Information Extraction on Para-Relational Data

by
Zhe Chen

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
2016

Doctoral Committee:

Assistant Professor Michael J. Cafarella, Chair
Associate Professor Eytan Adar

Professor Hosagrahar V. Jagadish

Associate Professor Qiaozhu Mei

Assistant Professor Barzan Mozafari

© Zhe Chen 2016
All Rights Reserved

To My Parents

1

ACKNOWLEDGEMENTS

The PhD journey is full of ups and downs, and I would not be able to complete
it on my own. I owe many thanks to my advisor, Michael Cafarella. I learned from
him to think big and creatively. I am deeply influenced by his research style to build
real, innovative systems that have impact, instead of sticking to small papers. 1 also
learned from him to be a good writer and storyteller. English is my second language,
and I did not know how to write a paper on my own when I first came to Michigan.
Mike was very patient to help me with all kinds of paper re-organizing and re-writing,
especially during my first several years. Without Mike’s continuous guidance and help
throughout my PhD studies, I would not be able to finish this thesis. So Mike —
thank you.

I would like to express my thanks to all my committee members. Professor Eytan
Adar is an amazing person to work with. He is hands-on and knows everything. I
have wanted to be a person like Professor H. V. Jagadish. He gives so much care to
all the students and is always so nice to everybody. Professor Qiaozhu Mei is also
very nice and was willing to give me advice on being an international student in the
US. Professor Barzan Mozafari is very helpful and gave many insightful suggestions.

I am so grateful that I can work with all these fantastic people at the University
of Michigan. Thanks to the database group for their valuable discussions and help:
Michael Anderson, Dolan Antenucci, Matthew Burgess, Daniel Fabbri, Lujun Fang,
Arnab Nandi, Fei Li, Yunyao Li, Bin Liu, Yongjoo Park, Li Qian, Manish Singh, Jing

Zhang, and others. Thanks to all the fellow students in the School of Information:

1l

Wei Ai, Xin Rong, Jian Tang, Shiyan Yan, Yue Wang, and many others.

The people at Tableau are my friends and mentors, and they graciously allowed
me to publish the research work and put it in the dissertation. Thanks to Jock
Mackinlay, Sasha Dadiomov, Richard Wesley, Daniel Cory, Gang Xiao, and many
others for all kinds of support and keen insights. By working with them, I learned to
use research to impact the real product.

I also want to thank my mentors and friends in my undergraduate studies. The
internship in MSRA working with Zaiqing Nie changed my life: I decided to pursue
a PhD degree at that time. Zaiqing’s research style also influenced my way of critical
thinking. My fellow students at Renmin University, Bolin Ding and Min Xie, were
willing to help, even before I formally met them.

My roommates and friends in Ann Arbor are my family in the United States. I
moved to live with Lei Lei during the darkest time of my PhD studies, and I had
not met her before. She welcomed me with such a sweet home. I am grateful that I
can spend the last year of my PhD living with Jing Zhang and Shuyi Zhang, and I
will not forget the times when we were roommates. 1 will also not forget the coffee
time with Yue Liu when we were on fire discussing the interview questions. Thanks
to Cheng Li for all the happiness that we shared and Zhe Zhao for all the hot pot
parties.

Lastly, I would like to express my deepest love to my parents and my family.
The PhD study is rewarding, but full of all kinds of obstacles. This happy ending
would not be possible without their support and comfort along the way. I have never
imagined that I would begin my postgraduate journey with a job in a hedge fund

company, but I am sure they will all be proud of me.

v

TABLE OF CONTENTS

DEDICATION e ii

ACKNOWLEDGEMENTS, iii

LIST OF FIGURES viii

LIST OF TABLES e xi

ABSTRACT . . . xiii
CHAPTER

I. Introduction 1

1.1 Para-relational Data 1

1.1.1 Spreadsheets, 3

1.1.2 Dictionaries from Webpages)

1.1.3 Diagrams o 6

1.2 Design Criteria and Challenges 8

1.3 Approaches and Systems 12

1.3.1 Senbazuru: Extraction on Spreadsheet Structures . 12

1.3.2 Anthias: Extraction on Spreadsheet Properties . . . 14

1.3.3 Lyretail: Extraction on Dictionaries from Webpages 16
1.3.4 DiagramFlyer: Extraction on Diagrams from PDFs 17

1.4 Scientific Contributions 18

1.5 Outline of the Dissertation 19

II. Research Background 21
2.1 Imformation Extraction 21

2.1.1 Domain-dependent Extraction 22

2.1.2 Domain-independent Extraction 22

2.2 Machine Learning oo 23

2.2.1 Basic Classification Algorithms 24

2.2.2 Joint Inference Algorithms 25

2.2.3 Active Learning 26

2.3 Data Management 27
2.3.1 Relational Data Management 27

2.3.2 Semi-structured Data Management 28

III. Senbazuru: Extraction on Spreadsheet Structure 30
3.1 Problem Overview 30
3.2 Preliminary 32
3.2.1 Terminology 33

322 DataSources. 34

3.2.3 Web Spreadsheet Statistics 34

3.3 Spreadsheet Structure Extraction 37
3.3.1 System Pipeline Overview 38

3.3.2 Data Frame Extraction 39

3.3.3 Hierarchy Extraction 40

3.4 Experimentso 57
3.4.1 Data Frame Extraction a7

3.4.2 Hierarchy Extraction o8

3.5 System Demonstration 67
3.5.1 User Interface 67

3.5.2 A Walk-through Example 69

3.6 Related Work oo 70
3.7 Conclusion and Future Work 71
IV. Anthias: Extraction on Spreadsheet Properties 73
4.1 Problem Overview 73
4.2 Preliminaryo 75
4.2.1 Data Sources 7

4.2.2 Spreadsheet Properties 7

4.2.3 Property Examples 79

4.3 Spreadsheet Property Extraction 81
4.3.1 The Iterative Learning Framework 81

432 UserWork 82

4.3.3 Iterative Learning Algorithms 87

4.4 Experiments 90
4.4.1 Property Extraction L. 91

4.4.2 Large-scale Spreadsheets Study 96

4.5 Related Worko 99
4.6 Conclusion and Future Work 100
V. Lyretail: Extraction on Dictionaries from Webpages 102

vi

5.1 Problem Overview 102

5.2 Preliminary o 104

5.2.1 System Framework 104

52.2 DataSources. 105

5.3 Dictionary Extraction from Webpages 107

5.3.1 Two Distinct Sets of Features 107

5.3.2 Training Data Construction 109

5.3.3 Implementing Page-specific Extractors. 112

5.3.4 Dictionary Aggregator 115

5.4 Experiments 116

5.4.1 Page-specific Extraction. 118

5.4.2 Dictionary Generation 123

5.4.3 System Configuration 124

5.5 Related Worko 126

5.6 Conclusions and Future Work 127

VI. DiagramFlyer: Extraction on Diagrams from PDFs 131
6.1 Problem Overview 131

6.2 System Framework 133

6.2.1 Diagram Metadata Extraction 133

6.2.2 Query Interface and Language 136

6.2.3 Software Architecture 138

6.3 Demonstration 142

6.4 Conclusions and Future Work 142

VII. Conclusion and Future Work 144
7.1 Contributions 144

7.1.1 Senbazuru Contributions 145

7.1.2 Anthias Contributions 146

7.1.3 Lyretail Contributions 146

7.1.4 DiagramFlyer Contributions 147

7.2 Future Work 147
BIBLIOGRAPHY 149

vii

Figure

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

3.1

3.2

3.3

3.4

LIST OF FIGURES

An example of XML.

A spreadsheet about smoking rates, from the Statistical Abstract of
the United States.

The three semantic components of a data frame spreadsheet.

A list of camera manufacturers from a webpage (with corresponding
HTML source code) can be represented in the relational format.

A diagram contains several characteristic regions of text: Title, x-
label, y-label, legend, and so on. The diagram can be represented in
a relational format. oL

Our user interface for repairing mappings.

A spreadsheet about population statistics, from the Statistical Ab-
stract of the United States.

The ideal relational tables for the spreadsheet example shown in Fig-
ure 1.7. . . . o

The three semantic components of a data frame spreadsheet.

A spreadsheet about smoking rates, from the Statistical Abstract of
the United States.

The top 10 domains in our web spreadsheet corpus. h-top and h-left
are percentages of spreadsheets with a hierarchical top or left region.

The distribution of web spreadsheets.

viil

14

15

15

31

32

35

36

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

4.1

4.2

4.3

4.4

4.5

4.6

The system pipeline for Senbazuru to process a single spreadsheet. 37

An example of the hierarchical top annotations in spreadsheets. . . 41
Our user interface for repairing mappings. 43
A sample of ParentChild variables. 44
An example of stylistic affinity shown in (a) and metadata affinity

shownin (b). 48
Interaction cycle for interactive repair. 49

Performance for automatic extractor using different amounts of train-
ing data. 61

Performance for automatic extractor on different domains in WEB. 61

The normalized repair number for interactive repair on SAUS and
WEB test sets. 63

The normalized repair number for four interactive repair configura-
TONS. . . 65

The normalized repair number required by different configurations of
metadata links. oo Lo 65

Screenshots of two Senbazuru clients, as a desktop application (a)
and an iPad application (b). 68

A spreadsheet about population statistics, from the Statistical Ab-
stract of the United States. 75

The ideal relational tables for the spreadsheet example shown in Fig-

ure 4.1. . . L 75
A spreadsheet’s header and data region. 76
Coverage ratio for spreadsheet properties on the Web400 dataset. . 79

The hybrid iterative learning framework for spreadsheet property de-
tection. L L 81

An example of “training size to plateau”. 91

1X

4.7

4.8

4.9

4.10

5.1

5.2

2.3

5.4

2.5

2.6

5.7

2.8

2.9

6.1

6.2

6.3

The F1 score curve to learn two property detectors individually.

The quality of user-provided rules influences the training size to
plateau.

The F1 performance curve to learn the five property detectors to-
gether.

The distribution of the five spreadsheet properties in the web.
The framework of Lyretail.

A list of camera manufacturers from a webpage (with corresponding
HTML source code) can be represented in the relational format.

An example of the training data and the desired output for a part of
entities in Figure 5.2 (a).o

The summarized performance on Lyretail’s page-specific extraction
and dictionary generation on common and long-tail vocabulary set-
tings. . ..

The F1 performance of the page-specific extractors in long-tail vocab-
ulary categories. We compare Lyretail with simple methods based on

the previous work Seal. L.

The F1 performance of the page-specific extractors in long-tail vo-

cabulary categories. We compare Lyretail with two baseline methods.

The granularities of the dictionary produced from two websites by
trying a set of negative example thresholds.

The precision of the top-k dictionary. We compare Lyretail with two
previous methods. o000

The precision of the top-k dictionary. We compare Lyretail with two
baseline methods. L

A diagram contains several characteristic regions of text as metadata,
and the position of metadata may vary in different diagrams.

The user interface of the DiagramFlyer system.

DiagramFlyer’s data processing pipeline.

94

95

96

98

105

106

110

120

121

122

128

129

130

132

Table

1.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

4.1

4.2

4.3

4.4

4.5

LIST OF TABLES

Each of the four systems addresses a specific type of para-relational
data. . ..

Extraction features for the frame finder..
Extraction features for the hierarchy extractor on left attributes. . .
Extraction features for the hierarchy extractor on top attributes. . .
Precision and recall of the frame finder extractor.
Basic statistics of our eight test sets.

Performance of the automatic extractor on SAUS and WEB R200
datasets.

Basic statistics for each test set’s interactive repair model.
Spreadsheet properties and transformation.
The formatting style of a spreadsheet cell.

Examples of the crude user-provided rules for the five properties in
Section 4.2.3.

Four methods to build property detectors.
The training size to plateau for four property detection methods with

0 = 0.01 and 6 = 0.05, and the % represents the improvement over
Active.

x1

11

41

46

47

o8

58

60

63

78

84

85

4.6

5.1

5.2

2.3

6.1

6.2

The F1 and accuracy of five spreadsheet property detectors using
three different classification methods.

The HTML structural property features.

Three seed examples of 11 dictionary categories for the page-specific
extraction evaluation.

Methods for the lesion study.

Selected textual and segment-centric features used in the simple clas-

Selected positional features used in the position-sensitive classifier. .

xii

98

108

117

118

135

135

ABSTRACT

Information Extraction on Para-Relational Data
by
Zhe Chen

Chair: Michael Cafarella

Para-relational data (such as spreadsheets and diagrams) refers to a type of nearly
relational data that shares the important qualities of relational data but does not
present itself in a relational format. Para-relational data often conveys highly valuable
information and is widely used in many different areas. If we can convert para-
relational data into the relational format, many existing tools can be leveraged for a
variety of interesting applications, such as data analysis with relational query systems
and data integration applications.

This dissertation aims to convert para-relational data into a high-quality relational
form with little user assistance. We have developed four standalone systems, each
addressing a specific type of para-relational data. Senbazuru is a prototype spread-
sheet database management system that extracts relational information from a large
number of spreadsheets. Anthias is an extension of the Senbazuru system to convert
a broader range of spreadsheets into a relational format. Lyretail is an extraction
system to detect long-tail dictionary entities on webpages. Finally, DiagramFlyer is

a web-based search system that obtains a large number of diagrams automatically

xiil

extracted from web-crawled PDFs. Together, these four systems demonstrate that
converting para-relational data into the relational format is possible today, and also

suggest directions for future systems.

Xiv

CHAPTER I

Introduction

1.1 Para-relational Data

In recent decades, a variety of tools, such as SQLServer, MySQL, and DB2, have
been developed to manage data in the relational format. Some other tools can query
the relational data or integrate many different relational data sources. These tools
all require the stored data to be in a strictly relational format. Unfortunately, the
massive amount of data available today is often not in a strictly relational format,
which makes it difficult to use most of the existing tools to manage the data.

Studies have been conducted to convert specific types of data into a relational
form to manage the huge amount of data using the tools built on relational data.
The most prominent types of data studied so far have been semi-structured (such as
XML) or unstructured data (such as free text).

Semi-structured data often refers to a form of structured data that does not con-
form with the formal relational format, but does contain tags or other markers to
separate semantic elements and enforce hierarchies of records and fields within the
data.! Semi-structured data is often self-describing, so it is easy to obtain the embed-
ded semantics by parsing the embedded structures. For example, Figure 1.1 provides

an example of XML code, which shows that the book Harry Potter is written by J.

'https://en.wikipedia.org/wiki/Semi-structured_data

<book>

<name>Harry Potter</name>
<author>J. K. Rowling</author>
</book>

Figure 1.1: An example of XML.

K. Rowling. This meaning is encoded via the metadata in XML. Researchers have
proposed a series of tools to manage semi-structured data [1, 45, 26, 28, 11, 17, 55].

Unstructured data often refers to natural language text. A large number of re-
search projects were conducted to extract the structured format of data [52, 18, 15,
51, 113, 79, 20, 3, 101, 10]. Subsequently, tools built on relational data can manage
the unstructured data.

This dissertation focuses on a new type of nearly relational data that we call
para-relational data. Our goal is to demonstrate that it is possible to convert para-
relational data into a relational format. Para-relational data refers to a type of data
that shares the important qualities of relational data but does not present itself in
a relational format. Our definition of the para-relational data has two important

qualities:

e Parseable Relational Units — Para-relational data can be converted into the
relational form, but it does not present itself directly as a relational form. That
being said, each cell in the target relational table is positioned as an individual
unit, encoded using the para-relational data structure such as a hierarchical

structure or other standard structures.

This quality of the para-relational data is similar to semi-structured data, as it
uses tags, markers, or standard structures to encode the semantic units. This
quality is different from unstructured data because natural language text does
not use embedded structures to encode relational data. We often must parse

the grammar of the text to obtain each individual unit or cell of the target

relational table from the unstructured data.

e Hidden Semantic Meanings — Para-relational data is often encoded in a
structure with implicit, embedded semantic meanings. As a result, it is nec-
essary to understand the underlying semantic meanings in order to correctly

parse the implicit relational data.

This quality is similar to the unstructured data, as we must recognize the se-
mantics of the data to correctly identify the hidden relational data. However,
the semantic meanings of semi-structured data are explicit. Semi-structured
data (such as XML) uses the associated metadata to explicitly encode semantic
meanings. For example, Figure 1.1 shows that we can easily tell the name of

the book is Harry Potter and the author is J. K. Rowling, according to the tags.

This dissertation concentrates on three typical types of para-relational data: Spread-
sheets, dictionaries in webpages, and diagrams. We give three real-life examples,

showing each type of para-relational data.

1.1.1 Spreadsheets

Spreadsheets are a critical data management tool that is diverse and widely used:
Microsoft estimates the number of worldwide Excel users at more than 400 million,
and Forrester Research estimates 50 to 80% of businesses use spreadsheets.? More-
over, there is a large amount of data on the web that is, practically speaking, only
available via spreadsheets. For example, the United States government published a
compilation of thousands of spreadsheets about economic development, transporta-
tion, public health, and other important social topics; a spreadsheet was the only
data format used.

Spreadsheets are a type of para-relational data:

2http://www.cutimes.com/2013/07/31/rethinking-spreadsheets-and-performance-management

6 Sex, age, and race 1990 \1 2000
7

19 Total smokers \3 25.5 23.2
20 Male, total 28.4 25.6
21 18 to 24 years 26.6 28.1
22 25 to 34 years 31.6 28.9
23 35 to 44 years 34.5 30.2
24 45 to 64 years 29.3 26.4
25 65 years and over 14.6 10.2
26 White, total 28.0 25.7
27 18 to 24 years 27.4 30.4
28 25 to 34 years 31.6 29.7
29 35 to 44 years 33.5 30.6
30 45 to 64 years i}@li}f}@lé
31 65 years and over iié:i' 9.8
32 Black, total 32.5 26.2
33 18 to 24 years 21.3 20.9
34 25 to 34 years 33.8 23.2
35 35 to 44 years 42.0 30.7
36 45 to 64 years 36.7 32.2
37 65 years and over 21.5 fiélz

(a) A spreadsheet example

1990 | Total smokers | Male White 45 to 64 years 28.7
1990 | Total smokers | Male White |65 years and over| 13.7
2000 | Total smokers | Male White 45 to 64 years 25.8
2000 | Total smokers | Male Black |65 years and over| 14.2

(b) Relational table for the four values in the spreadsheet

Figure 1.2: A spreadsheet about smoking rates, from the Statistical Abstract of the

United States.

e Parseable Relational Units — Spreadsheets often contain relational data
but do not explicitly present the relational formatted data. For example, Fig-
ure 1.2(a) shows a portion of a spreadsheet downloaded from the Statistical
Abstract of the United States.®> A user can easily tell that the data value 28.7
is described by the annotations 1990, Male, White, and 45 to 64 years.
call this implicit relationship between annotations and data a mapping. By
repeatedly finding such mappings, we can reconstruct the relational table seen

in Figure 1.2(b). However, this relational table is implicit and the spreadsheet

itself does not explicitly show the relational table.

e Hidden Semantic Meanings — There are many implicit structures often

3http://www.census.gov/compendia/statab/2012/tables/12s0204.x1s

Top Annotations

5 il 1
6 Sex, age, and race (11990 \1 2000 |
7 | !
19 |” ~ Total smokers \3 | 25.5 23.2!
20 Male, total :| 28.4 25.6:
21| 18 to 24 years ' 26.6 28.1,
22! 25 to 34 years ' 31.6 28.94
23 : 35 to 44 years |: 34.5 30.21
24 | 45 to 64 years , 29.3 26.4
25| 65 years and over :. 14.6 10.2:
26 | wWhite, total _ _ _,I__28.0_ 25.7,
Left Annotations Data Region

Figure 1.3: The three semantic components of a data frame spreadsheet.

hidden in spreadsheets. First, a data frame is a very common data model in
spreadsheets. A data frame often consists of three semantic regions: The top
and left annotation regions and the data region. For example, Figure 1.3 shows
the three components that make up a data frame: Two rectangular annotation

regions (left and top) and a single rectangular data region.

Second, the hierarchical structure is also common in spreadsheets. In Figure 1.2
(a), the data value 28.7 is implicitly annotated by the annotations 1990, Male,
White, and 45 to 64 years in a hierarchical fashion. We call this implicit mapping

relationship the hierarchical structure in spreadsheets.

1.1.2 Dictionaries from Webpages

Webpages often contain a list of instances belonging to the same conceptual class
that we call a dictionary (also known as gazetteers). For example, a camera brand
dictionary contains “Canon”, “Nikon” and so on.

Dictionaries in webpages are para-relational data:

e Parseable Relational Units — Dictionaries in webpages can be presented in
a relational format but the webpages do not explicitly show it. For example, the

left side of Figure 1.4 shows an example webpage with extractable dictionary

DSLR CAMERAS
Canon

Leica

Nikon

Olympus
Pentax

Sony
Sony

MIRRORLESS SYSTEM CAMERAS
Nikon

Olympus

Pentax

Sony

Panasonic

Fujifilm

Samsung

Canon

PROSUMERS/BRIDGE CAMERAS

Canon

Webpages Relational Table
COMPACT DIGITAL CAMERAS TRIPODS
Casio Gitzo
leica (o= \ Camera
Panasonic ...
Ricoh <di>
Samsung <dd>Canon</dd>...
Olympus </dI> Canon
Canon n
Nikon ... Leica
Sony <dI>
Pentax <dd>Casio</dd>... Nikon
Lytro </dI>...
warererg| <1 Olympus
Canon <&
N <dd>Gitzo</dd>... Pentax
Olympus C </dI>...
Panasonic § J SOny
Sony Cameras:

Speedo

From valuebasket.com

Figure 1.4: A list of camera manufacturers from a webpage (with corresponding

HTML source code) can be represented in the relational format.

items for camera manufacturers. However the webpage itself does not explicitly

present the relational table shown on the right side of Figure 1.4.

e Hidden Semantic Meanings — The webpage may use a variety of encoding
formatting styles to present dictionaries, such as an HTML list or table, or even
simple hyperlinks. Simply extracting the items according to the encoding for-
mat is not sufficient to extract the dictionary item. Figure 1.4 shows that this
webpage uses the HTML list to format the dictionary items, but the list con-
tains both in-set items (camera manufacturers such as “Canon” and “Nikon”)
and out-of-set items (tripod manufacturers such as “Gitzo”). To obtain the re-

lational form of this list, it is important to understand the underlying semantics

to distinguish in-set from out-of-set items.

1.1.3 Diagrams

Data-driven diagrams (or statistical graphics) are an important method for com-
municating complex information. Diagrams, a stylized mixture of graphics and text,
offer succinct quantitative summaries of data that motivates the overall document’s

content. For many technical documents, the diagrams may be readers’ only access

(y-label) (y-scale) (title) (legend)
— —

| Alsed)\S+ RE.,...:j: s‘! - AlbI\S+
Figure 2: Conventio’al Hadoop vs MANIMAL grep
MapReduce prograzi execution
(x-label) (caption)

(a) A diagram example

Ix-label | y-label | x-scale |y—scale| title | caption | legend I

I Regular.. |Execution... | Abcd\s+... | 0100... | Grep... | Figure 2... | Manimal... I

(b) Relational table for the diagram metadata

I x-label | y-label | value | others |

Albcd]\S+ | Execution.. 700 Manimal
Abcd|\S+ | Execution.. 721 Hadoop
Abc]\S+ | Execution.. 596 Manimal

(c) Relational table for the diagram data points

Figure 1.5: A diagram contains several characteristic regions of text: Title, x-label,
y-label, legend, and so on. The diagram can be represented in a relational
format.

to the raw data underlying the documents’ conclusions. Especially for quantitative
disciplines such as finance, public policy, and the sciences, certain diagrams could be
more valuable than the surrounding text.

The diagrams are para-relational data:

e Parseable Relational Units — Diagrams can be presented in a relational for-
mat but the they do not explicitly show it. For example, the two-dimensional
diagram as shown in Figure 1.4 (a) often consists of a set of metadata informa-
tion, including y-label, y-scale, title, legend, x-label, and x-scale. It is possible

to represent this diagram with two relational tables, as Figures 1.4 (b) and (c)

show: One relational table for the diagram metadata and another one for the
data points in the diagram. Unfortunately, the diagram itself does not explicitly

present the two relational tables.

e Hidden Semantic Meanings — A diagram often contains a set of semantic
fields, as shown in Figure 1.4 (a): A diagram contains the fields that can be
used to generate a unique diagram image, including x-label, y-label, y-scale,
title, and so on. Without understanding each of the key fields in a diagram, it
is impossible to automatically construct the resulting relational table shown in

Figures 1.4 (b) and (c).

1.2 Design Criteria and Challenges

The goal of this dissertation is to demonstrate that we can convert various types
of para-relational data into a relational form. Doing so makes it possible to use many

interesting downstream applications on the para-relational data.

e Data Analysis Applications — If we can convert para-relational data into
a relational form, we can leverage the operations designed on relational data
to analyze the para-relational data. For example, we can use the SQL query
language to select, project, or aggregate to obtain important information in a

huge amount of para-relational data.

e Data Visualization Applications — Most current data visualization tools
(such as Tableau) can only support relational data. If para-relational data can
be converted into a relational form, we can simply use the existing visualization
tools to generate diagrams from para-relational data without writing customized

code.

e Data Integration Applications — It would be easy to integrate the para-

relational data with various other relational sources.

For example, consider a policy expert Fred who wants to see if the strength of
the connection between smoking and lung cancer is consistent across all U.S.
states. The user does not have the relevant data at hand, so looks for it on the

web.

In one sense, the user is fortunate. Different branches of the government have
collected the data relevant to his task and made it available online, likely via
two separate downloadable spreadsheets: One for smoking statistics and one
for lung cancer statistics. Unfortunately, finding such data via current search
engines is quite tedious. In our case, the user would need to issue a text query,
and review all the returned documents before finding the relevant spreadsheets.
Moreover, because spreadsheets do not have explicit relational schema, the user
cannot benefit from society’s huge investment in data integration tools that
work on relational databases. Instead, the user likely must write custom code

to combine the two spreadsheets, which is a tedious process.

If it is possible to convert spreadsheets into a relational format, users can easily

use an existing integration tool to integrate the two spreadsheets.

To convert para-relational data into a relational form, we have the following three

design criteria:

e Machine Learning Algorithms — Each type of para-relational data would
be encoded using a customized semantic structure. A rule-based approach would
require the user to write a massive number of brittle rules. In practice, machine
learning methods are the best way to handle the diversity of expression in para-
relational data. As a result, we must employ machine learning algorithms to

learn the extraction algorithms.

e High-quality Results — We require high-quality (i.e., high-precision and
high-recall) or even perfect extraction results, because the extracted relational
form of data would be fed into the downstream applications for further data
processing. Even one mistake from the extraction procedure will cascade and

hinder downstream applications.

For example, a single mistake in hierarchy detection task can yield an extracted
relation that has many incorrect tuples, so ruins our data integration applica-
tion. As Figure 1.2 shows, if we fails to recognize that Male annotates White,
the system would generate incorrect relational tuples for all the data values

from rows 26 to 31.

Therefore, we require high-quality and even perfect extraction algorithms.

e Little User Assistance — Finally, user labeling tasks are expensive for many
tasks. For example, it often requires specialized skills or knowledge to label the
training data. Therefore, when building the extraction algorithms, it is highly
likely that we will not receive much user assistance in providing training data

or feedback to obtain perfect extraction results.

Considering the above design criteria, we face the following two challenges to
convert the para-relational data into the relational form:

Implicit Semantics Extraction — Para-relational data is often encoded in a
structure with implicit embedded semantic meanings, but does not explicitly present
its structure. Different types of para-relational data may contain different semantic
structures. For example, Figure 1.2 shows the spreadsheet hierarchical structure,
and Figure 1.3 shows the spreadsheet data frame structure. Figure 1.4 shows a
webpage with dictionary items of camera manufacturers that are mixed with entities
belonging to tripod manufacturers. Figure 1.5 shows that diagrams often contain a

set of semantic fields, including x-label, y-label, y-scale, title, and so on. To construct

10

System Para-relational Data
Senbazuru spreadsheets
Anthias spreadsheets
Lyretail dictionaries
DiagramFlyer diagrams

Table 1.1: Each of the four systems addresses a specific type of para-relational data.

the relational form of the data, it is critical to correctly understand the underlying
semantics of the hidden semantic structures. However, it is not straightforward how
to automatically obtain these structures.

Little User Assistance — We employ a variety of machine learning techniques
to obtain the implicit hidden semantics for different types of para-relational data.
However, there are two key problems: First, many machine learning algorithms re-
quire a sufficient amount of training data for the training procedure to obtain a
satisfying prediction performance. But it is always hard and costly to obtain a lot of
labeled data. Second, it is almost impossible for any machine learning algorithm to
obtain perfect prediction results. However, in many cases, especially when there are
downstream applications, the quality of the prediction results is critical. The user
always must browse the results one after another for validation. That said, it requires

a huge amount of user effort to obtain perfect extraction results.

In this dissertation, we explore a variety of machine learning techniques to ex-
tract the inherent structure or semantic meaning of the para-relational data (i.e.,
spreadsheets, dictionaries in webpages, and diagrams), therefore making it possible
to automatically, or with little user effort, convert the data to a relational format.

We now discuss our approaches in detail.

11

1.3 Approaches and Systems

In this dissertation, we aim to convert para-relational data into a high-quality
relational form with little user assistance. We developed four standalone systems
that contribute to the conversion from para-relational data to the relational format.
Each system addresses a specific type of para-relational data, as shown in Table 1.1.
Senbazuru is a prototype spreadsheet database-management system that extracts re-
lational information from a large number of spreadsheets. Anthias suggests an ex-
tension of the Senbazuru system to convert a broader range of spreadsheets into a
relational format. Lyretail is an extraction system that detects long-tail dictionary
entities on webpages. DiagramFlyeris a web-based search system that obtains a large
number of diagrams automatically extracted from web-crawled PDF's. These four sys-
tems demonstrate that converting para-relational data into the relational format is

possible today, and also suggest directions for future systems.

1.3.1 Senbazuru: Extraction on Spreadsheet Structures

We developed Senbazuru, a prototype spreadsheet database management system
(SSDBMS). Senbazuru extracts the structural information from a large number of
spreadsheets, making it possible to convert spreadsheets into a relational form with
little user effort.

Our technical contributions mainly lie in two parts:

Implicit Semantics Extraction — We have identified two typical implicit se-
mantic structures of spreadsheets: The data frame model and the hierarchical struc-
ture.

The data frame is a very common data model in spreadsheets. A data frame often
consists of three semantic regions, as shown in Figure 1.3. We propose a conditional
random field based approach to identify the semantic regions in a spreadsheet by

assigning one of four labels (i.e., header, data, footnote or title) to each row of a

12

spreadsheet. In this way, we could automatically recognize the the three semantic
regions of a data frame in a spreadsheet.

Hierarchical structure is an important semantic structure in spreadsheets. We
propose a new two-phase semiautomatic approach based on an undirected graphical
model to accurately extract spreadsheet annotation-to-data mappings. It receives
spreadsheets as input and computes a hierarchical structure with user interaction.

Little User Assistance — To obtain perfect spreadsheet hierarchical struc-
ture, we propose a new two-phase semiautomatic approach based on an undirected
graphical model to accurately extract the hierarchical structure with little user effort.
First, the automatic extractor receives spreadsheets as input and computes a map-
ping without user interaction. Based on an undirected graphical model, it exploits
single-spreadsheet graphical style hints (such as the font and typographic alignment)
and correlated extraction decisions in one spreadsheet or across spreadsheets. Second,
our system offers an interactive repair phase, in which a user repeatedly reviews and
corrects the automatic extractor’s output until no errors remain. Our interactive re-
pair is more than simply asking a user to fix every single extraction error. It exploits
the correlations among different extraction decisions to make more effective use of
each user repair operation. A user’s single repair can be silently and probabilistically
applied to multiple possible errors, allowing us to amortize the user’s effort over many
likely extractor mistakes.

Figure 1.6 shows an example of the user interface for applying repairs. The left
side of the diagram indicates the initial hierarchy obtained by the automatic extractor
for Figure 1.2. The dashed arrow shows that a user performs a repair by clicking and
dragging White so that it becomes a child of Male, indicating that Male annotates
White. This one repair operation triggers multiple error fixes, including setting Male

to also annotate Black.

13

Before Repair: "White, total"

After Repair: "White, total"

ROOT Total smokers \3 ROOT Total smokers \3

Male, total 18 to 24 years Male, total 18 to 24 years

25 to 34 years 25 to 34 years

35 to 44 years 35 to 44 years

| 45 to 64 years 45 to 64 years

— 1 _ _, “65years and over 65 years and over
White, total 18 to 24 years White, total 18 to 24 years
L= ——=-W251034 years 25 to 34 years
35 to 44 years 35 to 44 years
45 to 64 years 45 to 64 years
65 years and over 65 years and over

Black, total 18 to 24 years Black, total 18 to 24 years
25 to 34 years 25 to 34 years
35 to 44 years 35 to 44 years
45 to 64 years 45 to 64 years

65 years and over

65 years and over

Figure 1.6: Our user interface for repairing mappings.
1.3.2 Anthias: Extraction on Spreadsheet Properties

We propose the Anthias system, which is an extension of Senbazuru, to convert a
broader range of spreadsheets (in addition to the data frame spreadsheet mentioned
in Section 1.3.1) into a relational format. Anthias enhances Senbazuru by considering
a variety of spreadsheet properties. We use the spreadsheet properties to refer to a
series of transformation programs that contribute toward the spreadsheet-to- rela-
tional table transformation framework. For example, Figure 1.7 shows a portion of
a spreadsheet downloaded from the Statistical Abstract of the United States.* The
spreadsheet shows a sheet table that consists of the header region (row 5) and data
region (rows 6-43), but it is not a relational table. Figure 1.8 shows the ideal rela-
tional tables that are equivalent to this sheet table, but generating them requires a

series of transformation programs:

e Transform aggregation rows — Data values in rows 16-17 are aggregated values

defined on rows 7-14. We remove the aggregated values in the resulting table.

e Transform aggregation columns — Data values in column B are aggregated
values defined on columns C-E. We remove the aggregated values in the resulting

table.

“http://www.census.gov/compendia/statab/2010/tables/10s0036.x1s

14

] A B C [3] z
1 Table 36. Selected Characteristics ¢of Racial G:r::lups and Hispla.nic Populalti:m: 2007
73 |zee Notes
American
Black or Indian,
Characteristic African Alaska
Total American Native
5 population|White alone alone alone
6 EDUCATIONAL ATTAINMENT
7 | Ppersoms 25 years old and over, to{ 197,892,369|152,051,334|22,171,628|1,426,132
"B |Less than 9th grade 12,575,318 7,626,199 1,250,932 132,119
"9 |9th to 12th grade, no diploma 18,098,125 12,181,361 3,151,934 207,542
WHigh school graduate (includes equiy 59,658,315| 46,127,209 7,613,046 475,857
11 |scme cellege, no degree 38,522,312 30,333,037 4,708,641 316,477
12 |Asscciate's degree M4,704,788] 11,603,020| 1,620,010 112,909
13 |Bachelor's degree 34,364,477| 27,847,166| 2,534,447 119,252
14 |Graduate degree 19,969,034| 16,333,342| 1,292,618 61,976
15
16 |Percent high scheool graduate or hig 84 a7 80 76
17 |Percent bachelor's degree or higher 27 29 17 13
33
|34 |FAMILY INCOME IN THE PAST 12 MONTHS
35| Total families M 75,119,260 57,921,125 8,463,809 537,496[
36 |Less than $10,000 F 3,350,114 1,872,052 951,644 55,625[
137 510,000 to $14,989 M 2,521,226(1,555,245 563,007[39,350
38 (515,000 to $19,999 r 3,040,893 1,982,661 583,808 34,467
139 520,000 to 524,999 F 3,426,868[2,336,964 579,991 37,612
740 [$25,000 to $29,999 f 3,458,198[2,441,744 540,407[33,508[
41 $30,000 to $34,999 r 3,702,582[2,688,925 522,709%[35,904
42 535,000 to $39,9%9 M 3,540,991 2,626,301 464,815] 30,366
143 [$40,000 to $44,999 r 3,647,260[2,761,111 441,068] 26,581

Figure 1.7: A spreadsheet about population statistics, from the Statistical Abstract
of the United States.

| Edutation Attainment Race Value | | Family Income Race Value |
Less than 9th grade ‘White alone 7626199 | | Less than $10,000 White alone 1872052
Less than 9th grade Black or African... 1250932 | | Less than $10,000 Black or African... 951644
Less than 9th grade American Indian... 132119 Less than $10,000 American Indian... 55625
9th to 12th grade... White alone 12181361 | | $10,000 to $14,999 White alone 1555245
9th to 12th grade... Black or African... 3151934 | | $10,000 to $14,999 Black or African. .. 563007
Oth to 12th grade... American Indian... 207542 $10,000 to $14,999 American Indian. .. 39350
High school graduate... White alone 46127209 | | $15,000 to $19,999 White alone 1982661
High school graduate... Black or African... 7613046 | | $15,000 to $19,999 Black or African. .. 583609
High school graduate... American Indian... 475857 | | $15,000 to $19,999 American Indian. .. 34467

Figure 1.8: The ideal relational tables for the spreadsheet example shown in Fig-
ure 1.7.

e Transform crosstab— The headers of columns C-E (i.e., “White Alone”, “Black

or...” and so on) form the horizontal dimension Race. We pivot this horizontal

dimension into a new column Race in the resulting relational table.

e Transform split tables — Rows 6-17 show “Education Attainment” and rows

34-43 show “Family Income”. We split the two parts as two tables.

Each of the transformation programs above describes a piece of the process on

a specific characteristic of a sheet table that yields a result closer to a relational

15

table. We use a spreadsheet property (such as aggregation rows, aggregation columns,
crosstab, and split tables) to represent such a transformation program that contributes
to the spreadsheet-to-relational-table transformation.

Our technical contributions mainly lie in two parts:

Implicit Semantics Extraction — Spreadsheet properties are a critical con-
cept to to represent the spreadsheet-to-relational-table transformation. We study
the task of spreadsheet property detection, which decides if a spreadsheet contains
a specific spreadsheet property (e.g., whether a spreadsheet contains “aggregation
rows”). To the best of our knowledge, we are the first to propose the spreadsheet
property detection problem, which is the first step toward building the spreadsheet-
to-relational-table pipeline.

Little User Assistance — Our main technical contribution is a novel rule-
assisted active-learning framework to construct high-quality spreadsheet property de-
tectors with little user labeling effort. We developed a hybrid approach that integrates
crude user-provided rules with an active learning approach to reduce user labeling ef-
fort. In addition to the labeled instance suggested by the active learning approach,
we bring in crude rules from users to generate additional labeled data for the prop-
erty detectors. We produce labeled instances with the agreed decision from both
the current trained classifier and the user-provided rules. This bagging-like technique
makes it possible for our framework to tolerate bad rules. Our hope is that this hybrid
approach can generate additional high-quality labeled data especially in the initial

stage to quickly warm up the classifiers.

1.3.3 Lyretail: Extraction on Dictionaries from Webpages

We develop the Lyretail extraction system. Using only a few user-given seeds,
Lyretail automatically produces a high-quality page-specific dictionary for each input

webpage. The page-specific dictionaries (PSDs) from many webpages can be further

16

aggregated as a high-quality comprehensive dictionary to answer the user’s request.

Our contribution mainly lies in two parts:

Implicit Semantics Extraction — We develop the Lyretail extraction system,
which builds a unique extraction model that automatically produces a high-quality
page-specific dictionary for each input webpage given a few seed examples. By aggre-
gating the PSDs of many webpages retrieved from the web, Lyretail can also compute
a high-quality comprehensive dictionary as its answer to the user’s request.

Little User Assistance — We are able to obtain high-quality extraction re-
sults while reducing user assistance as much as possible in two ways: First, Lyretail
automatically generates training data for building high-quality page-specific extrac-
tors using a distant supervision based algorithm. Second, we propose a co-training
framework that incorporates sequential features to build high-quality page-specific
extractors. We leverage the output from the extractor built on web lists to train a
semi-supervised CRF as the resulting page-specific extractor. As a result, we can
build high-quality page-specific extractors on each webpage that often can distin-
guish infrequently-observed true extractions from incorrect ones. These results are

then aggregated into high-quality long-tail dictionaries.

1.3.4 DiagramFlyer: Extraction on Diagrams from PDF's

We present DiagramFlyer, a working search engine that provides search services
for a corpus of 319k diagrams extracted from a web crawl of PDF's online.

Our contributions are mainly lie in Implicit Semantics Extraction. For each
data-centric diagram discovered in a large number of documents, the DiagramFlyer
extractor recovers as much of the underlying diagram production process as possible
(such as captions and x-axis and y-axis labels). We also provide a software architec-
ture and set of algorithms for implementing DiagramFlyer’s query tools that perform

diagram relevance ranking, similar item finding via lexicons, and snippet generation.

17

Regarding Little User Assistance, we attempt to construct high-quality diagram

metadata extractors by asking for a sufficient amount of training data from the users.

1.4 Scientific Contributions

In this dissertation, we aim to convert para-relational data into a high-quality
relational form with little user assistance. Our scientific contributions mainly lie in
the following three areas (we will discuss the related work in the three areas in detail

in Chapter 2):

e Information extraction — Previous research on information extraction can
be divided into either domain-dependent or domain-independent extraction.
Domain-dependent extraction often requires a lot of user effort but can ob-
tain high-quality extraction results, while domain-independent extraction only

requires very little user assistance but may sacrifice the extraction performance.

This dissertation developed information extraction techniques on para-relational
data to obtain high-quality or even perfect extraction results while reducing user

assistance as much as possible.

e Machine learning — It is very hard for any machine learning algorithms to
obtain the fully accurate prediction result. In addition, previous classification
and joint-inference algorithms often require a sufficient amount of user effort
on training data, while active learning approaches can often save a sufficient

amount of training data but suffer from the cold-start problem.

In this dissertation, in addition to applying a variety of existing machine learning
algorithms in the information extraction applications, we make two attempts
to innovate around machine learning algorithms: We attempt to obtain fully
accurate extraction results by interacting with users while reducing the required

user effort as much as possible; and we attempt to further reduce the user effort

18

required by active learning by incorporating simple, crude user-provided rules,

thereby alleviating the cold-start problem of active learning techniques.

e Data management — Previous data management researches mainly focused
on relational or semi-structured data sources, and the researches have dealt with

many application problems such as query and integration.

This dissertation focuses on a new type of data that is different from previous
work on data management which we call para-relational data. Our contribution
is mainly from an application perspective. We convert para-relational data into
a high-quality relational form based on our novel techniques on information
extraction and machine learning. This makes it possible to use existing tools

on relational data to manage the para-relational data.

1.5 Outline of the Dissertation

The next chapter provides a brief background description of three areas of re-
search relevant to this dissertation: Information extraction, machine learning, and
data management. These are all huge areas of work, so we focus on areas of the
literature where they have intersected to some degree. Chapters 3-6 cover the four
projects on para-relational data extraction in detail: Senbazuru, Anthias, Lyretail,
and DiagramFlyer. We conclude and discuss future work in Chapter 7. All together,
these chapters present a coherent set of research contributions and a vision for future
work on para-relational data extraction.

I was the lead researcher for all the projects presented in this dissertation, and
almost all the projects have appeared, or will appear, in various venues. We presented
the Senbazuru project in Chapter 3 as a system demonstration in VLDB 2013 [34].
We showed the system pipeline of Senbazuru in SSW 2013 [31] and presented the

hierarchy extraction algorithm in KDD 2014 [32]. The Anthias project in Chapter

19

4 is under submission for the WWW conference in 2016 [36]. The Lyretail project
in Chapter 5 will appear in the WSDM conference in 2016 [35]. We presented the
DiagramFlyer project in Chapter 6 in Frontiers of Engineering in 2012 [30] and also

as a system demonstration at the 2015 WWW conference [33].

20

CHAPTER II

Research Background

There are three large areas of research that are relevant to para-relational data
extraction. We discuss the area of information extraction in Section 2.1, machine

learning in Section 2.2, and relational data management in Section 2.3.

2.1 Information Extraction

Information extraction often refers to the automatic extraction of structured in-
formation, such as entities, relationships between entities, and attributes describing
entities from unstructured data sources [95].

The early work in information extraction (IE) was inspired by the Message Un-
derstanding Conferences (MUCs), initiated by DARPA (Defense Advanced Research
Projects Agency) in the early 1990s. At that time, MUC was focusing on Informa-
tion Extraction (IE) tasks in which structured information of company activities and
defense-related activities was extracted from the unstructured text. For the last two
decades, the IE task has attracted much research. In general IE research can be di-
vided into two parts: Domain-dependent extraction is sensitive to topic-specific data,
rules, or schemas and domain-independent extraction often avoids extraction rules or
training data that is tailored to a specific topic.

We discuss the two areas of work in detail in the next two sections.

21

2.1.1 Domain-dependent Extraction

Domain-dependent extraction often refers to the series of IE tasks on topic-specific
data, rules, or schemas. One of the most well-known domain-dependent extraction
tasks is the Named Entity Recognition and Classification (NERC) task. The goal
of the NERC task is to recognize information units such as names, including per-
son, organization and location names, and numeric expressions including time, date,
money, and percentage expressions [82]. One of the first research papers in the field
was presented by Lisa Rau in 1991. Rau [89] proposed an algorithm to extract and
recognize company names that relies on heuristics and the handcrafted rule.

There are a variety of domain-dependent extraction tasks. Fleischman [52] de-
veloped a method for extracting the subcategorization of location names, including
city and state. The extraction of person is quite common and used at least once in
an original way Bodenreider and Zweigenbaum [18] proposed several criteria to iden-
tify proper names in biomedical terminologies. Bick [15] developed a named entity
recognizer that targets six primary name types (human, organization, place, event,
title/semantic product, and brand/object). In addition to the IE tasks on common
types, there is research on marginal types for specific needs, such as scientist [51],
and email address and phone number [113, 79].

To summarize, the domain-dependent extraction can often produce very high-
quality extraction results but requires a lot of domain knowledge or heuristics to

process the extraction.

2.1.2 Domain-independent Extraction

Domain-independent extraction does not target for a specific tasks and often does
not require extraction rules or training data tailored to a specific topic. This area of
research has attached much attention especially in the last two decades.

The first step in automating IE moved from knowledge-based IE systems to train-

22

able systems. AutoSlog-TS [91], in the 1990s, attempted to automatically generate
extraction patterns using annotated text and a set of heuristic rules. DIPRE [20] and
Snowball [3] further reduced manual labor needed for relation-specific text extraction
by only requiring a small set of valid seed tuples for the target relation provided by
the users to start the extraction process. YAGO [101] used Wikipedia information
to produce a large number of ontology objects consisting of is-a and 13 other fixed
binary relations while retaining high quality. For example, the object Paris is in the
FamilyNameOf relation along with Priscilla Paris, and in the Means relation along
with Paris, France.

Later projects focused on conducting the extraction process on a large scale of
webpages. OpenlE [10] employed the distant-supervision method to obtain millions
of relational tuples from a large corpus by making a single data-driven pass without
requiring any user input. The WebTable project [22] also conducted a web-scale
IE system to obtain a huge number of web HTML tables. This huge amount of
resources was further used to explore searching tables, attribute synonym finding and
many other tasks.

To summarize, the domain-independent extraction often requires very little user
effort but can produce satisfactory extraction results at a large scale. The domain-

independent extraction saves user effort but may sacrifice performance.

2.2 Machine Learning

Our extraction tasks use a variety of machine learning algorithms. Machine learn-
ing algorithms are one of the oldest computer applications. There were a large number
of important algorithmic and theoretic developments over the past century [98]. We
mainly focus on the classification tasks and briefly introduce some basic and joint-
inference classification models, and the active learning technique in the next three

sections.

23

2.2.1 Basic Classification Algorithms

The classification tasks (binomial or multinomial) are one of the most frequently
studied problems in machine learning. The classification problem studies the task of
classifying the elements of a given set into two or more groups based on the classi-
fication rules. The classification rule can be manually designed but is often learned
through training data.

The most prominent classification algorithms include logistic regression, naive
bayes, support vector machines (SVM), decision trees, and random forests. We now
briefly introduce logistic regression in detail.

Logistic regression — Logistic regression is used to predict the odds of being a
case based on the values of the independent variables (predictors).

Consider the binary classification with y = 0 or 1. Each example is represented
by a feature vector x. Logistic regression defines the probability distribution on the

feature vector x as follows:

1

1 + exp(—ybTx) (2.1)

plyle) =

Logistic regression can also be easily generalized to multiple classes. Let there
be K classes. Each class has its own parameter 8;. The probability distribution is
defined via the softmax function:
exp(6] x)

= klz) =
P =) = S p(oTe)

To summarize, almost all these simple classification algorithms assume that the

(2.2)

entities are independent of each other, and require a sufficient amount of training

data to estimate the unknown parameters defined in the models.

24

2.2.2 Joint Inference Algorithms

In recent decades, joint-inference models are especially popular in the natural
language processing area by considering the correlation among entities [80]. The
joint-inference models achieve better performance on well-defined subproblems such as
part-of-speech tagging, phrase chunking, syntactic parsing, named-entity recognition,
and semantic-role labeling. The popular joint inference models include conditional
random fields [75, 102] and other types of graphical models [71].

Conditional Random Fields (CRFs) — Conditional random fields (CRFs)
are a probabilistic framework for labeling and segmenting structured data, such as
sequences, trees and lattices. It is a discriminative model and defines a conditional
probability distribution over label sequences given a particular observation sequence.

Consider a linear-chain conditional random field [75, 102]. Let y,x be random
vectors, 6 = 0 be the parameter vectors and fx(y, v, X¢) be a set of feature functions.

Then a linear-chain conditional random field defines the probability distribution as:

K
plylx) = %HL exp{) Ok fr(y.y' %)} (2.3)
k=1

where Z is a normalization factor.

In addition to the linear-chain CRFSs, there are other forms of CRF's that can be
easily generalized according to the probability distribution shown in Equation 2.3,
such as the skip-chain CRFs and general CRFs.

Graphical model — A graphical model G [71] describes a joint distribution
over a set of n random variables x = {x1,...,2,}, where each variable x; takes a
label [; from a set of labels L. The model captures properties of each variable and
dependencies among variables in the graph by defining potential functions on cliques

of correlated variables. The probability distribution is defined as:

25

P(xl,...,xn):%exp(S 00x) (2.4)

CCecliques(G)

A common method to define the potentials is as a dot function between the weight
parameters and a feature vector [85]. A node potential captures the features that
correspond to a single variable. The node potential is usually defined on a variable
z; as 0(x;) = wilf(xy,1;), where f(z;,1;) is a feature vector and wy is the associated
weight parameters. Similarly, the edge potential is usually defined on pairwise vari-
ables z; and z; to describe their correlation as 0(x;,x;) = wal £(z;,1;,2;,1;). Users
generally provide domain knowledge via the feature vectors f, while the parameters
w = {w1, W} are trained from labeled data. In the training stage, the feature vector
is derived from a set of labeled data to obtain the optimal value for the weight pa-
rameters w. In the inference stage, the optimal labeling can be obtained by finding
the maximum joint probability. As our model is conditionally trained, it belongs to
the class of general graph conditional random fields [75].

To summarize, these algorithms assume the entities are correlated in some prede-
fined patterns. However, similar to the basic classification algorithms, all the algo-
rithms require a sufficient amount of training data to estimate the unknown param-

eters defined in the models.

2.2.3 Active Learning

Active learning is a subfield of machine learning. This area of research attracted
much attention in the last two decades. The key idea of active learning is that we can
save the amount of data needed to be labeled if the learning algorithm is allowed to
choose the data in a smart way [97]. An active learner may ask queries in the form
of unlabeled instances to be labeled by an oracle (such as a human annotator).

There are two common active learning [97] approaches. The first is uncertainty

sampling, and it is the most popular active learning strategy. An uncertainty sam-

26

pling strategy often chooses to label instances closest to the decision boundary and
refines the decision boundaries by heavily exploiting the current knowledge space.
The uncertainty sampling approach in [94] simply selects the instance with the pre-
dicted probability closest to 0.5. The second is a variation of the Query by Committee
(QBC) [103] technique. It is a selection framework that takes into account the dis-
agreement of multiple committee classifiers. The QBC strategy is more complicated
than uncertainty sampling, as it requires careful design of approaches to create a set
of models (i.e., committee members) and a metric to measure disagreement among
the committee members.

Active learning methods can save a sufficient amount of training data but often
suffer from the cold-start problem [117]. In the beginning stages, the classifier lacks
training data to approach the ideal decision boundary and suggest effective instances

to label.

2.3 Data Management

There has been a large variety of work on data management, but most of it focuses
on managing relational data or semi-structured data sources. Researchers also studied
the problem of model management, which is a generic approach to solving problems
of data programmability in which precisely engineered mappings are required [13].
However the research on model management mainly focused on the mappings between
relational data and semi-structured data [12, 13, 67]. We briefly discuss relational

and semi-structured data management in the next two sections.

2.3.1 Relational Data Management

Relational data management has been an active research area even before E.F.
Codd proposed the relational model of data in 1970 [38]. The oldest working system

that is a recognizably modern database may be IBM’s IMS database, released in

27

1968 [100].

The various software systems used to maintain relational databases are known
as relational database management systems (RDBMS). A variety of commercial rela-
tional databases systems were developed in many different institutions, including IBM
DB2, Oracle RDBMS and Microsoft SQLServer. In addition to the data management
system, SQL (i.e., Structured Query Language) was developed as the standard lan-
guage for querying and maintaining the database. SQL was one of the first commercial
languages for Codd’s relational model [38].

There are many active research areas on database applications. One of the most
pervasive challenges is data integration. The goal is to make it easier to query across
multiple autonomous, heterogeneous data sources [58]. Data integration is crucial
especially in large enterprises that own a multitude of databases. Most of the time,
the data sets are independently produced by multiple researchers.

In summary, there are a variety of tools available that can easily manage relational

data, including querying and integrating relational data, and many other applications.

2.3.2 Semi-structured Data Management

Another prominent line of work on data management is on semi-structured data
sources, Most of this work focuses on data sources such as Extensible Markup Lan-
guage (XML).

XML is a markup language that defines a set of rules for encoding documents
in a format that is both user- and machine-readable. XML is an application profile
of SGML, which was used by early digital-media publishers in the late 1980s, even
prior to the rise of the web. The first (XML 1.0) was initially defined in 1998. It has
undergone minor revisions since then. Nowadays, XML is widely used everywhere in
the world.

The research on XML data mainly focuses on query tree-structured data. A

28

few XML query languages were proposed: Lorel [1], XML-QL [45], XML-GL [26],
Quilt [28], XPath [11] and XQuery [17]. Of all the existing XML query languages,
XQuery is being standardized as the major XML query language.

In summary, many different tools have been proposed to query or manage semi-

structured data.

29

CHAPTER III

Senbazuru: Extraction on Spreadsheet Structure

3.1 Problem Overview

One notable form of web statistical data is spreadsheets. Spreadsheets are an
extremely popular data management tool, allowing users to complete a range of data
tasks commonly associated with relational systems: projection, sorting, aggregation,
and simple ETL (Extract, Transform and Load) jobs. Moreover, spreadsheets are
often contain data that are roughly relational, but the schema is often designed for
human consumption, thus entirely implicit.

In this chapter, we consider the transformation from spreadsheets to the relational
form on a specific type of spreadsheet which we call the data frame spreadsheet. For
example, the spreadsheet in Figure 3.2 shows a data frame spreadsheet about the
smoking rate downloaded from the government’s Statistical Abstract of the United
States.!. Each row clearly represents a different configuration of the smoking rate; for
example, 13.7 in the value region is the rate for people with constraints Male, White,
65 years and over in the annotation region, and it yields an annotating relational tuple
at the bottom. But there are two main problems here.

First, the spreadsheet only implicitly indicates which cells carry wvalues versus

annotations. Often a spreadsheet is a mix of annotations, values, and other elements

http://www.census.gov/compendia/statab/2012/tables/1250204.x1s

30

Top Annotations

5 il 1
6 Sex, age, and race (11990 \1 2000 |
7 | !
19 |” ~ Total smokers \3 | 25.5 23.2!
20 Male, total :| 28.4 25.6:
21| 18 to 24 years ' 26.6 28.1,
22! 25 to 34 years ' 31.6 28.94
23 : 35 to 44 years |: 34.5 30.21
24 | 45 to 64 years , 29.3 26.4
25| 65 years and over :. 14.6 10.2:
26 | wWhite, total _ _ _,I__28.0_ 25.7,
Left Annotations Data Region

Figure 3.1: The three semantic components of a data frame spreadsheet.

such as titles and footnotes. These elements are not easily distinguished from each
other. As shown in Figure 3.1, we call it a data frame structure, which consists
of two rectangular annotation regions (left and top) and a single rectangular data
region.

Second, the spreadsheet does not explicitly indicate which annotations describe
which wvalues. If the leftmost column is processed naively, rows 25, 31, and 37 will
yield three tuples that have different smoking rates for 65 years and older. All three
extracted tuples are incorrect, as none will contain any mention of the annotation
Male. We call this implicit mapping relationship the hierarchical structure in
spreadsheets.

In summary, Figure 3.2 shows a clean, high-quality spreadsheet, but extracting
relational data from it requires us to: (1) data frame extraction — detect annotations
and values, (2) hierarchy extraction — identify the hierarchical structure of left and
top attributes, and (3) relation construction — generate a relational table for each
value in the spreadsheet.

In this chapter, we present Senbazuru, a prototype spreadsheet database man-
agement system that is able to extract relational information from a large number
of spreadsheets. We introduce the data model, data sources, and We present the

system pipeline and our approaches to convert data frame spreadsheets into a rela-

31

5

6 Sex, age, and race 1990 \1 2000
7

19 Total smokers \3 25.5 23.2
20 Male, total 28.4 25.6
21 18 to 24 years 26.6 28.1
22 25 to 34 years 31.6 28.9
23 35 to 44 years 34.5 30.2
24 45 to 64 years 29.3 26.4
25 65 years and over 14.6 10.2
26 White, total 28.0 25.7
27 18 to 24 years 27.4 30.4
28 25 to 34 years 31.6 29.7
29 35 to 44 years 33.5 30.6
30 45 to 64 years i}@li}f}@lé
31 65 years and over i:éli' 9.8
32 Black, total 32.5 26.2
33 18 to 24 years 21.3 20.9
34 25 to 34 years 33.8 23.2
35 35 to 44 years 42.0 30.7
36 45 to 64 years 36.7 32.2
37 65 years and over 21.5 fiélz

(a) A spreadsheet example

1990 | Total smokers | Male White 45 to 64 years 28.7
1990 | Total smokers | Male White |65 years and over| 13.7
2000 | Total smokers | Male White 45 to 64 years 25.8
2000 | Total smokers | Male Black |65 years and over| 14.2

(b) Relational table for the four values in the spreadsheet

Figure 3.2: A spreadsheet about smoking rates, from the Statistical Abstract of the
United States.

tional form in Section 3.3. We conduct the extensive experiments on extracting the
data frame and the hierarchical structure in Section 3.4. We demonstrate the system
Senbazuru in Section 3.5. Finally we discuss related work in Section 3.6 and conclude

in Section 3.7.

3.2 Preliminary

In this section, we will introduce the spreadsheet terminology and the data sources
that we use throughout this chapter. We also collect the statistics on web spreadsheets

in order to better design the Senbazuru system.

32

3.2.1 Terminology

In its most generic incarnation, a spreadsheet is simply an M x N grid of cells,
in which each cell can contain a string, a number, or nothing. In practice, most
spreadsheets, especially the high-quality ones that carry data that we want to extract,
have substantially more structures. We make two assumptions about the spreadsheets

we will process without seriously compromising our approach’s generality.

Data Frames — First, we focus on a prototypical form of spreadsheet that we call a
data frame. Figure 3.1 shows the three components that make up a data frame: Two
rectangular annotation regions (left and top) and a single rectangular data region. For
each data in the data region, there is usually at least one annotation in the top and
left annotation regions. For example, in Figure 3.1, the data 14.6 has annotations 65

years and over, Male and 1990.

Hierarchies — Second, we focus on hierarchical spreadsheets. We assume a spread-
sheet is hierarchical if the annotations in the top or left annotation region exhibit
a hierarchical tree structure of at least two layers. Each annotation region has a
notional tree that characterizes how each annotation describes the data region. For
example, in Figure 3.2, all the data at row 31 have a direct annotation of 65 years and
older and indirect annotations of White, Male and Total smokers in the left hierarchy.
Note that the annotation hierarchies are not ontologies. For example, Male is not a
super-category of its children.

Relational Tuples — Given the annotation hierarchies for a spreadsheet, we can
recover the equivalent relational tuples. For each data in the data region, we generate
a relational tuple that consists of the following: (1) The data itself; and (2) Its
direct annotation plus all of its indirect annotations in the left and top. For example,
in Figure 3.2, the data 28.7 has a direct annotation of 45 to 64 years and indirect
annotations of White, Male and Total smokers in left. Similarly, we obtain the direct

and indirect annotations in the top hierarchy and then generate the relational tuple

33

as shown in Figure 3.2 (b).

Relational Table — Combining multiple relational tuples into a single relational
table is sometimes straightforward, but may depend on data-specific details to align
each value of a tuple properly to a consistent attribute. Elmeleegy et al. [50] pro-
posed a relevant method to perform this alignment in the context of relational table

extraction from the web.

3.2.2 Data Sources

We have obtained two spreadsheet corpora:

e SAUS — The 2010 Statistical Abstract of the United States (SAUS) consists
of 1,369 spreadsheet files totaling 70MB. We downloaded the dataset from the
U.S. Census Bureau. It covers a variety of topics of general public interest, such
as state-level finances, educational attainment, levels of public health, and so
on. The data come from different sources inside the government, but to the

human eye appears uniformly high in quality of design and content.

e WEB — Our web dataset (WEB) consists of 410,554 Microsoft Excel files from
51,252 distinct Internet domains. They total 101 GB. We found the spreadsheets
by looking for Excel-style file endings among the roughly 10 billion URLs in the
ClueWeb09 web crawl [37]. The data come from many different sources and to

a human appears to have a wide range in quality.

3.2.3 Web Spreadsheet Statistics

To better design the Senbazuru system, we answer the following critical questions
about the general properties of the web spreadsheets and the popularity of the data
frame spreadsheets on the web:

1. Where are those web spreadsheets from? The web spreadsheets cover

a huge range of topics and show wide variance in cleanliness and quality. Most of

34

Domain # files % total | data frame h-top h-left
www.bts.gov 12435 3.03% 99% 30% 40%
WWW.CENnsus.gov 7862 1.91% 94% 72% 70%
www.stat.co.jp 6633 1.62% X X X
www.bankofengland.co.uk | 5520 1.34% 98% 7% 35%
www.ers.usda.gov 4328 1.05% 95% 7% 70%
WWW.agr.ge.ca 4186 1.02% 87% 7% 81%
www.wto.org 3863 0.94% 96% 61% 7%
www.doh.wa.gov 3579 0.87% 81% 53% 64%
www.nsf.gov 2770 0.67% 96% 53% 76%
nces.ed.gov 2177 0.53% 98% 55% 92%
average 5335 1.30% 93.78% 61.67% 67.33%

Figure 3.3: The top 10 domains in our web spreadsheet corpus. h-top and h-left are

percentages of spreadsheets with a hierarchical top or left region.
the spreadsheets are statistical data, with a heavy emphasis on government, finance,
transportation, etc. We are also interested in the distribution of the spreadsheets from
different Internet domains. Figure 3.3 shows the top 10 Internet domains that host the
largest number of spreadsheets in the WEB corpus. Nine of the top 10 domains are
sites run by the U.S., Japanese, UK, or Canadian governments. Figure 3.4 shows the
distribution of spreadsheets among hosting domains. We rank the domains according
to the size of their hosting spreadsheets in descending order. The plot indicates
that the spreadsheets follow a strongly skewed distribution, with a large number of
spreadsheets from relatively few domains and with a large number of domains hosting
relatively few spreadsheets.

2. How many of the web spreadsheets consist of data frame struc-
tures? 'To better understand the structure of the WEB spreadsheets, we randomly
chose 200 samples and asked a human expert to mark their structures. We found
50.5% of the spreadsheets consist of data frame components and 32.5% have hierar-
chical top or left annotations. The other 49.5% non-data frame spreadsheets belong to
the following categories: 22.0% are Relation spreadsheets that can be converted to the

relational model almost trivially (we can simply translate each spreadsheet column

35

Frequency
o
o
e
”

=)
¥e
e’

10 1000,
Size of Domain

Figure 3.4: The distribution of web spreadsheets.

into a relational table column and translate each spreadsheet row into a relational
tuple); 10.5% are Form spreadsheets that are not for data storage and are designed
to be filled by a human; 3.5% are Diagram spreadsheets for visualization purposes,
and they are often data-intensive without any schema information; and 3% are List
spreadsheets that consist of non-numeric tuples. The 10.5% Other spreadsheets are
schedules, syllabi, scorecards, or other files whose purpose is unclear. Although there
are a variety of categories of spreadsheets on the web, in this paper, we only focus on
data frame spreadsheets.

3. How many of the web spreadsheets are hierarchical? Are those
hierarchical spreadsheets spread uniformly across the web? As just men-
tioned, 32.5% of the 200 sample web spreadsheets have hierarchical top or left anno-
tations in a data frame. To better understand how the hierarchical spreadsheets are
distributed in different domains, we randomly selected 100 spreadsheets from each of
the top 10 domains, yielding 900 spreadsheets in total.? Figure 3.3 shows the fraction
of spreadsheets with data frames or hierarchical annotations in the top 10 domains.
The ratios are much higher than the fractions we obtained from the general web sam-
ple. We also randomly selected 100 spreadsheets from domains hosting fewer than 10

spreadsheets. We found 19% with data frame structures, 4% of which have hierarchi-

2www.stat.co.jp is excluded because it is in Japanese.

36

Spreadsheet Data Frame Attribute Hierarchies Relational Tuples
frame hierarchy Left Hierarchy Top Hierarchy tuple T T T T
finder Attributes extractor builder | T —T1

8 @) [i |
= 2 S S [i s s
— £l Region \;D\ [e e]
< S I I
O \b o O S e s s

Figure 3.5: The system pipeline for Senbazuru to process a single spreadsheet.

cal top annotations and 6% of which have hierarchical left annotations. These results
suggest that the number of hierarchical spreadsheets differs greatly by domain and
may be linked to the domain’s popularity or degree of professionalism. Computing
the exact distribution of hierarchical spreadsheets among domains would be useful
but requires a huge amount of labeled data; we will explore this question in future
work. Even without computing that distribution, we have found a huge number of
hierarchical spreadsheets: 32.5% of all spreadsheets on the web and more than 60% in
popular domains. Therefore, to extract relational data from spreadsheets, we believe

our system must process hierarchical-style metadata.

3.3 Spreadsheet Structure Extraction

We now describe our spreadsheet extraction pipeline. The goal of the extraction
pipeline is to create a relational model of the data embedded in data frame spread-
sheets: it takes in a data frame spreadsheet and emits a relational table.

In the following sections, we first describe our spreadsheet extraction pipeline, and
then we discuss the two critical components that are our core contributions. They

are the data frame extraction and the hierarchy extraction.

37

Algorithm 1 TupleBuilder
Input: The left hierarchy H;, the top hierarchy H;,
the set of values in the value region V' = {v}
Output: The relational tuples T' = {t}

1: Initiate T’

2: for each v € V do
Initiate ¢
4 Get annotating attributes for v from H; as {a;}
5 Get annotating attributes for v from H; as {a;}
6: t<—vU{a}U{as}
7
8

T+ TUt
: end for

3.3.1 System Pipeline Overview

We developed the spreadsheet management system Senbazuru. The extraction
pipeline consists of three components, as shown in Figure 3.5. They are the frame
finder, the hierarchy extractor, and the tuple builder. The frame finder identifies the
data frames, locating attribute regions and wvalue regions. The hierarchy extractor
recovers the hierarchical metadata from spreadsheets, and the tuple builder generates
a relational tuple for each value in the value region.?.

The tuple builder is straightforward, as long as the previous steps are accurate. We
generate a relational tuple for each value in the value region, annotating each one with
relevant annotations from the annotation hierarchies. For example, Figure 3.2 shows
the full six-field tuple we want to recover for the highlighted value 13.7. The tuple
builder is also algorithmically straightforward. It processes the extracted annotation
hierarchies and the value region to generate a series of relational tuples. As described
in Algorithm 1, for each value v, we find the its annotating annotations along the path
to the root in the annotation hierarchies for both left and top attribute regions. The

tuple builder relies entirely on the frame finder and hierarchy extractor for correctness.

We discuss the frame finder and the hierarchy extractor in the next two sections.

3Tt should be able to work on both flat and hierarchical spreadsheets because we treat flat spread-
sheets as a special case of hierarchical ones

38

3.3.2 Data Frame Extraction

The frame finder identifies the value region and the top and left attribute regions.
It receives a raw spreadsheet as input and emits geometric descriptors of the data

frame’s three rectangular regions. We define the problem as follows:

Definition III.1. (Frame Finder) Let a spreadsheet be a grid of cells ¢ = {¢;},
where ¢ represents the row index and j represents the column index. The frame
finder assigns each cell ¢;; € ¢ with a label [;; € L = {top, left, value, other}, where
top represents top annotations, left represents left annotations, value represents values,

and other represents everything else.

To simplify the problem, we assume that the structure of the spreadsheets has the
following property: there may be multiple data frames in a spreadsheet, but they only
stack in the vertical dimension.* This assumption allows us to treat data frame-finding
as a problem of row labeling. Therefore, we start with the row labeler task, which
assigns each row in a spreadsheet to one of the following four categories: title, header,
data, or footnote. The label title represents a spreadsheet title, header represents
a row that contains top annotations only, data represents a row that contains left
annotations or values, and footnote is information that annotates the main contents.
As in Figure 3.2, rows 5-7 are labeled header and rows 19-37 are labeled data. A

formal definition is as follows:

Definition III.2. (Row Labeler) Let r = {ry,7,...,7n} be a set of variables repre-
senting the non-empty rows in a spreadsheet. The row labeler assigns each r; € r

with a label [; € L = {title, header, data, footnote}.

We observe the following two types of signals that the row labeler should use to

automatically assign semantic labels to each non-empty row: (1) the properties of

4In fact, we found less than 2% of the 900 spreadsheets in the top 10 most popular HT TP domains
violate the assumption.

39

each non-empty row indicate its semantic label, such as its fonts and keywords; and
(2) the labels assigned to adjacent rows are highly related. For example, if we know
the current row is a header row, it is highly probable that the next row is a header
or data row. Therefore, we employ an approach based on a linear-chain, conditional
random field (CRF) [75] to exploit these two types of signals. Pinto et al. [86] used
linear-chain CRFs to obtain labels for textual tables in government statistical text
reports. We also use the linear-chain CRF's to obtain the semantic labels for each
row of a spreadsheet, and our training and inference procedure is the same. However,
with the access to spreadsheet APIs, we are able to build the CRFs with a richer set
of features, such as the alignment and indentation information that is hard to obtain
from plain text report. Our extraction features fall into two main categories: layout
features test visual characteristics of a row, and textual features test the contents of the
row. Each of the features is a binary function, taking in a given row in a spreadsheet
as the input and emitting a 0/1 Boolean value as the output. The features attempt to
test whether the properties of a row are an indication of a certain category in {title,
header, data, footnote}. The features are listed in Table 3.1.

Once we have labels for each row in a spreadsheet, we can construct the correct
data frame regions. The vertical extent of a value region is described by the set
of rows marked data, and its horizontal extent is determined by finding regions of
numeric values. The top attribute region is delimited by all header rows, and the left

attribute region is everything to the left of the value region.

3.3.3 Hierarchy Extraction

The hierarchy extractor recovers the annotation hierarchies. This step receives a
data frame with top and left regions as input and emits hierarchies as output: one
for left and one for top. These trees describe the hierarchical annotation relationship

among annotations in the top and left regions. For example, in Figure 3.2, row 31

40

Layout Features
Has a bold font cell
Has a cell reaching the left bound
Has a cell reaching the right bound
Has a cell with indentations
Has a center-aligned cell

Has a left-aligned cell
Has a merged cell
Has only one column

O[O U =W DN —

Textual Features
Contains colon

Contains punctuations

Has a cell with with a word count > 40
Numeric cells within year range ratio > 0.6
Row is blank

With all words in lowercases

With all words capitalized

With all words starting with capitals

With numeric cells ratio > 0.6

With words starting with “table”

OO U x| W N+~

—_
o

Table 3.1: Extraction features for the frame finder.

1 |Table 5-8: Active Aviation Pilots and Flight Instructors: 2000’

3 Airplane pilots®

Airline: Fignt
4 | State Total Students Private Commercial transport Misc.? instructor”
5 |Alabama 7,262 1,170 3,065 1,649 1,084 294 920
6 |Alaska 8,638 833 3,686 2,130 1,906 83 1,118
7 |Arizona 17,429 2,328 6,508 3,345 4,654 393 2,617
8 |Arkansas 4,985 776 2,153 1,206 748 65 634
9 | California 71,053 10,173 31,571 13,448 12,786 3,075 8,984
54 |Wisconsin 11,275 1,768 5,682 1,884 1,830 111 1,453
55 |Wyoming 1,812 254 901 354 273 30 195
56 |United States, total 393,218 87,3198 244,389 112,082 134,024 15,394 78,686

Figure 3.6: An example of the hierarchical top annotations in spreadsheets.

is annotated by annotations at rows 26, 20, and 19. An example of a top hierarchy
can be found in Figure 3.6, where the attribute Airplane pilots annotates the attribute
Airline transport. Now we formally describe the problem of recovering the annotation

hierarchy for a single region as follows:

41

3.3.3.1 Approach Overview

In this section, we describe the hierarchy extraction task in detail. We have
proposed a new two-phase semiautomatic approach based on an undirected graphical
model to extracting spreadsheet annotation-to-data mappings accurately and with
little user effort.

First, the automatic extractor receives spreadsheets as input and computes a map-
ping without user interaction. Based on an undirected graphical model, it exploits
single-spreadsheet graphical style hints, such as the font and typographic alignment,
that are obvious to a human observer. It also identifies and exploits correlated ex-
traction decisions; these correlated decisions can appear within one spreadsheet or
between two unrelated spreadsheets. Our resulting automatic extractor obtains accu-
racy that beats a baseline approach by up to 91% on a large workload of spreadsheets.

Second, our system offers an interactive repair phase, in which a user repeatedly
reviews and corrects the automatic extractor’s output until no errors remain. We
expect a user will review the automatic extractor’s output. But our interactive repair
is more than simply asking a user to fix every single extraction error. We again exploit
the correlations among different extraction decisions to make more effective use of
each user repair operation. A user’s single repair can be silently and probabilistically
applied to multiple possible errors, allowing us to amortize the user’s effort over many
likely extractor mistakes. Building a model that can perform this amortization, and
managing the inadvertent errors that such an approach might introduce (a problem
we call backtracking), is one of this paper’s core contributions.

Figure 3.7 shows an example of the user interface for applying repairs. The left
side of the diagram indicates the initial hierarchy obtained by the automatic extractor
for Figure 3.2. The dashed arrow shows that a user performs a repair by clicking and
dragging White so that it becomes a child of Male, indicating that Male annotates

White. This one repair operation triggers multiple error fixes, including setting Male

42

Before Repair: "White, total"

After Repair: "White, total"

ROOT Total smokers \3 ROOT Total smokers \3
Male, total 18 to 24 years Male, total 18 to 24 years
* 25 to 34 years 25 to 34 years
35 to 44 years 35 to 44 years
| 45 to 64 years 45 to 64 years
65 years and over

— 1 — _, “65years and over

I.White, total 18 to 24 years
- == 25 to 34 years
35 to 44 years

45 to 64 years
65 years and over

45 to 64 years

White, total 18 to 24 years
25 to 34 years
35 to 44 years
65 years and over

Black, total 18 to 24 years
25 to 34 years
35 to 44 years

45 to 64 years

45 to 64 years 65 years and over

Black, total 18 to 24 years
25 to 34 years
35 to 44 years
65 years and over

Figure 3.7: Our user interface for repairing mappings.

to also annotate Black. By making our system part of the user’s natural review-
and-repair loop, we can reduce the number of manual repairs by up to 71% when

compared to our already-effective automatic extractor.

3.3.3.2 Problem Definition

We now formally describe the hierarchy extraction task. The task of hierarchy
extraction is to detect all of the ParentChild pairs P = {ParentChild(a;,a;)} in an
annotation region A. One way to model this problem is to create a Boolean variable x
to represent a ParentChild pair candidate (a,, a.) for every annotation pair a,, a. € A.
Each variable x takes a label [€ L = {true, false}, and z holds true if a, is the parent
of a.. For example, Figure 3.8 shows a portion of the created variables for Figure 3.2’s
left metadata. Each oval node corresponds to a single boolean ParentChild decision.
For example, setting the node (18 to 24 years, Male) to true indicates that 18 to 24
years is the hierarchy parent of Male.

The spreadsheet hierarchy extraction task, thus, amounts to recovering all the
ParentChild pairs for its annotation regions. For example in Figure 3.2, the solution
for mappings in left is a set of all its ParentChild pairs { (row-19, row-20), ..., (row-32,
row-37)}.

43

Spreadsheet ParentChild Pairs
(18 to 24 years, Male)
(25 to 34 years, Male)
(Male, 18 to 24 years)

[20 Male, total |

|21 18 to 24 years |

(25 to 34 years, 18 to 24 years)

(Male, 25 to 34 years)

|22 25 to 34 years |
(18 to 24 years, 25 to 34 years)

Figure 3.8: A sample of ParentChild variables.

3.3.3.3 Our Observations

We now formally describe our problem and observations. The task of hierarchy
extraction is to detect all of the ParentChild pairs P = {ParentChild(a;,a;)} in an
annotation region A. One way to model this problem is to create a Boolean variable x
to represent a ParentChild pair candidate (a,, a.) for every annotation pair a,, a. € A.
Each variable x takes a label [€ L = {true, false}, and x holds true if a, is the parent
of a.. For example, Figure 3.8 shows a portion of the created variables for Figure 3.2’s
left metadata. FEach oval node corresponds to a single boolean ParentChild decision.
For example, setting the node (18 to 24 years, Male) to true indicates that 18 to 24
years is the hierarchy parent of Male.

However, simply enumerating all pairs in a region A can yield thousands of vari-
ables. In practice, it is possible to greatly reduce the set of ParentChild candidates
with a few heuristics. ® Failing to create a node for a true ParentChild relationship
clearly means that we will predict the child’s parent incorrectly. A wrong ParentChild
prediction is bad, but not catastrophic: the user can still describe the correct rela-
tionship during interactive repair. Failing to create a node for a true ParentChild

relationship is bad, but not catastrophic: the user can still describe the correct rela-

5We prioritize ParentChild candidates in which the typographic styles of the two nodes differ.
We also prioritize pairs that are geometrically close to each other in the spreadsheet. Testing on
our 200 testbed spreadsheets for SAUS and WEB, our heuristics only incorrectly filtered out just
0.01% and 0.13% of correct pairs, respectively.

44

tionship during interactive repair.

ParentChild Pair Properties — A true ParentChild variable may be indicated
by the surrounding style and layout information. For example, a variable that de-
scribes annotations which are physically close is likelier to be true than a variable
that describes annotations that are physically distant. We formulated 32 features for
evaluating a ParentChild variable.

For left attributes, given a ParentChild pair candidate (a;,a;), we employ a set
of features to characterize its properties, thus determining whether it is a true Par-
entChild pair. The testing features include unary features and binary features, as
shown in Table 3.2. The unary features apply on each of the child and parent at-
tributes, and the binary features apply on the attribute pair.

For top attributes, given a ParentChild pair candidate (a;, a;), we utilize a set of
layout features to characterize the properties of the attribute pair, thus determining

whether it is a true ParentChild pair. The features we used are shown in Table 3.3.

Correlating ParentChild Decisions — ParentChild decisions can be corre-
lated; knowing the assignment of one ParentChild variable sheds light on some others.
We found the following four types of correlations.

Correlation (i) — Stylistic Affinity. When two ParentChild variables in the
same spreadsheet have identical visual style for parents and for children, it is likely
that the two variables should be decided together. For example in Figure 3.9 (a),
the two ParentChild variables ((White, College) and (Male, 18 to 24 years)) should be
decided together because the parents (White and Male) share the same typographic
style, as do the children (College and 18 to 24 years). We say that two variables
have stylistic affinity when the parents and children share a range of visual qualities:
alignment, indentation, capitalization, typeface, type size, type style (i.e., bold or
italicized), and use of certain special strings (i.e., a colon, a number, or the word

“total”). Note that stylistic affinity only makes sense when testing ParentChild pairs

45

Unary Extraction Features
Attribute has underline
Attribute contains keywords like “total”
Attribute contains colon
Attribute is bold
Attribute is center aligned
Attribute is italic
Attribute is numeric
Attribute letters are all capitalized
Is the first attribute
Is the last attribute
Binary Extraction Features
Attribute pair is adjacent
Attribute pair’s indentation is equal
Attribute pair’s style is adjacent in the region
Child’s font size is smaller than parent’s
Child’s indentation is greater than parent’s
Child’s row index is greater than parent’s
Child’s style is the same as the first attribute
Has blank cells in the middle
Has middle cell with indentation between the pair’s
Has middle cell with indentation larger than the pair’s
Has middle cell with indentation less than the pair’s
Has middle cell with style different from the pair’s
Has middle cell containing keywords like “total”
Parent is the root

OO0 || T = W N+~

—_
]

— =
DBl | o ot x| w| o =

—
[\

—
w

—_
N

Table 3.2: Extraction features for the hierarchy extractor on left attributes.

within a single spreadsheet; different spreadsheets may have different or contradictory
ways of visually indicating the ParentChild relationship.
Correlation (ii) — Metadata Affinity. If we have a metadata resource avail-
able, we can use it to find additional correlations between ParentChild variables both
within and between spreadsheets. For example in Figure 3.9 (b), the two ParentChild
candidates, (White, Female) and (Black, Male), should be decided together because
the parents (White and Black) belong to the same semantic category race; similarly
the children (Female and Male) belong to gender.

Fortunately, we are able to synthesize a domain-specific metadata resource from

a corpus of spreadsheets. Our central observation is that any useful category of

46

Layout Extraction Features
Child has no cell right above
Child is at the uppermost header row
Has a cell in the middle
Parent cell covers child’s column
Parent is on the left of child
Parent is on the right of child
Parent is right above child
Parent is the root

0| = | W[N~

Table 3.3: Extraction features for the hierarchy extractor on top attributes.

annotations — whether a general-purpose one like gender or a hyper-specific one such
as chemicalPrecursor — will likely appear in many datasets. Further, annotations
drawn from the same category (such as Male and Female) often appear as siblings in
an extracted annotation hierarchy. We measure whether two annotations belong to
the same category by testing how strongly the annotations appear as siblings in a

large number of extracted hierarchies. We perform the test as follows:

1. Extract all annotation hierarchies from a corpus of spreadsheets using a simple
classifier or a version of our automatic extractor that does not use metadata
information. For each parent annotation, we create a sibling set that contains

all of its child annotations.

2. Count the number of sibling sets where an annotation a is observed. Divide
by the number of sibling sets to obtain p(a), the probability that a randomly

chosen sibling set contains a.

3. Count the number of sibling sets where the annotation pair a; and a; co-occur
together. Divide by the number of sibling sets to obtain p(a;, a;), the probability

that a randomly chosen sibling set contains both a; and a;.

We can then measure the extent to which two annotations a; and a; are observed
as siblings (and thus are likely to be in the same category) by computing the pointwise

mutual information (PMI): PMI(a;,a;) = log%.
i J

47

White Male White Black

College 18 to 24 years Female Male

(a) Stylistic Affinity (b) Metadata Affinity

Figure 3.9: An example of stylistic affinity shown in (a) and metadata affinity shown
in (b).

Let 21 = (ap1,aq) and x2 = (ap2,ac2) be two variables in the CRF. The two
variables z; and z, have metadata affinity if and only if PMI(ap,a,) > 6 and
PMI(ac,acx) > 9, where d is a predefined threshold.

Correlation (iii) — Adjacent Dependency. If we consider the ParentChild pairs
of a single spreadsheet as a sequence, adjacent variables often follow a transition
pattern of the labels.

Correlation (iv) — Aggregate Design. There are two further constraints that
reflect typical overall spreadsheet design and ensure that the resulting variable as-
signment yields a legal hierarchy (i.e., a tree).

The first is the orientation constraint. Spreadsheets tend to have an “upward” or
“downward” orientation; that is, parents do not appear above their children in some
cases and below their children in other cases. For example in Figure 3.8, the pairs
(Male, 18 to 24 years) and (25 to 34 years, 18 to 24 years) cannot both be true.

The second is the one-parent constraint. We enforce our assumption that Par-
entChild relationships genuinely form a tree; one annotation can only have one parent.
Put another way, for all of the variables sharing the same child, only one of them is
true and the rest are false. For example, in Figure 3.8, (Male, 25 to 34 years) and (18
to 24 years, 25 to 34 years) could not both be true.

User Repair Interaction — The interactive repair phase allows the user to
check and fix any ParentChild decision mistakes made by the system. The goal of

interactive repair is to save user effort by using each explicit user-given repair to fix

48

Review and Interactive Spread
Repair Interface Repairs
<+— Q - .
@ \'O Extraction
>O @ Model
= o | =5

Figure 3.10: Interaction cycle for interactive repair.

not just the error in question, but also additional extraction errors that the user never
directly inspects. In this section, we describe the interactive repair workflow in more
detail, plus how to modify the graphical model to support the repair process. Finally,
we describe the training and inference methods.

During interactive repair, we assume a user always fixes extraction errors correctly.
We do not focus on the problem of noisy user-labeled data, and there is crowdsourcing
literature on how to ensure trustworthy answers [44].

We now discuss our model workflow for interactive repair. The system starts by
presenting to the user the initial extraction results computed by the automatic ex-
traction and then enters the interactive repair interaction loops (shown in Figure 4.5).

For each loop, the system takes two steps:

1. Review and Repair — A user is able to repair an error in the extracted
hierarchy by dragging and releasing an annotation node on the interface. One user
repair action changes an annotation’s parent from one to another. For example in
Figure 3.7, a user changes the parent annotation of White from Root to Male.

A wuser repair operation has two implications. First, the variable x that represents
the new correct ParentChild relationship is set to true. In the case of Figure 3.7,
the variable (Male, White) is true. Second, all the other variables that represent
ParentChild relationships sharing the same child with x are set to false. In the case
of Figure 3.7, variables (Root, White) and (Total smoker, White) are false.

As a result, a user’s repair to an extraction error yields a set of label assignments

to some ParentChild variables.

49

2. Spread Repairs — The system now aims to save user effort by repairing other
similar extraction errors. Of course, the system has already given its best extraction
estimate in the automatic extraction phase, so it does not know where any latent
extraction errors are. But we have already used different kinds of affinity to connect
two ParentChild decisions that are highly likely to share the same label.

It is appealing to spread each user-repaired label on a variable to other variables
that are identified by affinity correlations (i) and (ii). But simply propagating assign-
ments might introduce errors where none previously exist, which we call the back-
tracking problem. We want to leverage the graphical model to integrate probability

information with the node, edge, and global correlations to prevent backtracking.

3.3.3.4 A Graphical Model Based Approach

Now we describe how we encode the ParentChild pair properties, correlating Par-
entChild decisions, user repair interaction into the graphical model as described in

Section 2.2.2.

Node Potentials — Each variable x in the graphical model represents a Par-
entChild decision, which takes a label I € L = {true, false}. We define the node
potential §(z,[) on each variable z assigned the label I. The node potentials depend
on Boolean feature functions { fx(z,1)} (The 32 features mentioned in Section 3.3.3.3)

and trained weights {wy.} associated with the feature functions:

0(x,1) =Y wyfr(z, 1) (3.1)

Edge Potentials — The correlations (i) (i) and (iii) mentioned in Section 3.3.3.3
are encoded in the graphical model as pairwise edge potentials. The edge potential
O(x,l,2',1") is defined on two variables x and z’ in the graphical model on their
assignments [and [’ if the variables and z’ are found to be correlated in one of the

three ways mentioned above. We define,

20

Oz, 1,2 1) = [l =] wefe(z,2') (3.2)

where [l = I'] takes the value 1 when | =" and 0 otherwise; {w,} are the associated
weights. The edge features { fe(z,2')} test which type of correlation x and x’ belong
to and whether = and 2’ have the same child/parent.

Global Potentials — Finally we encode the correlation (iv) mentioned in Sec-
tion 3.3.3.3 as global potentials. Let x = (ap,a.) and 2" = (a, a,) be two arbitrary
variables in the graphical model with the assigned labels [and I’, and R(a) represents

the row number of an annotation a. We now define two global potentials: ¢,(x,1)

to encode the orientation constraint and ¢p(x,1) to encode the one-parent constraint:

ba(x,1) = [Tz, 2’ € x s.t. | = true,l' = true,
(3.3)

R(ay) > R(ac), R(a,) < R(ap)]”

on(x,1) = [Ve, S = truel) = 15> (3.4)

where [C]value? takes the value I when condition C'is true and value 2 otherwise.

Repair Potentials — Here, we describe how to encode the user repair interac-
tion to the graphical model. Algorithm 2 shows the SpreadRepair function that
is invoked after each user repair operation (described in step 2 of the previous sec-
tion). First, when a new repair arrives, we translate this new repair and all the
previous repairs to the assignments on a set of variables x, = {z,,, ..., 2, } with la-
bels 1, = {l,,, ..., 1, }. Second, we generate a new graphical model G’ by adding the

repair potentials to the original automatic extraction graphical model GG. The repair

potentials capture the pairwise correlation between variables, and we describe the re-

o1

pair potentials later. Finally, we condition on the known variables x, and infer labels
for the variables of G'. The inferred labels are returned as the updated answer.

Note that by adding repair potentials only to nodes that we also condition on,
we add information to the inference process without increasing any inference-time
computational complexity. The conditioning process essentially removes the observed
nodes and their edges prior to the inference [71].

There is nothing in principle that prevents our system from backtracking, unless
we can find heuristics to propagate the assignments fully correctly, which is often hard
especially on real-world datasets. However, our mechanism is designed to prevent it.
First, we only probabilistically propagate known variable assignments to others, via
the repair potentials. Second, this probabilistic repair information is combined with
all our previous information sources: the node potentials, edge potentials and global
potentials. The hope is that adding high quality new information to the automatic
extraction graphical model (instead of treating spreading repairs as a non-probabilistic
post-processing stage) will yield better outcomes overall.

We now discuss how to generate the repair potentials. The repair potential
o(z,l, ., 1) describes the likelihood that the repaired node’s label should be spread
to a similar ParentChild node. A repair potential exists between an observed variable
x, € X, and a variable x € x if x, and z exhibit either stylistic affinity or metadata
affinity. In other words, repair potentials do not introduce any novel edges to the
graphical model: the edges of repair potentials are a subset of the edges derived from

correlations (i) and (ii). The repair potentials are defined as:

o(x,l,x,, 1) = [Stylistic(z, z,)] fs(z, 1,z 1) (35)
3.5

+[Metadata(z, x,)] fm(z, l, 2, 1))

[C] takes the value 1 when condition C' is true; otherwise 0. Stylistic(z,z,) and

52

Metadata(z, x,) test whether z and x, have stylistic or metadata affinity. The two
feature functions fs and f,, weigh the strength of influence from observed variables
to unobserved ones. They characterize how similar the unobserved variables are to
the observed ones. To be precise, we define fy(z,l, z,,1.) = logPs(x =1 | z, = 1,.).
where P(z =1 | z, = l,) represents the probability of a variable x taking the label [
once we observe a variable x,. with the label /.. This probability can be derived from
training data. For example, in the training data, among 1000 stylistic affinity edges
detected, 900 of them connect two variables with the same assignment. We then set
Py(z = true|z, = true) = 0.9 and P(z = false|z, = true) = 0.1. The f,, potentials
are defined in the same way.
Summary — We can now formally define the spreadsheet annotation hierarchy ex-
traction framework, which supports both automatic extraction and interactive repair.
Let G be a graphical model that has a set of variables x = {1, ..., x,,} where each
x; € x represents a ParentChild candidate in an annotation region and takes a label [;
from L ={true, false}. Let 1. be the set of repair-induced labels on variables x,. We
define node potentials (Equation 1), edge potentials (Equation 2), global potentials
(Equation 3 and 4), and repair potentials (Equation 5) in GG. The joint distribution

of the graphical model G is:

Z(lw) exp(z 0(z,1) + Z Z Oz, 1,21

+ Z ¢k(X,1)+Z Z o(z,l,z,,1,))

ke{a,b} T ZTr€Xr

P(|l,x) =

3.3.3.5 Training and Inference

In this section, we discuss how to train model parameters and infer assignments

to variables in the graphical model.

93

Algorithm 2 SpreadRepair
Input: All user repairs R, and automatic extraction model G
Output: New assignments 1 to all variables of G.

1: From user repairs R, create repair-induced variables x, with labels 1,

2: Build new model G’ by adding to G the new repair potentials based on x,. G’ has the
same set of nodes (variables) as G.

3: Condition on x, and infer assignments 1 to G’ (and thus, G)

In the graphical model, we only have unknown parameters for node and edge po-
tentials. Assuming that no user repairs are involved, we can write the joint probability

as,

%ew(z 0z, 0) + 33 0L,)+ Y dilx,1)

ke{a,b}

Let w = {w} be the set of parameters for node and edge potentials. Given training
data D = {x,1} that describes hand-labeled correct hierarchies of the training spread-
sheets, we estimate w for node and edge potential functions, 6(z, 1) and 0(x,l,2',').
A common choice of regularization to avoid overfitting is to add a penalty on weight
vectors, based on the Euclidean norm of w and on a regularization parameter #

The goal is to maximize the regularized log likelihood:

2

mV%XZG(ac,l) —i—ZZH(m,l,x’,l') —logZ(w) — Z 50;2 +C

(2

where C'is a constant. This is a standard form for parameter estimation, and known
techniques, such as conjugate gradient and L-BFGS, can be used to find the opti-
mal parameters for this formula. Previous work [71, 75] discusses this optimization
problem and its solution in more detail.

The graphical model described poses a serious computational challenge. Inference
is NP-hard if no assumptions are made about the structure of the graph [40], yet
our application requires that we infer labels after each user repair to redisplay the

updated hierarchy. In order to infer variables in interactive time, we first simplify the

o4

graphical model.

Model Simplification — The potential stumbling blocks to efficient inference are
the edge and global potentials. (The repair potentials do not complicate the inference
because the conditioning algorithm [71] erases observed variables along with all the
repair potential edges.) The edge potentials alone can yield more than a million
edges on a graph with 37,386 nodes derived from just 100 randomly-chosen WEB
spreadsheets (see Table 3.7 for details).

We considered two methods for conducting inference in a limited amount of time:
running the tree-reweighted belief propagation algorithm [72] on the full graph, or
running an exact inference method on a simplified tree-structured model. Our ex-
periments show that when running on a model derived from 100 random SAUS
spreadsheets and repeating this process 10 times, tree-reweighted belief propagation
is 48 times slower and 5.4% worse on F1 than the tree-structured model. Thus, at
inference time we convert our graphical model into a tree-structured model.

It is not easy to find the tree-structured graphical model that yields the highest-
quality results. Exhaustively enumerating all the possible trees in a graph with more
than a million edges and 37,000 nodes is impractical. We simply randomly sample
edges from each type of pairwise correlation (stylistic, metadata, and adjacency),
rejecting any edge that would induce a cycle. We terminate when all nodes are
connected. We add all possible metadata edges before adding any stylistic edges, and
add all stylistic edges before adding any adjacency edges. We found experimentally
that this ordering helped slightly, though different orderings do not change F1 very
much: testing on 100 random spreadsheets of SAUS, different orderings changed F1
from 0.8808 to 0.8867 and from 0.8237 to 0.8363 when testing on WEB.

Inference — We can now present our method for approximating the graphical
model’s optimal assignment. First, we build the model with node potentials, tree-

structured edge potentials, and all the repair potentials if there exist any. Given a set

95

Algorithm 3 EnforcedTreelnference

Input: The variables x = {z} and the annotations A = {aj,...,an} in an annotation
region.

Output: The ParentChild pairs P = {(ap,ac)} in the annotation hierarchy and its
confidence con fidence.

1: P+« {}, confidence < 0
2: for each a. € A do
3: maxprob < 0, ap, < root
for each a, € A do
Find z € x for the ParentChild pair (ap, a.)
Obtain the probability cprob that x = true
if cprob > mazprob then
maxprob < cprob, ap, < a,
end if
10: end for
11: P« PU{(ap,,ac)}
12: con fidence < con fidence + log(mazxprob)
13: end for

of observed variables x, with labels 1, translated from users’ repairs (we assume X, is
empty if no repairs are observed), the conditioning algorithm yields a forest-structured
model.

Second, we run a standard inference algorithm on this new model to obtain the
assignment to all the variables. Because the model is now a forest-structured, a
variety of existing algorithms, such as belief propagation, can perform exact inference
on such a structure.

Finally, we treat the global potentials as a post-processing stage to ensure that the
inferred variable assignment yields legal hierarchical trees for the input annotation
regions. The goal of global potentials is to handle the orientation and one-parent
constraints. Thus, we first enumerate all of the ParentChild candidates of each orien-
tation, “upward” or “downward,” and compute two separate annotation hierarchies
with EnforcedTreelnference, seen in Algorithm 3. For all the ParentChild can-
didates with a given annotation as the child, the algorithm selects the one with
the maximal probability (derived from the graphical model), thereby handling the

one-parent constraint. We obtain two possible hierarchies, one “upward” and one

o6

“downward,” each with computed confidence. We select the one with the higher
confidence to handle the orientation constraint. Therefore, our algorithm yields legal

annotation hierarchies.

3.4 Experiments

We can now quantify the performance of the system Senbazuruby evaluating its
individual components. In particular, we present the performance of the frame finder
and the hierarchy extractor. We do not directly evaluate the tuple builder because
it entirely relies on the correctness of the hierarchy extractor, and it will yield the
ideal results as long as it receives accurate hierarchies. We use the two spreadsheet

corpora as mentioned in Section 3.2.2.

3.4.1 Data Frame Extraction

To evaluate the performance of the frame finder described in Section 3.3.2, we
randomly sampled 100 data frame spreadsheets from each dataset. The 100 SAUS
spreadsheets contained 6,878 non-empty rows, while the 100 WEB random spread-
sheets contained 29,491 non-empty rows. A human expert labeled each row correctly.
We randomly split the data into equal-sized training and testing sets, then evaluated
frame finder’s accuracy. We performed 10 random splits and averaged the results.

Table 3.4 shows good precision and recall for both SAUS and WEB. Perhaps
not surprisingly, the SAUS set is slightly “easier” to process than the comparatively
heterogeneous WEB corpus. It does relatively poorly at classifying header and title
labels in WEB, which can be genuinely difficult even for a human. But as we will see,

imperfect frame finder results have only a minor impact on downstream accuracy.

o7

SAUS WEB
Precision Recall | Precision Recall

TITLE 0.983 0.979 0.768 0.735
HEADER 0.960 0.957 0.778 0.714
DATA 0.996 0.999 0.989 0.995

FOOTNOTE 0.970 0.978 0.858 0.821

Table 3.4: Precision and recall of the frame finder extractor.

Dataset Hierarchy Levels | # Left Annotations
arase Min Mean Max | Min Mean Max
R200 2 3.8 8 4 378 224

health 2 3.6 6 12 345 76

SAUS fin. 3 3.7 6 6 324 81
trans. 3 4.0 8 5 36.1 73

R200 2 3.4 10 2 593 669

bts 2 2.6 4 4 10.7 26

WEB nsf 2 4.0 7 9 839 331
usda 2 3.2 4 5 345 56

Table 3.5: Basic statistics of our eight test sets.

3.4.2 Hierarchy Extraction

We now evaluate the performance of automatic extraction and interactive repair,

and the quality of our metadata resource.

3.4.2.1 Experimental Setup

Our experiments are based on two spreadsheet corpora®: SAUS and WEB. From
each of the two datasets, we randomly selected 200 hierarchical spreadsheets. We call
these test sets SAUS R200 and WEB R200. We constructed them by randomly
sampling from SAUS or WEB and retaining only the hierarchical ones (i.e., ones
that have either hierarchical left or top annotations). In addition, we constructed a
series of topic-specific test sets. For SAUS, we used government-provided category
labels to identify spreadsheets for each of three topic areas: health, finance, and

transportation; we chose 10 random hierarchical spreadsheets from each topic. For

6Downloadable:www.eecs.umich.edu/db/sheets/datasets.html

o8

WEB, we used URL domain names as a rough proxy for the category label, choosing
10 random hierarchical spreadsheets from each of bts.gov, usda.gov, and nsf.gov.
We asked a human expert to manually examine the above spreadsheets and create
ground truth hierarchies. Details about the test sets are shown in Table 3.5.

We used the Python xIrd library to access data and formatting details of spread-

sheet files. Our graphical model was implemented with UGM [106].

3.4.2.2 Automatic Extraction

In this section, we evaluate the performance of the automatic extraction phase.
We evaluate the automatic extraction’s accuracy in predicting correct ParentChild
relationships by using standard metrics of Precision, Recall, and F1. We trained and
tested automatic extraction using SAUS R200 and WEB R200. We randomly split
each of the two datasets equally for training and testing. We trained parameters on
the training set and constructed one graphical model for the test set. We repeated
the split-and-test process 10 times, computing average Precision, Recall and F1.
Automatic Models — A naive method AutoBasic to solve the hierarchy extraction
problem is to use simple features (i.e. local alignment and indentation information)
to classify two annotations as having a ParentChild relationship or not and assigns
the most probable parent to each child.

We compared four different configurations of the automatic extraction graphical
model with AutoBasic to demonstrate the power of each component of our automatic
extractor: AutoLR uses node potentials only (with no edge or global potentials, the
model is equivalent to the logistic regression, or LR, method)”. AutoEdge uses node
potentials and edge potentials. AutoGlobal uses node potentials and global potentials.

Finally, AutoFull uses all three potential types and reflects the entire contents of

"We also tried support vector machines and other non-joint-inference techniques, but they offered
no significant gains over AutoLR.

29

Dataset | Methods Precision Recall F1
AutoBasic 0.4641 0.4641 0.4641
AutoLR 0.8753 0.8750 0.8751
SAUS | AutoEdge 0.8801 0.8787 0.8794
AutoGlobal 0.8834 0.8834 0.8834
AutoFull 0.8860 0.8860 0.8860
AutoBasic 0.4736 0.4736 0.4736
AutoLR 0.7886 0.7898 0.7892
WEB | AutoEdge 0.7979 0.7968 0.7973
AutoGlobal 0.8122 0.8122 0.8122
AutoFull 0.8327 0.8327 0.8327

Table 3.6: Performance of the automatic extractor on SAUS and WEB R200
datasets.

Section 3.3.3.4. 8

Table 3.6 shows the performance of the five methods. We can see that all of our
four graphical models significantly outperformed the baseline AutoBasic. Both partial
models — AutoEdge and AutoGlobal — performed better than AutolLR, indicating that
both edge and global potentials independently helped to improve the performance of
automatic extraction. AutoFull, the model that includes all three potential types, is
the best of all (though AutoFull’s margin is small in the case of SAUS). We noticed
that many extraction errors are due to contradictory spreadsheet formatting; design-
ers of different spreadsheets may have conflicting designs, but even the format within
one spreadsheet may not be consistent.
Training Data — We wanted to know if our supply of training data was limiting
the automatic extractor’s accuracy. We conducted a test in which we artificially con-
strained the training set size derived from SAUS R200 and WEB R200, building
a series of automatic extraction models with varying amounts of training data. Fig-
ure 3.11 shows the F1 of the ParentChild pairs for AutoFull as we change the size of

the training set. The growth in both SAUS and WEB accuracy plateaus after a

8For AutoLR and AutoEdge we chose the probability threshold to maximize F1. For the rest two
methods, there is no such flexibility, as the algorithms always select the parent with the maximum
ParentChild probability for each child.

60

1.

1 Sy WE'E&AD gl
. @
0.8 A e e e %@" ?%@0 o e’
E k""‘/ Y 0.8. ® Qﬁ @
00.6 - E r ® ®® *
o7)¢ S0.6 [« S .
[]
.—|04 v ® ®
L A---o SAUS :0.4 . * ..
® ®
0.2 o o WEB 0.2 .
0.
2° 21 22 2% 2" 2° 2° 27 0.0y 30 40 60 80 100120
Train # Rank of Domain

Figure 3.11: Performance for automatic

extractor using different

amounts of training data.

Figure 3.12: Performance for automatic

extractor on different do-

mains in WEB.

certain size. This analysis does not mean more training data cannot help, but does
indicates that additional gains will likely be expensive.
Domain Sensitivity — We also examined whether the WEB automatic extractor’s
accuracy varies with the quality of the spreadsheet. It is difficult to precisely describe
a spreadsheet’s quality, so as a proxy we use the rank of the spreadsheet URL’s Inter-
net domain, when sorted in descending order of the number of spreadsheets hosted by
the domain. Figure 3.12 shows the average F'1 within each Internet domain’s spread-
sheets. We followed the same training and testing procedure as in the Automatic
Models part above. The figure shows that the publisher’s rank (or the quantity of
spreadsheets it publishes) does not correlate with extraction performance. However
we did find that spreadsheets from lower ranked domains are less likely to pass our
initial “hierarchical data frame spreadsheet” filter.

In summary, our system shows substantially better performance than the baseline
AutoBasic method, a 91% improvement in F1 on SAUS and a 76% improvement in
F1 on WEB. We now turn to interactive repair to shrink the user’s burden even

further.

61

3.4.2.3 User Repair

We now evaluate the performance of the interactive repair phase. We use the eight
datasets described in Section 3.4.2.1. For each R200 of SAUS and WEB, we again
randomly split the dataset into 100 training spreadsheets and 100 testing spread-
sheets. We further randomly split the 100 testing spreadsheets into 10 subgroups
with 10 spreadsheets in each, as R10; we then averaged the performance over the 10
subgroups. We created one model for each test set (health, finance, etc), except R10,
where we created one model for each subgroup. Table 3.7 shows basic statistics for
the interactive repair graphical models constructed for our test sets.

The metric of success for interactive repair is the amount of user work reduced
when compared to simply fixing all the errors made by automatic extractor. We
evaluate the amount of user effort by counting the required number of drag-and-drop
repair operations to fix all the extraction errors in an annotation hierarchy, via our
visual repair tool (seen in Figure 3.7). In the experiments, we simulated a user who
randomly chooses extraction errors to repair, and who never makes a mistake. The
user repairs errors until no errors remain. For each dataset, we ran this process
20 times and counted the average number of repairs performed. Notice that the
maximum number of possible repair operations for a given hierarchy is the number
of annotations in it.

For each result shown in Figure 3.13, Figures 3.14 and 3.15, we normalize the
number of required repairs by the maximum possible number of repairs in that dataset
(i.e., the number of annotations). Thus, smaller bars are better, and results should
be comparable across datasets.

Repair Models — A baseline method RepairBasic to incorporate interactive repair
is to tie the ParentChild variables in one spreadsheet if the parents share the same
formatting and so do the children: if a user changes one decision, the system auto-

matically applies the change to the tied ones.

62

SAUS

_:: B RepairBasic EEE AutoFull 1 RepairFull
©1.0 AutoLR £ RepairLR
)
©
N
= 0.5
M
. L
O
£0.0 E
' health fmance transport
WEB
t Il RepairBasic 8 AutoFull 1 RepairFull
©1.0 AutoLR 2 RepairlR
)
©
)
= 0.5
()
£
2 N g
0.0 nsf usda R10

Figure 3.13: The normalized repair number for interactive repair on SAUS and WEB

test sets.
Sheet | Node | Correlation Edge # (x1000)
| Stylistic Metadata Total
train 100 | 11269 87.5 115.7 177.6
n health 10 874 4.9 1.7 5
- fin. 10 1228 8.6 5.5 11.1
g trans. 10 1334 9.5 0.7 12.3
R10 100 | 13866 144.4 43.3 161.3
train 100 | 31925 724.2 566.9 1069.0
bts 10 249 0.5 0.0 0.5
2 nsf 10 | 10698 | 265.1 22.9 283.3
2 | usda 10 | 1786 15.1 1.7 15.1
R10 100 | 37386 1522.0 289.8 1677.6

Table 3.7: Basic statistics for each test set’s interactive repair model.

We also evaluated six different versions of our extraction system. AutoLR and

AutoFull are the automatic extractors described in the above section; we assume a

63

user simply fixes all of their extraction errors one after another. RepairLR, RepairEdge,
RepairGlobal and RepairFull are created by adding repair potentials to the previous
four automatic extraction models. RepairFull is the full system.

Figure 3.13 shows the normalized number of repair operations of different inter-
active repair systems. RepairFull performed the best of all, requiring just 7.2% of the
maximum number of possible repairs when averaged over all test sets. In contrast,
AutoFull (itself a dramatic improvement over the automatic extraction baseline) re-
quires 15.4% of the maximum; our exploitation of user repairs thus allows us to reduce
the user burden by an additional 53%. AutoLR, an automatic extractor without joint
inference, yields an even worse average of 23.3%; we improve by 69%. The absolute
number of user repairs is reasonable: RepairFull requires between 2 and 3.5 repairs
per sheet for SAUS, and between 1.38 and 2.94 repairs per sheet for WEB.

Note that applying user repair information naively yields terrible results: Repair-
Basic requires 60.2% of the maximum possible number of repairs, much worse than
even AutolLR.

In all the datasets, RepairFull always improves or matches AutoFull, which indicates
that our repair mechanism is genuinely beneficial to users; we managed to prevent
backtracking and did not create more work for users. The same is not true for AutoLR
vs RepairLR, which backtracks in the cases of SAUS /health and WEB /usda.

We further investigated interactive repair by considering different possible config-
urations of the interactive repair model on different test sets (shown in Figure 3.14).
The Figure shows that both edge and global potentials are useful in reducing user
burden, and using all of them helps the most.

Spreadsheet Grouping — We also investigated the influence of two spreadsheet
grouping methods on interactive repair performance. (1) By topic: We group spread-
sheets according to their human-given topic labels (such as finance and health) or their

URL hostnames (such as bts.gov and nsf.gov); and (2) By Jaccard similarity: We

64

SAUS | _ WEB

% Il RepairlR EZZ RepairGlobal H#* Hl RepairLR 2 RepairGlobal
.% 0.4/ | RepairEdge [RepairFull .% 0.4 | RepairEdge [RepairFull
Q o}

Y g

ge) ge]

X X

N0.2 = 0.2

© ©

E % E

— |-

Q =}

= =2

o
o

o
o

health fin. trans usda

Figure 3.14: The normalized repair number for four interactive repair configurations.

SAUS WEB

H# Il RepairFull-Style E™Y HEl RepairFull-Style
= [RepairFull-Style+Freebase = & RepairFull-Style+Freebase
3 1 RepairFull-Style+Metadata 8 1 RepairFull-Style+Metadata
0 0.2 0 0.2
| . .
el o
Q Q
= N
© 0.1 © 0.1
£ £
[[
(=] (=]
: ol

0.0 .

size 2 size 5 size 10 size 2 size 5 size 10

Figure 3.15: The normalized repair number required by different configurations of
metadata links.

compute the clusters by creating a graph in which each spreadsheet is a node, and
edges exist when two spreadsheets have Jaccard similarity (computed over the non-
numeric strings from each spreadsheet) greater than a threshold of 0.6. We find all
weakly connected components in the graph as the spreadsheet groups. Note that
grouping spreadsheets should only impact metadata affinity, as metadata affinity is
the only way to connect ParentChild decisions across spreadsheets.

For both SAUS and WEB, we ran each grouping technique, then randomly se-
lected 3 groups of size 2, 3 groups of size 5, and 3 groups of size 10. For each group,

we first built one RepairFull on this group of spreadsheets and computed the number

65

of repairs requi