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ABSTRACT

Fabrication and control of magnetic Pd,Fe thin film heterostructures

by

Renee Michelle Harton

Chair: Professor Roy Clarke

The goal of this dissertation research is to investigate the use of multiferroic (ferroelectric-

ferromagnetic) thin-film interfaces as a means to control the magnetization in ma-

terials of interest for perpendicular recording.This project explores the relationship

between magnetization and structure in thin films of Fe/Pd compounds deposited

onto ferroelectric BaTiO3 substrates. Utilizing magnetostrictive coupling, the mag-

netism of a magnetic film was controlled by the epitaxial strain at the film/substrate

interface. BaTiO3 is particularly favorable for this purpose as its structure develops a

significant elongation along the tetragonal c-axis as a result of symmetry breaking at

the cubic to tetragonal phase transition. A novel aspect of the work is that we have

tuned the Curie point of the ferromagnetic transition to approximately match the

ferroelectric Curie point of the substrate, so that the magnetostrictive effect is max-

imized. This is achieved by alloying Fe with Pd to produce a Pd3Fe compound. We

report for the first time, the elastic control of the perpendicular magnetic anisotropy

of Palladium-Iron (Pd,Fe) films deposited onto a barium-titanate (BaTiO3 ) (100)

substrate. Using Magneto-optic Kerr Effect (MOKE) magnetometry, we observed

the behavior of the magnetization before and after the tetragonal-to-cubic phase

xi



transition of the BaTiO3 substrate. We found that such films exhibited in-plane

magnetization reversal below the T-C transition temperature, and out-of-plane mag-

netization reversal above the transition. This change in behavior demonstrates that

it is possible to achieve elastic control of the perpendicular magnetic anisotropy of

the deposited Pd,Fe film. In addition, we were able to grow an ordered FePd3 film on

SrTiO3 using the inter-diffusion of an Fe/Pd multilayer heterostructure. Each layer

of the heterostructure was deposited using Ultra-High Vacuum deposition. Utiliz-

ing in-situ RHEED (Reflection High Energy Electron Diffraction), we observed that

each deposited layer was both ordered and exhibited the crystalline structure of the

bulk material. Once deposited, the multi-layer heterostructure was heated above

the FePd3 formation temperature. Upon heating, the RHEED pattern began to ex-

hibit the crystalline structure of FePd3. Using X-ray Diffraction analysis and MOKE

magnetometry, we found that the epitaxial film consisted primarily of FePd3. This

example of atomic layer epitaxy of Fe, Pd alloys represents a successful approach to

forming high quality magnetic heterostructures on perovskites with excellent control

over their composition and structural ordering.
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CHAPTER I

Motivation

The concept of storing information on an external device is familiar; whether

the information is stored using a hard drive, USB flash-drive, CD-Rom or a floppy

disk, the idea of storing information on an external unit for future use is a common

notion. Consequently, when designing a potential storage device, devising the physical

requirements for this unit is an intuitive process.

First, one must identify the information that needs to be stored. Once selected, it

is important that one is able to transfer this information onto the device. This step

requires one to be able to control the state of the units or ”bits” used for storage. For

the peace of mind of the user and the fidelity of the device, it is important that this

process happens quickly. Once the information is written onto the device, we would

like to ignore it until we need to use it again. When the time to re-use the stored

data arrives, we would like to import/retrieve and possibly alter it from its original

state. Consequently, once the information is written onto the device, it is important

that the device maintain the information for the length of time between the writing

event and the time of retrieval. Therefore, it is clear that the only constraint on the

”storage lifetime” of the device is the time difference between the writing and retrieval

times. Unfortunately, most systems are not isolated. They are constantly interacting

with their surroundings. As a result, if information is stored in a specific system,
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over time, the state of the system will change, which results in the degradation of the

stored information. As a result, the lifetime of the stored information in a specific

device is determined by the amount of time necessary to significantly distort the

state of the system. These interactions with the surrounding environment, even over

short periods of time, can significantly alter the signal. For a constant interaction,

these disturbances result in a background signal, which can disguise the stored signal.

However, if the stored signal is larger than the fluctuations caused by the surrounding

environment, the stored signal can still be retrieved. In any event, the state of the

information will change over time and needs to be considered when designing data

storage devices.

If the information is stored in the orientation of the magnetization of a ferromag-

netic material, the two anti-parallel states along a specific axis can be used as the two

states used to represent the stored data. In order for these states to be used, one must

ensure the fidelity of the device by requiring that the two states be distinguishable.

This distinction is confirmed by using a system with a large saturation magnetization

(MS). In a magnetically anisotropic system, MS is proportional to KuV , where Ku

is the uniaxial anisotropy coefficient along the axis of magnetization and V is the

volume of the stored information bit.

In addition to the requirements of a storage device that have already been men-

tioned, it is always nice to think that storage capabilities are endless, that there is

no limit to what can be stored. Nevertheless, the point is always reached when the

storage device reaches capacity. In order to satiate this desire for greater storage

capability, it is also important to maximize the amount of information that can be

stored on the device. Increased storage can be achieved by increasing the areal storage

density of the unit. In order to increase the number of bits stored in a certain area,

one might decrease the volume, V, of the material in which an individual informa-

tion ”bit” is stored. However, since MS depends on V, as V decreases, the uniaxial
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anisotropy (Ku) must increase. As a result, it is important that the material used has

a large Ku value.

Another factor that contributes to the areal storage density of the device is the

minimum distance between anti-aligned domains. This factor is determined by the

size of the domain wall separating the domains. It has been shown that the size of

the domain wall between neighboring domains aligned perpendicular to the sample

surface is smaller than for those aligned along the sample plane[Hubert and Schafer

(1998)]. As a result, there is interest in being able to store information in magnetic

moments aligned perpendicular to the plane of the magnetic storage medium. The

perpendicular recording alignment of magnetization perpendicular to the recording

plane is favored for materials with a large perpendicular anisotropy coefficient. This

coefficient for Fe50Pd50 tends to be larger than for other materials[Endo et al. (2005)].

This result led us to the Fe,Pd alloys. Since we wanted to control the magnetization

perpendicular to the sample plane, it was important that we were able to tune the

perpendicular magnetic anisotropy coefficient.

In 2006, Winkeman et.al. found that the perpendicular anisotropy of an Fe50Co50

film could be controlled using a tetragonal distortion induced by the lattice-mismatch

between the film and the substrate. Using this information, we were interested in

exploring the effect of a distortion of this sort on a Fe,Pd alloy. However, since we

are interested in data recording applications, we wanted to impart a distortion to the

deposited film that was reversible. Consequently, we took advantage of the properties

of thin-film heterostructures where a ferromagnetic layer is deposited onto a substrate

with tunable properties that could couple to the magnetism of the deposited film.

First, one might think to switch the magnetic state of a material using H-fields.

Although possible, this method is not energy efficient due to the energy dissipation

caused by Joule heating in the wires forming the solenoid used to generate the H-field.

In this work, we found that a better way to manipulate the magnetization, one that
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uses less energy, is to exploit the magnetostriction of the substrate. Accordingly, we

decided to tune the magnetic polarization of a material by coupling it to a substrate

which has an order parameter controlled by temperature. A ferroelectric substrate is

a suitable choice because it undergoes a structural transition at a certain tempera-

ture. Since multiferroics, in principle, allow for this sort of control, we investigated

multiferroics that would suit our needs.

Multiferroics are materials that exhibit more than one ferroic order. Ferromagnetic

order is characterized by a spontaneous magnetic polarization, ferroelectrics exhibit

spontaneous electric polarization, and ferroelastic materials demonstrate spontaneous

strain. As this work focuses on the storage of information in the magnetic spins of a

material, we were interested in controlling the magnetic order of a material. Since the

amount of energy dissipation is lower during the production of electric fields rather

than magnetic fields generated by a solenoid, for this work we were interested in

controlling the magnetization using electric fields. The most obvious material for this

application is one that exhibits magneto-electric coupling.

The magnetoelectric coupling of a material can be described using the dependence

of the free energy of a material on an electric field (E) and magnetic field (H). This

relation can be described by the following equation:

F (E,H) =F0 − P S
i Ei −MS

i Hi −
1

2
ε0εijEiEj −

1

2
µ0µijHiHj

− αijEiHj −
1

2
βijkEiHjHk −

1

2
γijkHiEjEk

(1.1)

The equilibrium values of the electric polarization (PE) and magnetization (M) of

the material are found by minimizing the free energy, F, with respect to Ei and Hi,

respectively. The result can be described by the following equation:

PE =− ∂F

∂Ei
= P S

i +
1

2
ε0εijEi + αijEi +

1

2
βijkHjHk +

1

2
γijkEj

M =− ∂F

∂Hi

= MS
i −

1

2
µ0µijHj + αijEi +

1

2
βijkEiHj +

1

2
γijkEjEk

(1.2)
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The Magneto-electric coupling due to the linear magneto-electric effect is described

by the terms with the coupling constant, αij. From Equation (1.2), it is clear that

an electric field Ei along x̂i results in a magnetization (M) along the ĵ direction.

Conversely, a magnetic field (Hi) results in an electric polarization, P along the ĵ

direction. The sizes of PE and M are dependent on the magneto-electric coupling

constant, αij. It can be shown that αij must satisfy the following inequality:

αij < µijεij (1.3)

As a consequence of this inequality, the ME coupling is most pronounced in ma-

terials that exhibit both ferromagnetic and ferroelectric order. Since ferromagnetic

ferroelectrics satisfy this criterion, these materials will be discussed next.

Ferromagnetic ferroelectrics are materials that simultaneously exhibit both fer-

romagnetic and ferroelectric ordering. Although these materials are of interest, ma-

terials where both orders are significant are not prevalent. The reason being the

difference in the sources of the ferromagnetic and ferroelectric order. In most fer-

roelectrics, the spontaneous electric polarization is due to a structural distortion of

the unit cell. This change in the positions of the ions of the unit cell results in a net

displacement of the positive and negative charge centers. Ultimately, this shift results

in an electric dipole moment, which leads to a net electric polarization when multiple

crystallites are considered. On the other hand, the magnetic polarization is due to

partially filled d-orbitals. Since the cations responsible for the ferroelectric polariza-

tion typically have empty d-orbitals, the source of the two orders must be separate.

Indeed, the usual multiferroic combination with this sort of separation involves fer-

roelectricity and anti -ferromagnetic order. An example material is Bismuth Ferrite

(BiFeO3). This multiferroic exhibits ferroelectric and anti-ferromagnetic order at RT.

Although switching of the magnetization using electric fields has been demonstrated,
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since the material is AFM, the macroscopic spontaneous magnetization is zero[Zhao

et al. (2006)]. Consequently, these materials are not directly useful for magnetic data

storage. Owing to such difficulties, interest in single phase multiferroics has been

stagnant for several years. Recently, there has been great interest in novel fabrication

methods and theoretical modeling that has aided in devising and fabricating new

multiferroic materials. Although these advances are significant, it is still challenging

to create single component thin film single phase multiferroic materials[Ramesh and

Spaldin (2007)].

One alternative approach, explored in this dissertation, is the use of multifer-

roic heterostructures consisting of multiple materials each of which exhibits a single

ferroic order. Since the materials are only in contact at the interface, the potential

coupling between the two materials can only occur at the interface of neighboring ma-

terials. As a result, the number of unit cells that experience the coupling is smaller,

but the size of the ferroic orders can make up for this difference. In the case of a

ferromagnetic/ferroelectric, µijεij is larger than for a single phase ferromagnetic fer-

roelectric. Although this is promising, this effect is limited only to thin films. This

is acceptable in a recording device, because most modern recording media are pro-

duced in thin film form, leading us to use epitaxial strain to control the magnetism

of the magnetic thin film. For this reason, we were interested in materials whose

magnetic state was strongly coupled to its elastic state. A magnetic material that

exhibits coupling of this sort, when deposited onto a substrate that exhibits piezo-

electric behavior can have magnetization that is indirectly tuned by a voltage. This

was the goal of the work of this dissertation. The substrate chosen for this work was

the perovskite, BaTiO3. BaTiO3 exhibits piezoelectric behavior and also has several

structural phases. When BaTiO3 is used as a substrate, changing its phase after

the film has been deposited can impart strain to the deposited film. The effect of

this strain on the magnetism has been demonstrated[Sahoo et al. (2007)]. For an Fe

6



film deposited onto BaTiO3(001), the change in the in-plane lattice constant as it

traversed the tetragonal(T)-Cubic(C) phase transition resulted in a strain anisotropy

that caused a uniaxial magnetic anisotropy of the film. This effect confirmed the ca-

pability to tune the magnetization of deposited film by changing the strain state of the

system. Equipped with this knowledge, we arrived at the focus of this dissertation.

For the research described in this dissertation, we probed the interfacial and struc-

tural interactions present in the heterostructure, PdFe/BTO. Bulk palladium-iron has

been known to exhibit pressure-induced invar behavior which is accompanied by an in-

crease in the volume magnetostriction of the bulk material[Winterrose et al. (2009)].

These experimental results suggest that the magnetization of a thin film of Pd,Fe

might be strongly coupled to the position of the lattice ions and the deformation of

the orbitals. For the research reported in this dissertation, thin films of Pd,Fe were

deposited onto BaTiO3. Using the structural phase transitions of BaTiO3, we were

able to observe the effect of the lattice parameters and electric state of the substrate

on the magnetic state of the deposited film.

In order to enhance the coupling between the substrate and the film, we grew

an ordered FePd3 film on SrTiO3 using the interdiffusion of an Fe/Pd multilayer

heterostructure. The specifics of these experiments will be discussed in Chapters

(III) and (IV) of the dissertation. The following chapter will discuss the background

necessary to understand the results of these experiments.
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CHAPTER II

Background

2.1 Magnetism

Everyday we interact with materials that vary widely in their intrinsic properties.

Some materials feel soft, while others feel hard; some are smooth, and at the same

time others feel rough. Although these properties seem not to be correlated, we know

from elementary inorganic chemistry that all materials are made from the same set

of fundamental particles. Consequently, one must conclude that the source of these

differences in properties rests in the ways in which the fundamental particles are

combined.

Since all materials can be described using the same fundamental particles, the

differences that we observe in materials are actually caused by the difference in the

combinations of these fundamental units. Since the atoms have a neutral charge, all of

the possible combinations must have the same number of protons and electrons. Also,

due to the sub-nuclear interactions, as the number of protons increases so must the

number of neutrons. All of the combinations of protons, neutrons, and electrons that

have been observed in nature are documented in the periodic table. In order to gain a

general intuition for the different properties of materials made of different elements in

the periodic table, it is important to note that the most apparent difference between

various elements is their number of subatomic particles. Accordingly, understanding

8



how these particles interact can elucidate the source of some of the different properties

of materials made of different elements. In the next section of this dissertation, the

subatomic interactions will be discussed.

We know from Coulomb’s law [Equation(2.1)] that charged particles exert forces

on each other. Using this law, one can conclude that the direction of the force the

positively charged nucleus exerts on the electron will always be attractive, and the

magnitude of this force will depend on the electron’s distance from the nucleus. This

electrostatic force has the following form:

FE =
Ze2

4πε0|r|2
r̂ (2.1)

where Z is the number of protons in the nucleus of the atom and r is the displacement

vector between the nucleus and the electron. In order to determine the energy of an

electron at a position, rb from the nucleus, each electron can be assumed to be brought

along a trajectory, where its initial position, ra, is effectively an infinite distance from

the nucleus, such that the force from the nucleus is effectively zero, FE = 0, while at

its final position, rb, FE is non-zero. Here it is assumed that at position ra, Ve = 0.

Upon reaching the position rb from ra = ∞, the force FE does work on the electron

which results in a decrease in the potential energy of the particle. As a consequence,

an electron with charge, e, positioned at the point rb has a potential energy which

can be described by the following equation:

Ve = − Ze2

4πε0|r|
(2.2)

Since the potential energy of a particle of charge, q, at position, rb, is equal to qVe, the

implication of this decrease in the potential energy of the electron is that an energy

equal to qVe is needed to remove the particle from the electric field of the nucleus. As

a result, electrons closer to the nucleus will require more energy to be removed from
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the electric field. Accordingly, for low energy interactions, the energies of the inner

electrons can be assumed to be unchanged, and thus, only the outermost electrons are

responsible for the different observed material properties. Since the majority of the

properties of different materials are caused by the outermost electrons, it is important

to understand the properties of the electron.

For the next set of derivations, the semi-classical description of the atom will

be used. In this model, the electron orbits the nucleus at a fixed radius, r, that is

quantized. Using the de Broglie wavelength of the electron, for each allowed orbit,

it is required that the circumference of the orbit be equal to an integer number of

wavelengths. This criterion can be described by the following:

nλB = 2πr

nh

p
= 2πr

nh

2π
= rp

n~ = L

(2.3)

where n marks the integer number of each orbit, λB is the associated de Broglie

wavelength of the electron with a magnitude that is equal to λB = h
p
, and r is the

radius of the orbit. From Equation (2.3), it is clear that for an electron with a fixed

λB, the difference in the radii of neighboring orbits (∆n) can be described by the

following expression:

∆r =
λB
2π

(2.4)

For an electron orbiting the nucleus at a fixed radius, r, the electron’s motion about

the nucleus results in a magnetic field, B, which can be described using the Biot-

Savart law, which has the following form:

dB = −µ0I

4π

r× dl
r3

(2.5)
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Applying Equation (2.5) to the motion of the orbiting electron results in the following

expression describing B:

B(r) = −e
µ0

2
r× v (2.6)

where r is the distance between each point of the electron orbit and the point of

observation, v is the velocity of the electron, and e is the charge of the electron.

Additionally from classical mechanics, we know that the angular momentum of the

electron can be described by the following equation:

l = mer× v (2.7)

Solving for r×v in Equation (2.7), and inserting the result into Equation (2.6), we

see that B can also be described by the following expression:

B = − e

2me

µ0l (2.8)

Although this magnetic field was derived from the motion of an electron about

the nucleus of an atom, an equivalent magnetic field could be created by a stationary

magnetic moment, m. This magnetic moment can be determined using the following

constitutive relation:

B = µ0(H + M) (2.9)

where H is the magnetic intensity, M is the magnetization, and µ0 is the magnetic

permeability of free space. From Equation(2.9), it is clear that an equivalent field B

emanates from a magnetic moment described by the following expression:

m = − e

2me

L = γL (2.10)

From this equation, it is clear that the angular momentum, L, and the magnetic
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moment, m, are of opposite sign and that their magnitudes differ by a factor of e
2me

.

This factor, γ, describing the mapping of the electron’s angular momentum, L, to a

magnetic moment, m, is often referred to as the gyromagnetic ratio. Returning to

the angular momentum of the orbiting electron, since the angular momentum defined

in Equation (2.7), depends on the radius of the electron and the electron orbit is

quantized, the angular momentum, L, must also be quantized. This quantization of

L can be described by the following equation:

L = ml~ (2.11)

where ml is the orbital angular momentum quantum number. From Equation (2.3),

we can see that the ∆L of neighboring allowed orbits (∆n = 1) is equal to ~. As

a result, the change in ml for neighboring orbits is equal to 1. Consequently, for

an electron with an angular momentum, l, the possible projections of this angular

momentum along a specific axis must satisfy the following inequality, |ml|<|l|. where

∆ml = 1 for each step.

Later, it was discovered that the orbital angular momentum was not the only

source of angular momentum for the electron, but that there was also an intrinsic

angular momentum which altered the electron’s total magnetic moment, and conse-

quently, the resultant magnetic field. The source of this intrinsic angular momentum

is called spin, and is equal to ~
2

for the electron. As was the case for the orbital angular

momentum, the spin angular momentum can be mapped to a magnetic moment, ms.

The relation between the spin angular momentum, s, and this magnetic magnetic

moment, ms, can be described by the following relation:

ms = − e

me

s = γss (2.12)

It is important to note that the spin gyromagnetic ratio (γs) is 2 times larger than
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the orbital gyromagnetic ratio(γl). Similar to the orbital angular momentum, the

projections of the spin angular momentum are also quantized. The value of ∆s

between different projections of the spin angular momentum along a specific axis is

equal to ~, which corresponds to a value of ∆ms that is equal to 1 for neighboring

projections. As a result, s has only two projections along a specific axis, which are

equal to ~
2

and −~
2

. For the remainder of this section of the dissertation, both the

orbital and spin angular momenta will be projected along the ẑ axis. As a result,

ŝ · ẑ = ms~

l̂ · ẑ = ml~
(2.13)

Prior to this point in the dissertation, each orientation of the magnetic moments of

the electron were energetically equivalent. However, since this dissertation focuses on

how the magnetic moments of a system respond to external stimuli, for the remainder

of this section, the effect of an external magnetic field on the magnetism of a material

will be explored.

We know from classical mechanics that in the absence of an applied magnetic field,

every orientation of a magnetic dipole is energetically equivalent. However, when it

is in the presence of an external magnetic field, B, this symmetry is broken, and

certain orientations of the magnetic moments are energetically favored. The energy

of each orientation of a magnetic dipole relative to an external magnetic field, B, can

be described by the following equation:

U = −µ ·B (2.14)

where µ is the classical magnetic dipole moment and B is the external magnetic

field. It is important to note that the configuration with the lowest energy occurs

when the magnetic dipole moment is aligned with the applied magnetic field. In

13



the case of the classical magnetic dipole, the allowed orientations of the dipole are

continuous. Accordingly, the possible energies of the magnetic dipole in an applied

magnetic field are also continuous. However, since the projections of the spin and

orbital magnetic moment are quantized, it is clear that this is not the case for the

magnetic moment of the electron. Nevertheless, the case of the classical magnetic

dipole is illustrative and will be used to understand the energies of the electron in an

external magnetic field using the quantum picture. In the absence of an external field,

the configurations of both the electron’s orbital magnetic moment and spin magnetic

moment are equivalent. However, as was the case for the classic magnetic dipole,

an applied external field breaks this symmetry. This interaction is often called the

Zeeman interaction. The Hamiltonian describing the interaction of a magnetic field

directed along the z-axis with the spin and orbital magnetic moments of the electron

can be described by the following equation:

H = −µB
~

(̂l + 2ŝ) ·B = −µB
~

(m̂l + 2m̂s)Bz = −µB(ml + 2ms)Bz (2.15)

where ms and ml are the quantum numbers of the spin and orbital angular momenta,

respectively, and µB is the Bohr magneton, which is equal to γl
~ , From this equation, it

is clear that the magnetic field breaks the degeneracy of the different projections of the

spin and orbital angular momenta described by the ms and ml quantum numbers.

Resulting in the magnetic moments that are aligned with B, those with positive

magnetic quantum numbers, resulting in the lowest energies. From this equation,

we see that the energy of a magnetic dipole is minimized when the dipole is aligned

with the external field, B. From this analysis, it is clear that an applied magnetic

field breaks the symmetry of the system resulting in the orientation aligned with the

applied B having the least energy. As a result, one might assume that all materials

when placed in an external magnetic field will enhance the magnetic field, because all
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of the magnetic moments will align with the field. Although this is the case for certain

materials, such as paramagnetic materials and ferromagnets; there are materials that

when placed in magnetic fields have spins that align in the opposite direction. The

response of a material to an external magnetic field is described by the magnetic

susceptibility, χ. This parameter can be determined using the following relation:

χ =
µ0M

B
(2.16)

In the following sections, the physics of paramagnetic materials and ferromagnetic

materials will be discussed. The first class of materials discussed will be paramag-

netic.

2.1.1 Paramagnetism

As was mentioned in Section (2.1), paramagnetic materials are those which when

place in an external magnetic field, increase the magnitude of the field. This section

of the dissertation will describe the physics behind this phenomenon.

From Section (2.1), we know that the interaction of an electron with an external

magnetic field, B, is referred to as the Zeeman interaction, and can be described by

a Hamiltonian of the following form:

HZeeman = −µB
~

(̂l + 2ŝ) ·B = −µB
~

(2ms + ml) ·Bẑ = µB(ml + 2ms)B (2.17)

For this derivation, we will consider a single electron in the s-orbital of an atom.

Consequently, the orbital angular momentum,l, will be equal to zero. Accordingly,

the possible energies of this single electron can be described by the following equation:

E = −2µBmsB (2.18)
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The thermodynamic average of a parameter,f, can be described by the following

equation:

< f >=
1

Z

N∑
n=1

fne
En
kBT (2.19)

where m spans the number of possible configurations, N, and Z is the partition

function and can be described by the following equation:

Z =
N∑
n=1

e
En
kBT (2.20)

< m >=
1

Z

N∑
n=1

mie
Ei
kBT =

µB(e
µBB

kBT − e−
µBB

kBT )

(e
µBB

kBT + e
−µBB
kBT )

(2.21)

This equation can also be represented by the following equation:

< m >= µB(
ex − e−x

ex + e−x
) = µBtanh(x) (2.22)

where x=µBB
kBT

. At room temperature, x<< 1, as a result, tanh(x)∼x. In this limit,

< m > can be described by the following equation:

< m >=
µ2
BB

kBT
(2.23)

For this derivation, only the spin of a single electron was considered. The results

of this derivation can be extended to a material with multiple electrons if the electrons

do not interact with one another. For this sort of system, the total magnetization,

M, of a system with n electrons can be described by the following equation:

M = n < m >= n
µ2
BB

2kBT
(2.24)
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Since the magnetic susceptibility, χ is described by the following equation:

χ =
µ0M

B
(2.25)

.

For this system of n independent electrons, the magnetic susceptibility (χ) can be

described by the following equation:

χ =
nµ0µ

2
B

kBT
(2.26)

In this derivation, only the magnetism of a single spin was considered. Although

this illustration was useful, the atoms used for the studies described in this disserta-

tion, contained atoms with several electrons. Consequently, it would be illustrative to

extend this analysis to a system with several electrons. The remainder of this section

will focus on this subject.

For a single electron in the s-orbital of an atom, the total spin angular momentum,

S, is equal to 1
2
. Accordingly, there are only two orientations of the associated mag-

netic moment, ms. However for an electron in another type of orbital or for several

electrons, the situation is more complex. In both of these cases, the total angular

momentum of the systems includes more than one angular momentum vector. Since

both the orbital and spin angular momenta are vectors, the total angular momentum,

J, must include a vector sum. As a result, J is described by the following expression:

J = L + S (2.27)

where L and S are the total orbital and spin angular momenta of all of the electrons,

respectively. As was the case for a single electron, the total angular momentum can

17



be described in terms of ~ using the following equation:

J = MJ~ (2.28)

where MJ are natural numbers. As was the case for the single electron, the different

orientations of J are quantized. The change in the total angular momentum , ∆J,

between neighboring orientations is is ~ while ∆MJ=1. Consequently, there are 2J+1

possible orientations of the J, these states can be described by the following set of

equations:

J : −MJ~ < J < MJ~

MJ : −J
~
< MJ <

J

~

(2.29)

It is clear that the classical case where the possible orientations of the magnetic

moment are continuous is reached as J → ∞. As was the case for the single s-

electron, none of the orientations of J are energetically favored. However when this

system of electrons with total angular momentum, J, is placed in an external magnetic

field, B, this symmetry is broken. Once again, the interaction of the external B and

the magnetic moments of an atom can be described using the Zeeman interaction

[Equation(2.17)] which has the following form:

HZeeman = −m ·B (2.30)

For a magnetic field, B, directed along ẑ, HZeeman has the following form:

HZeeman = −m ·B =
µB
~

(Lz + 2Sz)Bz (2.31)

Equation (2.31) can be simplified using the Landé g-factor, gl , which is defined as

the ratio of the projection of the total magnetic moment along the total angular
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momentum, J, and the magnitude of J and has the following form:

gl =
1

2

S(S + 1)− L(L + 1)

J(J + 1)
+

3

2
(2.32)

Employing the Landé g-factor, gl, the magnitude of J has the following form:

m = gl
µB
~

J = glµBMJ (2.33)

Consequently, HZeeman [Equation(2.31)], can be described by the following equation:

HZeeman = glµBMJBz (2.34)

Applying Equation (2.19) to an atom with several electrons, one finds that the ther-

modynamic average <M> of an atom with several electrons can be described by the

following equation:

< M >=
1

Z

J∑
−J

MJe
−i En

kBT =
1

Z

J∑
J

MJe
i
glµBMJB

kBT (2.35)

The Taylor series expansion of e has the following form:

N∑
n=1

xn

n!
≈ 1 + x (for small x) (2.36)

Applying Equation (2.36) to Equation (2.35) results in the following equation:

< M >=
1

Z
MJ

J∑
−J

ex (2.37)

where x = glµBMJB
kBT

. For temperatures near and above RT, x<<1. As a result, < M >
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for T near and above RT, can be described by the following equation:

< Mz >=
glµB
Z

J∑
−J

MJ(1− glµBMJB

kBT
) (2.38)

where the partition function, Z, has the following form:

Z =
J∑
−J

e
−i glµBMJB

kBT (2.39)

Inserting Equation (2.39), into Equation (2.38), we find that < M > can be described

by the following equation:

< MZ >= −
glµB

∑J
−JMJ(1− glµBMJB

kBT
)∑J

−J e
−i glµBMJB

kBT

(2.40)

Evaluating the sums in Equation (2.40) results in the following equation:

< MZ >=
µ2
Bg

2
l B[J(J + 1)]

3kBT
(2.41)

Applying Equation (2.16) to Equation (2.41) to determine the magnetic susceptibility,

χ, of the multi-electron atom, one finds that χ can be described by the following

expression:

χ =
µ0g

2
l µ

2
BH[J(J + 1)]

3kBT
(2.42)

This result diverges as T→ 0, and suggests a change in the behavior as T approaches

zero. Below a critical temperature, this description fails for magnetic materials.

2.1.2 Ferromagnetism

This section will discuss the physics of ferromagnetic materials, which as men-

tioned in Section (I) have a spontaneous magnetic polarization in the absence of an

applied field. As much as these materials are described by their magnetic polarization

20



in the absence of an externally applied field, they are also defined by the temperature

above which this order disappears. This temperature is called the Curie Temperature,

TC . Below this TC , the material is ferromagnetic. Ferromagnetism is caused by the

exchange interaction which can be described by the following equation:

Hexchange = −Js1 · s2 (2.43)

where J is the coupling constant and s1 and s2 are the magnetic spin momenta. It

is important to note that when |J|>0, the parallel alignment of neighboring spins is

favored. The parallel alignment of magnetic spins results in a spontaneous magneti-

zation, M, which is the defining characteristic of ferromagnetic materials.

2.2 Crystalline structure of ordered materials

The experiments described in this dissertation investigate the properties of both

random and ordered alloys. Consequently, this section of the dissertation will intro-

duce the formalism used to describe ordered structures which will be discussed in

more detail in Sections (2.2.1) and (2.2.2).

Crystalline solids can be modeled using the repetition of a single unit at regularly

spaced points throughout space. Using this representation, one can describe a crystal

lattice by first describing the repeated fundamental unit and finally the lattice along

which the element is copied. The position of the points on the underlying lattice can

be represented by the following expression:

rb =
3∑
i=1

ciRi (2.44)

where ci spans the natural numbers and Ri has the following form:
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Ri = Rix̂i. (2.45)

In this equation, x̂i = [x̂, ŷ, ẑ], and Ri is equal to the spacing of the points along

the direction, x̂i. Ri is often referred to as the lattice constant. Collectively, the

points described by Equation (2.45) form the direct lattice of a material. Looking

at Equation (2.44), it is clear that the direct lattice is composed of regularly spaced

points separated along the direction specified by x̂i. The ions of this lattice interact

with the electrons of the lattice ions via the Coulomb interaction. Since the lattice

ions are positioned at regular intervals throughout space, the potential, U(r), which

describes this interaction will exhibit the same repetition and thus can be represented

by the following equation:

U(r + Ri) = U(r) (2.46)

To determine the electron wavefunctions, the time-independent Schrödinger equation

must be used; which has the following form:

− ~2

2m
∇2ψ(r) + U(r)ψ(r) = Eψ(r) (2.47)

Since the potential, U(r), can be described by Equation (2.46), one can expect the

electron wavefunctions to exhibit the same repetition excepting a phase which can be

described by a plane wave. Therefore, the electron wavefunction can be described by

the following equation:

ψ(r + Ri) = ψ(r)eik·Ri (2.48)

where k is the spatial frequency of the plane wave. It is clear from Equation (2.48),

that ψ(r + Ri) = ψ(r) only if the plane wave meets the following criterion:
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eik·Ri = 1 (2.49)

This equation, Equation (2.49), only holds if the period of the plane wave, 2π
K

, is equal

to a multiple of the spacing between the units of the underlying lattice, n∗Ri, or if

the following equation is valid.

K ·Ri = 2πn (2.50)

where n spans the natural numbers. Using Equations (2.45) and (2.50), it is evident

that K can be represented by the following expression:

K =
2π

Ri

3∑
i=1

biai (2.51)

where each element of bi spans the natural numbers. The points described by Equation

(2.51) form a lattice which is often called the reciprocal lattice. We will return to

this lattice when we describe the physics behind X-Ray crystallography, which will be

used to characterize the structure of the materials studied in this dissertation. More

immediately, in the next section the formalism used to describe the direct lattice will

be explained.

2.2.1 Crystalline Structure of metals

In Section (2.2), the formalism used to specify the direct lattice of ordered mate-

rials was introduced. This section of the dissertation will build upon the framework

laid in this introduction. As in Section (2.2), the general presentation of this topic

will be similar to that of Ashcroft and Mermin (1976). However, only the examples

and representations pertinent to the samples studied in this thesis will be highlighted.

Interested readers should refer to Ashcroft and Mermin (1976) for a more thorough

explanation of this topic.

As introduced in Section (2.2), the lattice of a crystalline solid can be modeled
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using the repetition of a physical element at regularly positioned points throughout

space. At each lattice site, either a single atom or a combination of atoms can be

placed. In either case, this underlying lattice is ordered. Accordingly, one should be

able to describe the position of each point of the lattice, relative to a fixed origin,

using a combination of integer multiple translations along a fixed set of displacement

vectors. This condition which was stated in Equation (2.44) can be expressed by the

following definition:

The position, R, of any point of a Bravais lattice, with respect

to a fixed origin, can be described using the displacements de-

scribed in Equation (2.44), which are, collectively, restated in

the following equation:

R =
∑
i

niRi

where Ri is defined in Equation (2.45) and ni is the magnitude

of the vector component along the direction specified by Ri.

(2.52)

The collection of points described by Equation (2.52) form a Bravais lattice, while

the unit vectors, xi, are its primitive vectors. It is important that, altogether, the

primitive vectors, xi, span the space used to describe the specific lattice. Additionally,

for a fixed value of ni, the points described by Ri form the minimum number of sites

necessary to form the specific Bravais lattice. This collection of points is called the

unit cell of the Bravais lattice. Another formulation of the Bravais lattice definition

[Equation (2.52)] is captured by the following statement:

For every point in a Bravais lattice, the structure and orienta-

tion of the surrounding lattice points must be independent of

the position of the point in the lattice.

(2.53)

Although Equation (2.52) and statement (2.53) are equivalent, the geometric nature of

statement (2.53) allows one to quickly determine whether a particular lattice suits the
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Figure 2.1: Examples of Bravais lattices

Bravais lattice criterion Ashcroft and Mermin (1976). Consequently, throughout this

dissertation, the definition (2.53) will be used to determine whether a specific lattice

qualifies as a Bravais lattice. This categorization of each lattice has implications

that present themselves while using X-ray crystallography to determine the structure

of the specific material. This connection will be clarified in Section (2.8) where X-

ray crystallography will be discussed. In the remaining portion of this section, the

structure of the Bravais lattices that will be important for the work of this dissertation

will be covered.

There are only 219 distinct structures that qualify as Bravais lattices. A small

subset of these Bravais lattices are displayed in Figure (2.1) along with their defini-

tions. A good introduction to the structure of Bravais lattices is possibly the most

basic one, the simple cube. The positions of the lattice sites of the unit cell of a

simple cube can be described using the following set of unit vectors:

a1 = ax̂,

a2 = aŷ,

a3 = aẑ.

(2.54)

It is clear that a monatomic simple cube satisfies the Bravais lattice definition speci-

fied by Equation (2.53). However, for the face-centered cubic (fcc)face-centered cubic
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Figure 2.2: Schematic drawing of bcc Fe conventional unit cell

Figure 2.3: Schematic drawing of alternate depiction of bcc Fe lattice

(fcc) lattice and the body-centered cubic (bcc) lattice, this connection is not so trans-

parent. Since these two examples are important for the work of this thesis, they will

now be discussed. The bcc unit cell consists of a simple cube with an atom at its

center. Figure (2.2) displays the conventional unit cell of the bcc Fe lattice. Applying

Statement (2.53) to the conventional unit cell displayed in Figure (2.2), it is clear that

the structure and orientation of the surrounding lattice points of each corner atom

are equivalent. However, the surrounding lattice points of the center atom seem to

differ from those surrounding the corner atoms. Accordingly, one might conclude that

this lattice does not satisfy the definition and thus is not a Bravais lattice. However,

upon further investigation, it becomes clear that the bcc structure can also be repre-

sented using interpenetrating cubes as in Figure (2.3). Using this representation, it

is clear that the corner atom of cube 1 is the center atom of cube 2. Meanwhile,

the corner atom of cube 2 is the center atom of cube 1. Since a single atom can be

both the corner and center atom of a cube, depending on the cube’s position in the
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Figure 2.4: Schematic drawing of face centered cubic Pd conventional unit cell

lattice, it is clear that the surrounding lattice environment of the atoms in both of

the positions are identical. This equivalence in the structure and orientation of the

lattice points surrounding the center and corner points of the bcc conventional unit

cell confirms that the bcc lattice is a Bravais lattice. Applying the first formulation

of the Bravais lattice definition, Equation (2.52), to this lattice, one finds that each

point of the lattice can be reached through integer multiple displacements along the

following primitive vectors:

a1 =
a

2
(−x̂ + ŷ + ẑ),

a2 =
a

2
(x̂− ŷ + ẑ),

a3 =
a

2
(x̂ + ŷ − ẑ)

(2.55)

Similar to the bcc lattice, the fcc lattice is also cubic, but instead of having an

atom at the cube’s center, the fcc lattice has a single atom at the center of each cubic

face. The fcc Pd conventional unit cell is displayed in Figure (2.4). After observing

this conventional unit cell, one might conclude that the fcc lattice is not a Bravais

lattice according to Equation (2.53), because the surrounding lattice of the corner

atoms are not the same as those of the atoms at the cubic faces. Nonetheless, as was

the case with the bcc lattice, the fcc lattice can also be represented as interleaving

cubes. A schematic representation of one face of the lattice can be found in Figure
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Figure 2.5: Schematic drawing of face-centered cubic Pd lattice

(2.5). This figure demonstrates this mixing. It is clear from Figure (2.5), that the

atoms at the center of the faces of the original cube (cube 1) form the corners of

a second cube (cube 2). The corners of cube 1 are the atoms at the center of the

faces of cube 2. This representation of the lattice demonstrates that the atoms at

the center of the cubic faces are equivalent to the atoms at the corners of the fcc

conventional unit cell. Consequently, the fcc lattice meets the condition for a Bravais

lattice. It is important to note that this equivalence only holds if the atoms of cube

1 and cube 2 are of the same species, and is invalid if they are different. In the

case where the elements of the cubes differ, the structure must be represented using

an underlying Bravais lattice with a physical element replicated at each point of the

lattice. This copied physical element is called a basis. It can contain a single atom or

a combination of atoms. It is important to note that the ordered materials described

completely using only the primitive vectors of the Bravais lattice also consisted of a

basis, but it only included one atom. Since the lattice with a basis portrayal is the

most general description approach, this method will be used to describe the structures

in the remainder of this thesis. In the latter portion of this section, the lattice with a

basis formalism will be used to describe the important structures of this dissertation,

starting with the bcc lattice.

In order to represent the bcc lattice using the lattice with a basis formalism, it

is most helpful to look at two neighboring unit cells of the bcc lattice. Figure (2.6)
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Figure 2.6: Schematic drawing of Fe bcc unit cell with basis and translation vector

shows these neighboring conventional unit cells. Looking at the positions of the atoms

in Figure (2.6), it is clear that both cells can be represented by translating the corner

atom and the center atom along the primitive vectors of a simple cube. Consequently,

one can conclude that the underlying Bravais lattice can be represented by the lattice

vectors of a simple cube which have the following form:

a1 = ax̂,

a2 = aŷ,

a3 = aẑ

(2.56)

where a is the lattice constant of the bcc unit cell. The basis of the structure can

be represented by the following basis vectors which are measured using the same

coordinate system used to describe the lattice of the simple cube:

r1 = 0,

r2 =
a

2
(x̂ + ŷ + ẑ)

(2.57)

In order to find the primitive vectors and basis vectors needed to describe the fcc

lattice, one can look at Figure (2.4). From this figure, it is evident that the fcc lattice

can be represented by translating the corner and the center atoms in the xy, yz, and

xz planes along the vectors of a simple cube. As a result, the lattice vectors are

29



equivalent to those described in Equation (2.56). While the basis vectors have the

following form:

r1 = 0,

r2 =
a

2
(x̂ + ŷ),

r3 =
a

2
(ŷ + ẑ),

r4 =
a

2
(x̂ + ẑ)

(2.58)

As the previous examples demonstrate, the lattice with a basis formalism can be used

to describe a monatomic Bravais lattice. However, since each of these structures

can be described using only primitive vectors, this method seems unnecessary. It is

not until one works to describe a structure with multiple atoms that the power of the

lattice with a basis formalism is unveiled. Since, for these systems the primitive vector

representation fails. This fact is highlighted by the description of the structures,

FePd3, FePd, SrTiO3, and BaTiO3. None of these structures can be completely

described using only primitive vectors. Consequently, in the latter portion of this

section, the structure of the unit cells of these materials will be described using the

lattice with a basis formalism.

The unit cell of FePd3 consists of a simple cube with Fe at the corners of the cube

and Pd atoms at the center of the cubic faces. A schematic drawing of this structure

can be found in Figure (2.7). Since this structure contains two types of atoms, it

is not a Bravais lattice. However, it can be described using the lattice with a basis

formalism. In this case, the unit cell of the underlying Bravais lattice can be modeled

as that of a simple cube which can be described using the lattice vectors of Equation

(2.56) with a four atom basis, 1 Fe atom and 3 Pd atoms. The position of the 4 atoms
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Figure 2.7: Conventional unit cell of FePd3

can be described by the following basis vectors:

Fe(1): 0̂,

Pd(1):
a

2
(x̂ + ŷ),

Pd(2):
a

2
(ŷ + ẑ),

Pd(3):
a

2
(x̂ + ẑ).

(2.59)

where the lattice constant,a, is 3.848 Å. A material with this structure is said to

exhibit L12 ordering. The structure of FePd consists of a tetragonal unit cell with

Fe atoms at two of the opposing tetragonal face centers, and two Pd atoms at the

centers of the other two opposing faces and the bottom and top faces. A schematic

representation of the FePd conventional unit cell can be found in Figure (2.8). Using

the lattice with a basis formalism, FePd can be described using a tetragonal Bravais

31



Figure 2.8: FePd unit cell

lattice, described by the following primitive vectors:

a1= ax̂,

a2= aŷ,

a3= cẑ.

(2.60)

where a and c are 3.723 Åand 3.852 Å, respectively. Since the FePd structure has

Pd atoms at the center of its bottom face and two of its opposing faces and Fe at the

center of the other two opposing faces, the position vectors of the basis atoms can be

described by the following vectors:

Fe(1)= 0̂,

Fe(2)=
b

2
ŷ +

c

2
ẑ,

Pd(1)=
a

2
x̂ +

c

2
ẑ,

Pd(2)=
a

2
x̂ +

b

2
ŷ.

(2.61)

A structure of this sort is said to exhibit L10 ordering. During the final portion of this
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Figure 2.9: SrTiO3 unit cell

Figure 2.10: BaTiO3 unit cell

section, the structure of the two perovskites, SrTiO3 and BaTiO3 will be reviewed.

Although these perovskites exhibit different structural phases at different temper-

atures,the structure of these materials at room temperature will be discussed in this

section. The structures of their additional phases along with the temperatures where

they exist will be discussed in Section (2.5.1). Schematic drawings of their unit cells

can be found in Figure (2.9) and Figure (2.10), respectively. At room temperature,

SrTiO3 consists of a simple cube of Sr+2 atoms, with a Ti+4 ion at its center. The

Ti+4 ion is surrounded by 6 O−2 ions which form an octahedron centered about the

Ti+4 ion. Using the lattice with a basis formalism, the underlying Bravais lattice is a

simple cube with primitive vectors described by the vectors in Equation (2.56), where
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a is 5.511Å. The basis vectors can be described by the following vectors:

Sr(1)= 0,

Ti(1) =
a

2
(x̂ + ŷ + ẑ),

O(1)=
a

2
(x̂ + ŷ),

O(2)=
a

2
(x̂ + ẑ),

O(3)=
a

2
(ŷ + ẑ).

(2.62)

BaTiO3 has a similar structure to SrTiO3, but at room temperature its structure is

tetragonal. The BaTiO3 unit cell consists of Ba+2 ions at the corners of the tetrag-

onal structure and a Ti+4 atom positioned at the center of the tetragonal structure.

Surrounding the Ti+4 ion are 6 O−2 ions which form an octahedron about the ion.

A symbolic diagram of the BaTiO3 structure can be found in Figure (2.10). The

BaTiO3 structure can be described using an underlying tetragonal lattice with vec-

tors described in Equation (2.60) where a, b, and c are equal to 3.99 Å,3.99 Å, and

4.04 Å, respectively. The positions of the atoms in the basis can be described by the

following vectors:

Ba(1)=0,

Ti(1)=
a

2
(x̂ + ŷ + ẑ),

O(1)=
a

2
(x̂ + ŷ),

O(2)=
a

2
x̂ +

c

2
ẑ,

O(3)=
a

2
ŷ +

c

2
ẑ.

(2.63)

As described in Section (2.2), for the work described in this dissertation, the alloys,

FePd and FePd3 will be deposited onto the substrates BaTiO3 and SrTiO3. These

structures will be revisited to describe their magnetic and electric properties. The

next section of this dissertation will provide the framework necessary to describe the
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reciprocal lattice which is used in X-ray crystallography to determine the crystalline

structure of the materials used in this study.

2.2.2 The Reciprocal lattice

Section 2.2.1 discussed the formalism used to characterize the crystalline struc-

ture of ordered materials. Although these methods adequately describe crystals, in

practice, the crystalline structure is not measured directly. Instead, diffraction tech-

niques are implemented to determine the reciprocal lattice. The results of these

measurements are then used to determine the structural properties of the direct lat-

tice. Consequently, in order to deduce the structure of the direct lattice from these

measurements of the reciprocal lattice, one must understand the structure of the

reciprocal lattice and how this structure relates to its corresponding direct lattice.

In this section of the dissertation, we will explore this connection. The section will

begin with a definition of the reciprocal lattice that is more easily applied than Equa-

tion (2.51), and conclude with a visual representation of the relation between the

reciprocal and direct lattices.

As was discussed in Section (2.2), every ordered crystal lattice can be modeled as

a periodic structure. One method used to model this periodic configuration uses a

train of impulses. A single impulse positioned at r = n|a0| can be described by the

following function:

f(x) = δ(x− n|a0|) (2.64)

where |a0| is the lattice constant of the 1D lattice, δ(x) is the Dirac delta function, and

n spans the natural numbers. Consequently, a train of impulses along one dimension

can be described by the following equation:

f1D(x) =
∞∑
n=1

δ(x− n|a0|) (2.65)

35



Since Equation (2.65) is periodic with a period of |a0|, one can use Fourier decom-

position to describe the function as a scaled sum of sinusoidal functions. Using these

methods, a general function, g(x), can be represented as a scaled sum of sinusoidal

functions with the following general form:

g(x) =
∞∑

m=−∞

Ĝme
imπ x

L (2.66)

where 2L equals the period of the function, which for our example is equal to a0, and

the coefficients, Ĝm, can be described by the following equation:

Ĝm =
1

2L

L∫
−L

f(x)e−imπ
x
Ldx. (2.67)

Applying Equation(2.67) to the impulse centered at x = 0, one can represent the

periodic function, f(x), [Equation (2.65)] as a sinusoidal sum, with Fourier coefficients

of the following form:

Ĝm =
1

|a0|

|a0|
2∫

− |a0|
2

δ(x)e−imπ
x
L =

1

|a0|
(2.68)

Inserting Equation (2.68) into Equation (2.66) , we find that the 1D train of impulses

can be described by a function with the following form:

f(x) =
∞∑

m=−∞

1

|a0|
e

2imπ x
|a0| (2.69)

It is well known that the dual pair of the delta function, δ̂(kx), can be described by

the following equation, Ablowitz and Fokas (2003):

F [δ̂(kx − k0)] =
1

2π

∞∫
−∞

δ̂(kx − k0)eikxxdkx =
1

2π
eik0x (2.70)
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Using this result, one can deduce that the inverse Fourier transform of a shifted

Dirac delta function has the following form:

2πδ̂(kx − ko)
F−1

=⇒ eikox (2.71)

F [f(x)] =
2π

|a0|

∞∑
m=−∞

δ(kx −
2mπ

|a0|
) (2.72)

Using the relation highlighted in Equation (2.72), one can conclude that the Fourier

transform of a train of impulses each separated by intervals of length, |ax0|, in position

space is equal to a train of impulses in reciprocal space, each separated by intervals

equal to 2π
|ax0 |

.

Since, the crystal lattice is composed of a series of atoms spaced at equal intervals

equal to a0, one can conclude that the reciprocal lattice of the crystal will consist

of a series of regularly spaced points at intervals equal to 2π
a0

. Similar to the case of

the direct lattice, the positions of these points in reciprocal space must be described

using vectors. In multiple dimensions, a clear definition of these vectors is needed.

This will be the next topic discussed in this section.

Using the Bloch equation [Equation (2.49)], one is able to deduce that the re-

ciprocal lattice vectors must be parallel to the direct lattice vectors. Consequently,

the reciprocal lattice vectors of a 1D direct lattice with lattice vector, ax0, can be

described by the following equation:

k1 =
2π

|ax0 |
âx0 (2.73)

The results of this analysis used to determine the reciprocal lattice of a 1D lattice

can be easily applied to a 2D lattice with atomic spacings of |ax0| and |ay0| along the

x and y directions, respectively. As was the case for the 1D lattice, the 2D lattice can
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be modeled as a train of impulses described by the following equation:

f(x,y) =
∑
ny

∑
nx

δ(x− nx|ax0|)||δ(y− ny|ay0 |) (2.74)

where nx and ny span the natural numbers. Applying the results of Equation (2.72) to

each dimension of the 2D lattice, one finds that the magnitude of the reciprocal lattice

vectors are 2π
|ax0 |

and 2π
|ay0| . We also know from Equation (2.49) that the direction of

each reciprocal lattice vector is parallel to its corresponding direct lattice vector.

Accordingly, both the magnitude and direction of the reciprocal lattice vectors of the

2D direct lattice can be described by the following set of equations:

b1 = 2π
ẑ× ay0

Ω2

b2 = 2π
ẑ× ax0

Ω2

(2.75)

where Ω2 is the area of the direct lattice unit cell, which is equal to Ω2 = |ax0 ||ay0|.

Since the materials studied in this dissertation will have 3 dimensions, the results of

this analysis must be applied to a lattice with 3 dimensions. Using the formalism used

to describe the 1D and 2D lattice, a 3D Bravais lattice with lattice spacings, |ax0|,

|ay0|, |az0|, along the x,y and z axes, respectively, can be described by the following

equation:

f(x,y,z) =
∑
nz

∑
ny

∑
nx

δ(x− nx|ax0|)δ(y− ny|ay0|)δ(z− nz|az0|) (2.76)

Using the results of Equation (2.49) and Equation (2.72), we can conclude that the

reciprocal lattice vectors of the 3D direct lattice can be described by the following set
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of equations:

kx = 2π
ay0 × az0

Ω3

,

ky = 2π
az0 × ax0

Ω3

,

kz = 2π
ax0 × ay0

Ω3

.

(2.77)

where Ω3 = ax0 · (ay0 × az0) and ai0 are the primitive vectors of the corresponding

direct lattice. Applying the set of equations in Equation (2.77) to the unit vectors of

the bcc lattice [Equation (2.55)], one finds that the reciprocal lattice of the bcc lattice

is the fcc lattice. Moreover, if Equations (2.77) are applied to the unit cell of a simple

cube [Equation (2.54)], it is clear the reciprocal lattice of a simple cube is a simple

cube. This result will prove to be important for the analysis of the XRD results

described in this dissertation. Although this set of equations enables one to describe

the components of the reciprocal lattice quantitatively, a visual representation of

the connection between the two lattices is hidden. We will now introduce another

representation that elucidates this relation.

Up to this point in the dissertation, each material structure has only been char-

acterized by its entire unit cell. Although this is a logical presentation, it is not the

only method. One can also look at a specific material as being composed of different

planes of atoms. Since the entire crystal lattice is ordered and, in theory, infinite,

every lattice plane of atoms is infinite. This also means that for each lattice plane,

there exists an infinite set of such planes each separated by fixed intervals through-

out space. Every set of planes is referred to as a family of planes. Figure (2.11a)

illustrates the family of lattice planes of a simple cube that are parallel to the x-axis.

However, upon further inspection of this figure, one can conclude that this family

of planes is not unique. There are also lattice planes that are perpendicular to the

< 110 > vector. This family of planes is illustrated in Figure (2.11b). As these two

examples demonstrate, a single family of planes is often not a unique description of
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Figure 2.11: Schematic drawing of a simple cubic lattice with highlighted (100) and
(110) planes

a crystal lattice. However, we will later see that in X-ray diffraction the total sum

of the reflections from each family of lattice planes can uniquely describe the crys-

talline structure of a material. From Figure (2.11), it is clear that a family of lattice

planes can be described by a vector that is perpendicular to the planes. After further

consideration of the properties of the reciprocal lattice, it will become clear that the

reciprocal lattice vectors are perpendicular to the lattice planes of a Bravais lattice,

and can be used to identify each family of lattice planes. In the remainder of this

section, this relation between the lattice planes of a Bravais lattice and the reciprocal

lattice vectors will be examined.

As Section (2.2) illustrates, the phase of the electron’s wavefunction can be de-

scribed by a plane wave that satisfies Equation (2.49). This equation requires the

phase of the wavefunction to be equal to unity at the Bravais lattice sites. From

elementary complex variables, we know that along the direction of k, the plane wave

amplitude oscillates with a spatial frequency of |k|. Meanwhile, perpendicular to k,

there is no variation in the plane wave amplitude. One can use this information,

to determine the orientation of the plane wave relative to a general family of lattice

planes. For any family of lattice planes, one can position a plane at the position

r = 0. For all the points on this plane, eik·r = eik·0 = 1. As a result, the variation of

the plane wave used to describe the change in the phase of Ψ(r) must occur for trans-
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lations perpendicular to the surface of the lattice plane. Consequently, k must be

perpendicular to the plane of atoms. Moreover, since Ψ(r+nRi) = Ψ(r), the electron

wavefunction must be equal to unity at each point on each plane of the family. Since

the direct lattice has a period of Ri, each plane is surrounded by two neighboring

planes, each separated by a distance, Ri, from the original plane. Using this analysis,

one might conclude that the orientation of a family of lattice planes can be uniquely

described by the Bravais lattice vector, Ri. Although the neighboring lattice points

are separated by the displacement vector, Ri, this vector does not uniquely describe

the orientation of the plane, since, the lattice sites within a single plane are also sep-

arated by the same displacement vector, Ri. Although this is the case for the Bravais

lattice vector,Ri, the reciprocal lattice vector,K must always be perpendicular to the

plane of lattice sites. As a result, K uniquely describes the orientation of the plane.

From this analysis, one can conclude that each family of planes can be uniquely

described by the shortest reciprocal lattice vector,K0, of the crystal’s Bravais lattice.

Using the following definition of K,

K = lb1 +mb2 + nb3, (2.78)

a family of planes can be described by the reciprocal lattice vector K0 with a length

that is equal to the separation of two adjacent planes in reciprocal space. Accordingly,

a specific family of planes perpendicular to the vector < h k l > in reciprocal space

with adjacent planes separated by the length of < h k l > in reciprocal space is

described using the notation (h k l) where h, k, and l are each called Miller indices

when used in this notation. Although this analysis is useful, this definition describes

the plane in reciprocal space. In order to connect these indices to distances in direct

space, the plane of lattice sites described by (l m n) intersects the x1, x2, and x3 axes
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at the points described by the following equation:

x1 :
a1

h

x2 :
a2

k

x3 :
a3

l
.

(2.79)

where a1,a2, and a3 are the x, y and z-intercepts of the lattice plane. For the remainder

of this dissertation, the notation, <h k l>, will be used to denote the components of a

vector in reciprocal space, and ( h k l) will be used to refer to the plane perpendicular

to this vector.

2.3 Coupling between crystalline structure and magnetism

2.3.1 Magnetic Anisotropy Energy (MAE)

From elementary quantum mechanics, we know that the potential of a single atom

is spherically symmetric. Ignoring the interactions between the electrons of the atom,

there is no preferred configuration of the spin magnetic moment. However in a simple

cubic Bravais crystal lattice there are several atoms positioned at regular intervals

along the x̂, ŷ,and ẑ directions. The presence of these surrounding lattice ions breaks

the symmetry of the single atom Hamiltonian. The potential created by the other

ions in the crystal is commonly referred to as the crystal field, Vcf . The addition of

Vcf to the Hamiltonian changes the eigenstates of the system. This potential plays

a large role in the magnetocrystalline anisotropy, which will be discussed in the next

subsection.

Generally speaking, any interaction that is not spherically symmetric will break

the symmetry of the system and will result in magnetic anisotropy. The energy of a

specific configuration of the magnetic moments of the system, can be described by

the free energy, G. The effect of interactions on the free energy of the system can be
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described by the following contributing free energy term, Gs

Gs = Kasin
2(θ − θ0) (2.80)

where Ka is the anisotropy coefficient which has units, J
m3 and is specific to the source

of the interaction, and θ is the angle of the magnetization of the system relative

to an axis of interaction. It is important to note that the sign of Ka determines

whether θ0 is the favored orientation of the magnetization. In order to determine the

preferred orientation of the system, the free energy must be minimized with respect

to θ. The resulting angle is the preferred axis of the system. The interactions that

are important for the work in this dissertation are the magnetocrystalline anisotropy

energy, magneto-electric coupling, magneto-elastic coupling, and shape anisotropy.

These interactions along with their effects on the magnetic anisotropy of the system

will be discussed in the following subsections.

2.3.2 Magnetocrystalline Anisotropy Energy

In a crystal lattice, the electrons of a single atom interact with the neighboring

lattice ions through the electrostatic Coulomb interaction. Ignoring the Coulomb

interaction between neighboring electrons, the orbitals of the electrons of a single

atom are impacted by this ’crystal field’ created by the surrounding lattice ions. As

a result, the electron orbitals that were originally degenerate experience shifts due

to this new term in the Hamiltonian of the electrons. The orbital that describes the

position of the electron when this interaction is included is the one with the lowest

energy. In this manner, the orbital angular momentum, L is coupled to the lattice.

Moreover, since the spin orbit coupling within a material can be generally described

by the following potential:

VSO = c L · S (2.81)
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where c is a constant that is specific to the material. In materials where VSO is large,

the energy of the electron is minimized when the spin angular momentum is aligned

with its orbital angular momentum. This coupling results in a magnetic anisotropy

of the crystal where the preferred orientations of the magnetic moments align with

the axes of the lattice. The contribution of this interaction in a cubic lattice on the

total free energy (F) of the system can be described by the following equation:

FMCA =K1[cos2(θ1)cos2(θ2) + cos2(θ2)cos2(θ3) + cos2(θ3)cos2(θ1)]

+K2[cos2(θ1)cos2(θ2)cos2(θ3)]

(2.82)

where θ1, θ2, and θ3 are the angles between M and <100>,<010> and <001>, re-

spectively. For a tetragonal system with an elongated axis the x-axis, FMCA has the

following form:

FMCA = K2
1 [sin2θ1 +K2sin4θ1] +K3cos2(θ2)cos2(θ3) (2.83)

This coupling will be important when analyzing the results of the experiments de-

scribed in this dissertation.

2.3.3 Magneto-elastic coupling and Magnetostriction

In magnetostrictive materials, the lattice distorts when the material is in the

presence of an external magnetic field, H. As was mentioned in Section (2.1), when

magnetic dipole moments are placed in an external magnetic field, H, the energy of

the magnetic moments is minimized when they are aligned with this magnetic field.

Conversely, the energy reaches its maximum value when the magnetic moments are

anti-aligned. As mentioned in Section (2.1), this interaction is commonly referred to

as the Zeeman interaction. The direction of a collection of spin magnetic moments

can also be affected by another coupling that is experienced when spin magnetic
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moments are in the presence of other spin magnetic moments. This is the exchange

interaction, and is described by the following equation:

Hex = Jijsi · sj (2.84)

where si and sj are the spin magnetic moments of the ith and j th electron, and

Jij is the coupling constant which describes the magnitude of the exchange coupling

between these two electrons. |Jij| strongly depends on the distance between the

electrons. For most materials, it only has a significant impact on the energies of the

nearest neighboring spins. The effect of exchange coupling on the response of spin

magnetic moments in the presence of an applied magnetic field, H, is to reduce the

magnitude of the applied H-field necessary to magnetize the material along dir(H).

Due to the exchange interaction, when one spin aligns with H, the energy of the

neighboring spins is reduced when aligned with this spin.

Jij is strongly affected by the spacing of the ith and j th electrons. This dependence

is captured by the constant, g, which can be described by the following expression:

εg = ε
∂Hex

∂ε
= ε

∂Jij
∂rij

∂rij
∂ε

(si · sj) (2.85)

where ε is the applied strain, rij is the spacing between the ith and j th electrons.

From Equation (2.85), the magnitude of the exchange interaction between neighboring

electrons is determined by the derivative,
∂Jij
∂ε

. The rate of change of the coupling

constant, Jij, with applied strain depends on the specifics of the material. Since

magnetizing a magnetostrictive material alters the lattice, the source of this coupling

must be an interaction that couples the spatial properties of the material with its

magnetic properties, one such interaction is spin-orbit coupling. The potential of this
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interaction is described by the following equation:

HSO = c L · S (2.86)

For magnetic materials that exhibit large spin-orbit coupling, when the magnetic

moments minimize their energy by aligning with the applied H, due to HSO, the

energy of the system is minimized when the orbital magnetic moments are aligned

with the the spin magnetic moment. The change in the orientation of L results in the

change in shape of the material. For materials, with smallHSO, this coupling between

the spin and orbital magnetic moments is negligible and thus the magnetostriction is

minimal.Duc and Brommer (2002)

For the magnetic materials studied in this dissertation, the atom responsible for

the ferromagnetic properties of the samples is Fe. Fe, a 3d atom, has delocalized

electrons. Since the electrons are delocalized their energies are more strongly affected

by the surrounding ions. These interactions largely decrease the orbital magnetic mo-

ment, which results in an HSO that is negligible. Accordingly, the spin magnetic mo-

ments are able to align with an external H while the orbital magnetic moments remain

effectively unchanged.Duc and Brommer (2002) This results in a magnetostriction

coefficient that is non-zero, but is small compared to materials where the spin-orbit

coupling is stronger.

Magnetostriction is empirically described using the magnetostriction coefficient,

λ, which is defined by the following expression:

λ ≡ ∆l

∆H
(2.87)

where l is the length of the material and H is the magnitude of the applied magnetic

field. The deformation of a material can be described using the following modes:

isotropic deformations, anisotropic deformations, and shear deformations.
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For a volume with cubic symmetry, an isotropic deformation alters the volume of

the material while maintaining the original symmetry of the material. Consequently,

this distortion is achieved by changing each lattice constant in the same manner.

Anisotropic deformations remove the cubic symmetry, while still maintaining the vol-

ume of the original cube. Shear deformations reduce the symmetry of the material

by altering the angles of the cube while maintaining the lattice constants and volume

of the original structure. Magnetostriction that results in isotropic deformations is

described by the isotropic magnetostriction (λ0). Magnetostriction that results in an

anisotropic deformation along <xyz> in the presence of an external magnetic field H

with dir(H)=<xyz> is referred to as linear magnetostriction, and described by the

magnetostriction coefficient, λxyz. In general, the relative sign of the change in vol-

ume (isotropic deformation), lattice constant (anisotropic deformation), angle (sheer

deformation) to the original cube is described by the sign of the magnetostriction

coefficient, λ. In the remainder of this thesis, the coupling between the lattice of a

material and its magnetism will be described using the magnetostriction coefficients.

2.3.4 Magneto-electric coupling

As was mentioned in Section (2.1), the angular momentum of the electron has

two components, one that is associated with the electron’s orbital motion while the

other contribution is associated with the spin of the electron. When an electron is

placed in an electric field, E, it experiences a force, Fe, which is opposite the dir(E)

for electrons. As a result, the orbits of the electrons are altered due to this external

field. Accordingly, the direction of the orbital angular momentum, L, is also changed.

As was described in Section (2.3.2), the orbital angular momentum electron is

coupled to its spin angular momentum through the spin-orbit coupling interaction,

VSO. The effect of this interaction on the energy of the electron is minimized when

the spin angular momentum (S) and the orbital angular momentum (L) are aligned.
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Consequently, in materials where the orbital angular momentum is not quenched, an

external electric field can indirectly control the magnetism of the material.

For the materials studied in this dissertation, the electric field was induced by

the electric polarization of the BaTiO3(100) substrate while in its tetragonal (ferro-

electric) state. Since the BaTiO3 is only in contact with the deposited film at the

film/substrate interface, only the orbits of the electrons near the interface will be

impacted by the electric polarization of BaTiO3 while in this phase. As a result, the

Magneto-electric coupling in multiferroic heterostructures occurs only at the inter-

face, and thus does not play a significant role in deposited films that are thick. This

reasoning will be important in the analysis of the results of the experiments described

in this dissertation.

2.4 Properties of Fe and Fe alloys

2.4.1 Allotropes of Fe

Between the temperatures 20oC and 4000oC and the pressures 10−12 bar and 1000

bar, all of the phases of Fe are expressed. For different regions of this range of tem-

peratures and pressure, Fe exists as a vapor, liquid, and solid. The temperature and

pressure ranges of each phase are displayed in the phase diagram shown in Figure

(2.12). While Fe can exist as either a vapor or liquid for various temperatures and

pressures, for the work covered in this dissertation, we were interested in tuning the

properties of the material by forcing the material to condense onto a substrate. Con-

sequently, the samples studied in this dissertation were solid. It is clear from Figure

(2.12) that for temperatures below 1538oC, there are three solid allotropes which ex-

ist for different temperature and pressure ranges. Below 500oC and 1000 bar, the

stable allotrope is α-Fe. The unit cell of this allotrope is bcc with a lattice constant

of 2.87Åat RT. Since the Curie temperature (Tc) of Fe is 770oC, the ferromagnetic
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Figure 2.12: Phase diagram of FeSmith (1995)
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Figure 2.13: Reversible part of the magnetic flux density (∆Br) v. H curve for differ-
ent values of stress (σ) applied sinusoidally, a. tensile region of sinusoid,
b. compression region of sinusoid.Wijn (1997)

transition occurs in this temperature region Yousuf et al. (1986). Below this temper-

ature, α-Fe exhibits ferromagnetic order, while above this transition temperature the

material is paramagnetic. This phase exists for various pressures up to 910oC. Above

this temperature at a pressure of 10−10 bar, the stable allotrope is γ-Fe which has

a unit cell that is fcc.The unit cell of γ-Fe is 3.63 Å. For pressures above 10−5 bar

and between the temperatures 1394oC and 1538oC, the stable allotrope is δ-Fe. The

structure of the unit cell of this allotrope is bcc. At the temperature, 1425 oC, the

lattice constant of this allotrope was measured to be 2.93 Å. Since we were interested

in the properties of the ferromagnet, and because α-Fe is better lattice-matched with

BaTiO3 when rotated by 45o, our desired allotrope for the film of the Fe/BaTiO3

samples studied in this dissertation were α-Fe. Since the measurements conducted

during these studies were obtained at temperatures that did not exceed 200oC, we can

assume that the material was ferromagnetic during all of the measurements. This was

confirmed experimentally. The bulk modulus which describes the structural response

of a material to changes in pressure was measured to be 168 GPa,Kittel (2005). As
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was mentioned in Section (2.3.2), the magnetism of the α-Fe phase is coupled to the

bcc lattice due to spin-orbit (SO). As a result, α-Fe exhibits both magnetocrystalline

anisotropy and magnetostriction. These properties of Fe will be discussed during the

remainder of this subsection.

The magnetocrystalline anisotropy constant of α-Fe is 4.8×10−5 erg
cm3 , Gijs et al.

(1997). Since the crystal lattice distorts in response to external pressure, the magne-

tocrystalline anisotropy of the material also changes. This variation in the magneto-

crystalline anisotropy, K1, with external pressure, p, can be described by the following

parameter:

K−1
1

dK1

dp
= 40× 10−12 Pa−1Wijn (1997) (2.88)

As was mentioned in Section (2.3.2), the magnitude of the anisotropy coefficient

along a specific axis is related to the free energy of the spins while aligned along that

axis. Changes in these coefficients can result in a rotation of the ground state of the

magnetization relative to this axis. By extension, the change in these coefficients is

correlated to the magnetostriction of the material, which relates the magnetization

along a specific axis to the stress applied to this axis. If the anisotropy coefficient

increases, the free energy of the spin orientation will increase as the lattice is changed.

As a result, the spins can rotate to another axis with a smaller anisotropy coefficient.

This coupling between the magnetization and the crystal lattice described in terms

of the length of the material along a specific axis, l, and the H applied along the axis

is described by the magnetostriction coefficient, λ. The magnetostriction exhibited

by α-Fe is demonstrated in Figure (2.13). In this figure, the reversible magnetic

flux density (∆B) is plotted relative to the applied field strength (H). During each

measurement, an external stress (σ) was applied to the sample. In Figure (2.13) the

∆B v. H plots for different values of σ are displayed. For this measurement, the

stress applied to the bulk material was sinusoidal. Figure (2.13a) and Figure (2.13b)

display the dependence of ∆Br on H during the portion of the stress sinusoid that
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resulted in tensile stress and compressive stress, respectively. The difference in the

magnitudes of ∆B of the curves of equivalent stress in Figures (2.13a) and Figures

(2.13b) suggests hysteresis in the stress response of bulk Fe. The magnetostriction of

α-Fe can be described, generally, by the following magnetostriction coefficients, λ:

λ100 = 15× 10−6

λ111 = −21× 10−6

λs = 7× 10−6

(2.89)

where λxyz = ∆lxyz
∆H

and λs is the isotropic average of the magnetostriction along the

<100> and <111> directions, which can be described by the following equation:

λs =
2

5
λ100 +

3

5
λ111 (2.90)

In this subsection of the dissertation, the structural and magnetic properties of bulk

Fe were discussed along with magnetoelastic coupling of the material. Since this work,

also focused on Fe,Pd alloys, the magnetic and structural properties of these alloys

will also be discussed.

2.4.2 Palladum-Iron Alloys

Depending on the concentration of Fe and Pd in an FexPd100−x alloy, the structural

and magnetic properties vary widely. The phase diagram of FexPd100−x alloys in bulk

is displayed in Figure (2.14). It is clear from Figure (2.14) that Fe100−xPdx has

several phases. It is also evident that for temperatures above 912oC, the stable phase

of Fe100−xPdx are γ-Fe and Pd, which both have conventional unit cells that are fcc.

The lattice constant of this unit cell is 3.65Å. As was mentioned in Chapter (I), the

objective of this work was to observe the effect of strain induced by the substrate

on a deposited film. In order to accurately characterize the effect of the substrate-
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Figure 2.14: Phase diagram of Fe100−xPdx alloys[Okamoto (1992)]
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induced strain on the deposited film, we were interested in using an ordered film.

Since L10-Fe50Pd50 and L12-FePd3 both exhibit structural and chemical order, these

phases were chosen for our study. The magnetic and structural properties of these

phases will now be discussed.

Using Figure (2.14), it is clear that the Fe50Pd50 phase is stable for temperatures

below 800oC and for Pd concentrations between 50% and 60% Pd. At each Fe100−xPdx

composition within this range, the structure of the FePd unit cell is structurally

ordered. However, at exactly Fe50Pd50, the L10-FePd phase is observed, which is

both structurally and chemically ordered. A schematic diagram of the conventional

unit cell is displayed in Figure (2.8). The conventional unit cell can be described by

a simple cubic (sc) Bravais lattice with the following 4 atom basis:

Fe(1) : 0x̂ + 0ŷ + 0ẑ

Fe(2) : 0x̂ +
1

2
ŷ +

1

2
ẑ

Pd(1) :
1

2
x̂ + 0ŷ + 0ẑ

Pd(2) :
1

2
x̂ +

1

2
ŷ + 0ẑ

(2.91)

2 Fe ions and 2 Pd ions. The lattice constant of the sc Bravais lattice is 3.85Å. This

material exhibits ferromagnetic order with a Curie temperature, TC , of 446.85oC.

One important physical characteristic of this phase is its large magnetostriction. The

in-plane magnetostriction (λ||) is as large as 200 ppm in sputtered Fe50Pd50 thin films

deposited on a substrate maintained 473 K Wunderlich et al. (2009).

Returning to Figure (2.14), the structurally ordered FePd3 phase is observed for

Pd compositions between 65 % to 87 %. At the exact composition, Fe30Pd70, the

L12-FePd3 phase is observed. The conventional unit cell of the L12-FePd3 phase can

be described using an sc Bravais lattice with a lattice constant, a=3.848Å, and a 4
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atom basis described by the following position vectors:

Fe(1) : 0x̂ + 0ŷ + 0ẑ

Pd(1) :
1

2
x̂ +

1

2
ŷ

Pd(2) :
1

2
x̂ +

1

2
ẑ

Pd(3) :
1

2
ŷ +

1

2
ẑ

(2.92)

Similar to L10-FePd, this phase is both structurally and chemically ordered. For the

surrounding compositions, some of the atomic sites of the chemically ordered phase

are replaced with either Fe or Pd ions depending on whether x is larger or smaller than

30. For compositions where x>30, the Pd atomic sites are replaced with Fe ions, the

converse is true for compositions where x<30. The TC of this ordered phase is 225oC.

For alloys with Pd concentrations between 84% and 90%, the TC decreases linearly.

However, since the dependence of TC on Pd concentration can more accurately be

approximated by a negative parabola, with its vertex positioned at ∼ 77% Pd, for

Pd concentrations <77%, the non-zero curvature of the parabola must be considered

and the rate of change of TC decreases as the concentration approaches 77% Pd.

Returning to the magnetostriction of the Fe100−xPdx, the concentration depen-

dence of the linear magnetostriction of Fe100−xPdx annealed alloys is displayed in

Figure(2.15). A maximum in the linear magnetostriction occurs at 40 % Pd. After

reaching this maximum value, λ decreases to zero at 60% Pd. According to these

results, there should be no magnetic response to strain in FePd3. However, pressure-

induced invar behavior has been observed in bulk FePd3, Winterrose et al. (2009).

The temperature-invariant volume of invar alloys can be described by the increase in

the population of the Low Spin state due to thermal fluctuations. This state has a

lower magnetization and smaller volume than the ferromagnetic state, the occupa-

tion of this LS state as the temperature increases effectively cancels out the effect of
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Figure 2.15: Linear magnetostriction (λ) of bulk Fe100−xPdx alloys that were annealed
at 900oC and subsequently furnace cooled to RT.Fukamichi (1979)

thermal expansion as the temperature of the material is increasedWinterrose et al.

(2009). Since the two nearly degenerate states each have an associated magnetization

and volume, the increase in the population of the LS state, also results in a change

in the magnetic state of the material. It is in this manner that the magnetization

and the elastic state of the material are coupled. This behavior suggests that as an

external pressure is applied to the FePd3 lattice, the |λ|0 increases. This variation in

λ0 could result in a deviation from the behavior described in Figure (2.15) for the

L12-FePd3 (Fe30Pd70) phase. This effect will be explored in the Elastic Control of

Fe16Pd84 experiments.

56



2.5 Properties of perovskites: SrTiO3 and BaTiO3

2.5.1 Crystalline structure of perovskites and ferroelectrics

Ferroelectrics are defined by their spontaneous electric polarization. Unlike ferro-

magnetic materials, the electric polarization of ferroelectrics is caused by structural

distortions of the lattice where the net positive charge is separated from the net

negative charge, and thus an electric dipole is created. There are several classes of

materials that demonstrate this sort of behavior. One such group is the perovskite-

oxides with the general chemical formula, ABO3, where A and B are two cations and

O is the O−2 anion. CaTiO3, SrTiO3, and BaTiO3 are a few members of this class of

materials.

Although these materials have similar chemical formulae, their unit cell structures

can vary widely. One source of variation is the difference in the relative sizes of the

A and B cations. In its cubic phase, the conventional unit cell of the general ABO3

structure can be represented using a simple cubic Bravais lattice, with 4 basis atoms.

In this structure, the A cation is positioned at the corner of the cube, the Ti+4 ion

at the body center, and the three O−2 ions at the face centers of the cube. When

visualizing the unit cell in this way, it is clear that the O−2 ions form an octahedron,

at the center of which, the Ti+4 ion is positioned. Furthermore, the A cations are

positioned at the center of the octahedron formed in the space between the O−2

octahedra. As a consequence, the structure of the unit cell is affected by the relative

sizes of the ionic radii of the A and B ions. If the sizes of the two ions differ greatly,

the unit cell will suffer distortion. The proclivity of a material to deviate from this

cubic structure can be determined using the Goldschmidt tolerance factor

t, which is described by the following equation:

t =
rA + rO√
2(rB + rO)

(2.93)
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where rA, rO, and rB are the ionic radii of atom A, B and O−2, respectively. A

schematic drawing of the SrTiO3 conventional unit cell is displayed in Figure (2.16).

When t is equal to 1, rA + rO = rB + rO, and the cubic perovskite structure is

favored. When this is the case, there is no distortion. However, if t is far from 1,

the cubic structure is not favored. The tolerance ranges are as follows: for values

of t between .9<t<1, the cubic structure is favored. For values of t that satisfy

the condition, .7<t<.9, the orthorhombic or rhombohedral structures are favored.

For t values greater than 1, the hexagonal structure is favored,Rabe (2007). For

the experiments described in this dissertation, SrTiO3 and BaTiO3 were used as

substrates. The specifics of these perovskite-oxides will be discussed in the following

subsections.

2.5.2 Structural and Electrical Properties of Strontium Titanate (STO)

For the sample grown in the atomic ordering via interdiffusion of Fe/Pd multi-

layer heterostructure deposited onto SrTiO3 experiment, Strontium Titanate (SrTiO3)

(100) was used as a substrate. In this section of the dissertation, the properties of

this material will be discussed. SrTiO3, a perovskite, exhibits both a tetragonal and

cubic phase.

The lattice constant of these phases are plotted as a function of temperature

in Figure(2.17). The T-C transition temperature occurs at -168.15 oC. Above this

temperature, the conventional unit cell of SrTiO3 is cubic with a lattice constant,

aC=3.905. Below the T-C transition temperature, SrTiO3 is in its tetragonal phase,

and has lattice constants described by the following list:

a =
√
acubic

c = 2acubic

(2.94)

From Figure (2.17), it is clear that at RT the cubic structure is favored. This struc-
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Figure 2.16: Schematic drawing of ABO3 conventional unit cell
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Figure 2.17: Lattice constant of SrTiO3 as a function of temperatureOkazaki and
Kawaminami (1973)

ture can be understood if one uses the Goldschmidt criterion, introduced in Section

(2.5.1). Since t is nearly 1, there is minimal structural distortion, which can be ac-

counted for by the rotation and tilting of the O−2 octahedra. The substrates used

in this experiment were cleaved along the (100) plane. In the cubic phase, the lat-

tice constant, a=3.905Å. The positions of the basis atoms can be described by the

following list of vectors:

rSr = [0, 0, 0]

rTi = [
1

2
,
1

2
,
1

2
]

rO1 = [
1

2
,
1

2
, 0]

rO2 = [
1

2
, 0,

1

2
]

rO3 = [0,
1

2
,
1

2
]

(2.95)

Using the vectors in Equation (2.95), it is clear that the centers of both the positive

charges (Ti4 and Sr+2) and negative charges (O−2) are equivalent and that there is

no spontaneous electric dipole moment. Therefore, this phase has no spontaneous

electric polarization. For the studies described in this dissertation, the substrate was

maintained in the cubic phase.
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phase temparature range (oC)
Rhombohedral(R) <-75
Orthrhombic (O) -75<T<18
Tetragonal (T) 18<T<137

Simple Cubic(C) >137

Table 2.1: BaTiO3 phases

2.5.3 Structural and Electrical Properties of Barium Titanate (BTO)

For the Elastic Control of the magnetism in Pd,Fe alloys experiments, BaTiO3

(100) was used as the substrate. In this section, the properties of this material will

be discussed.

The perovskite-oxide, BaTiO3, exhibits several structural phases between the tem-

peratures -125oC and 180oC. The observed phases are a rhombohedral (R) phase, an

orthorhombic (O) phase, a tetragonal (T) phase, and a cubic (C) phase. The tem-

perature ranges of each phase along with their lattice constants can be found in the

BaTiO3 phase diagram displayed in Figure (2.18). For the studies described in this

dissertation, the T-C transition was used to impart strain to the deposited film. This

transition is highlighted in the figure. Using this diagram, the temperature ranges of

each phase can be easily extracted and are displayed in Table (2.1).

It is also important to note that BaTiO3 exhibits structural hysteresis, which is

demonstrated near each transition temperature.

Since BaTiO3 is a perovskite-oxide, the analysis of Section (2.5.1) can be used to

determine its structure. Using the lattice with a basis formalism, the conventional

unit cell of BaTiO3 in its cubic (C) phase can be represented using the Bravais lattice

of a simple cube with a basis consisting of a Ba+2 ion at the corner of the cube, a

Ti+4 ion at the cube’s body center and O−2 ions at the face centers. The O−2 ions

form an octahedron about the Ti+4 ion. A schematic drawing of the conventional

unit cell in the cubic phase is depicted in Figure (2.19).
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Figure 2.18: Phase Diagram of BaTiO3. Clarke (1976)
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Figure 2.19: Schematic Drawing of conventional unit cell of cubic BaTiO3

In order to determine whether the cubic perovskite structure is favored for BaTiO3

lattice, one can use the Goldschmidt tolerance factor [Section (2.5.1)]. For BaTiO3,

t is close to 1. As a result, the cubic-perovskite structure is favored.

The parameters of the Bravais lattice used to describe each phase are described

in Table(2.4). The positions of the basis atoms used for each phase are described in

Table(2.3). As was mentioned in Section (2.5.1),the spontaneous electric polarization

of a ferroelectric material is caused by the displacement of the atoms within the unit

cell. It is clear from Figure (2.19) that in the cubic phase (C), there is no separa-

tion between the negative and positive charge centers. Consequently, the C phase

is paraelectric (p̂ = 0). However, each phase below the T-C transition temperature

is ferroelectric, with the direction and magnitude of the spontaneous electric polar-

ization, p̂, changing at each structural phase transition. In order to understand the

nature of the distortion at each phase, the motion of the basis atoms in each phase
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phase xTi,yTi, zTi xO1 ,yO1 , zO1

C [0,0,0] [0,0,0]
T [1

2
,1
2
,1
2

+ ∆zTi] [1
2
,1
2
,∆zO2 ]

O [1
2
,0,1

2
+ ∆zTi] [0,0,1

2
+ ∆zO1 ]

R [1
2

+ ∆xTi,
1
2

+ ∆xTi,−1
2

+ ∆xTi] [1
2

+ ∆xO,1
2

+ ∆xO,∆zO]

Table 2.2: Initial positions of the basis atoms used in Rietveld Refinement of BaTiO3

XRD data

phase xO2 ,yO2 , zO2

C [0,0,0]
T [1

2
,0,1

2
+ ∆zO2 ]

O [1
2
,1
4

+ ∆yO2 ,1
4

+ ∆zO2 ]
R N/A

Table 2.3: Initial positions of the basis atoms used in Rietveld Refinement of BaTiO3

XRD data (continued)

have been well studied.

One such study, conducted by Kwei et. al. consisted of conducting powder X-ray

diffraction measurements at various temperatures on BaTiO3 Kwei et al. (1993). This

data was analyzed using Reitveld Refinement to determine the positions of the atom

within the unit cell. The results of this analysis suggested that the polarization of

each BaTiO3 phase was caused by displacements of both the Ti+4 ion and the O−2

ions. For the refinement, the initial position of the Ba+2 ion was assumed to be [000].

The starting positions of the other basis atoms are described in Table (2.3). The

converged atomic displacements can be found in Table (2.4). Using these results, the

source of the polarization of each phase will be now be discussed.

phase a (Å) b (Å) c (Å) α(o) β(o) γ (o) p̂
simple cubic (C) 4.0105 4.0105 4.0105 90 90 90 N/A
tetragonal (T) 3.9935 3.9935 4.0385 90 90 90 [001]

orthorhombic (O) 4.0200 3.9825 4.0200 89.82 90 90 [011]
rhombohedral (R) 4.0065 4.0065 4.0065 89.39 90 90 [111]

Table 2.4: Lattice parameters of BaTiO3
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phase ∆xTi,∆yTi,∆zTi ∆xO1 ,∆yO1 ,∆zO1 ∆xO2 ,∆yO2 ,∆zO2

C [0,0,0] [0,0,0] [0,0,0]
T [0,0,.0224] [0,0,-.0244] [0,0,-.0105]
O [0,0,.0079] [0,0,.0146] [0,.0044,-.0189]
R [-.0107,0,0] [.0113,0,.0200] N/A

Table 2.5: Calculated Variations on r0 of the BaTiO3 basis atoms

The first phase below the C phase in temperature, is the tetragonal T phase. The

a and b lattice constants of the tetragonal phase are 3.99 Å, while the c axis is 4.03

Å. Considering the variation in the lattice constants across the C-T transition, one

can view the shift from the cubic phase to the tetragonal phase as the result of an

elongation of the unit cell along [001]. From Table (2.3), the assumed initial position

of the basis atoms are described by the following list of position vectors:

rTi = [
1

2
,
1

2
,
1

2
]

rO1 = [
1

2
,
1

2
, 0]

rO2 = [
1

2
, 0,

1

2
]

(2.96)

Using Table (2.5), the source of the polarization in the T phase are the following

displacements of the basis atoms:

∆rTi = [0, 0, .0224]

∆rO1 = [0, 0,−.0244]

∆rO2 = [0, 0,−.0105]

(2.97)

From these results, one can conclude that the Ti+4 ion moved upwards while

the O−2 octahedron moved downwards. The resulting displacement of the positive

charges relative to the negatively charged octahedron leads to the formation of a

dipole moment,(d), within a single unit cell. Summing d over several unit cells, one

finds that this material exhibits an electric polarization, p̂, which points along the ẑ
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direction.

The next phase following the T phase with decreasing temperature is the rhom-

bohedral (R) phase. This phase has the following lattice parameters, a=4.005 Åand

α=89.85o [Table(2.4)]. As a result, the R phase can be represented as an elongation

along the [111] axis. In the R phase, the basis only includes 2 atoms, a Ti+4 ion and

an O−2 ion. From Table (2.3),the assumed initial positions of the basis atoms were

described by the following position vectors,

rTi = [
1

2
,
1

2
,−1

2
]

rO1 = [
1

2
,
1

2
, 0]

(2.98)

Using the Table (2.5), the displacements needed for convergence are described by the

following set of position vectors:

∆rTi = [−.0107, 0, 0]

∆rO1 = [.0113, 0, .0200]

(2.99)

Accordingly, p̂=[111].

The next phase is the orthorhombic phase. The lattice constants of this phase are

as follows, a=3.99Å, and b=c=4.02Å, and α= 89.84o. As a result, the O phase can

be represented as an elongation along the [011] axis. In this phase, the basis of the

conventional unit cell consists of a Ti+4 ion and 2 O−2 ions. The calculated displace-

ments that resulted in convergence for this phase suggest that in the orthorhombic

phase, p̂=[011].

For the experiments described in this dissertation, the change in the lattice con-

stants across the T-C transition (137oC) was used to impart strain to the deposited

film. As a result, only the parameters of the tetragonal and cubic phases are consid-

ered in this work.
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2.6 Magneto-Optic Kerr Effect (MOKE)

“Simple it may be, but not ineffectual; rude, but not crude.” Kerr (1898)

On April 21,1820, while presenting a lecture, Hans Christian Oersted noticed that

the direction of a compass’ needle seemed to depend on the compass’ distance from

a wire connected to the poles of a battery. Since the existence of magnetic fields and

their effects on magnetic materials was well known, it did not seem unfathomable

that the force could be caused by a magnetic field.

Upon further investigation, he was able to conclude that a electric current could

produce a magnetic field. With this discovery, Oersted was able to confirm the

connection between electric and magnetic fields. Although the coupling of magnetic

and electric fields had been proposed several years prior to this observation, this

experiment was one of the first demonstrations of this phenomenon. This development

led scientists to search for a connection between electromagnetic waves and static

fields.

Since it was generally believed that a force imparted by an electric field on a

light wave would be larger in magnitude than the force of a static magnetic field,

the coupling between an electric field and light was explored first. Unfortunately,

the results of these experiments were not promising. Scientists such as Herschel

and Faraday conducted experiments exploring the effect of static electric fields on the

properties of light, all of which, reported no effect. It was not until 1845, that Faraday

investigated the interaction between the magnetic field produced by an electromagnet

and the polarization of light transmitted through the magnet’s field, that a significant

effect was observed. Shortly thereafter, in 1877, Reverend John Kerr reported the

change in the polarization of a light beam reflected by an electromagnetic pole. This

phenomenon would later be regarded as the Magneto-Optic Kerr Effect (Magneto-

Optic Kerr Effect (MOKE)). In 1898, Kerr was awarded the Royal Medal for this

result. At the ceremony, it was recorded that Kerr stated while responding to a
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Figure 2.20: Schematic Drawing of MOKE configurations

question about the simplicity of the MOKE, ”Simple it may be, but not ineffectual;

rude, but not crude”. With this insight, Kerr highlighted the benefits of MOKE

magnetometry that have given this effect its staying power. The simplicity of this

technique coupled with its sensitivity are the reasons that this effect has maintained

relevance and is still regarded as a state of the art technique to indirectly observe

the static and dynamic magnetization of thin films. In the remaining portion of this

section, the physics of the MOKE will be discussed. Qiu and Bader (2000)

Due to the vectorial nature of quantities pertinent to magnetic phenomena, it is

important that any technique used to measure magnetism and its effects is capable

of measuring both the magnitude and direction of the quantity. The MOKE affords

the scientist this capability. Using the MOKE, one can probe the magnetism along

three independent axes of the sample, an axis parallel to both the sample plane and

the plane of incidence (longitudinal axis), an axis parallel to the sample plane but

perpendicular to the plane of incidence (transverse axis), and an axis perpendicular

to the sample but parallel to the plane of incidence (polar axis). These measurement

axes are displayed in Figure (2.20). MOKE measurements along these different axes

are referred to as the longitudinal MOKE, the transverse MOKE, and the polar

MOKE, respectively.

When an electromagnetic wave is specularly reflected by an ideal metallic surface,
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the beam’s path upon reflection can be described by the law of reflection which states:

θi = θr (2.100)

where θr and θi are the angles of the incident and reflected beams, respectively,

relative to the normal of the surface. Assuming that the material does not penetrate

the surface of the sample, the other properties of the beam stay the same. One might

think that this is true for all materials, and our daily interactions with most materials

does not refute this assumption. If one were to examine the properties of light reflected

by electrically polarized materials or non-magnetic materials, one would notice very

little change in the properties of the reflected beam. However, this is not the case for

magnetic materials. After reflection from these materials, there are properties of the

reflected beam that depend on the orientation of the magnetization in the magnetic

film. Materials where the properties of the incident light and the properties of the

material’s magnetization are coupled are known as magneto-optic materials. These

materials can be described, macroscopically, by examining the dielectric constant of

the magneto-optic material, and microscopically, by looking at the spin-orbit coupling

of the individual electrons in the material and the incident beam. Upon reflection,

spin-orbit coupling between the electric field of the incident beam and the magnetic

moments of the electrons alters the polarization of the laser beam. In the laboratory

setting, the MOKE allows one to probe the magnetic state of a material by measuring

the change of the polarization of the incident EM wave. In this section, the origin

of the MOKE and how the effect is used for the work in this dissertation will be

discussed. In order to develop an intuition for the MOKE in different magnetic

systems, a macroscopic description of the effect will be provided. This description

will then be followed by a semi-classical explanation.

In order to understand the MOKE, classically, it is important to remember that
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the polarization of any EM wave can be described by a unique superposition of or-

thogonal modes of TEM waves. For this work, the two orthogonal modes can be

described by the polarization of the electric wave. The two modes used are one where

the electric field polarization is perpendicular to the plane of incidence (̂s-polarized)

and one where the electric field polarization is parallel to the plane of incidence (p-

polarized). Since the linear combination of these two modes can be used to describe

any linearly polarized TEM wave, it is useful to derive an equation relating the polar-

ization of the reflected beam and the incident beam for both cases. Using Maxwell’s

equations which are displayed in the following set of equations:

∇ · E =
ρ

ε0

∇ ·B = 0

∇× E = −∂B

∂t

∇×B = µ0(J + ε0
∂E

∂t
)

(2.101)

applying these equations at the interface of two dielectric materials, one arrives at

the following set of boundary conditions:

Ei + Er = Et (a)

n1Eicos(θ1)− n1Ercos(θ1) = n2Ercos(θ2) + n2Eicos(θ2) (b)

ε1Eisin(θ1) + ε1Ersin(θ1) = ε2Etsin(θ1) (c)

(2.102)

Using Equation (2.102a) to solve for Et, and inserting the result into Equation

(2.102b), results in the following relation between the incident and reflected beam:

rpp =
ntcos(θi)− nicos(θt)

nicos(θt) + ntcos(θi)
(2.103)

For the case where the E-field polarization is perpendicular to the plane of incidence,
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the equation relating the incident and reflected beam has the following form:

rss =
nicos(θi)− nicos(θt)

nicos(θi) + ntcos(θt)
(2.104)

Using these results, for an arbitrary beam incident upon the interface of two dielectric

media with refractive indices, n1 and n2, the amplitudes of the reflected beam can be

described by the following matrix equation:

Er
s

Er
p

 =

rss rsp

rps rpp


Ei

s

Ei
p

 (2.105)

For non-magnetic materials, the s and p are not coupled, as a result the off-diagonal

terms, rsp and rps, are zero. However, in the presence of a magnetic field, the p

and s polarizations are coupled. The classical derivation of this coupling will now be

discussed. The electric field of the EM wave exerts a force on the electrons, which

can be described using the following equation:

~Fe = e~E (2.106)

Modeling the atoms within the magnetic material as an array of classical harmonic

oscillators, the motion of a single electron in response to Fe can be described by the

Abraham-Lorentz equation, which can be described by the following equation:

mẍ(t) +mγẋ(t) +mω2
0x(t) = Fdriving (2.107)

where x is the distance of the electron from its equilibrium atomic position. The mo-

tion of the electron from its equilibrium position in the atom, results in the formation

of a dipole moment, d. Since the magnetic material consists of an array of atoms, the

presence of the EM wave in the material will induce several dipole moments. The sum
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of each single dipole moment is a macroscopic polarization P which can be described

using the following equation:

P(t) = −Nex(t) (2.108)

Using Equation (2.108) to solve for x(t) in terms of P , and inserting the result into

Equation (2.107), results in the following equation:

P̈ + γṖ + ω2
0P =

Ne

m
Fdriving (2.109)

In order to determine the driving force, Fdriving, the properties of the reflecting ma-

terial must be considered. When the EM wave interacts with the magnetic material,

the electrons experience a force from the E-field, equal to eE. However, since the

material is magnetic and there is an applied magnetic field, B=µH, the electrons

experience a magnetic force which can be described by the following equation:

FB = −eẋ×B = −eẋ× µH = −Ṗ
N
× µH (2.110)

Since the material is composed of polarizable atoms, when the EM wave polarizes

the atoms within the material, this polarization results in an E-field which then does

work on the surrounding atoms. This effect of the polarization on the surrounding

atoms can be modeled using a sphere of polarized material. The resulting E-field can

be described using the following equation:

E =
NeP
3ε0

(2.111)

where P0 is the polarization of a single atom, N is the number of atoms in the

sample, ε0 is electric permittivity of vacuum. The associated driving force, Fdriving,
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is described by the following expression:

Fdriving =
e

m

NeP
3ε0

(2.112)

As a result, Fdriving is described by the following expression:

Fdriving = eE(t)− µ

Ne
Ṗ ×H +

e

m

NeP
3ε0

+
Ne2

3ε0m
P (2.113)

Inserting Equation (2.113) into Equation (2.109) results in the following expression:

P̈ + γṖ + ω2
0P −

e

m

NeP
3ε0

=
eENq

m
− eµ

m
Ṗ ×H (2.114)

Assuming E(t) is sinusoidal, it can be represented by the following complex exponen-

tial:

E(t) = Re[E0e
iωt + c.c.] (2.115)

Since the polarization P is a response to the E(t) of the EM wave, one can assume

that the polarization should have the same frequency and only differ in phase, φ.

P(t) = Re[P(ω)eiωt + c.c.] (2.116)

Inserting P(t) from Equation (2.116), results in the following equation of motion:

(−ω2 + iωγ + ω2
0)P − e2

m

NP
3ε0

=
Ne2E(t)

m
− eµω

m
P ×H (2.117)

In the remainder of this subsection, Equation (2.117) will be applied to each of the

three MOKE configurations, transverse, longitudinal, and polar.= We will begin with

the transverse MOKE configuration.
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2.6.0.1 Transverse MOKE effect

In the transverse case,

Ei =


Ei

s

Ei
p

0

 , H =


0

H

0

 (2.118)

Inserting these vectors into Equation (2.117),

ξ


PP

Ps

Pd

 =
Ne2

m


Ei

p

Ei
s

Ei
d

− iβ

−Pd

0

Pp

H (2.119)

ξPp =
Ne2

m
Ei

p + iβPdH (a)

ξPs =
Ne2

m
Ei

s (b)

ξPd =
Ne2

m
Ei

d − iβPpH (c)

(2.120)

where ξ = −ω2 + iωγ + ω2
0. Substituting the variable:Ψ = βH

ξ
into the Equation

(2.120). Inserting Equation (2.120a) into Equation (2.120c) results in the following

equation,

Pd =
Ne2

mξ
Ei

d − i
Ne2

mξ
ΨEp (2.121)

Since Ei
d = 0, Equation (2.121) can be simplified to the following equation:

Pd = −iNe
2

mξ
ΨEp (2.122)

In Equation (2.122) only terms to first order in H were included. Equation (2.121)

can be interpreted as the electric field parallel to the plane incidence, Ep causes a

polarization along the propagation direction (d) of the incident beam. This coupling
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can be understood using the Lorentz equation, which can be described by the following

equation:

~Fe = −e ~E − e~v × ~B (2.123)

Using Equation (2.123), the p̂ component of the incident electric field applies an

electric force on the electrons that points in the opposite direction of the E-field. The

motion of the electrons can be described by the velocity v. Since the polarization of

the incident EM wave, Ei, has components in only the p̂ and ŝ direction the only

non-zero component of the applied magnetic field is along the ŝ direction. If one uses

Equation (2.123) to determine the FB on the electrons, the result is the following set

of equations:

FB = qv ×B = q

∣∣∣∣∣∣∣∣∣∣
p̂ ŝ d̂

vp vs 0

0 Bs 0

∣∣∣∣∣∣∣∣∣∣
= |vp||Bs|d̂ (2.124)

Since FB points along the d̂, the electrons move along the d̂ direction. Although

this motion was caused by a magnetic field, the same motion would result from an

electric field pointing in the d̂ direction. The electric polarization of a material can

be described in terms of an electric field using the following relation:

Pi = ε0αijEj (2.125)

where αij is the polarizability tensor which has the following form:

α ≡


αpp αps αpd

αsp αss αsd

αdp αds αdd

 (2.126)

Applying Equation (2.125) to Equation (2.122), the Pd can be described in terms of
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an electric field by the following relation:

Pd = ε0αddE
′
d (2.127)

Applying Equation (2.125) to the equations of Equation (2.120), one finds that in the

transverse configuration, αij has the following form:

α =


Ne2

mξ
0 iNe

2

mξ2
β|H|

0 Ne2

mξ
0

−iNe2
mξ2

β|H| 0 Ne2

mξ

 (2.128)

The electric polarizability (αij) can be related to the dielectric tensor (εij) using the

following relation:

εij = I + αij (2.129)

where I is the identity matrix. Using this equation, εij can be described by the

following equation:

ε =


1 + Ne2

mξ
0 iNe

2

mξ2
β|H|

0 1 + Ne2

mξ
0

−iNe2
mξ2

β|H| 0 1 + Ne2

mξ

 (2.130)

The refractive index η can be determined using the following equation:

η2Ej −
∑
i

εjiEi = 0 (2.131)

From Equation (2.131), it is clear that light of different polarization will experience

different refractive indices. The refractive indices ηp, ηs, and ηd can be described by
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the following matrix:


η2
p

η2
s

η2
d

 =


(1 + Ne2

mξ
) + iNe

2

mξ2
β|H| |Ed|

|Ep|

1 + Ne2

mξ

(1 + Ne2

mξ
)− iNe2

mξ2
β|H| |Ep|

|Ed|

 (2.132)

From Equation (2.132), it is clear that while ηs remains the same. Since ηp is affected

by the H, the component of the electron motion along p̂ the Ep the speed of the

electrons will be different.

rpp =rpp0 + iΨD2
12η1η2cos(θ1)sin(θ2)

+ iΨ2[D3
12η2

1η2cos(θ1)sin2(θ2)

−D2
1η1η2ncos(θ1)cos(θ2)]

(2.133)

where n2n is the refractive index of the material in the presence of the applied H-

field and Ψ = βH
ε

. Since ηs is unchanged by the H-field, rss remains the same.

Consequently, the polarization of an incident EM wave will rotate upon reflection

from a magnetized surface. The magnitude of the rotation can be described by the

following equation:

φk =tan−1[(
rpp
rss

)

=tan−1[
rpp0
rss0

+
iΨD2

12η1η2cos(θ1)sin(θ2)

rss0

+
iΨ2[D3

12η2
1η2cos(θ1)sin2(θ2)]

rss0

− iΨ2[D2
1η1η2ncos(θ1)cos(θ2)]

rss0
]

(2.134)

where D1 ≡ 1
η1cos(θ2)+η2cosθ1

. If one only includes terms to first order in H, φk can be
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described by the following equation:

φk = φ0 + ∆φ0

∼ tan−1[
rpp0
rss0

+
iΨD2

12η1η2cosθ1sinθ2

rss0
]

∼ rpp0
rss0

+
iΨD2

12η1η2cosθ1sinθ2

rss0

(2.135)

In magnetic materials, the field, B, that the electrons experience is altered from the

H by the magnetic moments that are present within the material. As was discussed in

Section (2.1), the effect of the magnetic moments on the external field, H, will either

enhance (diamagnetic) or reduce (paramagnetic) the magnetic field. Consequently,

∆φk provides information about the M of the sample, which is along the dir(H),

which for this configuration is perpendicular to the plane of incidence. The same

analysis can be applied to the longitudinal and polar MOKE configurations. The

results are similar, ∆φk in the longitudinal and polar MOKE configuration, provides

information about the M parallel to the plane of incidence and perpendicular to the

sample, respectively. In the next subsection, the information necessary to understand

the MOKE results will be discussed.

2.6.1 MOKE implementation

Heretofore, this section of the dissertation covered the theory behind the MOKE.

Although this discussion provided insight that is essential, it is also important to

understand how one measures this rotation in the polarization of a beam in the

laboratory. In this subsection of the dissertation, the experimental implementation

of MOKE will be described along with the ways it is used to determine the magnetic

properties of the deposited film.

For the experiments discussed in this dissertation, the MOKE setup consisted of a

Helium-Neon laser, an electromagnet, a function generator, a polarizer, an analyzer,
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Region Ĥ dir(H) M̂
1 +x̂ +x̂ +x̂
2 +x̂ −x̂ +x̂
3 -x̂ −x̂ −x̂
4 -x̂ +x̂ x̂

Table 2.6: Properties of M v. H plot of a ferromagnet

and a Data Acquisition Board (DAQ Board). Schematic drawings of the longitudinal

(in-plane) and polar (out-of-plane) MOKE configurations are displayed in Figure (3.1)

and Figure (3.2), respectively.

For our measurements, the magnetic field was generated using an electromagnet

which was connected to a function generator whose output voltage was a sinusoid.

The sample was placed in between the poles of the electromagnet. The source of the

EM wave was a polarized HeNe laser. Before reaching the sample surface, the laser

beam was sent through a polarizer which was aligned such that the output beam was s-

polarized. The reflected beam was then sent through another polarizer, an analyzer,

which was aligned so that its polarization axis was cross-aligned with the original

polarizer. In this configuration, any change in the intensity of the output signal of

the analyzer is caused by the rotation of the beam. For a magnetic material with no

spontaneous magnetization, the magnetic spins either follow or oppose the applied

field depending on the nature of the magnetism of the material. It is important to

note that for these materials, in the absence of an applied field there is no remnant

magnetization. The M v. H plot for these materials looks similar to Figure. However,

for a material with a spontaneous magnetization, a ferromagnet, in the absence of an

applied field a magnetization still exists. This magnetization continues to persist even

after the magnetic field has switched directions. This behavior is present in the M(H)

v. H curve displayed in Figure (2.21) and is highlighted in Table (2.6). It is clear from

both the Figure (2.21) and the Table (2.6) that the direction of the magnetization

depends on the path of the H-field. This behavior describes hysteresis. The hysteresis
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Figure 2.21: Hysteresis loop with highlighted parameters

loop can be broken into four regions that are highlighted in Table (2.6).The hysteretic

behavior is captured in Regions 2 and 4 where the direction of H and the M̂ are in

opposite directions. In this region, the magnetic spins respond to the change H, by

forming domain walls. This process is reversible. In regions 1 and 3, the path of

the magnetization is reversible. In these regions, the magnetization respond to the

changing H through coherent rotation, which is reversible. In Section (2.4.1) of this

dissertation, this reversible portion of the loop is referred to as BR. ∆BR is the

difference between the M in Regions 1 and 3.

Focusing on the properties of the irreversible portion of the loop, the height of the

loop at H=0 is referred to as the remnant magnetization (MR), while the coercive

field (Hc)is determined to be half way between the values of the positive and negative

switching H fields. In Figure (2.21), the hysteresis is centered about H=0, which

means that the switching of the spins occurs at -|Hs| and |Hs|. However, there are

certain materials where the average of the |Hs| and -|Hs| is not zero, but a shifted

value. The source of this shift is called an exchange bias. The physical phenomenon

responsible for this shift of the hysteresis loop will be discussed in the remainder of

this section.
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Prior to this point in this section of the dissertation, the response of a ferromagnet

to an external H-field has been discussed. From this earlier discussion, it is clear that

the presence of the spontaneous magnetization of the ferromagnet results in hysteretic

behavior, that is centered about the point where H is zero. However this behavior

changes when the ferromagnet is in contact with an anti-ferromagnet. Similar to a

ferromagnet, an Anti-ferromagnet is defined by its magnetic state which consists of

magnetic spins that are anti-parallel. The result are planes of parallel magnetic spins

that have opposite polarization to the parallel spins of the neighboring plane. At an

AFM/FM interface, below the ordering temperature of the AFM, the spins at the

interface align parallel to the spins in the FM, in order to minimize the energy due

to the exchange interaction between neighboring spins. However, the orientation of

the spins within the planes of the AFM that are not at the interface alternate in

their orientation. When the H-field is applied, the spins within the FM rotate due

to the Zeeman interaction. Meanwhile, the spins within the AFM remain roughly

unchanged. At the interface, the spins of the FM experience a torque from the spins

within the AFM due to the exchange interaction which has a minimum value when the

spins are aligned. As a result, the H necessary to rotate the spins is increased. Since,

the AFM spins remain in their original configuration, the effect is unidirectional.

Consequently, the center of the loop shifts from zero. This shift is called the exchange

bias. This effect will be important for the work described in this dissertation. due

to the effect of the exchange coupling between the spins at the FM/AFM interface,

Nogus and Schuller (1999).

2.7 Ultra-High Vacuum Deposition (UHV Deposition)

The interactions of interest in this study are magneto-elastic and magneto-electric

in nature. Since the magnitude of these couplings depend on the interface between

the substrate and the deposited film, it is necessary to minimize inhomogeneities
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in the deposited film. During UHV deposition, films are deposited with monolayer

precision. Such precise control of the film growth coupled with in-situ diffraction

techniques (Reflection High-Energy Diffraction (RHEED)) enable one to optimize

the quality of the deposited film. For this reason, UHV deposition was used to grow

the samples used in this study. However, in order to fully enhance the quality of

the films deposited using UHV deposition, it is important to have both an intuition

for the physics of the deposited atoms and an understanding of the mechanics of the

apparatus. In the rest of this section, both of these topics will be discussed.

During UHV deposition, films are deposited onto a substrate by evaporating el-

emental materials in a high vacuum chamber(1×10−9 torr). As the material evap-

orates, the vapor coats the chamber surfaces. When a substrate is loaded in the

chamber, the vapor condenses on the substrate surface forming a film. As the vapor

atoms coat the substrate’s surface, they form a spatial configuration that minimizes

the free energy of the system. This results in minimizing the interaction of each atom

with the other deposited atoms and the neighboring lattice ions of the substrate.

Consequently, the substrate’s influence on the final film structure is dependent on

the thickness of the deposited film. For thin films, the dominant interaction ener-

gies are due to the interactions between the few deposited atoms and the lattice ions

of the substrate. As a result, the final spatial arrangement of the deposited atoms

closely resembles the structure of the substrate with similar in-plane lattice constant

and structure. A film with this type of relationship to the substrate is described as

epitaxial. If the in-plane lattice constants of the deposited film matches the in-plane

lattice constants of the substrate the epitaxial film is also considered to be coherent.

As the film thickness grows, the number of deposited atoms increases and the inter-

action energies between the deposited atoms begins to dominate. Consequently, the

atoms arrange themselves to minimize their interaction energies with the neighboring

atoms in the deposited film. The crystalline structure (lattice constant and crystal
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structure) of films of these thicknesses resemble the bulk crystalline structure. These

are the two extremes, thin and thick films. One might ask about the intermediate

behavior. What happens when the thickness of the film crosses the “boundary” be-

tween thick and thin, such that the arrangement of the atoms no longer depends on

the substrate lattice ions and instead depends on the arrangement of the neighboring

deposited ions? How does the system of deposited atoms reconcile this shift? It turns

out that the answer is complicated with several variations which will not be discussed

in this dissertation. However, to gain an intuition for the deposited film’s transition

between the ”thick” and ”thin” regime, we can look at the general behavior of de-

posited thin film systems. In most cases, the deposited atoms shift their positions

relative to the atoms deposited prior to the change, which results in the formation of

dislocations. Despite the fact that there are several different classes of dislocations,

for our conceptual picture, we can conclude that as the thickness traverses the ”thin”

to ”thick” boundary, there is a shift in the ordering of the newly deposited atoms rel-

ative to those already deposited. This change in the position of the atoms minimizes

the energy of the system.

Since having a smooth ordered film is important for our studies, it is important

that we tune the thickness of the deposited film to ensure that it is thick enough to

have detectable magnetization, but also thin enough to be able to form a relatively or-

dered and smooth film on the substrate with few dislocations. Laying this framework

for the ordering of the atoms, we will now discuss the mechanics of the chamber.

During UHV deposition, the pressure in the chamber is maintained at 10−9 atm.

This low pressure is important for two reasons. It ensures that there are no contam-

inates on the film surface. Also, it minimizes the collisions between the vaporized

atoms in the chamber, thereby maximizing their mean free path. This uninterrupted

trajectory ensures a continuous film deposition rate. One can understand this corre-

lation by considering the specifics of the UHV chamber.
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During growth, a substrate is mounted with its surface plane parallel to the base

of the chamber. Once a substrate is loaded, elemental metals placed in Boron Nitride

crucibles in Knudsen cells located at the bottom of the chamber are resistively heated

above their boiling point by a wire filament that wraps around the outer rim of the cell.

In order to minimize the amount of heat dissipated by the effusion cells, a tantalum

shield is placed around the filament. As mentioned earlier, once the vapor reaches the

substrate surface, it condenses into a film on the surface of the substrate. If a constant

rate of deposition is assumed and maintained, the thickness of the deposited film can

be determined using the constant deposition rate and the duration of the substrate’s

exposure to the vapor. In order to ensure a constant deposition rate, the particle

speed and trajectory of the vapor atoms between the effusion cell and the substrate

must remain roughly constant. Accordingly, the amount of particle collisions in the

chamber must be minimized. Since the working UHV chamber pressure ( 10−10 atm)

is well below the Knudsen limit for the walls of the chamber ( 10−5), we were able to

assume that the vaporized atoms suffer no collisions on their path to the substrate.

As a result, we can assume that the flux rate of the vapor is roughly constant which

allows us to relate the substrate thickness to the time of vapor exposure.

For our purposes, the deposition rate was maintained at ∼ .01 Å
s
, to maintain

mono-layer control. To achieve this flux rate, the metals are maintained at a temper-

ature where the vapor pressure of the metal is 1.32×10−5 atm. Until the temperature

of the K-cell reaches this desired value, a shutter is placed between the cell and the

substrate. Once the desired temperature is reached, the shutter is removed, and the

evaporated metal is allowed to coat the substrate. During this period, the chamber

walls are cooled with liquid N2 to ensure that the vapor that does not coat the sam-

ple is condensed on the walls. Once condensed, this gas does not contribute to the

ambient pressure of the chamber.

During deposition, Reflection High-Energy Electron Diffraction (RHEED) was
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used to determine the quality of the deposited film. The specifics of RHEED will be

described in Section (2.9).

In order to improve the quality of the deposited layer, the temperature of the

substrate can be increased to promote the migration of the atoms on the surface. For

a given material, the annealing temperature, Ta, can be described using the following

equation:

Ta =
Tm
3

(2.136)

where Tm is the melting point of the material,Thornton (1986). After a film is

deposited, the substrate temperature is raised above the Ta of the material of the

film and maintained at this temperature for ∼15-20 min, while watching the RHEED

pattern to monitor the changes in the film caused by the heating. The specifics of

RHEED characterization will be discussed in Section (2.9). However, since RHEED

uses the diffraction of an electron beam scattered by a 2D surface, it is informative

to first understand the diffraction of a 3D surface. In the next section, the specifics

of the diffraction of X-rays by a 3D surface will be discussed.

2.8 X-Ray Diffraction (XRD)

In Section (2.3.3) and Section (2.3.4), magneto-elastic and magneto-electric cou-

pling were discussed. It has been made clear that in order to understand this coupling,

an accurate depiction of the material’s crystal lattice is essential. The crystalline

structure of the samples used in this study were determined using X-ray crystallog-

raphy. This technique utilizes the diffraction of X-rays to determine the crystalline

structure of a material. Both the physics of this technique and the apparatus used

to conduct this analysis will be discussed. This section will begin with the physics of

diffraction.

Generally, diffraction relies on the wave nature of a scattered beam. When a
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beam is incident upon a crystal, the scattered beam changes its direction and or

magnitude after interacting with each ion in the crystal lattice. Assuming that these

scattering events are elastic, only the direction of the wavevector, k̂, changes, while the

magnitude, |k|, remains the same. The specifics of the change in k̂ will depend on the

shape of the scatterer. However, for observation points far from the scattering object,

small differences in the direction of the beam are negligible. As a result, for distances

far from the sample, each scatterer can be treated as a point particle. Consequently, in

order to conduct this sort of analysis, it is important to first determine the diffraction

regime. To specifically answer the question, ”how far is far?”, there are generally

two regimes that are considered, near-field and far-field. In the near-field regime,

Fresnel diffraction holds, and the direction of the diffracted beams are specifically

considered. In the far-field regime, the Fraunhofer diffraction regime, the scattered

beams are assumed to be parallel. Using one’s intuition, it would seem that the

conditions for the two regimes would depend on the dimensions of the scatterer,d, the

wavelength of the scattered beam, λ, and the distance between the scattering object

and the point of observation, L. Considering the effect each of these parameters has

on the observed diffraction pattern, one can define a diffraction parameter, D, which

enables one to determine the diffraction regime. D can be described by the following

equation:

D =
d2

Lλ
(2.137)

The different regimes are determined by the following conditions of D:

D << 1 (Fraunhofer diffraction Regime)

D >> 1 (Fresnel diffraction Regime)

(2.138)

When determining the value of this parameter for the setup used during this analysis,

one can begin with the value of L, where L is ∼ .5 m. Since this value is much larger
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than the inter-atomic spacing, d (∼ 1 Å), d
L
<<1. The only remaining free parameter

is λ. The condition used to determine the λ necessary to resolve the structure of

the lattice depends on the inter-atomic spacing of the lattice ions. The value of λ

should be ∼d. Therefore, for most materials, λ must be ∼ 1 Å.Since the wavelength

of X-rays ranges from 0.1Å- 1Å, X-rays satisfy this criterion on λ, and thus are used

to resolve the structure of the lattice. Inserting these approximate values for the

important parameters in Equation (2.137) to determine D, one finds the following

result:

D =
(1× 10−10)2

L(1× 10−10)
≈ 1× 10−10

L
(2.139)

From this analysis, it is clear that the measurements described in this dissertation were

conducted in the Fraunhofer regime, and that the scattered beams can be assumed to

be parallel. This result will be important for the analysis implemented later in this

section.

When determining the diffraction pattern of a crystal, there are two methods that

are generally employed to describe the diffraction of X-rays by a crystal lattice, the

Von Laue and the Bragg representation. Although, these formulations are equivalent,

they highlight different aspects of the diffraction of X-rays by an ordered lattice. Both

methods will be described and used. However, a demonstration of the equivalence

of these formulations will not be discussed. For an explanation of the congruence of

these methods, the interested reader can refer to Ashcroft and Mermin (1976). In the

following portion of this section, the Bragg formulation of X-Ray Diffraction (XRD)

will be discussed.

A schematic figure depicting the diffraction of an X-ray beam using the Bragg

representation can be found in Figure (2.22). From this figure, it is also clear that

this model rests on the planar nature of the diffracted beams, which is only satisfied

in the Fraunhofer regime. As was mentioned in Section (2.2.2), if one uses the Bragg

representation, a family of lattice planes consists of an infinite number of evenly
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Figure 2.22: Schematic representation of the diffraction of an X-Ray beam by a a 3D
lattice

spaced planes. As a result, the intensity of the diffracted beam at a point in space,

r0, will be equal to the sum of the amplitudes of the diffracted beams from each

plane at the position, r0. Due to the wave nature of the X-ray beams, the observed

intensity at the position, r0, will depend on the difference in the path lengths of the

rays diffracted by each family of planes. In the Bragg formulation, the maximum

intensity will occur when the beams interfere constructively, or when the path length

difference (∆r) of the diffracted rays is proportional to an integer multiple of the

X-ray wavelength. This condition can be described using the following equation:

∆r = mλ (2.140)

where λ is the wavelength of the incident beam and m is the diffraction order of

the observed peak. The different orders in Equation (2.140) are a consequence of

the oscillatory nature of the diffracted beam. Figure (2.22) depicts the path length

difference between beams scattered by planes separated by a distance, d. From this
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Figure 2.23: Schematic Diagram of Von Laue reflection

figure, one can deduce that ∆r can also be described using the following equation:

∆r = 2dsin(θ) (2.141)

where θ is equal to the angle between the incident beam and the diffracting lattice

plane. Setting Equations (2.140) and (2.141) equal to one other results in the following

relation between the wavelength of the scattered beam and the inter-atomic spacing

of the lattice scatterers:

mλ = 2dsin(θ) (2.142)

As was highlighted in Section (2.2.2), each lattice consists of several families of

planes. Consequently, the complete description of the XRD pattern of a material will

require that each family of planes is considered. However, if one uses the Von Laue

representation of diffraction, the scattering of the X-rays can be described using only

two atoms. This representation will now be discussed.

Figure (2.23) schematically depicts the Von Laue representation of the scattering

of X-rays using two atoms of a Bravais lattice. Using Figure (2.23), one can conclude

that the path length difference (∆r) between atoms scattered by each of the two
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atoms can be described by the following equation:

∆r = k̂f · d− k̂i · d = |d|cos(θ′)− |d|cos(θ) (2.143)

where θ and θ′ are the angles of the incident and scattered beams measured relative

to the displacement vector (d̂) between the two atoms, respectively. Although, the

incident beams are scattered in all directions, as was the case in the Bragg representa-

tion, it is assumed that the maximum intensity occurs when the beams constructively

interfere or when ∆r is equal to an integer multiple of the wavelength of the scat-

tered beam. Setting Equations (2.143) and (2.140) equal to one another, we find the

following relation to be true:

|d|cos(θ′)− |d|cos(θ) = mλ (2.144)

Multiplying both sides of this equation by 2π
λ

, results in the following equation:

k′ · d− k · d = (k′ − k) · d = 2πm (2.145)

. After taking the exponent of both sides of Equation (2.145) with a base of e, it

follows that the next equation holds:

ei(k
′−k)·d = ei2πm = 1 (2.146)

Since the two atoms used to describe Von Laue diffraction [Figure (2.23)] are atoms

of the Bravais lattice, d can be replaced by Ri, where Ri is the lattice constant of

the Bravais lattice along the i -axis. Making this substitution, the final result can be

described using the following equation:

ei(k
′−k)·Ri = 1 (2.147)
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Comparing this equation to Equation (2.49), we find that the change in the wavevector

(k′-k) due to scattering must be equal to the reciprocal lattice vector (K). Making

this substitution in Equation (2.147), results in the following result:

eiK·Ri = 1 (2.148)

Equating the exponents of Equation (2.147) and Equation (2.148) results in the fol-

lowing equation:

k′ − k = K (2.149)

This equation’s dependence on k′ can be removed by adding k to both sides of Equa-

tion (2.149) and then squaring each side, which leads to the following equation:

|k′|2 = |k|2 + 2k ·K + |K|2 (2.150)

If only elastic scattering is considered, |k′|=|k|, then the following equation is valid:

−2k ·K = |K|2 (2.151)

Dividing both sides of this equation [Equation (2.151)] by a factor of both |K| and 2

results in the following relation:

k · K̂ =
|K|
2

(2.152)

This equation[Equation (2.152)] is depicted schematically in Figure (2.24). From this

figure, it is clear that the Laue condition requires that the component of k along the

reciprocal lattice vector, (K̂), be equal to ( |K|
2

). Although there are several k vectors

that satisfy this condition, each one can be described by the following definition:

Definition II.1. For a reciprocal lattice vector, K, with an origin, O, there exists a
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Figure 2.24: Schematic representation of the Von Laue diffraction condition

plane, A, containing all of the perpendicular bisectors of K. The incident k vectors

with origin, O , whose endpoints rest in this plane, A, will result in scattered vectors,

k’, that lead to a diffraction peak of maximum intensity.

Upon further inquiry, one finds that the plane A in the Von Laue depiction is

equivalent to a Bragg plane of atoms in the Bragg representation. This equivalence is

highlighted in Figure (2.24). The verification of this equivalence will not be covered

in this dissertation. However, interested readers are encouraged to refer to reference

Ashcroft and Mermin (1976).

Another method used to describe these diffraction conditions, geometrically, is the

Ewald construction. In this depiction, the constraints created by the conservation of

both energy and momentum are represented graphically. The restrictions on the

energies and momenta of the incident and scattered beams are described by the
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following set of equations:

|kf | = |ki| (a)

kf − ki = K (b)

(2.153)

Since Equation (2.153a) states that the magnitudes of the incident and diffracted

beam must be equivalent, if one were to draw a sphere of radius ki about the incident

k-vector, the points on the sphere represent the heads of all of the kf vectors with

tails positioned at the center of the sphere that satisfy this condition. This sphere,

often referred to as the Ewald sphere, is depicted in Figure (2.25). From Equation

(2.153b), it is evident that the Bragg condition will be satisfied when the scattering

vector is equal to K. Using the Ewald construction, one finds that this condition is

met when two points of the reciprocal lattice lie on the Ewald sphere. This condition

is depicted graphically in Figure (2.25) and will be important during the discussion

of the diffraction from a 2D surface. The next part of this section will discuss the

experimental techniques used to obtain the XRD pattern.

It is clear from this analysis that the diffraction peaks of a crystal will only occur

when the equivalent diffraction conditions of the Bragg [Equation (2.140)] and Laue

[Equation (2.152)] depictions are satisfied. For a fixed incident beam, k, and a fixed

reciprocal lattice vector, K, there will only be one scattered vector, k′, that satisfies

the diffraction condition in either representation. Moreover, a fixed beam-lattice

(k − K) orientation satisfying the diffraction condition for one order, m, will not

satisfy the condition for any other order. As a consequence, these other orders will

not be visible. Accordingly, in order to observe all of the diffraction peaks of a crystal,

one must vary the k−K configuration by altering either: k̂ by varying the angle of

the incident beam, θ, or K̂ by rotating the sample. For the XRD characterization

described in this dissertation, the sample was rotated, while the input X-ray source

remained fixed. This technique is often called the Rotating-Crystal method. Figure

(2.26) depicts the setup necessary for this method. In this setup, the X-rays are
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Figure 2.25: Ewald Sphere and reciprocal lattice of 3D material

94



Figure 2.26: Schematic representation of the Rotating-Crystal Diffraction method

generated using a Cu Kα2 source. Once created, the X-rays scatter off of the atoms

in the crystal. Finally, the scattered beams are detected using a Scintillation counter.

In the next part of this section, the mechanics of each instrument in this setup will

be discussed.

The instrument used to generate the Cu Kα2 rays, produced X-rays by bombarding

a Cu target with electrons that were emitted by a heated Tungsten filament. When

an electron strikes the Cu target, some of its energy was imparted to a specific Cu

atom in the target resulting in the loss of an electron from the subshell with the

lowest energy of the Cu atom, the 1s subshell. Since the 2P and 3P subshells both

have higher energies than the 1S subshell, once ionized, the energy of the atom is

decreased by the transition of an electron from either the 2P or 3P subshell of the Cu

atom to the 1S subshell. This transition results in the emission of a photon with an

energy equal to the difference between the initial and final states of the electron. The

resultant photon of a transition to the 1S subshell from either the 2P or 3P subshells is
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referred to as the Kα1 and Kα2 lines, respectively. As the name of the source suggests,

the Kα2 lines were filtered leaving only the Kα1 lines which were used for the XRD

characterization. Once filtered, the X-rays traveled through a divergence slit (DS)

to improve the resolution in the direction of the incident beam, ki. After traveling

through this slit, the X-rays then were scattered by the atoms in sample. In order to

increase the angular resolution of the measurement, after interacting with the sample,

the scattered rays then entered through a scattered slit (SS). Then the rays then went

through a receiving slit, before being detected using a scintillation counter. Now that

the basic mechanics of X-ray Diffractometer in Figure (2.26) have been generally

discussed, the methods used to implement the XRD characterization will be further

explained. It is clear that as the sample is rotated during the implementation of

the Rotating-Crystal method of XRD characterization, the direction of the reciprocal

lattice vector, K, will also be altered while the incident beam, k, remains fixed. As

a result, during the sample rotation, the angle between k and K changes. Since

both the Bragg and Von Laue representations of diffraction rely on the specular

reflection of the incident beam, if the sample is rotated by an angle, ∆θ from its

original position, the maximum diffraction signal will occur at an angle, ∆θ from the

detector’s original position. Accordingly, the detector must also be rotated by ∆θ to

maximize the diffracted signal.For this reason, both the sample and the detector are

both rotated for each measurement. Now that the physics of both X-ray diffraction

and the experimental apparatus have been discussed, these concepts will be applied

to a crystal lattice to calculate the XRD patterns of specific crystals.

Since XRD maps the reciprocal lattice, to predict the diffraction pattern of a

specific crystal, one must calculate the reciprocal lattice. Returning to the derivations

of the reciprocal lattice discussed earlier in Section (2.2.2), these derivations relied on

the representation of the direct lattice as a series of impulses separated by distances

of Ri, more specifically, it rested on the assumption that the lattice was a Bravais
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lattice. As a result, the derived equations for reciprocal lattice vectors only hold for

lattices that can be completely described using primitive vectors. Although this is

possible for several materials, Section (2.2.1) highlighted several crystals that could

only be described using the lattice with a basis formalism. Since lattices described

using the lattice with a basis representation include an underlying Bravais lattice

with a set of basis atoms copied at each Bravais lattice site, Equations (2.77) for

the reciprocal lattice can only be used to determine the dual pair of the underlying

Bravais lattice, but not the basis vectors. So how does one proceed? It is important

to remember that both the Bravais lattice and the lattice with a basis representations

are just methods used to represent a crystal lattice. For example, a bcc lattice

of a single atomic species can be described using either representation. Since the

crystalline structure of this material is independent of the method used to describe

the lattice, the calculated XRD patterns using these different representations should

be equivalent. The first step to understanding the techniques needed to resolve any

discrepancy between the two representations is to examine the differences between

the calculation of the diffraction signal of a crystal described using the two different

methods. Therefore, this discussion will continue to explore the simple example, the

diffraction of X-rays from a bcc lattice.

As was mentioned in Section (2.2.1), the bcc lattice can be described by the

following set of primitive vectors:

ax0 = ax̂,

ay0 = aŷ,

az0 =
a

2
(x̂ + ŷ + ẑ).

(2.154)

where a is the lattice constant of the bcc unit cell. According to Equations (2.77),

the corresponding reciprocal lattice vectors of the bcc primitive vectors are described
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by the following set of equations:

b1 =
2π

a
(x̂− ẑ),

b2 =
2π

a
(ŷ − ẑ),

b3 = 2
2π

a
ẑ.

(2.155)

From this set of equations, one can conclude that the reciprocal lattice of the bcc

lattice is the fcc lattice. Since the fcc lattice is a Bravais lattice, this structure could

be equivalently represented by the following set of primitive vectors:

b1 =
2π

a
(x̂ + ŷ),

b2 =
2π

a
(ŷ + ẑ),

b3 = 0̂.

(2.156)

Using the lattice with a basis formalism the underlying Bravais lattice used to describe

the bcc unit cell is a simple cube which has the following primitive vectors:

x0 = ax̂,

y0 = aŷ,

z0 = aẑ,

(2.157)

while the following set of vectors are used to describe the basis:

r1 = 0̂

r2 =
a

2
(x̂ + ŷ + ẑ)

(2.158)

Although, this underlying Bravais lattice and basis describe a bcc lattice, if one

attempts to use Equations (2.77) to determine the reciprocal lattice of this direct
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lattice, the resulting structure is a simple cube with the following primitive vectors:

b1 =
2π

a
x̂,

b2 =
2π

a
ŷ,

b3 =
2π

a
ẑ.

(2.159)

Since the vectors used to describe the basis atoms were not included in the calculation,

this result is inconsistent with the reciprocal lattice calculated for the same structure

using only primitive vectors. Nonetheless, in the calculation using primitive vectors

to describe the bcc lattice, the reciprocal lattice was determined to be the fcc lattice.

Since the XRD pattern of a specific crystal is unique, the calculated diffraction pattern

of the two representations must be equivalent.

The source of this inconsistency is the absence of the basis atom vectors which are

not included in Equation (2.77) which is used to describe the reciprocal lattice vectors.

To understand how these atoms affect the XRD signal, it is important to remember

the source of the XRD signal. Depending on the position of the basis atoms, the rays

diffracted by each basis atom will interfere either constructively or destructively with

the rays scattered by the ions of the underlying lattice. The change in the magnitude

of the detected signal will depend on the distance of the basis atoms relative to

the lattice sites of the underlying Bravais lattice. Since the Von Laue depiction

of diffraction considers the signal from two atoms separated by a distance d, the

results of this analysis can be used to determine the dependence of the diffraction

signal from the basis atoms. Equation (2.148) states that beams scattered by atoms

positioned at the sites of the Bravais lattice (Ri) will result in a maximum signal,

and that the phase difference of the rays scattered by the two scatterers will be equal

to 2mπ. Consequently, the difference between the phase of rays scattered by an

atom positioned at a Bravais lattice site and one scattered by an ion placed at an
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intermediate position will be smaller than this maximum value. This difference in

phase will be dependent on the distance between the atoms. For two atoms separated

by a displacement d, the difference in phase of rays scattered by each atom can be

described by the following expression:

SA = eiK·d (2.160)

where K is equal to the change in wavevector upon scattering which for scattering

events that result in the maximum diffracted signal is equal to the reciprocal lattice of

the underlying Bravais lattice. We know that constructive interference occurs when

K · d is equal to 2mπ which results in a value of SA that is equal to 1. To extend

this analysis to several atoms, we can look at the scattered signal of three atoms, one

placed at each of the following set of positions:

r0 = 0̂,

r1 = dŷ,

r2 = Rŷ.

(2.161)

If we define the phase of the scattered ray from the atom positioned at r0, S0, to be

equal to 1, then the phase of the ray scattered by the atom at position r1 will differ

in phase from S0 by the factor eiK·(r1−r0). Since atom 2 is positioned at the equivalent

position of atom 0 in a neighboring unit cell, the distance between r2 and r0 is |Ri|.

Using Equation (2.48), S3 and S0 will be in phase. The total structure factor, SA

from atoms 0,1 and 2, can be described by the following equation:

SA = S0S1S2 = eiK·(r1−r0)eiK·(r2−r0) (2.162)
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Since r2 − r0 = Ri, Equation (2.162) simplifies to the following expression:

SA = eiK·RieiK·(r2−r0) = (1)(eiK·(r1−r0)) (2.163)

The last manipulation of this equation holds due to Equation (2.48). The results of

this analysis can be generally stated by the following equation:

SA =
n∑
i=1

eiK·(rn−r0) (2.164)

where rn is the position of the nth scatterer and ro is the position of the reference

atom with scattering amplitude S0. In an attempt to resolve the discrepancy between

the calculated XRD patterns of the bcc lattice described using primitive vectors and

the lattice with a basis description, this analysis will be applied to the bcc unit cell.

As was discussed in Section (2.2.1), for the bcc lattice, the first Brillouin zone of the

reciprocal lattice can be represented by a simple cube described by the following set

of k-vectors:

b1 =
2π

a
x̂,

b2 =
2π

a
ŷ,

b3 =
2π

a
ẑ.

(2.165)

Extending Equation (2.165) to higher zones, it is possible to describe each point of

the reciprocal lattice using the following expression:

K =
2π

a
(lx̂ +mŷ + nẑ) (2.166)

Meanwhile, the basis atoms of the bcc lattice are described in Equation (2.57), but
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are reiterated by the following set of vectors:

a1 = 0̂

a2 =
a

2
(x̂ + ŷ + ẑ).

(2.167)

Applying Equation (2.164) to both the reciprocal lattice described in Equation (2.166)

and the positions of the basis atoms as they are described in Equation (2.167), results

in the following expression:

SA = ei
2π
a

(lx̂+mŷ+nẑ)·(0̂+a
2

(x̂+ŷ+ẑ)) = 1 + eiπ(l+m+n) (2.168)

The results of this analysis suggest that the value of SA will depend on the sum

of the scalars, l,m, and n in a manner described by the following set of conditional

equations:

l +m+ n = odd→ SA = 0

l +m+ n = even→ SA = 2.

(2.169)

Using this equation, we see that the (1 0 0), (0 1 0), (0 0 1), and (1 1 1) peaks vanish.

Meanwhile, the (0 0 0), (1 1 0), (1 0 1), and (0 1 1) peaks all survive. These peaks

are the same as those for an fcc structure. From this analysis,it is clear that when

only the Bravais lattice is considered for a structure described using the lattice with a

basis method, the calculated XRD pattern differs from the same structure represented

using only primitive vectors. However, when the interference from the basis atoms is

included in the diffraction pattern by using the structure factor, SA, the XRD pattern

of the structure represented using only primitive vectors is recovered. Since the lattice

with a basis method will be used to describe the crystalline structures studied in this

dissertation, the structure factor will be used to describe the measured and calculated

XRD patterns of this dissertation.

Earlier in this Section (2.8), the structure factor, SA was introduced to describe the
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cancellation of the Bragg peak with mixed Miller indices caused by an intermediate

plane of atoms between the two planes which contain the corners of the unit cell. For

the fcc Bravais lattice all of the atoms in each plane were the same. However, this

is not the case for the FePd3 lattice, where the planes that contain the corners of

the cube contain both Fe and Pd atoms, while the intermediate planes consist only

of Pd atoms. As a result, when the scattered rays reach the detector they are in

phase, but due to the difference in the chemical composition of the scatterers the

relative amplitudes are not equivalent. Consequently, the reflection is not completely

canceled. As a result, the Bragg peaks from lattice planes with mixed indices are

observed. The size of the peak depends on the chemical ordering of the lattice. The

larger the number of chemically and structurally ordered crystallites, the higher the

intensity of the mixed Bragg peak. Accordingly, the (100) Bragg peak can be used

to determine the chemical and structural ordering of the structure. For the sample

described in this dissertation, the ratio of the (100):(200) peaks, S, will be used to

determine the degree of ordering in the sample.

In this section, the diffraction of X-rays by a 3D material was discussed. In the

next section, the diffraction pattern of waves scattered by a 2D surface during Reflec-

tion High Energy Electric Diffraction (RHEED) characterization will be discussed.

2.9 Reflection High-Energy Electron Diffraction (RHEED)

As was mentioned in Section (2.7), the samples used in this study were grown

using Ultra-High Vacuum deposition. During the growth of each sample, Reflection

High-Energy Electron Diffraction (RHEED) was used to determine the surface quality

of each deposited layer, in-situ. In this section of the dissertation, the theory of this

structural characterization method will be discussed.

The RHEED setup used for these studies consisted of an electron gun, a phosphor

screen, and a camera. The electron gun, placed inside the chamber, was used to

103



Figure 2.27: Schematic Drawing of RHEED setup

generate a beam of electrons of fixed energy. For this study, the electrons used had

an energy, E, equal to 14.6 keV. The magnitude of the associated wavevector, ki, of

each incident electron can be determined using the following equation,

|k| =
√

2m?E

~2
(2.170)

where m∗ is the free electron mass within the solid Inserting the value of |ki| into

Equation (2.170), one can conclude that |ki| is equal to . Once ejected, the trajectory

of the electrons was controlled using a magnetic deflector which ensured that the

electrons were incident at grazing angles (∼ 2-3o ) relative to the crystal surface.

Upon reaching the sample, the electrons were scattered by the crystal ions. After

interacting with the ions of the crystal, these scattered electrons continued to travel

through the chamber with the wavevector, kf . Ultimately, the paths of the diffracted

electrons were terminated by an interaction with the atoms in a phosphor screen. The

light released during the interaction between the ions of the screen and the electrons
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enabled the diffraction pattern to be recorded by the camera outside of the chamber.

A schematic drawing of the RHEED setup is displayed in Figure (2.27). Since the

propagation vector of the beam of electrons (ki) was nearly parallel to the sample

surface, the beam of electrons only penetrated the first few layers of the sample.

Consequently, the majority of the scattering events took place in the top layers of the

sample. As a result, RHEED allowed us to probe the structure of the sample surface.

As was the case for XRD [Section (2.8)], the RHEED pattern of a surface depends

on the spacing and orientation of the scatterers in the crystal along with the distance

of each scatterer from the phosphor screen. Consequently, the theory of RHEED is

similar to that of XRD. It is for this reason that the formalism used to derive the

diffraction pattern of the 3D surface will now be used to derive the diffraction pattern

of a 2D surface.

Following the derivation found in Ichimiya and Cohen (2004), the diffraction pat-

tern of a 2D lattice can be determined by first representing the lattice as an M × N

array of ions. The positions of each ion in the array can be described by the following

equation:

r = nax̂ +mbŷ (2.171)

where n=1,2,3,...,N and m=1,2,3,...,M and the parameters a and b represent the

lattice constants along the x̂ and ŷ directions, respectively. The interference pattern

of the scattered beams at the detector can be determined by inserting r into Equation

(2.160), which results in the following expression for SA:

SA =
N∑
n=1

M∑
m=1

eiK·(max̂+nbŷ) (2.172)

Solving the finite geometric sum, results fin the following relation:

SA =
1− eiK·Max̂

1− eiK·ax̂
1− eiK·Nbŷ

1− eiK·bŷ
(2.173)
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Calculating the intensity of the signal by taking the square modulus of SA, one finds

that the intensity is proportional to the following expression:

I ∝
sin2(KxMa

2
) sin2(KyNb

2
)

sin2(Kxa
2

) sin2(Kyb
2

)
. (2.174)

It is clear from Equation (2.174) that for variations in Kx, the non-zero values of

intensity exist over a spread in Kx approximately described by the following relation:

∆Kx ∼
2π

Na
(2.175)

Moreover, since Equation (2.174) has no dependence on Kz, one can deduce that

instead of discrete points along the KZ-axis, as was the case for the reciprocal lattice

of a 3D material, the reciprocal lattice of the 2D surface consists of parallel rods

evenly spaced along the x and y axes. In order to determine the diffraction pattern of

this surface, one can use the Ewald construction introduced in Section (2.8). While

using this representation, it is important to recall that Bragg diffraction occurs when

the points of the reciprocal lattice lie on the surface of the Ewald sphere. Since the

incident electrons have high energies, |E|, the radius of the Ewald sphere is large.

As a result, the angular spread of the points of intersection of the sphere and the

reciprocal lattice rods includes several points. This phenomenon is depicted in Figure

(2.28). Consequently, surrounding every scattered beam with wavevector, kf , is a

spread of allowed k-vectors, ∆kf . ∆kf is also depicted in the Figure (2.28) and can

be described by the following equation:

∆kf ,|| = |kf |sin(θf )|∆θf ∼
2π

Na

∆θf ∼
2π

|kf |sin(θf )Na

(2.176)

From this analysis, we can see that the finite width of the reciprocal lattice rod results
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Figure 2.28: Ewald Sphere and reciprocal lattice of 2D surface
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in the spread of the measured pattern along Kz. Using Equation (2.175), it is also

clear that the length of the observed streak in the diffraction pattern of a 2D lattice

along the KZ-axis depends on the number of coherent scatterers, N. Consequently,

the length of the reciprocal lattice rod can be used to determine the degree of local

ordering of the atoms on the surface. In conclusion, using the formalism introduced

in Section (2.8), we were able to deduce that the length of the streaks provides

information about the ordering of the crystal. In Section (2.8), using the structure

factor, SA, the effect of the basis atoms of the conventional unit cell was determined for

the diffraction of a 3D surface. Using the structure factor, it is possible to determine

the effect of the basis atoms on the diffraction pattern of a 2D surface.

Since the coordination number of the surface atoms is smaller than that of the bulk

atoms, the structure of the surface, and in turn, the reciprocal lattice can vary greatly

from the corresponding bulk counterparts. Using Equation (2.77), while assuming

that the normal of the surface is parallel to ẑ, one can conclude that the reciprocal

lattice of the surface of a material with bulk in-plane lattice parameters, a1 and a2,

can be described by the following vectors:

a∗1 = 2π
a2 × ẑ

a1 · (a1 × ẑ)

a∗2 = 2π
a1 × ẑ

a2 · (a2 × ẑ)

(2.177)

Using this formalism, while assuming that the structure of the surface is equivalent to

that of the bulk, the reciprocal lattice vectors of the (001) fcc lattice has the following

form:

a∗1 =
2π

|a2|
x̂

a∗2 =
2π

|a1|
ŷ

(2.178)

As a result, the reciprocal lattice of the surface can be described by the following
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equation:

B = ha∗1 + ka∗2. (2.179)

Using the formalism of Section (2.8) to determine the scattering factor of the fcc

lattice, one finds the following result,

SA = eiB·ui (2.180)

where ui represents the position vectors of the basis atoms. For the fcc lattice the

positions of the basis atoms are described by the following position vectors:

u1 = 0̂

u2 =
|a1|
2

x̂ +
|a2|
2

ŷ

(2.181)

Inserting these positions into Equation (2.180) results in the following equation:

S = 1 + eiπ(h+k) (2.182)

As a result, the following conditions are true:

S = non-zero (h+k is even)

S = 0 (h+k is odd)

(2.183)

Consequently, for the surface of an fcc lattice, the intensity of the (00) Bragg peak

will be greater than that of the {10} peaks. However for the bcc lattice, the basis

atoms are described in Equation (2.57). Since the atom at the body-center is not in

the 1st lattice plane from the top surface, for grazing incidence electrons, the intensity

contributions of these atoms to the pattern are not as great as for the 2nd or 3rd lattice

plane. As a result, the RHEED pattern of the surface of the bcc lattice should be

similar to that of a simple cube, where the intensities of the (00) and {10} peaks
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are roughly equivalent. Up to this point, we have only considered electrons that have

experienced a single elastic scattering event. Since the electrons used in RHEED have

high energies, it turns out for RHEED this is not the only possibility. It is possible

for the electrons to scatter multiple times, inelastically. In the remaining portion of

this section, these cases will be discussed.

The electrons that experience multiple scattering events are depicted in Figure

(2.29) where the incident beam of electrons with wavevector, k1 is diffracted by the

lattice plane, P1. Ignoring the effect of refraction on the trajectory of the scattered

beam, the diffracted beam of electrons, is scattered again by plane P2. This scattered

beam with wavevector k2 exits the sample. The intensity of the k2 will depend on

the orientation of P1 relative to P2. These higher order reflections can be used to

determine the ordering of the sample in different regions. As a result, these inelasti-

cally scattered beams are the source of the diagonal Kikuchi lines which are used to

determine the long-range order of the material. This sort of analysis will be used to

understand the RHEED results described in the Section(IV) in the thesis.
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Figure 2.29: Schematic drawing of Multiple Scattering events of high energy electrons
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CHAPTER III

Methods

3.0.1 Fe/BTO

Before the substrate was loaded into the chamber, the BaTiO3 (100) was rinsed

using methanol. Following this initial preparation, the substrate was loaded into the

chamber. After the BTO substrate was mounted, it was heated to 120oC where a

66ÅFe layer was deposited onto the substrate. This deposition took 35 minutes. After

this layer was deposited, another 13 ÅFe layer was deposited. In order to increase the

order of the film, during the deposition of this second layer, the substrate temperature

was increased to 550oC and then decreased to 250oC.

3.0.2 Fe84Pd16 on BaTiO3(100) of thickness .5mm

3.0.2.1 Sample Preparation and Growth

Before loading, the BaTiO3 (100) substrate was rinsed in methanol and dried

using N2 gas. This process was repeated 3 times. At the end of this preparation, the

substrate was loaded in the chamber where it was outgassed at 485oC for 3.5 hours

to remove any contaminates not removed by the methanol rinsing. After outgassing,

the substrate was cooled to 244oC, a temperature at which the substrate is in its

cubic phase. Once the temperature stabilized, an Pd84Fe16 film of thickness 110 nm

was deposited onto the substrate. Once deposited, the film was annealed for 30 min
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at 311oC . After annealing, a Au cap layer was deposited onto the film to prevent

oxidation.

3.0.2.2 Film Characterization

The objective of studying this sample was to determine the effect of the change

in strain induced by the BaTiO3(100) substrate across the T-C transition (137o)

on the magnetization of the film. As a result, for these studies, the magnetization

parallel and perpendicular to the surface of the sample was measured as a function

of temperature. As was mentioned in 2.6, the longitudinal MOKE configuration is

used to measure the magnetization in-plane. The setup used to implement this set

of MOKE measurements is displayed in Figure (3.1). For this configuration, it is

important to note that the poles of the electromagnet used to generate the magnetic

field are parallel to the sample. In this configuration, the poles of the electromagnet

are aligned with the normal of the sample plane. From (3.2), one can see that the

laser must also, be aligned with the sample normal. As a result, the laser must

travel through the poles of the electromagnet. For this geometry, the center of the

electromagnet poles used in the configuration had small holes which the laser was

sent through and reflected off of the sample, and then sent along the same beam path

used for the longitudinal configuration. Using Labview, we were able to create a vi

that generated a time-averaged MOKE signal.

From Figure (3.1), one can see for the longitudinal MOKE measurements, the

sample was mounted onto a Cu mount. Holes were drilled into the mount to ensure

that both the 15 W Resistive Cartridge Heater, and the 100 Ohm Platinum Resis-

tance Temperature Detector made a good thermal connection with the Cu mount.

Although, the slots were custom made to fit both elements, Apiezon H grease was

used to reduce the potential for air gaps between the elements and the Cu mount. The

heated elements were isolated from the motor and table using a Teflon adapter.Both
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Figure 3.1: Schematic drawing of the longitudinal MOKE configuration
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Figure 3.2: Schematic drawing of the polar MOKE configuration

the heater and temperature sensor were controlled by a the TC200 PID controller.

The position of the sample was controlled using a Velmex stepper motor. For the

MOKE measurements, an electromagnet was used to generate the magnetic field used

to control the magnetization of the samples. The electromagnet was driven by a func-

tion generator. For these measurements, the output signal of the function generator

was a sine wave with an amplitude of 2.3 V and a frequency of 1 Hz. The tempera-

tures studied on this sample in both the longitudinal and polar geometries were 23oC,

40oC, 60oC, 140oC,160oC,180oC, and 190oC.

The temperature dependent structural characterization was conducted using Hi-

Temperature XRD crystallography. For these measurements, θ − 2θ scans were col-

lected at various temperatures above and below the T-C transition temperature.
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3.0.3 Ordering via interdiffusion of Fe/Pd multilayer heterostructure de-

posited onto STO

Using Ultra-High Vacuum deposition, we were able to construct an Fe/Pd multi-

layer heterostructure by depositing alternating Fe and Pd layers onto a SrTiO3(100)

substrate. In this section of the dissertation, the methods used to grow this het-

erostructure will be discussed.

The SrTiO3(100) substrate had the following dimensions (l×w×h) (10 mm × 10

mm × .5 mm). Prior to being loaded in the chamber, the substrate was rinsed in

boiling methanol. Once loaded, it was outgassed at 435 oC for 1 hr. After this

substrate preparation, the layers of the heterostructure were deposited. The total

heterostructure consisted of two Fe/Pd bi-layers. The specifics of the structure will

now be discussed.

In order to determine the composition and thickness of the bottom layer of the 1st

bi-layer, the crystalline structures of SrTiO3, fcc Pd, and bcc Fe were all considered.

The lattice constants of SrTiO3, fcc Pd, and bcc Fe are 3.905 Å,3.89 Å, and 2.87 Å,

respectively. Using this information, we were able to estimate the interfacial strain of

each possible configuration. A figure of the unit cells at an Fe/SrTiO3 interface and a

Pd/SrTiO3 interface, along with each configuration’s associated strain are displayed

in Figure (3.3). For the Pd/SrTiO3 interface, the lattice mismatch(εPd/STO) is .39%;

while for an Fe/SrTiO3 interface, the lattice mismatch (εFe/STO) is -3.79%. In this

configuration, the strain is compressive, while in the Pd/SrTiO3 interface, the strain

is tensile.It is important to note that for the Fe/SrTiO3 interface, the Fe unit cell

is rotated by 45o to decrease the magnitude of εFe/STO. Since the following relation

holds,

|εFe/STO| > |εPd/STO|, (3.1)

Pd was chosen as the first layer.
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Figure 3.3: RHEED pattern of final Pd layer

Another reason that Pd was chosen as the first layer was that in previous studies of

Fe/ BaTiO3 heterostructures[Govind et al. (2013)], it was suggested that the deposited

Fe ions interacted with the O−2 ions of the perovskite, thus forming an oxide that

affected the crystalline quality of the deposited film. Given the proximity of the

substrate’s O−2 ions and the Fe ions of the deposited film at the Fe/STO interface,

it was plausible that interfacial bonding between these ions could occur, resulting in

the formation of an oxide at the Fe/STO interface. Using Pd as the first layer of the

heterostructure, we were able to avoid this potential challenge.

In order to obtain the desired atomic FexPd1−x composition, the structural prop-

erties of both bcc Fe and fcc Pd were both considered. The unit cells of both body-

centered cubic Fe, face-centered cubic Pd are displayed in Figure (2.4) . If one rep-

resents these unit cells using the lattice with a basis formalism, both the fcc and bcc

structures have cubic underlying Bravais lattices. However, the basis of the fcc unit
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cell has 4 atoms, while the bcc basis has only 2 atoms. Referring to the bulk phase

diagram of Fe/Pd alloys in Figure (2.14), it is clear that the ordered L12- FePd3 phase

is observed at the composition, Fe30Pd70. Since the desired atomic ratio of the entire

sample is FePd3, it is clear from this diagram that an Fe(30):Pd(70) ratio must be

achieved in each Fe/Pd bi-layer. This information was used to determine the relative

thicknesses of the constituent layers of each bi-layer.

In order to ensure that the substrate and first Pd layer had an epitaxial relation-

ship, the Pd layer of the first bi-layer had a thickness of 19 nm. Since a 3:1 Pd:Fe

ratio was required within each bi-layer, this constraint on the first Pd layer fixed the

thickness of the first Fe layer.

During the deposition of each layer, the chamber pressure was maintained at

3×10−9 torr. The growth of each bi-layer was achieved using two Knudsen cells (K-

cells) that were loaded with elemental metals with 99.9% purity. One K-cell was

loaded with Fe pellets while the other was loaded with Pd pellets. During deposition,

the Pd K-cell was maintained at 1251 oC which resulted in a Pd deposition rate of

.12 Å
s
. Since we wanted the necessary deposition time of each layer to be equivalent,

the deposition rate of Fe needed to be altered to achieve the desired elemental flux.

For a a Pd deposition rate of RPd, the Fe rate (RFe) needed to observe the desired

composition can be determined using the following equation:

RFe =
RPdnPdvFe

CPd\FenFevPd

(3.2)

where nPd (nFe) is the number of atoms per Pd (Fe) unit cell, RPd (RFe) is the

deposition rate of Pd (Fe), CPd\Fe and vPd (vFe) is the unit volume of Pd (Fe).

Using Equation (3.3), we found that the necessary deposition rate was .034 Å
s
. This

deposition rate is achieved when the Fe K-cell is maintained at 1298oC. During the

deposition of each layer, the sample was only exposed to the vapor of a single K-cell.
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Layer thickness[nm] dep. time[min]
Pd 1 19 26
Fe 1 10 26
Pd 2 38 52
Fe 2 30 52

Table 3.1: Simulated 2θ values of the Bragg reflections of the possible bulk phases of
Pd/Fe multilayer heterostructure

For the first layer, in order to achieve a Pd layer that was 19 nm thick, the amount

of time, t, that the sample was exposed to the elemental vapor was found by using

the following equation:

tPd =
L

RPd

(3.3)

Using Equation (3.3), we were able to determine that the sample should be exposed to

the Pd flux for 26 min. Using the same analysis for each layer of the heterostructure,

we were able to determine the exposure times for each layer. These times along with

the corresponding film thicknesses are listed in the Table (3.1). Once the final bi-

layer was deposited, the sample was heated above the FePd3 formation temperature,

550 oC Myagkov et al. (2012), for 15 minutes. Since the order-disorder transition

temperature of FePd3 was observed to occur at 650 oC Myagkov et al. (2012), during

annealing the temperature did not exceed this value. After heating, a 5 nm Au cap

layer was deposited onto the sample to protect the sample from oxidation. The final

heterostructure was 87 nm thick along with the 5 nm cap layer, thus resulting in a

total thickness of 92 nm.A schematic drawing of this structure can be found in Figure

(3.4).

During the growth, the structure of each layer was determined using RHEED. The

structure of the final heterostructure was determined using XRD analysis.
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Figure 3.4: Properties of each layer of the Fe, Pd multilayer heterostructure
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CHAPTER IV

Experimental Results on Structure and Magnetic

Properties

Using Reflection High Energy Electron Diffraction(in-situ) and X-ray Diffraction

(ex-situ), we were able to determine the crystalline structure of each sample. MOKE

magnetometry in both the longitudinal and polar geometries was employed to measure

the anisotropy of each sample. The results of this analysis will be discussed in this

section of the dissertation.

4.0.1 Results: Fe on BaTiO3(100)

The in-plane magnetization of the Fe/BTO (100) sample as a function of angle

was measured using MOKE in the longitudinal configuration[Figure (3.1)]. These

measurements were conducted at 23oC (room temperature) and 150oC. Since the T-

C transition of BaTiO3(100) occurs at 137oC, the results of this study show the effect

of the T-C transition on the deposited Fe film. A plot of the in-plane magnetization

versus applied H-field at the angle 182oC measured at RT is displayed in Figure

(4.1). The magnetization v. H plot displayed in this figure exhibits saturation and

switching. For this sample, the coercive field (Hc) is 100 Oe. It is clear from the

absence of coherent rotation of the magnetization that the axis of H is along the easy

axis of the plane.
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Figure 4.1: Magnetization v. H of Fe/BaTiO3(100) at 23oC at 182 o

Figures (4.2 and 4.3) show the results of the measurement of the Hc as a function

of angle at RT and 150oC. It is clear from Figure (4.2) that below the T-C transition

the sample demonstrates uniaxial anisotropy about the â axis. Since the BaTiO3 unit

cell is tetragonal, from Figure, it is clear that in this phase a=b6=c. The magnitudes

of the lattice constants of the unit cell along the a and b axes of the unit cell in this

phase are equal to 3.9935 Å, while the c-axis is equal to 4.0385 Å. Since both the c

and a-axes are in-plane, a uniaxial structural anisotropy exists within the substrate.

This asymmetry in the structure of the substrate is transferred to the deposited film

through an anisotropy in the strain experienced by the deposited film. From the dis-

cussion of Section(2.3.3), this anisotropy in strain results in the spins of the sample

having a preferred orientation relative to the asymmetry in the strain. Consequently,

when the applied H-field is aligned with the elongated c-axis, the |H| required to align

the spins along this axis is smaller than along the shorter a-axis. Since a uniaxial

asymmetry is observed in the coercivity polar plot of the deposited film, it is clear

that below the T-C transition, there is magneto-elastic coupling between the Fe ions

of the film and the BaTiO3(100) substrate. However, above the T-C transition, this
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asymmetry disappears and the coercivity polar plot is isotropic with respect to vari-

ations in angle. This result can be explained by the change in the BaTiO3 unit cell

above the T-C transition. In the cubic (C) phase, the lattice parameters of the unit

cell are equivalent (a=b=c) and equal to 4.0105Å. The Fe film was deposited onto the

substrate while it was in its cubic phase. Since the unit cell of Fe is body-centered cu-

bic with a lattice constant of 2.87 Å. Since the Fe unit cell is body-centered cubic, the

diagonal of the cubic face of the Fe unit cell is 4.06 Å. As a result, the lattice mismatch

between the deposited film and substrate is minimized if the a-axis of the Fe film is

rotated by 45o relative to the a-axis of BaTiO3( Fe<110>//BaTiO3<100>). When

the substrate is in this phase, there is no substrate-induced strain anisotropy, and

thus no observed magnetic anisotropy. This result is confirmation that the observed

uniaxial anisotropy is a consequence of the substrate-induced strain anisotropy.

4.0.2 Results: Atomic ordering via interdiffusion of Fe/Pd multilayer

heterostructure deposited onto STO

As was mentioned in Section (4.0.2), the Fe/Pd multilayer heterostructure de-

posited onto the SrTiO3(100) substrate consisted of two Fe/Pd bi-layers which were

annealed to promote inter-diffusion between the deposited layers. After annealing, a

Au cap layer was deposited on the structure to prevent oxidation. A schematic draw-

ing of the heterostructure can be found in Figure (3.4). During deposition, in-situ

RHEED patterns were collected to determine the film quality and orientation of each

deposited layer. These images are displayed in Figure (4.4).

The RHEED pattern of the SrTiO3 (100) substrate is displayed in Figure (4.4a).

Using the results of the analysis of Section (2.9), one can conclude from the vertical

streaks present in the image that the exposed surface exhibited local order; while the

visible Kikuchi lines suggest that this order was also long-range. The RHEED patterns

of the top surfaces of each deposited Fe and Pd layer are displayed in Figures (4.4b-
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Figure 4.2: Coercive field as a function of azimuthal (in plane) angle at RT
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Figure 4.3: Coercive field as a function of azimuthal (in plane) angle at 150oC
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Figure 4.4: RHEED images of sample 1 heterostructure

4.4e). The vertical streaks present in each RHEED image suggests local ordering.

However, the absence of Kikuchi lines in these patterns leads one to conclude that

this ordering was not long-range. In each of the patterns, the visible peaks correspond

to the (10),(00),(10) reflections. Comparing the intensity variations of the RHEED

streaks along the Kz-axis of the Pd layers [Figures (4.4b and 4.4d)] to those of the

Fe layers [Figures (4.4c and 4.4e)], we find that the Pd streaks consist of regions of

continuous intensity that are larger than those of the Fe layers. From Section (2.9), we

know that the length of the streak along the Kz-axis is proportional to the number of

coherent scatters, N, on the surface. Consequently, we can conclude that the ordered

regions in the Pd layers are larger than in the Fe layers.

The source of this discrepancy can be understood by examining the process of

film growth during UHV deposition. During growth, the sample is exposed to the

elemental vapor which then condenses to form an even coating on the sample. Once

deposited, the atoms with sufficient energy, migrate to potentially form structures
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on the surface. Using Equation (2.136), the annealing temperature of a deposited

material is proportional to the material’s melting temperature,Tm. Since, the melting

temperatures of Fe and Pd are 1535oC and 1554oC, respectively, using Equation

(2.136), it is clear that the associated annealing temperatures,Ta are 512 oC and

518oC, respectively. Consequently, if the temperature of the substrate is close to the

annealing temperature of the deposited layer, diffusion will occur, which would result

in a decrease in the size of the ordered region. Since the annealing temperature, Ta,

of Fe is lower than Pd, the Fe atoms, once deposited, had energies sufficient enough to

form microstructures on the surface. These findings are consistent with Govind et al.

(2013), where Fe nano-islands were observed on BaTiO3 after annealing at 499.8oC.

Upon further examination, one might also notice the difference in intensities between

different peaks. In the Pd RHEED patterns, the intensity of the (00) peak is larger

than that of the (10) and (10) peaks. Meanwhile, in the RHEED patterns of the Fe

layers, the intensities of all of the peaks are the same. From the results of the analysis

in Section (2.9), this variation in the streak intensities is due to the difference in the

structure factors of the Pd (fcc) and Fe (bcc) lattices. These results confirm that each

layer is epitaxial. In the following section, the relative orientation of each deposited

layer will be discussed.

Once the RHEED patterns were collected, using Matlab, we were able to generate

intensity profiles of these patterns. Using these profiles, we were able to track the

spacing between the RHEED orders of each layer at different times during the deposi-

tion of each layer. Using the spacing of the RHEED orders of each layer and Equation

(), we were able to determine the relative orientation of the layers in each bi-layer.

The image profiles of the Fe and Pd layer of the first bi-layer of the heterostruc-

ture are displayed in Figure (4.6a). In order to minimize the strain experienced by

both films, the system works to minimize the spacing between the Fe and Pd atoms

at the interface. In Figure (4.5), schematic drawings of two possible orientations of
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the Fe unit cell relative to the Pd unit cell at the Fe/Pd interface are displayed,

along with a schematic diagram showing the position of this interface in the het-

erostructure. From the drawing, it is clear that when the edges of the Fe unit cell are

aligned with the edges of the Pd unit cell(Fe<100>//Pd<100>) the lattice mismatch

is ε0o = .26. However, when the Fe unit cell is rotated by 45o relative to the Pd lattice

(Fe<110>//Pd<100>), ε45o = −.04. Since

|ε0o| > |ε45o |, (4.1)

one might expect the Fe<110>//Pd<100> to be the favored configuration of the

system. Using the image profiles displayed in Figure (4.6), we were able to determine

the configuration chosen by the system.

Since the in-plane lattice spacing is inversely proportional to the spacing between

the RHEED diffraction orders, xhk, it is clear that a larger da=|x10-x00| results in a

smaller in-plane lattice constant. From the unit cell configurations displayed in Figure

(4.6), we can see that the da of Fe is slightly smaller than the da of Pd. Consequently,

one can conclude that when exposed to e−waves along the {100} axes of the crystal,

the spacing between the Fe atoms was larger than that of the Pd atoms. As a result,

one can gather that the Fe lattice experienced compressive strain before relaxing to

its bulk value on the Pd layer. Furthermore, we can also deduce that the Fe lattice

was rotated by 45o relative to the Pd lattice.

As was mentioned earlier in this section, once the heterostructure was annealed,

a Au cap layer was deposited on the structure to prevent oxidation. The RHEED

image of the final layer after annealing at 550oC for 15 minutes is displayed in Figure

(4.4f). The vertical streaks suggest that the final structure is ordered. However, the

change in the intensities of these streaks from the final Fe layer [Figure(4.4e)], lead

one to conclude that the system has formed a new ordered phase that is similar in
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Figure 4.5: Possible unit cell configurations of the 1st Fe/Pd interface in the het-
erostructure

Figure 4.6: Image profiles of the RHEED images of the 1st Fe and 1st Pd layer
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Phase Bravais (100) (011) (111) (200) (002)
SrTiO3 cubic 22.752o 32.395o 39.9539o 46.4689o 46.4689o

FePd3 cubic 23.1134o 32.9170o 40.6073o 47.241o 47.241o

FePd tetragonal N/A N/A 41.0583o 47.1888o 48.9289o

Fe cubic N/A 44.651o N/A 64.9882o 64.9882o

Pd cubic N/A N/A 40.1499o 46.7003o 46.7003o

Au(fcc) cubic N/A N/A 38.2153o 44.4178o 44.4178o

Table 4.1: Simulated 2θ values of the Bragg reflections of the possible bulk phases of
Pd/Fe multilayer heterostructure

structure to the Pd (fcc) layer. These results point to the annealed layer having an

fcc-like crystalline structure, which is the structure of L12-FePd3. Although these

images give a qualitative picture of the final annealed layer that is somewhat clear, in

order to gain a quantitative understanding of the final structure of the sample after

annealing, XRD characterization is required. The results of the XRD analysis of the

final annealed Fe/Pd heterostructure will now be discussed.

The measured XRD pattern of the sample after annealing is displayed in Figure

(4.7). Since the inter-diffusion as a result of annealing could result in several possible

phases, the bulk diffraction peaks used for analysis were calculated using the following

equations for the distance (d) between Bragg planes:

1

d2
=

h2 + k2 + l2

a2
(cubic)

1

d2
=

h2 + k2

a2
+
l2

c2
(tetragonal),

(4.2)

where h,k, and l are the indices of the Bragg reflections. Using this equation [Equation

(4.2)], along with Equation (2.142), we were able to determine the angular positions

of the Bragg reflections for each possible phase. The simulated structures included

bcc Fe, fcc Pd, L12-FePd3, L10-FePd, fcc Au, and SrTiO3. The 2θ values of the

(100),(011),(111), (200), and (002) Bragg reflections of these phases are displayed in

Table (4.1). Using non-linear regression, a sum of 7 gaussian functions was used to
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Figure 4.7: XRD FePd multilayer plots for both samples

fit the XRD profile of the sample. Each gaussian had the following form:

gn = anexp(−(x− bn)2/(2c2
n)) (4.3)

The following function was used to fit the XRD data:

gT =
7∑

n=1

gn (4.4)

The values of each fit parameter along with the bounds of their 95 % confidence

interval are included in Table (4.2). The R-square value of the fit was .9995. A

figure of a plot of the XRD data along with the fitted function and its 95% bounds

is displayed in Figure (4.7).

Using the 2θ positions of the simulated peaks, we were able to determine the source

of each peak used to fit the measured XRD spectra. The results of this analysis are

displayed in Table (4.3).
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gn an bn cn
g1 257.8 (143.9, 371.7) 22.78 (22.74, 22.82) 0.08266 (0.03972, 0.1256)
g2 1098 (1075, 1121) 23.65 (23.58, 23.73) 2.594 (2.5, 2.688)
g3 304.7 (284.9, 324.6) 33.18 (32.91, 33.45) 3 (2.663, 3.337)
g4 2158 (2016, 2299) 44.13 (43.83, 44.44) 2.114 (1.956, 2.273)
g5 2735 (2612, 2858) 46.48 (46.48, 46.48) 0.07609 (0.07192, 0.08026)
g6 2.395e+04 (2.322e+04, 2.467e+04) 47.41 (47.41, 47.42) 0.9288 (0.9195, 0.9381)
g7 4489 (3760, 5218) 48.3 (48.05, 48.56) 1.594 (1.523, 1.665)

Table 4.2: gT fitting parameters

gn phase
g1 SrTiO3(100)
g2 FePd3(100)
g3 background
g4 Au(200)
g5 SrTiO3(200)
g6 FePd3(200)
g7 FePd(200)

Table 4.3: Associated phases of gN peaks

Using these results, it is clear that the fundamental lines of the FePd3 (200) and

FePd (200) phases are both present. However, from Table (4.2), it is evident that the

amplitude of the FePd(200) peak is significantly smaller than the FePd3 (200)peak.

( FePd(200)
FePd3(200)

= .1874). Accordingly, we can conclude that the majority of the sample

exhibits the crystalline structure of FePd3. Also present in the XRD spectrum is

the (100) superstructure line of FePd3, which is used to determine the nature of the

ordering of the FePd3 phase. Using the results of the gT fit, it is clear that the order

parameter (S) is equal to 0.046. These results suggest that the film exhibits structural

ordering that is local. However, since S is small and the peak is broad, b2=2.594o,

one can conclude that the film does not exhibit long-range order. It is also important

to note the absence of the FePd3(111) peak. From Table (4.1), the (111) peaks of

the the possible phases in bulk occur between the 2θ positions 38oC and 41.06oC. In

Figure(4.7) these peaks are not present. Since the surface of the SrTiO3 substrate
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Figure 4.8: Longitudinal MOKE Pd,Fe multilayer SrTiO3(100) at 0o and 45o

has (100) orientation and the Bragg-Brentano geometry configuration was used for

these XRD measurements, reflection from crystallites with (111) orientation would

only be observed for grains that are not epitaxial. Hence, the absence of the (111)

orders suggests that the film is epitaxial.

Using MOKE magnetometry in the longitudinal configuration, we were able to

characterize the magnetization of this material along the sample plane. A sample

hysteresis loop is displayed in Figure (4.8). The results of the MOKE measurements

suggest that the film demonstrates switching in-plane, with a coercive field of ∼ 7600

G. Furthermore, the change in the coercivity of the magnetic hysteresis loops along

the 0o and 45o axes of the sample displayed in Figure (4.8) suggest that the film

magnetization is weakly anisotropic; exhibiting four-fold symmetry with its easy axes

aligned along the {110} axes of the SrTiO3 (100) substrate. This result is further

confirmation that the annealed film is epitaxial.
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4.0.3 Results: Elastic control of the magnetism in Fe16Pd84/BaTiO3 films

In this section of the dissertation, the results of the Elastic control of the mag-

netism in Fe16Pd84/BaTiO3 (100) experiments will be discussed. Using XRD crys-

tallography, we were able to characterize the structure of the Fe16Pd84/BaTiO3 (100)

sample at room temperature. The resulting XRD profile is displayed in Figure (4.9).

From this figure, it is clear that the film has several ordered phases. Since the

film was deposited using co-deposition of both Fe and Pd vapor, within the film there

are several possible phases involving Fe, Pd, and potentially O, if an iron oxide was

formed at the film/substrate interface. In order to determine the phases present in the

sample, we calculated the angular positions of the Bragg reflections of each possible

phase of the sample using Equation (4.2). The 2θ positions of each of the simulated

bulk phases are displayed in Table (4.4). The species of the phases responsible for

the labeled peaks in the XRD profile at 23 oC [Figure (4.9)] were determined using

the calculated angular positions of Tables (4.4) and (4.5). Allowing a tolerance of

5%, the peaks were fit to the XRD profile. A few of these peaks are highlighted in

Figure (4.9).

In the room temperature XRD pattern displayed in Figure (4.9), Bragg peaks

resulting from reflections from the (100), (200) and (111) planes of the FePd3 and

FePd are each present. Since the BaTiO3 substrate was cleaved along the (100) plane,

the presence of peaks other than those resulting from reflections from planes with

(h00) orientation suggests that the film is not epitaxial. However, since several peaks

are observed, it is clear that the sample is not structurally disordered. Consequently,

one can conclude that the crystalline structure of the sample is textured.

While the FePd3 (200), (111), and (100) phases are all present, it is important to

note the presence of the ε-Fe2O3 (100), (111), and (200) Bragg peaks. The magnetic

and structural properties of this oxide along with other Fe-oxides are displayed in

Table (4.7)[cite]. The magnetic state of the ε-Fe2O3 phase is anti-ferromagnetic.
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Figure 4.9: XRD pattern of Fe16Pd84/BaTiO3(100) at 23oC with labeled phases

Phase (100) (101) (011) (110) (111) (200) (002)
BaTiO3(C) 22.1732o 31.5598o 31.5598o 31.5598o 38.902o 45.2359o 45.2359o

BaTiO3(T) 22.2603o 31.5049 31.5049o 31.6855 38.9160o 45.4213o 44.8874o

FePd3 23.1134o 32.9170 32.9170o 32.9170 40.6073o 47.241o 47.241o

FePd N/A 33.4731 33.4731 34.0553 41.5486o 48.9289o 47.1888o

Fe N/A N/A N/A N/A 54.45o 64.99o 64.99o

Pd N/A N/A N/A 40.15o 46.70o 46.70o 46.70o

Au(fcc) N/A N/A N/A 38.23o 44.43o 44.43o 44.43o

ε-Fe2O3 17.4051 19.8023 13.7672 20.1440 22.2585 35.2289 18.8061

Table 4.4: Simulated Bragg Reflections of possible phases in Fe16Pd84/BaTiO3 sample

Since the Pd,Fe phases are ferromagnetic at room temperature (2.4.2), at the points

of contact between the ε-Fe2O3 and Pd,Fe phases, the center of the hysteresis loop

will shift in H due to the presence of an exchange bias. The basic physics of this

effect were discussed in the MOKE implementations subsection [Section(2.6)].

In order to characterize the magnetization (M) of the sample as a function of

temperature, the MOKE magnetometer was used in both the longitudinal and polar

configurations to determine the in-plane and out-of-plane magnetization of the film for

each temperature, respectively. The longitudinal results are displayed in Figure (4.10)
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Phase (220) (022)
BaTiO3(C) 65.8970o 65.8970o

BaTiO3(T) 66.1855o 65.771o

FePd3 69.1969o 69.1969o

FePd 71.7001o 70.3314o

Fe 98.8814o 98.8814o

Pd 68.18o 68.18o

Au(fcc) 64.64o 64.64o

ε-Fe2O3 40.9466o 27.7384o

Table 4.5: Simulated Bragg Reflections of possible phases in Fe16Pd84/BaTiO3 sample
(continued)

and the polar MOKE results are displayed in Figure (4.11). For the high temperature

measurements, a resistive heater was used to control the temperature of the sample.

Referring to the longitudinal (in-plane) MOKE measurements conducted below the

T-C transition, the M v. H plots demonstrate hysteresis, while the magnetization

saturates at each temperature below the T-C transition. It is important to note that

for these measurements, the remnant magnetization and the saturation magnetization

(Mr

MS
) is equal to .95.

Meanwhile, the polar MOKE measurements conducted at the same temperatures

suggest that the out-of-plane magnetization of the sample exhibits a small amount of

hysteresis, but never reaches saturation. For these results MR

MS
∼.25. The small size of

this ratio suggests that MR is negligible out of plane. Since MR is a measure of the

spontaneous magnetization, these results suggest that below the T-C transition, the

sample is ferromagnetic with a spontaneous magnetization that lies along the sample

plane. However, above the T-C transition, the behavior of the magnetization changes.

For temperatures above this transition, the MR of the longitudinal (in-plane) signal

decreases, while that of the polar (out-of-plane) signal increases, until the switching

behavior which was present in-plane is now observed out-of-plane. The transition in

behavior seems to stabilize at 160oC. The polar MOKE signal at this temperature is

displayed in Figure (4.11). In this figure, it is clear that the MR is equal to the MS
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Phase unit cell a,b,c (Å) magnetic state
ε-Fe2O3 orthorhombic a:5.095,b:8.79,c:9.437 AFM

Magnetite Fe3O4 fcc a:8.39 ferrimagnetic

Maghemite γ-Fe2O3 cubic 8.34 Å ferrimagnetics
Magnetite Fe3O4 cubic a:8.34 ferrimagnetic

Hematite α-Fe2O3 hexagonal a:5.034,c:13.75 weakly FM

Table 4.6: Iron-oxide with AFM phases along with a few characteristic properties

Phase Torder(K)
ε-Fe2O3 1026

Magnetite Fe3O4 850
Maghemite γ-Fe2O3 820-986

Magnetite Fe3O4 850
Hematite α-Fe2O3 956

Table 4.7: Iron-oxide with AFM phases along with a few characteristic properties
(continued)

(MR

MS
) and that there is significant hysteresis. The coercivity is equal to .5 G which is

comparable to the in-plane value below the T-C transition. For temperatures above

the T-C transition and below 160oC, the signal fluctuates as though in a transition

region.

Meanwhile, MR

MS
∼ 0 of the longitudinal MOKE loops above the T-C transition.

These results suggest that the magnetization has switched out-of-plane.

It is important to note, the shift of the center of the hysteresis loop along the

H-axis. This shift of the hysteresis loop along the H-field axis suggests that there is

an exchange bias field which results in the a larger H required to switch the sample

spins. Since the exchange bias is typically observed at an FM/AFM interface, this

result suggests the presence of an oxide layer at the film-substrate interface Nogus and

Schuller (1999). This result is confirmed in Figure (4.9), where the Bragg reflections

of the ε-Fe2O3 phase are present. In Table (4.7),the different iron-oxides phases along

with a few of their characteristic properties. The results of the longitudinal MOKE

measurements are displayed in Figure (4.10).

In order to determine the source of this phenomenon, High-temperature XRD
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measurements were conducted at temperatures above and below the T-C transition

temperature. The results of these measurements are displayed in Figure (4.12). It

is clear from this measurement that the peak FePd3 (111) and (100) peak is present

at RT, but then disappears at 100oC, and remains absent until the T-C transition

temperature (137oC) is reached. For temperatures slightly above this temperature,

this peak appears and disappears until 150oC where it stabilizes and continues to

persist until the maximum temperature, 200 oC, is reached. This behavior is also

observed in the FePd3(100) peak, but not observed in the FePd3(200) for tem-

peratures above room temperature, and then disappears, but returns for tempera-

tures above the T-C transition.These results suggest that the FePd3 crystallites with

FePd3<111>//BaTiO3<100> are responsible for this behavior.

While the FePd3 (100) and (111) peaks, are affected by the change in strain,

the FePd3(200) peak remains unchanged. Although the substrate/ film coupling

is significant at the interface where the grains are epitaxial, since the film is thick

(137 nm), after reaching a critical thickness, the FePd3 crystallites within the film

relaxed. As was mentioned in Section (2.7), this relaxation resulted in the decoupling

of the crystallites from the substrate. Consequently, over the distance between the

FePd3(200) planes, the coupling decreases enough such that the strain effects of the

substrate are not experienced by the FePd3 crystallites far from the interface. This

result is also confirmed by the small size of the signal above the T-C transition.

Returning to Figure (4.12), it is also important to note the variation of the

FePd3(111) peak as the temperature is increased. Above the T-C transition tem-

perature, the rate of change of the angular position of the FePd3 (111) peak as a

function of temperature appears to decrease above the T-C transition. This result

signifies the decrease in the thermal expansion of the FePd3 (111) crystallites. This ef-

fect is a signature of invar behavior. This finding would be consistent with the work of

Winterrose et. al. where pressure-induced invar behavior was observed in bulk FePd3
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Figure 4.10: In-plane Magnetization v. H for various temperatures

in Winterrose et al. (2009). In order to confirm this finding further investigation is

needed.

Displayed in Figure (3.1) are the longitudinal MOKE signals at various tempera-

tures between 40oC and 180oC. The longitudinal MOKE signals at these temperatures

can be found in Figure(4.10).
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Figure 4.11: Out-of-plane Magnetization v. H for various temperatures

Figure 4.12: X-Ray diffraction pattern of Pd84Fe16/BaTiO3(100) at various temper-
atures
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CHAPTER V

Conclusions and Future work

The work described in this dissertation can be separated into two parts. One

part focused on the elastic control of the magnetism of Pd,Fe films deposited onto

BaTiO3(100), while the other part focused on enhancing the coupling between the

substrate and the ferromagnetic film by fabricating an ordered FePd3 film onto a per-

ovskite, SrTiO3. For the parts of the dissertation focusing on elastic control, we first

discussed the current state of high density recording media and why the ability to

control the perpendicular magnetic anisotropy of a magnetic film is important. The

goal of our work was to control the perpendicular magnetic anisotropy of a Pd,Fe

film by imparting a tetragonal distortion to the film using the tetragonal BaTiO3

(100). After the discussion of the goal of this work, the methods used to grow and

characterize the structure and magnetization of the Pd,Fe/BaTiO3(100) sample as a

function of temperature were discussed. In order to enhance the effect of the strain

in the tetragonal phase, the Pd,Fe film with a thickness of 110 nm was deposited

onto the BaTiO3 (100) while in its cubic phase. MOKE magnetometry and XRD

characterization at temperatures above and below the T-C transition were used to

determine the effect of the tetragonal distortion on the deposited Pd,Fe film. The

results of this study suggest that we were able to tune the perpendicular magnetic

anisotropy using a distortion of -.7 % along the c-axis and .4 % along the a-axis of
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the BaTiO3 (100) substrate across its tetragonal to cubic phase transition. Using

high-temperature XRD analysis, we were able to conclude that the FePd3 phase was

responsible for the observed perpendicular anisotropy phenomena. However, due to

the relaxation of the film, only crystallites near the substrate surface experienced

significant coupling between the substrate and film. Accordingly, for future work, it

would be important to examine the effect of film thickness on this phenomenon by

fabricating a wedge sample with a range of thicknesses. Moreover, to optimize this

coupling, it is important to conduct total energy calculations using density functional

theory to aid in the fabrication of future heterostructures. Although the findings of

this study are consistent with the results of Winkelmann et al. (2006), to the best

of our knowledge this work is the first time that a reversible tetragonal distortion

has been used to control the perpendicular magnetic anisotropy. Since perpendicu-

lar magnetic anisotropy is important for high density recording, this demonstration

signifies a major advancement in this field.

Since this effect was observed using strain induced by the phase transition of the

BaTiO3 substrate, future work could explore different methods to impart this kind

of strain to the ferromagnetic film, one possibility is using a piezoelectric substrate.

Exploiting the coupling between the electric state and the elastic state of the material

in such a substrate would enable one to control the magnetization using a simple

voltage signal applied across the substrate interface region. Another aspect of our

work focused on the growth of an ordered FePd3 phase on the ABO3 perovskite.

Using Atomic Layer Epitaxy, we were able to fabricate an epitaxial Fe/Pd multilayer

heterostructure onto SrTiO3. We accomplished the growth of this structure by first

depositing the following sequence of layers: Fe(30 nm)/Pd(38 nm)/Fe(10 nm)/Pd(19

nm). Once grown, the heterostructure was annealed above the formation temperature

of FePd3 at 550o C. After annealing for 15 minutes at this temperature, the FePd3

phase was observed. The results of XRD analysis demonstrated conclusively that the
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film had an excellent epitaxial match with the SrTiO3 (100) substrate. Using MOKE

magnetometry, we found that the sample exhibited in-plane magnetization reversal

at ambient temperature. In this study, the minimum thickness for ordering upon

annealing of the two bilayers of the heterostructure was not explored. This technique

could also be used to enhance the magneto-elastic coupling between the FePd3 film

and the BaTiO3 (100)substrate by growing an ordered FePd3 phase.

Most of the work in this thesis relates to static strain, in the future, we could

explore dynamic effects, investigating the effects of transient strain induced by laser

pulses. Since, pressure-induced invar behavior has been observed in this material,

Winterrose et al. (2009), it would be interesting to see the effects of transient strain

on spin waves in FePd3. In the magnetostrictive material, we could generate phonons

impulsively using ultra-fast laser pulses. Due to the magnetostrictive coupling this

could induce switching on the ultra-fast time (sub-picosecond) scale. This approach

could be used for the manipulation of the magnetization, including switching, using

only optical pulses rather than magnetic fields generated by a solenoid. This opens

up the possibility to accomplish all-optical magnetization manipulation, including

ultrafast dynamical switching.

Moreover, since SrTiO3 has a high electric susceptibility, Uwe et al. (1973), fu-

ture work could also include the fabrication of epitaxial heterostructures consisting

of FePd3 deposited onto SrTiO3 with a patterned electrode. This structure would

allow one to study the effect of magneto-electric coupling between the SrTiO3 and

the ferromagnetic thin film. The work presented here points the way to new and

interesting future directions for novel magnetic recording media that are compatible

with all-optical switching. The physics of magnetoelectric coupling in such materials

is currently a very active area of study and is likely to reveal many new avenues for

research into the future.
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