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3.2 Schematic showing the footprint of the experimental scattering setup. The
black dashed inset box shows the components of the MIIPS feedback loop. . . 72

3.3 Depiction of alignment check using precision right angle prism to confirm
orthogonality of pump beam and collection optics. . . . . . . . . . . . . . . . 74

ix



3.4 Plot showing the interference filter transmission as a function of laser wave-
length overlaid with a Gaussian curve of 5 nm bandwidth to approximate the
laser spectrum. The dashed blue curve represents the filter transmission at nor-
mal incidence, which is centered at 780 nm (depicted by dashed grey curve).
The solid blue curve represents the estimated shift in the filter transmission
when tilted at 14◦ incidence. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Schematic depiction of the limitation of photon-counting devices. If the device
measurement window is greater than the temporal duration of the signal being
measured, then the device may only count a single photon per cycle of signal.
A multiple photon event would saturate the detector and result in a nonlinear
response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6 A measurement of the input optical power as a function of the equally-spaced
intensity points due to the rotation of the λ/2 + analyzer pair. This procedure
is done for the analyzer in both parallel and perpendicular orientations. This
plot confirms that the intensity control does in fact yield equally-spaced power
increments between each intensity run. . . . . . . . . . . . . . . . . . . . . . 80

3.7 Cartesian representation of a typical set of data collected in the scattering ex-
periment. Here we see the independent fitting parameters are the amplitude
(polarized component) and vertical offset (unpolarized component). . . . . . . 82

3.8 Flow chart showing the basic components of the data processing script. Exper-
imental parameters are entered, the text files are read in, processed, and fitted,
and the fitted parameters are extracted and plotted. . . . . . . . . . . . . . . . 83

3.9 Molecular diagrams of the three liquids studied in the initial magnetic scatter-
ing experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1 Schematic for measuring light scattering in the forward direction. The input
polarization to the sample is linearly polarized with extinction of 105:1. A
second polarizer with a power meter is set to pass polarization along the hori-
zontal axis to check for ellipse rotation. . . . . . . . . . . . . . . . . . . . . . 89

4.2 (a) Dependence of the transmitted intensity as a function of angle for linearly-
polarized light passing through a bulk cystal of GGG. The dashed curve shows
the same but with no GGG. (b) The transmitted power through GGG as a
function of input intensity for horizontal and vertical polarizations of light.
Measurements were made after a horizontal analyzer in both (a) and (b). . . . . 90

4.3 Polar plot showing electric (red open circles) and magnetic (blue closed cir-
cles) scattering intensities in CCl4 at I = 3.3 × 108 W/cm2. Solid lines rep-
resent best fit lines to the data. The dotted red line represents the (small)
unpolarized center in the ED scattering. . . . . . . . . . . . . . . . . . . . . . 93

4.4 The magnetic scattering intensities in liquid CCl4 from Fig. 4.3 blown up to
show the orthogonal orientation relative to the the ED scattering. (a) Shows
the total magnetic scattering with the dotted line representing the unpolarized
magnetic component. In (b) the unpolarized component has been subtracted
to show just the polarized component. . . . . . . . . . . . . . . . . . . . . . . 94

x



4.5 The (a) polarized and (b) unpolarized components of electrically- and magnetically-
scattered light in liquid sample CCl4. In (a) the magnetic signal is multiplied
by a numerical factor of 10 so that it appears on the same set of axes as the elec-
tric signal. The polarized electric dipole (ED) data is partly saturated above
1.2× 108 W/cm2 so these points are not included in the fit. . . . . . . . . . . . 95

4.6 Depolarization ratios δED and δMD for molecular liquid CCl4. The solid
curves represent first-order polynomial fits to the data. The first three points
were not included in the magnetic fit to the data. . . . . . . . . . . . . . . . . 96

4.7 The total measured magnetic response in molecular liquid SiCl4 as a function
of laser intensity. The solid curve represents a linear fit to the experimental data. 97

4.8 The (a) polarized and (b) unpolarized magnetic scattering intensities as a func-
tion of laser intensity for the liquid sample SiCl4. The polarized component is
seen to grow linearly while the unpolarized component has a slight nonlinear
dependence on intensity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.9 The total measured signal in SiBr4 for electric and magnetic orientations of the
analyzer. The electric response follows a linear fit while the magnetic response
is quadratic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.10 The (a) polarized and (b) unpolarized response for the electric and magnetic
scattering intensities in liquid sample SiBr4. The polarized electric response is
linear while the polarized magnetic response is nonlinear, as are the unpolar-
ized responses for both electric and magnetic signals. . . . . . . . . . . . . . . 100

4.11 Plot showing the quadratic response of the polarized component of the magnetically-
scattered light in liquid sample SiBr4. . . . . . . . . . . . . . . . . . . . . . . 101

4.12 The (a) polarized and (b) unpolarized response for the electric and magnetic
scattering intensities in liquid sample SnCl4. There is no apparent nonlinear
magnetic response but the unpolarized electric response is quadratic. . . . . . . 102

4.13 Comparison of quadratic unpolarized electric response in CCl4, SiBr4, and
SnCl4 as a function of input intensity. The steepest slope is for SnCl4 and the
shallowest slope is for CCl4, suggesting that moment of inertia plays a role in
the magnitude of the measured response. . . . . . . . . . . . . . . . . . . . . 103

4.14 Expanded plot windows of Fig. 4.13 for (a) the red dashed box and (b) the
blue dashed box. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.15 Log-log plot showing the amplitudes of the unpolarized electric scattering as
a function of intensity in the liquid samples CCl4, SiBr4, and SnCl4. Solid
curves represent fits to second-order polynomials. The response in SnCl4 is
much higher than CCl4, which suggests that molecules with a larger moment
of inertia will more readily display this quadratic nonlinearity. . . . . . . . . . 105

4.16 Experimental intensity patterns for delocalized π-electronic benzene structures
at I = 1.9 × 108 W/cm2. The red open circles (blue filled circles) represent
electric (magnetic) dipole response. The unpolarized centers have not been
subtracted, and there is no apparent polar response for any of the magnetic
scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xi



4.17 Experimental plots showing (a) the total electric response and (b) the unpolar-
ized electric response in C6H6 (benzene), C6H5NH2 (aniline), C6H5CN (ben-
zonitrile), and C6H6 (deuterated benzene) as shown in the plot legends. The
solid curves represent linear fits in (a) and quadratic fits in (b). The plot axes
limit the response in benzonitrile because it was high and saturated the detector. 107

4.18 The anisotropy of a benzene ring leads to two different molecular polarizabil-
ities and hence large depolarization. . . . . . . . . . . . . . . . . . . . . . . . 108

4.19 The measured depolarization ratios for π-delocalized benzene structures. δMD

is close to unity in each sample which indicates lack of a polarized MD compo-
nent, while δED in each sample is linear which indicates nonlinear unpolarized
response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.20 Dipole plots showing the measured electric (red open circles) and magnetic
(blue filled circles) scattering intensities in the solid sample GGG at intensity
I = 108 W/cm2. (a) Shows the total signal (polarized + unpolarized) and (b)
shows only the polarized component. . . . . . . . . . . . . . . . . . . . . . . 112

4.21 (a) Polarized + unpolarized and (b) polarized scattering intensities as a func-
tion of input optical intensity in solid garnet crystal GGG. Red circles represent
electric scattering and blue triangles represent magnetic scattering. . . . . . . . 113

4.22 The unpolarized electric and magnetic scattering intensities as a function of
input optical intensity for the cubic garnet crystal GGG. Solid curves represent
second-order polynomial fits. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.23 Dependence of dressed state coefficient populations on n for individual dressed
state indices in the atomic model. Here ω/ω0 = 0.9. . . . . . . . . . . . . . . 116

4.24 Log-log plots of the absolute magnitudes of induced electric and magnetic
moments as a function of photon number in the atomic dressed-state picture.
The magnetic moments were divided by a factor of the speed of light to make
the units for all dipole moments C·m. The detuning was fixed at ω/ω0 = 0.9. . 117

4.25 Log-log plot of the incoherent sum of induced electric and magnetic dipole
moments in the atomic picture. (a) A detuning of ω/ω0 = 0.9 was used, while
(b) shows enhancement of the second-harmonic effect and magnetization for
the near-resonant 2-photon detuning of ω/ω0 = 0.49999 (i.e. ∆31 ≈ 0). . . . . 118

4.26 The resonant behavior for the dipole moments from the atomic model. The
rightmost dashed curve is for the 1-photon resonance condition ω = ω0 and
the leftmost curve is for the 2-photon resonance condition ω = ω0/2. Here
n = 1012. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.27 Comparison between classical and quantum models of the 0-frequency rec-
tification moment. Due to normalization, the classical model has a physical
limitation to how large it can grow. . . . . . . . . . . . . . . . . . . . . . . . 120

4.28 Dependence of dressed state coefficient populations on n for individual dressed
state indices in the molecular model. Here ω/ω0 = 0.9 and ωϕ/ω0 = 10−3. . . 122

4.29 Log-log plot of the electric and magnetic dipole moments in the molecular
model for individual dressed state index. The detunings were ω/ω0 = 0.9 and
ωϕ/ω0 = 10−7. The grey dashed curve is for the value ea0. . . . . . . . . . . . 122

xii



4.30 Log-log plot of the incoherent sum of (a) 〈m(2)
net(ω)〉 and (b) 〈p(2)net(0)〉 in the

molecular model. The series of curves are for 2-photon detunings of ωϕ/ω0 =
10−11, 10−9, 10−7, 10−5, 10−3 from left to right in both plots. The 1-photon
detuning is ω/ω0 = 0.9. In (a) the dashed curve represents a quadratic depen-
dence on input field while in (b) the dashed curve is for ea0

√
2. . . . . . . . . 123

4.31 The resonant behavior for (a) the 1-photon detuning and (b) the 2-photon de-
tuning for the molecular model. In (a) the dashed curve represents the value
ω = ω0 and in (b) the dashed curve represents the value ωϕ = ω0 − ω = 0.1ω0. 124

4.32 Results for the magnetization in (a) the 3-state model and (b) the 4-state model.
Complete quantitative agreement is found with the linear electric moment for
the 4-state model. The series of curves are for 2-photon detunings of ωϕ/ω0 =
10−11, 10−9, 10−7, 10−5, 10−3 from left to right in both plots and ω/ω0 = 0.9. . 125

5.1 Depiction of electric and magnetic transitions driven between uncoupled states
of the molecular dressed-state system. The dashed curve on the magnetic tran-
sition represents a completely resonant, inelastic transition that may account
for nonlinear unpolarized scattering. . . . . . . . . . . . . . . . . . . . . . . . 128

5.2 The generated terahertz (THz) field is proportional to the second time deriva-
tive of the envelope of the input electric field. . . . . . . . . . . . . . . . . . . 134

5.3 Wavefront diagram of Cherenkov-like cone produced by the difference in THz
and optical refractive indices [3]. . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4 A typical pump-probe THz generation/detection scheme. . . . . . . . . . . . . 136
5.5 Proposed fiber-coupled receiver for THz detection via magneto-electric (ME)

rectification. The receiver and the sample are both free to rotate independent
of each other and the probe beam. . . . . . . . . . . . . . . . . . . . . . . . . 137

5.6 (a) Optical image of fabricated polymer micro-ring with a coupling waveg-
uide. The diameter of the ring is 100 µm and cross-section is 1 µm × 1 µm.
(b) Experimental setup for measuring optical scattering. The sample is placed
on a high-precision translation stage and light is collected at 90◦ relative to
the plane of the resonator. Light is coupled into the waveguide using a single-
mode fiber and its transmission is measured using a multi-mode fiber and pho-
todetector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.7 Molecular structure of tetrafluorobenzene, trifluorobenzene, difluorobenzene,
and benzene, as shown from left to right in order of increasing electron density. 140

5.8 Structure of non-polar, symmetric molecular liquids. . . . . . . . . . . . . . . 141

A.1 Expansion of the basis due to iterations of the interaction Hamiltonian. One
can easily count the orders in the field to see how strong the coupling may be
for different states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

A.2 The net induced moments with corrections up to the 8-state basis for p(ω),
p(0), p(2ω) and m(ω). The grey dashed curves represent the values of the
moments in the 4-state basis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xiii



A.3 Induced electric and magnetic dipole moments in the 4-state basis for individ-
ual dressed state indices. Shown are the linear electric moment 〈p(1)ii (ω)〉, the
nonlinear electric moments 〈p(2)ii (0)〉 and 〈p(2)ii (2ω)〉, and the nonlinear mag-
netization 〈m(2)

ii (ω)〉. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
A.4 Induced electric and magnetic dipole moments in the 6-state basis for individ-

ual dressed state indices. Shown are the corrections to the nonlinear electric
moments 〈p(2)ii (0)〉′ and 〈p(2)ii (2ω)〉′, and the nonlinear magnetization 〈m(2)

ii (ω)〉′. 155
A.5 Higher-order contributions to electric and magnetic dipole moments when 8-

states are considered for the basis. Shown are the cubic moments 〈p(3)ii (ω)〉′′
and 〈p(3)ii (3ω)〉′′ and the fourth-order moment 〈m(4)

ii (ω)〉′′. . . . . . . . . . . . . 156

C.1 A simplified geometry to determine the amount of out-of-plane scattering. . . . 163
C.2 The solid angle to be subtended by the choice of pinhole diameter. . . . . . . . 164

D.1 A graphical representation of a 100 MHz photon-counting device being used
to measure single photon events from a repetitious 200 MHz source. During
the dead time window of 10 ns, only one of the signal photons will be counted
and the resulting signal will be 50% of the true signal. . . . . . . . . . . . . . 168

D.2 A 1 kHz laser system with temporal pulses of the order 180 fs. The time
between subsequent pulses is many times more than the dead time interval (1
ms� 10 ns), so we are limited to a single photon per pulse. . . . . . . . . . . 169

D.3 Electric dipole scattering patterns for increasing input intensity. As the input
power is increased, the dipole evolves into a boxy-shape. This was taken for
CCl4. The corresponding intensities should be up to about 2× 107 W/cm2 for
the most intense plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

D.4 Electric dipole scattering patterns in CCl4 using an OD0.6 filter in the signal
arm to attenuate the light reaching the PMT. The curves are no longer saturat-
ing at high intensities, suggesting that the effect of saturation is purely electronic.170

D.5 Maximum electric dipole scattering (polarized fitted component) for no atten-
uation (left) and with attenuation of OD0.6 (middle) before the PMT. (Right)
the response curve for the “highly-saturated” regime. . . . . . . . . . . . . . . 171

D.6 Measured electric dipole scattering for “highly-saturated” PMT regime. . . . . 171
D.7 Left: before being stretched, the ultrashort laser pulse fits inside the dead time

window. Right: if the pulse is stretched to several orders more than the dead
time then more counts per pulse can be recorded by the detector. . . . . . . . . 173

D.8 Saturation curves for the photomultiplier tube with the analyzer set to pass
vertical polarization. Both plots show the same data but (a) is on linear axes
and (b) is on a semilog-Y plot. In both curves it is possible to see at least two
plateaus occurring at 9,000 and 17,000 counts/s. At least two more plateaus
are present (at 1,000 and 3,000 counts/s) but it is difficult to make these out
from this data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

D.9 (a) The first anticipated detector plateau occurs at a count rate of 1000 counts/s.
(b) Multiple other saturation plateaus occur at higher intensities. In both plots
the dashed black curve represents the actual linear signal we intend to measure. 178

xiv



E.1 Sketch showing experimental outline for taking measurements of light leak-
age. The locations labeled (1)-(4) correspond to regions where a large flat was
used to block the beam line. . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

E.2 Experimental check of external sources of radiation in scattering experiment
while blocking light at four key places along the beam line. The laser was
off during these measurements and (a) shows measurements for shutter closed
and (b) for shutter open. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

E.3 Experimental measurement of light leakage through USB shutter with laser on
for (a) shutter closed and (b) shutter open. . . . . . . . . . . . . . . . . . . . . 183

E.4 (a) The raw counts as a function of angle for 12 successive measurements of
light through the analyzer. The asymmetry is likely due to the waveplate being
for 780 nm instead of 632 nm. (b) The fitted phase as a function of successive
run number. If there were no problem with the stage, this value should be
constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

E.5 Experimental test of transmitted polarized light through the analyzer in vertical
(a) and horizontal (b) orientations. There is no longer any apparent slippage of
the mechanical stage. In both plots, the horizontal axis is the angle in radians
and the vertical axis is the total number of counts. A 3 s count interval was used.185

F.1 A normalized Gaussian function with different top hat functions of varying
height and width. Here the color codes correspond to widths of: blue =
[−σ, σ], purple = [−1.25σ, 1.25σ], green = [−1.5σ, 1.5σ], and red = [−2σ, 2σ].
Here σ = 1, but the axes simply scale for any other value. . . . . . . . . . . . 188

xv



LIST OF TABLES

4.1 Table showing physical values relevant to tetrahedral structures. . . . . . . . . 104
4.2 Table showing physical values relevant to benzene structures. . . . . . . . . . 109

B.1 All possible values of r̂ between the 1s and 2p states of atomic hydrogen. . . . 160
B.2 All possible values of L̂ between adjacent 2p states of atomic hydrogen. . . . . 162

xvi



LIST OF APPENDICES

A Non-RWA Contributions in Dressed State Model . . . . . . . . . . . . . . . . . 143

B Evaluation of Operators in Atomic Hydrogen . . . . . . . . . . . . . . . . . . 157

C Out of Plane Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

D PMT Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

E Details on SMC Rotation Stages . . . . . . . . . . . . . . . . . . . . . . . . . . 180

F Determining the Maximum Intensity from a Gaussian Pulse . . . . . . . . . . 186

xvii



LIST OF ABBREVIATIONS

APD avalanche photodiode

CEP carrier-envelope phase

CLOM complete Lorentz oscillator model

COM center-of-mass

CPA chirp-pulse amplified

cw continuous-wave

DFG difference frequency generation

ED electric dipole

EMI electro-magnetic interference

FWHM full-width at half-max

IPA isopropyl alcohol

ITO indium tin oxide

LHS left-hand side

LOM Lorentz oscillator model

MD magnetic dipole

ME magneto-electric

MIIPS multiphoton intrapulse interference phase scan

ND neutral density

OR optical rectification

PMT photomultiplier tube

RHS right-hand side

xviii



RWA rotating wave approximation

SH second-harmonic

SHG second-harmonic generation

SLM spatial light modulator

SRR split ring resonator

TE transverse electric

TIR total internal reflection

THz terahertz

TM transverse magnetic

XPW cross-polarized wave

xix



ABSTRACT

This thesis reports the results of light scattering experiments at moderate opti-
cal intensities (∼ 108 W/cm2) in which the magnetic component of light induces
magnetic dipolar response of unprecedented intensity by a novel nonlinear mecha-
nism. Both experimentally and theoretically the amplitude of induced magnetiza-
tion is found to be as large as electric polarization (M = cP ) at intensities above
∼ 108 W/cm2 in different materials, greatly exceeding the conventional bounds
of the multipole expansion. The transverse nature of the magnetization, its fre-
quency, and its quadratic dependence on incident light intensity are in agreement
with an exact theory which identifies the importance of magnetically-induced
torque in achieving 2-photon resonance of this ultrafast process.

In this work we report and compare the intensity dependence of cross-
polarized scattering in the transparent molecular liquids CCl4, SiCl4, SiBr4, SnCl4,
C6H6, C6D6, C6H5NH2, and C6H5CN and the crystalline solid Gd3Ga5O12. Com-
plete radiation patterns of co-polarized and cross-polarized light scattering were
recorded as a function of intensity in these homogeneous media and subsequently
decomposed into polarized and unpolarized components to provide a more com-
plete picture of scattering dynamics than has been possible in past experiments.

The cross-polarized scattering observed from spherical-top molecules CCl4,
SiCl4, SiBr4, and SnCl4 and crystalline GGG is argued to originate from magnetic
dipoles induced by a second-order optical nonlinearity driven jointly by the E and
B fields of light. Among the spherical top molecular liquids, SnCl4 developed
more intense magnetic scattering at a fixed intensity than CCl4, in agreement with
the predicted dependence on rotational frequency and damping. Cross-polarized
scattering in anisotropic molecules C6H6, C6D6, C6H5NH2, and C6H5CN, on the
other hand, is known to originate from optical orientation of permanent electric
dipole moments in first-order or differential polarizability in third-order. The im-
portance of rotational dynamics to depolarization in all the liquids studied is out-
lined and confirmed through observation of an isotopic effect in the scattering
from C6H6 vs. C6D6. Finally, the new nonlinear optical process investigated here
provides a method for generating oriented rotations of molecules.

xx



CHAPTER 1

Introduction

This thesis expands on the conventional model of light-matter interactions dominated by
electrically-driven phenomena to include high-frequency magnetism proportional to the
electric polarization of dielectric media. The work reported herein is a continuation of
the seminal work done by Oliviera which reported evidence of strong, nonlinear magnetic
dipole scattering in liquid dielectric samples at non-relativistic intensities [1]. Surprisingly,
this phenomenon had not previously been observed, although it required relatively low
input intensities (of the order 108 W/cm2) and the 90◦ detection geometry that is common-
place for light scattering experiments [4]. Subsequent work by Fisher and Rand devel-
oped classical [5] and quantum [6] models intended to explain optically-induced magne-
tization and make detailed comparisons between theoretical and experimental results [2].
Their models provided a physical mechanism that could qualitatively explain the magnetic
response, and they predicted two more novel nonlinear processes: sum- and difference-
frequency magneto-electric harmonic generation. These three processes constituted a new
family of nonlinearities driven by the joint action of the electric and magnetic components
of the optical field, referred to here as magneto-electric (ME) nonlinearities. A unique as-
pect of these nonlinearities driven by the field combination EB, is that unlike all-electric
quadratic nonlinearities, they are predicted to occur in centrosymmetric as well as non-
centrosymmetric media.

Earlier work raised questions as to how magnetically-driven nonlinearities can be en-
hanced and how to determine whether they can be observed in all dielectric media. Prior
to the present research, only three liquid samples had been studied, all of which had dis-
tinctively different molecular and electronic structure: H2O with an internal dipole mo-
ment, C6H6 with π-delocalized, anisotropic charge distributions, and CCl4 with an opti-
cally isotropic, tetrahedral geometry [2]. Because these samples presented no systematic
variation of properties, comparisons between them provided no compelling clues regard-
ing which properties were important for inducing large cross-polarized scattering that was
truly magnetic in origin. The experiments also offered no insight as to whether this effect
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would be present in other phases of matter, such as solids. The classical model provided
perturbative solutions for quadratic magneto-electric dynamics as well as a useful physical
picture of charge deflection due to the magnetic field [5], but no exact analytic solution to
the problem has been published. Similarly, the initial quantum picture relied on rare elec-
tronic properties and handled the magnetic interaction as a weak perturbation [6]. While
these early theoretical models predicted the same trio of nonlinear ME effects, they did not
provide proof that the effects could take place universally in all dielectric media or account
quantitatively for their magnitudes. The aim of this thesis is to clarify these issues both
through experimental observations and theoretical analysis.

This thesis is organized as follows. Chapter 1 first discusses high-frequency magnetism
as well as traditional light scattering phenomena. We then provide an overview of initial
magnetic scattering experiments and the classical treatment of ME nonlinear processes. In
Chapter 2 we develop a new quantum model using a dressed state approach which treats the
magnetic field in an exact way and describes the sequential action of electric and magnetic
fields as interaction terms responsible for mixing the states of an initially symmetric sys-
tem. This theory is developed in two stages, first by considering an atomic system and then
a molecular system. This treatment again confirms the existence of a trio of nonlinear ME
effects but for the first time provides correct qualitative and quantitative agreement with
experimental findings. The main result of the “molecular model” is the finding that mag-
netic torque can mediate a nearly-resonant 2-photon transition to rotationally-excited states
and account for the large magnetic response measured experimentally. Chapter 3 outlines
the experimental approach and methods for measuring the induced magnetization, which
is central to this discussion. Special care is taken to discuss the experimental components,
procedure for processing the data, and sample selection and preparation.

In Chapter 4 we discuss the main results of this work. We show for the first time that
magnetic dipole scattering can be induced in crystalline gadolinium gallium garnet (GGG)
and that it is as intense as electric dipole scattering. Following this, comparisons are made
of the two series of molecular liquids whose chemical structure systematically varies the
electron density or the moment of inertia. First we compare systems with π-delocalized
electronic orbitals and then we show a comparison of molecules with tetrahedral symmetry.
An important conclusion of these comparisons is that the moment of inertia and molecular
damping affect enhanced magnetic response. This comparative study also provides a basis
by which to distinguish molecular rotations initiated via a second-order ME process from
conventional electrically-induced rotations which have cubic dependence on the field [7]. It
is shown that in spherical top molecules that lack anisotropy or internal dipole moments, the
cross polarized scattering is magnetic in origin, while in molecules with large anisotropy
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it is dominated by an all-electric process. In the second half of Chapter 4, results from the
quantum theoretical model are presented. Plots of the induced nonlinear effects versus in-
tensity and detuning are provided. The detuning plots confirm that the calculated moments
depend on electric and magnetic detunings as expected. A comparison is made between
the classical and quantum models to show that the quantum model not only introduces a
mechanism to explain magnetic enhancement, but also includes important corrections to the
perturbative solutions from the classical theory, namely that the normalization of quantum
states provides a physical limit for how big the predicted moments may be.

In the final chapter, Chapter 5, we summarize the main results from both the experimen-
tal findings and the theoretical models. A comparison between the two shows that theory
can both qualitatively and quantitatively explain magnetic scattering as intense as Rayleigh
scattering (M = cP ). The outlook that these results provide on the field of high-frequency
magnetism is then discussed and some commentary on other experimental platforms which
could be used to investigate this trio of nonlinear effects is offered. We conclude with a
brief overview of experimental improvements to the magnetic scattering system that are
needed to improve dynamic range and to better understand these nonlinearities.

1.1 High-frequency magnetism

High-frequency magnetism has attracted increasing attention in the last few years due to
its relevance to metamaterials, spintronics, quantum information, high-speed optical mag-
netic storage, and other topics. This topic has benefited from decades of advances in tech-
niques to produce novel material properties reliant on magnetic response, such as negative
permeability in structured materials [8], coherent optical spin control of semiconductor
charge carriers [9] or luminescent centers [10], and ultrafast switching of magnetic do-
mains [11]. In sharp contrast to this, the possibility of harnessing magnetic response in
natural, unstructured, “non-magnetic” materials has received virtually no attention. This is
understandable in light of traditional arguments suggesting that high frequency magnetism
can be neglected in homogeneous media [12]. A dimensional argument from Landau and
Lifshitz is provided in their book, Electrodynamics of Continuous Media:

For a given frequency, the most favourable conditions for measuring the
susceptibility are those where the body is as small as possible (to increase the
spatial derivatives in curl M) and where the electric field is weak as possible
(to reduce P). The field of an electromagnetic wave does not satisfy the latter
condition, because E ∼ H . Let us therefore consider a variable magnetic
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field, say in a solenoid, with the body under investigation placed on the axis.
The electric field is due only to induction by the variable magnetic field, and
the order of magnitude of E inside the body can be obtained by estimating
the terms in the equation curl E = −(1/c)∂B/∂t, whence E/l ∼ ωH/c or
E ∼ (ωl/c)H , where l is the dimension of the body. Putting ε−1 ∼ 1, we have
∂P/∂t ∼ ωE ∼ ω2lH/c. For the space derivatives of the magnetic moment
M = χH we have c curl M ∼ cχH/l. If |∂P/∂t| is small compared with
|c curl M|, we must have

l2 � χc2/ω2 .

It is evident that the concept of magnetic susceptibility can be meaningful only
if this inequality allows dimensions of the body which are (at least) just macro-
scopic, i.e. if it is compatible with the inequality l � a, where a is the atomic
dimension. This condition is certainly not fulfilled for the optical frequency
range; for such frequencies, the magnetic susceptibility is always ∼ v2/c2,
where v is the electron velocity in the atom; but the optical frequencies them-
selves are ∼ v/a, and therefore the right hand side of the inequality [above] is
∼ a2.

Thus there is no meaning in using the magnetic susceptibility from optical
frequencies onward, and in discussing such phenomena we must put µ = 1.
To distinguish between B and H in this frequency range would be an over-
refinement. Actually, the same is true for many phenomena even at frequencies
well below the optical range.

This argument has long since discouraged research into magnetic effects at optical frequen-
cies.

Another reason to expect the effects of optical B fields to be small is simply that B �
E. Recall the Maxwell equation for the curl of the electric field,

∇× E = −∂B
∂t

, (1.1)

and assume we have a harmonic plane wave oscillating at frequency ω traveling along ẑ,

E = E0e
−i(ωt−kz)x̂ and B = B0e

−i(ωt−kz)ŷ . (1.2)

Substituting E and B into the curl equation yields
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kE0e
−i(ωt−kz)ŷ = ωB0e

−i(ωt−kz)ŷ . (1.3)

This can be rearranged to yield

E0 =
ω

k
B0 . (1.4)

Thus we see that |B0| = |E0|/c since c = ω/k, so the amplitude of the magnetic field is
smaller than the electric field by a factor of the speed of light. This argument, or the one
presented above by Landau, suggest that effects arising from the magnetic component of
light should be much smaller than their electric counterparts.

There are two known situations which reverse this conclusion: (1) in the regime of
relativistic optics where v2/c2 ∼ 1 [13] (the Lorentz force is large), and (2) in specially de-
signed structures which enable large magnetic response such as metamaterials [14] (E can
mimic the effects of B). The results presented in this thesis, however, provide compelling
evidence of strong, induced magnetic dipole scattering in transparent dielectric media at
non-relativistic intensities [1, 2, 15]. If high-frequency magnetic response could be in-
duced with moderate light intensities in optical materials regardless of their symmetry, it
goes without saying that new horizons would emerge for materials and photonic technolo-
gies. Among the intriguing possibilities that have been discussed are the conversion of
electromagnetic energy directly to electricity in “optical capacitors,” solar power genera-
tion without semiconductors, the achievement of negative permeability in natural materi-
als, and the generation of large (oscillatory) magnetic fields without current-carrying coils
[5, 6, 16].

Traditional nonlinear optical theory, which assumes dissipation-free parametric interac-
tions [17], dictates that magnetic dipole (MD) moments of atoms are at most small fractions
of their ED counterparts (unless the ED moment vanishes altogether), so large magnetic re-
sponse is difficult to understand in a conventional context. The traditional upper limit of
the MD/ED intensity ratio is the square of the fine-structure constant, α2 .

= (1/137)2,
and transverse magnetization would normally be ruled out altogether in transparent liquids
where inversion symmetry is a property of the medium. This maximum ratio can be eas-
ily estimated by calculating the induced ED and MD moments in an atomic picture. Take
for example atomic hydrogen and assume there are three relevant states of the system by
which the optical field may drive transitions. Between states |1, 0, 0〉 and |2, 1, 0〉 the elec-
tric field may establish an electric dipole transition moment and between states |2, 1, 0〉 and
|2, 1,±1〉 the magnetic field may establish a magnetic dipole transition moment. These mo-
ments exist if we assume |1, 0, 0〉 is the ground 1s state, |2, 1, 0〉 is the first excited 2p state,

5



and |2, 1,±1〉 is just an orthogonal projection of the 2p state. Evaluating the magnitudes of
p̂ and m̂ follows the standard procedure to give

p̂ = 〈1, 0, 0| er̂ |2, 1, 0〉 = · · · = 128
√

2

243
a0e (1.5)

and

m̂ = 〈2, 1, 0| e

2me

L̂ |2, 1,±1〉 = · · · = e~
2me

, (1.6)

where we have assumed hydrogenic wavefunctions and the details of the integration are
shown in Appendix B. The ratio m/cp can then be easily computed,

m

cp
=

e~
2me

243

128
√

2

1

a0ec
≈ α , (1.7)

where the approximation 243/256
√

2 ≈ 1 has been used and the fine structure constant is
taken to be α = ~/a0mec. Since α is the ratio of the induced moments, the intensity here
would be the square, giving us α2, as stated above. Regardless of traditional estimates such
as these, a very large ME susceptibility driven by the bilinear product of the optical and
magnetic fields was inferred from even the earliest magnetic scattering data of Ref. [2].
The obvious question then arises as to how such a large effect may arise.

A straightforward classical derivation of magnetization in a dielectric driven by an elec-
tromagnetic field is as follows. Ampére’s law in the presence of free charges states that
[18],

∇×B = µ0

(
Jc +

∂D

∂t
+∇×M

)
. (1.8)

Here B is the magnetic flux, Jc is the conduction current, D is the electric displacement
vector, M is the magnetization, and µ0 is the magnetic permeability of free space. We
are concerned with dielectric media, so Jc = 0. In the presence of an electric field of
amplitude E0, the displacement current may be replaced with the time-varying electric
field and dielectric polarization, P, using the relation

D = εE = ε0 (1 + χe)E = ε0E0 + P , (1.9)

where ε is the electric permittivity of the dielectric, ε0 is the permittivity of free space, and
χe is the electric susceptibility of the dielectric. Upon this substitution, the curl equation
for B becomes,
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∇×B = µ0

(
ε0
∂E0

∂t
+
∂P

∂t
+∇×M

)
, (1.10)

which we may rewrite in terms of the magnetic field vector H according to

B = µH = µ0 (1 + χm)H , (1.11)

where µ is the magnetic permeability of the dielectric and χm is the magnetic susceptibility
of the dielectric. From Eq. (1.10) we then have

∇×H =
µ0

µ0 (1 + χm)

(
ε0
∂E0

∂t
+
∂P

∂t
+∇×M

)
. (1.12)

If we now assume the induced magnetic dipoles are far off resonance, we can consider
the limit in which χm � 1. This restricts the result for induced magnetization to trans-
parent media with small polarization and magnetization far from resonance [4], which is
in fact precisely the conditions under which our experiments were performed. With the
assumption that χm � 1, the curl equation reduces to

∇×H
.
= ε0

∂E0

∂t
+
∂P

∂t
+∇×M . (1.13)

However, from Faraday’s law we also have the result

∇× E = −∂B
∂t

= iωµ0 (1 + χm)H
.
= iωµ0H , (1.14)

where we have assumed B ∝ e−i(ωt−kz) (i.e. B is a plane wave oscillating at frequency ω)
and we again consider the limit χm � 1. Rearranging Eq. (1.14) we find

H =
∇× E

iωµ0

. (1.15)

Note that upon taking the curl of Eq. (1.15) we have
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∇×H = ∇×
(∇× E

iωµ0

)
=

(ik) (ik)E

iωµ0

= −ik
2E

ωµ0

= −iωE
(

k2

ω2µ0

)
=
∂E0

∂t

(
1

c2µ0

)
=
∂E0

∂t

(
µε

µ0

)
. (1.16)

Far from any electronic resonance, in the limit of transparent media, we again note that
χm � 1, χe � 1. Thus Eq. (1.16) reduces to

∇×H
.
= ε0

∂E0

∂t
. (1.17)

By direct substitution of Eq. (1.17) into Eq. (1.13) we find that the induced magnetization
and polarization are therefore related by

∇×M
.
= −∂P

∂t
, (1.18)

or equivalently,

|M | = c|P | . (1.19)

The implication of Eqs. (1.18) and (1.19) is that if the driving field is linearly polarized
along the x̂ direction and light propagates along the z-axis so that k = kẑ, then the mag-
netization should have a nonzero component along the direction of the inducing B-field,
which lies along ŷ and is proportional to the electric polarization P. If M has a component
along ŷ only, then the curl term in the left-hand side (LHS) of Eq. (1.18) will have the form

∇×M =

∣∣∣∣∣∣∣
x̂ ŷ ẑ

∂/∂x ∂/∂y ∂/∂z

0 My 0

∣∣∣∣∣∣∣
= ẑ

∂My

∂x
− x̂

∂My

∂z
. (1.20)

Equating this to the right-hand side (RHS) of Eq. (1.18), we see

ẑ
∂My

∂x
− x̂

∂My

∂z
= −

∂P

∂t
. (1.21)
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To be self-consistent, the polarization components associated with this magnetization are
limited to

∂My

∂z
=

∂Px
∂t

, (1.22)

∂My

∂x
= −∂Pz

∂t
. (1.23)

The magnetization in Eq. (1.22) arises from the first-order polarization component px(ω) =

ε0χ
(1)
xxEx, induced along x̂. This equation tells us thatMy oscillates at the optical frequency

and has a gradient along ẑ. The second equation (Eq. (1.23)) arises from the second-order
nonlinear polarization, p(2ω) = ε0χ

(2)
zyxHyEx, which is non-zero in centrosymmetric media

and which depends on the second-order susceptibility. Thus the polarization along ẑ causes
a nonzero gradient in My along x̂. Together, the magnetization components in Eqs. (1.22)
and (1.23) predict a magnetization which is nonzero and transverse.

When analyzed in terms of static symmetry, the indices i, j, and k of the magneto-
electric susceptibility χ

(2)
ijk in a medium with inversion symmetry must all be different.

Consequently, static symmetry prohibits transverse magnetization because the susceptibil-
ity χ(2)

yxy in My ∝ χ
(2)
yxyExHy is zero. However, it is shown later in this thesis that dynamic

symmetry-breaking takes place in systems undergoing a second-order interaction driven by
E and H . As a result, the symmetry of the driven medium excludes inversion. In this way,
the joint action of E and H enables transverse magnetization to take place. Furthermore,
a dressed state analysis shows that optically-induced magnetization can be as intense as

the linear electric polarization in agreement with the classical result M = cP given by Eq.
(1.22). The quantum theory displays a quadratic dependence on the input optical field at
low intensities and a linear dependence when saturated.

In the next section we consider basic aspects of light scattering in dielectric media
to relate the scattered field amplitudes and orientations to induced electric and magnetic
moments. The mechanism responsible for the formation of nonlinear moments is described
later in Section 1.5.

1.2 Light scattering in dielectric media

The interaction of light with matter was studied long before the advent of lasers since scat-
tering is responsible for what makes an object visible to the human eye. The appearance of
an object is determined by the fact that light scatters from it and the human eye subsequently
detects the scattered light [19]. The observations in this thesis are due to the interaction of
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light with fluctuations in material properties which similarly lead to light scattering. For
the purpose of comparing the fields scattered by electric and magnetic dipoles, it is suffi-
cient to consider standard expressions for scattering from a particle of diameter a. There
are essentially three cases for scattering from particles, including atoms or molecules: (i)
a� λ, (ii) a ∼ λ, and (iii) a� λ. Cases (i) and (ii) can be analyzed using a multipole ap-
proach [20], while case (iii) can be treated macroscopically in a semi-geometric approach.
This third case is the condition for what is collectively referred to as diffraction. Case (ii)
is known as Mie scattering and is typically observed in suspensions of large nanoparticles
in liquid. Case (i) is most relevant to this thesis.

For the case of small (a� λ) dielectric scatterers with bound charges, we can describe
how the distribution of electrical charge in the material responds to an incoming electro-
magnetic field by simply specifying the scattered fields in terms of the induced electric and
magnetic dipole moments. These dipole moments are the dynamic analogue to the stan-
dard definitions of electrically- or magnetically-displaced currents in electrostatics [20].
Specifically, the electric dipole moment is defined in integral form as

p =

∫
x′ρ(x′)d3x′ , (1.24)

where ρ(x) represents a spatially-dependent charge distribution, x is the position vector
relative to a reference origin, and the integration is taken over the primed variable to de-
termine the net dipole moment. Likewise, the magnetic dipole moment is defined as the
integral over the magnetic moment density or magnetization,

M(x) =
1

2
x× J(x) , (1.25)

as

m =
1

2

∫
x′ × J(x′)d3x′ , (1.26)

where J(x) is a localized current density. When the charge density ρ or current density J

are induced by a high-frequency optical wave, the definitions of the electro- and magneto-
static moments remain the same but include time-dependence. Higher-order moments can
in principle contribute to the vector potential A(x, t) [20],

A(x, t) =
µ0

4π

eikr

r

∑
n

(
1

iλ

)n
1

n!

∫
J(x′, t) (n · x′)n d3x′ , (1.27)

from which the scattered fields are determined using the relations
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E = −∂A
∂t

and B = ∇×A . (1.28)

However, Eq. (1.27), which is known as the multipole expansion is dominated by effects
of the electric dipole p, followed by the magnetic dipole and electric quadrupole, and then
higher-order terms. This is consistent with the estimate showing |p| � |m| in the previous
section.

The solution for the scattered field at point x due to an electric dipole moment at point
x0 is

E(x, t) =
3n [p(x, t) · n]− p(x, t)

4πε0 |x− x0|3
, (1.29)

as derived in Chapter 4 of Ref. [20]. Here n is a unit normal vector directed from x to
x0. The scattered field is linearly proportional to the induced dipole moment, which in the
case of linear response is proportional to the input field. The same is true for the magnetic
induction field produced by a magnetic dipole moment, which yields the expression

B(x, t) =
µ0

4π

{
3n [n ·m(x, t)]−m(x, t)

|x|3
}
. (1.30)

This too is proportional to the induced dipole (see Chapter 5 of Ref. [20]). However, in
the present work, the induced magnetization is nonlinear, with the result that the scattered
or radiated B field is expected to grow nonlinearly with respect to incident intensity. The
angle made between p and m is also of relevance to our current discussion because elec-
tric and magnetic scattering intensities are measured separately and compared later in this
dissertation. Therefore we note that the scattered fields are parallel to their respective mo-
ments: E ‖ p and B ‖ m. But the incident fields Ei and Bi are mutually perpendicular.
So p ⊥ m and the scattered fields are orthogonal (E ⊥ B) in a 90◦ detection geometry. In
the following section we consider some early light scattering experiments in which cross-
polarized signals were observed using a 90◦ detection geometry to contrast them with the
observations of induced magnetization presented later in this thesis.

1.3 Overview of related work on light scattering

The topics of nonlinear optics and light scattering are well-developed and there exist sev-
eral useful review papers [21, 22] that describe in great detail the nonlinear effects expected
under particular experimental conditions. To describe each of these effects in detail here
is beyond the scope of this thesis. However, since the primary novelty of this thesis is
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the observation of magnetization at optical frequencies with a quadratic dependence on the
incident laser field, it is imperative to compare and contrast the results with other known
nonlinear phenomena. In this section we discuss several known optical effects that might
be thought to offer alternative explanations to the results presented in this thesis. How-
ever, these alternatives are ruled out one by one by considering important factors such as
frequency, polarization, geometry, intensity, and so on.

In Chapter 4 (see Fig. 4.2) polarization analysis data is presented that shows no ro-
tation or alteration of the polarization of the laser beam transmitted through the sample
under the conditions of our experiments. Hence induced linear birefringence, ellipse rota-
tion, and cross-polarized wave (XPW) generation are all absent. The results of previous
experiments on XPW generation in cubic crystals [23, 24] did measure polarization rota-
tion in the forward direction, but found that ellipse rotation efficiency varied harmonically
versus intensity and required input intensity above 1012 W/cm2, at least 4 orders of mag-
nitude larger than in our experiments. These observations are therefore inconsistent with
the experimental findings of this thesis for spherical-top molecules. No consistent explana-
tion of cross-polarized scattering can be based on these particular phenomena. Other past
experiments that used a 90◦ scattering geometry reported harmonics that were interpreted
as being induced by correlated scattering [25], but the signals were at a frequency twice
that of the laser. Moreover, there is no evidence of correlated scattering in our experiments
since the samples were completely transparent to incident and scattered light. Multiple
scattering was visibly absent. Finally, numerous earlier studies reported depolarization ra-
tios in molecular liquids [26], but not one of these experiments reported quadratic growth
of cross-polarized scattering at the optical frequency ω or measured the radiation pattern of
scattered light as we show in this current body of work.

Numerous precautions were taken to eliminate other mechanisms that potentially gen-
erate cross-polarized scattering in the 90◦ geometry. These precautions fell into the cate-
gories of sample selection, sample preparation, control of the input polarization state, and
spectral filtering. The choice of non-birefringent, non-chiral, centrosymmetric samples
eliminated effects due to linear birefringence (which requires anisotropy), circular birefrin-
gence (which requires chirality), and second-order all-electric interactions (which require
non-centrosymmetry and take place at frequencies other than ω). Spherical-top molecules
CCl4, SiCl4, SiBr4, and SnCl4 were chosen for the main study because they have no internal
dipoles or anisotropy, no optical resonances near the laser frequency, and exhibit isotropic
optical response. The samples were double-filtered through 0.2 µm millipore mesh filters
to remove any contaminates that could cause multiple or correlated scattering. Input po-
larization was chosen to be linear, thereby eliminating effects such as the inverse Faraday
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effect, which requires circular polarization to induce a longitudinal static magnetization.
Spectral filtering was used to restrict scattered light detection to the fundamental laser

frequency. This eliminated nonlinear effects such as hyper-Rayleigh scattering which gen-
erates photons at 2ω and other nonlinear light scattering phenomena that generate light at
second [27] or third [28] harmonics of the input frequency. In our experiments, it was
only possible to detect light scattered quasi-elastically from electric and magnetic dipole
moments. Therefore, the effects measured in this thesis cannot be explained by the results
of Terhune [25] or Maker [29] in which second-harmonic light scattering was observed in
liquids. Nevertheless, it is still the case that rotational modes of the sample can be ex-
cited and detected in our experiments, leading to Raman scattering with small frequency
shifts. Rotational Raman processes generate scattered light very close to the fundamental
frequency of the laser. Spectral filtering in our apparatus was narrow enough to prevent
vibrationally-excited Raman scattering from reaching the detector, but rotationally-excited
Raman scattering was transmitted.

The intensities used in the experiments described in this thesis are much lower than
those necessary to generate self-phase modulation or self-focusing. These effects require
input intensities approaching 1013 W/cm2 while the experiments reported here were per-
formed at 108 W/cm2 or lower. Induced refractive index changes can also be caused by
electrostriction [30, 31] or electrocaloric effects [32], but these cannot alter the polarization
of light scattered at 90◦. Nonlinear index changes affect only the speed at which compo-
nents of the waves travel because these linearly-polarized components are exactly parallel
or perpendicular to the fields that induce the nonlinear index anisotropy.

The choices of 90◦ detection geometry, linear optical polarization, centrosymmetric
samples with spherical-top geometry, narrowband filtering, and the use of low input inten-
sity allow us to rule out known, all-electric nonlinear mechanisms which might explain the
results reported in Chapter 4. We emphasize in particular that no cross-polarized scattering
or scattering ellipticity can be generated by nonlinear index changes parallel or perpen-
dicular to the input fields. The measurements recorded in this thesis also showed purely
dipolar nature of both the induced electric and magnetic moments, so no quadrupole or
higher-order multipole effects need be considered. Furthermore, the novel measurements
reported in this thesis are consistent with both classical and quantum theoretical models
which predict a quadratic optical magnetization proportional to the electric polarization as
being responsible for this induced response. We therefore draw the conclusion that our ex-
perimental results in CCl4, SiCl4, SiBr4, and SnCl4 reflect high-frequency magnetization.
In the final two sections of this chapter we review some prior experimental results together
with a classical picture of induced nonlinear magnetization which will assist the reader in
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later discussions of quantum dynamics.

1.4 Prior experiments on strong, induced magnetic scat-
tering

Light scattering experiments which sought to measure the relative amplitudes of induced
ED and MD moments in transparent, dielectric media began in 2007 [1]. These, and subse-
quent experiments, revealed for the first time that intense, nonlinear magnetic response that
was comparable in amplitude to the measured electric response was possible [2, 15, 16].
Here liquid samples of CCl4 (carbon tetrachloride), H2O (water), and C6H6 (benzene)
were specifically chosen because they included no atomic resonances near the input laser
wavelength and their liquid nature permitted them from having symmetric properties that
would normally support second-order optical response (such as structured crystalline sam-
ples which lack inversion symmetry). These experiments relied on a unique 90◦ detection
geometry which allowed for the separation of the induced ED and MD moments, as the
two moments are indistinguishable in the forward direction.

Figure 1.1: Depiction of the 90◦ scattering geometry which is required for distinguishing
between induced (a) electric and (b) magnetic dipole moments.

Figure 1.1 is a depiction of why this 90◦ geometry is required. If the incident field has
its electric component oriented along the vertical axis (along x̂), then the induced electric
dipole moment will also be oriented along x̂. If a detector is placed at a right-angle to
the input field direction, ẑ, then light scattered from the induced dipole moment will have
its electric component polarized along x̂. If an analyzer is then placed in the beam path
along this detection arm, we will see a maximum electric signal when its orientation is
vertical (i.e. along x̂). On the other hand, if the incident field has its magnetic component
oriented along the vertical axis, then the induced magnetic dipole in the sample will also
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be oriented along x̂ and magnetically-scattered light will have its magnetic component
along x̂ (see Fig. 1.1(b)). The analyzer is of course only able to select for the electric
polarization state1, so it must be oriented horizontally (i.e. along ŷ) in order to measure the
maximum magnetic signal. The selection between electric and magnetic dipole moments
is then purely dependent on the orientation of the analyzer: vertical to measure electric and
horizontal to measure magnetic.

Figure 1.2: Schematic diagram for initial scattering experiments showing the 90◦ detection
geometry.

The first experiments of this type were performed using ultrafast optical pulses from the
mode-locked, amplified Clark-MXR CPA-2001 laser system consisting of 150 fs pulses at
775 nm. To avoid damaging optical components or generating third-order optical effects,
the 1 kHz, µJ pulses were attenuated to intensities below I = 1013 W/cm2. The linearly
polarized pulses were directed into a liquid sample of pure CCl4 that was prefiltered twice
through a 0.2 µm millipore mesh filter and held in a cylindrical glass holder. A liquid-
cooled photomultiplier tube with a 10 nm passband filter centered on the laser wavelength
was used as a detector and was placed 90◦ relative to the input beam. An f8 focusing optic
was used so that the axial field component (i.e. the out-of-plane component of the detected
light) was completely negligible (Ez/E0 � 10−3). The geometry for this detection scheme
is shown in Fig. 1.2. The detected light was passed through the analyzer before the detector
which was set to vertical for measuring electric signals or horizontal for magnetic signals.

1This is why the two signals are indistinguishable in the forward direction: there is no way to separate light
scattered from the induced electric and magnetic signals since the analyzer is sensitive only to the electric
component of light.
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The input field was then rotated through 360◦ using a λ/2 plate in order to map out the
patterns shown in Fig. 1.3(a). As one would expect, the intensity of the measured signals
could be fit to a cosine-squared function as

I = a cos2 (θ + φ) , (1.31)

where a is some amplitude, θ is the angle of the field, and φ is some phase term.

Figure 1.3: Measured dipole response for magnetic (closed circles) and electric (open cir-
cles) scattering in liquid sample CCl4 for (a) amplified laser (b) and oscillator. Plots taken
from Ref. [1].

In the same study, similar measurements were made using a rectangular sample cu-
vette instead of the cylindrical glass holder and a mode-locked Ti:Al2O3 oscillator of 80
MHz repetition rate was used. Here the peak intensities were limited to I ∼ 1010 W/cm2

and the photomultiplier tube was switched out for an EG&G FND-100 photodiode. The
induced magnetic and electric dipole moments were again measured in CCl4 and it was
found that the magnetic response was again comparable to the electric response (see Fig.
1.3(b)). The response for the intensity of the magnetic dipole was then measured as a
function of input laser intensity and found to have a quadratic dependence (see Fig. 1.4).
Similar experiments on the aforementioned liquids H2O and C6H6 were also conducted and
large induced magnetic dipole response was recorded. A continuous-wave (cw) argon gas
laser was also used to do this experiment, with input intensities which never exceeded 105

W/cm2. These experiments however showed that no observable magnetic dipole emission
took place at these low intensities. This suggested that a transition between the regime of
no magnetic signal and large magnetic signal must take place [2].
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Figure 1.4: Experimental measurement of induced magnetic dipole scattering as a function
of laser intensity (lower curve). The ratio of induced magnetic to electric signal (ED/MD)
as a function of laser intensity (upper curve). Plot taken from Ref. [2].

These profound results showed for the first time that high-frequency magnetic response
at low intensities in natural materials is not only present, but is remarkably large when com-
pared to the induced electric response. Perhaps more unique to these experimental findings
is the frequency and intensity dependence of the measured magnetic response. Careful
review of existing nonlinear optical phenomena determined that an explanation for this
nonlinear effect was apparently overlooked in the past. This prompted the development of
several theoretical models which sought to explain this nonlinear effect as the result of the
joint action of electric and magnetic components of light acting together to create a nonlin-
earity of the type EB [5, 6]. A straight-forward extension to the Lorentz oscillator model
for electrons in a dielectric medium is perhaps the most intuitive model for understanding
this new nonlinear process.

1.5 Complete Lorentz oscillator model

Before moving forward, it is useful to review the classical model of ME processes [5] that
was developed to explain the results described in the previous section. A widely accepted
model of the electron dynamics in a dielectric medium is the Lorentz oscillator model
(LOM). This model assumes that the motion of an electron bound to a nucleus may be
approximated by that of a harmonic oscillator. When the material has centrosymmetry, the
restoring force of the electron is simply

F = −kx , (1.32)

where k is the effective spring constant and x is the displacement vector of the charge from
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its initial rest position. Once perturbed the electron loses energy due to damping, which can
be taken into account by including an additional term which is proportional to the velocity
of the charge, ẋ. The force equation then becomes

F = −kx− Aẋ , (1.33)

where A is just a proportionality constant and the overhead dot notation denotes a time
derivative. From Newton’s second law, the vector sum of the forces on an object is equal
to the mass of that object times its acceleration. We can then write

meẍ + Aẋ + kx = 0 , (1.34)

where me is the mass of an electron and ẍ is its acceleration. This is the homogeneous
second-order differential equation for motion of a damped oscillator and has the familiar
solutions which are exponential.

In the presence of an optical field, the electron-spring system will experience a driving
force. This is given by the Lorentz force,

F = e (E + ẋ×B) , (1.35)

for electric field E and magnetic field B. The general equation of motion to solve is then

meẍ + Aẋ + kx = e (E + ẋ×B) , (1.36)

which is known as the complete Lorentz oscillator model (CLOM) [5]. However, since
|B| = |E| /c and |v| � c (where c is the speed of light) for non-relativistic intensities, the
magnetic field is typically ignored and the equation reduces to

meẍ + Aẋ + kx = eE . (1.37)

Dividing through by me yields

ẍ + γẋ + ω2
0x =

e

me

E , (1.38)

where γ = A/me and ω2
0 = k/me. This simplified version is referred to as just the LOM.

So long as the electric field is only moderately intense (I < 1013 W/cm2), this equation can
be used to accurately describe the resulting dynamics associated with the electron motion.
Given an input field of the form
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E = E0e
i(kz−ωt)x̂ , (1.39)

where E0 is the electric field amplitude, k is the wave vector, and ω is the oscillation
frequency, the vector equation above reduces to an equation for motion of the electron
about only the x-axis. Solutions for this problem are of the form

x(t, ω) =
eE0

me

√
(ω2

0 − ω2)
2

+ γ2xω
2

cos (ωt+ φ0) , (1.40)

where φ0 = tan−1 [−γω/ (ω2
0 − ω2)]. The solution for x is typically recast in a slightly

more familiar form by multiplying by a factor of e. Given that x is a time-varying displace-
ment and e is a charge, their product yields an oscillating dipole moment, defined by the
usual relationship, p = ex. This solution is then

p(t, ω) = ex(t, ω) , (1.41)

which is the single-atom form for the electric polarization of a dielectric material2.
When the curl term in the Lorentz force is retained in the oscillator model, the vector

equation can be broken down into a set of two coupled differential equations which are a
generalization of the Hill’s equations [33]. We arrive at these equations by first specifying
the incident optical field. Without loss of generality, we take the optical field to have its
electric component along x̂, magnetic component along ŷ, and propagation direction along
ẑ,

E(t) = E0e
i(kz−ωt)x̂ , (1.42)

B(t) = B0e
i(kz−ωt)ŷ , (1.43)

where B0 = E0/c. The cross-product from the Lorentz force reduces to

ẋ×B =

∣∣∣∣∣∣∣
x̂ ŷ ẑ

ẋ ẏ ż

0 B0 0

∣∣∣∣∣∣∣
= −B0żx̂+B0ẋẑ , (1.44)

2To obtain the macroscopic polarization, a sum must be taken over all participating atoms in the medium
and their coherences must be taken into account.
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where we have temporarily suppressed the spatial and temporal dependence. From here it is
obvious that the resulting electron motion will be a superposition of motions along both the
electric field polarization axis and the direction of propagation. If the assumption is made
that the damping and restoring coefficients can have different values along the orthogonal
directions x̂ and ẑ (see Ref. [2]), then the coupled equations to solve are3

ẍ+ γxẋ+ ω2
xx =

e

me

(E0 −B0ż) ei(kz−ωt) , (1.45a)

z̈ + γz ż + ω2
zz =

eB0

me

ẋei(kz−ωt) , (1.45b)

where γx and γz are dampings along x̂ and ẑ, respectively, and ωx =
√
kx/me and ωz =√

kz/me are natural frequencies of the system along these same directions. Equations of
this type have no analytic solution, so a perturbative approach must be used in order to
write down explicit forms for x and z. This is done following the standard perturbation
chain,

x(t) = x0(t) + λx1(t) + λ2x2(t) + · · · , (1.46)

z(t) = z0(t) + λz1(t) + λ2z2(t) + · · · , (1.47)

where λ is an order parameter. Using this approach [5], we can determine the lowest-order,
nonzero solutions to the electron excursions along the orthogonal directions x̂ and ẑ. The
lowest-order solution for x is the same as given above,

x(t) =
eE0

me

√
(ω2

x − ω2)2 + γ2xω
2

cos (ωt+ φ0)

= x(t, ω) , (1.48)

while there are two terms present in the lowest-order solution for motion along z,

3Note that a different extension to the oscillator equation is to include a nonlinear restoring potential,
which leads to the anharmonic oscillator, r̈+γṙ+ω2

0r+ηr2 = eE/me (where η is a small nonlinearity). This
can be solved perturbatively to produce second-order expressions that are driven by EE and EE∗ processes.
The main distinction between this model and the one being discussed here is where the nonlinearity comes
from. The anharmonic oscillator includes the nonlinearity as a material property while the CLOM allows for
it by including the Lorentz term.
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z(t) =
−ωe2E0B0

2m2
eω

2
z

√
(ω2

x − ω2)2 + γ2xω
2

sinφ0

+
1√

(ω2
z − (2ω)2)2 + γ2z (2ω)2

× ωe2E0B0

2m2
e

√
(ω2

x − ω2)2 + γ2xω
2

sin (2ωt+ φ0 − φ1) ,

= z(t, 0) + z(t, 2ω) . (1.49)

The phase terms are defined as

φ0 = tan−1
[ −γxω
ω2
x − ω2

]
(1.50)

and

φ1 = tan−1
[ −γz2ω
ω2
z − (2ω)2

]
. (1.51)

Inspection of Eqs. (1.48) and (1.49) reveal three distinct features: (1) the dependence of
field amplitude, (2) the resonant detunings, and (3) the oscillation frequency. Not surpris-
ingly, the solution for motion along the direction of the electric field polarization, x(t, ω),
is linearly-dependent on the electric field, has a 1-photon detuning when ωx = ω, and is
oscillating at the frequency of the incident light. The solutions for motion along z have
a quadratic field dependence that is proportional to E0B0 and oscillate at frequencies that
go as 0 and 2ω. These effects are analogous to the sum and difference frequency solutions
that come from solving the anharmonic oscillator for second-order EE and EE∗ solutions.
The term at 0-frequency is a “static” charge separation effect while the term at 2ω is related
to a second-harmonic generation. Furthermore, the nonlinear solutions for z have both 1-
and 2-photon detunings in their denominators, which reflects the fact that the electric field
has to initiate the charge motion before the magnetic field may act on it.

Once again these solutions may be related to an electric dipole moment by using the
same relationship as above, p = ex. We thus have a set of three electric polarizations
which arise due to the inclusion of B in the oscillator model,
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p(1)(ω) = ex(t, ω)x̂ , (1.52)

p(2)(0) = ez(t, 0)ẑ , (1.53)

p(2)(2ω) = ez(t, 2ω)ẑ , (1.54)

Figure 1.5: Representation of the three dielectric polarizations within the Cartesian plane.
The arc represents the resulting electron path due to the inclusion of the magnetic term in
the Lorentz force. This curved path is responsible for a third nonlinear effect, m(2)(ω).

where the superscript notation denotes the order in the optical field and the argument de-
notes the frequency at which the polarization oscillates at. The net polarization within the
dielectric is then a sum of these three moments, which leads to a curved electron path.
This arced electron trajectory in turn produces an oscillating magnetization along ŷ. These
effects are represented diagrammatically in Fig. 1.5 which is a useful diagram for under-
standing the dynamics of the system. This oscillating magnetization is a third nonlinear
effect which is quadratic in the optical fields but is oscillating at the fundamental frequency
of the input field. The orientation, field dependence, and frequency dependence of this
magnetization match the results of the experimental scattering results described in the pre-
vious section.

The three nonlinear moments,

p(2)(0) , p(2)(2ω) , m(2)(ω) (1.55)

constitute the aforementioned trio of nonlinear ME effects. This fact is unique only to
this set of processes since conventional quadratic effects typically rely on an asymmetric
property of the sample in order to produce a nonlinear polarization. Here the symmetry is

22



broken purely by choice of retaining the magnetic field in the Lorentz force and allowing
for the sequential action of the electric and then magnetic fields to act on the electron
distribution; it is purely the action of the magnetic field by which symmetry is no longer
preserved. The fact that symmetry is broken and no assumptions have been made about the
atomic or molecular structure suggest that these ME nonlinearities should be present in any

dielectric media.
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CHAPTER 2

Quantum Theory of Optical Magnetization

The classical theory presented in Chapter 1 correctly predicts the existence and qualitative
behavior of a new family of magneto-electric nonlinearities, but it is limited to being per-
turbative in nature and a general solution to the coupled Hill’s equations [33] is beyond the
scope of this thesis. The classical approach also fails to explicitly address issues associated
with the character of the available quantum states of the atomic or molecular system under
consideration and the prohibition against transverse magnetization that emerges from static
symmetry analysis. An exact theory and one which is formalized using quantum mechan-
ics is therefore needed in order to confirm that these effects may in fact take place in all

optical media, regardless of symmetry. In our theoretical model we use a quantized optical
field. This is done for two reasons: (1) so we can solve the problem exactly with both
E and B fields, and (2) to make clear the constraints on which levels are coupled to via
electric and magnetic interactions, therefore identifying between which states electric and
magnetic polarizations may arise.

In our model we adopt a dressed atom approach for establishing a quantum mechan-
ical picture of this new family of magneto-electric nonlinear processes. We show via a
simple extension of the typical case of a 2-level atom dressed by the electric field that in-
clusion of the optical magnetic field predicts new “doubly-dressed” states between which
second-order polarizations and magnetizations may arise. Our doubly-dressed model is
developed in two stages: in the first stage a simple atomic picture is used which predicts
the correct qualitative behavior of the induced nonlinear moments, and in the second stage
a molecular model is considered which (through coupling to rotational angular momen-
tum states) accounts quantitatively for the behavior seen in experiments, specifically the
result that M = cP . In both stages the interaction Hamiltonian is modified to account for
both electric and magnetic interactions. This work is in accord with standard treatments of
dressed atoms [34]. The following subsections lay the framework of both stages of our new
doubly-dressed models, but first we review the main results of the “singly-dressed” atom.
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2.1 Atoms dressed by a single field, E

We consider the interaction of an optical electric field with a stationary 2-level atom con-
sisting of an ` = 0 ground state and an ` = 1 excited state (see Fig. 2.1). The atomic
nucleus is fixed in position at the origin (Born-Oppenheimer approximation) and the fields
are assumed to be uniform over the region occupied by the atom (dipole approximation).
The two levels are separated by atomic frequency ω0 and light of frequency ω is turned
on adiabatically. We assume angular momentum is a good quantum number and take the
atomic states to consist of |1, 0, 0〉 and |2, 1, 0〉, where the ket notation |α, `,m`〉 is used.
Here α is the principal quantum number, ` is the angular momentum, and m` is the spin
quantum number. The quantization axis is taken to lie along the electric field polarization
e3, perpendicular to the direction of light propagation e1

1. This reference frame is used in
accordance with typical quantum systems having a z-axis (or rather e3-axis) quantization,
and an arbitrary rotation of reference frame can always be made between atomic and lab-
oratory frames. Within a quantized field formalism, a photon must be exchanged between
the atomic system and the field in order for a transition to occur between the ground and
excited state. Hence we must take into consideration the mode of the optical field. This
is done by taking the basis states of this system to consist of atom-field product states,
where the field state is specified by the Fock state |n〉 and n denotes the photon occupation
number.

Figure 2.1: A 2-level atom with ground and excited states denoted by |g〉 and |e〉, respec-
tively. ω0 denotes the atomic frequency between these two levels.

1To avoid confusion when writing quantum operators in terms of their Cartesian components, the set
(e1, e2, e3) is used as the basis for Cartesian unit vectors (where 1, 2, 3 correspond to x, y, z).
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We construct a simplified notation for the uncoupled |atom〉 |field〉 product states,

|1〉 ≡ |1, 0, 0〉 |n〉 , (2.1a)

|2〉 ≡ |2, 1, 0〉 |n− 1〉 . (2.1b)

These states are eigenstates of the atom-field Hamiltonian given by

Ĥaf = Ĥatom + Ĥfield =
~ω0

2
σ̂z + ~ωâ+â− , (2.2)

with eigenenergies Ei (for i = 1, 2) defined by Ĥaf |i〉 = Ei |i〉. Application of the atom-
field Hamiltonian to the bare states in Eqs. (2.1) yield the explicit eigenenergies

E1 = −~ω0

2
+ n~ω , (2.3a)

E2 =
~ω0

2
+ (n− 1)~ω = E1 + ~∆21 , (2.3b)

where ∆21 ≡ (E2 − E1)/~ = ω0 − ω is the 1-photon detuning on the allowed electric
dipole transition between levels |1〉 and |2〉. In Eq. (2.2), σ̂z is a Pauli spin operator which
returns the value of the atomic energy level and â+ (â−) is the raising (lowering) operator
of the single-mode field and follows the usual definition,

â+ |n〉 =
√
n+ 1 |n+ 1〉 and â− |n〉 =

√
n |n− 1〉 . (2.4)

2.1.1 Derivation of interaction terms

Next we derive the interaction Hamiltonian. The form for the electric interaction of interest
is the customary −µ(e)

` · E. Here µ(e)
` is the atomic electric dipole moment operator and

is defined as µ(e)
` = er̂, where e is the charge of an electron. The subscript ` is used here

to distinguish this moment as arising between atomic states and not molecular states, as
will be important later on. It will be useful to first calculate the magnitude of the electric
moment, as its value is critical in predicting the magnitude of the induced moments. For
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this calculation we will use atomic hydrogenic wavefunctions for the 1s and 2p states,

|1, 0, 0〉 =
1√
πa30

e−r/a0 , (2.5a)

|2, 1, 0〉 =
1

4
√

2πa30

r

a0
e−r/2a0 cos θ , (2.5b)

where a0 is the Bohr radius. The magnitude of the electric dipole operator is found by
computing the inner product using integration (see Appendix B for explicit integration),

µ
(e)
` =

∣∣∣µ(e)
`

∣∣∣ = |〈2, 1, 0| er̂ |1, 0, 0〉| = · · · =
∣∣∣∣∣128
√

2

243
a0ee3

∣∣∣∣∣ =
128
√

2

243
a0e . (2.6)

so then

µ
(e)
` =

128
√

2

243
a0e . (2.7)

The electric interaction Hamiltonian is now

Ĥ
(e)
int = −µ(e)

` · E⊥(r)

=
[
µ

(e)
`

(
σ̂+ + σ̂−

)]
·
[√

~ω
2ε0V

ε
(
â− + â+

)]

= µ
(e)
`

√
~ω

2ε0V
(
σ̂+ + σ̂−

) (
â− + â+

)
= ~g

(
σ̂+ + σ̂−

) (
â− + â+

)
, (2.8)

where we have defined2

g =
µ
(e)
`

~

√
~ω

2ε0V
=
µ
(e)
` ξ

~
. (2.9)

as the quantized electric field amplitude for mode volume V . Here ε0 is the permittivity
of free space and ξ = (~ω/2ε0V)1/2. In writing µ(e)

` as opposed to µ(e)
` , we have taken

2Note that in general, g can be complex and so the interaction Hamiltonian would have the form Ĥ
(e)
int =

~ (gσ̂+â− + g∗σ̂−â+) where g = (µ
(e)
` /~)

√
~ω/2ε0V as before, but where µ(e)

` can be in general complex.
Here we would define the moment by µ(e)

12 = 〈1| er̂ |2〉 and µ(e)
21 = 〈2| er̂ |1〉 so that µ(e)

12 = (µ
(e)
21 )∗. In this

derivation, the moment is taken to be real.

27



the dot product with the electric field polarization axis ε; the electric field polarization
axis is what establishes the quantization axis, so these two vectors are parallel. Within the
rotating wave approximation (RWA), which retains only the energy-conserving terms, the
interaction Hamiltonian may be written as

Ĥ
(e)
int = ~g

(
σ̂+â− + σ̂−â+

)
. (2.10)

The RWA is valid when the optical frequency is slightly detuned from the atomic frequency.
For the present case, the detuning that corresponds to the secular terms in the electric dipole
transition goes as ω0 − ω while the detuning from the non-secular terms goes as ω0 + ω.
Since the 1-photon detuning is typically chosen to be relatively small (i.e. near resonance),
the secular terms dominate the interaction and the RWA may be made.

2.1.2 Rediagonalizing the Hamiltonian

The complete Hamiltonian is now

Ĥ = Ĥatom + Ĥfield + Ĥ
(e)
int . (2.11)

We are interested in determining the new eigenenergies and eigenstates of this 2-level sys-
tem after interaction with the electric field. This is done by solving the eigenvalue equation

Ĥ |D±(n)〉 = ED± |D±(n)〉 , (2.12)

for dressed eigenenergies and eigenstates, ED± and |D±(n)〉, respectively. The subscript
notation ± is adopted here since there are only two states in the system and so we may
reserve numbered notation for the following sections. Application of the full Hamiltonian
to states |1〉 and |2〉 yields

Ĥ |1〉 = E1 |1〉+ ~g
√
n |2〉 , (2.13a)

Ĥ |2〉 = E2 |2〉+ ~g
√
n |1〉 . (2.13b)

Next we construct the matrix Ĥ , whose components are specified by Ĥij = 〈i| Ĥ |j〉 for
all combinations of i = 1, 2 and j = 1, 2. Upon computing these inner products, we may
rewrite Eq. (2.12) in matrix form,
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(
E2 ~g

√
n

~g
√
n E1

)(
b±

a±

)
= ED±

(
b±

a±

)
, (2.14)

and look for solutions of the form

|D±(n)〉 = a± |1, 0, 0〉 |n〉+ b± |2, 1, 0〉 |n− 1〉 , (2.15)

where the expansion coefficients must obey the standard normalization condition |a±|2 +

|b±|2 = 1.
An analytic solution to Eq. (2.14) exists and is easy to derive [35]. This is done by solv-

ing the secular equation, det(Ĥ − ÎEDi) = 0, and determining the new dressed eigenener-
gies. The energies are

ED± =

(
n− 1

2

)
~ω ± 1

2
~
√

∆2
21 + 4|g|2n , (2.16)

and the singly-dressed eigenstates can be written as admixed components of the initial basis
states as

|D+(n)〉 = sin θ |1, 0, 0〉 |n〉+ cos θ |2, 1, 0〉 |n− 1〉 , (2.17)

|D−(n)〉 = cos θ |1, 0, 0〉 |n〉 − sin θ |2, 1, 0〉 |n− 1〉 . (2.18)

In the above equation,

sin 2θ =
2|g|√n

Ωg

≡ Ω

Ωg

, (2.19)

cos 2θ ≡ ∆21

Ωg

, (2.20)

where Ωg = (∆2
21 + 4|g|2n)

1/2 is the generalized Rabi frequency [35]. We note that coef-
ficients a± and b± are defined explicitly as

a+ = sin θ and b+ = cos θ , (2.21)

a− = cos θ and b− = − sin θ . (2.22)

It is useful to consider the interpretation of these new eigenenergies and how they com-
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pare to the initial “undressed” (or bare) atom-field energies. This is most easily done by
taking the limit of Eq. (2.16) when g −→ 0, which effectively turns off the interaction. In
this limit, ED± reduces to,

lim
g→0

ED± =

(
n− 1

2

)
~ω ± 1

2
~∆21 , (2.23)

or rather

lim
g→0

ED− = −~ω0

2
+ n~ω = E1 , (2.24)

lim
g→0

ED+ =
~ω0

2
+ (n− 1) ~ω = E2 . (2.25)

(a) (b)

Figure 2.2: (a) Energy level representation of atom-field product states before interaction
(left) and once the interaction has been turned on (right). The separation between levels is
the generalized Rabi frequency with the interaction on. (b) Nonzero electric moments at ω
between adjacent states of the driven system.

So apparently, ED− reduces to E1 and ED+ reduces to E2 when the interaction is turned
off. This is illustrated in Fig. 2.2(a) which shows the atom-field energy levels and how
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they effectively shift when the interaction is turned on. Note that since n is not a “good”
quantum number, any energy level diagram which includes representations of the quantized
field will have an infinite set of energy levels. As will be obvious below, we care only about
adjacent energy bands which differ from the initial set of basis states by 1 unit of the photon
occupation state (and in our subsequent sections on doubly-dressed systems, we care about
states differing by up to 2 units of photon occupation state).

2.1.3 Determining induced dipole moments

Using the solutions for the singly-dressed atom we can calculate the nonzero electric dipole
moments which arise between adjacent states of the driven system. The electric dipole
moment is calculated using the customary formula, p̂ = er̂, which is evaluated between
adjacent |D±(n)〉 states of varying photon occupation number. Of relevance to us are the
moments oscillating at the fundamental frequency3, which are illustrated in Fig. 2.2(b).
Computing the inner product shows that there are two contributions to the linear electric
moment which oscillate at the fundamental frequency and are given by

〈
p̂
(1)
±±(ω)

〉
= 〈D±(n+ 1)| er̂ |D±(n)〉+ h.c.

= a±b
∗
± 〈n| 〈2, 1, 0| er̂ |1, 0, 0〉 |n〉+ h.c.

= µ
(e)
`

(
a±b

∗
± + c.c.

)
e3

= 2µ
(e)
` a±b±e3 , (2.26)

where in the final step we have used the fact that both a± and b± are real quantities. The
superscript (1) is used in Eq. (2.26) to denote the order of dependence on the electric field.
As anticipated, these moments oscillate along the electric field polarization axis. A “net”
polarization may be written down by taking the incoherent sum of the two contributions
p̂
(1)
++ and p̂(1)−− and substituting in the analytic forms for the coefficients a± and b±. It is

required that we compute the incoherent sum since the individual moments are not coherent
with one another and a simple addition of the two effects would cancel out to give a net
polarization of zero (this is obvious if the sum a+b+ + a−b− is computed). The incoherent
sum giving the net induced electric dipole moment per atom is thus,

3This approach may also be used to determine the electric dipole moments at ω ± Ωg , which correspond
to Stokes and anti-Stokes scattering events but are not of interest to our current discussion.
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∣∣∣p̂(1)net(ω)
∣∣∣ =

(∑
i=+,−

∣∣∣2µ(e)
` aibie3

∣∣∣2)1/2

= 2µ
(e)
`

(
|sin θ cos θ|2 + |cos θ (− sin θ)|2

)1/2
= 2
√

2µ
(e)
` sin θ cos θ . (2.27)

Plots of this moment as a function of intensity and detuning are presented later in Chapter
4. In the next section this theoretical approach is extended to include both the electric and
magnetic fields of light.

2.2 Atoms dressed by two fields (E and B)

The first stage of our extended theoretical model allows us to account for coupling between
atom-field product states by both electric and magnetic interactions while still considering
the 2-level atom as the system of interest. All of the same assumptions which were made
about the 2-level system considered in the previous section are again made here. The
dynamics are assumed to begin in the atomic ground state and light of frequency ω is turned
on adiabatically. Orbital angular momentum ` is again assumed to be a good quantum
number in the absence of light, and the ground (excited) state is taken to be ` = 0 (` = 1).
Hence, the undriven system has inversion symmetry (i.e. is centrosymmetric); this point
is worth making because non-centrosymmetry is a requirement for standard second-order
EE∗ effects to arise. As we will show, a main result of this theory is that second-order
effects of the type EB∗ and EB may arise due to dynamic symmetry breaking caused
by the magnetic interaction. The Born-Oppenheimer and dipole approximations are both
made, and the quantization axis again lies along e3, perpendicular to the direction of light
propagation e1. In the excited state, the projections of angular momentum yield magnetic
sub-states denoted by m` = {−1, 0, 1}. The ket notation |α, `,m`〉 is again used and
therefore the atomic basis consists of the set {|1, 0, 0〉 , |2, 1, 0〉 , |2, 1, 1〉 , |2, 1,−1〉} (see
Fig. 2.3). The Fock state |n〉 again denotes the single-mode optical field and the electric
and magnetic field components correspond to one and the same mode. Several atom-field
product states are chosen for the uncoupled basis and the problem is again solved in the
context of dressed state theory.
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Figure 2.3: Ground (` = 0) and excited (` = 1) states of a 2-level atom where the ex-
cited state has magnetic quantum numbers m` = {−1, 0, 1}. The allowed electric dipole
transition is at the atomic frequency ω0.

The set

|1〉 ≡ |1, 0, 0〉 |n〉 , (2.28a)

|2〉 ≡ |2, 1, 0〉 |n− 1〉 , (2.28b)

|3〉 ≡ |2, 1, 1〉 |n− 2〉 , (2.28c)

|4〉 ≡ |2, 1,−1〉 |n〉 , (2.28d)

is chosen as the basis atom-field product states of the initially uncoupled system. These
states are eigenenergies of the atom-field Hamiltonian given by Eq. (2.2), with eigenen-
ergies Ei (for i = 1, 2, 3, 4) and defined by Haf |i〉 = Ei |i〉. The states specified by Eqs.
(2.28) are the correct choice for the present problem because they are coupled by an absorp-
tive electric interaction followed by a magnetic interaction which may be either absorptive
or emissive. Application of the atom-field Hamiltonian on these bare states give the explicit
eigenenergies

E1 = −~ω0

2
+ n~ω , (2.29a)

E2 =
~ω0

2
+ (n− 1)~ω , (2.29b)

E3 = E2 − ~ω =
~ω0

2
+ (n− 2)~ω , (2.29c)

E4 = E2 + ~ω =
~ω0

2
+ n~ω . (2.29d)
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The detunings between the ground state energy, E1, and each of the excited state energies
are important in predicting the resonance behavior of the nonlinear effects to be discussed
later on. These detunings are defined as

∆21 ≡ (E2 − E1) /~ = ω0 − ω , (2.30)

∆31 ≡ (E3 − E1) /~ = ω0 − 2ω , (2.31)

∆41 ≡ (E4 − E1) /~ = ω0 . (2.32)

Here ∆21 is again the 1-photon detuning on the allowed electric dipole transition, while
∆31 and ∆41 are 2-photon detunings on allowed magnetic dipole transitions.

2.2.1 Derivation of magnetic interaction Hamiltonian

Next we derive the magneto-electric interaction Hamiltonian consisting of both electric and
magnetic terms. The electric interaction is the same as was derived above, but the magnetic
interaction must be derived by beginning with the customary magnetic dipole potential,
−µ(m)

` ·B. This new term will allow for coupling between states |2, 1, 0〉 and |2, 1,±1〉 via
the magnetic field changing the projection of the angular momentum on the quantization
axis. Again it will be useful to first compute the magnitude of the magnetic moment,

µ
(m)
` =

e

2me

L̂ , (2.33)

where me is the mass of an electron. This can again be done by considering atomic hydro-
genic wavefunctions for the m` = ±1 states,

|2, 1, 1〉 =
1

8
√
πa30

r

a0
e−r/2a0 sin θeiϕ , (2.34a)

|2, 1,−1〉 =
1

8
√
πa30

r

a0
e−r/2a0 sin θe−iϕ . (2.34b)

We note first a simplification for evaluating the operator L̂ between states 〈2, 1,±1| and
|2, 1, 0〉. We note that of L̂ = L̂xe1 + L̂ye2 + L̂ze3, only the L̂x and L̂y components will
contribute to the inner product (since L̂z |α, `,m`〉 = ~m` |α, `,m`〉 does not change the
state). Recall the relations between raising and lowering operators L̂± and the Cartesian
operators L̂x and L̂y,
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L̂x =
1

2

(
L̂+ + L̂−

)
and L̂y = − i

2

(
L̂+ − L̂−

)
. (2.35)

Using these relations, we evaluate the inner products,

〈2, 1, 1| L̂ |2, 1, 0〉 = 〈2, 1, 1|
[

1

2

(
L̂+ + L̂−

)
e1 +− i

2

(
L̂+ − L̂−

)
e2

]
|2, 1, 0〉

= 〈2, 1, 1|
[

1

2
~
√

2 (e1 − ie2)
]
|2, 1, 1〉

=
~
√

2

2
(e1 − ie2) (2.36)

and similarly

〈2, 1,−1| L̂ |2, 1, 0〉 = 〈2, 1, 1|
[

1

2

(
L̂+ + L̂−

)
e1 +− i

2

(
L̂+ − L̂−

)
e2

]
|2, 1, 0〉

= 〈2, 1,−1|
[

1

2
~
√

2 (e1 − ie2)
]
|2, 1,−1〉

=
~
√

2

2
(e1 + ie2) (2.37)

where we have used the usual definition of the raising/lowering operator,

L̂± |α, `,m`〉 = ~
√
`(`+ 1)−m`(m` ± 1) |α, `,m` ± 1〉 . (2.38)

We summarize the results of this inner product in the equation below,

〈2, 1,±1| L̂ |2, 1, 0〉 =
~
√

2

2
(e1 ∓ ie2) . (2.39)

So then we have

µ
(m)
` =

∣∣∣µ(m)
`

∣∣∣ =

∣∣∣∣〈2, 1,±1| e

2me

L̂ |2, 1, 0〉
∣∣∣∣ =

∣∣∣∣∣ e

2me

~
√

2

2
(e1 ∓ ie2)

∣∣∣∣∣ =
e~

2me

, (2.40)

where in the last step above we have used that

|e1 ∓ ie2| = [(1 · 1) + (∓i · ±i)]1/2 =
√

2 . (2.41)

This magnitude has been determined using that the magnitude of a vector with arbitrary
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complex coefficients a, b, and c of the form

r = ae1 + be2 + ce3 (2.42)

has magnitude

|r| = (aa∗ + bb∗ + cc∗)1/2 . (2.43)

Apparently the magnetic dipole moment has magnitude

µ
(m)
` =

e~
2me

, (2.44)

which allows us to write the magnetic dipole moment operator in the form

µ
(m)
` = µ

(m)
` L̂′ , (2.45)

where L̂′ ≡ L̂/~ is defined for notational convenience.
The magnetic interaction Hamiltonian is then

Ĥ
(m)
int = −µ(m)

` ·B

= −
[
µ
(m)
` L̂′

]
·
[√

~k2
2ε0ωV

(κ× ε)
(
â− + â+

)]

= − e~
2me

√
~k2

2ε0ωV
(
−L̂′y

) (
â− + â+

)
= − e~

2me

√
~k2

2ε0ωV
i

2

(
L̂′+ − L̂′−

) (
â− + â+

)
= ~

(
fL̂′+ + f ∗L̂′−

) (
â− + â+

)
, (2.46)

where we have defined

f = −i e

4me

√
~k2

2εωV = −iµ
(m)
`

2~

√
~k2

2εωV =
µ
(m)
` ξ′

~
(2.47)

as the quantized magnetic field amplitude for mode volume V . Here

ξ′ = − i
2

√
~k2

2ε0ωV
(2.48)

is related to the constant ξ from the electric derivation by a difference factor of (−i/2) (k/ω),
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so

ξ′ = − i
2

k

ω
ξ . (2.49)

Since the quantization axis is along e3 and the propagation axis is along e1, the magnetic
field vector lies along −e2, according to the cross product κ× ε = e1× e3 = −e2. This is
how we simplified the dot product in the above derivation, as

L̂′ · (κ× ε) = −L̂′y =
i

2

(
L̂′+ − L̂−

)
. (2.50)

This explains where the factor of −i/2 comes from in the relation between ξ′ and ξ: the
substitution of raising and lowering operators for the Cartesian operator L̂′y has this factor
built in. This is a result of the fact that a measurement of L̂′ along an axis which is not
the quantization axis will change the quantum state of the system; in other words, we can
know Lz but we cannot simultaneously know Lx and Ly as well.

Before moving on, it is worthwhile to investigate the magnetic field amplitude f a
bit more closely. First, we note that we can write f in terms of only ω instead of the
wavenumber k by using that k/ω = 1/v and v = c/nω, where nω is the real refractive
index. It is worth noting that the refractive index only exists for a dense collection of
polarizable scatterers, and so in the dilute limit (i.e. single atomic system) there is no
effective refractive index and we may set nω = 1. Then k/ω = 1/c and the magnetic
coupling strength can be written in terms of the constant ξ as

f = − i
2

µ
(m)
` ξ

~c
. (2.51)

With this explicit expression for f we can compare it to the electric field coupling strength,
g, in order to gain a sense for the relative coupling of the electric and magnetic interactions.
Computation of this ratio gives

∣∣∣∣fg
∣∣∣∣ =

(
1

2

µ
(m)
` ξ

~c

)
·
(

~
µ
(e)
` ξ

)
=

(
1

2c

e~
2me

)(
243

128
√

2

1

a0e

)
=

243

512
√

2
α , (2.52)

where we have used the definitions of µ(e)
` and µ(m)

` from before and have made the substi-
tution

α =
~

a0mec
, (2.53)
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where α ≈ 7.3 × 10−3 is the fine structure constant. Numerical evaluation of this ratio
gives f/g ≈ 0.0025 (or about 1 in 400), which says that the coupling strength due to
the electric interaction is about 400 times larger than the coupling due to the magnetic
interaction. From Eq. (2.52) it is also apparent that the ratio of the two coupling strengths
is approximately |f/g| ≈ (µ

(m)
` /cµ

(e)
` ), where the factor of c normalizes the units between

electric and magnetic coupling. As we will show later on, this large difference in relative
coupling strengths between the two interactions results in relatively weak magneto-electric
nonlinearities. The second stage of our theoretical model (described in the next section)
uses an enhancement mechanism which arises due to molecular rotations as a means to
increase the overall induced effects.

2.2.2 Diagonalizing the total Hamiltonian

We now return to the magnetic interaction Hamiltonian that was derived in Eq. (2.46).
When the RWA is made, this equation reduces to

Ĥ
(m)
int = ~

(
fL̂′+â

− + f ∗L̂′−â
+
)
, (2.54)

and the atom-field basis states we specified earlier in Eq. (2.28) form a closed set. This
means that subsequent applications of the magnetic interaction Hamiltonian on the basis
states do not produce couplings to states outside the initial basis. In contrast to this, when
the counter rotating terms (i.e. L̂′+â

+ and L̂′−â
−) are kept in the Hamiltonian, coupling

to new states outside the initial basis is possible and the set of states used to describe
the interaction grows indefinitely. Whether or not these terms contribute to the overall
dynamics of the system is an important question because the coupling to magnetic substates
from state |2, 1, 0〉 is very far from resonance and so both co- and counter-rotating terms
ought to contribute equally. The implications of including these non-RWA terms in the
Hamiltonian is discussed in Appendix A, but the end result is that inclusion of these terms
simply doubles the induced second-order magneto-electric moments (while changing little
else). It is therefore appropriate to proceed with this problem having made the RWA for the
magnetic interaction.

Starting from the ground state, the interaction of light with the atom can be described
by a 2-photon excitation process. First, the electric field establishes a coherence between
the ground state and the m` = 0 excited state. Following this, the magnetic field may act
between the m` = 0 and m` = ±1 excited states. This is to say, the first step is an allowed
electric dipole interaction from |1〉 → |2〉 and the second step is an allowed magnetic dipole
interaction from either |2〉 → |3〉 or |2〉 → |4〉. The resulting application of both the electric
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and magnetic fields causes all four basis product states to be mixed into new quasi-states of
this driven system. Following our previous discussion, the full magneto-electric interaction
Hamiltonian is taken as

Ĥint = Ĥ
(e)
int + Ĥ

(m)
int = ~g

(
σ̂+â− + h.c.

)
+ ~

(
fL̂′+f

∗â− + h.c.
)
. (2.55)

The prefactors ~g and ~f both have units of energy, and we note that in general both g and
f can be complex quantities. The complete Hamiltonian is then

Ĥ = Ĥatom + Ĥfield + Ĥint , (2.56)

and just as in the singly-dressed case, we must solve the eigenvalue equation

Ĥ |Di(n)〉 = EDi |Di(n)〉 , (2.57)

for quasi-eigenenergies EDi and quasi-eigenstates |Di(n)〉, distinguished by index i (for
i = 1, 2, 3, 4). Application of the full Hamiltonian to each of the four bare states yields

Ĥ |1〉 = E1 |1〉+ ~g
√
n |2〉 , (2.58a)

Ĥ |2〉 = E2 |2〉+ ~g
√
n |1〉+ ~f

√
2(n− 1) |3〉+ ~f

√
2n |4〉 , (2.58b)

Ĥ |3〉 = E3 |3〉+ ~f
√

2(n− 1) |2〉 , (2.58c)

Ĥ |4〉 = E4 |4〉+ ~f
√

2n |2〉 , (2.58d)

where the application of the raising and lowering angular momentum operators have fol-
lowed the usual prescription

L̂± |α, `,m`〉 = ~
√
`(`+ 1)−m`(m` ± 1) |α, `,m` ± 1〉 . (2.59)

The results of Eqs. (2.58) allow us to construct the matrix representation of the Hamilto-
nian, which is

Ĥ =


E4 0 ~f

√
2n 0

0 E3 ~f
√

2(n− 1) 0

~f
√

2n ~f
√

2(n− 1) E2 ~g
√
n

0 0 ~g
√
n E1

 , (2.60)
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and then solve the secular equation det(Ĥ − ÎEDi) = 0 for the new doubly-dressed eigen-
values EDi and eigenstates |Di(n)〉. The new states are written as a linear combination of
the original basis states in accordance with

|Di(n)〉 = ai |1, 0, 0〉 |n〉+ bi |2, 1, 0〉 |n− 1〉
+ ci |2, 1, 1〉 |n− 2〉+ di |2, 1,−1〉 |n〉 , (2.61)

where the expansion coefficients must obey the standard normalization condition |ai|2 +

|bi|2 + |ci|2 + |di|2 = 1.

2.2.3 Energy level anti-crossings

An analytic solution to this eigenvalue problem in the restricted 4-state basis requires find-
ing the roots of a quartic equation and then determining analytic forms for the new eigen-
vectors. This approach is impractical, whereas the problem can be solved by numerical
diagonalization and the resulting eigenenergies and eigenstates can be graphed to display
their behavior. It is of critical importance that the ordering of the new eigensystem is
known; in other words, we must keep track of which dressed states |Di(n)〉 and dressed
energies EDi correspond to the initial uncoupled bare states |i〉 and bare energies Ei, re-
spectively, in the limit that the interaction is turned off. This can be determined by sorting
the eigenvalue/eigenvector pairs from the solved matrix equation in descending order of
energy and then pairing the sorted eigenvalue to its corresponding eigenstate. The simplest
way to do this is to construct plots of the bare state energies Ei and the dressed state en-
ergies EDi versus the optical frequency, ω, for some set of input physical parameters and
then track all possible energy level crossings which may occur.

Plots of Ei and EDi versus ω are shown in Figs. 2.4 where the optical field n~ω has
been subtracted from the vertical axis. Figure 2.4(a) shows two energy level crossings, the
first of levels |1〉 and |3〉 and the second of levels |1〉 and |2〉. The first of these crossings
occurs at the 2-photon resonance condition ∆31 = 0 while the second occurs at the 1-
photon resonance condition ∆21 = 0. Without rediagonalization these crossings are both
real, but once the interaction has taken place any two levels that cross but which are also
coupled to via electric or magnetic terms of the interaction Hamiltonian will become an
anti-crossing. This fact has been used to produce Fig. 2.4(b) where the crossing of levels
|1〉 and |2〉 becomes an anti-crossing because 〈1| Ĥint |2〉 6= 0, while the crossing of levels
|1〉 and |3〉 is still a true crossing since 〈1| Ĥint |3〉 = 0. This result is consistent with
the singly-dressed theory, as levels E− and E+ do not cross after rediagonalization. The
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(a) Bare state energies
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(b) Dressed state energies

Figure 2.4: (a) Bare state energies Ei and (b) dressed state energies EDi as a function of
detunings for n = 1012 and i = 1, 2, 3, 4. For the plot in (b) the field amplitudes were taken
to be g = 109 s−1/2 and f = (µ

(m)
` /cµ

(e)
` )g. Here the optical field n~ω has been subtracted

from the vertical axis.

energies from the singly-dressed theory actually track the energy levels of the doubly-
dressed model very well (since g � f ). Given these perspectives regarding crossings
versus anti-crossings along with comparisons between the Ei and the analytic solutions to
the dressed state energies (E±) it is possible to sort and track the eigenstates numerically.

It is also of interest to understand how the new quasi-energies evolve as the intensity
of the optical field is increased. A plot of the dressed energies as a function of photon
number is shown in Fig. 2.5, where ω = 0.9ω0, ω0 = 15.5 × 1015 1/s, g = 109 s−1/2, and
f = (µ

(m)
` /cµ

(e)
` )g. These are the relevant variables for atomic hydrogen. This plot shows

dressed eigenenergiesEDi which correspond to the dressed levels |Di(n)〉 as well as sets of
dressed energy levels from adjacent manifolds which are obtained by adding or subtracting
an integer multiple of n~ω from the expressions for the dressed energies. Levels ED1 and
ED2 are shown to depend on n1/2 while ED3 and ED4 have no noticeable dependence on
n. The dependence on n1/2 of the first two eigenenergies is due to the strong electric field
interaction between levels |1〉 and |2〉 and is reflected in Eq. (2.16), which gives an analytic
expression for E± from the singly-dressed theory. Doubly-dressed energies ED1 and ED2

are approximated well by the singly-dressed energies E− and E+, respectively, so long as
we are away from any 2-photon resonances. Energies ED3 and ED4 are not seen to have
a strong dependence on n since the magnetic coupling is much weaker than the electric
(g � f ).
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Figure 2.5: Dependence of dressed eigenenergies EDi on photon number. Shown are
dressed eigenenergies as labeled by the legend for three adjacent manifolds. The effect
of the electric field is shown in the n1/2 dependence of levels ED1 and ED2. Levels ED3

and ED4 have no noticeable dependence on n due to the weak coupling via the magnetic
interaction.

For practical purposes, it is more useful to use a diagrammatic representation of the
energy level splitting such as the one shown in Fig. 2.6. In this diagram, the left-hand
side shows the initial atom-field product states separated by the 1-photon detuning and the
right-hand side shows the splitting of the energy levels due to the interaction Hamiltonian.
We have divided all energies by ~. Here the degeneracy of the m` = 0 excited state is lifted
from the other ` = 1 atomic levels with m` = ±1. Because product states of the uncoupled
basis have different photon occupation numbers, when the states are mixed by the incident
fields, it is not surprising that n ceases to be a good quantum number. In other words, the
energy level diagram repeats infinitely for all values of n, and the subsequent manifolds are
separated by ω just as in standard dressed state theory. For low values of n (and because
g � f ) levels |D3(n)〉 and |D4(n)〉 shift very little with respect to their energies in the
uncoupled basis. The splitting of states |D1(n)〉 and |D2(n)〉 is approximated by the electric
Rabi frequency since ED1 ≈ E− and ED2 ≈ E+, as E+ − E− = ~Ωg.

2.2.4 Determining induced dipole moments

With the quasi-eigenstates in hand, the various electric and magnetic dipole moments that
exist between the driven (dynamic) states of the system can be readily determined. These
moments are calculated using the customary expressions
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Figure 2.6: Dressed state picture of the energy levels driven by light of frequency ω at a
detuning from resonance of ∆21. The left-hand side of the figure represents the un-mixed
atom-field product states and the right-hand side shows the resulting dressed states after the
interaction Hamiltonian has been considered. Shown are only three energy-level manifolds;
the diagram repeats infinitely for all values of n since it is not a good quantum number.

p̂ = er̂ and m̂ =
e

2me

L̂ , (2.62)

and we are interested in looking only for nonzero moments oscillating at 0, ω, or 2ω. There-
fore we evaluate the expectation values of the above dipole moment operators between
dressed states of the same index i. We need only to consider transitions occurring between
adjacent states of a 3-manifold segment of the infinite energy level diagram like that shown
in Fig. 2.6, so only the set of dressed states |Di(n)〉, |Di(n+ 1)〉, and |Di(n+ 2)〉 are of
use for this calculation. The dipole operators change only the atomic portion of the ad-
mixed atom-field states, so orthogonality of the photon states cause most of the cross terms
to reduce to zero.
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It is well known [36] that a static electric dipole moment cannot exist in the initial
ground state of a system which has inversion symmetry, as it is energetically indistinguish-
able in inverted and non-inverted states. However, in the driven centrosymmetric model
considered here, finite dipole moments are found to appear at three frequencies. These
include a static moment at zero-frequency, along with an electric moment at the second-
harmonic, and two magnetic moments at the fundamental frequency which constitute a new
set of magneto-electric nonlinearities, and are shown in Fig. 2.7. Here the solid arrows rep-
resent allowed electric dipole transitions and the dashed arrows represent allowed magnetic
dipole transitions. Calculations for these moments follow.

Figure 2.7: Schematic representation of nonlinear dipole moments calculated between
dressed states of index i = 1. Solid arrows represent allowed electric dipole transitions
and dashed arrows represent allowed magnetic dipole transitions.

The linear electric dipole moment is calculated to be
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〈
p̂
(1)
ii (ω)

〉
= 〈Di(n+ 1)| er̂ |Di(n)〉+ h.c.

= aib
∗
i 〈n| 〈2, 1, 0| er̂ |1, 0, 0〉 |n〉+ h.c.

= µ
(e)
` (aib

∗
i + c.c.) e3 , (2.63)

which has a form identical to that shown for the singly-dressed atom. The electric moment
at zero-frequency is

〈
p̂
(2)
ii (0)

〉
= 〈Di(n)| er̂ |Di(n)〉+ h.c.

= (aid
∗
i 〈n| 〈2, 1,−1| er̂ |1, 0, 0〉 |n〉+ a∗i di 〈n| 〈1, 0, 0| er̂ |2, 1,−1〉 |n〉) + h.c.

=
µ
(e)
`√
2
{[aid∗i (e1 + ie2) + a∗i di (e1 − ie2)] + c.c.}

= µ
(e)
`

2√
2

(aid
∗
i + c.c.) e1 . (2.64)

In the last two steps of the above equation, the Hermitian conjugate terms cancel, leaving
a static moment oriented purely along e1 (the direction of optical field propagation).The
matrix product 〈1, 0, 0| r̂ |2, 1,−1〉 and its conjugate have been evaluated via integration
over the hydrogenic wavefunctions and the details for this and subsequent inner product
calculations may be found in Appendix B. The fact that a zero-frequency moment may
arise confirms that inversion symmetry of the unperturbed atom has been lost as a result of
dynamic symmetry breaking by the 2-field optical interaction (and is true regardless of the
size of the basis set). A second-harmonic generation (SHG) polarization also arises and is
calculated in the same way as the electric moment at zero-frequency,

〈
p̂
(2)
ii (2ω)

〉
= 〈Di(n+ 2)| er̂ |Di(n)〉+ h.c.

= aic
∗
i 〈n| 〈2, 1, 1| er̂ |1, 0, 0〉 |n〉+ h.c.

= µ
(e)
`

1√
2

[aic
∗
i (e1 + ie2) + c.c.] . (2.65)

Numerical evaluation shows that the conjugate terms in the above expression along e2

cancel, giving a polarization oriented purely along e1.
Lastly, we calculate the induced magnetic dipole moments. As is apparent from Fig.

2.7, there are two induced magnetizations in the doubly-dressed atom. The second-order
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magneto-electric moment relies physically on the initiation of motion by the electric field
in the first step of the interaction process, so the moment must be proportional to the co-
herences established between states |1〉 & |2〉. The expression to evaluate is

m̂ = aib
∗
i

e

2me

L̂ , (2.66)

which yields the two terms

〈
m̂

(2)
ii (ω)

〉
l
= aib

∗
i 〈Di(n+ 1)| e

2me

L̂ |Di(n)〉+ h.c.

= aib
∗
i bid

∗
i 〈n| 〈2, 1, 0|

e

2me

L̂ |2, 1,−1〉 |n〉+ h.c.

= µ
(m)
`

1√
2
aib
∗
i bid

∗
i (e1 − ie2) + c.c. (2.67)

and

〈
m̂

(2)
ii (ω)

〉
u

= aib
∗
i 〈Di(n+ 2)| e

2me

L̂ |Di(n+ 1)〉+ h.c.

= aib
∗
i bic

∗
i 〈n| 〈2, 1, 0|

e

2me

L̂ |2, 1, 1〉 |n〉+ h.c.

= µ
(m)
`

1√
2
aib
∗
i bic

∗
i (e1 + ie2) + c.c. . (2.68)

In experiments only the component of m̂(ω) along e2 is projected out (see Chapter 3),
so the moment of interest here lies only along e2. There is also a third-order magnetic
contribution which comes about due to a second set of coherence terms which establish a
magnetization over the same initial and final states as the process above but is driven purely
by a 1-photon magnetic process,

〈
m̂

(3)
ii (ω)

〉
l

= −iµ(m)
`

1√
2

(aib
∗
i aid

∗
i + c.c.) e2 , (2.69)〈

m̂
(3)
ii (ω)

〉
u

= iµ
(m)
`

1√
2

(aib
∗
i aic

∗
i + c.c.) e2 . (2.70)

The justification of this additional term is explained in the extension to the molecular model
given in the following section. Because these terms are third-order in the optical field, they
are negligible in comparison to the second-order effects at low intensities but are left in the
current analysis for the sake of direct comparison between atomic and molecular models.
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We will see that they contribute in the molecular picture when the 2-photon detuning is
always nearly zero.

The new electric polarizations are thus

〈
p̂
(2)
ii (0)

〉
= µ

(e)
`

2√
2

(aid
∗
i + h.c.) e1 , (2.71)〈

p̂
(2)
ii (2ω)

〉
= µ

(e)
`

1√
2

(aic
∗
i + h.c.) e1 , (2.72)

and the magnetizations are

〈
m̂

(2)
ii (ω)

〉
l

= −iµ(m)
`

1√
2

[aib
∗
i (bid

∗
i + aid

∗
i ) + c.c.] e2 , (2.73)〈

m̂
(2)
ii (ω)

〉
u

= iµ
(m)
`

1√
2

[aib
∗
i (bic

∗
i + aic

∗
i ) + c.c.] e2 . (2.74)

The induced magnetization at ω can be found by computing the direct (or coherent) sum
of the moments for the upper and lower transitions. The coherent sum is taken only over
terms of the same dressed state index to allow for out-of-phase terms to cancel. The total
magnetization for index i is then,

〈
m̂

(2)
ii (ω)

〉
= −iµ(m)

`

1√
2

[aib
∗
i (bid

∗
i + aid

∗
i − bic∗i − aic∗i ) + c.c.] e2 . (2.75)

where the aforementioned simplifications have been imposed on the final form of the mo-
ments. The moments shown in Eqs. (2.71)-(2.74) are to lowest-order all second-order in
the optical field and these constitute a new family of magneto-electric nonlinear effects.
Just as in the singly-dressed case, the net moments must be computed using an incoherent
sum over all values of dressed state index i. The electric moments are defined as

∣∣∣p̂(2)net(0)
∣∣∣ =

2µ
(e)
`√
2

[
4∑
i=1

|(aid∗i + c.c.)|2
]1/2

, (2.76)

∣∣∣p̂(2)net(2ω)
∣∣∣ =

µ
(e)
`√
2

[
4∑
i=1

|(aic∗i + c.c.)|2
]1/2

, (2.77)

and the quadratic magnetic moment is
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∣∣∣m̂(2)
net(ω)

∣∣∣ =
µ
(m)
`√
2

{
4∑
i=1

|[aib∗i (bid
∗
i + aid

∗
i − bic∗i − aic∗i ) + c.c.]|2

}1/2

. (2.78)

The orientations of these moments relative to the optical field orientation is useful to
point out. The linear electric moment at the fundamental frequency is oriented along the
direction of electric field polarization. Likewise, the two induced magnetic dipole mo-
ments are oriented along the direction of magnetic field polarization. The two second-
order electric polarizations are induced along the axis parallel to the propagation axis,
which is in complete agreement with the classical theory presented earlier. The depen-
dences of these induced moments on intensity and frequency will be discussed in the re-
sults chapter. Moments of the form 〈Di(n)| p̂(0) |Dj(n

′)〉, 〈Di(n)| p̂(2ω) |Dj(n
′)〉, and

〈Di(n)| m̂(ω) |Dj(n
′)〉 where i 6= j have been omitted due to being either negligible or

redundant.

2.3 Molecules dressed by two fields (E and B)

Results of the doubly-dressed atomic model (or excited state model) described above pre-
dict the frequency dependence, intensity dependence, and polarization of induced magnetic
dipole scattering intensities as measured in scattering experiments. However the model fails
to explain the apparent enhancement of the strong magnetic response measured in experi-
ments. Here we show that by extending the atomic model to account for molecular degrees
of freedom, the moments are readily enhanced and both qualitative and quantitative agree-
ment between experiment and theory is found. A key shortcoming of the atomic model is
that the atomic states which are coupled via the magnetic interaction are essentially degen-
erate, meaning the 2-photon detunings associated with the joint magneto-electric process
are far from resonant. Here instead we intentionally construct our model to have states
accessible via the magnetic transition that have excited state character but ground state en-
ergy [37]. This removes the weak 2-photon resonant condition present in the atomic model
and also introduces the rotational frequency as a key physical quantity. A new interaction
Hamiltonian is constructed in order to properly describe the couplings between atomic and
molecular states of this system. It is shown that inclusion of magnetic torque accounts for
an enhancement mechanism by which the magnetic response can rival that of the electric
response. A 3-state basis is used for this model to allow for an analytic solution to be
written down.
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(a) (b)

Figure 2.8: (a) Specification of angular momentum components in molecular system. (b)
Simplified schematic of energy level structure in molecular system. The ground and excited
state are separated by the atomic resonance ω0.

We assume a rigid, homonuclear diatomic molecule with a 1-photon resonance at ω0.
The total angular momentum Ĵ is taken to be the sum of internal (orbital) angular mo-
mentum L̂ and external (rotational) angular momentum Ô so that Ĵ = L̂ + Ô (see Fig.
2.8(a)) [38]. We again neglect spin of the electron. Orbital angular momentum ` and ro-
tational angular momentum o are assumed to be good quantum numbers, and the ground
(excited) state is taken to be 1Σ+

g (1Πu) with ` = 0, o = 0 (` = 1, o = 1), as shown
in Fig. 2.8(b). The projections of angular momenta yield magnetic substates denoted by
m` = {−1, 0, 1} and mo = {−1, 0, 1} and the ket notation |α, `,m`〉 |o,mo〉 is used to de-
fine the |internal〉 |external〉 electronic states. The basis then consists of product combina-
tions of the sets {|1, 0, 0〉 , |2, 1, 0〉 , |2, 1, 1〉 , |2, 1,−1〉} and {|0, 0〉 , |1, 0〉 , |1, 1,〉 , |1,−1〉}
with the single-mode Fock state state |n〉. The uncoupled molecule-field states are then
written as |α, `,m`〉 |o,mo〉 |n〉 and we assume

|1〉 ≡ |1, 0, 0〉 |0, 0〉 |n〉 , (2.79)

|2〉 ≡ |2, 1, 0〉 |1, 0〉 |n− 1〉 , (2.80)

|3〉 ≡ |2, 1,−1〉 |1, 1〉 |n〉 . (2.81)

These states are eigenstates of the molecule-field Hamiltonian4

4The additional Ô2/2I term comes from the kinetic energy of the molecule. There is also a term which is
proportional to L̂ · Ô but is assumed to be small and is not included in the molecule-field Hamiltonian.
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Ĥmf = Ĥmol + Ĥfield =
~ω0

2
σ̂z +

Ô2

2I
+ ~ωâ+â− , (2.82)

with eigenenergies

E1 = −~ω0

2
+ n~ω , (2.83)

E2 =
~ω0

2
+ (n− 1) ~ω , (2.84)

E3 = −~ω0

2
+ ~ωϕ + n~ω . (2.85)

The moment of inertia about the rotational axis is defined as

I =
~
ωϕ

, (2.86)

and the operator Ô2 on molecular states follows the usual

Ô2 |o,mo〉 = o (o+ 1) ~2 |o,mo〉 . (2.87)

The assignment of the energy of |3〉 in Eq. (2.85) anticipates the removal of orbital
angular momentum from the excited state as the result of magnetic torque which causes it to
exchange for rotational angular momentum (described in the following section). Removal
of orbital angular momentum forces the molecule into the electronic ground state. It is also
consistent with the mixing diagram of Fig. 2.9. This shows that when rotational degrees of
freedom are accounted for in simple molecular systems such as a diatomic molecule, there
is a splitting of p-orbital energy levels 2pπ and 2pσ depending on rotational character. As
the nuclei increase in mass, the state 2pσ descends toward the ground state 2sσ, while the
2pπ state ascends in energy (see Fig. 2.9). Thus rotational mixing creates a state with
p-orbital character, but ground-state energy.

The initial uncoupled basis states permit a single electric and a single magnetic tran-
sition to occur between adjacent states via a magneto-electric interaction potential, which
is derived in the following subsection. Figure 2.10 depicts these transitions in the molecu-
lar energy basis and illustrates the near-resonant interactions of both electric and magnetic
transitions. The 1- and 2-photon detunings are defined (respectively) as
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Figure 2.9: Splitting of rotationally-coupled energy levels in homonuclear diatomic
molecules. Figure taken from Herzberg Molecular Spectra and Molecular Structure: I.
Diatomic Molecules.

∆21 ≡ (E2 − E1) /~ = ω0 − ω , (2.88)

∆31 ≡ (E3 − E1) /~ = ωϕ . (2.89)

Here ωϕ is the rotational (librational) frequency of some molecular liquid (crystalline solid).
This term is analogous to the resonant denominator ωz from the CLOM which was de-
scribed in Chapter 1. The 2-photon condition is unique in that it shows no dependence on
the input optical field oscillation; it is purely a property of the material. As will be shown
in Chapter 4, this near-resonant magnetic transition permits very strong magnetic effects to
take place in molecular systems.
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Figure 2.10: Depiction of electric and magnetic transitions driven between uncoupled states
of the system. The dashed curve on the magnetic transition represents a completely res-
onant, inelastic transition that may account for nonlinear depolarization as explained later
on.

2.3.1 Derivation of torque-driven magnetic interaction Hamiltonian

A new magnetic interaction potential is derived to describe terms which may couple the
internal and external angular momentum states. This interaction will vary slightly from the
customary−µ(m)

` ·B used in the previous section for the atomic system. By accounting for
torque, terms which go as L̂+Ô− and its conjugate appear in the interaction potential and
allow for an exchange of angular momentum between magnetic substates of the molecular
system. This also provides a mechanism for the enhancement of the induced magnetic
moments, as is described below.

We begin with an expression for the kinetic energy of molecular rotation,

H =
1

2
ω ·O , (2.90)

where ω is the vector representing rotation at angular frequency ω about an axis perpen-
dicular to the internuclear axis and O is the angular momentum vector of the rigid rotor.
Once the electric field has driven a transition between the ground and excited states, there
is an internal angular momentum L associated with the electron. If the magnetic field is
then allowed to act on this charge distribution such that B ⊥ L, then a torque T is exerted
on the system, and a rotation is initiated which may be described by O. Classically, the
molecule accumulates rotational angular momentum according to

O =

∫ t

0

(
dO

dt

)
dt . (2.91)

Since total angular momentum J = L + O is conserved in an isolated system, its time

52



derivative is zero. Then,

dJ

dt
=
d (L + O)

dt
= 0 , (2.92)

and

O = −
∫ t

0

(
dL

dt

)
dt . (2.93)

The equation of motion for rotations is taken to be

T =
dL

dt
, (2.94)

which ignores precession of the rotational axis described by the ω × L contribution. Mag-
netic torque is given by T = m×B, where m is the magnetic moment due to circulation
of charge at the optical frequency. The positive (negative) frequency component of m

combines with the negative (positive) frequency component of B to yield a slowly-varying
amplitude of the rotational angular momentum. The expression for O is then

O = −
∫ t

0

(m×B) dt . (2.95)

For molecules, the various momenta are referenced to the molecular COM. We may there-
fore specify the electron position as R ≡ r+h in cylindrical coordinates (r, ϕ, h) centered
on an origin halfway between the nuclei of the diatomic, homonuclear rigid rotor. Then
the charge circulation responsible for L in the excited state is azimuthal as depicted in Fig.
2.11. The orbital angular momentum

L = R×me
∂R

∂t
(2.96)

Figure 2.11: Orbital angular momentum L̂ of an electron about the internuclear axis of
a diatomic molecule, visualized in cylindrical coordinates reference to the COM. Here
angular momentum is determined by the local coordinate r.

contains four terms, three of which are zero. The two terms
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r×me
∂h

∂t
and h×me

∂h

∂t
(2.97)

are both zero because the axial component of R is time-invariant. Also, the term

h×me
∂r

∂t
(2.98)

averages to zero since the product is directed radially along r and rotates at ω0. The re-
maining term yields

L = mer×
∂r

∂t
(2.99)

and its magnitude is

L = mer
2ω0 . (2.100)

Figure 2.12: After application of the magnetic torque, electron motion is in a plane or-
thogonal to that in Fig. 2.11. It consists of rotation about an axis perpendicular to the
internuclear axis, normal to the plane of the drawing. Angular momentum is determined
chiefly by the coordinate h of the electron since h� r.

Rotational angular momentum due to end-over-end motion of the molecule arises after
the application of the magnetic torque (see Fig. 2.12). In this case the electron motion
rotates into a plane orthogonal to the initial plane. The leading contribution to rotational
angular momentum is

O = R×me
∂R

∂t
, (2.101)

which can be written as

O = h×me
∂h

∂t
(2.102)

or as
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O = meh
2ĥ× ∂r̂

∂t
= meh

2ω0r̂0 , (2.103)

where r̂0 = L̂ × B̂ is a unit vector perpendicular to the internuclear axis. The magnitude
of the rotational term is

O = meh
2ω0 . (2.104)

The average value of h is exactly 1/2 of the internuclear separation, where the average
value of r is on the order of the Bohr radius (h� r). The relative magnitudes of O and L

for the same electron velocity are therefore described by an enhancement factor η obtained
by combining Eqs. (2.100) and (2.104),

η ≡ O

L
=
h2

r2
. (2.105)

This factor is the same as the ratio of areas enclosed by charge motion during “external”
molecular rotation as opposed to “internal” orbital angular momentum. An immediate
consequence of this is that the magnetic moment is enhanced to a value of

m = η

(
eL

2me

)
. (2.106)

Using this definition, the rotational angular momentum is given by the integral

O = −
∫ t

0

(
eη

2me

)
(L×B) dt , (2.107)

which may be integrated (assuming constant torque) to yield

O = −
(
eη

2me

)
(L×B) t . (2.108)

Substituting this result for O into the expression for the kinetic energy yields

H = − 1

2I
O · eη

2me

(L×B) t , (2.109)

= − 1

2I
µo · (L×B) t, (2.110)

where the rotational magnetic moment is defined as

µo ≡
eη

2me

O . (2.111)
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This is slightly different from the standard form for the induced magnetic moment by a
factor of the enhancement term η.

The momentum transfer time t may be estimated by setting the time-integrated torque
equal to the angular momentum available for transfer, which is ~ (for ` = 1). That is to say,

∆L =

(
e

2me

)
(L×B) t = ~O . (2.112)

Solving for t, one finds that

t =
4me

eB0

=
4

ωc
, (2.113)

where ωc = eB0/me is the cyclotron frequency for the component of

B =
1

2
B0

(
eiωt + e−iωt

)
(2.114)

that counter-rotates with respect to the electric field. This yields for the interaction energy,

H = −
(

2ωϕ
ωc

)
µo · (L′ ×B) = −µ(m)O′ · (L′ ×B) , (2.115)

where the magnetic moment is defined as

µ(m) ≡ η

(
2ωϕ
ωc

)(
e~

2me

)
O′ = µ(m)O′ . (2.116)

and the primed notation again represents division by ~. Due to conservation of angular
momentum,

ILω0 = IOωϕ , (2.117)

the overall enhancement factor can be replaced by a ratio of the corresponding frequencies,

η

(
2ωϕ
ωc

)
=

(
2mNh

2

mer2

)(
me

2mN

)(
2ωϕ
ωc

)
=
meω0

mNωc
. (2.118)

We may now evaluate the quantum mechanical analogue of the new interaction poten-
tial,

Ĥ
(m)
int = −µ(m) ·

(
L̂′ ×B

)
, (2.119)

where the magnetic moment is now established over the entire molecule and
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µ(m) =

(
meω0

mNωc

)(
e

2me

)
Ô = µ(m)Ô′ , (2.120)

where the primed operators L̂′ ≡ L̂/~ and Ô′ ≡ Ô/~ are defined for notational conve-
nience. Expanding the Hamiltonian yields

Ĥ
(m)
int = −µ(m) ·

(
L̂′ ×B

)
= −

[
µ(m)Ô′

]
·
{[

L̂′
]
×
[√

~k2
2ε0ωV

(κ× ε)
(
â− + â+

)]}

= −µ(m)

√
~k2

2ε0ωV
[
Ô′ ·

(
L̂′ × (−e2)

)] (
â− + â+

)
, (2.121)

where in evaluating the cross-product (κ× ε) we took the electric field polarization to be
along e3 and the propagation axis to lie along e1

5, thereby giving that

κ× ε = e1 × e3 = −e2 . (2.122)

We can now evaluate the term in square brackets from the equation above. First we compute
the cross product,

L̂′ × e1 =

∣∣∣∣∣∣∣
e1 e2 e3

L̂′x L̂′y L̂′z

0 −1 0

∣∣∣∣∣∣∣ = L̂′ze1 − L̂′xe3 , (2.123)

which as we can see has components along both e1 and e3
6. However, for z-axis quan-

tization, the term along e1 must vanish. This is because the operator L̂z does not change
the projection of the quantum system and therefore will not contribute to any off-diagonal
entries in the Hamiltonian matrix. We are then left just with−L̂′xe3. Dotted into Ô′ we see,

Ô′ ·
(
L̂′ × (−e1)

)
= Ô′ ·

(
−L̂′xe3

)
= −Ô′zL̂′x . (2.124)

The quantization axis e3 defines the axis about which L̂ has a well-defined projection.

5The only restriction on the system up to this point was that the electric field interaction has defined the
quantization axis to lie along e3. The choice for propagation axis is still free to lie along either e1 or e2
(or some linear combination). It can be shown that the choice has no overall effect on the outcome of this
theoretical model.

6Note that if the propagation axis were taken to lie along e2 instead then κ× ε = e2 × e3 = e1 and then
the cross product with L̂′ would be L̂′ × e2 = L̂′ze2 − L̂′ye3.
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That is to say, a measurement of L̂z returns a well-defined eigenvalue, while measurements
of L̂ in directions orthogonal to e3 change the state of the system, as described in the
previous section. This allows us to write L̂x and L̂y in terms of the raising and lowering
operators L̂+ and L̂−. However, we have defined Ô ⊥ L̂, so the axis about which Ô has a
well-defined projection must be orthogonal to e3, meaning that a measurement of Ôz will
put the system into a different rotational state. By virtue of this fact, we may represent Ôz

in terms of raising and lowering operators,

Ô′z =
1

2

(
Ô′+ + Ô′−

)
. (2.125)

The product −Ô′zL̂′x is then found to be

−Ô′zL̂′x = −
[

1

2

(
Ô′+ + Ô′−

)] [1

2

(
L̂′+ + L̂′−

)]
= −1

4

(
Ô′+ + Ô′−

)(
L̂′+ + L̂′−

)
. (2.126)

and the magnetic interaction Hamiltonian is now

Ĥ
(m)
int =

1

4
µ(m)

√
~k2

2ε0ωV
(
Ô′+ + Ô′−

)(
L̂′+ + L̂′−

) (
â− + â+

)
=

1

4
µ(m)

√
~k2

2ε0ωV
(
Ô′+ + Ô′−

)(
L̂′+â

− + L̂′−â
+
)

= ~f
(
Ô′−L̂

′
+â
− + Ô′+L̂

′
−â

+
)
, (2.127)

where the RWA has been made and

f =
µ(m)

4~

√
~k2

2ε0ωV
=
µ
(m)
eff

~

√
~k2

2ε0ωV
. (2.128)

Here an effective magnetic moment has been defined in terms of the enhancement factor
and µ(m) as

µ
(m)
eff ≡

(
meω0

4mNωc

)
µ(m) . (2.129)

We can write f in terms of ω instead of wavenumber k by using that k/ω = 1/v and
v = c/nω, where nω is the real part of the refractive index. Then we see

58



f =
µ
(m)
eff

~

√
~

2ε0ωV
· n

2
ωω

2

c2
=
µ
(m)
eff

~

√
~n2

ωω

2ε0Vc2
. (2.130)

In simulations and for all practical purposes, nω should be set to unity since the refractive
index only makes sense in the limit that we have a dense collection of scattering centers; it
does not make sense to talk about an “effective refractive index” for a single molecule.

2.3.2 Analytic solution to the secular cubic equation

The goal here is to solve the eigenvalue problem

Ĥ |Di(n)〉 = EDi |Di(n)〉 , (2.131)

for “doubly-dressed” states |Di(n)〉 and energies EDi. Here Ĥ is the full Hamiltonian,

Ĥ = Ĥmf + Ĥint , (2.132)

where the second term is the interaction Hamiltonian and is composed of the electric and
magnetic interaction terms derived in the previous subsection,

Ĥint = Ĥ
(e)
int + Ĥ

(m)
int

= ~g
(
σ̂+â− + σ̂−â+

)
+ ~f

(
Ô′−L̂

′
+â
− + Ô′+L̂

′
−â

+
)

(2.133)

We can now determine the elements of the Hamiltonian matrix, which in general looks like H33 H32 H31

H23 H22 H21

H13 H12 H11

 , (2.134)

where the Hij elements are determined in the customary way by evaluating

Hij = 〈i| Ĥ |j〉 . (2.135)

The diagonal elements of the matrix are simply the bare-state energies shown above, but
the off-diagonal elements are related to the coupling of the individual states by the electro-
magnetic interaction Hamiltonian. The electric interaction on the ground state gives
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Ĥ
(e)
int |1〉 = ~g

(
σ̂+â− + σ̂−â+

)
|1, 0, 0〉 |0, 0〉 |n〉

= ~g
√
n |2, 1, 0〉 |1, 0〉 |n− 1〉 , (2.136)

and taking its inner product with 〈2| = 〈n− 1| 〈1, 0| 〈2, 1, 0|, we see that H21 = ~g
√
n and

so H12 = ~g∗
√
n = ~g

√
n since g is real. The electric transition changes the values of

both ` and o from ` = 0, o = 0 in the ground state to ` = 1, o = 1 in the excited state. Now
we consider the magnetic interaction on state |2〉,

Ĥ
(m)
int |2〉 = ~f

(
Ô′−L̂

′
+â
− + Ô′+L̂

′
−â

+
)
|2, 1, 0〉 |1, 0〉 |n− 1〉

= 2~f
√
n− 1 |2, 1, 1〉 |1,−1〉 |n− 2〉+ 2~f

√
n |2, 1,−1〉 |1, 1〉 |n〉 , (2.137)

and taking the inner product with state 〈3| = 〈n| 〈1, 1| 〈2, 1,−1|we find thatH32 = 2~f
√
n

and so H23 = 2~f ∗
√
n = 2~f

√
n since f is real. Note that the RWA is used to throw away

the state |2, 1, 1〉 |1,−1〉 |n− 2〉, though we will come back to this issue in a later discussion
in Chapter 4. We have also used that

Ô′± |o,mo〉 =
√
o(o+ 1)−mo(o± 1) |o,mo ± 1〉 . (2.138)

It is then easy for us to write down the Hamiltonian including the interaction terms,

Ĥ =

 E3 2~f
√
n 0

2~f
√
n E2 ~g

√
n

0 ~g
√
n E1

 , (2.139)

and solve the eigenvalue equation Ĥ |Di(n)〉 = EDi |Di(n)〉 for “doubly-dressed” eigen-
values EDi and eigenstates |Di(n)〉. In full form, this equation is E3 2~f

√
n 0

2~f
√
n E2 ~g

√
n

0 ~g
√
n E1


 ci

bi

ai

 = EDi

 ci

bi

ai

 , (2.140)

where the new eigenstates of the system can be expressed in terms of the dressed state
coefficients ai, bi, and ci as

|Di(n)〉 = ai |1, 0, 0〉 |0, 0〉 |n〉+bi |2, 1, 0〉 |1, 0〉 |n− 1〉+ci |2, 1,−1〉 |1, 1〉 |n〉 . (2.141)
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For all intents and purposes, the system is easily solved using numerical techniques. How-
ever, because the the secular equation is cubic, an analytic solution does exist that we can
write down. We include it here for completeness.

2.3.2.1 Determining eigenvalues

For the analytic solution, we search for eigenvectors which satisfy the equation

(H − EDiI) |Di(n)〉 = 0 , (2.142)

and look to write the dressed state coefficients ai, bi, and ci in terms of the new eigenen-
ergies, the initial bare state energies, and the electric and magnetic coupling strengths. To
find the eigenvalues, we must solve the secular determinant∣∣∣∣∣∣∣

E3 − EDi 2~f
√
n 0

2~f
√
n E2 − EDi ~g

√
n

0 ~g
√
n E1 − EDi

∣∣∣∣∣∣∣ = 0 . (2.143)

After some manipulation, the above equation becomes

E3
Di − (E1 + E2 + E3)E

2
Di + (E1E2 + E2E3 + E3E1 − 4n~2f 2 − n~2g2)EDi

+ (−E1E2E3 + 4n~2f 2E1 + n~2g2E3) = 0 ,
(2.144)

and has the general form

y3 + py2 + qy + r = 0 , (2.145)

where y = EDi and the coefficients are

p ≡ −(E1 + E2 + E3) (2.146)

q ≡ (E1E2 + E2E3 + E3E1 − 4n~2f 2 − n~2g2) (2.147)

r ≡ (−E1E2E3 + 4n~2f 2E1 + n~2g2E3) . (2.148)

Upon the substitution y = x+ p/3, the equation reduces to

x3 + ax+ b = 0 , (2.149)

where the coefficients are
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a =
1

3
(3q − p2)

= (E1E2 + E2E3 + E3E1 − 4n~2f 2 − n~2g2)− 1

3
(E1 + E2 + E3)

2 (2.150)

and

b =
1

27
(2p3 + 27r − 9pq)

=− 2

27
(E1 + E2 + E3)

3 + (−E1E2E3 + 4n~2f 2E1 + n~2g2E3)

+
1

3
(E1 + E2 + E3)(E1E2 + E2E3 + E3E1 − 4n~2f 2 − n~2g2) . (2.151)

There are a handful of methods for solving Eq. (2.149), though one simple solution is
in the case of three real and unequal roots. This solution is obtained via a trigonometric
method, whereby the cubic equation

x3 + ax+ b = 0 (2.152)

is transformed into

u3 cos3 ϕ+ au cosϕ+ b = 0 (2.153)

when x is replaced with u cosϕ. The goal is to make Eq. (2.153) take the form of the
trigonometric identity

4 cos3 ϕ− 3 cosϕ− cos 3ϕ = 0 , (2.154)

which is known as the triple angle formula. Choosing u = 2
√
−a/3 and dividing Eq.

(2.153) by u3/4 we get

4 cos3 ϕ− 3 cosϕ− 3b

2a

√
−3

a
= 0 . (2.155)

Combining with the identity from Eq. (2.154), we get

cos 3ϕ =
3b

2a

√
−3

a
(2.156)

and so the roots of the cubic polynomial are
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xk = 2

√
−a

3
cos

[
1

3
cos−1

(
3b

2a

√
−3

a

)
− k2π

3

]
(2.157)

for k = 0, 1, 2, or equivalently

xk = 2

√
−a

3
cos

(
ϕ− k2π

3

)
, (2.158)

where

ϕ =
1

3
cos−1

(
3b

2a

√
−3

a

)
. (2.159)

Hence, the analytic solutions for the doubly-dressed system are therefore

ED1 = 2

√
−a

3
cos

(
ϕ− 4π

3

)
+

1

3
(E1 + E2 + E3)

ED2 = 2

√
−a

3
cos

(
ϕ− 2π

3

)
+

1

3
(E1 + E2 + E3)

ED3 = 2

√
−a

3
cos (ϕ) +

1

3
(E1 + E2 + E3) ,

(2.160)

where the subscript labeling is chosen so that ED1 and ED2 reduce to the eigenenergies of
the singly-dressed atom (i.e. ED− and ED+, respectively) and ED3 is only coupled when
the magnetic contribution is considered.

2.3.2.2 Finding eigenvectors

We seek to determine eigenvectors |Di(n)〉which satisfy the equation (H−EDiI) |Di(n)〉 =

0, where i = 1, 2, 3 and have the form

|Di(n)〉 = ai |1〉+ bi |2〉+ ci |3〉 . (2.161)

We require that coefficients ai, bi, ci satisfy the standard normalization condition

1 = |ai|2 + |bi|2 + |ci|2 . (2.162)

Of course, the standard way of determining the new eigenvectors is to write out the the
explicit formula
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 E3 − EDi 2~f
√
n 0

2~f
√
n E2 − EDi ~g

√
n

0 ~g
√
n E1 − EDi


 ai

bi

ci

 =

 0

0

0

 , (2.163)

and do the matrix multiplication on the LHS and then solve for values of ai, bi, and ci which
satisfy the condition on the RHS for each of the three eigenenergies. However, because of
the complexity of the cubic roots, it is more convenient to write the solution down in a more
general form which is expressed in terms of the dressed state energies, bare state energies,
and coupling strengths. Here the eigenvectors may be expressed in the form

|Di(n)〉 =
1

Ξi

{[
(EDi − E2)

~g
√
n

− 4~f 2
√
n

g(EDi − E3)

]
|1〉

+(1) |2〉+
2~f
√
n

(EDi − E3)
|3〉
}
, (2.164)

where the normalization factor Ξi is given as the unitless quantity

Ξi =

√(
(EDi − E2)

~g
√
n

− 4~f 2
√
n

g(EDi − E3)

)2

+ 12 +

(
2~f
√
n

(EDi − E3)

)2

. (2.165)

The state coefficients ai, bi, and ci are of course

ai =
1

Ξi

[
(EDi − E2)

~g
√
n

− 4~f 2
√
n

g(EDi − E3)

]
, (2.166)

bi =
1

Ξi

, (2.167)

ci =
1

Ξi

[
2~f
√
n

(EDi − E3)

]
. (2.168)

We note here that in the limit that the magnetic coupling term is taken to zero (i.e. f −→ 0),
the eigenvector solution is reduced to that of the singly-dressed state. In other words, an
identical solution can be written down for the singly-dressed case which is in agreement
with what we have derived here but for f = 0.
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2.3.3 Evaluation of induced dipole moments

Given that we now have a way of obtaining solutions for the dressed state coefficients ai,
bi, and ci, we may proceed to calculate the nonzero electric and magnetic dipole moments
that arise between the mixed states of the driven system. As shown in Fig. 2.13 there are
only three moments which arise in the simplified basis: a linear electric moment at ω, a
quadratic electric moment at 0-frequency, and a nonlinear magnetic moment at ω.

Figure 2.13: Induced electric and magnetic dipole moments between dressed states of the
driven molecular system. The induced nonlinear electric moment is shown by the red
curved arrow and the induced nonlinear magnetic moment is shown by the blue straight
arrow.

The linear electric moment is of course

〈
p̂
(1)
ii (ω)

〉
= 〈Di(n+ 1)| er̂ |Di(n)〉+ h.c.

= aib
∗
i 〈n| 〈1, 0| 〈2, 1, 0| er̂ |1, 0, 0〉 |0, 0〉 |n〉+ h.c.

= µ
(e)
` (aib

∗
i + c.c.) e3 , (2.169)

which is the same as we had in the atomic system. There is also a zero-frequency moment
which arises within each individual dressed state. We see
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〈
p̂
(2)
ii (0)

〉
= 〈Di(n)| er̂ |Di(n)〉+ h.c.

= (aic
∗
i 〈n| 〈1, 1| 〈2, 1,−1| er̂ |1, 0, 0〉 |0, 0〉 |n〉+

a∗i ci 〈n| 〈0, 0| 〈1, 0, 0| er̂ |2, 1,−1〉 |1, 1〉 |n〉) + h.c.

= µ
(e)
`

{[
aic
∗
i

1√
2

(e1 + ie2) + a∗i ci
1√
2

(e1 − ie2)
]

+ c.c.

}
=

2µ
(e)
`√
2

(aic
∗
i + c.c.) e1 , (2.170)

where we have used the fact that

〈1, 1| 〈2, 1,−1| er̂ |1, 0, 0〉 |0, 0〉 = µ
(e)
`

1√
2

(e1 + ie2) . (2.171)

As promised in the previous section, here we provide further details on the analysis of
the induced magnetization terms. The magnetic dipole moments considered here involve
motion initiated by the electric field that is then deflected by the magnetic field. The ex-
pectation value of the magnetization is therefore expected to be proportional to the electric
field polarization, as was the case for the atomic system described earlier. There are again
two contributions to the nonlinear magnetic moments. The first originates in second-order
as the e2-directed projection of a mixed magneto-electric moment and the second originates
as a third-order purely magnetic moment. We can identify these two contributions to the
magnetic moment by examining the trace elements of the magneto-electric moment µ(me)

(or the direct magnetic moment µ(m)) with the slowly-varying amplitude of the density
matrix ρ̃.

The contribution to the magnetic moment which is second-order is given by,

〈
m̂(2)

〉
= Tr

(
µ(me), ρ̃

)
=
(
µ
(me)
21 ρ̃

(2)
12 + µ

(me)
31 ρ̃

(2)
13 + µ

(me)
32 ρ̃

(2)
32

)
+ c.c. . (2.172)

Now the 2-photon magneto-electric moment is non-vanishing only between states |1〉 and
|3〉. These states are connected by the sequence of an electric dipole transition between
states |1〉 and |2〉 followed by a magnetic dipole transition between states |2〉 and |3〉.
Therefore, in the above we see that µ(me)

21 = µ
(me)
32 = 0, leaving only

〈
m̂(2)

〉
= µ

(me)
31 ρ̃

(2)
13 + c.c. . (2.173)
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The solution for the off-diagonal density matrix element is

ρ̃
(2)
13 =

ρ̃
(1)
12 Ṽ

(1)
23

∆13 + iΓ13

, (2.174)

where ∆13 ≡ (ω1 − ω3) − ω. The correspondence between density matrix elements and
mixing coefficients in the dressed state picture is

ρ̃
(1)
12 ←→ aib

∗
i (2.175)

and

ρ̃
(1)
12 Ṽ

(1)
23

∆13 + iΓ13

←→ 〈Di(n)|µ(e)
21 µ

(m)
eff L̂

′
−Ô
′
+σ̂+ |Di(n)〉 . (2.176)

Although ρ̃(2)13 is a second-order coherence with no time dependence, the act of project-
ing out the component along e2 with an analyzer (as described in Chapter 3) restores the
time dependence of the magnetic quadrature of the 2-photon moment. The moment then
evaluates to

〈
m̂(2)

〉
=
(
aibi 〈Di(n)|µ(e)

21 µ
(m)
eff L̂

′
−Ô
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The additional contribution to the magnetization arises from the third-order terms in
the expectation value. In this case, a pure 1-photon magnetic dipole moment is µ(m) is
considered,

〈
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µ
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21 ρ̃
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31 ρ̃
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The solution for the off-diagonal density matrix element in this case is

ρ̃
(3)
23 =

Ṽ
(1)
21 ρ̃

(2)
13

∆23 + iΓ23

, (2.179)

where ∆23 ≡ (ω2 − ω3)− ω. In the above, µ(m)
21 = 0 and µ(m)

31 = 0 since there is no direct
magnetic coupling between state |1〉 and states |2〉 or |3〉. Here the magnetic moment forms
on a separate 1-photon transition in third-order and we have the following correspondence
between density matrix and dressed state picture,
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and
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One finds that
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The total magnetic moment is the sum of these two moments which are both at the oscil-
lation frequency ω and are both oriented along e2. Since the leading behavior is quadratic,
the total magnetic moment for individual dressed state indices will be represented as
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Once again, the incoherent sum must be taken for each of the induced effects to give
the net measurable moment. The linear electric is the same as defined in previous sections.
We have for the 0-frequency electric moment,
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and for the quadratic magnetic moment

∣∣∣m̂(2)
net(ω)

∣∣∣ = 2µ
(m)
eff

{
3∑
i=1

|[aib∗i (bic
∗
i + aic

∗
i ) + c.c.]|2

}1/2

. (2.185)

When the magnetization is evaluated numerically, the value of the effective magnetic mo-
ment reference value may be replaced according to µ(m)

eff = cµ
(e)
` . This value is twice the

upper bound on µ(m)
eff derivable from Faraday’s law for a single component of angular mo-

mentum [2]. This represents a limitation on the maximum magnetic value which may be
achieved using the dressed-state analysis.
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2.3.4 Magnetic torque dynamics

Because torque is the mechanism which is responsible for coupling the ground state to the
rotationally-excited molecular state, it is worthwhile to consider the time required for this
process to go to completion. During the B∗ transition in which the magnetic interaction is
applied, the principal quantum number changes due to magnetic torque,

〈
T̂
〉

=

〈
dL̂

dt

〉
=
i

~

〈[
Ĥ

(m)
int , L̂

]〉
, (2.186)

transferring all orbital angular momentum of the excited state into rotational motion. The
expectation value of the torque is

〈
T̂
〉

= i~e3ρ̃32 〈1, 0| 〈2, 1, 0| fL̂′+Ô′− |2, 1,−1〉 |1, 1〉+ h.c.

= 2i~e3fρ̃32 + c.c. , (2.187)

and in the high-intensity limit, the coherence evaluates as ρ̃32 ≈ 1 and so |〈T̂ 〉| ≈ ~f is the
total amount of torque exerted about an axis perpendicular to the molecule over some time.
Since there are no atoms on the internuclear axis in the diatomic model, the orbital angular
momentum L̂ and its kinetic energy L2/2µ are clearly exchanged for end-over-end rotation
of the molecule with energy O2/2I . The speed of transfer can be estimated by finding the
time interval τ necessary for m` to change by unity. From Eq. (2.186) we see

τ =
~c

µ
(m)
effB

. (2.188)

Using µ(m)
eff = cµ

(e)
` and assuming a field strength of E ≈ 108 W/cm2 as such is used in our

experiments, we find

τ =
~

µ
(e)
` E

≈ 125 fs . (2.189)

This calculation shows that the torque mechanism is an ultrafast process and goes to com-
pletion for typical field strengths and pulse durations of our experiments, as will be de-
scribed in the following chapter.
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CHAPTER 3

Methods for Measuring Magnetic Dipole
Scattering

This chapter outlines the methods used for measuring induced second-order ME magneti-
zation. The experimental approach described herein is a straight-forward extension to the
methods described in Section 1.4 that were used in the initial scattering experiments. This
approach improves on the initial experimental methods in several ways. For one, com-
plete automation of the rotation stages and light detection instruments was implemented
which allowed for the experiment to be run without the need for the experimenter to be
present in the lab. Automation of the experiment also allowed for longer count periods,
which provided better signal averaging as well as the ability to map out full angular pat-
terns of the detected signal for each input intensity point. The focusing lenses before the
sample were also removed and replaced with a beam expander to allow for easier align-
ment and a more homogeneous beam cross-section. A dispersion compensation unit was
also introduced which provided a consistent method for achieving transform-limited pulses
at the interaction point of the sample as well as a method for keeping track of the pulse
duration. A “light-tight” box was built to isolate the detector from ambient light and a
thermo-electrically cooled photomultiplier tube was used in place of the less sensitive de-
tectors used in earlier experiments.

As was previously described in Chapter 1, this experiment aims to measure the relative
amplitudes of the induced electric and magnetic dipole moments in a dielectric material.
In this experiment, pulsed light of moderate optical intensity (of the order 108 W/cm2) is
incident on either the sample cell or sample volume and scattered light is collected at 90◦

relative to the path of the input light. The 90◦ geometry is a fundamental feature of this
experiment since only at this angle is it possible to distinguish between induced electric
and magnetic moments; electric and magnetic dipole moments are indistinguishable in the
forward direction. This fact is apparent in Fig. 3.1, where we note that if the incident
electric (magnetic) field is oriented vertically, then the induced electric (magnetic) dipole
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(a) Electric scattering (b) Magnetic scattering

Figure 3.1: Schematic for (a) electric and (b) magnetic dipole scattering. For the ED (MD)
scattering, the initial incident electric (magnetic) field is oriented along x̂ and the input
polarization is rotated through 2π to map out the scattered light intensity. To measure ED
(MD) scattering, the analyzer is fixed along x̂ (ẑ).

will also be oriented vertically. Then a measurement of the electrically (magnetically) scat-
tered light requires the analyzer to be oriented vertically (horizontally) in order to pass the
electric component of the scattered field. When the analyzer is vertical it measures electric
dipole radiation and when horizontal it measures magnetic dipole radiation. Rotating the
input field using a λ/2 plate allows for the construction of “dipole radiation patterns” which
describe the angular dependence of the input signal.

For the remainder of this chapter we discuss the experimental design, the methods for
data collection and analysis, and the sample selection and preparation. The first section
describes the components used in the experimental approach and how they were assem-
bled into a system. This section also includes a description of the alignment procedure as
well as an overview of the detection scheme used for measuring the scattered light. We
then describe the approach used for collecting and analyzing data, including how the sig-
nals were measured and stored as data arrays and how these files were processed to extract
physically significant parameters. We conclude with a discussion of the selection proce-
dure for the molecular liquids and crystalline solids that were measured in this experiment.
This includes a description of procedures for cleaning, storing, and handling the molecular
liquids.

3.1 Experimental design

Figure 3.2 is a schematic which shows the experimental approach. The incident laser light
is the pulsed output from a linearly-polarized, chirp-pulse amplified (CPA) Clark-MXR
CPA-2001 system. This system has a repetition rate of 1 kHz, average power 800 mW,
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center wavelength 775 nm, and FWHM bandwidth of 5 nm. The output from the laser is
directed into the dispersion compensation box before traveling through a series of optical
components which either control or monitor the light in some way. A λ/2 plate is used in
combination with a 105:1 quartz polarizer to control the input optical intensity as well as
reject any light polarized orthogonal to the transmission axis (this extinguishes orthogonal
polarizations to 1 part in 105). A non-polarizing 70:30 (T:R) beam splitter is used to send
30% of the input beam to a Thor Labs S401C thermal power meter which monitors the
laser power as a function of time and provides a method for obtaining an average power
value. A temporary flip mirror is used to direct the light into the dispersion feedback loop
(explained in detail in a later subsection). A second λ/2 plate controls the orientation of the
input optical field before the beam is expanded using a 3× telescope. The full 1/e2 width
of the beam is measured to be 21 mm × 16 mm (width × height) after the telescope and a
pinhole centered on the beam and set to a diameter of 3.5 mm is used to aperture the beam.
This creates an approximate “flat-top” beam before the sample, in which the variation from
the middle of the beam to the edges is no more than 5% of the total beam power, as is
explained in Appendix F.

Figure 3.2: Schematic showing the footprint of the experimental scattering setup. The
black dashed inset box shows the components of the MIIPS feedback loop.

After being apertured, the laser enters a light-tight box through a 1/2” diameter hole.
The box has removable sides and a lid constructed of plywood which have been painted
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with a flat black paint to aid in light absorption. During experiments a black tarp is draped
over the entire box in order to further reduce the amount of ambient light which may oth-
erwise enter the box during signal detection. Inside the box, the light is incident on the
sample and is allowed to pass through the length of either the cuvette cell or bulk crystal
before exiting the box through a second 1/2” hole. This light is then sent to a beam dump
which is angled off-axis relative to the beam path in order to minimize reflections back
into the detection box. As a further redundancy to prevent ambient light from entering the
detector, a custom-built filter mount was used to attach the interference filter directly to the
face of the detector. Given these measures, the photons counted with the detector shutter
closed versus open (laser off) were indistinguishable at about 3-5 counts/s.

The scattered light is collected into a cooled photomultiplier tube (PMT) at 90◦ relative
to the input beam line using a 1:1 imaging system consisting of two 150 mm lenses, two
pinholes, a quartz analyzer, and an interference filter. The pinholes were both apertured to
3.5 mm in order to exclude the amount of out-of-plane polarized light to below 1% (see
Appendix C). Alignment of the collection optics relative to the input beam is critical to
ensure that any out-of-plane electric signal is sufficiently attenuated. This is achieved by
first establishing orthogonal beam paths for the input beam and collection beam over the
lengths of the table using only turning mirrors and standard alignment techniques. The
technique used here consisted of using a beam height tool which could be secured in any
two adjacent 1/4”-20 holes of the optical table to either align the beam directly over a set
of holes or directly in between a set of holes. The orientation of each turning mirror was
checked using the alignment tool at three locations: near the mirror, as far from the mirror
as possible given the available table space, and at a location in between. The placement of
each mirror was used to adjust the nearby alignment and the mirror tilt was used for the far
alignment. Once a particular beam path was established, alignment pinholes with 1” diam-
eter were placed in the beam line and were centered using a Thor Labs CCD beam camera.
This provided a consistent method of checking the beam alignment during everyday use.

Alignment of the input probe laser was achieved by attenuating the beam to an eye-safe
level and using index cards or fluorescent infrared cards and the Thor Labs CCD camera.
All of the turning mirrors for the amplified pulses were anti-reflection coated dielectric
mirrors from Newport. The beam path for the collection optics was aligned using a 5 mW
HeNe laser and metallic turning mirrors following the same procedure described above.
This method achieved two well-defined beam paths whose orthogonality was dependent on
the precision of the holes of the optical table. A precision right-angle prism was placed
at the interaction point of the sample in order to obtain a more definitive measure of the
orthogonality of the two beams. With the prism, the orthogonality of the two beams could
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Figure 3.3: Depiction of alignment check using precision right angle prism to confirm
orthogonality of pump beam and collection optics.

be defined to within 3 arcmin. The prism was aligned such that the incident light from the
CPA system was deflected at a right angle through the pinholes that established the collec-
tion optics while the back reflection from the entrance face of the prism was simultaneously
aligned back through the pinholes which established the probe beam path. This is depicted
in Fig. 3.3. Placement of the prism on a 3D translation stage plus goniometer allowed for
all necessary adjustments. This check was performed whenever any change in the align-
ment of the system was made. It is worth noting that this check could have also been done
using the HeNe beam. The only difference is that the deflected light from the HeNe must be
aligned back through the pinholes which establish the pump beam path while then the back
reflection from the entrance surface of the prism is simultaneously aligned back through
the HeNe optics.

Only after establishing and aligning the two beam paths were the other optical compo-
nents added into the probe and collection beam lines. Alignment of each component was
checked by aligning the back-reflected light while minimizing the deflection of the center
of the beam in the forward direction. The forwardly-deflected light was monitored with the
CCD placed directly behind a slightly-closed and aligned pinhole. Adjustment of the 3×
telescope was performed by placing the 300 mm lens on a translation stage and minimizing
the beam divergence over a distance of approximately 1 m. Alignment of the collection
optics was achieved by simulating diffusely-scattered light at the interaction plane of the
sample. This was done by passing the HeNe laser through a thin diffuser1 placed along the
plane bisecting the input probe beam. The first 150 mm lens was positioned on a translation
stage and the collimation was checked by placing a mirror after the lens to retro-reflect the

1For this, several layers of frosted Scotch tape were used.
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collimated beam back through the lens and focus it onto the diffuser. The second lens in the
imaging system was positioned such that its focal plane was coincident with the position
of the detector cathode.

3.1.1 Dispersion compensation using MIIPS

Providing a way to pre-compensate for dispersive elements in an optical system is use-
ful in that it allows one to deliver transform-limited pulses to the interaction region of the
sample. This not only allows the experimenter to maintain the peak intensity of ultrashort
pulses, but it allows for an accurate and reproducible method by which the pulse duration
may be measured before each experimental run without needing an autocorrelator. Our ex-
periment used a multiphoton intrapulse interference phase scan (MIIPS)-HD system from
Biophotonics, Inc. to compress the output pulses from the Clark-MXR laser system.

The MIIPS system consists of only a few optical components (some mirrors, a diffrac-
tion grating, a cylindrical lens, and a spatial light modulator (SLM)) and a compression
algorithm that retrieves spectral information from a second-harmonic (SH) signal. The ba-
sic operating procedure of the system is relatively straight-forward. Light enters the MIIPS
box and is guided toward a diffraction grating using a series of metallic turning mirrors. Af-
ter reflecting off the grating, the spectral components of the pulse are angularly distributed
in space. The cylindrical lens then collimates the light and directs it toward the surface
of the SLM, which is used to impart nonlinear phase corrections to the individual spectral
components of the pulse. This is achieved by applying a desired voltage to a given pixel
in the crystal which in turn causes local deformations on the surface of the SLM due to
electrostriction. Since the spectral components are distributed over the length of the SLM,
a “best-compressed” voltage mask is determined using an iterative algorithm in LabVIEW
which uses spectral information retrieved from the SH signal.

The SH signal is generated by focusing the light into a Beta Barium Borate (BBO) crys-
tal and then filtering and directing this light into a fiber-coupled Ocean Optics spectrometer
(see inset in Fig. 3.2). Our experimental approach used a temporary turning mirror (see
Fig. 3.2 above) to direct this light out of the main beam path. Once the SH spectrum is fed
into the spectrometer, the compression algorithm is run for 6 iterations until convergence
to a best-compressed value of the pulse is achieved. All of the pulse shaping is achieved
by altering the pixels of the liquid crystal modulator to impart some specific phase on each
wavelength component. In other words, this yields a best-fit phase mask which is main-
tained on the face of the SLM so long as it remains powered up. The flip mirror can then
be removed from the beam line and the compressed pulse travels to the sample.
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A typical compression from this device will yield pulse durations of the order 150 fs
full-width at half-max (FWHM). However, a measurement using the built-in autocorrelator
function of the MIIPS box shows that the actual pulse duration is typically closer to 180 fs.
Regardless of this, the temporal width used in data analysis was always taken as the com-
pressed pulse width, not the measured value from the built-in autocorrelator. The MIIPS
system was run whenever the laser was turned on or whenever the laser output was opti-
mized or adjusted. This is because the phase mask on the SLM for optimal compression
will be different if there are any shifts in the laser spectrum.

3.1.2 Interference filter

A narrowband filter was used in the detection arm of the apparatus to select light in a
narrow band centered on the fundamental frequency of the laser. Our experiments used a
780 nm filter with a passband of 5 nm tilted at an angle of 14◦ relative to the input beam
path. An interference filter consists of a stack of multiple layers of dielectric material with
varying refractive indices. The multilayer design allows one to engineer the filter such that
only select frequency bands are transmitted, while all others are reflected. These filters are
designed for normal incidence but the central passband can be effectively tuned lower if
the angle of incidence is increased from zero. The tilt angle of 14◦ was tested and found to
transmit light centered on the central laser wavelength of 775 nm.

Figure 3.4 shows the transmission of the interference filter at normal incidence (blue
dashed curve) centered at 780 nm and a predicted shift in transmission centered on 775 nm
(solid blue curve). The transmission peak of the interference filter is about 50%. Here the
red curve represents an approximation to the Clark-MXR laser which is just a normalized
Gaussian curve with a FWHM of 5 nm centered at 775 nm. The light reaching the detector
is a product of the blue and red curves, so unless the filter passband and laser bandwidth are
lined up, only a portion of the scattered light will be detected. This was confirmed in two
experimental runs of scattering in the liquid sample CCl4. There was an increase in signal
of about 160% when the filter was tilted. Overlapping the two spectra is also important so
that vibrational Raman scattering is not detected.

A filter mount was machined out of a 1.25” diameter aluminum rod cut to a length of
1.25”. The front and back surfaces of the rod were faced off using the lathe and one side of
the rod was turned down to a diameter of 1.00”. This lower diameter went only to a depth
of 0.75”, leaving 0.50” still at the original 1.25” diameter. The rod was then fixed in place
at 14◦ relative to normal and a 1.00” diameter hole was milled into the side of the rod with
the 1.25” diameter. This hole was meant to hold the interference filter in place. A drilled
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Figure 3.4: Plot showing the interference filter transmission as a function of laser wave-
length overlaid with a Gaussian curve of 5 nm bandwidth to approximate the laser spec-
trum. The dashed blue curve represents the filter transmission at normal incidence, which
is centered at 780 nm (depicted by dashed grey curve). The solid blue curve represents the
estimated shift in the filter transmission when tilted at 14◦ incidence.

and tapped hole on the edge of the mount was used to keep the filter from moving. A hole
of approximately 0.50” diameter was drilled through the entire rod to allow light to pass
through. This fixture was then mounted to the face of the PMT.

3.1.3 Signal detection using photomultiplier tube

A thermo-electrically cooled PMT was used to detect light at the single-photon level. This
sensitive detection scheme was required due to the low cross-section for incoherent scat-
tering at 90◦. A PMT works by converting a signal photon into an electrical signal which is
then amplified via reflection off several dynodes arranged in a cascade-like fashion. Here
an incoming photon is incident on the cathode and ejects a single electron due to the photo-
electric effect. The electrons are then directed through the amplification stage after which
the signal reaches the anode and is large enough to be detected by an electronic circuit.
The cathode, dynodes, and anode are arranged in a vacuum tube in which each subsequent
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electrode is maintained at a pre-determined potential. A discriminator voltage is set so that
counts from the cathode which have the amplitude of single-photon events are transmitted
and lower amplitude events due to 1/f noise are filtered out. Thermo-electric cooling of
the device further reduces unwanted signals at the detection anode.

Alignment of the PMT required both transverse and longitudinal measurements of the
cathode position. This was to ensure that the cathode was centered on the optical beam line
and that the imaging optics focused the light onto the cathode. The position of the cathode
along the optical axis was determined by removing the tube and physically measuring its
location relative to its housing. The focusing lens from the collection optics was then
placed such that its focal plane was coincident with the plane of the cathode. The PMT was
then affixed to a machined translation stage which allowed for the device to be adjusted
horizontally and vertically in a plane perpendicular to the beam path of the collected light.
Alignment of the cathode in the beam path was achieved by measuring the detected signal
as a function of horizontal and vertical translation and then determining the position where
the response peaked. The adjustments on the translation stage were then set to this optimal
position.

Figure 3.5: Schematic depiction of the limitation of photon-counting devices. If the device
measurement window is greater than the temporal duration of the signal being measured,
then the device may only count a single photon per cycle of signal. A multiple photon event
would saturate the detector and result in a nonlinear response.

A major shortcoming of any single-photon detection scheme is that the device will satu-
rate if too many photons are coincident at once. Essentially, if more than one signal photon
reaches the cathode within a specific time interval, the detector will not be able to properly
count how many photons are present due to the speed of the electronics. This is known
as “detector paralyzability” and the time interval over which the detector is paralyzed is
known as “dead time” [39]. Most PMTs are limited to a dead time on the order of 10 ns,
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which for our experiments means that we are limited to detecting no more than one photon
per 150 fs pulse. This is depicted in Fig. 3.5, where the detector is only able to accu-
rately record “single photon events,” while “multiple photon events” will result in detector
saturation. For a 1 kHz repetition rate laser, a count rate greater than 1000 counts/s will
result in detector saturation. This in turn limits the dynamic detection range to between 10
and 1000 counts/s (noise to saturation). This observation became obvious when a simple
measurement of Rayleigh scattered light gave a nonlinear curve for input optical intensities
. 106 W/cm2. A detailed discussion of detector saturation is accounted for in Appendix
D, but the solution to this problem used in our experimental approach was to attenuate the
amount of light reaching the detector. This was done by placing a neutral density (ND)
filter of appropriate density to limit the maximum scattered signal to below 1000 counts/s.

3.2 Data collection and analysis

Complete polar radiation patterns were recorded for both vertical and horizontal orien-
tations of the analyzer over a series of input intensities. This allowed for mapping of
the intensity dependence of the scattering amplitudes over a decade of intensity inputs at
equally-spaced intervals. Computer control of the input intensity, polarization state, and
analyzer position make the experiment relatively simple to run while allowing for long av-
eraging times to be used. This also allows for the experiment to be done in a completely
dark laboratory without the experimenter being present to potentially act as a reflector of
ambient light or as a source of thermal radiation. Calibration and mechanical reproducibil-
ity of the rotation stages is a critical component of the experiment, so special care was
taken to set up these devices. Appendix E provides a detailed explanation of the methods
used for confirming the operation of the rotational stages along with a discussion regarding
mechanical backlash.

A standard arrangement was to use a λ/2-plate + analyzer pair to systematically control
the throughput intensity which reaches the sample. With such a pair, the transmission
through the analyzer follows a cosine-squared pattern as the λ/2-plate is rotated about the
propagation axis of the input light. The experiment begins by zeroing the λ/2-plate before
the analyzer to maximize light transmission. This reference value for zero angle is entered
into the MATLAB program used to run the experiment. The maximum input power to
the sample is then selected using a reflecting gradient attenuator wheel. If necessary, an
appropriate ND filter is selected for attenuating the scattered light in the detection arm
which reaches the PMT. Over the course of a typical collection of data, several intensity
points are recorded using a step size determined by the arccosine-squared of the azimuthal
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orientation of the λ/2-plate. This determines the appropriate angular rotation to correspond
to equally-spaced intervals of the transmitted light intensity. Figure 3.6 shows that the input
optical power over each experimental run has an equal spacing. The analyzed data does not
rely on the accuracy of this calibration, instead the measured scattering amplitudes are
paired with the measured power value for each intensity point.
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Figure 3.6: A measurement of the input optical power as a function of the equally-spaced
intensity points due to the rotation of the λ/2 + analyzer pair. This procedure is done
for the analyzer in both parallel and perpendicular orientations. This plot confirms that the
intensity control does in fact yield equally-spaced power increments between each intensity
run.

The second waveplate that controls the polarization orientation of the input beam must
be calibrated so that zero corresponds to a purely horizontal orientation of the input optical
field. This calibration is done by placing an analyzer set to pass only horizontally-polarized
light in the beam line after the 3× telescope. A power meter can then be used to record the
transmission of light through the analyzer as a function of rotation angle of the λ/2 plate in
the input beam. The data is then fitted with a cosine-squared curve and the corrected phase
offset of this curve is used to determine the zero point of the waveplate.

The analyzer before the PMT is set to pass either vertically or horizontally polarized
light that has scattered in a direction perpendicular to the propagation axis of the input
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beam (as explained in the experimental design section above). Zeroing of this component
is critical to ensure the correct polarization state is passed to the detector. This is done
by taking the rejected light from the analyzer and sending it across the optics table to an
iris or beam tool set at the height of the plane of the optical beam. The zeroing of this
component should be checked once every 4-5 experimental runs to avoid mechanical walk-
off/backlash that may be acquired with the rotation mounts. The sample is then placed at
the interaction point and is centered and aligned using the input pump beam from the Clark-
MXR and the alignment beam from the HeNe laser. Once both the pump and alignment
beams are centered through their adjacent faces of the sample, the goniometer tilt for the
sample platform is adjusted to align surface back reflections to lie along the input beam
axes.

After calibration and alignment, the room lights are turned off and the PMT shutter is
opened. After this, an experiment may be run. A typical experimental run will measure the
light scattered in both vertical and horizontal orientations of the analyzer as a function of
input polarization orientation. The step size is usually set to 12◦ increments and measure-
ments are made for 10 equally-spaced intensity points. A desired exposure time (or count
time) for the PMT as well as a number of periods (or intervals) for which the device should
count are then selected. The exposure time is usually set to 4-8 s for ED scattering and
20-40 s for MD scattering, with 4-5 periods. Experiments with these parameters typically
take 8-12 hours to complete. These values are chosen so that any angular features of the
signals can be resolved above any random background signal. A measurement of the back-
ground signal is first made with the laser blocked via the mechanical shutter. This is later
subtracted from the measured signals. Next, the amount of scattered light passed by the an-
alyzer in the vertical orientation is recorded at the first intensity point, which is followed by
the same measurement for light passed by the analyzer in the horizontal orientation. These
measurements are recorded over the range of input intensities and the values are saved as
individual text files to be processed once the experiment has finished.

The analyzer used for the intensity control has an extinction ratio of 105:1, so the light
exiting this optic has a strong, horizontal linear polarization. The orientation of the electric
field polarization is controlled using the second λ/2-plate, which rotates by 180◦ to give a
360◦ rotation of the field polarization vector2. This allows us to map out complete dipole
patterns of the electric and magnetic signals at some fixed incremental spacing of wave-
plate orientation. This technique is different from previous experiments [15, 1, 2] which
compared the light scattered from only two points on the dipole for each orientation of
the analyzer. This earlier method is less reliable because it assumes the orientation of the

2This is because a rotation by θ of the waveplate corresponds to a rotation of 2θ of the field.
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induced dipoles are known and it does not allow for tracing out full radiation patterns. This
technique would not be able to measure any rotation of the induced dipoles. Using our
improved method, we are able to record enough points along the dipole to have sufficient
points for fitting a curve and then extracting both the polarized and unpolarized responses.
Figure 3.7 depicts a typical set of data we might collect at any given intensity point, which
shows the data follows a cosine-squared pattern with two independent fitting parameters
for both the ED and MD curves.

Figure 3.7: Cartesian representation of a typical set of data collected in the scattering ex-
periment. Here we see the independent fitting parameters are the amplitude (polarized
component) and vertical offset (unpolarized component).

The measured intensity curves are fitted according to

IED = AED cos2 (θ + θ0) + hED , (3.1)

IMD = AMD sin2 (θ + θ0) + hMD , (3.2)

where AED (AMD) is the amplitude and hED (hMD) is the vertical offset for the electric
(magnetic) signal. Here θ0 is not an independent fitting parameter, but rather an arbitrary
rotation that may be used to zero the input field orientation3. The fitting parameters A and
h are the values of most interest when analyzing a particular sample. Here the amplitude
A is referred to as the “polarized component” while the offset or waist h is referred to as
the “unpolarized component.” These parameters also afford us to define a second useful
quantity for both electric and magnetic signals,

3In later experiments, this variable was not required since zeroing the λ/2 used for polarization control
was perfomed.
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δED =
hED

AED + hED
and δMD =

hMD

AMD + hMD

, (3.3)

which we call the “depolarization ratio.” This quantity allows us to make several qualitative
and quantitative statements regarding the measured signals with a single plot. For instance,
we can show the relative amount of polarized to unpolarized signal, the dependence on
field of the unpolarized signal relative to the polarized signal, and the degree of sample
saturation. This depolarization is different from the traditional definition, which considers
only two measurements to compute the depolarization ratio.

Figure 3.8: Flow chart showing the basic components of the data processing script. Exper-
imental parameters are entered, the text files are read in, processed, and fitted, and the fitted
parameters are extracted and plotted.

Figure 3.8 shows the basic outline of the MATLAB script used to process the data.
The user first enters experimental parameters specific to the sample data. This includes the
laser pulse duration, center wavelength, beam diameter, number of intensity points, and
ratio of beam splitter power. The text files are then read into the script and saved into a cell
so that they can be accessed using the intensity index. The detector dark counts are then
subtracted from the raw measured counts and the signals are normalized according to the
ED and MD collection times. After this, the data is represented in terms of the count rate in
“counts/s.” The data is then fitted according to the cosine- and sine-squared functions from
Eqs. (3.1) and (3.2) and the fitted parameters for the polarized and unpolarized components
are plotted as a function of input laser intensity. Least-squared polynomial fits of either
order 1 or order 2 are used to fit the extracted parameters. The generated plots are then
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exported in .eps format and can be easily compiled with a LATEX script to produce a .pdf of
all of the relevant results from any given experiment.

3.3 Samples

The three molecular liquids that were measured in earlier studies [2, 15] were H2O, C6H6,
and CCl4, whose structures are shown in Fig. 3.9. These materials were initially chosen
due to the fact that they were non-chiral, had no optical resonances near the laser probe
wavelength, and because their liquid nature prohibited any χ(2) response driven by EE or
EE∗ processes. CCl4 was a particularly good candidate in these initial studies because it
offered the further symmetry property of being a “spherical top” molecule with charge dis-
tributed equally about the central carbon atom. Spherical top molecules have no permanent
internal dipole that could potentially contribute to the measured signals and are isotropic.
A comparison performed by W. Fisher of the induced magnetic response in these three
molecular liquids showed that C6H6 provided the largest signal4. This result suggested that
molecules with delocalized π-electron orbitals might be good candidates for obtaining a
large magnetic response.

(a) Water (b) Benzene (c) Carbon tetrachloride

Figure 3.9: Molecular diagrams of the three liquids studied in the initial magnetic scattering
experiments.

4It was later uncovered that W. Fisher may have neglected to take into consideration detector saturation,
and so the experiment that compared the three liquids had to be redone.
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3.3.1 Liquid sample selection and handling

In view of these previous studies, the initial aim of this thesis work was to systemati-
cally vary the electronic and/or molecular structure in a series of transparent molecular
liquids in order to determine which physical characteristics provided the largest magnetic
response. Based on the previous work suggesting that benzene-like structures may provide
a good platform for this study, a series of this type of molecule was determined and tested.
This first series consisted of C6H6, C6H5NH2 (aniline), C6H5CN (benzonitrile), and C6D6

(deuterated benzene). The addition of aniline and benzonitrile was intended to provide a
push-pull comparison for the benzene, as the NH2 of the aniline pushed some of the charge
into the π-orbital while benzonitrile pulled some charge out of the π-orbital. However as
we will discuss in Chapter 4, the relevant variation between these molecular liquids is the
magnitude of the internal dipole. The comparison between benzene and deuterated benzene
allowed us to test for an isotope effect between regular and “heavy” benzene.

The experiments undertaken in the present work sought to explore additional tetrahedral
structures more systematically. As will be apparent in Chapter 4, these molecules offered a
better platform for comparing the induced magnetic effects since they had a fixed geometry,
unlike the benzene series. The first set to be studied consisted of CCl4, SiCl4 (silicon
tetrachloride), SiBr4 (silicon tetrabromide), and SnCl4 (tin tetrachloride) [40]. In the series
of

CCl4 −→ SiCl4 −→ SnCl4 ,

the moment of inertia increase from left to right and only the central atom is substituted
while the peripheral atoms are kept the same. A second comparison was made between the
set of molecules

SiCl4 −→ SiBr4 ,

for which the central atom is kept the same and the peripheral chlorine atoms are substituted
for the heavier bromide atoms with a greater number of electrons. A systematically-varied
series of molecules such as this provided a means to better understand which physical prop-
erties are relevant predictors for achieving high magnetic response. The molecules TiCl4
(titanium tetrachloride), GeCl4 (germanium tetrachloride), and GeBr4 (germanium tetra-
bromide) were not studied in this work, but would also be good candidates for testing the
importance of molecular structure. The tetrahedral structures become increasingly dan-
gerous to work with as the mass increases, so safe handling and storage procedures were

85



developed.
The liquid samples were sealed in quartz cuvettes purchased from Starna Cells with

either a push-cap lid (DLC-23-Q-10) or a screw-cap lid and septum (DLC-3-Q-10-ST-C).
The push cap cuvettes were used for the benzene series and the screw-cap cuvettes with the
septum were used for the more dangerous tetrahedral series. The cells had exterior dimen-
sions of 12.5 mm×12.5 mm×45 mm and inner dimensions of 10 mm×10 mm×45 mm,
providing a volume of 3.5 mL. All four sides of the cells were polished to a fine tolerance
to achieve surface smoothness across the face of each cell. Minimizing the surface rough-
ness was necessary in order to minimize light scattered from the air-glass and glass-sample
boundaries. A cleaning procedure was used to remove debris from inside the cuvette cells
before being filled with a sample. The procedure followed the steps shown below:

1. Fill the cuvette with a mixture consisting of 2-3 drops of Starna Cells cleaning deter-
gent and deionized water.

2. Cap and shake the cells vigorously for approximately 30 seconds.

3. Rinse the cells 2-3 times with deionized water.

4. Rinse the cells 2-3 times with acetone.

5. Rinse the cells 2-3 times with isopropyl alcohol (IPA).

6. Bake cells in oven at 181◦ F (boiling point of IPA) under vacuum to burn off contam-
inants.

7. Fill cells in nitrogen glovebox using a syringe5.

8. Cap cells and seal with parafilm wax.

The samples were then stored in the fume hood and in later experiments (when working
with highly-reactive tetrahedral structures) in a desiccator under vacuum. A glass ball jar
desiccator was used and was evacuated using a mechanical pump.

The outer walls of each cuvette were cleaned using lens tissue and photometric grade
methanol. Standard cleaning practice was used in which the tissue was folded several
times, held with a plastic hemostat, and wetted with a drop of photometric methanol. In
some cases when there was a lot of debris, several passes using the same lens tissue were
made. However only a single tissue per wipe was used for the last pass on each cell wall.

5In some cases for which the cleanliness of the sample container was suspect, the liquid was prefiltered
through double 0.2 µm millipore mesh filters as was done in previous experiments.
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A lab coat was worn when working with the tetrahedral series. The cells were handled
with nitrile gloves to avoid contaminating the surface with oils or dirt. Once the outside
of the cell was cleaned, it was placed in a machined sample holder inside the light-tight
detection box. The holder consisted of a square notch milled into a 1/2” thick piece of
aluminum which was sized to exactly fit the cell. A 3-dimensional translation stage as
well as goniometer mount were used to allow for alignments of the sample. The cell was
aligned first using the HeNe laser of the collection optics. This procedure consisted of first
translating the cell to be in the center of the beam and then adjusting the tilt and rotation
to align the back-reflected light. The probe beam was then used to finalize the alignment.
First the cell was translated so that the probe passed through the center of the cell and then
the tilt was used to align the back-reflected light. Both beams were then simultaneously
incident on the sample and alignment was double-checked.

3.3.2 Crystalline samples

Previous ME scattering experiments were performed in clear liquids, which are easier to
prepare for sensitive scattering experiments than solids6. However due both to safety and
practical purposes, working with solids is more desirable. Studies of the cubic crystal
Gd3Ga5O12 (gadolinium gallium garnet or cubic GGG) were therefore performed. This
is a rare earth garnet of the space group Ia3̄d (or point group Oh or m3̄m, depending on
notation). Most importantly, this crystal has cubic symmetry so that χ(2)-driven quadratic
nonlinearities of the type EE or EE∗ are forbidden. Hence any observed second-order
nonlinearities must be of a (new) unexpected type. Additionally, the composition of garnet
crystals can be varied widely while maintaining the same general formula as GGG.

The GGG crystal used in this study was polished on 4 of the 6 sides, allowing a choice
between two different entrance and exit faces in the horizontal scattering plane. The same
cleaning procedure described above was used to prepare samples, consisting of lens tissue
and photometric grade methanol. The dimensions of the sample were of the order 1 cm3,
which allowed for a large enough entrance face that the beam was not clipped by the edges
and a large enough exit/detection face so that the signal was not clipped by the edges. This
was important for reducing unwanted reflections of incident laser light into the detection
arm and thereby minimizing background light levels. Alignment of the probe and collection
beams were completed in the same way as described above for the liquid cuvette samples.

6This is because solid samples require precision cutting and polishing.
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CHAPTER 4

Experimental and Theoretical Results

In this chapter we present the main experimental and theoretical results of this thesis. We
first present results on light scattering in the forward direction through a crystalline solid to
show that no induced ellipticity is occurring as laser light interacts with the sample. These
results are recorded over an intensity regime consistent with those used for the scattering
measurements made at 90◦.

The second section is devoted to discussing the results of the magneto-electric scatter-
ing experiment described in Chapter 3. Experimental results are discussed for two classes
of systematically-varied molecular liquids as well as a solid cubic garnet crystal. The first
class of systematically-varied structures are of tetrahedral structure and consist of the liq-
uids CCl4, SiCl4, SiBr4, and SnCl4. The second class of systematically-varied structures are
π-delocalized electronic molecules, consisting of the liquids C6H6, C6H5NH2, C6H5CN,
and C6H6. Analysis of unpolarized scattering in these different samples in particular shows
that the moment of inertia plays an important role in predicting the magnitude of induced
magneto-electric response. Some conclusions are also drawn regarding the effect of large
internal dipole moments in the π-delocalized structures and their effect on enhancing the
scattered response. We then show the first results of strong magnetic dipole scattering in
the cubic garnet crystal GGG. Here the nonlinear magnetic scattering is shown to be of the
order of the electric scattering.

The results of the two different theoretical models that were developed in Chapter 2
are presented in the third section of this chapter. Here the magnitudes of the magneto-
electric nonlinear momentsm(ω), p(2ω), and p(0) are plotted as a function of either photon
number (i.e. laser intensity) or detuning (i.e. laser frequency). Of particular interest is the
predicted nonlinear magnetization, as this is the quantity being measured by the scattering
experiment. The atomic picture is shown to correctly predict three qualitative features
seen in the experiments: (1) transverse orientation of induced magnetization relative to
the propagation axis, (2) second-order dependence on input field, and (3) dependence on
the laser frequency ω. All three of these features are surprising because they contradict
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conventional nonlinear optics. The atomic picture does have a shortcoming because it
does not provide quantitative agreement with experimental scattering results. However,
the results of the molecular picture developed in Chapter 2 achieve quantitative agreement
between theory and experiment by taking into account the effects of magnetic torque on
molecular rotation. General summaries of the experimental and theoretical results and
their comparisons are left for discussion in Chapter 5.

4.1 Light scattering in the forward direction

A measurement was made in the forward direction to confirm that the samples used in the
scattering experiments did not permit any XPW generation or other forms of induced ellip-
ticity. XPW generation is a four-wave mixing process that takes place in media with large
χ(3) susceptibilities to generate a polarization that is third-order and is oriented perpendic-
ular to the linearly polarized input field [23, 24],

ω⊥ = ω‖ + ω‖ − ω‖ . (4.1)

To confirm that no induced ellipticity was taking place in the samples studied in this work,
two measurements were taken using the sample GGG. This sample was used because XPW
generation has been measured in crystalline solids with similar structure as GGG [23, 24].
The first experiment confirmed that the angular distribution of polarized light components
in the forward direction does not change as a result of passing through the crystal. The
second experiment verified that the intensity of light passed through the crystal increased
linearly with the intensity of the input beam. Both of these measurements were made in the
forward direction and light was detected using a Thor-Labs S401C thermal power meter
with a sensitivity of approximately 10 µW. The detection scheme for this measurement is
shown in Fig. 4.1.

Figure 4.1: Schematic for measuring light scattering in the forward direction. The input
polarization to the sample is linearly polarized with extinction of 105:1. A second polarizer
with a power meter is set to pass polarization along the horizontal axis to check for ellipse
rotation.

The first experiment was done as follows. A polarizer with an extinction of 105:1 was
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Figure 4.2: (a) Dependence of the transmitted intensity as a function of angle for linearly-
polarized light passing through a bulk cystal of GGG. The dashed curve shows the same but
with no GGG. (b) The transmitted power through GGG as a function of input intensity for
horizontal and vertical polarizations of light. Measurements were made after a horizontal
analyzer in both (a) and (b).

placed in the beam path directly after the sample (see Fig. 3.2) with its transmission axis
aligned horizontally. The λ/2-plate for controlling the polarization orientation was then
zeroed and rotated through 360◦ and power measurements were recorded over 10◦ incre-
ments. This measurement was performed first without any sample (to obtain a reference
curve) and then with the sample of GGG. The input intensity of light was 2× 108 W/cm2.
The results are shown in Fig. 4.2(a) and show no indication of induced ellipse rotation
or depolarization. In fact, both curves have a cosine-squared dependence on angle with
extinction into the noise floor of the detector. This angular dependence is what one would
expect if no ellipse rotation is present.

The second measurement was performed in a similar fashion. Again, a polarizer placed
after the sample with its transmission axis oriented horizontally was used. The λ/2-plate
before the sample was then set to rotate the field to be either horizontal (parallel to the
polarizer transmission axis) or vertical (perpendicular to the polarizer transmission axis)
while the input intensity was varied. The range of intensity points were chosen to be the
same as those used in the scattering experiments described in the following section. The
results of these measurements are shown in Fig. 4.2(b). The measurements show that
for horizontally-polarized input light, the measured power increases linearly with input
intensity while for the vertically-polarized light, there is no detectable signal. Again, these
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results are consistent with the conclusion that no induced ellipticity is taking place.
Furthermore, the 90◦ detection geometry and full λ/2-plate rotation used in the exper-

imental approach outlined in Chapter 3 allows us to directly determine if ellipse rotation
has occurred. For one, the rotation of input field through 360◦ allows for tracking of any
rotation in the measured signals. This would show up in the polar plots as off-axis rotations
or tilts in the dipole signals. More importantly, however, is the fact that XPW generation
cannot generate a complete 90◦ polarization rotation, which is the angle at which we are
measuring the magnetic signals. It will be shown in the following section that in some
samples (including GGG) we measure scattering amplitudes in the co- and cross-polarized
orientation of the analyzer that are comparable in amplitude and are aligned according to
the zeroed input field. The large scattering amplitudes and orthogonal orientation of the
measured signals relative to the linear Rayleigh scattering cannot be explained by ellipse
rotation.

4.2 Experimental scattering results

All data recorded in this section were obtained following the approach discussed in Chapter
3. The only laser used for measurements was the Clark-MXR CPA-2001 system with a
center wavelength of 775 nm and bandwidth of approximately 5 nm. Daily variations in
the pulse duration, laser power, and central wavelength were recorded and accounted for in
the analysis procedure. The same interference filter was used in all measurements with a 5
nm passband effectively centered at 775 nm1. All of the experimental results shown here
were recorded using the same thermo-electrically cooled PMT. Precautions were taken
to limit the amount of signal light reaching the detector to avoid saturating the device by
placing ND filters in the detection arm. The experimental geometry remained constant with
the same input pinhole size of 3.5 mm, the same solid angle pinhole size of 3.5 mm, and
the same 3× telescope before the sample cuvette. The angle made between the outermost
ray and the optical axis was 0.7◦, which provided extinction of out-of-plane scattering to
approximately 1 part in 104 (for details see Appendix C). There were variations in the
number of points collected per angular sweep as well as the type of neutral density filter
used before the PMT and the PMT count time. All of these parameters were taken into
account and normalized for in the analysis procedure.

The results presented in this section constitute only a subset of the experimental data
collected from the magneto-electric scattering experiment. The primary features of the in-

1Recall that the filter used was centered at 780 nm but affixing it to a mount at 14◦ effectively shifted the
center λ to 775 nm.
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duced magnetic response are best summarized by plotting the dependence of the polarized
and unpolarized components as a function of input laser intensity. As mentioned in Chapter
3, the measured response is fit using the formulæ,

IED = AED cos2 (θ + θ0) + hED and IMD = AMD sin2 (θ + θ0) + hMD , (4.2)

and the fitted parameters AED (AMD) and hED (hMD) constitute the polarized and unpo-
larized response for the electric (magnetic) scattering. The “Total Response” is the sum of
the polarized and unpolarized components. Plots showing the depolarization ratio

δED =
hED

AED + hED
and δMD =

hMD

AMD + hMD

, (4.3)

are also provided for several of the samples. These provide a mechanism for quantifying the
degree of depolarization. To avoid redundancy, plots showing the full angular dependence
of the magnetically or electrically scattered light are only provided for select samples. Plots
showing the relative amplitudes of the measured response for each systematically-varied set
of molecular liquids are provided.

We are primarily interested in analyzing and understanding electric and magnetic re-
sponse that has a nonlinear dependence on the input optical intensity. This is in accord
with the earlier experimental results, which showed strong magnetic scattering as a func-
tion of intensity. Our experimental results show nonlinear dependence for the polarized
magnetic response as well as nonlinear dependence of the unpolarized response for both

the electric and magnetic components. In all cases, the polarized electric response should
show a linear dependence, in accord with linear Rayleigh scattering. These features are ap-
parent in most of the plots shown below. The plots showing comparisons of these nonlinear
effects allow us to confirm the role of moment of inertia and the importance of molecular
rotations for enhancing these moments.

4.2.1 Scattering in tetrahedral molecules

Here we present data on magnetic scattering in the tetrahedral structures CCl4, SiCl4, SiBr4,
and SnCl4. Results are first shown for CCl4, which was the first material shown to exhibit
a strong nonlinear magnetic response [1, 2]. Aside from repeating the initial observations,
we also observe nonlinear dependence on the unpolarized response for both electric and
magnetic signals. The sample of SiCl4 shows only a slight nonlinear dependence in the
unpolarized magnetic signal and the results shown here represent only initial measurements
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which ought to be repeated. SiBr4 shows the same qualitative features as CCl4 and SnCl4
shows no apparent quadratic magnetic dependence, but does show nonlinear dependence
on the unpolarized electric scattering. A comparison is then made between the unpolarized
nonlinear electric response in CCl4, SiBr4, and SnCl4 and we determine that the heavier
molecules appear to exhibit a larger magneto-electric response at lower input intensities.

4.2.1.1 Scattering in CCl4
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Figure 4.3: Polar plot showing electric (red open circles) and magnetic (blue closed circles)
scattering intensities in CCl4 at I = 3.3× 108 W/cm2. Solid lines represent best fit lines to
the data. The dotted red line represents the (small) unpolarized center in the ED scattering.

It was crucial to first repeat the measurements done by earlier researchers using the
sample CCl4 before beginning new experiments. This provided a consistent baseline for
measurement and experimentation. Figure 4.3 shows one set of measurements recorded for
CCl4 at an input intensity of I = 3.3×108 W/cm2. The count interval was the same for both
parallel and perpendicular orientations of the analyzer at 8 s per interval over 4 periods.
Here the red open circles (blue filled circles) represent the electric (magnetic) scattering
amplitudes. Figure 4.4(a) shows a blown-up view of the magnetic scattering amplitude.
The solid curves in both plots represent the fitted cosine-squared (or sine-squared) functions
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to the raw, normalized data. The unpolarized centers are denoted by the dotted lines. In Fig.
4.4(b) the fitted unpolarized waist has been removed from the magnetic data to show only
the polarized component. It is apparent that both sets of data follow the fitted curves quite
well. This fitting is especially good considering the low count rate of the magnetically-
scattered light, which has an amplitude of no more than 15 counts/s. This number is very
close to the detector background noise of 3-4 counts/s. Better averaging can be achieved
by counting photons for longer intervals or allowing more signal light to reach the PMT for
the case of the magnetic scattering.
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Figure 4.4: The magnetic scattering intensities in liquid CCl4 from Fig. 4.3 blown up
to show the orthogonal orientation relative to the the ED scattering. (a) Shows the total
magnetic scattering with the dotted line representing the unpolarized magnetic component.
In (b) the unpolarized component has been subtracted to show just the polarized component.

A measurement was also done to show the dependence of the electric and magnetic
scattering amplitudes as a function of input intensity. The dependence of the polarized and
unpolarized components are shown in Fig. 4.5. This data is different from the one shown
in Figs. 4.3 and 4.4. Here the ED collection time was 2 s and the MD collection time was
12 s2 over 4 periods. In Fig. 4.5(a) the magnetic signal has a quadratic dependence but
has been multiplied by a numerical factor of 10 so it may appear on the same axes as the
electric signal. In the same plot, the electrically-scattered light is shown to grow linearly
with intensity before beginning to saturate around 850 counts/s. This linear dependence is
expected and represents elastic Rayleigh scattering. The solid curves through both sets of

2The PMT cannot count for intervals of more than one significant digit, so entering 12 s was rounded to
10 s and a multiplicative correction factor of 6/5 then was used to correct the MD data.
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Figure 4.5: The (a) polarized and (b) unpolarized components of electrically- and
magnetically-scattered light in liquid sample CCl4. In (a) the magnetic signal is multi-
plied by a numerical factor of 10 so that it appears on the same set of axes as the electric
signal. The polarized ED data is partly saturated above 1.2 × 108 W/cm2 so these points
are not included in the fit.

data represent least-squared polynomial fits with a zero-intercept. The saturated points are
not included in the linear fit to the electric signal.

The dependence of the unpolarized signals for the electric and magnetic scattering are
shown in Fig. 4.5(b). These curves are fit using polynomials of order 2. It is evident that
both curves have a quadratic dependence on the input field intensity. No numerical factor
has been used to make the electric and magnetic signals appear on the same scale. This is
the first known observation of nonlinear unpolarized scattering in both parallel and perpen-
dicular orientations of the analyzer. This result suggests that a second nonlinear mechanism
may be present. This may be attributed to a completely resonant, slightly inelastic transi-
tion driven by a quadratic magneto-electric mechanism as we discuss later in Chapter 5.
The depolarization ratios δED and δMD for this same set of data are shown in Fig. 4.6.
Both curves are fit using a linear polynomial and for the magnetic signal the first 3 points
were not included in the curve fitting. These points represent measured signals that were
too far into the noise of the PMT. The slope of the electric depolarization is more pro-
nounced than the magnetic, which is not surprising since the unpolarized electric response
has a higher-degree of nonlinearity as shown in Fig. 4.5(b).
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Figure 4.6: Depolarization ratios δED and δMD for molecular liquid CCl4. The solid curves
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the magnetic fit to the data.
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4.2.1.2 Scattering in SiCl4

Silicon is the next element below carbon in the periodic table, so naturally the next liquid
to compare to CCl4 is SiCl4. This sample was particularly difficult to work with since for
some reason it was difficult to keep the outer walls of the cuvette clean. Cleanliness of the
outer walls is important because any surface blemishes or changes in refractive index will
greatly increase the amount of spurious scattered light in the box. Regardless of the number
of times a lens tissue with methanol was used to clear away debris or oil, there appeared
to always be streaks on the outer walls of the cuvette. This problem was noticed this with
SnCl4 too, but a concerted effort proved to be adequate to avoid leaving streaks.

It is important to exercise caution when working with these CCl4 isomorphs, since they
become increasingly dangerous to work with as we move down the periodic table. The
major health hazards of this molecule include respiratory track burns, skin burns, eye burns,
and mucous membrane burns. For these reasons, it is recommended to avoid handling the
samples more than absolutely necessary even if this necessitates making measurements
with slightly dirty outer cell walls.
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Figure 4.7: The total measured magnetic response in molecular liquid SiCl4 as a function
of laser intensity. The solid curve represents a linear fit to the experimental data.

The results of the measured magnetic response are shown in Fig. 4.7 for SiCl4 with
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a linear polynomial fit represented by the solid line. There is no corresponding electric
response to show since during this run the scattering intensity was much greater than an-
ticipated and the electric signal saturated the PMT. The count time for the magnetic signal
was 8 seconds and 4 periods were used. The total magnetic signal appears to be linear with
intensity, but Fig. 4.8 shows the polarized and unpolarized components of this response.
From Fig. 4.8(b), it is apparent that the unpolarized response has a slightly nonlinear de-
pendence on intensity, while in Fig. 4.8(a) the polarized response is linear versus intensity
within experimental error. More experimentation should be done to examine this sample
further, but these results are included here to show that the nonlinear unpolarized response,
is consistent with the results of the CCl4 scattering.
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Figure 4.8: The (a) polarized and (b) unpolarized magnetic scattering intensities as a func-
tion of laser intensity for the liquid sample SiCl4. The polarized component is seen to grow
linearly while the unpolarized component has a slight nonlinear dependence on intensity.
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4.2.1.3 Scattering in SiBr4

Next in line to study for the CCl4 isomorphs is SiBr4 which is slightly heavier than SiCl4,
since Br is the next element below Cl in the periodic table. The measurements shown here
used 8 second count intervals for both the ED and MD data and 4 periods of the PMT were
used. The measured total response for electric and magnetic signals is shown in Fig. 4.9 as
a function of intensity. Here the magnetic signal is multiplied by a numerical factor of 5 so
that it appears on the same vertical axis as the electric signal. The electric dipole data has
been fitted with a linear function and the magnetic data has been fitted with a second-order
polynomial. The linear behavior of the electric signal is consistent with elastic Rayleigh
scattering and the quadratic magnetic response is consistent with a nonlinear optical process
having a quadratic dependence on the incident field.
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Figure 4.9: The total measured signal in SiBr4 for electric and magnetic orientations of the
analyzer. The electric response follows a linear fit while the magnetic response is quadratic.

In Fig. 4.10 the polarized and unpolarized components are plotted separately as a func-
tion of intensity for both electric and magnetic signals. In Fig. 4.10(a) the polarized electric
response is linear as anticipated and the magnetic response is quadratic. The magnetic re-
sponse is again multiplied by a numerical factor of 5 so it appears on the same axes as
the electric signal. In Fig. 4.10(b) the unpolarized response for both electric and magnetic
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signals is shown to have a quadratic dependence on intensity. In this case, no factors were
used to scale the magnetic signal. The fact that the electric unpolarized response is so small
compared to the polarized response accounts for why the leading behavior of the electric
signal is predominantly linear.
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Figure 4.10: The (a) polarized and (b) unpolarized response for the electric and magnetic
scattering intensities in liquid sample SiBr4. The polarized electric response is linear while
the polarized magnetic response is nonlinear, as are the unpolarized responses for both
electric and magnetic signals.

The quadratic nature of the polarized magnetic response in SiBr4 is more apparent in
Fig. 4.11, which shows the same measurement done in the previous plots except the input
intensity range was increased by about a factor of 2. The measurement of the electric re-
sponse was not included in this plot since the intensity of Rayleigh scattering was sufficient
to saturate the PMT.
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Figure 4.11: Plot showing the quadratic response of the polarized component of the
magnetically-scattered light in liquid sample SiBr4.
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4.2.1.4 Scattering in SnCl4

The primary results of the magnetic scattering measurements in SnCl4 are provided in Fig.
4.12. The electric and magnetic count intervals were both set at 8 s and measurements were
done for 4 periods of the PMT. Figure 4.12(a) shows that both the electric and magnetic
response increased linearly with intensity. In Fig. 4.12(b) the unpolarized electric response
is quadratic with respect to input intensity while the magnetic response is predominantly
linear. This suggests that any nonlinear magnetic response may have saturated while the
nonlinear mechanism responsible for the unpolarized electric response is still at work. Fur-
ther experiments are needed to explore this sample in more depth.
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Figure 4.12: The (a) polarized and (b) unpolarized response for the electric and magnetic
scattering intensities in liquid sample SnCl4. There is no apparent nonlinear magnetic
response but the unpolarized electric response is quadratic.
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4.2.1.5 Comparative analysis in tetrahedral liquids

Each of the samples described above displays at least a small nonlinear component in its
response, so naturally it is useful to make a comparative analysis of these measured quanti-
ties. This will allow us to draw some conclusions regarding the relevant molecular proper-
ties responsible for enhancing the measured moments. Due to the issues with cleaning the
SiCl4 cuvette, this sample will not be included in the comparative analysis. Instead, we see
that there is a clear quadratic dependence of the unpolarized electric signal in the samples
of CCl4, SiBr4, and SnCl4. We focus our comparative analysis on the unpolarized response
of these three samples.
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Figure 4.13: Comparison of quadratic unpolarized electric response in CCl4, SiBr4, and
SnCl4 as a function of input intensity. The steepest slope is for SnCl4 and the shallowest
slope is for CCl4, suggesting that moment of inertia plays a role in the magnitude of the
measured response.

Figure 4.13 shows the measured unpolarized electric scattering for the three samples
CCl4, SiBr4, and SnCl4 as a function of input intensity. Due to limitations of the detector,
we are restricted to stitching together data collected over several ranges of the input inten-
sity range. Therefore the largest range shown here is for scattering in CCl4, while smaller
plot ranges are depicted by the red and blue dashed curves in the lower left corner of the
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plot. These dashed areas are blown up in Fig. 4.14 to show the curves for SiBr4 and SnCl4
more clearly. Although only small ranges were taken for these samples, it is clear that
SnCl4 has the steepest slope and therefore largest response, while CCl4 has the shallowest
slope and therefore weakest response.
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Figure 4.14: Expanded plot windows of Fig. 4.13 for (a) the red dashed box and (b) the
blue dashed box.

These features can be seen more clearly in a log-log plot of the measured response as
is shown in Fig. 4.15. It is clear that the SnCl4 sample requires a lower input intensity than
the other samples to reach a given arbitrary count rate. For example, CCl4 requires nearly
an order of magnitude higher intensity to reach the same count rate. This result is consistent
with the idea that the moment of inertia plays an important role in predicting the magnitude
of the induced ME phenomena. As we will discuss in Chapter 5, a higher moment of
inertia means a lower rotational frequency, which leads to enhancement of the nonlinear
magnetic response. Table 4.1 provides values of the rotational frequencies measured by
Raman spectroscopy following the work of Ref. [41]. The rotational frequency is lowest
for SnCl4 and highest for CCl4 which is consistent with the results of Fig. 4.15.

Molecule Mass (g/mol) Rot. Freq. (cm−1) B (poise−1)
CCl4 153.82 775 13.4
SiCl4 169.90 625 12.6
SiBr4 347.47 525 5.5
SnCl4 260.50 367 9.0

Table 4.1: Table showing physical values relevant to tetrahedral structures.
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The enhancement mechanism for large magnetic response is not limited to the rotational
frequency. The damping, or viscosity, of the molecular liquid should also be considered.
This is because the magnetic response should have inverse proportionality with respect to
both the rotational frequency and the damping, as

m(ω) ∝ 1

∆2 + Γ2
, (4.4)

where ∆ represents the rotational frequency and Γ is a damping term. Hildebrand and
Lamoreaux provide several tables of damping parameters in their paper Fluidity: A General

Theory [42]. The relevant damping parameter provided in their work is given as B in units
of inverse “poise,” which is a unit of viscosity. These values are also tabulated in Tab.
4.1. The damping in CCl4 is largest, while the damping in SiBr4 is lowest. There is an
apparent correlation between the mass of the molecule and the damping. It is worth noting
that, although both damping and rotational frequency appear as resonant denominators, the
dominant factor in causing enhancement is the rotational frequency.
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Figure 4.15: Log-log plot showing the amplitudes of the unpolarized electric scattering as
a function of intensity in the liquid samples CCl4, SiBr4, and SnCl4. Solid curves repre-
sent fits to second-order polynomials. The response in SnCl4 is much higher than CCl4,
which suggests that molecules with a larger moment of inertia will more readily display
this quadratic nonlinearity.
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4.2.2 Scattering in molecules with delocalized π-electron orbitals

Here we present the first comparative analysis of several molecular liquids with π-delocalized
electronic orbitals. These measurements included C6H6 (benzene), C6H5NH2 (aniline),
C6H5CN (benzonitrile), and C6H6 (deuterated benzene).
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(d) Deuterated benzene

Figure 4.16: Experimental intensity patterns for delocalized π-electronic benzene struc-
tures at I = 1.9 × 108 W/cm2. The red open circles (blue filled circles) represent electric
(magnetic) dipole response. The unpolarized centers have not been subtracted, and there is
no apparent polar response for any of the magnetic scattering.

The benzene and deuterated benzene only differ by having the outer hydrogen atoms
of the benzene ring be replaced by deuterium atoms (heavy hydrogen). Because only the
mass was changed while the structure remained the same, this provided a means to draw
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some conclusions regarding the role of moment of inertia in the magnitude of the scattering
intensities. Comparison of benzene with aniline and benzonitrile was intended to evaluate
the importance of charge density inside the benzene ring in determining the ME response.
The substitution of NH2 in aniline pushed extra charge into the electron cloud, while the
substitution of CN in benzonitrile pulled some of the charge out of the electron cloud. All
measurements shown here are for an ED collection time of 5 s and MD collection time of
10 s with 4 periods.
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Figure 4.17: Experimental plots showing (a) the total electric response and (b) the unpolar-
ized electric response in C6H6 (benzene), C6H5NH2 (aniline), C6H5CN (benzonitrile), and
C6H6 (deuterated benzene) as shown in the plot legends. The solid curves represent linear
fits in (a) and quadratic fits in (b). The plot axes limit the response in benzonitrile because
it was high and saturated the detector.

Experimental plots of the measured intensity patterns of the electric and magnetic re-
sponse for the four benzene structures are shown in Fig. 4.16 at an input intensity of
I = 1.9×108 W/cm2. The red open circles (blue filled circles) represent electric (magnetic)
scattering amplitudes and the solid curves represent best fit lines according to Eq. (4.2).
A striking feature of these plots is that there is no apparent polarized magnetic response
in any of the data shown here. This may indicate that the intensity regime for measuring
quadratic magnetic response is different from the range of intensities used here, or that the
unpolarized electric response overwhelms any polarized magnetic response because a dif-
ferent mechanism is at work here. It is also apparent that the unpolarized electric response
shown in these plots is much greater than was found in the tetrahedral molecules. The ra-
tio of unpolarized to polarized electric response is lowest in benzene (∼25%) and largest
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in benzonitrile (∼70%). The unpolarized components of aniline, benzene, and deuterated
benzene are closely grouped.

Figure 4.18: The anisotropy of a benzene ring leads to two different molecular polarizabil-
ities and hence large depolarization.

Plots showing the measured dependence of the total electric signal and the unpolarized
electric signal in the four benzene structures are shown in Fig. 4.17. This is from the same
set of data shown in Fig. 4.16. No comparative analysis was done for the magnetic scat-
tering since no polarized MD component was observed experimentally and the measured
unpolarized waist was equal to the electric unpolarized waist. The total response was fitted
using a polynomial of degree one and the unpolarized response was fitted using a polyno-
mial of degree two. The response from benzonitrile was much larger than the other samples
and caused saturation of the PMT above ∼ 1.5 × 108 W/cm2, so the intensity range in the
plots of Fig. 4.17 is limited to showing only unsaturated points. The curves through the
benzonitrile data are just guides to the eye through the lowest intensity points. Not much
can be concluded from the total electric response in Fig. 4.17(a) since the three curves
from benzene, aniline, and deuterated benzene nearly overlap. However it is possible to
draw some conclusions from the curves shown in Fig. 4.17(b).

We can see that deuterated benzene has a larger response than regular benzene, which
is a confirmation that the moment of inertia plays a role in scattering, where rotations cause
depolarization; C6D6 has a higher moment of inertia than C6H6. The average difference
between the curves for benzene and heavy benzene can be calculated by taking the ratio
of scattering intensities at each individual intensity point and then averaging over them.
Ignoring the first set of points that are within the detector noise, this average gives 0.8396,
or about 16%. This can be compared to the ratio of measured moments of inertia in the
same two molecules from Ref. [43], as shown in Tab. 4.2,
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R =
ωϕ,C6H6

ωϕ,C6D6

=
147.59× 10−40 g·cm2

178.45× 10−40 g·cm2
= 0.8271 , (4.5)

which is about 17%. Because these two numbers are in agreement with each other (within
experimental uncertainty), this confirms that the moment of inertia is responsible for the
response we are seeing. A larger moment of inertia corresponds to a lower rotational fre-
quency through the relation ωϕ = ~/I . Hence it takes less energy to initiate rotations of
C6D6 than C6H6.

Molecule Molar mass (g/mol) Moment of inertia (g·cm2)
C6H6 78.11 (147.59± 0.04)× 10−40

C6D6 84.19 (178.45± 0.09)× 10−40

Table 4.2: Table showing physical values relevant to benzene structures.

In molecules with anisotropy or permanent internal dipole moments, the electric field
will readily induce rotations through a third-order, all-electric torque mechanism [7]. This
differs from the second-order, electro-magnetic torque mechanism developed in Chapter
2. These two mechanisms are competing effects and the data from Figs. 4.16 and 4.17
suggest that for benzene structures the electric-torque effect overwhelms any magnetic-
torque effect. This is due primarily to the anisotropy of the molecule, as there is no evidence
of this effect in the tetrahedral structures where the electric-torque interaction cannot occur.
This is obvious when we consider the polarizability of the benzene structures. Due to the
distribution of charge in the π-delocalized orbitals, the induced polarizability along the
plane of the structure p‖ and normal to the plane p⊥ will differ, as depicted in Fig. 4.18.
This leads to huge depolarization and masking of any quadratic ME signal.

A comparison may also be made between benzene, aniline, and benzonitrile using Fig.
4.17(b). As mentioned above, the difference between these molecular liquids is the amount
of charge centered on the benzene ring. One might naı̈vely suspect that when more charge
is removed from the π-delocalized electron cloud (as in the case of benzonitrile), then the
measured response would decrease, while at the same time, when more charge is introduced
to the electron could (as in the case of aniline), then the measured response would increase.
The prediction would then be that aniline would have the largest response, followed by
benzene, and then finally benzonitrile. This is consistent with the idea that a denser electron
cloud would be more susceptible to induced magneto-electric effects. However, we see
instead (as is apparent in Fig. 4.17(b)) that benzonitrile has the largest response, followed
by aniline, and then benzene.

It may not be initially obvious, but this is precisely the behavior that one would expect
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for these three molecular liquids. As we described above, there is no measurable ME in-
teraction taking place in this series of molecules and instead the response is overwhelmed
by the all-electric torque mechanism. Since this mechanism relies on inducing rotations
by virtue of acting on an internal dipole moment, the measured response will be largest in
the molecule that has the greatest internal dipole moment. The effect of pushing charge
into the π-delocalized orbital as in aniline or taking charge out as in benzonitrile will ef-
fectively increase the ratio of p‖/p⊥. The molecules ordered by increasing dipole moment
are then benzene, aniline, and benzonitrile, which is exactly the trend shown in Fig. 4.17.
A proper study of the dependence on the electron density will require benzene structures
with symmetrically-substituted molecules so that no extra dipole moment is created.

The depolarization ratios for the four benzene derivatives are shown in Fig. 4.19. Fits
to the magnetic data were constant lines and fits to the electric data were polynomials of
order one. For each molecule the magnetic depolarization ratio is close to unity, indicating
complete lack of observable polarized magnetic response, as seen in Fig. 4.16. The electric
depolarization curves all have a positive linear slope, which indicates that the degree of
depolarization is larger for higher input intensities. The same features that were discussed
above are also apparent from these curves. We see that benzonitrile has the largest depo-
larized response, followed by aniline, and then benzene and deuterated benzene. It seems
clear that the magnitude of the internal static dipole moment determines the effectiveness
of electron torque-mediated depolarization in symmetric molecules like benzonitrile. This
is in close agreement with previous experiments and theory on benzene derivatives [44].
On the other hand, the results of this chapter show that in spherical top molecules, depolar-
ization takes place by a different mechanism, since electric torque interactions are absent.
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Figure 4.19: The measured depolarization ratios for π-delocalized benzene structures. δMD

is close to unity in each sample which indicates lack of a polarized MD component, while
δED in each sample is linear which indicates nonlinear unpolarized response.
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4.2.3 Scattering in cubic solids

During the course of this research, the first observations were made of strong magnetic
dipole scattering in the solid cubic garnet crystal GGG. The sample used had dimensions
of approximately 1.5 cm × 1 cm × 1 cm and was polished on four of the six sides: the two
1 cm × 1 cm faces were polished and two of the 1.5 cm × 1 cm sides were polished. The
incident beam was directed through the 1 cm × 1 cm face and traversed the full length of
the crystal before exiting to a beam dump. The same techniques were used as described in
Chapter 3 in which the intensity of the scattered light was mapped out for the analyzer in the
vertical and horizontal positions over a range of input optical intensities. These curves were
fit according to cosine-squared functions and the fitted parameters for the polarized and
unpolarized components were extracted and plotted as a function of input optical intensity.
The ED and MD collection times were both 10 s and 4 periods were used.
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Figure 4.20: Dipole plots showing the measured electric (red open circles) and magnetic
(blue filled circles) scattering intensities in the solid sample GGG at intensity I = 108

W/cm2. (a) Shows the total signal (polarized + unpolarized) and (b) shows only the polar-
ized component.

Figure 4.20 shows the measured dipole patterns for the electric and magnetic scattered
light at I = 108 W/cm2. The total signal, consisting of both the polarized and unpolar-
ized components, is shown in Fig. 4.20(a), while Fig. 4.20(b) shows only the polarized
components. The red open circles (blue filled circles) represent measured scattering am-
plitudes of the induced electric (magnetic) dipole moments. The solid curves represent
least-squared fits to the data according to Eq. (4.2). Both electric and magnetic signals fit
the cosine-squared patterns to a high-degree, indicating the precise dipolar nature of the
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Figure 4.21: (a) Polarized + unpolarized and (b) polarized scattering intensities as a func-
tion of input optical intensity in solid garnet crystal GGG. Red circles represent electric
scattering and blue triangles represent magnetic scattering.

signals. Surprisingly, the total magnetic and electric signals have a comparable amplitude
as is evident in Fig. 4.20(a). Even with the removal of the unpolarized center, the ratio of
the magnetic to electric signal strength is still much larger than the α2 = 1/1372 expected
from classical electrodynamics [12]. It is also evident that the unpolarized response for
both electric and magnetic components is quite large.

The dependence of the amplitudes of the electric and magnetic scattering intensities on
the input optical intensity are shown in Fig. 4.21. The total signal consisting of the po-
larized + unpolarized response is given in Fig. 4.21(a) while just the polarized component
is shown in Fig. 4.21(b). The electric (magnetic) data was fit according to a least-squared
polynomial of order one (two), indicated by the solid red (blue) curves. In both cases, the
electric component has a linear dependence on optical intensity, which is not surprising
due to the fact that this is linear Rayleigh scattering. The magnetic signal has an apparent
quadratic dependence on intensity, which is evident in both plots. This result is in accord
with the theoretical predictions of a second-order magneto-electric magnetization.

In Fig. 4.22 the unpolarized response for both the electric and magnetic signals is shown
as a function of optical intensity. As expected, both signals are nonlinear. This result is in
agreement with the scattering results obtained in experiments on tetrahedral molecules and
will be discussed in further detail in Chapter 5.
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Figure 4.22: The unpolarized electric and magnetic scattering intensities as a function of
input optical intensity for the cubic garnet crystal GGG. Solid curves represent second-
order polynomial fits.
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4.3 Theoretical results

The fundamental results of the two dressed state theoretical models are best summarized by
plotting the dependence of the induced electric and magnetic moments on photon number n
and frequency ω. The photon number is linearly proportional to the field intensity, so these
plots provide a mechanism to easily determine the order to which the dipole moments
depend on the optical field. The plots showing the dependence on the frequency ω (and
in the molecular model ωϕ as well) allow us to confirm the detuning behavior for the 1-
and 2-photon transitions. As per the discussion in Chapter 2, the moments may either be
analyzed in terms of their individual dressed state components i, or as the net incoherent
sum over all dressed state terms. Here we will show the intensity dependence for both
cases, as it allows one to see more transparently which transitions are primarily responsible
for the net induced effects.

Another set of useful variables to plot are the individual dressed state coefficients for
each index (ai, bi, ci, and di for the atomic case or just ai, bi, and ci for the molecular case).
Showing these moments as a function of n allows us to essentially measure the effect
of turning on the interaction potential: as n becomes larger, the interaction is essentially
stronger and the populations of the dressed state coefficients begin to change. These plots
are also a confirmation that the ordering was done correctly in the numerical code. For
example, we know that dressed state index i = 1 should correspond to the bare state |1〉, so
a plot of a1, b1, c1, and (in the case only of the atomic model) d1 should show a1 = 1 for
n = 0 and all other coefficients starting at 0 before the interaction is turned on. These plots
are perhaps the most straightforward way of predicting the end behavior of the induced
moments.

Hence, in the following two subsections we show plots of the intensity dependence
on the dressed state coefficients and the induced electric and magnetic moments, as well
as plots of the detuning behavior. We do this first for the atomic model and then for the
molecular model. Both models are able to correctly predict the qualitative features as
measured in the scattering experiments, but only in the molecular model when a mechanism
for enhancement is introduced can we predict quantitative agreement as well. The predicted
magnetic response has the following four characteristics which agree with experimental
results: (1) transverse orientation, (2) quadratic dependence on field, (3) oscillation at the
laser fundamental frequency, and (4) amplitude equal or comparable to induced electric
dipole effects. Points (1) and (3) are apparent from the derivations of Chapter 2, while
points (2) and (4) are shown in the following plots.
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4.3.1 Excited state atomic model

For the simulations shown in this subsection, atomic hydrogen was used to obtain the nu-
merical values µ(e)

` = ea0
√

2 (243/128) and µ(m)
` = (e~/2me)(1/

√
2). Here the atomic

detuning is specified by the first Lyman transition to be ω0 = 15.5 × 1015 s−1. The in-
teraction strengths were specified to be g = 109 s1/2 and f = (µ

(m)
` /cµ

(e)
` )g, where g is

calculated from Eq. (2.9) and V = 10−16 is the mode volume. The detuning from 1- or
2-photon resonances is specified for each plot and all other physical constants are taken in
SI units.
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Figure 4.23: Dependence of dressed state coefficient populations on n for individual
dressed state indices in the atomic model. Here ω/ω0 = 0.9.

The dressed state coefficient amplitudes |ai|2, |bi|2, |ci|2, and |di|2 are shown in Fig.
4.23 for each individual dressed state index. For instance, Fig. 4.23(a) shows the depen-
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dence of the coefficient amplitudes for i = 1, which corresponds to the bare state |1〉. As
one would expect, |a1|2 = 1 for n = 0 and only once the interaction is increased does the
population begin to transfer to the other states. One can see that most of the population
transfer goes to the coefficient b1, while very little population is transferred to coefficients
c1 or d1. This is not surprising in light of the fact that the populations |c1|2 and |d1|2 depend
on the coupling from state |2〉 via the weak magnetic interaction (i.e. f � g).
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Figure 4.24: Log-log plots of the absolute magnitudes of induced electric and magnetic
moments as a function of photon number in the atomic dressed-state picture. The magnetic
moments were divided by a factor of the speed of light to make the units for all dipole
moments C·m. The detuning was fixed at ω/ω0 = 0.9.

The same behavior is seen for i = 2 except states |1〉 and |2〉 flip-flop. For indices 3
and 4, the population remains mostly in the initial state since the transfer to the adjacent
states is mediated by the weak magnetic coupling. One may conclude just by looking
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at these plots that induced dipole moments which terminate in states coupled to by the
magnetic interaction will be quite weak. We can see this most directly by plotting the
induced moments as a function of intensity.

From Chapter 2 we have several electric and magnetic moments which arise as a result
of the magnetic interaction term in the Hamiltonian for ω/ω0 = 0.9. Recall that these
include the electric moments 〈p(1)ii (ω)〉, 〈p(2)ii (0)〉, and 〈p(2)ii (2ω)〉 as well as two individual
magnetic moments whose sum gave 〈m(2)

ii (ω)〉. Plots of these moments are shown in Fig.
4.24 for each dressed state index. Computational precision errors are responsible for the
erratic behavior seen in some of the curves. For indices 1 and 2, the electric moment
shown by the black curve is in complete agreement with the linear electric moment from
the 2-level system. These plots also show that the sum- and difference-frequency electric
moments are both quadratic in the input field, while the magnetic moment is quadratic only
for i = 2. The magnetization for i = 1 is fourth-order in the optical interaction, which
means that this term requires a higher number of successive field couplings to reach its
terminal state.
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Figure 4.25: Log-log plot of the incoherent sum of induced electric and magnetic dipole
moments in the atomic picture. (a) A detuning of ω/ω0 = 0.9 was used, while (b) shows
enhancement of the second-harmonic effect and magnetization for the near-resonant 2-
photon detuning of ω/ω0 = 0.49999 (i.e. ∆31 ≈ 0).

The moments for indices 3 and 4 simply reflect additional higher-order contributions
to the overall induced moments. These higher-order effects simply arise by virtue of the
fact that the dressed state formalism includes dynamics originating from states other than
the unperturbed ground state. It should be noted that as the driving field is tuned above the
resonance condition (i.e. when ω > ω0), the behavior of the moments for indices 1 and
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2 flip character. This is because of the anti-crossing and exchange of character of levels
|D1(n)〉 and |D2(n)〉. From these individual plots, we conclude that the magneto-electric
moments are each of quadratic character to lowest-order.

It is more instructive to consider the incoherent sum over the dressed state index as a
predictor of the measurable behavior from this model. A plot showing the net magnitudes
for each of the dipole moments is shown in Fig. 4.25(a) for ω/ω0 = 0.9. Here we see that
the leading behavior of each of the magneto-electric moments is in fact second-order in the
optical field. It is useful to point out that the curves p(0) and p(2ω) differ by a numerical
factor of 2 which comes from the additional inner-state coupling when the 0-frequency
moment is evaluated. A 2-photon resonance which peaks at the condition ∆31 = 0 is
apparent in both p(2ω) and m(ω), as is shown in Figure 4.25(b). This is because these
effects are mediated by the coupling of states |1〉 and |3〉. Here the input frequency was
set to ω/ω0 = 0.49999. The 2-photon resonance for the rectification moment relies on
the detuning ∆41 ≡ ω0, which cannot be shown by the results of this model. A 2-photon
enhancement for the p(0) moment is apparent in the molecular model, as will be described
shortly.
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Figure 4.26: The resonant behavior for the dipole moments from the atomic model. The
rightmost dashed curve is for the 1-photon resonance condition ω = ω0 and the leftmost
curve is for the 2-photon resonance condition ω = ω0/2. Here n = 1012.

The dependence on frequency detuning for the four moments of from this model are
shown in Fig. 4.26. Here the photon number was taken to be n = 1012 and ω was allowed
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to vary over the range of approximately 0.1ω0 to 10ω0. Such a large input intensity was
considered here so the detunings were more pronounced; a lower photon number means the
interaction is effectively less intense and so the magnetically-driven resonant structures will
not be as apparent. The grey dashed curves represent the conditions for 1- and 2-photon
detunings. All four moments exhibit the 1-photon resonance condition when ω = ω0

(rightmost grey curve). The second-harmonic also has an obvious resonance for the 2-
photon resonance condition ω = ω0/2 (leftmost grey curve). The magnetization also has a
dependence on this detuning, which comes from the magnetization on the upper transition.
This upper magnetic response is mediated by the aic∗i coherence.
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Figure 4.27: Comparison between classical and quantum models of the 0-frequency rectifi-
cation moment. Due to normalization, the classical model has a physical limitation to how
large it can grow.

It is also apparent from the figures showing the dependence of the induced ME moments
on photon number that there is a physical limit to their magnitudes. This is due to the
normalization that occurs when the matrix is diagonalized: the predicted moments each
depend on a coherence product of two or more dressed state coefficients, all of which may
at most be unity. This puts a physical limit to the size of the predicted effects, which is a
shortcoming of the classical approach described in Chapter 1. In the classical model there
is no mechanism for regulating the predicted response in the rectification term, so this can

120



be infinitely large. A comparison between the quantum and classical models is shown in
Fig. 4.27.

The fact that all three types of nonlinear moment display the same inverse proportion-
ality to the 1-photon detuning as the linear moment reflects the fact that these moments
all require the first-order electric coupling of states |1〉 and |2〉 prior to any magnetic cou-
pling. Combined with the fact that to lowest-order the nonlinear moments are quadratic
in the field, this result confirms that the moments are in fact initiated by the joint action
of sequential electric and then magnetic couplings. Regardless of the initial symmetry
of the system, the inclusion of the magnetic coupling term in the Hamiltonian effectively
breaks the symmetry of the system, thereby rendering quadratic moments of the type EB
and EB∗ possible. When the molecular model is considered quantitative agreement with
experiments may also be found.

4.3.2 Ground state molecular model

For the simulations shown in this subsection, diatomic hydrogen was used to obtain numer-
ical values for the atomic detuning and the electric and magnetic moment reference values.
The atomic detuning is now ω0 = 16.2×1015 s−1. The electric dipole amplitude was again
taken to be µ(e)

` = ea0
√

2(243/128) and the effective magnetic dipole moment amplitude
was taken to be µ(m)

eff = cµ
(e)
` , in accord with the discussions of Chapter 2. The field cou-

pling amplitudes were then g = 109 1/s and f = g with a mode volume of V = 10−16.
The detuning from 1- or 2-photon resonances are specified in each plot and all other phys-
ical constants are evaluated in SI units. Full analysis is provided for the 3-state molecular
system for which an analytic solution exists. This model will achieve quantitive agree-
ment with the experimental results to within a factor of

√
2, and only when a fourth state

is included in the basis is there complete quantitative agreement. Here we discuss both
results.

The dressed state coefficient amplitudes |ai|2, |bi|2, and |ci|2 are shown in Fig. 4.28
where the detunings were taken to be ω/ω0 = 0.9 and ωϕ/ω0 = 10−3. Contrary to the
results of the atomic model, we immediately see that the states which are accessed via the
magnetic interaction are more strongly coupled into the system. This is most obvious in
Fig. 4.28(a) for which the population begins in state |1〉 and as soon as the interaction
is turned on all three states are equally populated. The strong coupling via the magnetic
interaction is explained by two key features of this model: (1) the assignment of the bare
energy for state |3〉 which yields the 2-photon detuning ∆31 ≡ ωϕ, and (2) the choice of
magnetic moment reference value µ(m)

eff = cµ
(e)
` which causes f = g.
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Figure 4.28: Dependence of dressed state coefficient populations on n for individual
dressed state indices in the molecular model. Here ω/ω0 = 0.9 and ωϕ/ω0 = 10−3.

Number of Photons

10
0

10
4

10
8

10
12

D
ip

o
le

 M
o

m
e
n

t 
(C

·
 m

)

10
-40

10
-38

10
-36

10
-34

10
-32

10
-30

10
-28

〈p
(1)
11 (ω)〉

〈p
(2)
11 (0)〉

〈m
(2)
11 (ω)〉/c

(a) i = 1

Number of Photons

10
0

10
4

10
8

10
12

D
ip

o
le

 M
o

m
e
n

t 
(C

·
 m

)

10
-40

10
-38

10
-36

10
-34

10
-32

10
-30

10
-28

〈p
(1)
22 (ω)〉

〈p
(2)
22 (0)〉

〈m
(2)
22 (ω)〉/c

(b) i = 2

Number of Photons

10
0

10
4

10
8

10
12

D
ip

o
le

 M
o

m
e
n

t 
(C

·
 m

)

10
-40

10
-38

10
-36

10
-34

10
-32

10
-30

10
-28

〈p
(1)
33 (ω)〉

〈p
(2)
33 (0)〉

〈m
(2)
33 (ω)〉/c

(c) i = 3

Figure 4.29: Log-log plot of the electric and magnetic dipole moments in the molecular
model for individual dressed state index. The detunings were ω/ω0 = 0.9 and ωϕ/ω0 =
10−7. The grey dashed curve is for the value ea0.

The implications of strong magnetic coupling is more obvious when plots of the in-
duced moments are given. For our choice of basis only two nonlinear moments are pre-
dicted: the 0-frequency electric moment 〈p(2)ii (0)〉 and the magnetic moment 〈m(2)

ii (ω)〉3.
Plots of these moments along with the linear electric moment are shown in Fig. 4.29 for
each individual dressed state index with ω/ω0 = 0.9 and ωϕ/ω0 = 10−7. Again, for indices
1 and 2 the electric moment at ω is linear in the optical field and is in complete agreement
with the results of the 2-level model. The leading behavior of the 0-frequency electric
moment is quadratic for all three indices before the effect saturates at the value of ea0 as
shown in the grey dashed curve. The dependence on the magnetic term is quadratic for
index 2 while higher-order for indices 1 and 3. Just as with the atomic model, the behavior
of indices 1 and 2 flip-flop when the detuning is taken to be above the atomic detuning (i.e.

3The inclusion of additional terms in the basis would permit solutions for a second-harmonic electric
signal, though it can be shown to be small compared to the other nonlinear effects predicted by this model.
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ω > ω0). This is due to the anti-crossing of states |D1(n)〉 and |D2(n)〉.
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Figure 4.30: Log-log plot of the incoherent sum of (a) 〈m(2)
net(ω)〉 and (b) 〈p(2)net(0)〉 in

the molecular model. The series of curves are for 2-photon detunings of ωϕ/ω0 =
10−11, 10−9, 10−7, 10−5, 10−3 from left to right in both plots. The 1-photon detuning is
ω/ω0 = 0.9. In (a) the dashed curve represents a quadratic dependence on input field while
in (b) the dashed curve is for ea0

√
2.

It is again more useful to plot the incoherent sum over dressed state index of the in-
duced moments. Plots showing the net magnitudes of the magnetic and electric nonlin-
ear moments are shown in Fig. 4.30 for the various 2-photon detunings of ωϕ/ω0 =

10−11, 10−9, 10−7, 10−5, 10−3. The 1-photon detuning is again kept at ω/ω0 = 0.9. The
effect of the 2-photon resonance is apparent in both plots: as ∆31 ≡ ωϕ −→ 0, the ampli-
tudes of the induced effects are significantly enhanced. In Fig. 4.30(a) the magnetization
has a quadratic dependence at low intensities before saturating, after which point it tracks
the electric dipole. The agreement between the magnetic and linear electric curve is within
a factor of

√
2, which is accounted for by including a fourth state in the basis, as explained

shortly. In Fig. 4.30(b) the 0-frequency moment is seen to be readily enhanced and saturate
at the value of

√
2ea0, which is the physical limitation of this dressed state model.

Curves showing the resonance behavior of the three moments are shown in Fig. 4.31.
For these curves the photon number was set to n = 109. Figure 4.31(a) shows the depen-
dence on the input optical frequency. Here we see that all three moments have the same
1-photon detuning ω0 − ω, again confirming that the other nonlinear effects implicitly rely
on the coherence established in the first stage of the interaction. In Fig. 4.31(b) the depen-
dence on the rotational frequency ωϕ is shown. There is a clear maximum for each of the
nonlinear moments p(0) and m(ω) for ωϕ −→ 0, while the linear moment p(ω) shows no
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Figure 4.31: The resonant behavior for (a) the 1-photon detuning and (b) the 2-photon
detuning for the molecular model. In (a) the dashed curve represents the value ω = ω0 and
in (b) the dashed curve represents the value ωϕ = ω0 − ω = 0.1ω0.

dependence on this variable. The curves also reflect the 1-photon resonance which occurs
at the condition ωϕ = ω0 − ω.

Finally, it is useful to compare the results of the 3-state molecular system with the 4-
state molecular system. If the RWA is not made for the molecular model, then there is a
fourth state in the system which has the electronic character |2, 1, 1〉. When included in
the calculation, a fourth molecule-field product state defined as |4〉 ≡ |2, 1, 1〉 |1,−1〉 |n〉 is
defined and the eigenvalue equation is solved for the four coefficients ai, bi, ci, and (now)
di. The resulting fourth state permits another magnetic term to contribute to the overall
magnetic moment, whose result yields complete quantitative agreement with the linear
electric moment. These results are shown in Fig. 4.32. Both plots assume the same input
parameters and the result of adding the fourth state apparently accounts for the factor of√

2 between the p(ω) and m(ω) curves in the 3-state model.
Just as in the atomic case, all of the qualitative features – quadratic dependence on

field, transverse orientation, and oscillation at ω – are present in this model. Only in the
molecular model, however, can the quantitative agreement with large magnetic response
as measured by the scattering experiments be explained. The enhancement to the mag-
netic response is only possible due to the unique property of the interaction Hamiltonian
in that it couples internal (orbital) states to external (rotational) states via L̂−Ô+ coupling
terms. This interaction process justifies the assignment of bare energy states which yield
the unique 2-photon detuning of ∆31 ≡ ωϕ and the choice of the magnetic moment refer-
ence value µ(m)

eff = cµ
(e)
` . Both of these facts allow for near-resonant behavior in this model,
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Figure 4.32: Results for the magnetization in (a) the 3-state model and (b) the 4-
state model. Complete quantitative agreement is found with the linear electric moment
for the 4-state model. The series of curves are for 2-photon detunings of ωϕ/ω0 =
10−11, 10−9, 10−7, 10−5, 10−3 from left to right in both plots and ω/ω0 = 0.9.

regardless of the 1-photon detuning, thereby permitting incredibly large magnetic response
at modest input intensities.
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CHAPTER 5

Conclusions

The final chapter of this thesis is split into five sections. In sections 1 and 2 we summa-
rize the main qualitative and quantitative features from the experimental results and the
theoretical models, respectively. In the third section we then draw comparisons between
the experiment and theory and describe what these conclusions imply for high-frequency
magnetism. The fourth section outlines several other experimental platforms that are either
currently in use or in development for measuring this family of ME nonlinear effects. In the
fifth and final section, we discuss the outlook for further experiments using the magnetic-
scattering system that was developed for this thesis.

5.1 Summary of experimental results

The main experimental results of this thesis may be summarized as follows. The intensity of
elastically-scattered light polarized perpendicular to Rayleigh scattered light in non-chiral,
non-polar, symmetric dielectric media was measured using a 90◦ detection geometry. The
chosen class of materials avoids all mechanisms which can give rise to spurious signals
from the rotation of any initial electric dipole polarization. The choice of geometry also
eliminates signal contributions from other nonlinear optical phenomena such as the Raman-
induced Kerr effect [45]. The measured signals had a quadratic dependence on intensity,
the same frequency as the laser, and in some instances had amplitudes which rivaled that of
linear Rayleigh scattering. It was found in most samples that the unpolarized components
of the signals measured in both co- and cross-polarized analyzer positions had a nonlinear
dependence on input intensity, as expected. In others, a nearly linear dependence was
observed which appeared to be saturated. The qualitative features of these signals point
to their origin as being magnetic, in accord with previous experimental findings [2] and
theoretical predictions [5, 6, 46].

Two series of molecular liquids were studied to provide insight as to which physical
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parameters are important for achieving large magnetic response. In the study of non-polar,
“spherical-top” tetrahedral molecules, it was found that the polarized magnetic response in-
creased with heavier molecules which had larger central atoms or larger moments of inertia.
The same trend was observed for the unpolarized response of ED and MD signals, which
increased nonlinearly with input intensity and was largest for the most massive molecular
liquid. These results are consistent with the expectation that molecules with a smaller ro-
tational frequency and lower damping [47] will more readily exhibit resonantly-enhanced
behavior. This is true because both the rotational frequency and the damping show up as
theoretical contributions to the denominator for this type of effect. The dressed state model
accounts for the dependence on rotational frequency but ignores the possible contribution
from damping.

In the second study of systematically-varied molecular liquids, we studied a series of
benzene-like molecules which had varying degrees of differential polarizability and in some
cases internal dipoles. In these molecules, there was very little polarized magnetic response
and the unpolarized electric scattering was shown to be up to 70% of the total measured
signal. The relative weakness of magnetic signal strength can be attributed to the prepon-
derance of a third-order all-electric interaction that is responsible for intense rotationally-
averaged (unpolarized) scattering in anisotropic liquids [7]. This effect also explains why
benzonitrile, with the largest permanent dipole of the series, showed the largest percentage
of unpolarized signal, while benzene, with no static dipole whatsoever, showed the smallest
response. The dependence of the measured response on the rotational frequency was con-
sistent with the ratio of moments of inertia when benzene and deuterated (heavy) benzene
were compared. The relative slopes of unpolarized scattering for these two molecules dif-
fered by 17%, with C6D6 having the higher cross-section for unpolarized scattering. This
is consistent with the ratio of moments of inertia [43],

R =
ωϕ,C6H6

ωϕ,C6D6

=
147.59× 10−40 g·cm2

178.45× 10−40 g·cm2
= 0.8271 , (5.1)

of these two molecules.
It was also shown for the first time that intense, nonlinear magnetic response is present

in solid garnet crystals which have centrosymmetry. The crystal studied was Gd3Ga5O12

which is a rare-earth garnet crystal from the space group Ia3̄d (or point group Oh or m3̄m,
depending on notation). Most important is that this crystal has cubic symmetry so that χ(2)-
driven quadratic nonlinearities of the type EE or EE∗ were forbidden, meaning that any
second-order response measured in our experiments must be driven by the (new) process
anticipated by our model of ME dynamics. Here the polarized magnetic response and the
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Figure 5.1: Depiction of electric and magnetic transitions driven between uncoupled states
of the molecular dressed-state system. The dashed curve on the magnetic transition repre-
sents a completely resonant, inelastic transition that may account for nonlinear unpolarized
scattering.

unpolarized response for both electric and magnetic signals had a nonlinear dependence on
field that was best fitted by a quadratic component, albeit over a limited range. Further-
more, the total magnetic (polarized + unpolarized) signal was shown to be comparable in
amplitude to the linear Rayleigh signal. A series of measurements were also made of light
in the forward-direction to confirm that no XPW generation [23, 24] was taking place over
the range of intensities shown in the plots of Chapter 4.

The third-order, all-electric interaction responsible for the depolarizing molecular ro-
tations in benzene cannot take place in either GGG or any of the tetrahedral structures.
In optically isotropic GGG, free rotations are prevented by the rigid crystal structure and
in molecules isomorphic to CCl4, the presence of spherical top symmetry prohibits polar-
ization anisotropy. Consequently our observations of polarized quadratic components in
these samples suggest a very different origin of the scattering, consistent with magnetic
torque from the second-order, magneto-electric interaction. The presence of unpolarized
background scattering with quadratic intensity dependence can be accounted for as well
by second-order magneto-electric torque dynamics. This was shown by predictions of the
exact dressed state model. The presence of polarized and unpolarized components in the
magnetic scattering is made possible by the use of ultrashort pulses with sufficient band-
width to excite both solid and dashed downward transitions in Fig. 5.1, offering a new
explanation of librational excitation and depolarization. That is, depolarized scattering can
be mediated by the magneto-electric process, pointing to a novel, universal mechanism for
generating rotations and magnetism in natural materials.
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5.2 Summary of theoretical results

An exact, fully-quantized model was developed in two stages to explain these unexpected
experimental results. In stage 1 (dubbed the atomic model) and stage 2 (dubbed the molec-
ular model) it was shown that by accounting exactly for a sequence of electric and magnetic
interactions of light, dynamic symmetry breaking takes place in an initially centrosymmet-
ric system. Interestingly, these results are in general accord with classical calculations of
bound electron motion driven jointly by E and B fields [16] which showed that the elec-
tron distribution is no longer centered on the nucleus when the magnetic field acts, thereby
causing an asymmetry in the system and allowing quadratic nonlinearities to form. Simi-
larly in the dressed state approach, inversion ceases to be a symmetry of optically-driven
charge systems subjected to strong Lorentz forces, thereby enabling new nonlinear pro-
cesses. From this theory, three second-order optical nonlinearities that are magneto-electric
in origin were predicted: longitudinal rectification at 0-frequency, longitudinal harmonic
generation at 2ω, and transverse magnetization at the fundamental frequency. These effects
exist purely due to the inclusion of the dynamic magnetic interaction term. The trans-
verse magnetization in particular is not compatible with any static symmetry analysis of
the medium. Consequently, dynamic symmetry breaking indicates that these phenomena
may be observed universally, in natural materials. Specifically, all transparent dielectric
materials and semiconductors (in the forbidden energy gap) are predicted to support these
quadratic ME nonlinearities.

The theory presented in Chapter 2 effectively explained the four key features of the
magnetization observed in the scattering experiments: (1) transverse orientation with re-
spect to the propagation axis, (2) quadratic dependence on the input field intensity, (3) os-
cillation at the fundamental frequency, and (4) amplitude equal or comparable to electric-
dipole scattering. Both atomic and molecular models correctly predicted the first three
features, but only the molecular model was able to explain the unusually large amplitude of
the magnetic response (quantitatively equal to that of Rayleigh scattering). The amplitudes
of the predicted magnetic response in the atomic model were very small because of the
large 2-photon detuning factors. The small magnitudes of induced moments in turn derived
from the choice of bare-state energies, which forced the magnetic transitions to take place
in the excited state far off resonance. This resulted in weak mixing of magnetic states into
the system [46]. Much better agreement with the experimental results was found using
the molecular model in which rotational degrees of freedom were included and a magnetic
torque interaction was introduced. This permitted enhancement in two ways. First, the
terminal state was chosen to have energy close to the electronic ground state, recogniz-
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ing that magnetic torque transfers angular momentum into rotational angular momentum,
thereby causing electronic de-excitation of the molecule. This enables a nearly-resonant
2-photon magneto-electric transition. Second, the magnetic interaction coupled internal
atomic states to external molecular states with much larger cross sectional areas and there-
fore larger effective magnetic moments.

It should also be emphasized that in both of the dressed state approaches, standard
quantum mechanical selection rules were obeyed in all matrix elements that contributed to
the magneto-electric state mixing by the E and B fields or the induced moments. Consider
for example the atomic system, for which the customary rules for ED and MD interactions
are (∆`ij = ±1 ; ∆mij = 0) and (∆`ij = 0; ∆mij = ±1), respectively. Here the subscript
notation refers to the dressed state components (not the dressed state index), as 1 ↔ |1〉,
2 ↔ |2〉, and so on. For example, the non-zero contribution to the magnetic moment
between dressed states |D1(n)〉 and |D1(n+ 1)〉 is 〈m̂〉 ∝ 〈n|〈2, 1, 0|L̂|2, 1,−1〉|n〉, which
obeys the rules ∆`24 = 0 and ∆m24 = +1 for an MD transition. The same was true for the
other nonlinear moments of the atomic model as well as the predictions of the molecular
model.

5.3 Comparison of experiment and theory

The main results of this thesis are most obvious when we compare the experimental results
with the predictions of the theoretical model, namely the observation and explanation of
intense high-frequency magnetic radiation induced by the passage of light through trans-
parent, dielectric media. Scattered light with the polarization of induced magnetic dipoles
was found to be transverse to the direction of propagation, oscillated at the fundamental fre-
quency, and increased with a nonlinear dependence on the input field. We experimentally
demonstrated in both solid and liquid samples that the magnetic component of scattering
was purely dipolar in nature, was nonlinear in origin, and was comparable in intensity to
electric-dipole scattering under non-relativistic conditions.

These unprecedented results are in full quantitative agreement with the exact dressed
state model with quantized energy levels and fields. Resonant enhancement of the ME
nonlinearities was more than sufficient to make up for the usual factor distinguishing elec-
tric from magnetic moments, namely the fine structure constant, α .

= 1/137. This was
shown to arise due to a magnetic torque mechanism. The experiments also showed that
unpolarized scattering components grew nonlinearly as a function of intensity, again con-
sistent with the molecular quantum picture, and pointed to the presence of two possible
magnetic transitions as in Fig. 5.1. The comparisons of systematically-varied molecular
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systems also provided evidence for the importance of moment of inertia and damping as
key physical parameters for enhancing the magnetic response. A second systematic study
using anisotropic molecular liquids showed that when an internal electric dipole moment is
present, ME response is most likely overwhelmed by an electric torque mechanism through
which the electric field induces depolarizing molecular rotations.

The dressed-state models which were developed to explain these unusual experimen-
tal findings provided a more detailed picture of the ME nonlinear effects than the earlier
classical approach [5] or Heisenberg picture [6]. The dressed state approach is able to
predict the same trio of nonlinear effects as these earlier methods, and is exact within the
Born-Oppenheimer, dipole-, and rotating-wave approximations. The predicted trio of op-
tical processes from the dressed state approach all share a common 1-photon detuning, as
well as a 2-photon detuning which depends on the terminal state accessed by the magnetic
interaction. These detunings reflect the fact that the trio of nonlinear effects are sequential
electro-magnetic processes, whereby the electric field must first establish a charge distri-
bution and then the magnetic field may act on it. Most importantly, the theoretical model
developed herein provides a convincing explanation for how high-frequency magnetic re-
sponse may be initiated and measured in natural, unstructured media at moderate optical
intensities.

The findings of this thesis research suggest that several other magneto-optical phenom-
ena should be observable at low intensities. This includes the rectification moment p(0)

and ME second-harmonic generation p(2ω) which are predicted by the theoretical model.
Several experimental platforms are already in use or being developed to study these effects,
the details of which are described in the next section of this chapter. Several less-obvious
magneto-optical effects may also be observable. Magneto-electric contributions to the non-
linear index n2, optically-induced Faraday rotation, and negative permeability are among
some of the anticipated effects, as described in Ref. [2]. Of these, perhaps most impact-
ful would be negative permeability which could greatly advance the fields of dielectric
metamaterials [8] and and the development of dynamic magnetic materials [48]. Negative
permeability in natural materials could provide low-loss approaches to the fields of sub-
wavelength imaging [49], magnetic mirrors [50], nanolithography [51], and electromag-
netic cloaking [52]. Findings in this field may shed ligh on the general class of phenomena
known as Hall effects, [53, 54], of relevance to energy conversion. It has been suggested
that the rectification term p(0) may allow for conversion of sunlight to electricity with near-
unit efficiency [16]. These are just a few of the areas which may see advances due to the
experimental and theoretical work of this thesis; essentially any known electro-optic effect
may have a magneto-optic counterpart and a corresponding enhancement mechanism.
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5.4 Alternative platforms for measuring ME effects

Analysis presented earlier in this thesis predicts that magnetization is just one of three
magneto-electric nonlinear processes which may be induced by light in any dielectric
medium, regardless of symmetry. This family of effects includes the rectification moment
p(0), magneto-electric second-harmonic generation p(2ω), and magnetization m(ω). Nat-
urally, other platforms could be developed to study each of these nonlinear effects using
techniques different from those described above. In this section we briefly describe some
of the current efforts along these lines.

5.4.1 Rectification effect

The rectification term p(0) is predicted to be large by the molecular quantum model pre-
sented in this thesis. This effect consists of a net charge displacement in a dielectric medium
in the forward direction, parallel to the path of the incident light. The action of the optical
field to separate charge along the direction of the beam is due to light pressure and two
distinct approaches can be imagined to measure this effect. The first approach uses direct
detection of a static field created by a cw or long-pulse laser passing through a bulk crys-
tal. The second approach uses an ultrafast pulsed laser to impulsively excite the sample,
leading to the formation of a transient electric dipole moment that will radiate single-cycle
THz pulses.

5.4.1.1 Direct detection of DC field

In direct detection of the rectification moment, a static voltage must be established over the
interaction length of the entire sample. This voltage would need to be measured using a
high-sensitivity circuit design [16, 4]. There are two way of theoretically achieving an end-
to-end rectification moment such as this: either using cw illumination in a bulk crystal or
using pulsed illumination with an ultra-thin sample. In either case, an optically-transparent
coating such as indium tin oxide (ITO) must be deposited on the entrance and exit faces
to allow for the passage of light while also conducting the generated electrical signal. The
dimensions of the electrodes and the spacing between them are both critical factors for
maximizing the detectable signal, but these are limited by the choice of light source. This
is because a minimum intensity of the order 107 W/cm2 is required to see these effects [16],
so either a cw source must be focused through the sample or the thickness of the sample
must be chosen so an optical pulse completely fills it from end-to-end.

To give an example, if a 10 W cw laser is used then the cross sectional area of the
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electrode must be of the order 100 µm2 which is small enough to make its alignment with
the beam difficult. It is more desirable to have larger electrodes, but this requires using a
pulsed laser1 to achieve a higher power density. The primary concern in this case is that the
thickness of the sample L is related to the pulsewidth τp of the laser through the relation
L < cτp. With either the cw or pulsed approach, electro-magnetic interference (EMI) may
overwhelm the small signals, although the closely-related photon-drag effect [55, 56] has
been shown to produce Lorentz-driven signals in layers of graphene as well as THz signals
from conductors irradiated with short pulses [57].

5.4.1.2 Impulsive detection of DC field

A promising approach for measuring ME rectification is to impulsively excite a dipole and
then measure the field radiated by the time-varying charge distribution it creates. This can
be done by sending an ultrafast optical pulse (with duration < 1 ps) into an insulating
dielectric medium. Inside the medium a quasi-static rectification moment is generated each
time an optical pulse passes a fixed point. This in turn generates a local time-varying
current density, which in turn produces an electromagnetic signal. Due to the ultrashort
nature of the light, the generated signal will be a THz electric field [58]. This electric field
can be calculated from the polarization by first noting how the current density relates to the
polarization,

J(t) =
∂P(t)

∂t
, (5.2)

Then the current density becomes a source term for the THz electric field,

ETHz(r, t) ∝
∂J(t)

∂t
. (5.3)

Substituting Eq. (5.2) into Eq. (5.3) shows that the THz field is proportional to the second
time derivative of the quasi-static polarization according to

ETHz(r, t) ∝ ∂2P(t)

∂t2
. (5.4)

From Eq. (5.4) one can estimate the shape of the THz electric field given that the input
optical pulse is a Gaussian in time. Then P(t) will have a Gaussian distribution and the
THz field will be a single-cycle electric signal as shown in Fig. 5.2. This is easier to see in
the frequency-domain by mixing two optical fields since p(0) ∝ EB∗. If the input fields

1This is the case because cw lasers with output power greater than 10 W or so are not practical or typically
available in laser labs.
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Figure 5.2: The generated THz field is proportional to the second time derivative of the
envelope of the input electric field.

are from one and the same spectral mode then the fields will mix to yield ω−ω = 0. When
an ultrafast pulse is used, all of the spectral components in the laser bandwidth ∆ω are
mixed, and the resulting spectrum extends from 0-frequency to a few THz.

Figure 5.3: Wavefront diagram of Cherenkov-like cone produced by the difference in THz
and optical refractive indices [3].

This technique of generating a THz signal from the magneto-electric polarization p(0)

is analogous to optical rectification (OR), which is one of two standard techniques used for
converting an optical pulse to a single-cycle THz field [59]. In conventional OR, the recti-
fication term is only possible due to difference frequency generation (DFG) in which two
electric fields are mixed in a non-centrosymmetric medium. In other words, p(0) ∝ EE∗.
To be distinguishable from an all-electric process, ME rectification must be performed in
centrosymmetric media. In either case the THz electric field will radiate in the forward
direction. Due to this fact, the same approach used for detecting THz radiation via tradi-
tional OR may be used to detect the ME THz signal. This also means that the same issues
which the conventional OR signal detection apply in the ME case. The two crucial condi-
tions which must be met to maximize the measured signal are phase- and index-matching.
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Phase-matching puts limitations on the distance over which the THz signal may accumulate
constructively. Index-matching determines the ease with which the signal may be coupled
into free space due to total internal reflection (TIR).

TIR may occur because there is a mismatch between the THz refractive index and the
optical refractive index, with nTHz > nopt. This creates a lag in the THz wavefront and
causes it to have a shallow angle (see Fig. 5.3), which is defined by

θc = cos−1
(
nopt

nTHz

)
. (5.5)

The critical angle for TIR can be found by considering Snell’s law

ni sin θi = nt sin θt , (5.6)

and finding the value2 of θi for which θt = π/2. Rearranging Snell’s law we see

θTIR = θi|θt=π/2 = sin−1
(
nt
ni

sin θt

)∣∣∣∣
θt=π/2

= sin−1
(
nt
ni

)
. (5.7)

Assuming the index of the transmitted medium is air, we can take nt = 1 and ni = nTHz to
give

θTIR = sin−1
(

1

nTHz

)
. (5.8)

The angle made between the generated THz wavefront and a plane perpendicular to the
direction of pump propagation (i.e. the arrow in Fig. 5.3) is θc. Therefore, when θc > θTIR

there will be no output coupling of the THz signal. A solution for this condition in terms
of the refractive indices can be given by solving the inequality,

sin−1
(

1

nTHz

)
< cos−1

(
nopt

nTHz

)
(5.9)

to find

nTHz <
√
n2

opt + 1 , (5.10)

which is found using the Mathematica solve function.
One of the most common techniques for detecting the generated THz signal is to use

a photoconductive receiver in a pump-probe geometry [60]. This receiver consists of an
optically-gated switch deposited on the surface of a semiconductor substrate with a short

2This is the angle at which all light is reflected back inside of the medium and can only occur when
ni > nt.
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Figure 5.4: A typical pump-probe THz generation/detection scheme.

carrier lifetime such as low-temperature grown gallium arsenide (lt-GaAs). The gate is typ-
ically made of gold and is patterned either as a bowtie or Hertzian dipole antenna. Incident
optical pulses from the probe beam (about 5-10% of the total beam power) are focused on
the gap between the electrodes, thereby exciting carriers into the conduction band of the
semiconductor substrate. The THz electric field then acts as a bias and moves the photocur-
rent through an electrical circuit, which is sent through a current pre-amplifier. The optical
pump beam is modulated using an optical chopper so that the signal from the current pre-
amp can be detected using a lock-in amplifier. The pump and probe beams are aligned
using a collinear geometry and several delay rails (as shown in Fig. 5.4) can be adjusted to
permit the two pulses to arrive at the detector at the same time. The electric field is sampled
by scanning the delay rail so the short probe pulse (duration ∼ 100 fs) sweeps through the
long THz signal (duration ∼ 10 ps). This sampling procedure allows one to reconstruct the
temporal profile of the generated electric field.

A major drawback to the collinear geometry is that the generated THz signal has a
limited amplitude (due to phase-matching) and is difficult to extract from the sample (due
to index-matching). Several techniques can be implemented to increase the bulk interaction
length of the nonlinear medium without compromising the phase-matching condition. The
most common technique is to use periodically-poled structures such as periodically-poled
lithium niobate (PPLN) [61], but the issue of TIR due to index-matching still persists. One
method for overcoming TIR consists of machining the nonlinear crystal so that the output
faces match the angle of the Cherenkov cone [62]. A second method consists of imaging a
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Figure 5.5: Proposed fiber-coupled receiver for THz detection via ME rectification. The
receiver and the sample are both free to rotate independent of each other and the probe
beam.

diffraction grating into a bulk nonlinear medium so the generated THz wavefront is parallel
to the output face of the crystal [63]. In either case, the goal is to either alter the geometry
or the orientation of the generated THz wave such that the coherent THz signal is normal
to the output face, making extraction of the signal much more efficient.

In order to measure the THz rectification field from the magneto-electric polarization, a
more sensitive antenna [64] and new experimental design will be needed which relies on a
non-collinear geometry with a fiber-coupled plasmonic receiver. The THz receiver will be
affixed to a high-precision rotation/translation stage and the free-space probe beam will be
coupled into a short single-mode optical fiber. Using this design, the angle of the receiver
optics relative to the pump beam can be easily changed since it is no longer fixed by free-
space mirrors. If the sample is then rotated relative to the input pump beam, it will be
possible to match the k-vector of the generated THz beam to be normal to the exit face of
the crystal. The fiber-coupled receiver can then be placed at the output face of the crystal
to maximize detection sensitivity. A schematic setup is shown in Fig. 5.5 that achieves
the same goal of other methods, but requires neither machining the crystal nor imaging a
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grating into the medium.

5.4.2 Harmonic generation

The magneto-electric second-harmonic moment p(2ω) is predicted to be smaller than the
rectification term by both classical [5] and quantum models [46] of ME dynamics. This
is because the 2-photon resonance condition 2ω − ω = 0 is not met. The scientific litera-
ture contains many references to Lorentz-force driven SHG, where “Lorentz-force driven”
means the v × B term is retained in the model. Shen explains in the first few pages of
his text on nonlinear optics how an electron gas can respond nonlinearly to some incident
light due to the Lorentz term [65]. A Lorentz-mediated SHG signal has also been reported
by Klein et. al., who detected the light as transversely-polarized signals in split ring res-
onator (SRR) structures where light propagated at an angle relative to the SRR plane [66].
These latter observations, however, required a structured medium and it is the electric field
which is responsible for inducing high-frequency magnetic response. These earlier ob-
servations of Lorentz-mediated SHG in metamaterials are therefore not the same as the
ME process discussed in this thesis. Unpublished results from T. Heinz and collaborators
have recently shown that Lorentz-driven SHG is in fact possible without the use of struc-
tured materials. For their experiment, s-polarized light was incident on a single layer of
graphene at some angle and p-polarized light oscillating at 2ω was detected through a fil-
ter. The polarization of the incident and measured beams was found to be consistent with
a Lorentz-driven harmonic signal: the input E-field must lie in the plane of the graphene
to initiate charge motion and then the B-field must be out of plane to deflect the motion,
producing a second-order polarization with a nonzero component along the third axis.

5.4.3 Magnetization in micro resonators

There are three main drawbacks to the ME scattering experiment described in Chapter 3.
First, the system is limited to high-peak power lasers. Second, large volumes of liquid are
required. Third, the low repetition rate of the laser limits the detector range. This subsection
describes a second platform based on light scattering to measure magnetic response which
offers a solution to these problems in micro-resonators. The use of micro-resonators has
become widespread in the study of nonlinear phenomena such as high-harmonic generation
[67], parametric oscillation [68], and laser cooling [69] (all at very low input powers).
These structures work by confining optical energy from a relatively weak input beam inside
a resonant cavity so the light is recirculated, causing the local optical intensity to be very
high. Typically the input beam is a low-power tunable cw source. The resonators can either
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be constructed by a nano-imprinting technique [70] or by an etching process which creates
a hollow-core resonator that can be filled with a fluid [71, 72]. Only a small amount of
liquid is needed for the hollow-core structures, which makes the task of synthesizing the
required volume of test compounds much easier.

Figure 5.6: (a) Optical image of fabricated polymer micro-ring with a coupling waveguide.
The diameter of the ring is 100 µm and cross-section is 1 µm × 1 µm. (b) Experimental
setup for measuring optical scattering. The sample is placed on a high-precision translation
stage and light is collected at 90◦ relative to the plane of the resonator. Light is coupled
into the waveguide using a single-mode fiber and its transmission is measured using a
multi-mode fiber and photodetector.

An example of a high-Q resonator in close proximity to a straight waveguide used to
evanescently couple in the light is shown in Fig. 5.6(a). The resonator may be fabricated
from polystyrene by nano-imprinting and using a silicon mold fabricated by electron beam
lithography [70]. The resonator may be mounted on a high-precision translation stage and
laser light coupled into it via the waveguide from a single-mode fiber. The transmitted light
is typically collected using a multimode fiber, which is then sent to a photodetector and
displayed on an oscilloscope (see Fig. 5.6(b)). In practice, the pump laser is located by
observing a dip in transmitted intensity. The resonantly-coupled light will occupy either a
transverse electric (TE) or transverse magnetic (TM) mode of the ring resonator. The order
in which resonances appear and the separation between them can be used to distinguish
between TE or TM modes. The fabricated ring has a rectangular cross-section which pro-
hibits more than one of these modes from being excited at once, and also provides a means
by which the TE and TM modes are spectrally separated.

Because nano-imprinting is adaptable to other polymers, this technique could easily be
used to study the nonlinear response in several other materials. The use of hollow-core
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structures is also a possible direction for future work, since they require very little sample
volume and can be reused many times. The typical hollow-core resonators have a cross-
section of 20 µm× 40 µm and a diameter of about 320 µm, which yields a volume of about
260 pL [71], much less than the several mL of sample volumes that were required for this
dissertation research.

5.5 Future work in magnetic scattering

Despite the major advances made by the work of this thesis, there are still several experi-
mental avenues to explore in order to better understand these magneto-optical phenomena.
In this last section of the thesis we discuss the outlook for the magnetic scattering experi-
ment. We begin with a few suggestions of potential material candidates for studying sys-
tematic variations in molecular and electronic structure. We then briefly discuss a second
experimental setup which uses a high-repetition rate, broad bandwidth laser and a different
detection scheme to overcome the issue of detector saturation. We conclude with a few
words on how to temporally resolve these magnetic phenomena.

5.5.1 Conditions for future systematic studies

There are several more studies which can be done of systematically-varied molecular liq-
uids. The immediate study to be done is of the series CCl4 −→ SiCl4 −→ GeCl4 −→
SnCl4 −→ TiCl4, which are ordered from lightest to heaviest central atom while the halo-
gens remain the same. This analysis will provide a better understanding of how rotational
frequency and damping contribute to the magnetic response. A second series of tetrahedral
molecules will be either SiCl4 −→ SiBr4 or GeCl4 −→ GeBr4, in which the halogen atom
is changed while the central atom remains constant. These studies should provide feedback
as to the role of increasing charge density, as Br has several more electrons than Cl.

Figure 5.7: Molecular structure of tetrafluorobenzene, trifluorobenzene, difluorobenzene,
and benzene, as shown from left to right in order of increasing electron density.
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It may also be worthwhile to consider another series of benzene structures with vary-
ing electron density, but no intrinsic dipole moment. This would require choosing a series
which has substituted atoms that equally balance the charge distribution such as the fluo-
robenzene series C6H2F4 −→ C6H3F3 −→ C6H4F2 −→ C6H6, which are listed in order of
increasing electron density and shown in Fig. 5.7. These molecules are still anisotropic,
but the lack of internal dipole moments eliminates the possibility of direct torque on the
dipole to cause rotations and may allow for a compelling assessment of the role of charge.

Other solid samples should also be studied using this experimental approach. The GGG
crystal studied here is only one material from a class of garnets with the general formula
A3B5O12, where A is a rare earth cation such as Y3+ or Gd3+ and B is Al3+, Ga3+, or Fe3+

[73, 74]. Future studies of garnets might include YAG, GSAG, GSGG, etc.. Studies of sim-
pler systems such as fused silica should also be performed because their robust mechanical
properties, which are relevant to energy conversion applications of ME nonlinearities.

Figure 5.8: Structure of non-polar, symmetric molecular liquids.

Conjugated molecular systems offer high density, delocalized electron clouds which
may be the best suited electronic structures to support ME rectification. Hence compounds
with fused benzene rings, bi/tetra phenyl rings, and thiophene structures may all be con-
sidered. A final set of molecular structures that should be investigated is shown in Fig.
5.8. These compounds are non-polar liquids at room temperature that consist of elaborated
tetrahedral structures with large moments of inertia, suitable for experimental tests via scat-
tering experiments of the influence of rotational frequency and damping on magnetization.

5.5.2 Magnetic scattering using high-repetition rate laser

A major shortcoming of magneto-electric scattering experiments to date is the limited dy-
namic range of the detector due to the combination of relatively long dead time and low
repetition rate of the laser. If a low repetition rate laser is to be used, the only way to
increase the dynamic range is to effectively stretch the pulse several orders of magnitude
more than the detector dead time. This could be done using an optical “storage” device such
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as an “optical bottle.” Alternatively, a high-repetition rate laser may be used in conjunction
with the same photon-counting device to increase the effective dynamic range simply by
virtue of having more pulses per second that produce less than one scattered photon each.
With a high repetition rate laser, the total number of detectable scattered photons increases
dramatically, making signal detection possible with a sensitive photodiode. For these rea-
sons, a second magnetic scattering experiment with a layout identical to the one described
in Chapter 3 is under construction. It uses an 80 MHz Vitara laser oscillator from Coher-
ent and an EG&G FND-100 photodetector. This system features incredibly broad, tunable
pulses (with up to 150 nm bandwidth) of duration < 10 fs which should allow for studies
of the spectral and temporal response of these magnetic effects.

5.5.3 Time-resolved measurements

It is also of great interest to perform time-resolved studies of the dynamics responsible
intense magnetization. ME nonlinearities are thought to arise from a process of sequential
electric and magnetic interactions on charge distributions in dielectric media. Physically,
the picture is that the electric field first initiates motion of the electron distribution and then
the magnetic field is allowed to either deflect that motion (in a solid) or induce rotations (in
a liquid). The dressed state molecular model shows that the time required for the magnetic
interaction to go to completion is on the order of several hundred femtoseconds under the
conditions of our experiments (see Subsection 2.3.4). However no tests tests of temporal
behavior have been performed to date.

To study transient behavior, one could simply change the pulse duration (which may
be done using the MIIPS system) while keeping the intensity range constant. A compar-
ison could then be made, for instance, of the measured response for durations of 150 fs,
300 fs, 450 fs, and 600 fs. In order to resolve single optical-cycle dynamics, however,
a different approach and altogether different laser system has to be used. Measurements
with femtosecond precision are possible when a carrier-envelope phase (CEP) stabilized
laser system is used. With CEP, measurement and control of the phase between the op-
tical carrier wave and the pulse intensity envelope is possible [75] both in oscillators [76]
and amplified laser systems [77]. It has been shown that very long-term phase coherence
is possible [78], thus facilitating pump-probe experiments on ultrafast times scales. Con-
struction of such a system for magnetic scattering experiments would allow us to resolve
the dynamics of the induced magnetic response on femtosecond timescales.
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APPENDIX A

Non-RWA Contributions in Dressed State Model

When the non-secular terms are included in the magnetic interaction Hamiltonian for the
case of the atomic (excited state) model, doubly-dressed eigenstates that are accurate to any
order in the optical interaction may be computed using progressively larger and larger sets
of basis states. In other words, since both secular and non-secular terms in the magnetic
interaction Hamiltonian couple to different atom-field product states of the quantum system
with about the same coupling strength, the RWA cannot be readily made for this interaction.
When this is true, the set of basis states used for the problem grows indefinitely (i.e. is
no longer a closed set). Fortunately, more than one application of the magnetic field has
negligible effects at small 1-photon detunings. We show that an eight-state basis permits
computation of second-order magneto-electric moments with negligible errors from higher-
order effects. This approach is outlined in Ref. [46], but the following analysis is provided
to discuss this problem in greater detail.

The RWA is valid when the optical frequency is slightly detuned from the atomic fre-
quency. In the atomic picture, the detuning that corresponds to the secular terms in the
electric dipole transition goes as ω0 − ω while the detuning from the non-secular terms
goes as ω0 + ω. Since the 1-photon detuning is typically chosen to be relatively small (i.e.
near resonance), only the secular terms will contribute to the overall effect and the RWA
may be made. However in the case of the magnetic interaction for the atomic model, both
of the relevant 2-photon detunings are far from resonant and the RWA cannot be readily
made. These additional terms are accounted for in the full interaction Hamiltonian,

Ĥint = ~g
(
â−σ̂+ + â+σ̂−

)
+ f

(
â−L̂+ + â+L̂− + â−L̂− + â+L̂+

)
, (A.1)

and the set of atom-field product states no longer consists of the original closed set,

{|1, 0, 0〉 |n〉 , |2, 1, 0〉 |n− 1〉 , |2, 1, 1〉 |n− 2〉 , |2, 1,−1〉 |n〉} , (A.2)
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and basis grows indefinitely.
First we provide an iterative approach to explain the growth of the basis upon successive

applications of the optical field. We then solve the eigenvalue problem for the case of 4-, 6-,
and 8-state bases and provide plots showing the dependence of these moments as a function
of intensity. From these computations we can make the general conclusion that the net
effect of including the two extra states in the 6-state basis simply doubles the magnitude of
the induced nonlinear dipole moments, while including the higher-order couplings can be
essentially ignored. This result is easily explained in terms of higher-order field coupling
to additional states.

A.1 Growth of basis

The simplest way of understanding the growth of the basis is to track the order of the field
interaction required to couple successive states to the initial or ground state. Given that
the initial state is |1, 0, 0〉 |n〉, the only term in the interaction Hamiltonian from Eq. (A.1)
which can couple to an adjacent state is the electric interaction term that goes as â−σ̂+,
which couples to |2, 1, 0〉 |n− 1〉. Then the basis to first-order in the interaction consists
only of the two states

{|1, 0, 0〉 |n〉 , |2, 1, 0〉 |n− 1〉} . (A.3)

To determine which states are coupled to via a second-order optical interaction requires us
to apply the full interaction Hamiltonian to the current set of two basis states and count
which new states are generated as a result of the interaction terms. Application of the
electric interaction to either of the two states does not generate any new states since the
counter-rotating terms have been removed from Ĥ

(e)
int. However, because there is now a

state with nonzero `, the magnetic interaction can act to generate four new states from
|2, 1, 0〉 |n− 1〉. Each term in the magnetic interaction contributes and the new basis is
now

{|1, 0, 0〉 |n〉 , |2, 1, 0〉 |n− 1〉 ,
|2, 1, 1〉 |n− 2〉 , |2, 1,−1〉 |n〉 , |2, 1, 1〉 |n〉 , |2, 1,−1〉 |n− 2〉} . (A.4)

Another iteration of this same procedure to the set of states above shows that two additional
states may be coupled to via magnetic interaction terms and the basis to third-order in the
interaction grows to
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{|1, 0, 0〉 |n〉 , |2, 1, 0〉 |n− 1〉 ,
|2, 1, 1〉 |n− 2〉 , |2, 1,−1〉 |n〉 , |2, 1, 1〉 |n〉 , |2, 1,−1〉 |n− 2〉
|2, 1, 0〉 |n− 3〉 , |2, 1, 0〉 |n+ 1〉} . (A.5)

Figure A.1: Expansion of the basis due to iterations of the interaction Hamiltonian. One
can easily count the orders in the field to see how strong the coupling may be for different
states.

This iterative procedure of looking for states which are coupled to the initial ground
state via higher-order applications of the optical field will of course proceed indefinitely.
Upon the next iteration (i.e. to fourth-order in the field) a total of six additional states are
to be included in basis. The fifth iteration then shows two more states must be added, and
then the pattern of adding 6 and then 2 additional states will continue. A general expression
can then be written down to show the growth of the basis for arbitrarily-ordered coupling
to the initial ground state. This can also be represented diagrammatically as shown in Fig.
A.1 where q + 1 is the order in the field interaction. The details of these derivations are
not relevant to this discussion, as we will show that even terms beyond third-order in the
optical interaction are completely negligible.

A.2 Diagonalizing the matrix

We are interested in seeing how expanding the basis to include more terms will affect the
overall magnitudes of the induced nonlinear moments. Here the main question we are
interested in asking is whether or not the rotating wave approximation can be made for
the magnetic interaction Hamiltonian. So instead of looking at the system in orders of the
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optical interaction (i.e. 2-, 6-, then 8-state bases), we instead compare the results of the
4-state basis which comes about due to making the RWA with the 6- and 8-state bases. The
eigenvalue to solve in either case is the standard

Ĥ |Di(n)〉 = EDi |Di(n)〉 , (A.6)

and we seek solutions for the dressed energies EDi and states |Di(n)〉.

A.2.1 4-state basis

The four-state basis consists of the set

|1〉 ≡ |1, 0, 0〉 |n〉 , (A.7)

|2〉 ≡ |2, 1, 0〉 |n− 1〉 , (A.8)

|3〉 ≡ |2, 1, 1〉 |n− 2〉 , (A.9)

|4〉 ≡ |2, 1,−1〉 |n〉 , (A.10)

which have the bare-state energies

E1 = −~ω0

2
+ n~ω , (A.11)

E2 =
~ω0

2
+ (n− 1) ~ω , (A.12)

E3 =
~ω0

2
+ (n− 2) ~ω , (A.13)

E4 =
~ω0

2
+ n~ω . (A.14)

The eigenvalue problem for the 4-state basis is written as
E4 0 q 0

0 E3 p 0

q p E2 r

0 0 r E1




di

ci

bi

ai

 = EDi


di

ci

bi

ai

 , (A.15)

where we have defined p = ~f
√

2 (n− 1), q = ~f
√

2n, and r = ~g
√
n for convenience.

We can numerically solve this problem for coefficients ai, bi, ci, and di which must obey
the normalization condition
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1 = |ai|2 + |bi|2 + |ci|2 + |di|2 . (A.16)

The dressed states can then be written in terms of these coefficients as

|Di(n)〉 = ai |1〉+ bi |2〉+ ci |3〉+ di |4〉 (A.17)

and the nonlinear electric and magnetic dipole moments may then be calculated between
the adjacent states.

The induced moments are the same as were derived in Section 2.2. We of course have
the linear electric moment,

〈
p̂
(1)
ii (ω)

〉
= µ(e) (aib

∗
i + c.c.) e3 , (A.18)

along with an electric moment at zero-frequency and an electric moment at the harmonic
frequency,

〈
p̂
(2)
ii (0)

〉
= µ

(e)
`

2√
2

(aid
∗
i + c.c.) e1 , (A.19)〈

p̂
(2)
ii (2ω)

〉
= µ

(e)
`

1√
2

(aic
∗
i + c.c.) e1 , (A.20)

two nonlinear magneto-electric moments,

〈
m̂

(2)
ii (ω)

〉
l

= −iµ(m)
`

1√
2

[aib
∗
i (bid

∗
i + aid

∗
i ) + c.c.] e2 , (A.21)〈

m̂
(2)
ii (ω)

〉
u

= iµ
(m)
`

1√
2

[aib
∗
i (bic

∗
i + aic

∗
i ) + c.c.] e2 . (A.22)

The induced magnetization at ω can be found by computing the direct (or coherent) sum
of the moments for the upper and lower transitions. The coherent sum is taken only over
terms of the same dressed state index to allow for out-of-phase terms to cancel. The total
magnetization for index i is then,

〈
m̂

(2)
ii (ω)

〉
= −iµ(m)

`

1√
2

[aib
∗
i (bid

∗
i + aid

∗
i − bic∗i − aic∗i ) + c.c.] e2 . (A.23)

The net moments must again be calculated by computing an incoherent sum over the
dressed state index. This yields, for the linear electric moment
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∣∣∣p̂(1)net(ω)
∣∣∣ = µ

(e)
`

[
4∑
i=1

|(aib∗i + c.c.)|2
]1/2

, (A.24)

for the quadratic electric moments,

∣∣∣p̂(2)net(0)
∣∣∣ =

2µ
(e)
`√
2

[
4∑
i=1

|(aid∗i + c.c.)|2
]1/2

, (A.25)

∣∣∣p̂(2)net(2ω)
∣∣∣ =

µ
(e)
`√
2

[
4∑
i=1

|(aic∗i + c.c.)|2
]1/2

, (A.26)

and for the quadratic magnetic moment

∣∣∣m̂(2)
net(ω)

∣∣∣ =
µ
(m)
`√
2

[
4∑
i=1

|[aib∗i (bid
∗
i + aid

∗
i − bic∗i − aic∗i ) + c.c.]|2

]1/2
. (A.27)

A.2.2 6-state basis

The six-state basis now includes the additional states

|5〉 ≡ |2, 1, 1〉 |n〉 , (A.28)

|6〉 ≡ |2, 1,−1〉 |n− 2〉 , (A.29)

with bare-state energies

E5 =
~ω0

2
+ n~ω , (A.30)

E6 =
~ω0

2
+ (n− 2) ~ω . (A.31)

The eigenvalue problem is now
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E6 0 0 0 p 0

0 E5 0 0 q 0

0 0 E4 0 q 0

0 0 0 E3 p 0

p q q p E2 r

0 0 0 0 0 E1





fi

ei

di

ci

bi

ai


= EDi



fi

ei

di

ci

bi

ai


, (A.32)

and the coefficients are numerically evaluated and normalized according to

1 = |ai|2 + |bi|2 + |ci|2 + |di|2 + |ei|2 + |fi|2 , (A.33)

so that the dressed eigenstates may be written as

|Di(n)〉 = ai |1〉+ bi |2〉+ ci |3〉+ di |4〉+ ei |5〉+ fi |6〉 . (A.34)

The inclusion of these two additional states produces four more contributions to the
nonlinear dipole moments, two electric

〈
p̂
(2)
ii (0)

〉′
= µ

(e)
`

2√
2

(aie
∗
i + c.c.) e1 , (A.35)〈

p̂
(2)
ii (2ω)

〉′
= µ

(e)
`

1√
2

(aif
∗
i + c.c.) e1 , (A.36)

and two magnetic

〈
m̂

(2)
ii (ω)

〉′
l

= −iµ(m)
`

1√
2

[aib
∗
i (bie

∗
i + aie

∗
i ) + c.c.] e2 , (A.37)〈

m̂
(2)
ii (ω)

〉′
u

= iµ
(m)
`

1√
2

[aib
∗
i (bif

∗
i + aif

∗
i ) + c.c.] e2 , (A.38)

where the measured signal is again projected along e2
1. Their coherent sum yields

〈
m̂

(2)
ii (ω)

〉′
= −iµ(m)

`

1√
2

[aib
∗
i (bie

∗
i + aie

∗
i − bif ∗i − aif ∗i ) + c.c.] e2 . (A.39)

1Notice that depending on the signs in front of the individual magnetic contributions and whether a co-
herent or incoherent sum is taken, the net magnetic response can either add completely in or out of phase.
A solution to avoid this altogether is to sum the magnitudes of the induced magnetic terms so out-of-phase
components do not destructively interfere.
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Here the primed notation is used to designate contributions to the overall nonlinear mo-
ments due to including the counter-rotating terms in the basis. To compute the net induced
effects, a coherent sum over moments of the same type and with the same dressed state
index is first taken, and then an incoherent sum is taken over the dressed state index from
i = 1 to i = 6. For example, 〈p̂(2)ii (0)〉′ is a correction to the term 〈p̂(2)ii (0)〉, and so these
expressions are first summed directly before the incoherent sum is taken. The net nonlinear
electric moments are now

∣∣∣p̂(2)net(0)
∣∣∣ =

2µ
(e)
`√
2

[
6∑
i=1

|(aid∗i + c.c.+ aie
∗
i + c.c.)|2

]1/2
, (A.40)

∣∣∣p̂(2)net(2ω)
∣∣∣ =

µ
(e)
`√
2

[
6∑
i=1

|(aic∗i + c.c.+ aif
∗
i + c.c.)|2

]1/2
, (A.41)

and the net magnetization is

∣∣∣m̂(2)
net(ω)

∣∣∣ =
µ
(m)
`√
2

{
6∑
i=1

|[aib∗i (bid∗i + aid
∗
i + bie

∗
i + aie

∗
i

−bic∗i − aic∗i − bif ∗i − aif ∗i ) + c.c.]|2
}1/2

. (A.42)

A.2.3 8-state basis

The eight-state basis now includes the additional states

|7〉 ≡ |2, 1, 0〉 |n+ 1〉 , (A.43)

|8〉 ≡ |2, 1, 0〉 |n− 3〉 , (A.44)

with bare-state energies

E7 =
~ω0

2
+ (n+ 1) ~ω , (A.45)

E8 =
~ω0

2
+ (n− 3) ~ω . (A.46)

The eigenvalue problem is now
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E8 0 t 0 0 t 0 0

0 E7 0 s s 0 0 0

t 0 E6 0 0 0 p 0

0 s 0 E5 0 0 q 0

0 s 0 0 E4 0 q 0

t 0 0 0 0 E3 p 0

0 0 p q q p E2 r

0 0 0 0 0 0 0 E1





hi

gi

fi

ei

di

ci

bi

ai


= EDi



hi

gi

fi

ei

di

ci

bi

ai


, (A.47)

where we have defined s = ~f
√

2 (n+ 1) and t = ~f
√

2 (n− 2). The coefficients are
numerically evaluated and normalized according to

1 = |ai|2 + |bi|2 + |ci|2 + |di|2 + |ei|2 + |fi|2 + |gi|2 + |hi|2 , (A.48)

so that the dressed eigenstates may be written as

|Di(n)〉 = ai |1〉+ bi |2〉+ ci |3〉+ di |4〉+ ei |5〉+ fi |6〉+ gi |7〉+ hi |8〉 . (A.49)

Once again there are several additional contributions to the net induced dipole moments.
First there is a linear electric moment at the fundamental frequency given by

〈
p̂
(3)
ii (ω)

〉′′
= µ(e) (aig

∗
i + c.c.) e3 , (A.50)

though this term is induced by the mixing of ω− ω+ ω to give ω. This term is responsible
for mediating two additional nonlinear magnetization terms,

〈
m̂

(4)
ii (ω)

〉′′
l,1

= −iµ(m)
`

1√
2

[aig
∗
i (gid

∗
i + aid

∗
i ) + c.c.] e2 , (A.51)〈

m̂
(4)
ii (ω)

〉′′
l,2

= −iµ(m)
`

1√
2

[aig
∗
i (gie

∗
i + aie

∗
i ) + c.c.] e2 , (A.52)

which we see are fourth-order in the field. A second electric moment is initiated as well
which is also cubic but is the result of combining ω + ω + ω = 3ω. This term is given as

〈
p̂
(3)
ii (3ω)

〉′′
= µ(e) (aih

∗
i + c.c.) e3 , (A.53)
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and like the other cubic term, this mediates two additional nonlinear magnetization terms,

〈
m̂

(4)
ii (ω)

〉′′
u,1

= iµ
(m)
`

1√
2

[aih
∗
i (hic

∗
i + aic

∗
i ) + c.c.] e2 , (A.54)〈

m̂
(4)
ii (ω)

〉′′
u,2

= iµ
(m)
`

1√
2

[aih
∗
i (hif

∗
i + aif

∗
i ) + c.c.] e2 . (A.55)

The terms in these expressions represent just the lowest-order contributions to these mag-
netic moments, as there are other pathways over which a coherence may be established
between the initial |1〉 state and the final state |7〉 or |8〉; the higher-order terms will be
even more negligible since they contain successively more coefficient products. Again, an
incoherent sum must be taken over all of the terms in order to determine the net resulting
moment. The third-order electric polarization at ω can be added to p(ω) term which comes
from the 4-state basis,

|p̂net(ω)| = µ
(e)
`

[
8∑
i=1

|[(aib∗i + aig
∗
i ) + c.c.]|2

]1/2
, (A.56)

and the third-order electric polarization at 3ω is simply

∣∣∣p̂(3)net(3ω)
∣∣∣ = µ

(e)
`

[
8∑
i=1

|(aih∗i + c.c.)|2
]1/2

. (A.57)

In the above, expression for the linear electric moment, the superscript (1) has been re-
moved since the moment now consists of higher-order terms as well. The net magnetization
is then going to be the sum of all contributions up to this point at frequency ω. We have,

|m̂net(ω)| = µ
(m)
`√
2

(
8∑
i=1

|{[aib∗i (bid∗i + aid
∗
i + bie

∗
i + aie

∗
i − bic∗i − aic∗i − bif ∗i − aif ∗i )

+aig
∗
i (gid

∗
i + aid

∗
i + gic

∗
i + aie

∗
i )− aih∗i (hic

∗
i + aic

∗
i + hif

∗
i + aif

∗
i )]

+c.c.}|2
)1/2

. (A.58)

where we have again dropped the superscript (2) since the moments here reflect a sum of
mixed-order processes.

There are a number of nonzero moments which arise between states of different dressed
state index i, but it should be noted that these terms are of little interest here. The terms

152



are due the the degeneracy of states |3〉, |4〉, |5〉, and |6〉, but the result of including them
in the calculation merely multiplies the amplitudes of all moments by a small numerical
factor. We essentially care about the magnitudes of the induced moments relative to the
linear electric moment, so including these terms is redundant.

A.3 Intensity dependence of nonlinear moments

The effect of including more states in the basis is obvious when plots of the induced mo-
ments as a function of photon number are created. The most straight-forward way of quan-
tifying the effect of including the additional basis states is to plot on the same set of axes
the net induced moments from the 4-state basis and the net induced moments when the
primed and double-primed corrections are added to the moments. This result is shown ex-
plicitly in Fig. A.2. Here the higher-order corrections to p(ω), p(0), p(2ω) and m(ω) have
been included up to the 8-state basis. The dashed curves in grey represent the values of the
moments in the 4-state basis. From here it is obvious that the net result of including the
additional states to the basis is to simply double the induced moments. These corrections
come primarily through the addition of states |5〉 and |6〉; the cubic and quartic corrections
to p(ω) and m(ω) from states |7〉 and |8〉 are negligible.
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Figure A.2: The net induced moments with corrections up to the 8-state basis for p(ω),
p(0), p(2ω) and m(ω). The grey dashed curves represent the values of the moments in the
4-state basis.
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To see how the additional terms individually contribute to the moments, it is most useful
to look at plots for p and m at each dressed state index i in the 4-, 6-, and 8-state bases. To
avoid cluttering the plots, only select moments are given for each set of basis states. In the
4-state basis, we plot p(ω), p(0), p(2ω) and m(ω), in the 6-state basis we plot p′(0), p′(2ω)

and m′(ω), and in the 8-state basis we plot p′′(ω), p′′(3ω) and m′′(ω). Here the plotted
magnetizations represent the direct sum over each additional magnetic contribution. Figure
A.3 shows the electric and magnetic contributions which come from the 4-state basis, as
are discussed in detail in Chapter 4.
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Figure A.3: Induced electric and magnetic dipole moments in the 4-state basis for indi-
vidual dressed state indices. Shown are the linear electric moment 〈p(1)ii (ω)〉, the nonlinear
electric moments 〈p(2)ii (0)〉 and 〈p(2)ii (2ω)〉, and the nonlinear magnetization 〈m(2)

ii (ω)〉.

In Fig. A.4 the additional contributions to the induced electric and magnetic moments
are shown. The moments shown here are only the ones with the single prime notation as
defined above. We can see by looking at the plots for indices i = 1 and i = 2 that the
moments are essentially repeated from the results of the 4-state basis, this is the root of the
factor of 2 discussed in Fig. A.2. The plots for indices i = 3 − 6 reflect small quadratic
contributions to the 0-frequency and second-harmonic electric moments, and negligible
quartic contributions to the magnetization.
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Figure A.4: Induced electric and magnetic dipole moments in the 6-state basis for indi-
vidual dressed state indices. Shown are the corrections to the nonlinear electric moments
〈p(2)ii (0)〉′ and 〈p(2)ii (2ω)〉′, and the nonlinear magnetization 〈m(2)

ii (ω)〉′.

Figure A.5 shows the additional contributions to several of the induced moments when
the 8-state basis is considered. Only the double-primed contributions as defined above
are shown, which constitute the third-order electric moments 〈p(3)ii (ω〉′′ and 〈p(3)ii (3ω〉′′ and
the fourth-order magnetic moment 〈m(4)

ii (ω〉′′. Not surprisingly, all of the plots show that
these contributions are in fact negligible when added to the existing electric and magnetic
moments driven between the first two stages of the quadratic EB or EB∗ process; in other
words, because these moments are higher-order in the field, they are less significant.

From this analysis, it is simple to conclude the effect of including the counter-rotating
terms in the magnetic interaction Hamiltonian: the states which can be accessed via a
similar process from the ground state will contribute equally, while states which require
additional applications of the interaction will be less important. This is why including
states |5〉 and |6〉 shows a net increase in the induced moments by 2, while including states
|7〉 and |8〉 yield a negligible contribution. It is easy to see how including higher-order
states from the growth of the basis shown in Fig. A.1 will have a small impact on the net
outcome of the induced moments. This reasoning allows us to solve the problem in the
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original 4-state basis so that a closed set of states may be used, while maintaining that the
result of including additional terms is to simply double the induced nonlinear moments.
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Figure A.5: Higher-order contributions to electric and magnetic dipole moments when 8-
states are considered for the basis. Shown are the cubic moments 〈p(3)ii (ω)〉′′ and 〈p(3)ii (3ω)〉′′
and the fourth-order moment 〈m(4)

ii (ω)〉′′.
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APPENDIX B

Evaluation of Operators in Atomic Hydrogen

The primary results of the dressed state theory rely on evaluating the electric and magnetic
dipole moment operators between electronic states of the driven system. The operators of
interest are

p̂ = er̂ and m̂ =
e

2me

L̂ , (B.1)

and so the quantum observables we wish to measure are r̂ and L̂. Our atomic and molecular
systems assume hydrogenic wavefunctions and the transitions of interest all occur between
the 1s and 2p states. Here we show explicit calculation of r̂ and L̂ between the relevant
states in our system. The position operator is evaluated using the normalized position
wavefunctions composed of Laguerre polynomials and spherical harmonics for atomic hy-
drogen, while the angular momentum operator is evaluated using ladder operators. In all
calculations the quantization axis is taken to be along e3.

The wavefunctions for the 1s and 2p states in atomic hydrogen are

|1, 0, 0〉 =
1√
πa30

e−r/a0 = ξ1e
−r/a0 , (B.2)

|2, 1, 0〉 =
1

4
√

2πa30

r

a0
e−r/2a0 cos θ = ξ2re

−r/2a0 cos θ , (B.3)

|2, 1, 1〉 =
1

8
√
πa30

r

a0
e−r/2a0 sin θeiϕ = ξ3re

−r/2a0 sin θeiϕ , (B.4)

|2, 1,−1〉 =
1

8
√
πa30

r

a0
e−r/2a0 sin θe−iϕ = ξ3re

−r/2a0 sin θe−iϕ , (B.5)

where ξi (for i = 1, 2, 3) are defined for convenience and a0 is the Bohr radius. We are
interested in measuring r̂ between the ground and excited states of this basis. Using that
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r̂ = x̂e1 + ŷe2 + ẑe3 (B.6)

the nonzero moments with |1, 0, 0〉 are

〈2, 1, 0| r̂ |1, 0, 0〉 = 〈2, 1, 0| ẑ |1, 0, 0〉 e3 , (B.7)

〈2, 1, 1| r̂ |1, 0, 0〉 = 〈2, 1, 1| x̂ |1, 0, 0〉 e1 + 〈2, 1, 1| ŷ |1, 0, 0〉 e2 , (B.8)

〈2, 1,−1| r̂ |1, 0, 0〉 = 〈2, 1,−1| x̂ |1, 0, 0〉 e1 + 〈2, 1,−1| ŷ |1, 0, 0〉 e2 . (B.9)

There are five more nonzero terms computed between 〈1, 0, 0| and the 2p states, which are
related to those in the above set of equations by

〈2, 1, 0| ẑ |1, 0, 0〉 = 〈1, 0, 0| ẑ |2, 1, 0〉 , (B.10)

〈2, 1, 1| x̂ |1, 0, 0〉 = 〈1, 0, 0| x̂ |2, 1,−1〉 , (B.11)

〈2, 1, 1| ŷ |1, 0, 0〉 = 〈1, 0, 0| ŷ |2, 1,−1〉 , (B.12)

〈2, 1,−1| x̂ |1, 0, 0〉 = 〈1, 0, 0| x̂ |2, 1, 1〉 , (B.13)

〈2, 1,−1| ŷ |1, 0, 0〉 = 〈1, 0, 0| ŷ |2, 1, 1〉 . (B.14)

Thus we need to evaluate only half of the above terms.
We see

〈2, 1, 0| ẑ |1, 0, 0〉 =

∫
d3r ξ1ξ2re

−r/2a0 cos θ (r cos θ) e−r/a0

= ξ1ξ2

∫ ∞
0

r4e−3r/2a0dr

∫ π

0

cos2 θ sin θdθ

∫ 2π

0

dϕ

=

(
1

4
√

2a40π

)(
256a50

81

)(
2

3

)
(2π)

=
128
√

2

243
a0 , (B.15)

158



〈2, 1, 1| x̂ |1, 0, 0〉 =

∫
d3r ξ1ξ3re

−r/2a0 sin θe−iϕ (r sin θ cosϕ) e−r/a0

= ξ1ξ3

∫ ∞
0

r4e−3r/2a0dr

∫ π

0

sin3 θdθ

∫ 2π

0

cosϕe−iϕdϕ

=

(
1

8a40π

)(
256a50

81

)(
4

3

)
(π)

=
128

243
a0 , (B.16)

〈2, 1, 1| ŷ |1, 0, 0〉 =

∫
d3r ξ1ξ3re

−r/2a0 sin θe−iϕ (r sin θ sinϕ) e−r/a0

= ξ1ξ3

∫ ∞
0

r4e−3r/2a0dr

∫ π

0

sin3 θdθ

∫ 2π

0

sinϕe−iϕdϕ

=

(
1

8a40π

)(
256a50

81

)(
4

3

)
(−iπ)

= −i128

243
a0 , (B.17)

We are able to calculate 〈2, 1,−1| x̂ |1, 0, 0〉 and 〈2, 1,−1| ŷ |1, 0, 0〉 from the above expres-
sions since the only difference is the sign of the imaginary argument of the exponential. We
see

〈2, 1,−1| x̂ |1, 0, 0〉 = ξ1ξ3

∫ ∞
0

r4e−3r/2a0dr

∫ π

0

sin3 θdθ

∫ 2π

0

cosϕeiϕdϕ

=

(
1

8a40π

)(
256a50

81

)(
4

3

)
(π)

=
128

243
a0 (B.18)

〈2, 1,−1| ŷ |1, 0, 0〉 = ξ1ξ3

∫ ∞
0

r4e−3r/2a0dr

∫ π

0

sin3 θdθ

∫ 2π

0

sinϕeiϕdϕ

=

(
1

8a40π

)(
256a50

81

)(
4

3

)
(iπ)

= i
128

243
a0 (B.19)
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And so we now have all of the possible values for the inner products of 1s and 2p atomic
hydrogen wavefunctions. These results are summarized in Tab. B.1.

Inner Product Value Inner Product Value

〈2, 1, 0| ẑ |1, 0, 0〉 128
√

2

243
a0 〈1, 0, 0| ẑ |2, 1, 0〉 128

√
2

243
a0

〈2, 1, 1| x̂ |1, 0, 0〉 128

243
a0 〈1, 0, 0| x̂ |2, 1,−1〉 128

243
a0

〈2, 1, 1| ŷ |1, 0, 0〉 −i128

243
a0 〈1, 0, 0| ŷ |2, 1,−1〉 −i128

243
a0

〈2, 1,−1| x̂ |1, 0, 0〉 128

243
a0 〈1, 0, 0| x̂ |2, 1, 1〉 128

243
a0

〈2, 1,−1| ŷ |1, 0, 0〉 i
128

243
a0 〈1, 0, 0| ŷ |2, 1, 1〉 i

128

243
a0

Table B.1: All possible values of r̂ between the 1s and 2p states of atomic hydrogen.

Next we calculate the inner products associated with the angular momentum operator
L̂. We need to evaluate the following

〈2, 1,±1| L̂ |2, 1, 0〉 and 〈2, 1, 0| L̂ |2, 1,±1〉 , (B.20)

for a total of four terms since the states with different m` projection will have different
expectation values. Instead of using the expression for L̂ in Cartesian coordinates, we
instead use the raising and lowering representation of the angular momentum operators.
Recall that in general,

L̂ = L̂xe1 + L̂ye2 + L̂ze3 , (B.21)

and we recall that L̂z operating on any state of the form |α, `,m`〉 does not change the state,
but simply measures the projection of the angular momentum off the z-axis according to

L̂z |α, `,m`〉 = ~m` |α, `,m`〉 . (B.22)

Hence, the z-component of the operator L̂ does not change the state and so all inner prod-
ucts of the form 〈Ψ′| L̂z |Ψ〉 with |Ψ′〉 6= |Ψ〉 will be orthogonal. We are then left just with
the components of L̂ along x and y. We can rewrite these operators in terms of the raising
and lowering operators according to,

L̂x =
1

2

(
L̂+ + L̂−

)
, L̂y =

1

2i

(
L̂+ − L̂−

)
, (B.23)
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where the application of L̂± on some state follows the usual prescription,

L̂± |α, `,m`〉 = ~
√
` (`+ 1)−m` (m` ± 1) |α, `,m`〉 . (B.24)

This is to say that the raising and lowering operator just changes the projection m`. For the
states of interest here, we note

L̂+ |2, 1, 0〉 = ~
√

2 |2, 1, 1〉 , (B.25)

L̂− |2, 1, 0〉 = ~
√

2 |2, 1,−1〉 , (B.26)

L̂− |2, 1, 1〉 = ~
√

2 |2, 1, 0〉 , (B.27)

L̂+ |2, 1,−1〉 = ~
√

2 |2, 1, 0〉 . (B.28)

Using the above definitions, we can now evaluate L̂ between the different m` states. We
see

〈2, 1, 1| L̂ |2, 1, 0〉 = 〈2, 1, 1|
[

1

2

(
L̂+ + L̂−

)
e1 +

1

2i

(
L̂+ − L̂−

)
e2

]
|2, 1, 0〉

= 〈2, 1, 1|
[
~
√

2

2
e1 +

~
√

2

2i
e2

]
|2, 1, 1〉

=
~
√

2

2
(e1 − ie2) (B.29)

〈2, 1,−1| L̂ |2, 1, 0〉 = 〈2, 1,−1|
[

1

2

(
L̂+ + L̂−

)
e1 +

1

2i

(
L̂+ − L̂−

)
e2

]
|2, 1, 0〉

= 〈2, 1,−1|
[
~
√

2

2
e1 −

~
√

2

2i
e2

]
|2, 1,−1〉

=
~
√

2

2
(e1 + ie2) (B.30)

161



〈2, 1, 0| L̂ |2, 1, 1〉 = 〈2, 1, 0|
[

1

2

(
L̂+ + L̂−

)
e1 +

1

2i

(
L̂+ − L̂−

)
e2

]
|2, 1, 1〉

= 〈2, 1, 0|
[
~
√

2

2
e1 −

~
√

2

2i
e2

]
|2, 1, 0〉

=
~
√

2

2
(e1 + ie2) (B.31)

〈2, 1, 0| L̂ |2, 1,−1〉 = 〈2, 1, 0|
[

1

2

(
L̂+ + L̂−

)
e1 +

1

2i

(
L̂+ − L̂−

)
e2

]
|2, 1,−1〉

= 〈2, 1, 0|
[
~
√

2

2
e1 +

~
√

2

2i
e2

]
|2, 1, 0〉

=
~
√

2

2
(e1 − ie2) (B.32)

These expectation values are summarized in Tab. B.2.

Inner Product Value Inner Product Value
〈2, 1, 1| L̂ |2, 1, 0〉 ~

√
2

2
(e1 − ie2) 〈2, 1, 0| L̂ |2, 1, 1〉 ~

√
2

2
(e1 + ie2)

〈2, 1,−1| L̂ |2, 1, 0〉 ~
√
2

2
(e1 + ie2) 〈2, 1, 0| L̂ |2, 1,−1〉 ~

√
2

2
(e1 − ie2)

Table B.2: All possible values of L̂ between adjacent 2p states of atomic hydrogen.
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APPENDIX C

Out of Plane Scattering

After the orthogonality between the pump and detection beams is checked using the align-
ment prism (as described in Chapter 3) there is still work to be done to ensure that the
signal measured by the detector is either purely electric or purely magnetic. This can be
achieved by using pinholes to discriminate against out-of-plane scattering from reaching
the detector. The angle subtended by the pinholes should be selected to be sufficiently
small so as to extinguish unwanted scattering by several orders of magnitude. Misalign-
ment of the the beams or the use of pinholes with too large of an aperture will give rise to
a large out-of-plane signal, as we discuss below.

Figure C.1: A simplified geometry to determine the amount of out-of-plane scattering.

We consider a reference frame as that shown in Fig. C.1 in which the field Ein rep-
resents the field measured in our experiments and Eout represents an axial (out-of-plane)
component due either to large pinholes or misalignment. The angle this ray makes with the
optical axis of the input pump beam (i.e. ẑlab) can be written in terms of θ. The fields are
then
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Ein = Ein sin θẑlab + Ein cos θx̂lab , (C.1)

Eout = Ein · ẑlab = Ein sin θ , (C.2)

when Ein lies in the x̂lab− ẑlab plane. If Ein also has a component along ŷlab we get the more
general expressions

Ein = Ein sin θ cosϕẑlab + Ein cos θ cosϕx̂lab + Ein sinϕŷlab , (C.3)

Eout = Ein · ẑlab = Ein sin θ cosϕ . (C.4)

We can easily calculate the relative proportion of axially polarized electric-dipole radiation
coming from out-of-plane components by integrating E2

out over the desired solid angle.
Assuming pinholes that define the scattering geometry are adjusted to the same size, the
scattering solid angle is determined by the second pinhole alone, as depicted in Fig. C.2.

Figure C.2: The solid angle to be subtended by the choice of pinhole diameter.

Taking D to be the diameter of the second pinhole and R to be the distance to the
sample scattering volume, the detection solid angle is

dΩ =
π(D/2)2

4πR2
=

D2

16R2
. (C.5)

The angular limits corresponding to the detection cone are the same for ϕ and θ,

dϕ ↔ ± D

2R
, (C.6)

dθ ↔ ± D

2R
. (C.7)

The intensity of the axially-polarized signal
∣∣Eout,‖

∣∣2 is then given by
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∣∣Eout,‖
∣∣2 = |Ein|2 · 2 · 2

∫ D/2R

0

dθR2 sin θ

∫ D/2R

0

dϕ sin2 θ cos2 ϕ . (C.8)

We wish to compare this to the maximum electric dipole signal measured with the same
configuration. This is

|Eout,⊥|2 = |Ein|2 · 2 · 2
∫ D/2R

0

dθR2 sin θ

∫ π/2+D/2R

π/2

dϕ cos2 θ sin2 ϕ . (C.9)

Consequently, the ratio of axially-polarized to transversely-polarized intensity from the
electric dipole alone is

∣∣Eout,‖
∣∣2

|Eout,⊥|2
=

∫ D/2R
θ=0

dθ sin3 θ
∫ D/2R
ϕ=0

dϕ cos2 ϕ∫ D/2R
θ=0

dθ sin θ cos2 θ
∫ D/2R
ϕ=0

dϕ sin2 ϕ
. (C.10)

The various integrals are

∫
sin3 θdθ = − cos θ +

1

3
cos3 θ , (C.11)∫

cos2 ϕdϕ =

∫
1 + cos 2ϕ

2
dϕ =

ϕ

2
+

1

2

(
sin 2ϕ

2

)
, (C.12)∫

sin θ cos2 θdθ = −cos3 θ

3
, (C.13)∫

sin2 ϕdϕ =

∫
1− cos 2ϕ

2
dϕ =

ϕ

2
− 1

2

(
sin 2ϕ

2

)
. (C.14)

Hence

∣∣Eout,‖
∣∣2

|Eout,⊥|2
=

[
− cos θ + 1

3
cos3 θ

]D/2R
0

[
ϕ
2

+ 1
2

(
sin 2ϕ

2

)]D/2R
0[

−1
3

cos3 θ
]D/2R
0

[
ϕ
2
− 1

2

(
sin 2ϕ

2

)]π/2+D/2R
π/2

(C.15)

= 3 ·
[
2
3
− cos

(
D
2R

)
+ 1

3
cos3

(
D
2R

)] [
D
R

+ sin
(
D
R

)][
1− cos3

(
D
2R

)] [
D
R
− sin

(
π + D

R

)] . (C.16)

A more simple form of this expression may be determined by using the small-angle ap-
proximation and reducing the trigonometric arguments. However, it is just as well to nu-
merically evaluate the expression given some choice of D and R.

For the geometry used in our experiments, the pinhole was opened to D = 3.5 mm and
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was placed after the collimating lens which had a focal length of150 mm. Using D = 3.5

mm and R = 150 mm, this provided an excellent extinction between in-plane and out-of-
plane scattering to ∣∣Eout,‖

∣∣2
|Eout,⊥|2

= 6.8× 10−5 . (C.17)

Also of use is the angle made between the optical axis and the outer-most ray. Using these
same values, we find that θ is given by

θ = tan−1
(
D

2R

)
= 0.67◦ , (C.18)

which is very small.
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APPENDIX D

PMT Saturation

A major issue we encountered while building the ME scattering system was the effect of
detector saturation. The time spent diagnosing and solving this problem is worth an ap-
pendix, especially because this effect may have been overlooked in previous experimental
designs [15]. When using a photon-counting instrument, the detector will under-count the
true number of incident photons and the observed count rate will become increasingly non-
linear as the intensity of incident light increases [39]. This occurs because the output signal
pulse of the photomultiplier tube has a finite width associated with the speed of the elec-
tronics used to process the photocurrent generated by the incoming signal photons. The
speed of these electronics sets a minimum time interval, often referred to as a “dead time,”
over which only a single photon can be accurately counted by the device. This type of
device is often referred to as “paralyzable” or “semi-paralyzable” because there is a time
interval over which the detector is frozen or not able to count more signal [79]. The degree
of paralyzability determines the nonlinear saturation response, as we will discuss later.

Typical photon-counting devices have refresh rates of the order 10-100 MHz, corre-
sponding to dead time intervals of the order 10-100 ns [39]. For observing continuous light
sources such as light from stars or table-top optical experiments using continuous-wave
lasers, the maximum count rate for such devices is still rather high (107-108 counts/s for
devices with 10-100 MHz refresh rates). Count rates of this order still offer good signal
averaging without having to use long exposure times and also have the added benefit of
corresponding to low, but measurable, optical powers1. These signals may be detected
using low-light power meters that are not subject to the same dead time saturation. A
common high-sensitivity, low-light detector is the avalanche photodiode (APD), which is
a semiconductor-based device which provides signal gain through avalanche multiplica-
tion. These devices work well for observing low-light signals from continuous or periodic
sources with a high duty-cycle, but still have a minimum threshold for signal detection.

1For instance, 107 photons/second at 775 nm corresponds to about 2.5 pW of average power. Many
sensitive power meters can detect down to single fW power levels.
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However, when observing a weak signal from a periodic light source with a low duty-
cycle, such as an amplified femtosecond laser, the maximum count rate is determined by
the repetition rate of the laser and low-light power meters are no longer a viable option.

The temporal duration of pulses from the Clark CPA-2001 laser used in the scattering
experiments were of the order 180 fs, therefore limiting the detected signal to a single
photon per pulse since our PMT had a dead time of about 10 ns (180 fs � 10 ns). This
means that the device could not accurately detect more than one event during this time
interval (see Fig. D.1). Because the laser repetition rate was 1 kHz, the maximum count
rate in our experiment was limited to 1000 counts/s (i.e. 1 photon per pulse), as the time
between subsequent laser pulses (1 ms) is many orders larger than the dead time window
(see Fig. D.2). The lower range of the PMT is determined by the dark count rate, which
should be between 0-10 counts/s for a good thermo-electrically cooled detector such as the
one used in our experiment. Experimentally we had dark counts of the order 5 counts/s,
which set the dynamic range of our PMT to 5-1000 counts/s. For measuring scattering
from a typical liquid sample at modest input power (for example, CCl4 at I = 108 W/cm2)
the actual count rate2 of the electric signal was of the order 100,000 counts/s, clearly much
higher than the allowed 1000 counts/s, which caused the detector to saturate.

Figure D.1: A graphical representation of a 100 MHz photon-counting device being used
to measure single photon events from a repetitious 200 MHz source. During the dead time
window of 10 ns, only one of the signal photons will be counted and the resulting signal
will be 50% of the true signal.

We discovered the issue of detector dead time and saturation while making measure-
ments of electric Rayleigh scattering in several liquid samples. We noticed that for rela-
tively low intensities (106 W/cm2) the measured electric scattering was dipolar in nature

2Actual count rate here refers to what the counts would be without using filters to attenuate the signal.
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Figure D.2: A 1 kHz laser system with temporal pulses of the order 180 fs. The time
between subsequent pulses is many times more than the dead time interval (1 ms� 10 ns),
so we are limited to a single photon per pulse.

(i.e. a cosine-squared fit), but as we increased the input intensity, the dipole would acquire
a boxy-shape and its top would flatten out, as shown in Fig. D.3. Here we see that the
dipole begins to flatten out around 600 counts/s which corresponds to an input power of
about 107 W/cm2, though this should be 1000 counts/s3. The fact that the input intensity
was so low suggested that the saturation here was electronic and not optical in nature. To
test this, we ran the experiment again but with a ND filter of 0.6 in the signal arm, with the
expectation that lowering the signal into the detector would shift the saturation to a higher
relative input intensity. The results of this are shown in Fig. D.4, in which we no longer
see a flat-top saturation of the electric scattering. These two results are summarized in Fig.
D.5(a-b) which shows the saturation cure with no attenuation and then when the attenuating
filter is used.

Figure D.3: Electric dipole scattering patterns for increasing input intensity. As the input
power is increased, the dipole evolves into a boxy-shape. This was taken for CCl4. The
corresponding intensities should be up to about 2× 107 W/cm2 for the most intense plot.

3The code I was running did not normalize the count rate properly for these plots and should be multiplied
by a factor of 3/2.
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Figure D.4: Electric dipole scattering patterns in CCl4 using an OD0.6 filter in the signal
arm to attenuate the light reaching the PMT. The curves are no longer saturating at high
intensities, suggesting that the effect of saturation is purely electronic.

As the input intensity is increased beyond the immediate saturation regime, the boxy
nature of the measured scattering patterns begins to continually evolve into more obscure
shapes (see Fig. D.6). This is because the PMT responds in an increasingly nonlinear
fashion as more signal is sent to the cathode, meaning the device is semi-paralyzable. If
the device were completely paralyzed over the entire dead time window, then the measured
dipole patterns would flatten out completely and the saturation curve would be a plateau
at 1000 counts/s for all input intensity. Instead, the detector is clearly measuring multiple
signal events over a single dead time window, but in an unreliable fashion. The saturation
curve for this higher intensity regime is shown in Fig. D.5 (right), though we will show
later on a more complete measurement of this curve. The use of varying OD filters has
been the simplest fix for the saturation issue, but it is worthwhile to consider other options
in which we are not throwing away orders of magnitude of the signal.

There are essentially two options to consider when choosing an appropriate detector:
we can either use single-photon counting devices or low-light power meters. The benefit
of using a single-photon counting device is the extremely high sensitivity, however all
devices of this nature are limited to the dead time issue discussed above. Low power light
meters do not have the same saturation issue as photon-counting devices, but typically
have minimum power requirements for measuring small signals. Devices of this nature can
either be thermal, which are sensitive down to the µW level at best, or solid state, which
can be as sensitive as a few fW4. We can establish a range of average power levels that we

4For example, Thor Labs Si photodiode model PDF10A can go down to 10 fW level on its own and sub-
fW using a lock-in amplifier. Detectors like this, however, do not have appropriate bandwidth to use with low
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Figure D.5: Maximum electric dipole scattering (polarized fitted component) for no atten-
uation (left) and with attenuation of OD0.6 (middle) before the PMT. (Right) the response
curve for the “highly-saturated” regime.

Figure D.6: Measured electric dipole scattering for “highly-saturated” PMT regime.

anticipate wanting to measure with a simple calculation. We start by calculating the energy
of a single photon at the laser central wavelength, λ0 = 775 nm, using

E = ~ω =
hc

λ
=

1240 eV · nm
775 nm

= 1.6 eV , (D.1)

which can be converted to J,

1.6 eV · 1.6× 10−19 J
1 eV

= 2.56× 10−19 J . (D.2)

This energy can also be thought of as the “energy per count.” Next is to calculate the
average power seen by the detector, which is the total energy deposited into the detector
over a certain amount of time. For example, let’s assume we have a single photon per pulse
(1000 counts/s), so the average power is simply

repetition rate systems like the Clarks.
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Pave =
∆E

∆t

=
2.56× 10−19 J/count

1 s
· 1000 counts

= 0.256 fW . (D.3)

The typical count ranges that we are trying to resolve are between 10 counts/s and about
106 counts/s, which is typical when the input intensity is of the order 109 W/cm2. This
range corresponds to average power measurements from 2.56 aW to 0.256 pW, which is
still too low even for fW power meters to resolve. This suggests that the single-photon
counting scheme is still the best approach.

In staying with a single photon counting device, we are left with four options to explore
to potentially improve the dynamic range of our detector,

1. reduce the dark count rate,

2. increase the maximum allowed count rate,

3. apply a nonlinear correction to the saturated signal, or

4. reduce the signal level which reaches the detector.

The first of these options is perhaps the least fruitful in the sense that we are already at
a very low dark count rate, while the second of these options is the most desirable since
it would increase the dynamic range of the device up to 106 − 107 counts/s. The third
option is somewhat useful to think about, but would require us to implement a nonlinear
correction to all of the measured data in our experiments. This approach would result in
huge uncertainties in our data. The fourth option has been explained above and works fine
but requires us to throw away a lot of signal. In the following sections we discuss solutions
to each of these points.

D.1 Reducing the dark count rate

Reducing the dark count rate of our system would not result in much better dynamic range
for our detector, but it is worth describing what could be done to improve the noise rejec-
tion. The most direct solution would be to add a second PMT to the detection scheme and
run the pair of detectors in a coincidence circuit. This would give background noise rejec-
tion and would give good timing resolution to kill the random noise, as it would be possible
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to set the detection scheme to only record a signal when both detectors see a photon. How-
ever, the signal averaging in the experiment can already be improved simply by using a
longer exposure time for the PMT and averaging over more points in a given measurement.

D.2 Increasing the maximum count rate

The only way to increase the maximum count rate of our detector is to either stretch out
the signal pulse in time several orders more than the detector dead time or to find a photon-
counting detector that has a much faster refresh rate (or some combination of these two).
There do exist photon-counting detectors with faster refresh rates (i.e. shorter dead time
intervals), but at best these devices are only faster by an order of magnitude or so from our
current device, so this alone would not solve the problem. The most realistic alternative
would be to stretch the 180 fs signal pulses to many times more than the 10 ns detector dead
time. Note that even if the 180 fs pulse was stretched to 10 ns, we would still be limited to
1 photon per pulse, so it must be much longer. The number of photons per pulse that could
be detected would be given by the ratio

# of photons detected per pulse =
signal duration

detector dead time
, (D.4)

Figure D.7: Left: before being stretched, the ultrashort laser pulse fits inside the dead time
window. Right: if the pulse is stretched to several orders more than the dead time then more
counts per pulse can be recorded by the detector.

where the number of detected photons per pulse is rounded up to 1 if the ratio is less than
unity. So, for example, a 10× increase in count rate would mean that the signal pulse
would have to be stretched to 100 ns, making the max count rate 10,000 counts/s (see Fig.
D.7). Note that the maximum achievable count rate for a dead time-limited detector is the
continuous source limit (i.e. the signal pulses are stretched so much that adjacent pulses
overlap), which is 108 counts/s for a device with a 10 ns deadtime.
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As we know from ultrafast optics there are several techniques which can be implored to
lengthen the temporal duration of an optical pulse, which is really equivalent to increasing
the temporal delay between spectral components of the ultrashort pulse. Some common
techniques include diffractive gratings, prisms, or dispersion lines consisting of long seg-
ments of optical fiber. A less formal technique that can be used to separate the spectral
components is simply reflecting the pulse off a highly-dispersive material, such as a white
plastic (we see white because the material is dispersing the light). Following are brief
discussions of these techniques.

D.2.1 Ping-pong ball trick

In this first approach to implementing a dispersive mechanism in our detection arm, we
used a standard ping pong ball which we cut two ends from and inserted into one of our
interference filter mounts. The first segment of the ping pong ball had a small aperture
cut in the middle that was approximately the diameter of the focusing signal beam, while
the second segment of the ping pong ball had no holes. These two pieces comprised a
semi-permeable cavity into which the signal light would enter through the hole and then
reflect multiple times before eventually exiting the second plastic membrane. Upon each
reflection off one of the membranes, the spectral components of the pulse are assumed to
spread more in time. A simple prediction of the amount of added delay in the signal can be
calculated by knowing the separation of the two membranes, the transparency of the plastic
used, and the effect of dispersion upon each reflection. This trick is very similar to the
idea of an integrating sphere. The ping pong ball trick was tested using the liquid sample
CCl4 and looking at the electric Rayleigh scattering as a function of intensity to see if it
still saturated at 1000 counts/s. Unfortunately, the electric scattering still saturated at the
previous value of 1000 counts/s, suggesting that the semi-permeable plastic cavity did not
sufficiently stretch the signal pulses out in time.

D.2.2 Fiber dispersion line

After the ping pong ball proved to be unsuccessful, we decided to explore more traditional
methods for dispersing the optical pulse. At the top of this list was the inclusion of an
optical fiber dispersion line, which would rely on the dispersive nature of the fiber core
to separate the spectral components of the pulse in time. We consider two wavelength
components λ1 and λ2 (for instance the two spectral components that coincide with the
FWHM of the laser spectrum) of our ultrashort laser pulse and send them into the dispersive
fiber at the same time. We wish to separate them by the time interval ∆τ as they travel a
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distance d through the fiber,

∆τ =
d

vg(λ1)
− d

vg(λ2)

= d

(
1

vg(λ1)
− 1

vg(λ2)

)
, (D.5)

where

vg(λ) = vp

(
1 +

λ

n

dn

dλ

)
, (D.6)

is the group velocity and is essentially equal to the phase velocity, vp. Given that vg ≈ vp =

c/n and n = n(λ), we can rewrite the expression for the time interval as

∆τ =
d

c
[n(λ1)− n(λ2)] , (D.7)

from which it is immediately obvious that the ∆τ is caused entirely by the difference
in refractive index at the different spectral components of our laser pulse. This is one
way to calculate the temporal stretching of the pulse, but it requires that we know the
refractive indices of the glass at two well-defined spectral components of our laser pulse. It
is more common for fiber manufacturers to define the dispersive properties of the fiber by
the “dispersion parameter,” from which it is easy to determine the amount of fiber needed
to stretch a pulse by a certain length of time.

The dispersion parameter is typically derived from the formula for the group-velocity
dispersion (GVD) of an optical pulse, which is the phenomenon that the group velocity
of light in a transparent medium depends on the optical frequency. The GVD is typically
defined as5

GVD =
∂

∂ω

1

vg
=

∂

∂ω

(
∂k

∂ω

)
=
∂2k

∂ω2
, (D.8)

where k = ω/v = nω/c is the wavenumber. From this, the dispersion parameter is defined
as

Dλ = −2πc

λ2
GVD = −2πc

λ2
∂2k

∂ω2
, (D.9)

which has the units of s/m2, but is often specified in terms of ps/(nm·km). This parameter
depends on the wavelength and can be thought of as the ps increase in temporal duration

5The reference for this is RP-Photonics, GVD.
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per nm wavelength difference and kilometer propagation distance.
Typical fibers offered by companies such as Thor Labs specify their fibers in terms of

this dispersion parameter, which are all of the order 100-500 ps/(nm·km). For example, the
dispersion for the fundamental mode of a large numerical aperture multimode fiber (for the
FT-400 series fibers) is Dλ = −117 ps/(nm·km) at the Clark central wavelength of 775 nm.
The desired temporal width can be calculated by computing

∆τ = Dλ ·∆λ · d . (D.10)

So if we send our pulse, which has a bandwidth of about 5 nm, through a 1 km piece of
optical fiber, the separation in time will be of the order

∆τ = [−117 ps/(nm·km)] (5 nm) (1 km) = −585 ps , (D.11)

which is still 20× shorter than the PMT dead time. This means that we would need at
least 20 km of optical fiber just to stretch the signal pulse out to match the dead time
window, and only then could we start to increase the maximum count rate of our detector.
Fiber spools of this length are not practical to work with (something of the order 1-3 km
might be manageable), and this does not even consider the losses we expect to have when
propagating such long distances.

Hence, the only way we could implement a fiber dispersion line successfully into our
detection scheme is if we were able to also get a photon-counting detector that recovered in
tens of ps. This type of detector along with a dispersion line like the one described above
may work, but the coupling and propagation losses through the fiber make it hard to justify.
Other dispersive techniques such as gratings and prisms could possibly work, but we may
need long working distances and very expensive optics.

D.3 Applying a nonlinear correction

Another approach for correcting the dead time issue is to apply a nonlinear correction to
the measured signal. This is inherently a difficult thing to do, since nonlinear corrections to
data will introduce huge uncertainties and could potentially wash out all useful quadratic
information in the magnetic signals we are trying to measure. The first step in performing
this correction is to precisely measure the detector saturation over a large range of input
intensities. The detector saturation profile for a measurement of the analyzer set to pass
vertically-polarized light is shown in Fig. D.8. The two curves are from the same set of data
but are shown on (a) linear and (b) semilog-Y axes. The sample used as a scattering medium
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was benzonitrile, which was chosen arbitrarily in order to simulate typical experimental
conditions. For each intensity point, 20 points along each dipole were recorded, the PMT
exposure time was 1 second, and the number of periods for the photon counting box was
limited to 1. This data was taken using the original interference filter with λ0 = 780 nm,
∆λ = 10 nm, and tilted at 14◦ to pass the central laser wavelength of λc = 775 nm.
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Figure D.8: Saturation curves for the photomultiplier tube with the analyzer set to pass
vertical polarization. Both plots show the same data but (a) is on linear axes and (b) is on a
semilog-Y plot. In both curves it is possible to see at least two plateaus occurring at 9,000
and 17,000 counts/s. At least two more plateaus are present (at 1,000 and 3,000 counts/s)
but it is difficult to make these out from this data.

From the plots, we can see three distinct regions of saturation followed by small seg-
ments over which the detector appears to be mostly linear. There appears to be constant (or
saturated) segments at 3000, 9000, and 17,000 counts/s, each of which stay saturated over
a consecutively broader range of intensities. What is not possible to see in these saturation
curves is the initial saturation plateau, which occurs at 1000 counts/s (and can be seen in
the plots at the beginning of this section). As we can see from the plots for the analyzer in
the vertical position, the final saturation plateau at 17,000 counts/s does not appear to go
linear again, suggesting that this value must be the true device saturation.

If we were to apply a correction to our data, we would have to first measure the satu-
ration curve again, but with high enough precision to see the onset of the first saturation
plateau at 1000 counts/s. We also require that the signal being used to generate the satura-
tion curve is linear (such as electric Rayleigh scattering) and we have another technique that
can simultaneously measure the signal (or in our case, the optical power of the throughput
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beam) to confirm its linearity. We would then do a linear fit to a portion of the data below
the first saturation plateau, and extend this for all input optical intensities: this would be the
curve that we are trying to measure. We would then have to use a convolution in order to
correct our measured, nonlinear signal and make it match the linear fitted line. This would
have to be applied to every set of data that we process, and would have to be done in a way
that it does not rely on the input intensity but rather the overall count rate and the slope
of the linear portion of the measured signal (i.e. we would need to always be in a regime
where we knew what the linear electric Rayleigh scattering should look like).
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Figure D.9: (a) The first anticipated detector plateau occurs at a count rate of 1000 counts/s.
(b) Multiple other saturation plateaus occur at higher intensities. In both plots the dashed
black curve represents the actual linear signal we intend to measure.

Using the data from the above saturation curves, we can estimate the shape and onset
of the first saturation plateau that would reach the value of 1000 counts/s. The blue dots in
shown in Fig. D.9(a) is a fabricated set of data showing the first plateau saturation over an
arbitrary intensity range, while the dashed black line depicts the expected linear response
of the electric Rayleigh scattering. When this data and linear fit are shown on the same
plot window as the higher-order saturation plateaus, it becomes obvious what a dramatic
effect the saturation has on the anticipated signal. This is shown in Fig. D.9(b), where
the plot window has been extended to show the expected linear curve as well as the actual
measured curve. Note: the data points on this plot are made by eye estimates from the
measured graphs above. This is purely for demonstrative purposes.

D.4 Limiting the signal to the detector

Since none of the options discussed above were a viable solution to this problem, we im-
plemented a simple technique of limiting the amount of light to the detector. This was done
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using a neutral density filter placed in the beam line of the detection optics before the PMT.
This alternative simply attenuates the total signal seen by the detector so that the count rate
is maintained under the saturation limit of 1000 counts/s. This solution is incredibly simple
and straight-forward, but the major downside is that signal is being thrown away; this is
why such effort was put into coming up with an alternative solution. Note that the filters
used were Newport absorption filters and the optical density was rated at 564 nm. The
attenuation at the laser wavelength of 775 nm was measured using a reference beam and
a power meter. Measurements were made with and without the filter for a series of input
optical powers and the computed ratio yielded the attenuation at the laser wavelength.
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APPENDIX E

Details on SMC Rotation Stages

Beyond the experimental methods discussed in the main body of this thesis for zeroing
and calibrating the SMC rotation stages, special care had to be taken to ensure their repro-
ducibility and accuracy. Two problems were discovered early in the developmental stages
of the scattering experiment which were due to the SMC stages: (1) a large amount of in-
frared signal was reaching the detector with the laser blocked, and (2) there was an apparent
rotation in the angular position of the measured electric dipole maximum. Both of these
issues were resolved as explained in the following sections.

E.1 Infrared light leakage

Early on it became obvious there was a source of IR radiation that was making its way
to the PMT during our experimental runs. This was discovered when the dark counts that
were taken with the Clark-MXR laser blocked were sometimes higher than the actual signal
being measured from the scattering source. The source was quickly isolated to inside of
the SMC rotation stages, which was confirmed upon removing the outer cover and using
the IR viewer to look inside the stage. It was determined there was an IR diode and sensor
used for indexing the stage within the stage housing. This light was being refracting into
the analyzer as well as leaking out of the edges and causing the count rate to increase
dramatically. The solution was to wrap electrical tape around each of the mounts to cover
any holes that the light may leak out of.

A simple test was done to measure the amount of IR light reaching the detector from
each of the three rotation stages. For this test, the analyzer before the PMT was kept in the
vertical orientation and measurements were made as the λ/2-plate for polarization control
was rotated through 180◦. This measurement was made for four cases in order to isolate
sources of stray radiation that could get to the detector: (1) PMT closed, (2) analyzer only,
(3) analyzer and λ/2-plate (for polarization control), and (4) analyzer and both λ/2-plates
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Figure E.1: Sketch showing experimental outline for taking measurements of light leakage.
The locations labeled (1)-(4) correspond to regions where a large flat was used to block the
beam line.

(as shown in Fig. E.1). For each of these measurements, the beam path was blocked so that
light was shielded from each of the potential sources of radiation up the beam line from the
PMT. Instead of a sample, a mirror at 45◦ was used at the interaction point to direct any of
the stray light toward the PMT. This mirror was aligned using the Clark-MXR beam while
keeping the PMT shutter blocked.

The plots shown in Fig. E.2 show the total counts over a 1 s interval for each of the four
measurement cases described above with USB shutter open (Fig. E.2(a)) and USB shutter
closed (Fig. E.2(b)). As shown in Fig. E.1, the USB shutter was positioned along the beam
line between the two λ/2-plates and it has a small LED that remains lit while in use. From
the data shown in Fig. E.2, it is apparent that when the PMT shutter is open and only the
analyzer is unblocked from the beam path the count rate matches that of the device noise
(i.e. PMT shutter closed measurement). Then when the two λ/2 are unblocked, we see a
large increase in count rate which is different from when the shutter is open and when it is
closed. We can easily infer by looking at the data in Fig. E.2(a) and (b) that both λ/2-plates
(WP3 and WP2) each contribute an additional 10-15 counts/s while the LED from the USB
shutter apparently contributes an additional 35-40 counts/s. Although these numbers seem
relatively high, they will not be an issue when the experiment is run1. The fact that the

1This is because the experiment here is using a mirror to take most of the light coming along the beam
line and direct it toward the PMT. In the actual scattering experiment, the input laser light is much higher
than these small sources of light and so they are very unlikely to induce scattering in the dielectric sample.
We are most concerned with confirming that the analyzer which is inside the dark box with the PMT is not
adding to the signal.
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Figure E.2: Experimental check of external sources of radiation in scattering experiment
while blocking light at four key places along the beam line. The laser was off during these
measurements and (a) shows measurements for shutter closed and (b) for shutter open.

count rate is very low inside of the box is what matters.
We also looked at the total counts as a function of λ/2-plate angle over a 1 s interval

with the laser turned on but attenuated significantly by ND filters. The results of this are
shown in Fig. E.3. Here we see a cosine-squared dependence in the measured signals
both when the shutter is open and the shutter is closed. As shown in Fig. E.3(a) polarized
laser light is apparently leaking through the USB shutter and getting to the PMT, which
tells us the shutter does not completely extinguish the light. However, the ratio of light
getting through the shutter is about 1:500, which is incredibly low and therefore should
not be a contributing factor in experiments when the mirror is replaced with the sample.
Furthermore, although the data in Fig. E.3(b) follows a cosine-squared pattern, the PMT
must be highly saturated (see Appendix D), so the maximum value of 15× 104 counts/s is
a large under-estimate for the actual amount of signal reaching the detector, meaning the
ratio of 1:500 is much larger. The fact the device is being saturated also explains the spikes
in amplitude in the valleys of the measured signal in Fig. E.3(b): these are simply due to
the nonlinear, highly-saturated PMT response.

What we can conclude from these measurements is the importance of isolating stray
sources of IR radiation that could be contributing to our overall signals. By wrapping the
SMC rotation stages in black electrical tape, we have been able to reduce the amount of
light leakage from the IR diodes that are inside of the devices. Doing so has allowed us
to keep the dark noise inside the box equal to that of the noise of the PMT with its shutter
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Figure E.3: Experimental measurement of light leakage through USB shutter with laser on
for (a) shutter closed and (b) shutter open.

closed. The small contributions from sources outside of the box are not likely to contribute
to the measured signal when a sample is being analyzed, and due to their unpolarized
nature, can be easily subtracted out if needed. Furthermore, we have shown here that there
is some amount of leakage of light through the USB shutter, but we need not be concerned
due to its incredibly small signal relative to the beam when the shutter is opened.

E.2 Mechanical backlash

A second major issue we faced with the rotation stages was in the reproducibility of mea-
surements upon multiple rotations of the λ/2-plate used for the polarization control. This
became clear during the calibration stage when measurements of the transmitted optical
field through the analyzer for a range of input intensities showed maxima at different val-
ues of λ/2-plate orientation. The data, which should show a series of curves following
a cosine-squared dependence with maxima at the same angular position, showed a differ-
ence in about 1◦ for each successive measurement. This problem amounted to an issue
of indexing the rotation stage (in other words, mechanical backlash) and was resolved by
replacing the Newport SMC stage with a newer stage of the same type that did not show
the same problem2. An experiment was performed to qualitatively measure the slippage

2Because the slippage was only apparent through several uses of the rotation stage, the faulty mount was
exchanged with the newer SMC stage used for intensity control. This worked fine since this stage could
be calibrated every time an experiment was run and the exact calibration was less important since power
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and the aforementioned solution was implemented, the details of both are described below.
First, a simple experiment was conducted to quantify the degree of stage slippage upon

successive rotations of the λ/2-plate. The HeNe alignment laser was used as the light
source and the experiment consisted of placing the λ/2-plate for polarization rotation in the
HeNe alignment beam and detecting the signal using the PMT. The beam was attenuated
by about OD3.5 using the filter wheel and a piece of frosted tape replaced the sample to
act as a light diffuser (this brought the count rate down to about 7,000 counts/s, which was
fine for the cw laser being used). The IR filter used in experiments on the front of the PMT
was replaced with a narrow-bandpass filter centered on the HeNe wavelength. A series
of transmission curves were then recorded as the polarized light was rotated through 360◦

and detected by the PMT. After each curve was recorded, the rotation stage rotated in the
backward direction to reset its position before making the next set of movements. This
measurement was repeated 12 times and it was determined that the peak shifted upon each
successive measurement (see Fig. E.4). The curves were fit according to the function

(a) (b)

Figure E.4: (a) The raw counts as a function of angle for 12 successive measurements of
light through the analyzer. The asymmetry is likely due to the waveplate being for 780 nm
instead of 632 nm. (b) The fitted phase as a function of successive run number. If there
were no problem with the stage, this value should be constant.

I = A cos2 (2θ + ϕ) , (E.1)

and the fitted amplitudeA and phase ϕwere extracted. Figure E.4(b) shows the fitted phase
as a function of run number, and from this plot it is clear that there is a constant slippage of
the zero-point on the rotation stage of about 0.8◦ per run.

This issue was resolved when the faulty stage was replaced by a newer model of the

measurements were taken at each intensity point (see Methods chapter for more details).
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same stage. An identical measurement was done to check the position of the peaks upon
successive measurements of rotated polarized light through the analyzer. The only differ-
ence is that this experimental test used the Clark-MXR beam and included transmission
through the intensity control system (as outlined in the Methods chapter). The IR interfer-
ence filter was used and a mirror at 45◦ replaced the sample. The pulsed beam was strongly
attenuated and a series of 7 intensity measurements were made as the λ/2-plate rotated the
light through 360◦. Measurements were recorded for the analyzer in four positions: vertical
up, vertical down, horizontal left, and horizontal right. The results of this are shown in Fig.
E.5, and we can that there is no longer any apparent shift in the position of the maxima. As
discussed in the previous section, the data points in the valleys of the transmission curve
are due to nonlinear PMT saturation and would not be present at lower count rates. Fur-
thermore, the asymmetry seen in the experiment with the HeNe beam is no longer present
since the laser wavelength matches the λ/2-plate. The set of zeros in the plot of Fig. E.5(b)
are present because the laser beam was blocked while the experiment was still running.
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Figure E.5: Experimental test of transmitted polarized light through the analyzer in vertical
(a) and horizontal (b) orientations. There is no longer any apparent slippage of the mechan-
ical stage. In both plots, the horizontal axis is the angle in radians and the vertical axis is
the total number of counts. A 3 s count interval was used.
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APPENDIX F

Determining the Maximum Intensity from a
Gaussian Pulse

We can calculate the peak intensity of a pulse of light if we measure the average power,
repetition rate, cross-sectional area, and temporal bandwidth. A convenient back of the
envelope method of approximating the max intensity is to simply divide the average power
by the rep. rate, beam area, and pulse duration,

Imax ≈
Average Power

(Rep. Rate) (Beam Area) (Pulse Duration)
. (F.1)

This expression is an approximation because it assumes that the intensity is essentially
evenly-distributed throughout the “volume” created by the product of the cross-sectional
area with the pulse duration. In fact, the beam has a Gaussian distribution about each
direction within this volume with its maximum value being in the center. Because of this
a correction factor must be determined if we wish to derive the true value for Imax. This
issue is further compounded by the fact that there is not always a consistent measure for
what is considered the width of a Gaussian.

All that matters for the sake of this discussion is that the values we measure in the
lab can accurately be included in the expression used to calculate Imax. Most measuring
devices will measure either the full-width at half-max (FWHM), the full-width at 1/e2, or
some combination of deviations ±2σ, ±4σ, etc. The Thor-Labs beam camera that we use
measures the full-width at 1/e2, which is the width at about 13.5% of the peak amplitude.
The relationship between this width and the FWHM is

2w =

√
2√

ln 2
FWHM , (F.2)

where 2w is the full-width of the beam at 1/e2. The relationship between the deviation σ
of a Gaussian and the FWHM,
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FWHM = 2
√

2 ln 2σ . (F.3)

So then the width at 1/e2 is simply

2w =

√
2√

ln 2
2
√

2 ln 2σ = 4σ , (F.4)

and so the actual width at 1/e2 is really just the width of the beam at ±2σ. Now we know
that a single standard deviation is simply the measured width divided by four,

σ =
2w

4
. (F.5)

Take care to note that the value displayed by the camera is the full width, which is 2w, not
w.

Now that we have a way to relate the measured beam width from the lab to a some
standard deviation, we must determine what value of the width to use in order to correctly
identify the effective radius. Here “effective radius” refers to the proportion of the measured
width we can use so the peak of the Gaussian corresponds to the peak of the top-hat function
we are essentially approximating it as. If this logic is unclear, consider two possible cases.
In case 1, the radius is taken to be half of the FWHM and in case 2, the radius is taken to be
half of the 1/e2 width. The beam is identical in both cases, but in case 1 the peak intensity
will be higher since the radius is smaller, and in case 2 the peak intensity will be lower.
This leads back to the question: what is the appropriate radius so that the value calculated
for Imax is the true value?

The easiest way to do this is by plotting a normalized Gaussian function (i.e. the area
underneath is unity) along with a series of top hat functions with varying dimensions, but
which each have area unity. This allows one to see which radius (or width dimension)
would give an appropriate amplitude dimension. Here we assume a normalized Gaussian
function

G(x, σ) =
1

σ
√

2π
e−x

2/2σ2

, (F.6)

which is a function of position x and standard deviation σ. Figure F.1 shows the result of
plotting several boxes with varying width on the same axes as the normalized Gaussian.
The corresponding widths of the boxes are as follows: blue = 2σ, purple = 2.5σ, green =
3σ, and red = 2σ. Clearly the blue box has an amplitude which is about 25% higher than
the Gaussian, so we would be over-approximating the actual power in the beam. On the
other hand, the red box has an amplitude about 50% lower than the Gaussian, so here we
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would be under-approximating the power in the beam. Clearly the best choice is for the
purple box, which has a half-width of 1.25σ. It is interesting to note that this is close to
the value that most people probably use, which is the FWHM, which has a half-width of
FWHM/2 =

√
2 ln 2 = 1.18σ.
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Figure F.1: A normalized Gaussian function with different top hat functions of varying
height and width. Here the color codes correspond to widths of: blue = [−σ, σ], purple =
[−1.25σ, 1.25σ], green = [−1.5σ, 1.5σ], and red = [−2σ, 2σ]. Here σ = 1, but the axes
simply scale for any other value.

So, basically by inspection, we have found the optimal radius to be 1.25σ when comput-
ing the cross-sectional beam area. This idea is easily extended to 2-dimensional Gaussian
distributions, which would be fitted according to

f(x, y) =
1

2πσxσy
e−x

2/2σ2
xe−y

2/2σ2
y , (F.7)

and the cross-sectional area which best represents the true value of the peak intensity will
be

Beam Area = π (1.25σx) (1.25σy) =

(
5

4

)2

πσxσy . (F.8)

188



This can now be used to help us write down the pulse energy density (or the pulse energy per
unit area). The pulse energy is calculated by dividing the average power by the repetition
rate of the laser,

E = Pulse Energy =
Average Power

Rep. Rate
. (F.9)

Note this quantity has units of J (or can be thought of as J/pulse). The pulse energy density
is then just this number divided by the beam area from above,

Pulse Energy per Area =

(
4

5

)2 E
πσxσy

. (F.10)

Finally, we need to determine the correct way to incorporate the temporal measurement
of the pulse. The lab measurement for the pulse duration is provided from the MIIPS system
after compression and the measured value is the FWHM. We will assume the intensity of
the pulse has a temporal dependence that can be approximated by a Gaussian function,

I(t) = Imaxe
−t2/2σ2

t , (F.11)

where

2
√

2 ln 2σt = FWHMt (F.12)

is the temporal FWHM of the intensity. Integrating I(t) over the entire duration of the
pulse gives us the total energy per area of a single pulse, which is precisely what we solved
for above in Eq. (F.10). Putting these two equations together, we see(

4

5

)2 E
πσxσy

=

∫ ∞
−∞

Imaxe
−t2/2σ2

t dt . (F.13)

Solving for Imax we have

Imax =

(
4

5

)2 E
πσxσy

[∫ ∞
−∞

e−t
2/2σ2

t dt

]−1
. (F.14)

The integral in the square brackets evaluates to∫ ∞
−∞

e−t
2/2σ2

t dt =
√

2πσt . (F.15)

Putting these pieces all together, we have
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Imax =

(
4

5

)2 E
πσxσy

1√
2πσt

, (F.16)

which is a general expression for the maximum intensity in terms of σx, σy, and σz.
A final step is to relate this expression to the quantities measured in the lab. First we

can rewrite the spatial standard deviations in terms of the measured full-width at 1/e2 from
the beam camera. Recall from above that the full-width at 1/e2 is 2w and is equivalent to
2σ from the center (i.e. 2w = 4σ). Because the measurement is the full width, we define a
new variable to remove the factor of 2,

Wx = 2wx = 4σx , (F.17)

Wy = 2wy = 4σy , (F.18)

so then

σx = Wx/4 , (F.19)

σy = Wy/4 . (F.20)

We also may replace the temporal deviation σt using the relationship between this and the
FWHM along t. The intensity then becomes

Imax =

(
4

5

)2 E42

πWxWy

2
√

2 ln 2√
2πFWHMt

(F.21)

=
512

25

√
ln 2

π

E
(πWxWy) (FWHMt)

. (F.22)

It is essential to realize here that Wx and Wy are the measured values of the beam full-
width and the FWHMt is the measured value from the MIIPS compressor. This equation
is written in this way only as a convenience for relating measurements from the lab to the
actual intensity.

A final check can be made to see how much this analysis actually changes the value
of Imax from the back of the envelope approximation established at the beginning of this
Appendix. Grouping together the numerical factors (and substituting 2wx,y back in for
Wx,y) we see
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512

25

√
ln 2

π

1

4
= 2.4 . (F.23)

This means the calculated values for intensity could be off by as much as a factor of 2.4.
Note that this factor comes almost completely from the correct choice of cross-sectional
beam radii. The correction to the pulse duration is simply

2√
2π

√
2 ln 2 = 0.94 . (F.24)
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