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currents are in the ±ŷ direction. . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 (a) TE transmitted power spectrum through the two parallel slotted screens
separated by distance d with ∆1 = ∆2 = d/10 (blue solid line), as well as
the transmitted power Tsingle through a single slotted screen with the same slit
dimension (gray solid and dashed lines), near the first waveguide cutoff fre-
quency fc = c/2d. (b) Contour plots of |Ey(x, z)|2, normalized to the highest
value, at three representative frequencies: (i) below resonance (ς = 10ςr),
frequency of maximum power transmission (ς = ςr), and (iii) the waveguide
cutoff frequency (ς = 0). Waves are incident from the left. . . . . . . . . . . 30

2.6 TE transmitted power spectrum through the two parallel slotted screens sep-
arated by distance d with ∆1 = ∆2 = 0.08d (solid blue line), including the
first two resonant peaks. For comparison, the dashed and dotted gray lines
show 1/4th the TE transmission through a single screen with the same slit
dimension, and the square of the transmission through a single slit, respectively. 32

2.7 (a) TE transmitted power spectrum through two identical parallel slotted screens
separated by distance d with varying ∆1 = ∆2 = ∆. (b) TE transmitted
power spectrum through two parallel slotted screens separated by distance d
with ∆1 = 0.1d and varying ∆2. . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 TM transmitted power spectrum through the two parallel slotted screens sep-
arated by distance d with ∆1 = ∆2 = 0.1d (solid red line), including the
first three peaks. For comparison, the dashed gray line shows 1/3rd the TM
transmission through a single screen with the same slit dimension. . . . . . . . 36

2.9 TE (blue) and TM (red) transmitted power spectrum through the two parallel
slotted screens separated by distance d with ∆1 = ∆2 = 0.08d (solid red line).
[Left] Linear scale. [Right] Logarithmic scale. . . . . . . . . . . . . . . . . . 37

2.10 Schematic of the two-slit structure with thick walls. The conducting walls
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ABSTRACT

Electromagnetic Transmission Through Resonant Structures

by

Steven M. Young

Chair: Roberto Merlin

Electromagnetic resonators store energy in the form of oscillatory electric and mag-
netic fields and gradually exchange that energy by coupling with their environment. This
coupling process can have profound effects on the transmission and reflection properties of
nearby interfaces, with rapid transitions from high transmittance to high reflectance over
narrow frequency ranges, and has been exploited to design useful optical components such
as spectral filters and dielectric mirrors. Identifying new forms of resonators, and under-
standing how to engineer the coupling of resonators to their environment, can help make
such optical components more compact, simpler to manufacture, more amenable to inte-
gration in systems, and feasible in a greater range of frequencies.

This dissertation includes analytic, numeric, and experimental investigations of three
different electromagnetic resonators, each based on a different method of confining elec-
tromagnetic fields near the region of interest.

First, we show that a structure with two parallel conducting plates, each containing a
subwavelength slit, supports a localized resonant mode bound to the slits and therefore
exhibits (in the absence of nonradiative losses), perfect resonant transmission over a nar-
row frequency range. In practice, the transmission is limited by conduction losses in the
sidewalls; nevertheless, experimental results at 10 GHz show a narrowband transmission
enhancement by a factor of 104 compared to the non-resonant transmission, with quality
factor (ratio of frequency to peak width) Q = ω/∆ω ∼ 3000.

Second, we describe a narrowband transmission filter based on a single-layer dielectric
grating. We use a group theory analysis to show that, due to their symmetry, several of

xv



the grating modes cannot couple to light at normal incidence, while several others have ex-
tremely large coupling. We then show how selectively breaking the system symmetry using
off-normal light incidence can produce transmission peaks by enabling weak coupling to
some of the previously protected modes. The narrowband filtering capabilities are validated
by an experimental demonstration in the long wavelength infrared, showing transmission
peaks of quality factor Q ∼ 100 within a free-spectral range of 8-15 µm.

Third, we demonstrate that defect-free periodic structures of finite extent can support
extended, surface-avoiding, high-quality factor resonant modes, even without mirror-like
structures at the boundaries to confine electromagnetic energy. After discussing the nec-
essary conditions for mode confinement to occur, several numerical examples are given.
Finally, an experiment at microwave frequencies (2-9 GHz) demonstrates mode confine-
ment, with quality factors Q ∼ 150, in a 12-period array of short dielectric rods.
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CHAPTER 1

Introduction and Background

Harmonic oscillators, or resonators, are well-known to store tremendous oscillatory energy
near their natural frequency, a phenomenon familiar to any physics student who has seen
footage of the famous Tacoma Narrows Bridge collapse. This dissertation pertains to elec-

tromagnetic resonators, in which the stored energy takes the form of electric and magnetic
fields that are confined near the resonant structure [1]. By definition, resonators gradu-
ally exchange energy by coupling with the surrounding environment, and even a very small
coupling strength can produce drastic changes in the transmission, reflection, and scattering
properties of nearby structures. For instance, a resonator placed across an opaque interface
can absorb incident electromagnetic energy from one side and emit it into the other, pro-
ducing very efficient transmission at a particular frequency (this is the basis for efficient
wireless power transfer [2–4]). More generally, the resonant coupling process introduces
phase shifts and interference effects that make the transmission and reflection properties of
an interface wildly frequency dependent, with implications for the design of useful devices
such as spectral filters and dielectric mirrors.

Electrical engineers have long been familiar with the engineering possibilities of res-
onators. Besides frequency filters based on circuits with lumped capacitors and inductors,
resonators have been used to engineer the transmission and reflection spectra of devices
at microwave frequencies. To give just two examples, a series of successive cavities in a
metal waveguide can form an inductive iris bandpass filter [5], while a periodic metallic
mesh can form a frequency selective surface [6].

More recently, advances in microfabrication techniques and computational power have
extended such capabilities throughout the electromagnetic spectrum. A striking example
was the report by Ebbesen et al. [7] of optical transmission through a metallic film perfo-
rated by an array of very small holes. Ordinarily, light would be expected to transmit very
poorly through such subwavelength holes, but the array’s periodicity allowed the incident
light to couple resonantly to traveling surface plasmon polaritons, producing extraordinary
transmission efficiency greater than unity (when normalized to the area of the holes) near
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the plasmon frequency. Ebbesen’s report sparked a flurry of renewed attention on tiny
holes [8–10] and their interactions with resonances–including both traveling surface waves
and localized Fabry-Pérot–type resonances [11]–which has given rise to intriguing optical
devices such as structural color filters [12, 13].

Similar recent work has occurred for micro- and nano-scale dielectric structures, with
periodic dielectric structures known as photonic crystals [14] attracting increased interest
for their potential to engineer a desired electromagnetic response. One example is patterned
dielectric surfaces, which can support resonant modes analogous to the plasmonic modes
of metallic surfaces and have been used as compact single-layer optical devices ranging
from narrowband spectral filters [15] to broadband reflectors [16].

Finally, naturally occurring materials owe their frequency-dependent permittivity and
permeability (in the Lorentz model) to microscopic resonances such as lattice vibrations
and electronic transitions. Analogously, the ability to fabricate resonant structures much
smaller than the wavelength of light has enabled engineering the effective permittivity and
permeability of artificial materials [17]. Metamaterials have now been produced with sev-
eral unique properties, such as negative refractive indices.

The recent work in small metallic holes, patterned dielectric structures, and metamate-
rials has proceeded somewhat independently, but it is clear by now that all three share the
common thread of resonance engineering. Progress will depend, in part, on understanding
the effect of resonators on transmission and reflection spectra, on identifying new and po-
tentially useful forms of resonators, and on understanding how to engineer the coupling of
resonators to their environment.

1.1 Thesis organization

This dissertation describes analytic, numerical, and experimental studies of three decep-
tively simple resonant structures: a system of two parallel subwavelength slits, a one-
dimensional dielectric grating, and periodic structures of finite extent. In addition to illus-
trating general resonant transmission and reflection behavior, these structures lend them-
selves to various potential applications including spectroscopy, in-situ material characteri-
zation, surveillance, and energy conversion. The dissertation is organized into the following
five chapters:

The remainder of Chapter 1 contains a basic review of light transmission through some
common optical elements, which can serve as a baseline for comparing the transmission
after adding a resonant structure. The effect of adding a resonator to one of these basic
interfaces is discussed using a simple intuitive model based on coupled mode theory.
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Chapter 2 describes a resonant structure based on two parallel plates, each containing a
subwavelength slit [18,19]. Using approximate analytic calculations, we show that the slits
support a localized resonant mode. This allows the structure to exhibit (in the absence of
material losses) perfect resonant transmission over a narrow frequency range, an improve-
ment on the order (∆/λ)4 compared to a single plate with a single slit, where ∆ is the slit
width and λ is the wavelength. The transmission enhancement occurs for one of the two
possible incident polarizations, but not the other. We discuss the effects of material losses
using numeric finite-element calculations, and describe an experimental demonstration per-
formed at microwave frequencies (∼ 10 GHz).

Chapter 3 describes a narrowband transmission filter with a broad free spectral range
based on a single-layer dielectric grating [20, 21]. We numerically calculate the guided
modes supported by the grating, then use a group theory analysis to show that, due to
their symmetry, several of these modes cannot couple to light at normal incidence, while
several others have extremely large coupling. We then show how selectively breaking the
system symmetry using off-normal light incidence can enable weak coupling to some of the
previously protected modes. The narrowband filtering capabilities are validated using finite
element calculations and an experimental demonstration in the long wavelength infrared
(8− 15 µm).

Chapter 4 gives demonstrations showing that defect-free periodic structures of finite
extent can support extended, surface-avoiding, high-quality factor resonant modes, even
without mirror-like structures at the boundaries to confine electromagnetic energy. After
discussing the results of a proof given in [22] that this is true regardless of the boundary
shape, several numerical examples are given. Finally, the chapter describes an experiment
at microwave frequencies (2-9 GHz) demonstrating mode confinement in an array of short
dielectric rods. The in-plane confinement is due to the surface-avoiding mode effect, while
out-of-plane radiation also appears to be suppressed due to symmetry mismatch with ra-
diative modes.

Finally, Chapter 5 summarizes the results of the previous chapters and discusses poten-
tial applications for the various resonators.

1.2 Transmission through common optical elements

When light is incident upon an interface, a portion T of the electromagnetic energy is
transmitted across the interface and a portion R is reflected. Conservation of energy re-
quires T +R + L = 1, where L represents energy that is neither reflected nor transmitted,
whether due to scattering, absorption, or other losses. In this section, we will review the
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(a) (b) (c)

T TN T or TN

Figure 1.1: Schematics of some transmission scenarios, illustrating when to use the abso-
lute transmission T or area-normalized transmission TN . (a) Extended incident and trans-
mitted waves, (b) Extended incident wave with localized transmission through an aperture,
(c) Focused or confined incident wave with localized transmission through an aperture.

transmission properties of some common and well-studied optical elements, all of which
are included in standard texts [1, 23, 24]. This will give a baseline for the following sec-
tion and subsequent chapters, in which we will discuss the effects of adding resonances.
For simplicity, we will consider only lossless, isotropic, linear, non-dispersive materials in
these introductory examples, unless noted otherwise.

The transmission T is roughly defined as the power carried by an outgoing transmitted
wave (as measured by the time-average Poynting vector), divided by the power carried in
the incident wave. However, the precise definition depends on the details of the transmis-
sion process, as illustrated by the examples in figure 1.1. In figure 1.1a, both the incident
and transmitted waves are plane waves with infinite extent. In this case, comparing the
time-averaged power (or power density) on both sides of the slab will give a useful mea-
sure of T . Figure 1.1b, on the other hand, shows an incident plane wave diffracting through
a small aperture; the total transmitted power is finite, whereas the total incident power
is infinite. For such transmission through apertures, previous work (e.g., [7, 9, 25–30]) has
commonly used an area-normalized transmittance TN , in which the total transmitted power
is compared to the incident power over just the area of the aperture. Note that while T is
always less than 1, TN could be greater than 1 if incident energy is somehow funneled to-
ward the aperture entrance (the term “extraordinary optical transmission” [7] refers to the
situation TN > 1). Figure 1.1c shows a case with a focused beam incident upon an small
aperture, where either T or TN could be used. Because the focal size of a beam is limited
by the diffraction limit [31] to the order of the wavelength λ, T and TN are related for a
hole of radius a by T ∼ TN(a/λ)2. Similarly, for a slit of width ∆, they are related by
T ∼ TN∆/λ.
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Figure 1.2: (a) Schematic diagram of a circular hole of radius a in a perfectly conducting
screen of thickness t and infinite extent, with a normally incident plane wave. (b) Area-
normalized transmission TN through the hole for two different various screen thicknesses,
from Roberts. Blue dotted and dashed lines show the small wavenumber predictions of
Bethe (eq. 1.1) and Bouwkamp (eq. 1.2), respectively. The cutoff frequency of the circular
waveguide, kca = 1.85, is shown as a vertical dashed line.

1.2.1 Transmission through a subwavelength aperture

The first case we will discuss is the transmission through a small aperture in a conducting
screen, figure 1.2a. It has been recognized for nearly two hundred years that electromag-
netic fields couple poorly through holes that are small compared to the wavelength (this
is after all the basis for Faraday cages). The first accurate transmission calculation, tak-
ing into account the vector nature of the electromagnetic fields, was due to Bethe [25],
who considered the ideal case of a small circular hole of radius a in an infinitesimally
thin, perfectly conducting screen, in the extreme small wavevector limit (ka � 1) where
retardation effects can be ignored. In this limit, the hole can be replaced by electric and
magnetic dipoles, yielding a simple expression for the area-normalized transmittance TN
of a normally incident plane wave:

TN =
64

27π2
(ka)4 (1.1)

Bouwkamp [26, 32], “by a systematic use of complicated integrals,” was later able to
extend Bethe’s result as a series expansion in ka:

TN =
64

27π2
(ka)4

[
1 +

22

25
(ka)2 +

7312

18375
(ka)4 + . . .

]
(1.2)
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Figure 1.3: Wave and field vectors for incident, reflected, and transmitted plane waves at
an interface between two media with two orthogonal polarizations: (a) p polarization, and
(b) s polarization. Circles with dots (crosses) indicate vectors pointing out of (into) the
plane of the diagram.

While useful for holes much smaller than the wavelength, this expansion evidently fails for
smaller wavelengths (it diverges when ka > 1). Roberts [33] made a rigorous calculation
that could accommodate smaller wavelengths, as well as a possibly thick screen and off-
normal incidence, by expanding the fields in the hole as sums over circular waveguide
modes. Figure 1.2b shows TN from ref. [33] for normally incident plane waves with screens
of thickness t = 0 and t = a, as well as the large wavelength predictions from Bethe and
Bouwkamp.

In this dissertation, we will only consider a structure with very small apertures relative
to the wavelength, ka < 0.1, where small wavevector approximations such as Bethe’s
are perfectly acceptable. For more discussion of the vast body of work on small holes,
including the connection to recent work on extraordinary optical transmission, Garcia-Vidal
et al. [9] give a thorough review.

1.2.2 Transmission across a dielectric interface

Light incident on a smooth interface between two dielectric materials, as depicted in figure
1.3, is both partially reflected and partially refracted into the second material. The incident
and reflected angles are related by Snell’s law:

n1 sin θ1 = n2 sin θ2 (1.3)
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where nj =
√
µjεj is the refractive index in each region. The field amplitudes are related

by the Fresnel coefficients, which depend on the polarization:

p polarization


r12 =

(
Er
Ei

)
p

=
η1 cos θ1 − η2 cos θ2

η1 cos θ1 + η2 cos θ2

t12 =

(
Et
Ei

)
p

=
2η2 cos θ1

η1 cos θ1 + η2 cos θ2

(1.4a)

s polarization


r12 =

(
Er
Ei

)
s

=
η2 cos θ1 − η1 cos θ2

η2 cos θ1 + η2 cos θ2

t12 =

(
Et
Ei

)
s

=
2η2 cos θ1

η2 cos θ1 + η1 cos θ2

(1.4b)

In equation 1.4, ηj is the wave impedance in each region, η =
√
µ/ε. At normal incidence

with µ1 = µ2, eq. 1.4 reduces to:

r12 =
n1 − n2

n1 + n2

and t12 =
2n1

n1 + n2

(1.5)

The reflectivityR and transmissivity T can then be calculated from the Fresnel coefficients:

R =

∣∣∣∣ErEi
∣∣∣∣2 =|r12|2 (1.6a)

T =
η1 cos θ1

η2 cos θ2

∣∣∣∣EtEi
∣∣∣∣2 =

η1 cos θ1

η2 cos θ2

|t12|2 (1.6b)

At normal incidence with µ1 = µ2, eq. 1.6 reduces to:

R =
(n1 − n2)2

(n1 + n2)2
and T =

4n1n2

(n1 + n2)2
(1.7)

with R + T = 1 as required by the conservation of energy.

1.2.3 Transmission through a dielectric slab

The transmission through a thin uniform dielectric slab of thickness d, shown schematically
in figure 1.4a, can be expressed in terms of the single-interface reflection (transmission)
coefficients r12 and r23 (t12 and t23), from eq. 1.4. Airy’s method of summing the contribu-
tions from multiple partial reflections [34] or (equivalently) transfer matrix methods [23]
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give the overall reflection and transmission coefficients for the slab:

r =
Er
Ei

=
r12 + r23e

i2βd

1 + r12r23ei2βd
(1.8a)

R = |r|2 =
r2

12 + r2
23 + 2r12r23 cos (2βd)

1 + r2
12r

2
23 + cos (2βd)

(1.8b)

t =
Et
Ei

=
t12t23e

iβd

1 + r12r23ei2βd
(1.9a)

T =
η1 cos θ1

η3 cos θ3

|t|2 =
η1 cos θ1

η3 cos θ3

(
t212t

2
23

1 + r2
12r

2
23 + cos (2βd)

)
(1.9b)

In equations 1.8 and 1.9, β is the wavevector component within the slab that is normal to
the interfaces,

β =
n2ω

c
cos θ2 (1.10)

Thus, βd represents the phase accumulated by a wave traversing the slab, and 2βd is the
phase accumulated in a round trip. As required by the conservation of energy, R + T = 1.

The above expressions can be simplified considerably if the slab is symmetric, so that
the input and output half-spaces have the same material properties. In that case, r23 = −r12,
and t12t23 = 1 − r2

12 = 1 − R0, where R0 is the single-interface reflectivity. Substituting
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into 1.8 and 1.9 yields:

r =
Er
Ei

=
r(1− ei2βd)
1− r2ei2βd

(1.11a)

R = |r|2 =
4R0 sin2(βd)

(1−R0)2 + 4R0 sin2(βd)
(1.11b)

t =
Et
Ei

=
(1− r2)eiβd

1− r2ei2βd
(1.12a)

T = |t|2 =
(1−R0)2

(1−R0)2 + 4R0 sin2(βd)
(1.12b)

Figure 1.4b plots the transmission from eq. 1.12b as a function of βd for several values
of the single-interface reflectivity R. 100% transmission occurs at the Fabry-Pérot reso-
nance condition βd = mπ, with m = 0, 1, 2, . . . .

1.2.4 Transmission through multiple dielectric layers

The same techniques used for a single dielectric layer can be extended to analyze the trans-
mission through a multilayer dielectric stack, such as in figure 1.5. The fields at the entrance
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and exit planes of the stack are related by a transfer matrix,(
E0

H0

)
= W

(
EN

HN

)
(1.13)

where the transfer matrix W depends on the thicknesses and material properties of the
layers in the stack. For a periodic stack comprising N identical bilayers of two contrasting
materials,W is given by:

W =

[(
cos β1d1 −iη1 sin β1d1

−iη−1
1 sin β1d1 cos β1d1

)(
cos β2d2 −iη2 sin β2d2

−iη−1
2 sin β2d2 cos β2d2

)]N
(1.14)

In equation 1.14, β1d1 and β2d2 are the phases accumulated by waves traveling in each
subregion of the bilayer (see eq. 1.10), while η1 and η2 are the wave impedances.

Noting that the fields at z = 0 are given by a superposition of forward and backward
propagating waves, E0 = Ei + Er, whereas there is no backward propagating wave at the
exit, EN = Et, we set Ei = 1, Er = r, and EN = t. Substituting into eq. 1.13 gives a set
of two equations for the complex reflection and transmission coefficients:(

1 + r

(1− r)η−1
0

)
= W

(
t

tη−1
3

)
(1.15)

If the alternating layers are designed such that β1d1 = β2d2 = π/2, 3π/2, . . . , then the
structure is a quarter-wave stack, or distributed Bragg reflector. Within each layer at the
design frequency, the forward propagating waves destructively interfere with each other,
while the backward propagating waves constructively interfere, producing a frequency se-
lective, high-reflectance structure. Figure 1.5 shows the transmission spectrum in air for
such a multilayer dielectric stack comprising N = 20 periods of length a with d1 = 0.72a

and d2 = 0.28a, and refractive indices n1 = 1.5 and n2 = 3.9. The spectrum clearly shows
the wide band of high reflection emblematic of distributed Bragg reflectors, widely used in
laser and other cavity applications [35–37] as the mirrors in a Fabry-Pérot etalon.

The distributed Bragg reflector is a simple one dimensional example of a photonic crys-
tal [14]; a structure with periodicity of the same order as the wavelength. Such structures
have been shown to possess optical band structures, analogous to the electronic bands of
crystalline materials [38, 39]. The optical band structure provides an alternate interpreta-
tion of the Bragg reflector’s characteristic transmission spectrum, with the wide reflection
bands corresponding to band gaps where light propagation is forbidden. Besides the ob-
vious utility of the reflection band, the high transmission peaks above the forbidden band
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edge of ωGa/2πc ' 0.3 are also of interest. As discussed in Chapter 4, these transmission
peaks are actually associated with resonant surface avoiding modes that always arise near
the band edges in finite periodic structures [22].

1.3 Resonant transmission

Now we will consider the effects of coupling a resonator to an interface. Without the res-
onator present, incident energy is reflected or transmitted via the interface’s direct scattering
pathway, described by the r and t coefficients. The resonator provides a second, indirect
pathway in which energy is first coupled into the resonator and then later emitted, with a
phase shift, into the outgoing waves. By interfering with the direct-scattered waves, the
emitted waves from the resonator can either enhance the overall transmission (construc-
tive interference) or suppress it (destructive interference), depending on the phase shift.
And since the phase shift introduced by a resonator can be highly frequency-dependent,
the spectral response of a resonant interface varies between high transmission and high
reflection over narrow frequency ranges.

The distinctive spectral response produced by interference between multiple resonant
pathways is quite general and has been observed in numerous physical systems. It is of-
ten referred to as a Fano lineshape [40], after a researcher who studied it in atomic and
condensed matter systems. First observed as the Wood anomaly in metallic gratings [41],
which was eventually explained as interference with a resonant leaky mode supported by
the grating [42], Fano lineshapes have also been observed in association with many other
resonant phenomena, including guided modes in dielectric gratings and photonic crystal
slabs [15,43], surface plasmon polaritons in metallic films [7], Fabry-Pérot type resonances
in small slits [11, 44], and infrared optical phonons [45]. The common feature in these
systems is the presence of two interfering resonant pathways, one of which has a broad
frequency response and provides a slowly-varying background, and the other of which has
a narrow frequency response and produces a rapidly-varying lineshape.

In this section we will discuss a simple and intuitive model based on temporal coupled
mode theory [46–48] that can quantitatively explain the frequency-dependent transmission
behavior of resonant interfaces. In coupled mode theory, the incoming and outgoing radia-
tive fields and the fields associated the resonance are treated as separate objects that couple
to each other via their spatial overlaps. This approximation is valid provided the coupling
with the resonance is small; that is, when the resonance width is small compared to the
frequency. The notation in the following discussion is adapted from refs. [47, 48].

To begin, consider the slab shown in figure 1.6, with sets of incoming waves sj+ and as-
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Figure 1.6: Coupled mode model for an interface with an embedded resonance coupled to
two radiative modes.

sociated outgoing waves sj−. The wave amplitudes are normalized so that |sj+|2 and |sj−|2

are the electromagnetic power carried by the waves. We will consider just one set of waves
on either side of the slab, which can correctly describe the fields if the form of the waves is
chosen judiciously–e.g., plane waves for a subwavelength grating structure, focused beams
for an aperture in a metallic screen, etc. (Alternatively, a large set of orthogonal basis waves
could be used on either side and superimposed to give the correct fields). For simplicity,
we will consider a system that is symmetric with respect to reflection across the xy plane
(σ̂z symmetry), so that the direct non-resonant scattering process can be described by:(

s1−

s2−

)
=

(
rs ts

ts rs

)(
s1+

s2+

)
(1.16)

where rs and ts are suitable reflection and transmission coefficients for the slab with ho-
mogenized material properties.

In the following sections, we will consider the effects of adding one or more resonances
to the structure.

1.3.1 One added resonance

Consider the situation in figure 1.6 where the slab supports a single resonance A, with
amplitude normalized so that |A|2 is the electromagnetic energy in the resonator. The reso-
nance couples radiatively into the two outgoing waves s1− and s2− with coupling constants
d1 and d2, respectively, giving an overall radiative decay rate of τr. In addition, a nonra-
diative decay rate τnr heuristically accounts for energy dissipation into modes other than
s1− and s2−, including impurity or disorder scattering, material absorption, and inhomo-
geneous broadening. The incoming waves s1+ and s2+ scatter into the outgoing waves via
the direct pathway in eq. 1.16, and also couple energy into the resonance with coupling
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Figure 1.7: (a) Transmission in the coupled-mode model through a small aperture (ts ' 0,
rs ' 1) coupled to a resonance with frequency ω0 and quality factor Qr = 100, for vari-
ous values of the non-radiative quality factor Qnr. (b) Transmission in the coupled-mode
model through a dielectric slab with ns = 3.4 at normal incidence, with two independent
resonances of opposite parity, ωAnsd/2πc = 0.6, QrA = 400, ωBnsd/2πc = 1, QrB = 50.
The dashed gray line shows the transmission through the slab without added resonances.

constants κ1 and κ2. This system is described by the following system of equations:

dA

dt
=

(
−iωA −

1

τr
− 1

τnr

)
A+ κ1s1+ + κ2s2+ (1.17a)

s1− = rss1+ + tss2+ + d1A (1.17b)

s2− = tss1+ + rss2+ + d2A (1.17c)

Setting s2+ = 0 and looking for harmonic solutions with e−iωt time dependence gives
the overall transmission coefficient including resonant effects:

t =
s2−

s2+

= ts +
d2κ1

τ−1
r + τ−1

nr − i(ω − ωA)
(1.18)

and the power transmission is then T = |t|2. Conservation of energy and time-reversal
symmetry put constraints on the relationships between rs, ts, τr, κ1(2), and d1(2) [47]. Using
these principles, along with the σ̂z symmetry of the system, allows us to simplify eq. 1.18
significantly, as follows [48]. First, the reflection symmetry requires that the resonant fields
are either even or odd with respect to σ̂z, so:

d2 = ±d1 (1.19)
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where the upper sign is associated with an even resonant mode, and the lower sign with an
odd mode. Second, the conservation of energy requires that when the incoming waves s1+

and s2+ are set to zero, the energy dissipated radiatively from A is carried in the outgoing
waves s1+ and s2+. That is,

|d1|2 + |d2|2 = 2τ−1
r

|d1|2 = τ−1
r (1.20)

Third, as shown in ref. [47], time-reversal symmetry and σ̂z symmetry together require that

rsd
∗
1 + tsd

∗
2 + d1 = 0 (1.21)

and, finally, these symmetries along with the conservation of energy give

d1 = κ2 , d1 = κ2 (1.22)

Using eqs. 1.19, 1.20, and 1.21 together give:

rs|d1|2 ± ts|d1|2 + d2
1 =0

d2
1 =− τ 2

r (rs ± ts) (1.23)

Substituting these results into eq. 1.18 gives a simplified expression for the transmission
through a symmetric interface supporting a resonance:

t = ts ∓
τ−1
r (rs ± ts)

τ−1
r + τ−1

nr − i(ω − ωA)

= ts ∓
Q−1
r (rs ± ts)

Q−1
r +Q−1

nr + 2i(1− ω/ωA)
(1.24)

where Qr = ωAτr/2 and Qnr = ωAτnr/2 are the radiative and nonradiative quality factors,
respectively.

Figure 1.7 plots the transmission calculated using eq. 1.24 for some symmetric inter-
faces with various values of the direct scattering coefficients rs and ts. When the nonreso-
nant interface is completely opaque, with |rs| = 1 and ts = 0, then the resonance produces
a Lorentzian transmission peak with width given by Q−1 = δω/ω = Q−1

r + Q−1
nr and am-

plitude proportional to [Q−1
r /(Q−1

r + Q−1
nr )]2. In the absence of losses (Qnr → ∞), the

resonant transmission is perfect. On the other hand, as the resonance becomes decoupled
from the continuum, Qr → ∞, it becomes a bound state and the peak disappears if there
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Figure 1.8: Coupled mode model for an interface with two radiative modes and two reso-
nant modes coupled by κ.

are any losses.
Similarly, a completely transparent interface, with |ts| = 1 and rs = 0, will produce a

Lorentzian reflection peak, as noted in [15]. For any other combination of rs and ts, the
resonance produces an asymmetric Fano lineshape, with a rapid transition between perfect
reflection and perfect transmission near the resonant frequency.

1.3.2 Multiple resonances

Adding an additional resonance B as shown in figure 1.8 results in the following set of
equations:

dA

dt
=

(
−iωA −

1

τrA
− 1

τnrA
− κ
)
A+ d1As1+ + d2As2+ + κB (1.25a)

dB

dt
=

(
−iωB −

1

τrB
− 1

τnrB
− κ
)
B + d1Bs1+ + d2Bs2+ + κA (1.25b)

s1− = rss1+ + tss2+ + d1AA+ d1BB (1.25c)

s2− = tss1+ + rss2+ + d2AA+ d2BB (1.25d)

The coupling constant κ between modes A and B is in general complex. In a mechani-
cal analog of the model, the real part of κ represents dissipative (dashpot) coupling, while
the imaginary part corresponds to spring coupling. As shown by Barker and Hopfield in
the particular case of coupled phonons [45], there are many equivalent choices for κ, ωA,
and ωB, with pure spring-coupling and pure dashpot-coupling forms related by a diago-
nalization procedure. In any case, the various parameters in eq. 1.25 can be obtained by
fitting, although they are constrained by energy conservation and time-reversal symmetry
considerations, as in the one-resonance case.

One simple case is when the A and B modes have opposite parity with respect to re-
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flections about the xy plane (σ̂z). In that case, κ = 0 and the modes are independent. The
transmission is then simply:

t = ts ∓
Q−1
rA(rs ± ts)

Q−1
rA +Q−1

nrA + 2i(1− ω/ωA)
± Q−1

rB(rs ∓ ts)
Q−1
rB +Q−1

nrB + 2i(1− ω/ωB)
(1.26)

Figure 1.7b shows an example transmission spectrum with two such independent modes,
calculated using eq. 1.26.

Arranging to have multiple overlapping resonances is one route to achieving a narrow-
band transmission filter using transparent dielectric materials. For the transmission filter, it
is desirable to have a narrow transmission peak surrounded by a wide free spectral range
of low transmission. A dielectric transmission filter therefore requires the incident light
to interact with two resonances of similar frequency and different coupling strength: the
strongly coupled mode produces a broad reflectance resonance, and Fano interference with
the weakly coupled mode produces a narrow transmission peak within this high reflectance
background [20, 21, 49–52]. One such filter is discussed in Chapter 3.
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CHAPTER 2

Transmission Through Parallel Subwavelength
Slits

2.1 Introduction
1 In a sense, a conducting surface with a very small hole in it is the classic “nearly-opaque”
system. From aperture theory [25,26], electromagnetic radiation generally transmits poorly
through holes of dimension a much smaller than the wavelength λ, with the ratio of trans-
mitted power to the power incident upon the holes scaling as (a/λ)4. However, more recent
work has shown that transmission can increase dramatically if the apertures are coupled to
a resonant structure. Such extraordinary transmission has been reported both for arrays of
apertures coupled by surface plasmon-polaritons [7, 9, 11, 53, 54] and for single apertures,
such as a narrow slit in a thick conductor exhibiting Fabry-Pérot–like resonance [27, 30],
a slotted metallic cavity [28], a hole surrounded by a corrugated surface [55, 56], and oth-
ers [57–59]. Resonant cavities in particular have long been used in microwave transmission
filters [5]. Garcı́a-Vidal et al. [9] provide a review of work in extraordinary transmission
and its applications including sensing, near-field microscopy and light harvesting.

In this chapter, we will examine a particularly simple structure exhibiting resonant
transmission, namely a pair of parallel conducting walls, each of which has a single sub-
wavelength slit. We’ll show that the presence of the pair of slits leads to the occurrence of
a bound resonance, and thereby, to perfect transmission, even though the underlying (slit-
less) structure does not support strictly localized resonances. Figure 2.1 shows the two-slit
structure, which consists of two parallel conducting plates separated by a distance d and
extending infinitely in the x̂ and ŷ directions. Two parallel, narrow slits of width 2∆1 and
2∆2, respectively, extend infinitely in the ŷ direction. Note that, in the absence of the slits,

1Portions of this chapter were originally published in [19] (©2013 AIP Publishing LLC). Reused here
with permission.
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Figure 2.1: Schematic of the two-slit structure. The conducting walls extend infinitely in
the x̂ and ŷ directions.

Region B does not support a localized mode, as there are no walls confining the field in the
±x̂ directions.

We are interested in the electromagnetic power carried by waves incident from region
A, through both slits, into region C. We will consider waves that are cylindrically focused
or otherwise confined near the first slit, so that the transmission T can be simply defined
as the power transmitted into region C, divided by the total power in the incident beam.
Note that this measure of transmission differs from the area-normalized transmittance TN
commonly used in previous work on extraordinary transmission [7,9,27–30] when dealing
with extended incident waves, such as plane waves. When the incident beam is cylindrically
focused near the diffraction limit, the two measures are related by T ∼ TN∆/λ. The case
T = 1 (or 0 dB) is called perfect transmission.

We will study and contrast two polarizations for the incident waves. Previous work
on similar structures has primarily considered the transverse magnetic (TM) case, with the
magnetic field in the plane of the walls and parallel to the slits [29,60–62] (note that this po-
larization is sometimes called TE in the earlier engineering literature). When the incident
beam is TM polarized, enhanced transmission occurs at the Fabry-Pérot–like resonance
condition d = mλ/2, (m = 1, 2, ...). However, the resonant transmission is not perfect,
in part because power can be carried away from the slits via waveguide modes that prop-
agate between the conducting plates in the ±x̂ directions. In the less-studied transverse
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electric (TE) case, with the electric field parallel to the slits, the structure supports long-
lived resonant states localized near the slits at frequencies slightly below the Fabry-Pérot
frequencies [18]. The presence of these slit-bound modes, together with the poor coupling
of TE radiation through the narrow slits, produces sharp resonant peaks in transmission
through the pair of slits. In the limits of narrow slits and perfectly conducting plates, the
resonant transmission is perfect (T = 1).

2.2 Analytic Transmission Calculation Using the Equiva-
lence Principle

Although the fields and transmission for the two-slit structure of figure 2.1 can be read-
ily found using numeric techniques such as the finite element method, we can gain some
insight and physical intuition by finding an approximate analytic solution. In particular,
we’ll consider the case where the slotted sheets are infinitesimally thin perfect electrical
conductors (PEC), with slit widths that are small compared to the wavelength (k∆ � 1).
Leviatan [29] previously solved this problem with incident TM fields (magnetic field par-
allel to the slits), and Merlin [18] gave a TE solution in the case with aligned slits (s2 = 0)
of equal width (∆1 = ∆2) and uniform material properties (εa = εb = εc). Here, we’ll
extend the earlier work by giving approximate analytic solutions for both the TE and TM
cases, with possibly unequal slits and material properties. The results will be compared to
the non-resonant transmission through a single slit.

The equation to be solved is the 2d scalar Helmholtz equation,(
∂2

∂x2
+

∂2

∂z2
+ k2

i

)
Φ = 0 (2.1)

where ki = ω
√
µiεi is the free space wavevector in each region. For the TE case, Φ rep-

resents the electric field component parallel to the slits, subject to the boundary condition
Φ = 0 at the PEC walls. For the TM case, Φ represents the magnetic field parallel to the
slits and has the Neumann boundary condition ∂Φ/∂n = 0 at the walls. Eq. 2.1 can be
solved piecewise in each region, with the condition that the tangential electric and magnetic
fields are continuous across each slit boundary.

We will use an approach based on the equivalence principle [63] that recasts the prob-
lem as a generalized circuit network [64]. A similar approach has been used to analyze
transmission through narrow slots in a thick conductor [27], transmission through apertures
in a cavity [28], and the TM case of this two slit problem [29], among others [57, 65]. The
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Figure 2.2: (a) The three separate regions of the two-slit structure after using the equiva-
lence principle to replace the slits with magnetic current sheets backed by perfect electrical
conductors. The magnetic current directions shown are those for TE excitation. For TM ex-
citation, the currents are in the ±ŷ direction. (b) The lowest order magnetic current modes
in the slits, from eq. 2.6.

equivalence principle, based on the uniqueness theorem for Maxwell’s equations, states
that two different sources producing the same field within a region of space are equivalent.
In particular, the three connected regions of figure 2.1 can be represented by the equivalent
separate regions of figure 2.2a, with each slit replaced by a perfect electrical conductor
backing a (fictitious) magnetic current given by:

Mq = Eq × n̂ (2.2)

where Eq is the electric field within each slit, and n̂ is the outward-pointing unit normal
vector.

This approach allows us to consider each region separately. The continuity of the tan-
gential electric field is enforced by using equal and opposite magnetic currents in adjacent
regions for each slit. By calculating the fields produced by the magnetic currents in each
slit, H(Mq), we can also write equations for the continuity of the tangential magnetic
field:

Ha
t (−M1)−Hb

t (M1)−Hb
t (−M2) = −Hsc

t over slit 1 (2.3a)

Hb
t (M1) +Hb

t (−M2)−Hc
t (M2) = 0 over slit 2 (2.3b)
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In eq. 2.3a, Hsc
t is the “short-circuit” magnetic field corresponding to the incident field in

region A with the slit replaced by a PEC.
If we have the solution to eq. 2.3, then we are done. Unfortunately, we don’t know

a priori the precise form of the magnetic current in each slit. To make progress, we can
expand the magnetic current as the sum of an orthogonal set of basis functions,

Mq =
∞∑
n=1

VqnMqn (2.4)

and define an inner product for each slit:

〈A,B〉q =

∫ sq+∆q

sq−∆q

A ·B dx , q = 1, 2 (2.5)

Eq. 2.3 can then be projected onto each mode Mqn to give a set of linear algebraic equa-
tions for the coefficients Vqn.

Butler and Wilton [66] have already calculated analytic expressions for the modes in a
single narrow slit. We will take a shortcut by choosing their solutions as the basis functions
in this problem. The two lowest-order modes in each polarization are given by:

TE

 Mq1 = x̂
√

∆2
q − (x− sq)2

Mq2 = x̂ (x− sq)
√

∆2
q − (x− sq)2

(2.6a)

TM


Mq3 = ŷ

1√
∆2
q − (x− sq)2

Mq4 = ŷ
(x− sq)√

∆2
q − (x− sq)2

(2.6b)

These modes are plotted in figure 2.2b. The assumption is that the slit modes occurring
in our problem with two parallel walls are well approximated by the solutions for a single
slotted wall. This is likely to be true for slits that are narrow compared to the wavelength
and wall separation.

Sometimes, the polarization and symmetry of the incident field will allow us to use only
one of the modes from eq. 2.6, taking the other Vqn coefficients to be zero. In that case,
projecting eq. 2.3 using the inner product gives an especially simple form:

Y an
11 V1n + Y bn

11 V1n + Y bn
12 V2n = Ian1 (2.7a)

Y bn
21 V1n + Y bn

22 V2n + Y cn
22 V2n = 0 (2.7b)
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Figure 2.3: Equivalent circuit model for the two-slit structure when each slit supports only
one mode,Mqn.

where the matrix elements are defined as follows:

Y pn
qq = −〈Mqn,H

p
t (Mqn)〉q

Y bn
qr = 〈Mqn,H

p
t (Mrn)〉q , q 6= r

Ian1 = −〈Mqn,H
sc
t 〉1 (2.8)

The notation in eq. 2.7 has been chosen suggestively. The equations are the same as
those for the generalized electrical circuit network shown in figure 2.3, with generalized
admittances Y pm

qr , generalized source current Ian1 , and generalized node voltages Vqn. Af-
ter calculating the various generalized admittances (see Appendix A), the “transfer admit-
tance” Y12 will give the magnetic current magnitude in the second slit for a given incident
field:

Y12 =
Ian1

V2n

=
Y bn

12 Y
bn

21 − (Y an
11 + Y bn

11 )(Y bn
22 + Y cn

22 )

Y bn
21

(2.9)

Finally, the circuit analogy gives the time average power transmitted into region C:

Ptrans =
1

2

∣∣∣∣Ian1

Y12

∣∣∣∣2 Re {Y cn
22 } (2.10)

As suggested by the circuit analogy, maximizing the transmission through the slits is
equivalent to an impedance matching problem.

2.2.1 Single Slit, TE Case

As a demonstration of the method, we will first calculate the transmitted power in the sim-
pler case where there is only one conducting wall and only one slit located at (x, z) = (0, 0)
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Figure 2.4: (a) Schematic of the one-slit structure. (b) The two separate regions of the one-
slit structure after using the equivalence principle to replace the slit with magnetic current
sheets backed by perfect electrical conductors. The magnetic current directions shown are
those for TE excitation. For TM excitation, the currents are in the ±ŷ direction.

(see figure 2.4). This will also give a baseline for assessing the transmission enhancement
produced by introducing a second slit.

Let Esc be the following TE solution of Helmholtz’ equation for z < 0 when the slit
is short-circuited (replaced with perfect conductors), (assuming e−iωt time dependence and
expressed in polar coordinates):

Esc = ŷE0J1(kaρ) sinϕ

= ŷE0 sinϕ · 1

2

[
H

(1)
1 (kaρ) +H

(2)
1 (kaρ)

]
(2.11)

Here, ka is the wavevector magnitude in region a, ρ is the distance from the slit (ρ2 =

x2 + z2), and ϕ is the angle between the vector ρ̂ and the x-axis (sinϕ = −z/ρ). J1

is a first-order Bessel function, and H(1)
1 and H(2)

1 are first order Hankel functions of the
first and second kind, which represent the superimposed outgoing and incoming waves,
respectively. The incoming wave represents a diffraction limited beam focused on the slit.

We can find the total average power per unit length carried by the incoming wave by
integrating the radial component of the Poynting vector over a semicircle centered on the
slit location. A simple approach is to consider a large semicircle of radius kaL� 1, so that
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the Hankel function can be replaced with its large argument approximation [67].

Einc ' ŷE0

2

√
2

πkaρ
e−i(kaρ−

3π
4

) sinϕ

Hinc =
1

iηaka
∇×Einc

where ηa =
√
µ/εa is the impedance of region a. Then the time-average power per unit

length is:

Pinc =

∫ π

0

−ρ̂ · 1

2
Re{Einc ×Hinc} dϕ

=
|E0|2

8ηaka
(2.12)

Also of interest is the tangential component of the short-circuit magnetic field at the slit
location. For a TE incident field, Hsc

t is oriented in the x̂ direction, with a magnitude at
x, z = 0 given by:

Hsc
t = x̂ · ∇ ×E

sc

iηaka

∣∣∣∣
x,z=0

=
1

iηaka
lim
ρ→0

(
1

ρ

∂Esc
y

∂ϕ

∣∣∣∣
ϕ=0

)
=

E0

2iηa
(2.13)

If the slit width is small relative to the wavelength, ka∆� 1, then for our purposes we can
treat this tangential field as approximately constant over the slit area.

The matching condition for the tangential magnetic field in the slit is:

−Ha
t (M1)−Hc

t (M1) = −Hsc,a
t (2.14)

Noting that this incident TE field is even with respect to reflection across the x = 0 plane,
and assuming a small slit width, the magnetic current in the slit can be well approximated
using just the first (even) TE mode from eq. 2.6a. That is,

M1 = V11M11 = x̂V11

√
∆2 − x2 (2.15)

Projecting each term in equation 2.14 onto M11 and using equation 2.15 gives a linear
equation that can be solved for the magnetic current coefficient V11:

Y a1
11 V11 + Y c1

11 V11 = Ia1
1 (2.16)
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Here, the generalized input current Ia1
1 is given by

Ia1
1 = −〈M11,H

sc
t 〉 = −

∫ ∆

∆

√
∆2 − x2

E0

2iηa
dx

=
iE0

4ηa
π∆2 (2.17)

And for a small slit width (k∆ � 1), the generalized admittances Y a1
11 and Y c1

11 are given
by

Y i1
11 = −

〈
M11,H

i
t(M11)

〉
=
π2ki∆

4

16ηi
+
iπki∆

4

4ηi

[
ln

(
αki∆

2π

)
+

1

4

]
+
iπ∆2

2ηiki
(2.18)

In eq. 2.18, the index i = a or c is the appropriate region. α = 1.696915 . . . . Appendix
A has detailed derivations of equations 2.17 and 2.18. Note that in the small-slit limit
k∆→ 0, the last term in eq. 2.18 dominates the others.

Using the circuit model implied by equation 2.16, we can solve for the generalized
voltage V11 and consequently find the time-average power transmitted into region c:

Ptrans =
1

2

∣∣∣∣ Ia1
1

Y a1
11 + Y c1

11

∣∣∣∣2 Re
{
Y c1

11

}
(2.19)

For the case where regions a and c are identical (so Y a1
11 = Y c1

11 ), using the input current
from eq. 2.17, and using only the last, dominant term of eq. 2.18, we find the transmitted
power in the small-slit limit to be:

Ptrans '
|E0|2π2k2∆4

512η
(2.20)

and using the incident power from eq. 2.12, the transmission efficiency for the TE case is:

T =
Ptrans
Pinc

' π2(k∆)4

64
(2.21)

2.2.2 Single Slit, TM Case

Proceeding as in section 2.2.1, we define an incident TM field representing a diffraction
limited beam focused on the slit. Let Hsc be the following TM solution of Helmholtz’
equation for z < 0 when the slit is short-circuited (replaced with perfect conductors),
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(assuming e−iωt time dependence and expressed in polar coordinates):

Hsc = ŷH0J0(kaρ)

= ŷ
H0

2

[
H

(1)
0 (kaρ) +H

(2)
0 (kaρ)

]
(2.22)

J0 is a zero-order Bessel function, and H(1)
0 and H(2)

0 are zero-order Hankel functions of
the first and second kind, which represent the superimposed outgoing and incoming waves,
respectively.

The incoming wave, representing a diffraction limited beam focused on the slit, is there-
fore described by:

Hinc = ŷ
H0

2
H

(2)
0 (kaρ)

' ŷH0

2

√
2

πkaρ
e−i(kaρ−

π
4

) (kaρ� 1)

Einc =
iηa
ka
∇×Hinc

with incident power per unit length given by:

Pinc =
|H0|2ηa

4ka
(2.23)

Given the symmetry of the incident field and assuming a small slit width, the magnetic
current in the slit can be well approximated using just the first TM mode from eq. 2.6b.
That is,

M1 = V13M13 = x̂
V13√

∆2 − x2
(2.24)

Projecting each term in equation 2.14 onto M13 and using equation 2.24 gives a linear
equation that can be solved for the magnetic current coefficient V13:

Y a3
11 V13 + Y c3

11 V13 = Ia3
1 (2.25)

Here, the generalized input current Ia3
1 is given by

Ia3
1 = −〈M13,H

sc
t 〉 = −

∫ ∆

∆

H0√
∆2 − x2

dx

= −πH0 (2.26)

And for a small slit width (k∆ � 1), the generalized admittances Y a3
11 and Y c3

11 have been
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derived by Leviatan [29] (see eq. 2.40a):

Y i3
11 = −

〈
M13,H

i
t(M13)

〉
=
π2ki
2ηi

+ i
kiπ

ηi
ln

(
γki∆

4

)
(2.27)

In eq. 2.27, γ = 1.7810724 . . . . Note that in the small-slit limit k∆ → 0, the second term
in eq. 2.27 dominates the first.

Using the circuit model implied by equation 2.25, we can solve for the generalized
voltage V13 and consequently find the time-average power transmitted into region c:

Ptrans =
1

2

∣∣∣∣ Ia3
1

Y a3
11 + Y c1

13

∣∣∣∣2 Re
{
Y c3

11

}
(2.28)

For the case where regions a and c are identical (so Y a3
11 = Y c3

11 ), using the input current
from eq. 2.26, and using only the last, dominant term of eq. 2.27, we find the transmitted
power in the small-slit limit to be:

Ptrans '
ηa|H0|2π2

16ka
[
ln(γka∆

4
)
]2 (2.29)

and using the incident power from eq. 2.23, the asymptotic transmission efficiency for the
TM case is:

T =
Ptrans
Pinc

' π2

4

[
ln

(
γka∆

4

)]−2

(2.30)

Notably, the transmitted power in the TM case is much higher than that in the TE case (eq.
2.21), by a factor on the order of (k∆)−4 ln−2(k∆).

2.2.3 Two Slits, TE Case

Returning to the two-slit problem (figures 2.1 and 2.2), we will again consider the focused
incident TE field of eq. 2.11. Based on the incident field symmetry, we will perform a one
mode expansion in each slit with Mq = Vq1Mq1. The applicable generalized admittances
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are:
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12 (reciprocity) (2.31d)

Y b1
22 '

π2kb∆
4
2

16ηb
+ i

πkb∆
4
2

4ηb

[
ln

(
αkb∆2

2π

)
+

1

4

]
+ i

π∆2
2

2ηbkb

+
kb
ηb

N2∑
n=1

∫ ∆2

−∆2

∫ ∆2

−∆1

√
∆2

2 − x2

√
∆2

2 − x′2H
(1)
0 (kb

√
(x− x′)2 + (2nd)2) dx′ dx

+
1

ηb

N2∑
n=1

∫ ∆2

−∆2

∫ ∆2

−∆2

√
∆2

2 − x2√
∆2

2 − x′2
x′(x− x′)√

(x− x′)2 + (2nd)2
H

(1)
1 (kb

√
(x− x′)2 + (2nd)2) dx′ dx

+
∞∑

n=N2+1

[
π2∆4

2kb
4ηb

(
H

(1)
0 (2kbnd)− H

(1)
1 (2kbnd)

2kbnd

)]
(2.31e)

Y c1
22 '

π2kc∆
4
2

16ηc
+ i

πkc∆
4
2

4ηc

[
ln

(
αkc∆2

2π

)
+

1

4

]
+ i

π∆2
2

2ηckc
(2.31f)

28



In eq. 2.31, N1 is the largest integer n such that n2 ≤ (10∆1/d)2, N12 is the largest in-
teger n such that (2n − 1)2 ≤ (10(∆1 + ∆2)/d)2, and N2 is the largest integer n such
that n2 ≤ (10∆2/d)2. α = 1.696915 . . . . While these expressions may seem intimidat-
ing, they can easily and quickly be numerically calculated on a personal computer using
standard software such as MATLAB. Appendix A contains a detailed derivation of these
expressions, as well as some further refinements to reduce computation time and minimize
numerical errors when computing the infinite sums.
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21
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(2.32a)
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Y12
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22

}
(2.33)

With the TE excitation and corresponding Ia1 given in eqs. 2.11 and 2.17, the transmitted
power is:

T =
Ptrans
Pinc

=
π2ka∆

4
1

4ηa

∣∣∣∣ 1

Y12

∣∣∣∣2 Re{Y c1
22 } (2.34)

2.2.3.1 Special case: symmetric slits and perfect transmission

Let us now apply these results to the special case of symmetric slits that was treated in
ref. [18]. That is, s2 = 0, ∆1 = ∆2 = ∆, and the material properties are the same in
all three regions. It follows that Y a1

11 = Y c1
22 and Y b1

11 = Y b1
22 . Figure 2.5 shows the TE

transmission spectrum when ∆ = d/10 as calculated using eq. 2.34, as well as the electric
field magnitude at three frequencies of interest (for details of how to compute the field once
the slits’ magnetic current amplitudes V11 and V21 are known, see Appendix A). As can
be seen from the figure, the system exhibits greatly enhanced transmission (approaching
perfect transmission) at a frequency near, but slightly below, the first cutoff frequency of
the parallel plate waveguide, fc = c/2d. The transmission peak is narrowband, with a
quality factor in this case given by Q = f/δf ' 5500, where δf is the peak’s full width at
half-maximum transmission.

We can gain insight into this behavior by writing the magnetic current amplitudes for
each slit, from eq. 2.32, in the form:

V11 =
A

A2 −B2
Ia1

1 , V21 =
−B

A2 −B2
Ia1

1 (2.35)
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Figure 2.5: (a) TE transmitted power spectrum through the two parallel slotted screens
separated by distance d with ∆1 = ∆2 = d/10 (blue solid line), as well as the transmitted
power Tsingle through a single slotted screen with the same slit dimension (gray solid and
dashed lines), near the first waveguide cutoff frequency fc = c/2d. (b) Contour plots of
|Ey(x, z)|2, normalized to the highest value, at three representative frequencies: (i) below
resonance (ς = 10ςr), frequency of maximum power transmission (ς = ςr), and (iii) the
waveguide cutoff frequency (ς = 0). Waves are incident from the left.
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where A = Y b1
22 + Y c1

22 , and B = Y b1
12 . Notice from eq. 2.31 that these generalized ad-

mittances have singularities at the waveguide cutoff frequencies given by kd = mπ , (m =

1, 2, ...). Following [18], we can expand near the first cutoff frequency fc = c/2d and write
kd = π − ς (|ς| � 1). Near this cutoff frequency, A and B are approximately:
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√
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(2.36a)
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Point (i) in figure 2.5 represents frequencies well below fc, for which |B| � |A|. From
this, we can conclude that the magnetic current amplitude for the second slit, and thus the
power transmitted into region C, is vanishingly small. In fact, as discussed more later, the
power transmittance far from resonance is of the order T ∼ T 2

single, where Tsingle is the TE
transmittance through a single slotted screen. This is the transmission behavior that would
be expected for light that passes through two slotted screens in series, with no interaction
effects between the slits.

Of particular interest is the resonant frequency marked by point (ii), for which Im{A} =

−Im{B}. That is, when

ς = ςr '
π

2

[
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4
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(2.37)

Noting that Re{B} = 0 and Re{A} � Im{A} when k∆ is small, we can calculate the
transmitted power using eq. 2.34 as:

T =
π2k∆4

4ηa

∣∣∣∣ 1

Y12

∣∣∣∣2 Re{Y c1
22 }

= 4Re{A}
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∣∣∣∣2 Re{A}

= 4Re{A}2

∣∣∣∣ iIm{A}
Re{A} (Re{A}+ i2Im{A})

∣∣∣∣2
→ 1 (as k∆→ 0) (2.38)

That is, there is a resonant frequency below the waveguide’s first cutoff frequency (by an
amount δf = ςrfc/π) for which perfect power transmission occurs through vanishingly
narrow slits. From eqs. 2.38 and 2.36, the transmission peak’s quality factor is Q =

f/δf ∼ ς
−3/2
r . In addition, at the resonance frequency V11 ' V21, so M2 = −M1; the
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Figure 2.6: TE transmitted power spectrum through the two parallel slotted screens sepa-
rated by distance dwith ∆1 = ∆2 = 0.08d (solid blue line), including the first two resonant
peaks. For comparison, the dashed and dotted gray lines show 1/4th the TE transmission
through a single screen with the same slit dimension, and the square of the transmission
through a single slit, respectively.

magnetic currents and fields in the two slits are equal and π radians out of phase.
Figure 2.5b(ii) shows the field profile at this resonance frequency. A strong field exists

between the plates, localized to the slits. In this sense the resonance is similar to that
in a conventional cavity, although of course in this case the field is not confined entirely
by walls. Instead, power is prevented from propagating in the ±x directions because the
resonance occurs below the TE cutoff frequency of the parallel plate waveguide; the field
at z = 0 decays exponentially as |Ey|2 ∼ exp (−α|x|) with α = kb(8ςr/π)1/2.

Finally, point (iii) is the waveguide cutoff frequency. The transmission spectrum ex-
hibits a cusp due to the onset of the continuum of TE waveguide modes. Approaching
point (iii) corresponds to B →∞, giving:

V21 =
−BIa1

1

(A−B)(A+B)
' −Ia1

1

2(A−B)
' −I

a1
1

4Y a1
11

(2.39)

Comparing this result to eq. 2.19, we find that at the cutoff frequency fc, the magnetic
current magnitude in the second slit is half of that for a single slit. Consequently, the trans-
mission at the waveguide cutoff frequency is the same order as the transmission through a
single slit, T = Tsingle/4. Figure 2.5b(iii) shows the field profile at the waveguide cutoff
frequency.
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Figure 2.6 further illustrates the relation between the 2-slit transmission T and the trans-
mission through a single slit Tsingle. At the TE waveguide cutoff frequencies given by
fc,m = mc/2d, the 2-slit transmission is equal to 1/4th the transmission through a single
slit (seen more clearly in figure 2.5). At resonant frequencies slightly below the waveguide
cutoffs, the system exhibits perfect transmission. Far from resonance, T ' T 2

single, as would
be expected from two slits in series that don’t interact with each other.

Notably, the second resonance at f ' c/d exhibits perfect transmission, even though the
resonant state overlaps in frequency with the propagating TE waveguide modes that have a
cutoff at fc,1 = c/2d. This is because the slit-bound state and the waveguide modes have
opposite parity with respect to reflection across the z = 0 plane, and are thus prevented by
their symmetries from exchanging energy with each other. The second transmission peak is
wider than the first, as expected since k∆ is twice as large. In fact, the lowerQ exhibited by
the second order peak may make it more useful in certain applications, because the overall
transmission will be higher once conduction losses are accounted for [68].

2.2.3.2 Effects of varying slit width and asymmetric slits

Figure 2.7 shows the calculated TE transmitted power spectrum near the first resonance
for a variety of slit widths, ranging from ∆ = 0.1d to ∆ = 0.03d. If the two slits remain
symmetric, with ∆1 = ∆2, then the perfect transmission on resonance is preserved even
as both slit widths approach zero. As predicted in the previous section, the effect of the
smaller slits is to shift the resonance frequency closer to fc, increase the quality factor, and
decrease the off-resonance transmission.

However, if only one slit is made smaller while the other is maintained at ∆1 = 0.1d, the
peak resonant transmission decreases rapidly, in this case to only 0.6% when ∆2 = 0.03d.
Evidently, the non-equal slit widths prevent achieving a perfect impedance match.
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Figure 2.7: (a) TE transmitted power spectrum through two identical parallel slotted
screens separated by distance d with varying ∆1 = ∆2 = ∆. (b) TE transmitted power
spectrum through two parallel slotted screens separated by distance d with ∆1 = 0.1d and
varying ∆2.
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2.2.4 Two Slits, TM Case

Considering the focused incident TM field of eq. 2.22, we will perform a one mode ex-
pansion in each slit with Mq = Vq3Mq3. The generalized admittance parameters for the
two-slit problem of figure 2.1 with TM polarization were derived by Leviatan [29]. With
some slight notation modifications and using the e−iωt time evolution convention, they are:
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In eq. 2.40, γ = 1.7810724 . . . is the exponential of the Euler-Mascheroni constant.
Using the same approach as in the TE case, the generalized TM input admittance, trans-
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Figure 2.8: TM transmitted power spectrum through the two parallel slotted screens sep-
arated by distance d with ∆1 = ∆2 = 0.1d (solid red line), including the first three peaks.
For comparison, the dashed gray line shows 1/3rd the TM transmission through a single
screen with the same slit dimension.

admittance, and transmitted power into region C are:
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With the TM excitation and corresponding Ia1 given in eqs. 2.22 and 2.26, the TM
transmission is:

T =
Ptrans
Pinc

=
2π2ka
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∣∣∣∣ 1

Y TM
12

∣∣∣∣2 Re{Y c3
22 } (2.43)

Figure 2.8 shows the TM transmitted power spectrum with ∆1 = ∆2 = 0.1d, including
the first three resonant peaks. In contrast to the TE case, the TM case never exhibits perfect
transmission, and in fact never has greater transmission than in the corresponding one-
slit problem. The TM spectrum does show peaks of enhanced transmission occurring at
exactly the Fabry-Pérot–like frequencies, fc,m = mc/2d. As in the TE case, the transmis-
sion through two slits at the Fabry-Pérot frequencies is the same order as the transmission
through a single slit, in this case T ' Tsingle/3. Interestingly, the TM transmission peaks
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Figure 2.9: TE (blue) and TM (red) transmitted power spectrum through the two parallel
slotted screens separated by distance d with ∆1 = ∆2 = 0.08d (solid red line). [Left]
Linear scale. [Right] Logarithmic scale.

do not have smooth Lorentzian shapes, but rather have sharp cusps at each peak, associated
with the onset of a new band of TM waveguide modes.

2.2.5 Comparison and Discussion

Figure 2.9 compares the two-slit transmission spectra for TE and TM excitations with per-
fectly conducting, infinitesimally thin walls. The off resonant transmission is much greater
with TM excitation, but the TE excitation produces sharp peaks of nearly perfect trans-
mission at frequencies just below the Fabry-Pérot–like frequencies, fc,m = mc/2d. As
we have seen, the reason for this difference is that the TE excitation couples to a long-
lived, localized resonant state associated with interactions between the slits. While there
are Fabry-Pérot resonances in the TM case, they are not localized and thus cannot produce
perfect transmission features.

One way to understand the resonance localization is in terms of the continuum of
waveguide modes that can exist between parallel unslotted plates. The TE modes all have
cutoff frequencies, below which the guided modes decay exponentially with distance. Since
the TE slit-bound resonance frequency is below the lowest waveguide cutoff, it cannot ex-
change energy with the waveguide modes and remains localized. On the other hand, the
lowest order TM waveguide mode has no cutoff frequency. Thus, there is no barrier to
energy propagating away from the slits in the TM case.
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2.3 Numeric Transmission Calculation

To explore the properties of the localized TE mode in the presence of thick, possibly
imperfectly-conducting walls, we used a commercially available finite-element solver (COM-
SOL Multiphysics 3.5) to solve the two-dimensional (2d) Helmholtz equation:

∇2Ey + εrk
2
0Ey = 0

for the geometry shown in Figure 2.10. To reduce the size of the numerical problem and
more closely correspond to our experiment, we replaced the half-space regions A and C
with rectangular waveguides excited in the TE10 mode; this produces a confined incident
field at the first slit that is similar to a diffraction-limited focus and results in nearly the same
calculated transmission. We modeled the conducting walls as either perfect conductors
(Ey = 0) or using the impedance boundary condition:

n̂×H +

√
ε0εr,wall
µ0

Eyŷ = 0 (2.44)

with the permittivity given by εr,wall = 1 + iσ/2πfε0, where σ is the conductivity and f
a frequency in the microwave regime. Finally, we found that the infinite extent in the ±x̂
directions was best approximated by truncating the walls after several decay lengths of the
localized mode and using COMSOL’s “Port” boundary condition set for the TE10 mode.

k0

E(i) (TE)
or

H(i) (TM)

d

2∆2

t1 t2

2∆1
θ

Region A Region B Region C

z

x

Figure 2.10: Schematic of the two-slit structure with thick walls. The conducting walls
extend infinitely in the x̂ and ŷ directions.

38



0
wall thickness / d

104

105

106

107

Q
 =

 f 
/∆

f

PEC, no bevel

PEC, 75o

PEC, 60o

PEC, 45o

PEC, 30o

with losses

wall thickness / d

10-6

10-4

10-2

1

P
ea

k 
tra

ns
m

is
si

on

no bevel
75o

60o

45o

30o

wall thickness / d

0.94

0.95

0.96

0.97

0.98

0.99

1

P
ea

k 
fre

qu
en

cy
 f 

· (2
d/

c)

no bevel

75o

60o

45o
30o

4000 6000 8000 10000
Q = f /∆ f

10-6

10-4

10-2

1

P
ea

k 
tra

ns
m

is
si

on

30o

45o

60o

75o

no bevel

(a) (b)

(c) (d)

0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

0 0.1 0.2 0.3 0.4

}

Figure 2.11: Summary of numerical TE transmission calculations with ∆1 = ∆2 = d/10,
ε = 1, s2 = 0, and various bevel angles. (a) Quality factor (i.e., inverse bandwidth) versus
thickness for perfect conductors (marked with shapes) and considering losses (no shapes).
(b) Maximum transmission coefficient versus wall thickness when losses are considered.
(c) Effect of wall thickness on the frequency of peak transmission. This relation is the same
for real metals and perfect conductors. (d) The relation between transmission coefficient
and quality factor, considering losses, is the same for a variety of wall thicknesses and bevel
angles.

The transmission spectra obtained using the finite element method agree quantitatively
with the analytic results of the previous section when perfectly conducting walls are used,
and they agree qualitatively when conduction losses are introduced. Figure 2.11 shows the
results of numerical sensitivity studies for various parameters including the wall thickness
t and slit bevel angle θ. The results marked “with losses” assumed a wall conductivity of
σ = 3.5× 107 S/m, representative of pure aluminum at microwave frequencies [69].

The numerical results highlight that the nonradiative conduction losses matter greatly in
a practical device and put an upper limit on the achievable quality factor. Using the relation
for the overall quality factor 1/Q = 1/Qr + 1/Qnr, we can conclude that Qnr ' 104 when
realistic losses are included at microwave frequencies. Increasing the radiative quality
factor Qr much beyond this nonradiative value will serve mostly to decrease the resonant
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transmission according to T ∼ Q−1
r /(Q−1

r +Q−1
nr ) without appreciably narrowing the peak

width. As seen in the figure, decreasing the slit width with thick walls rapidly increases
Qr beyond the useful range, and also requires tight manufacturing tolerances to make a
repeatable device. This situation can be ameliorated by making a bevel in each slit to
deliberately lower Qr. Numerical studies such as those shown in figure 2.11 can be used to
optimize transmission and frequency resolution for a given application.

2.4 Experiment

We have built and tested a two-slit structure that operates in the X-band microwave at 10
GHz, shown in Figure 2.12(a). The two slits are fed by commercially available rectangular
WR90 waveguides, which operate in the TE10 mode between 8.2 and 12.4 GHz. The region
between the slits is milled from two pieces of stress-relieved Alloy 6061 aluminum, with
polished inner surfaces. When assembled, the structure resembles a cavity with two open
ends. Compared to the ideal 2d models discussed earlier, the physical structure has addi-
tional ground planes at y = 0 and y = h to accomodate the rectangular waveguide. Since
the ground planes are perpendicular to the expected electric field, they are not expected to
significantly perturb the field. They do, however, carry induced surface currents that lead
to additional conduction losses. From symmetry considerations, we expect negligible cur-
rent flow across the joint between the cavity halves. Table 2.1 summarizes the structure’s
dimensions as measured after fabrication. The dimensions were chosen for ease of manu-
facturing while providing reasonable expected power transmission and quality factor based
on the simulation results in Figure 2.11.

Figure 2.12(b) shows the |S21|2 power transmission coefficient through the two slits as
measured using a network analyzer. The measured transmission agrees well with a three-
dimensional finite element calculation that accounts for finite conductivity of the walls and
additional ground planes. We used the as-built dimensions and used the conductivity of
the aluminum as a fitting parameter, obtaining the best fit for σ = 1.2× 107 S/m, which is
consistent with other microwave conductivity measurements [69]. The effect of conduction
losses is significant even at microwave frequencies: our device has a peak transmission that
is nearly two orders of magnitude lower than the ideal, perfectly conducting case. On the
other hand, we observe a resonant enhancement of approximately four orders of magnitude
compared to the off-resonant transmission, with good signal-to-noise ratio.

The measured transmission spectrum exhibits ripples above the cutoff frequency fc =

c/2d because the walls do not extend infinitely away from the slits in the ±x̂ directions
but instead end after about five wavelengths. Thus, additional weak transmission peaks
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Figure 2.12: (a) Drawing of the aluminum cavity and waveguides used in the experiment.
For clarity, the upper ground plane at y = h is not shown. (b) Measured (blue line) and
calculated (red dots) power transmission coefficient from port 1 to port 2. (inset) Measured
transmission when the open cavity ends are covered with conducting plates.

Table 2.1: As-built parameters of the two-slit cavity used in the experiment.

Wall separation d 14.8 mm
Slit 1 width 2∆1 2.92 mm
Slit 2 width 2∆2 3.07 mm
Wall 1 thickness t1 2.01 mm
Wall 2 thickness t2 2.01 mm
Slit bevel θ 45o

Height in ŷ-direction h 10.2 mm
Length in x̂-direction L 305 mm
Design operating wavelength λ0 30 mm
Design operating frequency 10 GHz
Measured peak frequency f0 10.004 GHz
Measured quality factor Q = f0/δf ∼2760
Wall conductivitya σ 1.2× 107 S/m
aCalculated from fit of measured transmission spectrum
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emerge due to propagating waveguide modes partially reflecting from the waveguide/free-
space interface. If we simply cover the open ends with conducting plates, the main peak is
unchanged but the additional peaks become much stronger (Figure 2.12(b) inset) and can
be assigned to conventional cavity modes. The Fano-like [40] shape of the additional peaks
suggests interference between these cavity modes and the slit-bound mode [45].

2.5 Conclusions

In conclusion, we have demonstrated resonantly enhanced transmission associated with a
localized mode bound to two narrow slits in an open structure. The effect is reminiscent of
the coupling to Fabry-Pérot–like modes in open cavity devices such as masers and lasers,
with the crucial difference that the apertures in our case are essential for the existence of the
resonance as opposed to merely serving as a means to couple to an existing cavity mode.
One consequence of the slit-bound mode is elimination of the diffraction losses usually
associated with open, flat-walled cavities [70].

Although our experimental demonstration was performed in the X-band microwave, the
results are applicable in other frequency regimes as well, provided conductors can be found
with sufficiently low losses. Subsequent to this work, a tunable frequency filter based on
the two-slit resonance was demonstrated in the 0.1 - 10 THz range [68]. Materials with a
plasmonic response won’t affect coupling to the resonance studied here, because surface
plasmon polaritons couple only to p-polarized light, whereas the two-slit resonance couples
to s-polarized incident light.

The open-ended structure, with its narrow transmission peak, holds promise for appli-
cations in spectroscopy and characterization of free-flowing fluids and gases.
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CHAPTER 3

A Transmission Filter Based on a Dielectric
Grating

1 As seen in the previous chapter, the quality factor and peak resonant transmission of the
two-slit structure were substantially decreased by metallic absorption losses. If greater res-
onant transmission is desired, it is natural to look for resonant phenomena in transparent
dielectric structures, which typically have lower material absorption than metals. In this
chapter, we’ll focus our attention on periodic dielectric structures, known as photonic crys-
tals. These periodic structures possess band structures that can be exploited to engineer the
electromagnetic response of a given system, and are analogous to the electronic bands of
crystalline materials [38, 39]. With advances in fabrication techniques and computational
power, photonic crystals have attracted increasing interest over the past three decades, en-
abling studies of many interesting physical phenomena and finding numerous applications
(for a review, see [14]).

As we are interested in resonant phenomena, we will focus on a specific class of pho-
tonic crystals called photonic crystal slabs [15, 71, 72]. These slabs (or gratings) have their
periodicity confined to a thin layer that is surrounded by a low-index material; consequently
they have bands that extend into the light cone and can exchange energy with the radiative
continuum [73]. These so-called ‘leaky’ modes are resonant states that can be excited by
incident plane waves to produce Fano lineshapes [15, 40, 43, 47] and similarly decay into
the continuum when the excitation source is removed. The lifetime of an excited mode
and its associated coupling strength to the continuum is largely determined by the mutual
symmetry of the mode and permissible outgoing waves [73]. Select modes possess infi-
nite lifetimes at zone center as a result of their symmetry mismatch with allowed radiation
modes [74, 75]. These symmetry-protected modes have recently been used to demonstrate
high quality factor resonances near normal incidence [20, 76, 77].

1Portions of this chapter were originally published in [20] (©2013 AIP Publishing LLC) and [21] (©2014
American Physical Society). Reused here with permission.
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Numerous optical elements have been proposed based on resonant coupling to leaky
modes, starting with Magnusson et al. [15]. Frequency filters based on the principle have
predominantly operated in a reflective geometry (or as notch filters in transmission) [78–
80], which is understandable given that the dielectric material is transparent off-resonance;
as discussed in chapter 1, a single resonance with a transparent background will produce a
spectrum with a narrow peak of high reflectance. A dielectric transmission filter requires
the incident light to interact with two resonances of similar frequency and different cou-
pling strength: the strongly coupled mode produces a broad reflectance resonance, and
Fano interference with the weakly coupled mode produces a narrow transmission peak
within this high reflectance background. Previous theoretical proposals have achieved
this overlapping of strong and weak resonances by coupling modes of different diffractive
orders [51]; using asymmetric grating structures [81]; combining multiple adjacent grat-
ings [49, 50]; forming a Fabry-Pérot cavity with parallel gratings [82, 83] or a grating and
Bragg reflector [37]; or coupling gratings with quarter-wave reflector systems [52, 84, 85].
While a few transmission filter designs have been experimentally validated [52, 86–88],
experimental demonstrations of multilayer narrowband transmission filters have generally
been rare, perhaps due to the involved fabrication required.

We have experimentally demonstrated a narrowband transmission filter based on a sim-
ple, single-layer, one dimensional dielectric grating that operates in the infrared spectrum
(7-14 µm) [20, 21, 89]. In this chapter, after briefly reviewing how leaky modes arise in
dielectric slabs, we will analyze the particular resonant states that arise in our single-layer
structure. We will show using basic group theory how certain modes are prevented by their
symmetry from coupling to normally-incident light, and show how we can exploit this sym-
metry protection to make a narrowband reflection filter with a broad rejection band. Finally,
we will discuss an experimental demonstration in the infrared.

3.1 System description

Figure 3.1 shows a schematic of the investigated grating and defines the coordinate system.
The grating is defined by its relative permittivity (εg), period (Λ), thickness (t), and fill
factor (FF , defined as the ratio of the grating width to the grating period, w/Λ), as well as
the surrounding material’s relative permittivity (εs). The materials are also assumed to be
non-magnetic, µg = µs = 1. We consider plane waves with the electric field perpendicular
to the y-axis (Exz, green-dotted plane) and the magnetic field perpendicular to the x-axis
(Hyz, red-dashed plane) with a plane wave’s incidence defined by its angle with respect
to the normal in the xz-plane (θ) and yz-plane (ϕ). The grating’s periodicity in the x-
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Figure 3.1: Grating schematic and its corresponding Brillouin zone with incident fields,
dimensions, and material properties defined. a) The grating includes its period (Λ), height
(t), width (w, defined as Λ×FF where FF is the fill factor) and material permittivities for
the grating (εg) and surrounding material (εs). The electric field lies parallel to the xz-plane
and the magnetic field lies parallel to the yz-plane. The angles with respect to normal are
θ and ϕ, which lie in the xz- and yz-planes, respectively. b) Brillouin zone of the grating
structure with analyzed incident wave vectors: Point I: normal incidence or θ = ϕ = 0◦

(kx = ky = 0, |kz| > 0), Point II: θ > 0◦ (|kx|, |kz| > 0, ky = 0), and Point III: ϕ > 0◦

(kx = 0, and|ky|, |kz| > 0).

direction limits the extent of the first Brillouin zone in the kx direction while ky and kz
remain unbounded. (Note that, strictly speaking, kz is not a good quantum number, as the
system lacks translation symmetry in the z-direction. We refer here to the far-field (plane-
wave) wavevector of incident or radiated fields associated with the resonant modes, defined
by k2

z = ω2/c2 − k2
x − k2

y .)
This structure is part of a particular class of one-dimensional photonic crystal slabs,

often called high contrast gratings, that have attracted considerable interest for their spectral
engineering capabilities including ultra-broadband reflectors [16, 37, 90], two-dimensional
lenses [91,92], and frequency filters [15,20,50,51,79,80,86]. Recently, one such structure,
designed as a broadband reflector for visible light, showed anomalous dips in reflectivity
when using high numerical aperture lenses [90]. At the time, the dips were attributed to
a depolarization of the incident electric field. In fact, as we’ll show in this chapter, the
dips were caused by coupling to resonant guided modes in the grating that are prevented by
their symmetry from coupling to normally incident light, but can couple weakly at slightly
oblique incidence.

Analyzing the symmetry of the grating’s supported modes can help us selectively cou-
ple to particular sets of modes, producing narrowband transmission filters. We will discuss
mode coupling at several incidence angles, defined by coordinates in reciprocal space: nor-
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mal incidence Point I (|kz| > 0, θ = ϕ = 0◦); and off-normal incidence in the xz- and
yz-planes, Point II (|kz|, |kx| > 0, θ > 0◦) and Point III (|kz|,|ky| > 0, ϕ = 0◦), respec-
tively.

3.2 Origin of leaky modes

3.2.1 Guided modes in a uniform dielectric slab

To begin, let us review the textbook problem of guided modes in a uniform dielectric slab
(c.f. [1, 63, 73]). Figure 3.2 shows the slab geometry. If the refractive index within the slab
is greater than in the surrounding material, confined modes can exist due to total internal
reflection. In this section, we will derive the dispersion relation between the tangential
wavevector and mode frequencies, which will be useful later.

x

z

t

A
B

C

ϵa, µa

ϵa, µa

ϵb, µb

Figure 3.2: Geometry of a uniform dielectric slab supporting guided modes propagating
along the x-axis.

Given the symmetry of the structure, the characteristic solutions can be classified as
either odd or even with respect to reflection across the z = 0 plane. Without loss of
generality, we can consider wave propagation solely in the ±x direction, with no field
variation in the ±y direction, in which case the solutions are either transverse magnetic
(TM), with magnetic field in the y direction, or transverse electric (TE), with electric field
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in the y direction. The fields for odd TM guided modes have the form:

Region A


Hay = −iAωεaνeνzeikxx

Eax = Aν2eνzeikxx

Eaz = −iAkxνeνzeikxx
z < − t

2
(3.1a)

Region B


Hby = iBωεbkbz cos(kbzz)eikxx

Ebx = Bk2
bz sin(kbzz)eikxx

Ebz = −iBkxkbz cos(kbzz)eikxx
|z| ≤ t

2
(3.1b)

Region C


Hcy = −iAωεaνe−νzeikxx

Ecx = −Aν2e−νzeikxx

Ecz = iAkxνe
−νzeikxx

z >
t

2
(3.1c)

Here, the wave guidance is chosen to be solely in the ±z direction, so k`y = 0 in each
region `, and kaz = kbz = iν so that the fields decay evanescently away from the slab in
regions A and C. Thus,

k2
bz = k2

b − k2
x = ω2µbεb − k2

x

ν2 = k2
x − k2

a = k2
x − ω2µaεa (3.2)

The phase matching condition is implicitly enforced by using the same kx in each region.
The continuity of the tangential electric and magnetic fields at z = ±t/2 gives:

Bk2
bz sin

(
kbz

t

2

)
= −Aν2e−νt/2

iBωεbkbz cos

(
kbz

t

2

)
= −iAωεaνe−νt/2

Dividing the first of these equations by the second yields a relation between kbz and ν:

kbz tan

(
kbz

t

2

)
=
εb
εa
ν (odd TM modes) (3.3)

Furthermore, adding the equations in (3.2) yields:

k2
bz + ν2 = ω2(µbεb − µaεa) (3.4)

Equations 3.2 and 3.4 can be solved simultaneously for a given frequency ω to give the
wavevectors kbz, ν, and thus kx.

Solutions for even TM guided modes can be found using a procedure similar to the
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Figure 3.3: Dispersion relations of guided modes in a dielectric slab of permittivity εb =
7.52 surrounded by vacuum. The frequency ω and in-plane wavevector kx are normalized
to the slab thickness t. Modes are classified by polarization (TM solid lines and TE dotted
lines) and parity with respect to reflection of the in-plane electric field across the z = 0
plane (σ̂z). Even (σz = 1) modes are blue and odd (σz = −1) modes are green. The light
cone is shown in light gray.

above, replacing sin() with cos() (and vice-versa) in eq. 3.1 and keeping track of sign
changes to give fields of even parity. The dispersion relations are then found by solving eq.
3.4 simultaneously with eq. 3.5 (instead of with eq. 3.3):

− kbz cot

(
kbz

t

2

)
=
εb
εa
ν (even TM modes) (3.5)

Finally, the TE solutions can be found using duality relations, giving:

kbz tan

(
kbz

t

2

)
=
µb
µa
ν (even TE modes) (3.6a)

−kbz cot

(
kbz

t

2

)
=
µb
µa
ν (odd TE modes) (3.6b)

Figure 3.3 shows the guided mode dispersion relations beween the in-plane wavevector
kx and the frequency ω for a uniform non-magnetic slab with dielectric constant εb = 7.52,
surround by air (εa = 1). This dielectric constant was chosen so that the slab would have the
same average refractive index in the infrared as the high-contrast silicon grating discussed
in section 3.2.3.

As seen in the figure, all the guided modes, except the lowest order odd TM and even TE
modes, have a low frequency cutoff. The cut-off frequency for a given mode corresponds to
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ν = 0 (no decay along the x axis). That is, cot(kbzt/2) = 0 or tan(kbzt/2) = 0, depending
on the mode polarization and parity. The cutoff frequencies are thus given by:

ωmc =
πm

t
√
µbεb − µaεa

m = 0, 1, 2, . . . (3.7)

From eq. 3.2, each mode’s cutoff occurs where the dispersion curve intersects the light line,
ω = ckx. Continuing the dispersion curves past the light line would require an imaginary
vaue for the decay constant ν, with propagating waves towards or away from the slab.
Indeed, the region shaded in gray in figure 3.3, called the light cone, represents a continuum
of radiative modes, corresponding to all the possible configurations of incident plane waves.
In a uniform slab, the guided modes have no overlap with this continuum. They cannot
exchange energy with incident light.

3.2.2 Leaky modes in a periodic dielectric slab

Patterning the slab can allow incident light to resonantly couple with the guided modes. To
see how this can occur, consider the nearly-uniform slab shown in figure 3.4a. Compared
to the uniform slab of figure 3.2, a periodic modulation, with period Λ, has been added
to the refractive index. Considering the odd TM modes and invoking the 1d form of the
Floquet/Bloch theorem [93], the periodicity of the medium lets us write the magnetic field
as:

Hy(x, z; kx) = uk(x, z)e
ikxx (3.8)

where uk has the same periodicity as the slab: uk(x+Λ, z) = uk(x, z). Similar expressions
apply for the other field components and for the electric field. A consequence of eq. 3.8
is that values of the in-plane wavevector kx differing only by a reciprocal lattice vector
G = x̂2πm/Λ are not unique:

uk(x, z)e
i(kx+2πm/Λ)x =uk(x, z)e

i2πmx/Λeikxx

=umk(x, z)e
ikxx (3.9)

and umk also has the same periodicity as the slab. Thus, the dispersion relations for the
guided modes can be represented in a reduced zone scheme by folding the dispersion curves
into the first Brillouin zone, defined by |kx| ≤ π/Λ. If the slab’s permittivity modulation is
small, so that the dispersion curves found for the uniform slab are still approximately valid,
then the result is shown in figure 3.4b. Each guided mode of the uniform slab has become
several bands within the first Brillouin zone, characterized by the functions umk(x, z), with
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Figure 3.4: (a) Geometry of a nearly-uniform periodic dielectric slab, with thickness t
and period Λ. (b) Dispersion relations of guided and leaky modes within the first Brillouin
zone in a slab of permittivity εb = 7.52 and thickness t = 0.6Λ surrounded by vacuum.
The frequency ω and in-plane wavevector kx are normalized to the period Λ. Modes are
classified by polarization (TM solid lines and TE dotted lines) and parity with respect to
reflection of the in-plane electric field across the z = 0 plane (σ̂z). Even (σz = 1) modes
are blue and odd (σz = −1) modes are green. The light cone is shown in light gray. A red
line shows the dispersion relation of a plane wave at an incidence angle of 7◦.

m = 0, 1, 2, . . . .
Crucially, many of the guided modes now overlap the radiative continuum marked by

the gray light cone in figure 3.4b, and could resonantly couple to incident light if the right
conditions are met. Consider the diffraction of one of these modes, with wavevector kx,
into a radiative mode. From phase-matching considerations, the diffracted wave will have
a wavevector given by:

k = kxx̂+G+ kzẑ (3.10)

where G is a reciprocal lattice vector of the grating, and kz is determined by the region A
dispersion relation,

k2
z =

ω2

c2
a

− |kx +G|2 (3.11)

(ca = 1/
√
εaµa is the speed of light in regions A and C). For a subwavelength grating with

ω < 2πca/Λ, then for modes at the Γ point (kx = 0), G must be zero to give real values
of kz, and so there is only one radiative mode into which the guided mode can couple: the
normally incident wave with wavevector k = ẑω/ca. Similar arguments apply for other
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values of kx, with guided modes in a subwavelength grating coupling only to zero-order
radiative modes with the same transverse wavevector, although the condition for being a
subwavelength grating will vary somewhat with kx.

Thus, the coupling strength between a guided mode and the radiative continuum will be
given by an overlap integral over the unit cell between the umk functions corresponding to
the various field components and the associated fields in the radiative mode with the same
transverse wavevector. In general, coupling strength will be higher with large periodic
modulations in the permittivity and with high index contrast with the surrounding medium.
However, there can be modes for which the radiative coupling is zero, due to a symmetry
mismatch with the radiative fields. Paddon and Young [74] identified such symmetry-
protected modes with infinite lifetimes at the Γ point in a slab with a square lattice, and
Ochiai and Sakoda [75] found similar modes in a hexagonal lattice. We will return to this
point, in the context of our 1d high contrast grating, in section 3.3.

Finally, there is a connection between the resonant guided modes that arise in a periodic
dielectric slab and the Wood anomaly [41] observed in metallic gratings with p-polarized
incident light (magnetic field parallel to the grating grooves).2 The Wood anomaly was fi-
nally explained by Fano [42] as caused by a resonance related to the “leaky waves support-
able by the grating” (later identified as surface plasmon polaritons). Although the physical
nature of the guided modes differs, the mechanism of coupling to incident light via the
slab’s periodic patterning, and the resulting effect on the spectral response, are the same.
The “leaky” coinage has also proved quite popular and is commonly used in the literature
to refer to resonant guided modes.

3.2.3 Numeric calculation of modes in a high contrast grating

Now, we return our attention to the high contrast slab, shown in figures 3.1 and 3.5. Here,
the periodic modulation is extremely strong, with the permittivity varying from εg to εs
over a single period. Consequently, the folded dispersion relations of a uniform slab cannot
be expected to give accurate results for the mode frequencies. To provide a quantitative
comparison with our experiment, and to facilitate the group theory analysis of section 3.3,
we calculated the guided mode fields and dispersion relations for the grating using finite
element methods. Our method, described in more detail in appendix B, calculates the

2Wood’s paper is also notable for including one of the greatest methods statements in the history of
science: “The study of this grating has been limited to the two or three days immediately preceding the
closing of the laboratory for the summer, consequently I have been unable to give a very exhaustive account
of its behaviour under other conditions, or secure any very satisfactory photographs of the peculiar spectra.
The few photographs which I have taken and which are reproduced, were made on some old orthochromatic
plates, without any especial appliances...”
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Figure 3.5: Geometry of a high-contrast periodic dielectric slab, with thickness t and pe-
riod Λ. Each period consists of a dielectric region of width w and permittivity εg, followed
by a gap with the same permittivity as the surrounding material εs.

complex propagation constant using a weak formulation of Helmholtz’ equation expressed
as a quadratic eigenvalue problem [94, 95].

Figure 3.6 shows the resulting dispersion relations for TM polarized guided modes and
the associated field profiles for several resonances for a grating with: t

Λ
= 0.6, FF = 0.72,

εg = 11.7, and εs = 1. The dispersion relations show the guided modes, with solid bands
representing modes that were calculated using the modal analysis. The dashed bands, in
contrast, were estimated from scattering analysis due to their imaginary propagation con-
stants being larger than the Brillouin zone, which makes them difficult to accurately cal-
culate. Because of the grating periodicity in one direction, the dispersion relations are
represented in a reduced zone scheme. As seen in the figure, the index contrast between
the grating and surrounding material lifts the degeneracies at the zone boundaries (kx = π

2
)

and zone center (k = 0). The modes at zone center (k = 0) are labeled with their irre-
ducible representations in the D2h point group of the slab, determined by using a reduction
procedure [73] and by applying the symmetry operations of the point group to the the sim-
ulated mode field profiles. Looking at the Ex field profile for the lowest two zone center
modes, TM−1 and TM+

1 , it is clear that these modes have very different symmetry and are
expected to have very different coupling to normally incident light. TM+

1 presents a nearly
uniform tangential electric field at each surface, matching well to an incident plane wave.
TM−1 , on the other hand, will not couple to a normally incident plane wave at all. These
arguments will be formalized in the next section.

Figure 3.7 shows the calculated dispersion relations and field profiles for TE polar-
ized guided modes. As for the TM case, the modes are labeled at zone center with their
irreducible representations in the D2h point group.

3.3 Group theory analysis

The high-contrast suspended grating belongs to the D2h point group, requiring the grat-
ing’s supported modes at the Γ-point (k = 0) to have the same symmetry as the point
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Figure 3.6: TM dispersion relations and field profiles for a grating with t
Λ

= 0.6, FF =
0.72, εg = 11.7, and εs = 1. a) The dispersion relations include even (blue) and odd
(green) bands with respect to reflection across y = 0. Solid bands were calculated using a
finite element modal analysis and dashed bands are estimated from scattering analysis. The
modes at kx = 0 are labeled with their Γ-point (D2h symmetry) irreducible representations
and band definitions. The light cone is shown in light gray. b) TM mode field profiles
at kx = 0 with a black line indicating the boundary between high and low permittivities.
Below: grating simulation element, and directions defined.

group’s irreducible representations [73]. Table 3.1 shows the character table of the D2h

point group, along with some guided modes of the grating, from the modal analysis sum-
marized in figures 3.6 and 3.7, that belong to each irreducible representation at the Γ-point.
These modes, with the exception of the zero-frequency mode, lie within the light cone as
a consequence of the photonic crystal’s slab design. Hence, phase matching is possible
between these modes and incident light. The lowest order TM leaky mode, TM−1 , belongs
to the B1u irreducible representation. This mode is anti-symmetric upon rotation about the
y-axis (Ĉ2y) and reflection across the xy-plane (σ̂z), and symmetric upon reflection across
the yz-plane (σ̂x), remembering the magnetic field is a pseudo-vector. We will show that at
normal incidence a TM polarized plane wave cannot excite modes of this symmetry.

A normally incident TM polarized plane wave, |kz| > 0, shown as Point I in Figure
3.1b, belongs to the reduced symmetry of the Cz

2v point group, where the superscript z
indicates the symmetric rotation axis. The symmetry operations of this group (Ê, Ĉ2z,
σ̂y, and σ̂x) are summarized with its irreducible representations in Table 3.2a, along with
the grating modes belonging to each representation. A wave with this polarization can
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Figure 3.7: TE dispersion relations and select field profiles for a grating with t
Λ

= 0.6,
FF = 0.72, εg = 11.7, and εs = 1. a) The dispersion relations include even (blue) and odd
(green) bands with respect to reflection across y = 0. The modes at kx = 0 are labeled with
their Γ-point (D2h symmetry) irreducible representations and band definitions. The light
cone is shown in light gray. b) TE mode field profiles at kx = 0 with a black line indicating
the boundary between high and low permittivities. Below: grating simulation element, and
directions defined.

couple to TM (but not TE) guided modes in the grating. For this coupling to occur, the
phase matching condition must be met and the overlap integral between the incident field
and the supported mode must be non-zero; this requires the mode and incident wave to
belong to the same irreducible representation. The compatibility relations between Point I
and the Γ-point, determined by comparing the character tables for the relevant symmetry
operations, give their mutual irreducible representations. These relations, summarized in
Table 3.2b, show that each mode at Point I (C2v point group) maps onto two modes at
the Γ-point (D2h point group). The incident TM plane wave of Point I belongs to the
B1 irreducible representation, which matches the symmetry of the B2g and B3u Γ-point
irreducible representations at Point I. This plane wave, thus, can couple to modes that
belong to these two irreducible representations at the Γ-point while the other modes are
inaccessible or symmetry-protected, as seen in Table 3.2a; explicitly, modes TM+

1 , TM+
2 ,

and TM−3 of Figure 3.6 are all accessible at normal incidence, while modes TM−1 and TM−2
are symmetry-protected. This symmetry matching is illustrated by the x-component of the
electric field intensity shown in Figure 3.6b where modes TM+

1 , TM+
2 , and TM−3 share

plane wave symmetry in the x-direction while modes TM−1 and TM−2 are anti-symmetric in
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Table 3.1: D2h character table corresponding to the Γ-point of the grating’s reciprocal lat-
tice as well as the analyzed grating modes associated with each irreducible representation.

D2h E C2z C2y C2x i σz σy σx TM Modes TE Modes
Ag 1 1 1 1 1 1 1 1 TM−

2

B1g 1 1 -1 -1 1 1 -1 -1 TE−
1 , TE−

3 , TE−
4

B2g 1 -1 1 -1 1 -1 1 -1 TM+
1 , TM−

3

B3g 1 -1 -1 1 1 -1 -1 1 TE+
2

Au 1 1 1 1 -1 -1 -1 -1 TE−
2

B1u 1 1 -1 -1 -1 -1 1 1 TM−
1

B2u 1 -1 1 -1 -1 1 -1 1 TE+
1

B3u 1 -1 -1 1 -1 1 1 -1 TM+
2

Table 3.2: a) Cz
2v character table and b) the compatibility relations between Point I and the

Γ-point

Cz
2v E C2z σy σx TM Modes TE Modes
A1 1 1 1 1 TM−

1 , TM−
2

A2 1 1 −1 −1 TE−
1 , TE−

2 ,
TE−

3 , TE−
4

B1 1 −1 1 −1 TM+
1 , TM+

2 ,
TM−

3

B2 1 −1 −1 1 TE+
1 , TE+

2

(a)

Point I Γ
A1 Ag , B1u

A2 B1g , Au
B1 B2g , B3u

B2 B3g , B2u

(b)

comparison.
To access the symmetry-protected modes, the incident wave vector can be moved off

the kz axis to Point II, which is maintained in the kxkz-plane. Point II has the further
reduced symmetry of the Cxz

s point group, with symmetry only upon reflection across the
xz-plane, σ̂y. The Cxz

s character table and the compatibility relations between Point II
(Cxz

s point group) and the Γ-point (D2h point group) are given in Tables 3.3a and 3.3b,
along with the associated symmetries of the guided modes. This reduced symmetry relaxes
the selection rules, illustrated by the mapping of four Γ-point irreducible representations
onto each irreducible representation at Point II. The incident plane wave belongs to the A′

irreducible representation. All the TM modes considered at Point II share this irreducible
representation. Consequently, the modes that are symmetry-protected at normal incidence
can now couple to this off-normal incidence plane wave.

If instead we consider a plane wave with wave vector at Point III of Figure 3.1b, we
maintain symmetry across the yz-plane, σ̂x, and introduce a z-component of the magnetic
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Table 3.3: a) Cxz
s character table and b) the compatibility relations between Point II and the

Γ-point

Cxz
s E σy TM Modes TE Modes

A′ 1 1
TM−

1 , TM+
1 ,

TM−
2 , TM+

2 ,
TM−

3

A′′ 1 -1 TE−
1 , TE+

1 , TE−
2 ,

TE+
2 , TE−

3 , TE−
4

(a)

Point II Γ
A′ Ag , B2g , B1u , B3u

A′′ Au , B1g , B3g , B2u

(b)

Table 3.4: a) Cyz
s character table and b) the compatibility relations between Point III and

the Γ-point

Cyz
s E σx TM Modes TE Modes
A′ 1 1 TM−

2 , TM−
1 TE+

1 , TE+
2

A′′ 1 -1 TM+
1 , TM+

2 ,
TM−

3

TE−
1 , TE−

2 , TE−
3 ,

TE−
4

(a)

Point III Γ
A′ Ag , B3g , B1u , B2u

A′′ Au , B1g , B2g , B3u

(b)

field (Hz) to the plane wave. In addition to exciting TM modes, this wave can also cou-
ple to TE guided modes, provided they have the appropriate symmetry. The grating’s TE
dispersion relations are shown in Figure 3.7 with field profiles of select modes illustrated.
The Cyz

s character table and the compatibility relations between Point III (Cyz
s point group)

and the Γ-point (D2h point group) are shown in Tables 3.4a and 3.4b. At Point III the inci-
dent plane wave belongs to the A′′ irreducible representation of the Cyz

s point group, which
shares the symmetry of several guided modes at Point III. Thus, coupling to TE−1 , TE−2 ,
TE−3 , and TE−4 is allowed while modes TE+

1 and TE+
2 remain symmetry-protected due to

their anti-symmetry in Hy for reflections across the yz-plane. To couple to these additional
modes, the x-symmetry must also be broken, which could be achieved by introducing an
additional kx component to the wave vector. A summary of the permissible mode coupling
for incident plane waves with wave vectors at Points I, II, and III is given in Table 3.5.

3.4 Transmission calculations

We have exploited this selective mode coupling to realize transmission filters using a di-
electric grating. The operating principle, as discussed earlier, involves coupling the incident
light to two grating modes that overlap in frequency and have different coupling strengths.
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Table 3.5: Summary of the allowable mode coupling for a TM polarized plane wave with
various incident wave vectors. ‘X’ indicates relatively strong coupling, while ‘o’ indicates
relatively weak coupling. (Note that coupling to mode TM−3 is allowed by symmetry even
at normal incidence, but is relatively weak as described in the text.)

Modes TM−1 TM+
1 TM−2 TM+

2 TM−3 TE−1 TE+
1 TE−2 TE+

2 TE−3 TE−4
Point I X X o
Point II o X o X o
Point III X X o o o o o

The strongly coupled mode produces a broad reflectance resonance, and Fano interference
with the weakly coupled mode produces a narrow transmission peak within this high re-
flectance background. Previous proposals achieved this in various ways, including using
different diffractive orders [51], using asymmetric grating structures [81], or combining a
grating with additional resonant structures [37, 50, 82, 83]. In contrast to these methods,
we exploit symmetry-protected modes of a single diffraction order to achieve the required
coupling strength disparity.

Figure 3.8 shows the transmittance profiles in the kx and ky directions, or moving to-
wards Points II and III, respectively, for the transmission filter design discussed below. The
imaginary part of the propagation constant, determined from the modal analysis, represents
the coupling strength to the radiation field; a large (small) value results in fast (slow) decay
and consequently a broadband (narrowband) response. The width of a given resonance can
be expressed by its quality factor, Q = ω/δω, and is related to the energy decay within
the mode given by U(t) = U(t0) exp [−ω(t− t0)/Q] [73]. We iteratively optimized the
grating dimensions to maximize the coupling strength to accessible TM modes at normal
incidence, Point I, and consequently achieve a very low-Q response. See [89] for details
of this optimization process. The structure consequently exhibits broadband reflectance
greater than 95% for 0.357 < ωΛ/2πc < 0.625. The optimized structure dimensions are
identical to those used for the dispersion relations of Figures 3.6 and 3.7: t/Λ = 0.6 and
FF = 0.72. To facilitate the experimental demonstration discussed in the next section, we
also included a substrate separated from the grating by an air layer of thickness h/Λ = 0.8,
which is far enough to inhibit energy leakages from the grating. A permittivity of εg = 11.7

was used for the grating and substrate, consistent with silicon at infrared frequencies [96].
At normal incidence the low transmittance background is demonstrated as a result of the
optimized coupling to the TM+

1 and TM+
2 modes. From the group theoretical analysis

we also expect coupling to mode TM−3 . The transmission band associated with this mode
exhibits a narrow transmission band response that is a result of a small overlap integral be-
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Figure 3.8: Simulated grating transmittance profile at normal and off-normal incidence.
kx = 0, |kx| > 0, and |ky| > 0 correspond to Points I, II, and III, respectively. The
top scale shows increasing θ and ϕ directions corresponding to |kx| > 0, and |ky| > 0,
respectively. Transmission bands are labeled with the mode associated with the resonance.

tween the incident plane wave and mode. This small overlap integral can be inferred from
the multiple nodes in the field profiles compared to an incident plane wave with wavelength
greater than the grating thickness.

Away from normal incidence, |kx| > 0 or |ky| > 0, the relaxed selection rules enable
coupling to the symmetry-protected modes. The broadband low-transmittance is main-
tained near kx = ky = 0 since the overlap integrals with the modes responsible for the
response remain nearly constant. Within this broadband background, narrow transmis-
sion bands emerge as a result of weak coupling to the symmetry-protected modes. These
transmission bands are labeled with the modes responsible for the resonant response. A
perturbation to normal incidence will leave the mode profiles nearly identical to the zone
center (kx = ky = 0) modes, ensuring the overlap integral remains small and the associ-
ated coupling is weak. Thus, resonant high-Q transmission peaks are observed near normal
incidence, and the peaks widen as |kx| or |ky| increases. Interestingly, the overlap integrals
for the two sets of modes, TM and TE, result from different mechanisms. For the TM
cases, the off-normal incidence simply results in non-zero overlap integrals for every field
component. The TE peaks result from a small polarization overlap between the incident
field and slab modes due to magnetic field-depolarization when ky is introduced.

The agreement between the simulated transmittance and the modal analyses is strong.
The transmittance bands for |kx| > 0 align exceptionally well with the dispersion relations
of Figure 3.6, with deviations only observed for the estimated TM+

1 and TM+
2 bands. The
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Figure 3.9: SEM micrographs of representative suspended silicon grating in (a) cross-
sectional view, (b) oblique view, (c) plan view, and (d) side view. ©2014 J. M. Foley. Used
with permission.

transmittance bands associated with the TE modes are also in excellent agreement with the
zone center (k = 0) frequencies of the TE dispersion relations. Furthermore, the TM−3
coupling responsible for the transmittance band at ωΛ

2πc
= 0.72 persists as |ky| is increased,

explicitly showing how the TM mode coupling is maintained while TE mode coupling is
introduced. Notably, one would expect the transmission bands for |ky| > 0 to increase in
frequency with increasing |ky| due to the lack of periodicity in the y-direction, however,
both TE−2 and TE−4 transmission bands initially decrease in frequency away from normal
incidence. We attribute this decrease to avoidance crossings between these modes and the
TM+

1 and TM−3 modes, which have the same symmetry within the Cyz
s point group and are

slightly higher in frequency.

3.5 Experiment

3.5.1 Sample fabrication

J. Foley fabricated suspended silicon gratings matching the high contrast structure analyzed
in section 3.2.3. The dimensions were scaled to provide greater than 90% reflectance at nor-
mal incidence in the long wavelength infrared frequency range between 20 and 40 THz (8-
15 µm): Λ = 4.9 µm, t = 2.85 µm, h = 4.05 µm and FF = 0.72. This frequency range
enables structure dimensions amenable to photolithographic processing and has technolog-
ical importance for infrared imaging applications including surveillance [97] and remote
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Figure 3.10: Transmittance measurement configuration. ©2014 J. M. Foley. Used with
permission.

sensing [98]. Fabrication began with a commercially available silicon-on-insulator wafer
with 4± 0.5 µm and 4± 0.2 µm silicon and silicon-dioxide layer thicknesses, respectively.
The grating geometry was defined using standard photolithography and reactive ion etch-
ing, while subsequent hydrofluoric acid etching suspended the 250×500 µm silicon grating
slab. Figure 3.9, from [89], shows scanning electron micrographs of a representative sus-
pended grating. As seen in the micrographs, the gratings exhibit negligible bowing and
surface roughness relative to the incident wavelength. See [21] for additional fabrication
details.

3.5.2 Measurement setup

Grating characterization was performed using a Perkin Elmer Spectrum GX Fourier Trans-
form Infrared (FTIR) spectrometer with an AutoImage microscope attachment. A potas-
sium bromide (KBr) beamsplitter was used for the mid-infrared characterization, and an
internal aperture was used to specify the sample area to be characterized. A wire-grid po-
larizer, with manual orientation specification (±5◦), was placed in the detected light’s path.
The system uses a liquid nitrogen cooled mercury cadmium telluride (MCT) detector.
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4 cm−1 resolution was used for all measurements, with a mirror scan velocity of 2
cm/s. This corresponds to a resolution of 40 nm at an operating wavelength of 10 µm.
Consequently, for resonant phenomena, the highest measurable quality factor (Q = ω/δω)
is 125.

The commercial FTIR uses Cassegrain objectives to focus and collect light. These high
numerical aperture lenses (NA = 0.6) provide incident light between 16◦ and 36◦. Figure
3.10, from [89], shows a schematic of the incident and detected light configurations for
the transmittance measurements. To limit the incident wavevectors to particular values
near normal incidence, we used a custom sample holder and an aperture placed above the
sample.

The custom sample holder has a 20◦ tilt relative to the horizontal stage that enables
normal incidence characterization. An optical iris suspended above the sample was used
as an aperture to constrain light reaching the detector. The size of the aperture and height
above the sample was dictated by the signal strength. With the aperture adjusted to obtain
a measurable signal, the range of collected angles was θ ± 3◦, resulting in an effective
numerical aperture of NA ' 0.05. The aperture’s location, and thus the measured incident
angle, was manipulated using an xyz-translation stage with micrometer adjustment.

Strictly speaking, the aperture should have been placed between the source and the sam-
ple when constraining the incident light angle; that is, underneath the sample. However,
the geometric constraints of the commercial FTIR prevented this. Filtering the transmitted
light above the sample is acceptable in this case because the grating period is subwave-
length over the measured frequency range, so only the zero-th diffraction order produces
propagating waves.

3.5.3 Results

Figure 3.11 shows the experimental and simulated transmittance for a grating with dimen-
sions Λ = 4.9 µm, t = 2.85 µm, h = 4.05 µm and FF = 0.72 and incident light con-
figurations analyzed: Angle I, Angle II, and Angle III, as well as a fourth angle, Angle
IV (θ, ϕ > 0◦). In contrast to the preceding analyses that defined the incident field using
the in-plane wavevector, the experimental demonstration had the incident field defined by
θ and ϕ. As a consequence, the plot labels of Figure 3.11 do not represent a single point
in k-space, but instead they represent a range of incident wavevectors confined to the kxkz-
and kykz- planes for Angles II and III, respectively.

In the absence of nonradiative losses, the quality factors of the peaks associated with
modes TM−1 and TE−2 are expected to increase infinitely as the incident light approaches
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Figure 3.11: Experimental and associated simulated transmittance of a grating with various
incident wave configurations. The as-built dimensions were Λ = 4.9 µm, t = 2.85 µm,
h = 4.05 µm and FF = 0.72. Broadband reflectance, TM selective filtering, TE selective
filtering and mixed TE and TM filtering associated with the incident wave vector at various
points in the Brillouin zone: Point I (θ = ϕ = 0◦, Point II (θ = 7◦, ϕ = 0◦), Point III
(θ = 0◦, ϕ = 14◦), and Point IV (θ = 7◦, ϕ = 14◦), respectively.
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normal incidence. However, when the radiative coupling becomes less than the nonradia-
tive losses, the peak height begins to decrease without appreciable further reductions in the
peak width. The incidence angles reported in figure 3.11 are those for which the nonradia-
tive and radiative losses are of the same order of magnitude, as discussed further below.

At normal incidence, Angle I (θ = ϕ = 0◦), the low-transmittance background is
demonstrated to be below 7% between 8 and 13 µm, which agrees well with the simulated
transmittance. The corresponding simulated response has been reduced to 70% of its cal-
culated value to account for the reflection loss at the substrate’s exit interface, which was
not included in the simulation due to computational demands.

The experimental response at Angle II (θ = 7◦, ϕ = 0◦) is similarly shown to agree well
with its as-built simulation. In this case the transmittance has been normalized to the peak
transmittance of the experimental results (26%) to accentuate the qualitative agreement
between the datasets. The experimental response exhibits transmission peaks associated
with both the TM−1 and TM−2 modes, with moderate broadening and phase shifts compared
to the simulation that will be explained below.

Similarly, moving to Angle III (θ = 0◦, ϕ = 14◦) demonstrates selective coupling to TE
modes as we expect. Peaks corresponding to modes TE−1 and TE−2 are clearly visible, and
signatures of modes TE−3 and TE−4 are observable, with the normalized simulated response
(36.5%) agreeing well with the data. For both TM and TE demonstrations, the transmission
band frequencies are within 1% of those determined from the modal analysis, within the
experimental error of measuring the grating dimensions.

To confirm the resonant response results from two separate mode sets, we took data at
the low symmetry Angle IV (θ = 7◦, ϕ = 14◦), which has non-zero kx and ky simultane-
ously. The corresponding spectrum exhibits transmission bands associated with both TM
and TE modes, confirming our mode attributions at Angles II and III and the independence
of the TM and TE mode sets. At the further reduced symmetry of Angle IV we would
also expect resonant transmission bands from modes TE+

1 and TE+
2 as mentioned in the

group theoretical analysis of TE mode coupling. Unfortunately, due to the small overlap
integrals in both the kx and ky directions, the resulting Qs were too high to be resolved
experimentally.

There is strong agreement between the experimental and simulated structure response.
However, several of the expected peaks are not well defined and the experimental quality
factors are lower than those simulated. The maximum demonstrated quality factors for
the two dominant transmission bands centered in the opaque background, associated with
coupling to TM−1 and TE−2 modes, were Qexp(θ = 7◦) = 33, and Qexp(ϕ = 14◦) = 64,
respectively. These are much smaller than their expected quality factors due to resonance
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broadening,Qr(θ = 7◦) = 113, andQr(ϕ = 14◦) = 107, respectively. The reduction in the
quality factor can be attributed to the angular extent allowed by the aperture, non-radiative
losses that can dominate the response at lower angles, and the finite grating size.

The ±3◦ angular uncertainty allowed by the iris setup, discussed above, is expected to
significantly affect the resonant response. A range of angles probes a range of different kx
or ky values, which due to the slope of the transmission bands of Figure 3.8 is expected to
result in a broader observed peak. This angular dependence is evident in the experimental
data, where the transmission peak corresponding to the TE−2 mode is narrower and more
symmetrical than the peak corresponding to the TM−1 mode. The highest possible measured
quality factors allowed by the iris’ angular extent are Q(θ = 7 ± 3◦) ' 110, and Q(ϕ =

14± 3◦) ' 175, for TM and TE modes respectively.
Even with better angular control of the incident light, material absorption and inhomo-

geneous broadening due to disorder scattering are still expected to put an upper bound on
the achievable Q as θ, ϕ → 0◦. Using optical properties from the literature for silicon in
this frequency range [96], the maximum quality factor due to non-radiative losses is on the
order Qnr ∼ 104. This estimate serves as an upper bound, and does not include additional
absorption losses due to dopants or impurities introduced during the fabrication process,
nor does it include scattering losses due to manufacturing imperfections. Using the relation
1/Qtot = 1/Qr + 1/Qnr, we estimate the non-radiative quality factor in our samples to be
Qnr ' 100.

Although the structures are fairly tolerant of fabrication imperfections, deviations in the
symmetry of the structure are expected to affect the response on resonance. Optimizing the
fabrication further to reduce surface roughness and improve sidewall profiles may increase
the transmittance and Q.

Finally, it is known that the grating size affects the attainable quality factor and peak
transmittance on resonance [99, 100]. Since our grating was limited to approximately 100
periods, this could limit our peak transmittance andQ. Despite the experimental limitations
that make resolving the higher Q resonances more challenging, we were able to observe
signatures from all but the two highest-Q expected resonances.

3.6 Conclusions

We have demonstrated selective coupling to symmetry-protected guided modes of a dielec-
tric grating to realize transmission filtering capabilities. Using a group theoretical analysis,
we determined the selection rules that govern plane wave coupling to the grating’s sup-
ported modes. Using these selection rules, we provided a low-transmittance background
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by maximizing the coupling strength to modes accessible at normal incidence. Introducing
a perturbation to normal incidence in the kx (θ > 0◦) or ky (ϕ > 0◦) directions, weak
coupling to TM and TE symmetry protected modes, respectively, was shown to result in
high-Q transmission peaks within the low-transmittance background. We simulated and
experimentally verified the grating’s transmission filtering capabilities at various incidence
angles, which were shown to agree well with each other and the modal analysis. Although
we have chosen to relax the symmetry by introducing off-normal incident light, similar
response is possible at normal incidence if instead the symmetry of the grating itself is
broken. This could be achieved by changing the period and fill factor across the extent of
the grating or by etching the grating at an angle to break the symmetry across the yz-plane,
σ̂x [81, 101].

We note that other types of infinite-Q modes have been observed above the light line
in photonic crystal slabs, that are not due to symmetry protection and occur away from
normal incidence [48]. It may be possible to exploit such modes to create similar filters at
arbitrary incidence angles.

These transmission filters have potential to be used in a wide array of applications.
While our demonstration was performed in the LWIR, the operating principle is scalable to
any wavelength range, if similarly lossless materials are available. In the LWIR, these filters
may enable improved hyperspectral imaging capabilities for remote sensing and surveil-
lance applications [97, 98]. Hyperspectral imaging records the electromagnetic spectrum
for every point in a viewing plane, providing enhanced discrimination between objects.
These gratings have potential to be integrated at the pixel or sub pixel level, and only re-
quire a single dielectric layer, which may lead to improved and more cost-effective imaging
capabilities. The frequencies of the transmission peaks can be tuned during manufacture by
changing the grating period without altering the thickness or material properties [20, 21],
making arrays of such grating pixels feasible and simple to manufacture with conventional
integrated circuit techniques.

Finally, we note that selective emitters/absorbers are expected to increase the efficiency
of thermo-photovoltaics [102, 103]. Because these one-dimensional gratings have a high
density of states, compared to two-dimensional structures, they may be especially suited
for such systems.
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CHAPTER 4

Resonances in Finite Periodic Structures

1 In this chapter, we will discuss another method of confining electromagnetic fields in a
finite sized photonic crystal, to form a mirrorless resonant cavity. 2

A hole, impurity, or other defect in an infinite photonic crystal can act as a resonant
cavity, with resonant frequencies within the forbidden gaps of the crystal [14,36,106]. The
surrounding crystal is essentially a mirror that serves to confine the light.

Less obviously, a defect-free but finite photonic crystal surrounded by free space (see
figure 4.1) can also support resonant modes, as observed by Xu et al. [107] in a numerical
study of a finite square lattice of dielectric rods. In this case, the resonant frequencies occur
just outside the forbidden gaps, within the allowed bands of the crystal. The resonant states
extend throughout the crystal, with high field amplitudes near the center and low ampli-
tudes at the edges, analogous to surface-avoiding phononic modes observed in multilayer
condensed matter systems [108,109]. More precisely, the resonant fields observed by Xu et

al. could be divided using the envelope function (effective-mass) approximation [110–112]
into a rapidly-varying part determined by the underlying crystal structure and an envelope
function corresponding to the modes of a conventional mirrored cavity. With their small
field amplitudes at the edges of the crystal, the resonant modes exhibited low radiative
losses, yielding sharp spectral features. However, given the lack of any actual mirrors, it
was not clear why the envelope function should have nearly-Dirichlet boundary conditions,
or which geometries would show similar behavior.

Merlin and Young [22] recently proved using perturbation of boundary conditions [113]
that the surface avoiding modes observed by Xu et al. are in fact general features of finite

1Portions of this chapter were originally published in [22] (©2014 Optical Society of America). Reused
here with permission.

2Other types of mirrorless resonant cavities are well-known. Examples include dielectric systems that
rely on total internal reflection to confine fields close to the boundary (e.g., whispering gallery modes [104]),
systems with modes that lie outside the light cone (such as surface plasmons in metals), highly disordered
materials (Anderson localization [105]), and the systems discussed in chapter 3 with modes that are confined
by their symmetry [74, 75].
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L

a
Figure 4.1: Schematic diagram showing a finite photonic crystal and the length scales, L
and a, of the problem. CΞ is a mathematical curve that tightly encloses the crystal, and Ξ
is the interior region it describes.

photonic crystals, regardless of dimensionality (1d, 2d, or 3d) or the shape of the boundary.
The finite crystal acts as a mirrorless resonant cavity with surface avoiding modes if the
crystal size L is large compared to the period a, and the underlying crystal supports modes
with quadratic dispersion (ω − ω0) ∼ (q − q0)2, where q is the crystal wavevector. This
dispersion relation occurs in photonic crystals near the edges of allowed bands. In the
absence of all but radiative losses, the quality factor Qr, defined as the ratio between the
frequency ω and the width δω of a particular mode, and the finesse F = ∆ω/δω, where
∆ω is the separation between adjacent modes, are given by Qr ∼ (L/a)3 and F ∼ L/a. In
section 4.1, we will present a number of examples illustrating these general features.

The high-Q modes discussed here should not be confused with the resonant guided
modes supported by periodically patterned dielectric slabs [15, 71] that were discussed
in chapter 3. These modes occur in one- or two-dimensional photonic crystal slabs with
thickness comparable to the wavelength λ, which are assumed to have an infinite number of
in-plane periods. Consequently, the quality factors with a lossless medium are dominated
by out-of-plane radiative losses. If the number of periods is finite (but still large), then the
quality factor scales according to Q ∼ L/a, where a is the period, due to relaxation of
the phase-matching condition for coupling to radiative modes [99, 100, 114]. In contrast,
surface avoiding modes concern radiation from the edge of the periodic region without
regard for out-of-plane losses. The quality factor due to edge losses for surface avoiding
modes scales according to Q ∼ (L/a)3. In section 4.2, we will present an experimental
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demonstration of a finite periodic slab, which combes both the in-plane surface avoiding
mode confinement effect with the symmetry-based out-of-plane confinement discussed in
chapter 3.

4.1 Examples

4.1.1 A 1d photonic crystal

One-dimensional photonic crystals provide the simplest example of mirrorless resonant
cavity behavior. Figure 4.2 shows the calculated transmission coefficient T for a periodic
multilayer structure of period a and total lengthNa (see section 1.2.4), with resonant modes
producing hsarp transmission peaks. The frequency range shown is that of the second,
‘optical,’ band of the photonic crystal (in the first, ‘acoustic,’ band, ω → 0 for q → 0).
The surface-avoiding, cavity modes occur near the edges of the allowed band, where the
q-dependence of ω is quadratic. Figure 4.2(b) shows the intensity for the first three lowest-
lying modes. Their envelopes are in a one-to-one correspondence with the intensity profiles
of a mirrored resonant cavity (as well as with the quantum eigenfunctions of a particle in
an infinitely deep potential well [115]), which can be ordered according to the number of
zeros of the Dirichlet eigenfunctions. The results in figure 4.2(c) show that the distance
in frequency between two arbitrary peaks and their width scale, respectively, like N−2 and
N−3. Also note that the number of peaks for which T = 1 equals N − 1 [115].

4.1.2 A 2d photonic crystal

Figure 4.3 shows a two dimensional triangular lattice of dielectric rods. The dielectric
constants of the air (ε1 = 1) and rods (ε2 = 15) and the ratio of the rod radii to the lattice
space (r/a = 0.2) were chosen so that, according to calculations using the MIT Photonic
Bands software [116], the photonic crystal exhibits two forbidden gaps in the TM band
structure (electric field parallel to the rods). The lower frequency gap is defined by band
edges lying outside the light cone, at the K- and M-points of the Brillouin zone. The
gap extends from ω ' 0.248 × (2πc/a) (K-point) to ω ' 0.416 × (2πc/a) (M-point).
The second gap has band edges within the light cone, both at the Γ-point, at frequencies
ω ' 0.509× (2πc/a) and ω ' 0.564× (2πc/a).

Figure 4.4 shows finite element simulation results confirming the presence of surface
avoiding modes for a finite crystal with the underlying triangular lattice of figure 4.3 and a
hexagonal boundary. The dielectric constant for the rods was set to have a small imaginary
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Figure 4.2: (a) Transmission spectrum at normal incidence through a Si/SiO2 dielectric
stack (see figure 1.5a) comprising N = 25 identical bilayers of length a with d1 = 0.37a
and d2 = 0.63a, and refractive indices n1 = 1.5 and n2 = 3.9. Frequency is in normalized
units, ωa/2πc. (b) The square of the field for the first three modes above the band edge at
ωG ' 0.37 · 2πc/a. (c) Transmission spectra for different numbers of periods N , showing
scaling behavior.
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Figure 4.3: (a) Schematic diagram of a triangular lattice of dielectric circular rods with
radius r, lattice spacing a, and permittivity ε2, surrounded by a medium with permittivity
ε1. (b) Brillouin zone of the triangular lattice, showing high symmetry points. (c) Photonic
band diagram for TM modes (electric field parallel to the rods) in the triangular lattice with
ε1 = 1, ε2 = 15, and r/a = 0.2. Forbidden bands are highlighted in blue.

part (ε2 = 15 × (1 + 0.0001i)); consequently, resonant modes with high fields in the
rods produce peaks in the calculated absorption spectrum when excited by point current
sources. As for the one-dimensional photonic crystal, the surface avoiding modes manifest
themselves as narrow peaks that occur just below and just above the edges of the allowed
bands.

Contour plots of the field magnitude are shown for several of the modes nearest to the
band edges. As expected from the results of ref. [22], the corresponding envelope functions
are in close correspondence to Dirichlet modes of a similarly shaped mirrored cavity. The
envelopes of the modes also resemble those of Fabry-Pérot–type modes seen in uniform
dielectric shapes. However, they differ from Fabry-Pérot–type modes in several important
respects; namely, the field is rapidly varying on the length scale of a lattice constant, the
resonance frequencies are near the band edges of the underlying lattice, and the Q of the
peaks is much higher.

4.1.3 An open Fabry-Pérot cavity

In an early study of an open maser interferometer consisting of two flat parallel mirrors with
finite widths, Fox and Li [70] noted the surprising result that relatively high-Q resonant
modes exist in such a system with no side-wall boundaries, even with the high diffraction
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Figure 4.4: Absorption spectrum calculated using finite element method with a fixed exci-
tation for a 2d finite photonic crystal comprising 157 circular rods in the triangular lattice
of figure 4.3. The dielectric rods are slightly lossy, with ε2 = 15(1 + 0.0001i). Absorption
peaks near the band edges correspond to resonant TM modes. Contour plots of |Ez| are
shown for selected modes, labeled by their frequency in normalized units (ωa/2πc). For-
bidden frequency bands are highlighted in blue. [Top inset]: schematic of the finite crystal
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71



0 kxd
ω

d 
/ 2
πc

m = 1

m = 2

m = 3

ω=ck x

Figure 4.5: Dispersion relations ω(kx) for a parallel-plate waveguide.

losses expected for plane waves propagating between the flat mirrors (these high diffraction
losses are the reason most practical open cavities use concave mirrors). After many round
trips, waves propagating between the mirrors at the Fabry-Pérot frequencies converge to
steady state profiles that minimize diffraction losses, with high amplitudes near the center
of the plates and low amplitude at the edges.

This behavior can be explained in terms of surface avoiding modes. Specifically, two
flat mirrors separated by a distance d comprise a parallel plate waveguide, and each suc-
cessive Fabry-Pérot frequency ωc,m = mπc/d corresponds to the cutoff frequency of a TE
waveguide mode, which has the dispersion relation (see figure 4.5) :

ω2
m = c2(k2

x +m2π2/d2) (4.1)

where kx is the propagation constant parallel to the walls. Because the waveguide mode
dispersion near the cutoff frequencies is quadratic in lowest order, the results of ref. [22]
apply, and the open two-mirror system is expected to support high-Q surface avoiding
modes with lateral profiles resembling Dirichlet modes, just as observed by Fox and Li.
The modes are expected to exist just above the Fabry-Pérot frequencies and have quality
factors that scale as Q ∼ L3, where L is the width of the mirrors.

4.2 Experiment - a finite periodic slab

This section describes an experiment confirming mirrorless resonant cavity operation at
microwave frequencies (2-9 GHz) in a finite photonic crystal slab. Figure 4.6 shows the
experimental slab design. The slab comprises 157 dielectric rods with the same triangular
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Figure 4.6: As-built finite crystal slab used in the experiment. (a) Cross-section schematic.
(b) Plan-view schematic. (c) Definition of lattice parameters. (d) Photograph (oblique
view) of the slab while installed in the measurement apparatus.

lattice parameters and hexagonal boundary as the 2d crystal studied in section 4.1.2. How-
ever, it differs from the 2d example in several important respects. Whereas the dielectric
rods in section 4.1.2 were assumed to extend infinitely in the z direction, making a truly 2d
problem, the rods in the experiment have finite height h, and are attached to a conducting
ground plane below and nothing above. Thus, out-of-plane radiation losses are important
considerations in the experiment. Second, the underlying band structure of the ‘infinite’
photonic crystal will be different for the experimental slab than for the 2d crystal. Whereas
the band structure in figure 4.3 arises from a basis set of plane waves diffracting in the
periodic lattice, the appropriate basis functions for the slab are the guided modes of a di-
electric waveguide (see section 3.2). Specifically, noting the ground plane and using image
theory, the predominant resonant states should resemble the lowest order TM odd modes
of a dielectric slab with thickness 2h and a refractive index equal to the spacial average
of the figure 4.6 lattice. As shown in section 3.2.3, the guided modes in a high contrast
grating exhibit pseudo gaps, with the resonant modes showing approximately quadratic
dispersion near high symmetry points in the Brillouin zone. Thus, surface avoiding modes
are expected similar to the purely 2d case, albeit at slightly different frequencies.
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Figure 4.7: Block diagram of the experimental setup.

4.2.1 Fabrication

Figure 4.6(d) shows the assembled experimental slab. To give operation operation at mi-
crowave frequencies, the rods have diameters 2r = 3/8 in (0.953 cm) and lattice spacing
a = 15/16 in (2.38 cm), giving r/a = 0.2. The rod height is h = 5/8 in (1.59 cm). The
rods are TiO2 powder cured in a thermoplastic resin binder (Emerson and Cuming ECCO-
STOCK HiK), with permittivity ε2 = 15± 0.45 and dissipation factor δ < 0.002. Using a
positioning template, the rods were attached to a 38×38 inch alloy 6061 aluminum ground
plane with nitrocellulose lacquer (Wet n Wild Wild Shine Nail Protector, Clear 401A). The
overall width of the slab was approximately L ' 13a = 16 in (31 cm).

To excite the modes, an SMA coaxial panel post (Fairview Microwave SC3782) was
attached below the ground plane, with the coaxial shield soldered to the ground plane and
the 0.050 in center conductor extending vertically through the ground plane near the cen-
ter rod. The connector’s dielectric jacket was trimmed so that only the center conductor
protruded through the ground plane.

4.2.2 Measurement methods

Figure 4.7 shows the block diagram of the experimental setup, designed to measure the
electric field amplitude and phase at arbitrary positions near the slab [117]. A small probe,
made from a semi-rigid coaxial cable with the center conductor protruding 2 mm beyond
the shield, was oriented vertically and attached to a three-axis translation stage. Using a
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network analyzer (Agilent E8361A) with the source connected to Port 1 and the probe con-
nected to Port 2, the complex S-parameters were measured in the frequency range 2 - 9
GHz. Given the polarization of the probe, the S21 transmission parameter was then propor-
tional to the z-component of the electric field at the position of the probe’s exposed center
conductor. An automated computer program interfaced to the translation stage controller
was used to position the probe at the desired measurement points, as well as collect the S21

spectrum at each point.
The measurement surfaces were circles of radius 20 cm centered on the slab, at fixed

heights above the ground plane. Within each measurement surface, the S21 spectrum was
measured at 49,862 equally spaced points in the xy-plane (minus any points inside the
rods). To detect the presence of resonant modes that have high field magnitudes near the
slab, the square magnitude of the S21 measurement (proportional to |Ez|2) was summed
over all the points in the measurement surface. The result was a spectrum of

∑
|Ez|2

vs. frequency, with resonant conditions appearing as peaks. Each spectral measurement
comprised 1,401 frequency points between 2 and 9 GHz, giving a frequency resolution of
5 MHz. Thus, the highest measurable quality factor was approximately 1000.

4.2.3 Results

Figure 4.8 shows the
∑
|Ez|2 spectra measured at the heights z = 3 mm, z = 13 mm,

and z = 18 mm above the ground plane. The spectrum at each height is normalized to
its greatest value. Notwithstanding the differences between a slab and a purely 2d crystal,
the measured spectra are in qualitative agreement with the expected results for a 2d crystal
(figure 4.4). In particular, two forbidden ‘gaps’ are evident between approximately 4.5 -
5.3 GHz and 6.7 - 7.5 GHz, respectively, with resonant peaks near the allowed band edges.

Near z = 0, the ground plane ensures that the electric field is predominantly vertical, but
with the finite slab height, the field lines can be expected to diverge from vertical at greater
heights. The various spectra in figure 4.8 give a sense of how quickly this folding over
occurs for various resonant modes, with the modes at 5.45 GHz and 7.68 GHz departing
from the 2d case more quickly than the lower frequency modes.

Figures 4.9 and 4.10 show the measured vertical electric field for selected frequencies
corresponding to resonant modes. The field distributions and symmetries, particularly close
to the ground plane, correspond qualitatively to the surface avoiding modes of the 2d crys-
tal, figure 4.4. In particular, modes (i), (ii), and (iii) of figure 4.9 resemble the K-point
modes below the first gap of the 2d crystal, while mode (iv) of figure 4.10 resembles the
fundamental M-point mode above the first gap. Mode (v) of figure 4.10 corresponds to the
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Figure 4.8: Sum of measured |Ez|2 over all points within a circle of radius 20 cm centered
on the finite crystal slab, at three different heights above the ground plane, normalized to the
highest value at each height. (a) Schematic of slab cross-section showing the measurement
planes. (b)-(d) Measured spectra for the planes z = 3 mm, z = 13 mm, and z = 18 mm,
respectively. Roman numerals (i)-(v) indicate selected resonant modes for which field plots
are shown in figures 4.9 and 4.10.
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fundamental Γ-point mode above the second gap of the 2d crystal (not shown in figure 4.4).
Thus, the field measurements confirm surface avoiding resonant mode behavior.

Mode (iii) has the sharpest measured peak, with a full width at half-maximum of 30
MHz, corresponding to Q ' 150.

4.2.4 Discussion and future work

As discussed previously, this experiment differs in important respects from the 2d crys-
tal used in the theoretical analysis of ref. [22] and section 4.1.2. Most notably, the finite
slab height, with no conducting plane on top, introduces the possibility for significant out-
of-plane radiative losses. Thus, it is somewhat surprising that high-quality modes were
observable in the experiment at all. The field profiles in figures 4.9 and 4.10 suggest that
the modes observed in the experiment are prevented by their symmetry from coupling ef-
ficiently to radiative modes, similar to the guided modes studied in chapter 3. If this is the
case, then finite periodic slabs such as the one studied here can serve as mirrorless resonant
cavities due to the cooperation of two effects: suppression of in-plane radiative losses due
to the formation of surface avoiding modes, and suppression of out-of-plane losses due to
symmetry protection.

A rigorous analysis of out-of-plane losses in the finite periodic slab, along the lines of
sections 3.2.3 and 3.3, is left for future work. Here, we will briefly discuss some of the
considerations required in such an analysis.

In calculating the band structure of the infinite slab, the appropriate basis functions are
the guided modes of a dielectric waveguide (see section 3.2), rather than the plane wave
basis used for the 2d band structure. Specifically, noting the ground plane and using image
theory, the predominant resonant states should resemble the lowest order TM odd modes
of a dielectric slab with thickness 2h and a refractive index equal to the spacial average
of the figure 4.6 lattice. For guided modes within the light cone, the out-of-plane losses
will require using complex eigenvalues: either complex in-plane wavevectors with real
frequency, or complex frequency with real wavevectors [118, 119]. Properly calculating
the guided mode dispersion relations and field profiles in the presence of radiative losses
can be computationally difficult; one approach is to follow the procedures in section 3.2.3
and appendix B, modified to use a 3d computational cell.

Second, unlike in the section 3.3 symmetry analysis on the infinite 1d grating, the finite
periodic slab lacks translational symmetry in the x and y directions. Thus, kx and ky are
not good quantum numbers for the symmetry analysis, and the modes need to be repre-
sented in the point group of the overall structure. This can be seen by looking at the field
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profile of mode (iii) in figure 4.9: the rapidly varying part is a superposition of modes from
the K-points of the infinite crystal (C3v symmetry), but mode (iii) itself belongs to the A1

representation of the C6v point group. One consequence of this is that even though sur-
face avoiding modes will arise regardless of the boundary shape [22], finite crystals with
high symmetry boundaries, such as the hexagonal boundary used here, are more likely to
suppress out-of-plane radiation.
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CHAPTER 5

Conclusions and Potential Applications

The coupling process by which electromagnetic resonators exchange energy with their
environments can have profound effects on the transmission and reflection properties of
nearby interfaces, with rapid transitions from high transmittance to high reflectance over
narrow frequency ranges, and has been exploited to design useful optical components such
as spectral filters and dielectric mirrors. The resonators themselves can vary widely in
form, with examples including lumped capacitive-inductive circuits, metallic cavities, and
dielectric shapes such as whispering-gallery cavities, each with its own range of suitable
applications, frequencies, and operating conditions. Identifying new forms of resonators,
and understanding how to engineer the coupling of resonators to their environment, can
help make optical components more compact, simpler to manufacture, more amenable to
integration in systems, and feasible in a greater range of frequencies.

This dissertation presented three electromagnetic resonators, each based on a different
method of confining electromagnetic fields near the region of interest.

Chapter 2 described a resonant structure based on two parallel conducting plates, each
containing a subwavelength slit. Even without side walls to confine the field, the structure
supports a localized, high-quality, TE-polarized resonant mode bound to the slits, with
resonant frequencies slightly below the Fabry-Pérot frequencies fc,m = mc/2d (where d
is the plate separation and m = 1, 2, . . . ). As a result, the structure acts as a narrowband
transmission filter for TE-polarized incident light, exhibiting perfect transmission at the
resonant frequencies and nearly zero transmission otherwise.

Real metals have nonradiative losses that can limit the performance of resonators with
conducting walls, particularly at high frequencies. Consequently, Chapter 3 described one
way to make a transmission filter using dielectric materials. Because the underlying ma-
terials are transparent, such a filter requires at least two resonant modes, with similar fre-
quencies but very different coupling strengths to the radiative fields: the strongly coupled
mode produces high resonant reflectance over a broad frequency range, and Fano interfer-
ence with the weakly coupled mode produces a narrow transmission peak within this high
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Figure 5.1: Some spectroscopic applications for the two-slit structure. (a) Precision spec-
trometer or transmission filter, with transmission frequency adjustable by changing the
wall separation. (b) Permittivity measurement of fluids/gases. The transmitted frequency
depends on the properties of the material between the walls.

reflectance background. We showed that these conditions can be met with a single-layer,
high index contrast dielectric grating that supports extended resonant guided modes. In this
case, the differing coupling strengths of the resonant grating-supported modes arise from
their differing symmetries.

Finally, Chapter 4 demonstrated that that defect-free periodic structures of finite extent
can support extended, surface-avoiding, high-quality factor resonant modes, even without
mirror-like structures at the boundaries to confine electromagnetic energy.

The unique structural properties of these resonators suggest a number of possible ap-
plications, which are presented here in a somewhat speculative manner.

5.1 Spectroscopy applications of the two-slit structure

The Chapter 2 transmission filter, based on two parallel slits, resembles in some ways both
a Fabry-Pérot etalon and a closed microwave cavity. The similarities and differences with
these well-known structures suggest the spectroscopic applications depicted in figure 5.1.

Like with a Fabry-Pérot etalon, the resonant transmission frequencies for the two-slit
structure are close to multiples of f = c/(2nd), where d is the wall separation and n is the
refractive index between the walls. As shown in figure 5.1(a), this property allows making
a (polarization sensitive) spectrometer by adjusting the wall separation while monitoring
the transmitted power. Such a spectrometer could be laterally compact compared to a
Fabry-Pérot etalon, because both the relevant excitation and the resonant field are confined
near the slits to a distance on the order of a wavelength (see section 2.2.3.1). In addition,
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Figure 5.2: Infrared transmission through the atmosphere (gray line), calculated using
[121] assuming water vapor partial pressure of 3.0 mm H2O, courtesy Gemini Observatory.
Blackbody emissivity at 300 K, from Plank’s law (red line). The long-wavelength infrared
window is indicated in yellow.

achieving a high-Q, narrowband response is simply a matter of decreasing the slit width,
and is limited only by manufacturing tolerances and material absorption. Ref [68] showed
that a compact spectrometer based on slotted plates with adjustable separation is feasible
even at THz frequencies.

With a fixed wall separation, the resonant frequencies depend on the refractive index
of the material between the walls. This principle has been used with traditional cavities
to precisely measure the dielectric constants of various materials at microwave frequen-
cies (c.f. [120]). Compared to these traditional cavities, the two-slotted structure has open
boundaries at each end. As shown schematically in figure 5.1(b), this opens the possibility
of monitoring a continuously flowing fluid, rather than needing to seal a fixed sample in-
side a closed cavity, and has possible applications such as non-invasive in-situ monitoring
of chemical processes.

5.2 Long-wavelength infrared spectral filtering

The long-wavelength infrared (LWIR) regime spanning from approximately 8 − 14 µm is
of considerable practical importance, both because it is near the peak emissivity of a room-
temperature (300 K) blackbody, and because it corresponds to a window of low absorption
by water vapor and other atmospheric constituents, as shown in figure 5.2. Consequently,
this wavelength range is attractive for aerial and satellite remote sensing and surveillance
applications, allowing observation of objects of Earth’s surface even through cloud cover
[97].

At the same time, optical components that are well-developed for visible and near-IR
frequencies can be unwieldy or difficult to manufacture for LWIR applications. For in-
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Figure 5.3: Schematic of grating-based transmission filters integrated in a focal plane
array.

stance, a distributed Bragg reflector, used as a reflective surface in a Fabry-Pérot etalon,
would require each sublayer to be around 1 µm thick; accurate and uniform deposition of
many such layers, while avoiding non-uniformities such as curvature and surface rough-
ness, would be problematic. In addition, many dielectric materials commonly used in the
visible and near-IR (including SiO2 and GaAs) exhibit high absorption in the LWIR due to
infrared-active lattice vibrations [96].

For these reasons, resonant single-layer silicon structures, such as the high contrast
grating described in Chapter 3, are especially well suited for prospective LWIR applica-
tions. In fact, the Chapter 3 grating was the first reported experimental demonstration of
a single-layer transmission filter in the LWIR [20, 21], providing high transmission at the
desired frequency with high reflectivity over the rest of the 8− 14 µm range.

The silicon grating structure allows for adjusting the transmission wavelength by chang-
ing the grating period and fill factor without changing the thickness. In addition, it is readily
manufacturable using CMOS-compatible processes. Thus, it is suitable for integration in
a variety of systems. Figure 5.3 shows one possible system: a focal plane array of LWIR
detectors where a transmission filter is interposed in front of each detector element. This
setup would be useful in hyperspectral imaging systems (c.f. [98]), with each spatial pixel
comprising multiple sub-pixels to collect spectral data. This would allow distinguishing
images of remote objects (grass, water, enemy tanks) that may have the same integrated
infrared intensity but different spectral properties.

Finally, it has been suggested that selective infrared emitters/absorbers may improve the
efficiency of thermal photo-voltaic (PV) devices [102,103], which directly convert thermal
radiation to electricity via the PV effect. In contrast to solar PVs, thermal PVs have the heat
source much closer to the PV device and can achieve much higher power density. However,
at achievable temperatures, much of the emitted radiation lies below the band gap of the PV
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material and produces waste heat. Selective infrared filters placed between the heat source
and PV device could improve performance by only transmitting the frequencies at which
the PV device operates most efficiently, while reducing the PV device temperature.

5.3 Mirrorless cavity applications

In Chapter 4, we demonstrated that very simple periodic structures can confine extended
cavity-like modes even without mirror-like reflecting boundaries. Achieving three-dimensional
electromagnetic confinement in quasi-2d structures is highly desirable, with applications
including surface-emitting lasers [122]. Consequently, much effort has been extended in
devising structures to achieve both vertical and lateral confinement (e.g., [37, 106, 123–
125]). Recognizing that complicated structures are not always necessary may enable reso-
nant cavity designs that are simpler and cheaper to manufacture a large scale (although at a
likely cost of lower quality factors for a given volume).

Interestingly, many of the resonant surface avoiding modes identified in figures 4.9
and 4.10 have a significant portion of their field energy located in the air surrounding the
dielectric rods. This suggests that a laser might be created by filling this empty space with
a suitable gain medium. Alternatively, it may be possible to incorporate a gain medium into
the pillars themselves in the form of quantum dots [126, 127]. The high quality factor of
the fundamental surface avoiding modes (those nearest the band edges) relative to higher
order modes suggests that single-mode lasing will be achievable in mirrorless finite periodic
structures.
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APPENDIX A

Generalized Network Parameters for the
Two-Slit Transmission Problem

A.1 Calculation procedure

This appendix details the calculation of the TE generalized admittance matrix elements of
eq. 2.8:

Y p1
qq = −〈Mq1,H

p
t (Mq1)〉q

Y b1
qr = 〈Mq1,H

p
t (Mr1)〉q , q 6= r (A.1)

where the inner product over a slit is defined by eq. 2.5:

〈A,B〉q =

∫ sq+∆q

sq−∆q

A ·B dx , q = 1, 2 (A.2)

and the magnetic current in the slit is given by the lowest order TE mode of eq. 2.6:

Mq1 = x̂
√

∆2
q − (x− sq)2 (A.3)

First, the magnetic field due to a slit magnetic current of the form (A.3) is found for
each of the three equivalence regions of figure 2.2a. This will involve the following 2d
expression for the magnetic field due to a magnetic current sheet radiating in free space,
assuming e−iωt time dependence [63]:

H =
−k
4η

∫
s

MH
(1)
0 (kρ) ds+

1

4η

∫
s

(∇ ·M)ρ̂H
(1)
1 (kρ) ds (A.4)

In eq. A.4, k is the wavevector magnitude, η =
√
µ/ε is the impedance, ρ̂ is the unit vector

pointing from the source point to the observation point, and ρ is the distance between the
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source and observation points. H(1)
0 and H(1)

1 are Hankel functions of zero and first order,
respectively.

The magnetic field is then used in eq. A.1 to calculate each matrix element.

A.2 Derivation of generalized admittances

A.2.1 Region A

In region A with slit 1 shorted, the magnetic field due to M1 is the same as 2M1 located
at z = 0 and radiating in free space. UsingM11 = x̂

√
∆2

1 − x2,

Ha(M11) =
−x̂ka
2ηa

∫ ∆1

−∆1

√
∆2

1 − x′2H
(1)
0 (ka

√
(x− x′)2 + z2) dx′

+
x̂

2ηa

∫ ∆1

−∆1

−x′√
∆2

1 − x′2
(x− x′)√

(x− x′)2 + z2
H

(1)
1 (ka

√
(x− x′)2 + z2) dx′

+
ẑ

2ηa

∫ ∆1

−∆1

−x′√
∆2

1 − x′2
z√

(x− x′)2 + z2
H

(1)
1 (ka

√
(x− x′)2 + z2) dx′

(A.5)

We then have,

Y a1
11 =− 〈M11,H

a
t (M11)〉1 = −

∫ ∆1

−∆1

M11 ·Ha
t (M11) dx

=
ka
2ηa

∫ ∆1

−∆1

∫ ∆1

−∆1

√
∆2

1 − x2

√
∆2

1 − x′2H
(1)
0 (ka|x− x′|) dx′ dx

+
1

2ηa

∫ ∆1

−∆1

∫ ∆1

−∆1

√
∆2

1 − x2√
∆2

1 − x′2
x′(x− x′)
|x− x′|

H
(1)
1 (ka|x− x′|) dx′ dx (A.6)

To simplify these integrals, we will consider small argument approximations for the Hankel
functions. Since x, x′ ∈ {−∆1,∆1} and ka∆1 � 1 we can use the approximation [67]

H
(1)
0 (ka|x− x′|) ' 1 + i

2

π
ln

(
γka|x− x′|

2

)
, (A.7)

where γ = 1.7810724... is the exponential of the Euler-Mascheroni constant. We can then
use the fact that [66]∫ ∆

−∆

√
∆2 − x′2 ln

(
γka|x− x′|

2

)
dx′ =

π∆2

2
ln

(
αka∆

2π

)
+
πx2

2
, (A.8)
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where α = 1.69691505..., as well as the following integral relations [128]:∫ ∆

−∆

√
∆2 − x2 dx =

π∆2

2∫ ∆

−∆

x2

√
∆2 − x2

dx =
π∆2

2∫ ∆

−∆

x
√

∆2 − x2 dx = 0∫ ∆

−∆

x2
√

∆2 − x2 dx =
π∆4

8
(A.9)

Using these relations, the first integral in eq. (A.6) becomes:

ka
2ηa

∫ ∆1

−∆1

∫ ∆1

−∆1

√
∆2

1 − x2

√
∆2

1 − x′2H
(1)
0 (ka|x− x′|) dx′ dx '

π2ka∆
4
1

8ηa
+ i

πka∆
4
1

4ηa

[
ln

(
αka∆1

2π

)
+

1

4

]
(A.10)

To simplify the second integral in eq. (A.6), we can use the small argument approximation
[67]:

H
(1)
1 (ka|x− x′|) '

ka|x− x′|
2

− i 2
π

1

ka|x− x′|
, (A.11)

So that the second integral becomes

1

2ηa

∫ ∆1

−∆1

∫ ∆1

−∆1

√
∆2

1 − x2√
∆2

1 − x′2
x′(x− x′)
|x− x′|

H
(1)
1 (ka|x− x′|) dx′ dx '

1

2ηa

∫ ∆1

−∆1

∫ ∆1

−∆1

√
∆2

1 − x2√
∆2

1 − x′2

[
kax

′(x− x′)
2

− i 2x′

πka(x− x′)

]
dx′ dx (A.12)

The first term is easily evaluated using the relations in eq. (A.9). The second term has a
singularity at x = x′, which we can deal with by adding a small imaginary part to x′ and
using the Sokhotski-Plemelj theorem [129] (p.v. denotes the Cauchy principal value):

lim
ε→0+

1

x− (x′ ± iε)
= p.v.

1

x− x′
± iπδ(x− x′) (A.13)
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Giving for the second term in eq. (A.12),

−i
πηka

∫ ∆1

−∆1

[
p.v.

∫ ∆1

−∆1

x
x′

x− x′

√
∆2

1 − x2√
∆2

1 − x′2
dx− iπ

∫ ∆1

−∆1

√
∆2

1 − x2√
∆2

1 − x′2
x′δ(x− x′) dx

]
dx′

=
−i
πηka

∫ ∆1

−∆1

[
−πx′2√
∆2

1 − x′2
− iπx′

]
dx′ =

iπ∆2
1

2ηka
(A.14)

Thus,

1

2ηa

∫ ∆1

−∆1

∫ ∆1

−∆1

√
∆2

1 − x2√
∆2

1 − x′2

[
kax

′(x− x′)
2

− i 2x′

πka(x− x′)

]
dx′ dx

=
−kaπ2∆4

1

16ηa
+ i

π∆2
1

2ηaka
(A.15)

Combining eqs. (A.10) and (A.15) gives Y a1
11 in the small argument approximation:

Y a1
11 '

π2ka∆
4
1

16ηa
+ i

πka∆
4
1

4ηa

[
ln

(
αka∆1

2π

)
+

1

4

]
+ i

π∆2
1

2ηaka
(A.16)

A.2.2 Region B

After shorting slits 1 and 2, the magnetic field in region B due to M1 is the same as the
radiation in free space from 2M1 and its images at z = 2nd, with n = 0,±1,±2, ...:

Hb(M11) =
−x̂kb
2ηb

∞∑
n=−∞

∫ ∆1

−∆1

√
∆2

1 − x′2H
(1)
0 (kb

√
(x− x′)2 + (z − 2nd)2) dx′

+
x̂

2ηb

∞∑
n=−∞

∫ ∆1

−∆1

−x′√
∆2

1 − x′2
(x− x′)√

(x− x′)2 + (z − 2nd)2

×H(1)
1 (kb

√
(x− x′)2 + (z − 2nd)2) dx′

+
ẑ

2ηb

∞∑
n=−∞

∫ ∆1

−∆1

−x′√
∆2

1 − x′2
z − 2nd√

(x− x′)2 + (z − 2nd)2

×H(1)
1 (kb

√
(x− x′)2 + (z − 2nd)2) dx′

(A.17)
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Y b1
11 =−

〈
M11,H

b
t (M11)

〉
1

= −
∫ ∆1

−∆1

M11 ·Hb
t (M11) dx

=
kb
2ηb

∞∑
n=−∞

∫ ∆1

−∆1

∫ ∆1

−∆1

√
∆2

1 − x2

√
∆2

1 − x′2sH
(1)
0 (kb

√
(x− x′)2 + (2nd)2) dx′ dx

+
1

2ηb

∞∑
n=−∞

∫ ∆1

−∆1

∫ ∆1

−∆1

√
∆2

1 − x2√
∆2

1 − x′2
x′(x− x′)√

(x− x′)2 + (2nd)2

×H(1)
1 (kb

√
(x− x′)2 + (2nd)2) dx′ dx (A.18)

To simplify these integrals, we will consider the following approximations. First, for
n = 0, the small argument approximation can be used as it was for Y a

11. Second, if n2 >

(10∆1/d)2, then (2nd)2 � (x−x′)2 for x, x′ ∈ {−∆1,∆1}. ThusH(1)
ν (kb

√
(x− x′)2 + (2nd)2) '

H
(1)
ν (kb|2nd|), allowing the Hankel functions to be taken outside the integrals, along with

the denominator of the second integral. Using these approximations in eq. (A.18) yields:

Y b1
11 '

π2kb∆
4
1

16ηb
+ i

πkb∆
4
1

4ηb

[
ln

(
αkb∆1

2π

)
+

1

4

]
+ i

π∆2
1

2ηbkb

+
kb
ηb

N1∑
n=1

∫ ∆1

−∆1

∫ ∆1

−∆1

√
∆2

1 − x2

√
∆2

1 − x′2H
(1)
0 (kb

√
(x− x′)2 + (2nd)2) dx′ dx

+
1

ηb

N1∑
n=1

∫ ∆1

−∆1

∫ ∆1

−∆1

√
∆2

1 − x2√
∆2

1 − x′2
x′(x− x′)√

(x− x′)2 + (2nd)2

×H(1)
1 (kb

√
(x− x′)2 + (2nd)2) dx′ dx

+
∞∑

n=N1+1

[
π2∆4

1kb
4ηb

(
H

(1)
0 (2kbnd)− H

(1)
1 (2kbnd)

2kbnd

)]
(A.19)

Here, N1 is the largest integer n such that n2 ≤ (10∆1/d)2.
The magnetic field in region B due to M2 is the same as the radiation in free space
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from 2M2 and its images at z = (2n− 1)d, with n = 0,±1,±2, ...:

Hb(M21) =
−x̂kb
2ηb

∞∑
n=−∞

∫ s2+∆2

s2−∆2

√
∆2

2 − (x′ − s2)2H
(1)
0 (kb

√
(x− x′)2 + [z − (2n− 1)d]2) dx′

+
x̂

2ηb

∞∑
n=−∞

∫ s2+∆2

s2−∆2

−(x′ − s2)√
∆2

2 − (x′ − s2)2

(x− x′)√
(x− x′)2 + [z − (2n− 1)d]2

×H(1)
1 (kb

√
(x− x′)2 + [z − (2n− 1)d]2) dx′

+
ẑ

2ηb

∞∑
n=−∞

∫ s2+∆2

s2−∆2

−(x′ − s2)√
∆2

2 − (x′ − s2)2

z − (2n− 1)d√
(x− x′)2 + z2

×H(1)
1 (kb

√
(x− x′)2 + (z − 2nd)2) dx′

(A.20)

Y b1
12 =

〈
M11,H

b
t (M21)

〉
1

=

∫ ∆1

−∆1

M11 ·Hb
t (M21) dx

=− kb
2ηb

∞∑
n=−∞

∫ ∆1

−∆1

∫ s2+∆2

s2−∆2

√
∆2

1 − x2

√
∆2

2 − (x′ − s2)2

×H(1)
0 (kb

√
(x− x′)2 + [(2n− 1)d]2) dx′ dx

− 1

2ηb

∞∑
n=−∞

∫ ∆1

−∆1

∫ s2+∆2

s2−∆2

√
∆2

1 − x2√
∆2

2 − (x′ − s2)2

(x′ − s2)(x− x′)√
(x− x′)2 + [(2n− 1)d]2

×H(1)
1 (kb

√
(x− x′)2 + [(2n− 1)d]2) dx′ dx

(A.21)

If (2n−1)2 > (10(∆1 + ∆2)/d)2, then
√

(x− x′)2 + [(2n− 1)d]2 '
√
s2

2 + [(2n− 1)d]2

for x ∈ {−∆1,∆1} and x′ ∈ {s2 − ∆2, s2 + ∆2}, allowing us to take these expressions
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outside the integrals. Thus eq. (A.21) can be approximated as:

Y b1
12 '−

kb
2ηb

N12∑
n=1

∫ ∆1

−∆1

∫ s2+∆2

s2−∆2

√
∆2

1 − x2

√
∆2

2 − (x′ − s2)2

×H(1)
0 (kb

√
(x− x′)2 + [(2n− 1)d]2) dx′ dx

− 1

2ηb

N12∑
n=1

∫ ∆1

−∆1

∫ s2+∆2

s2−∆2

√
∆2

1 − x2√
∆2

2 − (x′ − s2)2

(x′ − s2)(x− x′)√
(x− x′)2 + [(2n− 1)d]2

×H(1)
1 (kb

√
(x− x′)2 + [(2n− 1)d]2) dx′ dx

+
∞∑

n=N12+1

[
π2∆2

1∆2
2kb

4ηb

(
−H(1)

0 (kb

√
s2

2 + [(2n− 1)d]2) +
H

(1)
1 (kb

√
s2

2 + [(2n− 1)d]2)

kb
√
s2

2 + [(2n− 1)d]2

)]
(A.22)

Here, N12 is the largest integer n such that (2n− 1)2 ≤ (10(∆1 + ∆2)/d)2.
By reciprocity, we have Y b1

21 = Y b1
12 . Finally, Y b1

22 can be obtained using similar proce-
dures to those above, giving:

Y b1
22 '

π2kb∆
4
2

16ηb
+ i

πkb∆
4
2

4ηb

[
ln

(
αkb∆2

2π

)
+

1

4

]
+ i

π∆2
2

2ηbkb

+
kb
ηb

N2∑
n=1

∫ ∆2

−∆2

∫ ∆2

−∆1

√
∆2

2 − x2

√
∆2

2 − x′2H
(1)
0 (kb

√
(x− x′)2 + (2nd)2) dx′ dx

+
1

ηb

N2∑
n=1

∫ ∆2

−∆2

∫ ∆2

−∆2

√
∆2

2 − x2√
∆2

2 − x′2
x′(x− x′)√

(x− x′)2 + (2nd)2
H

(1)
1 (kb

√
(x− x′)2 + (2nd)2) dx′ dx

+
∞∑

n=N2+1

[
π2∆4

2kb
4ηb

(
H

(1)
0 (2kbnd)− H

(1)
1 (2kbnd)

2kbnd

)]
(A.23)

where N2 is the largest integer n such that n2 ≤ (10∆2/d)2.

A.2.3 Region C

Y c1
22 can be obtained using a similar procedure to that for Y a1

11 (eq. A.16), giving

Y c1
22 '

π2kc∆
4
2

16ηc
+ i

πkc∆
4
2

4ηc

[
ln

(
αkc∆2

2π

)
+

1

4

]
+ i

π∆2
2

2ηckc
(A.24)
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A.3 Computation of the Infinite Sums

The expressions for the generalized admittances in Region B—eqs. A.19, A.22, and
A.23—contain infinite sums involving Hankel functions of the first and second kinds.
These sums converge quite slowly, particularly near the singularities at the waveguide cut-
off frequencies, kb = mπ/d, with m = 1, 2, .... Computing these sums numerically can
therefore be time-intensive and is susceptible to accumulated numerical round-off errors
affecting the final computed transmissivity. Fortunately, we can dramatically improve the
numerical performance by recasting the infinite sums in terms of polylogarithm functions,
as described below.

Consider the last term in eq. A.19, containing the infinite sum:

S =
∞∑

n=N1+1

[
H

(1)
0 (nz)− H

(1)
1 (nz)

nz

]
(A.25)

For simplicity, we’ve made the substitution z = 2kbd and omitted the leading constants.
For someNmax, we can replace the terms with n > Nmax with their asymptotic forms [67]:

H
(1)
0 (nz) '

√
2

πnz
exp

[
i
(
nz − π

4

)]
H

(1)
1 (nz) '

√
2

πnz
exp

[
i

(
nz − 3π

4

)]
(A.26)

Now the sum can be rewritten as:

S '
Nmax∑

n=N1+1

[
H

(1)
0 (nz)− H

(1)
1 (nz)

nz

]

−
Nmax∑
n=1

√
2

π

[
exp

(
−iπ

4

)
exp (inz)√

nz
− exp

(
−i3π

4

)
exp (inz)

(nz)3/2

]
+
∞∑
n=1

√
2

π
exp

(
−iπ

4

)
exp (inz)√

nz

−
∞∑
n=1

√
2

π
exp

(
−i3π

4

)
exp (inz)

(nz)3/2
(A.27)

The first two terms here are just finite sums that can be computed numerically, and the last

93



two terms can be written in terms of the polylogarithm function:

Liν(z) =
∞∑
k=1

zk

kν
(A.28)

Thus, eq. A.27 becomes:

S '
Nmax∑

n=N1+1

[
H

(1)
0 (nz)− H

(1)
1 (nz)

nz

]

−
Nmax∑
n=1

√
2

π

[
exp

(
−iπ

4

)
exp (inz)√

nz
− exp

(
−i3π

4

)
exp (inz)

(nz)3/2

]
+

√
2

π

[
Li1/2(eiz)√

z
−

Li3/2(eiz)

z3/2

]
(A.29)

where, again, z = 2kbd. The computations in this dissertation usedNmax = 200. So what is
needed are polylogarithms of half-integer order with arguments on the complex unit circle.
These functions are available in computer math tools such as Wolfram Mathematica. For
this dissertation, the polylogarithms were precomputed and tabulated using Mathematica.
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APPENDIX B

Eigenvalue Method for the Periodic Slab Modal
Analysis

This appendix describes our method for finding the dispersion relations and field profiles
of the guided resonant modes in the high-contrast dielectric grating structure discussed in
section 3.2.3. Figure B.1 shows the geometry being considered.

Many techniques are available for finding the modes of photonic crystals. In addi-
tion to finite difference time domain (FDTD) or finite element method (FEM) solvers that
directly solve Maxwell’s equations with carefully chosen sources to excite the modes,
efficient eigenmode solvers are also available, including the MIT Photonic Bands soft-
ware, which expands the fields as definite-frequency states in a trunctated plane wave ba-
sis [116, 130, 131]. However, complications arise in the case of photonic crystal slabs such
as the grating in figure B.1, because within the light cone the guided modes are no longer
true eigenmodes of the slab with definite frequency, but rather resonant states that extend
infinitely (if weakly) away from the slab and exchange energy with the radiative contin-
uum. When using the generally available solvers, it can be difficult to distinguish the states
that arise from guided modes from the states of the radiative continuum, so frequently the
solvers are used only for results outside the light cone [72]. This issue becomes more acute
with high-contrast, one-dimensional slabs such as the one considered here.

x

z

t

ϵs
ϵg

Λ

w

Figure B.1: Geometry of a high-contrast periodic dielectric slab, with thickness t and pe-
riod Λ. Each period consists of a dielectric region of width w and permittivity εg, followed
by a gap with the same permittivity as the surrounding material εs.
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Because our interest is in the leaky resonant states within the light cone, we adapted a
FEM approach developed by Davanco, Fietz, Urzhumov, and Shvets for finding complex-
wavevector modes in 2d [94] and 3d [132] dispersive crystals, such as plasmonic crystals.
Parisi et al. have also used the method to analyze plasmonic gratings and slabs [95]. The
general approach is to cast the Helmholtz equation as a quadratic eigenvalue equation for
(complex-valued) k, which can be solved using the finite element method at a given fre-
quency ω.

For TM polarization, the equation to solve is:

∇× 1

ε
∇×H − ω2µH = 0 (B.1)

which can be written in the weak form:∫
Ω

v ·
[
∇× 1

ε
∇×H − ω2µH

]
d3r = 0 (B.2)

where v is a test function. We consider the periodic 2d case with propagation along the
slab (k = kxx̂) and rewriteH = Hyŷ as:

Hy(x, z; kx) = e−ikxxu(x, z) (B.3)

Here, u(x, z) is a periodic function in the x direction with period Λ. Note that, in con-
trast to the rest of this dissertation, we are using the eiωt time-dependence convention for
consistency with the COMSOL Multiphysics FEM solver. Eq. B.2 becomes:∫

Ω

d2r

[
k2
x

uv

εzz
+
ikx
εzz

(
∂u

∂x
v − u∂v

∂x

)
+
∂u

∂z

∂v

∂z

1

εxx
+
∂u

∂x

∂v

∂x

1

εzz
−
(ω
c

)2

uvµzz

]
= 0

(B.4)
where v is a test function, and εii (µii) are components of the permittivity (permeability)
tensor (assumed here to be diagonal). Given ω, eq. B.4 is a quadratic eigenvalue equation
for (complex-valued) kx. The real part of kx gives the familiar in-plane wavevector within
the first Brillouin zone, while the imaginary part gives the decay due to coupling to the
radiative continuum. With a solution (u(x, z), kx), the fields can be reconstructed using the
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following equations:

Hy =ue−ikxx

Ex =
ic

ωε

∂u

∂z
e−ikxx

Ez =−
[
ic

ωε

∂u

∂z
+
ckx
ωε

u

]
e−ikxx (B.5)

We implemented this eigenvalue equation using the commercial FEM solver, COMSOL
Multiphysics 3.5. Figure B.2a shows the simulated unit cell. The boundaries at x = ±Λ/2

are subject to Floquet periodicity conditions, with u(Λ/2, z) = u(−Λ/2, z) exp(−kxΛ). At
the ends of the cell in the ±z directions, perfectly matched layers (PML) are used to simu-
late radiative boundaries by absorbing incident plane waves. The PML are implemented as
graded anisotropic absorbers [133], with the permittivity and permeability tensors defined
as:

¯̄ε (¯̄µ) =

(
εxx (µxx) 0

0 εzz (µzz)

)
=

(
α− iβ 0

0 (α− iβ)−1

)
(B.6)

where α is the real part of the adjacent permittivity (permeability) and:

β = σ̄
|(z ± |z0|)|2

tnPML
(B.7)

Equation B.7 contains a number of adjustable parameters. The following values gave good
results for this geometry: σ̄ = 1.5, n = 2, z0 = tair/2 = 26Λ (the start coordinate of the
PML), tPML = 5Λ (the length of the PML).

The solver generally finds many solutions to eq. B.4, many of which correspond to
guided resonant states and look like the example in figure B.2b. However, there are also
many spurious solutions, as in B.2c, for which the electromagnetic energy is concentrated
in the PML layers or in the air layer beween the slab and PMLs. To help distinguish
the desired solutions from the spurious solutions, we calculated a metric related to the
concentration of energy near the dielectric slab:

S =

(∫
Ω

|u|2z2d2r

)/(∫
Ω

|u|2d2r

)
(B.8)

Solutions with smaller values of S are more likely to be the guided modes we are looking
for. Figure B.3 shows a sample TM dispersion diagram obtained by running the eigenmode
solver at several frequencies and highlighting the solutions with relatively small S values.

TE solutions can be found by similar means using duality relations, making the replace-
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Figure B.2: (a) Schematic of simulated unit cell. (b) Representative TM solution showing
Hy for a resonant guided mode. (c) Examples of spurious solutions that do not represent
resonant guided modes.

ments E →H ,H → −E, µ→ ε, and ε→ µ.

98



kx (m-1)

Fr
eq

ue
nc

y 
(T

H
z)

0 1 2 3 4 5 6

x 105

0

10

20

30

40

50

Figure B.3: Plot of frequency and real part of in-plane wavevector for TM solutions found
using the FEM eigenvalue solver. Solution points are colored according to the metric S,
with darker points having smaller S (more energy in vicinity of the slab).
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[31] E. Abbe. Beiträge zur theorie des mikroskops und der mikroskopischen
wahrnehmung. Arch. Mikrosk. Anat., 9(1):413–418, December 1873. doi:10.
1007/BF02956173.

[32] C. J. Bouwkamp. Diffraction theory. Philips Res. Rep., 5:321, 1950.

[33] A. Roberts. Electromagnetic theory of diffraction by a circular aperture in a thick,
perfectly conducting screen. J. Opt. Soc. Am. A, 4(10):1970, October 1987. doi:
10.1364/JOSAA.4.001970.

[34] G. B. Airy. On the phænomena of Newton’s rings when formed between two trans-
parent substances of different refractive powers. Phil. Mag., 2(7):20–30, January
1833. doi:10.1080/14786443308647959.

[35] D.G. Deppe, D.L. Huffaker, Tchang-Hun Oh, H. Deng, and Q. Deng. Low-threshold
vertical-cavity surface-emitting lasers based on oxide-confinement and high contrast
distributed Bragg reflectors. IEEE J. Selected Topics Quantum Electron., 3(3):893–
904, June 1997. doi:10.1109/2944.640643.

102

http://dx.doi.org/10.1103/PhysRev.66.163
http://dx.doi.org/10.1088/0034-4885/17/1/302
http://dx.doi.org/10.1109/TAP.1980.1142382
http://dx.doi.org/10.1109/TAP.1982.1142926
http://dx.doi.org/10.1109/22.3480
http://dx.doi.org/10.1103/PhysRevLett.89.063901
http://dx.doi.org/10.1103/PhysRevLett.89.063901
http://dx.doi.org/10.1007/BF02956173
http://dx.doi.org/10.1007/BF02956173
http://dx.doi.org/10.1364/JOSAA.4.001970
http://dx.doi.org/10.1364/JOSAA.4.001970
http://dx.doi.org/10.1080/14786443308647959
http://dx.doi.org/10.1109/2944.640643


[36] D. Sanvitto, A. Daraei, A. Tahraoui, M. Hopkinson, P. W. Fry, D. M. Whittaker,
and M. S. Skolnick. Observation of ultrahigh quality factor in a semiconductor
microcavity. Applied Physics Letters, 86(19):191109, May 2005. doi:10.1063/
1.1925774.

[37] M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain. A surface-emitting laser incor-
porating a high-index-contrast subwavelength grating. Nature Photonics, 1(2):119–
122, February 2007. doi:10.1038/nphoton.2006.80.

[38] E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electron-
ics. Phys. Rev. Lett., 58:2059, May 1987. doi:10.1103/PhysRevLett.58.
2059.

[39] S. John. Strong localization of photons in certain disordered dielectric superlat-
tices. Phys. Rev. Lett., 58:2486, June 1987. doi:10.1103/PhysRevLett.
58.2486.

[40] U. Fano. Effects of configuration interaction on intensities and phase shifts.
Phys. Rev., 124(6):1866–1878, December 1961. doi:10.1103/PhysRev.
124.1866.

[41] R. W. Wood. On a remarkable case of uneven distribution of light in a diffraction
grating spectrum. Philos. Mag., 4(21):396–402, September 1902. doi:10.1080/
14786440209462857.

[42] U. Fano. The theory of anomalous diffraction gratings and of quasi-stationary waves
on metallic surfaces (Sommerfeld’s waves). J. Opt. Soc. Am., 31(3):213, March
1941. doi:10.1364/JOSA.31.000213.

[43] S. Fan and J. D. Joannopoulos. Analysis of guided resonances in photonic crys-
tal slabs. Phys. Rev. B, 65(23):235112, 2002. doi:10.1103/PhysRevB.65.
235112.

[44] F. Pardo, P. Bouchon, R. Haı̈dar, and J.-L. Pelouard. Light funneling mechanism
explained by magnetoelectric interference. Phys. Rev. Lett., 107(9):093902, 2011.
doi:10.1103/PhysRevLett.107.093902.

[45] A. S. Barker and J. J. Hopfield. Coupled-optical-phonon-mode theory of the infrared
dispersion in BaTiO3, SrTiO3, and KTaO3. Phys. Rev., 135(6A):A1732–A1737,
September 1964. doi:10.1103/PhysRev.135.A1732.

[46] H. A. Haus. Waves and fields in optoelectronics. Prentice-Hall series in solid state
physical electronics. Prentice-Hall, Englewood Cliffs, NJ, 1984.

[47] S. Fan, W. Suh, and J. D. Joannopoulos. Temporal coupled-mode theory for the
Fano resonance in optical resonators. J. Opt. Soc. Am. A, 20(3):569–572, March
2003. doi:10.1364/JOSAA.20.000569.

103

http://dx.doi.org/10.1063/1.1925774
http://dx.doi.org/10.1063/1.1925774
http://dx.doi.org/10.1038/nphoton.2006.80
http://dx.doi.org/10.1103/PhysRevLett.58.2059
http://dx.doi.org/10.1103/PhysRevLett.58.2059
http://dx.doi.org/10.1103/PhysRevLett.58.2486
http://dx.doi.org/10.1103/PhysRevLett.58.2486
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1103/PhysRev.124.1866
http://dx.doi.org/10.1080/14786440209462857
http://dx.doi.org/10.1080/14786440209462857
http://dx.doi.org/10.1364/JOSA.31.000213
http://dx.doi.org/10.1103/PhysRevB.65.235112
http://dx.doi.org/10.1103/PhysRevB.65.235112
http://dx.doi.org/10.1103/PhysRevLett.107.093902
http://dx.doi.org/10.1103/PhysRev.135.A1732
http://dx.doi.org/10.1364/JOSAA.20.000569


[48] C. W. Hsu, B. Zhen, J. Lee, S-L. Chua, S. G. Johnson, J. D. Joannopoulos, and
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