarios outlined above can be modeled as variants of the

traveling salesman problem. This formulation allows for the analysis of mission plan-

ning comprised of tactical planning and path planning in the following manner:

• Given a set of locations of interest, feasible flight paths and their associated

cost are computed for every location pair accounting for mission circumstances

such as the capabilities of the aircraft and the environment.

• Given the cost of traveling between each location pair, a traveling salesman
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problem is formulated and solved on an auxiliary weighted graph, where the

vertices correspond to the locations of interest and the cost of an edge connecting

two vertices is the cost of the flight path between the two corresponding locations

of interest.

The results presented in this thesis are applicable to a wide variety of mission planning

scenarios, path planning methods, and performance metrics that can be expressed as

outlined above. This integrated approach to mission planning has for example been

studied to minimize distance traveled in an obstacle rich environment using accurate

path costs between pairs of locations for unmanned rotorcraft and unmanned fixed-

wing aircraft [1, 7].

The problem stated in Section 1.2 can be specialized to this case of integrated

path planning and tactical planning as follows:

Problem formulation 1.4.1 (Robustness of task schedules). Given the solution to

an instance of a variant of the traveling salesman problem, find methods to assess the

robustness and the optimality of the best tour such that the optimality of that tour

can be ascertained with respect to changes in the problem data and the criticality of

elements of the problem data can be computed.

This thesis presents the exact and approximate analysis of stability regions and

tolerances for an optimal solution to variants of the traveling salesman problem on a

weighted graph. The edge cost tolerance is the supremum of cost increases of an edge

(resp. infimum of cost decreases) under which the tour remains optimal, provided

the other edge costs in the graph are unchanged. The stability region corresponding

to a given tour is defined as the set of all edge cost perturbations for which that

tour is optimal. It can therefore be understood as a robustness margin of an optimal

solution. Additional stability information such as tolerances can be derived from

the stability region. Criticality measures for elements of the problem data which are
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dimensionless parameters are introduced. The higher the criticality of an element,

the more susceptible the optimal tour to changes in that element. Exact stability

regions can be obtained through application of sensitivity analysis to the relaxation

of an integer linear programming (ILP) formulation of the TSP.

However, methods to obtain exact stability regions typically scale poorly with the

size of the instance, as even checking whether an optimal TSP tour remains optimal

after the cost of a single edge has been changed cannot be achieved in polynomial time

unless P = NP [8]. Hence, this thesis develops a general method to obtain over and

under approximations of the stability region of an optimal solution to an instance

of the TSP based on neighborhoods and relaxations. Using these results, specific

methods based on the two neighborhood of an optimal tour and the minimum 1-

tree (M1T) relaxation are shown. Approximate tolerances and criticalities can be

computed from the approximate stability regions. Furthermore, stability regions for

Euclidean traveling salesman problems (eTSP) with respect to perturbations to the

vertex locations are derived. Finally, this thesis introduces the notion of safe radii for

vertices.

The problem of choosing an optimal communication topology for a UAV mission

can be modeled as a variant of the minimum spanning tree problem as follows, where

tactical planning in this case corresponds to the choice of a communication topology:

• Given a set of aircraft and a region of interest, feasible flight paths are computed

for each aircraft.

• Given the flight path for each vehicle, a minimum spanning tree problem is

formulated on an auxiliary weighted graph, where the vertices correspond to

the aircraft and the cost of an edge connecting two vertices at each instant

in time quantifies the cost of communication between the two corresponding

aircraft at that instant in time.
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This problem can be understood as an instance of a minimum spanning tree problem

on a weighted graph with potentially time-varying edge costs. Even in the initial

computation phase it is therefore relevant to assess whether the initial communication

topology is optimal for the entirety of the mission or if due to the time-varying costs

of communication other topologies are better during the mission. The problem stated

in Section 1.2 can be specialized for this case of integrated path planning and tactical

planning:

Problem formulation 1.4.2 (Robustness of communication topologies). Given the

solution to an instance of the minimum spanning tree problem, find methods to assess

the robustness and the optimality of a minimum spanning tree such that the optimality

of that tree can be ascertained with respect to changes in the problem data and the

criticality of elements of the problem data can be computed.

With regard to this problem, this thesis presents the analysis of stability regions for

minimum spanning trees on a weighted graph and their application to communication

networks for teams of UAVs. A polyhedral description of the stability region and

derived stability metrics such as edge weight tolerances and stability balls are given.

Finally, a small perturbation analysis yields an approximate stability region in the

space of vertex location changes for eMSTs.

Analyzing the robustness of a given solution with respect to changing parameters

can be done by exhaustively sampling the space of input parameters. However, solv-

ing the underlying optimization problem might be computationally expensive and the

quality of the analysis depends on the chosen sampling density. This thesis presents

multiple approaches to perform robustness analysis by obtaining the exact or approx-

imate stability regions of an optimal solution. The stability region associated with

an optimal solution is the set of all perturbations to the input parameters for which

that solution remains optimal. This methodology differs from an alternative way to

address uncertain data, where the uncertainty is modeled and stochastic optimiza-
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tion techniques are used to find a solution that minimizes the expected value of the

objective function. Stability analysis as presented in this thesis does not require any

a priori knowledge of the nature of the uncertainty. Additional insight, such as criti-

cality of elements of the input data as well as the smallest perturbation that causes

a solution to become suboptimal can be derived.

1.5 Contributions

The contributions of this thesis are:

• The analysis of the stability region of solutions to classes of the TSP with

respect to perturbations in the edge costs through a linear programming relax-

ation of an auxiliary problem is shown. A description and representation of the

stability regions in half space representation are given. The problem of obtain-

ing exact stability regions is shown to be intractable. The derivation of edge

cost tolerances from the stability regions is demonstrated and edge criticalities

are defined. Finally, for the special case of Euclidean TSPs, the derivation of

approximate stability regions with respect to perturbations to vertex locations,

safe radii, and vertex criticalities are given.

• Stability regions for optimal solutions to weighted-sum multi-objective TSPs

in the space of weight changes with respect to a given set of tours are given.

From the stability region, most critical weight perturbations are derived. Fur-

thermore, stability regions for optimal solutions to wsmoTSPs in the space of

edge cost changes with respect to each cost function are presented. Finally,

linearized stability regions for optimal solutions to wsmoTSPs for simultaneous

perturbations in the individual cost functions and weights are derived.

• Over and under approximations of the stability region of optimal solutions to

symmetric non sequence-dependent TSP are given. Upper and lower bounds
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on edge cost tolerances, approximate edge criticalities, approximate stability

regions with respect to perturbations in vertex locations, safe radii and vertex

criticalities are shown to be obtainable.

• An approach to sensitivity analysis of optimal communication topologies for

teams of UAVs through the analysis of stability regions of minimum spanning

trees and derived robustness measures.

Obtaining the stability region of an optimal solution has multiple benefits:

The stability region provides robustness margins with respect to simultaneous

increases and decreases in any arbitrary set of edges. Analyzing the stability region

of an optimal solution allows for evaluation of how robust a solution is to modeling

errors and changing problem data. Modeling and data acquisition efforts should be

directed towards elements of the problem data that have a small robustness margin.

Stability analysis can be used to determine whether a previously computed solu-

tion remains optimal among a set of feasible solutions after cost changes occur to an

arbitrary number of edges by testing whether a perturbation is contained within the

stability region of that solution.

Exploiting the notion of criticality of an element of the problem data, which is

a dimensionless parameter, further insight can be gained. The higher the criticality

of an edge, the more susceptible the optimal solution is to changes in the cost of

that edge. It can therefore be used to identify most vulnerable edges in a problem

instance.

Regarding the traveling salesman problem, the suggested computation methods

are polynomial in time in the cardinality of the set of tours considered. Hence,

obtaining exact stability information for large instances is intractable as it requires

the enumeration of all possible tours. However, assuming expert knowledge, the set

of tours could be designed and approved by an operator or for example obtained

through the use of the k-opt heuristic.
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By analyzing the stability region of an optimal solution to a wsmoTSP, the need

for fine-tuning weights can be alleviated by ascertaining the range of weights for which

that solution is optimal. Modeling and data acquisition efforts should be directed

towards objective functions whose associated weights or cost vectors have a small

robustness margin.

The benefit of developing tractable methods to obtain over and under approxi-

mations of the stability region is twofold. First, as obtaining exact stability regions

is intractable for larger instances, the proposed methods allow for the approximate

assessment of robustness margins of tours. Second, the approximate stability re-

gions could for example be exploited when designing a supervisory control system for

an agent that is executing a TSP tour or in the design of adaptive algorithms that

re-optimize solutions after perturbations to the problem data occur.

In the development of under approximations of stability regions of traveling sales-

man tours, stability regions for minimum spanning trees and minimum 1-trees in half

space representation are derived and characterized. These results are leveraged for

the sensitivity analysis of solutions to the MST problem and its application to optimal

communication topologies for teams of UAVs.

1.6 Organization

The remainder of this thesis is organized as follows. A literature survey relevant to

mission planning problems for unmanned aircraft, stability analysis for combinato-

rial optimization problems, exact and approximate stability analysis of solutions to

traveling salesman problems, and stability analysis for minimum spanning trees is

provided in Chapter 2.

Chapter 3 formulates several relevant variants of the traveling salesman prob-

lem, minimum spanning tree problems, and gives definitions of the concepts used for
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stability analysis throughout this thesis.

Methods to compute stability regions for the best tour in a set of tours for the

symmetric TSP and the extension of these results to the asymmetric problem as well

as their sequence-dependent counterparts are studied in Chapter 4. Additionally,

results for the Euclidean TSP (eTSP) and wsmoTSP are derived and criticality mea-

sures for edges and vertices presented. The content of Chapter 4 is based on material

presented in Refs. [9–13].

Chapter 5 derives a polyhedral description of stability regions of MSTs based

on results in the literature. It follows the ideas outlined in the previous chapter

in deriving stability measures from the stability regions such as tolerances, stability

balls, and criticalities. Finally, following the approach in Chapter 4, this analysis

is extended to eMST. The content of Chapter 5 is based on material published in

Ref. [12].

As computing exact stability regions for optimal solutions to TSPs can become

computationally intractable for large instances, Chapter 6 discusses computationally

tractable methods to obtain over and under approximations of the stability regions

of optimal solutions to symmetric non sequence-dependent TSPs. Upper and lower

bounds on edge cost tolerances, approximate edge criticalities, approximate stability

regions with respect to perturbations in vertex locations, safe radii and vertex criti-

calities are shown to be obtainable. The content of Chapter 6 is based on material

published in Refs. [10,13].

The results derived in this thesis are applicable to other combinatorial optimiza-

tion problems such as sensor placement problems and runway scheduling problems.

Chapter 7 outlines these applications that are detailed in Refs. [14–16].

A summary of the thesis and concluding remarks are provided in Chapter 8.

18



CHAPTER 2

Literature Survey

As discussed above, the problems being investigated touch upon multiple existing

areas of study. Literature relevant to formulations of mission planning problems

for unmanned aircraft, stability analysis for combinatorial optimization problems,

and exact and approximate stability analysis of traveling salesman problems is now

reviewed.

2.1 Traveling salesman problems

The traveling salesman problem is a combinatorial optimization problem and is a

special case of the general routing problem [17]. Vehicle routing problems are usually

stated either in terms of a set of required vertices on a graph that must be visited, or

a set of required edges that must be traversed. The problem of visiting all vertices of

a graph in minimum cost is the TSP.

2.1.1 Application to unmanned aircraft routing

The traveling salesman problem is often used as a prototypical example for many tac-

tical planning problems for UAVs. Therefore, vehicle routing problems and traveling

salesman problems have been studied extensively in the context of mission planning

for unmanned aircraft. A wide variety of algorithms exist to solve traveling salesman
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problems [18–25]. The problem of assigning and scheduling tasks for homogeneous

teams of unmanned vehicles has been studied with a non-linear cost function [26],

with a varying number of agents and dynamic tasks [27], as a patrolling problem with

revisit deadlines [28], and as a patrolling and synchronization problem [29]. Multi-

vehicle problems with heterogeneous teams have studied with static tasks [30] and

dynamic tasks [31]. The problem of visiting neighborhoods rather than specific target

locations is addressed for the single vehicle case [32] and for multiple vehicles [33].

Finally, an integrated approach to task and motion planning is presented in

Ref. [34] that utilizes logical expressions to specify the tactical planning problem and

a randomized tree search algorithm for motion planning to solve the mission planning

problem in an integrated way. A problem that has received particular attention in

the context of integrated mission planning is the Dubins traveling salesman problem,

i.e., a variant of the traveling salesman problem in which the paths must be feasible

for a Dubins vehicle [35]. The Dubins vehicle, i.e., a vehicle that can either travel

in a straight line or turn with a given fixed turn radius, is often used to model the

movement of a fixed-wing aircraft in the horizontal plane [36, 37]. Therefore, a com-

mon way to approach the problem of integrated task and motion planning for UAVs

is to treat it as an instance of the Dubins TSP [38–40]. A two-layered approach that

combines a heuristic approach to solving instances of TSPs with fast multi-query path

planning algorithms has been suggested for task scheduling and motion planning for

unmanned aircraft in obstacle rich 3D environments [1, 7].

Finally, this survey discusses multiple instances of UAV mission planning problems

that can be cast as vehicle routing problems [41].

2.1.2 Sequence-dependent traveling salesman problems

In sequence-dependent traveling salesman problems, the cost of edge traversal depends

on the sequence of vertices visited before traversing that edge. As motivated in
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Chapter 1, this framework, among others, allows for the formulation of sequence-

based loading constraints. Sequence-based loading ensures that no consignment is

placed in such a way that it blocks the removal of items to be delivered earlier on

the route [42, 43] and is sometimes referred to as a last-in-first-out constraint. The

survey in Ref. [2] discusses additional publications relevant to this problem of which

almost 60% were published after 2009. The specific case of a cargo aircraft routing

problem subject to loading precedence constraints is discussed in Ref. [44].

2.1.3 Multi-objective traveling salesman problems

Multi-objective formulations of planning problems for unmanned aircraft reflect the

fact that in many real world problems multiple, if not even competing, objectives ex-

ist. For example, in a monitoring mission one might seek to maximize the area covered

while minimizing fuel consumption. The problem of multi-objective path planning

for unmanned aircraft has been addressed using different solution approaches such

as weighted-sums [4, 45] and a hierarchical decomposition framework [46]. One ap-

proach to solve multi-objective TSPs in the context of mission planning for UAVs

is to task a human operator to interactively determine the preferences for multiple

objectives [47]. The survey in Ref. [48] provides insight into recent developments in

the area of multi-objective vehicle routing. Different types of multi-objective combi-

natorial optimization problems, their formulation, and methods of solving them are

discussed in Ref. [5].

2.1.4 Time-varying traveling salesman problems

The above discussion suggests that the TSP and its variants have been widely studied

and applied to capture real world problems. It is of interest to researchers and prac-

titioners in the field. A great variety of methods exits to solve instances. Recently,

the question of information quality and evolution of information in vehicle routing
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problems arose [49].

Generally, two versions of time varying instances are considered. Traditionally,

more attention has been directed towards problems, in which vertices are added and

removed from the graph, for example to model the problem of a service vehicle that

needs to service stochastic demands [31,50].

This thesis focuses on instances where the traversal costs of edges are changing.

Vehicle routing problems with stochastic edge costs have been investigated [51–53].

However, uncertainty in this type of problem is typically modeled as random processes

and stochastic optimization techniques are employed to minimize the expected value

of the objective function. This requires a priori knowledge of the nature of the random

processes and does not account for cases where once the random variables are realized

a better solution exists. Uncertain multi-objective traveling salesman problems have

been formulated and solved in a similar fashion [54].

Simulation studies suggest that re-optimizing tours for time-varying instances of

the TSP based on real-time traffic data can lead to shorter tours [55]. A stochastic

variant of a TSP in which the salesman is allowed to observe outgoing edge real-

izations at each vertex before deciding what place to visit next is introduced in this

context [56]. Finally, Ref. [57] provides a survey on recent developments in the area of

dynamic vehicle routing, where routes are re-computed to adapt to changing problem

data. In a setting where travel costs change with time, it is therefore of interest to

study the properties of optimal solutions with respect to varying problem data to

assess their optimality given a specific realization of the perturbations. Furthermore,

this type of analysis allows for the assessment of robustness margins with respect to

arbitrary changes in the problem data without making assumptions about perturba-

tions.
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2.2 Minimum spanning tree problems

The use of multiple UAVs to jointly perform a mission has been widely studied in

the literature [58–61]. These missions typically require a level of communication

between the UAVs to coordinate their execution. Furthermore, the specific use of

UAVs to establish mobile ad-hoc communication networks has been suggested and

different topology models and information routing approaches have been studied [62].

Minimum spanning trees [63,64] are frequently used methods to establish and optimize

communication networks for mobile agents such as UAVs. Furthermore, MST have

also been suggested as an optimal communication topology for commercial manned

aircraft [65].

2.3 Sensitivity analysis of solutions to combinato-

rial optimization problems

Both the traveling salesman problem and the minimum spanning tree problem are

combinatorial optimization problems. Sensitivity analysis for solutions to combina-

torial optimization problems is concerned with the robustness of solutions to combi-

natorial optimization problems with respect to changes in the problem data. Combi-

natorial optimization problems are often formulated as integer problems and integer

programming models, unlike linear programs, generally behave in an unstable and

unpredictable manner under small changes in the initial data [6,66]. Therefore, sensi-

tivity analysis for combinatorial optimization has been the subject of a growing body

of literature. The purpose of sensitivity analysis is to determine how the optimality

of a given optimal solution depends on the input data. Sensitivity analysis is a well-

established topic in linear programming [67] and mixed integer programming [68].

Sensitivity analysis questions can be formulated in different ways. The approach
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taken in thesis is typically referred to as posterior analysis [69]:

An optimal solution x? is known for some nominal cost vector c0. The question

is then to determine the stability of x? with respect to variations around c0. Some

common notions of stability are:

• The upper and lower tolerance of cw at c0, i.e., the supremum of cost increases of

a cost vector entry cw (resp. infimum of cost decreases) under which x? remains

optimal, provided all other cost vector entries remain unchanged.

• The stability region of x? at c0, i.e., the set of all perturbations ∆c to c0 under

which x? remains optimal.

• The stability radius of x? at c0, i.e., the radius of the largest ball B such that

x? remains optimal for all ∆c ∈ B.

Computational issues of upper and lower tolerances in the context of sensitivity analy-

sis in combinatorial optimization are discussed in Refs. [70–72]. Stability radii for op-

timal solutions to combinatorial optimization problems and easier to compute bounds

are addressed in Ref. [73]. Recently, further progress in the theory of tolerances has

been reached [74] and the theory of tolerances is extended from single tolerances to

set tolerances in Ref. [75]. Finally, the annotated bibliography [68] and the more

recent survey [69] provide an overview of the literature and the different approaches

and notions of stability analysis for combinatorial optimization problems. The com-

putational complexity of sensitivity analysis for combinatorial optimization problems

depends on the problem at hand. For example, efficient algorithms to compute the

edge weight tolerances for the MST problem are developed in Refs. [76–78]. Ref. [77]

gives necessary and sufficient conditions on the weights of all graph edges for the

optimality of a spanning tree.
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2.3.1 Exact stability analysis for the TSP

The traveling salesman problem is a NP–hard combinatorial optimization problem.

Several results exist indicating that analyzing the sensitivity of NP–hard problems

is itself hard [69]. Specifically, several hardness results for 0/1 problems with linear

objective function are proven in Ref. [8]. Computing the exact values of the tolerances

for all edges in a TSP is NP–hard and can be achieved by solving auxiliary instances

of the problem [79]. Furthermore, the topology of stability regions and subsets thereof

are described in Ref. [79]. Edge cost tolerances are well defined with respect to the

problem instance, i.e., the tolerances do not depend on the chosen optimal tour if

multiple tours of similarly optimal cost exist. Furthermore, it is shown in Ref. [80] that

the exact tolerance for every edge in case of additive cost functions can be computed

by solving two instances of the TSP for each edge. However, the computation of

tolerances and stability regions for the purpose of assessing the properties of solutions

in the context of, for example, time-varying problems has not yet been a focus of the

existing research. Regarding weighted-sum multi-objective formulations, a related

notion to that of a stability region for perturbations to the weights is introduced

in Ref. [81] for weighted-sum multi-objective linear programming, where percentage

deviations from weights are considered. Criticality of elements in the problem data

for weighted-sum multi-objective linear programs is discussed in Ref. [82]. To the

best of the author’s knowledge, stability of solutions to weighted-sum multi-objective

traveling salesman problems has not yet been addressed in the literature.

2.3.2 Approximate stability analysis for the TSP

One method to obtain stability regions for solutions to traveling salesman problems

relies on the enumeration of the set of all tours. This method does therefore not

scale well with the cardinality of the set of vertices. One way to address this issue

requires the pre-selection of a subset of tours with respect to which exact stability
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regions are obtainable [9]. This can be of interest in real world applications where

an expert a priori identifies and approves tours of interest. However, literature on

systematically obtaining approximate stability regions is scarce and even determining

an ε-approximation of the tolerances is NP–hard [79]. Exact edge cost tolerances for

some and lower bounds on the edge cost tolerance for all other edges can be obtained

by analyzing a set of k-best tours [83]. However, the k-best TSP problem itself is

NP–hard and the quality of the approximation depends on the cardinality of the set

of best tours and the instance of the problem. In Ref. [84], it is argued that the 1-tree

relaxation of the TSP gives lower bounds of the tolerances for the TSP. These results

on lower bounds are extended in Ref. [79]. Sensitivity information based on a 1-tree

relaxation is used to improve the efficiency of an implementation of the Lin-Kernighan

(LK) heuristic [18], which is an improvement heuristic for the TSP [85]. It employs

two or three pairwise edge exchanges and is one of the most successful methods for

generating near optimal solutions for the symmetric TSP. Ref. [86] analyzes the

sensitivity of the LK heuristic and derives the tolerances of a tour with respect to

pairwise edge exchanges to improve the LK heuristic.

2.4 Research directions

As the above discussion indicates, both the traveling salesman problem and the min-

imum spanning tree problem have been studied extensively in the literature and are

often used to formulate UAV mission planning problems. Furthermore, theory re-

garding stability of solutions of combinatorial optimization problems and specifically

theory regarding stability regions and tolerances for the symmetric non sequence-

dependent TSPs is available. Also, sensitivity results for the minimum spanning tree

problem are available. Based on this review, the following research directions have

been identified and are addressed by the contributions listed in Section 1.5:
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• Stability of variants of traveling salesman problems: While literature

on stability analysis for symmetric non sequence-dependent TSP with respect

to perturbations to the edge costs exists, other variants of the traveling sales-

man problem are more suitable to model certain type of UAV mission planning

problems. This thesis therefore analyzes the stability of solutions to other vari-

ants of the traveling salesman problems such as sequence-dependent problems,

Euclidean TSPs and perturbations to vertex locations rather than in the edge

weights, and multi-objective formulations.

• Robustness measures: While stability regions and tolerances allow for a

quantitative assessment of the robustness of a given solution, a qualitative as-

sessment by, for example, a human operator might be difficult. This thesis

presents several robustness measures such as safe radii and edge and vertex

criticalities that ease the interpretation of the stability results by a human op-

erator and allow for the identification of the most critical elements of a mission.

• Approximate stability regions for TSPs: The problem of obtaining under

and over approximations of edge cost tolerances has been addressed in the lit-

erature. However, the problem of systematically obtaining tractable under and

over approximations of stability regions has not been addressed. Approximate

stability regions allow for robustness analysis with respect to a wider range of

perturbations and tolerances can be easily computed once the stability region

is known. Furthermore, a wider range of stability measures can be derived from

stability regions than from tolerances alone.

• Robustness of communication topologies: MSTs have been identified as

a feasible communication topology for multi-UAV missions. While sensitivity

results for MSTs are readily available, this thesis focuses on the polyhedral

description of stability regions and subsets thereof to study properties of MSTs
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on graphs with time varying edge costs due to relative motion of the members

of a team of UAVs.

28



CHAPTER 3

Preliminaries

This chapter formally defines the variants of the traveling salesman problem treated

in this thesis. Furthermore, the concept of stability regions for solutions to traveling

salesman problems is defined. Finally, the minimum spanning tree problem is formally

introduced.

3.1 Traveling salesman problems

3.1.1 Variants of the traveling salesman problem

Let G(V,E) be a graph with vertices V and edges E. The symmetric non sequence-

dependent TSP (snTSP) on a fully connected undirected graph can be stated as

follows:

Problem formulation 3.1.1 (snTSP). Given a fully connected undirected graph

G(V,E) with n vertices {v1, · · · , vn} and a symmetric edge cost matrix C, where cij

denotes the cost of traveling from vertex vi to vertex vj on edge eij, find the Hamil-

tonian tour ( tour for short) T ∗ in the set of all tours T , where T ∗(m) denotes the

vertex visited at the m-th step, such that L(T ∗) =
n∑

m=1

cT ∗(m−1),T ∗(m) is minimal.

The symmetric non sequence-dependent Euclidean TSP (eTSP) can then be stated

as follows:
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Problem formulation 3.1.2 (eTSP). Given a fully connected undirected graph

G(V,E) with n vertices {v1, · · · , vn} and a symmetric edge cost matrix C, where

cij is the Euclidean distance between vertex vi and vertex vj, find the Hamiltonian

tour ( tour for short) T ? in the set of all tours T , where T ?(m) denotes the vertex

visited at the m-th step, such that L(T ?) =
n∑

m=1

cT ?(m−1),T ?(m) is minimal.

The asymmetric non sequence-dependent TSP (anTSP) on a fully connected graph

can be stated as follows:

Problem formulation 3.1.3 (anTSP). Given a fully connected graph G(V,E) with n

vertices {v1, · · · , vn} and an edge cost matrix C, where cij denotes the cost of traveling

from vertex vi to vertex vj on edge eij, find the tour T ∗ in the set of all tours T , where

T ∗(m) denotes the vertex visited at the m-th step, such that L(T ∗) =
n∑

m=1

cT ∗(m−1),T ∗(m)

is minimal.

The weighted-sum multi-objective TSP (wsmoTSP) on a fully connected undi-

rected graph can be stated as follows:

Problem formulation 3.1.4 (wsmoTSP). Given a fully connected undirected graph

G(V,E), a set of t symmetric edge cost matrices Uk, where uk,ij denotes the cost of

traveling from vertex vi to vertex vj on edge eij with respect to the k-th cost matrix,

and a set of non-negative weights λk such that
t∑

k=1

λk = 1, find the Hamiltonian tour

T ∗ in the set of all tours T , where T ∗(m) denotes the vertex visited at the m-th step,

such that L(T ∗) =
n∑

m=1

t∑
k=1

λkuk,T ∗(m−1),T ∗(m) is minimal.

This formulation is general enough to allow for different objective functions, such

as distance traveled, minimum radar exposure, and minimum communication inter-

ference, as will be described in Section 4.7.3.

The symmetric sequence-dependent TSP (ssTSP) on a fully connected graph can

then be stated as follows:
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Problem formulation 3.1.5 (ssTSP). Let V be a set of n vertices {v1, . . . , vn}. Let

Q be a queue of vertices of fixed length 1 ≤ µ ≤ n that operates in a “first in first out

manner”. The initial location of the agent is inserted into the queue at position Q(1)

while all other entries in Q are empty. When the agent moves to the next vertex,

that vertex is inserted into the queue at position Q(1) while the element previously

at Q(µ) leaves the queue. Let vj not belong to the queue and let vi belong to the

queue at location Q(1), then cij(Q) denotes the cost of traveling from vi to vj and

cij(Q) = cji(Q). Let T be a tour, such that T (m) denotes the vertex visited at the

m-th step of that tour and Qm denotes the state of the queue at that step, i.e., the

sequence of µ vertices in the queue. Find the tour T ? in the set of all tours T , such

that the cost associated with that tour, L(T ∗) =
n∑

m=1

cT ∗(m−1),T ∗(m)(Qm), is minimal.

The asymmetric sequence-dependent TSP (asTSP) on a fully connected graph can

then be stated as follows:

Problem formulation 3.1.6 (asTSP). Let V be a set of n vertices {v1, . . . , vn}. Let

Q be a queue of vertices of fixed length 1 ≤ µ ≤ n that operates in a “first in first out

manner”. The initial location of the agent is inserted into the queue at position Q(1)

while all other entries in Q are empty. When the agent moves to the next vertex,

that vertex is inserted into the queue at position Q(1) while the element previously at

Q(µ) leaves the queue. Let vj not belong to the queue and let vi belong to the queue

at location Q(1), then cij(Q) denotes the cost of traveling from vi to vj. Let T be

a tour, such that T (m) denotes the vertex visited at the m-th step of that tour and

Qm denotes the state of the queue at that step, i.e., the sequence of µ vertices in the

queue. Find the tour T ? in the set of all tours T , such that the cost associated with

that tour, L(T ∗) =
n∑

m=1

cT ∗(m−1),T ∗(m)(Qm), is minimal.

Hence, for µ = 1 the anTSP is recovered, while for µ = n the cost of returning to

the initial location and completing the tour depends on the complete sequence of n

vertices visited previously.
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3.1.2 TSP stability analysis

First, edge cost tolerances and stability regions are defined for the non sequence-

dependent variants of the traveling salesman problem. These two related concepts

are defined as follows, where potential additive disturbances to the costs motivate

stability analysis:

Definition 3.1.7 (Tolerance TSP). The additive upper tolerance ∆c+
ij (resp. lower

tolerance ∆c−ij) with respect to T ? is the supremum of cost increases of eij (resp.

infimum of cost decreases of eij) under which T ? remains optimal, provided the other

elements of C are unchanged.

This definition generalizes to the case of sequence-dependent traveling salesman

problems.

Definition 3.1.8 (Sequence-dependent TSP tolerance). Let T ? be an optimal tour

and let vj not belong to the queue Q and let vi belong to the queue at location Q(1),

then cij(Q) denotes the cost of traveling from vi to vj. The additive upper tolerance

∆cij(Q)+ (resp. lower tolerance ∆cij(Q)−) of eij with respect to T ? is the supremum

of cost increases of cij(Q) (resp. infimum of cost decreases of cij(Q)) under which T ?

remains optimal, provided the other edge costs are unchanged.

Finally:

Definition 3.1.9 (Stability region TSP). The stability region ∆(T ?) corresponding

to an optimal tour T ? for the traveling salesman problem is defined as the set of all

edge cost changes for which that tour is optimal.

Given an edge cost perturbation ∆C, the length L(T ) of a given tour T changes to

L(T (∆C)). Hence, ∆C is not contained in the stability region ∆(T ?) of T ? if there

exists another tour in the set of all tours T on the graph G(V,E) that is shorter.
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Hence, the stability region of an optimal tour T ? to an instance can be expressed

with respect to perturbations ∆C to the cost matrix C:

∀∆C ∈∆(T ?),∀T ′ ∈ T : L(T ?(∆C)) ≤ L(T ′(∆C)). (3.1)

3.2 Minimum spanning tree problems

3.2.1 Variants of the spanning tree problem

Problem formulation 3.2.1 (ST Problem). Given a fully connected undirected

graph G(V,E) with n vertices {v1, · · · , vn}, find a subgraph that includes all of the

vertices V of G that is a tree. This tree is a spanning tree ST of G.

Hence, given a weighted graph, a minimum spanning tree can be defined:

Problem formulation 3.2.2 (MST Problem). Given a fully connected undirected

graph G(V,E) with n vertices {v1, · · · , vn} for which each edge eij ∈ E has an asso-

ciated edge cost cij ∈ R, find a spanning tree of minimum total edge cost. This tree

is a minimum spanning tree MST of G.

Problem formulation 3.2.3 (eMST Problem). Given a fully connected undirected

graph G(V,E) with n vertices {v1, · · · , vn} and a symmetric edge cost matrix C, where

cij is the Euclidean distance between vertex vi and vertex vj, find a spanning tree of

minimum total edge cost. This tree is a Euclidean minimum spanning tree eMST .

3.2.2 MST stability analysis

Reminiscent of the definitions of edge cost tolerances and the stability region for an

optimal traveling salesman tour, edge cost tolerances and the stability region for a

minimum spanning tree can be defined:
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Definition 3.2.4 (Tolerance MST). The edge cost tolerance with respect to a MST

is the supremum of cost increases of an edge (resp. infimum of cost decreases) un-

der which that MST remains optimal, provided the other edge costs in the graph are

unchanged.

Definition 3.2.5 (Stability region). The stability region ∆(MST ) corresponding to

a minimum spanning tree is defined as the set of all edge cost changes for which that

tree is a minimum spanning tree.
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CHAPTER 4

Stability analysis for the traveling

salesman problem

This chapter presents the exact stability analysis for solutions to non sequence-

dependent traveling salesman problems and sequence-dependent traveling salesman

problems with respect to perturbations in the edge costs. A description and the

representation of the stability regions in half space representation are given. The

derivation of edge cost tolerances from the stability regions is demonstrated and edge

criticalities are defined. Furthermore, for non sequence-dependent eTSPs approxi-

mate stability regions with respect to perturbations in vertex locations, safe radii,

and vertex criticalities are derived. Finally, stability regions for optimal solutions to

non sequence-dependent wsmoTSPs in the space of weight changes with respect to a

given set of tours are given.

4.1 Problem formulation

The underlying problem in this chapter can be formulated as follows: Given a set of

tours T for an instance of the TSP and letting T ? denote the best tour within T ,

define the stability region of T ? with respect to T and determine an expression to

test whether arbitrary disturbances cause another tour in T to be better than T ?.

To solve this problem, methods for the symmetric non sequence-dependent TSP
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are presented first and then generalized to the asymmetric sequence-dependent TSP.

4.2 Symmetric single objective TSPs

Solving the TSP can be understood as choosing the shortest tour T ? from the set of

all possible tours for an instance of the TSP. In this section, only symmetric non

sequence-dependent TSPs are considered. This class of TSP is formally stated in

Problem Formulation 3.1.1. For an edge eij = eji, the cost of traveling along that

edge is cij = cji. Note that edges eii are not included in the set of all edges E, hence

|E| = n(n−1)
2

. Then, let c ∈ R|E| be a column vector containing all edge costs in

lexicographical ordering. Hence, the index of a vector element cw is related to edge

eij = eji for all i 6= j and i < j by the following relationship:

w = n(i− 1)− (i− 1)i

2
+ j − i. (4.1)

All cases where i > j can be treated using (4.1) by exploiting the symmetry of

the problem. For clarity of presentation entries of the edge cost vector c are denoted

by either their single index w as cw or by the tuple of indices {ij} as cij where

appropriate, and w is related to {ij} through (4.1).

To facilitate the study of stability with respect to changes to the edge costs, let

∆c be a vector of perturbations in the edge costs defined in a similar fashion. The

length L(T ) of a given tour T changes to L(T (∆c)) if the edge costs are perturbed

by ∆c. Hence, a vector ∆c is not contained in the stability region ∆(T ?) of T ? if

there exists another tour in the set of all tours T , i.e., Hamiltonian cycles on the

graph G(V,E), that is shorter. Hence, the stability region of an optimal tour T ? to

an instance can be expressed with respect to perturbations ∆c to the cost vector c:

∀∆c ∈∆(T ?),∀T ′ ∈ T : L(T ?(∆c)) ≤ L(T ′(∆c)). (4.2)
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Furthermore, the tours in the set of all possible tours are enumerated and a subset

of tours T with an induced enumeration is defined, i.e., the r-th element in T is the

r-th element found when searching for elements of T in the set of all possible tours.

Definition 4.2.1 (x). Let x be a column vector and let its dimension be the cardinality

of T . Then for each element in T there exists a vector x that is associated with it in

the following way: All entries in x are binary and
∑|T |

r=1 |xr| = 1. Thus, there exists

only one non-zero entry xr at position r. The position r of the non-zero entry xr then

associates x with tour Tr.

Definition 4.2.2 (h). Let h be a column vector of length |E|. A vector h then iden-

tifies the edges eij ∈ T in the following way: For all edges eij ∈ T , the corresponding

entry hw, where w is computed using (4.1), is one. All other entries are zero.

Definition 4.2.3 (H). Let H be a matrix of the following form: The r-th row of H

is vector hTr , which identifies the edges contained in tour Tr ∈ T .

Then, the problem of finding the best tour in T can be formulated as follows:

minimize
x

cTHTx

subject to

|T |∑
r=1

xr = 1

xr ≥ 0, r = 1, . . . , |T |,

xr ∈ Z, r = 1, . . . , |T |.

(4.3)

This formulation is different from the classical ILP formulation of the TSP as

for example given in Ref. [87] by constraining and explicitly enumerating the set of

candidate tours T . Let q = Hc and substitute in (4.3). Then, the cost coefficients qr

are linear combinations of the elements of the edge cost vector c, where qr represents

the cost of the corresponding tour Tr. This yields the problem in canonical form with

a single equality constraint:
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minimize
x

qTx

subject to
⇀

1x = 1

xr ≥ 0, r = 1, . . . , |T |,

xr ∈ Z, r = 1, . . . , |T |,

(4.4)

where
⇀

1 is a row vector of ones of appropriate length.

Proposition 1. Every solution x of the optimization problem (4.4) identifies a cheap-

est tour in T through the scheme given in Definition 4.2.1. Conversely, every cheapest

tour T ? in T is associated with a solution of optimization problem (4.4) through the

same scheme.

Proof. Sufficiency: Let x be a solution of optimization problem (4.4), then x identifies

a tour through the scheme in Definition 4.2.1. That tour is a cheapest tour. To prove

that claim let us assume that another tour is strictly cheaper. Then, that tour is

associated with another x and that other x gives a strictly better cost in optimization

problem (4.4) because that other tour is strictly cheaper. Therefore, x cannot be

a solution of optimization problem (4.4). This contradiction completes the proof of

sufficiency.

Necessity: Let T ? be a cheapest tour in T . This tour is associated with an x

through the scheme of Definition 4.2.1. That x is a solution to optimization prob-

lem (4.4). To prove that claim, let us assume that there is another x that gives a

strictly lower cost. Then, that other x is associated with another tour that is strictly

cheaper than T ?. Therefore, T ? cannot be a cheapest tour. This contradiction com-

pletes the proof.
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4.2.1 LP relaxation of the 0-1 ILP formulation

The computational complexity of computing tolerances for a large class of 0-1 pro-

gramming and combinatorial optimization problems (including the TSP) is known

to be as hard as the optimization problem itself [8]. However, given two conditions,

the optimal solution to the linear programming (LP) relaxation of an ILP is guaran-

teed to optimally solve the ILP [87]. These conditions are that the constraint matrix

of the ILP is totally unimodular, and that the right hand side of the constraint is

integer [87].

Definition 4.2.4 (Totally unimodular). An integer matrix A ∈ Zm×n is totally uni-

modular if each square submatrix S of A has det(S) ∈ {0,±1}.

Equation (4.4) satisfies these two conditions. Therefore, stability analysis is ap-

plied to the linear programming relaxation of optimization problem (4.4):

minimize
x

qTx

subject to
⇀

1x = 1

xr ≥ 0, r = 1, . . . , |T |,

xr ∈ R, r = 1, . . . , |T |.

(4.5)

Note that the search space of optimization problem (4.4) is a subset of the search space

of optimization problem (4.5). Therefore, optimization problem (4.5) is a relaxation

of optimization problem (4.4).

Theorem 4.2.5 ( [87]). Let A be a totally unimodular matrix and let b be an integral

vector. Then the polyhedron P := {x|Ax ≤ b} is integral.

Theorem 4.2.6 ( [88]). Given a linear program in standard form where A is an m×n

matrix of rank m, i) if there is a feasible solution, there is a basic feasible solution,

ii) if there is an optimal feasible solution, there is an optimal basic feasible solution.
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Theorems 4.2.5 and 4.2.6 guarantee that the optimal solution to optimization

problem (4.5) solves optimization problem (4.4).

The following lemma establishes the converse.

Lemma 4.2.7. Every optimal solution to problem (4.4) is an optimal solution to

problem (4.5).

Proof. Let x be an optimal solution to problem (4.4). Then x is feasible for prob-

lem (4.5), because problem (4.5) is a relaxation of problem (4.4). Assume x is not

optimal for problem (4.5), then there exists an x̂ that is feasible for problem (4.5)

and strictly better than x. Theorem 4.2.6 guarantees that the optimal solution of

problem (4.5) happens at a vertex. Therefore, there must exist a vertex x that is

better than x̂. That vertex x is feasible for problem (4.4), because it is a vertex,

and is strictly better than x, because it is better than x̂, which was itself strictly

better than x. Therefore, x cannot be an optimal solution of problem (4.4). This

contradiction completes the proof.

4.2.2 Stability region based on T

The LP relaxation (4.5) is in canonical form. Therefore, the stability region of the

solution x? to optimization problem (4.5) can be computed using the method given

in Ref. [67] for linear programs.

When there exist alternative optimal solutions to this problem, then there exists

a set of optimal solutions in T with cardinality greater than one. This chapter is not

concerned with solving (4.4), but with analyzing the stability of one optimal tour T ?

that is associated with one x through the scheme in Definition 4.2.1. That tour could

either be given by a human operator or, for example, obtained through the use of the

k-opt heuristic. The stability region of that tour can be computed based on the LP

relaxation.
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Let there be a disturbance to cost vector c characterizing the specific instance of

the TSP, which results in an additive disturbance edge cost vector ∆c. This affects

the objective function coefficients q as follows:

∆q = H∆c. (4.6)

This equation establishes the relationship between perturbations to the cost vector

c of optimization problem (4.3) and perturbations to the vector of objective function

coefficients of optimization problem (4.5). Then, to analyze stability, the reduced

cost vector q for optimization problem (4.5) is utilized [67]:

q =
⇀

1
T

qr − q, (4.7)

where qr is the unperturbed objective function coefficient, i.e., the r-th entry in q,

and r is the position of the non-zero entry of the optimal solution vector x?. Let Hr

denote the row of H, where r is defined likewise. Then, let:

H =
⇀

1
T

Hr −H. (4.8)

In order to maintain x? as optimal solution to optimization problem (4.5), it is nec-

essary and sufficient for the perturbation vector ∆c to satisfy inequality [67]:

H∆c ≤ −q. (4.9)

In other words: By design of the equality constraint and from the fact that the

solutions of interest are 0-1 integer feasible: For any chosen optimal solution, H has

the following structure: The row corresponding to the optimal solution is all zeros.

The other rows of H are structured as follows:

• Entries corresponding to edges that are contained in the chosen optimal tour
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and in the tour corresponding to the specific row are zero.

• Entries corresponding to edges that are contained in the chosen optimal tour

but not in the tour corresponding to the specific row are 1.

• Entries corresponding to edges that are not contained in the chosen optimal

tour but in the tour corresponding to the specific row are −1.

Thus, the number of −1 and +1 within one row is always identical, as for every

removed edge from a tour, another edge must be added.

This gives the following: Note that, as per Theorems 4.2.5 and 4.2.6, every optimal

solution to problem (4.5) is an optimal solution to problem (4.4).

Proposition 2. The stability region of every optimal integral solution to problem (4.5)

is equal to the stability region of that solution as an optimal solution to problem (4.4).

Proof. Sufficiency: Let x be an integral optimal solution to problem (4.5). Then by

Theorems 4.2.5 and 4.2.6, x is also an optimal solution to problem (4.4). Let ∆c be an

arbitrary perturbation to the data of problem (4.5) in the stability region of x, then x

is an optimal integral solution of problem (4.5) perturbed by ∆c. By Theorems 4.2.5

and 4.2.6, x also solves the perturbed version of problem (4.4). Therefore, ∆c belongs

to the stability region of x as an optimal solution to problem (4.4). Therefore, the

stability region of x as an optimal solution to problem (4.5) is a subset of the stability

region of x as an optimal solution to problem (4.4). This completes the sufficiency

part of the proof.

Necessity: Let x be an optimal solution to problem (4.4). Then by Lemma 4.2.7,

x is also an optimal solution to problem (4.5). Let ∆c be an arbitrary perturbation

to the data of problem (4.4) in the stability region of x, then x is an optimal solution

of problem (4.4) perturbed by ∆c. By Lemma 4.2.7, x also solves the perturbed

version of problem (4.5). Therefore, ∆c belongs to the stability region of x as a
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solution to problem (4.5). Therefore, the stability region of x as an optimal solution

to problem (4.4) is a subset of the stability region of x as an optimal solution to

problem (4.5). This completes the proof.

Inequality (4.9) therefore defines the stability region of the optimal solution x?

and its associated optimal tour T ?, such that for any edge cost perturbation vector

∆c that satisfies (4.9), T ? remains the optimal tour in T . Hence, evaluating (4.9)

gives a polynomial time method to determine whether an optimal tour T ? remains

optimal in T after a cost change ∆c occurs. Note that (4.9) describes a polyhedron

in the space of cost changes.

4.2.3 Edge cost tolerances

Using (4.9), the edge cost tolerances with respect to T can be computed as follows:

To compute the tolerance for an arbitrary edge eij ∈ T , where T ∈ T , with associated

edge cost vector entry cw, set ∆ck = 0 for all k 6= w. This immediately yields the

tolerance ∆cw by identifying the most restrictive inequality resulting by row-wise

evaluation of (4.9). Note, that for any edge eij, only the upper tolerance ∆c+
ij or the

lower tolerance ∆c−ij is finite. Both tolerances can never be finite at the same time [84].

Intuitively, if an edge is in the best tour, decreasing the cost of that edge decreases

the cost of all tours that utilize that edge by the same amount. Hence, the original

best tour remains the best. Similarly, if an edge is not part of the optimal tour and

the cost of that edge increases, the cost of all tours utilizing that edge increases by

the same amount. There, that edge can never be part of the optimal tour.

4.2.4 Edge criticality

The stability region of an optimal tour can be understood as a margin of optimality of

that tour with respect to arbitrary disturbances in edge costs and the edge tolerance
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as the margin of optimality with respect to a disturbance of the cost of a single edge.

Once the stability region of an optimal tour and the edge cost tolerances are known,

it might be of interest to identify edges that are critical. Critical edge here refers

to an edge for which the margin of optimality of the optimal tour with respect to

disturbances to the cost of that edge is smaller than the margin of optimality with

respect to disturbances in the cost of other edges. Hence, a high criticality of an edge

indicates that the optimal tour is more susceptible to cost changes in that edge. Let

∆c+
min denote the minimum upper edge cost tolerance for any edge and let ∆c−max be

the maximum lower edge cost tolerance for any edge.

Definition 4.2.8 (∆c+
min, ∆c−max). Let:

∆c+
min = min

ij
∆c+

ij (4.10)

∆c−max = max
ij

∆c−ij (4.11)

Then, χij is a dimensionless parameter that characterizes the criticality of an edge

and can be defined as follows:

Definition 4.2.9 (χij). For 1 ≤ i, j ≤ n, the criticality of edge eij is defined as:


χij =

∆c+min

∆c+ij
∆c+

min 6= 0 ∧ |∆c+
ij| <∞,

χij = −∆c−max

∆c−ij
∆c−max 6= 0 ∧ |∆c−ij| <∞.

(4.12)

Note that for a minimal upper tolerance equal to zero the criticality of edges

with respect to cost increase is not defined and similarly, if the maximum lower

tolerance is equal to zero, the criticality of edges with respect to cost decreases is not

defined. Furthermore, a negative criticality χij indicates that edge eij is not part of

the optimal tour and hence only cost decreases in that edge, if all other edge costs

are held constant, can influence the optimal solution. Similarly, a positive criticality
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χij indicates that edge eij is part of the optimal tour and hence only cost increases in

that edge, if all other edge costs are held constant, can influence the optimal solution.

4.2.5 Vertex location stability

All the above discussion focuses on robustness with respect to perturbation in the

edge costs. In the eTSP as defined in Problem Formulation 3.1.2, the cost of an

edge is the Euclidean distance between the two vertices covered by that edge. In

unmanned aircraft operations the exact location of the targets might not be precisely

known. Hence, the robustness of a tour with respect to the locations of the vertices

is of interest. Furthermore, if only limited resources for intelligence are available,

insight into which locations need to be known most precisely to guarantee optimality

of a given tour is valuable. Therefore, the following section studies stability regions

of optimal solutions to eTSPs with respect to perturbations to the vertex locations.

Let p1 and p2 be the locations of two vertices v1 and v2 in an instance of an eTSP.

Hence, the cost c12 of the edge between v1 and v2 is given by the Euclidean distance

between these two vertices:

c12 = ‖p1 − p2‖2 = ((p1 − p2)T (p1 − p2))
1
2 . (4.13)

Let p1,0, p2,0, c12,0 denote the nominal location and the nominal distance between

the vertices. Then, a Taylor series expansion about these nominal values yields:

c12 ≈ c12,0 +
pT1,0 − pT2,0
c12,0

δp1 +
pT2,0 − pT1,0
c12,0

δp2. (4.14)

Thus, a first order approximation of the relationship between a disturbance in the
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vertex locations and the edge costs is given by:

∆c12 ≈
pT1,0 − pT2,0
c12,0

∆p1 +
pT2,0 − pT1,0
c12,0

∆p2,

=

[
α12 −α12

]∆p1

∆p2

 . (4.15)

Using (4.15) and the scheme in (4.1), define the following matrix that captures the

relationship between small perturbations to the locations of each vertex and the

change in the edge costs:

A =



α12 −α12 0
α13 −α13

. . . . . .

0 αn−1n −αn−1n


. (4.16)

Thus, the cost change vector ∆c for all edge costs can be expressed as:

∆c = A∆p. (4.17)

Finally, substituting into (4.9) gives a first order approximation of the stability region

of an optimal solution to an eTSP with respect to the vertex location disturbance

vector in half space representation:

HA∆p ≤ −q. (4.18)

4.2.6 Vertex criticality

However, as these stability regions are obtained through linearization assuming small

perturbations, the notion of a safe radius associated with each vertex is introduced to
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be more conservative. The minimal perturbation in the L2 norm sense, ∆pw,min, in

the location of a single vertex vw that lies on the boundary of the linearized stability

region can be computed as follows:

∆pw,min = argmin
∆pw

‖∆pw‖2

subject to HA∆p = −q,

∆pk = 0, ∀k 6= w.

(4.19)

Definition 4.2.10 (rw,safe). Let rw,safe be the radius of the largest circle centered

at the nominal location of vertex vw that is fully contained in the stability region

associated with vertex vw with respect to perturbations of the location of vw obtained

through linearization assuming that all other vertices are located at their nominal

locations.

Hence, rw,safe can be computed as:

rw,safe = ‖∆pw,min‖2. (4.20)

The unit vector
∆pw,min

‖∆pw,min‖2
gives the direction in which the least magnitude in change

in location for vertex vw can be tolerated before the current best tour becomes sub-

optimal, assuming all other vertices remain at their nominal locations.

To ease interpretation by a human operator, a vertex criticality measure is in-

troduced as follows: Let ξw denote the criticality of a vertex vw. Furthermore, let

rmin,safe denote the smallest of all safe radii:

rmin,safe = min
w
rw,safe. (4.21)
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Then the criticality of vertex vw can be computed as follows:

ξw =
rmin,safe
rw,safe

. (4.22)

The criticality of vertices provides a human operator with a relative measure of how

robust the optimal tour is with respect to perturbations to the location of that vertex.

Hence, it is more important to have high confidence in the estimates of vertex locations

with high criticality than for those with low criticality. Furthermore, in a game

scenario, where an opponent tries to prevent the operator from choosing an optimal

tour for the UAV by moving targets, that opponent can cause more harm to optimality

by moving vertices with high criticality. This notion of vertex criticality and its

interpretation is analogous to the notion of edge criticality in Section 4.2.4. Note

that, if ∃w : rw,safe = 0, vertex criticalities cannot be defined.

4.3 Multi-objective traveling salesman problems

Stability regions and robustness measures for symmetric non sequence-dependent

TSPs are been derived above. In UAV mission planning multiple objectives might

exist with respect to which a mission plan should be optimized. These types of

problems are often cast as weighted-sum multi-objective optimization problem. This

section presents the stability analysis for solutions to symmetric weighted-sum multi-

objective non sequence-dependent traveling salesman problems.

4.3.1 Stability analysis with respect to changing weights

Consider a wsmoTSP as defined in Problem Formulation 3.1.4. Let uk,ij denote the

cost of traveling on edge eij with respect to the k-th objective function. Then the
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weighted cost of edge traversal from vertex i to vertex j given the weights λk is:

cij =
t∑

k=1

λk · uk,ij. (4.23)

Using the scheme in (4.1), let uk be a column vector containing all traversal costs

with respect to the k-th objective. Let:

U =


| | |

u1 u2 · · · ut

| | |

 . (4.24)

Then the cost vector containing all edge costs with respect to the weighted objectives

is given by:

c = U · λ, (4.25)

where λ is a column vector of weights. Using matrix H as defined in Section 4.2, the

vector containing the costs of all tours in the set of tours T is given by:

q = Hc. (4.26)

Using vector q (see (4.7)) and matrix H (see (4.8)) as defined in Section 4.2, the

stability region with respect to a perturbation ∆λ is given by the intersection of the

polyhedron:

HU∆λ ≤ −q (4.27)

and the normalization constraint:

t∑
k=1

∆λk = 0. (4.28)

The stability region is a polytope in the space of weight changes.
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Given the nominal weights λ and the stability region, the question arises what the

minimal perturbation in weights is that can cause the solution to become suboptimal.

∆λcrit is therefore computed as the follows:

∆λcrit = argmin
∆λ

‖∆λ‖2

subject to HU∆λ = −q
t∑

k=1

∆λk = 0.

(4.29)

∆λcrit can be interpreted in different ways. ‖∆λcrit‖2 gives a safe margin where any

perturbation that is smaller than ‖∆λcrit‖2 in the L2 norm sense is guaranteed to

not alter the optimal solution. The unit vector ∆λcrit
‖∆λcrit‖2

defines a critical direction

and helps to identify the weights out of the set of all weights and their associated

objective functions that affect the optimal solution the most in terms of the notion

of stability defined above.

4.3.2 Stability analysis with respect to changing objectives

Similar to the analysis of stability regions for solutions to single objective TSPs,

stability regions of solutions in the cost space of all objectives for a wsmoTSP can be

obtained assuming fixed weights. Using the notation introduced above, the stability

region is given by the convex polyhedron:

H∆U · λ ≤ −q. (4.30)

Given an optimal tour T ?, all perturbation matrices ∆U for which (4.30) is satisfied,

are contained in the stability region associated with T ?.
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4.3.3 Stability analysis with respect to simultaneously chang-

ing objectives and weights

Finally, stability regions for simultaneous changes in the objectives as well as the

weights can be obtained. Using the product rule for finite differences, the stability

region in terms of perturbations to P and λ is given by:

H(∆U · λ+ U ·∆λ+ ∆U ·∆λ) ≤ −q. (4.31)

Neglecting higher-order terms, a first order approximation is given by the convex

polyhedron:

H(∆U · λ+ U ·∆λ) ≤ −q. (4.32)

4.4 Generalization to shortest paths

The above results for solutions to snTSPs and wsmoTSPs can be applied to shortest

path problems. Given an undirected complete graph G(V,E) with source vertex vs,

target vertex vt, and cost cij for each edge eij, consider the linear program with

variables hij:

minimize
ij∈E

cijhij

subject to h ≥ 0,

∀i :
∑
j

hij −
∑
j

hji =


1, if i = s;

−1, if i = t;

0, otherwise.

(4.33)

The edge cost cij might be computed as the convex combination of multiple costs

as outlined in (4.23). Hence, single and weighted-sum multi-objective shortest path
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problems can be addressed. Feasible solutions to optimization problem (4.33) are zero

one vectors h that denote whether a certain edge is contained in a path. Therefore, the

optimal solution to optimization problem (4.33) identifies the edges contained in the

shortest path from vs to vt [89]. Using the the scheme in (4.1) to convert the indices

to a single index, explicitly enumerating the set of solutions, and the introduction of

a vector x that is associated with a path in the set of paths similar to Definition 4.2.1

lead to the problem of choosing the shortest path in a set of paths in the form of

optimization problem (4.4). Hence, the methods for stability analysis with respect to

perturbations in the edge costs and to perturbations in the vertex locations can be

directly applied to single objective and multi-objective shortest path problems.

4.5 Asymmetric single objective TSP

So far symmetric variants of the TSP have been considered. The asymmetric TSP is a

variant of the TSP, where the edge cost matrix C is not symmetric. Such a problem

formulation can be utilized for example, if the effect of wind shall be captured in

a UAV planning problem. For example, the cost incurred for edge traversal with

headwind is greater than or equal to the cost of traversal of the same edge in the

opposite direction with tail wind. The stability results derived above are directly

applicable to the asymmetric TSP.

Proposition 3. The asymmetric TSP can be re-formulated as an integer linear pro-

gramming problem (4.4).

Proof. Consider a n-vertex TSP for which the cost cij of traveling from vertex vi to

vertex vj is not necessarily equal to the cost cji. The data for optimization prob-

lem (4.4) is obtained through transformation of the data of the asymmetric TSP as

follows.

First, let c ∈ Rn(n−1) be a column vector containing all travel costs cij for all i 6= j
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in lexicographical ordering. Hence, the index of a vector element cw is related to edge

eij for all i 6= j by the following relationship:

w = n(i− 1) + j − 1−
⌊
n(i− 1) + j − 1

n+ 1

⌋
. (4.34)

Then, enumerate the tours in the set of all possible tours and define a subset of tours

T with an induced enumeration, i.e., the r-th element in T is the r-th element found

when searching for elements of T in the set of all possible tours. Furthermore, let

x be a vector associated to a tour in T using Definition 4.2.1. Finally, similarly to

Definition 4.2.2, let h be a column vector of length n(n−1) that identifies the edges eij

contained in a tour T , where the indices of the entries being equal to one are computed

using (4.34). All other entries are zero. Then, similarly to Definition 4.2.3, a matrix

H can be constructed, where the r-th row of H is vector hTr , which identifies the edges

contained in tour Tr ∈ T . Hence, the cost vector for optimization problem (4.4), q,

is given by q = Hc. Finally, using an argument similar to Proposition 1, the optimal

solution x? of optimization problem (4.4), x?, identifies a best tour T ? in T that solves

the asymmetric TSP.

Therefore, the stability region for the best tour T ? ∈ T can be computed using the

method given in Section 4.2.2 and (4.9). Hence, evaluating (4.9) gives a polynomial

time method to determine whether an optimal tour T ? remains optimal in T after

a cost change ∆c occurs. Again, this stability region is a polyhedron. Edge cost

tolerances can be computed using the method outlined in Section 4.2.3. Finally, the

edge criticality for the asymmetric TSP can be defined as given in Definition 4.2.9.

4.6 Sequence-dependent TSP

In this section the stability region for a solution to the asymmetric sequence-dependent

TSP is analyzed.
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4.6.1 Stability regions

Proposition 4. The asymmetric sequence-dependent TSP can be re-formulated as

an integer linear programming problem (4.4).

Proof. Consider a n-vertex asymmetric sequence-dependent TSP. The data for opti-

mization problem (4.4) is obtained through transformation of the data of the asym-

metric sequence-dependent TSP as follows.

First, enumerate the tours in the set of all possible tours and define a subset of

tours T with induced enumeration, i.e., the r-th element in T is the r-th element Tr

found when searching for elements of T in the set of all possible tours.

Let Qr,m denote the state of the queue of cities after having completed m−1 steps

of the r-th tour in T , i.e., the sequence of cities in the queue after m− 1 steps. Let

cr,m ∈ Rn(n−1) be a vector containing the edge costs cij(Qr,m) for all vertex pairs vi,

vj, i.e., the traversal costs of all edges at the m-th step when pursuing tour Tr:

cr,m = [c12(Qr,m), . . . cn(n−1)(Qr,m)]T , (4.35)

where the k-th entry in cr,m is associated to the vertex pair vi, vj through (4.34).

Additionally, let cm ∈ Rn(n−1)|T | be a vector containing all edge costs at the m-th

step for all tours in T :

cm = [cT1,m, . . . , c
T
|T |,m]T . (4.36)

Let hr,m ∈ Zn(n−1)|T | be a vector that identifies the edge eij used at the m-th

step when following the r-th tour Tr using the following scheme: It contains a single

non-zero entry equal to one at the y-th location, where y is computed as follows:

y = (r − 1)n(n− 1) + k, (4.37)

and k is computed using (4.34). Let hr ∈ Zn2(n−1)|T | be a vector that identifies all
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edges contained in the r-th tour:

hr = [hTr,1, . . . , h
T
r,n]T . (4.38)

Furthermore, let H be a matrix, where the r-th row of H is hTr .

Moreover, let c ∈ Rn2(n−1)|T | be the cost vector concatenating the costs of all edges

at all steps for all tours:

c = [cT1 , . . . , c
T
m, . . . , c

T
n ]T . (4.39)

The cost qr of the r-th tour Tr in T is then given by:

qr =
n∑

m=1

cTr,mhr,m. (4.40)

Hence, the cost vector q for optimization problem (4.4) containing the cost of all tours

in T can be written as:

q = Hc. (4.41)

Let vector x be associated to a tour in T using Definition 4.2.1. Then, again

by similar argument to Proposition 1, the solution x? to optimization problem (4.4)

identifies a cheapest tour in T that solves the asymmetric sequence-dependent TSP.

The stability region for the best tour T ? ∈ T for the sequence-dependent asymmet-

ric TSP can therefore be computed using the method given in Section 4.2.2 and (4.9).

Hence, evaluating (4.9) gives a polynomial time method to determine whether an

optimal tour T ? remains optimal in T after a cost change ∆c occurs. Again, that

stability region is a polyhedron. Note that the above proof uses redundant data

for legibility and ease of notation. Edge cost tolerances can be computed using the

method outlined in Section 4.2.3.

A proof that the optimization version of the asymmetric sequence-dependent TSP
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is NP–hard is now provided. The proof is in the form of reducing the associated deci-

sion version of the symmetric non sequence-dependent TSP that is NP–complete [90]

to the associated decision version of the asymmetric sequence-dependent TSP. The

decision version of the symmetric non sequence-dependent TSP can be stated as fol-

lows:

Problem formulation 4.6.1 (Decision snTSP). Given a value J0 ∈ R, a set V

of n cities {v1, · · · , vn} and a symmetric edge cost matrix c, where cij denotes the

cost of traveling from vertex vi to vertex vj on edge eij, decide whether there exists a

Hamiltonian tour, ( tour for short) T , where T ?(m) denotes the vertex visited at the

m-th step, such that J(T ) =
n∑

m=1

cT ?(m−1),T ?(m) < J0.

The decision version of the asymmetric sequence-dependent TSP can then be

stated as follows:

Problem formulation 4.6.2 (Decision asTSP). Let J0 ∈ R, V be a set of n cities

{v1, . . . , vn}, Q be a queue of cities of fixed length 1 ≤ µ ≤ n that operates in a “first

in first out manner”. The initial location of the agent is inserted into the queue at

position Q(1) while all other entries in Q are empty. When the agent moves to the

next vertex, that vertex is inserted into the queue at position Q(1) while the element

previously at Q(µ) leaves the queue. Let vj not belong to the queue and let vi belong

to the queue at location Q(1), then cij(Q) denotes the cost of traveling from vi to vj.

Let T be a tour, such that T (m) denotes the vertex p visited at the m-th step of that

tour and Qm denotes the state the queue at that step, i.e., the sequence of µ cities

in the queue. Decide whether there exists a tour T such that the cost associated with

that tour, J(T ) =
n∑

m=1

cT ?(m−1),T ?(m)(Qm) < J0.

Proposition 5. The decision version of the asymmetric sequence-dependent TSP is

NP–hard.
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Proof. A problem P is NP–hard if an NP–complete problem is reducible to P [90].

The decision version of the snTSP can be reduced to the decision version of the asTSP

as follows: Let subscript sn denote inputs to the decision version of the symmetric

non-sequence-dependent TSP and let subscript as denote inputs to the decision ver-

sion of the asymmetric sequence-dependent TSP. Then set: J0,sn = J0,as, Vsn = Vas,

µas = 1, ∀i, j : cij,sn = cij,as(Q). The solution to the decision version of the asTSP

with these inputs solves the decision version of the snTSP. Hence the decision version

of the asTSP is NP–hard.

Corollary 4.6.3. The asymmetric sequence-dependent TSP is NP–hard.

Proof. This follows from Proposition 5.

Corollary 4.6.4. The symmetric sequence-dependent TSP can be re-formulated as

an integer linear programming problem (4.4).

Proof. This follows from Propositions 3 and 4.

Therefore, the stability region for the best tour T ? ∈ T for the symmetric sequence-

dependent TSP can be computed using the method given in Section 4.2.2 and (4.9).

Hence, evaluating (4.9) gives a polynomial time method to determine whether an

optimal tour T ? remains optimal in T after a cost change ∆c occurs. Again, this

stability region is a polyhedron. Edge cost tolerances can be computed using the

method outlined in Section 4.2.3.

4.6.2 Edge criticality

Similarly to the edge criticality for the non sequence-dependent symmetric and asym-

metric TSP, an edge criticality with respect to a certain optimal tour for the sequence-

dependent TSP can be formulated. Let ∆c?+ be a vector containing the upper edge

cost tolerances for all edges for all steps when following the optimal tour. Similar in
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structure to (4.35), it is given by:

∆c?+ = [∆c+T
r?,1 . . .∆c

+T
r?,n]T , (4.42)

where r? is the index of the best tour. The vector ∆c?− of all lower edge cost tolerances

is defined similarly.

Let ∆c?+w denote the minimal upper tolerance an edge in ∆c?+, where k is the

index of edge eij computed either using (4.1) for symmetric problems or (4.34) for

asymmetric problems. The maximal lower tolerance ∆c?−w of edge w is defined simi-

larly.

Then, let ∆c?+min denote the minimum upper edge cost tolerance for any edge given

the optimal tour and let ∆c?−max be the maximum lower edge cost tolerance for any

edge given the optimal tour.

Definition 4.6.5 (∆c∗+min , ∆c∗−max). Let:

∆c?+min = min
i

∆c?+i , (4.43)

∆c?−max = max
i

∆c?−i . (4.44)

Then, χ?w a dimensionless parameter that characterizes the criticality of edge ew

with respect to the optimal tour, where w is computed using either (4.1) or (4.34)

depending on whether the problem is symmetric or asymmetric:

Definition 4.6.6 (χw). The criticality of edge ew is defined as:


χ?w =

∆c?+min

∆c?+w
∆c?+min 6= 0 ∧ |∆c?+w | <∞

χ?w = −∆c?−max

∆c?−w
∆c?−max 6= 0 ∧ |∆c?−w | <∞

(4.45)

This definition resembles the definition of criticality for the non sequence-dependent

TSP variants in Definition 4.2.9. Note that, while the edge costs in the non sequence-
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dependent variants do not depend on the optimal tour T ?, in the sequence-dependent

variants the edge costs depend on the optimal tour. This is accounted for by the in-

troduction of the upper tolerance vector in (4.42) and the similarly constructed lower

tolerance vector that are defined with respect to the optimal tour. Edge criticality

for the sequence-dependent TSP is computed with respect to those tolerances.

4.6.3 Application of the k-opt heuristic to the

sequence-dependent TSP

The sequence-dependent TSP is NP–hard as shown in Corollary 4.6.3. Hence, it is

expedient to use heuristic methods to solve intractably large instances of it. The k-opt

heuristic is a widely and successfully used improvement heuristic for the TSP [91].

Let the k-neighborhood Tk of a tour T be the set of all tours obtained by permutation

of any k cities in the tour. Without loss of generality, let v1 be the initial location of

the vehicle. The k-opt heuristic is an iterative method that goes from one iterate tour

to the next by doing the following: (a) construct the k-neighborhood of the tour, (b)

select as the next iterate the best tour in the k-neighborhood obtained in (a), where

the cost qr of each tour Tr ∈ Tk is evaluated using (4.40) with Tr(0) = v1. Hence, the

k-opt heuristic terminates at a so-called k-opt tour that is guaranteed to be optimal

in its k-neighborhood.

4.6.4 Application to tours obtained by the k-opt heuristic

Based on the above analysis, the stability of solutions obtained using the k-opt heuris-

tic with respect to the k-neighborhood can be obtained as follows: Given a k-optimal

tour T ?, construct its k-neighborhood Tk and let T be Tk ∪T ?. Then, (4.9) yields the

exact stability region of T ? with respect to Tk ∪ T ?.
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Figure 4.1: Optimal solution for 6-vertex TSP: The optimal tour to this 6-vertex
TSP is indicated by the thick, red line.

4.7 Examples

4.7.1 Symmetric non sequence-dependent TSP

The following section demonstrates the application of stability analysis to the solution

of a non sequence-dependent symmetric Euclidean 6-vertex TSP based on the example

in Ref. [3]. An unmanned aircraft is used to query multiple unattended ground sensors

at multiple locations repeatedly. A traditional approach to obtain optimized flight

patterns in this case is to pose this problem as a symmetric non sequence-dependent

TSP, in which the unmanned aircraft is required to visit each unattended ground

sensor only once, starting from any sensor and returning to the original place of

departure. The locations of the unattended ground sensor are enumerated v1 through

v6, and are shown in Fig. 4.1. The unperturbed edge costs are the Euclidean distances

between these locations. The optimal tour is T ? = (v1, v2, v3, v4, v5, v6, v1).

Fig. 4.2 depicts the stability region for changes in the edge costs c12, c15, c34 ob-
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Figure 4.2: Stability region for 6-vertex TSP: The stability region of the optimal
solution for perturbations in edges e1,2, e1,5, and e3,4 is given. It extends to infinity
in the direction of the black line.

tained through evaluation of (4.9), assuming that all other edge costs are held con-

stant. A disturbance of ∆c12 = 50 and ∆c15 = −50 lies outside the stability region

of T ? as indicated in Fig. 4.3. The new optimal solution for that disturbance is

T̂ ∗ = (v1, v6, v2, v3, v4, v5, v1) as shown in Fig. 4.4.

The TSP edge criticality plot in Fig. 4.5 visualizes the criticality for each edge

with respect to T ?. The thickness of the edges (from thin to thick), and the color of

the edges (from yellow to red) correspond to the criticality of that edge (from less

critical to more critical). The numerical value of the edge criticality for each edge is

indicated next to it. The criticality plot can be interpreted in multiple ways:

• If the problem data, i.e., here the travel times, are based on models or for

example gathered data, it is more important to have high confidence in the

estimates for edges with high criticality than for edges with low criticality.

• In a game scenario, where an opponent tries to prevent the agent from per-
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Figure 4.3: Stability region for perturbed 6-vertex TSP: The applied pertur-
bation as indicated by the red star is outside of the stability region.

forming an optimal tour, that opponent can cause more harm to optimality by

targeting edges with high criticality.

• Likewise, the agent should assign resources, if possible, to reenforce the critical

edges.

Hence, decision makers can use the criticality plot to allocate resources to enhance

the performance of the system.

4.7.2 Vertex location

For the eTSP, the concepts introduced in Section 4.2.5 regarding robustness of the

shortest tour with respect to vertex location perturbations are demonstrated in this

section. Consider the example depicted in Fig. 4.6 that is based upon scenarios in

Ref. [3]. An unmanned aircraft is used to query multiple unattended ground sensors

at multiple locations repeatedly. A traditional approach to obtain optimized flight
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Figure 4.4: Optimal solution for perturbed 6-vertex TSP: The optimal tour to
the perturbed 6-vertex TSP after the edge cost c15 has been decreased and the edge
cost c12 has been increased is indicated by the thick, red line.

patterns in this case is to pose this problem as a symmetric TSP, in which the un-

manned aircraft is required to visit each unattended ground sensor once, starting from

any sensor and returning to the original place of departure, resulting in a tour. The

locations of the unattended ground sensor are enumerated v1 through v6. Assuming

uncertainty in the exact location of the unattended ground sensors, Fig. 4.6 depicts

the safe radii associated with each of the targets, i.e., the circles centered at each

location vi have radius ri,safe. The thickness of the circle boundaries (from thin to

thick), and the color of the circle (from yellow to red) correspond to the criticality of

that location (from less critical to more critical).

The red polyhedron containing vertex v6 depicts the stability region of that vertex

with respect to perturbations of the location of that vertex based on the linearization

described in Section 4.2.5. Furthermore, the relationship between the stability region

of a vertex and the associated safe radius can be seen. The plotted safe radii agree
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Figure 4.5: Edge criticalities: The thickness of the edges (from thin to thick), and
the color of the edges (from yellow to red) correspond to the criticality of that edge
(from less critical to more critical). The numerical value of the edge criticality for
each edge is indicated next to each edge.

with the intuition that vertex v6 has the smallest safe radius as the path (v5, v1, v6, v2)

becomes shorter than (v5, v6, v1, v2) for small perturbations in the location of v6.

4.7.3 Weighted-sum multi-objective traveling salesman prob-

lems

This section demonstrates the application of stability analysis to the solution of a 6-

vertex wsmoTSP based on the examples in Ref. [3] and Ref. [4]. An unmanned aircraft

is used to query multiple unattended ground sensors at multiple locations repeatedly.

The locations of the unattended ground sensor are enumerated v1 through v6. Hostile

radar sites as well as hostile communication jamming devices are present within the

area of operation and need to be avoided while keeping the mission time short and
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Figure 4.6: Vertex criticalities: This figure depicts the concepts of vertex stability
for the shortest tour for the single objective Euclidean TSP based on the example in
Ref. [3]. The circles centered at each location vi have radius ri,safe. The thickness
of the circle boundaries (from thin to thick), and the color of the circle (from yellow
to red) correspond to the criticality of that location (from less critical to more crit-
ical). The polyhedron about vertex v6 depicts the linearized stability region of that
vertex with respect to perturbations of the location of that vertex based upon the
linearization described in Section 4.2.5.
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Figure 4.7: Multi-objective TSP - shortest tour: This figure depicts the shortest
tour for the single objective Euclidean TSP as also given in Ref. [3]. While short, this
tour leads the aircraft close to the radar and jamming sites along edges e23 and e34.

the flown path fuel efficient.

In this section, three different objectives are considered:

4.7.3.1 Minimum length

Fuel consumption is related to the distance traveled. The length of an edge is the

Euclidean distance between the two vertices that are connected by that edge. Hence,

the cost of traveling from vertex vi at location pi to vertex vj at location pj is given

by:

uE,ij = ‖pi − pj‖2. (4.46)

The shortest tour, T ?Euclidean = (v1, v2, v3, v4, v5, v6, v1), is depicted in Fig. 4.7. How-

ever, as can be seen in the figure, this tour leads the aircraft very close to the radar

sites and communication jamming devices along edges e34 and e23.
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Figure 4.8: Multi-objective TSP - minimum radar exposure tour: This figure
depicts the optimal tour for the single objective minimum radar exposure TSP. This
tour leads the aircraft close to the communication jamming sites along edge e23.

4.7.3.2 Minimum radar exposure

Given a set of radar sources Π, the threat cost due to radar cR,ij associated with an

edge eij is calculated based on radar exposure of a vehicle traveling along that edge.

To simplify the calculation of radar exposure, it is assumed that the vehicle’s radar

signature is uniform in all directions and is proportional to d−4
π , where dπ represents

the distance from the vehicle to radar site π. In order to calculate the threat cost

along a given edge, the integration of the cost along the edge is required. Instead of

integrating costs for every edge the three point approximation given in Ref. [45] is

applied. Let gij = pj − pi and let Oij be a set of points associated with edge eij:

Oij = {pi +
1

6
gij, pi +

1

2
gij, pi +

5

6
gij}. (4.47)

67



v5

v6

v2

v1

v4

v3

0 50 100 150 200

0

50

100

150

Tjammer
sensors
radar
jammers

Figure 4.9: Multi-objective TSP - minimum communication disturbance
tour: This figure depicts the optimal tour for the single objective minimum commu-
nication disturbance TSP. This tour leads the aircraft close to the radar site along
edge e34.
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Then the cost of edge eij due to radar exposure to all radar sites πk ∈ Π is given by:

uR,ij =
γR‖gij‖2

3

|Π|∑
k=1

|Oij |∑
w=1

1

‖πk − bw‖4
2

, (4.48)

where γR = 10 is a constant scaling factor. Fig. 4.8 depicts the minimum radar

exposure tour T ?Radar = (v1, v4, v5, v6, v2, v3, v1). The tour avoids close encounters

with the radar sites, but is longer than the shortest tour and leads the aircraft close

to to the adversarial communication jamming sites along edge e23.

4.7.3.3 Minimum communication interference

The presence of a set of adversarial communication jamming devices Ξ is assumed

whose efficiency decreases proportionally with d−4
ξ , where dξ represents the distance

from the vehicle to jammer location ξ. Using the same three point approximation as

above for the path integral, the cost associated with an edge eij due to to the presence

of all jammers ξk ∈ Ξ is given by:

uR,ij =
γR‖gij‖2

3

|Ξ|∑
k=1

|Oij |∑
w=1

1

‖ξk − bw‖4
2

, (4.49)

where γJ = 10 is a constant scaling factor. Fig. 4.9 depicts the minimum communi-

cation jammer exposure tour T ?Jammer = (v1, v4, v3, v5, v6, v2, v1). The tour does not

include edge e23 that would lead the aircraft close to two jamming sites. However, it

leads the aircraft close to the radar site along edge e34.

4.7.3.4 Weighted-sum approach

Fig. 1.6 shows the optimal tour T ?Weighted for the weighted-sum objective for the

following choice of weights: λEuclidean = 0.1, λRadar = 0.5, and λ,Jammer = 0.4.

Fig. 4.10 depicts the stability region of that optimal tour with respect to changes

in the weights. The diamond indicates the chosen set of weights and the star indi-
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Figure 4.10: Multi-objective TSP - stability region: This figure depicts the sta-
bility region indicated by the grey polytope associated with the optimal tour depicted
in Fig. 1.6 with respect to changes in the weights. The diamond indicates the chosen
weights and the star depicts the smallest change in weights that causes that tour to
become suboptimal.

cates λ+ ∆λcrit, i.e., the smallest perturbation in weights that would lead to another

tour being optimal with respect to the weighted objective as defined in (4.29), where

∆λcrit,Euclidean = −0.1, ∆λcrit,Radar = 0.05, and ∆λcrit,Jammer = 0.05. From the fig-

ure, the range of weights for which the tour in Fig. 1.6 is optimal can be seen. By

considering the direction and magnitude of the most critical perturbation, it can be

seen that only slightly increasing the aversion to radar exposure and communication

interference will change the tour, while a stronger emphasis on a shorter tour will

not change the solution for small weight changes. Hence, fine tuning the weights is

only of interest or might result in a different tour if the radar and jamming objectives

should be prioritized higher, but not if shorter tour length would be desirable.
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4.7.4 Sequence-dependent TSP

In the following section, two examples for two different problems that can be formu-

lated as sequence-dependent problems are presented that exhibit different character-

istics based on the nature of their sequence-depence.

4.7.4.1 Cargo plane

Consider the motivating example from Section 1.3.2. A cargo aircraft starting at

location v1 visits three locations and delivers one distinct piece of cargo at each

location. The goal is to find a minimum time route. The travel time for an edge

is assumed to be the length of that edge in time units. The best tour is T ? =

(v1, v2, v3, v4, v1) as shown in Fig. 1.5 and the cost of that tour is q? = 7.1004. The

cargo is stacked according to this itinerary in the cargo aircraft to minimize time

when unloading. Hence, the cargo for location v4 is at the bottom of the stack and

the load for location v2 at the top. If the aircraft deviates from the originally optimal

tour, any cargo on top of the cargo for that location must be unloaded and reloaded

back into the aircraft. The unloading and loading operation is assumed to consume

one time unit, where solely unloading the cargo on top of the stack is assumed to

not add additional time. Hence, if the aircraft follows the original route, the time

to complete the route is only the travel time. If the aircraft, however, deviates from

the original tour and first visits location v4, an additional cost for unloading and

reloading the freight for locations v2 and v3 of two time units is added. Therefore,

this is a sequence-dependent TSP.

Using the method detailed above, the stability region for the optimal tour in this

scenario with respect to cost changes in the edges connecting location v2 and location

v3 when being used as the second edge within any possible tour is depicted in Fig. 4.11.

This could, for example, be interpreted as additional travel time due to poor weather

occurring during a time window on the flightpath that connects location v2 and v3
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in both directions. Notice that, as this is an asymmetric instance of the TSP, only

a limited cost increase in edge e23 can be tolerated for T ? to remain optimal, as

e23 ∈ T ?. Conversely, as e32 /∈ T ?, T ? becomes suboptimal if the cost for e32 falls

below a threshold.

Fig. 4.11 depicts the stability region for this problem with respect to sequence-

dependent edge cost disturbances to e23 and e32. These disturbances are applied

assuming that e23 and e32 are the second step of the tour and that there is a sequence-

dependent penalty for deviating from the previous tour. For comparison, the stability

region for the same perturbations, however, without the sequence-dependent penalty

for deviating from the tour is given in Fig. 4.12. The stability region is not the same as

before. The sequence-dependent additive cost translates the stability region, because

T ? is more robust to cost changes, as the sequence-dependent additive costs penalize

deviating from T ?. However, the shape of the stability region is preserved, as all tours

are affected equally.

In this example, the cost data is sequence-dependent, however, the disturbances

to the cost due to poor weather to the edges are independent of the sequence in which

locations are visited, and all the tours are affected equally.

4.7.4.2 Intelligent adversary

Consider the 4-vertex TSP in Fig. 4.13. An unmanned aircraft, flying at constant

velocity, starting at location v1, is tasked to gather intelligence regarding three sus-

pects at locations v2, v3, and v4 in minimum time, where the distance between the

locations of the suspects is the Euclidean distance. Nominally, the best tour to visit

the suspects is T ? = (v1, v2, v3, v4, v1). However, the suspects adjacent to each other

can communicate with each other through the links indicated by the arrows with the

radio tower symbol in the figure. Note that, there is no communication link between

v2 and v4. If the unmanned aircraft visits two suspects in succession that can commu-
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Figure 4.11: Stability region for sequence-dependent TSP: The stability region
for the sequence-dependent TSP with respect to cost changes in c23 or c32 if visited
at the second step of the tour affecting all tours equally.

nicate with each other, the suspects are assumed to detect a pattern and to alert the

third suspect. That suspect then camouflages, which requires the aircraft to loiter

above the location instead of just flying by to gather the data about the remaining

suspect. If, however, after visiting the first suspect the aircraft visits the suspect that

has no communication link to the first no warning is given to the third remaining

suspect.

The problem of finding a minimum time tour to visit all three suspects can be

formulated as a sequence-dependent TSP. The stability region of the nominal optimal

tour with respect to cost increases due to the third suspect camouflaging if alerted

identifies the range of cost increases for which the nominal tour remains optimal.

Notice that, by using the diagonal edges, alerting the third suspect can be avoided.

In this example, the nature of the sequence-dependence is different from the pre-

vious example. Here, the travel cost depends on the sequence in which the locations

are visited as in the previous example, but also the change in edge costs are sequence-
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Figure 4.12: Stability region for sequence-dependent TSP: The stability region
for the sequence-dependent TSP with respect to cost changes in c23 or c32 without
the sequence-dependent penalty for deviating from the tour is depicted.

dependent and only affect tours that include that specific sequence of locations.

Fig. 4.14 depicts the stability region for perturbations in edges e23 and e34 for the

sequence independent 4-vertex TSP. In contrast, the stability region for ∆c(v1,v2,v3),34

and ∆c(v1,v4,v3),32, i.e., the sequence-dependent case is given in Fig. 4.15. Again, the

stability region for the sequence-dependent TSP is not equal to the stability region of

the sequence independent problem. However, in this example, the stability region is

not only translated compared to the non sequence-dependent problem, but also the

shape of the stability region is different due to the sequence-dependent effect on the

edges.
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Figure 4.13: Sequence-dependent TSP with intelligent adversary: The sce-
nario for the sequence-dependent TSP instance with communicating adversaries is
shown.
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Figure 4.14: Stability region without communication: The stability region of
the optimal tour is given for the case that the adversaries do not communicate. The
problem is therefore not sequence-dependent.
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Figure 4.15: Stability region with communication: The stability region of the
optimal tour is given for the case that the adversaries can communicate. The problem
is sequence-dependent.
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CHAPTER 5

Stability analysis for the minimum

spanning tree problem

This chapter presents the exact stability analysis for solutions to minimum spanning

tree problems with respect to perturbations in the edge costs. A description and a

representation of the stability regions in half space representation are given. The

derivation of edge cost tolerances from the stability regions is demonstrated and

edge criticalities are defined. Furthermore, for eMSTs, the derivation of approximate

stability regions with respect to perturbations in vertex locations, safe radii, and

vertex criticalities are given. These are derived from the stability regions with respect

to edge cost perturbations.

5.1 Problem formulation

The problem addressed in this chapter can be formulated as follows: Given a MST for

a weighted graph, find the stability region of that MST and determine an expression

to test whether arbitrary perturbations to the edge weights cause another spanning

tree of that graph to be better than the current MST.

To solve this problem, necessary and sufficient conditions for the optimality of a

MST from the literature [77] are exploited to obtain a half-space representation of the

stability region of a MST. Using a small perturbation analysis, approximate stability
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regions for eMSTs are derived for vertex location perturbations.

5.2 Stability regions of a MST

Let ST denote the set of all spanning trees for a graph. A naive approach to ob-

taining the stability region of a MST as defined in Problem Formulation 3.2.2 relies

on total enumeration of all spanning trees of a graph. However, as |ST | = nn−2

this becomes intractable for reasonably sized problems. Another approach could be

based on performing sensitivity analysis of the linear programming relaxation of the

integer programming formulation of the MST problem. However, linear program-

ming formulations of MST problems grow exponentially in size with the number of

vertices. Building upon Lemma 1 in Ref. [77], a different approach is presented in the

subsequent paragraphs.

Let MST be a minimum spanning tree on G, and let F denote the set of edges

such that ∀f ∈ F : f /∈ MST.

It is known that for a spanning tree of minimum total edge weight, the following

must hold:

Lemma 5.2.1 ( [77]). MST is a minimum spanning tree of G if and only if, for each

non-tree edge f , the weight of f is at least as large as the weight of any edge on the

(unique) simple path in MST joining the ends of f . (In what follows we shall denote

the path in MST joining the ends of f by MST(f).)

Re-writing Lemma 5.2.1 as a set of inequalities yields:

∀f : c(f) ≥ c(e), ∀e ∈ MST(f). (5.1)

The set of inequalities (5.1) provides necessary and sufficient conditions for the opti-

mality of a spanning tree MST. To introduce perturbations to the weight of an edge
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c(e), let ∆c(e) denote a deviation in the edge weight of edge e. Then, the stability

region of a MST with respect to changes in the edge weights is given by the following

corollary:

Corollary 5.2.2. Given perturbations ∆c(e) to the edge weights, MST remains a

minimum spanning tree of G if and only if the following inequality is satisfied for

each non-tree edge f :

c(f) + ∆c(f) ≥ c(e) + ∆c(e),∀e ∈ MST(f), (5.2)

where c(e) and c(f) denote the unperturbed weights of the respective edges.

Clearly, the stability region of a MST is a convex polyhedron in the space of

weight changes and obtaining its half-space representation in matrix form is therefore

desirable. Then, let the set Ef associated with a non-tree edge f ∈ F denote the set

of edges that are contained in the path MST(f) with an induced enumeration, i.e.,

the m-th element in Ef is the m-th element found when searching for elements of Ef

in the set E, the set of all edges of the graph.

Hence, for each edge f ∈ F , the set of inequalities given by (5.2) can be written

in matrix form:

Uf · (c+ ∆c) ≤ Af · (c+ ∆c), (5.3)

where the q-th row of matrix Uf is vector uTq :

uq =

[
0 . . . 0 −1 0 . . . 0

]T
, (5.4)

and the index of the non-zero entry in uq is computed using (4.1) such that {i, j} are

the indices of the vertices {vi, vj} covered by f . Furthermore, the q-th row of matrix

Af is vector aTq :

aq =

[
0 . . . 0 −1 0 . . . 0

]T
, (5.5)
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where the index of the non-zero entry is computed using (4.1) such that {i, j} are the

indices of the vertices {vi, vj} covered by Ef (q), i.e., the q-th edge in set Ef .

Then, concatenating all matrices Uf and Af as follows:

U =

[
UT

1 UT
2 . . . UT

|F |

]T
, (5.6)

and

A =

[
AT1 AT2 . . . AT|F |

]T
, (5.7)

yields:

U · (c+ ∆c) ≤ A · (c+ ∆c). (5.8)

Furthermore, let:

U = U − A, (5.9)

and:

q = A · c− U · c. (5.10)

Finally:

U ·∆c ≤ q. (5.11)

This gives the desired description of the stability region of a MST in its half-space

representation in matrix form.

5.3 Properties of the MST stability region

In the following paragraphs, the dimensions of the elements in (5.11) are analyzed:

• ∆c ∈ R|E|, where |E| = 1
2
· n · (n− 1) ≈ O(n2).

• U ∈ Zβ×|E|, where β is bounded by:

β ≤ (n− 1)[1
2
· (n− 1) · (n− 2)] ≈ O(n3), where (n− 1) is the number of edges
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contained in the MST and [1
2
· (n− 1) · (n− 2)] = |F |.

• Finally, q ∈ Rβ.

Hence, the number of elements to be stored for (5.11) is of order O(n5) and therefore

polynomial in n, the cardinality of the set of vertices. Furthermore, the stability

region of a MST is a convex polyhedron in the |E| dimensional space of edge weight

perturbations with at most (n− 1)[1
2
· (n− 1) · (n− 2)] ≈ O(n3) facets.

By exploiting the sparsity of U , representations of the stability region that scale

more favorably with the size of the graph could be developed. [77] gives an efficient

algorithm to construct the sets Ef .

5.4 Perturbations in a single edge

From the development of stability regions above, multiple measures of sensitivity can

be derived. First, let us consider the robustness of the MST with respect to changes

in the weight of a single edge. The edge weight tolerance is the supremum of weight

increases of an edge (resp. infimum of weight decreases) under which a given MST

remains optimal, provided the other edge weights in the graph are unchanged. This

definition is analogous to the definition of edge cost tolerances in the context of TSPs

in the previous chapter. Using (5.11), the edge weight tolerances can be computed

using the same method as described above: To compute the tolerance for an arbitrary

edge eij, with associated edge weight vector entry cw, set ∆ck = 0 for all k 6= w. This

immediately yields the tolerance ∆cw by identifying the most restrictive inequality

resulting by row-wise evaluation of (5.11). Note, that for any edge eij, only the

upper tolerance ∆c+
ij or the lower tolerance ∆c−ij is finite. Intuitively, if an edge is

in the MST, decreasing the weight of that edge decreases the weight of all spanning

trees that contain that edge by the same amount. Hence, the original MST remains

optimal. Similarly, if an edge is not part of the MST and the weight of that edge
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increases, the weights of all spanning trees that contain that edge increase by the

same amount and can therefore not be lower than the weight of the MST that does

not contain that edge. An alternative way of computing tolerances for MSTs that

does not require the construction of the stability region is given in Ref. [77].

The stability region of a MST can be understood as a margin of optimality of that

MST with respect to arbitrary disturbances in edge weights and the edge tolerance as

the margin of optimality with respect to a disturbance of the weight of a single edge.

Once the stability region of a MST and the edge weight tolerances are known, it might

be of interest to identify edges that are critical. Critical edge here refers to an edge for

which the margin of optimality of the MST with respect to disturbances to the weight

of that edge is smaller than the margin of optimality with respect to disturbances

in the weight of other edges. Hence, a high criticality of an edge indicates that the

MST is more susceptible to weight changes in that edge. Again, the notion of edge

criticality and the development is analogous to Section 4.2.4. Let ∆c+
min denote the

minimum upper edge weight tolerance for any edge and let ∆c−max be the maximum

lower edge weight tolerance for any edge.

Definition 5.4.1 (∆c+
min, ∆c−max). Let:

∆c+
min = min

ij
∆c+

ij, (5.12)

∆c−max = max
ij

∆c−ij. (5.13)

Then, χij is a dimensionless parameter that characterizes the criticality of an edge

and can be defined as follows:

Definition 5.4.2 (χij). For 1 ≤ i, j ≤ n, the criticality of edge eij is defined as:


χij =

∆c+min

∆c+ij
∆c+

min 6= 0 ∧ |∆c+
ij| <∞,

χij = −∆c−max

∆c−ij
∆c−max 6= 0 ∧ |∆c−ij| <∞.

(5.14)
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For a minimal upper tolerance equal to zero, the criticality of edges with respect

to weight increases is not defined and similarly, if the maximum lower tolerance is

equal to zero, the criticality of edges with respect to weight decreases is not defined.

Furthermore, a negative criticality χij indicates that edge eij is not part of the MST

and hence only weight decreases in that edge, if all other edge weights are held con-

stant, can influence the optimal solution. Similarly, a positive criticality χij indicates

that edge eij is part of the MST and hence only weight increases in that edge, if all

other edge weights are held constant, can influence the optimal solution.

5.5 Stability balls

The tolerances discussed above are defined with respect to perturbations in the weight

of a single edge. However, other subsets of the stability region are also of interest

in sensitivity analysis. This paragraph discusses the stability ball, i.e., the largest

inscribed ball in the stability region that is centered at the origin. Hence, the stability

ball provides sensitivity information with respect to simultaneous changes in the

weights of multiple edges. The radius of the stability ball can be computed as follows:

∆rcrit = argmin
∆c

‖∆c‖2

subject to U ·∆c = q.

(5.15)

∆rcrit can be interpreted in different ways. ‖∆rcrit‖2 gives a safe margin where any

perturbation that is smaller than ‖∆rcrit‖2 in the L2-norm sense is guaranteed to

not alter the optimal solution. The unit vector ∆rcrit
‖∆rcrit‖2

defines a critical direction

and helps to identify the edge weights that the optimal solution is most susceptible

to. This definition and interpretation is analogous to the notion of critical weights

changes in Section 4.3.1 for solutions to wsmoTSP.
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5.6 Approximate stability regions for eMST

For the eMST, the weight of a graph edge is the Euclidean distance between two

vertices. In unmanned aircraft operations, the relative locations of the aircraft in a

team vary over time. Hence, the robustness of a eMST with respect to the locations of

the vertices is of interest. Therefore, the following sections studies stability regions of

optimal solutions to eMST as stated in Definition 3.2.3 with respect to perturbations

to the vertex locations. Following the same derivation as in Section 4.2.5, a first

order approximation of the stability region of an optimal solution to an eMST with

respect to the vertex location disturbance vector is given through substitution of the

linearized relationship in (4.17) between vertex location perturbations ∆p and the

edge weight perturbations ∆c into (5.11) by the polyhedron:

U · A ·∆p ≤ q. (5.16)

5.7 Perturbations in the location of a single vertex

for eMST

Similarly to the derivation of vertex location stability regions for eTSP, stability

regions with respect to vertex location perturbations for the eMST are obtained

through linearization assuming small perturbations. The notion of a safe radius can

be introduced to be more conservative. The minimal perturbation in the L2 norm

sense, ∆pw,min, in the location of a single vertex vw that lies on the boundary of the
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linearized stability region is computed as follows:

∆pw,min = argmin
∆pw

‖∆pw‖2

subject to HA∆p = −q,

∆pk = 0, ∀k 6= w.

(5.17)

Definition 5.7.1 (rw,safe). Let rw,safe be the radius of the largest circle centered at the

nominal location of vertex vw that is fully contained in the stability region associated

with vertex vw with respect to perturbations of the location of vw obtained through

linearization assuming that all other vertices are located at their nominal locations.

Hence, rw,safe can be computed as:

rw,safe = ‖∆pw,min‖2. (5.18)

The unit vector
∆pw,min

‖∆pw,min‖2
gives the direction in which the least magnitude in change

in location for vertex vw can be tolerated before another spanning tree is better,

assuming all other vertices remain at their nominal locations.

To ease interpretation by a human operator, a vertex criticality measure is defined

as follows: Let ξw denote the criticality of a vertex vw. Furthermore, let rmin,safe

denote the smallest of all safe radii:

rmin,safe = min
w
rw,safe. (5.19)

Then the criticality of vertex vw can be computed as follows:


ξw =

rmin,safe

rw,safe
rw,safe > 0,

ξw =∞ otherwise.

(5.20)
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This definition is equivalent to the definition for eTSPs above. Note that, if ∃w :

rw,safe = 0, vertex criticalities cannot be defined.

5.8 Example

Recall the motivating UAV communication network example in Section 1.3.4. Three

UAVs survey an area of interest by following elliptical flight paths counterclockwise at

a speed that results in the same period for each orbit. Fig 5.1 depicts the trajectory

vi,inertial(t) of each aircraft with respect to an inertial frame. The initial location

vi,inertial(0) of aircraft i at time 0 and its flight path azimuth are indicated by the

black arrows.

While performing this mission all aircraft must maintain communication links

between each other such that each aircraft can receive data from any other aircraft

by means of single or multi hop communication while minimizing the transmission

power. The transmission power to establish a connection between any pair of aircraft

is inversely proportional to a power of the Euclidean distance between these aircraft.

An optimal communication topology with respect to the cumulative transmission

power in this case is a minimum spanning tree on the communication graph, where

the UAVs correspond to the vertices of that graph and the weight of an edge of that

graph corresponds to the distance between the two vertices covered by that edge.

Specifically, this MST is an Euclidean MST (eMST), where the edge weight cij is the

Euclidean distance between the vertices vi and vj. The initial MST T0 is depicted by

the dotted lines connecting the black arrows in Fig 5.1.

As the aircraft follow their flight paths, their relative positions with respect to

each other change. This results in changing weights of the edges of the communication

graph over time. Fig 5.2 depicts the stability region of T0 with respect to changes

in the edge weights and Fig 5.3 shows the projection of that stability region onto
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the ∆c23/∆c13 plane. The black solid lines in Figs. 5.2, 5.3 depict the trajectory of

the edge weight changes starting at the origin in the direction of the black arrow

as the aircraft perform one complete orbit. Upon reaching point a, indicated by

the + symbol, the trajectory exits the stability region of T0. Hence, T0 is not a

minimum spanning tree anymore. In Fig 5.1, the corresponding positions of the three

aircraft along their trajectories are indicated and the new minimum spanning tree is

shown. As the aircraft reach the respective locations denoted b along the flight path,

the trajectory of weight changes in Figs. 5.2, 5.3 re-enters the stability region of T0.

Hence, as shown in Fig 5.1, the optimal communication topology changes and T0 is a

minimum spanning tree again for the remainder of the period.

This example is chosen to be small in order to allow for a visualization of the

complete stability region in the space of edge weight changes. However, as shown in

Section 5.3, the demonstrated methods scale favorably with the number of aircraft.

Similarly, the stability region does not depend on the trajectories of the aircraft

but only on the initial locations and therefore the chosen elliptical flight paths are

representative for a wide range of possible trajectories.

Finally, Fig 5.4 demonstrates the concepts developed in Sections 5.6 and 5.4. First,

an approximation of the stability region in the space of location changes of the UAV is

obtained through linearization about the initial locations as described in Section 5.6.

This results in a six dimensional stability region. For visualization purposes, the

following frame is chosen: Its origin 0team is collocated with the location of UAV

1 v1,inertial(t) and the abscissa of the frame is parallel to the vector v2,inertial(t) −

v1,inertial(t). The ordinate of the team frame completes a right hand frame. Fig 5.4

depicts the trajectories of the UAVs with respect to the team frame. UAV 1 and

UAV 2 are stationary with respect to that frame. Hence, a two-dimensional cut

through the stability region in the space of location changes suffices to visualize the

trajectories of the UAVs with respect to the stability region as any relative movement
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Figure 5.1: Communication topology planning in inertial frame: The initial
locations and flight path azimuths of the 3 aircraft vi(0) with respect to the inertial
frame are indicated by the black arrows. The elliptical flights paths are also shown.
Furthermore, the MSTs at the initial locations and for the UAVs at the locations
denoted a and b along their respective trajectories are depicted by the dotted lines.
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Figure 5.2: Stability region of the initial MST: The stability region of spanning
tree T0 with respect to changes in the edge weights is depicted. The black solid
line shows the trajectory of the edge weight changes starting at the origin in the
direction of the black arrow as the aircraft perform one complete orbit leaving the
stability region at point a and re-entering it at point b. For visualization purposes,
this figure shows the intersection of the stability region with a cube of 2 units edge
length centered at the origin.

88



∆c13

∆
c 2

3

-0.5 0 0.5

-0.5

0

0.5

a

b

Figure 5.3: Projection of the stability region of the initial MST: The projection
of the stability region of spanning tree T0 with respect to changes in the edge weights
onto the ∆c23/∆c13 plane is shown. The black solid line shows the trajectory of
the edge weight changes starting at the origin in the direction of the black arrow as
the aircraft perform one complete orbit, leaving the stability region at point a and
re-entering it at point b.

89



∆x

∆
y

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0
v1(0) v2(0)

v3(0)
r3,safe

a

b

Figure 5.4: Stability region of initial MST in non inertial frame: The tra-
jectories of the aircraft are depicted with respect to a right-hand frame whose ori-
gin 0team is collocated with v1,inertial(t) and whose abscissa is parallel to the vector
v2,inertial(t) − v1,inertial(t). The ordinate of the team frame completes a right hand
frame. The red polyhedron depicts a cut through the linearized stability region with
respect to location changes of UAV 3, ∆v3, offset by p3,inertial(0)−p1,inertial(0). The red
circle is centered at p3,team(0) with radius r3,safe. Points a and b along the trajectory
of UAV 3 indicate where T0 becomes suboptimal and regains optimality respectively.
The dotted lines depict the respective minimum spanning trees.

is completely captured by the trajectory of UAV 3. The red polyhedron depicts the

cut through the linearized stability region with respect to location changes of UAV 3,

∆v3, offset by p3,inertial(0)− p1,inertial(0). The red circle is centered at p3,team(0) with

radius r3,safe as defined in Section 5.4. Again, points a and b along the trajectory

of UAV 3 indicate where T0 becomes suboptimal and regains optimality respectively

and the dotted lines depict the respective minimum spanning trees.
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CHAPTER 6

Approximate stability analysis for the

traveling salesman problem

This chapter addresses the problem of approximate stability analysis for solutions

to symmetric non sequence-dependent traveling salesman problems. Over and under

approximations of the stability region of optimal solutions are given. Upper and lower

bounds on edge cost tolerances and approximate edge criticalities are derived from

the approximate stability regions. For the special case of the eTSP, approximate

stability regions with respect to perturbations in vertex locations are shown to be

obtainable from the approximate stability region in edge cost perturbations. Based

on these, approximate safe radii and vertex criticalities are defined.

6.1 Intractability of exact stability analysis

Chapter 4 gives a method to compute stability regions of an optimal tour with respect

to an arbitrary set of tours. If that set of tours is chosen to be T , the set of all

tours, the method in Chapter 4 gives the exact stability region of the optimal tour.

From that exact stability region, exact edge cost tolerances can be derived as shown

in Section 4.2.3. However, this approach to obtaining exact edge cost tolerances for

instances of the symmetric non sequence-dependent TSP becomes intractable for large

instances. This thesis only considers complete graphs and therefore |T | = (n−1)!
2

. In
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a fully connected graph, there exist 2 (n−2)!
2

= (n − 2)! tours T ′ ∈ T : eij ∈ T ′ and

(n−1)!
2
− (n − 2)! = (n−3)(n−2)!

2
tours T ∈ T : eij /∈ T . Hence, computing ∆c+

ij for an

edge eij ∈ T ? requires the evaluation of (n−3)(n−2)!
2

inequalities. Computing ∆c−ij for an

edge eij /∈ T ? requires the evaluation of (n− 2)! inequalities. The edge cost tolerance

problem for the TSP is NP–hard [79] and it is not possible to check in polynomial

time whether an optimal TSP tour is still optimal after an arbitrary change in the

cost of a single edge occurs unless P = NP [8]. Even determining an ε-approximation

∆c+
w given 0 ≤ ε ≤ 1 of the tolerances such that (1−ε)∆c+

w ≤ ∆c+
w ≤ ∆c+

w for all edges

is not possible in polynomial time. ε-approximations of lower tolerances are likewise

not obtainable in polynomial time unless P = NP [8]. The method in Chapter 4

for obtaining the exact stability region of an optimal tour relies on total enumeration

of all tours in T . Hence, obtaining exact stability regions following that method

becomes computationally prohibitive as n becomes large. Indeed, it is not possible

to check in polynomial time whether an optimal TSP tour is still optimal after the

cost of an arbitrary set of edges has been changed unless P = NP [8]. This result is

closely related to the problem of finding the stability region of an optimal tour.

Let λ ∈ R|E| be vector, where
|E|∑
i=1

λi = 1 and ∀i : λi ≥ 0. Let rλ ∈ R be a scalar

such that rλ is the solution to the following optimization problem:

Problem formulation 6.1.1 (Directed stability problem). Given a fully connected

undirected graph G(V,E), an edge cost vector c, a shortest tour T ?, and a vector

λ ∈ R|E|, find rλ such that:
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rλ = maximize
r,y

r

subject to yrλ ∈∆(T ?),

(1− y)rλ ∈∆(T ?),

y ∈ {0, 1},

rλ ≥ 0.

(6.1)

The stability decision problem for the TSP along a given direction can be stated

as follows:

Problem formulation 6.1.2 (Directed stability decision problem). Given a fully

connected undirected graph G(V,E), an edge cost vector c, a shortest tour T ?, a

vector λ ∈ R|E|, and a scalar B ∈ R, is rλ at most B?

This is a generalization of the tolerance decision problem that isNP–complete [79].

Therefore, the directed stability decision problem for the TSP along a given direction

λ is NP–hard. Hence, determining the exact value rλ along a given direction is at

least as hard as the decision problem and therefore is NP–hard [90]. Finally, the

problem of obtaining the stability region for the TSP is NP–hard, as it is a gener-

alization of the problem of determining the exact value rλ along a given direction

and hence at least as hard as that problem. The results in Refs. [8, 79] also imply

that an ε-approximation of the stability region is not obtainable by a polynomial

time method, where an ε-approximation of the stability region would allow for the

computation of ε-approximate tolerances using the method in Section 4.2.3.

Hence, this chapter focuses on computationally tractable stability region approx-

imations. Methods for over and under approximation without tightness guarantees

in the ε sense but rather heuristic reasoning regarding the approximation quality are

given.
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6.2 Problem formulation

The problems addressed in this chapter can be formulated as follows:

• Given an instance of the TSP, and letting T ? denote the best tour within T ,

find an efficient method to obtain an over approximation of the stability region

of T ? with respect to T such that for any perturbation to the edge costs outside

of that over approximation there exists a better tour than T ? in T .

• Given an instance of the TSP, and letting T ? denote the best tour within T ,

find an efficient method to obtain an under approximation of the stability region

of T ? with respect to T such that for any perturbation to the edge costs within

that under approximation there does not exist a better tour than T ? in T .

6.3 Over approximation

This section develops a general method to over approximate the stability regions of

an optimal tour T ?, gives heuristic guidelines on how to obtain a good over approx-

imation, and presents one specific way of obtaining an over approximation of the

stability region of an optimal tour that follows the guidelines for obtaining a good

over approximation.

6.3.1 Over approximation by subsets

Define the following sets:

• Let T ′ denote a subset of T that does not contain T ?, i.e., T ′ ⊆ T \ T ?.

• Let W denote the set of edges that are contained in T ? and not contained in at

least one tour in T ′, i.e., W = {{e : e ∈ T ?} ∩ {e : ∃T ∈ T ′, e /∈ T}}.
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• Let M denote the set of edges that are not contained in T ? and contained in at

least one tour in T ′, i.e., M = {{e : e /∈ T ?} ∩ {e : ∃T ∈ T ′, e ∈ T}}.

Let ∆c” be a vector of cost changes to edges that are contained in the sets W or M ,

i.e., ∀i : ei /∈ W ∪M,∆ci” = 0. Then, let ∆”(T ?) denote the stability region of T ?

with respect to cost changes only in edges contained in W or M, assuming all other

edge costs remain unchanged:

∀∆c” ∈∆”(T ?),∀T ′ ∈ T , L(T ?(∆c”)) ≤ L(T ′(∆c”)). (6.2)

Then, by considering only the subset of tours T ′:

∀∆c” ∈∆”(T ?),∀T ′ ∈ T ′, L(T ?(∆c”)) ≤ L(T ′(∆c”)), (6.3)

an over approximation of ∆”(T ?) is obtained.

Proposition 6. ∆”(T ?) ⊆∆”(T ?).

Proof. Let ∆c” /∈ ∆”(T ?). =⇒ ∃T ′ ∈ T ′ : L(T ′(∆c”)) < L(T ?(∆c”)) =⇒ ∆c” /∈

∆”(T ?). This completes the proof by contrapositive.

Hence, using any subset T ′, an over approximation of the stability region with

respect to changes in the costs of specific edges can be obtained using the method

outlined in Section 4.2 by only considering the subset.

6.3.2 Heuristic guidelines

As discussed in Section 6.1, giving guarantees on the tightness of approximation

in the sense of an ε-approximation as introduced above is hard. Trivially, letting

T ′ = T \ T ? gives the exact stability region. However, this becomes intractable for

larger instances. This section provides heuristic guidelines on how to choose a subset

T ′ that gives a good approximation of the stability region:
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1. “Coverage”: As shown in Proposition 6, an approximate stability region con-

structed using the method only allows for cost changes that are contained in

either M or W . Hence, a good set T ′ should be chosen such that the resulting

sets of edges M and W satisfy M ∪W = E. Intuitively, if e ∈ T ?, then e must

not be contained in at least one tour in T ′ as otherwise a cost increase of that

edge does not affect optimality of T ? with respect to T ′ as the length of all

tours in the subset increase by the same amount. Similarly, if e /∈ T ?, then e

must be contained in at least one tour in T ′ as otherwise a cost decrease of that

edge does not affect optimality of T ? with respect to T ′ as the decrease in cost

of that edge does not affect the length of any tour in T ′ while L(T ?) remains

unchanged.

2. “Tightness”: Each tour included in T ′ adds an inequality to the halfspace

representation of the approximate stability region. For a good approximation

these inequalities need to be tight. The tightness of the inequalities depends

on the length difference between the tour that gives the inequality and L(T ?).

Hence, all tours included in T ′ should be short tours.

6.3.3 Over approximation by T2

Let the 2-neighborhood of a tour T be the set of all tours obtained by permutation

of any two cities in the tour T . Specifically, let T2 denote the 2-neighborhood of the

optimal tour T ?. T ′ = T2 gives an over approximation of the stability region of T ?

and T2 fulfills both criteria given above for a good set of tours:

1. Coverage of T2 is ascertained by the following two lemmas, where the nomen-

clature is clarified in Fig. 6.1:

Lemma 6.3.1. ∀e, ∃T ∈ T2 : e ∈ T .
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va vb

vc vd

Figure 6.1: An optimal tour: This figure depicts an optimal tour T ? that contains
vertices va, vb, vc, vd.

Proof. Assume ∀T ∈ T2,∃ead: ead /∈ T =⇒ ∃vb adjacent to va and vc adjacent

to vd such that ea,b ∈ T ? and ec,d ∈ T ?. Deleting ea,b and ec,d from T ? and

adding ebc and ead gives a tour T ′ and T ′ ∈ T2.

Lemma 6.3.2. ∀e, ∃T ∈ T2 : e /∈ T .

Proof. First, consider edges that are contained in T ?: Assume ∀T ∈ T2, ∃eab ∈

T ? : eab ∈ T . Then, pick an arbitrary ecd ∈ T ?. Deleting eab and ecd from T ? and

adding ecb and ead gives a tour T ′ and T ′ ∈ T2. Second, consider edges that are

not contained in T ?: Assume ∀T ∈ T2,∃ead /∈ T ?, s.t. ea,d /∈ T . However, ∃vb

adjacent to va and vc adjacent to vd such that eab ∈ T ? and ecd ∈ T ?. Deleting

eab and ecd from T ? and adding ecb and ead gives a tour T ′ and T ′ ∈ T2.

Hence, M ∪W = E.

2. Tightness of the inequalities that result from considering T2 cannot be guaran-

teed. Indeed, T2 is not a set of best tours for almost all instances. However,

tours in the 2-neighborhood of T ? are typically good tours. In the literature [75],

it has been observed that many good tours share a significant amount of edges

which has led to the study of backbones of TSP tours. This supports the notion
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of permuting the least possible number of edges starting with the optimal tour

to create a set of good tours. Specifically, for an instance of the TSP, the length

of a tour T ∈ T2 can be computed as follows: L(T ) = L(T ?)− ci − cj + ck + cl,

where ei, ej ∈ T ? \ T and ek, el ∈ T \ T ?. Let:

cmin = min
cij∈T ?

cij, (6.4)

cmin2 = min
cij∈T ?\cmin

cij. (6.5)

Similarly, let

cmax = max
cij /∈T ?

cij, (6.6)

cmax2 = max
cij /∈T ?\cmax

cij. (6.7)

Then, the maximal difference in tour length between T ∈ T2 and T ? can be

bounded by:

∆L ≤ −cmin − cmin2 + cmax + cmax2 . (6.8)

Hence, for instances where edge lengths are of similar order of magnitude, tours

in the two neighborhood of the optimal tour are good tours. Conversely, an

over approximation of the stability region based on T2 is likely to be better if

the difference ∆c = max c(e) − min c(e) between the maximum cost edge and

the minimum cost edge in the graph is small.

An alternative approach of selecting a set of tours by choosing T ′ to be the k-best

tours in T has been studied in Ref. [83] in the context of over approximating edge

cost tolerances. While satisfying the tightness requirement, this approach does not

guarantee coverage. Furthermore, solving the k-best TSP is computationally hard,

whereas the 2-neighborhood can be constructed efficiently in post-processing after

obtaining T ?. As |T2| = O(n2), this approach scales favorable with n.
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6.3.4 Over approximation of edge cost tolerances

An over approximation and hence an upper bound on the upper tolerance and a

lower bound on the lower tolerance for edge cost tolerances with respect to T can

be computed as follows: Consider the over approximation of the stability region of

T ? obtained by considering T2 given in half-space representation. Using the method

outlined in Section 4.2.3, the desired approximate tolerances can be computed by

identifying the most restrictive inequalities for each edge.

6.4 Under approximation

This section develops a general method to under approximate the stability regions

of an optimal tour T ? based on a relaxation. Let Z∗ be the optimal solution to a

relaxation of the traveling salesman problem on G(V,E). Then, its length is L(Z?),

and L(Z?) ≤ L(T ?) because it is a relaxation. Let Z denote the set of all feasible

solutions to that relaxation or the traveling salesman problem on that graph. The

cost of a feasible solution to the relaxed problem changes to L(Z(∆c)) if the edge

costs of the graph are perturbed by ∆c. Let ∆(Z?) denote the stability region of Z?:

∀∆c ∈∆(Z?),∀Z ′ ∈ Z, L(Z?(∆c)) ≤ L(Z ′(∆c)). (6.9)

Then, introduce the following sets of edges:

• Let P denote the set of edges that are contained in T ? and Z?: P = {e : e ∈

T ? ∩ e ∈ Z?}.

• Let Q denote the set of edges that are only contained in T ?: Q = {e : e ∈

T ? ∩ e /∈ Z?}.

• Let R denote the set of edges that are only contained in Z?: R = {e : e ∈

Z? ∩ e /∈ T ?}.
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• Let S denote the set of edges that are contained in neither T ? nor Z?. S = {e :

e /∈ T ? ∩ e /∈ Z?}.

Let L(A) denote the sum of the costs of the edges e ∈ A for an arbitrary set of edges A.

Note that L(T ?) = L(P )+L(Q) and L(Z?) = L(P )+L(R). Let L(A(∆c)) denote the

sum of the costs of edges that are contained in set A under cost perturbation ∆c. Let

∆c̃ be a vector of cost changes to edges that are in P or S, i.e., ∀i : ei /∈ P∪S,∆c̃i = 0.

Hence, only edges that are either contained in both T ? and Z?, or in neither are

perturbed. Let ∆̃(T ?) denote the stability region of T ? with respect to cost changes

only in edges contained in P or S, assuming all other edge costs remain unchanged:

∀∆c̃ ∈ ∆̃(T ?),∀T ′ ∈ T , L(T ?(∆c̃)) ≤ L(T ′(∆c̃)). (6.10)

Let ∆̃(Z?) denote the stability region of Z? with respect to cost changes only in edges

contained in P or S, assuming all other edge costs remain unchanged:

∀∆c̃ ∈ ∆̃(Z?),∀Z ′ ∈ Z, L(Z?(∆c̃)) ≤ L(Z ′(∆c̃)). (6.11)

Let ∆̃′(Z?) denote a subset of ∆̃(Z?), such that:

∀∆c̃ ∈ ∆̃′(Z?),∀Z ′ ∈ Z,

L(Z?(∆c̃)) + (L(T ?)− L(Z?)) ≤ L(Z ′(∆c̃)) (6.12)

Note that (L(T ?) − L(Z?)) ≥ 0, because Z? is a relaxation. The following is then

claimed:

Proposition 7. ∆̃′(Z?) ⊆ ∆̃(T ?).

Proof. 1. Let ∆c̃ /∈ ∆̃(T ?).

2. ∃T ′(∆c̃) ∈ T such that L(T ′(∆c̃)) is minimal.
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3. L(T ?(∆c̃)) > L(T ′(∆c̃)) because of step 1.

4. L(P (∆c̃)) + L(Q) > L(T ′(∆c̃)). Note that L(Q) = L(Q(∆c̃)). Similarly, L(R) =

L(R(∆c̃)).

5. Let Z ′(∆c̃) be the optimal solution to the relaxed problem under perturbation

∆c̃.

6. L(P (∆c̃)) + L(Q) > L(T ′(∆c̃)) ≥ L(Z ′(∆c̃)) because it is a relaxation.

7. L(P (∆c̃)) + L(Q) + L(R)− L(R) > L(Z ′(∆c̃)).

8. L(P (∆c̃)) + L(R) + L(Q)− L(R) > L(Z ′(∆c̃)).

9. L(Z?(∆c̃)) + L(Q)− L(R) > L(Z ′(∆c̃)).

10. L(Z?(∆c̃)) + L(P ) + L(Q)− L(P )− L(R) > L(Z ′(∆c̃)).

11. L(Z?(∆c̃)) + (L(T ?)− L(Z?)) > L(Z ′(∆c̃)).

12. ∆c̃ /∈ ∆̃′(Z?) because of step 11.

This completes the proof by contrapositive.

The following observations can be made. The notions of coverage and tightness

discussed above for over approximations are also applicable in the case of under

approximations. Here, coverage is directly related to the cardinality of sets Q and R.

If both, Q and R, are empty, T ? and Z? contain the same set of edges. Therefore,

the under approximation in this case is valid for perturbations in all edges in E.

The notion of tightness is reflected by the term (L(T ?) − L(Z?)), i.e., the closer the

value of the optimal solution to the traveling salesman problem to the value of the

optimal solution to the relaxed problem, the better the under approximation obtained

from the relaxation. A similar observation regarding the tightness of approximation

is made in Ref. [79] for the special case of obtaining approximate tolerances for the

traveling salesman problem from relaxations.
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The following sections discuss the minimum 1-tree relaxation of the TSP and

methods to obtain the stability region of a minimum 1-tree (M1T).

6.4.1 The M1T relaxation

A 1-tree is a spanning tree with an additional edge:

Definition 6.4.1 (1Tk). Let G(V,E) be a fully connected undirected graph consisting

of a vertex set V of cardinality |V | = n and an edge set E. Each edge eij ∈ E

has an associated edge weight c(e) ∈ R. Let vk ∈ V be an arbitrarily chosen vertex.

Let G1(VMSTk , EMSTk) denote the subgraph of G(V,E), where VMSTk = V \ vk and

EMSTk = {{u, v} ∈ E : u, v ∈ VMSTk}. Let Ek = E \ EMSTk . For any e1, e2 ∈ Ek :

e1 6= e2, and spanning tree ST on G1(VMSTk , EMSTk), the set 1T = ST ∪ {e1, e2} is a

1-tree in G.

Given a weighted graph, a minimum 1-tree can be defined:

Definition 6.4.2 (Minimum 1-tree). A minimum 1-tree M1Tk on the graph G is a

1-tree on G such that the sum of the weights of the edges contained in any other 1-tree

on G is not greater than the sum of the weights of the edges contained in M1Tk for a

given vertex vk.

The M1T problem is a well known relaxation of the TSP and was first studied

by Held and Karp in Ref. [92]. Note that every tour is a 1-tree, but the converse

is not true. Hence, the M1T problem is a relaxation of the TSP. In Ref. [84], it is

argued that the 1-tree relaxation of the TSP gives lower bounds of the tolerances for

the TSP. The following sections explore approximate stability regions that can be

obtained from the 1-tree relaxation.
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6.4.2 Derivation of stability regions for M1T

Based on the following necessary and sufficient optimality condition for a M1T, a

polyhedral description of the stability region of a M1T in half-space form is derived

in the following paragrahs:

Proposition 8 (Optimality 1-tree [92]). A 1-tree 1T is a minimum 1-tree M1Tk in

G if and only if e1 and e2 are the shortest edges incident to vertex vk and MSTk is a

minimum spanning tree in G1(VMSTk , EMSTk).

The problem of choosing the two shortest vertices incident to vk is a combinatorial

optimization problem. Let M2Ek denote the solution to that problem. The stability

region ∆(M1Tk) of a minimum 1-tree M1Tk can be composed of the stability region

of MSTk on G1, i.e., ∆(MSTk), and the stability region ∆(M2Ek) of M2Ek with

respect to weight changes of all edges incident to vk.

Corollary 6.4.3 (∆(M1Tk)).

∆(M1Tk) = ∆(MSTk) ∩∆(M2Ek). (6.13)

Proof. This follows from Proposition 8

The stability region of a MST has been discussed in detail in Chapter 5. To

use Corollary 6.4.3 to obtain the stability region of a M1T, the following paragraph

derives ∆(M2Ek) in half-space representation.

6.4.2.1 Stability region E2k

Let Ek = E \ EMSTk denote the set of edges incident to vk. Let ME2k be the two

least weight edges in Ek. Finally, let ME2k = Ek \ME2k. Then, a solution ME2k

is optimal if and only if:
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∀f ∈ME2k : c(f) ≥ c(e),∀e ∈ME2ek. (6.14)

The set of inequalities (6.14) provides necessary and sufficient conditions for the

optimality of a solution ME2k and is reminiscent of (5.1) for minimum spanning

trees. Hence, similar steps are carried out to obtain the stability region in half-space

representation. To introduce perturbations to the weight of an edge c(e), let ∆c(e)

denote a deviation in the edge weight of edge e. Then, the stability region of a solution

ME2k with respect to changes in the edge weights is given by the following corollary:

Corollary 6.4.4. Given perturbations ∆c(e) to the edge weights, ME2k remains

optimal if and only if, for each edge f ∈ME2k, the following inequality is satisfied:

c(f) + ∆c(f) ≥ c(e) + ∆c(e), ∀e ∈ME2k, (6.15)

where c(e) and c(f) denote the unperturbed weights of the respective edges.

Hence, for each edge f ∈ ME2k, the set of inequalities given by (6.15) can be

written in matrix form:

UE2k
f · (c+ ∆c) ≤ AE2k

f · (c+ ∆c), (6.16)

where the q-th row of matrix UE2k
f is vector uTq :

uq =

[
0 . . . 0 −1 0 . . . 0

]T
, (6.17)

and the index of the non-zero entry in uq is computed using (4.1) such that {i, j} are

the indices of the vertices {vi, vj} covered by f .
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Furthermore, the q-th row of matrix AE2k
f is vector aTq :

aq =

[
0 . . . 0 −1 0 . . . 0

]T
, (6.18)

where the index of the non-zero entry is computed using (4.1) such that {i, j} are the

indices of the vertices {vi, vj} covered by ME2k(q), i.e., the q-th edge in set ME2k.

Then, concatenating all matrices UE2k
f and AE2k

f as follows:

UE2 =

[
UE2k

1

T
UE2k

2

T
. . . UE2k

|ME2k|
T

]T
, (6.19)

and

AE2k =

[
AE2k

1

T
AE2k

2

T
. . . AE2k

|ME2k|
T

]T
, (6.20)

yields:

UE2k · (c+ ∆c) ≤ AE2k · (c+ ∆c). (6.21)

Furthermore, let:

U
E2k

= UE2k − AE2k , (6.22)

and:

qE2k = AE2k · c− UE2k · c. (6.23)

Finally:

U
E2k ·∆c ≤ qE2k

. (6.24)

This gives the desired description of the stability region of a solution ME2k in its

half-space representation in matrix form.
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6.4.3 Stability regions for M1T in half-space representation

Using the method in Chapter 5 for minimum spanning trees, the stability region

of MSTk on the subgraph G1(VMSTk , EMSTk), where k denotes an arbitrary vertex

vk : v ∈ V ∩ v /∈ EMSTk , is given by:

U
T1k ·∆c ≤ qT1k . (6.25)

Hence, using corollary 6.4.3, the stability region of a minimum 1-tree ∆(M1Tk) using

the notation given above can be written as:

 U
T1k

U
ME2k

 ·∆c ≤
qT1k

qE2k

 , (6.26)

where k denotes the choice vertex vk ∈ V . Finally, for ease of notation, the matrix

U
M1Tk

and vector qM1Tk are introduced such that:

U
M1Tk ·∆c ≤ qM1Tk . (6.27)

6.4.4 Properties of stability regions of M1T

Given a graph with n vertices, G1 has |VMSTk | = n− 1 vertices, |EMSTk | =
(n−1)(n−2)

2

edges, and |Ek| = n − 1. The stability region of an optimal pair of edges ME2k is

given by 2 ·(n−1−2) ≈ O(n) inequalities. Furthermore, the stability region of MSTk

is a convex polyhedron in the |EMSTk | dimensional space of edge weight perturbations

with at most ((n−1)−1)[1
2
·((n−1)−1)·((n−1)−2)] = n3

2
− 7n2

2
+8n−6 ≈ O(n3) facets.

Finally, the stability region of M1Tk is a convex polyhedron in the |E| dimensional

space of edge weight perturbations with at most n3

2
− 7n2

2
+ 10n− 12 = O(n3) facets.
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6.4.5 Under approximation of a TSP stability using the M1T

stability region

Utilizing ∆(M1Tk) given by (6.27) to obtain an under approximation of the stability

region ∆(T ?) of an optimal tour T ? requires the following two additional steps as

given in Section 6.4:

1. Let:

q′M1Tk = max(qM1Tk −
⇀

1 · (L(T ?)− L(M1Tk),
⇀

0), (6.28)

where the max operator is applied element wise and
⇀

1 and
⇀

0 are column vectors

of ones and zeros of appropriate length. This yields the intermediate polyhedron

U
M1Tk ·∆c ≤ q′M1Tk . (6.29)

2. The sets Pk, Qk , Rk, and Sk as defined in Sec. 6.4 need to be determined.

To obtain a representation with respect to the cost vector c rather than the

vector of restricted cost changes ∆c̃k, two inequalities are added for each edge

ew /∈ Pk ∪ Sk to the half-space representation of the form:

−∆cw ≤ 0,

∆cw ≤ 0.

(6.30)

These inequalities can be expressed in vector form and appended to (6.29),

yielding:

ŨM1Tk ·∆c ≤ q̃′M1Tk . (6.31)

Eq. (6.31) gives ∆̃′(M1Tk). As shown above ∆̃′(M1Tk) ⊆ ∆̃(T ?), where ∆̃(T ?) is the

stability region of the optimal tour T ? for cost changes in edges that are contained

in Pk or Sk. With respect to the concept of coverage for under approximations
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introduced in Section 6.4, it is interesting to note that an optimal tour usually has

many edges in common with a minimum 1-tree. As reported in Ref. [85], an optimal

tour normally contains between 70% and 80% of the edges of a minimum 1-tree on

that graph.

6.4.6 Under approximation of a TSP stability region by unions

of M1T stability regions

As the selection of vertex vk when obtaining ∆̃′(M1Tk) is arbitrary, ∀k, ∆̃′(M1Tk) ⊆

∆̃(T ?) and the following holds:

|V |⋃
k=1

∆̃′(M1Tk) ⊆ ∆̃′(T ?). (6.32)

One can obtain |V | = n sets of inequalities that each give an under approximation of

the stability region of the optimal tour T ? with respect to edges that are contained

in the respective sets Pk or Sk. As outlined in Sec. 6.4, tightness and coverage are

metrics that can help assess the quality of an under approximation. By considering

the union of all ∆̃′(M1Tk), one can potentially assess optimality with respect to a

wider range of affected edges as the sets Pk and Sk vary. Furthermore, if only a

small set of edges is affected by cost changes, they might be contained in Pk or Sk for

multiple k and hence, with respect to that specific cost perturbation, a tighter under

approximation of the stability region might be achievable.

6.4.7 Under approximation of edge cost tolerances

Using (6.31), an under approximation and hence a lower bound on the upper tolerance

and an upper bound on the lower tolerance for edge cost tolerances with respect to

T can be computed as follows: Consider an under approximation of the stability

region of T ? given in half-space representation (6.31). Using the method outlined
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in Section 4.2.3, the desired approximate tolerances can be computed by identifying

the most restrictive inequalities for each edge. Similarly, when using (6.32), an under

approximation of edge cost tolerances for edges can be obtained from each of the under

approximations. Then, vertex vk can be chosen for each edge such that the magnitude

of the resulting under approximation of the edge cost tolerance is maximized and a

tighter under approximation may be achievable.

6.5 Approximate vertex location stability based

on approximate stability regions for eTSPs

Section 4.2.5 derives approximate stability regions of solutions to eTSPs with respect

to perturbations in the vertex locations derived from stability regions with respect

to edge cost perturbations through the relationship given in (4.17). Using this rela-

tionship approximate stability regions with respect to vertex location perturbations

can also be obtained from approximate stability regions with respect to edge cost

perturbations.

The method described in Section 4.2.5 is directly applicable to an over approxi-

mation of the stability region of an optimal tour in half space representation, as for

example derived in Sec. 6.3.3 based on the 2-neighborhood. Similarly, the application

of the method described in Section 4.2.5 to an under approximation of the stability

region obtained by considering M1Tk as defined in Sec. 6.4.5 is possible by substitut-

ing (4.17) into (6.31). Again, by considering all choices of k one can obtain multiple

approximate stability regions with respect to vertex location perturbations.
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6.6 Criticalities

Chapter 4 defines edge criticalities based on the exact edge cost tolerances in Sec-

tion 4.2.4. Furthermore, vertex criticalities are derived from stability regions with

respect to vertex location perturbations for instances of eTSPs in Section 4.2.6. The

following paragraphs present analogous concepts based on approximate stability re-

gions.

6.6.1 Approximate edge criticality based on approximate tol-

erances

Edge criticality is a dimensionless parameter that allows for the comparison of the

upper and lower cost tolerances of edges in an intuitive manner. A high criticality of

an edge indicates that the optimal tour is more susceptible to cost changes in that

edge given that the cost of all other edges is held constant. Assume that over/under

approximations of the edge cost tolerances are available (For example through the

method described in Section 6.3.4/Section 6.4.7). Let ∆̃c+
ij denote approximate upper

edge cost tolerances and let ∆̃c−ij denote approximate lower edge cost tolerances.

Then, define ∆̃c+
min to be the minimum upper bound/lower bound on the upper edge

cost tolerance for any edge and let ∆̃c−max be maximum lower bound/upper bound on

the lower edge cost tolerance for any edge.

Definition 6.6.1 (∆̃c+
min, ∆̃c−max). Let:

∆̃c+
min = min

ij
∆̃c+

ij, (6.33)

∆̃c−max = max
ij

∆̃c−ij. (6.34)

Then, χ̃ij is a dimensionless parameter that characterizes the approximate criti-

cality of an edge and can be defined as follows:
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Definition 6.6.2 (χ̃ij). For 1 ≤ i, j ≤ n, the criticality of edge eij is defined as:


χ̃ij =

∆̃c+min

∆̃c+ij
∆̃c+

min 6= 0 ∧ |∆̃c+
ij| <∞,

χ̃ij = − ∆̃c−max

∆̃c−ij
∆̃c−max 6= 0 ∧ |∆̃c−ij| <∞.

(6.35)

Note that for a minimal approximate upper tolerance equal to zero the criticality

of edges with respect to cost increase is not defined and similarly, if the maximum

approximate lower tolerance is equal to zero, the criticality of edges with respect to

cost decreases is not defined. The interpretation is similar to Section 4.2.4. A negative

approximate criticality χ̃ij indicates that edge eij is not part of the optimal tour and

hence only cost decreases in that edge, if all other edge costs are held constant,

can influence the optimal solution. Similarly, a positive approximate criticality χ̃ij

indicates that edge eij is part of the optimal tour and hence only cost increases in

that edge, if all other edge costs are held constant, can influence the optimal solution.

As there exist cases for which edge criticalities cannot be defined, approximate

edge criticalities based on over approximations of the edge cost tolerances seem more

practicable.

6.6.2 Approximate vertex criticality based on approximate

stability regions

For eTSPs the notion of of vertex criticalities and safe radii introduced in Sec. 4.2.6

based on the linearized exact stability region of T ? with respect to vertex location

perturbations are defined. Similarly, one can obtain approximate vertex criticalities

and safe radii based on the linearized approximate stability region of T ? with respect

to vertex location perturbations as defined in Section 6.5.

Given k approximations of the stability region with respect to vertex perturba-

tions derived from either k over approximations of the stability region with respect

111



to edge cost perturbations or k under approximations of the stability region with

respect to edge cost perturbations, ∆pw,min,k associated with vertex vw is computed

for each approximation k using (4.19). Note, over and under approximations cannot

be considered simultaneously. Then, the approximate safe radius is given by:

r̃w,safe = max
k

(‖∆pw,min,k‖2). (6.36)

Furthermore, let r̃w,safe denote the smallest of all approximate safe radii:

r̃min,safe = min
w
r̃w,safe. (6.37)

Finally, the approximate criticality of vertex vw can be computed as follows:

ξ̃w =
r̃min,safe
r̃w,safe

. (6.38)

Note that, if ∃w : r̃w,safe = 0, vertex criticalities cannot be defined.

As there exist cases for which vertex criticalities cannot be defined, approximate

vertex criticalities based on approximations of the stability region with respect to

vertex perturbations derived from over approximations of the stability region with

respect to edge cost perturbations seem more practicable.

6.7 Examples

The following sections demonstrate the application of the methods discussed above

to instances of a 6-vertex eTSP.
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6.7.1 Assessment of approximations by ellipsoids

First, a method to assess properties of approximations of stability regions is presented.

Means to compare the stability region with approximations of it are necessary. Stabil-

ity regions are polyhedra in the space of cost changes. However, comparing polyhedra

is a computationally challenging problem. This section focuses on giving a qualita-

tive assessment rather than a rigorous numerical analysis. Therefore, the following

computationally tractable approach is chosen to compare polyhedra.

The largest inscribed ellipsoid contained in each polyhedron is computed. The

problem of finding the largest inscribed ellipsoid in a polyhedron can be formulated

as a convex optimization problem [93]. Given a polyhedron P = {∆c : H∆c ≤ q},

the largest inscribed ellipsoid E = {Bu+ d|‖u‖2 ≤ 1} is the solution to the following

problem:

maximize
B,d

log detB

subject to ||B · hi||2 + h
T

i d ≤ qi, i = 1, . . . ,m,

B � 0.

(6.39)

where h denote rows of matrix H.

The size of the two resulting ellipsoids is then compared. A frequently used

measure of size of ellipsoids is the sum of the squared semi-axis lengths, which is

given by the trace of (BTB) [94]. The matrix (BTB) is often called the shape matrix

of the ellipsoid. Let r denote the length of a semi-axis of the ellipsoid. Then, the

following holds: ∑
i=1

r2
i = trace(BTB). (6.40)

Let r̂ denote the length of the semi-axis of the largest inscribed ellipsoid in the

approximate stability region, and let r be the length of the semi-axis of the largest

inscribed ellipsoid in the actual stability region. The following quantity φ is defined
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to compare the approximate stability region with the actual stability region:

φ =

∑
i

r̂2
i −

∑
i

r2
i∑

i

r2
i

. (6.41)

The larger φ, the more dissimilar the polyhedra. The closer to zero, the more

similar the polyhedra. As the stability region associated with a tour is not a closed

set, only a closed subset of the stability region is considered for comparison. The

polyhedron Pnormalize = {∆c : −c ≤ ∆c ≤ c} is defined. Given the polyhedron

Pstab representing the actual stability region and the polyhedron Papprox representing

the approximate stability region, the largest inscribed ellipsoids are found for the

polyhedra resulting from the intersection Pstab ∩ Pnormalize and Papprox ∩ Pnormalize. φ

is then computed to assess the similarity of Pstab ∩ Pnormalize and Papprox ∩ Pnormalize.

6.7.2 Over approximation by subsets of tours

This method is now used to assess over approximations of the stability region of an

optimal tour T ? by consideration of a subset of tours T ′. Recall that each tour can be

represented as a vector h of zeros and ones as given in Definition 4.2.2. Let hr denote

the vector representation of the r-th tour and let h? be the vector representation of

the optimal tour T ?. The relatedness ωr of a tour Tr with the optimal tour T ? is

defined as:

ωr =
〈hr, h?〉
‖h?‖1

. (6.42)

Let Trelated denote the set T \ T ? in which the tours are enumerated such that the

following holds: ∀Tr ∈ Trelated, ωr ≤ ωr+1. Hence, by choosing the first |T2| tours from

Trelated as a subset T ′, T ′ = T2.

Finally, let Trelated,sorted denote the set of tours in which tours are enumerated with

respect to the following criterion ζr = [ωr, L(Tr)] that is evaluated in lexicographic
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order. Then it holds that ∀Tr ∈ Trelated,sorted, ζr ≤ ζr+1. In other words, tours are first

ordered by their relatedness and then by their length.

100 random instances of a 6-vertex eTSP are generated, where the coordinates of

each vertex are sampled from a uniform distribution on the unit square [0, 1]× [0, 1].

Fig. 6.2 depicts φ over k, where k = |T ′|, i.e., the cardinality of the subset of tours T ′

used to construct an over approximation of the stability region. Four different subset

generation methods are compared:

1. Let T ′ be a set of k randomly selected tours.

2. Let T ′ be the set of k-best solutions.

3. Let T ′ be the set of the first k tours in Trelated.

4. Let T ′ be the set of the first k tours in Trelated,sorted.

The black vertical line at k = 9 indicates k = |T2|, i.e., the value for which the

first k tours in Trelated and Trelated,sorted are equal to the two neighborhood of T ?.

The following observations can be made from the figure. All four approximation

methods achieve better approximation quality the larger the value of k. The random

set selection performs worst with respect to the chosen metric. The k-best approach

is better. The approaches based on the relatedness of tours perform best and show a

rapid convergence to φ ≈ 0, i.e., the value for which the approximation and the actual

stability region are indistinguishable with respect to the chosen metric. Indeed, this

is achieved for k = 9, i.e., the value for k for which k = |T2| and T ′ = T2. Obtaining

over approximations based on the two neighborhood of an optimal tour was suggested

in Section 6.3.3 as it satisfies the heuristic guidelines for choosing a subset choice

technique outlined in Section 6.3.2.

Fig. 6.3 depicts φ over k for Euclidean 6-vertex TSP depicted in Fig. 4.1.
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Figure 6.2: Average approximation quality: This figure depicts depicts φ versus
k for 100 random instances of a 6-vertex eTSP, where the coordinates of each vertex
are sampled from a uniform distribution on the unit square [0, 1] × [0, 1]. k = |T ′|,
i.e., the cardinality of the subset of tours T ′ used to construct an over approximation
of the stability region and φ is the similarity measure defined in (6.41). Four different
subset generation methods are compared.

6.7.3 Under approximation by M1Ts

Section 6.4.6 introduces the use of the M1T relaxation to obtain under approximations

of the stability region of a solution to the traveling salesman problem. Specifically, the

use of the union of stability regions of multiple M1Tk is suggested, where multiple

trees can be generated by choice of vertex vk. The choice of vertex vk defines the

subgraph G1(VMSTk , EMSTk) and the set of edges Ek. Fig. 6.4 depicts the M1Ts (in

red) on the graph for the symmetric Euclidean 6-vertex TSP in Section 4.7.1. The

complete graph for this problem is shown in Fig. 4.1. In each of the subfigures in
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Figure 6.3: Approximation quality: This figure depicts depicts φ versus k for
the 6-vertex eTSP shown in Fig. 4.1. k = |T ′|, i.e., the cardinality of the subset of
tours T ′ used to construct an over approximation of the stability region and φ is the
similarity measure defined in (6.41). Four different subset generation methods are
compared.

Fig. 6.4 the black dot indicates the choice of vertex vk. The blue edge indicates an

edge that is contained in the optimal tour T ? but not in the minimum 1-tree M1Tk.

Note that even though the set of edges contained in M1T3 is equal to the set of edges

contained in M1T4 for example, the obtainable stability information may be different.

6.7.4 Over and under approximation of edge cost tolerances

Over and under approximations of edge cost tolerances can be computed from approx-

imate stability regions as shown in Section 6.3.4 and Section 6.4.7 respectively. In this

section, exact edge cost tolerances, over approximations of the edge cost tolerances
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based on an over approximation of the stability region based on the 2-neighborhood,

and under approximations of the edge cost tolerances based on the M1Tk approach

are obtained for the 6-vertex Euclidean TSP depicted in Section 4.7.1, for which the

optimal tour is shown in Fig. 4.1. Let ∆c+ denote the upper edge cost tolerance,

∆c+ denote the over approximation of an upper edge cost tolerance, and ∆c+ denote

the under approximation of an upper edge cost tolerance. Similarly, let c− denote

the lower edge cost tolerance, c− denote the over approximation of a lower edge cost

tolerance, and c− denote the under approximation of an lower edge cost tolerance.

Fig. 6.5 provides a qualitative assessment of the under and over approximation of

edge cost tolerances by these two specific methods. Edges contained in the optimal

tour (red) are labeled as follows: [
∆c+

∆c+
,
∆c+

∆c+
]. Similarly, edges that are not contained

in the optimal tour are labeled: [
c−

∆c−
,
c−

∆c−
]. For under approximations all six M1Ts

are considered and the maximizer of the magnitude of the under approximation is

chosen as described in Section 6.4.7. The figure shows that the upper bound on upper

edge cost tolerances is close to the actual tolerance in all cases and equal to the actual

tolerance in most cases for this instance. The under approximations of the edge cost

tolerances are good, where some are close to the actual value, two are equal to the

actual value, and all but one attain at least 30% of the actual value. The average

under approximation is 55% of the actual value.

Table 6.1 and table 6.2 show the numerical values for the approximate and exact

upper and lower edge cost tolerances respectively. Table 6.3 and table 6.4 give the

numerical value of the under approximation of the upper and lower edge cost toler-

ances for each choice of vk. As can be seen from the data, considering all choices of

vk and choosing the one that maximizes the magnitude of the under approximation

for each edge individually is beneficial when obtaining under approximations of edge

cost tolerances.

For completeness, considering stability regions rather than tolerances, the numer-
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ical values of the similarity metric as defined in (6.41) are as follows. The similarity

value of the over approximation of the stability region is φover = 0.001. The over

approximation is similar to the actual stability region. As expected, a good over

approximation of the stability region leads to a good over approximation of edge cost

tolerances as shown in Fig. 6.5. The average similarity value of all 6 under approxi-

mations of the stability region is φunder = −0.42. Finally, table 6.5 gives the value of

φunder for each choice of vk.

The above examples suggest that approximating the stability region by means of

an over approximation based on the 2-neighborhood of an optimal tour is promising.

It is easy to construct once the optimal solution to the problem instance is known, does

not require the solution of any additional optimization problems, and the achievable

approximation quality is high for the examples shown. If an under approximation is

required, considering the unions of stability regions of M1Tk relaxations is a viable

approach.

e12 e16 e23 e34 e45 e56

∆c+ 43.70 84.60 76.85 81.78 114.37 43.70
∆c+ 43.70 80.78 76.85 81.78 114.37 43.70
∆c+ 43.70 33.63 23.23 28.63 56.76 19.50

Table 6.1: Numerical values for the approximate and exact upper edge cost tolerances.

e13 e14 e15 e24 e25 e26 e35 e36 e46

∆c− -84.60 -176.61 -43.70 -114.37 -76.85 -43.70 -81.78 -76.85 -81.78
∆c− -84.60 -133.87 -43.70 -114.37 -76.85 -43.70 -81.78 -76.85 -81.78
∆c− -75.12 -98.79 -43.70 -64.23 -42.79 0.00 -28.63 -47.16 -46.69

Table 6.2: Numerical values for the approximate and exact lower edge cost tolerances.
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vk e12 e16 e23 e34 e45 e56

1 3.42 33.63 0.00 0.00 15.66 0.00
2 0.00 33.63 0.00 0.00 16.48 0.00
3 0.00 3.02 0.00 7.90 41.62 19.50
4 0.00 3.02 0.00 13.49 41.62 13.92
5 0.00 3.02 0.00 13.49 36.04 13.92
6 43.70 3.02 23.23 28.63 56.76 0.00

Table 6.3: Numerical values for the approximate upper edge cost tolerances obtained
for choices of vk.

vk e13 e14 e15 e24 e25 e26 e35 e36 e46

1 -54.40 -58.51 -3.42 -44.67 -23.23 0.00 0.00 0.00 0.00
2 -69.10 -79.23 -24.14 -23.95 -2.51 0.00 0.00 0.00 0.00
3 -54.40 -98.79 -43.70 -64.23 -42.79 0.00 0.00 0.00 -19.50
4 -54.40 -92.78 -43.70 -58.22 -42.79 0.00 0.00 0.00 -13.49
5 -54.40 -58.51 -43.70 -23.95 -42.79 0.00 -13.92 0.00 0.00
6 -75.12 -79.23 -24.14 -44.67 -23.23 0.00 -28.63 -47.16 -46.69

Table 6.4: Numerical values for the approximate lower edge cost tolerances obtained
for choices of vk.

vk 1 2 3 4 5 6

φunder -0.49 -0.48 -0.39 -0.40 -0.41 -0.34

Table 6.5: Similarity metric φ for under approximations of the stability region ob-
tained through consideration of M1Tk by choice of vk.
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(a) vk = v1 (b) vk = v2

(c) vk = v3 (d) vk = v4

(e) vk = v5 (f) vk = v6

Figure 6.4: Minimum 1-trees: This figure depicts the M1Ts on the graph depicted
in Section 4.7.1. The complete graph is shown in Fig. 4.1. In each of the subfig-
ures the black dot indicates vertex vk, i.e., the vertex that defines the subgraphs
G1(VMSTk , EMSTk) and the set of edges Ek. The blue edge indicates an edge that is
contained in the optimal tour T ? but not in the minimum 1-tree M1Tk.
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Figure 6.5: Approximation quality for edge cost tolerances: For the optimal
tour to the eTSP depicted in Fig. 4.1 this figure provides an assessment of the under
and over approximation quality for edge cost tolerances.

122



CHAPTER 7

Alternative applications

The previous chapters present methods for stability analysis of solutions to the TSP,

the MST problem, and the M1T problem. These are combinatorial optimization

problems. Many planning problems in real world applications can be formulated as

combinatorial optimization problems. This chapter outlines two other applications of

robustness analysis to solutions of combinatorial optimization problems. The author’s

publications presenting the results for each of the problems in detail are referenced

at the end of the sections.

7.1 Stability analysis for ILP with Markovian prob-

lem data

This research thrust is motivated by optimal sensor placement problems and is joint

work with Jonathan Las Fargeas. In particular, we consider a problem motivated

by [95], where a phenomenon is present in an area modeled as a graph that is to

be monitored using sensors (e.g., the spread of a disease in a network). A model

of how the phenomenon traverses the graph is given as a first order Markov chain.

Given this model, the goal is to place perfect sensors that detect the presence of the

phenomenon on the vertices and edges of the graph such that a weighted likelihood of

detecting the phenomenon is maximized. Related problems arise in various domains,
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e.g., sensors to monitor chemical processes in plants, sensors to track pollutants in the

ocean, sensors to track radiation levels, and sensors for surveillance tasks. Let u be

a candidate sensor placement and let c be a vector containing the coefficients of the

objective function for different sensor locations, then the problem can be formulated

as:

argmax
u

(cT · u). (7.1)

The cost vector c is a function of the probabilities that define the Markov chain.

Therefore, these probabilities affect the optimal sensor placement. Hence, the follow-

ing questions arise if the probabilities change after the sensors have been placed:

• Is the current sensor placement still optimal?

• How stable is the sensor placement to perturbations in the probabilities?

• How sensitive is the objective function to perturbations in the probabilities?

• How critical is each element in the problem data with respect to the other

elements in the problem data?

Our work analyzes stability and criticality of solutions to integer linear programs

with respect to perturbations in stochastic data given as Markov chains building upon

and adapting the methods presented in Chapter 4 to explicitly address the stochas-

ticity of the problem data. We give expressions for stability regions for perturbations

in the initial distribution, the transition matrix, the stationary distribution, and the

product of elements of the transition matrix and the stationary distribution. Fur-

thermore, criticality measures that describe the sensitivity of the objective function

with respect to an element of the problem data are derived. Stability regions that

preserve the stochasticity of the problem data are given. Finally, stability regions

for perturbations of elements of the transition matrix, given that the problem is not

linear in the initial distribution or the transition matrix, are obtained using a small
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Figure 7.1: Runway scheduling: All possible schedules for a problem with three
aircraft belonging to three different aircraft classes. Earliest availability is indicated
by the vertical lines with the respective aircraft id. The first-come first-serve sequence
and the optimal sequence are indicated.

perturbation analysis. The results stemming from this effort are presented in detail

in Refs. [9, 16].

7.2 Stability analysis of runway schedules

This research thrust is motivated by runway scheduling problems. The runway

scheduling problem is the problem of finding a sequence and corresponding arrival or

departure times that optimize an objective of the schedule, for example its makespan,

subject to several constraints such as position shift constraints and minimum spacing

requirements based on different aircraft classes. Consider the following example de-
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picted in Fig. 7.1: Three aircraft, each belonging to a different category numbered 1

to 3 with increasing weight, need to be scheduled. The minimum separation between

two aircraft depends on the category of the preceding and the trailing aircraft. It

increases with increasing weight of the preceding aircraft relative to the weight of the

trailing aircraft and decreases with decreasing weight of the preceding aircraft rela-

tive to the trailing aircraft. The earliest availability for all three aircraft is indicated

by the vertical lines in the figure. All feasible schedules are depicted and the first

sequence, sequence 1, is optimal. Sequence 2 is in first-come first-serve order. In this

example, first-come first-serve is not the optimal policy that minimizes the makespan

of the sequence.

Minimizing the makespan of the sequence is a well studied objective amongst oth-

ers in runway scheduling [96–98] as it addresses the problem of maximizing through-

put. It therefore captures one of the essential objectives of optimizing runway usage.

Solving this type of scheduling problem is computationally hard due to its combi-

natorial nature and the availability constraints. Hence, once delays occur the follow-

ing question is raised: How stable is the optimal schedule with respect to changes in

the problem data, i.e., the arrival times of the aircraft. Building upon the methods

presented in Chapter 4 a method to compute stability regions for a set of schedules

is given. Sensitivity analysis of the linear programming relaxation and a nonlinear

relationship between the delay of individual aircraft and the incurred cost change for

all landing sequences yield the stability information. Furthermore, the properties of a

first-come first-serve policy are studied by giving sufficient conditions and a heuristic

condition for the optimality of first-come first-serve sequences. The above results are

shown to be also applicable to landing sequences obtained through local neighbor-

hood search, sequences that obey a position shift constraint, and subsequences of

landing sequences as used in a rolling horizon approach. The results stemming from

this effort are presented in detail in Refs. [15, 99].
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CHAPTER 8

Conclusions

The use of UAVs has grown steadily in recent years. With the increase in their

use and the advances in technology, these aircraft are tasked with increasingly large

and complex missions. These missions are typically designed such that given the

circumstances of the mission, e.g., the tasks to be completed, vehicle specifications,

and a model of the environment, a flight path and sequence of actions to be performed

by the aircraft are selected such that they optimize a mission objective. This thesis

studies the robustness of a given mission plan, i.e., how changes in the circumstances

of the mission affect the optimality of a given mission plan.

8.1 Summary

This thesis identifies variants of the traveling salesman problem as prototypical UAV

mission planning problems as they inherently capture the combinatorial nature of the

task planning problem and the continuous nature of the path planning problem as

discussed in Chapter 1. The results developed in this thesis are agnostic to the specific

implementation of the path planning layer and are therefore applicable to a variety

of path planning methods, performance metrics, and world models. Furthermore, the

minimum spanning tree problem is chosen to study the robustness of communication

topologies in multi-UAV missions.
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A literature survey relevant to mission planning problems for unmanned aircraft,

stability analysis for combinatorial optimization problems, and exact and approximate

stability analysis for solutions to traveling salesman problems is given in Chapter 2.

Chapter 3 formulates several relevant variants of the traveling salesman problem,

minimum spanning tree problems, and defines the concepts used for stability analysis

throughout this thesis.

Chapter 4 presents the analysis of the stability region of solutions to classes of

the TSP with respect to perturbations in the edge costs through a linear program-

ming relaxation of an auxiliary problem. A description and the representation of the

stability regions are given. The derivation of edge cost tolerances from the stability

regions is demonstrated and edge criticalities are defined. Finally, for the special case

of Euclidean TSPs, the derivation of approximate stability regions with respect to

perturbations in vertex locations is presented, safe radii and vertex criticalities are

defined. Stability regions for optimal solutions to weighted-sum multi-objective TSPs

in the space of weight changes with respect to a given set of tours are computed. From

the stability region, most critical weight perturbations are derived. Furthermore, sta-

bility regions for optimal solutions to wsmoTSPs in the space of edge cost changes

with respect to each cost function are presented. Finally, linearized stability regions

for optimal solutions to wsmoTSPs for simultaneous perturbations in the individual

cost functions and weights are derived.

Chapter 5 presents a polyhedral description of stability regions of MSTs based on

results in the literature to study the robustness of optimal communication topologies

for teams of unmanned aircraft. It follows the ideas outlined in the previous chapter

in deriving stability measures from the stability regions such as tolerances, stability

balls, and criticalities. Finally, following the approach in Chapter 4, this analysis is

extended to eMST.

As computing exact stability regions for solutions to the TSP can become com-
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putationally intractable for large instances, Chapter 6 discusses computationally

tractable methods to obtain over and under approximations of the stability regions

of optimal solutions to symmetric non sequence-dependent TSP. Upper and lower

bounds on edge cost tolerances, approximate edge criticalities, approximate stabil-

ity regions with respect to perturbations in vertex locations, safe radii, and vertex

criticalities are shown to be obtainable.

The results presented in this thesis are applicable to other combinatorial optimiza-

tion problems such as sensor placement problems and runway scheduling problems.

Chapter 7 outlines these applications.

8.2 Concluding remarks

There exist numerous missions for unmanned aircraft. In almost all cases, these

mission involve a combinatorial planning problem and a continuous planning problem.

This commonality can be leveraged to formulate a wide class of mission planning

problems in a similar fashion. The content of this thesis addresses the robustness of

optimal mission plans with respect to changes in the problem data for missions that

exhibit the above characteristics.

Regarding the interaction between scheduling and path planning, this includes the

more general case of vehicle routing as for example found in delivery truck routing ap-

plications. Changing external conditions such as weather, dominant wind directions,

or traffic may alter the problem instance, which can render an itinerary suboptimal.

Specifically, this thesis addresses the problem of stability analysis for solutions to

classes of the traveling salesman problem.

The robustness of a given solution with respect to changing parameters could be

analyzed by exhaustively sampling the space of input parameters. However, solving

the underlying optimization problem might be computationally expensive and the
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quality of the analysis depends on the chosen sampling density. This thesis presents

multiple alternative approaches to perform robustness analysis by obtaining the exact

or approximate stability regions of an optimal solution. The stability region associ-

ated with an optimal solution is the set of all perturbations to the input parameters

for which that solution remains optimal. From the stability regions, other stability

measures such as tolerances and criticality for elements of the problem data can be

derived.

This approach differs from an alternative way to address uncertain data, where

the uncertainty is modeled and stochastic optimization techniques are employed to

find a solution that minimizes the expected value of the objective function. Stability

analysis as presented in this thesis does not require any a priori knowledge of the

nature of the uncertainty. Additional insight, such as criticality of elements of the

input data as well as the smallest perturbation that causes a solution to become

suboptimal, can be derived.

This work has multiple potential benefits such as providing insight into theoretical

properties of stability regions of traveling salesman tours, minimum spanning trees,

and minimum 1-trees, but also insight into how robust a solution is with respect to

modeling uncertainties and how limited intelligence resources should be allocated. For

example, modeling and data acquisition efforts should be directed towards elements

of the problem data that have a smaller robustness margin. While this thesis is not

concerned with developing algorithms for solving instances of the TSP but rather with

providing insight into properties of optimal solutions to classes of traveling salesman

problems, the presented methods could be used in a supervisory control system for

an agent executing a mission to assess the optimality of a plan if changes occur.
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8.3 Future directions

Several future directions exist for the work presented in this thesis:

• Alternative approximations: Building upon the results on under approxima-

tion by relaxations and over approximation by subsets of tours, approximations

using other relaxations and subset construction methods could be investigated.

Furthermore, many specialized algorithms exist to solve instances of traveling

salesman problems. It should be investigated if stability information is obtain-

able by exploiting the mechanisms implemented by these methods. Ref. [79]

suggests using information obtained from branch and bound algorithms to ob-

tain approximate stability information.

• Approximation quality: This thesis presents certain methods to obtain under

and over approximations of stability regions and metrics derived from them in

Chapter 6. Even though it is most likely intractable to obtain ε-approximate

stability regions, the approximation quality should be assessed. Section 6.7

provides some insight into the approximation quality achieved by the methods

discussed in this work. Furthermore, an easy to compute metric to compare

stability regions is given. It would be interesting to evaluate other metrics and

to use these metrics to guide the search for other approximation methods.

• Mission replanning: The results presented in this thesis can help to establish

whether a tour remains optimal after changes to the problem data occur. One

important extension to this work is to design efficient algorithms that exploit

previous planning efforts and the nature of the change to re-optimize tours

after a tour has become suboptimal. Furthermore, the problem of assessing

optimality and re-optimizing tours if edge cost changes vary once an agent has

already started executing a tour has not yet been studied systematically. The

search space decreases as the agent starts executing a mission plan as the number
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of candidate solutions at each step of execution is a subset of the previous set of

solutions. Hence, some stability information for traveling agents is obtainable

from the stability information obtained for the initial solution. Let T ?vis(m)

denote the sequence of vertices visited at the m-th step. Then the stability

region of T ? at step zero, i.e., before traversal of the graph, is contained in the

stability region of T ? at the m-th step with respect to the set of tours that

share the same sequence T ?vis(m), because the set of tours that share the same

sequence T ?vis(m) is a subset of the set of all tours.

• Robust planning: Efficient algorithms exist to solve the shortest tour TSP to

optimality. Trading optimality for robustness, it would be interesting to investi-

gate whether an optimization problem could be formulated that simultaneously

minimizes tour length and maximizes a robustness measure such as the minimal

tolerance or the largest inscribed ball in the stability region.

• Alternative mission formulations: This thesis identifies classes of the

traveling salesman problem as prototypical problems to assess the robustness

of UAV missions. While the author believes that the discussed classes capture

a wide variety of real world mission planning problems for unmanned aircraft,

one might argue that the constraint that each location can only be visited once

is too restrictive in some real world applications. A variant of the TSP that

allows returning to a priori visited locations is the Steiner TSP [100–102]. The

application of the above robustness results to Steiner TSPs could be approached

using a similar method as chosen for sequence-dependent problems through

appropriate representation of the increased search space. However, for UAV

applications, mission planning, as described in Chapter 1, already allows for

flight paths to return to previously visited locations, as scheduling is performed

on an auxiliary tactical graph and the path planner is not constrained in the

132



selection of flight paths.

Finally, an extension of the instance of asymmetric sequence-dependent TSP

with intelligent adversaries as shown in Section 4.7.4.2 is a multi evader single

pursuer pursuit evasion game [103]. In this game, multiple adversaries try to

maximize the time at which the UAV is colocated with the last adversary to

be visited by leaving their initial locations, while the UAV is tasked to select a

sequence in which it pursues the adversaries that minimizes the time at which

it is above the last adversary to be visited. It would be interesting to study the

robustness of such an optimal sequence.
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[52] M. Gendreau, G. Laporte, and R. Séguin, “Stochastic vehicle routing,” Euro-
pean Journal of Operational Research, vol. 88, no. 1, pp. 3–12, 1 1996.

[53] A. S. Kenyon and D. P. Morton, “Stochastic vehicle routing with random travel
times,” Transportation Science, vol. 37, no. 1, pp. 69–82, 2003.

[54] Z. Wang, J. Guo, M. Zheng, and Y. Wang, “Uncertain multiobjective traveling
salesman problem,” European Journal of Operational Research, vol. 241, no. 2,
pp. 478–489, 3 2015.

[55] T. Cheong and I. White, C.C., “Dynamic traveling salesman problem: Value of
real-time traffic information,” IEEE Transactions on Intelligent Transportation
Systems, vol. 13, no. 2, pp. 619–630, 2012.

[56] A. Toriello, W. B. Haskell, and M. Poremba, “A dynamic traveling salesman
problem with stochastic arc costs,” Operations Research, vol. 62, no. 5, pp.
1107–1125, 2014.

[57] U. Ritzinger, J. Puchinger, and R. F. Hartl, “A survey on dynamic and stochas-
tic vehicle routing problems,” International Journal of Production Research,
vol. 54, no. 1, pp. 1–17, 2015.

[58] D. Kingston, R. Holt, R. Beard, T. McLain, and D. Casbeer, “Decentralized
perimeter surveillance using a team of uavs,” in AIAA Guidance, Navigation,
and Control Conference and Exhibit. American Institute of Aeronautics and
Astronautics, 2005.

138



[59] D. W. Casbeer, D. B. Kingston, R. W. Beard, and T. W. McLain, “Coop-
erative forest fire surveillance using a team of small unmanned air vehicles,”
International Journal of Systems Science, vol. 37, no. 6, pp. 351–360, 2006.

[60] J. Las Fargeas, P. Kabamba, and A. Girard, “Cooperative surveillance and pur-
suit using unmanned aerial vehicles and unattended ground sensors,” Sensors,
vol. 15, no. 1, pp. 1365–1388, 2015.

[61] T. Shima and S. J. Rasmussen, UAV cooperative decision and control challenges
and practical approaches. Philadelphia: Society for Industrial and Applied
Mathematics, 2009.

[62] K. P. Valavanis, G. J. Vachtsevanos, A. Kopeikin, S. Ponda, and G. Inalhan,
Control of Communication Networks for Teams of UAVs. Springer Nether-
lands, 2014, pp. 1619–1654.

[63] D. Pike, S. Givigi, J. Marshall, A. Taylor, and A. Beaulieu, “Robust vehicle
routing policies using local communications amp; sensing,” in American Control
Conference (ACC), 2013, June 2013, pp. 6351–6357.

[64] S. Kim, H. Oh, J. Suk, and A. Tsourdos, “Coordinated trajectory planning
for efficient communication relay using multiple uavs,” Control Engineering
Practice, vol. 29, no. 0, pp. 42–49, 2014.

[65] B. Newton, J. Aikat, and K. Jeffay, “Analysis of topology algorithms for com-
mercial airborne networks,” in 2014 IEEE 22nd International Conference on
Network Protocols (ICNP), Oct 2014, pp. 368–373.

[66] L. N. Kozeratskaya, T. T. Lebedeva, and I. V. Sergienko, “Stability of discrete
optimization problems,” Cybernetics and Systems Analysis, vol. 29, no. 3, pp.
367–378, 1993.

[67] T. Gal, Postoptimal Analyses, Parametric Programming, and Related Topics:
Degeneracy, Multicriteria Decision Making, Redundancy. Walter De Gruyter
Incorporated, 1995.

[68] H. J. Greenberg, An Annotated Bibliography for Post-Solution Analysis in Mixed
Integer Programming and Combinatorial Optimization. Boston, MA: Springer
US, 1998, pp. 97–147.

[69] D. Fernández-Baca and B. Venkatachalam, “Sensitivity analysis in combinato-
rial optimization,” Handbook of Approximation Algorithms and Metaheuristics,
pp. 30–1—30–17, 2007.

[70] N. Hall and M. Posner, “Sensitivity analysis for scheduling problems,” Journal
of Scheduling, vol. 7, no. 1, pp. 49–83, 2004.
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[81] P. Hansen, M. Labbé, and R. E. Wendell, “Sensitivity analysis in multiple
objective linear programming: The tolerance approach,” European Journal of
Operational Research, vol. 38, no. 1, pp. 63–69, 1 1989.

[82] E. Triantaphyllou and A. Sánchez, “A sensitivity analysis approach for some
deterministic multi-criteria decision-making methods*,” Decision Sciences,
vol. 28, no. 1, pp. 151–194, 1997.

[83] M. Libura, E. van der Poort, G. Sierksma, and J. van der Veen, “Stability
aspects of the traveling salesman problem based on k-best solutions,” Discrete
Applied Mathematics, vol. 87, no. 1, pp. 159–185, 1998.

[84] M. Libura, “Sensitivity analysis for minimum hamiltonian path and traveling
salesman problems,” Discrete Applied Mathematics, vol. 30, no. 2, pp. 197–211,
1991.

140



[85] K. Helsgaun, “An effective implementation of the lin–kernighan traveling sales-
man heuristic,” European Journal of Operational Research, vol. 126, no. 1, pp.
106–130, 2000.

[86] D. Richter, “Toleranzen in helsgauns lin-kernighan heuristik fuer das tsp,” Uni-
versitaet Halle-Wittenberg, Diploma Thesis, 2006.

[87] A. Schrijver, Theory of linear and integer programming. John Wiley & Sons,
1999.

[88] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming. Boston,
MA: Springer Science+Business Media, LLC, 2008.

[89] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network flows : theory, algo-
rithms, and applications. Upper Saddle River (N.J.): Prentice Hall, 1993.

[90] M. R. Garey and D. S. Johnson, Computers and intractability: a guide to the
theory of NP-completeness. New York: W. H. Freeman & Co, 1979.

[91] G. Croes, “A method for solving traveling-salesman problems,” Operations Re-
search, vol. 6, no. 6, pp. 791–812, 1958.

[92] M. Held and R. M. Karp, “The traveling-salesman problem and minimum span-
ning trees,” Operations Research, vol. 18, no. 6, pp. 1138–1162, 1970.

[93] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[94] G. C. Calafiore and L. El Ghaoui, Optimization Models. Cambridge University
Press, 2007.

[95] J. Las Fargeas, P. Kabamba, and A. Girard, “Optimal configuration of alarm
sensors for monitoring mobile ergodic markov phenomena on arbitrary graphs,”
IEEE Sensors, vol. 15, no. 6, pp. 3622–3634, June 2015.

[96] J. Bennell, M. Mesgarpour, and C. Potts, “Airport runway scheduling,” Annals
of Operations Research, vol. 204, no. 1, pp. 249–270, 2013.

[97] B. Chandran and H. Balakrishnan, “A dynamic programming algorithm for
robust runway scheduling,” in American Control Conference (ACC) 2007, July
2007, pp. 1161–1166.

[98] H. Balakrishnan and B. G. Chandran, “Algorithms for scheduling runway oper-
ations under constrained position shifting,” Operations Research, vol. 58, no. 6,
pp. 1650–1665, 2010.

[99] M. Niendorf, P. Kabamba, and A. Girard, “Stability analysis of runway sched-
ules,” accepted: IEEE Transactions on Intelligent Transportation Systems,
2016.

141



[100] D. H. Ratliff and A. S. Rosenthal, “Order-picking in a rectangular warehouse: A
solvable case of the traveling salesman problem,” Operations Research, vol. 31,
no. 3, pp. 507–521, 1983.

[101] B. Fleischmann, “A cutting plane procedure for the travelling salesman problem
on road networks,” European Journal of Operational Research, vol. 21, no. 3,
pp. 307–317, 1985.
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