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ABSTRACT

Information Extraction on Para-Relational Data

by

Zhe Chen

Chair: Michael Cafarella

Para-relational data (such as spreadsheets and diagrams) refers to a type of nearly

relational data that shares the important qualities of relational data but does not

present itself in a relational format. Para-relational data often conveys highly valuable

information and is widely used in many different areas. If we can convert para-

relational data into the relational format, many existing tools can be leveraged for a

variety of interesting applications, such as data analysis with relational query systems

and data integration applications.

This dissertation aims to convert para-relational data into a high-quality relational

form with little user assistance. We have developed four standalone systems, each

addressing a specific type of para-relational data. Senbazuru is a prototype spread-

sheet database management system that extracts relational information from a large

number of spreadsheets. Anthias is an extension of the Senbazuru system to convert

a broader range of spreadsheets into a relational format. Lyretail is an extraction

system to detect long-tail dictionary entities on webpages. Finally, DiagramFlyer is

a web-based search system that obtains a large number of diagrams automatically

xiii



extracted from web-crawled PDFs. Together, these four systems demonstrate that

converting para-relational data into the relational format is possible today, and also

suggest directions for future systems.
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CHAPTER I

Introduction

1.1 Para-relational Data

In recent decades, a variety of tools, such as SQLServer, MySQL, and DB2, have

been developed to manage data in the relational format. Some other tools can query

the relational data or integrate many different relational data sources. These tools

all require the stored data to be in a strictly relational format. Unfortunately, the

massive amount of data available today is often not in a strictly relational format,

which makes it difficult to use most of the existing tools to manage the data.

Studies have been conducted to convert specific types of data into a relational

form to manage the huge amount of data using the tools built on relational data.

The most prominent types of data studied so far have been semi-structured (such as

XML) or unstructured data (such as free text).

Semi-structured data often refers to a form of structured data that does not con-

form with the formal relational format, but does contain tags or other markers to

separate semantic elements and enforce hierarchies of records and fields within the

data.1 Semi-structured data is often self-describing, so it is easy to obtain the embed-

ded semantics by parsing the embedded structures. For example, Figure 1.1 provides

an example of XML code, which shows that the book Harry Potter is written by J.

1https://en.wikipedia.org/wiki/Semi-structured_data
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<book>

<name>Harry Potter</name>

<author>J. K. Rowling</author>

</book>

Figure 1.1: An example of XML.

K. Rowling. This meaning is encoded via the metadata in XML. Researchers have

proposed a series of tools to manage semi-structured data [1, 45, 26, 28, 11, 17, 55].

Unstructured data often refers to natural language text. A large number of re-

search projects were conducted to extract the structured format of data [52, 18, 15,

51, 113, 79, 20, 3, 101, 10]. Subsequently, tools built on relational data can manage

the unstructured data.

This dissertation focuses on a new type of nearly relational data that we call

para-relational data. Our goal is to demonstrate that it is possible to convert para-

relational data into a relational format. Para-relational data refers to a type of data

that shares the important qualities of relational data but does not present itself in

a relational format. Our definition of the para-relational data has two important

qualities:

• Parseable Relational Units — Para-relational data can be converted into the

relational form, but it does not present itself directly as a relational form. That

being said, each cell in the target relational table is positioned as an individual

unit, encoded using the para-relational data structure such as a hierarchical

structure or other standard structures.

This quality of the para-relational data is similar to semi-structured data, as it

uses tags, markers, or standard structures to encode the semantic units. This

quality is different from unstructured data because natural language text does

not use embedded structures to encode relational data. We often must parse

the grammar of the text to obtain each individual unit or cell of the target

2



relational table from the unstructured data.

• Hidden Semantic Meanings — Para-relational data is often encoded in a

structure with implicit, embedded semantic meanings. As a result, it is nec-

essary to understand the underlying semantic meanings in order to correctly

parse the implicit relational data.

This quality is similar to the unstructured data, as we must recognize the se-

mantics of the data to correctly identify the hidden relational data. However,

the semantic meanings of semi-structured data are explicit. Semi-structured

data (such as XML) uses the associated metadata to explicitly encode semantic

meanings. For example, Figure 1.1 shows that we can easily tell the name of

the book is Harry Potter and the author is J. K. Rowling, according to the tags.

This dissertation concentrates on three typical types of para-relational data: Spread-

sheets, dictionaries in webpages, and diagrams. We give three real-life examples,

showing each type of para-relational data.

1.1.1 Spreadsheets

Spreadsheets are a critical data management tool that is diverse and widely used:

Microsoft estimates the number of worldwide Excel users at more than 400 million,

and Forrester Research estimates 50 to 80% of businesses use spreadsheets.2 More-

over, there is a large amount of data on the web that is, practically speaking, only

available via spreadsheets. For example, the United States government published a

compilation of thousands of spreadsheets about economic development, transporta-

tion, public health, and other important social topics; a spreadsheet was the only

data format used.

Spreadsheets are a type of para-relational data:

2http://www.cutimes.com/2013/07/31/rethinking-spreadsheets-and-performance-management

3



(a) A spreadsheet example

Male White 45 to 64 years 28.7Total smokers
Male White 65 years and over 13.7Total smokers
Male White 45 to 64 years 25.8Total smokers
Male Black 65 years and over 14.2Total smokers

1990
1990
2000
2000

(b) Relational table for the four values in the spreadsheet

Figure 1.2: A spreadsheet about smoking rates, from the Statistical Abstract of the
United States.

• Parseable Relational Units — Spreadsheets often contain relational data

but do not explicitly present the relational formatted data. For example, Fig-

ure 1.2(a) shows a portion of a spreadsheet downloaded from the Statistical

Abstract of the United States.3 A user can easily tell that the data value 28.7

is described by the annotations 1990, Male, White, and 45 to 64 years. We

call this implicit relationship between annotations and data a mapping. By

repeatedly finding such mappings, we can reconstruct the relational table seen

in Figure 1.2(b). However, this relational table is implicit and the spreadsheet

itself does not explicitly show the relational table.

• Hidden Semantic Meanings — There are many implicit structures often

3http://www.census.gov/compendia/statab/2012/tables/12s0204.xls
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Top Annotations

Data RegionLeft Annotations

Figure 1.3: The three semantic components of a data frame spreadsheet.

hidden in spreadsheets. First, a data frame is a very common data model in

spreadsheets. A data frame often consists of three semantic regions: The top

and left annotation regions and the data region. For example, Figure 1.3 shows

the three components that make up a data frame: Two rectangular annotation

regions (left and top) and a single rectangular data region.

Second, the hierarchical structure is also common in spreadsheets. In Figure 1.2

(a), the data value 28.7 is implicitly annotated by the annotations 1990, Male,

White, and 45 to 64 years in a hierarchical fashion. We call this implicit mapping

relationship the hierarchical structure in spreadsheets.

1.1.2 Dictionaries from Webpages

Webpages often contain a list of instances belonging to the same conceptual class

that we call a dictionary (also known as gazetteers). For example, a camera brand

dictionary contains “Canon”, “Nikon” and so on.

Dictionaries in webpages are para-relational data:

• Parseable Relational Units — Dictionaries in webpages can be presented in

a relational format but the webpages do not explicitly show it. For example, the

left side of Figure 1.4 shows an example webpage with extractable dictionary
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<li>...
  <dl>
    <dd><a href=...Canon'>Canon</a></dd>...
  </dl></li>
<li>...
  <dl>
    <dd><a href=...Casio'>Casio</a></dd>...
  </dl>...</li>
<li>...
  <dl>
    <dd><a href=...Gitzo'>Gitzo</a></dd>...
  </dl>...
</li>

From valuebasket.com

Canon
Leica
Nikon

Olympus
Pentax
Sony

Camera

Webpages Relational Table

Figure 1.4: A list of camera manufacturers from a webpage (with corresponding
HTML source code) can be represented in the relational format.

items for camera manufacturers. However the webpage itself does not explicitly

present the relational table shown on the right side of Figure 1.4.

• Hidden Semantic Meanings — The webpage may use a variety of encoding

formatting styles to present dictionaries, such as an HTML list or table, or even

simple hyperlinks. Simply extracting the items according to the encoding for-

mat is not sufficient to extract the dictionary item. Figure 1.4 shows that this

webpage uses the HTML list to format the dictionary items, but the list con-

tains both in-set items (camera manufacturers such as “Canon” and “Nikon”)

and out-of-set items (tripod manufacturers such as “Gitzo”). To obtain the re-

lational form of this list, it is important to understand the underlying semantics

to distinguish in-set from out-of-set items.

1.1.3 Diagrams

Data-driven diagrams (or statistical graphics) are an important method for com-

municating complex information. Diagrams, a stylized mixture of graphics and text,

offer succinct quantitative summaries of data that motivates the overall document’s

content. For many technical documents, the diagrams may be readers’ only access
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titley-scale

caption

legend

x-label

y-label

x-label y-label x-scale y-scale title caption

Regular.. Execution… ^[bcd]\s+… 0 100… Grep… Figure 2…

legend

Manimal…

x-label y-label value others

^[bcd]\S+ Execution.. 700 Manimal
^[bcd]\S+ Execution.. 721 Hadoop
^[bc]\S+ Execution.. 596 Manimal

(b) Relational table for the diagram metadata

(c) Relational table for the diagram data points

(a) A diagram example

Figure 1.5: A diagram contains several characteristic regions of text: Title, x-label,
y-label, legend, and so on. The diagram can be represented in a relational
format.

to the raw data underlying the documents’ conclusions. Especially for quantitative

disciplines such as finance, public policy, and the sciences, certain diagrams could be

more valuable than the surrounding text.

The diagrams are para-relational data:

• Parseable Relational Units — Diagrams can be presented in a relational for-

mat but the they do not explicitly show it. For example, the two-dimensional

diagram as shown in Figure 1.4 (a) often consists of a set of metadata informa-

tion, including y-label, y-scale, title, legend, x-label, and x-scale. It is possible

to represent this diagram with two relational tables, as Figures 1.4 (b) and (c)
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show: One relational table for the diagram metadata and another one for the

data points in the diagram. Unfortunately, the diagram itself does not explicitly

present the two relational tables.

• Hidden Semantic Meanings — A diagram often contains a set of semantic

fields, as shown in Figure 1.4 (a): A diagram contains the fields that can be

used to generate a unique diagram image, including x-label, y-label, y-scale,

title, and so on. Without understanding each of the key fields in a diagram, it

is impossible to automatically construct the resulting relational table shown in

Figures 1.4 (b) and (c).

1.2 Design Criteria and Challenges

The goal of this dissertation is to demonstrate that we can convert various types

of para-relational data into a relational form. Doing so makes it possible to use many

interesting downstream applications on the para-relational data.

• Data Analysis Applications — If we can convert para-relational data into

a relational form, we can leverage the operations designed on relational data

to analyze the para-relational data. For example, we can use the SQL query

language to select, project, or aggregate to obtain important information in a

huge amount of para-relational data.

• Data Visualization Applications — Most current data visualization tools

(such as Tableau) can only support relational data. If para-relational data can

be converted into a relational form, we can simply use the existing visualization

tools to generate diagrams from para-relational data without writing customized

code.
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• Data Integration Applications — It would be easy to integrate the para-

relational data with various other relational sources.

For example, consider a policy expert Fred who wants to see if the strength of

the connection between smoking and lung cancer is consistent across all U.S.

states. The user does not have the relevant data at hand, so looks for it on the

web.

In one sense, the user is fortunate. Different branches of the government have

collected the data relevant to his task and made it available online, likely via

two separate downloadable spreadsheets: One for smoking statistics and one

for lung cancer statistics. Unfortunately, finding such data via current search

engines is quite tedious. In our case, the user would need to issue a text query,

and review all the returned documents before finding the relevant spreadsheets.

Moreover, because spreadsheets do not have explicit relational schema, the user

cannot benefit from society’s huge investment in data integration tools that

work on relational databases. Instead, the user likely must write custom code

to combine the two spreadsheets, which is a tedious process.

If it is possible to convert spreadsheets into a relational format, users can easily

use an existing integration tool to integrate the two spreadsheets.

To convert para-relational data into a relational form, we have the following three

design criteria:

• Machine Learning Algorithms — Each type of para-relational data would

be encoded using a customized semantic structure. A rule-based approach would

require the user to write a massive number of brittle rules. In practice, machine

learning methods are the best way to handle the diversity of expression in para-

relational data. As a result, we must employ machine learning algorithms to

learn the extraction algorithms.
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• High-quality Results — We require high-quality (i.e., high-precision and

high-recall) or even perfect extraction results, because the extracted relational

form of data would be fed into the downstream applications for further data

processing. Even one mistake from the extraction procedure will cascade and

hinder downstream applications.

For example, a single mistake in hierarchy detection task can yield an extracted

relation that has many incorrect tuples, so ruins our data integration applica-

tion. As Figure 1.2 shows, if we fails to recognize that Male annotates White,

the system would generate incorrect relational tuples for all the data values

from rows 26 to 31.

Therefore, we require high-quality and even perfect extraction algorithms.

• Little User Assistance — Finally, user labeling tasks are expensive for many

tasks. For example, it often requires specialized skills or knowledge to label the

training data. Therefore, when building the extraction algorithms, it is highly

likely that we will not receive much user assistance in providing training data

or feedback to obtain perfect extraction results.

Considering the above design criteria, we face the following two challenges to

convert the para-relational data into the relational form:

Implicit Semantics Extraction — Para-relational data is often encoded in a

structure with implicit embedded semantic meanings, but does not explicitly present

its structure. Different types of para-relational data may contain different semantic

structures. For example, Figure 1.2 shows the spreadsheet hierarchical structure,

and Figure 1.3 shows the spreadsheet data frame structure. Figure 1.4 shows a

webpage with dictionary items of camera manufacturers that are mixed with entities

belonging to tripod manufacturers. Figure 1.5 shows that diagrams often contain a

set of semantic fields, including x-label, y-label, y-scale, title, and so on. To construct
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System Para-relational Data

Senbazuru spreadsheets
Anthias spreadsheets
Lyretail dictionaries

DiagramFlyer diagrams

Table 1.1: Each of the four systems addresses a specific type of para-relational data.

the relational form of the data, it is critical to correctly understand the underlying

semantics of the hidden semantic structures. However, it is not straightforward how

to automatically obtain these structures.

Little User Assistance — We employ a variety of machine learning techniques

to obtain the implicit hidden semantics for different types of para-relational data.

However, there are two key problems: First, many machine learning algorithms re-

quire a sufficient amount of training data for the training procedure to obtain a

satisfying prediction performance. But it is always hard and costly to obtain a lot of

labeled data. Second, it is almost impossible for any machine learning algorithm to

obtain perfect prediction results. However, in many cases, especially when there are

downstream applications, the quality of the prediction results is critical. The user

always must browse the results one after another for validation. That said, it requires

a huge amount of user effort to obtain perfect extraction results.

In this dissertation, we explore a variety of machine learning techniques to ex-

tract the inherent structure or semantic meaning of the para-relational data (i.e.,

spreadsheets, dictionaries in webpages, and diagrams), therefore making it possible

to automatically, or with little user effort, convert the data to a relational format.

We now discuss our approaches in detail.
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1.3 Approaches and Systems

In this dissertation, we aim to convert para-relational data into a high-quality

relational form with little user assistance. We developed four standalone systems

that contribute to the conversion from para-relational data to the relational format.

Each system addresses a specific type of para-relational data, as shown in Table 1.1.

Senbazuru is a prototype spreadsheet database-management system that extracts re-

lational information from a large number of spreadsheets. Anthias suggests an ex-

tension of the Senbazuru system to convert a broader range of spreadsheets into a

relational format. Lyretail is an extraction system that detects long-tail dictionary

entities on webpages. DiagramFlyer is a web-based search system that obtains a large

number of diagrams automatically extracted from web-crawled PDFs. These four sys-

tems demonstrate that converting para-relational data into the relational format is

possible today, and also suggest directions for future systems.

1.3.1 Senbazuru: Extraction on Spreadsheet Structures

We developed Senbazuru, a prototype spreadsheet database management system

(SSDBMS). Senbazuru extracts the structural information from a large number of

spreadsheets, making it possible to convert spreadsheets into a relational form with

little user effort.

Our technical contributions mainly lie in two parts:

Implicit Semantics Extraction — We have identified two typical implicit se-

mantic structures of spreadsheets: The data frame model and the hierarchical struc-

ture.

The data frame is a very common data model in spreadsheets. A data frame often

consists of three semantic regions, as shown in Figure 1.3. We propose a conditional

random field based approach to identify the semantic regions in a spreadsheet by

assigning one of four labels (i.e., header, data, footnote or title) to each row of a
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spreadsheet. In this way, we could automatically recognize the the three semantic

regions of a data frame in a spreadsheet.

Hierarchical structure is an important semantic structure in spreadsheets. We

propose a new two-phase semiautomatic approach based on an undirected graphical

model to accurately extract spreadsheet annotation-to-data mappings. It receives

spreadsheets as input and computes a hierarchical structure with user interaction.

Little User Assistance — To obtain perfect spreadsheet hierarchical struc-

ture, we propose a new two-phase semiautomatic approach based on an undirected

graphical model to accurately extract the hierarchical structure with little user effort.

First, the automatic extractor receives spreadsheets as input and computes a map-

ping without user interaction. Based on an undirected graphical model, it exploits

single-spreadsheet graphical style hints (such as the font and typographic alignment)

and correlated extraction decisions in one spreadsheet or across spreadsheets. Second,

our system offers an interactive repair phase, in which a user repeatedly reviews and

corrects the automatic extractor’s output until no errors remain. Our interactive re-

pair is more than simply asking a user to fix every single extraction error. It exploits

the correlations among different extraction decisions to make more effective use of

each user repair operation. A user’s single repair can be silently and probabilistically

applied to multiple possible errors, allowing us to amortize the user’s effort over many

likely extractor mistakes.

Figure 1.6 shows an example of the user interface for applying repairs. The left

side of the diagram indicates the initial hierarchy obtained by the automatic extractor

for Figure 1.2. The dashed arrow shows that a user performs a repair by clicking and

dragging White so that it becomes a child of Male, indicating that Male annotates

White. This one repair operation triggers multiple error fixes, including setting Male

to also annotate Black.

13



Before Repair: ''White, total'' After Repair: ''White, total''

Figure 1.6: Our user interface for repairing mappings.

1.3.2 Anthias: Extraction on Spreadsheet Properties

We propose the Anthias system, which is an extension of Senbazuru, to convert a

broader range of spreadsheets (in addition to the data frame spreadsheet mentioned

in Section 1.3.1) into a relational format. Anthias enhances Senbazuru by considering

a variety of spreadsheet properties. We use the spreadsheet properties to refer to a

series of transformation programs that contribute toward the spreadsheet-to- rela-

tional table transformation framework. For example, Figure 1.7 shows a portion of

a spreadsheet downloaded from the Statistical Abstract of the United States.4 The

spreadsheet shows a sheet table that consists of the header region (row 5) and data

region (rows 6-43), but it is not a relational table. Figure 1.8 shows the ideal rela-

tional tables that are equivalent to this sheet table, but generating them requires a

series of transformation programs:

• Transform aggregation rows — Data values in rows 16-17 are aggregated values

defined on rows 7-14. We remove the aggregated values in the resulting table.

• Transform aggregation columns — Data values in column B are aggregated

values defined on columns C-E. We remove the aggregated values in the resulting

table.

4http://www.census.gov/compendia/statab/2010/tables/10s0036.xls
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Figure 1.7: A spreadsheet about population statistics, from the Statistical Abstract
of the United States.

Edutation Attainment Race Value

Less than 9th grade White alone 7626199
Less than 9th grade Black or African… 1250932
Less than 9th grade American Indian… 132119
9th to 12th grade… White alone 12181361
9th to 12th grade… Black or African… 3151934
9th to 12th grade… American Indian… 207542
High school graduate… White alone 46127209
High school graduate… Black or African… 7613046
High school graduate… American Indian… 475857

Family Income Race Value

Less than $10,000 White alone 1872052
Less than $10,000 Black or African… 951644
Less than $10,000 American Indian… 55625
$10,000 to $14,999 White alone 1555245
$10,000 to $14,999 Black or African… 563007
$10,000 to $14,999 American Indian… 39350
$15,000 to $19,999 White alone 1982661
$15,000 to $19,999 Black or African… 583609
$15,000 to $19,999 American Indian… 34467

Figure 1.8: The ideal relational tables for the spreadsheet example shown in Fig-
ure 1.7.

• Transform crosstab — The headers of columns C-E (i.e., “White Alone”, “Black

or...” and so on) form the horizontal dimension Race. We pivot this horizontal

dimension into a new column Race in the resulting relational table.

• Transform split tables — Rows 6-17 show “Education Attainment” and rows

34-43 show “Family Income”. We split the two parts as two tables.

Each of the transformation programs above describes a piece of the process on

a specific characteristic of a sheet table that yields a result closer to a relational
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table. We use a spreadsheet property (such as aggregation rows, aggregation columns,

crosstab, and split tables) to represent such a transformation program that contributes

to the spreadsheet-to-relational-table transformation.

Our technical contributions mainly lie in two parts:

Implicit Semantics Extraction — Spreadsheet properties are a critical con-

cept to to represent the spreadsheet-to-relational-table transformation. We study

the task of spreadsheet property detection, which decides if a spreadsheet contains

a specific spreadsheet property (e.g., whether a spreadsheet contains “aggregation

rows”). To the best of our knowledge, we are the first to propose the spreadsheet

property detection problem, which is the first step toward building the spreadsheet-

to-relational-table pipeline.

Little User Assistance — Our main technical contribution is a novel rule-

assisted active-learning framework to construct high-quality spreadsheet property de-

tectors with little user labeling effort. We developed a hybrid approach that integrates

crude user-provided rules with an active learning approach to reduce user labeling ef-

fort. In addition to the labeled instance suggested by the active learning approach,

we bring in crude rules from users to generate additional labeled data for the prop-

erty detectors. We produce labeled instances with the agreed decision from both

the current trained classifier and the user-provided rules. This bagging-like technique

makes it possible for our framework to tolerate bad rules. Our hope is that this hybrid

approach can generate additional high-quality labeled data especially in the initial

stage to quickly warm up the classifiers.

1.3.3 Lyretail: Extraction on Dictionaries from Webpages

We develop the Lyretail extraction system. Using only a few user-given seeds,

Lyretail automatically produces a high-quality page-specific dictionary for each input

webpage. The page-specific dictionaries (PSDs) from many webpages can be further
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aggregated as a high-quality comprehensive dictionary to answer the user’s request.

Our contribution mainly lies in two parts:

Implicit Semantics Extraction — We develop the Lyretail extraction system,

which builds a unique extraction model that automatically produces a high-quality

page-specific dictionary for each input webpage given a few seed examples. By aggre-

gating the PSDs of many webpages retrieved from the web, Lyretail can also compute

a high-quality comprehensive dictionary as its answer to the user’s request.

Little User Assistance — We are able to obtain high-quality extraction re-

sults while reducing user assistance as much as possible in two ways: First, Lyretail

automatically generates training data for building high-quality page-specific extrac-

tors using a distant supervision based algorithm. Second, we propose a co-training

framework that incorporates sequential features to build high-quality page-specific

extractors. We leverage the output from the extractor built on web lists to train a

semi-supervised CRF as the resulting page-specific extractor. As a result, we can

build high-quality page-specific extractors on each webpage that often can distin-

guish infrequently-observed true extractions from incorrect ones. These results are

then aggregated into high-quality long-tail dictionaries.

1.3.4 DiagramFlyer: Extraction on Diagrams from PDFs

We present DiagramFlyer, a working search engine that provides search services

for a corpus of 319k diagrams extracted from a web crawl of PDFs online.

Our contributions are mainly lie in Implicit Semantics Extraction. For each

data-centric diagram discovered in a large number of documents, the DiagramFlyer

extractor recovers as much of the underlying diagram production process as possible

(such as captions and x-axis and y-axis labels). We also provide a software architec-

ture and set of algorithms for implementing DiagramFlyer’s query tools that perform

diagram relevance ranking, similar item finding via lexicons, and snippet generation.
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Regarding Little User Assistance, we attempt to construct high-quality diagram

metadata extractors by asking for a sufficient amount of training data from the users.

1.4 Scientific Contributions

In this dissertation, we aim to convert para-relational data into a high-quality

relational form with little user assistance. Our scientific contributions mainly lie in

the following three areas (we will discuss the related work in the three areas in detail

in Chapter 2):

• Information extraction — Previous research on information extraction can

be divided into either domain-dependent or domain-independent extraction.

Domain-dependent extraction often requires a lot of user effort but can ob-

tain high-quality extraction results, while domain-independent extraction only

requires very little user assistance but may sacrifice the extraction performance.

This dissertation developed information extraction techniques on para-relational

data to obtain high-quality or even perfect extraction results while reducing user

assistance as much as possible.

• Machine learning — It is very hard for any machine learning algorithms to

obtain the fully accurate prediction result. In addition, previous classification

and joint-inference algorithms often require a sufficient amount of user effort

on training data, while active learning approaches can often save a sufficient

amount of training data but suffer from the cold-start problem.

In this dissertation, in addition to applying a variety of existing machine learning

algorithms in the information extraction applications, we make two attempts

to innovate around machine learning algorithms: We attempt to obtain fully

accurate extraction results by interacting with users while reducing the required

user effort as much as possible; and we attempt to further reduce the user effort
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required by active learning by incorporating simple, crude user-provided rules,

thereby alleviating the cold-start problem of active learning techniques.

• Data management — Previous data management researches mainly focused

on relational or semi-structured data sources, and the researches have dealt with

many application problems such as query and integration.

This dissertation focuses on a new type of data that is different from previous

work on data management which we call para-relational data. Our contribution

is mainly from an application perspective. We convert para-relational data into

a high-quality relational form based on our novel techniques on information

extraction and machine learning. This makes it possible to use existing tools

on relational data to manage the para-relational data.

1.5 Outline of the Dissertation

The next chapter provides a brief background description of three areas of re-

search relevant to this dissertation: Information extraction, machine learning, and

data management. These are all huge areas of work, so we focus on areas of the

literature where they have intersected to some degree. Chapters 3-6 cover the four

projects on para-relational data extraction in detail: Senbazuru, Anthias, Lyretail,

and DiagramFlyer. We conclude and discuss future work in Chapter 7. All together,

these chapters present a coherent set of research contributions and a vision for future

work on para-relational data extraction.

I was the lead researcher for all the projects presented in this dissertation, and

almost all the projects have appeared, or will appear, in various venues. We presented

the Senbazuru project in Chapter 3 as a system demonstration in VLDB 2013 [34].

We showed the system pipeline of Senbazuru in SSW 2013 [31] and presented the

hierarchy extraction algorithm in KDD 2014 [32]. The Anthias project in Chapter
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4 is under submission for the WWW conference in 2016 [36]. The Lyretail project

in Chapter 5 will appear in the WSDM conference in 2016 [35]. We presented the

DiagramFlyer project in Chapter 6 in Frontiers of Engineering in 2012 [30] and also

as a system demonstration at the 2015 WWW conference [33].
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CHAPTER II

Research Background

There are three large areas of research that are relevant to para-relational data

extraction. We discuss the area of information extraction in Section 2.1, machine

learning in Section 2.2, and relational data management in Section 2.3.

2.1 Information Extraction

Information extraction often refers to the automatic extraction of structured in-

formation, such as entities, relationships between entities, and attributes describing

entities from unstructured data sources [95].

The early work in information extraction (IE) was inspired by the Message Un-

derstanding Conferences (MUCs), initiated by DARPA (Defense Advanced Research

Projects Agency) in the early 1990s. At that time, MUC was focusing on Informa-

tion Extraction (IE) tasks in which structured information of company activities and

defense-related activities was extracted from the unstructured text. For the last two

decades, the IE task has attracted much research. In general IE research can be di-

vided into two parts: Domain-dependent extraction is sensitive to topic-specific data,

rules, or schemas and domain-independent extraction often avoids extraction rules or

training data that is tailored to a specific topic.

We discuss the two areas of work in detail in the next two sections.
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2.1.1 Domain-dependent Extraction

Domain-dependent extraction often refers to the series of IE tasks on topic-specific

data, rules, or schemas. One of the most well-known domain-dependent extraction

tasks is the Named Entity Recognition and Classification (NERC) task. The goal

of the NERC task is to recognize information units such as names, including per-

son, organization and location names, and numeric expressions including time, date,

money, and percentage expressions [82]. One of the first research papers in the field

was presented by Lisa Rau in 1991. Rau [89] proposed an algorithm to extract and

recognize company names that relies on heuristics and the handcrafted rule.

There are a variety of domain-dependent extraction tasks. Fleischman [52] de-

veloped a method for extracting the subcategorization of location names, including

city and state. The extraction of person is quite common and used at least once in

an original way Bodenreider and Zweigenbaum [18] proposed several criteria to iden-

tify proper names in biomedical terminologies. Bick [15] developed a named entity

recognizer that targets six primary name types (human, organization, place, event,

title/semantic product, and brand/object). In addition to the IE tasks on common

types, there is research on marginal types for specific needs, such as scientist [51],

and email address and phone number [113, 79].

To summarize, the domain-dependent extraction can often produce very high-

quality extraction results but requires a lot of domain knowledge or heuristics to

process the extraction.

2.1.2 Domain-independent Extraction

Domain-independent extraction does not target for a specific tasks and often does

not require extraction rules or training data tailored to a specific topic. This area of

research has attached much attention especially in the last two decades.

The first step in automating IE moved from knowledge-based IE systems to train-
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able systems. AutoSlog-TS [91], in the 1990s, attempted to automatically generate

extraction patterns using annotated text and a set of heuristic rules. DIPRE [20] and

Snowball [3] further reduced manual labor needed for relation-specific text extraction

by only requiring a small set of valid seed tuples for the target relation provided by

the users to start the extraction process. YAGO [101] used Wikipedia information

to produce a large number of ontology objects consisting of is-a and 13 other fixed

binary relations while retaining high quality. For example, the object Paris is in the

FamilyNameOf relation along with Priscilla Paris, and in the Means relation along

with Paris, France.

Later projects focused on conducting the extraction process on a large scale of

webpages. OpenIE [10] employed the distant-supervision method to obtain millions

of relational tuples from a large corpus by making a single data-driven pass without

requiring any user input. The WebTable project [22] also conducted a web-scale

IE system to obtain a huge number of web HTML tables. This huge amount of

resources was further used to explore searching tables, attribute synonym finding and

many other tasks.

To summarize, the domain-independent extraction often requires very little user

effort but can produce satisfactory extraction results at a large scale. The domain-

independent extraction saves user effort but may sacrifice performance.

2.2 Machine Learning

Our extraction tasks use a variety of machine learning algorithms. Machine learn-

ing algorithms are one of the oldest computer applications. There were a large number

of important algorithmic and theoretic developments over the past century [98]. We

mainly focus on the classification tasks and briefly introduce some basic and joint-

inference classification models, and the active learning technique in the next three

sections.
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2.2.1 Basic Classification Algorithms

The classification tasks (binomial or multinomial) are one of the most frequently

studied problems in machine learning. The classification problem studies the task of

classifying the elements of a given set into two or more groups based on the classi-

fication rules. The classification rule can be manually designed but is often learned

through training data.

The most prominent classification algorithms include logistic regression, naive

bayes, support vector machines (SVM), decision trees, and random forests. We now

briefly introduce logistic regression in detail.

Logistic regression — Logistic regression is used to predict the odds of being a

case based on the values of the independent variables (predictors).

Consider the binary classification with y = 0 or 1. Each example is represented

by a feature vector x. Logistic regression defines the probability distribution on the

feature vector x as follows:

p(y|x) =
1

1 + exp(−yθTx)
(2.1)

Logistic regression can also be easily generalized to multiple classes. Let there

be K classes. Each class has its own parameter θk. The probability distribution is

defined via the softmax function:

p(y = k|x) =
exp(θTk x)∑K
i=1 exp(θTk x)

(2.2)

To summarize, almost all these simple classification algorithms assume that the

entities are independent of each other, and require a sufficient amount of training

data to estimate the unknown parameters defined in the models.
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2.2.2 Joint Inference Algorithms

In recent decades, joint-inference models are especially popular in the natural

language processing area by considering the correlation among entities [80]. The

joint-inference models achieve better performance on well-defined subproblems such as

part-of-speech tagging, phrase chunking, syntactic parsing, named-entity recognition,

and semantic-role labeling. The popular joint inference models include conditional

random fields [75, 102] and other types of graphical models [71].

Conditional Random Fields (CRFs) — Conditional random fields (CRFs)

are a probabilistic framework for labeling and segmenting structured data, such as

sequences, trees and lattices. It is a discriminative model and defines a conditional

probability distribution over label sequences given a particular observation sequence.

Consider a linear-chain conditional random field [75, 102]. Let y,x be random

vectors, θ = θk be the parameter vectors and fk(y, y
′,xt) be a set of feature functions.

Then a linear-chain conditional random field defines the probability distribution as:

p(y|x) =
1

Z
ΠT
t=1 exp{

K∑
k=1

θkfk(y, y
′,xt)} (2.3)

where Z is a normalization factor.

In addition to the linear-chain CRFs, there are other forms of CRFs that can be

easily generalized according to the probability distribution shown in Equation 2.3,

such as the skip-chain CRFs and general CRFs.

Graphical model — A graphical model G [71] describes a joint distribution

over a set of n random variables x = {x1, ..., xn}, where each variable xi takes a

label li from a set of labels L. The model captures properties of each variable and

dependencies among variables in the graph by defining potential functions on cliques

of correlated variables. The probability distribution is defined as:
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P (x1, ..., xn) =
1

Z
exp(

∑
C⊆cliques(G)

θ(C,x)) (2.4)

A common method to define the potentials is as a dot function between the weight

parameters and a feature vector [85]. A node potential captures the features that

correspond to a single variable. The node potential is usually defined on a variable

xi as θ(xi) = w1
T f(xi, li), where f(xi, li) is a feature vector and w1 is the associated

weight parameters. Similarly, the edge potential is usually defined on pairwise vari-

ables xi and xj to describe their correlation as θ(xi, xj) = w2
T f(xi, li, xj, lj). Users

generally provide domain knowledge via the feature vectors f , while the parameters

w = {w1,w2} are trained from labeled data. In the training stage, the feature vector

is derived from a set of labeled data to obtain the optimal value for the weight pa-

rameters w. In the inference stage, the optimal labeling can be obtained by finding

the maximum joint probability. As our model is conditionally trained, it belongs to

the class of general graph conditional random fields [75].

To summarize, these algorithms assume the entities are correlated in some prede-

fined patterns. However, similar to the basic classification algorithms, all the algo-

rithms require a sufficient amount of training data to estimate the unknown param-

eters defined in the models.

2.2.3 Active Learning

Active learning is a subfield of machine learning. This area of research attracted

much attention in the last two decades. The key idea of active learning is that we can

save the amount of data needed to be labeled if the learning algorithm is allowed to

choose the data in a smart way [97]. An active learner may ask queries in the form

of unlabeled instances to be labeled by an oracle (such as a human annotator).

There are two common active learning [97] approaches. The first is uncertainty

sampling, and it is the most popular active learning strategy. An uncertainty sam-
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pling strategy often chooses to label instances closest to the decision boundary and

refines the decision boundaries by heavily exploiting the current knowledge space.

The uncertainty sampling approach in [94] simply selects the instance with the pre-

dicted probability closest to 0.5. The second is a variation of the Query by Committee

(QBC) [103] technique. It is a selection framework that takes into account the dis-

agreement of multiple committee classifiers. The QBC strategy is more complicated

than uncertainty sampling, as it requires careful design of approaches to create a set

of models (i.e., committee members) and a metric to measure disagreement among

the committee members.

Active learning methods can save a sufficient amount of training data but often

suffer from the cold-start problem [117]. In the beginning stages, the classifier lacks

training data to approach the ideal decision boundary and suggest effective instances

to label.

2.3 Data Management

There has been a large variety of work on data management, but most of it focuses

on managing relational data or semi-structured data sources. Researchers also studied

the problem of model management, which is a generic approach to solving problems

of data programmability in which precisely engineered mappings are required [13].

However the research on model management mainly focused on the mappings between

relational data and semi-structured data [12, 13, 67]. We briefly discuss relational

and semi-structured data management in the next two sections.

2.3.1 Relational Data Management

Relational data management has been an active research area even before E.F.

Codd proposed the relational model of data in 1970 [38]. The oldest working system

that is a recognizably modern database may be IBM’s IMS database, released in
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1968 [100].

The various software systems used to maintain relational databases are known

as relational database management systems (RDBMS). A variety of commercial rela-

tional databases systems were developed in many different institutions, including IBM

DB2, Oracle RDBMS and Microsoft SQLServer. In addition to the data management

system, SQL (i.e., Structured Query Language) was developed as the standard lan-

guage for querying and maintaining the database. SQL was one of the first commercial

languages for Codd’s relational model [38].

There are many active research areas on database applications. One of the most

pervasive challenges is data integration. The goal is to make it easier to query across

multiple autonomous, heterogeneous data sources [58]. Data integration is crucial

especially in large enterprises that own a multitude of databases. Most of the time,

the data sets are independently produced by multiple researchers.

In summary, there are a variety of tools available that can easily manage relational

data, including querying and integrating relational data, and many other applications.

2.3.2 Semi-structured Data Management

Another prominent line of work on data management is on semi-structured data

sources, Most of this work focuses on data sources such as Extensible Markup Lan-

guage (XML).

XML is a markup language that defines a set of rules for encoding documents

in a format that is both user- and machine-readable. XML is an application profile

of SGML, which was used by early digital-media publishers in the late 1980s, even

prior to the rise of the web. The first (XML 1.0) was initially defined in 1998. It has

undergone minor revisions since then. Nowadays, XML is widely used everywhere in

the world.

The research on XML data mainly focuses on query tree-structured data. A
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few XML query languages were proposed: Lorel [1], XML-QL [45], XML-GL [26],

Quilt [28], XPath [11] and XQuery [17]. Of all the existing XML query languages,

XQuery is being standardized as the major XML query language.

In summary, many different tools have been proposed to query or manage semi-

structured data.
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CHAPTER III

Senbazuru: Extraction on Spreadsheet Structure

3.1 Problem Overview

One notable form of web statistical data is spreadsheets. Spreadsheets are an

extremely popular data management tool, allowing users to complete a range of data

tasks commonly associated with relational systems: projection, sorting, aggregation,

and simple ETL (Extract, Transform and Load) jobs. Moreover, spreadsheets are

often contain data that are roughly relational, but the schema is often designed for

human consumption, thus entirely implicit.

In this chapter, we consider the transformation from spreadsheets to the relational

form on a specific type of spreadsheet which we call the data frame spreadsheet. For

example, the spreadsheet in Figure 3.2 shows a data frame spreadsheet about the

smoking rate downloaded from the government’s Statistical Abstract of the United

States.1. Each row clearly represents a different configuration of the smoking rate; for

example, 13.7 in the value region is the rate for people with constraints Male, White,

65 years and over in the annotation region, and it yields an annotating relational tuple

at the bottom. But there are two main problems here.

First, the spreadsheet only implicitly indicates which cells carry values versus

annotations. Often a spreadsheet is a mix of annotations, values, and other elements

1http://www.census.gov/compendia/statab/2012/tables/12s0204.xls
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Top Annotations

Data RegionLeft Annotations

Figure 3.1: The three semantic components of a data frame spreadsheet.

such as titles and footnotes. These elements are not easily distinguished from each

other. As shown in Figure 3.1, we call it a data frame structure, which consists

of two rectangular annotation regions (left and top) and a single rectangular data

region.

Second, the spreadsheet does not explicitly indicate which annotations describe

which values. If the leftmost column is processed näıvely, rows 25, 31, and 37 will

yield three tuples that have different smoking rates for 65 years and older. All three

extracted tuples are incorrect, as none will contain any mention of the annotation

Male. We call this implicit mapping relationship the hierarchical structure in

spreadsheets.

In summary, Figure 3.2 shows a clean, high-quality spreadsheet, but extracting

relational data from it requires us to: (1) data frame extraction — detect annotations

and values, (2) hierarchy extraction — identify the hierarchical structure of left and

top attributes, and (3) relation construction — generate a relational table for each

value in the spreadsheet.

In this chapter, we present Senbazuru, a prototype spreadsheet database man-

agement system that is able to extract relational information from a large number

of spreadsheets. We introduce the data model, data sources, and We present the

system pipeline and our approaches to convert data frame spreadsheets into a rela-
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(a) A spreadsheet example

Male White 45 to 64 years 28.7Total smokers
Male White 65 years and over 13.7Total smokers
Male White 45 to 64 years 25.8Total smokers
Male Black 65 years and over 14.2Total smokers

1990
1990
2000
2000

(b) Relational table for the four values in the spreadsheet

Figure 3.2: A spreadsheet about smoking rates, from the Statistical Abstract of the
United States.

tional form in Section 3.3. We conduct the extensive experiments on extracting the

data frame and the hierarchical structure in Section 3.4. We demonstrate the system

Senbazuru in Section 3.5. Finally we discuss related work in Section 3.6 and conclude

in Section 3.7.

3.2 Preliminary

In this section, we will introduce the spreadsheet terminology and the data sources

that we use throughout this chapter. We also collect the statistics on web spreadsheets

in order to better design the Senbazuru system.
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3.2.1 Terminology

In its most generic incarnation, a spreadsheet is simply an M × N grid of cells,

in which each cell can contain a string, a number, or nothing. In practice, most

spreadsheets, especially the high-quality ones that carry data that we want to extract,

have substantially more structures. We make two assumptions about the spreadsheets

we will process without seriously compromising our approach’s generality.

Data Frames – First, we focus on a prototypical form of spreadsheet that we call a

data frame. Figure 3.1 shows the three components that make up a data frame: Two

rectangular annotation regions (left and top) and a single rectangular data region. For

each data in the data region, there is usually at least one annotation in the top and

left annotation regions. For example, in Figure 3.1, the data 14.6 has annotations 65

years and over, Male and 1990.

Hierarchies – Second, we focus on hierarchical spreadsheets. We assume a spread-

sheet is hierarchical if the annotations in the top or left annotation region exhibit

a hierarchical tree structure of at least two layers. Each annotation region has a

notional tree that characterizes how each annotation describes the data region. For

example, in Figure 3.2, all the data at row 31 have a direct annotation of 65 years and

older and indirect annotations of White, Male and Total smokers in the left hierarchy.

Note that the annotation hierarchies are not ontologies. For example, Male is not a

super-category of its children.

Relational Tuples — Given the annotation hierarchies for a spreadsheet, we can

recover the equivalent relational tuples. For each data in the data region, we generate

a relational tuple that consists of the following: (1) The data itself; and (2) Its

direct annotation plus all of its indirect annotations in the left and top. For example,

in Figure 3.2, the data 28.7 has a direct annotation of 45 to 64 years and indirect

annotations of White, Male and Total smokers in left. Similarly, we obtain the direct

and indirect annotations in the top hierarchy and then generate the relational tuple
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as shown in Figure 3.2 (b).

Relational Table — Combining multiple relational tuples into a single relational

table is sometimes straightforward, but may depend on data-specific details to align

each value of a tuple properly to a consistent attribute. Elmeleegy et al. [50] pro-

posed a relevant method to perform this alignment in the context of relational table

extraction from the web.

3.2.2 Data Sources

We have obtained two spreadsheet corpora:

• SAUS – The 2010 Statistical Abstract of the United States (SAUS) consists

of 1,369 spreadsheet files totaling 70MB. We downloaded the dataset from the

U.S. Census Bureau. It covers a variety of topics of general public interest, such

as state-level finances, educational attainment, levels of public health, and so

on. The data come from different sources inside the government, but to the

human eye appears uniformly high in quality of design and content.

• WEB – Our web dataset (WEB) consists of 410,554 Microsoft Excel files from

51,252 distinct Internet domains. They total 101 GB. We found the spreadsheets

by looking for Excel-style file endings among the roughly 10 billion URLs in the

ClueWeb09 web crawl [37]. The data come from many different sources and to

a human appears to have a wide range in quality.

3.2.3 Web Spreadsheet Statistics

To better design the Senbazuru system, we answer the following critical questions

about the general properties of the web spreadsheets and the popularity of the data

frame spreadsheets on the web:

1. Where are those web spreadsheets from? The web spreadsheets cover

a huge range of topics and show wide variance in cleanliness and quality. Most of
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Domain # files % total data frame h-top h-left

www.bts.gov 12435 3.03% 99% 30% 40%

www.census.gov 7862 1.91% 94% 72% 70%

www.stat.co.jp 6633 1.62% x x x

www.bankofengland.co.uk 5520 1.34% 98% 77% 35%

www.ers.usda.gov 4328 1.05% 95% 77% 70%

www.agr.gc.ca 4186 1.02% 87% 77% 81%

www.wto.org 3863 0.94% 96% 61% 77%

www.doh.wa.gov 3579 0.87% 81% 53% 64%

www.nsf.gov 2770 0.67% 96% 53% 76%

nces.ed.gov 2177 0.53% 98% 55% 92%

average 5335 1.30% 93.78% 61.67% 67.33%

Figure 3.3: The top 10 domains in our web spreadsheet corpus. h-top and h-left are
percentages of spreadsheets with a hierarchical top or left region.

the spreadsheets are statistical data, with a heavy emphasis on government, finance,

transportation, etc. We are also interested in the distribution of the spreadsheets from

different Internet domains. Figure 3.3 shows the top 10 Internet domains that host the

largest number of spreadsheets in the WEB corpus. Nine of the top 10 domains are

sites run by the U.S., Japanese, UK, or Canadian governments. Figure 3.4 shows the

distribution of spreadsheets among hosting domains. We rank the domains according

to the size of their hosting spreadsheets in descending order. The plot indicates

that the spreadsheets follow a strongly skewed distribution, with a large number of

spreadsheets from relatively few domains and with a large number of domains hosting

relatively few spreadsheets.

2. How many of the web spreadsheets consist of data frame struc-

tures? To better understand the structure of the WEB spreadsheets, we randomly

chose 200 samples and asked a human expert to mark their structures. We found

50.5% of the spreadsheets consist of data frame components and 32.5% have hierar-

chical top or left annotations. The other 49.5% non-data frame spreadsheets belong to

the following categories: 22.0% are Relation spreadsheets that can be converted to the

relational model almost trivially (we can simply translate each spreadsheet column
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Figure 3.4: The distribution of web spreadsheets.

into a relational table column and translate each spreadsheet row into a relational

tuple); 10.5% are Form spreadsheets that are not for data storage and are designed

to be filled by a human; 3.5% are Diagram spreadsheets for visualization purposes,

and they are often data-intensive without any schema information; and 3% are List

spreadsheets that consist of non-numeric tuples. The 10.5% Other spreadsheets are

schedules, syllabi, scorecards, or other files whose purpose is unclear. Although there

are a variety of categories of spreadsheets on the web, in this paper, we only focus on

data frame spreadsheets.

3. How many of the web spreadsheets are hierarchical? Are those

hierarchical spreadsheets spread uniformly across the web? As just men-

tioned, 32.5% of the 200 sample web spreadsheets have hierarchical top or left anno-

tations in a data frame. To better understand how the hierarchical spreadsheets are

distributed in different domains, we randomly selected 100 spreadsheets from each of

the top 10 domains, yielding 900 spreadsheets in total.2 Figure 3.3 shows the fraction

of spreadsheets with data frames or hierarchical annotations in the top 10 domains.

The ratios are much higher than the fractions we obtained from the general web sam-

ple. We also randomly selected 100 spreadsheets from domains hosting fewer than 10

spreadsheets. We found 19% with data frame structures, 4% of which have hierarchi-

2www.stat.co.jp is excluded because it is in Japanese.

36



Spreadsheet
Top 

Attributes

Value 
RegionLe

ft 
At

tri
bu

te
s

Data Frame
Left Hierarchy Top Hierarchy

Attribute Hierarchies  Relational Tuples
frame 
finder

hierarchy 
extractor

tuple
builder

Figure 3.5: The system pipeline for Senbazuru to process a single spreadsheet.

cal top annotations and 6% of which have hierarchical left annotations. These results

suggest that the number of hierarchical spreadsheets differs greatly by domain and

may be linked to the domain’s popularity or degree of professionalism. Computing

the exact distribution of hierarchical spreadsheets among domains would be useful

but requires a huge amount of labeled data; we will explore this question in future

work. Even without computing that distribution, we have found a huge number of

hierarchical spreadsheets: 32.5% of all spreadsheets on the web and more than 60% in

popular domains. Therefore, to extract relational data from spreadsheets, we believe

our system must process hierarchical-style metadata.

3.3 Spreadsheet Structure Extraction

We now describe our spreadsheet extraction pipeline. The goal of the extraction

pipeline is to create a relational model of the data embedded in data frame spread-

sheets: it takes in a data frame spreadsheet and emits a relational table.

In the following sections, we first describe our spreadsheet extraction pipeline, and

then we discuss the two critical components that are our core contributions. They

are the data frame extraction and the hierarchy extraction.
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Algorithm 1 TupleBuilder
Input: The left hierarchy Hl, the top hierarchy Ht,
the set of values in the value region V = {v}
Output: The relational tuples T = {t}
1: Initiate T
2: for each v ∈ V do
3: Initiate t
4: Get annotating attributes for v from Hl as {al}
5: Get annotating attributes for v from Ht as {at}
6: t← v ∪ {al} ∪ {at}
7: T ← T ∪ t
8: end for

3.3.1 System Pipeline Overview

We developed the spreadsheet management system Senbazuru. The extraction

pipeline consists of three components, as shown in Figure 3.5. They are the frame

finder, the hierarchy extractor, and the tuple builder. The frame finder identifies the

data frames, locating attribute regions and value regions. The hierarchy extractor

recovers the hierarchical metadata from spreadsheets, and the tuple builder generates

a relational tuple for each value in the value region.3.

The tuple builder is straightforward, as long as the previous steps are accurate. We

generate a relational tuple for each value in the value region, annotating each one with

relevant annotations from the annotation hierarchies. For example, Figure 3.2 shows

the full six-field tuple we want to recover for the highlighted value 13.7. The tuple

builder is also algorithmically straightforward. It processes the extracted annotation

hierarchies and the value region to generate a series of relational tuples. As described

in Algorithm 1, for each value v, we find the its annotating annotations along the path

to the root in the annotation hierarchies for both left and top attribute regions. The

tuple builder relies entirely on the frame finder and hierarchy extractor for correctness.

We discuss the frame finder and the hierarchy extractor in the next two sections.

3It should be able to work on both flat and hierarchical spreadsheets because we treat flat spread-
sheets as a special case of hierarchical ones
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3.3.2 Data Frame Extraction

The frame finder identifies the value region and the top and left attribute regions.

It receives a raw spreadsheet as input and emits geometric descriptors of the data

frame’s three rectangular regions. We define the problem as follows:

Definition III.1. (Frame Finder) Let a spreadsheet be a grid of cells c = {cij},

where i represents the row index and j represents the column index. The frame

finder assigns each cell cij ∈ c with a label lij ∈ L = {top, left, value, other}, where

top represents top annotations, left represents left annotations, value represents values,

and other represents everything else.

To simplify the problem, we assume that the structure of the spreadsheets has the

following property: there may be multiple data frames in a spreadsheet, but they only

stack in the vertical dimension.4 This assumption allows us to treat data frame-finding

as a problem of row labeling. Therefore, we start with the row labeler task, which

assigns each row in a spreadsheet to one of the following four categories: title, header,

data, or footnote. The label title represents a spreadsheet title, header represents

a row that contains top annotations only, data represents a row that contains left

annotations or values, and footnote is information that annotates the main contents.

As in Figure 3.2, rows 5-7 are labeled header and rows 19-37 are labeled data. A

formal definition is as follows:

Definition III.2. (Row Labeler) Let r = {r1, r2, ..., rN} be a set of variables repre-

senting the non-empty rows in a spreadsheet. The row labeler assigns each ri ∈ r

with a label li ∈ L = {title, header, data, footnote}.

We observe the following two types of signals that the row labeler should use to

automatically assign semantic labels to each non-empty row: (1) the properties of

4In fact, we found less than 2% of the 900 spreadsheets in the top 10 most popular HTTP domains
violate the assumption.
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each non-empty row indicate its semantic label, such as its fonts and keywords; and

(2) the labels assigned to adjacent rows are highly related. For example, if we know

the current row is a header row, it is highly probable that the next row is a header

or data row. Therefore, we employ an approach based on a linear-chain, conditional

random field (CRF) [75] to exploit these two types of signals. Pinto et al. [86] used

linear-chain CRFs to obtain labels for textual tables in government statistical text

reports. We also use the linear-chain CRFs to obtain the semantic labels for each

row of a spreadsheet, and our training and inference procedure is the same. However,

with the access to spreadsheet APIs, we are able to build the CRFs with a richer set

of features, such as the alignment and indentation information that is hard to obtain

from plain text report. Our extraction features fall into two main categories: layout

features test visual characteristics of a row, and textual features test the contents of the

row. Each of the features is a binary function, taking in a given row in a spreadsheet

as the input and emitting a 0/1 Boolean value as the output. The features attempt to

test whether the properties of a row are an indication of a certain category in {title,

header, data, footnote}. The features are listed in Table 3.1.

Once we have labels for each row in a spreadsheet, we can construct the correct

data frame regions. The vertical extent of a value region is described by the set

of rows marked data, and its horizontal extent is determined by finding regions of

numeric values. The top attribute region is delimited by all header rows, and the left

attribute region is everything to the left of the value region.

3.3.3 Hierarchy Extraction

The hierarchy extractor recovers the annotation hierarchies. This step receives a

data frame with top and left regions as input and emits hierarchies as output: one

for left and one for top. These trees describe the hierarchical annotation relationship

among annotations in the top and left regions. For example, in Figure 3.2, row 31
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Layout Features

1 Has a bold font cell

2 Has a cell reaching the left bound

3 Has a cell reaching the right bound

4 Has a cell with indentations

5 Has a center-aligned cell

6 Has a left-aligned cell

7 Has a merged cell

8 Has only one column

Textual Features

1 Contains colon

2 Contains punctuations

3 Has a cell with with a word count > 40

4 Numeric cells within year range ratio > 0.6

5 Row is blank

6 With all words in lowercases

7 With all words capitalized

8 With all words starting with capitals

9 With numeric cells ratio > 0.6

10 With words starting with “table”

Table 3.1: Extraction features for the frame finder.

Figure 3.6: An example of the hierarchical top annotations in spreadsheets.

is annotated by annotations at rows 26, 20, and 19. An example of a top hierarchy

can be found in Figure 3.6, where the attribute Airplane pilots annotates the attribute

Airline transport. Now we formally describe the problem of recovering the annotation

hierarchy for a single region as follows:
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3.3.3.1 Approach Overview

In this section, we describe the hierarchy extraction task in detail. We have

proposed a new two-phase semiautomatic approach based on an undirected graphical

model to extracting spreadsheet annotation-to-data mappings accurately and with

little user effort.

First, the automatic extractor receives spreadsheets as input and computes a map-

ping without user interaction. Based on an undirected graphical model, it exploits

single-spreadsheet graphical style hints, such as the font and typographic alignment,

that are obvious to a human observer. It also identifies and exploits correlated ex-

traction decisions; these correlated decisions can appear within one spreadsheet or

between two unrelated spreadsheets. Our resulting automatic extractor obtains accu-

racy that beats a baseline approach by up to 91% on a large workload of spreadsheets.

Second, our system offers an interactive repair phase, in which a user repeatedly

reviews and corrects the automatic extractor’s output until no errors remain. We

expect a user will review the automatic extractor’s output. But our interactive repair

is more than simply asking a user to fix every single extraction error. We again exploit

the correlations among different extraction decisions to make more effective use of

each user repair operation. A user’s single repair can be silently and probabilistically

applied to multiple possible errors, allowing us to amortize the user’s effort over many

likely extractor mistakes. Building a model that can perform this amortization, and

managing the inadvertent errors that such an approach might introduce (a problem

we call backtracking), is one of this paper’s core contributions.

Figure 3.7 shows an example of the user interface for applying repairs. The left

side of the diagram indicates the initial hierarchy obtained by the automatic extractor

for Figure 3.2. The dashed arrow shows that a user performs a repair by clicking and

dragging White so that it becomes a child of Male, indicating that Male annotates

White. This one repair operation triggers multiple error fixes, including setting Male
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Before Repair: ''White, total'' After Repair: ''White, total''

Figure 3.7: Our user interface for repairing mappings.

to also annotate Black. By making our system part of the user’s natural review-

and-repair loop, we can reduce the number of manual repairs by up to 71% when

compared to our already-effective automatic extractor.

3.3.3.2 Problem Definition

We now formally describe the hierarchy extraction task. The task of hierarchy

extraction is to detect all of the ParentChild pairs P = {ParentChild(ai, aj)} in an

annotation region A. One way to model this problem is to create a Boolean variable x

to represent a ParentChild pair candidate (ap, ac) for every annotation pair ap, ac ∈ A.

Each variable x takes a label l ∈ L = {true, false}, and x holds true if ap is the parent

of ac. For example, Figure 3.8 shows a portion of the created variables for Figure 3.2’s

left metadata. Each oval node corresponds to a single boolean ParentChild decision.

For example, setting the node (18 to 24 years, Male) to true indicates that 18 to 24

years is the hierarchy parent of Male.

The spreadsheet hierarchy extraction task, thus, amounts to recovering all the

ParentChild pairs for its annotation regions. For example in Figure 3.2, the solution

for mappings in left is a set of all its ParentChild pairs {(row-19, row-20), ..., (row-32,

row-37)}.
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Spreadsheet ParentChild Pairs
(18 to 24 years, Male)
(25 to 34 years, Male)

(Male, 25 to 34 years)
(18 to 24 years, 25 to 34 years)

(Male, 18 to 24 years)
(25 to 34 years, 18 to 24 years)

Figure 3.8: A sample of ParentChild variables.

3.3.3.3 Our Observations

We now formally describe our problem and observations. The task of hierarchy

extraction is to detect all of the ParentChild pairs P = {ParentChild(ai, aj)} in an

annotation region A. One way to model this problem is to create a Boolean variable x

to represent a ParentChild pair candidate (ap, ac) for every annotation pair ap, ac ∈ A.

Each variable x takes a label l ∈ L = {true, false}, and x holds true if ap is the parent

of ac. For example, Figure 3.8 shows a portion of the created variables for Figure 3.2’s

left metadata. Each oval node corresponds to a single boolean ParentChild decision.

For example, setting the node (18 to 24 years, Male) to true indicates that 18 to 24

years is the hierarchy parent of Male.

However, simply enumerating all pairs in a region A can yield thousands of vari-

ables. In practice, it is possible to greatly reduce the set of ParentChild candidates

with a few heuristics. 5 Failing to create a node for a true ParentChild relationship

clearly means that we will predict the child’s parent incorrectly. A wrong ParentChild

prediction is bad, but not catastrophic: the user can still describe the correct rela-

tionship during interactive repair. Failing to create a node for a true ParentChild

relationship is bad, but not catastrophic: the user can still describe the correct rela-

5We prioritize ParentChild candidates in which the typographic styles of the two nodes differ.
We also prioritize pairs that are geometrically close to each other in the spreadsheet. Testing on
our 200 testbed spreadsheets for SAUS and WEB, our heuristics only incorrectly filtered out just
0.01% and 0.13% of correct pairs, respectively.
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tionship during interactive repair.

ParentChild Pair Properties — A true ParentChild variable may be indicated

by the surrounding style and layout information. For example, a variable that de-

scribes annotations which are physically close is likelier to be true than a variable

that describes annotations that are physically distant. We formulated 32 features for

evaluating a ParentChild variable.

For left attributes, given a ParentChild pair candidate (ai, aj), we employ a set

of features to characterize its properties, thus determining whether it is a true Par-

entChild pair. The testing features include unary features and binary features, as

shown in Table 3.2. The unary features apply on each of the child and parent at-

tributes, and the binary features apply on the attribute pair.

For top attributes, given a ParentChild pair candidate (ai, aj), we utilize a set of

layout features to characterize the properties of the attribute pair, thus determining

whether it is a true ParentChild pair. The features we used are shown in Table 3.3.

Correlating ParentChild Decisions — ParentChild decisions can be corre-

lated; knowing the assignment of one ParentChild variable sheds light on some others.

We found the following four types of correlations.

Correlation (i) — Stylistic Affinity. When two ParentChild variables in the

same spreadsheet have identical visual style for parents and for children, it is likely

that the two variables should be decided together. For example in Figure 3.9 (a),

the two ParentChild variables ((White, College) and (Male, 18 to 24 years)) should be

decided together because the parents (White and Male) share the same typographic

style, as do the children (College and 18 to 24 years). We say that two variables

have stylistic affinity when the parents and children share a range of visual qualities:

alignment, indentation, capitalization, typeface, type size, type style (i.e., bold or

italicized), and use of certain special strings (i.e., a colon, a number, or the word

“total”). Note that stylistic affinity only makes sense when testing ParentChild pairs
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Unary Extraction Features

1 Attribute has underline

2 Attribute contains keywords like “total”

3 Attribute contains colon

4 Attribute is bold

5 Attribute is center aligned

6 Attribute is italic

7 Attribute is numeric

8 Attribute letters are all capitalized

9 Is the first attribute

10 Is the last attribute

Binary Extraction Features

1 Attribute pair is adjacent

2 Attribute pair’s indentation is equal

3 Attribute pair’s style is adjacent in the region

4 Child’s font size is smaller than parent’s

5 Child’s indentation is greater than parent’s

6 Child’s row index is greater than parent’s

7 Child’s style is the same as the first attribute

8 Has blank cells in the middle

9 Has middle cell with indentation between the pair’s

10 Has middle cell with indentation larger than the pair’s

11 Has middle cell with indentation less than the pair’s

12 Has middle cell with style different from the pair’s

13 Has middle cell containing keywords like “total”

14 Parent is the root

Table 3.2: Extraction features for the hierarchy extractor on left attributes.

within a single spreadsheet; different spreadsheets may have different or contradictory

ways of visually indicating the ParentChild relationship.

Correlation (ii) — Metadata Affinity. If we have a metadata resource avail-

able, we can use it to find additional correlations between ParentChild variables both

within and between spreadsheets. For example in Figure 3.9 (b), the two ParentChild

candidates, (White, Female) and (Black, Male), should be decided together because

the parents (White and Black) belong to the same semantic category race; similarly

the children (Female and Male) belong to gender.

Fortunately, we are able to synthesize a domain-specific metadata resource from

a corpus of spreadsheets. Our central observation is that any useful category of
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Layout Extraction Features

1 Child has no cell right above

2 Child is at the uppermost header row

3 Has a cell in the middle

4 Parent cell covers child’s column

5 Parent is on the left of child

6 Parent is on the right of child

7 Parent is right above child

8 Parent is the root

Table 3.3: Extraction features for the hierarchy extractor on top attributes.

annotations — whether a general-purpose one like gender or a hyper-specific one such

as chemicalPrecursor — will likely appear in many datasets. Further, annotations

drawn from the same category (such as Male and Female) often appear as siblings in

an extracted annotation hierarchy. We measure whether two annotations belong to

the same category by testing how strongly the annotations appear as siblings in a

large number of extracted hierarchies. We perform the test as follows:

1. Extract all annotation hierarchies from a corpus of spreadsheets using a simple

classifier or a version of our automatic extractor that does not use metadata

information. For each parent annotation, we create a sibling set that contains

all of its child annotations.

2. Count the number of sibling sets where an annotation a is observed. Divide

by the number of sibling sets to obtain p(a), the probability that a randomly

chosen sibling set contains a.

3. Count the number of sibling sets where the annotation pair ai and aj co-occur

together. Divide by the number of sibling sets to obtain p(ai, aj), the probability

that a randomly chosen sibling set contains both ai and aj.

We can then measure the extent to which two annotations ai and aj are observed

as siblings (and thus are likely to be in the same category) by computing the pointwise

mutual information (PMI): PMI(ai, aj) = log
p(ai,aj)

p(ai)p(aj)
.
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(b) Metadata Affinity(a) Stylistic Affinity

Figure 3.9: An example of stylistic affinity shown in (a) and metadata affinity shown
in (b).

Let x1 = (ap1, ac1) and x2 = (ap2, ac2) be two variables in the CRF. The two

variables x1 and x2 have metadata affinity if and only if PMI(ap1, ap2) > δ and

PMI(ac1, ac2) > δ, where δ is a predefined threshold.

Correlation (iii) — Adjacent Dependency. If we consider the ParentChild pairs

of a single spreadsheet as a sequence, adjacent variables often follow a transition

pattern of the labels.

Correlation (iv) — Aggregate Design. There are two further constraints that

reflect typical overall spreadsheet design and ensure that the resulting variable as-

signment yields a legal hierarchy (i.e., a tree).

The first is the orientation constraint. Spreadsheets tend to have an “upward” or

“downward” orientation; that is, parents do not appear above their children in some

cases and below their children in other cases. For example in Figure 3.8, the pairs

(Male, 18 to 24 years) and (25 to 34 years, 18 to 24 years) cannot both be true.

The second is the one-parent constraint. We enforce our assumption that Par-

entChild relationships genuinely form a tree; one annotation can only have one parent.

Put another way, for all of the variables sharing the same child, only one of them is

true and the rest are false. For example, in Figure 3.8, (Male, 25 to 34 years) and (18

to 24 years, 25 to 34 years) could not both be true.

User Repair Interaction — The interactive repair phase allows the user to

check and fix any ParentChild decision mistakes made by the system. The goal of

interactive repair is to save user effort by using each explicit user-given repair to fix
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Figure 3.10: Interaction cycle for interactive repair.

not just the error in question, but also additional extraction errors that the user never

directly inspects. In this section, we describe the interactive repair workflow in more

detail, plus how to modify the graphical model to support the repair process. Finally,

we describe the training and inference methods.

During interactive repair, we assume a user always fixes extraction errors correctly.

We do not focus on the problem of noisy user-labeled data, and there is crowdsourcing

literature on how to ensure trustworthy answers [44].

We now discuss our model workflow for interactive repair. The system starts by

presenting to the user the initial extraction results computed by the automatic ex-

traction and then enters the interactive repair interaction loops (shown in Figure 4.5).

For each loop, the system takes two steps:

1. Review and Repair — A user is able to repair an error in the extracted

hierarchy by dragging and releasing an annotation node on the interface. One user

repair action changes an annotation’s parent from one to another. For example in

Figure 3.7, a user changes the parent annotation of White from Root to Male.

A user repair operation has two implications. First, the variable x that represents

the new correct ParentChild relationship is set to true. In the case of Figure 3.7,

the variable (Male, White) is true. Second, all the other variables that represent

ParentChild relationships sharing the same child with x are set to false. In the case

of Figure 3.7, variables (Root, White) and (Total smoker, White) are false.

As a result, a user’s repair to an extraction error yields a set of label assignments

to some ParentChild variables.
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2. Spread Repairs — The system now aims to save user effort by repairing other

similar extraction errors. Of course, the system has already given its best extraction

estimate in the automatic extraction phase, so it does not know where any latent

extraction errors are. But we have already used different kinds of affinity to connect

two ParentChild decisions that are highly likely to share the same label.

It is appealing to spread each user-repaired label on a variable to other variables

that are identified by affinity correlations (i) and (ii). But simply propagating assign-

ments might introduce errors where none previously exist, which we call the back-

tracking problem. We want to leverage the graphical model to integrate probability

information with the node, edge, and global correlations to prevent backtracking.

3.3.3.4 A Graphical Model Based Approach

Now we describe how we encode the ParentChild pair properties, correlating Par-

entChild decisions, user repair interaction into the graphical model as described in

Section 2.2.2.

Node Potentials – Each variable x in the graphical model represents a Par-

entChild decision, which takes a label l ∈ L = {true, false}. We define the node

potential θ(x, l) on each variable x assigned the label l. The node potentials depend

on Boolean feature functions {fk(x, l)} (The 32 features mentioned in Section 3.3.3.3)

and trained weights {wk} associated with the feature functions:

θ(x, l) =
∑
k

wkfk(x, l) (3.1)

Edge Potentials – The correlations (i) (ii) and (iii) mentioned in Section 3.3.3.3

are encoded in the graphical model as pairwise edge potentials. The edge potential

θ(x, l, x′, l′) is defined on two variables x and x′ in the graphical model on their

assignments l and l′ if the variables x and x′ are found to be correlated in one of the

three ways mentioned above. We define,
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θ(x, l, x′, l′) = Jl = l′K
∑
e

wefe(x, x
′) (3.2)

where Jl = l′K takes the value 1 when l = l′ and 0 otherwise; {we} are the associated

weights. The edge features {fe(x, x′)} test which type of correlation x and x′ belong

to and whether x and x′ have the same child/parent.

Global Potentials – Finally we encode the correlation (iv) mentioned in Sec-

tion 3.3.3.3 as global potentials. Let x = (ap, ac) and x′ = (a′p, a
′
c) be two arbitrary

variables in the graphical model with the assigned labels l and l′, and R(a) represents

the row number of an annotation a. We now define two global potentials: φa(x, l)

to encode the orientation constraint and φb(x, l) to encode the one-parent constraint:

φa(x, l) = J∃x, x′ ∈ x s.t. l = true, l′ = true,

R(ap) > R(ac), R(a′p) < R(a′c)K
0
−∞

(3.3)

φb(x, l) = J∀c,
∑
p

Jl = trueK01 = 1K−∞0 (3.4)

where JCKvalue2value1 takes the value 1 when condition C is true and value 2 otherwise.

Repair Potentials – Here, we describe how to encode the user repair interac-

tion to the graphical model. Algorithm 2 shows the SpreadRepair function that

is invoked after each user repair operation (described in step 2 of the previous sec-

tion). First, when a new repair arrives, we translate this new repair and all the

previous repairs to the assignments on a set of variables xr = {xr1 , ..., xrn} with la-

bels lr = {lr1 , ..., lrn}. Second, we generate a new graphical model G′ by adding the

repair potentials to the original automatic extraction graphical model G. The repair

potentials capture the pairwise correlation between variables, and we describe the re-
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pair potentials later. Finally, we condition on the known variables xr and infer labels

for the variables of G′. The inferred labels are returned as the updated answer.

Note that by adding repair potentials only to nodes that we also condition on,

we add information to the inference process without increasing any inference-time

computational complexity. The conditioning process essentially removes the observed

nodes and their edges prior to the inference [71].

There is nothing in principle that prevents our system from backtracking, unless

we can find heuristics to propagate the assignments fully correctly, which is often hard

especially on real-world datasets. However, our mechanism is designed to prevent it.

First, we only probabilistically propagate known variable assignments to others, via

the repair potentials. Second, this probabilistic repair information is combined with

all our previous information sources: the node potentials, edge potentials and global

potentials. The hope is that adding high quality new information to the automatic

extraction graphical model (instead of treating spreading repairs as a non-probabilistic

post-processing stage) will yield better outcomes overall.

We now discuss how to generate the repair potentials. The repair potential

ϕ(x, l, xr, lr) describes the likelihood that the repaired node’s label should be spread

to a similar ParentChild node. A repair potential exists between an observed variable

xr ∈ xr and a variable x ∈ x if xr and x exhibit either stylistic affinity or metadata

affinity. In other words, repair potentials do not introduce any novel edges to the

graphical model: the edges of repair potentials are a subset of the edges derived from

correlations (i) and (ii). The repair potentials are defined as:

ϕ(x, l, xr, lr) = JStylistic(x, xr)Kfs(x, l, xr, lr)

+JMetadata(x, xr)Kfm(x, l, xr, lr)

(3.5)

JCK takes the value 1 when condition C is true; otherwise 0. Stylistic(x, xr) and
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Metadata(x, xr) test whether x and xr have stylistic or metadata affinity. The two

feature functions fs and fm weigh the strength of influence from observed variables

to unobserved ones. They characterize how similar the unobserved variables are to

the observed ones. To be precise, we define fs(x, l, xr, lr) = logPs(x = l | xr = lr).

where Ps(x = l | xr = lr) represents the probability of a variable x taking the label l

once we observe a variable xr with the label lr. This probability can be derived from

training data. For example, in the training data, among 1000 stylistic affinity edges

detected, 900 of them connect two variables with the same assignment. We then set

Ps(x = true|xr = true) = 0.9 and Ps(x = false|xr = true) = 0.1. The fm potentials

are defined in the same way.

Summary — We can now formally define the spreadsheet annotation hierarchy ex-

traction framework, which supports both automatic extraction and interactive repair.

Let G be a graphical model that has a set of variables x = {x1, ..., xn} where each

xi ∈ x represents a ParentChild candidate in an annotation region and takes a label li

from L ={true, false}. Let lr be the set of repair-induced labels on variables xr. We

define node potentials (Equation 1), edge potentials (Equation 2), global potentials

(Equation 3 and 4), and repair potentials (Equation 5) in G. The joint distribution

of the graphical model G is:

P (l | lr,x) =
1

Z(w)
exp(

∑
x

θ(x, l) +
∑
x

∑
x′

θ(x, l, x′, l′)

+
∑

k∈{a,b}

φk(x, l) +
∑
x

∑
xr∈xr

ϕ(x, l, xr, lr))

3.3.3.5 Training and Inference

In this section, we discuss how to train model parameters and infer assignments

to variables in the graphical model.

53



Algorithm 2 SpreadRepair
Input: All user repairs R, and automatic extraction model G
Output: New assignments l to all variables of G.

1: From user repairs R, create repair-induced variables xr with labels lr
2: Build new model G′ by adding to G the new repair potentials based on xr. G

′ has the
same set of nodes (variables) as G.

3: Condition on xr and infer assignments l to G′ (and thus, G)

In the graphical model, we only have unknown parameters for node and edge po-

tentials. Assuming that no user repairs are involved, we can write the joint probability

as,

1

Z(w)
exp(

∑
x

θ(x, l) +
∑
x

∑
x′

θ(x, l, x′, l′) +
∑

k∈{a,b}

φk(x, l))

Let w = {w} be the set of parameters for node and edge potentials. Given training

data D = {x, l} that describes hand-labeled correct hierarchies of the training spread-

sheets, we estimate w for node and edge potential functions, θ(x, l) and θ(x, l, x′, l′).

A common choice of regularization to avoid overfitting is to add a penalty on weight

vectors, based on the Euclidean norm of w and on a regularization parameter 1
2σ2 .

The goal is to maximize the regularized log likelihood:

max
w

∑
x

θ(x, l) +
∑
x

∑
x′

θ(x, l, x′, l′)− logZ(w)−
∑
i

w2
i

2σ2
+ C

where C is a constant. This is a standard form for parameter estimation, and known

techniques, such as conjugate gradient and L-BFGS, can be used to find the opti-

mal parameters for this formula. Previous work [71, 75] discusses this optimization

problem and its solution in more detail.

The graphical model described poses a serious computational challenge. Inference

is NP-hard if no assumptions are made about the structure of the graph [40], yet

our application requires that we infer labels after each user repair to redisplay the

updated hierarchy. In order to infer variables in interactive time, we first simplify the
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graphical model.

Model Simplification — The potential stumbling blocks to efficient inference are

the edge and global potentials. (The repair potentials do not complicate the inference

because the conditioning algorithm [71] erases observed variables along with all the

repair potential edges.) The edge potentials alone can yield more than a million

edges on a graph with 37,386 nodes derived from just 100 randomly-chosen WEB

spreadsheets (see Table 3.7 for details).

We considered two methods for conducting inference in a limited amount of time:

running the tree-reweighted belief propagation algorithm [72] on the full graph, or

running an exact inference method on a simplified tree-structured model. Our ex-

periments show that when running on a model derived from 100 random SAUS

spreadsheets and repeating this process 10 times, tree-reweighted belief propagation

is 48 times slower and 5.4% worse on F1 than the tree-structured model. Thus, at

inference time we convert our graphical model into a tree-structured model.

It is not easy to find the tree-structured graphical model that yields the highest-

quality results. Exhaustively enumerating all the possible trees in a graph with more

than a million edges and 37,000 nodes is impractical. We simply randomly sample

edges from each type of pairwise correlation (stylistic, metadata, and adjacency),

rejecting any edge that would induce a cycle. We terminate when all nodes are

connected. We add all possible metadata edges before adding any stylistic edges, and

add all stylistic edges before adding any adjacency edges. We found experimentally

that this ordering helped slightly, though different orderings do not change F1 very

much: testing on 100 random spreadsheets of SAUS, different orderings changed F1

from 0.8808 to 0.8867 and from 0.8237 to 0.8363 when testing on WEB.

Inference — We can now present our method for approximating the graphical

model’s optimal assignment. First, we build the model with node potentials, tree-

structured edge potentials, and all the repair potentials if there exist any. Given a set
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Algorithm 3 EnforcedTreeInference
Input: The variables x = {x} and the annotations A = {a1, ..., aN} in an annotation
region.
Output: The ParentChild pairs P = {(ap, ac)} in the annotation hierarchy and its
confidence confidence.

1: P ← {}, confidence← 0
2: for each ac ∈ A do
3: maxprob← 0, ap0 ← root
4: for each ap ∈ A do
5: Find x ∈ x for the ParentChild pair (ap, ac)
6: Obtain the probability cprob that x = true
7: if cprob > maxprob then
8: maxprob← cprob, ap0 ← ap
9: end if

10: end for
11: P ← P ∪ {(ap0 , ac)}
12: confidence← confidence+ log(maxprob)
13: end for

of observed variables xr with labels lr translated from users’ repairs (we assume xr is

empty if no repairs are observed), the conditioning algorithm yields a forest-structured

model.

Second, we run a standard inference algorithm on this new model to obtain the

assignment to all the variables. Because the model is now a forest-structured, a

variety of existing algorithms, such as belief propagation, can perform exact inference

on such a structure.

Finally, we treat the global potentials as a post-processing stage to ensure that the

inferred variable assignment yields legal hierarchical trees for the input annotation

regions. The goal of global potentials is to handle the orientation and one-parent

constraints. Thus, we first enumerate all of the ParentChild candidates of each orien-

tation, “upward” or “downward,” and compute two separate annotation hierarchies

with EnforcedTreeInference, seen in Algorithm 3. For all the ParentChild can-

didates with a given annotation as the child, the algorithm selects the one with

the maximal probability (derived from the graphical model), thereby handling the

one-parent constraint. We obtain two possible hierarchies, one “upward” and one

56



“downward,” each with computed confidence. We select the one with the higher

confidence to handle the orientation constraint. Therefore, our algorithm yields legal

annotation hierarchies.

3.4 Experiments

We can now quantify the performance of the system Senbazuruby evaluating its

individual components. In particular, we present the performance of the frame finder

and the hierarchy extractor. We do not directly evaluate the tuple builder because

it entirely relies on the correctness of the hierarchy extractor, and it will yield the

ideal results as long as it receives accurate hierarchies. We use the two spreadsheet

corpora as mentioned in Section 3.2.2.

3.4.1 Data Frame Extraction

To evaluate the performance of the frame finder described in Section 3.3.2, we

randomly sampled 100 data frame spreadsheets from each dataset. The 100 SAUS

spreadsheets contained 6,878 non-empty rows, while the 100 WEB random spread-

sheets contained 29,491 non-empty rows. A human expert labeled each row correctly.

We randomly split the data into equal-sized training and testing sets, then evaluated

frame finder’s accuracy. We performed 10 random splits and averaged the results.

Table 3.4 shows good precision and recall for both SAUS and WEB. Perhaps

not surprisingly, the SAUS set is slightly “easier” to process than the comparatively

heterogeneous WEB corpus. It does relatively poorly at classifying header and title

labels in WEB, which can be genuinely difficult even for a human. But as we will see,

imperfect frame finder results have only a minor impact on downstream accuracy.

57



SAUS WEB

Precision Recall Precision Recall

TITLE 0.983 0.979 0.768 0.735

HEADER 0.960 0.957 0.778 0.714

DATA 0.996 0.999 0.989 0.995

FOOTNOTE 0.970 0.978 0.858 0.821

Table 3.4: Precision and recall of the frame finder extractor.

Dataset
Hierarchy Levels # Left Annotations
Min Mean Max Min Mean Max

SAUS

R200 2 3.8 8 4 37.8 224
health 2 3.6 6 12 34.5 76

fin. 3 3.7 6 6 32.4 81
trans. 3 4.0 8 5 36.1 73

WEB

R200 2 3.4 10 2 59.3 669
bts 2 2.6 4 4 10.7 26
nsf 2 4.0 7 9 83.9 331

usda 2 3.2 4 5 34.5 56

Table 3.5: Basic statistics of our eight test sets.

3.4.2 Hierarchy Extraction

We now evaluate the performance of automatic extraction and interactive repair,

and the quality of our metadata resource.

3.4.2.1 Experimental Setup

Our experiments are based on two spreadsheet corpora6: SAUS and WEB. From

each of the two datasets, we randomly selected 200 hierarchical spreadsheets. We call

these test sets SAUS R200 and WEB R200. We constructed them by randomly

sampling from SAUS or WEB and retaining only the hierarchical ones (i.e., ones

that have either hierarchical left or top annotations). In addition, we constructed a

series of topic-specific test sets. For SAUS, we used government-provided category

labels to identify spreadsheets for each of three topic areas: health, finance, and

transportation; we chose 10 random hierarchical spreadsheets from each topic. For

6Downloadable:www.eecs.umich.edu/db/sheets/datasets.html
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WEB, we used URL domain names as a rough proxy for the category label, choosing

10 random hierarchical spreadsheets from each of bts.gov, usda.gov, and nsf.gov.

We asked a human expert to manually examine the above spreadsheets and create

ground truth hierarchies. Details about the test sets are shown in Table 3.5.

We used the Python xlrd library to access data and formatting details of spread-

sheet files. Our graphical model was implemented with UGM [106].

3.4.2.2 Automatic Extraction

In this section, we evaluate the performance of the automatic extraction phase.

We evaluate the automatic extraction’s accuracy in predicting correct ParentChild

relationships by using standard metrics of Precision, Recall, and F1. We trained and

tested automatic extraction using SAUS R200 and WEB R200. We randomly split

each of the two datasets equally for training and testing. We trained parameters on

the training set and constructed one graphical model for the test set. We repeated

the split-and-test process 10 times, computing average Precision, Recall and F1.

Automatic Models — A naive method AutoBasic to solve the hierarchy extraction

problem is to use simple features (i.e. local alignment and indentation information)

to classify two annotations as having a ParentChild relationship or not and assigns

the most probable parent to each child.

We compared four different configurations of the automatic extraction graphical

model with AutoBasic to demonstrate the power of each component of our automatic

extractor: AutoLR uses node potentials only (with no edge or global potentials, the

model is equivalent to the logistic regression, or LR, method)7. AutoEdge uses node

potentials and edge potentials. AutoGlobal uses node potentials and global potentials.

Finally, AutoFull uses all three potential types and reflects the entire contents of

7We also tried support vector machines and other non-joint-inference techniques, but they offered
no significant gains over AutoLR.
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Dataset Methods Precision Recall F1

SAUS

AutoBasic 0.4641 0.4641 0.4641
AutoLR 0.8753 0.8750 0.8751
AutoEdge 0.8801 0.8787 0.8794
AutoGlobal 0.8834 0.8834 0.8834
AutoFull 0.8860 0.8860 0.8860

WEB

AutoBasic 0.4736 0.4736 0.4736
AutoLR 0.7886 0.7898 0.7892
AutoEdge 0.7979 0.7968 0.7973
AutoGlobal 0.8122 0.8122 0.8122
AutoFull 0.8327 0.8327 0.8327

Table 3.6: Performance of the automatic extractor on SAUS and WEB R200
datasets.

Section 3.3.3.4. 8

Table 3.6 shows the performance of the five methods. We can see that all of our

four graphical models significantly outperformed the baseline AutoBasic. Both partial

models — AutoEdge and AutoGlobal — performed better than AutoLR, indicating that

both edge and global potentials independently helped to improve the performance of

automatic extraction. AutoFull, the model that includes all three potential types, is

the best of all (though AutoFull’s margin is small in the case of SAUS). We noticed

that many extraction errors are due to contradictory spreadsheet formatting; design-

ers of different spreadsheets may have conflicting designs, but even the format within

one spreadsheet may not be consistent.

Training Data — We wanted to know if our supply of training data was limiting

the automatic extractor’s accuracy. We conducted a test in which we artificially con-

strained the training set size derived from SAUS R200 and WEB R200, building

a series of automatic extraction models with varying amounts of training data. Fig-

ure 3.11 shows the F1 of the ParentChild pairs for AutoFull as we change the size of

the training set. The growth in both SAUS and WEB accuracy plateaus after a

8For AutoLR and AutoEdge we chose the probability threshold to maximize F1. For the rest two
methods, there is no such flexibility, as the algorithms always select the parent with the maximum
ParentChild probability for each child.
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Figure 3.11: Performance for automatic
extractor using different
amounts of training data.

Figure 3.12: Performance for automatic
extractor on different do-
mains in WEB.

certain size. This analysis does not mean more training data cannot help, but does

indicates that additional gains will likely be expensive.

Domain Sensitivity — We also examined whether the WEB automatic extractor’s

accuracy varies with the quality of the spreadsheet. It is difficult to precisely describe

a spreadsheet’s quality, so as a proxy we use the rank of the spreadsheet URL’s Inter-

net domain, when sorted in descending order of the number of spreadsheets hosted by

the domain. Figure 3.12 shows the average F1 within each Internet domain’s spread-

sheets. We followed the same training and testing procedure as in the Automatic

Models part above. The figure shows that the publisher’s rank (or the quantity of

spreadsheets it publishes) does not correlate with extraction performance. However

we did find that spreadsheets from lower ranked domains are less likely to pass our

initial “hierarchical data frame spreadsheet” filter.

In summary, our system shows substantially better performance than the baseline

AutoBasic method, a 91% improvement in F1 on SAUS and a 76% improvement in

F1 on WEB. We now turn to interactive repair to shrink the user’s burden even

further.
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3.4.2.3 User Repair

We now evaluate the performance of the interactive repair phase. We use the eight

datasets described in Section 3.4.2.1. For each R200 of SAUS and WEB, we again

randomly split the dataset into 100 training spreadsheets and 100 testing spread-

sheets. We further randomly split the 100 testing spreadsheets into 10 subgroups

with 10 spreadsheets in each, as R10; we then averaged the performance over the 10

subgroups. We created one model for each test set (health, finance, etc), except R10,

where we created one model for each subgroup. Table 3.7 shows basic statistics for

the interactive repair graphical models constructed for our test sets.

The metric of success for interactive repair is the amount of user work reduced

when compared to simply fixing all the errors made by automatic extractor. We

evaluate the amount of user effort by counting the required number of drag-and-drop

repair operations to fix all the extraction errors in an annotation hierarchy, via our

visual repair tool (seen in Figure 3.7). In the experiments, we simulated a user who

randomly chooses extraction errors to repair, and who never makes a mistake. The

user repairs errors until no errors remain. For each dataset, we ran this process

20 times and counted the average number of repairs performed. Notice that the

maximum number of possible repair operations for a given hierarchy is the number

of annotations in it.

For each result shown in Figure 3.13, Figures 3.14 and 3.15, we normalize the

number of required repairs by the maximum possible number of repairs in that dataset

(i.e., the number of annotations). Thus, smaller bars are better, and results should

be comparable across datasets.

Repair Models — A baseline method RepairBasic to incorporate interactive repair

is to tie the ParentChild variables in one spreadsheet if the parents share the same

formatting and so do the children: if a user changes one decision, the system auto-

matically applies the change to the tied ones.
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Figure 3.13: The normalized repair number for interactive repair on SAUS and WEB
test sets.

Sheet Node Correlation Edge # (×1000)
# # Stylistic Metadata Total

S
A

U
S

train 100 11269 87.5 115.7 177.6
health 10 874 4.9 1.7 5

fin. 10 1228 8.6 5.5 11.1
trans. 10 1334 9.5 5.7 12.3
R10 100 13866 144.4 43.3 161.3

W
E

B

train 100 31925 724.2 566.9 1069.0
bts 10 249 0.5 0.0 0.5
nsf 10 10698 265.1 22.9 283.3

usda 10 1786 15.1 1.7 15.1
R10 100 37386 1522.0 289.8 1677.6

Table 3.7: Basic statistics for each test set’s interactive repair model.

We also evaluated six different versions of our extraction system. AutoLR and

AutoFull are the automatic extractors described in the above section; we assume a
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user simply fixes all of their extraction errors one after another. RepairLR, RepairEdge,

RepairGlobal and RepairFull are created by adding repair potentials to the previous

four automatic extraction models. RepairFull is the full system.

Figure 3.13 shows the normalized number of repair operations of different inter-

active repair systems. RepairFull performed the best of all, requiring just 7.2% of the

maximum number of possible repairs when averaged over all test sets. In contrast,

AutoFull (itself a dramatic improvement over the automatic extraction baseline) re-

quires 15.4% of the maximum; our exploitation of user repairs thus allows us to reduce

the user burden by an additional 53%. AutoLR, an automatic extractor without joint

inference, yields an even worse average of 23.3%; we improve by 69%. The absolute

number of user repairs is reasonable: RepairFull requires between 2 and 3.5 repairs

per sheet for SAUS, and between 1.38 and 2.94 repairs per sheet for WEB.

Note that applying user repair information naively yields terrible results: Repair-

Basic requires 60.2% of the maximum possible number of repairs, much worse than

even AutoLR.

In all the datasets, RepairFull always improves or matches AutoFull, which indicates

that our repair mechanism is genuinely beneficial to users; we managed to prevent

backtracking and did not create more work for users. The same is not true for AutoLR

vs RepairLR, which backtracks in the cases of SAUS/health and WEB/usda.

We further investigated interactive repair by considering different possible config-

urations of the interactive repair model on different test sets (shown in Figure 3.14).

The Figure shows that both edge and global potentials are useful in reducing user

burden, and using all of them helps the most.

Spreadsheet Grouping — We also investigated the influence of two spreadsheet

grouping methods on interactive repair performance. (1) By topic: We group spread-

sheets according to their human-given topic labels (such as finance and health) or their

URL hostnames (such as bts.gov and nsf.gov); and (2) By Jaccard similarity: We
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Figure 3.14: The normalized repair number for four interactive repair configurations.

Figure 3.15: The normalized repair number required by different configurations of
metadata links.

compute the clusters by creating a graph in which each spreadsheet is a node, and

edges exist when two spreadsheets have Jaccard similarity (computed over the non-

numeric strings from each spreadsheet) greater than a threshold of 0.6. We find all

weakly connected components in the graph as the spreadsheet groups. Note that

grouping spreadsheets should only impact metadata affinity, as metadata affinity is

the only way to connect ParentChild decisions across spreadsheets.

For both SAUS and WEB, we ran each grouping technique, then randomly se-

lected 3 groups of size 2, 3 groups of size 5, and 3 groups of size 10. For each group,

we first built one RepairFull on this group of spreadsheets and computed the number
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of repairs required to eliminate all the extraction errors. We then compared against

the sum of repairs needed by RepairFull when running on each spreadsheet of the

group in isolation. We found that grouping by topic only reduces repairs up to 5.8%

on SAUS and 2.1% on WEB, while grouping by Jaccard similarity reduces repairs

by up to 64.0% in SAUS and 84.6% in WEB.

Thus, Jaccard similarity grouping yields a massive reduction in necessary user

repairs when compared to topic grouping. We did not present these results in Fig-

ures 3.13 and 3.14 because we believe that highly coherent clusterings will only be

possible in certain situations. Shared spreadsheet templates is one such situation;

another is when the metadata resource is of especially high quality (perhaps even

curated by hand), allowing interactive repair to find otherwise invisible connections

among independent spreadsheets.

Metadata Resources – The quality of our metadata resource clearly impacts meta-

data affinity. Figure 3.15 shows the normalized number of repairs required by dif-

ferent metadata resource configurations of RepairFull, when run on Jaccard-clustered

spreadsheets mentioned above in Spreadsheet Grouping. We compared the ap-

proach based on our metadata resource (RepairFull-Metadata) against a no-metadata

technique (RepairFull-Style) and a technique that uses Freebase to discover meta-

data affinity (RepairFull-Freebase). (In that last case, two annotations have metadata

affinity if they share the same Freebase topic.) The figure shows that in all cases,

our RepairFull-Metadata technique performs the best, usually followed by RepairFull-

Freebase. On average, our induced metadata resource reduces user effort by 34.4%

when compared to the Freebase resource. Note that some of the spreadsheets we

process are on extremely technical topics (such as currency trading, health care, and

minerals processing) that are unlikely to be captured in a general-purpose metadata

resource such as Freebase.

Runtime Performance — After each user repair operation, users have to wait for
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the model to recompute the new result. In our experiments, each repair’s inference

took 0.7s on R10 in SAUS and 3.2s on R10 in WEB on average. All other test

datasets took less than 0.7s, except for nsf (at 4.7s). The results indicate that inter-

active repair is computationally feasible, at least for relatively small datasets.

Overall, we have demonstrated that our RepairFull extraction system can extract

accurate spreadsheet hierarchies using just 7.2% of the maximum possible user effort,

a reduction of 53% compared to AutoFull, our automatic extraction system (itself

a significant improvement over previous automatic extraction techniques). These

numbers apply to real-world datasets; in certain cases where spreadsheets share a large

amount of metadata, we can improve the factor even further. Moreover, our system

works well on domain-specific datasets with no explicit user-provided metadata.

3.5 System Demonstration

In this Section, we demonstrate that Senbazuru, a prototype spreadsheet database

management system (SSDBMS), is able to extract relational information from a large

number of spreadsheets; doing so opens up opportunities for data integration among

spreadsheets and with other relational sources.

3.5.1 User Interface

We have a working prototype of Senbazuru, available as a desktop web application

and also as an iPad application. The two client interfaces for Senbazuru are shown in

Figure 3.16. They allow users to search for data, to view and edit the extract results,

and to use query operations.

Search – As with other search-and-rank tools, a user types keywords in the

search box, and obtains a list of relevant spreadsheets. She can then browse results

and select the most relevant one. For example, in Figure 3.16 (a), a user enters

“smoking” as the search query. She can examine the top hit’s raw spreadsheet by
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Search 
box

"Data Tree": show 
attribute hierarchies

"Raw Tuples": show 
relational tuples

"Relational Table": 
show relational tables

"Next": view the 
next spreadsheet

"Spreadsheet": show 
the raw spreadsheet

"Join": integrate with 
another spreadsheet

"Filter":

(a) (b)

Figure 3.16: Screenshots of two Senbazuru clients, as a desktop application (a) and
an iPad application (b).

clicking “Spreadsheet” or check other relevant spreadsheets by clicking “Next.”

Extract – After selecting the most relevant spreadsheet, a user can use extract to

transform the spreadsheet data into a relational table. She can review the extracted

hierarchical metadata by clicking “Data Tree.” Figure 3.7 shows the interface for

viewing the extracted hierarchies. To repair any extraction errors, she can drag

and move a node of the tree from one place to another. After observing the user’s

repair action, Senbazuru will automatically re-run extract and display a new tree. For

example, as shown on the left of Figure 3.7, a user performs a repair by clicking and

dragging White, total so that it becomes a child of Male, total. Meanwhile, the extract

component automatically discovers that Black, total should also be moved. Thus, the

user’s one single repair action can trigger multiple fixes, yielding the hierarchy shown

on the right. After repairing extraction errors, the user can review the generated

relations by clicking “Relational Table,” as shown in Figure 3.16(a).

Query – Users can perform query operations on the extracted relational table.

They are not required to write SQL statements and can apply select and join via the

interface:
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1. Select – The select feature, also called filter, is similar to executing a selection

query on the recovered relation. Clicking “Filter,” a user can use a faceted-search

interface to specify the filter conditions. This interface is automatically composed

by Senbazuru. For example, Figure 3.16 (a) shows that the user limits the displayed

data to smoking statistics for people who are Female, Black, and 18 to 24 years old.

2. Join – The join feature allows users to integrate two arbitrary spreadsheet-

derived relations. The user starts by applying the search and extract features as

described above. Once the user has found a good result, she clicks “Join” and enters

a second text query. The query yields a second ranked result list. She chooses a

relevant join target from this ranked list and obtains a correctly extracted relation.

She indicates which columns from each dataset should be used as an equi-join key.

For example, Figure 3.16 (b) shows a screenshot of the join process on our iPad

client. When the user touches a column, Senbazuru highlights it in bright yellow, as

shown on the left of the figure. Meanwhile, Senbazuru faintly highlights a column

on the right-hand table to indicate a possible join. The user can drag the column,

highlighted in bright yellow, from the left-hand relation to the right and release it.

This action indicates the join key; Senbazuru executes the appropriate join and shows

the user the resulting brand-new relation.

3.5.2 A Walk-through Example

We will demonstrate Senbazuru’s workflow through Fred’s example, as follows:

Policy expert Fred wants to see whether the strength of the connection between

smoking and lung cancer is consistent across all U.S. states. Fred does not have the

relevant data at hand, but assumes it is “out there” on the web somewhere.

Using Senbazuru, the policy expert Fred can obtain the requested data through

the following steps:

1. Search for “smoking by state.”
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2. Browse the returned spreadsheets and select the most relevant one.

3. Click “Data Tree” and check the correctness of the extracted hierarchies.

4. Repair the hierarchies if any extraction errors exist.

5. Click “Data Table” to review the extracted relation.

6. Repeat the process from step 1 to get the relational table for the most relevant

lung cancer spreadsheet by querying “lung cancer by state.”

7. Specify join columns to create a new table.

8. Review the result, using the faceted select interface.

In addition to Fred’s example, VLDB attendees are welcome to try many other

interesting queries, such as “employment statistics 2010” and “Michigan GDP.”

3.6 Related Work

Spreadsheet Management – Existing approaches for transforming spreadsheet

data into databases fall into a few broad categories. First, rule-based approaches [5,

57, 63, 76] often require users to learn a newly defined language to describe the trans-

formation process. The approaches are flexible but often require explicit conversion

rules that are difficult and time-consuming for the user to compose. Second, there

is a range of visualization systems [99] that help the user navigate and understand

spreadsheets with visualization techniques, but the mechanisms are not able to ex-

tract relational data from spreadsheets. Finally, automated approaches are the most

similar to ours. Abraham and Erwig [2] attempted to recover spreadsheet tuples, and

Cunha et al. [42] primarily focused on the problem of data normalization. But their

work assumes a simple type of spreadsheets and they did not address the hierarchical
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structures that are key to understanding a huge portion of the online spreadsheet

data.

Tabular Data Extraction – There has been a large amount of work centered on

extracting tabular data on the web [23, 24, 54]. Most of these projects have focused

on the details of identifying data-centric tables or on applications that can be built

on top of them. HTML tables likely contain hierarchical-style data examples, but we

are not aware of any research to date focused on this problem.

Programming By Demonstration – The interactive repair component of our work

is part of an intellectual thread that ties programming by demonstration [56, 65, 69,

104], mixed-initiative systems [62], and incorporation of user feedback into extraction

systems [27]. Many of these systems are driven by a programming language that the

user must learn; our system does not require the user to learn a language, just to use

a “drag-and-release” interface. Our solution’s design, which alternates automatic and

user effort, is similar in spirit to Wrangler [56, 69] and mixed initiative systems [62,

64, 65, 104]. However, Wrangler-style techniques cannot be applied to our situation

directly, as they generally process data with standard textual cues that are often

missing from real-world spreadsheets.

3.7 Conclusion and Future Work

We have described the Senbazuru system, a prototype spreadsheet database man-

agement system (SSDBMS). Senbazuru supports three functional components, search,

extract and query. The search component allows a user to quickly search relevant

datasets in a huge web spreadsheet corpus; The extract component is composed of

a background extraction pipeline that automatically obtains relational data from

spreadsheets, and a repair interface that allows users to manually repair extraction

errors. Moreover, this component automatically exploits commonalities among errors
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to probabilistically reapply one user fix to other similar mistakes, thereby minimizing

explicit manual intervention. The query component supports basic relational opera-

tors, especially selection and join, which the user can apply to spreadsheet-derived

relations. As a result, Senbazuru opens up opportunities to use many relational data

management tools to conduct data analysis on spreadsheets, especially those with

complicated hierarchical metadata structures.
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CHAPTER IV

Anthias: Extraction on Spreadsheet Properties

4.1 Problem Overview

In Chapter 3, we have presented Senbazuru, a prototype spreadsheet database

management system that is able to extract relational information from a large number

of data frame spreadsheets. But to handle a large variety of spreadsheets, we have

to correctly identify various spreadsheet properties, which correspond to a series of

transformation programs that contribute toward the spreadsheet-to-relational table

transformation framework.

As we discussed in Section 1.3.2, each of the transformation programs describes a

piece of process on a specific characteristic of a sheet table that yields a result that

is closer to a relational table. We use a spreadsheet property (e.g.aggregation rows,

aggregation columns, crosstab, or split tables) to represent such a transformation

program that contributes to the sheet table-to-relational table transformation.

In this chapter, we study the task of spreadsheet property detection, which decides

whether a spreadsheet contains a specific spreadsheet property (e.g.whether a spread-

sheet contains “aggregation rows”.) The spreadsheet property detection task is the

first step toward building this spreadsheet-to-relational table transformation pipeline.

We propose a novel rule-assisted active learning framework to construct high-

quality spreadsheet property detectors with little user labeling effort. In the initial
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stage, the user does not know what the perfect property detectors are, but is often able

to write crude heuristic rules to describe their intuition. For example, the user can

simply write: If a spreadsheet contains a row with formulas, then it has the property

“aggregation row”. This simple rule may perform reasonably well, but to improve

or maintain rule-based classifiers would require intensive amount of work. On the

other hand, we can apply an active learning approach to save training data. During

each iteration we select the instance that is the closest to the decision boundary for

the user to label. But the active learning approach often suffers from the cold-start

problem, and especially in the initial stage it lacks training data to approach the ideal

decision boundary.

Our hybrid framework is designed to integrate crude user-provided rules with

an active learning approach to reduce the user’s labeling effort. In addition to the

labeled instance suggested by the active learning approach, we bring in crude rules

from the user to generate additional labeled data for the property detectors. We

produce labeled instances with the agreed decision from both the current trained

classifier and the user-provided rules. This bagging-like technique makes it possible

for our framework to tolerate bad rules. Our hope is that this hybrid approach can

generate additional high-quality labeled data especially in the initial stage to warm

up the classifiers quickly.

In this chapter, we present Anthias, which is an extension of Senbazuru in order to

convert a broader range of spreadsheets. We introduce the data sources, the concept

of spreadsheet properties with examples in Section 4.2. we present our hybrid active

learning framework for the spreadsheet property detection in Section 4.3. we conduct

an extensive study on property detection algorithms and a large scale web spreadsheet

study in Section 4.4. Finally we cover related work in Section 4.5, and finally conclude

with future work in Section 4.6.
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Figure 4.1: A spreadsheet about population statistics, from the Statistical Abstract
of the United States.

Edutation Attainment Race Value

Less than 9th grade White alone 7626199
Less than 9th grade Black or African… 1250932
Less than 9th grade American Indian… 132119
9th to 12th grade… White alone 12181361
9th to 12th grade… Black or African… 3151934
9th to 12th grade… American Indian… 207542
High school graduate… White alone 46127209
High school graduate… Black or African… 7613046
High school graduate… American Indian… 475857

Family Income Race Value

Less than $10,000 White alone 1872052
Less than $10,000 Black or African… 951644
Less than $10,000 American Indian… 55625
$10,000 to $14,999 White alone 1555245
$10,000 to $14,999 Black or African… 563007
$10,000 to $14,999 American Indian… 39350
$15,000 to $19,999 White alone 1982661
$15,000 to $19,999 Black or African… 583609
$15,000 to $19,999 American Indian… 34467

Figure 4.2: The ideal relational tables for the spreadsheet example shown in Fig-
ure 4.1.

4.2 Preliminary

In its most generic incarnation, a spreadsheet is simply an M ×N grid of cells, in

which each cell can contain a string, a number, or nothing.

Our ultimate goal is to build a spreadsheet-to-relational table transformation

framework that takes in sheet tables and outputs relational tables. We now formally

describe sheet tables and relational tables, as follows.

Input: Sheet table — We consider a typical portion of a spreadsheet that is
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Header Region

Data Region

Figure 4.3: A spreadsheet’s header and data region.

able to be converted into relational tables, and we call it a sheet table. A sheet table

consists two regions: A header region and a data region, as shown in Figure 4.3.

We previously addressed the problem of finding the header and data regions using a

linear chain CRF to assign one of the four labels (header, data, title or footnote) to

each row in a spreadsheet in Section 3.3.2. Using this CRF mechanism, we recognize

each sheet table with a header and data region from a raw input spreadsheet, then

use a sheet table as input to our transformation framework.

Output: High-quality relational table — We aim to obtain a high-quality

relational table for each sheet table.

Our definition of high-quality has two important characteristics. First, the values

of one column in the relational table should be homogeneous or belong to the same

semantic class. For example, the sheet table shown in Figure 4.1 is not an appropriate

relational table, because “Education Attainment” values (e.g.“Bachelor’s degree”)

and “Family Income” values (e.g., “less than $10,000” ) are mixed together in column

A. In addition, we want the resulting relational table to be as compact as possible.

For example, we remove all the aggregation values in the column B as shown in

Figure 4.1.
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4.2.1 Data Sources

In this paper, we rely on two spreadsheet data sources: The WebCrawl dataset

is a large-scale corpus of web-crawled spreadsheets, and the Web400 dataset is a

hand-labeled subset of WebCrawl. We now introduce the two datasets.

WebCrawl data — The WebCrawl dataset is our large-scale web-crawled spread-

sheet corpus. It consists of 410,554 Microsoft Excel workbook files with 1,181,530

sheets from 51,252 distinct Internet domains (a workbook file may contain multiple

sheets). We found the spreadsheets by looking for Excel-style file endings among the

roughly 10 billion URLs in the ClueWeb09 web crawl1.

Web400 data — The Web400 dataset is a 400 labeled sample from the WebCrawl

corpus. We want to avoid sampling too many spreadsheets from one HTTP domain

because there are a few domains covering the majority of the web spreadsheets as

mentioned in Section 3.2.3. Thus, we obtained this Web400 data via the following

procedure. We first grouped spreadsheets by their HTTP domain, and removed

the long-tail spreadsheets (i.e., those from HTTP domains containing less than 20

spreadsheets), yielding 2,579 domains with 284,396 sheets in total. Then we selected

20 random domains from the 2,579 domains; from each domain, we again randomly

sample 20 sheets, yielding 400 sheets in total as the Web400 dataset. We manually

assign correct spreadsheet properties to each Web400 sheet for further evaluation.2

4.2.2 Spreadsheet Properties

We use spreadsheet properties to reflect the sheet tables to relational tables trans-

formation process.

We propose a list of standard property/transformation pairs. When a property

exists in a sheet table, applying the corresponding transformation operation will yield

1http://lemurproject.org/clueweb09.php
2Notice that if a workbook contains multiple sheets, we select a random non-empty sheet from

it for labeling; and if there are multiple sheet tables in a sheet we only consider the first one.

77



Property Transformation Operation

aggregation row delete
aggregation column delete

hierarchical data unfold [88]
hierarchical header unfold [88]

crosstab pivot [6]

Table 4.1: Spreadsheet properties and transformation.

a result that is closer to a relational table. If we can detect all of the appropriate

properties in a candidate sheet table, then applying the corresponding transformation

operations should yield a valid relational output.

As shown in Table 4.1, we define five spreadsheet properties with correspond-

ing transformation operations (we explain the detail of the five properties in Sec-

tion 4.2.3). For example, “aggregation row” in Table 4.1 is an appropriate spreadsheet

property, because this property makes a sheet table an invalid high-quality relational

table. Also we can define a corresponding transformation operation “deletion” which

removes all data values in the aggregation row, in order to eliminate this invalidness.

Conversely, “the number of rows in a sheet table” is not an appropriate spreadsheet

property, because the number of rows does not affect whether a sheet table is a valid,

high-quality relational table.

We focus on the problem of detecting which properties a sheet table contains. This

is the first step toward building the spreadsheet-to-relational table transformation

framework. To build such a framework, we first have to define the transformation

operations for each property, and we simply borrow the transformation operations

from systems such as Wrangler [70] or Potter’s Wheel [88]. While these systems focus

on designing the transformation operation language, we attempt to automatically

construct the transformation programs using their language. In addition, we have to

extract the detail for each property. For example, knowing that a spreadsheet has

the property “aggregation rows”, we still need an extraction program to recognize all

the aggregation rows for the transformation process. We also attempted to extract
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Figure 4.4: Coverage ratio for spreadsheet properties on the Web400 dataset.

some spreadsheet properties, such as hierarchical data and hierarchical header in

Section 3.3.3. In this chapter, we do not focus on the extraction programs.

4.2.3 Property Examples

We investigated the spreadsheet properties in the Web400 dataset and made the

following observations.

Among the 400 spreadsheets in the Web400 dataset, we found 309 spreadsheets

containing sheet tables, and the rest included unfilled forms, text, visualizations and

so on. As shown in Figure 4.4 we observe that the five properties shown in Table 4.1

cover 68% (209/309) of the spreadsheets.

Figure 4.4 shows there are 21 spreadsheet properties that cover the transformation

process from sheet tables to relational tables for the 400 spreadsheets in Web400 data.

The spreadsheet properties also include “split table” (rows 6-17 and rows 34-43 should

be in two separate relational tables in Figure 4.1), “rows of different units” (the data

values in row 8 is the absolute population number and in row 16 is the percentage

in Figure 4.1) and so on, but in this paper, we focus on these top five spreadsheet

properties as follows:
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1. Aggregation Rows (agg row) — An aggregation cell is defined as an aggre-

gation function (e.g.sum, avg, min, max, etc) over a group of cells. An aggregation

cell is often indicated by explicit spreadsheet formulas, but sometimes the formula is

implicit (the value may be copied from other places). A spreadsheet has the prop-

erty “agg row” if it has a row of aggregation cells. For example, the spreadsheet in

Figure 4.1 has the property “agg row” because all the numeric values in row 16 are

calculated on the rows 7-14.

2. Aggregation Columns (agg col) — A spreadsheet has the property “agg col”

if it has a column of aggregation cells. For example, the spreadsheet in Figure 4.1

has the property “agg col” because column B is an aggregation column.

3. Hierarchical Data (hier data) — A spreadsheet has the property “hier data”

if there exists a cell in the data region implicitly describing other cells. For example,

the sheet in Figure 4.1 has the property “hier data” because “education attainment”

in row 6 implicitly describes rows 7-17.

4. Hierarchical Header (hier head) — A spreadsheet has the property “hier head”

if there exists a cell in the header region implicitly describing another column. For ex-

ample, the spreadsheet in Figure 4.1 does not have the property “hier head” because

each cell in the header only describes its own column.

5. Crosstab — A spreadsheet has the property “crosstab” if all of its numeric

values can be converted into one column with a new dimension for the associated

metadata. For example, the spreadsheet in Figure 4.1 has the property “crosstab”

because the numeric values in B-E can be converted into one column with a new

dimension “Race”.
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Figure 4.5: The hybrid iterative learning framework for spreadsheet property detec-
tion.

4.3 Spreadsheet Property Extraction

The property detection task is to build a binary classifier for a spreadsheet prop-

erty, and we now formally define the property detection task.

Let Q = {q1, ..., qk} be a set of spreadsheet properties. The property detector

builds a set of binary classifiers: One classifier θq for each q ∈ Q, and the classifier θq

determines whether a sheet table has the property q or not. As a result, given a sheet

table x, the property detector generates a subset of properties q = {q} and q ⊆ Q.

It represents that x contains and only contains the set of properties q.

4.3.1 The Iterative Learning Framework

We propose a hybrid iterative learning framework to build spreadsheet property

detectors. Our framework incorporates crude user-provided rules to the iterative

learning process to reduce user effort.
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Figure 4.5 shows our hybrid iterative learning framework for spreadsheet property

detection. In the initial stage, a user provides the crude heuristic rules (we discuss

the user-provided rules in detail in Section 4.3.2.2). During the interactive learning

stage, the sheet selector selects a spreadsheet from the dataset, and sends it to the

user. The user is responsible for labeling the spreadsheet with all the spreadsheet

properties it contains. The classifier learner then accumulates all user labeled spread-

sheets together with automatically generated labels using the user-provided rules, to

train a classifier for each spreadsheet property. The user iteratively labels a spread-

sheet selected by the sheet selector and the classifier learner produces newly trained

classifiers for each iteration. In the end, we obtain the most newly trained classifiers

from the classifier learner as the output spreadsheet property detectors.

Note that we do not focus on the classification algorithms, and the classifier learner

simply employs an existing classification algorithm (logistic regression) to train a

classifier for each spreadsheet property. Also, the training data might be imbalanced

during the learning process, and we simply duplicate the minority instances until

their size is comparable to the size of the majority class [59].

We now describe the user work and highlight the critical techniques of the frame-

work.

4.3.2 User Work

In this section, we introduce the required user work to construct the spreadsheet

property detectors and then propose two ways to save user labeling effort.

4.3.2.1 Construct Property Detectors

To construct the property detectors requires user to provide the following three

types of data:
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1. Features f(x): We generate features f(x) for each sheet table x, and they

represent the important signals derived from x to help determine whether x contains

a property or not. For example, if a sheet table’s data region contains the keyword

“total”, it is very likely to have the property “agg row”. The significant features

might be different for different spreadsheet properties or in different datasets. For

simplicity, we use f(x) to represent the universe of the features, and the features we

used are as follows:

• whether a cell in the header/data region contains keywords (i.e., “total”, “sum”,

“avg”, “average”, “median”, “mean”, “totals”, “summary”, “subtotal”).

• the standard deviation of the header string length.

• the average/maximum p-value for the t-test for data values in two numeric

columns.

• the maximum/minimum ratio of formula cells to numeric cells in a data row/column.

• whether a column in data region has different formatting styles, and we test

each style as shown in Table 4.2.

• the data/header region has a merged cell.

• there exists two cells in header region, one has a higher column but lower row

index than the other.

• sheet tableis empty.

• there is no header/data region.

• the ratio of numeric cells to total cells in sheet table.

• the ratio of non-zero cells to total/numeric cells in sheet table.

• the maximum ratio of non-zero cells to numeric cells in data rows/columns.

• the ratio of numeric rows/columns to all data rows/columns.
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# Features

1 a cell contains colon
2 a cell is capitalized
3 a cell’s alignment
4 a cell is bold
5 a cell’s indentations
6 a cell is italic
7 a cell’s height
8 a cell is underlined

Table 4.2: The formatting style of a spreadsheet cell.

• the absolute number of numeric data rows/columns. We create the boolean

feature vector by testing whether the absolute number is greater than 1 to 10

by 1.

2. Property Set (Q): It is hard to construct the complete spreadsheet property

set Q because there are always unknown properties. Instead, we define a few proper-

ties that we are aware of (i.e.the five properties in Section 4.2.3). At the same time,

we allow new properties to be discovered during the labeling stage and we discuss the

details below.

3. Training Data (D = {(x, q)}): Given a sheet table x, a user has to determine

the properties q that x contains. During the labeling process, the user evaluates

the transformation process for converting a sheet table x to high-quality relational

tables, and decides whether x contains the predefined spreadsheet properties or new

properties.

To be more specific, a user first labels a sheet table x for the predefined properties.

It is straightforward to decide whether a spreadsheet x contains a well-defined prop-

erty or not. In addition, the user is also responsible for discovering new properties

via the following procedure: After finding the predefined properties q in the given

sheet table x, the user attempts to convert the sheet table to relational tables using

the transformation operations defined by q and determines whether the conversion
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Property Crude User-provided Rules

agg row If the data region contains the keyword “total” or
has a row with embedded formulas, then true;
otherwise false.

agg col If the header region contains the keyword “total” or
has a column with embedded formulas, then true;
otherwise false.

hier data If the data region has different formatting styles
(e.g., alignment, bold, indentation, and italic),
then true; otherwise false.

hier head If the header region contains merged cells, then true;
otherwise false.

crosstab If the variance of the string length in the header region
is < 0.5, then true; otherwise false.

Table 4.3: Examples of the crude user-provided rules for the five properties in Sec-
tion 4.2.3.

was successful. If it was, then no new property is necessary; otherwise, the user has

to define one or more new spreadsheet properties with corresponding transformation

operations, and then add the new properties to q.

For example, for the sheet table shown in Figure 4.1, we first determine whether it

contains the five properties defined in Section 4.2.3. We recognize it has the properties

“agg row”, “agg col”, “hier data” and “crosstab”. We then use the corresponding

transformation operations defined in Table 4.1 to convert this sheet table to relational

tables. In this case, we cannot obtain a valid high-quality relational table: We still

need to split rows 6-17 (about “Education Attainment”) from rows 34-43 (about

“Family Income”) into two separate relational tables. Then the user defines a new

spreadsheet property “split table” with the corresponding transformation operation

“split”. Thus the sheet table also contains the property “split table”.

In summary, it requires a huge amount of user effort to construct a binary classifier

for each spreadsheet property. A user is responsible for a variety of things, including

features f(x), property set Q and training data D = {(x,q)}.
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4.3.2.2 Two Ways to Reduce User Effort

In this paper, we focus on reducing the required user effort on training data D =

{(x,q)}. We observe two ways to reduce the required training data:

Label Uncertain Spreadsheets — Labeling uncertain instances is essentially

an active learning approach [97]. Active learning studies the problem of how to select

training data in order to save the required labeled data. One typical way of selecting

training data for binary classifiers is uncertainty sampling. Uncertainty sampling

often chooses to label instances that are closest to the decision boundary, and it refines

the decision boundaries by heavily exploiting the current knowledge space. Often it

simply selects the instance with the predicted probability closest to 0.5 [94].3

But the active learning approach often lacks training data to approach the ideal

decision boundary in the beginning; this is known as the “cold-start” problem.

Crude User-provided Rules — Before labeling any spreadsheet, we bring in a

user’s intuition on building property detectors by asking for crude and easy-to-write

rules. For example, a user can write the simple rules for the property “agg row”: If a

spreadsheet contains a row with formulas, it has the property “agg row”. Similarly, we

can write rules for all the properties mentioned in Section 4.2.3, as shown in Table 4.3.

We ask users to write a piece of program to represent the rules. It is possible to further

improve the interaction with users by designing a more user-friendly interface but we

do not focus on it in this chapter. These simple rules can be used to generate training

data, thus saving required labeled data to build high-quality property detectors.

The quality of the crude rules is hard to know. A user may have to review all the

instances to evaluate or improve the quality for the designed rules. In our framework,

we only ask for simple rules (like in Table 4.3) and do not need a user to put a huge

amount of work to come up with high-quality heuristic rules.

3We assume a user always provides correct labels for the data to be labeled.
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In summary, our hybrid framework integrates the crude user-provided rules with

an active learning approach to save user labeling effort. The hybrid framework does

not ask a user to put effort into designing high-quality rules but aims to address the

lacking training data problem in the initial stage.

Label Uncertain Spreadsheets — Our sheet selector applies the uncertainty

sampling active learning strategy, and it selects the spreadsheet at the decision bound-

ary for the next round of labeling in order to reduce user effort.

Crude User-provided Rules — In addition to the accumulated user-labeled

instances, we use crude user-provided rules to automatically generate additional high-

quality training data especially in the initial stage. Then we can approach the ideal

decision boundary quickly to reduce the amount of required labeled data. We generate

these additional labeled instances by finding those with the agreed decision from both

the current trained classifier and the user-provided rules. This bagging-like technique

makes it possible for our framework to tolerate bad user-provided rules.

We now describe the detail algorithms for the hybrid iterative learning framework

and the sheet selector.

4.3.3 Iterative Learning Algorithms

Let x = {x} be the random variables representing a set of sheet tables, and θq be

the learned classifier for the property q ∈ Q where Q is the property set containing

all the discovered spreadsheet properties. Let θq init be the user-provided crude rules

for the property q.

First we discuss the algorithms of our hybrid iterative learning framework by

considering two different situations, with or without user-provided crude rules.

Without User-provided Rules — Without the user-provided rules in the be-

ginning stage, the iterative learning framework is essentially a typical active learning

process.
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Algorithm 4 Iterative learning without user-provided rules.
Input: Sheet table set x = {x}
Output: Property detectors {θq}.
1: D = []
2: repeat
3: sheet selector chooses x from {x}
4: ask user to label x with properties q
5: D ← D ∪ (x,q)
6: Q← Q ∪ q
7: train classifier θq on D for each q ∈ Q
8: until meet stopping criteria
9: return {θq}

As shown in Algorithm 4, the sheet selector selects a new instance from the sheet

table set (we describe the detail later); a user labels the instance and sends it to

the classifier learner; and finally the classifier learner trains the property detectors

according to all the accumulated labeled instances. We iterate the above process

until the stopping criteria. We stop by testing whether the performance reaches the

plateau (i.e. the standard deviation of K continuous points is less than δ, where δ is

a predefined threshold).

With User-provided Rules — Given a spreadsheet property q, the user-provided

rules θq init produces a set of labels {lq init} on the sheet table set {x}, and each label

lq init represents whether the corresponding sheet table x has the property q or not.

However, we do not know the quality of the rule-generated labels {lq init}.

Given a property q, we collect the training data for each learning iteration in two

parts. First we accumulate all the user-labeled training data as D, and we train the

current property detector based on D as θq tmp. Second we automatically generate

additional training data using the currently trained classifier θq tmp and the user-

provided rules θq init. Our insight is that if the label produced by θq tmp agrees with

the label assigned by θq init, we believe this label is trustworthy; otherwise, we cannot

trust either label. But if the consensus label conflicts with user labels D, then we still

believe the user labeled data. The idea of finding the consensus labels is similar to
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Algorithm 5 Iterative learning with user-provided rules.
Input: Sheet table set x = {x} and user-provided rules {θq init}.
Output: Property detectors {θq}.
1: D = []
2: for q ∈ Q do
3: {lq init} = θq init({x})
4: end for
5: repeat
6: sheet selector chooses x from {x}
7: ask user to label x with properties q
8: D ← D ∪ (x,q)
9: Q← Q ∪ q

10: for q ∈ Q do
11: train classifier θq tmp on D
12: {lq tmp} = θq tmp({x})
13: D′ = D + ({x, lq tmp} ∩ {x, lq init})
14: train classifier θq on D′

15: end for
16: until meet stopping criteria
17: return {θq}

the bootstrap aggregating technique (i.e. bagging) [19]: it attempts to find the label

agreements of multiple classifiers. Based on the bagging-like technique, our approach

is able to tolerate “bad” user-provided rules and provide additional high-quality labels

especially in the initial stage to warm up the classifiers quickly.

Algorithm 5 shows the detail. Similar to Algorithm 4, the sheet selector selects

a new instance; a user labels the correct properties; and finally the classifier learner

trains the property detectors by combining the accumulated user labels with the

consensus labels from two sides, the current trained classifier and the user-provided

rules. We iterate the above process until reaching the performance plateau.

Sheet Selector Algorithms — Now we discuss the algorithms of the sheet selec-

tor by considering two situations, the single-task and multi-task learning scenarios.

Note that in both cases, the sheet selector chooses random instances in the initial

stage, and we set the initial random selection size to be 10 [77].

Single-task Learning — The single-task learning scenario is when we train
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one property detector at a time. The sheet selector simply applies the uncertainty

sampling active learning approach and selects an instance with the probability closest

to 0.5 [94].

To be concrete, the sheet selector selects the sheet table x with the maximum

min((P (lq = 1 | x), P (lq = 0 | x)), where P (lq | x) represents the probability distri-

bution of the sheet table x contains the property q according to the current trained

classifier θq.

Multi-task Learning — The multi-task learning scenario can be complicated

if we explore the correlations among multiple classifiers. Previous multi-task active

learning work attempted to explore the correlations [90, 87]. But in this paper,

we assume each property detector is independent and we simply uses the averaged

uncertainty score for selection.

To be concrete, the sheet selector selects the sheet table x with the maximum

1
|Q|

∑
q∈Q min((P (lq = 1 | x), P (lq = 0 | x)), where P (lq | x) represents the probability

distribution of the sheet table x contains the property q according to the current

trained classifier θq.

4.4 Experiments

We conduct an extensive experimental study to test our two goals as follows:

• Spreadsheet Property Detection — We investigate the algorithms to build

high-quality property detectors with little labeled data.

• Large-scale Spreadsheet Study — We survey the distribution of the top five

spreadsheet properties (shown in Section 4.2.3) in the large-scale WebCrawl

data, and our findings serve as guidelines for designing the spreadsheet-to-

relational table transformation system.
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Figure 4.6: An example of “training size to plateau”.

Sheet Selector User-provided Rules

Rand random selection N/A

Active uncertainty sampling N/A

Hybrid-lb uncertainty sampling bad rules

Hybrid uncertainty sampling good rules

Table 4.4: Four methods to build property detectors.

Our experiments rely on the two spreadsheet datasets mentioned in Section 4.2.1.

The WebCrawl data is our large-scale web-crawled spreadsheets containing 410,554

spreadsheets in total, and the Web400 data is our 400-element hand-labeled sample

of the WebCrawl data.

We used a mix of code from several languages and projects. We used the Python

xlrd library to access the data and formatting details of spreadsheet files. We ex-

tracted the formulas from spreadsheets using the libxl library. We built the classifi-

cation model using the Python scikit-learn library for its logistic regression, decision

tree, and SVM method.

4.4.1 Property Extraction

In this section, we investigate how much labeled data is required to build high-

quality property detectors in different situations. We consider the single-task and

multi-task learning scenarios as mentioned in Section 4.3.3. We also investigate how

the quality of the user-provided rules affects the performance of our hybrid approach.
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4.4.1.1 Experimental Setup

We tested the top five spreadsheet properties mentioned in Section 4.2.3. Our

experiments are based on the Web400 data. In each of its 20 domains, we split the

20 sheets into 1/2 for potential training and 1/2 for testing, yielding 200 sheets for

potential training and 200 for testing.

In the experiments, we simulate the iterative learning framework in Section 4.3.1

and measure the performance of the current trained classifiers for each iteration.

We feed the 200 potential training spreadsheets as the spreadsheet dataset for the

iterative learning framework. During each iteration, we calculate the F1 score of the

currently trained classifiers on the 200 testing data. We simply use the probabilistic

model, logistic regression, as the classification method.

We use training size to plateau as the evaluation metric, and it represents

the least training data size needed to reach the performance plateau. For example,

Figure 4.6 shows the F1 score of a classifier given different sizes of training data. As

shown in the Figure, the training size to plateau for the “green” and “blue” methods

are 10.8 and 28.6, respectively. This indicates that “green” saves 62.2% of the training

data required by “blue” to reach the performance plateau.

Measuring the training size to plateau is similar to the task of knee point detec-

tion [116]. For simplicity, we detect the training size to plateau using the following

two criteria. First, we use the standard deviation σ to test whether the standard de-

viation of five consecutive points is less than a threshold δ. To avoid reaching a local

optima, we also test whether the current performance (i.e., F1) is above a predefined

threshold θF1. In the experiment, we are able to calculate the F1 score when we use

up all the 200 potential training data as F1opt, and we simply set θF1 = F1opt − δ.

We test our iterative learning framework using the four approaches as shown in

Table 4.4. Rand randomly selects the next spreadsheet and does not use any user-

provided rules; Active employs the uncertainty sampling active learning approach
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@δ = 0.01

Methods agg row agg col hier data hier head crosstab

Rand 98 170 59 191 113

Active 56 140 42 131 52

Hybrid-lb
56 126 45 92 59

(0%) (-10%) (+7%) (-30%) (+13%)

Hybrid
44 109 27 31 42

(-21%) (-22%) (-36%) (-76%) (-19%)

@δ = 0.05

Methods agg row agg col hier data hier head crosstab

Rand 37 101 33 86 64

Active 28 61 33 98 41

Hybrid-lb
31 66 35 39 45

(+11%) (+8%) (+6%) (-60%) (+10%)

Hybrid
16 52 18 22 31

(-43%) (-15%) (-46%) (-78%) (-24%)

Table 4.5: The training size to plateau for four property detection methods with δ =
0.01 and δ = 0.05, and the % represents the improvement over Active.

without considering user-provided rules; Hybrid-lb and Hybrid are our hybrid approach

that integrates the uncertainty sampling active learning approach with crude user-

provided rules. Hybrid-lb assumes “bad” user-provided rules while Hybrid assumes

“good” rules. For Hybrid, we use the designed rules for each spreadsheet property as

shown in Table 4.3; and for Hybrid-lb, we use the rules for other spreadsheet properties.

For example, to build the property detector for “agg row”, we test each of the other

four rules (e.g., “agg col” and “hier data”).

For each method above, we run 100 times to obtained the averaged F1 score for

different sizes of training data, and we report the training size to plateau. Except

for Hybrid-lb, we run 100 times with each of the four “bad” user-provided rules,

totaling 400 times. We then report the averaged training size to plateau for the four

configurations.
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Figure 4.7: The F1 score curve to learn two property detectors individually.

4.4.1.2 Single-task Learning

In this section, we learn the property detectors for the five spreadsheet properties

individually.

Table 4.5 shows the training size to plateau for the four testing methods. As shown

in the table, Hybrid significantly outperforms all the other three methods. It means

that when a user provides with good rules in the beginning stage, we are able to save

35% (when δ = 0.01) or 41% (when δ = 0.05) labeled data in average, compared

to the standard active learning method Active. In addition, we can see Hybrid-lb is

comparable to the standard active learning approach Active, and it indicates that our

hybrid approach is able to tolerate bad user-provided rules. Figure 4.7 shows two

examples of the F1 score curve for different sizes of training data when learning the

property detectors for “hier head” and “crosstab”.

Rule Qualities — We also test the how the quality of user-provided rules affect

the speed to reach plateau.

We generate rules of different accuracy synthetically based on the 200 potential

training data. Consider generating the user-provided rules with accuracy 0.3. Given

a property, we randomly select 200 × 0.3 spreadsheets and assign them with their

true labels, and we assign the remaining 200 × (1 − 0.3) spreadsheets with the false
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Figure 4.8: The quality of user-provided rules influences the training size to plateau.

labels. We then feed this synthetically labeled data into our hybrid framework as the

user-provided crude rules with the accuracy 0.3.

We generate the synthetic rules with the accuracy ranging from 0 to 1 by 0.1 to

feed into our hybrid iterative learning framework. We ran 100 times for each accuracy

level and obtained the averaged F1 score to calculate the training size to plateau for

each spreadsheet property detector.

Figure 4.8 shows two examples of the training size to plateau for rules with dif-

ferent accuracy. As shown in the Figure, the training size to plateau decrease almost

linearly when the user-provided rule accuracy improves for “agg row” at δ = 0.01 and

“hier head” at δ = 0.05. This observation also applies to the rest properties (i.e.,

“agg col”, “hier head” and “crosstab”).

4.4.1.3 Multi-task Learning

In this section, we learn the property detectors for the five spreadsheet properties

together.

Figure 4.9 shows the F1 scores for different sizes of training data when learning the

five property detectors together. As shown in the Figure, Hybrid reaches the plateau

much sooner than the other three methods. It saves 44% (when δ = 0.01) and

34% (when δ = 0.05) training data, when compared to the standard active learning
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Figure 4.9: The F1 performance curve to learn the five property detectors together.

approach Active. It indicates that “good” user-provided rules do save a significant

amount of extra labeling work. In addition, Hybrid-lb is comparable to Active, and it

indicates that our hybrid framework is able to tolerate “bad” user-provided rules.

In summary, compared to the standard active learning approach, our hybrid ap-

proach is able to save 34%-44% of the training data in average to reach the per-

formance plateau when a user provides relatively high-quality rules, and performs

comparably with low-quality rules.

4.4.2 Large-scale Spreadsheets Study

In this section, we investigate the distribution of the five spreadsheet properties

mentioned in Section 4.2.3 in the large-scale WebCrawl dataset. We evaluate the

performance of the five property detectors using Web400 data, and then show two

observations on the large-scale WebCrawl data.
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4.4.2.1 Experiment Setup

We obtained 1,181,530 spreadsheets from 410,554 .xls workbook files in the We-

bCrawl data.4 To obtain the spreadsheet property statistics on this large-scale data,

we pass each spreadsheet to a two-step pipeline that consists of the frame finder and

the property detectors.

Frame Finder — We ran the the frame finder as discussed in Section 3.3.2 on the

WebCrawl data, and it identifies the “header” and “data” rows for each spreadsheet.

Then we can obtain the sheet table for a spreadsheet by keeping the header rows as

the header region and the data rows as the data region.5

We evaluated the frame finder on the Web400 data via the 2-fold cross-validation.

The averaged F1 for “header” and “data” is 0.807 and 0.996, respectively. It demon-

strate the frame finder is fairly accurate in predicting the the head and data rows,

and it can be used to apply on the WebCrawl data for more interesting data analysis.

Property Detector — We trained property detectors for the five spreadsheet prop-

erties using all the Web400 data and then ran the the five classifiers on the WebCrawl

dataset.

We evaluate the performance of the spreadsheet property detectors for the five

spreadsheet properties on the Web400 data via the 2-fold cross-validation. We use

two common metrics: The accuracy measures the percentage of spreadsheets which

we correctly recognize whether it contains a given spreadsheet property. The F1

measures the harmonic mean of precision and recall for each spreadsheet property.

Table 4.6 shows the performance of the spreadsheet property detectors using three

classification methods: LR (i.e., logistic regression), DTs (i.e., decision trees) and

SVM (i.e., support vector machine with the linear kernel). As shown in the table,

logistic regression performs the best among the three classification methods, and thus

4One .xls workbook file might contain multiple spreadsheets.
5Note that if there are multiple sheet tables in a spreadsheet, we only retain the first one. We

assume there are multiple sheet tables if we see a “header” row below a “data” row.
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F1

Method agg row agg col hier data hier head crosstab

LR 0.876 0.844 0.782 0.845 0.798
DTs 0.825 0.788 0.746 0.772 0.689
SVM 0.855 0.823 0.749 0.815 0.766

Accuracy

Method agg row agg col hier data hier head crosstab

LR 0.894 0.917 0.856 0.923 0.895
DTs 0.849 0.891 0.834 0.892 0.843
SVM 0.876 0.908 0.835 0.912 0.880

Table 4.6: The F1 and accuracy of five spreadsheet property detectors using three
different classification methods.

(a) (b)

Figure 4.10: The distribution of the five spreadsheet properties in the web.

we used logistic regression as the classification model for the spreadsheet property

detection. Note that accuracy is always better than F1, because the spreadsheet

properties are unbalanced (few positive examples and more negative examples).

4.4.2.2 Observations on WebCrawl Data

As a result, we obtained the spreadsheet properties assigned to each of the 1, 181,

530 WebCrawl spreadsheets. We have two observations on the web spreadsheets.

Observation 1 — There is a significant amount of spreadsheets in the web which

contain each of the five spreadsheet properties. Figure 4.10 (a) shows the distribution
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of the five spreadsheet properties on the web. As shown in the figure, the ratio of

the web spreadsheets containing the five spreadsheet properties ranges from 27.4%

to 44.7%. It indicates that there is a significant portion of spreadsheets in the web

containing each of the five spreadsheet properties. The property “agg row” is the

most popular among the five, followed by “hier data”, and their proportions are all

greater than 40%.

Observation 2 — The majority of the spreadsheets in the web contain at least one

spreadsheet property. Figure 4.10 (b) shows the distribution for the number of

properties in one spreadsheet. It shows that there are 32.6% spreadsheets without

any of the five spreadsheet properties; there are 67.4% web spreadsheets containing at

least one spreadsheet property. It indicates that there is a much larger portion of the

web spreadsheets containing a variety of spreadsheet properties than those without

any property.

In summary, the majority of the spreadsheets in the web contain one or more than

one spreadsheet properties. In order to transform a large number of spreadsheets into

a high-quality relational form, we have to identify a variety of spreadsheet properties.

4.5 Related Work

There are two main areas of related work, spreadsheet management and active

learning. The related work on spreadsheet management has been discussed in Sec-

tion 3.6.

Human-assisted Active Learning — The two common active learning [97]

approaches are uncertainty sampling and Query by committee (QBC) as we discussed

in Section 2.2.3.

Beyond traditional active instance labeling, there are alternative techniques for

utilizing human resources for model development. Attenberg and Provost [8] use a

99



“guided learning” approach to search explicitly for training examples of each class.

Druck et al. [49] propose an active learning approach in which the machine solicits

labels on features rather than instances. Like these work, we ask users for more

information (in our case, the crude user-provided rules). But different from their

situation, the quality of the crude user-provided rules can be very low. But our

hybrid approach can tolerate “bad” rules via using a bagging-like technique.

We notice that active learning strategies often suffer from the “cold-start” prob-

lem [117]: in the beginning stage, the classifier lacks training data to approach the

ideal decision boundary and suggest effective instances to label. Zhu et al. [117]

address this problem by finding clusters of distinct content among the unlabeled in-

stances. Donmez et al. [48] propose to use a robust combination of density weighted

uncertainty sampling and standard uncertainty sampling to overcome the cold-start

problem. In this paper, we propose an alternative approach to address this problem

by asking users with crude heuristic rules. Our hope is that the user-provided rules

can provide additional high-quality labels especially in the initial stage to warm up

the classifiers quickly.

4.6 Conclusion and Future Work

We have described a hybrid iterative learning framework to construct spreadsheet

property detectors quickly, and it is the first step toward building the spreadsheet-

to-relational table transformation pipeline that is able to handle a large variety of

spreadsheets. Our hybrid approach integrates the active learning framework with

crude easy-to-write user-provided rules, and it is able to save more training data

to reach the performance plateau when compared to the standard active learning

method.

In the future work, we want to build the spreadsheet-to-relational table trans-

formation system using the spreadsheet property detectors. We will also investigate
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the user interface design to allow more effective interactions with users in order to

conduct accurate and low-effort transformation.
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CHAPTER V

Lyretail: Extraction on Dictionaries from

Webpages

5.1 Problem Overview

In information extraction (IE), a dictionary (also known as gazetteers) refers to a

set of instances belonging to the same conceptual class; for example, a camera brand

dictionary contains “Canon”, “Nikon” and so on. Dictionaries are extremely useful in

many IE tasks. For example, many information extraction systems use dictionaries

along with a set of textual features to extract entities (e.g. Person, Organization,

Location) and relationships between entities (e.g. Person’s birth date or phone num-

ber) [73, 93]. Moreover, dictionaries are a useful primitive for many real-life applica-

tions. For example, commercial engines such as Google and Yahoo!, use dictionaries

for query analysis, document categorization, and ad matching [83]. The quality and

coverage of the dictionaries is essential to the success of those applications [93].

In this chapter, we present Lyretail, an extraction system that is able to build

high-quality dictionaries especially in long-tail vocabulary settings.

First, Lyretail generates training data for building high-quality page-specific ex-

tractors automatically: a form of distant supervision. In particular, it uses the

co-occurrence information from our large-scale crawled web lists dataset to obtain
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negative examples; our key insight is that negative examples often co-occur with

entities that do not belong to the initial dictionary. For example, “Gitzo” is a nega-

tive example, as none of its cooccurrence partners (e.g., “Manfrotto”) belong to the

initial dictionary generated by a few camera band seed examples. Second, we pro-

pose a co-training framework that can incorporate sequential features to jointly infer

the high-quality dictionary on each single webpage. We leverage the output from

the extractor built on web lists to train a semi-supervised conditional random field

(CRF) as the resulting page-specific extractor. As a result, we are able to build high-

quality page-specific extractors on each webpage; these are often able to distinguish

infrequently-observed true extractions from incorrect ones. These results are then

aggregated into high-quality long-tail dictionaries.

There is an additional problem we face when exploiting page-specific extraction:

the intended target page-specific dictionary (PSD) is sometimes ambiguous given only

a few seeds. For example, if a user provides examples of “Atlanta Braves”, she could

have intended a dictionary of Major League Baseball (MLB) teams or a dictionary of

all U.S. sports teams. Fortunately, we can address this problem by building training

data at different granularities, each of which yields a different PSD. For example,

when we include “Brooklyn Nets” as a negative example, we would build a page

extractor for the MLB teams; otherwise we would extract all the U.S. sports teams.

This method is a convenient side effect of our architecture.

In this chapter, we present the extraction system Lyretail. We introduce the sys-

tem framework and the data sources in Section 5.2. We present the algorithms to

extract dictionaries from webpages in Section 5.3. We conduct an extensive experi-

ments in Section 5.4. We discuss the related work in Section 5.5. Finally we conclude

and future work in Section 5.6.
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5.2 Preliminary

In this section, we present the system framework and discuss the used data sources

in the framework.

5.2.1 System Framework

In this section, we present the system framework of Lyretail, as shown in Fig-

ure 5.1. Overall, Anthias supports the dictionary generation process: it takes

in seeds and generates a high-quality comprehensive dictionary (CD) as the output.

Lyretail consists of three stages, as follows:

1. Webpages Fetcher — First, the seeds are used to fetch webpages. To find

webpages that are useful for the page-specific extraction tasks, we use an existing

search engine to retrieve the top-k webpages to serve as the input webpages. We

simply concatenate all the seeds as the search query. For example, if the seeds are

{canon, nikon}, we formulate the disjunctive search query as “canon nikon”. We

discuss the input webpages in detail in Section 5.2.2.

2. Page-specific Extractor — Second, the page-specific extractor attempts to

build a high-quality extractor model for each single input webpage. Lyretail con-

structs a set of resources for the PSD automatically: training examples and webpage-

parameterized features. In particular, the training examples (including both positive

and negative examples) are generated from the initial dictionary which is produced

based on an existing set expansion method Seal [108]. By generating different sets of

training examples, we can subtly change the page-specific extractor to produce PSDs

at different ”granularities”. We discuss this idea further in Section 5.3.3.2.

3. Dictionary Aggregator — After obtaining a PSD on each single webpage, the

dictionary aggregator merges the PSDs from many webpages and produces the unified

high-quality comprehensive dictionary (CD) as the output.
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Figure 5.1: The framework of Lyretail.

We experimented with making Lyretail an iterative process, like other past extrac-

tion systems [4, 21, 109]: the CD of each round of execution can be used as a newer

initial dictionary for the next round. In practice, we do not run Lyretail iteratively,

as the performance improvement after the 1st round is not significant. (as we discuss

in Section 5.4.3).

5.2.2 Data Sources

The page-specific extractor uses two data sources: the input webpages provide

the dictionary entity candidates for extraction, and the web lists are used to generate

distantly-supervised training data.

Input Webpage — An input webpage is our raw source for target dictionary entities.

Thus, we construct a unique page-specific extractor for each input webpages, in order

to detect the true dictionary items as the PSD.

The webpages are generated by a search engine from the user-given seeds and

have a variety of formatting styles, as shown in Figure 5.2. Because in this work

we do not focus on text segmentation, our crawler uses a handful of rules to retain

only “structure-segmented” pages, in which the candidate entities are already seg-

mented by the HTML structure. We treat each leaf HTML element in a webpage as
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<li>...
  <dl>
    <dd><a href=...Canon'>Canon</a></dd>...
  </dl></li>
<li>...
  <dl>
    <dd><a href=...Casio'>Casio</a></dd>...
  </dl>...</li>
<li>...
  <dl>
    <dd><a href=...Gitzo'>Gitzo</a></dd>...
  </dl>...
</li>

From valuebasket.com

Canon
Leica
Nikon

Olympus
Pentax
Sony

Camera

Webpages Relational Table

Figure 5.2: A list of camera manufacturers from a webpage (with corresponding
HTML source code) can be represented in the relational format.

a candidate for the PSD.

Lyretail is currently designed to handle a particular kind of stylized text: those

with recurrent patterns. In Figure 5.2, “Canon” and “Gitzo” are in a recurrent

pattern (though only “Canon” is a correct camera brand extraction). We use the

positive examples to find all the dictionary entities on a webpage. For each such

entity, we define its xpath pattern to be the list of tags of all the nodes along a path to

the root in the HTML DOM tree. Since the initial dictionary is often a high-precision

but small dictionary, we assume a xpath pattern is a recurrent pattern if it contains

at least one dictionary entity found by the initial dictionary. Thus, we identify all the

recurrent-pattern entities x = {x1, ..., xn} on the webpage and use these as candidates

for extraction by the page-specific extractor. There may be more than one recurrent

pattern on a webpage.

Web Lists — To generate resources for the page-specific extractor, we use data

from a large number of web-crawled HTML lists. We obtained HTML lists from the

ClueWeb09 crawl1, using the regular expression “〈ul(.∗?)〈/ul〉”, where each 〈li〉 item

represents a list item. The web lists data can be very noisy. There are many non-

entity elements (such as hyperlinks) in lists. Thus, we used the following heuristics to

1http://lemurproject.org/clueweb09.php
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filter the noisy lists: we only keep lists with more than four items; we remove an item

if its string length is above a predefined threshold or it contains more than five tokens.

We also de-duplicate the crawled lists by their Internet domains: if a list appears in

one domain many times, we only count it once. In the end, we obtained 83 million

web HTML lists, then used a 9 million sample of this dataset (due to efficiency issues)

as our web lists dataset.

5.3 Dictionary Extraction from Webpages

In this section, we introduce Anthias’s page-specific extractor. We formulate the

page-specific extraction problem as a classification task. Let s = {s1, ..., sm} be the set

of m seeds, and x be the candidates for the PSD on this input webpage. Each entity

x ∈ x takes a label l(x) ∈ {true, false}, representing whether x is a true dictionary

entity or not. Therefore, the page-specific extractor’s task is to assign a label to each

x ∈ x such that {x|l(x) = true} represents the extracted PSD.

Now we introduce our two distinct feature sets and distantly-supervised training

examples to construct the page-specific extraction model.

5.3.1 Two Distinct Sets of Features

We are able to derive two distinct sets of features: web list features from the web

lists dataset, and webpage-parameterized features from the target extraction webpage.

5.3.1.1 Web List Features

We are able to define a set of features on the web lists dataset, as some of the lists

are more likely to contain positive or negative instances. We formally define the web

list features as fd = {fdi(x)}, where each fdi(x) ∈ fd is a boolean function represents

whether an entity x belongs to a unique list Li from the web lists dataset.

107



No. Features

1 Current element’s HTML tag

2 Current element’s HTML attributes

3 Previous item’s HTML tag

4 Previous item’s HTML attributes

5 Next item’s HTML tag

6 Next item’s HTML attributes

7 Parent item’s HTML tag

8 Parent item’s HTML attributes

9 Preceding word

10 Following word

Table 5.1: The HTML structural property features.

The raw number of the web list features could be huge, but we reduce the dimen-

sion of the features via two ways: first we remove a feature if it assigns the same value

to all the entities, and we also employ the feature selection methods [53] to pick the

top-k features.

5.3.1.2 Webpage-parameterized Features

For each webpage, we synthesize a large number of webpage-parameterized features

without direct human knowledge of the page. These features are not written by hand

and do not embody direct human knowledge of each webpage. However, they are

also not the same as traditional “domain-independent” features which are fixed for

a large set of webpages. Instead, the feature set differs from webpage to webpage.

These webpage-parameterized features are feasible because we are able to generate

webpage-specific training data.

We parse the HTML code and construct two families of features for each dictionary

candidate x on a webpage, entity features and sequential dependency, as follows:

Entity Features — The entity features describe the properties associated with each

entity x, and they contain three categories of properties. The first category describes

entities’ HTML structural properties, as shown in Table 5.1. They operate on each

entity x ∈ x. Each feature serves as a boolean function, representing whether the
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entity has this property. For example, “Canon” in Figure 5.2 generates the structural

property features, including whether the current element’s tag is “〈a〉” (Feature 1).

The xpath properties are boolean functions for each entity x ∈ x based on its

xpath. The xpath for each entity consists of a set of HTML elements along the path

to the root in the HTML DOM tree. For each xpath, we use all the xpath elements

with tag information to generate the xpath property feature space. For example, the

xpath “/html/table[2]” (i.e., the second “table” HTML element under “html”) has

the elements “html” and “table[2]”, where “table” is the tag of the element “table[2]”.

The xpath “/html/table[2]” generates xpath features, including whether “table[2]” is

the depth-2 xpath element, and whether “table” is the depth-2 xpath tag.

Finally, we created three textual properties: whether the current element con-

tains letters; whether the current element contains numbers; and whether the current

element contains punctuations.

In the end, we merge all the features mentioned above but remove a feature if it

assigns the same value to all the entities, yielding the entity features fk = {fk(x, l)}.

The resulting number of the webpage-parameterized features is often tractable, and

we give more details in Section 5.4.1.

Sequential Dependency — The sequential dependency characterizes the sequential

pattern of adjacent entities. If we consider all the elements as a sequence according

to its appearance in textual order, labels for adjacent elements may follow transition

patterns. This observation can be incorporated as linear-chain pairwise transition

features f ′k = {f ′k(xi, li, xi+1, li+1)}.

5.3.2 Training Data Construction

Training data is a critical need for our page-specific extractor. Direct human

supervision is too expensive, so we use a distant supervision based method to generate

training data. Figure 5.3 shows the training examples of the webpage entities and the
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True

True
Unknown

Unknown
False

Canon
Leica
Nikon

Gitzo
Manfrotto

True
True
True

False
False

Training Example Desired OutputWebpage Entities

Unknown
Olympus TrueTrue
Pentax True

Figure 5.3: An example of the training data and the desired output for a part of
entities in Figure 5.2 (a).

desired output. Now we discuss how to generate the positive and negative training

data.

As mentioned earlier, our training examples are generated using the low-precision,

high-recall web lists data presented in Section 5.2.2. The web lists data is of a large

scale and contains a broader range of entities than existing knowledge bases (e.g.,

Freebase). The key insight (observed in [60]) is that in web lists, entities belonging

to the same set tend to co-occur frequently, and entities that are not members of the

same set are less likely to co-occur.

Positive Examples — Positive examples are derived from both a low-recall but

high-precision initial dictionary d and the web lists data.

First, for each entity x ∈ x, we test whether x is contained in d. If x ∈ d, then

x is a positive instance; otherwise it is not. We generate the initial dictionary d

using an existing set expansion technique (e.g., Seal [108]). For example, given seeds

“Canon” and “Nikon”, we can use Seal to produce a ranked list of popular camera

brand names as d.

In addition, if an entity co-occurs often with the entities in the initial dictionary d,

it should also be a positive instance. We use the initial dictionary similarity (IDSim)

to characterize the similarity between an entity x and the initial dictionary d as
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follows:

IDSim(x,d) =
1

|d|
∑
e∈d

Sim(x, e) (5.1)

where Sim(x, e) =
|LSi∩LSj |
|LSi∪LSj | , (LSi and LSj represent the set of lists that contain the

entity ei and ej, respectively). It represents how frequently two entities co-occur in

one list [60]. If IDSim(x,d) ≥ λp, we know that the entity x is relatively likely to

co-occur with entities in d and x is a positive instance; otherwise it is not.

In summary, for each x ∈ x, if x ∈ d or IDSim(x,d) ≥ λp, x is a positive instance;

otherwise it is not. In practice we chose λp = 0.01.

Negative Examples — Negative examples are essential in constructing an effective

extraction model, but finding them automatically in our application is not straight-

forward. The key insight is that if an entity strongly co-occurs only with entities

excluded by the initial dictionary, we have some evidence this entity is a negative

example. For example, in Figure 5.2, we might observe that “Gitzo” often co-occurs

with “Manfrotto” and so on but rarely with an entity in the initial dictionary; thus,

we believe “Gitzo” is a negative example.

We choose the negative training example based on the following two properties.

First we use the initial dictionary similarity (IDSim) to determine if the testing

entity x is relatively unlikely to co-occur with entities in the initial dictionary d:

if IDSim(x,d) ≤ λd (where λd is a predefined threshold), we know that the co-

occurrence between x and the entities in d is unlikely.

Second, we ensure an entity must have a certain level of popularity in the web

lists, to ensure we have enough evidence to label it as negative. We define an entity

x’s popularity using its frequency, freq(x). Thus, if freq(x) ≥ λf , where λf is a

pre-defined threshold, we assume x is popular; otherwise, it is not.

In summary, we assume an entity x ∈ x is a negative example if IDSim(x,d) ≤ λd
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and freq(x) ≥ λf , where λf and λd are two predefined thresholds.2 We also call λd

the negative example threshold. In practice, we set λf = 50 but vary the value of λd to

produce negative training examples at different granularities. The resulting negative

training sets can further be used to produce page-specific dictionaries at different

granularities. We discuss this dictionary granularity problem in Section 5.3.3.2.

5.3.3 Implementing Page-specific Extractors

A conventional way to construct the page-specific extractor is to simply combine

the two sets of features mentioned in Section 5.3.1 and build a single classifier that

labels candidate dictionary items as “in-dictionary” or not. However, in our setting

the two feature sets are derived from two distinct data sources, one from the web lists

data and one from the input webpage; in similar situations, past researchers have had

success with co-training methods. These methods train multiple distinct classifiers

to maximize their mutual agreement in order to improve learning performance [114].

We pursue a similar strategy (and show in Section 5.4 that we can thereby beat the

conventional approach).

Thus, we develop two distinct classifiers defined on two distinct sets of features:

the list extractor Elist defined on the web lists features and the webpage extractor

Epage defined on the webpage-parameterized features.

The list extractor Elist is a non-page-specific classifier. Let x = {x} be the set

of candidates for the PSD on the input webpage. Let l = {l(x)} be the corresponding

labels for each x ∈ x, where each l(x) ∈ {true, false} represents whether the entity x

is a true dictionary entity or not. The probability distribution of the classifier Elist is

defined as:

Plist(l | x) =
1

Z
exp (

∑
x

wdfd)

2We also used heuristics to filter out “obviously bad” candidates as negative examples. E.g., we
remove items that were extremely long in either character length or token length.
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where fd are the web list features mentioned in Section 5.3.1.1, wd are associated

weights, and Z is a normalization factor.

Similarly, the webpage extractor Epage is page-specific and uses a conditional

random field defined on the PSD candidates x. The joint distribution of the classifier

Epage is:

Ppage(l | x) =
1

Z ′
exp (

∑
x

(wkfk + wk′fk′))

where fk and fk′ are the webpage-parameterized features mentioned in Section 5.3.1.2,

wk and wk′ are associated weights, and Z ′ is a normalization factor.

5.3.3.1 Combining Two Extractors

To combine the two classifiers is not straightforward. The list extractor may fail

to distinguish items that are lacking information in the web lists: while the web

lists is of a large scale, for some extremely rare entities, it is possible that we find

no information in the web lists. On the other hand, the webpage extractor is able

to produce expressive features for all testing dictionary candidates, but it requires

further information: we are not able to train an accurate CRF with only partial

labels of the sequence data.

Thus, we propose a co-training method that trains the two classifiers so as to

encourage consensus decisions. As shown in Algorithm 6, we utilize the list extractor

to construct an accurate webpage extractor. Let Elist be the list extractor, and Epage

be the webpage extractor. Let D = {x0, l0} be the automatically generated training

data as discussed in Section 5.3.2. We first train the list extractor Elist using the

training data D, and measure Elist’s mean accuracy of prediction on x0 with respect

to l0. If the accuracy score is fairly accurate and above a predefined threshold θa, we

obtain Elist’s predicted probability distribution on x0 as the prior distribution Plist;

otherwise we use the default prior distribution Pdefault.
3

3In practice we simply set θa = 0.8, pl = 0.95
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Algorithm 6 Co-training Algorithm
1: Train Elist on D
2: mscore = mean accuracy(Elist(x0),y0)
3: Pdefault = {p(x = l|x ∈ x0) = pll(1− pl)1−l}
4: Plist = (mscore > θa)?Elist(x);Pdefault
5: Train Epage by optimizing Equation 5.2
6: Return Epage(x)

To estimate the parameters for the webpage extractor Epage, we utilize a semi-

supervised conditional random field framework [78] that ensures Epage produces a

similar probability distribution to Elist. We estimate the unknown parameters w =

{wk,w
′
k} by maximizing the likelihood of the objective function Ppage(l | x), based

on the training data D′ = {x, Elist(x)}. The goal is to maximize the regularized log

likelihood, as follows:

max
w

∑
x

wkfk +
∑
x

w′kf
′
k − logZ(wk,k′)

−λD(Pk||Plist)−
∑

k w
2

2σ2
(5.2)

where
∑

k w
2
k

2σ2 is a common choice of regularization to avoid overfitting, based on the

Euclidean norm of w and on a regularization parameter 1
2σ2 .

After obtaining the values for w = {wk,w
′
k}, we infer the most likely assign-

ment for each variable x ∈ x by employing a dynamic programming algorithm (i.e.,

Viterbi) [75, 78].

5.3.3.2 Webpage Dictionary Granularity

With just a few user-given seeds, the extraction target may be ambiguous. For

example, given seeds “Atlanta Braves” and “Chicago Cubs”, it is not clear what is

the ideal PSD: the user may intend to get all the MLB teams or all of the U.S. sports

teams. It worth noting that the granularity issue only applies to certain categories;

not all the dictionary categories have the ambiguous granularity. For example, the
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Algorithm 7 PSDGranularities
Input: a set of negative example thresholds {λd}, a webpage wp
Output: PSDs of granularities G

1: G = []
2: for each λd in {λd} do
3: Get positive training data {xpos}
4: Get negative training data {xneg} using λd
5: Train page-specific extractor E using {xpos} and {xneg}
6: Apply E on webpage wp and extract a PSD g.
7: G← G ∪ g
8: end for

seeds “Amaranth Pink” and “Red” can be used to indicate a dictionary of color in a

straightforward way.

We can address this PSD ambiguity problem by manipulating the negative ex-

ample threshold λd. Consider the seeds “Atlanta Braves” and “Chicago Cubs” in

relation to entities “Brooklyn Nets” and “Football”. If a user intends to extract

MLB teams, both “Brooklyn Nets” and “Football” should be negative examples; if

a user intends to extract all U.S. sports teams, “Football” should be a negative ex-

ample while “Brooklyn Nets” should not be. If “Brooklyn Nets” has a higher IDSim

than “Football”, we are able to construct different training sets by varying λd. By

using a tighter threshold we can obtain a training set that is tailored for just MLB

teams; by using a looser threshold we can obtain a training set that admits all the

sports teams on the page. We demonstrate the PSD granularities with two examples

in Section 5.4.1.

5.3.4 Dictionary Aggregator

In this section, we present the algorithm of Lyretail’s dictionary aggregator. The

dictionary aggregator merges PSDs from a set of input webpages and produces a

high-quality CD as the output. Similar to Seal, we employ the lazy walk process

technique [108] to merge PSDs. The goal of this method is to formulate a quality

score for each unique entity in PSDs, and the score represents the similarity between
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the entity and items in the initial dictionary.

The lazy walk process technique is defined on a random walk graph. To construct

the random walk graph, we create a node for each webpage and a node for each unique

entity in PSDs. An edge exists between a webpage node and an entity node if the

entity appears on the webpage.

Our transition process is similar to Seal [108]. To transit from a source node x,

one randomly picks an adjacent node y with a uniform distribution proportional to

the degree of node x. More specifically, p(y|x) = 1
degree of x

. At each step, there is

also some probability α of staying at x. Putting everything together, the probability

of reaching any node z from x is computed recursively as follows: P (z|x) = αI(x =

z) + (1 − α)
∑

y P (y|x)P (z|y), where I(x = z) is a binary function that returns 1 if

node x and node z are the same, 0 otherwise. We used Seal’s setting for this lazy

walk process (e.g., choosing α = 0.5), except for the starting source nodes.

To capture the similarity of an entity to items in the initial dictionary d, we define

the starting source nodes as a probability distribution p0 over a set of entity nodes

ns in the graph s.t. for each n ∈ ns, n ∈ d. Recall that d is a ranked list and its top

m entities are the seeds. It is intuitive that an entity ranked higher in d should have

a higher probability in p0 than one ranked lower. We use a power-law distribution

to characterize this property. Let β be the decay ratio and 0 < β < 1 (in practice we

chose β = 0.9). Let σ is a normalization factor to ensure the sum of p0 to be 1. The

initial distribution p0 is defined as follows: for di ∈ d where i represents di’s rank in

d, p0(di) = 1
σ

if i ≤ m, and p0(di) = βk−i

σ
if i > m; for e /∈ d, p0(e) = 0.

5.4 Experiments

In this section, we evaluate and demonstrate that Lyretail is able to produce high-

quality dictionaries especially in long-tail vocabulary settings. First, we measure the

performance of the page-specific extraction and also demonstrate that it can produce
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Category Seed Examples

Common Vocabulary Dictionaries

country nepal, hungary, burkina faso
mlb-team chicago white sox, san francisco giants, pittsburgh pirates
nba-team new york knicks, charlotte bobcats, san antonio spurs
nfl-team philadelphia eagles, cleveland browns, san diego chargers
us-president andrew jackson, john quincy adams, thomas jefferson
us-state delaware, virginia, michigan

Long-tail Vocabulary Dictionaries

disease alopecia, cold sore, scabies
mattress sealy, serta, simmons
camera fujifilm, minolta, huawei
cmu-building resnik house, fraternity quadrangle, mellon institute
color metal navy, windsor tan, rose quartz

Table 5.2: Three seed examples of 11 dictionary categories for the page-specific ex-
traction evaluation.

page-specific dictionaries (PSDs) at different granularities. Second, we evaluate the

quality of the comprehensive dictionary (CD) emitted by the Lyretail dictionary gen-

eration process. Finally we test Lyretail’s system configuration by trying different

parameter settings.

To evaluate our system, we have collected 11 dictionary categories, as shown in

Table 5.2. They are cmu-building, country, disease, mlb-team, nba-team, nfl-team, us-

president, us-state, camera-marker, color, and mattress-maker. These categories are

chosen based on previous work [60, 108]. We use cmu-building, mattress, camera,

disease and color to illustrate long-tail vocabularies (i.e., dictionaries contain long-tail

entities); we use the rest 6 categories to illustrate the common vocabularies (i.e.,

dictionaries that only consist of common entities). We selected three random seeds

from each of the 11 categories as follows: for the first eight categories, we randomly

sample from the dictionary instances collected from [107]; for camera and color, we

randomly selected three seeds from Wikipedia;4 for mattress, the seeds were randomly

selected from a manually collected dictionary.

4http://en.wikipedia.org/wiki/List_of_digital_camera_brands

http://en.wikipedia.org/wiki/List_of_colors
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Method Feature Training Data Model

List-rand Section 5.3.1.1 Random Classification

List-basic Section 5.3.1.1 Section 5.3.2 Classification

LT-basic Section 5.3.1.1 and 5.3.1.2 Section 5.3.2 Classification

Lyretail Section 5.3.1.1 and 5.3.1.2 Section 5.3.2 Section 5.3.3

Table 5.3: Methods for the lesion study.

Lyretail uses a mix of code from several languages and projects. The core Lyre-

tail code is in Python. We used an existing HTML parsing tool, BeautifulSoup, to

obtain all the elements from an HTML webpage. Our page-specific extractor was

implemented based on the Mallet Java library.5 We also use the Python scikit-learn

library for its logistic regression method.6

5.4.1 Page-specific Extraction

In this section, we evaluate the performance of the page-specific extractor. We

also show the result of extracting PSDs at multiple granularities.

We prepared the data sources as follows. We followed the seed selection process

described earlier. the three randomly selected seeds for each category are shown in

Table 5.2. For each category, we sent the three seeds to Google and obtained top-100

webpages as the input webpages. We skipped webpages that cannot be downloaded

and those that did not satisfy the recurrent pattern criteria mentioned in Section 5.2.2.

Also, we only kept webpages containing more than three dictionary instances as the

evaluation set. In the end, we kept 444 webpages (56.4% of the total) for all the

categories. We then asked human experts to identify all of the correct dictionary

entities on a webpage for each of the 11 categories.

Methods — We compared the following methods:

• Seal uses the wrapper of Seal [108] to obtain the PSD.7

5Mallet: http://mallet.cs.umass.edu
6scikit-learn: http://scikit-learn.org/
7Seal’s code: https://github.com/TeamCohen/SEAL.
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• SealDict uses Seal [108] to first generate a dictionary (from multiple pages), then

constructs the PSD as the intersection between the Seal dictionary and entities

on a target webpage.

• Lyretail is our proposed page-specific extractor as described in Section 5.3.3.

In addition we compare Lyretail with the following three methods to study the

influence of each component in the Lyretail framework. The detailed configurations

of the three methods can also be found in Table 5.3. We used logistic regression

classification for all three basic methods. We also tried other classification methods

(e.g., SVM and decision tree), which performed comparably or worse.

• List-rand is a logistic regression classifier based on the web lists features. It

randomly selects negative examples from the entities on the webpage excluded

by the positive examples.

• List-basic is a logistic regression classifier based on the web lists features. It uses

our distant supervised training data as described in Section 5.3.2.

• LT-basic is a basic version of our page-specific extractor: it is a logistic regression

classifier using both the webpage-parameterized and web lists features.

We report the averaged per-page F1 score for each category, and we tried a set of

settings for the above 5 methods: For SealDict, we vary the dictionary size from 10 to

2000 and report the best F1 score. For List-rand, we randomly selected the negative

examples for 10 times and report the averaged per-page F1. For List-basic, LT-basic

and Lyretail, we obtained the top 20 items using Seal as the initial dictionary, and

tested 7 settings from 0 to 0.01 for the negative example threshold and chose the best

per-page F1 score.8

8We choose the top 20 items produced by Seal as the initial dictionary to maintain a high-
precision though low-recall set. The averaged precision of the initial dictionary is 0.999 for common
vocabularies and 0.746 for long-tail vocabularies by randomly picking seeds from the ground-truth
for 10 rounds.
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(a) (b)

Figure 5.4: The summarized performance on Lyretail’s page-specific extraction and
dictionary generation on common and long-tail vocabulary settings.

Performance — We now compare Lyretail with Seal and SealDict, simple methods

based on Seal. Figure 5.4 (a) shows the average F1 performance for Lyretail’s page-

specific extraction on common and long-tail vocabularies. As shown in the Figure, we

can see that Lyretail (with an average F1 of 0.892) is able to produce high-precision,

high-recall PSDs in almost all the categories. Moreover, we achieved comparable per-

formance in the common vocabulary settings and obtained 30.7% improvement in the

long-tail vocabulary settings. It demonstrates that Lyretail is able to construct high-

quality page-specific extractors that can obtain even infrequently-observed dictionary

entities.

Figure 5.5 shows the detail results for the averaged F1 of the three methods

on the five long-tail vocabulary categories. SealDict (with the averaged precision

of 0.827 and recall of 0.569) loses to Lyretail because SealDict uses the dictionaries

generated by Seal, thus failing to recognize some out-of-set items on webpages. We

noticed that many extraction errors of SealDict is due to failing to detect infrequent

observed dictionary items and also items that can be written in many different ways.

For example, “New York Yankees” can also be written as “NY Yankees”. For the
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Figure 5.5: The F1 performance of the page-specific extractors in long-tail vocabu-
lary categories. We compare Lyretail with simple methods based on the
previous work Seal.

six common vocabulary categories (e.g., mlb-team and us-states), our system always

beats Seal, but loses slightly to SealDict. The reason is that Lyretail attempts to infer

true dictionary entities based on a small initial dictionary of size 20, while SealDict

uses an already high-quality dictionary to find any matching dictionary entities on

the webpage.

Lesion Study — We now examine which components of Lyretail are the most influ-

ential, by comparing Lyretail with three basic versions of the page-specific extractor:

List-rand, List-basic and LT-basic. Figure 5.6 shows the F1 performance of the four

methods in long-tail vocabulary settings: Lyretail is better than the other three meth-

ods. For the six common vocabulary settings, all four methods perform similarly. It

demonstrates that our mechanism of training data generation and co-training frame-

work is effective for building a high-quality page-specific extractor.

Granularity — We now demonstrate our page-specific extractor is able to produce

different granularities of the PSD, by varying the negative example threshold from 0
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Figure 5.6: The F1 performance of the page-specific extractors in long-tail vocabulary
categories. We compare Lyretail with two baseline methods.

to 0.3.

Figure 5.7 shows the dictionary sizes under each setting of the negative example

thresholds on two webpages, rantsport.com and bestchoicemattress.com. As shown in

the Figure, we identified five semantically meaningful plateaus out of nine granulari-

ties, and measured the page-specific precision and recall for each identified granularity.

For example, the granularity at the 2nd plateau is identified to be MLB teams, with

page-specific precision and recall both equal to 1. It indicates that at this granularity,

we correctly obtained all the available MLB teams on rantsport.com.

By varying the negative example threshold, we observe that the plateaus exist

in almost every webpage, though not all the granularities generated are semantically

meaningful.

In summary, the page-specific extractor is able to produce a high-quality dic-

tionary per webpage, especially in long-tail vocabulary settings. Also, it is able to

present meaningful dictionary granularities.
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5.4.2 Dictionary Generation

To evaluate Lyretail’s ability to generate CDs, we again selected three random

seeds for each of the 11 dictionary categories. We followed the seed selection process

as descried earlier, and we fetched top-100 webpages for each set of seeds from Google.

We repeated this seed selection and webpage fetching process 10 times and report the

averaged precision for top-k results.9 We removed the seeds if none of the methods can

produce any results (as was the case for 2 seed selections for cmu-building and 1 seed

selection for color). For each instance in the top-k result, we asked human experts to

determine whether it belongs to the dictionary.

Methods — We compared the following methods:

• Seal, a previous set expansion algorithm [108].

• Seisa, another previous set expansion algorithm [60].

• Lyretail, our proposed system.

We also compare Lyretail with List-rand, List-basic, and LT-basic for a lesion study.

List-rand, List-basic, and LT-basic are all built on the Lyretail framework but use the

List-rand, List-basic, and LT-basic page-specific extractor, respectively.

We report the averaged precision for top-k results over 10 times, and we set up

the above five methods as follows: For Seal, we directly used its code from Github.

It is not possible to compare to Seisa directly, because their original web list dataset

is not available; we reimplemented the Seisa’s algorithm on our web crawled HTML

lists. For List-basic, LT-basic, and Lyretail, we obtained the top 20 items using Seal as

the initial dictionary, and set the negative example threshold to be 1e-6.

Performance — We now compare Lyretail with the two previous techniques, Seal

and Seisa. Figure 5.4 (b) shows the mean averaged precision (MAP) for Lyretail’s

9We do not use the actual recall because it is usually difficult to enumerate the universe of
instances for every category.
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dictionary generation on common and long-tail vocabularies. As shown in the Figure,

we can see that in common vocabulary settings, Lyretail matches Seal and Seisa; in

long-tail vocabulary, Lyretail substantially outperforms those other methods by 17.3%.

It demonstrates that Lyretail is able to construct high-quality dictionaries in both

common and long-tail vocabulary settings.

Figure 5.8 shows the detailed results for the precision of the top-k results of the

three methods on the five long-tail vocabulary categories. For the other six categories

(e.g., mlb-team and us-states), there is not much difference among the three methods.

These are relatively small vocabularies, and existing methods largely do well at them.

Lyretail is able to match the previous systems’ performance.

Lesion Study — We now examine which components of Lyretail are the most influen-

tial, by comparing Lyretail with the three baselines, List-rand, List-basic and LT-basic.

Figure 5.9 shows the precision of the top-k results for the four methods in long-tail

vocabulary settings: Lyretail outperforms the three baselines. For the other six com-

mon vocabulary settings, all four methods perform similarly. Again, it demonstrates

that Lyretail’s good results are primarily due to our training data and extractor con-

struction mechanism.

In summary, we have demonstrated that Lyretail is able to generate high-quality

dictionaries. Especially in long-tail settings, Lyretail has obtained 17.3% improvement

on mean averaged precision (MAP) for the dictionary generation process and 30.7%

improvement on F1 for page-specific extraction, comparing to the state-of-the-art

methods.

5.4.3 System Configuration

In this section, we evaluate the influence of three factors that influence the quality

of CD for Lyretail: the number of iterations, the negative example threshold, and the

initial dictionary size. We used the same setting as in Section 5.4.2.
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Iterative Process – First we evaluate the influence of Lyretail’s iterative frame-

work on the dictionary quality. We used the same setting as in Section 5.4.2 (initial

dictionary size of 20 and negative example threshold of 1e-6), but emit dictionaries

of 5 iterations. The performance increases slightly when we do multiple rounds of

iterations, but the differences of precision for top-k results are not huge at less than

0.05. During the iterations, the initial dictionary is the only changed input, and it

indicates that the changes on the 20 initial dictionary entities are not huge enough

to influence the performance significantly.

Negative Example Threshold — We tried a set of settings for the negative example

threshold λd from 0 to 0.1 on all categories. We observed that a lower λd — perhaps

unsurprisingly — tends to lead to a lower precision for highly-ranked values of k, but

higher recall later. In most of the cases, the differences are not huge at less than 0.1,

But the precision can drop significantly in categories such as camera and color. For

example, the top-100 precision dropped by 0.2 by changing λd from 0.005 to 0.1 in

camera. However, the differences of the precision are not significant at less than 0.1

when we varying λd between 0 and 1e-5.

Initial Dictionary Size — To evaluate the influence of the initial dictionary size

on the dictionary quality. We tried a set of settings for the initial dictionary size

from 10 to 500 on all categories, and measured the precision of the top-k results.

We observe that the performance tends to be better when we use a high-precision

initial dictionary of a larger size. But, the differences of the precision on top-k results

are not huge at less than 0.1, with the exception of color, where the precision of the

top-1000 results increases by 0.12 when changing the initial dictionary size from 10

to 20.
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5.5 Related Work

The goal of Lyretail is similar that of research into set expansion, including

Seal [108, 109, 110, 92] and Seisa [60]. Seal uses a simple pattern matching (i.e.,

suffixes and prefix-based extractors) method to obtain candidate entities from many

webpages, then employs a graph-based random walk to rank candidates entities ac-

cording to their closeness to the seeds on the graph. As a result, the method is

able to accurately identify frequently mentioned items but fail to detect infrequently

mentioned long-tail items. Seisa is an iterative algorithm to aggregate dictionaries

using the co-occurrence frequency between each pairwise dictionary item in the web

HTML lists dataset and Microsoft query logs. The method relies entirely on the co-

occurrence frequency information, and thus also tends to ignore infrequently-observed

entities. Rong et al. [92] focuses on distinguishing multi-faceted clusters of the ex-

panded entities by fusing ego-networks and existed ontology. In contrast, we build

high-quality page-specific extractors to better identify long-tail dictionary items.

The series of work on wrapper induction [46, 74, 41] can be used for page-specific

extraction, but these methods are rule-based and are inapplicable to produce high-

quality page-level webpage extractors in our cases. More recently, Dalvi et al. [43]

proposed the framework for wrapper induction on large scale data, and Pasupat and

Liang [84] developed page-specific models to extract entities of a find-grained category.

However both methods require a decent amount of training data while we at most

have a few seeds.

Our page-specific extractor is similar to co-training work [16, 39, 29, 66], which

exploits conditionally-independent features to improve classification performance. Un-

like past work, our page-specific extractors contain sequential properties and it is not

practical to train it with only partial labeled data.

Our page-specific extractor uses a distant supervision based method. Distant

supervision based method has been widely used on entity and relationship extraction
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from the web [9, 51, 81, 115], and these work derive training examples from predefined

heuristics or from existing KBs. However, those approaches are not practical in our

case: heuristics cannot capture the semantics of the entities; and in the existing KBs,

it is hard to find an entry for a great number of the entities on the webpages due the

KBs’ poor coverage [47]. Instead we uses a noisy but large-scale web list dataset to

derive the negative training data. Hoffmann, et al. [61] also uses web HTML lists but

their goal is to learn semantic lexicons in order to expand the training data.

5.6 Conclusions and Future Work

In this paper, we have demonstrated that Anthias is able to generate high-quality

dictionaries: as good as previous work in the case of small vocabularies, and substan-

tially better than previous work in large vocabulary settings. In the future we aim

to improve Anthias by exploiting the dictionary information in novel ways, such as

new search engines that combine data search with some elements of data integration

systems.

In the future we aim to improve Anthias in several ways. First, we will move

beyond the simple “seeds-only” model that many dictionary systems have used, to

try to incorporate more flexible but still succinct domain knowledge from the user.

Second, we would like to extend the input datasets to include nontraditional sources

of dictionary information, such as spreadsheets, relational databases, and even social

media utterances. Finally, we are looking to exploit the dictionary information in

novel ways, such as new search engines that combine data search with some elements

of data integration systems.
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Figure 5.7: The granularities of the dictionary produced from two websites by trying
a set of negative example thresholds.
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Figure 5.8: The precision of the top-k dictionary. We compare Lyretail with two
previous methods.
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Figure 5.9: The precision of the top-k dictionary. We compare Lyretail with two
baseline methods.
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CHAPTER VI

DiagramFlyer: Extraction on Diagrams from PDFs

6.1 Problem Overview

Data-driven diagrams (or statistical graphics) are an important type of web sta-

tistical data for communicating complex information. Diagrams, a stylized mixture

of graphics and text, offer succinct quantitative summaries of data that motivate

the overall document’s content. For many technical documents, the diagrams may

be readers’ only access to the raw data underlying the documents’ conclusions. Es-

pecially for quantitative disciplines such as finance, public policy, and the sciences,

certain diagrams could be even more valuable than the surrounding text.

In this dissertation, we focus on the 2-D diagrams, but we observe two distinctive

properties that serve as the important design criteria for building DiagramFlyer. First,

there are a variety types of 2-D diagrams in the web, including scatter plots, bar

chars, line plots, and so on, and the rise of visualizations was also witnessed in the

web, ranging from political art projects to New York Times stories. Second, even

though data-driven diagrams are often consistently stylized, the diagram metadata

is completely implicit. Also some textual regions, especially legends and titles, do

not reliably appear in one location. For example, Figure 6.1 shows that the regions

of diagram text can appear in surprising locations: Figure (a) has its legend on the

right-hand side, whereas Figure (b) has it above the title.
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Figure 6.1: A diagram contains several characteristic regions of text as metadata, and
the position of metadata may vary in different diagrams.

In this chapter we present DiagramFlyer, a search system that is able to automat-

ically transform a relational table to diagrams, while allowing users to interactively

personalize the visualizations with little user effort. DiagramFlyer consists of two

main components, extract and search. First, the extract discovers the implicit schema

information from a large scale of web data and constructs a visualization-specific

knowledge base, which can then be used to automatically generate high-quality visu-

alizations. Second, the search enables searching visualizations by their latent schema

information. At the same time, the search should allow users to personalize the

automatically generated visualizations while requiring little effort from users.

In the rest of the paper, we will give an overview of the system architecture in

Section 6.2, demonstrate the working system in Section 6.3, and conclude with a brief

summary of the technical problem the system addresses in Section 6.4.
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6.2 System Framework

In this section, we introduce DiagramFlyer’s diagram extractor, query interface

and the software architecture.

6.2.1 Diagram Metadata Extraction

The diagram extractor attempts to find all the elements of a diagram’s graphical

specification. As mentioned earlier, we extract 8 types of diagram metadata: title,

legend, caption, scale and label for both the x- and y-axes, and type. We

obtain a diagram’s type (a bar, line, or scatter chart) using the classification method

proposed by ReVision [96].

Even though data-driven diagrams are often consistently stylized, obtaining cor-

rect labels can be challenging for several reasons. Some textual regions, especially

legends and titles, do not reliably appear in one location. For example, Figure 6.1

shows that the regions of diagram text can appear in surprising locations: Figure (a)

has its legend on the right-hand side, whereas Figure (b) has it above the title.

Also, multiple sub-diagrams can appear within a single image; for example, diagrams

could be stacked to share one caption. In a randomly selected test collection (379

diagrams), more than 36% of diagrams are small ones contained within a single larger

diagram image.

In order to process as large a range of diagrams as possible, our diagram extrac-

tor focuses entirely on the text embedded in each diagram; we ignore the graphical

contents of the image, apart from the texts’ 2D positioning. The diagram extractor

uses a three-stage pipeline.

Segment Recovery — In segment recovery, crawled PDFs are processed by

the JPedal [68] PDF processor, which produces a stream of individual extracted words,

each with a two-dimensional bounding box of coordinates. Because this processing is

applied on the entire document, there are many spurious words pulled out that are
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not part of genuine diagrams.

Extracted word boxes are grouped into sequences, termed segments, which we hope

reflect semantically coherent regions of text. This step is based on the proximity and

orientation of nearby word boxes. Some segments will simply be lines of text from

the body of the document; others will be diagram components such as the caption

or context.

Finally, we remove the bulk of segments that have nothing to do with diagrams.

We do so by first locating segments that strongly indicate a diagram, such as a

sequence of values that indicate a potential axis scale, or a line of text that contains

the word “Figure” or “Fig”. For each identified signal, we use a “sliding window” to

obtain close segments before and after as a diagram group. For those that overlap, we

merge them as one diagram group. We dispose of all segments that are not in such a

group.

Metadata Classification — The metadata classification assigns each seg-

ment in a diagram group with one of the eight previously-mentioned labels. To iden-

tify these segments, we apply two trained classifiers in sequence. The first, simple

classifier, is fast but generates false positives. It is based on purely textual features

derived from each segment, as shown in Table 6.1.

To further refine our dataset we now require that each diagram group more

strongly reflect qualities of a true diagram. Each group must contain either label

or scale information for both the x- and y- axes. Segments in diagram groups that

do not meet this relatively low bar are probably not part of a true diagram and are

filtered out. As shown in our experiments, this filter is effective at raising the final

output quality, removing 15 non-diagram segments for every 1 diagram segment that

we incorrectly remove.

The final position-sensitive classifier again assigns a label to each segment. It uses

the initial simple labels to derive the label- and geometry-sensitive features listed in
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Does segment text start with a capitalized word?

Percentage of words in segment that are capitalized

Percentage of tokens in segment that are numbers

# words in segment

Ratio of segment width to height

Does segment start with the word “Fig”?

Does segment contain a capitalized word after “Fig”?

Percentage of words in segment that are nouns

Percentage of words in segment that are verbs

Table 6.1: Selected textual and segment-centric features used in the simple classifier.

Segment distance to origin

Angle of segment to origin

Segment dist. to nearest upper x-axis scale

Segment dist. to nearest left y-axis label or scale

Segment intersects with upper x-axis scale?

Segment intersects with left y-axis?

Direction to nearest diagram box

% of segments in diagram group sharing left boundary

Is segment the leftmost in diagram group?

Is segment underneath a caption?

Table 6.2: Selected positional features used in the position-sensitive classifier.

Table 6.2. For example, the geometric intersection of segments with x-axis scale

and y-axis scale labels is called the origin, which can then be used to compute

the first two position-sensitive features. These refined labels are more accurate than

when using simple alone.

Diagram Regrouping — In this last stage of extraction, we use the new segment

labels to perform diagram regrouping. This step is relevant when a diagram group

contains multiple smaller diagrams. In this step, we refine these groups so that they

contain just a single diagram. This method relies on finding a bounding box formed

by the axes of each true diagram, then assigning segments to the nearest bounding

box. The process depends on the semantic label assigned in the previous step; for

example, a caption will be assigned to the bounding box above rather than below.

The final output from this stage, and thus the diagram extractor overall, is a set of
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single diagrams with labeled text segments.

6.2.2 Query Interface and Language

Prior to any search engine activity, the web’s population of users produces di-

agrams. Diagram generation is a unique process. First, an underlying database

has to be collected ahead of time, then a customized graphical specification has to

be designed (either through a specification or direct manipulation), then finally the

specification is “compiled” to render the diagram images. The graphical specification

describes how to visualize the contained elements that define the structure of the di-

agram. For example, as mentioned in [112], given a database, a user must specify the

data variables for both x- and y- axis, the transformation of the variables, the scale of

axes (log or linear), and other characteristics, in order to generate a two-dimensional

scatterplot.

DiagramFlyer attempts to extract all the necessary elements of the graph gener-

ation specification for the diagrams. We call this specification a diagram template or

diagram metadata. To be more specific, we try to find all textual and visual elements

that are necessary to render the final images. In our prototype we focus on 8 key fields

that can be used to generate a unique diagram image: x-label, x-scale, y-label,

y-scale, title, legend, caption, scale and type. (Type identifies what kind of

two-dimensional chart it is: bar, line, scatter or other.) For example, Figure 6.1 shows

two sample data-driven diagrams and the diagram metadata that Anthias found in

each. These diagrams, plus the accompanying diagram metadata, form the corpus

our search engine will index.

DiagramFlyer’s interface is similar in appearance to traditional web search engines,

accepting input into a search box (or boxes in the faceted “advanced” mode) and pre-

senting the results using a top-10-style Search Engine Results Page (SERP). Figure 6.2

shows the current DiagramFlyer prototype SERP, with a query for unemployment and
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Figure 6.2: The user interface of the DiagramFlyer system.

one visible hit. A score for each retrieved image is calculated by combining the simi-

larity of each individual fields (e.g., how well do the x-labels match? how much does

the x-scale overlap?, and so on). We will discuss the scoring mechanism in detail in

Section 6.2.

DiagramFlyer’s query language supports complex, face-ted queries which allows

end-users to create highly targeted searches. Thus, DiagramFlyer is able to support

querying on features that are part of the descriptive pipeline that generated the

diagram. DiagramFlyer’s query language is composed of the 8 field operators (based

on the fields described above) and a fuzzy expansion function. Field operators operate

against a faceted index of the diagrams (each field is stored separately). For example,

Example 1. If a user wants to get diagrams about population statistics over the

year 1990 to 2014, she can formulate the query as follows:

x-label: year AND

x-scale: from: 1990 to: 2014 AND

y-label: population
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DiagramFlyer’s query language also supports a variety of diagram search appli-

cations including “similar diagram” search. DiagramFlyer supports fuzzy matching.

When processing a search query, a unique component of DiagramFlyer is its query

expander, which is able to expand the query by generating semantically similar terms.

The goal of lexicon expansion is to retrieve diagrams using information that may have

been removed as a side effect (either intentionally or not) in the diagram production

process. For example, given a term “Michigan”, the query expander could recognize

that terms such as “California” and “Wisconsin” are highly relevant terms belonging

to the same category. This lexicon was built by analyzing hundreds of millions of web

pages, which we will discuss in detail in Section 6.2.

Example 2. After finding a relevant diagram d q, a user may want to retrieve all

the relevant diagrams that could potentially be generated from the same underlying

dataset. The query can be formulated as:

x-label:expand(d_q.x-label) AND

y-label:expand(d_q.y-label) AND

title: d_q.title AND

caption: d_q.caption

6.2.3 Software Architecture

The DiagramFlyer system proceeds in two stages. In an initial offline stage, it

processes a corpus of diagrams and prepares them for search. In the subsequent

online stage, DiagramFlyer offers three distinct methods for giving users access to

the diagrams.

The system architecture is seen in Figure 6.3. It employs a pipeline of offline

corpus-processing steps that produce output then used by an online search query

system. The offline pipeline has three components.
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Figure 6.3: DiagramFlyer’s data processing pipeline.

First, the PDF crawler , which is based on the Nutch open-source crawler [25],

downloads a large number of PDFs from public web pages on academic Internet

domains. In our current testbed we concentrate on diagrams extracted from web-

hosted scientific PDFs (found by targeting .edu websites). We found 153K documents.

We focus on PDFs that contain diagrams with explicit text. Thus, we avoid the use

of optical character recognition (OCR) software. Although the quality of many OCR

systems is reasonably high for basic document types such as book pages and business

cards, the significant modification they require to function on diagrams is beyond the

scope of this paper.

These PDFs are then fed to the diagram extractor . This extractor identifies

all the diagrams in the corpus and extracts their metadata at the same time. The

system extracted 319K diagrams (i.e., slightly more than 2 diagrams per paper). For

the testbed system we target two-dimensional data-driven plots (including scatter,

time series, and bar plots) as these have been found to represent a large portion
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of data-driven diagrams (e.g., 70% of diagrams found in news magazines [105] are

time-series).

Finally, the index builder uses Lucene [7] to construct an inverted search in-

dex over the extracted and annotated diagrams. The index tracks each extracted

field separately so that keyword matches on individual parts of the diagram can be

identified.

All three parts of the online query system are implemented in Java running as

a web application, using Lucene for query processing during inverted index retrieval.

They are the search ranker, query expander, and snippet generator.

Search Ranker — Given a keyword query, the search ranker computes a relevance

score for each diagram and presents a ranked list of diagrams as the results. We

implemented the scoring mechanism, weight-rank, for assessing a diagram’s relevance

to a user’s query using Lucene [7]. The weight-rank mechanism looks for matches

in each distinct metadata field of a searching diagram, then computes the standard

TF-IDF relevance score of each metadata field. It allows each of the eight fields

to have a different weight when computing the total diagram relevance score. We

obtained the weights by using a Support Vector Machine to find the optimal weight

assignment based on a supervised training set of more than 430 human-annotated

(query, diagram, relevance) triples. By separately finding search hits among fields

that are distinctive and meaningful, a ranking system has greater ability to assign

useful (and different) weights to each field. The ranker then sorts diagrams according

to their relevance scores and presents the top results to the user.

Query Expander — The query expander extends the query to retrieve a broader

range of relevant diagrams. We aim to recover diagrams that are related to a target

diagram but have a connection obscured by the lossy production pipeline.

The main component of the query expander is a lexicon generator built on 14

million HTML lists crawled from ClueWeb09 [37]. We used the lexicon generation
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algorithm proposed in [60]. Given a term, a lexicon generator produces a ranked list

of terms belonging to the same category. For example, the lexicon generator might

take “Michigan” as input and emit many other states in the US. The web list dataset

is not domain specific, and thus we believe our lexicon generator can cover a large

number of different topics.

The query expander chooses a single expansion for each user query term (to avoid

the resulting search query to strongly favor one term over another). The lexicon entry

we choose for the expansion of query term ts will be the lexicon term that maximizes

the lexicon similarity score the lexicon similarity score SLex(t, ts). Given a query term

ts, let L = Lex(ts) be its generated lexicon and t be a term in a searching document

d. A direct way to measure the semantic similarity between ts and t is to measure

the probability of how often ts and t co-occur in the same list, as Sco(ts, t). But web

lists are noisy, so directly using Sco(ts, t) to represent how close the two terms are

can be misleading. Thus we compute t’s lexicon similarity to ts based on two parts.

Similarity of the document term to the query term and to the query term’s overall

generated lexicon:

Slex(t, ts) = Sco(t, ts) +
1

|L|
∑
t′∈L

Sco(t, t
′) (6.1)

Snippet Generator — Finally, the snippet generator generates a brief visual sum-

mary of each search hit in the SERP, as shown in Figure 6.2. Textual snippets in

traditional web search are a query-relevant compact document representation that

help users scan the result list quickly and find high-quality matches. To achieve these

goals in DiagramFlyer, we annotate a thumbnail image (i.e., a scaled image of the

diagram) with diagram metadata. We found the annotation to be useful as the text

in a scaled-down thumbnail image is often too difficult to read. By overlaying text

in a larger font on top of the diagram thumbnail we allow the end-user to quickly
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identify good matches in the SERP list.

6.3 Demonstration

The online demo video is available on YouTube1. We demonstrate the working

data-driven diagram search system DiagramFlyer via the following three functions.

Keyword Search — First, DiagramFlyer supports keywords queries. For example,

when a user types the search query ”birth rate” in the search box, she is able to browse

a ranked list of diagram objects. The snippet (as shown in Figure 6.2) presents all

the extracted elements of a diagram specification for fast browsing. In addition, the

user can reach back to the original document by clicking its URL.

Advanced Facet Search — The DiagramFlyer also supports querying by the dia-

gram generating process. By clicking the “Adv Search” button on the search interface

(as shown in Figure 6.2), a user can query by the diagram template language (as shown

in Example 1 & 2). For example, a user can easily obtain diagrams with “year” to be

the x-axis from 1990 to 2000 and with “population” to be the y-axis using the “Adv

Search” interface.

Find Similar Diagrams — The query language of DiagramFlyer makes it possible

to support many interesting application, including finding similar diagrams. For

example, when a user gets the initial results of querying for “birth rate” related

diagram, she can click a resulting diagram’s x-label to find all the diagrams with a

similar x-label. The user can also click “Find similar diagrams” on the top of each

resulting diagram snippet (as shown in Figure 6.2) to obtain a list of similar diagrams.

6.4 Conclusions and Future Work

DiagramFlyer is a working search engine that searches 319k diagrams extracted

1http://youtu.be/B7I1_o23N38
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from thousands of PDFs in the web. We have implemented the software architecture

and algorithms for implementing DiagramFlyer’s diagram pipeline extractor, as well

as query tools that perform diagram relevance ranking, similar item finding via lexi-

cons, and snippet generation. In addition, we have demonstrated that the system is

able to perform many interesting applications, including traditional keywords search,

advanced facet search, and searching for similar diagrams.

There are many ways to extend DiagramFlyer in the future. One is to improve

the raw quality and range of diagram information extraction. Diagrams consist not

only of textual annotations but also other features including “marks” corresponding

to data values and signals of transformations (e.g., log scales) [14, 112], all of which

may become query-able features when extracted. A different approach is to perform

deeper levels of semantic extraction from the diagrams to summarize the diagrams.

By identifying higher level “conclusions” from the text that are supported by the

diagram. Thus, a diagram that compares system performance might be distilled to

“System X is fastest”. Finally, additional support for non-keyword based queries (e.g.

similar images, correlated datasets, or sketched queries [111]) will further enhance the

system.
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CHAPTER VII

Conclusion and Future Work

This dissertation describes the challenges associated with para-relational data ex-

traction and presents four working systems that contribute toward converting para-

relational data into a relational format: Senbazuru, Anthias, Lyretail, and Diagram-

Flyer. The four projects make substantial steps toward addressing the challenges

posed in extracting the implicit semantics of para-relational data, with little user

assistance. We summarize our contributions in Section 7.1, and suggest future work

in Section 7.2.

7.1 Contributions

We developed four working systems that contribute to the conversion from para-

relational data to the relational format. Each system addresses a specific type of

para-relational data. Senbazuru is a prototype spreadsheet database management

system that extracts relational information from a large number of spreadsheets.

Anthias suggests an extension of the Senbazuru system to convert a broader range of

spreadsheets into a relational format. Lyretail is an extraction system that detects

long-tail dictionary entities on webpages. DiagramFlyer is a web-based search system

that obtains a large number of diagrams automatically extracted from web-crawled

PDFs. These four systems demonstrate that converting para-relational data into the
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relational format is possible, and also suggest directions for future systems.

7.1.1 Senbazuru Contributions

Senbazuru is a prototype spreadsheet database management (SSDBMS) that ex-

tracts relational information from a large number of spreadsheets. Doing so opens

up opportunities for data integration among spreadsheets and with other relational

sources. Our contributions include:

• Novel Spreadsheet Management System — Senbazuru is a prototype

spreadsheet database management system, that extracts relational information

from a large number of spreadsheets. In addition, Senbazuru supports three

functional components. It allows a user to quickly search relevant datasets in

a huge web spreadsheet corpus. It contains a background extraction pipeline

that automatically obtains relational data from spreadsheets and has a repair

interface that allows users to manually repair extraction errors by exploiting

commonalities among errors to probabilistically reapply one user fix to other

similar mistakes to minimize explicit manual intervention. Finally it supports

basic relational operators, especially selection and join, which the user can apply

to spreadsheet-derived relations.

• Data Frame Extraction — We identify that the data frame structure is

common among spreadsheets and propose an extraction model to automatically

recognize the data frame structure.

• Hierarchical Structure Extraction — To the best of our knowledge, we

are the first to present a semiautomatic extraction approach to obtain the hi-

erarchical structure accurately in spreadsheets. We propose a novel two-phase

semiautomatic approach based on an undirected graphical model to extracting

spreadsheet hierarchical structure accurately and with little user effort.
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7.1.2 Anthias Contributions

Anthias envisions an extension of the Senbazuru system to convert a broader range

of spreadsheets into a relational format. In particular, Anthias makes the following

contributions:

• Spreadsheet Property Extraction — To the best of our knowledge, we are

the first to propose the spreadsheet property detection problem, which is the

first step toward building the spreadsheet-to-relational-table pipeline.

• Novel rule-assisted active learning framework — We propose a novel,

hybrid, rule-assisted active learning framework to construct high-quality spread-

sheet property detectors with little user labeling effort. The hybrid framework

integrates an active learning approach with crude user-provided rules to save

labeling effort. By using a bagging-like technique, it can tolerate bad user-

provided rules.

7.1.3 Lyretail Contributions

Lyretail is a novel extraction system for constructing high-quality dictionaries with

only a few user-given seeds, especially for long-tail vocabularies (i.e., dictionaries that

contain long-tail items).

Lyretail’s contributions mainly lie in page-specific extraction. Lyretail builds

and applies many page-specific extractors to obtain high precision and recall on long-

tail items. It leverages the webpage’s structural and textual information to conduct

more accurate extraction on each single webpage, making it possible to detect long-

tail items that rarely appear. In addition, Lyretail builds a customized joint-inference

extractor for each of many hundreds of webpages, while requiring just three explicit

seeds from the user. By combining the outputs of multiple page-specific extractors,

we can produce high-precision, high-recall dictionaries.

146



7.1.4 DiagramFlyer Contributions

DiagramFlyer is a working search engine that provides search services for a corpus

of 319k diagrams extracted from 153K web-crawled PDFs.

We summarize DiagramFlyer’s contributions as follows: First, we implemented

the software architecture and set of algorithms for implementing DiagramFlyer’s

diagram pipeline extractor, as well as query tools that perform diagram relevance

ranking, similar items finding via lexicons, and snippet generation. Second, we

demonstrate that the system can perform many interesting applications, including

searching diagrams via keywords, advanced faceted queries to allow highly targeted

searches, and searching for similar diagrams.

7.2 Future Work

Although our four systems have made substantial contributions to para-relational

extraction, there is future work that can be done either on further improving the

current four systems or on new directions. The future work includes:

• Complete Pipeline for Spreadsheet-to-relational table Conversion —

We envision the spreadsheet-to-relational table transformation system using the

spreadsheet property detectors mentioned in Chapter 4. We can also investi-

gate the user-interface design to allow more effective interactions with users to

conduct accurate, low-effort transformation.

• Effective User Interaction — There are several ways to extend Lyretail

(mentioned in Chapter 5). First, we can move beyond the simple “seeds-only”

model that many dictionary systems use, in order to incorporate more flexible,

but still succinct, domain knowledge from the user. Second, we could extend

the input datasets to include nontraditional sources of dictionary information,

such as spreadsheets, relational databases, and even social media utterances.
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• New Types of Para-relational Data — In addition to the three types of

para-relational data mentioned in this dissertation, there are many other types

of para-relational data, such as PDF or HTML tables. In the future, we can

explore various ways to extract the para-relational data accurately from other

different data sources by combining user effort and machine learning algorithms

in an effective way.
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