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ABSTRACT

Supplier Choice: Market Selection under Uncertainty

by

Zohar Maia-Aliya Strinka

Co-Chairs: Edwin Romeijn and Jon Lee

Suppliers and Manufacturers generally have some say in which subset of all possible

demand they will meet. In some cases that choice is implicit through pricing decisions

and feature selection. Other times it is made explicitly by choosing only specific regions

to stock a product in. This thesis includes models using both approaches and incorpo-

rates random demands. We present several methods for choosing a subset of all candidate

customers given uncertain demands.

In this thesis we consider four models of demand selection. The first two research

problems consider market selection, which has been studied in the literature. The Selective

Newsvendor Problem (SNP) looks at a decision maker choosing a subset of candidate mar-

kets to serve, and then receiving revenues and paying newsvendor-type costs based on the

selected collection. In this thesis we consider a generalization with normally distributed de-

mands which includes a multi-period problem as a special case and develop both exact and

x



heuristic algorithms to solve it. When demands are not normally distributed, the problem is

considerably more complex and is in general NP-hard. We develop an approximation al-

gorithm using sample average approximation and a rounding approach to efficiently solve

the problem. In addition to the work on market selection, we propose two other models

for demand selection. We study auctions as a tool for a supplier with a fixed capacity to

allocate the limited supply to retailers with newsvendor-type costs. Finally, we present a

model for a supplier who must ensure demand is met in all markets, but has the option to

work with subsidiary suppliers to meet that demand.
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CHAPTER 1

Introduction

1.1 Supplier choice problems

When a supplier is designing a new product, there are a number of decisions they need to

make before it reaches customers. Those decisions include which features the product will

have, what price to sell it for, how many options should be available, and a host of other

choices. One common perspective is that decision makers have specific products which

they then meet all demand for. In this thesis we take the more comprehensive view that

suppliers make both implicit and explicit customer selection decisions which ultimately

results in a subset of all possible demand being met.

Since there is no way for a single product to meet all needs for every person, designing

something inherently involves deciding what your target market is. Further, suppliers will

have different priorities which help them to define that target market. When a new product

is being developed there are also parallel marketing decisions including if it will be sold

in all regions, how limited supply should be allocated, and risk tolerance for having a

limited supply. Solving all of these issues is tricky, especially when determining which

simplifying assumptions to make to ensure tractability. There are several research areas

which touch on this underlying question of how to choose a subset of all possible demand

to meet. These include at a minimum marketing, pricing, revenue management, auctions,

and market selection.
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Both the literature in marketing and Operations Management (OM) have studied prob-

lems related to those in this thesis. The marketing approach is beyond the scope of this

thesis, but see Krishnan and Ulrich [1] for a review of the product development decision

literature which discusses the differences in approach between OM and marketing. Within

OM, revenue management is the field which considers how to best balance price limited

capacity, particularly when demand for that capacity arrives over time. Chiang et al. [2]

provides an overview of the wide field of revenue management including pricing, auctions,

and other techniques. Within revenue management, Yano and Gilbert [3] provide a review

of the pricing literature as it relates to production and procurement decisions. Petruzzi and

Dada [4] also look at pricing and procurement specifically for the newsvendor problem.

Auctions are sometimes used as a tool within revenue management to maximize prof-

its. However, auctions and other market mechanisms have been gaining popularity within

supply chain optimization as a means not only to increase revenues, but also to allow in-

formation revelation which facilitates coordination between independent agents. Krishna

[5] provides an overview of auction theory including multi-unit auctions which are most

relevant to supply chain. In the auction literature there are a variety of auction mechanisms

for selling multiple units including the optimal auction presented in Maskin and Riley [6]

and the efficient auction developed by Ausubel in [7]. Within supply chain, auctions have

mostly been used for the reverse of the situation presented in this thesis. Specifically, a de-

cision maker choosing which of many similar suppliers to order from. For example, Chen

[8] presents optimal procurement strategies by combining contracts and auctions while

Duenyas et al. [9] use a modified descending-price auction to accomplish the same goal.

While auctions and pricing can be used to implicitly select a subset of demand to meet,

in some cases suppliers instead explicitly make that selection. Rhim et al. [10] study a

market selection problem with deterministic demands which also includes competition.

Geunes et al. [11] take an explicit market selection approach and present both deterministic

and stochastic versions of the problem. Van den Heuvel et al. [12] provide complexity

2



results for general market selection problems as well as special cases. The authors also

show that for the profit maximization version of the general problem, not even a constant-

factor approximation algorithm can solve the problem efficiently. Geunes et al. [13] do

present a constant-factor approximation algorithm for the cost-minimization formulation

of a deterministic market selection problem.

In addition to the work on deterministic market selection, there has been a stream

of literature considering stochastic demands. Carr and Lovejoy [14] present the inverse

newsvendor problem for choosing the demand distribution from an opportunity set given

a capacity constraint. Taaffe et al. [15] present the selective newsvendor problem (SNP)

where the supplier chooses a binary market selection and makes associated procurement de-

cisions. Other papers have added to the work on the SNP including Chahar and Taaffe [16]

which includes risk as an additional objective and Taaffe and Chahar [17] which consid-

ers all-or-nothing demands. Waring [18] also studies the SNP and considers risk-aversion

measures including Conditional Value at Risk (CVaR) and Value at Risk (VaR).

The stochastic market selections discussed above build on much of the research on

the newsvendor problem as a means of successfully incorporating uncertainty into supply

chain problems. The newsvendor problem has been extensively studied as a model in retail

for goods which experience a discount at the end of a selling period. Khouja [19] is a

review paper which covers many of the extensions which have been considered for the

single period newsvendor problem. The author’s summary includes extensions to multiple

locations and pricing as is studied in this thesis as well as a variety of other extensions

including random yields, multi-echelon systems, and related objectives. Since this review

paper, there has continued to be an active stream of literature using the newsvendor model

to address important questions.

Qin et al. [20] provide a more recent review of the newsvendor problem. The authors

build on [19] and present more recent contributions which include addressing marketing

effort, elements of competition and contracts, and risk. Kraiselburd et al. [21] consider

3



market effort and competition in a setting with newsvendor-type costs and find the value

in vendor-managed inventory to be dependent on substitution rates and the effects of man-

ufacturer effort. Gotoh and Takano [22] show that Conditional Value at Risk for a single-

period newsvendor can be formulated as a Linear Program while Ahmed et al. [23] consider

coherent risk measures as a whole in inventory problems. Weng [24] considers how manu-

facturers and retailers can use contracts to coordinate inventory decisions in a newsvendor

setting and Chen and Xiao [25] consider outsourcing as a response to disruption risk and

uncertain capacity.

In summary, this thesis builds on many of the most important issues which have been

identified in the literature relating to procurement and inventory management. In Yano and

Gilbert [3] the authors comment that they believe in the future

the most significant contributions will come not from continued examination of

recognized trade-offs, but from expansive inquiry that breaks down traditional

boundaries and identifies new issues.

This thesis takes an optimization-grounded view of suppliers choosing which subset of all

possible demand to meet using newsvendor-type retailers as their customers. Using this

perspective we identify explicit market selection, auctions, and outsourcing as tools the

supplier can use to decide who to serve.

1.2 Chapter summaries

In this thesis, I extend the existing market selection literature for the selective newsvendor

problem. In addition, I consider using an auction to implicitly choose a subset of customer

demand. Finally, I present an outsourcing problem which demonstrates one more way

suppliers have choice about which subset of demand they will serve. The remainder of this

section will present a brief overview of the thesis.
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1.2.1 Chapter 2: The SNP with normally distributed demands

In this chapter we study a class of selective newsvendor problems, where a decision maker

has a set of raw materials each of which can be customized shortly before satisfying de-

mand. The goal is then to select which subset of customizations maximizes expected profit.

We show that certain multi-period and multi-product versions of the SNP fall within our

problem class. Under the assumption that the demands are independent and normally, but

not necessarily identically, distributed we show that some problem instances from our class

can be solved efficiently using an attractive sorting property that was also established in the

literature for some related problems. For our general model we use the KKT conditions to

develop an exact algorithm that is efficient in the number of raw materials. In addition, we

develop a class of heuristic algorithms. In a numerical study we compare the performance

of the algorithms, and the heuristics are shown to have excellent performance and running

times as compared to available solvers.

1.2.2 Chapter 3: Approximation algorithms

While most of the existing literature on the SNP assumes that demands are normally dis-

tributed. In this chapter we consider more general demand distributions and use an approx-

imation algorithm to solve the resulting problem efficiently. We study a class of problems

with both binary selection decisions and continuous variables (e.g., procurement quantity)

which result in stochastic rewards and costs. The rewards are received based on the deci-

sion maker’s selection and the costs depend both on all decision variables and realizations

of the stochastic variables. We consider a family of risk-based objective functions that con-

tains the more traditional risk-neutral expected-value objective as a special case. We use

a combination of rounding and sample average approximation to produce solutions which

are guaranteed to be close to the optimal solution with high probability. We also provide an

empirical comparison of the performance of the algorithms on a set of randomly generated

test problems. We find that for our supply chain example, high-quality solutions can be

5



found with small computational effort.

1.2.3 Chapter 4: Allocating goods via an efficient auction

In this chapter we study a supplier who has a fixed and limited inventory to sell to cus-

tomers. We consider customers who are themselves retailers facing uncertain demand with

newsvendor-type costs. Because demand is uncertain and the retailers face newsvendor-

type costs, they order gradually decreasing quantities from the supplier for higher per-unit

prices. This trade-off between price charged and order quantity motivates the supplier to

use an auction to allocate the limited goods. We consider a supplier who wants to ensure

that those with the highest value for an object receive it. This is called an efficient allo-

cation and is most commonly used for government decision making or other times when

welfare maximization is important. In addition, since the retailer costs are driven by cus-

tomer demand, an efficient allocation could be a reflection of the underlying end-customer

demands. We use the work of Ausubel [7] and assume retailers face newsvendor-type costs

and only know their own private information as well as existing bids. We present auc-

tion mechanisms for discrete and continuous auctions and also introduce an “ε-efficient”

auction mechanism.

1.2.4 Chapter 5: Outsourcing to a subsidiary

While Chapters 2 and 3 study the selective newsvendor problem, in some settings the sup-

plier may need to ensure that all market demand is met. However, even in those cases the

supplier may have the option to outsource markets to subsidiaries if they so choose. In this

chapter, we consider such a setting of a single supplier and a number of subsidiaries who

are all able to produce the desired good. The supplier then assigns each market to either

themselves or one of the subsidiaries. The supplier tries to maximize their own expected

profit while ensuring that all subsidiaries have positive expected profit through transfer pay-

ments if necessary. By solving both this problem and the equivalent SNP, we are able to

6



study the resulting market assignment decisions and gain insight into the market structure

of the product. In this chapter we also include numerical results which can be compared to

the work in Chapter 3.
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CHAPTER 2

The Selective Newsvendor Problem with

Normally Distributed Demands

This chapter discusses a project I completed jointly with H. Edwin Romeijn and Jingchen

Wu which appeared in the April 2013 issue of Omega [26].

2.1 Introduction

In this chapter we study a class of selective newsvendor problems (SNPs) that generalizes

the classical newsvendor problem by incorporating a degree of flexibility regarding the

shape of the demand distribution faced by an inventory manager into the decision making

progress. In particular, our generic model considers a set of raw materials that can be cus-

tomized immediately prior to satisfying demand. The raw materials could be physically

different items, but also simply a single item in different periods. The processes by which

customization can take place are identical for each of the raw materials; e.g., we can think

of coloring, packaging, etc., or preparation for satisfying demand in a particular market or

segment. The selection flexibility lies in the ability to invest in a collection of customization

methods or options. This model is applicable in several important practical settings. For

example, it could be used as a prescriptive model for a manufacturer who has the oppor-

tunity to make an optimal selection, but also as a tool for gaining managerial insights for

a manufacturer who is considering a modification of their selection. In addition, the type
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of selection models that we will consider in this chapter also often appear as a subproblem

for solving assignment, facility location, or other more comprehensive models (see, e.g.,

Freling et al. [27], Huang et al. [28], Shen et al. [29], Shu et al. [30], Taaffe et al. [31]).

As mentioned above, our problem is based on the single-period newsvendor problem

(see Porteus [32] for a general overview of stochastic inventory models). Eppen [33] con-

sidered a generalization of this problem to multiple locations, which allows for a reduction

in the expected costs associated with variability in demand by considering all locations

together and planning for aggregate demand. This observation has more recently led to

research on market selection problems where the manufacturer has a choice of a set of

markets (e.g., locations) that may be served. Taaffe et al. [15] first introduced a Selective

Newsvendor Problem (SNP), there defined as a market selection problem with independent

and normally distributed demands for each market. The authors demonstrate that such a

market selection problem can be solved efficiently using a sorting algorithm that ranks the

markets according to the ratio of net expected revenue to demand variance. Taaffe et al.

[34] studied the case of all-or-nothing demand distributions, and Taaffe and Chahar [17]

and Chahar and Taaffe [16] included risk as an additional objective. In related work, de-

terministic market selection problems with Economic Order Quantity (EOQ) (Geunes et

al. [35]) and Economic Lot Sizing (ELS) costs (Van den Heuvel et al. [12]) were studied,

while Geunes et al. [11] reviewed demand selection and assignment problems. Chen and

Zhang [36] and Huang and Sos̆ić [37] study allocations of profits for a newsvendor game.

Testing if an allocation of profits is in the core of the game is closely related to selection

problems.

In the context of this chapter, the basic SNP introduced and studied by Taaffe et al.

[15] can be viewed as a customization selection problem corresponding to only a single

raw material. In this chapter we (i) discuss a wider range of applications of this general

problem class; and (ii) generalize that model to account for multiple raw materials. Taaffe

et al. [15] showed that the case of a single raw material can be solved efficiently using a
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sorting-based algorithm. We develop an exact solution approach for the more general and

computationally much more challenging class of selective newsvendor problems with mul-

tiple raw materials. Finally, we propose a class of heuristics inspired by the exact solution

approaches and show, through extensive computational tests, that particular implementa-

tions of these are both effective and efficient. In Chapter 3 we go in a different direction

and instead consider non-normally distributed demands. We then propose several algo-

rithms which approximately and efficiently solve the SNP with nonnegative demands with

high probability.

The remainder of the chapter is organized as follows. Section 2.2 describes the model

and some applications. In Section 2.3 we develop exact and heuristic solution approaches,

while Section 2.4 provides a variety of computational results. Finally, in Section 2.5 we

summarize our results and conclude.

2.2 Problem formulation

2.2.1 Notation and general model

Let A = {1, . . . , a} be a set of raw materials that may be customized shortly before sat-

isfying demand in one of several different ways, indexed by the set N = {1, . . . , n}. The

problem that we will study in this chapter is to determine a subset of customizations and

a set of order quantities for the raw materials that maximize expected profit. To this end,

define the binary decision variables zi = 1 when customization i is selected and zi = 0 oth-

erwise (i ∈ N ), as well as the continuous decision variables Qj (j ∈ A), denoting the raw

material order quantities. For convenience, let Q = (Qj, j ∈ A)> and z = (zi, i ∈ N)>.

Let the random variable Dij denote the demand for raw material j ∈ A customized

according to i ∈ N , and let Dj = (Dij, i ∈ N)> (j ∈ A) denote the corresponding

demand vectors. Furthermore, let:

• Fi = fixed charge associated with selecting customization method i ∈ N ;
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• r̄ij = unit revenue for raw material j ∈ A customized according to i ∈ N ;

• cj = unit cost of raw material j ∈ A, and c = (cj, j ∈ A)>;

• vj = unit salvage value for raw material j ∈ A;

• ej = unit expediting cost for raw material j ∈ A.

For convenience, we let µij = E[Dij] (for j ∈ A, i ∈ N ) and define R̄i =
∑

j∈A r̄ijµij−Fi
(for i ∈ N ). To ensure that the problem is meaningful, we assume that ej > cj > vj for all

j ∈ A. The expected profit as a function of the decision variables can then be expressed as:

R̄>z − c>Q+
∑

j∈A

vjE
[(
Qj −D>j z

)+
]
−
∑

j∈A

ejE
[(
D>j z −Qj

)+
]
.

It is easy to see that, given values for the selection variables, this problem decomposes into

a traditional newsvendor problem for each raw material. This means that the optimal order

quantity for raw material j ∈ A is the ρj ≡
(
ej−cj
ej−vj

)
-fractile of the distribution of demand

for that raw material.

In the remainder of this chapter, we will follow Taaffe et al. [15] and assume that Dij ∼

Normal(µij, σ2
ij) (for (i, j) ∈ N × A). In addition, we assume that, for each j ∈ A, the

elements of Dj are independent; however, the vectors Dj may be dependent. Clearly,

both the normality and independence assumptions may be violated in practice. In fact,

this assumption is relaxed in Chapter 3 where approximation algorithms for such problems

are developed. However, in this chapter we will limit ourselves to the special case since

under these assumptions the optimization problem takes on an interesting form. We then

develop exact and heuristic approaches for a more general class of problems that may be of

independent interest.

Taaffe et al. [15] show that normality and independence of the demand vector (for fixed

j ∈ A) can be used to further simplify the expected profit function. In particular, letting

sij = σ2
ij (i ∈ N , j ∈ A), sj = (sij, i ∈ N)>, Ri =

∑
j∈A(r̄ij − cj)µij − Fi, and

11



R = (Ri, i ∈ N)> we obtain the optimization problem

max
z∈{0,1}N

R>z −
∑

j∈A

fj(s
>
j z) (P)

where, for all j ∈ A, fj(x) = Kj

√
x with Kj = (cj− vj)Φ−1(ρj) + (ej− vj)L (Φ−1(ρj)) a

nonnegative constant, where Φ denotes the c.d.f. of the standard normal distribution and L

denotes the associated loss function. This model generalizes the basic selective newsven-

dor problem (SNP) as introduced by Taaffe et al. [15]. As noted earlier in this chapter,

their problem is a special case of (P) where a = 1 and N is interpreted as a collection of

markets that may or may not be entered by the supplier. Despite the fact that (P) is still a

convex maximization problem for general values of a and therefore there exists an optimal

extreme point (i.e., binary) solution to its continuous relaxation, this generalization makes

the mathematical programming problem (P) considerably more challenging to solve, since

a sorting approach can no longer be applied in general. Although in our application the

functions fj have the form given above, all of our results in fact apply more generally to

the case where these functions are concave and nondecreasing. Moreover, without loss of

generality we will assume that Ri > 0 for all i ∈ N (since it is easy to see that an optimal

solution exists for which zi = 0 for all i ∈ N for whichRi ≤ 0).

2.2.2 Examples

In this section we will discuss several multi-period and multi-item selective newsvendor

problems that can be formulated as special cases of (P).

Multi-item selective newsvendor problems Of course, the generic description of our

problem class can be viewed as a multi-item selective newsvendor problem where, by def-

inition, we have to select a common set of customizations for the raw materials. However,

note that if we can select a different set of customizations for each raw material then the
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problem decomposes by raw material. In other words, for each raw material we obtain an

optimization problem that selects the set of customizations for that raw material. (We will

refer to this case as C1.)

Multi-period selective newsvendor problems A generalization of the basic SNP de-

scribed above to a multi-period setting considers the demands for a single product in a set

of M different markets over a horizon of time periods indexed by the set T , denoted by the

random variables Dit (i ∈ M , t ∈ T ). We assume that all selection and ordering decisions

have to be made at the start of the horizon. In this setting, we must decide (i) whether or not

the set of selected markets can change between periods and (ii) whether or not inventory

or backlogging is allowed between periods. In the remainder of this section, we will show

how this problem reduces to one of the form (P) under a number of different simplifying

assumptions.

With respect to the market selection, we will consider models that do not allow the

set of selected markets to change between periods as well as models that do allow for

costless changes in the set of selected markets. With respect to the inventory carryover and

backlogging, we assume that these are either costless or not allowed.

T1. If inventory carryover and backlogging as well as changes in the market selection are

allowed and costless, then demand can be pooled across all periods and all markets.

In this case, we obtain an instance of (P) with A = {1}, N = M × T , and D(i,t),1 =

Dit (i ∈M , t ∈ T ), provided all demand variables are independent.

T2. If inventory carryover and backlogging are allowed and costless but the market se-

lection is set across all periods, then the market demands can be pooled across all

periods. In this case, we have A = {1}, N = M and Di1 =
∑

t∈T Dit (i ∈ M )

provided the aggregate market demands are independent.

T3. If inventory carryover and backlogging are not allowed but changes in the market

selection are costless, then the problem decomposes by period. In this case, for each
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t ∈ T , we solve a problem with A = {t}, N = M , and Dit = Dit (i ∈M ) provided

the market demands within a given period are independent.

T4. If neither carryover and backlogging nor changes in the market selection are allowed

we have A = T , N = M , and Dit = Dit (i ∈ M , t ∈ T ) provided the market

demands within a given period are independent.

2.3 Solution approaches

Several of the examples described in the previous section are of the same form as the

basic SNP (i.e., have a = 1). This means that we can solve these problems using the

exact algorithm provided in Taaffe et al. [15]. In Section 2.3.1 we will, for completeness’

sake as well as insights into the implications for the examples, briefly review this solution

approach.

Other interesting examples have a > 1 though, which yields a much harder optimiza-

tion problem. In the remainder of this section, we will therefore develop an exact algorithm

that runs in polynomial time in n but exponential time in a. Motivated by this analysis as

well as the exact algorithm for the case a = 1 we also propose a class of heuristics for

solving the problem.

2.3.1 Single raw material (a = 1)

When a = 1 and eliminating the corresponding index, the selection problem in profit

maximization form is:

max
z∈{0,1}n

R>z − f(s>z).
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Taaffe et al. [15] show that the optimal solution to this problem is either z = 0 (i.e., a vector

all of whose elements are equal to zero) or of the form

zi =





1 if i � `

0 if i � `

for some ` ∈ N , provided that the elements of N are sorted in such a way that

Ri

si
≥ Ri′

si′
⇐⇒ i � i′

for all i, i′ ∈ N . Sorting the elements of n takes O(n log n) time, and the optimization

problem can be solved by choosing the best among n+ 1 candidate solutions.

For the examples with a = 1 discussed in the previous section (i.e., cases C1 and T1–

T3) we then obtain the following sortings:

C1. For each raw material j ∈ A, we order the customizations i ∈ N in non-increasing

order ofRi/σ
2
ij .

T1. We consider all possible (market, period)-pairs (i, t) ∈ N × T and sort these in non-

increasing order of Rit/σ
2
it (where Rit is the net expected revenue for market i in

period t).

T2. We aggregate the demands for each market i ∈ N over the planning horizon and sort

the markets in non-increasing order of Ri/σ
2
i (where Ri is the net expected revenue

for market i over the entire planning horizon and σ2
i is the variance of the aggregate

demand in market i ∈ N ).

T3. For each period t ∈ T , we order the markets i ∈ N in decreasing order ofRit/σ
2
it.
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2.3.2 General case

When there is more than one raw material (a > 1), (P) is no longer equivalent to the basic

SNP studied in Taaffe et al. [15]. We therefore propose to solve this problem (or, in fact, a

generalization thereof) by deriving the KKT conditions and using the resulting structure to

find candidate solutions.

Consider the following linear relaxation of (P):

max
z∈[0,1]n

R>z −
∑

j∈A

fj
(
s>j z
)
. (R)

Since the functions fj (j ∈ A) are concave the objective function of (R) is convex, and this

problem has an extreme point (i.e., binary) optimal solution. We will therefore focus on

solving this continuous optimization problem. Under mild differentiability conditions (see,

e.g., Bazaraa et al. [38]), the optimal solution to this problem can be found among the KKT

solutions. Since the square root function, which is used in all of our applications, is not

differentiable at 0 these conditions are violated at z = 0. However, this simply means that,

in addition to the KKT solutions, we also need to consider z = 0 as a potential solution to

the problem. Therefore, in the following analysis we will for convenience assume that the

functions fj are differentiable everywhere and that the KKT conditions are necessary for

optimality.

The KKT conditions for this problem can be written as:

Ri −
∑

j∈A

f ′j
(
s>j z
)
sij − µi = 0 i ∈ N (2.1)

µ−i zi = 0 i ∈ N

µ+
i (1− zi) = 0 i ∈ N

where µ+
i = max{µi, 0} and µ−i = max{−µi, 0}. We will use these conditions to develop

a collection of candidate solutions that is guaranteed to contain a (binary) optimal solution
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to (P), provided that n ≥ a (we will deal with the case n < a later). Before we proceed with

the analysis, let us introduce some notation that will be useful. First, let S = [sij]i∈N,j∈A.

Furthermore, for K ⊆ N let SK = [sij]i∈K,j∈A andRK = (Ri, i ∈ K)>. In addition, let

K = {K ⊆ N : |K| = a and SK is invertible}.

Finally, we use the 0-norm ‖ · ‖0 to denote the number of nonzero elements in a vector.

Theorem 2.3.1. If n ≥ a, an optimal binary solution to (R) can be found by solving a

problem of the form (R) for each K ∈ K, where the problem corresponding to K ∈ K has

n− ‖SKcS−1
K RK −RKc‖0 decision variables.

Proof. The following class of linear programs (parameterized by values Vj , j ∈ A) is

closely related to problem (R):

maximize
∑

i∈N

Rizi

subject to (LP)

∑

i∈N

sijzi = Vj j ∈ A

0 ≤ zi ≤ 1 i ∈ N.

In particular, an optimal solution to this problem is optimal to (R) if the values Vj are

chosen equal to fj(s>j z
∗), where z∗ is itself optimal solution to (R). (In fact, in many cases

z∗ will be the unique optimal solution to (LP).) We will use this linear program to derive

structural properties of an optimal (binary) solution to (R). To this end, we formulate the

dual of (LP):

minimize
∑

j∈A

Vjλj +
∑

i∈N

µ+
i
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subject to

∑

j∈A

sijλj + µ+
i ≥ Ri i ∈ N

µ+
i ≥ 0 i ∈ N

λj free j ∈ A.

The complementary slackness conditions for this pair of problems include:

zi

(∑

j∈A

sijλj + µ+
i −Ri

)
= 0 i ∈ N

µ+
i (1− zi) = 0 i ∈ N.

Now note that, regardless of the values of Vj (j ∈ A), any basic feasible solution to (LP)

can be characterized by exactly A basic variables, indexed by a set K ∈ K. For a basic

solution given by a set K to be optimal to (LP) it must, by duality theory for linear pro-

gramming, satisfy the complementary slackness conditions with a dual solution that satis-

fies λ̂K = S−1
K RK . Using the complementary slackness conditions this, in turn, defines a

partial solution to (LP):

zKi =





0 ifRi <
∑

j∈A sijλ̂
K
j

1 ifRi >
∑

j∈A sijλ̂
K
j .

It is easy to see that if our goal were to find some optimal solution to (P) we may restrict

ourselves to solutions of this form and complete the solution by solving the following

problem:

max
zi∈{0,1}, i∈K

∑

i∈K

Rizi −
∑

j∈A

fj


 ∑

i∈N\K

sijz
K
i +

∑

i∈K

sijzi


 . (PK)

However, note that we are not just interested in finding any optimal solution to (P), but in
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finding a binary optimal solution. Of course, if the optimal solution to (P) is unique there

is no distinction. However, if (P) has multiple optimal solutions we have to make sure

that we do not exclude all binary optimal solutions by restricting ourselves to solution of

the form (2.3.2). Now note that what we will find is all optimal solutions to (P) that are

extreme point optimal solutions of a corresponding (LP). Since no binary vector z can be

a non-extreme point of the feasible region of (LP), we ensure that identifying all candidate

optimal solutions corresponding to sets K ∈ K will contain a binary optimal solution to

(P).

We will now assume that the following regularity condition holds, which will ensure

that an optimal binary solution to (R) can be found in polynomial time in the number of

customizations n.

Assumption 2.3.2. Let Φ =
[
sij
Ri

]
i∈N,j∈A

and 1 a vector all of whose elements are equal to

1. Then the unique solution to the system

Φ>x = 0

1>x = 0

is x = 0.

The regularity condition captured by Assumption 2.3.2 is mild since, as we will show in

the next lemma, it boils down to none of the extreme points of (LP) being degenerate.

Lemma 2.3.3. If n ≥ a then Assumption 2.3.2 is equivalent to no subsystem of Sλ = R

strictly containing a system of the form SKλK = RK for any K ∈ K having a solution.

Proof. First note that K is empty if n < a, so we will only address the case n ≥ a.

“⇒” We will prove this by contradiction. Let K ∈ K and ` ∈ N\K such that s>`·λ
K = R`
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with s`· = [s`j]j∈A and, as above, λK = S−1
K RK . SinceR > 0 this means that

ΦKλ
K = 1

φ>`·λ
K = 1

where ΦK =
[
sij
Ri

]
i∈K,j∈A

and φ`· =
[
s`j
R`

]
j∈A

. Note that ΦK is invertible, so that

λK = Φ−1
K 1. Now let

x̄i =





(
(Φ>K)−1φ`·

)
i

if i ∈ K

−1 if i = `

0 otherwise.

Then

Φ>x̄ = Φ>K x̄
K + φ`·x̄` = Φ>K(Φ>K)−1φ`· − φ`· = 0

and

1>x̄ = 1>(Φ>K)−1φ`· − 1 = φ>`·λ
K − 1 = 0.

This is in contradiction with Assumption 2.3.2 so that we may conclude that no

subsystem of Sλ = R strictly containing a system of the form SKλK = RK for any

K ∈ K has a solution.

“⇐” Again we will prove this by contradiction. Suppose that x̄ 6= 0 is a solution to the

system in Assumption 2.3.2. This means that at least one element of x̄ is nonzero;

denote the index of such an element by ` ∈ N . This implies that the system

∑

i∈N\{`}

sij
Ri

· x′i = −s`jR`

j ∈ A
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has a solution (in particular, x′i = x̄i/x̄` for i ∈ N\{`} is a solution). This, in

turn, implies that there exists a set K ⊆ N\{`} with |K| = a for which the matrix
[
sij
Ri

]
i∈K,j∈A

is invertible. We have therefore identified a subsystem of Sλ = R

strictly containing the system SKλK = RK which has a solution. This proves the

desired result.

Theorem 2.3.4. Under Assumption 2.3.2, an optimal solution to (P) can be found by ex-

amining O(na) solutions, each of which can be characterized in O(a3) time and evaluated

in O(na) time.

Proof. Assumption 2.3.2 and Lemma 2.3.3 imply that, for allK ∈ K, the problem (PK) has

a decision variables. Simply enumerating 2a solutions yields that we can find an optimal

binary solution to (R) by examining no more than (2n)a = O(na) solutions. For each

K ∈ K, the most time-consuming operation is inverting the matrix SK which can be done in

O(a3) time, and evaluating the objective function value of a solution can be done in O(na)

time. When 1 < n < a, we can enumerate all 2n ≤ 2a ≤ na solutions to (P). Finally, when

n = 1 there are only 2 solutions to consider. This yields the desired result.

Exact algorithm for solving (P)

Step 0. Let π∗ = −∑j∈A fj(0), z∗ = 0, and choose K ∈ K arbitrarily.

Step 1. Let λK = S−1
K RK and determine the partial solution zK according to Eq. (2.3.2).

Step 2. Complete this solution by solving problem (PK) and let

πK = R>zK −
∑

j∈A

fj(s
>
j z

K).

Step 3. If π∗ < πK then let z∗ = zK and π∗ = πK .

Step 4. Let K = K\{K}. If K 6= Ø, return to Step 1.
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Upon termination of this algorithm, z∗ is the optimal solution to (P) and π∗ is the corre-

sponding optimal value.

2.3.3 A class of heuristics

When a is large, the exact algorithm derived earlier in this section may no longer be compu-

tationally efficient. We therefore propose a class of heuristic algorithms that is inspired by

both the KKT conditions as well as the sorting algorithm that provides the optimal solution

in case a = 1. In particular, recall from Eq. (2.3.2) that a quantity of the form

Ri −
∑

j∈A

sijλj

can be used to, at least partially, determine the values of the selection variables. In our class

of heuristics we will use quantities of this form to measure the attractiveness of selecting

the customizations i ∈ N , where the vector λ parameterizes the heuristic. Then, given

an instance of the heuristic, we will consider the customizations i ∈ N sorted in non-

increasing order of attractiveness, and select the first ` from this sorted list (for some ` ∈

{1, . . . , n}. Note that not selecting any customization is always feasible, so we will also

consider this obvious solution to the problem as a candidate. Of course, there are many

ways in which the vector λ can be chosen. Inspired by KKT condition (2.1) and given the

fact that an optimal solution to (P) is also a KKT solution to (R), we will choose parameters

of the form

λj = f ′j(s
>
j z) j ∈ A

for some z ∈ {0, 1}n. In Section 2.4 we will consider several possibilities for choosing one

or more values of z when applying the heuristic to a particular problem instance of (P). All

of these will take the form of selecting z from some probability distribution on {0, 1}n.
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More formally, the heuristic can be described as follows:

Heuristic for solving (P)

Step 0. Let π̂ = −∑j∈A fj(0) and ẑ = 0.

Step 1. Select a vector z ∈ {0, 1}n according to some probability distribution.

Step 2. Let

λj = f ′j(s
>
j z) j ∈ A

µi = Ri −
∑

j∈A

sijλj i ∈ N.

Step 3. Define the following ordering of the elements of N : µi ≥ µi′ ⇐⇒ i � i′ for all

i, i′ ∈ N .

Step 4. Let L ⊆ N and determine partial solutions given by

zK,`i =





1 if i � `

0 if i � `

with corresponding objective function values π̃K,` = R>zK,`−∑j∈A fj(s
>
j z

K,`),

for all ` ∈ L.

Step 5. Let `∗ = arg max`∈L π
K,`, zK = zK,`

∗ , and πK = πK,`
∗ .

Step 6. If π̂ < πK then let ẑ = zK , π̂ = πK , and (if additional candidate solutions are

desired) set z = ẑ and return to Step 2.

Upon termination of the heuristic, ẑ is the best solution found and π̂ is the corresponding

objective function value.

Note that Step 4 in the heuristic is motivated by a combination of the exact algorithm

for a = 1 discussed in Section 2.3.1 and the exact algorithm for the general case discussed
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in Section 2.3.2. In Section 2.4 we will show how different choices in Steps 4 and 6 impact

the efficiency and efficacy of the heuristic, and also explore multistart implementations of

the heuristic.

2.4 Computational results

In Sections 2.3.2 and 2.3.3 we developed an exact algorithm as well as a class of heuristic

algorithms for solving (P) when a > 1. In this section, we will study and evaluate the

performance of the exact algorithm as well as several variants of the class of heuristics. All

tests were performed on a PC with an Intel Xeon Quad Core 3.2 GHz processor with 8 GB

RAM.

2.4.1 Test problem instances

We created problem instances by randomly generating problem data using uniform distri-

butions for the problem parameters as given in Table 2.1. However, it turns out that using

this data the distribution of the number of customizations selected in the optimal solution

is skewed towards larger numbers, while on the other hand a sizable number of problem

instances have optimal solution 0. Since the performance of the exact algorithm is insensi-

tive to the nature of the optimal solution and our heuristics always consider the solution 0,

we decided to

(i) eliminate all problem instances with optimal solution 0;

(ii) use an acceptance/rejection method to ensure that we have an equal number of prob-

lem instances with 1, 2, . . . , n customizations selected in the optimal solution.

For larger problem instances applying (ii) exactly turned out to be impractical. However,

as we show in the remainder of this section, one of our heuristics performs very well.
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Therefore, for larger instances we use the solution found by this heuristic in the accep-

tance/rejection method in (ii).

Kj µij σij rij − cj Fi

U(0, 6) U(0, 100
n

) U(0, 5) U(0, 8
a
) 0

Table 2.1: Test problem parameters

2.4.2 Performance evaluation

2.4.2.1 Exact algorithm vs. complete enumeration

In Section 2.3.2 we developed an exact algorithm that, under a mild regularity condition,

runs in polynomial time in the number of customizations but in exponential time in the

number of raw materials. It is also easy to see that complete enumeration of all solutions

would run in exponential time in the number of customizations but in polynomial time in

the number of raw materials. In this section, we will compare the performance of both on

a set of test instances, with the goal of providing some insight into the problem dimen-

sions that make the exact algorithm attractive as compared to complete enumeration. In

particular, in Figure 2.1 we show, using a log-scale, the running time for both algorithms

as a function of both n and a. As expected, the threshold for the number of customizations

at which the exact algorithm starts to outperform complete enumeration increases in the

number of raw materials. However, for the class of instances that we used, this threshold is

reasonably small, highlighting the value of the exact algorithm for a large class of problem

instances. Using similar data for a = 4, 6, 8 we showed empirically that the running time

of our exact algorithm and complete enumeration satisfy the following relationships very

closely:

texact(n, a) = 2−17.71 ×
(
n

a

)
a4

tenum(n, a) = 2−13.66 × 2n
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which can help determine the actual values of n and a for which the exact algorithm out-

performs complete enumeration.
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Figure 2.1: Run time as a function of n and a for exact algorithm and enumeration.

In addition to the relative performance, it is important to observe from Figure 2.1 that

both algorithms quickly become impractical for large values of n, while such larger values

could easily occur in practice. For example, a typical Walmart distribution center serves

about n = 75–100 stores, and we might consider a small set of products that must be

sold together such as an electronic good and related accessories for a total of a = 2–10

products. Both the exact algorithm and enumeration take approximately 200 seconds when

n is as little as 22 and a = 6. This motivates the use of heuristics for many practical-sized

problems.

2.4.2.2 Heuristic performance

In Section 2.3.3 we proposed a class of heuristics for solving (P). We will start by compar-

ing the efficiency and efficacy of several variants to publicly available solvers in MATLAB.

Since the SNP is a convex maximization problem any local maximum will occur at an ex-

treme (i.e., in our case binary) point of the feasible region we chose to use general nonlinear
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optimization solvers. In particular, we used both BONMIN and LGO, which do not guar-

antee optimality and hence qualify as heuristics. LGO has several solver options, and we

provide results for both the pure local search setting (single run from a given starting point,

denoted by LGO-1) and the global multistart random search and local search setting (de-

noted by LGO-∞). The variants of our heuristic that we consider differ with respect to (i)

the choice of the set L, and (ii) the (maximum) number of additional candidate solutions

that are generated via Step 6.

(i) We consider two choices of L, both of which depend on the current solution. The

first choice (indicated by KKT) is motivated by the exact algorithm from Section

2.3.2 (or the KKT conditions), and sets L = {`} where ` is the largest element of N

with respect to the ordering defined in Step 3 for which µi > 0. The second choice

(indicated by ranking) is motivated by the sorting algorithm that provides the optimal

solution when a = 1 and sets L = N .

(ii) We consider two choices in Step 6. The first choice (indicated by 1) simply considers

a single (inner) iteration of the algorithm, while the second choice (indicated by∞)

does not set an upper bound on the number of iterations (and hence terminates the

algorithm if no improvement is found).

Tables 2.2 and 2.3 summarize the performance of the heuristics on a set of smaller prob-

lem instances. For each problem dimension, we generated either 1000 or 10,000 instances

as outlined in Section 2.4.1 and computed the optimal solution using our exact algorithm.

As can be seen from the tables, our custom heuristics perform very well overall. From

a randomly generated starting point, the KKT-based variants find the optimal solution to

about 45–75% of the instances in negligible time. In somewhat more (but still negligible)

time, the ranking based heuristics find the optimal solution to almost all (98–100%) of the

instances. The ratio of the time required by BONMIN to that required by the ranking-∞

heuristic is substantial, while the former is much less effective. LGO-1 took somewhat
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time (10−3 sec) optimum found (%)
KKT ranking BONMIN LGO KKT ranking BONMIN LGO

n a 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞
10 4 0.04 0.08 0.20 0.46 14.22 17.55 1034 57 75 99 100 78 77 94

6 0.04 0.08 0.23 0.51 14.09 17.69 1033 54 73 99 100 78 75 94
8 0.04 0.08 0.25 0.56 14.11 17.61 1033 53 73 99 100 77 75 94

10 0.05 0.10 0.24 0.53 13.57 18.83 1103 54 73 99 100 78 76 96
15 0.05 0.09 0.29 0.65 13.71 18.99 1107 56 74 99 100 79 76 96
20 0.06 0.10 0.35 0.77 13.81 19.21 1108 52 72 100 100 79 74 96
25 0.06 0.10 0.41 0.90 14.08 19.61 1117 52 73 100 100 78 76 95

15 4 0.04 0.08 0.28 0.62 17.98 30.25 2513 46 69 99 100 72 73 91
6 0.04 0.09 0.32 0.70 17.59 30.24 2526 44 68 99 100 73 73 91
8 0.04 0.09 0.35 0.76 17.57 30.22 2519 44 69 99 100 73 73 91

10 0.04 0.09 0.33 0.71 16.95 32.38 2692 46 70 99 100 73 73 91
15 0.05 0.09 0.42 0.89 17.28 32.22 2711 46 71 99 100 76 76 93
20 0.06 0.10 0.50 1.07 17.48 32.18 2708 48 71 100 100 75 73 93
25 0.07 0.11 0.61 1.28 18.07 33.30 2821 45 71 100 100 74 74 97

Table 2.2: Algorithms average run times (10,000 instances for a ≤ 8, 1,000 instances for
a ≥ 10).

error (%) in profit, all error (%) in profit, non-optimal
KKT ranking BONMIN LGO KKT ranking BONMIN LGO

n a 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞
10 4 8.56 5.11 0.05 0.01 4.60 4.05 1.34 20.12 20.35 5.33 28.31 20.45 17.90 23.03

6 14.29 8.98 0.08 0.03 7.77 7.54 2.30 31.12 33.40 9.43 64.24 34.61 30.16 40.44
8 17.98 11.53 0.08 0.01 10.14 10.08 3.21 38.42 42.20 11.04 100 44.50 40.07 54.43

10 18.24 11.50 0.11 0.10 10.28 9.80 2.71 39.40 42.74 17.72 100 45.68 41.00 61.52
15 17.82 11.43 0.18 — 10.02 10.62 2.36 40.50 44.13 29.17 — 46.82 43.36 54.87
20 19.94 11.85 0.06 — 9.28 10.47 1.83 41.72 42.48 21.37 — 43.37 39.50 46.90
25 17.80 9.95 0.09 — 8.36 8.84 2.12 37.46 36.57 30.51 — 38.19 36.07 43.19

15 4 12.89 8.24 0.08 0.01 7.55 6.56 3.26 23.79 26.41 6.25 46.83 27.27 24.52 37.96
6 20.24 12.98 0.07 0.03 11.74 10.49 5.16 35.91 40.75 6.92 60.04 43.19 38.23 59.53
8 22.11 14.10 0.08 0.04 12.76 11.32 5.74 39.43 44.78 10.93 100 46.86 41.64 67.00

10 21.02 13.11 0.07 — 12.46 11.51 5.53 38.57 43.56 13.04 — 46.50 42.15 64.31
15 21.65 12.52 0.00 — 10.89 9.48 4.50 40.09 42.88 0.57 — 44.99 39.16 64.34
20 18.86 11.64 0.00 — 10.83 9.87 4.53 36.47 40.42 2.18 — 42.81 36.67 62.91
25 18.88 10.26 0.00 — 8.50 7.72 1.38 34.58 35.38 0.41 — 32.68 29.35 41.76

Table 2.3: Heuristic relative error (among all and only non-optimally solved instances).

more time than BONMIN, with no clear difference in quality of solutions. Lastly, LGO-∞

took significantly more time than any other heuristic, and still found the optimal solution

significantly less often than the ranking heuristics (91–97%). In Table 2.3 we list the error

for all heuristics, both across all instances and only across the instances in which the heuris-

tic was not able to find the optimal solution. The latter errors are sometimes substantial,

but for the most successful heuristic the frequency of such errors is extremely small.

In Figure 2.2 and Table 2.4 we analyze a more comprehensive set of results for n = 15

and a = 6. In Figure 2.2 we show the empirical pdf of the relative error in the solution
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Figure 2.2: Comparison of performance of heuristics and BONMIN.

% of optimal solutions found
KKT ranking BONMIN LGO

Class # 1 ∞ 1 ∞ 1 ∞
1 0.30 4.20 99.85 99.85 4.95 13.49 23.99
2 0.91 11.78 99.70 99.85 14.05 29.00 60.57
3 3.75 25.94 99.25 100 27.74 43.18 87.41
4 15.14 40.48 99.10 99.85 42.88 60.57 98.20
5 29.84 58.92 99.40 100 62.97 70.16 99.55
6 48.43 71.51 99.10 100 74.06 72.26 100
7 62.82 79.76 99.10 100 83.66 76.91 100
8 69.12 85.91 98.65 100 92.80 80.81 100
9 71.51 88.16 98.50 99.85 97.30 83.21 100

10 66.87 91.15 98.05 99.85 98.65 86.36 100
11 59.22 90.55 98.80 100 97.90 90.40 100
12 46.78 87.41 96.85 100 98.20 90.70 100
13 51.12 91.90 98.95 100 97.90 94.30 100
14 58.92 96.25 99.70 100 99.10 98.05 100
15 69.42 97.75 100 100 99.70 98.80 100

Table 2.4: Success rate for n = 15, a = 6 as a function of
∑n

i=1 zi.
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time (10−3 sec) optimum found (%)
KKT ranking Solvers KKT ranking Solvers

# starts 1 ∞ 1 ∞ BONMIN LGO-1 1 ∞ 1 ∞ BONMIN LGO-1
1 0.04 0.09 0.32 0.70 17.28 30.03 43.80 68.44 98.90 99.96 72.93 72.59
2 0.09 0.17 0.65 1.43 34.54 60.09 55.48 72.54 99.63 99.98 73.60 80.67
5 0.22 0.43 1.61 3.62 86.24 150.01 67.64 77.85 99.90 99.99 74.39 89.57

10 0.43 0.87 3.22 7.26 172.28 299.27 74.68 81.48 99.94 100 74.94 93.69
20 0.87 1.73 6.44 14.54 343.62 597.00 79.91 84.66 99.96 100 75.54 96.32
30 1.30 2.59 9.66 21.83 514.97 894.14 82.46 86.56 99.97 100 75.99 97.39

Table 2.5: Algorithm running time and success rate for n = 15, a = 6.

error (%) in profit, all error (%) in profit, non-optimal
KKT ranking Solvers KKT ranking Solvers

# starts 1 ∞ 1 ∞ BONMIN LGO-1 1 ∞ 1 ∞ BONMIN LGO-1
1 20.35 12.90 0.09 0.04 11.83 10.55 36.22 40.88 7.77 100 43.71 38.48
2 16.97 11.95 0.04 0.02 11.66 7.97 38.11 43.51 11.10 100 44.17 41.22
5 13.88 10.42 0.02 0.01 11.46 5.14 42.88 47.02 23.03 100 44.76 49.25

10 11.95 9.32 0.01 — 11.28 3.49 47.19 50.33 20.36 — 45.02 55.38
20 10.31 8.11 0.01 — 11.13 2.21 51.33 52.86 24.28 — 45.50 60.10
30 9.30 7.33 0.01 — 11.00 1.69 52.99 54.52 32.36 — 45.80 64.73

Table 2.6: Average relative error per instance for n = 15 and a = 6.

given by each algorithm. Table 2.4 shows how the various algorithms perform as a function

of the number of markets selected in the optimal solution. We see that both the KKT

heuristics as well as all of the publicly available solvers perform significantly worse when

few markets are selected in the optimal solution, while the ranking heuristics perform very

well regardless of the nature of the optimal solution.

In Tables 2.5 and 2.6 the performance of the algorithms is compared for n = 15 and

a = 6 when multiple randomly generated initial vectors are used. In these tables we do

not consider the LGO-∞ algorithm since it includes a global search phase as part of the

algorithm. We used a nested structure to generate these instances. The results show that

using multiple random starting vectors can be an effective way to improve the performance

of the heuristics. In addition, we observe that using LGO-1 with multiple random starting

solutions is more effective than the global search option for our problem.

Table 2.7 compares the performance of the ranking-∞ algorithm and the multistart

BONMIN and 1-LGO algorithms on large problem instances (since the acceptance/rejection

method described in remark (ii) in Section 4.1 we slightly modified the model for generat-
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ing problem instances by choosing Fi = F ∈ U(0, a) for i = 1, . . . , n.). In this case, we

use the solution of the 50-start ranking-∞ algorithm to approximate the optimal solution

and solve a total of 100 instances for each problem dimension (in no case did the publicly

available solvers identify a solution better than the 50-start ranking-∞ algorithm). As can

be seen, the time required to get good solutions with the ranking-∞ algorithm continues to

perform very well. In addition, the solution times for the commercial solvers begin to be

quite significant. Note also that the solution time required by both our heuristics and the

publicly available solvers appear to be relatively insensitive to the value of a. Therefore,

the results in Table 2.7 are expected to hold for a wide range of a values.

time (s) approximate optimum found (%)
n a # of starts ranking-∞ BONMIN LGO-1 ranking-∞ BONMIN LGO-1
25 4 1 0.001 0.026 0.071 100 78 79

25 0.020 0.649 1.760 100 82 96
50 0.039 1.294 3.537 100 82 97

8 1 0.001 0.025 0.073 100 85 83
25 0.025 0.629 1.769 100 87 99
50 0.051 1.258 3.522 100 88 99

50 4 1 0.001 0.059 0.239 100 83 80
25 0.036 1.542 5.987 100 84 96
50 0.072 3.171 11.957 100 84 98

8 1 0.002 0.068 0.241 100 95 87
25 0.047 1.676 6.014 100 95 100
50 0.095 3.397 12.067 100 95 100

100 4 1 0.003 0.419 0.891 100 94 93
25 0.072 9.126 22.261 100 95 100
50 0.145 18.515 44.421 100 95 100

8 1 0.004 0.294 0.916 100 98 93
25 0.093 6.392 22.915 100 98 100
50 0.186 12.870 45.736 100 98 100

150 4 1 0.004 0.893 1.976 100 97 91
25 0.114 22.127 49.685 100 98 100
50 0.227 42.651 99.423 100 98 100

8 1 0.006 0.851 2.066 100 96 91
25 0.145 24.348 50.925 100 98 100
50 0.289 49.154 101.617 100 98 100

200 4 1 0.006 1.682 3.612 100 96 94
25 0.157 45.268 90.015 100 99 100
50 0.314 92.276 179.830 100 99 100

8 1 0.008 1.863 3.669 100 96 95
25 0.200 44.826 90.534 100 98 100
50 0.399 88.193 181.232 100 98 100

Table 2.7: Results for large problem instances.
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Finally, Figure 2.3 compares the computation times of the heuristics, the exact algo-

rithm, and complete enumeration as a function of n for a = 6. It clearly follows that

our heuristics significantly outperform the publicly available solvers as well as exact ap-

proaches.
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Figure 2.3: Running time as a function of m for a = 6.

2.5 Concluding remarks

In this chapter we have developed tools to solve a class of selective newsvendor problems

with independent and normally distributed demands. These results can be used to solve

certain multi-product, multi-period, or other selection problems. We have shown that some

problems in our class can be solved efficiently and exactly using the sorting algorithm by

Taaffe et al. [15]. In addition, we have developed an exact algorithm which is efficient in

the number of items as well as a class of heuristics. We compared the effectiveness of,

in particular, our heuristics with publicly available solvers, demonstrating that a particular

variant of our heuristic represents a significant improvement over using other solvers, both

in terms of computation time and solution quality. One of the key limitations of our current
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research is that we can only handle independent and normally distributed demands, and

this issue will be addressed in Chapter 3. In addition, we hope that some future work may

be able to address the limitation that in the multi-period interpretation of our model we do

not allow for nonzero and finite inventory carryover and backlogging costs or changes to

the market selection over time.
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CHAPTER 3

Approximation Algorithms for Stochastic

Selection Problems

3.1 Introduction

In Chapter 2 we considered a generalization of the original selective newsvendor problem

(see Taaffe et al. [15]) to a class which included the multi-period market selection problem

as long as the demands in each market were independent and normally distributed. In

this chapter we stick with the single-period setting, but allow the demand vector to come

from a nonnegative joint distribution, including dependence between market demands. The

model presented in this chapter is in fact much more general than the SNP. Our class of

2-stage stochastic selection problems includes both a (binary) selection vector as well as

other associated (continuous) decisions. The objective function includes rewards based on

the subset chosen and costs based on all decisions. Both the rewards and the costs may

be stochastic, and so we consider a risk-based objective function. We assume the cost

function is convex, and also that the objective function has certain scalability properties.

This class of problems is in general hard to solve in part because of the integer selection

choices as well as the stochasticity. Because of these challenges, we combine a rounding

approach and sample average approximation to efficiently find high-quality solutions with

high probability.

In our problem, we study general stochastic distributions where even computing the
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objective value for a decision vector may be computationally intensive. Even if this is

not the case, our general class of problems is NP-hard: Chen and Zhang [36] show that

testing membership of the core for the newsvendor game isNP-hard, and this problem can

be shown to be equivalent to solving an instance of the single-period, which is a special case

of our model, to optimality. Because of the difficulties inherent in our class of problems,

we seek to develop efficiently implementable approximation algorithms. In the spirit of

[13] we consider algorithms that are based on the idea of rounding the solution to the

continuous relaxation of the problem. However, even the continuous relaxation is often

difficult to solve, leading to a final approximation algorithm that uses a combination of

sample average approximation (SAA) and rounding. Using these techniques, we are able

to develop several classes of approximation algorithms with explicit (albeit probabilistic)

performance guarantees.

To use the approach we present here, the optimization problem must have a few key

features:

• A reward-cost selection structure such that (binary) selected options provide a reward

and the decision vector results in stochastic costs.

• Scalability of the objective function so that a continuous decision vector can be

rounded to a feasible binary selection. The other decisions may need to be care-

fully chosen in order to ensure the overall cost is “not too bad” by comparison to the

cost of the continuous decision.

• Complete recourse for the second-stage problem.

These features allow our rounding algorithm combined with SAA to behave well and pro-

duce decision vectors that, with high probability, result in high-quality solutions to the

optimization problem. However, some of these assumptions could be relaxed if we were

not concerned with providing a performance guarantee.
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Our model has a few key features which distinguish it from most of the literature on

similar problems. In contrast with earlier related models, our setting allows for state-based

dependence among the random variables. We also assumes a rather general cost structure

which encompasses a variety of applications in supply chain and other areas. In addition,

many supply chain and resource allocation optimization problems under uncertainty use an

expected value based objective function. However, we can accommodate a very general

class of risk-based objectives (where an expected value objective is a special case).

The major contributions of this chapter are primarily methodological as we develop ap-

proximation algorithms which combine rounding and SAA to provide explicit performance

guarantees. We also provide a framework which identifies which features of the objective

function allow our approximation algorithms to be effective. Our key results include the

development of three classes of approximation algorithms, each with three variants. Specif-

ically, we develop algorithms which solve the selection problem either by simply solving

the linear relaxation and rounding (possibly in a strategic way), or by directly solving the

integer problem using SAA. Using these algorithms we can then choose the other decision

variables at the same time as the selection, using a second instance of the SAA problem,

or by using true information. We provide performance guarantees for each algorithm, and

also empirically demonstrate their performance for a supply chain example.

Past work considers several approaches to modeling and solving deterministic market

selection problems. Geunes et al. [35] and Geunes et al. [11] consider a market selection

version of the economic order quantity problem and capacitated extensions thereof. Van

den Heuvel et al. [12] study a market selection problem with economic lot-sizing costs.

They show that the problem is NP-hard and, in addition, that a profit-maximization for-

mulation of the problem cannot efficiently be approximated to within a constant factor.

They also study polynomially solvable special cases and propose heuristics. Geunes et

al. [13] consider a class of deterministic selection problems that contains the market se-

lection problem with lot-sizing costs as a special case, and derive conditions under which
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a polynomial-time constant-factor approximation algorithm exists for a cost-minimization

version of the problem. An alternative generalization of deterministic market selection

problems is presented in [39]. In that work, the authors consider a multi-echelon market

selection problem with inventory held at both the distribution center (DC) level, as well as

at the retailers. They then develop an efficient solution approach for their profit-maximizing

problem.

Market selection problems with stochastic demand have mostly focused on settings with

newsvendor-type costs, independent and normally distributed market demands, and linear

revenue functions. Our model builds on previous work in the area of market selection in

general, and the abovementioned SNP in particular. Taaffe et al. [15] introduced the SNP,

and other variants and extensions were studied by Carr and Lovejoy [14] and Taaffe et al.

[34], and in Chapter 2 of this thesis. Alptekinoğlu and Tang [40] also considered normally

distributed demands and studied how demand in a collection of markets could be met using

multiple channels. Finally, Lin and Ng [41] consider a more general demand distribution

from a bounded interval, and then consider a minimax regret objective.

The remainder of this chapter is organized as follows. Section 3.2 provides our problem

framework and key assumptions, as well as examples of cost functions and risk measures

we consider. In Section 3.3 we present our core approximation result using a rounding

scheme for a class of problems, and show that two supply-chain examples fall into that

problem class. We then introduce using sample average approximation in Section 3.4,

and provide bounds on the number of samples needed. In Section 3.5 we provide our

computational experiments, and demonstrate excellent performance of our approximation

algorithms for our problem. Finally, in Section 3.6 we conclude.
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3.2 General framework and preliminaries

3.2.1 Problem formulation and assumptions

Consider a stochastic selection problem with m choices. Here we repeat the use of z as

a selection decision vector where z ∈ {0, 1}m and zi = 1 (zi = 0) means that choice

i is (not) selected (i = 1, . . . ,m). Similarly, we generalize the procurement decisions

Q from Chapter 2 to a continuous η-dimensional decision vector y ∈ Y ⊆ Rη which

includes any continuous decisions related to the selection. Then denote the real-valued

total (random) cost associated with decisions (z, y) by Γ(z, y;R,F,D), where R and F

are the random reward and fixed costs similar to the deterministic R and F in Chapter

2 and D remains the random demands (or, more generally, requirements). The random

vector (R,F,D) is assumed to have a joint probability distribution on R3m, and the random

cost variable Γ(·) is viewed as an element of a linear space X of measurable functions,

defined on an appropriate sample space. We assume that Γ(z, y;R,F,D) is defined for

continuous “selection” vectors z ∈ [0, 1]m, although we are ultimately only interested in

binary selection vectors. Finally, we let ρ denote a risk measure that assigns a real value to

a random cost variable, and consider the following class of selection problems:

minimize
z∈{0,1}m,y∈Y

Ψ(z, y) ≡ ρ [Γ (z, y;R,F,D)] . (P)

Denote the continuous relaxation of (P) (obtained by relaxing the binary constraints to

z ∈ [0, 1]m) by (R). We next provide our main assumptions on the problem inputs. Note,

however, that some of our results hold under weaker assumptions, and we will specify that

where appropriate.

First, we assume that the risk measure ρ is coherent (see, e.g., [42]):

Assumption 3.2.1. Coherence of ρ

(i) Convexity: If X1, X2 ∈ X and α ∈ [0, 1] then ρ[αX1 + (1−α)X2] ≤ αρ[X1] + (1−
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α)ρ[X2].

(ii) Monotonicity: If X1, X2 ∈ X and X2 � X1 then ρ[X2] ≥ ρ[X1].

(iii) Translation Equivariance: If X ∈ X and a ∈ R then ρ[X + a] = ρ[X] + a.

(iv) Positive Homogeneity: If X ∈ X and λ > 0 then ρ[λX] = λρ[X].

Here X2 � X1 means that a realization of X1 is no larger than the realization of X2

corresponding to the same outcome of the underlying random experiment; i.e., in our case

for the same realization r, f, d of rewards, fixed selection costs, and demands. Next, we

impose some regularity assumptions on the random rewards, costs, and demands:

Assumption 3.2.2. Regularity of distributions

(i) (R,F,D) has a nonnegative support.

(ii) The variance-covariance matrix of (R,F,D) has finite elements.

Finally, we make some convexity and attainment assumptions:

Assumption 3.2.3. Convexity and attainment

(i) Y is a convex cone.

(ii) For all r, f, d ∈ Rm
+ , Γ(·, ·; r, f, d) is convex on [0, 1]m × Y .

(iii) The optimal solution value to problem (R) is finite and it is attained.

For convenience, we define the function

Ψ∗(z) = min
y∈Y

Ψ(z, y) for z ∈ [0, 1]m

as well as the scalars

Ψ∗ = min
z∈{0,1}m

Ψ∗(z) = min
z∈{0,1}m,y∈Y

Ψ(z, y)
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Ψ
¯

= min
z∈[0,1]m

Ψ∗(z) = min
z∈[0,1]m,y∈Y

Ψ(z, y)

(where Assumption 3.2.3 is sufficient to ensure that all minima are indeed attained).

3.2.2 Examples: Cost functions

In this section we will describe two illustrative examples of cost functions Γ. We will use

these examples throughout the chapter to show how the general results can be applied. The

first example generalizes the basic SNP, where the supplier faces the aggregate demands

from the selected markets, while the second is a two-stage problem where market order

quantities are determined early but transshipments can be employed after realization of

demands to redistribute inventories.

3.2.2.1 Example 1: Aggregate newsvendor costs

Suppose that a decision maker faces aggregate newsvendor costs given a collection of can-

didate market demands to serve. The function Γ then consists of two parts; the first part

represents lost revenues in the markets that are not selected while the second part represents

procurement and newsvendor costs. Note that the problem can be formulated in profit max-

imization form as we did in Chapter 2. However, motivated by the negative result that the

optimal profit in the deterministic market selection problem with economic lot-sizing costs

cannot be efficiently approximated (see [12]) we choose a cost minimization formulation

(see also [13]) that, as we will see, does lend itself to the development of approximation

algorithms.

Recall that c, v, and e are the unit procurement cost, salvage value, and expediting cost,

and let y be the aggregate order quantity (with y ∈ Y = R+ so that η = 1). Then define

Γ (z, y;R,F,D) = Γ1 (z;R) + Γ2 (z, y;F,D)
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where Γ1 (z;R) = R>(1 − z) and Γ2 (z, y;F,D) = F>z + cy + e
(
D>z − y

)+ −

v
(
y −D>z

)+. We assume that 0 < v < c < e, which ensures convexity of Γ, exis-

tence of an optimal solution to (P), and monotonicity of Γ2 in z (which will prove useful

later on).

3.2.2.2 Example 2: Market newsvendor costs with transshipment recourse

Now suppose that a decision maker faces newsvendor costs in each (selected) market. An

order quantity needs to be determined for each selected market before demand realizes,

but transshipment between the markets can be used to reallocate goods. The function Γ

again consists of two parts; the first part represents lost revenues in the markets that are

not selected while the second part represents procurement, newsvendor, and transshipment

costs.

As before we let ci, vi, and ei be unit procurement cost, salvage value, and expediting

cost in market i and sij the unit transportation cost between market i and j after demand

is realized (i, j = 1, . . . ,m). In the first stage of the problem we select the markets to

serve as well as the order quantity for each of the markets. We denote the latter by y =

(y1, . . . , ym)> (so that η = m) and let Y = Rm
+ . We then define

Γ (z, y;R,F,D) = Γ1 (z;R) + Γ2 (z, y;F,D)

where Γ1 (z;R) = R>(1 − z) and Γ2 (z, y;F,D) = F>z + c>y + g(z, y;D), with

c = (c1, . . . , cm)> and g(z, y; d) denoting the optimal solution value to the following opti-

mization problem:

min
m∑

i=1

m∑

j=1

sijxij +
m∑

i=1

ei (dizi − xi0)+ −
m∑

i=1

vi (xi0 − dizi)+
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subject to

xi0 +
m∑

j=1

xij = yi +
m∑

j=1

xji i = 0, 1, . . . ,m

xij ≥ 0 i, j = 0, 1, , . . . ,m.

Here xij (i, j = 1, 2, . . . ,m) are the (recourse) transshipment quantities between the mar-

kets and xi0 (i = 1, . . . ,m) are the quantities used to satisfy market demands. These

decisions are made in the second stage after demands have been realized. We assume that

0 < vi < minj=1,...,m(cj + sji) < ei (for i = 1, . . . ,m). This ensures convexity, ex-

istence of an optimal solution to (P), and monotonicity of Γ2 in z. Moreover, it is easy

to see that g is homogeneous in (z, y), i.e., for any positive constant λ > 0 we have

g(λz, λy; d) = λg(z, y; d) for all d > 0. All of these properties will prove useful later

on. Finally, note that this model could allow for transshipment through an unselected mar-

ket. The reasonable condition that sij > cj − ci (for i, j = 1, . . . ,m) prevents this from

happening.

3.2.3 Examples: Risk measures

3.2.3.1 A class of optimization-based coherent risk measures

A coherent risk measure that has gained a significant amount of attention is Conditional

Value-at-Risk (CVaR) (see, e.g., [43, 44, 45]). This measure is given by:

ρ[X] = inf
θ∈Θ

E

[
θ +

1

1− α(X − θ)+

]

for some α ∈ [0, 1) (e.g., α = 0.05) and Θ = R. Later in this chapter we will consider risk

measures of the following general form:

ρ[X] = inf
θ∈Θ

E [G(X; θ)]
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where G is some real-valued function parameterized by θ. This choice is motivated by a

desire to, on the one hand, consider a wide class of risk measures that includes CVaR while,

on the other hand, allowing for an efficiently implementable approximation algorithm. The

following lemma characterizes conditions on G under which ρ is a coherent risk measure:

Lemma 3.2.4. Suppose that Θ is a linear space and G : R×Θ→ R is

(i) convex in (x; θ);

(ii) monotonely nondecreasing in x;

(iii) translation invariant, i.e., G(x+ a; θ + a1) = G(x; θ) + a for all a ∈ R, where 1 is

the vector of all ones; and

(iv) positively homogeneous, i.e., G(λx;λθ) = λG(x; θ) for all λ > 0.

Then the risk measure ρ is coherent, i.e., it satisfies Assumption 3.2.1 (coherence).

Proof. See Appendix A.1.

This definition includes CVaR as a special case, but is a more general class of (still

coherent) risk measures.

3.2.3.2 A class of utility-function–based risk measures

A second class of risk measures that we would like to mention explicitly is the certainty

equivalent of a random cost with respect to a utility function u : R+ → R:

ρ[X] = u−1 (E [u(X)]) .

The following lemma characterizes conditions on u under which ρ satisfies at least three of

the four conditions to be a coherent risk measure:

Lemma 3.2.5. Suppose that u is four times continuously differentiable and
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(i) u(x), u′(x), u′′(x) > 0 for all x > 0

(ii) either u′(x)/u′′(x) is concave in x or u′(x)u′′′(x)/u′′(x)2 is increasing in x for x >

0;

(iii) u is positively homogeneous of order k ≥ 1, i.e., u(λx) = λku(x) for all λ > 0 and

x > 0.

Then the risk measure ρ satisfies parts (i)–(ii) and (iv) of Assumption 3.2.1 (coherence).

Proof. [46] show that conditions (i) and (ii) in the lemma imply that ρ is convex, so that the

part (i) of Assumption 3.2.1 (coherence) is satisfied. Also, parts (ii) and (iv) of Assumption

3.2.1 (coherence) follow immediately from the fact that u is increasing (since u′ > 0) and

condition (iii) in the lemma.

Although this class of risk measures is not coherent, most of the results derived in this

chapter will still apply. Note also that if we would simply let ρ[X] = E [u(X)] then,

under the conditions in Lemma 3.2.5, parts (i)–(ii) of Assumption 3.2.1 (coherence) are

still satisfied, as well as a relaxation of part (iv) of that assumption to positive homogeneity

of order k; this is also sufficient for most of the results derived in this chapter to apply, with

minor modifications.

3.2.4 Convexity of (R)

The following lemma provides conditions on Y , Γ, and ρ that guarantee that (R) is a convex

optimization problem.

Lemma 3.2.6. Suppose that parts (i)–(ii) of Assumption 3.2.1 (coherence) and Assumption

3.2.3 (convexity and attainment) hold. Then the function Ψ is convex on [0, 1]m × Y .

Proof. Let z, z′ ∈ [0, 1]m, y, y′ ∈ Y , and λ ∈ [0, 1]. Then

Ψ (λz + (1− λ)z′, λy + (1− λ)y′) = ρ [Γ (λz + (1− λ)z′, λy + (1− λ)y′;R,F,D)]
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≤ ρ [λΓ(z, y;R,F,D) + (1− λ)Γ(z′, y′;R,F,D)]

(by convexity of Γ and monotonicity of ρ)

≤ λρ [Γ(z, y;R,F,D)] + (1− λ)ρ [Γ(z′, y′;R,F,D)]

(by convexity of ρ)

= λΨ(z, y) + (1− λ)Ψ(z′, y′)

which yields the desired result.

We see from this lemma that R is a convex optimization problem as long as a modest

set of assumptions hold. Note that convexity of (R) does not necessarily mean that the

problem is efficiently solvable. Computing the objective function will often be very com-

putationally intensive or impossible because of randomness and the risk measure, even if

the demand distributions are explicitly known. In Section 3.3 we will first propose approx-

imation algorithms that do rely on the optimal solution to (R). In Section 3.4 we will then

modify the approaches to allow for solving (R) approximately.

3.3 Core approximation approach

In this section we present our core approximation result. The approximation algorithm that

we will develop is based on (i) solving the continuous optimization problem (R), and (ii)

rounding the solution to obtain a feasible solution to (P). In particular, we use the following
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rounding operator that generalizes ordinary rounding to the nearest integer:

[zi]β =





1 if zi ≥ 1− β

0 otherwise

where z ∈ [0, 1]m and [z]β = ([z1]β, . . . , [zm]β)> for β ∈ [0, 1]. For convenience, let

b = 1/min(β, 1− β). Now assume that the function Γ satisfies the following

Assumption 3.3.1. Scalability:

For all z ∈ [0, 1]m and y ∈ Y ,

Γ

(
[z]β,

1

1− β y;R,F,D

)
� bΓ (z, y;R,F,D) .

This assumption is key to the results in this chapter. In particular, if Γ satisfies Assump-

tion 3.3.1, a rounded decision vector will not be “too much” more costly than the original

continuous vector. Intuitively, this scaling is present in many kinds of problems where there

is a linear benefit to selections (revenue in a market selection is one example, but we could

also consider tax breaks for capital investments), and has linear cost when failing to satisfy

demands (or in general terms, requirements).

3.3.1 Approximation results

Our first result is that, under Assumption 3.3.1 (scalability), any feasible solution to (R)

can be rounded and scaled to a feasible solution to (P) so that the cost of the latter is within

a factor b of the cost of the former. This is formalized in the following lemma.

Lemma 3.3.2. Suppose that ρ satisfies parts (i)–(ii) and (iv) of Assumption 3.2.1 (coher-

ence) and Γ satisfies Assumption 3.3.1 (scalability). Let (ẑ, ŷ) be a feasible solution to (R).

Then

Ψ

(
[ẑ]β,

1

1− β ŷ
)
≤ bΨ(ẑ, ŷ)
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i.e., ([ẑ]β,
1

1−β ŷ) is a feasible solution to (P) with cost no more than b times that of (ẑ, ŷ).

Proof. Since Y is a cone we know that 1
1−β ŷ ∈ Y so that Ψ

(
[ẑ]β,

1
1−β ŷ

)
is well-defined.

Then Assumption 3.3.1 (scalability) implies that

Ψ

(
[ẑ]β,

1

1− β ŷ
)

= ρ

[
Γ

(
[ẑ]β,

1

1− β ŷ;R,F,D

)]

≤ ρ [bΓ (ẑ, ŷ;R,F,D)]

(by the monotonicity property of ρ)

= bρ [Γ (ẑ, ŷ;R,F,D)]

(by the positive homogeneity property of ρ)

= bΨ(ẑ, ŷ)

which is the desired result.

The previous lemma demonstrates the implementation of scaling and how to choose an

appropriate y for the rounded selection decision. As the following theorem formalizes, this

result can be further used to obtain a feasible solution to (P) with cost no more than b times

that of the overall optimal solution if we let (z̄, ȳ) be an optimal solution to (R).

Theorem 3.3.3. Suppose that ρ satisfies parts (i)–(ii) and (iv) of Assumption 3.2.1 (coher-

ence) and Γ satisfies Assumption 3.3.1 (scalability). Let (z̄, ȳ) be an optimal solution to

(R). Then

Ψ∗([z̄]β) ≤ Ψ

(
[z̄]β,

1

1− β ȳ
)
≤ bΨ∗.

Proof. The first inequality follows easily since 1
1−β ȳ ∈ Y , but it is not necessarily optimal

given the selection vector [z̄]β . The second inequality follows from the result of Lemma
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3.3.2:

Ψ

(
[z̄]β,

1

1− β ȳ
)
≤ bΨ(z̄, ȳ) = bΨ

¯
≤ bΨ∗.

This theorem in fact provides two feasible solutions to (P), each of which has cost no more

than b times the optimal cost: ([z̄]β,
1

1−β ȳ) and ([z̄]β, ȳ
∗), where ȳ∗ is the optimal value of

y corresponding to the selection vector [z̄]β . In other words, Theorem 3.3.3 can be viewed

as implicitly providing two b-approximation algorithms for (P). Choosing β = 1
2

yields

the smallest value of b = 2 so that we have 2-approximation algorithms for (P). In case Γ

separates into a Γ1-term that represents deterministic rewards equal to r̄>(1− z) for some

constant vector r̄ and a Γ2-term that only depends on fixed costs and demands and satisfies

assumption (ii) in the following theorem (which is somewhat stronger than Assumption

3.3.1), we can improve this approximation result. Corollary 3.3.5 provides the improved

result.

Theorem 3.3.4. Suppose that

(i) Γ1(z;R) = r̄>(1− z) for all z ∈ [0, 1]m;

(ii) Γ2 satisfies

Γ2

(
[z]β,

1

1− β y;F,D

)
� 1

1− βΓ2 (z, y;F,D) ;

(iii) ρ satisfies Assumption 3.2.1 (coherence).

Let (ẑ, ŷ) be a feasible solution to (R). If β is a random variable uniformly distributed on

[0, δ] with 0 < δ ≤ 1 then

Eβ

[
Ψ

(
[ẑ]β,

1

1− β
ŷ

)]
≤ 1

δ
max

{
1, ln

(
1

1− δ

)}
Ψ(ẑ, ŷ)
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i.e., the expected solution value of the random solution
(

[ẑ]β,
1

1−β ŷ
)

is no larger than

1
δ

max
{

1, ln
(

1
1−δ

)}
times that of (ẑ, ŷ).

Proof. See Appendix A.2.

Now min0<δ≤1
1
δ

max
{

1, ln
(

1
1−δ

)}
= (1− e−1)

−1 and 1− e−1 is the corresponding opti-

mal value of δ. The following corollary then says that we can obtain a feasible solution to

(P) with cost no more than (1− e−1)
−1 times that of the overall optimal solution if we let

(z̄, ȳ) be an optimal solution to (R). This improves the result of Theorem 3.3.3.

Corollary 3.3.5. Let the assumptions of Theorem 3.3.4 be satisfied, let (z̄, ȳ) be an optimal

solution to (R), and let

Z̄ = {[z̄]β : β ∈ [0, 1)} .

Then when β is uniformly distributed on [0, 1− e−1] we have that

min
z∈Z̄

Ψ∗(z) ≤ Eβ

[
Ψ

(
[z̄]β,

1

1− β
ȳ

)]
≤ 1

1− e−1
Ψ(z̄, ȳ) =

1

1− e−1
Ψ
¯
≤ 1

1− e−1
Ψ∗.

Proof. The first inequality follows by the definition of Z̄ and the fact that there always

exists a realization of a random variable with value no more than the expected value of the

random variable. The second inequality follows from the result of Theorem 3.3.4, and the

remaining steps are straightforward.

Note that when Γ1(z;R) = R>(1 − z) and ρ = E, Assumption (i) in Theorem 3.3.4 is

immediately satisfied with r̄ = E[R].

Remark 3.3.6. Corollary 3.3.5 enumerates each rounding cutoff β that leads to a distinct

selection decision and chooses the best one. This is an improvement over Theorem 3.3.3

which, while defined for any β, is optimized by choosing β = 1/2 and results in a 2-

approximation.
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3.3.2 Examples revisited

In this section we show that the assumptions we have made on Γ in Section 3.3.1 are

satisfied for the two examples we introduced in Section 3.2.2. Some properties associated

with the rounding operator will be very useful. In particular it is easy to show that, for all

zi ∈ [0, 1] and β ∈ (0, 1),

[zi]β ≤
1

1− β zi (3.1)

and

1− [zi]β ≤
1

β
(1− zi). (3.2)

The following lemmas show that, for Examples 1 and 2 in Sections 3.2.2.1 and 3.2.2.2, Γ

satisfies Assumption 3.3.1 so that the approximation results apply.

Lemma 3.3.7. Suppose Γ is as in Example 1 (Section 3.2.2.1). Then Assumption 3.3.1 is

satisfied.

Proof. Recall that Γ (z, y;R,F,D) = Γ1 (z;R) + Γ2 (z, y;F,D) with Γ1 and Γ2 as in

Section 3.2.2.1. We will therefore study the two components of Γ separately. First,

Γ1 ([z]β;R) = R> (1− [z]β) � 1

β
R> (1− z) =

1

β
Γ1 (z;R)

where the inequality � follows from inequality (??) and the nonnegativity of R. Next,

Γ2

(
[z]β,

1

1− β y;F,D

)

= F>[z]β +
1

1− β cy + e

(
D>[z]β −

1

1− β y
)+

− v
(

1

1− β y −D>[z]β

)+

� 1

1− βF
>z +

1

1− β cy + e

(
1

1− βD
>z − 1

1− β y
)+

− v
(

1

1− β y −
1

1− βD
>z

)+
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(by inequality (3.1), and the facts that F has nonnegative support and v, e are nonnegative)

=
1

1− βF
>z +

1

1− β cy +
1

1− β e
(
D>z − y

)+ − 1

1− β v
(
y −D>z

)+

=
1

1− βΓ2 (z, y;F,D) .

Combining these two inequalities yields the desired result.

Lemma 3.3.8. Suppose Γ is as in Example 2 (Section 3.2.2.2). Then Assumption 3.3.1 is

satisfied.

Proof. Since Γ1 is of the same form as in Example 1, it immediately follows that Γ1 ([z]β;R) �
1
β
Γ1 (z;R). Next,

Γ2

(
[z]β,

1

1− β y;F,D

)
= F>[z]β +

m∑

i=1

ci
1

1− β yi + g

(
[z]β,

1

1− β y;D

)

� 1

1− βF
>z +

1

1− β
m∑

i=1

ciyi + g

(
1

1− β z,
1

1− β y;D

)

(by inequality (3.1), nonnegativity of F, and monotonicity of g in z)

=
1

1− βF
>z +

1

1− β
m∑

i=1

ciyi +
1

1− β g (z, y;D)

(since g is homogeneous in (z, y))

=
1

1− βΓ2 (z, y;F,D) .

Combining the two inequalities yields the desired result.
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3.3.3 Towards efficiently implementable approximation algorithms

These results may, in some situations, yield an efficiently implementable b-approximation

algorithm for (P). For example, if the support of (R,D) is finite, Γ is a newsvendor-type

cost function, and ρ is a convex combination of expectation and Conditional Value-at-

Risk, the relaxation (R) reduces to a linear program. However, in general (R) will not be

a linear program or the cardinality of the support of (R,D) makes (R) intractable. We

will therefore resort to the use of sample average approximation (SAA), a technique often

used for solving stochastic programming problems (see, e.g., [47, 48, 49]). We will show

that this approach can be employed to develop efficiently implementable algorithms that,

with high probability, can find a feasible solution to (P) bounded by an affine function of

the optimal cost for a large class of selection problems with risk measure ρ as in Section

3.2.3.2 and convex Ψ as in Section 3.2.4.

3.4 Sampling-based approximation approach

In the previous section we presented a collection of algorithms for solving (P). In this

section, we introduce using sample average approximation as a method to approximately

solve (P) when even the relaxation (R) is intractible. SAA is particularly effective if the

second stage problem has complete recourse (i.e., for every set of first-stage decisions, it

is possible to find a feasible solution to the second stage problem), as is the case when

retailers face newsvendor-type costs with a reasonable shortage cost ei.

3.4.1 Approximation algorithms

As mentioned in Section 3.3.3, the approximation approach developed thus far is prac-

tical if the support of (R,F,D) is finite (and of manageably small cardinality) and the

resulting convex optimization problem (R) is tractable. However, in general the support

of (R,F,D) may be continuous and/or the cardinality of its (finite) support too large to
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handle efficiently. We will therefore consider discrete approximations (RN ,FN ,DN ) of

the random vector (R,F,D) with finite support N . We suppose that the discrete approx-

imation is sampled in an i.i.d. fashion from the underlying distribution vectors (i.e., each

sample is independent of other samples, but the individual sample may have underlying

dependencies). Then define the corresponding approximate risk function:

ΨN (z, y) ≡ ρ [Γ (z, y;RN ,FN ,DN )] ,

let (PN ) denote the approximation of (P) where Ψ is replaced by ΨN , and let (RN ) denote

its continuous relaxation. We choose the discrete approximation (RN ,FN ,DN ) to consist

of scenarios of equal probability, which results in an SAA problem.

In the remainder we will assume that problems of the form (RN ) can be solved ef-

ficiently. In particular, we will restrict ourselves to the class of expectation-based risk

measures introduced in Section 3.2.3.1. In that case, (P) can be reformulated as

minimize
z∈{0,1}m,y∈Y,θ∈Θ

E [G (Γ(z, y;R,F,D); θ)] .

Under the assumptions in Lemma 3.2.4 and Assumption 3.2.3, the continuous relaxation

(R) of (P) is a convex programming problem. For notational convenience we will, in the

remainder of this chapter, simply merge the two decision vectors y and θ into a single

vector. With a slight abuse of notation we will still refer to this new and (typically) larger

vector as y ∈ Y , so that (P) simply reads

minimize
z∈{0,1}m,y∈Y

E [G (Γ(z, y;R,F,D))]

and the corresponding SAA of (R):

minimize
z∈[0,1]m,y∈Y

1

|N |
∑

(r,f,d)∈N

G (Γ(z, y; r, f, d)) . (RN )
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In many cases, (RN ) may be reformulated into a linear program.

The remarks following Theorem 3.3.3 now suggest the following class of LP and

rounding-based approximation algorithms:

Rounding-based Approximation Algorithm (RAA)

Step 0. Select a sampleN1 and solve (RN1) to optimality, yielding a solution
(
z̄(1), ȳ(1)

)
.

Step 1. Set z equal to z(1) ≡ [z̄(1)]β .

Step 2. Set y equal to y(1) ≡ 1
1−β ȳ

(1).

Note that Step 3 could be replaced by one of the following:

Step 3′. Select a sample N2 and set y equal to ŷ(1) ≡ arg miny∈Y ΨN2

(
z(1), y

)
.

or

Step 3′′. Set y equal to y∗(1) ≡ arg miny∈Y Ψ
(
z(1), y

)
.

We will refer to these modified algorithms as R̂AA and RAA∗, respectively, where, as a

default, we will choose β = 1
2
, which optimizes the performance guarantee.

Next, Corollary 3.3.5, suggests the following extensions of these algorithms that essen-

tially perform a search over different values of β. Due to this search, there is an additional

complication involved in comparing the quality of the different candidate solutions.

Optimal Rounding-based Approximation Algorithm (ORAA)

Step 0. Select a sampleN1 and solve (RN1) to optimality, yielding a solution
(
z̄(2), ȳ(2)

)
.

Step 1. Select a sampleN2 and set β equal to β̄ ≡ arg minβ∈[0,1) ΨN2

(
[z̄(2)]β,

1
1−β ȳ

(2)
)

.

Set z equal to z(2) ≡ [z̄(2)]β̄ .

Set y equal to y(2) ≡ 1
1−β̄ ȳ

(2).

Note that Step 2 could be replaced by one of the following (where Z̄(2) = {[z̄(2)]β : β ∈

[0, 1)})):
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Step 2′. Select a sampleN2 and set (z, y) equal to
(
z(2), ŷ(2)

)
≡ arg minz∈Z̄(2),y∈Y ΨN2(z, y).

or

Step 2′′. Set (z, y) equal to
(
z(2), y∗(2)

)
≡ arg minz∈Z̄(2),y∈Y Ψ(z, y).

We will refer to these modified algorithms as ÔRAA and ORAA∗, respectively.

Finally, as an alternative to linear programming and rounding, we could apply SAA

directly to (P), yielding another class of approximation algorithms:

IP-based Approximation Algorithm (IPAA)

Step 0. Select a sampleN1 and solve (PN1) to optimality, yielding a solution
(
z(3), y(3)

)
.

Step 1. Set z equal to z(3).

Step 2. Set y equal to y(3).

Similarly to RAA, Step 3 could be replaced by one of the following:

Step 3′. Select a sample N2 and set y equal to ŷ(3) ≡ arg miny∈Y ΨN2

(
z(3), y

)
.

or

Step 3′′. Set y equal to y∗(3) ≡ arg miny∈Y Ψ
(
z(3), y

)
.

We will refer to these modified algorithms as ÎPAA and IPAA∗, respectively.

Note that RAA∗, ORAA∗, and IPAA∗ will only rarely be computationally tractable.

Moreover, it can be expected that IPAA and its variants will be much more computationally

inefficient than RAA and its variants.

3.4.2 Approximation results

In this section we will explore required sample sizes for the discussed approaches and

combine these results with those of Section 3.3 to obtain approximation algorithms with a

55



probabilistic guarantee. Since (R) has an optimal solution we can, without loss of optimal-

ity, restrict the feasible region in the optimization problem (R) to a bounded set Ȳ ⊆ Y .

Then define

• ∆ = diameter of [0, 1]m × Ȳ

• L = Lipschitz constant of the function G(Γ(z, y;R,F,D)) on [0, 1]m × Ȳ

where our assumptions imply that all of these values are finite. While it may be difficult in

general to compute these values, in Appendix A.3 we derive explicit bounds for Example

1 from Section 3.2.2.1, with ρ = E. We also note that for any fixed z ∈ [0, 1]m we may be

able to compute smaller bounds Ȳ(z),∆(z), and L(z).

3.4.2.1 Single sample

We first provide sample size results for the algorithm variants that require only a single

sample, N1.

Theorem 3.4.1. Let N1 be a sample satisfying

|N1| ≥ O(1)

(
∆L

τ1

)2 [
(m+ dim(Y)) log

(
∆L

τ1

)
+ log

(
O(1)

δ1

)]

where τ1 > 0 is an absolute cost error measure and 1− δ1 is a confidence level. Then

(i) RAA and RAA∗ yield solutions satisfying

Ψ
(
z(1), y∗(1)

)
≤ Ψ

(
z(1), y(1)

)
≤ b (Ψ∗ + τ1)

with probability at least 1− δ1;

(ii) ORAA∗ yields a solution satisfying

Ψ
(
z(2), y∗(2)

)
≤ 1

1− e−1
(Ψ∗ + τ1)
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with probability at least 1− δ1;

(iii) IPAA and IPAA∗ yield solutions satisfying

Ψ
(
z(3), y∗(3)

)
≤ Ψ

(
z(3), y(3)

)
≤ Ψ∗ + τ1

with probability at least 1− δ1.

Proof. The first inequalities in (i) and (ii) are obvious. Furthermore,

(i) Theorem 3.3.3 says that

Ψ
(
z(1), y(1)

)
= Ψ

(
[z̄(1)]β,

1

1− β ȳ
(1)

)
≤ bΨ

(
z̄(1), ȳ(1)

)
.

By Theorem 2 of [50] we have that the bound on the sample size N1 implies that

Ψ(z̄(1), ȳ(1)) ≤ Ψ
¯

+ τ1

with probability at least 1 − δ1. Finally, it is easy to see that Ψ
¯
≤ Ψ∗. Combining

these inequalities yields the first result.

(ii) This follows in a similar way from Theorem 3.3.3 and Corollary 3.3.5.

(iii) This follows immediately from Theorem 2 of [50].

3.4.2.2 Two samples

We now provide sample size results for the algorithm variants which call for two samples

N1 and N2. For our performance guarantees to hold, the two samples should be indepen-

dently generated since it is unclear how dependence may affect the quality of the decisions.
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Theorem 3.4.2. Let N2 be a sample satisfying

|N2| ≥ O(1)

(
∆L

τ2

)2 [
(dim(Y)) log

(
∆L

τ2

)
+ log

(
O(1)

δ2

)]

where τ2 > 0 is an absolute cost error measure and 1−δ2 is a confidence level. In addition,

let N1 meet the condition of Theorem 3.4.1. Then

(i) R̂AA yields a solution satisfying

Ψ
(
z(1), ŷ(1)

)
≤ b (Ψ∗ + τ1) + τ2

with probability at least (1− δ1)(1− δ2);

(ii) ORAA and ÔRAA yield solutions satisfying

Ψ
(
z(2), y(2)

)
≤ 1

1− e−1
(Ψ∗ + τ1) + τ2

and

Ψ
(
z(2), ŷ(2)

)
≤ 1

1− e−1
(Ψ∗ + τ1) + τ2

respectively with probability at least (1− δ1)(1− δ2).

(iii) ÎPAA yields a solution satisfying

Ψ
(
z(3), ŷ(3)

)
≤ Ψ∗ + τ1 + τ2

with probability at least (1− δ1)(1− δ2).

Proof. (i) (a) By Theorem 2 of [50] we have that the bound on the sample size N2

implies that

Ψ
(
z(1), ŷ(1)

)
≤ Ψ∗

(
z(1)
)

+ τ2

with probability at least 1− δ2.
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(b) Theorem 3.4.1(i) says that

Ψ∗
(
z(1)
)
≤ b(Ψ∗ + τ1)

with probability at least 1− δ1.

Combining (a)–(b) yields the desired result.

(ii) Recall the optimization problem over β that ORAA solves in Step 2 obtains the

heuristic solution
(
z(2), y(2)

)
. By Theorem 2 of [50] and a similar argument as above

we have that the provided bound on the sample sizes N1 and N2 imply that

Ψ
(
z(2), y(2)

)
≤ inf

β∈[0,1)
Ψ

(
[z̄(2)]β,

1

1− β ȳ
(2)

)
+ τ2

≤ Eβ

[
Ψ

(
[z̄(2)]β,

1

1− β
ȳ(2)

)]
+ τ2

≤ 1

1− e−1
Ψ
(
z̄(2), ȳ(2)

)
+ τ2 ≤

1

1− e−1
(Ψ∗ + τ1) + τ2

with probability at least 1− δ2.

Similarly the optimization problem over β that ÔRAA solves in Step 2 to obtain the

heuristic solution
(
z(2), ŷ(2)

)
can alternatively be formulated as

min
β∈[0,1),y∈Y

ΨN2

(
[z̄(2)]β, y

)
.

By Theorem 2 of [50] we then have that the provided bound on the sample size N2

implies that

Ψ
(
z(2), ŷ(2)

)
≤ inf

β∈[0,1)
min
y∈Y

Ψ
(
[z̄(2)]β, y

)
+ τ2 ≤ inf

β∈[0,1)
Ψ

(
[z̄(2)]β,

1

1− β ȳ
(2)

)
+ τ2

≤ 1

1− e−1
(Ψ∗ + τ1) + τ2
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with probability at least 1− δ2.

(iii) (a) By Theorem 2 of [50] we have that the bound on the sample size N2 implies

that

Ψ
(
z(3), ŷ(3)

)
≤ Ψ∗

(
z(3)
)

+ τ2

with probability at least 1− δ2.

(b) Theorem 3.4.1(iii) says that

Ψ∗
(
z(3)
)
≤ Ψ∗ + τ1

with probability at least 1− δ1.

Combining (a)–(b) yields the desired result.

3.4.2.3 Discussion

Note that, perhaps surprisingly, the approximation bound for RAA∗ is identical to that

for RAA, and the result for R̂AA is weaker than that for RAA (both in terms of bound

and level of confidence). However, it can be expected that, in general, R̂AA will perform

(much) better than RAA (and similar to the often intractable RAA∗) since y(1) is likely to

be a far worse solution to the problem with selection vector z(1) than ŷ(1) (and the latter

is likely to be comparable to y∗(1)). We also see this same pattern for the IPAA set of

algorithms, albeit without the additional factor of 2 on the performance bound relative

to the rounded solutions. It is also interesting to note that while implementing ÔRAA

requires two samples, we are able to obtain a significant performance bound improvement

by comparison to R̂AA without significantly more computational effort.

The sample size bounds in Theorems 3.4.1 and 3.4.2 show us that the complexity of

the problem grows quadratically as a function of how the diameter and Lipschitz constant
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compare to the absolute gap we allow. We also see that the confidence parameters only

appear as the denominator within a log function. Similarly the number of decision variables

only appear linearly, except as they directly affect the diameter and implicitly affect the

Lipschitz constant. In Appendix A.3 we work through explicit values of the parameters for

Example 1 and ρ = E . In Appendix A.3.1 we provide an alternative bound on |N2| by

using the work of [49]. In Appendix A.3.2 we provide both deterministic and probabilistic

bounds on the diameter ∆. We also could revise Theorem 3.4.2 to instead use ∆(z) and

L(z) instead of the global parameters, which may be significantly smaller. As an illustration

we provide both a bound on L and L(z) in Appendix A.3.3.

Depending on the O(1) term, these approximation bounds may seem to suggest that

we need very large samples in order to achieve solutions that are not practical. However,

our numerical experiments in Section 3.5 demonstrate that for our first example, the per-

formance of these algorithms can be experimentally very good along with the information

provided by the theoretical guarantees. This is consistent with the existing literature on

SAA which focuses more on how the sample size grows as a function of problem parame-

ters than computing an exact number of samples to use.

3.5 Computational results

In this section, we will study the performance of three core algorithms (RAA, ORAA,

and IPAA) by evaluating and comparing three variants of each of these algorithms (the

original one-sample version, a two-sample version, and one which uses the true distribution

information after the selection decision has been made), for solving selection problems of

the form (P). In particular, we will empirically investigate the sample sizes that are required

in practice as well as the value of using true demand information if available.
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3.5.1 Problem instances

We will consider risk-neutral and risk-averse versions of the selective newsvendor problem

(Example 1 from Section 3.2.2.1), with ρ = E and ρ = CVaR respectively. We assume

that the true (joint) demand distribution has finite support, which will allow us to compare

the solutions found by the approximations with the true optimal solutions. In particular, we

generate each problem instance by sampling a support of the joint demand distribution of

finite cardinality Ξ uniformly from
∏m

i=1[0, ui] where ui is sampled uniformly from [0, 10]

(for i = 1, . . . ,m). The true demand distribution is then taken to be the uniform distribution

on that support. We let the procurement cost, salvage value, and expediting costs be c =

0.8, v = 0.6, and e = 1. The per-unit market revenues ri are generated uniformly from

[0.8, 1] and Ri = riDi (i = 1, . . . ,m). Finally, we sample the (deterministic) fixed market

selection costs Fi uniformly from [0, 0.5] (i = 1, . . . ,m).

3.5.2 Results

In the remainder of this section we will demonstrate how the different algorithms compare

in efficiency and performance. All tests were performed on a PC with an Intel Xeon Quad

Core 3.2 GHz processor with 8 GB RAM using C++ and CPLEX version 12.5. When

needed by the algorithms, CPLEX was used to solve for (z, y), as well as a particular

y given a fixed z. We also used CPLEX to find the optimal solution to the true integer

problem (which we refer to simply as using CPLEX) For each set of problem dimensions

(characterized by m and Ξ) we generate 100 problem instances. Most of our comparisons

are based on the “percent error” observed. For a specific decision (z, y), the percent error

is defined as

100

(
Ψ(z, y)−Ψ∗

Ψ∗
− 1

)
.

62



3.5.2.1 ρ = Eρ = Eρ = E

We begin our study by considering problem instances with ρ = E (the expectation mea-

sure), m = 10, and Ξ = 1, 000. In Figure 3.1, we compare how the variants of each

algorithm perform as the sample size grows. For the two-sample variants, we use two sam-

ples of the same size, where the first is used to find the market selection, and the second

for the order quantity. We compute the percent error for each problem instance, and then

compute the mean and 95th percentile of that error for the 100 problem instances (i.e., the

average and fifth-worst observed error). We see that the IPAA variants perform very sim-

ilarly to each other, as do R̂AA and RAA∗. RAA performs considerably worse than the

other RAA variants, and does not result in better solutions as the sample size grows. As a

contrast to the other two, ORAA shows different performance for the variants. We see that

ORAA∗ has considerably better performance than ÔRAA, which itself does better than

ORAA.
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Figure 3.1: Algorithm performance by average % error for ρ = E,m = 10, and Ξ = 1, 000.

With the same data as in Figure 3.1, we see in Figure 3.2 how the one-sample algorithms

that use scaling to determine the order quantity and the two-sample algorithms that either

approximately or exactly solve for the order quantity (indicated by ̂ and ∗, respectively),

compare. In this figure, we see that the one-sample algorithms perform qualitatively dif-

ferently, with RAA performing poorly and IPAA performing well. The algorithms which
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approximately solve for the order quantity all perform about equally well. In the final com-

parison, while RAA∗ and IPAA∗ perform almost identically, ORAA∗ obtains considerably

better solutions.
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Figure 3.2: Variant performance by average % error for ρ = E, m = 10, and Ξ = 1, 000.

In these figures, in addition to the comparative performance, we also see that only rel-

atively small sample sizes are needed to obtain very small errors for our problem. This

suggests that while simple rounding is generally not sufficient to obtain high-quality solu-

tions, having knowledge of the true distribution is not necessary either. With the exception

of RAA, a sample size of 10 yields an average error of less than 5%, and a sample size of

100 yields an average error below 1%. This is encouraging since using the true demand

distribution to determine the order quantity for a fixed set of selected markets is often in-

tractable. Further, the distributions may be continuous and the cardinality of the state space

increases exponentially in m. We do see, however, that simple rounding is not competi-

tive: even with a sample size of 1,000 the average error exceeds 10%. Even when we are

able to choose the best rounding parameter, as is the case for ORAA, the performance is

considerably worse than the other successful algorithms.

If we instead consider larger problem instances with m = 100, we discover a slightly

different story. While most of the results are similar, ORAA∗ performs differently. In

Figure 3.3, we show the two plots that include ORAA∗, and note that it now performs very
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similarly to ÔRAA and the other algorithms which use the true distribution to compute the

order quantity. This suggests that when there are relatively few binary variables, choosing

the correct rounding parameter is more critical.
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Figure 3.3: Comparison of performance of ORAA∗ for ρ = E, m = 100, and Ξ = 1, 000.

In Table 3.1 we show computation times form ∈ {10, 100, 500} and Ξ ∈ {1, 000; 10, 000}.

The latter values are chosen so that we can compare the approximate solutions to the ex-

act optimal ones. However, note that typically the true distributions will be continuous

or discrete with a support that is exponential in m, so that in practice solving the exact

problem can be expected to be intractable. As observed earlier, sample sizes of 10 or 100

yield high-quality solutions to our problem, so we include computational times for those

numbers of samples. First note that CPLEX takes considerably longer than the proposed

approximation algorithms even for unrealistically small values of Ξ. More importantly,

and perhaps surprisingly, we see that the IPAA variants solve the problem almost as fast

as the RAA variants. This is likely due to the relatively simple nature of the supply chain

costs (consisting only of newsvendor costs in this example) and is not expected to extend to

more general settings. Finally, note that in this example, finding the optimal order quantity

for a given market selection vector only requires computing the e−c
e−v -fractile of demand in

selected markets. This is an easy task, and results in most versions of the approximation

algorithms taking similar time. As we will later see in the example with risk-averse ob-

jective in Section 3.5.2.2, there is a much larger difference between the efficiency of the
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algorithms when, given the market selection vector z, it is still hard to compute the optimal

y.

N = 10 N = 100

S 1,000 10,000 1,000 10,000
m 10 100 500 10 100 500 10 100 500 10 100 500
RAA 0.00 0.01 0.04 0.01 0.03 0.14 0.01 0.02 0.27 0.01 0.04 0.37
R̂AA 0.00 0.01 0.04 0.01 0.03 0.14 0.01 0.02 0.27 0.01 0.04 0.37

RAA∗ 0.00 0.01 0.05 0.01 0.04 0.17 0.01 0.02 0.28 0.01 0.05 0.40
ORAA 0.01 0.02 0.07 0.01 0.04 0.16 0.02 0.05 0.41 0.02 0.07 0.50
ÔRAA 0.02 0.03 0.11 0.02 0.07 0.30 0.02 0.08 0.69 0.03 0.12 0.86

ORAA∗ 0.02 0.06 0.31 0.12 0.53 2.86 0.03 0.10 0.69 0.14 0.70 4.46
IPAA 0.01 0.03 0.10 0.01 0.06 0.19 0.02 0.04 0.31 0.02 0.06 0.41
ÎPAA 0.01 0.03 0.10 0.01 0.06 0.19 0.02 0.04 0.31 0.02 0.06 0.41

IPAA∗ 0.01 0.03 0.10 0.01 0.07 0.23 0.02 0.04 0.32 0.02 0.07 0.45
CPLEX 0.12 0.41 3.85 6.02 10.61 51.99 0.12 0.41 3.85 6.02 10.61 51.99

Table 3.1: Time required to solve the problem with ρ = Eρ = Eρ = E in seconds.

3.5.2.2 ρ =ρ =ρ = CVaR

Our second set of numerical experiments consider a risk-based objective. In particular, we

use ρ = CVaR with θ = 0.05, i.e., we minimize the upper 5% tail average of cost. We

consider m = 10 and Ξ = 1, 000, and implement the same collection of algorithms.

Comparing Figures 3.4 and 3.5 to Figures 3.1 and 3.2 we see that the average error

for ρ = CVaR for all algorithms and for a given sample size is considerably higher than

for ρ = E. We continue to see that RAA performs very poorly, and ORAA also does not

perform as well as the versions with two-samples or exact information after 50 samples. We

also see that the algorithm variants which use information from the true problem to choose

the y vector offer a significant improvement over the other algorithms until there are a

relatively large number of samples. This observation is consistent with our understanding

of risk measures, since it requires a large number of samples to even observe one of the high

risk realizations (there is some work to address this issue, see for example [51]). The two-

sample algorithms continue to have virtually identical performance over the range we have
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studied, however, the algorithms which exactly solve for the order quantity diverge as the

number of samples increase. These results show that, for a risk averse decision maker, we

need a larger number of samples than for a risk neutral decision maker. Intuitively this can

be explained by observing that a larger number of samples will be required to accurately

estimate a tail average (CVaR) than the full population average.
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Figure 3.4: Algorithm performance by average % error for ρ = CVaR, m = 10, and
Ξ = 1, 000.
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Figure 3.5: Variant performance by average % error for ρ = CVaR, m = 10, and Ξ =
1, 000.

Finally, Table 3.2 shows the running times of the various algorithms for this more dif-

ficult class of problems. We again observe that CPLEX takes considerably longer than our

algorithms, even though the support of the true distribution is small (as in the previous ex-
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amples). Further, in this case we are not able to use a critical-fractile type solution for the

y variables. This seemingly small change makes a big difference in the efficiency of the

algorithms, and it becomes much more attractive to consider approximate methods.

N = 10 N = 100

S 1,000 10,000 1,000 10,000
m 10 100 500 10 100 500 10 100 500 10 100 500
RAA 0.00 0.01 0.07 0.01 0.05 0.27 0.01 0.04 0.60 0.01 0.08 0.79
R̂AA 0.01 0.02 0.14 0.02 0.11 0.52 0.02 0.07 1.05 0.03 0.16 1.42

RAA∗ 0.06 0.27 4.26 1.89 3.35 43.02 0.06 0.30 4.79 1.94 3.36 43.58
ORAA 0.01 0.03 0.16 0.03 0.12 0.54 0.02 0.11 1.21 0.04 0.19 1.60
ÔRAA 0.01 0.03 0.16 0.03 0.12 0.54 0.03 0.11 1.22 0.04 0.20 1.60

ORAA∗ 0.13 0.48 5.39 4.80 7.08 56.92 0.17 0.77 7.09 6.71 12.26 72.98
IPAA 0.01 0.03 0.11 0.01 0.08 0.30 0.02 0.26 1.13 0.02 0.30 1.38
ÎPAA 0.01 0.04 0.18 0.02 0.14 0.56 0.03 0.28 1.57 0.03 0.38 2.01

IPAA∗ 0.06 0.29 4.30 1.87 3.34 43.08 0.07 0.51 5.32 1.91 3.57 44.18
CPLEX 0.20 2.05 20.67 6.42 36.49 527.38 0.20 2.05 20.67 6.42 36.49 527.38

Table 3.2: Time required to solve the problem in seconds with ρ =ρ =ρ =CVaR and 5%5%5% tail

3.5.3 Discussion

In this section we have examined the performance of three variants of our three approxi-

mation approaches. Throughout our results, we see that the error decreases very rapidly in

sample size for our problem. We also see that, while RAA is an obvious poor choice and

ORAA is probably not a practical option in most cases, the remainder of the algorithms

perform about equally well on our test problems. Especially of value is that, with very

few samples and hence limited computational effort, we are able to obtain solutions that

are close to optimal. These approximation results are promising for related problems since

in practice the true distribution may be unknown or it may be impractical to exactly solve

the problem with a fixed selection vector. Finally, we see that for our problem, like other

experiences with SAA, smaller sample sizes than those dictated by the theory are sufficient

to get excellent performance.
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3.6 Concluding remarks

This chapter proposes and analyses approximation algorithms to solve a wide class of se-

lection problems with applications in supply chain management, resource allocation, and

other fields. Our approach consists of a novel combination of rounding and sampling for

which we can derive explicit performance guarantees. The approximation techniques that

we employ are able to handle a class of risk measures which includes expected value,

CVaR, and other coherent risk measures. We show empirically that our approximation al-

gorithms perform very well even for small sample sizes for an example within our problem

class. These results are encouraging since in practice the cardinality of these problems may

be very large making them computationally intractable.

In the context of this thesis, both this chapter and Chapter 2 consider specific gener-

alizations of the selective newsvendor problem. In Chapter 2 we extended the SNP to a

class of problems which included a multiperiod version of the problem presented in Taaffe

et al. [15] as a special case. In this chapter we presented a more general selection problem

and a larger variety of demand distributions as well as several classes of approximation

algorithms for solving the problem. The next two chapters take more novel approaches to

the supplier’s market selection problem.
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CHAPTER 4

Efficient Multi-unit Auctions for Selling to

Newsvendor-type Cost Retailers

4.1 Introduction

In this chapter we take a very different approach than the previous two chapters. While

before we considered a supplier who selected a subset of all possible markets, here we

study a supplier with a fixed and limited quantity to sell to a set of retailer-customers.

We assume that the retailers have newsvendor-type costs and participate in a supplier-run

auction to order the good. Using an auction to sell a limited resource is not a new concept.

However, those buying the goods are typically the end users. In the case where bidders are

retailers and are attempting to satisfy possibly unknown demand from their own customers,

the amount the retailer wants to order will depend directly on the price they must pay.

This trade-off between the amount desired and the price each retailer must pay provides

motivation to use auctions to allocate the limited inventory.

In this chapter we consider only a supplier maximizing the efficiency of the allocation.

A maximum-efficiency auction ensures that those who have the highest value for the goods,

receive them. This kind of objective may be desirable when the supplier represents a gov-

ernment entity or as a means to ensure that the resulting allocation maximizes total welfare.

For example, departments of natural resources across the US use auctions to allocate timber

rights. Similarly, a supplier who has experienced a supply disruption could use an efficient

70



auction to decide how best to allocate their limited inventory. In settings like these, running

an efficient auction may be one way to still receive the benefit of information revelation in

auctions without alienating customers by being profit-focused.

The efficient auction we present here is modeled after the work of Ausubel [7] which

presents a multi-unit efficient auction. This auction is the multi-unit equivalent to the classic

Vickrey auction which allocates a single unit by auction to the highest-value bidder at the

price of the second-highest bidder’s valuation. In Ausubel and Cramton [52], the authors

showed that typically a multi-unit auction with all objects sold at the clearing price results

in an inefficient allocation which motivates the slightly more complicated auction presented

in [7]. In addition to devising efficient discrete and continuous auctions for the supply-chain

setting, this chapter also introduces an approximately efficient auction. Lehmann et al. [53]

cover an approximately efficient combinatorial auction where the bidders approximately

solve for the right bids. In our setting, it is easy for the bidders to determine the right

bid for any particular bid price, but participating in the full auction may involve excessive

computations. In this chapter, we consider a subset of all desirable prices that maintains a

certain level of efficiency.

While this chapter focuses on the efficient auction, future research may consider a

revenue-maximizing objective function for the supplier or instead specify practically rel-

evant auction mechanisms. Zhan [54] does a review of the efficient and optimal auction

literature. Maskin and Riley [6] develop an optimal multi-unit auction with multi-unit de-

mands. Deshpande and Schwarz [55] apply that work to a supply-chain setting similar to

the one we study here. In addition, Kastl [56] covers the discriminatory and uniform price

auctions which are well-studied as they relate to treasury bond auctions.

In the next section, we introduce the basic model. We then present the discrete, contin-

uous, and ε-efficient auctions. Finally, we conclude and discuss future research directions.
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4.2 Model

A supplier has a fixed capacity of W units to allocate among m retailers with M ≡

{1, 2, . . . ,m}. Each retailer i can be assigned any quantity Q ≥ 0 such that total allo-

cations do not exceed the capacity W . Each retailer i’s expected profit is quasilinear and

equal to Πi(Q) = Vi(Q) − pi, with Vi(Q) as the value function which gives the expected

value of receiving Q units, and pi as the procurement cost paid to the supplier.

We choose Vi(Q) to be defined as the expected net retail-side profits of retailer i (not

including the procurement costs). We consider retailers who have income of ri ≥ 0 for

each unit sold and then pay newsvendor-type costs depending on how the realized demand

compares to the allocated quantity Q. Specifically, let Di be the random demand of retailer

i and Q be an allocated quantity. Similarly to the earlier chapters retailer i will have

Vi(Q) = E[ri min{Di, Q} − e′i(Di −Q)+ + vi(Q−Di)
+]

where e′i is a penalty cost per unit of unmet demand, vi is the salvage value for any excess

units, and (y)+ = max{0, y}. Di ∼ Hi is chosen as a random variable which has nonneg-

ative support and has pdf hi where the Di are independent of each other. We assume that

Hi is continuous and privately known by retailer i and satisfies the conditions presented in

Ausubel [7] which prevent the other retailers from guessing the private information based

on bids (we will be more specific about these assumptions later). We also note that while

the description above is for the lost-sales version of the newsvendor problem, the value

function can be rearranged by setting ei = ri + e′i to have the form:

Vi(Q) = E[riDi − ei(Di −Q)+ + vi(Q−Di)
+].

The supplier is interested in developing an auction which allocates the limited supply

in a useful way. In this chapter we specifically consider a supplier interested in maximizing

72



retailer efficiency. However, maximizing supplier profits is also a useful criterion which

could be studied in future work. The supplier’s problem is to decide on a selling mechanism

(B,A,P) made up of the set of feasible bids B for the collection of retailers where B ∈ β

and β is the set of all possible definitions of feasible bids, an allocation rule A : B → Rn
+,

and a payment rule P : B → Rn. The choice of the set of feasible bids defines how

bidding occurs. The allocation rule A ∈ A determines, as a function of all submitted bids,

the allocated units xi to each retailer i. Finally, the payment rule P ∈ P determines, as

a function of all submitted bids, the amount each retailer i will pay pi for their received

quantity.

An efficient auction allocates the W available units in a way that maximizes total ex-

pected retailer profits, where any unsold items provide zero value to the supplier. The

supplier’s objective is then to choose an efficient auction mechanism (BE,AE,PE where

E denotes efficient) which optimizes the following problem:

max
(BE ,AE ,PE)∈(β,A,P )

n∑

i=1

E[Vi(xi)] (PE)

s.t. x = AE(B).

And the retailer’s objective is:

max
Bi∈BE

E[Vi(xi)]− pi (PR)

s.t. x = AE(B)

p = PE(B)

B ∈ BE.

We will use the auction mechanism presented in Ausubel [7] with minor modifications

to devise an efficient auction for our setting. In that paper, the marginal values are assumed

to be discrete and to come from a publicly known set. That structure allows the auctioneer

to consider a discrete set of prices. In addition, the bidders are then indifferent to receiving
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the unit or not when paying their marginal value for that unit. In this chapter, the retailers

do not have a discrete or finite set of marginal values. We address this issues in two ways.

In Section 4.3 we present a finite efficient auction by considering a finite set of candidate

demand distributions, and then consider a carefully constructed set of marginal values for

the ascending-price auction. These modifications allow the original discrete mechanism

from Ausubel [7] to be implemented with no additional modifications. In Section 4.4 we

present an ascending price auction with a continuous set of prices which allows a continu-

ous version of the mechanism from Ausubel [7] to result in an efficient allocation.

While the above approaches allow us to use the auction mechanism from Ausubel [7],

the author’s specific results regarding information no longer hold. The author is able to

demonstrate that private values ensure bidders submit truthful bids. This works since there

is enough uncertainty to iteratively eliminate other possible bids. In this chapter, the same

approach no longer holds since the auctioneer needs full demand distribution information

to construct the set of auction prices. Depending on the specifics of the problem instance, it

may be possible to allow the bidders to observe the bids or allocation quantities while still

maintaining an efficient auction. However, for the purposes of this chapter we will simply

assume that while the candidate demand distributions are publicly known, the entire bid

history and allocations are not known until the auction has terminated.

4.3 Finite efficient auction

We implement a simplified version of the discrete Ausubel auction mechanism from [7].

This is an ascending-price auction where the actual price a retailer pays for marginal unit

allocations are determined by the bids of the other retailers alone. Because of certain

modeling choices of ours, the simplified version of the algorithm is still guaranteed to

result in an efficient allocation.

The outline of the auction is that the supplier announces a finite set of per-unit prices C
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that will be considered in ascending order. At each price, each retailer submits a bid of an

order quantity. This continues until the total orders are no more than the capacity, at which

point allocations and payments are finalized according to a special rule. We construct a set

C to ensure that the resulting auction is efficient. We also note here that if W is so large

as to exceed the sum of all demand, any excess units will have zero marginal value and the

resulting allocation will still be efficient.

Let Hi for each retailer i come from a finite set of `i candidate CDFs where each CDF

is denoted by Hi,k and k ∈ {1, 2, . . . , `i}. We then assume that each H−1
i,k (ρ) which is the

inverse CDF of the ρ fractile both exists and is continuous in ρ. For notational simplicity,

we let H−1
i (ρ) denote the true inverse CDF for retailer i. We also assume that each retailer

i only knows their own set of candidate demand distributions Hi,k for k = 1, 2, . . . , `i.

We now define the efficient price cE in the following lemma:

Lemma 4.3.1. Let each retailer i have newsvendor-type costs of Vi(Q) and one of the

candidate inverse CDFs denoted H−1
i (ρ), which are all assumed to be continuous in ρ.

Then there exists a per-unit price cE > 0 such that each retailer will optimally choose an

order quantity of H−1
i

(
ei−cE
ei−vi

)
and such that

n∑

i=1

H−1
i

(
ei − cE
ei − vi

)
= W.

Proof. The retailer’s expected profit function when the amount paid is a set per-unit price

c is:

Πi(Q) = E[riDi − ei(Di −Q)+ + vi(Q−Di)
+]− cQ.

This is exactly the newsvendor problem with expediting costs. The well known optimal

order quantity for the retailer is then the critical-fractile of the demand distribution, namely

Q∗ = H−1
i

(
ei−c
ei−vi

)
.

Since the H−1
i (ρ) are continuous in ρ, the efficient price cE is guaranteed to exist.

Therefore, if the supplier were to offer the good at a per-unit price of cE , each retailer
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would optimally order Q∗ units which then sum exactly to W .

This lemma suggests that if the supplier could a priori select the per-unit price cE , they

could consider only that price while still efficiently allocating theW units since the retailers

have decreasing marginal value for the goods. However, since the supplier only knows the

set of possible retailer demand distributions, they must include prices in C other than cE .

One might think that the solution would be a uniform-price auction where bidders pay the

same price on all units they are allocated, and that price is simply c from the final auction

round. However, as was demonstrated in Ausubel and Cramton [52], all objects simply

being sold at the clearing price does not result in an efficient allocation.

Using the allocation and payment rules we discuss below ensures an efficient allocation

as long as cE is included in the set of considered prices. In this section we construct the

smallest set of prices C that the supplier can guarantee will include cE based on the finite

set of candidate CDFs Hi for each retailer i. The difference between the amount paid to

the supplier if C = cE and the constructed C is known as the price of information in this

auction. I.e., the amount the supplier must pay for the retailers to reveal their true value

functions. Because we consider only an efficient auction, the total profit of the system is

fixed and only how that profit is split is determined by the choice of C.

In the remainder of the section we formally define the auction mechanism and prove

that it results in an efficient allocation.

4.3.1 Feasible bids B

We construct the set C in the following manner. Let C include any price c such that for any

set of ki ∈ {1, . . . , `i}:
n∑

i=1

H−1
i,ki

(
ei − c
ei − vi

)
= W.

The supplier begins the auction at an initial per-unit price c0 > 0,∈ C which is the

smallest element of C, and then accepts a bid of a desired order quantity bi,0 ≥ 0 from each

76



retailer i. The supplier than selects the next lowest per-unit price c1 > c0,∈ C, and accepts

a bid of a desired order quantity bi,1 ≤ bi,0 from each retailer i. This continues with strictly

increasing and sequential per-unit prices of cj ∈ C for any round number j. The bidding

process terminates when the sum of the order quantities in a particular round J is no more

than the available quantity, i.e.
∑n

i=1 bi,J ≤ W .

4.3.2 Allocation rule A

Let xi,j denote the total allocated quantity to retailer i in rounds 0 through j. The initially

allocated quantity to retailer i in the first round is

xi,0 = min

{
bi,0,

(
W −

∑

k 6=i

bk,0

)+}
.

In the subsequent rounds, a similar concept carries forward. Namely, in round 0 < j ≤

J we have

xi,j − xi,j−1 = min



(bi,j − xi,j−1)+,

((
W −

∑

k 6=i

bk,j

)+

− xi,j−1

)+


 .

Ausubel describes this as each retailer “clinching” quantity as the demand from the

other retailers decreases below the currently available quantity. Because of the structure of

the auction, any clinched units are guaranteed to the retailers in future round.

4.3.3 Payment rule P

The price at which a quantity is clinched is the price the retailer must pay for that quantity.

Therefore, each retailer will pay to the supplier the following amount:

pi =
J∑

j=1

cj(xi,j − xi,j−1).
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Any units which are allocated in the first round are also sold for c0 per unit, which al-

lows each retailer to bid independently of the other retailers. We could alternatively add a

dummy first round for which no units are clinched, which would also preserve the retailer

motivation to bid according to the same strategy in all periods.

4.3.4 Efficiency of the multi-unit auction

The auction mechanism described above is a simplified version of the mechanism origi-

nally presented in Ausubel [7]. Our work is distinct in that we consider continuous order

quantities while [7] only considers discrete quantities. Further, through the specific choice

of the set C presented above and the assumption that the H−1
i,k (ρ) are continuous in ρ, we

can guarantee that for any possible collection of the private information values ki ∈ `i there

exists a price c ∈ C such that the total orders when retailers have newsvendor-type costs is

exactly W units.

Outside of the auction framework, the fact that the retailers simply order their newsven-

dor quantity is not surprising. As we will see in the following theorem, following the same

strategy during the auction for each price c ∈ C remains an optimal choice for each retailer.

This is an interesting result since according to the payment rule, the retailers will generally

only clinch a small number of units in the final round. Practically, this means they will or-

der the newsvendor order quantity even though they are paying less than the final per-unit

price for most of their allocation. However, while the retailer saved money early in the

auction, the newsvendor order quantity balances the marginal utility for the next unit with

the given per-unit prices. Effectively, the auction provides a way for the supplier to identify

the efficient price cE from Lemma 4.3.1. We now present the theorem.

Theorem 4.3.2. Consider retailers with newsvendor-type costs who have no knowledge of

the other retailer’s valuations other than their previous bids. Assuming the retailers do not

collaborate, it is an optimal strategy for each retailer to choose a bid of bi,j = H−1
i

(
ei−cj
ei−vi

)

in round j which will result in an efficient allocation of the capacity.

78



Proof. Suppose that retailer i has clinched a cumulative quantity of Q̃j
i in rounds j =

1, ..., ` − 1 (for i = 1, ...,m). In round `, retailer i’s expected profit if retailer i were to

receive the maximum of their previous clinched quantity and their bid in this round of Q is

given by

Πi(Q) = E[riDi−ei(Di−max{Q, Q̃`−1
i })++vi(max{Q, Q̃`−1

i }−Di)
+]−

∑̀

j=1

cj(Q̃
j
i−Q̃j−1

i )+

where Q̃`
i = Q.

Now let (Q`
i)
∗ = H−1

i ((ei − c`)(ei − vi)) since retailer i faces newsvendor-type costs

and a per-unit purchase price of c` in the current round.

CASE A. (Q`
i)
∗ <= Q̃`−1

i : Since (Q`
i)
∗ is decreasing in `, this will also be the case in

subsequent rounds. This means that Q̃`−1
i maximizes the expected profit Πi(Q).

Bidding Q̃`−1
i yields that Q̃`

i = Q̃`−1
i (so no additional items will be clinched).

The only feasible alternative is to bid a quantity strictly larger than Q̃`−1
i . But

this makes the expected profit lower, and (by repeating this argument) can only

make future expected profits lower (or equal). So it is not beneficial for the

retailer to bid a quantity more than Q̃`−1
i .

CASE B. (Q`
i)
∗ > Q̃`−1

i : Bidding (Q`
i)
∗ may result in the clinching of additional items

Q̃`
i >= Q̃`−1

i . Now there are two alternatives:

i) suppose that retailer i bids a quantity strictly smaller than (Q`
i)
∗. Since

the amount clinched can easily be seen to be nondecreasing in the amount

bid, we know that in this case retailer i will not clinch more than their

current bid of Q. Therefore, the total expected profit is either identical to

or worse than when the retailer bids (Q`
i)
∗ (since the immediate expected

profit cannot be higher, and any additional items purchased will be more

costly).
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ii) suppose that retailer i bids a quantity strictly larger than (Q`
i)
∗. As a result,

retailer i will either clinch up to (Q`
i)
∗ (i.e., the same as if the retailer

would bid (Q`
i)
∗ to begin with) or a larger quantity. In the former case,

there is no benefit to bidding the larger amount. In the latter case since

Q̃`
i > (Q`

i)
∗ then the immediate expected profit will be lower, and it will

also be undesirable to clinch additional items in future rounds.

In addition, since retailers only know the prior bids and cannot collaborate, they are

unable to predict when the auction will terminate. This eliminates the opportunity to reduce

their bids in an attempt to receive slightly fewer units at a slightly lower per-unit price.

Therefore, it is always optimal for retailer i to bid (Q`
i)
∗.

From Lemma 4.3.1 the efficient price cE will be offered, and as a result of the above

bidding strategy, the auction will terminate exactly when that price is offered. Since the

marginal utility is decreasing in the received quantity for each retailer, we can also see that

no retailer would in fact find themselves with Q̃j
i < Q∗i for any round j. Therefore this

allocation is also efficient.

As we mentioned in Section 4.2, these results depend in part on relatively strong infor-

mation assumptions. Ausubel [7] provides much milder conditions because the marginal

values are from a discrete set. Depending on the strategic behavior of the retailers, those

milder conditions may also hold in our setting.

4.4 Continuous efficient auction

In the previous section, we assumed that the demand distribution Hi was privately known

but the supplier knew of a finite set `i of candidate CDF functions for each retailer i. This

allowed us to consider only a finite set of possible prices C. However, in some cases the
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private information may not have a finite number of values, or it may be challenging to

compute the set C (either due to the cardinality of the set, or the complexity of finding

the price cE for a particular set of candidate distributions). In that case, we implement

a variation of the continuous Ausubel auction mechanism from Ausubel [7]. Since we

continue to suppose that retailer valuations and order quantities are continuous, some of

the complexity of the continuous version of the Ausubel auction can be eliminated.

Let Hi for each retailer i come from a non-finite set of possible CDFs which are distin-

guished by a real parameter k. We then assume that H−1
i,k (ρ) which is the inverse CDF of

the ρ fractile both exists and is continuous in ρ. We continue to assume that the individual

retailers only know their own set of possible CDFs. In addition, Lemma 4.3.1 continues

to hold since it only depends on the underlying newsvendor-type costs and not the private

information.

4.4.1 Feasible bids B

While in the previous section we constructed a special set of prices, in this section we

can simplify the choice of C by starting at a price of maxi{vi} and increasing the price

continuously until exactly W units are ordered, which is bounded above by maxi{ei}. If

the supplier knows the candidate demand distributions of the retailers, we could use the

same approach as before to find the smallest possible (but now continuous) set C which

includes all possible efficient prices cE .

For notational simplicity, suppose the supplier begins the auction at a lowest per-unit

price of c0 = maxi{vi}, and accepts a bid of a desired order quantity bi,c0 ≥ 0 from each

retailer i. The supplier then continuously increases the per-unit price c and bi,c is retailer i’s

bid at price c. At all per-unit prices between c0 and when the auction terminates, retailer i

must choose their desired order quantity bi,c where bi,c is nonincreasing in c. The bidding

process terminates at the first price cE such that total demand is no more than the capacity,

i.e.,
∑m

i=1 bi,cE ≤ W .
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4.4.2 Allocation rule A

Let xi,c denote the allocated quantity to retailer i through any price c ≥ c0. We also make

the following assumption:

Assumption 4.4.1. Retailers must satisfy the activity rule

bi,c ≥ xi,c′

for any c ≥ c′.

We could instead define the auction as we did in Section 4.3 such that clinched quan-

tities never decrease. However, in this section, it greatly simplifies the later definitions to

include the assumption above that retailers cannot bid for a lower quantity than they have

already been allocated.

The allocated quantity to retailer i at any price c ≥ c0 is then defined as:

xi,c = min

{
bi,c,

(
W −

∑

k 6=i

bk,c

)+}
.

This is simply a continuous version of “clinching” as described in the previous section.

The auction rules continue to state that any clinched units are guaranteed to the retailers in

future rounds.

4.4.3 Payment rule P

The price at which a quantity is clinched is the price the retailer must pay for that quantity.

Therefore, each retailer will pay to the supplier the following amount:

pi =

∫ cE

c=c0

c

(
dxi,c
dc

)
dc
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where cE is the last considered price (which is not known a priori). The payment rule also

requires that any units which are allocated in the first round are sold for c0 per unit.

4.4.4 Efficiency of the multi-unit auction

We begin with the following strategy for each retailer.

Definition 4.4.2. We let the sincere order of bidder i at a per-unit price of c ∈ C be

H−1
i

(
ei − c
ei − vi

)
.

Next we identify conditions such that the allocation and payments exist and are com-

putable.

Assumption 4.4.3. Suppose all retailers make sincere bids at every price c ∈ [0, c̄]. For

each retailer i and the true inverse CDFs, the following function only has finitely many

zeros.

g(i, c) = H−1
i

(
ei − c
ei − vi

)
−
(
W −

∑

k 6=i

H−1
k

(
ek − c
ek − vk

))+

.

This is a more restrictive assumption than necessary as all we really need is that xi,c

is differentiable at all but finitely many discontinuities when the retailers make sincere

bids in the range
[
c0, c

E
]
. In that case, both the allocated quantity and the payments are

computable since the inverse CDFs are continuous and the derivative exists and is finite for

all but finitely many points.

Lemma 4.4.4. Consider retailers with newsvendor-type costs who have no knowledge of

the other retailer’s valuations other than their previous bids. Assuming the retailers do not

collaborate and Assumptions 4.4.1 and 4.4.3 hold, for the ascending-bid auction for our

model, sincere bidding is an ex post optimal strategy.
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The proof follows equivalently to the finite case since Assumption 4.4.3 ensures that

all the relevant quantities exist and are computable. Based on this result we can present the

theorem for the continuous auction case:

Theorem 4.4.5. Consider retailers with newsvendor-type costs who have no knowledge of

the other retailers valuations other than their previous bids. Assuming the retailers do not

collaborate and Assumptions 4.4.1 and 4.4.3 hold, for the ascending-bid auction for our

model, the allocation is efficient.

Proof. Since the allocation is ultimately just the order quantity at the price cE when demand

is exactly W , this is an efficient allocation.

This demonstrates that with only small modifications to our assumptions, we are able

to generalize the auction rules to the continuous case. However, in most cases such an

auction would not be implementable as the retailers would effectively need to submit their

complete demand curve. This reality motivates the remaining section.

4.5 Finite ε-efficient auction

In the previous sections we presented an auction mechanism which is efficient if C is chosen

correctly. In general, the supplier is free to choose C in any way they wish, and is therefore

not guaranteed to have an efficient allocation. For example, if the supplier chose C = { α}

where 0 > α > mini vi, each retailer iwould choose bi,α ≥ W , which provides the supplier

with no information to base an efficient allocation on. Further, which choices of C will lead

to an efficient allocation will depend on the retailers’ incentives.

As was presented before, for the discrete auction to be guaranteed to be efficient, the

set C should includes any candidate clearing price if the retailers bid their newsvendor

quantities. If the demand distribution for any retailer is continuous, now all potential prices

up to the maximum realization of demand to that retailer are distinct. Even if the demands
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are discrete, the set C may contain a large number of elements when combined with the

retailer-specific parameters ri, ei, and vi.

Rather than considering the full set of values, the supplier could select a collection of

prices C that allows retailers to reveal enough of their private information to approximate

a fully efficient auction. For example, the supplier may consider ten-cent or ten-dollar

intervals, depending on the scale of prices being considered. There has been some work on

costly auctions such as Parkes [57], however they do not provide bounds on the result of

the auction. Another justification for the use of a discrete set C is that the retailers may only

be willing to submit a limited number of quantity bids. Kastl [56] discusses the practical

constraint that bidders will not submit a large number of bids but will instead approximate

their needs with a limited number of bids. While the supplier might want a completely

efficient auction, the retailers may decide to submit the same bid for several neighboring

prices in order to save computational effort. Since the supplier chooses the set C a priori,

the retailers can decide how to respond based on the supplier’s choice. In addition to this

auction related literature, there are also papers on communication complexity in general

(e.g., [58]).

In order to present an ε-efficient auction, we use the same auction rules as in Section

4.3 for the discrete auction. Since cE might not be included in the set C, the final round may

have total demand strictly less than the available units W and therefore the auction may not

result in an efficient allocation. We begin this section by observing that the optimal retailer

strategy continues to be making sincere bids.

Lemma 4.5.1. Consider retailers with newsvendor-type costs who have no knowledge of

the other retailers valuations other than their previous bids. Assuming the retailers do not

collaborate and the supplier has chosen a set of prices C, it is an optimal strategy for each

retailer to choose a bid of bi,j = H−1
i

(
ei−cj
ei−vi

)
for each cj ∈ C.

Proof. This follows immediately from the proof of Theorem 4.3.2.
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Given the auction rules and bidding strategy above, we want to connect the choice of C

to a bound on the deviation from an efficient allocation. Guided by this goal, we present a

special case by assuming each retailer i has uncertain demand which comes from a uniform

distribution on [γi, ξi], where γi and ξi are privately known but are bounded by upper and

lower bounds γi ∈
[
¯
γi, γ̄i

]
and ξi ∈

[
¯
ξi, ξ̄i

]
. If the other retailers could see the bid history,

the retailers could use that information to improve their expected return. Therefore, we

make the restrictive assumption that the bids and allocations are confidential to the supplier

until the auction terminates. We present this case because it demonstrates the relationships

between the key parameters and ε. Further, if a supplier did in fact have retailers with

uniformly distributed demands and wanted to run an ε-efficient auction, they could choose

to run a sealed bid auction for the set of prices C.

We now suppose that C is simply defined by an initial lowest price c0, and then have

each subsequent price increment by ∆c. Given this initial naive selection of C, we identify

an issue in the following lemma.

Lemma 4.5.2. Consider a supplier with W units running an auction with C = {c0, c0 +

∆c, c0 + 2∆c, . . .} and let the bidders be retailers with newsvendor-type costs ei and vi

and facing demand which is uncertain but uniformly distributed on the privately known

interval [γi, ξi] with publicly known bounds γi ∈
[
¯
γi, γ̄i

]
and ξi ∈

[
¯
ξi, ξ̄i

]
. Then, the

maximum possible change in quantity ordered ∆Q in a single step of the auction is at least

¯
γi if cE > ei for any retailer i.

Proof. From Lemma 4.5.1, each retailer simply submits a bid of bi,j = H−1
i

(
ei−cj
ei−vi

)
for

each cj ∈ C until the auction terminates. Consider the retailer i′ for which cE > ei′ . Let j

be the highest price cj which is less than ei′ . Then, retailer i′ will have a drop in their bid

from some bi′,j ≥
¯
γi′ to a bid bi′,j+1 = 0.

This lemma demonstrates that if retailers have a demand distribution which is bounded

below but by a strictly positive number then a simple grid of prices may lead to large
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discontinuities. One solution then is to simply include the publicly known ei values in the

set C. Since the retailers are indifferent between receiving γi and zero when the price is

ei, the supplier may be able to use the bid information at ei to produce an exactly efficient

allocation.

For simplicity we now assume that for all retailers i, γi = 0. Given this setting, we

present the following theorem:

Theorem 4.5.3. Consider a supplier with W units running an auction with C = {c0, c0 +

∆c, c0 +2∆c, . . .} and let the bidders be retailers with newsvendor-type costs ei and vi and

facing demand which is uncertain but uniformly distributed on the privately known interval

[0, ξi] with publicly known bounds ξi ∈
[
¯
ξi, ξ̄i

]
. If ∆c ≤ ε

∑m
i=1

(ei−vi)
ei

¯
ξi

, the resulting

auction will be ε-efficient.

Proof. For each retailer i, hi = 1
ξi

. Therefore, for a step in price of ∆c, each retailer will

decrease their order quantity by (ξi)
∆c
ei−vi . Summing over the m retailers we then have

∆Q ≤
m∑

i=1

(−
¯
ξi)

∆c

ei − vi
.

Since each retailer i’s allocation has per unit value at most ei, we then have that the

gap from the efficient allocation is at most
∑m

i=1 ei(−
¯
ξi)

∆c
ei−vi . Solving for ∆c with ε as the

maximum gap:

∆c ≤ ε
m∑

i=1

(ei − vi)
ei

¯
ξi

.

This result is informative as it demonstrates that as hi decreases in the relevant region,

the jumps between bid quantities and therefore maximum loss in efficiency, grows.
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4.6 Concluding remarks

In this chapter we consider a supplier selling a fixed quantity of units to a set of newsvendor-

type retailers. We saw that when the supplier chooses to implement an efficient or ε-

efficient auction, the retailers have a straightforward strategy of choosing their truthful

order which is simply the well known newsvendor critical fractile. In the future, we believe

other objectives or auction mechanisms can be used in a similar setting and for other supply

chain problems. Multi-unit auctions are a powerful tool for matching supply and demand.

In addition, we hope others find the definition of an ε-efficient auction useful as it allows

the decision maker to relate a discretization in considered prices to the resulting loss in ef-

ficiency. This chapter provides an alternative way of thinking about the underlying market

selection problem discussed in the previous two chapters. In the next chapter we consider

another model and one more perspective suppliers may consider.
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CHAPTER 5

The Outsourcing Newsvendor Problem

5.1 Introduction

An important issue for multinational corporations is how to allocate resources across inter-

national boundaries. In Chapters 2 and 3 we considered the selective newsvendor problem

which helps to answer these kinds of questions by identifying a desirable subset of all can-

didate markets to choose to serve. In this chapter we build on that problem by considering

an additional set of subsidiary suppliers who can work with Supplier 1 to meet demand in

the full set of markets. We call this problem the outsourcing newsvendor problem (ONP)

and consider how the opportunity to work with subsidiaries affects Supplier 1. At a high

level, solving both the SNP and the equivalent ONP can provide managerial insights into

the structure of market profitability and production costs.

A car manufacturer which produces cars in several countries faces a difficult challenge

when trying to match the (candidate) set of production facilities with a set of markets with

uncertain demand. Generally, multi-national companies operate with a headquarters which

makes overall strategic decisions while branches of the company in specific regions will

make more local decisions. How to appropriately model these settings is a challenging

problem as each company is different in how they handle decision making between the

parent company and subsidiaries. In this chapter we provide one reasonable relationship

between the companies. There are a number of empirical papers and discussions of these
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kinds of problems. For example, Kenyon et al. [59] use empirical data to study the effects

on the firm and customers of a company outsourcing production. While their paper consid-

ers the more traditional interpretation of outsourcing to an external company, we are more

interested in working with subsidiaries. Prahalad and Doz [60] consider the underlying

idea that a supplier should consider both the global and subsidiary-level problems, which

includes our case. While their work provides an overview of things to consider when mak-

ing these kinds of decisions, there are limited papers which look at outsourcing decisions

as an optimization problem.

De Kok [61] consider outsourcing as a tool to accomodate supplier capacity constraints

when faced with deterministic demand. Nazari-Shirkouhi et al. [62] consider a multi-

period, multi-product outsourcing problem constrained resources, centralized decision mak-

ing, continuous quantities, also with deterministic demand. Chen and Xiao [25] consider

outsourcing as a response to disruption risk and uncertain capacity. The authors then use a

meta-heuristic to provide high-quality solutions to their outsourcing problem. Kermani et

al. [63] also use a meta-heuristic to look at supplier selection in a competitive environment

while considering price, quality, and delivery performance. One other related set of papers

includes those considering make-or-buy decisions such as Vrat [64].

In this chapter, we consider a supplier with a collection of markets and uncertain de-

mand in those markets. As can be seen from above, most if not all of the existing literature

on outsourcing assumes deterministic demands. We further suppose that the supplier has a

number of subsidiaries who can be allocated any subset of the markets to serve. Each sup-

plier / each subsidiary faces newsvendor-type costs depending on the uncertain demand for

their market allocation as well as their own procurement decision. Because of the parent-

subsidiary relationship, we also require that each subsidiary should have nonnegative ex-

pected profit through the use of a transfer payment from the parent company if necessary.

This basic structure provides a starting point for understanding multi-national companies

that outsource to subsidiaries. It also complements the existing production planning litera-
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ture which considers the centralized or decentralized models of coordination.

In the next section we present our model formulation. In Section 5.3 we present struc-

ture to the solutions of the ONP and also make some observations about the optimal solu-

tion for both the outsourcing problem and the SNP. In Section 5.4 we then present compu-

tational experiments and finally conclude.

5.2 Problem formulation

Consider a stochastic market allocation problem as before with m markets, one primary

supplier, and a new set of S − 1 subsidiary suppliers. We let Supplier 1 denote the primary

supplier who is also the decision maker for the market allocation problem. The remaining

S − 1 subsidiaries are then allocated a set of markets to serve by Supplier 1. Recall the

market selection decisions zij ∈ {0, 1}mS with zij = 1 denoting that supplier i serves

market j and zij = 0 meaning that they do not serve that market. Each supplier i may

then choose a procurement quantity as before of yi ≥ 0 to meet the uncertain demand

in their allocation of markets. We then suppose that since Supplier 1 makes the allocation

decisions, they are responsible for ensuring that each subsidiary have nonnegative expected

profit by providing a transfer payment ζi to subsidiary i if necessary. As mentioned in the

introduction, this is meant to replicate some aspects of multi-national corporations which

have not been addressed in the past literature.

After the allocation decisions and procurement quantity have been determined, the de-

mand in each market is realized. Recall that D denotes the random demand vector and Dj

is the random demand in market j. We then have the previously defined newsvendor-type

costs with vi as the per-unit salvage value for leftover units, ci the per-unit procurement cost

for ordering yi units, and ei the per-unit expediting cost for any excess demand not met by

yi. Each unit of demand in market j is also associated with rj revenue. The resulting
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optimization problem is then:

max
z,y,ζ

E

[
m∑

j=1

rjDjz1j − e1[D>z1 − y1]+ + v1[y1 −D>z1]+

]
− c1y1 −

S∑

i=2

ζi

(ONP)

subject to:
S∑

i=1

zij = 1 j ∈ {1, 2, . . . ,m}

0 ≤ E

[
m∑

j=1

rjDjzij − ei[D>zi − yi]+ + vi[yi −D>zi]
+

]

+ ζi − ciyi i ∈ {2, . . . , S}

zij ∈ {0, 1} i ∈ {1, . . . , S}, j ∈ {1, . . . ,m}

ζi ≥ 0 i ∈ {1, . . . , S}

yi ≥ 0 i ∈ {1, . . . , S}

where ei ≥ ci ≥ vi ≥ 0.

This formulation is the most natural based on the previous description. We will also

find it useful to consider a discretized MILP version of the problem. Suppose the demand

distribution is discrete and made up of Ξ equal probability demand vectors where for each

k ∈ {1, . . . ,Ξ} there is a demand vector Dk with each Dk
j as the demand in market j. The

MILP version of the problem is then:

max
z,y,ζ

Ξ∑

k=1

[
m∑

j=1

rjD
k
j z1j − e1s1k + v1t1k

]
− c1y1 −

S∑

i=2

ζi (OMILP)

subject to:

(
m∑

j=1

Dk
j zij

)
− yi ≤ sik k ∈ {1, . . . ,Ξ}, i ∈ {1, . . . , S}

yi −
m∑

j=1

Dk
j zij ≥ tik k ∈ {1, . . . ,Ξ}, i ∈ {1, . . . , S}

ζi − ciyi +
Ξ∑

k=1

[
m∑

j=1

rjDjzij − eisik + vitik

]
≥ 0 i ∈ {2, 3, . . . , S}
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S∑

i=1

zij = 1 j ∈ {1, 2, . . . ,m}

zij ∈ {0, 1} i ∈ {1, . . . , S}, j ∈ {1, . . . ,m}

ζi, yi ≥ 0 i ∈ {1, . . . , S}

sik, tik ≥ 0 k ∈ {1, . . . ,Ξ}, i ∈ {1, . . . , S}.

In the following section we present our results.

5.3 Outsourcing newsvendor problem results

The outsourcing newsvendor problem introduced in the previous section has similar struc-

ture to the selective newsvendor problem presented in Chapters 2 and 3. However, ONP

adds additional complexity as no market can remain unassigned and the supplier needs to

optimize for their own costs as well as those of the subsidiaries. We will show in section

5.3.2 that in fact the SNP can be viewed as a special case of ONP. We expect that like for the

SNP, computational methods will be very effective at quickly solving (ONP). As we will

show in Section 5.4, we are able to solve problems which are equivalent to those studied in

Section 3.5 in reasonable time. Given these observations, the goal in the remainder of this

section will be to show what can be learned about the underlying demand and procurement

structure using the outsourcing model described above as well as the SNP model.

5.3.1 Solutions to the outsourcing newsvendor problem

Suppose we have solved (ONP) and found that for each supplier i the optimal allocation is

z∗i with the procurement quantity y∗i . We now provide the following results and discussion

based on the problem structure and the given optimal solution. In this section we begin with

two lemmas which explore interesting features of how we model the outsourcing decision.

We then present one important implication of uncertain demands and newsvendor-type
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costs on the optimal solution.

Lemma 5.3.1. If c1, e1, and v1 are low enough that all markets are profitable, it will be

optimal for Supplier 1 to choose to serve all markets regardless of the cost parameters of

the subsidiaries (i.e., z∗1 = 1 and z∗i 6=1 = 0 where 1 is the vector of m ones and 0 is the

vector of m zeros).

Proof. The objective of (ONP) consists of revenues and newsvendor-type costs for Supplier

1’s allocation z1, the procurement costs c1y1 and any transfer payments to the subsidiaries

ζi. Suppose Supplier 2 has the lowest procurement costs e2 = c2 = v2 = 0. Any markets

which are not allocated to Supplier 1, can then be assumed to be served by Supplier 2.

Therefore, (ONP) reduces to:

max
z,y,ζ

E

[
m∑

j=1

rjDjz1j − e1[D>z1 − y1]+ + v1[y1 −D>z1]+

]
− c1y1 (S1)

subject to: z1j ∈ {0, 1} j ∈ {1, . . . ,m}

y1 ≥ 0 .

This reduced problem may have z∗1 = 1. In this case, clearly any set of costs c2, e2, and

v2 will not result in a change to z∗1 since it would at best negatively effect the expected

profit.

This lemma emphasizes the fact that when the issue of outsourcing is modeled as we

have in this paper, Supplier 1 is primarily interested in maximizing their own profits rather

than those of their subsidiaries. Therefore, if Supplier 1 has low enough costs relative to

the other suppliers, they will not choose to use the option of allocating some markets to

the subsidiaries. Further, if their costs are low enough with regards to the variability in

the market demands, it will be optimal for Supplier 1 to serve all markets for any set of

subsidiary cost parameters.

If Supplier 1 were to solve (ONP) for a product that already has some distribution,
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finding that the optimal solution is to simply serve all markets themselves may inform

future choices. In particular, if the expected profit to Supplier 1 is also high, it would

indicate that the product in question is highly profitable including any variable demand.

On the other hand, if the expected profit is low, we would instead infer that there are no

subsidiaries who are well equipped to produce the good. This may motivate investment in

the procurement process either for themselves or a subsidiary to improve the profitability

of the product.

While Lemma 5.3.1 highlights one aspect of our choice to model the objective primarily

in terms of Supplier 1’s profit, the following lemma emphasizes a complementary aspect.

Lemma 5.3.2. Supplier 1 is indifferent between any solutions to (ONP) which have the

same z∗1 allocation, the associated optimal order quantity for them of y∗1 and total transfer

payment
∑S

i=2 ζ
∗
i .

Proof. The objective is only affected by Supplier 1’s allocation z1 and procurement quan-

tity y1, and how much any transfer payments may be. They are only interested in optimiz-

ing the subsidiary’s situations in as much as it affects the total required transfer payment.

Therefore, any feasible solution with z∗1 , y∗1 and
∑S

i=2 ζi =
∑S

i=2 ζ
∗
i is optimal.

In many cases, the above lemma points to there being multiple optimal solutions, often

with different suppliers meeting the demand in the markets not allocated to Supplier 1. If

the transfer payment is not zero, the given optimal solution is likely to be unique as long

as the suppliers have unique cost parameters. However, there still may be other solutions

which are near optimal and may be beneficial for other reasons. When the transfer pay-

ment is actually zero, it is highly possible that there are in fact multiple optimal solutions,

especially if the expected profit for some subsidiaries is large.

Multiple optimal or near-optimal solutions are important in practice since there are

often external factors which affect market allocations. For example, Supplier 1 may have

a favorite subsidiary because of quality concerns or capacity constraints which are not
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presently modeled. After solving ONP, Supplier 1 has a good idea of what z∗1 should be,

and that any allocation of the remaining markets that the subsidiaries will accept for the

same total transfer payments, is also optimal.

While the previous lemmas discuss interesting features of how we model the outsourc-

ing decision in this paper, the following lemma demonstrates the effect of newsvendor-type

costs on the structure of optimal solutions. In this lemma we assume as in Chapter 2 that

demands are normally distributed with mean µj and variance sj in market j.

Lemma 5.3.3. Consider (ONP) with 2 suppliers and m markets. Suppose the market de-

mands are independent and normally distributed (i.e., for each market j we have Dj ∼

N (µj,
√
sj)). Let z∗, ζ∗2 be the optimal solution to ONP and assume that for the particular

problem instance z∗1 6= 1 and ζ2 > 0.

If an addiitional market m+ 1 must be allocated to one of the suppliers without other-

wise changing z and we have

ζ2 > rm+1Dm+1 −K1

(√
s>z1 + sm+1 −

√
s>z1

)

then the market will optimally be assigned to Supplier 2.

Proof. We begin by referring to Chapter 2 and note that for a particular market selection

zi, the optimal expected profit for Supplier i is:

m∑

j=1

rjDjzij −Ki

√
s>zi,

where s is the vector of demand variance and Ki = (ci− vi)Φ−1(ρi) + (ei− vi)L(Φ−1(ρi),

and ρi = (ei − ci)/(ei − vi).

If Supplier 1 serves market m+ 1, the change to their expected profit will be

rm+1Dm+1 −K1

(√
s>z1 + sm+1 −

√
s>z1

)
.
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If Supplier 2 serves market m+ 1, Supplier 1 may have a lower transfer payment ζ2.

Since z∗1 6= 1, we know that

K2

√
s>z2 < K1

(√
s>1−

√
s>z1

)
.

This ensures that Supplier 2 will have lower newsvendor-type costs for serving market

m + 1 than Supplier 1. Therefore, the only case where Supplier 1 would be better off

serving market m+ 1 is if the expected profit from adding that market to their allocation is

larger than the transfer payment ζ2.

While this lemma was written assuming an additional market became available and

the rest of the market allocation must remain the same, the implications are more gen-

eral. Supplier 1 would prefer to allocate additional markets to a subsidiary versus simply

making a transfer payment, as long as the benefit from serving the market themselves is

not larger than the current transfer payment. This depends on the subsidiary having lower

newsvendor-type costs for the marginal markets, which will always be the case if the sub-

sidiary is allocated any markets at all.

5.3.2 Outsourcing newsvendor problem and the SNP

In the previous section we considered a few features of the ONP. In this section we use both

the ONP and the SNP to improve our understanding of market selection-type problems in

practice.

Theorem 5.3.4. The SNP with no fixed costs can be seen as a special case of the ONP.

Proof. Consider the outsourcing problem with just two suppliers. Let v2 = c2 = e2 =

0. Then, (ONP) reduces to (S1) from above. This is exactly the Selective Newsvendor

Problem with no fixed costs as introduced in Section 2.2.1. Therefore, any optimal solution

z∗1 and y∗1 to (S1) will also be an optimal solution to the equivalent SNP.
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While we see from this theorem that the SNP with no fixed costs can be thought of as a

special case of the ONP (though fixed costs could also be added to the ONP), solving both

problems gives us useful insight into the supplier and subsidiaries, the market demands, and

how those problem features interact. Either the SNP or the outsourcing solutions could be

implemented in practice depending on the company in question, but typically these kinds

of strategic decisions are not simply the implementation of optimization models. Instead,

we hope that the solutions may help decision makers consider what forms of flexibility they

do have in serving a collection of markets and then use that flexibility to improve profits. In

the remainder of the section we identify ways in which the solutions to the SNP and ONP

inform us about the underlying supply chain setting.

Corollary 5.3.5. Suppose the optimal solution to the SNP z∗ and ONP z∗1 are not the same.

If a subsidiary experiences a sufficient reduction in costs, the optimal solutions will be the

same.

Proof. This result follows immediately from the proof of Theorem 5.3.4.

While this corollary follows immediately from the connection between the SNP and the

ONP, it also provides a useful practical perspective on the problem. Specifically, a company

which finds the solutions to SNP and ONP are different for their supply chain can see that

Supplier 1 has reduced profits from the constraint that demand in all markets must be met.

In this case there are two connected explanations for the reduced profitability:

• The supplier would rather not meet demand in all markets, but there are no sub-

sidiaries with low enough costs to allocate the remaining markets to.

• The demand is highly variable but pooling reduces that variability. If there is enough

total demand, there can be “support” for multiple suppliers having the benefits of

pooling. If there is less total demand relative to the variability, we will only be able

to support a single supplier.
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Ultimately, depending on the circumstances, Supplier 1 may decide to invest in their own or

subsidiary procurement, take actions to reduce the relative variability in demand, or simply

accept the reduction in expected profit as a cost of meeting demand in all markets. For

settings where Supplier 1 is unwilling or unable to modify costs or demand distributions,

we have the following result:

Lemma 5.3.6. If the optimal solution to the SNP z∗ and ONP z∗1 are the same and there are

no transfer payments, the constraint that all markets are served does not affect the optimal

solution to (ONP).

Proof. Since z∗1 is the same as z∗, that indicates that either z∗ = 1 and therefore all markets

increase total expected profit or z∗ 6= 1 but a subsidiary has nonnegative expected profits

for meeting demand in the other markets.

As mentioned above, if Supplier 1 has the option to invest in reducing their own pro-

curement costs or demand variability relative to total demand, they may still be able to

increase their expected profits. However, in cases where the benefits would not offset the

investment, this is a best-case-scenario for Supplier 1.

5.3.3 Discussion

In this section we presented both some results for the outsourcing newsvendor problem

and the equivalence between the selective newsvendor problem with no fixed costs and a

special case of the ONP. It is clear from the discussion that while solving the SNP and the

ONP each give some information about the underlying market structure, we can see even

more by comparing the solution to the ONP to the solution to the equivalent SNP.
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5.4 Computational results

In Section 5.3 we mentioned that while the outsourcing newsvendor problem is computa-

tionally challenging, we believe that practical-sized problems can be solved in reasonable

time. In this section, we present the results of numerical experiments which support that

belief and also provide some comparisons between the solutions to the ONP, SNP, and

requiring Supplier 1 to serve all markets.

5.4.1 Problem instances

We consider effectively the same set of problem instances as in Chapter 3. We create

each problem instance by generating the joint demand distribution of finite cardinality Ξ

uniformly from
∏m

i=1[0, ui] where ui is randomly chosen from the uniform distribution on

[0, 10] (for i = 1, . . . ,m). We let the procurement cost, salvage value, and expediting costs

for Supplier 1 be c1 = 0.9, v1 = 0.6, and e1 = 1 (this is a small deviation from Chapter

3 which had c = 0.8). We then have the procurement cost, salvage value, and expediting

costs for the subsidiaries be selected randomly from the following uniform distributions:

ci ∈ U [0.8, 0.9], vi ∈ U [0.6, 0.7], and ei ∈ U [0.9, 1.0] for each i in {2, . . . , S}. Finally,

the per-unit market revenues rj are uniformly chosen from [0.8, 1.0] for each market j ∈

{1, . . . ,m}. Because of the change to c1, we note that on average half of markets will

for sure not be profitable for Supplier 1 to serve because the cost of procurement c1 will

be larger than the revenue rj . However, we believe the resulting problem instances are

interesting and illustrative.

We consider the number of suppliers S ∈ {2, 4, 6, 8, 10} which includes Supplier 1

and consider numbers of markets including m ∈ {10, 20, 30, 40, 50}. For each pair (S,m)

we considered 100 problem instances and any average values were based on the full set

of instances. The problem was coded as an MILP and each problem instance was solved

using CPLEX version 12.5 with default values. All tests were performed on a PC with an
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Intel Xeon Quad Core 3.2 GHz processor with 8 GB RAM using C++. In order to compute

the percent profit, the newsvendor-type costs (including any salvage value) experienced by

all suppliers were summed and then compared to the absolute profit enjoyed by Supplier 1

or the total system depending on the setting.

5.4.2 Results

We begin this section by showing how quickly CPLEX is able to solve ONP and SNP for

our problem instances. We will then present a comparison of the average and per-instance

percent profit for each of the models on equivalent problem instances.

In Figures 5.1 and 5.2 we see the computational time required for CPLEX to solve ONP

and then SNP. Our results for SNP are consistent with Table 3.1, which is reassuring. We

see that with Ξ = 1000, up to 10 suppliers and 50 markets can be solved in reasonable

time. We do note that the range in solution times across the 100 problem instances showed

a lot of variability which we believe explains the shape of the curves in the figues. As an

example, it took between 4 and 300 seconds to solve ONP for S = 10 and m = 50.
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Figure 5.1: CPLEX run time as a function of m and S for ONP.

These results demonstrate that for these instances ONP is a more computationally chal-

lenging problem to solve than SNP. Computational complexity is important since, just as
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for SNP, Ξ = 1000 may be impractically small. Consider that having 20 markets and just

2 demand levels in each independent market would involve 220 different possible demand

vectors. In these cases, improved methods for solving ONP would be needed. However, as

we mentioned in Section 5.3, SAA and rounding could potentially be used to resolve some

of the computational challenges.
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Figure 5.2: CPLEX run time as a function of m and S for SNP.

Beyond computational complexity, the focus of this section is on the quality of solu-

tions to the outsourcing newsvendor problem. We provide three comparisons in order to

understand both ONP and SNP for our particular set of problem instances. While the details

will necessarily be different in practice, we hope these comparisons can be illustrative of

how the different modeling choices could affect expected profit. We begin with two figures

as representative examples of the differences in performance and follow with tables with

the complete comparisons.

In Figure 5.3 and 5.4 we see the average percent profit experienced by Supplier 1 in

three different settings as well the total system profit for ONP. The settings we consider

include if they can simply choose their preferred set of markets (SNP), if they must serve

all markets themself (ONP constraint with no subsidiaries), and if they work with S − 1

subsidiaries. Figure 5.3 shows that when there is only one subsidiary, the total system
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profit is about the same as when Supplier 1 solves the SNP. However, requiring Supplier

1 to meet all demand results in negative expected profit, while their expected profit under

an ONP objective is much closer to SNP. In Figure 5.4 we see the same information when

S = 10 and observe that the total system profit improves significantly when there are

more subsidiaries. These figures highlight that for our problem instances, the difference

in procurement costs between Supplier 1 and the subsidiaries is fairly small. In a setting

where subsidiary costs are significantly lower than for Supplier 1, we would expect total

system profit to be relatively high while Supplier 1 is able to enjoy the same expected profit

as in the SNP case.
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Figure 5.3: Average percent profit for different models with S = 2.

In Table 5.1 we compare the average percent profit for Supplier 1 under the ONP model

as well as the equivalent SNP. We find that when there are more markets and suppliers,

Supplier 1 is able to come close to the solution to the SNP. This is a result of increased

likelihood of a subsidiary with lower procurements costs and the increased total demand.

We note that in Table 5.1, in fact there are some settings where the average percent profit

is higher for ONP than SNP. This is a result of our choice to consider percent profit rather

than absolute profit and the fact that ONP can have lower total costs than SNP.

While Supplier 1 can hope that at best their absolute expected profit for ONP will equal

103



10 20 30 40 50
−3

−2

−1

0

1

2

3

4

Number of Markets

A
ve

ra
ge

 %
 p

ro
fit

 

 

Supplier 1 ONP

All Suppliers ONP

Supplier 1 SNP

Supplier 1 serves all

Figure 5.4: Average percent profit for different models with S = 10.

Supplier 1 ONP SNP

m m
S 10 20 30 40 50 10 20 30 40 50
2 0.1% 0.8% 1.1% 1.2% 1.3% 0.8% 1.4% 1.7% 1.8% 1.9%
4 0.8% 1.4% 1.6% 1.7% 1.8% 1.0% 1.4% 1.6% 1.8% 1.9%
6 0.8% 1.4% 1.6% 1.7% 1.9% 0.9% 1.4% 1.6% 1.7% 1.9%
8 0.8% 1.4% 1.6% 1.8% 2.0% 0.9% 1.4% 1.6% 1.8% 1.9%

10 0.9% 1.5% 1.6% 1.8% 1.9% 0.9% 1.5% 1.6% 1.8% 1.8%

Table 5.1: Supplier 1 average percent profit for ONP and SNP.

SNP All Supplier ONP

m m
S 10 20 30 40 50 10 20 30 40 50
2 0.8% 1.4% 1.7% 1.8% 1.9% 0.9% 1.4% 1.6% 1.7% 1.8%
4 1.0% 1.4% 1.6% 1.8% 1.9% 1.8% 2.4% 2.5% 2.8% 2.8%
6 0.9% 1.4% 1.6% 1.7% 1.9% 1.6% 2.6% 3.0% 2.9% 3.2%
8 0.9% 1.4% 1.6% 1.8% 1.9% 1.9% 2.7% 3.2% 3.3% 3.4%

10 0.9% 1.5% 1.6% 1.8% 1.8% 2.2% 3.0% 3.4% 3.3% 3.6%

Table 5.2: Supplier 1 average percent profit for SNP and system profit for ONP.
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that for SNP, the system as a whole can do much better. In Table 5.2 we compare the

average percent profit for the SNP to the system average percent profit for the ONP. When

there is only one subsidiary, there is a relatively small difference between the two models.

For more subsidiaries, the average system percent profit increases substantially over the

SNP values.

One of the goals of this chaper in the context of this thesis is to address the notion that

suppliers should choose to meet demand in all candidate markets. While Chapter 1 covered

the perspective that in some sense suppliers are always choosing only a subset of demand,

this chapter uses a different strategy. In Table 5.3 we directly make the comparison between

the average percent profit for Supplier 1 using the ONP model by comparison to simply

requiring Supplier 1 to serve all markets. It is clear immediately that using outsourcing as a

tool is a significant improvement over simply meeting all demand and can be the difference

between making and losing money.

Supplier 1 ONP Supplier 1 serves all

m m
S 10 20 30 40 50 10 20 30 40 50
2 0.1% 0.8% 1.1% 1.2% 1.3% -3.0% -2.2% -1.5% -1.4% -1.3%
4 0.8% 1.4% 1.6% 1.7% 1.8% -3.0% -2.0% -1.7% -1.5% -1.3%
6 0.8% 1.4% 1.6% 1.7% 1.9% -3.1% -2.1% -1.9% -1.6% -1.3%
8 0.8% 1.4% 1.6% 1.8% 2.0% -3.1% -2.2% -1.7% -1.5% -1.3%

10 0.9% 1.5% 1.6% 1.8% 1.9% -2.7% -1.8% -1.5% -1.5% -1.5%

Table 5.3: Supplier 1 average percent profit for ONP and serving all markets.

We conclude this section by showing the per-instance variation between different mod-

els. In Figure 5.5 we see the 100 instances for both the smallest pair S = 2,m = 10 and the

largest pair S = 10,m = 50. For the smaller problem instances, there is substantial vari-

ability and ONP has several instances with negative expected profit. For larger instances, in

every case Supplier 1 with the ONP model is able to match the performance of the SNP. In

Figure 5.6, we instead see a comparison between Supplier 1 serving all markets and ONP.

For the smaller problem instances, there is a lot of variability between the two models. For
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Figure 5.5: Percent profit across instances for ONP vs. SNP
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Figure 5.6: Percent profit across instances for ONP vs. Supplier 1 serving all markets

larger problem instances the correlation is much higher, but as we saw before Supplier 1

serving all markets has much lower average profits.

5.5 Concluding remarks

In this chapter we presented the outsourcing newsvendor problem which is a new model

and includes the selective newsvendor problem as a special case. We showed that solving

both the ONP and the SNP can provide a decision maker with relevant insights into the

market demand and supplier / subsidiary structure. We also demonstrated that the version

of the problem considered here could be solved in reasonable time using CPLEX, and we
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believe the methods developed in Chapter 3 of this thesis could be modified to apply to

this problem as well. We saw that while solving the ONP results in a loss of expected

profit relative to the SNP, for our computational experiments we were able to significantly

outperform the solutions when Supplier 1 simply met demand in all markets. In the future

we hope that the perspective presented in this chapter can help decision makers assess

whether for a particular product they should work with subsidiaries.
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CHAPTER 6

Conclusion

6.1 Thesis summary

In this dissertation I considered several models related by the same goal of supporting a

supplier who needs to choose a subset of all possible stochastic demand to meet. This work

included generalizations of the previously-studied selective newsvendor problem as well as

an auction setting and the newly-introduced outsourcing newsvendor problem. Deciding

how to choose a subset of candidate demand to meet is a difficult problem which cannot

simply be modeled as an optimization. However, optimization tools can help decision

makers consider which issues are most important to them, and how those concerns can be

used. By presenting several optimization tools in the same thesis, I hope that readers are

able to think more broadly about demand and market selection for their practical setting.

Beyond the big-picture contributions, this thesis includes a variety of interesting method-

ological developments. In Chapter 2 we developed both exact and heuristic methods to

solve a multi-period generalization of the SNP and also presented numerical experiments

demonstrating the effectiveness of the approaches. In Chapter 3 we studied a very general

selection problem and developed an algorithm which combined sample average approxima-

tion and rounding to find a high-quality solution with high probability. Combining multi-

ple approximation algorithms allowed us to solve the stochastic selection problem for very

general (nonnegative support with finite mean) stochastic distributions. We also showed
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through numerical experiments that for the SNP, the approximation algorithm was very ef-

fective even for very few distribution samples. In Chapter 4 we shifted gears and used an

efficient auction mechanism to allocate a limited supply of goods to a set of newsvender-

type cost retailers. We also introduced an ε-efficient auction which allows the auctioneer to

run a discrete auction which is not guaranteed to be efficient, but is guaranteed to be within

a fixed difference from efficient. Finally, in Chapter 5 we consider a supplier who may work

with subsidiaries to meet demand in a set of markets. The newly-introduced Outsourcing

Newsvendor Problem provides an alternative to the SNP with important implications in

practice.

In conclusion, this thesis has included several research problems which try to answer the

very general question of how suppliers choose a subset of all demand to meet. The models

have focused on stochastic demands because many industries have significant effects from

demand uncertainty, but that choice make the optimization models much more challenging

to solve. This work has included a variety of methodological tools as well as illustrative

numerical experiments and practical discussions.

6.2 Future Work

This thesis is connected largely by the high-level perspective on the problems studied.

From that perspective, we introduced two models which are entirely new to supply chain

optimization in addition to the generalizations of the SNP. There are many directions for

future work related to the content of this thesis.

Chapter 2 included a multi-period multi-market selective newsvendor problem as a spe-

cial case. However, the model did not include a way to have finite but nonzero backlogging

and carryover costs. Similarly, finite but nonzero costs for changing the market selection

from period to period are an important concern for practical problems. Addressing these

issues even with heuristic solutions may significantly improve the implementability of the
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optimal solution in practice. In Chapter 3 we considered a very general market selection

problem with minimal assumptions on the stochastic demand. The combined approach

of using both rounding and Sample Average Approximation was an effective tool based

on our numerical experiments to solve the SNP quickly and with high-quality solutions.

Given these observations, we believe this approach could be used in other settings with

expected-value objectives.

While Chapters 2 and 3 built on the literature for selective newsvendor problems, Chap-

ters 4 and 5 are much more of a departure from existing work. In Chapter 4 we presented

an efficient auction for a fixed quantity to a set of newsvendor-type cost retailers. However,

efficient auctions are just one objective and are unlikely to be the best approach for every

seller. A natural next step is to consider Suppliers interested in maximizing their expected

revenues from the auction, which is known as an optimal auction. Maskin and Riley [6] de-

velop an optimal multi-unit auction with multi-unit demands and Deshpande and Schwarz

[55] apply that work to a supply-chain setting similar to the one studied in this thesis. In

addition, most of the similar work in the auction literature and practice is in the area of trea-

sury bond auctions. Kastl [56] covers the discriminatory and uniform price auctions which

may also be useful to suppliers with a fixed inventory. Chapter 5 also has many possible

future research directions. Developing an exact algorithm for independent and normally

distributed demands is an ideal next step. Using SAA and rounding to efficiently solve the

more general problem would also be beneficial. In the future, it would also be interesting

to consider a multi-period version of the problem as well as one which included investment

opportunities to improve the procurement costs of Supplier 1 or the subsidiaries.
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APPENDIX A

Paper 2 appendicies

A.1 Proof of Lemma 3.2.4

(i) Convexity:

Let 0 ≤ λ ≤ 1. Then

ρ [λX1 + (1− λ)X2] = inf
θ∈Θ

E [G (λX1 + (1− λ)X2; θ)]

= inf
θ1,θ2∈Θ

E [G (λX1 + (1− λ)X2;λθ1 + (1− λ)θ2)]

≤ inf
θ1,θ2∈Θ

{λE [G(X1; θ1)] + (1− λ)E [G(X2; θ2)]}

= λ inf
θ1∈Θ

E [G(X1; θ1)] + (1− λ) inf
θ2∈Θ

E [G(X2; θ2)]

= λρ[X1] + (1− λ)ρ[X2].

(ii) Monotonicity:

Suppose that X2 � X1. Then

ρ[X2] = inf
θ∈Θ

E [G(X2; θ)]

≥ inf
θ∈Θ

E [G(X1; θ)]

= ρ[X1].
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(iii) Positive Homogeneity:

Let λ > 0. Then

ρ[λX] = inf
θ∈Θ

E [G(λX; θ)]

= inf
θ∈Θ

E [G(λX;λθ)]

= inf
θ∈Θ

E [λG(X; θ)]

= inf
θ∈Θ

λE [G(X; θ)]

= λρ[X].

(iv) Translation Equivariance:

Let a ∈ R. Then

ρ[X + a] = inf
θ∈Θ

E [G(X + a; θ)]

= inf
θ∈Θ

E [G(X + a; θ + a1)]

= inf
θ∈Θ

E [G(X; θ) + a]

= inf
θ∈Θ

E [G(X; θ)] + a

= ρ[X] + a.

A.2 Proof of Theorem 3.3.4

We start by fixing a value β ∈ [0, δ]. Since Y is a cone we have that 1
1−β ŷ ∈ Y so that

Ψ
(

[ẑ]β,
1

1−β ŷ
)

is well-defined. Condition (ii) of the theorem implies that

Γ2

(
[ẑ]β,

1

1− β ŷ;F,D

)
� 1

1− βΓ2(ẑ, ŷ;F,D).
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Together with Condition (i) of the theorem in turn implies that

Ψ

(
[ẑ]β,

1

1− β ŷ
)

= ρ

[
Γ

(
[ẑ]β,

1

1− β ŷ;F,D

)]

= ρ

[
r̄> (1− [ẑ]β) + Γ2

(
[ẑ]β,

1

1− β ŷ;F,D

)]

= r̄> (1− [ẑ]β) + ρ

[
Γ2

(
[ẑ]β,

1

1− β ŷ;F,D

)]

(by the translation invariance property of ρ)

≤ r̄> (1− [ẑ]β) + ρ

[
1

1− βΓ2(ẑ, ŷ;F,D)

]

(by the monotonicity property of ρ)

= r̄> (1− [ẑ]β) +
1

1− βρ [Γ2(ẑ, ŷ;F,D)]

(by the positive homogeneity property of ρ). Now replace β by the random variable β ∼

U [0, δ]. Then

E [1− [zi]β] = Pr (1− [zi]β = 1) = Pr ([zi]β = 0)

= Pr (zi < 1− β) = Pr (β < 1− zi)

= min

{
1,

1− zi
δ

}
≤ 1− zi

δ
.

We use the last inequality to obtain

Eβ

[
Ψ

(
[ẑ]β,

1

1− β
ŷ

)]
≤ Eβ

[
r̄> (1− [ẑ]β)

]
+ Eβ

[
1

1− β

]
ρ [Γ2(ẑ, ŷ;F,D)]

≤ 1

δ
r̄>(1− ẑ) +

1

δ
ln

(
1

1− δ

)
ρ [Γ2(ẑ, ŷ;F,D)]

≤ 1

δ
max

{
1, ln

(
1

1− δ

)}(
r̄>(1− ẑ) + ρ [Γ2(ẑ, ŷ;F,D)]

)
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=
1

δ
max

{
1, ln

(
1

1− δ

)}
ρ
[(
r̄>(1− ẑ) + Γ2(ẑ, ŷ;F,D)

])

=
1

δ
max

{
1, ln

(
1

1− δ

)}
Ψ (ẑ, ŷ) .

A.3 Alternative and explicit bounds

In this appendix we consider Example 1 from Section 3.2.2.1 with ρ = E (i.e., the selective

newsvendor problem). For this class of problems, an alternate required sample size |N2|

can be used by employing an approximation pertaining to the newsvendor problem that is

a slight modification of a result from [49]. We also derive explicit bounds on the global

problem parameters ∆ and L for this case.

A.3.1 Alternative value for N2

We first provide an approximation result for the newsvendor problem that is based on a

result from [49] but accounts for the slightly different formulation of our cost function that

is due to the selection component of our problem.

Lemma A.3.1. Let N2 be a sample satisfying

‖N2| ≥
9

2ε2

(
min(e− c, c− v)

e− v

)−2

log

(
2

δ2

)

where ε ∈ (0, 1] is a relative cost error measure and 1− δ2 is a confidence level. Then, for

a given z ∈ [0, 1]m let ŷ(0) = arg miny∈Y ΨN2(z, y). Then

Ψ(z, ŷ(0)) ≤ (1 + ε)Ψ∗(z)

with probability at least 1− δ2.
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Proof. Lemma 2.2 in [49] say that ŷ(0) satisfies

∣∣∣∣Fz
(
ŷ(0)
)
− e− c
e− v

∣∣∣∣ ≤
ε

3
min

(
e− c
e− v ,

c− v
e− v

)
≡ α

where Fz is the c.d.f. of D>z, i.e., ŷ(0) is α-accurate. The cost function considered by [49]

is given by C(y) = Ψ(z, y) − E[R]>(1 − z) − E[F]>z − cE[D]. Corollary 2.1 in [49]

show that C
(
ŷ(0)
)
≤ (1 + ε) maxy∈RC(y). Since E[F], E[R], E[D] ≥ 0 we obtain

Ψ
(
z, ŷ(0)

)
≤ (1 + ε)Ψ∗(z).

The desired result then follows directly from Theorem 2.2 in [49].

The result of Lemma A.3.1 can then replace the additive approximation result of the

form Ψ(z, ŷ) ≤ Ψ(z, ŷ) + τ that we used earlier in this paper, yielding alternative approxi-

mation results.

A.3.2 Explicit upper bounds on ∆

We provide two approaches to bound ∆ = sup(z,y)∈([0,1]m×R≥0) ‖z − y‖. While bounding

the binary portion is trivial, Y is in general unbounded. We derive a bounded set Ȳ which

includes an optimal solution (possibly with a confidence guarantee).

A.3.2.1 Deterministic upper bound

Lemma A.3.2. Consider problem (R), and suppose there exists some function Ξ(y) such

that Ξ(y) ≤ Ψ(z, y) for any (z, y) ∈ ({0, 1}m × R+). Then, without loss of optimality, we

may restrict the feasible region of (R) to the set

Ȳ = {y | Ξ(y) ≤ Ψ∗, i = 1, . . . , n}.

Proof. This follows immediately from the fact that Ξ is a lowerbounding function to Ψ.
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It is easy to see that for the expected-value newsvendor we have

Ψ(z, y) = E
[
R>(1− z) + F>z + cy + e

(
D>z − y

)+ − v
(
y −D>z

)+
]

= E
[
R>(1− z) + F>z + (c− v)y + vD>z + (e− v)

(
D>z − y

)+
]

≥ (c− v)y

so that we can choose Ξ(y) = (c − v)y, which satisfies the conditions of Lemma A.3.2.

This means that we can limit ourselves to order quantities 0 ≤ y ≤ Ψ∗

c−v . Now consider the

feasible solution (z, y) = (0, 0). It is easy to see that Ψ(0, 0) = E[R>1] ≥ Ψ∗, so that we

can definitely restrict ourselves to Ȳ = [0, ȳ] with ȳ = E[R>1]
c−v , so that ∆ ≤ E[R>1]

c−v .

A.3.2.2 Probabilistic upper bound

Let y∗(1) be the optimal order quantity when all markets are selected (z = 1) and F denote

the c.d.f. of the associated aggregate demand D>1. Now note that the aggregate demand

is stochastically largest when all markets are selected (since demands are nonnegative) and

therefore y∗(1) is a valid upper bound on the optimal order quantity for any z ∈ {0, 1}m.

If y∗(1) can easily be computed, we have a candidate bound on ∆. However, in general,

this task is difficult, so we may apply Lemma 2.2 in [49] to provide a probabilistic upper

bound, i.e., a bound that is valid with some guaranteed probability.

Theorem A.3.3. Let α, δ3 ∈ (0, 1) and let N3 be a sample satisfying

|N3| ≥
1

2α2
ln

(
2

δ3

)
.

Then the
(
e−c
e−v + α

)
-quantile of the sample ofD>1 is an upper bound on ∆ with probability

at least 1− δ3.

Proof. Let ŷ be the
(
e−c
e−v + α

)
-quantile of a sample N3 of D>1 values as in the theorem.

From Lemma 2.2 in [49] we have that ŷ is α-accurate with probability at least 1 − δ3, and
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therefore ∣∣∣∣F (ŷ)−
(
e− c
e− v + α

)∣∣∣∣ ≤ α

which implies that

F (ŷ) ≥ e− c
e− v

so that ŷ is an upper bound for y∗(1), and hence for ∆, with probability at least 1− δ3.

If the sample N3 is chosen independently from the samples N1 and N2 used in the

approximation algorithms, this probabilistic bound can be used to derive approximation

results similar to the ones provided earlier in the paper, at the expense of an additional loss

in confidence due to the factor 1− δ3.

A.3.3 Explicit upper bound on L

A.3.3.1 Upper bound on the global L

Lemma A.3.4. For any (z, y), (z′, y′) ∈ [0, 1]m × R+ we have that

|Ψ(z, y)−Ψ(z′, y′)| ≤ L‖(z, y)− (z′, y′)‖2

with

L =
√
mmax (e− v, ‖E[F + cD−R]‖∞ + (e− v)‖E[D]‖∞) .

Proof. Let (z, y), (z′, y′) ∈ [0, 1]m × R+ and consider the following representation of the

cost function:

Ψ(z, y) = E
[
R>(1− z) + (F + cD)>z + (c− v)

(
y −D>z

)+
+ (e− c)

(
D>z − y

)+
]
.

The difference in costs between these two solutions is then:

Ψ(z, y)−Ψ(z′, y′) = E[(F + cD−R)>(z − z′)] + (c− v)
(
E
[(
y −D>z

)+
])
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− (c− v)
(
E
[(
y′ −D>z′

)+
])

+ (e− c)
(
E
[(
D>z − y

)+
]
− E

[(
D>z′ − y′

)+
])

≤ ‖E[F + cD−R]‖∞|z − z′|1 + (e− v)|y − y′|

+ (e− v)‖E[D]‖∞‖z − z′‖1

≤ max
{
e− v,

‖E[F + cD−R]‖∞ + (e− v)‖E[D]‖∞
}
· ‖(z, y)− (z′′, y′′)‖1

≤ √mmax
{
e− v,

‖E[F + cD−R]‖∞ + (e− v)‖E[D]‖∞
}
· ‖(z, y)− (z′′, y′′)‖2

which proves the desired result.

A.3.3.2 Upper bound on L(z)

If z is fixed, we can instead compute a bound L(z).

Lemma A.3.5. For any (z) ∈ [0, 1]m and y, y′ ∈ R+ we have that

|Ψ(z, y)−Ψ(z′, y′)| ≤ L‖(z, y)− (z′, y′)‖2

where L = max{(e− c), (c− v)}.

Proof. Because Ψ(z, y) is simply the expected value of the newsvendor cost function once

z is fixed, we can immediately see that in the worst case, y − y′ represents either buying

a unit that is used with probability 1 (leading to a change of e − c in the objective), or

buying a unit that is used with probability 0 (leading to a change of c− v in the objective).

Therefore, L(z) is the max of these two values.
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