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ABSTRACT

Identification and Adaptive Control for High-performance AC Drive Systems

by

David M. Reed

Co-Chairs: Heath Hofmann and Jing Sun

High-performance AC machinery and drive systems can be found in a variety

of applications ranging from motion control to vehicle propulsion. Such applica-

tions typically require high-bandwidth and tight regulation of position, speed and/or

torque over a wide range of operating conditions. However, machine parameters can

vary significantly with electrical frequency, flux levels, and temperature, degrading

the performance of the drive system. While adaptive control techniques can be used

to estimate machine parameters online, it is sometimes desirable to estimate certain

parameters offline. Additionally, parameter identification and control are typically

conflicting objectives with identification requiring plant inputs which are rich in har-

monics, and control objectives often consisting of regulation to a constant set-point.

In this dissertation, we present research which seeks to address these issues for high-

performance AC machinery and drive systems.

The first part of this dissertation concerns the offline identification of induction

machine parameters. Specifically, we have developed a new technique for induction

machine parameter identification which can easily be implemented using a voltage-

source inverter. The proposed technique is based on fitting steady-state experimental

data to the circular stator current locus in the stator flux linkage reference-frame

for varying steady-state slip frequencies, and provides accurate estimates of the mag-

netic parameters, as well as the rotor resistance and core loss conductance. This

approach allows leakage inductance and rotor resistance to be accurately estimated

while avoiding the difficulties associated with inverter-based implementations of the

standard locked-rotor test. Experimental results for a 43 kW induction machine are

xiii



provided which demonstrate the utility of the proposed technique by characterizing

the machine over a wide range of flux levels, including magnetic saturation.

The remainder of this dissertation concerns the development of generalizable de-

sign methodologies for Simultaneous Identification and Control (SIC) of overactuated

systems via case studies with Permanent Magnet Synchronous Machines (PMSMs).

Specifically, we present two different approaches to the design of adaptive controllers

for PMSMs which exploit overactuation to achieve identification and control objec-

tives simultaneously. The first approach, termed “Adaptive Excitation Decoupling”,

utilizes a disturbance decoupling control law to prevent the excitation input from

perturbing the regulated output. Machine parameters used in the control law are

updated online via a normalized gradient estimator. The second approach uses a

Lyapunov-based inner-loop adaptive controller to constrain the states to the output

error-zeroing manifold, defined by the torque output mapping, on which they are

varied to provide excitation for parameter identification. Finally, the issue of input

selection (i.e., excitation input design and control allocation) is addressed for the

Lyapunov-based design by incorporating a receding-horizon control allocation which

includes a metric for generating persistently exciting reference trajectories. While

both approaches are shown to achieve the SIC objective, and each hold promise for

generalization, the Lyapunov-based design has robustness and stability advantages

over the Adaptive Excitation Decoupling approach.

xiv



CHAPTER I

Introduction

This dissertation describes a series of related research efforts aimed at advancing

the state-of-the-art in identification and control for high-performance AC motor drive

systems, with the secondary goal of developing control methodologies for simultaneous

identification and control of overactuated systems. Motivated by the rising interest in

electric propulsion for vehicular applications, as well as the desire to fully utilize the

capabilities of the AC machines used in such applications, we consider the problems of

offline identification of induction machine parameters and simultaneous identification

and torque regulation of Permanent Magnet Synchronous Machines (PMSMs). In

particular, Simultaneous Identification and Control (SIC) of PMSMs will serve as a

testbed for SIC methodologies for overactuated systems.

1.1 Motivation and Overview

These days, high-performance AC machinery and drive systems can be found in a

variety of applications ranging from motion control (servo drives) to vehicle propulsion

(traction drives). The distinguishing feature of high-performance drives, as opposed

to lower performance industrial drives (e.g., for pumps and fans), is the need for

high-bandwidth (i.e., fast response times) and tight (i.e., high accuracy) regulation of

position, speed and/or torque [12]. While the low cost of electronic components, par-

ticularly powerful microprocessors, continues to make electric drives a cost-effective

alternative for applications once dominated by mechanical systems, there are other

advantages as well. For instance, the dynamics of electrical systems are typically

much faster than those of mechanical systems, and the routing of wiring for electri-

cal power (and control signals) is often easier than lines for fuel and hydraulic fluid.

Furthermore, when properly designed, electrical systems are typically more reliable

than mechanical systems due to a reduction in moving parts which are susceptible

1



to wear-and-tear. Additionally, high-performance AC machinery and drive systems

are capable of delivering impressive performance, particularly in terms of low-speed

torque (see Figure 1.1 for an example), making AC machines an attractive alternative

to SI engines for vehicle propulsion.

Figure 1.1: Comparison of torque-speed curves for Tesla induction motor and con-
ventional IC engines [1].

Interest in hybrid and electric vehicles has increased greatly over the past decade

due to the rising cost of energy along with environmental concerns and government

mandates. While electric drives are a fairly mature technology, their use in vehicle

propulsion applications presents some unique challenges when it comes to maintain-

ing a high level of performance over a very wide speed range, and under a variety

of operating conditions (loads, temperatures, etc.). Machine parameters can vary

significantly [7, 38, 40, 41] with electrical frequency, flux levels, and temperature. For

instance, resistance can increase by as much as 100% with temperature [39], while

inductances vary significantly when high flux levels cause magnetic saturation. Ad-

ditionally, the sensitivity of the permanent magnet flux linkage to a 100◦C rise in

temperature in ferrite, neodymium, and samarium cobalt magnets are -19%, -12%,

and -3%, respectively, from nominal [39]. These variations tend to “detune” the elec-

tric drive’s control system, degrading its performance. In particular, since torque isn’t

2
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Figure 1.2: Example of steady-state torque errors (ratio) in a PMSM drive for vari-
ations in the permanent magnet flux linkage (left) and quadrature-axis
self-inductance (right) for a variety of direct-axis currents. The following
machine parameters were used to generate these plots: Ld = 212.3µH,
Lq = 1.274 mH, and ΛPM = 12.644 m-Vsec.

directly measured due the impracticality1 of fielding torque sensors, the accuracy of

the regulated torque is therefore sensitive to variations in parameters which appear

in the torque output mapping (e.g., inductance and permanent magnet flux linkage).

For example [39], the ratio of the regulated torque output, τ , of a PMSM drive to its

reference, τ ∗, is given by

τ

τ ∗
=

(Ld − βLq)ird + αΛPM

(Ld − Lq)ird + ΛPM

, (1.1)

where ird is the direct-axis current, Ld is the direct-axis inductance, Lq is the quadrature-

axis current, and ΛPM is the permanent magnet flux linkage. The scalars α and β are

introduced to represent errors in the permanent magnet flux linkage and quadrature-

axis inductance, respectively. This ratio (1.1) is plotted in Figure 1.2 for a range of

uncertainty and direct-axis currents, using machine parameters provided in the cap-

tion. Thus, accurate knowledge of machine parameters, including their variations, is

key to maintaining high-performance in electric drive systems. This is particularly

true in all-electric vehicles where it is desirable to run the machine in maximally-

efficient operation points which depend upon the parameters of the machine.

1Torque transducers are expensive and their calibration is sensitive to environmental conditions,
making them unsuitable for use in field applications (e.g., electric vehicles).
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While parameter identification and adaptive control are mature fields of study,

their application in practice still tends to be challenging. In particular, the need

for inputs to the system under identification and/or control to be persistently ex-

citing fundamentally conflicts with typical control objectives (e.g., set-point regula-

tion), particularly in transportation applications where rider comfort would be nega-

tively impacted by any large perturbations. In applications where accurate parameter

knowledge is important, it is therefore of interest to ensure that the system is persis-

tently excited while eliminating, or at least minimizing, the impact of that excitation

on the regulated outputs. Overactuated systems2 provide an opportunity to achieve

persistent excitation and output regulation objectives simultaneously. In AC ma-

chines, the reduced-order two-phase equivalent models have two control inputs, the

direct and quadrature-axis voltages, and a single performance output, electromag-

netic torque, to be regulated. Thus, AC machines are an example of an overactuated

system.

In this dissertation, we present research which seeks to address many of these

issues for high-performance AC machinery and drive systems, as well as investigation

of methodologies for simultaneous identification and control of overactuated systems.

Previous research of the authors demonstrated the use of an adaptive rotor resistance

estimator for improving the performance of direct field-oriented torque regulation for

induction machines in the presence of rotor resistance variations [63, 65]. While this

dissertation will not cover field-oriented control of induction machines, the need for

accurate parameter knowledge in such controllers motivates our first research project;

a new offline technique for improved identification of induction machine parameters

over a wide range of operating conditions [64]. In particular, our offline technique

provides accurate estimates of the magnetic induction machine parameters as well

as the rotor resistance and core loss conductance, which may be used in a field-

oriented controller to achieve high-performance torque regulation over a wide operat-

ing range that includes magnetic saturation. The remainder of this dissertation covers

research which concerns the development of simultaneous identification and control

methodologies for overactuated systems via case studies with Permanent Magnet Syn-

chronous Machines (PMSMs) [66,67]. More specifically, we will present two different

approaches, the first of which utilizes a disturbance decoupling control law to prevent

excitation for parameter identification from perturbing the regulated output. The

second approach uses an inner-loop Lyapunov-based adaptive controller to ensure

2We use the term “overactuated” to refer to systems which have strictly more inputs than outputs
to be controlled.
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that the states asymptotically track persistently exciting filtered reference commands

generated by a static control allocation based on the torque output mapping, thereby

constraining the states to the manifold described by the output mapping. Finally, the

second approach is modified to use a receding horizon control allocation which gen-

erates persistently exciting reference trajectories while also ensuring that the output

regulation objective is achieved.

Since the research to be discussed in this dissertation concerns the application

of system identification and adaptive control techniques to electric machinery and

drive systems, some basic background in these areas will be discussed. Following the

general background discussions, we will discuss the state-of-the-art in offline induction

machine parameter identification, as well as simultaneous identification and control.

Additional literature pertaining to adaptive control of PMSMs in general, will be

discussed at the beginning of Chapter 3. Finally, we will outline the open issues

which will be addressed as well as the specific contributions of this dissertation.

1.2 Background and the State of the Art

1.2.1 Background on Electric Machinery and Drive Systems

Electric Drive

Electric
Machine

Power 
Electronics

Controller

Electrical
Measurements

Command
Values Mechanical

Measurements

a
b
c

Figure 1.3: Drive system architecture.

The term “electric drive” generally refers to the power electronics, controller and

electrical sensors required to operate an electric machine in applications where tight

control over torque and/or speed is desired. The basic motor drive system architecture

is shown in Figure 1.3. It should be noted that, while the focus of this dissertation is

the identification and adaptive control of 3-phase AC machines, the control techniques

used are based on a two-phase equivalent model. The use of two-phase models is
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common practice, as it leads to reduced order models which are easier to work with,

and may be extended to higher-than-three-phase machines as well.

Assuming that the machine is balanced in its construction, the 3-phase stator

currents sum to zero, and so the machine dynamics are adequately captured by two

electrical states, rather than three. Intuitively, the main principle of operation in

(rotating) electric machines is the generation of a rotating magnetic field, which only

requires two phases to achieve. The reason three phases are used in practice is that

it eliminates the need for a fourth “return” conductor in the AC distribution system.

The mapping from 3-phase (a − b − c) variables to equivalent 2-phase (d − q) is

generally referred to as the Clarke transform, named after Edith Clarke [14]:xdxq
x0

 =

2/3 −1/3 −1/3

0
√

3/3 −
√

3/3

1/3 1/3 1/3


xaxb
xc

 = T23

xaxb
xc

 . (1.2)

Likewise, the inverse Clark transform is given byxaxb
xc

 =

 1 0 1

−1/2
√

3/2 1

−1/2 −
√

3/2 1


xdxq
xo

 = T−1
23

xdxq
xo

 = T32

xdxq
xo

 . (1.3)

However, a simplification can be made by noting that the zero sequence component

(xo) is equal to zero under our assumption of balanced construction and operation.

This leads to the following mapping referred to as the Modified Clark transform (1.4)[
xd

xq

]
=

[
1 0
√

3
3

2
√

3
3

][
xa

xb

]
. (1.4)

Additionally, we note that the transform used in this dissertation is scaled such that

the peak values of the 3-phase sinusoidal electrical variables are preserved in the 2-

phase representation.

In this dissertation, the machines are assumed to be fed by a Voltage Source In-

verter (VSI) (see Figure 1.4), which generates Pulse-Width Modulated (PWM) (see

Figure 1.5) versions of the sinusoidal voltages commanded by the control algorithm.

The primary advantage of using PWM voltages is a large reduction in converter losses

since the VSI transistors, which serve as “switches”, are never operated in their “lin-

ear” region for an extended period of time, but instead alternate between “ON” and

“OFF” states. The drawbacks are the generation of Electromagnetic Interference
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Figure 1.4: Ideal (left) and practical (right) three-phase VSIs.

(EMI), and that hard-switching (i.e., switching when there is an overlap in voltage

across the device and current through it) increases stress on switching devices, wind-

ing insulation, and even machine bearings. By synchronizing the switching of the

transistors and the sampling of the Analog-to-Digital Converters (ADCs), we avoid

any spurious measurements due to EMI; while other design choices can help mitigate

the other issues associated with hard-switching (e.g., using a motor with inverter-duty

rated insulation).

The inverter is typically treated as “ideal” when designing the control algorithm

in that current harmonics generated by switching are neglected, save the desired

fundamental frequency, as well as the dead-time effect and voltage limitations. The

justification for this comes from average-value modeling [69], which holds provided

that the switching frequency, fsw, is sufficiently higher than that of the maximum

fundamental frequency, fmax. A typical rule-of-thumb is that fsw ≥ 21fmax [57]. In

terms of control, the VSI may be viewed as the actuator used to control the AC
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Figure 1.5: Generation of sinusoidal PWM waveform.
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machine, and our dynamic AC machine models will therefore take the stator voltages

to be the inputs to the dynamics, while currents and/or flux linkages will serve as

the states. Our measured outputs will typically be the stator currents, as well as

the rotor speed and/or position. Electromagnetic torque will generally serve as our

performance (or regulated) output, which is unmeasured due to the impracticality of

measuring torque.

Finally, it is noted that modern control of AC machines is typically based on what

are referred to as Field-Oriented Control (FOC) techniques. The basic premise of

FOC is to perform the actual control (e.g., current regulation) in a rotating reference

frame. This approach has several advantages:

1. Sinusoidal electrical variables are transformed into constant values in such refer-

ence frames under steady-state conditions. This allows the use of conventional

control techniques, such as PI compensation, to regulate the stator currents of

the machine.

2. Further simplification of the AC machine dynamics. For example, in syn-

chronous machines, representing the dynamics in a reference frame aligned with

the rotor position eliminates nonlinear terms associated with the EMF.

3. Additionally, for both synchronous and induction (a.k.a. asynchronous) ma-

chines, the expressions relating electrical variables (e.g., currents and flux link-

ages) to the electromagnetic torque are simplified, which is advantageous as

these expressions are used to generate the command values for regulating the

electrical states in order to achieve a desired torque.

syn

syn

syn
x

d

q

q
syn d

syn

Figure 1.6: Vector diagram depicting the Park transform of an arbitrary vector.
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The projection of electrical variables into a rotating reference frame (Figure 1.6) is

typically referred to as the Park transform, named for R.H. Park who published the

first papers in 1929 [59] detailing the application of reference frame theory to the

analysis of AC machines. Starting from two-phase equivalent variables and using

notation from Fig. 1.6, the Park transform is simply given by,

~xsyn =

[
xsynd

xsynq

]
=

[
cos (θsyn) sin (θsyn)

−sin (θsyn) cos (θsyn)

][
xd

xq

]
= e−Jθsyn~x, (1.5)

where J is the 90◦ counter-clockwise (CCW) rotation matrix:

J =

[
0 −1

1 0

]
.

For completeness, the inverse Park transform is simply given by,

~x =

[
xd

xq

]
=

[
cos (θsyn) −sin (θsyn)

sin (θsyn) cos (θsyn)

][
xsynd

xsynq

]
= eJθsyn~xsyn. (1.6)

1.2.2 State-of-the-Art in Offline Identification of Induction Machine Pa-

rameters

Historically, induction machines have been the industrial workhorse while per-

manent magnet machines have dominated high-performance applications. However,

advancements in their design and control have made induction machines a viable al-

ternative to permanent magnet machines in automotive applications (e.g., the Tesla

Model S) where ruggedness and the absence of expensive rare-earth magnets are de-

sirable characteristics. Nevertheless, the challenge remains that high-performance

control techniques for induction machines, such as field-oriented control, require ac-

curate knowledge of the machine parameters [41].

Over the past few decades, a considerable amount of attention has been given

to the online identification of the rotor time constant and/or rotor resistance, e.g.

[32,42,55,63,75,81,85], as these parameters can vary significantly with temperature,

leading to severe detuning in both direct and indirect field-oriented controllers [7,41].

In addition to the rotor time constant, online techniques have been proposed for other

machine parameters as well, e.g., [25, 50,61,73]. However, the added complexity and

design difficulty of adaptive parameter estimation might not be appropriate for some

applications. Furthermore, since the variations in some machine parameters, such as
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the inductances, may be modeled as functions of known or measurable variables such

as flux linkage magnitude [24], offline identification of such machine parameters for

non-adaptive control methodologies is a viable alternative.

The IEEE standard for induction machine parameter identification [2] uses no-

load and locked-rotor tests for offline parameter identification. However, accurate

parameter estimation using the standard requires special equipment to conduct these

tests. For example, it is recommended that locked-rotor tests be conducted at electri-

cal frequencies close to typical slip frequencies (e.g., 25% of rated frequency) to obtain

accurate leakage inductance and rotor resistance estimates. While a voltage-source

inverter could be used to generate voltages with such a frequency, the presence of

switching harmonics in the output voltage complicates voltage measurements, unless

the inverter has a significant output filter. An alternative to measuring the voltage

is to calculate the voltage from the inverter duty cycles and bus voltage. However,

transistor voltage drops and the deadtime effect [7] make it difficult to accurately

determine output voltages when they are small, as in the case of the locked-rotor

test.

Alternatives to the IEEE standard for offline identification of induction machine

parameters have been proposed, which can generally be categorized as using either

transient measurements (e.g., [21, 35, 46, 68, 70, 80]) for parameter identification, or

steady-state measurements (e.g., [3,4,43,58]), like the technique proposed in this dis-

sertation. In [3], an adaptive (search boundary) genetic algorithm is used to identify

machine parameters, while a more recent paper [4] has proposed using the Levenberg-

Marquardt algorithm, commonly used to solve nonlinear least-squares problems, to

estimate induction machine parameters. Other approaches have been proposed as

well [43, 58] which use variable frequency tests at a standstill (i.e., zero rotor speed)

to estimate parameters. However, none of these papers [3,4,21,35,43,46,58,68,70,80]

considers core loss in their parameter identification, which can influence the accuracy

of estimated parameters [8, 79]. Nor is the characterization of magnetic saturation

considered beyond noting that it can have an influence on the accuracy of estimated

parameters [35,43,46,58,68,70]. Finally, the value-added by estimating the core loss

conductance and saturation characteristics is that knowledge of these parameters, and

their variations, may be used in the control law (e.g., [24] for inclusion of saturation,

and [79] for core loss) as well as for loss estimation and/or minimization (e.g., [23]).

10



1.2.3 Background on Parameter Identification and Adaptive Control

Model-based control requires reasonably accurate knowledge of the plant parame-

ters. While there are a number of ways to determine the plant parameters, a common

approach is to fit an input-output model of the plant to experimental data obtained by

exciting the plant dynamics with a known input and measuring the output response.

This identification process may be done “offline” when the plant parameters either a)

don’t vary significantly, or b) vary in a known or repeatable manner. As mentioned

in the previous section, the inductances of an AC machine can be modeled as nonlin-

ear functions of flux linkage magnitude to capture saturation effects. The saturation

characteristics don’t vary significantly with temperature or time, and can therefore

be identified offline and “hard-coded” in the controller. The plant parameters may

also be identified “online” in real-time when there is an immediate need or use for

that information, such as condition monitoring and fault detection, for example.

Modeling

Design

Implementation

Permanent Magnet 
Synch. Machines 

(PMSM)

Interior Permanent 
Magnet
(IPM)

Surface-Mount 
Permanent Magnet 

(SMPM)

PlantController

Adjustment
Mechanism

Figure 1.7: Typical structure of adaptive controllers.

Online identification is typically performed in the context of adaptive control. As

used in this document, the term adaptive control refers to a control methodology in

which control law parameters are updated in real-time via a parameter identification

algorithm. The typical structure of an adaptive controller is shown in Figure 1.7. A

common design approach for adaptive control, which we have used in our research, is

the so-called certainty equivalence principle in which the control law is designed first

assuming that the plant parameters are known, and then an adaptive law is designed

to estimate those parameters. Thus, as the parameter estimates converge to their true

values, the performance of the adaptive controller tends to the desired performance

of the certainty equivalence design.

To identify the plant parameters, linear parametric models of the following form

are often used,

z(t) = θ Tφ(t), (1.7)

where z and φ consist of measurable signals, and θ consists of the plant parameters
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we want to identify. Note that in general z is a vector (often a scalar), while φ and θ

are either vectors or matrices, depending on the particular application. Additionally,

it should be noted that z and φ often contain time-differentiated versions of measured

signals, which are typically “estimated” by filtering [28]; this will be discussed in more

detail later when it is needed. Identifying the plant parameters can be thought of as an

optimization problem which seeks to find the estimated parameters, θ̂, which minimize

the difference between the measured signal, z, and its estimated value ẑ = θ̂ Tφ

(assuming z and φ are bounded), e.g.:

min
θ̂

1

2
‖z − θ̂ Tφ‖2

2 (1.8)

Parameter estimates are often obtained using the familiar gradient-descent and least-

squares algorithms [28]. However, an important sufficient condition for the estimated

parameters to converge to their true values (i.e., θ̂ → θ as t→∞) is that the regressor

φ(t) be persistently exciting :

Definition I.1. (Persistence of Excitation (PE) [28]): A piecewise continuous signal

vector φ : R+ 7→ Rn is said to be persistently exciting in Rn with a level of

excitation α0 > 0 if there exist constant scalars α1, T0 > 0 such that

α1I ≥
1

T0

∫ t+T0

t

φ(σ)φ>(σ)dσ ≥ α0I, ∀ t ≥ 0. (1.9)

While we won’t get into the details here, the persistence of excitation condition on

the regressor is key to proving that the parameter error, θ̃ = θ̂ − θ, goes to zero. A

rule of thumb is that the input to the system under identification must contain at

least one distinct frequency component for every two parameters to be identified; this

condition is referred to as sufficient richness [28].

Analysis of closed-loop adaptive control systems tends to be rather challenging

since even when the plant under control is linear-time invariant (LTI), the closed-loop

system under adaptive control is nonlinear. This is particularly true when the control

law and parameter estimator are designed separately, and then simply “plugged” to-

gether to form an adaptive controller. So, even though combining, say, a least-squares

parameter estimator with a particular control law to form an adaptive controller is an

intuitive and easy design approach, it is typically very challenging to prove closed-loop

stability for such a design.
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An alternative approach is to formulate a control law based on the certainty equiv-

alence principle, and then design the parameter estimator (or update law) such that it

ensures the closed-loop system is stable in the presence of parameter uncertainty, us-

ing a Lyapunov stability analysis. Essentially, what happens is that the adaptive law

is designed to cancel the indefinite terms which appear when the Lyapunov function

candidate is differentiated with respect to time, ensuring that the derivative of the

Lyapunov function is negative semi-definite for all time, t, and that the closed-loop

system is therefore stable in the sense of Lyapunov. Barbalat’s lemma [28, 33, 71]

is then typically used to prove asymptotic stability of the closed-loop adaptive con-

trol system. While this design approach is generally more involved than the “plug-

and-play” approach using linear parametric models and least-squares (or gradient

descent) algorithms, it has the advantage of coming with a stability proof. However,

the difficulty associated finding a Lyapunov function, if possible, limits the general

applicability of this approach.

1.2.4 State-of-the-Art in Simultaneous Identification and Control

As noted earlier, identification and control are typically conflicting objectives. For

identification, we need to select plant inputs such that the plant dynamics are per-

sistently excited, which typically involves signals which are rich in harmonic content.

However, for output regulation, we are typically interested in tracking some refer-

ence value, often a constant set-point, which may not provide sufficient excitation

for parameter convergence. For single-input single-output (SISO) systems, this is an

unavoidable trade-off between output regulation and parameter identification.

One approach to handling this trade-off is the so-called “dual control”, introduced

by Feldbaum in 1960 [15]. The dual control input is derived by solving a stochastic

optimal control problem which seeks to balance the trade-off between maintaining

tight control and small parameter estimation errors. A key characteristic of dual

control is that the control law is a function of the estimated parameters as well as

their uncertainties, similar to how a Kalman filter estimates states along with the

noise covariance. However, analysis requires nonlinear stochastic control theory, and

solutions to the optimal dual control problem are challenging if not impossible to

find for all but simple problems [84]. For this reason, there has been a fair amount

of interest in finding approximate (or sub-optimal) approaches to achieving the dual

control objective, e.g., [5, 11,16,19,20,22,30,37,49,54,62,72,82].

Receding Horizon Control (RHC) (a.k.a. Model Predictive Control (MPC)3) [52],

3In this dissertation, the terms RHC and MPC will be used interchangeably.
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which has seen a rapid growth in popularity in recent years, provides a natural plat-

form for alternative dual control (i.e., simultaneous identification and control) strate-

gies due in part to its inherent optimization and constraint handling. In fact, most

of the papers cited in the preceding paragraph use MPC as a basis for implemen-

tation [5, 11, 19, 20, 22, 37, 54, 62, 72, 82]. Within the MPC framework, a metric for

excitation is incorporated into the optimization problem to ensure the generation of

persistently exciting control signals along with the usual control metrics. The trade-

off between identification and control may then be managed by tuning the weighting

(or penalties) placed on excitation and regulation metrics. For example, in [19, 54]

the metric for persistent excitation is included as an inequality constraint in the MPC

formulation, whereas [37] includes it in the cost function. However, while a trade-

off is unavoidable in SISO systems, overactuated systems provide an opportunity to

circumvent this trade-off.

In an overactuated system, there is no unique input vector which yields a particular

output. Thus, overactuated systems provide an opportunity to achieve persistent

excitation and output regulation objectives simultaneously, potentially without trade-

off, when the excitation is constrained to the “null-space” of the system. While

this idea has been explored for specific applications in recent years [10, 45, 83], the

problem has yet to be treated in a more general framework. In [45], [83] the authors

exploit the redundancy in a spacecraft with an overactuated reaction wheel array by

restricting the optimized excitation signal to the “null-motion” of craft in order to

estimate actuator misalignments. Similarly, in [10], the authors exploit the actuation

redundancy in an electric vehicle with separate drives for the front and rear wheels,

to generate sufficiently rich input signals for road friction coefficient identification

without affecting the vehicle motion.

1.3 Open Issues and Contributions

1.3.1 Open Issues

The open issues in identification and control for high-performance AC drive sys-

tems which we will address in this dissertation are as follows:

• Accurate offline identification of induction machine parameters using a voltage-

source inverter and over a wide operating range - The IEEE standard for induc-

tion machine parameter identification [2] uses no-load and locked-rotor tests for

offline parameter identification. However, accurate parameter estimation us-
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ing the standard requires special equipment to conduct these tests. While a

voltage-source inverter could be used, the presence of switching harmonics in

the output voltage complicates voltage measurements, unless the inverter has

a significant output filter. Thus, there is a need for an alternative to the IEEE

standard for offline induction machines parameter identification, which can be

implemented in VSI-driven systems and is capable of characterizing machines

over a wide range of operating conditions. While alternatives to the IEEE stan-

dard have been proposed in the literature (see Section 1.2.2), these techniques

do not consider core loss or the characterization of magnetic saturation, both

of which can significantly affect the accuracy of the estimated parameters, and

knowledge of which may be used to improve controller performance.

• Development of methodologies for simultaneous identification and control of

overactuated systems - Adaptive control is often used to obtain high-performance

when controlling uncertain systems. However, while steady-state tracking can

typically be guaranteed, regardless of the accuracy of the estimated parame-

ters, transient performance, as well as the regulation of unmeasured outputs,

can suffer in the presence of inaccurate parameter estimates. Furthermore,

accurate parameter knowledge is vital to secondary objectives such as loss min-

imization (e.g., in AC machines) and condition monitoring, as well as ensuring

that constraints are satisfied in predictive control designs. While parameter

identification and output regulation are typically conflicting objectives, overac-

tuated systems such as AC machines provide an opportunity to achieve these

objectives simultaneously in real-time without compromise. Dual control and

alternatives have been introduced to manage this trade-off, typically for SISO

systems. However, currently no general methodology exists which specifically

exploits overactuation for simultaneous identification and control.

1.3.2 Summary of Contributions and Innovations

This dissertation seeks to address the open issues described in the previous section,

and more, via the following contributions:

• A novel technique for offline identification of induction machine parameters -

We have developed a new technique for induction machine parameter identifica-

tion which can easily be implemented using a voltage-source inverter [64]. The

proposed technique is based on fitting steady-state experimental data to the cir-

cular stator current locus in the stator flux linkage reference-frame for varying
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steady-state slip frequencies, and provides accurate estimates of the magnetic

parameters, as well as the rotor resistance and core loss conductance. This ap-

proach allows accurate leakage inductance and rotor resistance estimation while

avoiding the difficulties associated with inverter-based implementations of the

locked-rotor test. Experimental results for a 43 kW induction machine are pro-

vided which demonstrate the utility of the proposed technique by characterizing

the machine over a wide range of flux levels, including magnetic saturation;

• The development of generalizable design methodologies for simultaneous identifi-

cation and control of overactuated systems via case studies with permanent mag-

net synchronous machines - Specifically, this dissertation will present two differ-

ent approaches to the design of adaptive controllers for PMSMs which exploit

overactuation to achieve identification and control objectives simultaneously by

ensuring that excitation signals introduced for parameter identification have a

minimal impact on the regulated torque output. The first approach, termed

“Adaptive Excitation Decoupling” [67], utilizes a disturbance decoupling con-

trol law to prevent the excitation input from perturbing the regulated output,

while machine parameters used in the control law are updated online via a nor-

malized gradient estimator. The second approach [66] uses a Lyapunov-based

inner-loop adaptive controller to constrain the states to the output error-zeroing

manifold, defined by the torque output mapping, on which they are varied to

provide excitation for parameter identification. Finally, the issue of input se-

lection (i.e., excitation input design and control allocation) is addressed for the

Lyapunov-based design by incorporating a receding-horizon control allocation

which includes a metric for generating persistently exciting reference trajecto-

ries. While both approaches are shown to achieve the SIC objective, and each

hold promise for generalization, the Lyapunov-based design has robustness and

stability advantages over the Adaptive Excitation Decoupling approach.

• The development of numerical tools for analysis and design of high-performance

AC drive systems - Specifically, we have developed Simulink R© models for sin-

gle and three-phase inverters with dead-time effect and center-based PWM,

sampled-data controller models which account for time delays as well as single

and twice-per-period sampling schemes, and finally AC machine models which

allow parameters to be varied;
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• Construction of a physical testbed for electric drives with hybrid energy storage

- Finally, we have constructed a testbed for the purpose of experimentally vali-

dating advanced control algorithms for high-performance AC drive systems, as

well as energy cycling using hybrid energy storage. While it won’t be discussed

in detail here, the development of the testbed has been documented in [26].

1.4 Reader’s Guide

The remainder of this dissertation is organized as follows:

Chapter 2: Offline Identification of Induction Machine Parameters

presents a new technique for offline identification of induction machine param-

eters using a voltage-source inverter. The stator current locus representation in

the stator flux linkage reference frame is first derived, and next, the estimation

technique is discussed. Following a discussion of the stator flux linkage estima-

tor, simulation and experimental results demonstrating the effectiveness of the

proposed technique are presented.

Chapter 3: Adaptive Excitation Decoupling Approach to Simulta-

neous Identification and Control of Permanent Magnet Synchronous

Machines begins our discussion of simultaneous identification and control of

permanent magnet synchronous machines. The proposed technique utilizes a

disturbance decoupling control law to prevent the excitation input, introduced

to ensure that conditions for persistency of excitation are satisfied, from perturb-

ing the regulated (i.e., electromagnetic torque) output. A normalized gradient-

based identifier is used to estimate the machine parameters and update the

excitation (i.e., disturbance) decoupling control law. Simulations are used to

verify the resulting closed-loop adaptive excitation decoupling controller.

Chapter 4 Simultaneous Identification and Control of Permanent

Magnet Synchronous Machines via Adaptive 2-DOF Lyapunov De-

sign presents an alternative adaptive control design for PMSMs which achieves

the simultaneous identification and control objective using a Lyapunov-based

design. By regulating the states to the output error-zeroing manifold, we ensure

that perturbations to the torque output (due to the presence of an excitation

signal) are minimized while still providing excitation for parameter identifica-

tion. This approach has the advantages that the stator currents (i.e., the states)
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are directly regulated, closed-loop stability is proven, and analysis of sufficient

conditions for parameter convergence is tractable.

Chapter 5 Receding Horizon Control Allocation for Simultaneous

Identification and Control of PMSMs extends the approach presented in

Chapter 4 to use an optimization-based control allocation, rather than the fixed

allocation used in Chapter 4. A receding-horizon optimization, which includes a

metric for encouraging the generation of persistently exciting signals, is used to

generate the command current trajectories for a given command torque, which

are fed to the inner-loop adaptive current regulator derived in Chapter 4. This

work address the limitations of the work presented in Chapter 4 in that special-

ized knowledge (i.e., intuition) of the plant is not needed to design the control

allocation, and the design of persistently exciting signals is guided by a rigorous

metric; these points, the control allocation and design of persistently exciting

signals, are handled automatically by the receding-horizon optimization.

Chapter 6 Conclusions and Future Work summarizes the results of this

research and makes suggestions for future research directions.
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CHAPTER II

Offline Identification of Induction Machine

Parameters

2.1 Introduction

This chapter presents a new technique for induction machine parameter identifi-

cation using steady-state current measurements. The proposed technique is based on

fitting experimental data to the circular stator current locus in the stator flux link-

age reference-frame for varying steady-state slip frequencies, and provides accurate

estimates of the magnetic parameters, as well as the rotor resistance and core loss

conductance. Numerical simulation results evaluating the accuracy of the estimated

parameters in the presence of non-ideal effects are presented, and experimental re-

sults for a 43 kW induction machine are provided which demonstrate the utility of

the proposed technique by characterizing the machine over a wide range of flux levels,

including magnetic saturation.

2.2 The Steady-State Stator Current Locus

In this work, the induction machine is modeled as having a smooth air-gap (i.e.,

slotting effects are neglected) in addition to the following simplifying assumptions:

A1. a quasi-linear magnetics model;

A2. the machine is balanced in its construction with sinusoidally-distributed mag-

netomotive force (mmf);

This chapter is based on a previously published conference paper [64] which has been expanded and
submitted to a journal and is currently under review:
D. M. Reed, H. F. Hofmann, and J. Sun, “Offline Identification of Induction Machine Parameters
with Core Loss Estimation using the Stator Current Locus,” Under review, 2015.
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A3. a 1:1 effective turns ratio;

A4. the core loss is modeled as a resistive shunt just after the stator winding resis-

tance (see Figure 2.1).

The first assumption, A1, permits variations in the magnetic parameters with oper-

ating conditions, while A2 justifies the use of a 2-phase equivalent model and trans-

formation from 3-phase to 2-phase using the Clarke transform [14]. The third as-

sumption, A3, is common for squirrel-cage induction machines, which do not have

physical rotor windings. Finally, while core loss is typically modeled as a resistance

in parallel with the mutual inductance [17], this placement is somewhat arbitrary as

leakage flux also travels through the machine iron. A4 simplifies the analysis while

still capturing the nature of the core loss (i.e., electrical power which is not converted

into mechanical power). Finally, a list of induction machine notation is provided in

Table 2.1.

Table 2.1: List of induction machine notation.

Symbol Description

~vs(t) = [vsd(t) vsq(t)]
> Stator Voltage Vector

~is(t) = [isd(t) isq(t)]
> Stator Current Vector

~λs(t) = [λsd(t) λsq(t)]
> Stator Flux Linkage Vector

Rs Stator Winding Resistance

Ls Stator Winding Self-Inductance

M Mutual Inductance

Gc Core Loss Conductance

ωe Electrical Frequency

~ir(t) = [ird(t) irq(t)]
> Rotor Current Vector

~λr(t) = [λrd(t) λrq(t)]
> Rotor Flux Linkage Vector

Rr Rotor Resistance

Lr Rotor Self-Inductance

ωr Rotor Angular Velocity

P Number of Poles

ωre = P
2
ωr Rotor Electrical Angular Velocity

ωse = ωe − ωre Electrical Slip Frequency
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Figure 2.1: Dynamic 2-phase equivalent circuit model for an induction machine.

The desired expressions for the steady-state stator currents in the stator flux

linkage reference-frame are developed starting from the flux linkage dynamics in the

stationary reference-frame for the 2-phase equivalent induction machine model:

d~λs
dt

= −Rs
~is + ~vs, (2.1)

d~λr
dt

= −Rr
~ir + ωreJ~λr, (2.2)

where ~λs = [λsd λsq]
> is the stator flux linkage vector, ~λr = [λrd λrq]

> is the rotor

flux linkage vector, ~is = [isd isq]
> is the stator current vector, ~ir = [ird irq]

> is the

rotor current vector, ~vs = [vsd vsq]
> is the stator voltage vector, and J is the 90◦

CCW rotation matrix. These expressions (2.1)-(2.2) are easily derived by applying

Kirchhoff’s and Faraday’s laws to the equivalent circuit model provided in Fig. 2.1.

Additionally, the following flux linkage/current relationships, which hold for arbitrary

reference-frames (denoted by the superscript x), are needed

~λxs = Ls~i
x
s +M~ixr , (2.3)

~λxr = M~ixs + Lr~i
x
r , (2.4)

where Ls = Lls +M and Lr = Llr +M .

To represent (2.2) in the stator flux linkage reference-frame, we use the Park

transform [59],

~xλs = e−Jθλs~x, (2.5)

where the superscript λs is used to designate variables which are being represented in

the stator flux linkage reference-frame, the angle of which is denoted by θλs . Applying

(2.5) to the stationary-frame electrical variables in (2.2) yields

d~λλsr
dt

= −Rr
~iλsr + ωseJ~λ

λs
r , (2.6)
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where ωse = ωe − ωre is the electrical slip frequency. At steady-state1 (2.6) gives us

the following expression for the steady-state rotor currents

~I λsr = −Ωse

Rr

J~Λλs
r , (2.7)

where Ωse is the steady-state electrical slip frequency. From (2.3)-(2.4) it can be

shown that
~λxr =

σ2

Ls
~ixr +

M

Ls
~λxs , (2.8)

where σ2 = LsLr −M2. Plugging (2.8) into (2.7) and solving for the rotor current,
~I λsr , we obtain the following expression for the steady-state rotor currents in the stator

flux linkage reference-frame as a function of slip frequency and stator flux linkage:

~I λsr = −
Ωse
Rr

M
Ls

1 +
(

Ωse
Rr

σ2

Ls

)2

[
Ωse

Rr

σ2

Ls
I + J

]
~Λλs
s , (2.9)

where I is the 2× 2 identity matrix.

Finally, using the stator current relationship with the core loss conductance (as

defined in Fig. 2.1),

~is = Gc
d~λs
dt

+~i′s, (2.10)

which, at steady-state and when represented in the stator flux linkage reference-frame,

is given by
~I λss = GcΩeJ~Λ

λs
s + ~I λ

′
s

s , (2.11)

along with the fact that

~I λ
′
s

s =
1

Ls

(
~Λλs
s −M~I λsr

)
, (2.12)

we obtain the desired scalar form expressions for the steady-state direct, Iλssd , and

quadrature, Iλssq , stator currents in the stator flux linkage reference-frame in which

the direct-axis is aligned with the stator flux linkage vector (i.e., ~λλss = [||~λs|| 0]>):

Iλssd =

[
1 +

(
M

σ

)2
(
Ωse/Ω

λs
se,max

)2

1 +
(
Ωse/Ωλs

se,max

)2

]
||~Λs||
Ls

, (2.13)

Iλssq =

(
M

σ

)2
(
Ωse/Ω

λs
se,max

)
1 +

(
Ωse/Ωλs

se,max

)2

||~Λs||
Ls

+GcΩe||~Λs||, (2.14)

1Steady-state variables are denoted by capital letters.
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Figure 2.2: Parameterized steady-state stator current locus in the stator flux linkage
reference-frame.

where Ωe is the steady-state electrical frequency, ||~Λs|| is the stator flux linkage mag-

nitude and Ωλs
se,max = RrLs

σ2 is the slip frequency which maximizes torque for a given

stator flux linkage magnitude.

When plotted as a function of slip frequency, (2.13) and (2.14) produce the circular

stator current locus in Figure 2.2. The parameterized stator current locus circle is

given by (
Iλssd − xo

)2
+
(
Iλssq − yo

)2
= r2, (2.15)

where,

xo =
1

2

(
1

Ls
+
Lr
σ2

)
||~Λs||, (2.16)

yo = GcΩe||~Λs||, (2.17)

r =
M2

2σ2Ls
||~Λs||. (2.18)

The stator current locus in Fig. 2.2 can therefore be used to identify the magnetic

parameters of the induction machine (i.e., Ls,Lr, and M), as well as the core loss

conductance, Gc, by fitting the parametric circle (2.15) to experimental data (i.e.,

Iλssd (Ωse) and Iλssq (Ωse)) which forms the stator current locus, provided that the stator

flux linkage magnitude is held constant (i.e., regulated) during data collection. Once

estimates of the center location, (x̂o, ŷo), and radius, r̂, have been computed, the

core loss and magnetic parameters are calculated assuming that the inductance ratio,
Ls
Lr

, is known2. This assumption gives us three equations with three unknowns, Ls,r,

2If the NEMA-design letter is known, this ratio can be found in IEEE Standard 112; otherwise
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M , and Gc. Once we have estimates of the magnetic parameters and the core loss

conductance, (2.13) and (2.14) along with the corresponding slip frequencies, are used

to estimate the rotor resistance, Rr.

Since the magnetic parameters are obtained from the parameterization of the

fitted locus circle, their estimates are independent of the rotor resistance, which will

vary with temperature. Other benefits of the proposed technique are a reduction in

the dimension of the estimation problem by identifying magnetic parameters (and

core loss conductance) separately from the rotor resistance, the use of multiple data

points in estimating parameters, and the ability to characterize the machine over a

wide range of operating points which include magnetic saturation.

2.3 Proposed Parameter Estimation Technique

2.3.1 Fitting the Parameterized Stator Current Locus Circle to Data

Using the stator current locus presented in the previous section, the magnetic

parameters, as well as the core loss conductance, are identified by fitting the param-

eterized circle (Fig. 2.2) to experimental data. The fitting is achieved by solving a

reasonably simple minimization problem. According to the theory, the zero-slip data

point and the center of the stator current locus should be aligned horizontally. While

it may seem simplistic to use the zero-slip data point to fix the center of the estimate

stator current locus (circle), it works well in practice, as will be demonstrated in our

numerical analysis.

Enforcing the condition that the zero-slip data point determines the vertical offset

in the locus circle, we see that

ŷo = Isq(Ωse = 0). (2.19)

The magnetic parameters are then computed by solving the following minimization

problem

(x̂o, r̂) = arg min
(x,r)>0

Jscl(x, r), (2.20)

where the cost function, Jscl(x, r), is given by,

Jscl =
N∑
n=1

[
r2 −

((
Iλssd,n − x

)2
+
(
Iλssq,n − ŷo

)2
)]2

, (2.21)

assume Ls/Lr = 1.
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where Iλssd,n and Iλssq,n are the nth measurements of the steady-state direct and quadra-

ture stator currents in the stator flux linkage reference-frame. This approach (2.20)-

(2.21) is sometimes referred to as a “pure least-squares” solution [76]. In our work,

we chose to solve this minimization problem numerically using MATLAB’s fmincon

constrained nonlinear programming algorithm.

Given estimates of the center location, (x̂o, ŷo), and radius, r̂, the stator self-

inductance is given by

L̂s =
||~Λs||
x̂o − r̂

. (2.22)

Next, we assume that the stator and rotor inductances are the same (i.e. L̂s/L̂r = 1)

and compute the leakage term:

σ̂2 =
L̂rL̂s||~Λs||

2L̂sx̂o − ||~Λs||
. (2.23)

Once the self-inductance and leakage terms are known, the mutual inductance is

calculated:

M̂ =

√
L̂sL̂r − σ̂2. (2.24)

Finally, the estimate of the core loss conductance is given by

Ĝc =
ŷo

Ωe||~Λs||
. (2.25)

To estimate the rotor resistance, we will minimize the sum-of-squares error be-

tween the experimental data points (i.e., Iλssd (Ωse) and Iλssq (Ωse)) and those predicted by

the steady-state model of the stator current locus (in the stator flux linkage reference-

frame). Again, the parameter estimation is obtained by solving a constrained mini-

mization problem:

R̂r = arg min
Rr∈[Rr,min, Rr,MAX ]

JRr(Rr) (2.26)

where the cost function, JRr(Rr), is given by,

JRr(Rr) =
N∑
n=1

((
Iλssd,n − Îλssd,n

)2

+
(
Iλssq,n − Îλssq,n

)2
)
, (2.27)
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where Îλssd,n and Îλssq,n are functions of Rr derived from (2.13) and (2.14):

Îλssd,n =

1 +
M̂2

σ̂2

(σ̂2Ωse,n)
2(

RrL̂s

)2

+ (σ̂2Ωse,n)2

 ||~Λs||
L̂s

, (2.28)

Îλssq,n =
M̂2

σ̂2

RrL̂sσ̂
2Ωse,n(

RrL̂s

)2

+ (σ̂2Ωse,n)2

||~Λs||
L̂s

+ ĜcΩe,n||~Λs||. (2.29)

Note that a non-zero stator flux linkage magnitude and non-zero slips are required

for identification of the rotor resistance. This amounts to a rather intuitive persistent

excitation condition [63], in that it suggests rotor currents must be present in order to

determine the rotor resistance. While this cost function (2.27)-(2.29) is globally non-

convex, it is convex for practical rotor resistance values (e.g., positive values) with

a unique minimum at the true resistance. Therefore, we enforce constraints when

solving the minimization problem, requiring that Rr ∈ [0.1Rs, 10Rs]. Once again, we

use MATLAB’s fmincon constrained nonlinear programming algorithm to solve the

minimization problem.

2.3.2 Procedure for Data Collection

In order to generate the experimental stator current locus, the measured stator

currents must be projected into the stator flux linkage reference-frame using the Park

transform (2.5). Additionally, the stator flux linkage magnitude must be held constant

while the steady-state direct and quadrature stator currents are recorded for various

steady-state (i.e., constant) slip frequencies, Ωse. To ensure that the flux linkage

magnitude remains constant, a Proportional-Integral (PI) regulator is used to drive

the error between the commanded stator flux magnitude, ||Λ̃s||, and estimated flux

magnitude, ||Λ̂s||, to zero. The output of the PI regulator is the stator excitation

voltage magnitude, ||~vs||, as depicted in Figure 2.3. The slip frequency is varied by

either fixing the electrical frequency, Ωe, of the stator excitation voltage and varying

the regulated rotor speed of the load machine, or vice versa.

Selection of the electrical excitation frequency, Ωe, is somewhat arbitrary. In gen-

eral, running at higher speeds (and thus, higher electrical frequencies) will reduce

the influence of stator resistance variations, as well as inverter non-ideal effects like

dead-time, by increasing voltage levels in the machine. Additionally, the electrical

frequency should be high enough that the effects of integrator approximations are neg-

ligible. Similar to electrical frequency, the use of higher stator flux linkage magnitudes
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Figure 2.3: Data acquisition controller block diagram for the proposed parameter
estimation technique.

will also help to minimize the influence of stator resistance variations and inverter

non-ideal effects (e.g., dead-time). However, it is advisable to consider multiple flux

linkage magnitudes during data collection, to check at what point the machine (iron)

begins to saturate. The nominal (or rated) specifications from the manufacturer are

a good starting point for selecting the electrical frequency and stator flux linkage

magnitude.

2.3.3 Dead-time Compensation

In practical implementations, it is desirable to avoid the use of stator voltage

measurements due to the added cost and complexity involved in processing the pulse-

width modulated (PWM) voltage waveforms. Instead of measured voltages, our al-

gorithm (Fig. 2.3) uses the commanded stator voltages to estimate the stator flux

linkage. However, use of the commanded voltages requires compensation of non-ideal

inverter characteristics such as the dead-time effect [7], which lead to distortions in

the stator current locus, as depicted in Figure 2.4. In other words, the stator cur-

rent locus is not circular in the presence of the dead-time effect. For this reason,

first-harmonic dead-time compensation is employed to ensure that the actual volt-

ages applied to the machine terminals closely resemble the commanded values used

to estimate the stator flux linkage. In discrete-time and in the stationary reference-

frame, the compensated voltage command, ~̃v ∗s,k = [ṽ∗sd,k ṽ∗sq,k]
>, at time-step “k” is
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Figure 2.4: Simulation of the proposed data acquisition procedure depicting the dis-
tortion in the stator current locus due to dead-time effect(left) and im-
provement using first-harmonic dead-time compensation (right).

given by:

~̃v ∗s,k = ~̃vs,k +
4

π
Vbustdfsw

(
eJ(1.5TsΩe)

~is,k

||~is,k||

)
. (2.30)

where ~̃vs,k = [ṽsd,k ṽsq,k]
> is the ideal (commanded) stator voltage vector, ~is,k =

[isd,k isq,k]
> is the measured stator current vector, td is the dead-time, fsw is the

switching frequency of the power electronics (in Hertz) and Vbus is the DC bus voltage.

The sinusoidal first-harmonic of the square-wave dead-time voltage is used to avoid

introducing the additional harmonic content associated with the sign function.

Finally, we note that the exponential term in (2.30) is used to compensate for the

time delay present in the experimental sampled-data implementation. While a stator

current predictor could be employed to compensate the time delay, it would require

accurate knowledge of the machine parameters (which we are trying to identify).

Instead, we simply advance the normalized stator current vector by 1.5 times the

angular distance traveled by the stator current vector over one sample period. The

factor of 1.5 is used to center the prediction over the next sample period, which was

found to provide improved performance in numerical simulations.

2.4 Stator Flux Linkage Estimation

Accurate estimation of the stator flux linkage is necessary for the proposed pa-

rameter identification technique, as well as for field-oriented control techniques in
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general. In particular, consideration must be given to the sampled-data nature of

modern controller implementations, which include a time delay between when stator

currents are sampled and when the computed duty cycle is executed.
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Figure 2.5: Timing relationships for sampled-data implementation with unit delay.

Typically, the stator flux linkage is estimated by integrating the stator flux linkage

dynamics (2.1). In general, the stator flux linkage vector at time tk is given by

~λs,k = ~λs,k−1 +

∫ tk

tk−1

(
~vs(t)−Rs

~is(t)
)
dt. (2.31)

We will assume that the voltage applied to the stator terminals is constant over a

given sample period, Ts, which is true in an average-value sense, and that there is a

one sample-period delay before a computed voltage is applied, as depicted in Figure

2.5. In other words, the voltage/duty cycle computed at time index k is applied at

k + 1. Under these assumptions, the discrete-time estimate of the stator flux linkage

at time k is given by
~̂λs,k = ~̂λs,k−1 + Ts~es,k, (2.32)

with

~es,k = ~̃vs,k−2 −
Rs

2

(
~is,k +~is,k−1

)
, (2.33)

where ~̃vs,k−2 denotes the commanded voltage computed at time index k − 2 (which

is implemented at k − 1), ~is,k and ~is,k−1 denote the measured stator current at time

index k and k − 1, respectively. In the z-domain, (2.32) may be represented by the

following transfer function

~̂λs,k =

{
zTs
z − 1

}
~es,k. (2.34)

Note that ~es,k is essentially an input to the discrete-time integrator in (2.34). However,

the use of a pure integrator is undesirable in practice, as it can lead to drift and

instabilities. Instead, we use a discrete-time approximation of a stable second-order

continuous-time integrator approximation.
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To reject DC biases in the measured currents, and achieve a faster phase transition

(to 90◦) we employ a second-order integrator approximation [63],

~̂λs =

{
s

s2 + 2ζωns+ ω2
n

}(
~vs −Rs

~is

)
, (2.35)

where “s” is the Laplace variable, ζ > 0 is the damping constant, ωn sets the corner

frequency of the integrator approximation, and the brackets, e.g., {F (s)}, are used to

indicate a dynamic operator with transfer function F (s). To ensure accurate estimates

of the stator flux linkage, ωn should be set as low as possible3 (i.e., ωn ≤ 0.01 Ωe)

while still providing stable flux linkage estimates. While the discussion of continuous-

time representations is conceptually convenient, discrete-time implementations must

be derived for experimental implementation on a microcontroller.

0 1 2 3 4

x 10
-3

0

0.5

1

1.5

2

x 10
-3

Time (sec)

A
m

pl
itu

de

 

 

Impulse Invariance
Bilinear
Ideal Integrator

Figure 2.6: Comparison of bilinear and impulse invariance discrete-time second order
integrator approximations with ideal continuous-time integrator.

Two common methods for deriving discrete-time approximations of continuous-

time transfer functions are the bilinear transform and the impulse invariance method

[60]. While the bilinear transform is generally favored for filter design, it leads to

a small delay in our application, which is avoided by using the impulse invariance

method, as shown in Figure 2.6. Using the impulse invariance method, the following

discrete-time integrator approximation is obtained for ζ = 0.4 and ωn = 5 rad/sec

~̂λs,k =

{
0.0001z2 − 0.0001z

z2 − 2z + 0.9999

}
~es,k, (2.36)

where the coefficients are computed using MATLAB’s c2d command, which converts

3Note that F (s) ≈ 1
s for ω >> ωn.
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continuous-time system models to a discrete-time equivalent using the method spec-

ified (e.g., ‘impulse’ for the impulse invariance method).

2.5 Numerical Analysis

Numerical simulations implemented in MATLAB/Simulink are used to evaluate

the proposed parameter identification methodology’s accuracy in the presence of non-

ideal effects which are encountered in experimental implementations. Specifically, our

simulations include non-ideal inverter characteristics such as dead-time, switch resis-

tance, and diode voltage drops, as well as the sampled-data nature of experimental

implementations, which include a one-time-step delay. Additionally, zero-mean Gaus-

sian noise, of amplitude (i.e., variance) comparable to what we have observed in our

experimental test-bed, is added to the three-phase stator current measurements.

To capture the sampled-data nature of the experimental system, our algorithm

is implemented in a triggered subsystem in Simulink, while the machine dynamics

are simulated in a continuous-time environment using MATLAB’s ode45 solver. To

reduce simulation times, an “average-value” inverter model is used. That is, we do

not model the switching nature of the inverter, since the switching frequency is high

enough that its impact on performance is negligible. We do, however, model the

dead-time effect and other non-ideal effects (resistive and diode voltage drops of the

IGBT switches) by appropriately modifying the voltage commands produced by the

identification algorithm before they are fed to the induction machine model.

The methodology for data collection and data acquisition controller (Fig. 2.3)

with stator flux linkage estimation, described in the prequel, were used to generate the

numerical data from MATLAB/Simulink at various slip frequencies. The simulated

data was generated at a variety of flux linkage magnitudes ranging from 0.06 V-

sec to 0.14 V-sec, closely mimicking the experimental conditions (same bus voltage,

sampling frequency, etc.) and using machine parameter values similar to those of the

test machine. An electrical base frequency of 153.33 Hz was used, which corresponds

to a zero-slip rotor speed of 4600 rpm (i.e., the rated rotor speed of the experimental

test machine). The simulated data was then used to compute the machine parameters

in the same fashion that the experimental data is processed, using the proposed

technique discussed earlier. The resulting parameter errors are plotted in Figure 2.7

as a function of flux linkage magnitude.

Inspection of the simulation results in Fig. 2.7 reveals that the proposed parameter

identification methodology is capable of estimating the magnetic parameters and rotor
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Figure 2.7: Simulated parameter errors in the presence of non-ideal effects.

resistance with high accuracy in the presence of non-ideal effects. Additionally, while

the core loss conductance proves to be a more challenging parameter to estimate, the

proposed technique provides estimates with reasonable accuracy, and which improve

at higher flux linkage magnitudes. This is due to the fact that the dead-time effect, as

well as the transistor voltage drops, result in a fixed magnitude voltage error. Their

impact on the accuracy of the estimated parameters therefore diminishes as voltage

levels increase with higher flux linkage magnitudes, as well as higher speeds.

Nevertheless, this level of accuracy in the estimated core loss conductance is more

than sufficient for predicting the impact of core loss on torque regulation. This is

verified by plotting the ratio of the “true” (i.e., with core loss) electromagnetic torque

to the “commanded” (i.e., without core loss) electromagnetic torque as a function

of slip frequency, as shown in Figure 2.8. Inspection of this plot reveals that the

impact of even a 20% error in the core loss conductance estimate will have a rather

small influence on our ability to capture the impact of core loss on torque regulation

performance over the slip frequency range of practical interest (i.e., from the minimum

current operating point up to the minimum flux linkage operating point).
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Figure 2.8: Steady-state induction machine torque error (ratio) due to unmodeled
core loss as a function of slip. This plot was generated using the following
machine parameters: Ls = Lr = 4.4 mH, M = 4.2 mH, Rr = 23 mΩ,
Gc = 30 mΩ−1, and Ωe = 153.33 Hz.

2.6 Experimental Results

2.6.1 Experimental Setup

The experimental parameter identification control algorithm is implemented on a

Speedgoat real-time target machine using auto-generated code from MATLAB/Simulink.

The test motor is a 3-phase, 4,600 rpm (nominal), 43 kW-peak induction machine

from Azure Dynamics, driven by an IGBT inverter with a switching frequency of

10 kHz, bus voltage of 300 V, and dead-time of 2 µs. A center-based pulse-width

modulation technique is employed to synchronize sampling and switching, thereby
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Figure 2.9: Experimental set-up for parameter identification data collection.
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avoiding the pickup of electromagnetic interference generated during switching tran-

sitions. Thus, the control algorithm for parameter identification is executed at 10

kHz as well, and Space-Vector Modulation (SVM) is used to generate the desired

duty-cycles sent to the inverter. An identical induction machine serves as the load

for the test machine by regulating the rotor speed (Fig. 2.9).

2.6.2 Experimental Results and Discussion

Steady-state data is recorded for several stator flux linkage magnitudes, ranging

from 0.08 V-sec to 0.14 V-sec, at an electrical base frequency of 153.33 Hz. For each

flux linkage magnitude, the direct and quadrature currents (in the stator flux linkage

reference-frame) are recorded for several different slip frequencies, including zero-

slip, roughly up to the current limitations of the machines. The resulting machine

parameters, estimated using the proposed technique, are plotted in Figure 2.10 as a

function of stator flux linkage magnitude, ||~Λs||.
Inspection of the parameter estimates in Fig. 2.10 reveals that the estimated self

and mutual inductance capture the saturation effects in the machine. Additionally,

we have plotted the leakage inductances, Lls and Llr, to confirm our expectation that

these parameters remain constant. As for the estimated rotor resistance, while there

are variations in the estimates, these variations are well within the range expected
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Figure 2.10: Experimental estimated machine parameters as a function of stator flux
linkage magnitude.
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due to temperature changes. In fact, the lower resistance estimates at 0.1 and 0.13

V-sec correlate with data collected after allowing the machine time to cool. Further-

more, the expected increase in resistance for a 45◦C rise in temperature in aluminum

conductors [64] is ∼ 4.07 mΩ, and supports our suspicion that the variations in rotor

resistance observed in Fig. 2.10 are due to temperature changes in the rotor during

data collection. Inspection of Fig. 2.10 also reveals that the core loss conductance

estimates are reasonably consistent across all of the stator flux linkage magnitudes.

However, since core losses are typically thought of in terms of the power they

consume, rather than the equivalent resistance, it is desirable to check the predicted

core loss power using the core loss conductance estimates. The estimated power

dissipated by the core loss conductance is given by

P̂core =
3

2
ĜcΩ

2
e||~Λs||2. (2.37)

Thus, using our experimental data, we obtain the plot provided in Figure 2.11. In-

spection of Fig. 2.11 reveals the general trend that core losses increase with stator

flux linkage magnitude, as expected.
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Figure 2.11: Estimated core loss power as a function of stator flux linkage magnitude
at a electrical base frequency of 153.33 Hz and switching frequency of
10 kHz.

Finally, the experimental stator current locus plots for several stator flux linkage

magnitudes are provided in Figure 2.12. The estimated locus points are computed

using the estimated machine parameters along with equations (2.13) and (2.14). In-

spection of Fig. 2.12 reveals that there is a good consensus between the experimental

and estimated locus points, particularly at high flux linkage magnitudes where the in-

fluence of the non-ideal inverter effects and stator flux estimation are less pronounced.
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Figure 2.12: Experimental data (blue circles) with fitted current locus circle (green
dashed line) and estimated locus points (red X’s) for various stator flux
linkage magnitudes.

2.7 Conclusion

This chapter presented a new technique for offline identification of induction ma-

chine parameters, including core loss conductance, using steady-state measurements.

The technique is based on fitting steady-state experimental data to the circular stator

current locus in the stator flux linkage reference-frame for various steady-state slip

frequencies, providing reliable estimates of the magnetic parameters as well as the

rotor resistance and core loss conductance. This approach allows accurate estimation

of leakage inductance and rotor resistance while avoiding the practical challenges of

implementing a locked-rotor test with a voltage-source inverter. Numerical results

verifying the accuracy of estimated parameters in the presence of non-ideal effects

were presented, in addition to experimental results for a 43 kW induction machine,

which demonstrate the proposed technique’s ability to accurately characterize a VSI-

driven induction machine over a wide range of operating conditions, including mag-

netic saturation.
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CHAPTER III

Adaptive Excitation Decoupling Approach to

Simultaneous Identification and Control of

Permanent Magnet Synchronous Machines

3.1 Introduction

In this chapter, we begin our technical discussion of simultaneous identification

and control for PMSMs and present the first of three approaches to SIC of PMSMs.

As noted in the introduction, parameter identification and output regulation are

typically conflicting objectives. Generally, a trade-off must be made between ensuring

that inputs to the system under control are persistently exciting and maintaining

tight regulation of “performance” (i.e., regulated) outputs. However, in the case

of certain overactuated systems there is an opportunity to achieve these objectives

simultaneously. For example, field-oriented output torque regulation in Permanent

Magnet Synchronous Machines (PMSMs) constitutes an overactuated control problem

in that there are two distinct inputs to the system, the direct-axis voltage input and

the quadrature-axis voltage input, and one regulated output, torque. The direct-axis

voltage is typically used to set magnetic field (flux) levels in the machine by regulating

the direct-axis stator current, while the quadrature-axis voltage is used to regulate

the electromagnetic torque by regulating the quadrature-axis stator current.

The PMSM is a popular choice in high-performance drives, particularly in trans-

portation applications, thanks to its high torque density and high efficiency. How-

ever, temperature changes, skin effect, and magnetic saturation lead to changes in

This chapter is based on previously published work:
D. M. Reed, J. Sun, and H. F. Hofmann, “Simultaneous Identification and Torque Regulation
of Permanent Magnet Synchronous Machines via Adaptive Excitation Decoupling,” in American
Control Conference (ACC), 2015, pp.3224-3229, 1-3 July 2015.
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the machine parameters which in turn detune the drive system, causing performance

degradation. The stator winding resistance is primarily impacted by temperature

variations, which can lead to increases in resistance by as much as 100% [39]. While

the permanent magnet flux magnitude also varies with temperature, the variation

can be small for certain types of magnets. For example, in neodymium (NdFeB)

magnets the variation is around -0.1% per ◦C [7], which results in a mere 5% error for

a rather large 50◦C increase in temperature. Finally, while the electrical frequencies

needed to see a significant rise in stator resistance due to skin effect are not typically

encountered, high-speed applications using motors with a high pole-pair count may

see an impact due to skin effect.

Many different approaches to compensating parameter variations in PMSMs have

been proposed by researchers. Steady-state machine models have been used to avoid

the additional complexity that comes with using dynamic models for parameter es-

timation [34], [44]. Open-loop [13], as well as closed-loop [77], [27] approaches have

been presented which utilize the method of least-squares for PMSM parameter estima-

tion. The gradient method is used in [56] to provide online estimates of the lumped

time-varying disturbances caused by parameter variations. While artificial neural

networks have been proposed for online adaptation [47], Lyapunov-based adaptive

designs provide an attractive alternative, as a stability proof is a byproduct of the de-

sign process [48]. However, none of these papers proposes a design which specifically

considers Simultaneous Identification and Control (SIC) in their design.

This chapter presents a simultaneous identification and control methodology for

PMSMs by exploiting the overactuated nature of the machine. Specifically, the pa-

rameters to be identified are the direct and quadrature-axis self-inductances, Ld and

Lq, as well as the stator winding resistance, R. And the output to be controlled

is the electromagnetic torque, τ . An indirect adaptive control design using the cer-

tainty equivalence principle is proposed in which a disturbance decoupling control

law is utilized to prevent the input selected for excitation from perturbing the reg-

ulated output. The machine parameters used in this excitation decoupling control

law are updated via a normalized gradient estimator. Simulation results for a torque

regulating controller for PMSMs confirm the effectiveness of the proposed simulta-

neous identification and control design methodology. Furthermore, while the focus

of the chapter is on the application of the proposed adaptive excitation decoupling

control methodology to PMSM torque regulation, the prospects of generalizing this

methodology for overactuated systems are promising.
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Table 3.1: List of notation for PMSMs.

Symbol Description

Electrical Variables

vrd(t) Direct-axis Voltage in Rotor Ref. Frame

vrq(t) Quadrature-axis Voltage in Rotor Ref. Frame

ird(t) Direct-axis Current in Rotor Ref. Frame

irq(t) Quadrature-axis Current in Rotor Ref. Frame

R Stator Winding Resistance

Ld Direct-axis Stator Self-Inductance

Lq Quadrature-axis Stator Self-Inductance

ΛPM Permanent Magnet Flux Linkage

Mechanical Variables

τ Three-Phase Electromagnetic Torque

ωr Rotor Angular Velocity

ωre = P
2
ωr Rotor Electrical Angular Velocity

P Number of Poles

3.2 Dynamic Model of PMSMs

The proposed control algorithm is designed around the standard two-phase equiv-

alent model for permanent-magnet synchronous machines [39], the physical cross-

section of which is depicted in Figure 3.1. This model, and the subsequent control

design, are derived under the following assumptions:

A1. The machine to be controlled has a smooth airgap (i.e., slotting effects are

neglected), is fed by an ideal voltage source inverter (VSI), and is balanced

in its construction such that it can be accurately represented by its 2-phase

equivalent;

A2. A linear magnetics model is assumed (i.e., magnetic saturation effects are ne-

glected) and core losses are neglected;

A3. The rotor and mechanical load have enough inertia that a significant time-scale

separation exists between electrical and mechanical dynamics;
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A4. The sampling frequency of the digital implementation is high enough that a

continuous-time control design can be sufficiently approximated;

A5. The only uncertain parameters are resistance, R, permanent magnet flux linkage,

ΛPM , and the direct and quadrature inductance, Ld and Lq, respectively.

These assumptions are typical and valid under normal operation.

The first three assumptions (A1 - A3) simplify the model by reducing its order and

maintaining linearity. In particular, given that the mechanical dynamics associated

with the rotor velocity are significantly slower than the electrical dynamics and that

measurements of rotor velocity are readily available, ωre may be treated as a known

constant (A3). This simplification allows us to represent the machine as having

linear time-invariant dynamics. The last two assumptions (A4 and A5) pertain to

the control design and methodology.
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Figure 3.1: Cross-section of the two-phase equivalent, two-pole smooth airgap
interior-permanent-magnet PMSM machine.

The dynamic model of a PMSM in the rotor reference frame (denoted by the

superscript r), in which the direct-axis is aligned with the rotor permanent magnet

flux, is given by,

Ld
dird
dt

= −Rird + ωreLqi
r
q + vrd, (3.1)

Lq
dirq
dt

= −ωreLdird −Rirq + vrq − ωreΛPM , (3.2)

40



with the unmeasured nonlinear torque output mapping,

τ =
3P

4
[(Ld − Lq) ird + ΛPM ] irq. (3.3)

Finally, the mechanical dynamics are given by

d

dt
ωr =

1

H
[(τ − τl)−Bωr] , (3.4)

where H is the combined moment of inertia of the rotor and load, B is the mechanical

damping, and τl is the load torque. However, because the separation between the

(dominant) electrical and mechanical time constants (Telec = − R
Lq

and Tmech = −B
H

,

respectively) is roughly a factor of 150 for the experimental machine considered in

this work, we will neglect the mechanical dynamics in our design and analysis. We

therefore treat the rotor speed as a known constant with respect to the electrical

dynamics (3.1)-(3.2), as there exists a significant time-scale separation between the

electrical and mechanical dynamics to justify A3.

3.3 Adaptive Disturbance Decoupling Approach

The SIC approach presented in this paper is based upon a certainty equivalence

design in which an excitation input decoupling control law is used to prevent the

excitation input signal from perturbing the regulated output. This excitation decou-

pling control law is derived by reformulating the problem as a disturbance decoupling

problem [29].

3.3.1 Statement of the Control Objective

The control inputs to the PMSM are the direct and quadrature-axis voltages, urd
and urq, and the (unmeasured) regulated output is electromagnetic torque, τ . Thus,

the PMSM constitutes an overactuated system. Our control objective is to simul-

taneously achieve parameter identification and asymptotic output regulation in an

overactuated system, namely the PMSM. This is accomplished by using an adaptive

excitation (disturbance) decoupling control design in which one input of the overac-

tuated system is designated as the excitation input used to ensure that the PMSM

dynamics are persistently excited for parameter convergence, and the other input is

used for torque output regulation. The excitation decoupling control law ensures that

the perturbations in the regulated output go to zero asymptotically as the machine
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parameters converge to their true values. Once identified, the presence of the ex-

citation signal ensures that the parameter estimator will track any changes in the

parameters.

3.3.2 Review of Disturbance Decoupling

To apply this solution to the simultaneous identification and control problem, we

treat the excitation input as a measured disturbance, and derive a state-feedback

controller which decouples the excitation input from the regulated output, provided

that the system parameters are well known. For convenience, we will first review the

general solution for a class of nonlinear systems [29] before applying the result to the

PMSM torque regulation problem.

Consider a nonlinear system of the form

Σ :

{
ẋ = f(x) + g(x)u+ p(x)w,

y = h(x),
(3.5)

where x ∈ Rn is the state vector, y ∈ R is the regulated (or “performance”) output,

u ∈ R is the input and w ∈ R is the disturbance input which is to be decoupled.

Given measurements of the full state vector, x, as well as the disturbance, w, it is

possible to decouple the disturbance from the output, y, using a state-feedback law of

the form u = α(x)+β(x)ψ+γ(x)w, where ψ is a control input which will be designed

to yield stable linear closed-loop dynamics provided that,

LpL
i
fh(x) = 0 for all 0 ≤ i ≤ ρ− 2, (3.6)

LpL
ρ−1
f h(x) = −LgLρ−1

f h(x)γ(x), (3.7)

for all x in the neighborhood of the equilibrium, xo, where Lifh(x) denotes the ith Lie

derivative of h(x) projected along f(x) and ρ is the relative degree of the system, Σ.

Note that the second condition is easily satisfied by solving for γ(x) and including

the term in the feedback law. If these conditions are satisfied for a given plant, a

feedback law which achieves disturbance decoupling, is given by:

u = −
Lρfh(x)

LgL
ρ−1
f h(x)

−
LpL

ρ−1
f h(x)

LgL
ρ−1
f h(x)

w +
ψ

LgL
ρ−1
f h(x)

. (3.8)

The design of ψ is best understood by considering the system in the “normal
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form” [29], which is obtained by defining new coordinates such that,

ż1 = z2
...

żρ−1 = zρ

żρ = b(ξ, η) + a(ξ, η)u+ d(ξ, η)w

η̇ = q(ξ, η) + k(ξ, η)w

y = z1

where ξ = [z1 · · · zρ]> and η = [zρ+1 · · · zn]>. Note that the term η̇ = q(0, η) represents

the zero dynamics of the system, which must be stable (i.e., minimum phase) to ensure

that the closed-loop design is internally stable. In the new coordinate system (i.e.,

normal form) the state-feedback law (3.8) takes the form,

u = − b(ξ, η)

a(ξ, η)
− d(ξ, η)

a(ξ, η)
w +

ψ

a(ξ, η)
,

and the closed-loop system takes on the structure depicted in Figure 3.2, effectively

isolating the output, y, from the disturbance input, w.

  

Figure 3.2: Block diagram of closed-loop system after disturbance decoupling
(adapted from [29]).

With Figure 3.2 in mind, our choice of the control, v̄, is rather intuitive:

ψ = − (c0z1 + · · ·+ cρ−1zρ) + ỹ

= −
(
c0h(x) + · · ·+ cρ−1L

ρ−1
f h(x)

)
+ ỹ, (3.9)

where ỹ is the reference input (i.e., desired output value) and the coefficients c0, · · · , cρ−1

are selected to yield the desired linear dynamics with characteristic equation,

sρ + cρ−1s
ρ−1 + · · ·+ c1s+ c0 = 0. (3.10)
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It should be noted that, in general, the solution to the disturbance decoupling problem

presented here, and its asymptotic stability properties, are local results (i.e., they hold

only for a neighborhood of the equilibrium point, xo).

3.3.3 Excitation Decoupling for PMSMs

The dynamic model of the PMSM in the rotor reference frame, (3.1) and (3.2),

may be rewritten in the following form,

d

dt

ird
irq

 =

 − R
Ld

ωre
Lq
Ld

−ωre LdLq − R
Lq

ird
irq


︸ ︷︷ ︸

,f(x)

+

 0

1
Lq


︸ ︷︷ ︸
,g(x)

urq +

 1
Ld

0


︸ ︷︷ ︸
,p(x)

urd, (3.11)

with the nonlinear torque output mapping (3.3), repeated for convenience,

τ =
3P

4
[(Ld − Lq) ird + ΛPM ] irq︸ ︷︷ ︸

,h(x)

, (3.12)

where the direct and quadrature currents are the states (i.e., x = [ird i
r
q]
>) of the

system and the direct and quadrature voltage inputs to the system are assumed to

include a EMF cancellation term, i.e., vrq = urq +ΛPMωre, and vrd = urd for consistency.

To apply the disturbance decoupling solution to our problem, we first need to

decide which plant inputs will be used for control and which will be used for excitation

(i.e., the “disturbance” to be decoupled). While this can be challenging for general

plant models, many applications lend intuition which may be leveraged to make this

decision. As it concerns our application, we note that the coupling between the direct

and quadrature-axis dynamics is only strong at high speeds (3.11), going to zero at

zero speed (i.e., the system matrix is diagonal at zero speed). Additionally, inspection

of the torque output mapping (3.12) reveals that, because (Ld−Lq) tends to be much

smaller than ΛPM , the quadrature-axis current, irq, and thus, the quadrature-axis

voltage input, urq, has the most authority over the torque output. Therefore, we take

the quadrature-axis voltage, urq, as the control input and the direct-axis voltage, urd, as

the disturbance input (for excitation) to be decoupled. Thus, the PMSM is treated as

a SISO system with control input, urd, regulated output τ , and measured disturbance

input, urd. While we have selected our control input based on its authority over the

regulated output, for other applications, this decision could also be dictated by which

input provides more excitation for identification.
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The relative degree of the PMSM system (3.11)-(3.12) from either input (urd or

urq) to the output, τ , is one (i.e., ρ = 1 for the PMSM), which is easily verified by

differentiating the output (3.12) with respect to time. Therefore, we need only include

the following feed-forward term

γ(x) =
Lq
Ld

(Ld − Lq)irq
(Ld − Lq)ird + ΛPM

in the excitation decoupling control law to ensure that the conditions (3.6)-(3.7) are

satisfied. Furthermore, since the PMSM dynamics (3.11)-(3.12) are minimum phase,

we may apply the disturbance decoupling results from the previous section.

While our focus is on the design of the control input, urq, in practice it is beneficial

to cancel the cross coupling term in the direct-axis dynamics as it will lead to resonant

behavior, as well as a large steady-state direct-axis current, at high rotor velocities.

Therefore, we include the following feedback term for the direct-axis,

urd = −ωreL̂qirq + R̂ue, (3.13)

where ue is the excitation input which is scaled by the estimated resistance so that

it corresponds to the magnitude of the steady-state direct-axis current generated by

the direct-axis command voltage. Computing the necessary Lie derivatives specified

in (3.8), we obtain the excitation decoupling control law for PMSMs:

urq = R̂irq + ωreL̂di
r
d −

R̂

L̂d

L̂q∆̂Li
r
q

∆̂Lird + ΛPM

(ure − ird) +
4L̂q

3P
(

∆̂Lird + ΛPM

)ψ, (3.14)

where the “hat” ( ·̂ ) designates parameters which will be adaptively estimated, and

∆̂L = L̂d − L̂q (for compactness).

Finally, we design the control input, v, in (3.14) as follows:

ψ = −λh(x) + λτ̃ , (3.15)

which yields the following first-order (input-output) closed-loop dynamics,

Σcl :

{
ż = −λz + λτ̃

τ = z = h(x)
(3.16)

where λ > 0 is a control gain which sets the closed-loop bandwidth, and h(x) is
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Figure 3.3: Block diagram of the closed-loop system with proposed adaptive excita-
tion decoupling controller.

defined by (3.12). Thus, the disturbance and its associated dynamics are decoupled

from the output, z. Finally, we compute the value for λ based on our desired rise-time

of 2 milliseconds and the following relationship for first-order systems [18],

λ =
1.8

tr
,

where tr is our desired rise time (i.e., tr = 2 msec).

Remark : A comprehensive stability analysis of the adaptive excitation decoupling

control will not be pursued in this dissertation. However, once parameter convergence

is obtained, which is guaranteed by the algorithm proposed in the next section, stabil-

ity of the closed-loop system will follow from the non-adaptive disturbance decoupling

control. Therefore, for the adaptive control problem, stability can be assured if there

is no finite escape time.

Estimates of the machine parameters used in the excitation decoupling control law

(3.14) are provided by a normalized gradient-based algorithm. The resistance, as well

as the direct and quadrature inductances, are directly estimated by the algorithm. A

block diagram of the overall adaptive control system is provided in Figure 3.3.
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3.3.4 Gradient-based Parameter Estimation

To formulate the parameter estimator, we first construct a linear parameterization

for the system model (3.11),

~z = Φ>~θ, (3.17)

where ~z = [urd urq]
> is the observation vector, ~θ = [R Ld Lq]

> is the parameter

vector, and the regressor matrix is given by

Φ> =

~φ>d
~φ>q

 =

ird d
dt
ird −ωreirq

irq ωrei
r
d

d
dt
irq

 . (3.18)

In order to avoid direct computation of derivatives in the regressor matrix, we filter

each side of (3.17) by a stable first-order filter [28], i.e.,

{M(s)} ~z = {M(s)}Φ>~θ,

where

{M(s)} =

{
Kf

s+Kf

}
is the transfer function representation of a stable first-order filter (i.e., Kf > 0) which

operates on the individual elements of ~z and Φ.

The parameter estimates are obtained by integrating the following expression,

˙̂
~θ = ΓΦ~ez

= Γ
[
~φd ~φq

] [ezd
ezq

]
= Γ

(
~φdezd + ~φqezq

)
(3.19)

where Γ = Γ> > 0 is the adaptation gain matrix and ~ez = [ezd ezq]
> is the normalized

estimator error vector, whose entries are given by,

ezd =
urd − ~φ>d

~̂θ

1 + ~φ>d
~φd
, (3.20)

ezq =
urq − ~φ>q

~̂θ

1 + ~φ>q
~φq
. (3.21)

Finally, we note that the rows of the regressor matrix, Φ, are scaled such that
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the nominal signal amplitudes are around unity to ensure that the identification

problem is well-conditioned. This is important as the large differences in the order-

of-magnitude between resistances and inductances will lead to a numerically poorly-

conditioned identification problem if left unscaled.

3.4 Selection of Persistently Exciting Inputs

A disadvantage of the design approach presented in this chapter is that it sig-

nificantly complicates the analysis of the resulting closed-loop adaptive controller.

However, by making some reasonable simplifying assumptions, we are able to gain

some intuition to guide the design of persistently exciting inputs.

In the following analysis, we will assume that we have accurate knowledge of the

machine parameters, as this represents something of a worst-case scenario since any

error in the estimated parameters is expected to provide additional “information” for

identification. This is because the excitation signal is only perfectly decoupled from

the output when the plant parameters are accurately known. Thus, when there is

parameter uncertainty, the excitation signal will excite additional dynamics in the

plant as compared to when we have accurate parameter knowledge.

To analyze the influence of the reference torque, τ̃ , and the excitation input, ure,

on the conditioning of the regressor matrix (3.18), we need to relate these inputs to

the direct and quadrature-axis currents, ird and irq. Under the assumption of accurate

parameter knowledge, the closed-loop direct-axis current dynamics are given by

d

dt
ird = − R

Ld
ird +

R

Ld
ure. (3.22)

Additionally, recalling the closed-loop torque regulation dynamics (3.16) and noting

that z = τ in (3.16), we get that

d

dt
τ = −λτ + λτ̃ . (3.23)

To simplify our analysis of the regressor, we will assume that that Ld ≈ Lq. This is

a conservative assumption, however, as a significant magnetic saliency, i.e., Lq >> Ld,

will provide additional excitation via the coupling between the direct and quadrature

currents through the torque expression (4.6). Note that for the torque to remain

constant in the presence of excitation introduced via the direct-axis dynamics, the

quadrature-axis current must vary in an inverse manner. Under this assumption, the
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torque expression is simplified as follows:

τ =
3P

4
[(Ld − Lq) ird + ΛPM ] irq,

≈ 3P

4
ΛPM i

r
q,

= KΛi
r
q.

(3.24)

Next, we relate the reference torque, τ̃ , to the quadrature-axis current, irq, by substi-

tuting the relationship in (3.24) into (3.23), to get that

d

dt
irq = −λirq +

λ

KΛ

τ̃ . (3.25)

To determine sufficient conditions for persistent excitation on the reference torque,

τ̃ , and the excitation input, ure, we will use the definition of persistent excitation.

Noting that (from (3.18)),

1

T

∫ t+T

t

Φ(σ)Φ>(σ)dσ =
1

T

∫ t+T

t

~φd(σ)~φ>d (σ)dσ +
1

T

∫ t+T

t

~φq(σ)~φ>q (σ)dσ, (3.26)

it follows that a sufficient condition for Φ to be persistently exciting is that either ~φd

or ~φq (or both) be persistently exciting. Assuming the excitation input is sinusoidal,

i.e., ure = sin(ωt), it follows that the (sinusoidal) steady-state solution to (3.22) is of

the form

ird = a sin(ωt+ b).

Additionally, we will assume that the torque reference input is constant. It follows

that the steady-state solution to (3.25) is given by

irq =
τ̃

KΛ

.

Under these assumptions, the direct-axis regressor vector is given by

~φd(t) =

 ird
d
dt
ird

−ωreirq

 =

 a sin(ωt+ b)

aω cos(ωt+ b)

−ωre τ̃
KΛ

 . (3.27)

Finally, using the definition of persistent excitation, and taking the time interval to
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be [0, 2π
ω

], it can be shown that

det

(
ω

2π

∫ 2π
ω

0

~φd(σ)~φ>d (σ)dσ

)
=
τ̃ 2a4ω2ω2

re

4K2
Λ

. (3.28)

We conclude that, if τ̃ , a, ω, and ωre 6= 0, then Φ is persistently exciting.

In the next section, we will investigate parameter convergence properties when

the reference torque is equal to zero, i.e., τ̃ = 0, and when the excitation input is

zero, i.e., a = 0, using numerical simulations. Intuitively, we expect these conditions

to cause problems with parameter convergence since τ̃ = 0 and a = 0 (i.e., ird = 0)

lead to a row of zeros in the regressor (3.18). Additionally, it will be verified that, by

leveraging the excitation input, we can ensure complete parameter convergence.

3.5 Simulation Results

We have validated the proposed adaptive excitation decoupling control method-

ology for SIC in Matlab/Simulink simulations using a dynamic model of the PMSM

and the ode4 Fixed-step Runge-Kutta solver with a step size of 10 µ-sec. Parameters

provided in Table 3.2 were used in all simulations except where noted otherwise.

Table 3.2: Simulation parameters.

Description Value

Electrical Machine Parameters:

R 102.8 mΩ

Ld 212.3 µH

Lq 424.6 µH

ΛPM 12.644 mV-s

P 10

Control Design Parameters:

λ 900

Γ diag([16 80 40])

Kf 1000

ωpe 363 rad/sec
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3.5.1 On Conditions for Parameter Convergence

Due to the overactuated nature of the PMSM, we are able to ensure that the

machine dynamics are persistently excited while minimizing perturbations to the reg-

ulated (i.e., torque) output, by utilizing the excitation input. Our only requirement

on the torque reference input to ensure full parameter convergence, is that the torque

command be nonzero, as the analysis in the preceding section suggested. To inves-

tigate parameter convergence properties in the closed-loop system, Simulink simula-

tions are run which examine scenarios when the excitation input is set to zero, and

in which the torque (control) command is set to zero.
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Figure 3.4: Simulations of the closed-loop adaptive system (adaptation turned “on”
at t = 1 sec): (a) without persistently exciting input (i.e., ure = 0),
leading to partial convergence; and, (b) with zero torque command input
(i.e., τ̃ = 0), again leading to partial convergence.

In Figure 3.4(a) we see that, without the additional information provided by the

excitation input, i.e. ue = 0, the estimate of the direct-axis inductance, L̂d, settles

to an incorrect value. This scenario serves as our baseline adaptive control design

in which the overactuation in the system is not exploited. This essentially gives us

the feedback linearization portion of the controller and a fair basis with which to

compare. Despite the rich harmonic content of the square wave torque command, the

estimated parameters do not fully converge to their true values. However, in Figure

3.4(b) we see that, when the torque command is set to zero, the estimated machine

parameters again fail to converge fully to their true values, despite the presence of
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a persistently exciting excitation input, ue = 1.5 (sin(ωpet) + sin(0.5 · ωpet)). The

zero torque command results in a lack of sufficient richness for the quadrature-axis

inductance estimate, L̂q, to converge to its true value.

3.5.2 Closed-loop Performance

The main objective in this work is to demonstrate an adaptive control methodol-

ogy for overactuated systems which is capable of achieving simultaneous identification

of parameters and control of a regulated output. This is achieved by exploiting the

overactuated nature of a PMSM by designating one input as an excitation input,

which is designed to ensure that the system is persistently excited for parameter

identification, and the other input as the control input used for torque regulation.
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Figure 3.5: Simulation of closed-loop adaptive system at a fixed rotor velocity of 2000
rpm with excitation input (adaptation turned “on” at t = 1 sec).

In Figure 3.4(a) we see that, without leveraging the extra degree of freedom result-

ing from overactuation (i.e., utilizing the excitation input) the estimated parameters

converge to a set where, despite the fact that the control error goes to zero, the esti-

mate of Ld stagnates at an incorrect value. This is the typical scenario for adaptive

control in which the adaptation drives the control error to zero, but due to a lack of
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persistent excitation, the parameters fail to completely converge to their true values.

However, when we use the overactuated nature of the PMSM to our advantage, we

are able to ensure that the system is persistently excited and so all of the parameters

converge to their true values. This is accomplished by using a disturbance decou-

pling control law to fix the control allocation such that, given accurate parameter

knowledge, the excitation input is decoupled from the regulated output, allowing us

to introduce excitation for parameter identification while minimizing the impact on

output regulation. Machine parameters used in the control law are then updated by

the online identification, ensuring that any perturbations to the torque output vanish

as the estimated parameters converge to their true values. Inspection of the results in

Figure 3.5 confirm that the closed-loop system performs very well, with torque per-

turbations due to the excitation input vanishing as the estimated parameters converge

to their true values.

Finally, to demonstrate that the closed-loop adaptive excitation decoupling con-

troller does exhibit robustness to uncertainty as well, simulations are run which in-

clude zero-mean Gaussian noise on the stator current measurements. Inspection of

these results, presented in Figure 3.6, indicate that, despite the presence of measure-

ment noise, the parameters converge to their true values. It should be noted that, in

practice, limiting the bandwidth of the adaptive estimator will improve performance
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Figure 3.6: Simulation of closed-loop adaptive system at a fixed rotor velocity of 2000
rpm with zero-mean Gaussian noise added to the current measurements.
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in presence of measurement noise. Additionally, while the simulations presented here

do not include any robustness modification to the adaptive update law (3.19), in an

experimental implementation, the addition of a robustness modification such as a

switching-sigma or projection is advised [28].

3.6 Conclusion

This chapter presented recent research [67] into the application of disturbance de-

coupling to the development of a simultaneous identification and control methodology

for overactuated systems via a case study with PMSMs. An indirect adaptive control

design using the certainty equivalence principle was proposed in which a disturbance

decoupling control law, termed excitation decoupling, is utilized to prevent the ex-

citation input from perturbing the regulated output. The plant parameters used in

the excitation decoupling control law are updated online via a normalized gradient

estimator. Simulation results for simultaneous identification and torque regulation in

PMSMs confirm the effectiveness of the proposed design methodology. While open

issues remain, such as a comprehensive assessment of closed-loop stability, the “adap-

tive excitation decoupling” approach shows promise for generalization.
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CHAPTER IV

Simultaneous Identification and Control of

Permanent Magnet Synchronous Machines via

Adaptive 2-DOF Lyapunov Design

4.1 Introduction

In the previous chapter, an investigation into the application of disturbance de-

coupling control theory to the simultaneous identification and control of overactuated

systems, dubbed “adaptive excitation decoupling”, was presented. The advantage of

this approach is that it is based upon well established theory and provides a relatively

straightforward design procedure. However, even if the resulting closed-loop adaptive

system is globally asymptotically stable, it will be very challenging to demonstrate

this analytically. Likely, the best that can be argued is that if the closed-loop system

does not posses a finite-escape time, and the system is persistently excited such that

the estimated parameters are converging to their true values, then local stability is

assured by the disturbance decoupling control law.

This chapter presents a Lyapunov-based simultaneous identification and control

design methodology for overactuated systems which is demonstrated on PMSMs and

whose stability properties can be rigorously established. By constraining the states to

a manifold which corresponds to zero regulated-output error, we are able to achieve

excitation and output regulation simultaneously. The controller to be presented for

PMSMs is derived using Lyapunov’s stability theorem, and so the stability of the

closed-loop system is demonstrated in the process of deriving the adaptation law. A

This chapter based on work submitted to a journal and is under review:
D. M. Reed, J. Sun, and H. F. Hofmann, “Simultaneous Identification and Robust Adaptive Torque
Control of Permanent Magnet Synchronous Machines,” Under review, 2015.
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switching-σ robust modification to the derived adaptive law is used to ensure closed-

loop stability in the presence of unmodeled disturbances. The control law, designed

using the certainty equivalence principle [28], utilizes a combination of adaptively-

tuned feedforward (to achieve zero steady-state error), d− q decoupling (to improve

transient response), and proportional feedback (to add robustness to disturbances)

terms. Overactuation of the system is exploited to simultaneously achieve parameter

convergence and torque regulation. After reviewing the dynamic PMSM machine

model, the derivation and stability proof for the proposed adaptive controller is pre-

sented. Necessary conditions for parameter convergence are discussed, and simulation

results verifying the performance of the control design are presented. Remarks spe-

cific to experimental implementation challenges, as well as experimental results, are

presented and discussed.

4.2 Two-Phase Equivalent Dynamic Model for PMSMs

For convenience, and continuity with the material to be discussed in this chapter,

presentation of the two-phase equivalent PMSM model is repeated here. This model,

and the subsequent control design, are derived under the following assumptions:

A1. The machine to be controlled has a smooth airgap (i.e., slotting effects are

neglected), is fed by an ideal voltage source inverter (VSI), and is balanced

in its construction such that it can be accurately represented by its 2-phase

equivalent model;

A2. Linear magnetics is assumed (i.e., magnetic saturation effects are neglected),

and core losses are neglected;

A3. The rotor (electrical) velocity, ωre, is a bounded time-varying input which is

known (i.e., measured);

A4. The sampling frequency of the digital implementation is high enough that a

continuous-time control design can be sufficiently approximated;

A5. The only uncertain parameters are resistance, R, permanent magnet flux linkage,

ΛPM , and the direct and quadrature inductances, Ld and Lq, respectively.

Note that these assumptions differ slightly from those in preceding chapter (i.e.,

Chapter 3) in that the assumption of constant rotor velocity is relaxed, as it is not
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required for the theory to be presented. Additionally, we will consider the permanent

magnet flux linkage as an unknown parameter to be estimated.

The first three assumptions (A1 - A3) simplify the model and reduce its or-

der, while the last two assumptions (A4 and A5) pertain to the control design and

methodology. Under these assumptions, the dynamic model of a PMSM, repeated

here for easy reference, is given by:

Ld
dird
dt

= −Rird + ωreLqi
r
q + vrd,

Lq
dirq
dt

= −ωreLdird −Rirq + vrq − ωreΛPM ,

(4.1)

with the unmeasured nonlinear torque output mapping

τ =
3P

4
[(Ld − Lq) ird + ΛPM ] irq. (4.2)

4.3 Simultaneous Identification and Control Objective and

Methodology

The SIC design methodology demonstrated in this chapter on torque regulation in

PMSMs is based on constraining the states of the system to a set which corresponds to

a particular desired (regulated) output value, and then varying the state within that

set in order to excite the system dynamics for parameter identification. Specifically,

we are interested in regulating the (unmeasured) electromagnetic torque output of

PMSMs, for which the regulated output error is defined as follows:

eτ = τ̃ − τ,
= τ̃ − h(ird, i

r
q),

(4.3)

where the “tilde” denotes the reference input and h( · ) : R2 7→ R is the nonlinear

torque output mapping provided in (4.2). Note that eτ describes a 1-D manifold in

the two dimensional (real) state-space (see Figure 4.1). We define this output (error)

zeroing manifold as follows:

(ird, i
r
q) ∈M := {(ird, irq) : eτ = τ̃ − h(ird, i

r
q) = 0}. (4.4)

Thus, restricting the system state to this manifold ensures that our regulated output

objective is achieved, while the non-zero dimension of M provides space in which
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the state may vary for identification purposes. This “wiggle room” for identification

is available provided that the output maps the state-space to a lower-dimensional

output space.

: ̃ − ℎ = 0
Δ

Figure 4.1: Depiction of a 1-D manifold in R2.

However, while it is possible to drive the state to points in the set M with a

single input, provided that M is in the controllable subspace, it is generally not

possible (with a single input) to vary the state within the set M without departing

for a time, which results in a perturbation of the regulated output. Overactuation

provides additional inputs to the system which may be coordinated in such a way that

the state not only converges to M, but also varies within the set without departing.

The torque regulation problem for PMSMs is overactuated since we have two inputs

to the system, vrd and vrq , but only one regulated output, i.e., torque. Thus, for our

application, we wish to find an input pair, (vrd, v
r
q)(t), such that the states, ird and irq,

converge asymptotically to the set M, as defined in (4.4).

Assuming that (ird, i
r
q)(t0) ∈ M, the following invariance condition must be satis-

fied to ensure that (ird, i
r
q)(t) ∈M for all t ≥ t0,

ėτ = ˙̃τ − τ̇ ,

= ˙̃τ − 3P

4

[
∆L

(
d

dt
ird

)
irq + (∆Li

r
d + ΛPM)

(
d

dt
irq

)]
,

= 0, (4.5)

where ∆L = Ld − Lq. At this point, we could substitute the machine dynamics into

(4.5) and solve for a state-feedback control law satisfying these output-zeroing and

invariance conditions. However, this will result in a highly nonlinear feedback law

which may present robustness challenges and make the design and stability proof of

the closed-loop adaptive controller difficult. We will instead use (4.4) to generate a

reference quadrature stator current, ĩrq, given a desired torque output, τ̃ , and direct

current, ĩrd, which will be treated as our free variable designed to ensure persistent
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excitation (i.e., ĩrd is our excitation input). If we can find a control law which ensures

that (ird, i
r
q)→ (̃ird, ĩ

r
q) and ( d

dt
ird,

d
dt
irq)→ ( d

dt
ĩrd,

d
dt
ĩrq) as t→∞, then it follows that (4.4)

and (4.5) are satisfied asymptotically. Therefore, by designing a stator current regula-

tor capable of tracking these reference currents, we will ensure that any perturbation

in the torque output due to the excitation input vanishes asymptotically.

Given τ̃ and ĩrd, we solve (4.4) for the reference quadrature current, ĩrq, which is

the primary torque generating component of the stator currents:

ĩrq =
τ̃

3P
4

(
∆Lĩrd + ΛPM

) . (4.6)

The time-derivatives of our reference currents, ĩrq and ĩrd, which are needed for tracking,

are generated using reference models (i.e., filters), M(s). Next, we seek an adaptive

control design which will ensure asymptotic tracking of the reference currents in the

presence of parameter uncertainty.

4.4 Adaptive Control Design

We begin our derivation of the adaptive controller by defining the direct and

quadrature stator current errors:

erid = ĩrd − ird,
eriq = ĩrq − irq.

(4.7)

The following control law,

vrd = R̂ĩrd + L̂d
d̃ird
dt
− ωreL̂qirq +Kpde

r
id,

vrq = R̂ĩrq + L̂q
d̃irq
dt

+ ωreL̂di
r
d +Kpqe

r
iq + ωreΛ̂PM ,

(4.8)

where the “hat” ( ˆ ) is used to denote an estimated value and Kpd, Kpq > 0 are

constant proportional control gains, is formulated using a combination of feedforward,

feedback, and decoupling terms, designed to yield exponentially stable stator current

error dynamics (4.9) under perfect model knowledge (i.e., R̂ = R, L̂d = Ld, L̂q = Lq,

and Λ̂PM = ΛPM):

ėrid = − 1

Ld
(R +Kpd) e

r
id,

ėriq = − 1

Lq
(R +Kpq) e

r
iq.

(4.9)
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Figure 4.2: Block diagram of the proposed control law.

However, when the parameters R, Ld, Lq, and ΛPM are not well known, one can

show that the closed-loop error dynamics are given by:

~̇e ri = L−1ΦT~eθ − (RI + Kp) L−1~e ri , (4.10)

where Kp = diag [Kpd, Kpq] is a diagonal matrix of the proportional control gains, L =

diag [Ld, Lq] is a diagonal matrix of the direct and quadrature axis self-inductance,

~e ri =
[
erid e

r
iq

]T
is the stator current error vector, and ~eθ =

[
eR eLd eLq eΛ

]T
is

the parameter error vector with eR = R − R̂, eLd = Ld − L̂d, eLq = Lq − L̂q, and

eΛ = ΛPM − Λ̂PM . Finally, the regressor matrix, Φ, in (4.10) is given by

ΦT =

[
~φTd
~φTq

]
=

[
ĩrd

d
dt
ĩrd −ωreirq 0

ĩrq ωrei
r
d

d
dt
ĩrq ωre

]
. (4.11)

To stabilize (4.10) and ensure that our simultaneous identification and control ob-

jectives are achieved in the presence of parameter uncertainty, adaptation is required.

A block diagram of the proposed controller implementation is given in Figure 4.2,

where the crossing arrows behind blocks symbolize portions of the controller which

are tuned by the adaptation. Note that, in practice, implementation of the control

law (4.8) uses filtered commands, i.e., ~̃ir = {M(s)}~i∗r and d
dt
~̃ir = {sM(s)}~i∗r, as

depicted in Fig. 4.2, where M(s) is a stable, minimum phase, proper, unity dc gain,

first-order transfer function1, to prevent feeding-forward an unbounded signal during

1{·} denotes a dynamic operator with transfer function “·”.
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a step-change in references. Furthermore, the use of a derivative term in the feed-

forward portion of the control law (4.8) does not amplify noise, as the differentiated

reference signals are free of noise.

To derive the adaptive update law, a Lyapunov stability analysis of the closed-

loop system is first performed. The adaptive law is then selected such that it makes

the Lyapunov function monotonically decreasing, thereby guaranteeing closed-loop

stability of the controlled system. The following Lyapunov function candidate forms

the basis of the derivation:

V (~e ri , ~eθ) =
1

2

(
~e rTi L~e ri + ~e T

θ Γ−1~eθ
)
, (4.12)

where Γ = ΓT > 0 is the adaptation gain matrix. The first derivative of (4.12) with

respect to time is given by

V̇ (~e ri , ~eθ) = ~e rTi L~̇e ri + ~e T
θ Γ−1~̇eθ. (4.13)

Substituting (4.10) into (4.13), with some manipulation, yields:

V̇ = −~e rTi [RI + Kp]~e
r
i + ~eTθ Φ~e ri + ~eTθ Γ−1~̇eθ. (4.14)

It is assumed that the actual machine parameters are changing very slowly, i.e.,

~̇eθ = ~̇θ −
˙̂
~θ ≈ −

˙̂
~θ, (4.15)

where ~̂θ =
[
R̂ L̂d L̂q Λ̂PM

]T
. Finally, the adaptive law is selected as,

˙̂
~θ = ΓΦ~e ri , (4.16)

and so (4.14) becomes

V̇ (~e ri , ~eθ) = −~e rTi [RI + Kp]~e
r
i ≤ 0. (4.17)

Therefore, the closed-loop system (4.1), with control law (4.8) and adaptation (4.16),

is stable in the sense of Lyapunov [71].

To establish asymptotic convergence of the stator current error (i.e., ~e ri → 0 as

t → ∞), Barbalat’s lemma [71] is used to show that V̇ (~e ri , ~eθ) → 0 as t → ∞.

Note that the preceding Lyapunov stability analysis has established that V (~e ri , ~eθ)
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is differentiable and has a finite limit as t → ∞. To establish uniform continuity of

V̇ (~e ri , ~eθ) we compute:

V̈ (~e ri , ~eθ) = −2~e rTi [RI + Kp] ~̇e
r
i , (4.18)

and note that:

• ~e ri and ~eθ are bounded from (4.12) and (4.17),

• ~̃ir and d
dt
~̃ir are bounded by design, and so

• ~ir = ~̃ir − ~e ri is bounded,

thus ~̇e ri is bounded (from inspection of (4.10)), and so V̈ (~e ri , ~eθ) is also bounded.

Therefore, from Barbalat’s lemma we have that V̇ (~e ri , ~eθ) → 0 as t → ∞; and so we

conclude that the control law (4.8) with adaptive law (4.16) renders the system (4.1)

stable in the sense of Lyapunov, with ~e ri → 0 as t→∞.

Lastly, we note that in practice our implementation of the adaptive update law

(4.16) includes a switching σ-modification [28] for robustness, which acts as a “soft

projection”, applying a leakage term, σ, to the adaptive law only when a parameter

is exceeding an expected limit on its range of variation. A benefit of this modification

is that the ideal behavior of the adaptive law is preserved so long as the estimated

parameters remain within their acceptable bounds (i.e., |~̂θi(t)| < M0,i).

4.5 Simultaneous Parameter Identification

In the previous section, our analysis established that ~e ri → 0 as t → ∞, without

requiring parameter convergence. This is typical of adaptive control designs, as the

estimated parameter set which yields zero steady-state control error is generally not

unique. For the simultaneous identification and control problem, however, parameter

identification is part of the design objective. To establish conditions for parameter

convergence, we will apply two-time-scale theory. While this approach requires the

assumption that the adaptation gain matrix is selected such that the parameter esti-

mates converge at a much slower rate than the control error, it leads to a much more

intuitive and cleaner analysis. Furthermore, in practice it is often desirable to limit

the size of the adaptation gains in order to reduce sensitivity to noise and unmodelled

high-frequency dynamics.
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4.5.1 Parameter Convergence using Two-Time-Scale Analysis

With the controller and adaptive laws presented in the previous section, the closed-

loop error dynamics (control and parameter) take the form

L~̇e ri = ΦT~eθ − (RI + Kp)~e
r
i

~̇eθ = −ΓΦ~e ri .
(4.19)

Note that L and (RI + Kp) are diagonal matrices, and so their multiplication is

therefore commutative. In practice, the inductances of the machine are relatively

small numbers and can therefore play the role of the “epsilon scalar” commonly used in

singular perturbation analyses to indicate small terms which are to be neglected [36].

Therefore, we may approximate (4.19) as,

0 ≈ ΦT~eθ − (RI + Kp)~e
r
i

~̇eθ = −ΓΦ~e ri .
(4.20)

Thus, assuming the fast stator current error dynamics have converged to a quasi-

steady-state, the slow parameter error dynamics are given by,

~̇eθ = −ΓΦ [RI + Kp]
−1 ΦT~eθ,

= −Γ

(
1

R +Kpd

~φd~φ
T
d +

1

R +Kpq

~φq~φ
T
q

)
~eθ,

(4.21)

where ~φd and ~φq are functions of time as defined in (4.11). Note that the slow

parameter error dynamics are of the form

~̇x(t) = A(t)~x(t).

It follows that, so long as ~φd and/or ~φq is persistently exciting, that is

α1I ≥
1

T

∫ t+T

t

~φd,q(σ)~φTd,q(σ)dσ ≥ α0I, ∀ t ≥ 0, (4.22)

for some T, α0, α1 > 0, then ~eθ → 0 as t→∞.
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4.5.2 Persistently Exciting Inputs

To determine necessary and sufficient conditions for persistent excitation, and

thus, sufficient conditions for parameter convergence, we will take advantage of the

connection between persistent excitation and linear independence of the functions

which make up the rows of the regressor matrix. The definition for linear indepen-

dence of vector-valued functions (of time) is similar to that of constant vectors (e.g.,

in Rn) with the difference being that an interval of interest (i.e., the domain) is spec-

ified. The definition for linear independence of vector-valued functions is given here

for convenience:

Definition IV.1. (Linear Independence of Functions [9]): A set of 1× p real-valued

functions, ~fi(t) where i = 1, · · · , n, is said to be linearly dependent on the interval

[t0, t1] over the field of reals if there exist scalars ci, not all zero, such that

c1
~f1(t) + c2

~f2(t) + · · ·+ cn ~fn(t) = 0

for all t ∈ [t0, t1]. Otherwise, they are said to be linearly independent on the

interval [t0, t1].

Naturally, there are a number of theorems which may be used to check whether or

not a set of functions is linearly independence. For example, the Grammian matrix

may be used:

Theorem IV.2. (Grammian [9]): Let ~fi(t), for i = 1, 2, · · · , n, be 1× p real-valued

continuous functions defined on the interval [t1, t2]. Let F be the n × p matrix with
~fi(t) as its ith row. Define

W(t1, t2) ,
∫ t2

t1

F(t)F>(t)dt

Then ~f1(t), ~f2(t), · · · , ~fn(t) are linearly independent on [t1, t2] if, and only if, the

n× n constant Grammian matrix, W(t1, t2), is positive definite.

At this point, the connections between linear independence of the functions which

comprise the rows of the regressor matrix, and persistent excitation can be made

by noting that the definition of persistent excitation (Definition I.1) is based on the

Grammian matrix. For completeness and easy reference, this connection is summa-

rized in the following theorem:
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Theorem IV.3. (Linearly Independent Functions and Persistent Excitation): Con-

sider the matrix function Φ(t) : R+ 7→ Rn×m where the elements of Φ(t) are bounded

for all time, t. The regressor matrix Φ(t) is persistently exciting if, and only if,

the rows of Φ(t) are linearly independent on the interval [t, t+ T ] for all t ≥ 0

and some T > 0.

Proof: Follows from the Grammian matrix and its properties.
�

Our regressor matrix (4.11) is a function of the reference signals, ĩrd and ĩrq, as well

as the states of the system, ird and irq. However, we may rewrite the states in terms

of their corresponding reference signals and tracking errors, i.e.,

ΦT =

[
~φTd
~φTq

]
=

[
ĩrd

d
dt
ĩrd −ωre(̃irq − eriq) 0

ĩrq ωre(̃i
r
d − erid) d

dt
ĩrq ωre

]
. (4.23)

Recall that our analysis in Section 4.4 established that the stator current error is

bounded (i.e., ~e ri ∈ L∞) and goes to zero asymptotically (i.e., ~e ri → 0 as t → ∞).

From Lemma 4.8.3 in [28], it follows that if ~̃ir is persistently exciting and ~̃ir ∈ L∞,

then ~̃ir−~eri is persistently exciting. Therefore, we need only consider the properties of

the reference signals in our analysis of the regressor matrix (i.e., we will take ~e ri = 0).

To simplify our analysis, will conservatively assume that the command torque

and rotor electrical velocity are constant, i.e., τ̃ = T̃0 and ωre = Ωre, as well as

Ld ≈ Lq. These assumptions represent something of a “worst-case” scenario since

time-varying torque references and/or rotor electrical velocity, as well as a significant

magnetic saliency, i.e., Lq >> Ld, will aid in parameter identification by providing

additional excitation; either directly, in the case of a varying torque command (and/or

rotor velocity), or indirectly, via coupling between the command currents through the

torque expression (4.6) in the presence of a significant magnetic saliency. With respect

to the latter, note that for the torque to remain constant in the presence of excitation

introduced via the direct-axis dynamics, the quadrature-axis current must vary in an

inverse manner, introducing additional excitation to the quadrature axis dynamics.

Under these assumptions, we can rewrite the regressor matrix (4.11) as follows,

Φ(t) =


ĩrd(t) Cτ T̃0

d
dt
ĩrd(t) Ωreĩ

r
d(t)

−ΩreCτ T̃0 0

0 Ωre

 . (4.24)
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where Cτ is a positive constant scalar, Cτ = 4
3PΛPM

> 0. Additionally, we will neglect

the reference filter M(s) in our analysis as it has no effect on the results2. Without

loss of generality, we may take ĩrd = sin(ωt):

Φ(t) =


sin(ωt) Cτ T̃0

ω cos(ωt) Ωre sin(ωt)

−ΩreCτ T̃0 0

0 Ωre

 . (4.25)

From Theorem IV.3, we may establish necessary and sufficient conditions for the

regressor matrix (4.25) to be persistently exciting, by establishing conditions under

which the rows of Φ(t) in (4.25) are linearly independent. To do this, we will use the

following theorem for checking linear independence of functions:

Theorem IV.4. (Derivative Test [9]): Assume that the 1× p real-valued continuous

functions ~f1(t), ~f2(t), · · · , ~fn(t) have continuous derivatives up to order (n−1) on the

interval [t1, t2]. Let F be the n× p matrix with ~fi(t) as its ith row, and let F(k) be the

kth derivative of F. If there exists some t0 in (t1, t2) such that the n× np matrix[
F(t0)

... F(1)(t0)
... F(2)(t0)

... · · · ... F(n−1)(t0)

]
has rank n, then the functions, ~fi(t), are linearly independent on the interval [t1, t2]

over the field of reals.

Since we are interested in sinusoidal inputs, we will consider t0 ∈ [0, 2π
ω

]. Applying

Theorem IV.4 to (4.25), we take t0 = π
2ω

and compute:

det
([

Φ(t0) Φ̇(t0)
])

= −Cτ T̃0ω
2Ω3

re. (4.26)

We conclude that the rows of Φ(t) are linearly independent on [0, 2π
ω

], and Φ(t) is

therefore persistently exciting, provided that:

1. the direct-axis command current, ĩrd, has at least one sinusoidal component (i.e.,

ω 6= 0),

2. the command torque is non-zero, T̃0 6= 0,

2Given a persistently exciting u with u̇ bounded, and a stable, minimum phase, proper transfer
function M(s), it follows that y = M(s)u is also persistently exciting [28].
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3. the rotor (electrical) velocity is non-zero, Ωre 6= 0.

Remark: It should be noted that, in practice, it is important to normalize the rows

of the regressor matrix such that the peak values are all around unity. Otherwise, the

wide range of machine parameters, which are separated by orders of magnitude, will

lead to convergence issues due to poor numerical conditioning. Note that this scales

the corresponding parameter estimates as well.

4.6 Simulation Results

4.6.1 Ideal Case

Simulations using Matlab/Simulink are used to validate the proposed SIC design

for PMSMs. We present results for the ideal case first, which assume a “continuous-

time” controller implementation, no time delay, and noise-free stator current mea-

surements. Additionally, the inverter is assumed to be ideal in that the sinusoidal

voltage commands generated by the control algorithm are fed directly into the ma-

chine model.

The proposed control methodology is demonstrated in Figure 4.3, specifically con-

straining the system state (i.e., the stator currents) to manifolds, M, which corre-

spond to a constant torque output (i.e., zero regulated output error). The adaptive

controller is initialized with mismatched parameters and a step-change in the com-
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ir q

 

 

~ir(t)
Initial State, t = 0
Final State, t = 6 sec

Figure 4.3: Simulation result demonstrating state-trajectory convergence to the de-
sired constant-torque manifolds using the proposed adaptive control de-
sign methodology with a step change in the commanded torque from 0.2
N-m to 0.4 N-m at a fixed rotor speed of 2000 RPM.
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mand torque occurs 3 seconds into the simulation. Machine parameters which exag-

gerate the curvature of the manifolds were selected for the purpose of demonstrating

the effectiveness of the proposed methodology.

The simulation results presented in Figure 4.4 demonstrate the stagnation of the

parameter estimates when there is a lack of persistent excitation (t ≤ 0.75 sec). In-

spection of Fig. 4.4 reveals that, initially, when the direct-axis current and output

torque commands are zero, the parameters fail to fully converge, as expected. Addi-

tionally, while there is partial convergence at 0.25 seconds due to excitation provided

by the step change in command torque, the resistance and direct-axis inductance

estimates do not converge quickly and fully until the excitation signal is added at

0.75 seconds. Finally, the black arrows in the “zoomed” plots in Fig. 4.4 point out

overshoot in the torque resulting from the lack of parameter convergence.

0 0.5 1 1.5 2
0

0.2

0.4

T
or

q
u
e

(N
-m

)

 

 
=
=̃

0.25 0.3
0

0.2
0.4

Z
o
o
m

ed

0.75 0.8
0

0.2
0.4

1.25 1.3
0

0.2
0.4

1.75 1.8
0

0.2
0.4

0 0.5 1 1.5 2
-5

0

5

C
u
rr

en
ts

(A
)

 

 

0 0.5 1 1.5 2
0
1
2
3

3̂
/
3

(-
)

time (s)

 

 

ird
irq

R̂/R L̂d/Ld L̂q/Lq $̂PM/$PM

Figure 4.4: Simulation of an ideal implementation of the proposed SIC design for
PMSMs demonstrating parameter stagnation due an initial lack of per-
sistent excitation, and the improvement resulting from the introduction
of the excitation signal at 0.75 seconds.

4.6.2 Sampled-data Implementation: Time Delay and Compensation

The experimental implementation of the proposed control algorithm must take

into account the sampled-data nature of its execution on a microprocessor. In partic-

ular, sampling of stator currents and encoder measurements is synchronized with a
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center-based pulse-width modulation (PWM) structure to prevent the pickup of elec-

tromagnetic interference (EMI) generated by switching transitions during sampling.

A consequence of this synchronization is that it leads to a one-switching-period delay

between sampling measurements and updating duty cycles, as depicted in Figure 4.5.

s s ss

a,b,c

a,b,c

a,b,c a,b,c

a,b,c a,b,c

Figure 4.5: Timing sequence of digital controller implementation.

The presence of this time-delay will impose limits on control gains, Kpd and Kpq.

Additionally, the use of reference-frame advancing in the inverse Park transform is

required (see Fig. 4.2), as the rotor angular displacement during the delay interval can

be significant. This discrepancy between the rotor position at the beginning and at

the end of a sample period can lead to instability and parameter drift in the adaptive

controller. To compensate for this angular displacement, the rotor position, θre, at

the center of the next sample period is predicted assuming that the rotor velocity,

ωre, is constant over the sample period, Ts:

θ̂re[k + 1] = θre[k] +
3

2
ωre[k]Ts, (4.27)

where k = 1, 2, 3... represents the discrete time indices. The predicted rotor posi-

tion (4.27) is then used to compute the inverse Park transform in the discrete-time

controller implementation.

To demonstrate the impact that this rotor angle discrepancy has on the parameter

estimator, we include the simulation results in Figure 4.6. A “triggered subsystem” is

used in Simulink to capture the sampled-data nature of the experimental implemen-

tation. The subsystem is triggered by an inverter model which is using center-based

PWM at a rate of 8 kHz, like the experimental set-up, and includes a one-time-

step delay. The simulation which produced Fig. 4.6 did not include reference-frame

advancing based on (4.27). The switching-σ modification bounds the parameter es-

timates. However, inspection of Fig. 4.6 clearly shows that the parameter estimates

(particularly resistance and quadrature-axis inductance) are sensitive to this rotor

angle error due to the time delay present in the sampled-data implementation.
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Figure 4.6: Simulation of sampled-data system without reference-frame advancing at
a speed of 2000 RPM with step changes in command torque (the same as
in Fig. 4.7), leading to poor parameter estimator performance.

For comparison (to Fig. 4.6), we include simulation results which include reference-

frame advancing based on (4.27) in Figure 4.7. This simulation uses the same Simulink

code that was used to generate the experimental code using Real-time Workshop. It

should be noted that this simulation did not include dead-time effect [7]. The “nom-

inal” parameters provided in Table 4.1 were used in the PMSM model. Inspection of

Fig. 4.7 reveals that the algorithm works as intended under sampled-data conditions,

provided that the time delay is compensated via reference-frame advancing.
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Figure 4.7: Simulation of the proposed adaptive control design in a sampled-data
scenario with reference-frame advancing based on (4.27) and measurement
noise at a rotor speed of 2000 RPM.
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4.7 Experimental Validation

4.7.1 Test Machine Parameters

For simulation and comparison purposes, the “nominal” test machine parameters

were determined offline using standard techniques. The (DC) stator resistance was

measured with a Digital Multi-Meter, inductance with an Agilent E4980A LCR meter,

and the permanent magnet flux linkage was identified using an open-circuit test and

a linear regression. These nominal parameters, denoted by an overbar, are provided

in Table 4.1. We must emphasize that we do not expect that the parameter estimates

provided by our adaptive controller will converge to these values, since they are not

necessarily the true physical parameters of the machine. For instance, the resistance

measured with a DMM does not account for skin-effect and inverter losses, while the

formation of eddy currents in the rotor iron can lead to an error in the measured

inductance when using a standard LCR meter.

Table 4.1: “Nominal” test machine parameters.

Parameter Value

Resistance, R̄ 109 mΩ

Direct-axis self-inductance, L̄d 192 µH

Quadrature-axis self-inductance, L̄q 212 µH

PM Flux Linkage, Λ̄PM 12.579 mV-s

No. of Poles, P 10

4.7.2 Description of the Experimental Set-up

The proposed robust adaptive control algorithm has been implemented on exper-

imental hardware using a dSPACE DS1104 controller board, and the test machine

(Table 4.2) is a 3-phase, 10-pole, 250 watt SMPM machine from MOTORSOLVER

with “nominal” parameters (denoted by the over bar) listed in Table 4.1. A 250 watt

DC machine from the same manufacturer serves as the load for the SMPM machine.

A power MOSFET inverter is used to drive the motors with a switching frequency

of 8 kHz and a bus voltage of 42 VDC. First-harmonic dead-time compensation is

used to mitigate the voltage discrepancy resulting from the insertion of dead-time

in the gate-drive signals [64]. Duty cycles are calculated using conventional pulse-

width-modulation, and the ADC sampling is synchronized with, and offset from, the
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center-based PWM signals to avoid sampling during a switching event (as discussed

in the previous section).

Gate
Drive

Signals
Gate
Drive

Signals

r r

a
b dc

BUS

User
Inputs

Figure 4.8: Experimental setup.

Table 4.2: Manufacturer machine ratings.
Test Motor

Type: PM Brushless
No. Phases: 3
V/I: 42 V/5.7 A
Max. Speed: 4000 RPM
Rated Power: 250 W

Load Motor
Type: DC
No. Phases: N.A.
V/I: 42 V/6 A
Max. Speed: 4000 RPM
Rated Power: 250 W

4.7.3 Experimental Results

Since mechanical torque was not measured during these experiments, the quadra-

ture stator current (in the rotor reference frame) is used to evaluate the transient

performance of the proposed torque regulator in addition to the estimated electro-

magnetic torque (4.28), which can vary with the parameter estimates:

τ̂ =
3P

4

[(
L̂d − L̂q

)
ird + Λ̂PM

]
irq. (4.28)

It should be noted that, since torque is not measured directly, accurate knowledge

of the permanent magnet flux linkage, as well as the direct and quadrature self-

inductance, is required for accurate torque regulation. Torque steps, used to evaluate
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Figure 4.9: Experimental torque steps with adaptation on at 2000 rpm.

the performance of the proposed adaptive torque regulator, are provided in Figures

4.9 and 4.10.

In Fig. 4.9 we see that the estimated torque tracks the commanded value very well

without any undesirable jumps or drifting in the parameter estimates. A direct-axis

current reference of ĩrd = 1.5 sin(150t) + 1.5 sin(300t) amps provides excitation for pa-

rameter estimation. Note that the estimated parameter values have been normalized

with respect to their “nominal” values in Table 4.1, which are not necessarily the true

values (which are unknown), to facilitate plotting on the same axis for comparison.

A feature of the proposed adaptive controller design is that its closed-loop transient

response remains consistent across a wide range of operating points. To demonstrate

this, torque steps from 0 to 0.4 N-m were performed at 2500, 1200, and 0 RPM3,

and are plotted in Fig. 4.10. Note that the responses overlay, indicating that the

controller is performing as expected. Additionally, the “ripple” or “noise” which can

be seen in the signals is expected, and is largely due to the non-ideal slotting effects

in the machine.

As discussed earlier in this paper, the proposed adaptive control design achieves

the simultaneous identification and control objective in that it allows excitation sig-

3Voltages begin to saturate due to inverter-created voltage constraints above 2500 RPM.
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Figure 4.10: Experimental transient responses of estimated torque (top) and mea-
sured quadrature-axis current (bottom) across a wide range of rotor
speeds.

nals to be introduced for parameter identification whose impact on the output is

minimized (asymptotically, in the case of our design). This property is demonstrated

in Figure 4.11, in which the transient response of the experimental adaptive param-

eter estimator for a constant torque command of 0.2 N-m at a fixed rotor speed of

2000 RPM is plotted. Initially, the parameter values are intentionally mismatched

such that the excitation signal disturbs the torque output. Inspection of Fig. 4.11 re-

veals that, as the estimates converge, the disturbance caused by the excitation signal

vanishes, as expected.

To gauge the performance of our parameter identification, we recorded the steady-

state values of the estimated parameters over a range of operating points in which

the parameters are all identifiable (i.e., non-zero rotor speed and torque command).

Inspection of the results in Figure 4.12 indicate that the parameter estimation is

working very well overall. The resistance estimate is fairly consistent across rotor

speed, but increases slightly with the torque command, potentially due to tempera-

ture rise. The estimated direct-axis inductance and permanent magnet flux linkage

are very consistent across rotor speed and torque, as expected. The drop in the es-

timated permanent magnet flux linkage at 500 RPM is likely due to the increasing

impact of the dead-time effect at lower speeds (which generally correspond to smaller
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Figure 4.11: Experimental adaptive parameter estimator for a constant torque com-
mand of 0.2 N-m at a fixed rotor speed of 2000 RPM demonstrating
transient characteristics of the parameter estimator as well as asymptot-
ically vanishing torque perturbation due to the excitation signal.

stator voltages). Finally, the wider variation in the quadrature-axis inductance was

anticipated, as this parameter was observed to be particularly sensitive to encoder

misalignment while tuning the experimental controller. This behavior was also ob-

served in simulations which introduced a fixed rotor angle offset error. However,

we have found that the impact of this variation on the controller performance (i.e.,

output regulation) is negligible.

Still, it is worth noting that the quadrature-axis inductance estimate seems to im-

prove at higher speeds, yielding a nearly flat trend at 2000 RPM (see Fig. 4.12), and

estimates around the same value as the direct-axis inductance. This is to be expected

as our test machine was a surface-mount permanent magnet (SMPM) machine which,

characteristically, have a negligible magnetic saliency (i.e., it is commonly assumed

that Ld ≈ Lq for SMPM machines). Recall that under a constant torque command
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Figure 4.12: Experimental characterization of steady-state parameter estimates over
a wide range of rotor speeds and torque commands.

and rotor speed, the third row of the regressor, which relates to the quadrature induc-

tance estimate (see equation (4.25)), is dependent on the following term: −ΩreCτ T̃0.

At a minimum, a nonzero torque command, T̃0, and rotor speed, Ωre, are needed

for the regressor to be persistently exciting, otherwise the third row of the regressor

will be all zeros and the estimate of quadrature-axis inductance will stagnate. Prac-

tically, it is expected that the estimate of the quadrature-axis inductance, Lq, will

suffer from drifting in the presence of modeling errors, such as encoder misalignments,

at low speeds and/or torque commands. This may explain why the estimate of Lq

seems to improve at high speeds, as well as higher torque commands, as observed in

Fig. 4.12.
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4.8 Chapter Conclusion

This chapter extended results from [66], which presented a new robust adaptive

torque regulating controller for SMPM machines that estimates resistance, induc-

tance, and permanent magnet flux linkage online. The adaptive controller for PMSMs

presented was derived using Lyapunov’s stability theorem, and a robust modification

to the derived adaptive law is used to ensure closed-loop stability in the presence

of unmodeled disturbances. The control law utilizes a combination of adaptively-

tuned feedforward (to achieve zero steady-state error), d− q decoupling (to improve

transient response), and proportional feedback (to add robustness to disturbances)

terms. Overactuation of the system is exploited to simultaneously achieve parame-

ter convergence and torque regulation. Necessary conditions for persistent excitation

were discussed, and simulation results verifying the performance of the control design

were presented. Finally, remarks specific to experimental implementation challenges,

and experimental results validating the performance of the proposed design, were

discussed.
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CHAPTER V

Receding Horizon Control Allocation for

Simultaneous Identification and Control of

PMSMs

5.1 Introduction

Chapters 3 and 4 explored more traditional control designs for achieving SIC in

PMSMs with emphasis on exploiting overactuation. In this chapter, we present an

optimization-based simultaneous identification and control methodology for achiev-

ing the same objective. A receding horizon control allocation (RHCA) is used which

includes a metric for maximizing the excitation characteristics of the generated ref-

erence current trajectories. The reference currents produced by the RHCA are fed

to the lower-level adaptive current regulator, presented in Chapter 4, which ensures

asymptotic tracking of a reference model. We begin by discussing the proposed control

architecture and introduce the (static) control allocation problem for PMSM torque

regulation. Metrics for optimizing the conditioning of the Fisher information matrix

and their application to generating persistently exciting inputs are then discussed;

as well as the necessary modifications to the control allocation problem, needed for

excitation maximization, which lead to the RHCA formulation. Finally, the crucial

role of past input and state data in the RHCA-SIC algorithm is discussed, and simu-

lation results demonstrating the effectiveness of the methodology, as well as the need

for past data, are presented.

This chapter based on work submitted to a conference and is under review:
D. M. Reed, J. Sun, and H. F. Hofmann, “A Receding Horizon Approach to Simultaneous Identifi-
cation and Torque Control of Permanent Magnet Synchronous Machines,” Under review, 2015.
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Figure 5.1: Block diagram of the proposed RHCA-SIC methodology for PMSM torque
regulation.

5.2 Proposed Control Architecture

The proposed RHCA-SIC design utilizes a two-level structure with reference sig-

nals generated by the RHCA being fed to the inner-loop adaptive current regulator, as

depicted in Figure 5.1. The adaptive current regulator ensures fast, accurate tracking

of the filtered1 reference current trajectories, while the “outer-loop” RHCA exploits

the over-actuated nature of the PMSM to generate reference currents which are both

persistently exciting and produce the desired torque. For convenience, we briefly

review the inner-loop adaptive current regulator presented in Chapter 4.

5.2.1 Inner-loop Controller

The inner-loop controller is a Lyapunov-based adaptive current regulator [66]

which has been extended to include PMSMs (i.e., magnetic saliency is considered).

The adaptive current regulator ensures that the 2-phase equivalent stator currents

asymptotically converge to track the trajectories produced by the reference models.

We define the direct and quadrature stator current errors as follows:

erid = ĩrd − ird,
eriq = ĩrq − irq,

(5.1)

1By the reference models, M(s) = λ
s+λ .
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where the “tilde” ( ·̃ ) denotes filtered reference signals, i.e., the output of M(s).

The control law for our adaptive current regulator uses a mix of feedforward,

feedback decoupling, and proportional feedback terms, and is given by

vrd = R̂ĩrd + L̂d
d̃ird
dt
− ωreL̂qirq +Kpde

r
id,

vrq = R̂ĩrq + L̂q
d̃irq
dt

+ ωreL̂di
r
d +Kpqe

r
iq + ωreΛ̂PM ,

(5.2)

where the “hat” ( ·̂ ) denotes estimated parameters, Kpd and Kpq are the respective

direct and quadrature-axis proportional gains, and the derivative terms are produced

by the reference model (i.e., ~̃ir = {M(s)}~i∗r and d
dt
~̃ir = {sM(s)}~i∗r, where M(s) is a

a stable, minimum phase, proper, unity dc gain, first-order transfer function2).

The estimated parameters in (5.2) are updated via the following adaptive param-

eter update law
˙̂
~θ = ΓΦ~e ri , (5.3)

where Γ = ΓT > 0 is the adaptation gain matrix, ~e ri =
[
erid e

r
iq

]T
is the stator current

error vector, and the regressor matrix, Φ, is given by

Φ =


ĩrd ĩrq
d
dt
ĩrd ωrei

r
d

−ωreirq d
dt
ĩrq

0 ωre

 . (5.4)

It can be shown, using Barbalat’s lemma [71] and the following Lyapunov function

V (~e ri , ~eθ) =
1

2

(
~e rTi L~e ri + ~e T

θ Γ−1~eθ
)
, (5.5)

that the control law (5.2) with adaptive update (5.3) renders the PMSM dynamics

(4.1) stable in the sense of Lyapunov with ~e ri → 0 as t→∞, where L = diag [Ld, Lq]

is a diagonal matrix of the direct and quadrature axis self-inductances, and ~eTθ =

[R Ld Lq ΛPM ] −
[
R̂ L̂d L̂q Λ̂PM

]
is the parameter error vector. Convergence of

the parameter error follows when the regressor matrix (5.4) is persistently exciting.

Lastly, we note that a “switching σ-modification” [28] is used on (5.3) for robustness.

2{·} denotes a dynamic operator with transfer function “·”.
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5.2.2 Control Allocation

The primary objective in any control allocation problem is to find the “best”

distribution of control effort among multiple actuators to achieve a desired effect (e.g.,

generate a “virtual” control input which achieves the desired output). Additionally,

by solving the problem online, the effects of actuator saturation and failures can be

taken into account. Control allocation is particularly well suited to over-actuated

problems which permit the inclusion of secondary objectives, such as control effort

minimization.
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Figure 5.2: Sets of current pairs, (i∗rd , i
∗r
q ), which yield various torques for a machine

with large saliency (to magnify nonlinearity).

Typically, the control allocation problem is treated as a static optimization prob-

lem, assuming that the “actuator” response is instantaneous [6, 31]. As it concerns

torque control for the (over-actuated) PMSM, the control allocation problem consists

of finding a reference current pair, (i∗rd , i
∗r
q ), which produce a desired torque, τ ∗. The

inner-loop controller, discussed in the previous subsection, is then tasked with pro-

ducing the voltage pair, (vrd, v
r
q), which generates these reference currents. Since the

problem is over-actuated, there exists an infinite number of reference currents which

yield a given torque. The reference current solution set for some τ ∗ is described by all

pairs (i∗rd , i
∗r
q ) ∈M := {(i∗rd , i∗rq ) : |τ ∗−h(~i∗r, ~θ)| = 0}, and are depicted in Figure 5.2.

In discrete-time, the static control allocation problem for a torque-regulated PMSM
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can be stated as
min
~i∗rk

~i∗r Tk R~i∗rk

s.t. |~i∗rk | ≤ Imax,

|τ ∗k − h(~i∗rk ,
~̂θk)| = 0,

(5.6)

where our secondary objective is the standard weighted quadratic function of the

reference input with R > 0, which minimizes the control effort and, therefore, the

ohmic losses as well. While this problem formulation is sufficient for torque regu-

lation, it doesn’t ensure persistently exciting reference currents without varying the

commanded torque. In the next section, we discuss metrics for persistent excitation

and their inclusion in the control allocation problem.

5.3 Receding Horizon Control Allocation for Simultaneous

Identification and Control

To ensure that the reference currents generated by the control allocation are per-

sistently exciting, we seek a metric which will provide a measure of how persistently

exciting the regressor matrix (5.4) is over some time interval. Such a metric will then

be included in the objective (or cost) function of the control allocation problem to

encourage the generation of reference signals which are persistently exciting.

5.3.1 The Fisher Information Matrix and Persistent Excitation

The identification of parametric models is of interest to a wide variety of disci-

plines, well beyond that of the control community. In statistics, as well as other fields,

the conditioning of the Fisher information matrix is used to judge how informative

an experiment (i.e., its data) is with respect to the identification of a given parametric

model. Mathematically, given N discrete observations (i.e., measurements) of a single

output3, y(tk), at time tk with k ∈ [1 · · ·N ], of some process described by

y(tk) = H(t, ~θ), (5.7)

the Fisher information matrix is defined as

F =
N∑
k=1

(
∂y(tk)

∂~θ

)T (
∂y(tk)

∂~θ

)
, (5.8)

3The extension to multiple outputs is trivial.
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where ~θ is the parameter vector we are interested in identifying. Note that F is a sym-

metric positive-semidefinite matrix. When Gaussian noise is considered in the estima-

tion problem formulation, F−1 gives the Cramer-Rao lower bound on the achievable

covariance of an unbiased estimator. Clearly, if the experiments are not informa-

tive, the Fisher information matrix (5.8) will be poorly conditioned, leading to high

uncertainty in the parameter estimates.

For processes described by a linear parameterization, e.g.,

y(tk) = ~φT (t)~θ, (5.9)

the Fisher information matrix (5.8) simplifies to the familiar form used when defining

persistent excitation

F =
N∑
k=1

~φ(tk)~φ
T (tk), (5.10)

where ~φ(tk) is the regressor vector. In discrete-time, a bounded vector signal ~φ(tk) is

said to be persistently exciting (PE) if there exists N > 0 and α0 > 0 such that

F =
N∑
k=1

~φ(tk)~φ
T (tk) ≥ α0I (5.11)

for all tk ≥ t0 [74].

Finally, we will use the log-determinant of F as our measure of the conditioning

of the Fisher information matrix, i.e.,

JD = log (det (F)) , (5.12)

which is often used for the purpose of “optimal experiment design” (sometimes re-

ferred to as “D-optimality”) [49,53].

5.3.2 Receding Horizon Control Allocation for Simultaneous Identifica-

tion and Control

Since the Fisher information matrix (5.8) becomes singular when evaluated at

any given time instant, the addition of a metric for persistent excitation requires

modifying the control allocation problem (5.6) to consider a finite time horizon in the

optimization, making a receding horizon (or MPC) framework a natural choice. In

the past, researchers have proposed receding horizon control allocation (or MPCA)
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approaches to account for actuator dynamics, e.g., [51, 78]. In this work, we will

utilize the receding horizon control allocation (RHCA) framework to accommodate

the addition of the persistent excitation metric (5.12).

Implementation of a RHCA requires a dynamic model of the inner-loop system to

predict future state trajectories and evaluate the regressor matrix for optimization.

The prediction model is formulated using the certainty equivalence principle; that is,

assuming that the estimated parameters are equal to their true values. This turns

out to be a minor assumption, however, because we are assured that, as long as the

system is persistently excited, the estimated parameters will converge to their true

values. Augmenting the reference filter states, ~̃ir, with the PMSM states, ~ir, the

inner-loop dynamics for prediction are therefore given by

~̇x = Ā(~̂θ)~x+ B̄~i∗r,

~z = C̄~x+ D̄~i∗r,
(5.13)

with,

Ā(~̂θ) =

−(R̂I + Kp

)
L̂−1

(
R̂I + Kp

)
L̂−1 − λI

0 −λI

 ,
B̄ = λ

[
I

I

]
, C̄ = −λ [0 I] , D̄ = λI,

where ~x> = [~ir ~̃ir] is the augmented state vector, ~z = d
dt
~̃ir is needed to evaluate the

regressor matrix, and so we treat it as an output of the prediction model, and λ > 0

sets the bandwidth of the (first-order) reference model filters. For the discrete-time

implementation, the prediction model (5.13) is discretized using a zero-order hold.

Since the reference currents, ~i∗r, have no effect on the estimation of the perma-

nent magnet flux linkage4, ΛPM , we do not include the bottom row of the regressor

matrix (5.4), which corresponds to the ΛPM term, in our optimization. We define the

truncated regressor matrix, used in the optimization, as follows:

Φ̄(~x, ~z) =


ĩrd ĩrq
d
dt
ĩrd ωrei

r
d

−ωreirq d
dt
ĩrq

 . (5.14)

Assuming the estimated parameters, ~̂θk, torque reference, τ ∗k , and rotor electrical

4It can be shown that identification of ΛPM only requires a non-zero rotor velocity, i.e., ωre 6= 0.
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velocity, ωre,k, to all be constant over the prediction horizon, the extension of (5.6)

to include a metric (5.12) for persistent excitation is given by

min
~i∗rj

k+N−1∑
j=k

~i∗r Tj R~i∗rj − ρ log det (F(~x, ~z))

s.t. ~xj+1 = Ā(~̂θk)~xj + B̄~i∗rj ,

~zj = C̄~xj + D̄~i∗rj ,

F(~x, ~z) =
k+N−1∑
j=k

Φ̄(~xj, ~zj)Φ̄
T (~xj, ~zj),

|~i∗rj | ≤ Imax, ∀ j ∈ [k · · · k +N − 1],

|τ ∗k − h(~i∗rj ,
~̂θk)| ≤ ε, ∀ j ∈ [k · · · k +N − 1],

(5.15)

where R ≥ 0 is the input weighting matrix, ρ ≥ 0 is the PE metric weighting,

and ε > 0 determines the maximum allowable perturbation in the regulated torque

output. While the constraint on the regulated output error could be included in the

objective function and penalized5, the over-actuated nature of our problem permits

the use of it as a constraint6. We do, however, include it here as a “relaxed” (i.e.,

inequality) constraint to speed up the numerical optimization, help ensure that a

feasible solution exists, and allow for small perturbations in regulated output if it will

aid the parameter identification.

5.3.3 The Crucial Role of Past Input and State Data

The standard RHCA formulation defined by (5.15), where only future inputs are

considered in calculating the Fisher information matrix, F(~x, ~z), turns out to be

problematic in that it fails to generate persistently exciting trajectories. This is

due to the fact that (1) the effects of past data are not included in evaluating the

Fisher information matrix, and (2) RHCA only implements the first element of the

optimizing sequence.

To highlight the importance of incorporating recent past input and state data

in the calculation of the Fisher information matrix for maximizing excitation in the

receding horizon framework, imagine conditions are such that the optimal predicted

5This approach was briefly investigated in numerical simulations, but was found to require very
large penalties to achieve reasonable tracking performance which could lead to numerical conditioning
issues.

6Since we know that, under normal operating conditions, solutions satisfying |τ∗k−h(~i∗rk+i,
~̂θk)| ≤ ε

exist.
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Past Future

Figure 5.3: Disregard for past input (and state) data leading to a lack of persistent
excitation.

input trajectory is the same at every subsequent time step. In the receding horizon (or

MPC) framework, only the first step of the optimal sequence is applied at any given

time step. So while the optimal predicted sequence may be persistently exciting, the

actual sequence applied to the system is very much not persistently exciting. This

is depicted graphically in Figure 5.3. When past data is considered, it is clear that

the first time step in each subsequent optimal sequence, which will be applied to the

system, must differ from the previous to ensure that persistently exciting inputs are

indeed generated.

With this issue in mind, we modify the RHCA problem proposed in (5.15) to

include Np points of recent (past) data (i.e., the last Np values of the states and

inputs) in addition to the usual prediction horizon, Nf , in evaluating the Fisher

matrix, F(~x, ~z):

min
~i∗rj

k+Nf−1∑
j=k

~i∗r Tj R~i∗rj − ρ log det (F(~x, ~z))

s.t. ~xj+1 = Ā(~̂θk)~xj + B̄~i∗rj ,

~zj = C̄~xj + D̄~i∗rj ,

F(~x, ~z) =

k+Nf−1∑
j=k−Np

Φ̄(~xj, ~zj)Φ̄
T (~xj, ~zj),

|~i∗rj | ≤ Imax, ∀ j ∈ [k · · · k +Nf − 1],

|τ ∗k − h(~i∗rj ,
~̂θk)| ≤ ε, ∀ j ∈ [k · · · k +Nf − 1].

(5.16)

The change is subtle, but the effects are profound, as will be demonstrated in the

simulation results to follow.
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Finally, to reduce the dimension of the numerical optimization problem, a linear

B-spline is used to approximate the control input [37]. For the purpose of trajectory

optimization, the reference currents on the time interval tk ∈ [0, T ] are given by

i∗rd,q(tk) =
J∑
j=0

αjB (t̄k) , (5.17)

where t̄k is the normalized time sequence, given by

t̄k =
tk
T

J − 1

2
− j − 1

2
,

and B(t̄k) are the triangular basis functions,

B(t̄k) =

1− 2|t̄k| for |t̄k| ≤ 0.5,

0 otherwise,

which are precomputed and stored in memory. Thus, we optimize over a vector of

the weighting coefficients, αj, rather than the full resolution time sequence.

Note that a sufficient number of “knot” points (i.e., sufficiently large J) must be

used with respect to the length of the time interval, T , to ensure that signals are

approximated with sufficient fidelity. The advantages of using a linear spline are that

constraints can be enforced simply by looking at the weighting coefficients, αj, which

give the signal value at the knot points7 and a reduction in the dimension of the

optimization problem, speeding up the numerical optimization.

5.4 Simulation Results

Numerical simulations using Matlab/Simulink are used to verify the effectiveness

of the proposed receding horizon control allocation methodology for SIC of PMSMs.

The simulations capture the sampled-data nature of a practical implementation by

implementing the controller in a triggered subsystem which runs at 8 kHz for the

inner-loop (high-bandwidth) adaptive current regulator and a quarter of that (i.e., 2

kHz) for the RHCA, while the machine dynamics are solved using ode45. An ideal

“average-value” inverter model is assumed, that is, the voltage commands generated

by the controller are fed directly into the PMSM model. The optimization problem

is solved using the active-set algorithm in fmincon, and the simulation parameters in

7Higher-order polynomial basis functions can lead to “peaking” and constraint violation.

87



Table 5.1: Simulation parameters.

Description Value

Electrical Machine Parameters:

R 109 mΩ

Ld 192 µH

Lq 212 µH

ΛPM 12.579 mV-s

P 10

Control Design Parameters:

Kpd, Kpq 0.2

Γ diag([30 30 30 30])

λ 225

R 0.1 · I
ρ 10

Prediction Horizon, Nf 25

No. of Recent Data Points, Np 25

Simulation Settings:

Solver ode45

Max Step Size 25 µ-sec

Table 5.1 were used in all simulations except where otherwise noted.

5.4.1 Static Control Allocation

For completeness, simulation results for the static control allocation problem (5.6)

are provided in Figure 5.4. Inspection of the results in Fig. 5.4 reveals that, without

a metric for excitation, the control allocation algorithm is simply trying to track

the desired torque command using a minimal amount of control effort. Thus, the

commanded direct-axis current is essentially zero for the entirety of the simulation,

corresponding to a minimal current magnitude operating point. The lack of excitation

leads to slow parameter convergence, since excitation is only provided by the step

changes in torque. Additionally, the lack of accurate parameter knowledge leads to a

small but undesirable overshoot in the transient torque responses (see “zoomed” plots
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Figure 5.4: Simulation of the static control allocation (5.6) without PE maximization.

in Fig. 5.4). Finally, the steady-state tracking is expected given that the magnetic

parameters more or less converge to their true values, and the inner-loop controller is

designed to guarantee asymptotic convergence of the stator current error regardless

of the accuracy of the parameter estimates.

5.4.2 RHCA-SIC without Past Input and State Data

Again, for completeness, simulation results for the standard RHCA-SIC problem

formulation when past input and state data is not considered (5.15) are provided in

Figure 5.5. Inspection of the results in Fig. 5.5 reveals that, while the controller does

do a good job of tracking the desired torque, the RHCA algorithm fails to generate

persistently exciting signals. The lack of persistently exciting inputs once again leads

to parameter stagnation.
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Figure 5.5: Simulation of the RHCA with PE maximization and without past input
and state data (5.15).

5.4.3 RHCA-SIC with Past Input and State Data

When past input and state data are included in the RHCA (5.16), we see that all

of the parameters converge to their true values, as the simulation results in Figure

5.6 demonstrate. Inspection of the results in Fig. 5.6 reveals that, not only does

the PE metric with past data generate persistently exciting reference currents, but

the overall RHCA-SIC strategy takes advantage of the over-actuated nature of the

plant by utilizing the direct-axis current, which has a small impact on the torque

production, for the majority of the excitation. Meanwhile, the quadrature-axis current

is primarily used to satisfy the torque regulation (i.e., control) objective, agreeing with

our intuition about the SIC problem for PMSMs [66,67].

Note that, while the torque output is initially perturbed by the additional exci-

tation introduced for parameter identification, this perturbation vanishes asymptoti-

cally as the parameter estimates converge to their true values. This happens because

accurate parameter knowledge is needed in order to accurately define the set M in

which the states may vary without perturbing the regulated output. In addition

to the initial perturbations in the regulated output, another trade-off of practical

interest is between the losses incurred due to the excitation, and the identification

objective which favors large signals (which results in faster convergence). This trade-

90



0 0.2 0.4 0.6 0.8 1
-0.1

0
0.1
0.2

T
o
rq

u
e

(N
-m

)

 

 

=
=̃

0.36 0.38 0.4 0.42 0.44

-0.1

0

0.1
Z
o
o
m

ed

0.48 0.5 0.52 0.54 0.56

-0.1

0

0.1

0 0.2 0.4 0.6 0.8 1
-5

0

5

C
u
rr

en
ts

(A
)

 

 

ird irq |Imax|

0 0.2 0.4 0.6 0.8 1
0

1

2

3

3̂
/3

(-
)

time (s)

 

 

R̂/R L̂d/Ld L̂q/Lq $̂PM/$PM

Figure 5.6: Simulation of the proposed RHCA-SIC methodology for over-actuated
systems with PE maximization and past data (5.16).

off is managed by adjusting the penalty, R, and the generation of exciting signals

can be “turned off” (e.g., after an initial commissioning phase) by setting R to be

the zero matrix. Lastly, while intuition can sometimes be leveraged to decide how

the excitation and control efforts should be allocated (e.g., using the direct-axis for

excitation and the quadrature-axis for control), as was the case in Chapters 3 and 4,

a distinct advantage of the proposed optimization-based RHCA-SIC methodology is

that it automatically determines the optimal allocation strategy for SIC in systems

where intuition is lacking.
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5.5 Conclusion

In this chapter we presented an optimization-based simultaneous identification

and control methodology for PMSMs which exploits the overactuated nature of the

machine. A receding horizon control allocation (RHCA) framework is used which

includes a metric for maximizing the excitation characteristics of the generated ref-

erence current trajectories. The RHCA feeds the computed reference currents to a

lower-level adaptive current regulator which ensures asymptotic tracking of a refer-

ence model. The importance of including past input and state data in the RHCA-SIC

algorithm is discussed, and simulation results demonstrating the effectiveness of the

proposed RHCA-SIC methodology with past input and state data are presented, as

well as scenarios without PE maximization and which disregard past data. Finally,

it is worth noting that the optimization problem as posed in this chapter, could lack

a feasible solution in the event that either a exceedingly large torque is commanded;

or if an exceedingly large load torque is preset, requiring stator current magnitudes

beyond the limits of the machine. In this scenario, there is no feasible solution which

satisfies both the current limits and output (i.e., torque) error objective. However,

by introducing a slack variable (or “soft constraint”) [52] on the output error, we can

ensure that feasible solutions exist, at the expense of tracking error performance.
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CHAPTER VI

Conclusions and Future Work

6.1 Conclusions

6.1.1 Offline Identification of Induction Machine Parameters

In Chapter 2, a new technique for offline identification of induction machine pa-

rameters using steady-state data was presented. This work addresses the need for an

alternative to the IEEE standard, and one which is well suited to modern VSI drives

and the characterization of machines over their full range of operation. The proposed

technique is based on fitting experimental data to the circular stator current locus in

the stator flux linkage reference-frame for varying steady-state slip frequencies, and

provides accurate estimates of the magnetic parameters, as well as the rotor resis-

tance and core loss conductance. Implementation issues related to the sampled-data

nature of experimental implementations are considered in the design of the stator

flux linkage estimators, as well the compensation of the dead-time effect. Numerical

simulations evaluating the accuracy of the estimated parameters in the presence of

nonideal effects were presented, and experimental results for a 43 kW induction ma-

chine demonstrate the utility of the proposed technique by characterizing the machine

over a wide range of flux levels, including magnetic saturation.

6.1.2 Simultaneous Identification and Adaptive Control of PMSMs

In Chapter 3, an adaptive excitation decoupling approach to achieving simulta-

neous identification and control was explored via a case study with PMSMs. The

input(s) which have the most authority over the regulated output are designated the

control input(s), while the remaining plant inputs serve as the excitation input(s).

A disturbance decoupling control law is then utilized to prevent the excitation input

from perturbing the regulated output. The machine parameters used in this excitation
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decoupling control law are updated via an online parameter estimator (normalized

gradient estimator in this work). Simulation results for a torque regulating controller

for PMSMs confirm the effectiveness of the proposed simultaneous identification and

control design methodology. While the focus of the chapter is on the application of

the proposed adaptive excitation decoupling control methodology to PMSM torque

regulation, the prospects of generalizing this methodology for overactuated systems

are promising. However, this approach does have some drawbacks. Like the ex-

act feedback linearization techniques [29,33], disturbance decoupling lacks robustness

to unmodeled uncertainties. Additionally, the indirect design approach used to for-

mulate the closed-loop adaptive excitation decoupling controller, pairing separately

designed control law and parameter identifier, makes proving stability a challenge.

The 2 degree-of-freedom (DOF) Lyapunov design presented in Chapter 4, takes a

different approach to achieving the simultaneous identification and control objective.

By directly regulating the state to the output zeroing manifold, and ensuring that the

invariance condition is satisfied, we are able to achieve the SIC objective by varying

the state within this set (the output zeroing manifold) to ensure the system remains

excited for identification. To do this, we develop an adaptive control law, using a

Lyapunov stability analysis, which ensures that reference trajectories produced by a

reference model are tracked asymptotically. Using the torque output mapping (i.e.,

state to regulated output mapping), we generate the command currents which are

fed to the reference models by solving for the required (i.e., command) quadrature-

axis current given torque and excitation input commands. The advantages of this

approach are that closed-loop stability of the adaptive controller is proven in the

design process, as well as the direct regulation of the states.

The SIC approaches presented in Chapters 3 and 4 did not consider optimiza-

tion of the excitation signal introduced to the system for parameter identification.

Additionally, they fixed the allocation of the applied control inputs based on prede-

termined control input(s), excitation input(s), and regulated output(s). In Chapter 5,

we addressed these limitations by modifying the Lyapunov-based design in Chapter 4

to used an optimization-based “front-end”. Specifically, the command currents fed to

the inner-loop reference models are generated by a receding-horizon control allocation

(RHCA), which includes in its cost function a metric to promote the generation of

persistently exciting signals. The RHCA considers the output error-zeroing manifold

by including it in the constraints. Additionally, the importance of considering past

data in the generation of persistently exciting signals is discussed and demonstrated

using simulations.
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6.2 Future Work

6.2.1 Offline Identification of Induction Machine Parameters

Future work specific to offline identification of induction machine parameters

which could be of interest, and potentially improve the performance of the proposed

technique, are as follows:

• Improved inverter models for compensation of additional nonideal effects. While

our use of first-harmonic dead-time compensation partially compensated non-

ideal inverter behavior, additional efforts to characterize and compensate dead-

time effect, as well as other effects such as conduction losses, would improve

the accuracy even further. Additionally, control techniques which require ac-

curate knowledge of the terminal voltages would benefit from such research

efforts. Adaptive parameter estimation and sensorless control techniques are

particularly sensitive to such discrepancies between the actual and command

voltages.

• Investigation into improved algorithms for circular data fits. An issue which

was observed while testing the parameter identification technique on simulation

data was that the sensitivity of the cost function being minimized to variations

in the different free variables (horizontal offset, vertical offset, and radius) is

highly dependent on the distribution of data around the circular locus. The

nature of our application is such that we only get data on the left side of the

circular current locus, and often we are not able to span much of the locus before

we hit the current limits of the machine. As a result, the computed sensitivities

of the horizontal offset and the radius are considerable higher than that of the

vertical offset; meaning that the horizontal offset and radius influence the data

fit more than the vertical offset. While this isn’t a problem for estimating the

magnetic parameters (which are derived from the horizontal offset and radius)

or rotor resistance (which is computed based on the individual locations of locus

points), it did mean that using the estimated center of a fitted circle to compute

the core loss conductance would not yield sufficiently accurate results. While we

found that using the zero-slip data point alone would yield sufficiently accurate

estimates of the core loss conductance, it is possible that introducing weighting

into the cost function for the circular fit could improve the accuracy of the

estimated core loss conductance.
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6.2.2 Simultaneous Identification and Adaptive Control

Future work specific to simultaneous identification and control, for PMSMs and

in general, which is of interest is as follows:

• A generalized methodology for simultaneous identification and control of over-

actuated systems. Using the knowledge and intuition gained via case studies,

develop a general simultaneous identification and control methodology for some

class (or classes) of overactuated systems. While the Adaptive Excitation De-

coupling approach proposed and explored in Chapter 3 could be promising for

generalization, a closed-loop stability proof remains a challenging result to ob-

tain. Additionally, while we had intuition to guide our selection of excitation

and control inputs for the PMSM, this choice is not as straightforward for more

general plants. The RHCA-SIC approach presented in Chapter 5, inherently

addresses this issue of allocating the excitation (for parameter identification)

and control effort via the optimization problem formulation. It therefore likely,

that the RHCA-SIC approach is the most promising starting point for develop-

ing a generalized methodology. Particularly, if an inner-loop adaptive controller

is utilized to ensure closed-loop stability of the plant under control.

• Application to other overactuated plants of interest. In this dissertation, we fo-

cused on the application of the proposed simultaneous identification and control

techniques to torque regulation in PMSMs. While these case studies provided

the opportunity to try out ideas on a real system and gain a better under-

standing of the challenges involved, it would nonetheless be informative to con-

sider other applications as well. For instance, the air-path control problem for

turbocharged diesel engines with variable geometry turbines/compressors [86]

presents a challenging overactuated control problem of practical interest. Simul-

taneous identification and control could help improve performance over the life-

time of an engine, while also providing more reliable parameter estimates which

could be used for condition monitoring, e.g., indicating mechanical wear in the

turbocharger. Inevitably, the consideration of alternative plants will provide

additional insight that is likely to motivate improvements to the methodology.

• Investigation into the influence of horizon window length and position on the

generation of persistently exciting inputs and parameter identification. In Chap-

ter 5, we used a past-data horizon, Np, which was equal to the prediction hori-

zon, Nf , in our evaluation of the Fisher information matrix. However, this
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decision was made somewhat arbitrarily. In fact, the Fisher matrix may be

evaluated over any interval of interest, independent of the control allocation

prediction horizon. Intuitively, we expect past data to be more valuable than

future (i.e., predicted) data in our evaluation of the Fisher matrix for the reasons

discussed in Chapter 5. It is therefore of interest, to investigate the influence

that the selection of this time interval, its length and positioning (i.e., how much

past and future data is included), has on the generation of persistently exciting

reference trajectories and parameter identification.

• Experimental verification of the RHCA-SIC approach for PMSMs. To better

understand the challenges of fielding the RHCA-SIC algorithm, experimental

validation is needed. In the simulation results presented in Chapter 5, we had

the luxury of “pausing” to solve the optimization problem at each time step. In

practice, this optimization problem will have to be solved quickly in real-time.

To do so will require an investigation into numerical solution techniques for the

constrained optimization problem at hand.

• Incorporation of voltage constraints in RHCA for PMSMs. While the case study

for PMSMs in Chapter 5 did not include voltage constraints in the problem for-

mulation, it should be straightforward to include them. The voltage constraints

on a voltage-source inverter form a convex set, and including them will en-

sure that the actuation provided by the inverter is fully utilized. Additionally,

including voltage constraints in the RHCA will lead the controller to automat-

ically perform field weakening at high-speeds when the drive system is voltage

constrained.
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