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On (Re-scaled) Multi-Attempt Approximation of
Customer Choice Model and Its Application to

Assortment Optimization

Hakjin Chung, Hyun-Soo Ahn, Stefanus Jasin
Stephen M. Ross School of Business, University of Michigan

Ann Arbor, MI 48109, hakjin, hsahn, sjasin@umich.edu

Motivated by the classic exogenous demand model and the recently developed Markov chain model, we

propose a new approximation to the general customer choice model based on random utility called multi-

attempt model, in which a customer may consider several substitutes before finally deciding to not purchase

anything. We show that the approximation error of multi-attempt model decreases exponentially in the

number of attempts. However, despite its strong theoretical performance, the empirical performance of multi-

attempt model is not satisfactory. This motivates us to construct a modification of multi-attempt model

called re-scaled multi-attempt model. We show that re-scaled 2-attempt model is exact when the underlying

true choice model is Multinomial Logit (MNL); if, however, the underlying true choice model is not MNL,

we show numerically that the approximation quality of re-scaled 2-attempt model is very close to that of

Markov chain model. The key feature of our proposed approach is that the resulting approximate choice

probability can be explicitly written. From a practical perspective, this allows the decision maker to use

off-the-shelf solver, or borrow existing algorithms from literature, to solve a general assortment optimization

problem with a variety of real-world constraints.
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1. Introduction

Assortment optimization is one of the most important problems in operations and marketing; it is

both mathematically challenging and practically prevalent. Despite a few decades of research on

the topic, the pursuit of a new approach that can efficiently solve a general assortment optimization

problem that takes into account a wide variety of real-world business constraints is still very vibrant.

There are many reasons why assortment optimization is difficult. First, the estimation of customer
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choice behavior itself is far from trivial — it continues to be one of the most important topics in

the academic literature (Hess and Daly 2014). Second, even after a customer choice model has been

successfully estimated, the resulting model is sometimes difficult to optimize, which limits how a

decision maker can operationalize assortment, pricing, and inventory decisions based on the solution

of a model. Our work is motivated by these very concerns. Working under the framework of mixed

logit model (this assumption is without loss of generality since McFadden et al. (2000) show that

any random utility model can be approximated to any degree of accuracy by a mixed logit model),

we propose an approximation scheme that improves the approximation quality of the so-called

exogenous demand model (see below) and show that this approximation can be potentially used

to solve a general assortment optimization problem with a wide variety of real-world constraints.

Exogenous demand model is perhaps the most popular choice model used in the operations

literature. It assumes that each customer behaves in the following way: when faced with an assort-

ment of products (an offer set), she first looks for her favorite product in the assortment; if this

product is not available, she considers a substitute product, and if this substitute product is also

not available, she will not purchase anything. Since a customer is only making two attempts when

purchasing a product, we also call this 2-attempt model. As explained in Kök and Fisher (2007),

the assumption that a customer does not consider further substitutions in her search is not neces-

sarily restrictive, at least in some settings. The strengths of exogenous demand model are obvious:

Not only it is intuitively appealing, it also provides a tractable estimation and optimization frame-

work. (We are not aware of works that study the theoretical complexity of assortment optimization

under exogenous demand model. However, per our experience on running numerical experiments

with exogenous demand model, its Mixed Integer Program (MIP) formulation can be solved very

efficiently within a few seconds for a reasonable sized problem; see Table 2.) The main weakness

of exogenous demand model is that, when many customers are willing to consider more than one

substitute, it does not necessarily provide an accurate approximation of the true choice model.

Thus, an important research question is how to improve the approximation quality of exogenous

demand model without significantly compromising its strengths.
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The most relevant advancement to the above question that we are aware of is made recently by

Blanchet et al. (2016). (There exist other approximation schemes such as ranking-based model,

see Bertsimas and Mǐsic (2016) for literature review; however, these models are not the focus of

our work.) The authors propose an iterative Markov search model where a customer does not stop

after the first substitution attempt but continues searching until either she finds a product that she

likes within the assortment or she hits the no-purchase option. More precisely, they interpret the

substitution probability as a transition probability in a Markov chain where both the no-purchase

option and the set of products in the assortment act as the absorbing states. The authors show that

their proposed model approximates the true choice model well, and they develop a polynomial-time

algorithm to solve the corresponding unconstrained assortment optimization problem. Although

they do not benchmark the performance of Markov chain model against the exogenous demand

model, we show using numerical experiments in Section 2.3 that the former significantly improves

the accuracy of the later. Moreover, since Markov chain model requires exactly the same number

of parameters as exogenous demand model, it is as tractable as exogenous demand model from the

estimation perspective.

The main drawback of Markov chain model is that its corresponding choice probability cannot

be explicitly written. This makes it rather difficult for practitioners to use Markov chain model

in conjunction with off-the-shelf optimization solvers, especially for the setting of assortment opti-

mization with constraints. As noted in Bertsimas and Mǐsic (2016), firms typically have many

business rules that limit the set of possible assortments. To name a few, a firm may have a limited

shelf space which dictates that only a finite number of products can be displayed at any time; a

firm may require that some products be offered together; and, a firm may also require that only

a number of products within a certain category to be offered at any time, etc. There are two typ-

ical approaches taken by researchers to solve assortment optimization problem with constraints.

The first approach is what Bertsimas and Mǐsic (2016) call the fix-then-exploit approach, where

the researchers first fix a particular choice model and then exploit the structure of the resulting

assortment problem to develop either an exact or approximate solution (e.g., Rusmevichientong
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et al. 2010 and Désir et al. 2015). The second approach is the so-called Mixed Integer Optimization

(MIO) approach where an assortment problem is formulated as an MIP (or its variant) and then

solved using an off-the-shelf MIP solver; this approach typically requires that the corresponding

choice probability can be explicitly written. Note that while the fix-then-exploit approach allows

researchers to develop a highly efficient algorithm for a specific model, the MIO approach is highly

flexible in the sense that no problem-specific effort to develop a specialized algorithm is required

and practitioners can simply declare their constraints to the solver. Since the approximate choice

probability under Markov chain model cannot be explicitly written, a specific algorithm needs to

be developed to solve a constrained assortment optimization problem under Markov chain model.

Indeed, this is the approach taken by Feldman and Topaloglu (2014) and Désir et al. (2015), where

the authors focus on specific forms of constraints. In particular, Feldman and Topaloglu (2014)

develop a linear programming algorithm in the context of the network revenue management prob-

lem, and Désir et al. (2015) develop constant factor approximations for assortment optimization

problem with the cardinality and capacity constraints. In contrast to this, constrained assortment

optimization problems under exogenous demand model, at least for the types of constraint dis-

cussed above, can be easily formulated as a Mixed Integer Linear Program (MILP) and solved

using an off-the-shelf solver. (Per our numerical experiments in Section 3, the resulting MILP can

be solved within a few seconds for a reasonable sized problem.)

Our contribution. In this work, we wish to bridge the gap between the classical exogenous

demand model and the recently introduced Markov chain model. The central question we ask is

whether it is possible to improve the approximation quality of exogenous demand model without

sacrificing its tractability and versatility in dealing with real-world constraints. We are particularly

interested in a type of approximation whose corresponding choice probability can be explicitly

written as it allows practitioners to simply use off-the-shelf optimization solvers to solve a variety

of constrained assortment problems without having to develop a specific algorithm for a specific

set of constraints. Thus, our work shares the same spirit as the recent work of Bertsimas and Mǐsic

(2016). (Our work differs from theirs in that they use a ranking-based approximation whereas we
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use a new multi-attempt approximation.) We first study the approximation quality of a natural

generalization of exogenous demand model, called multi-attempt model. To be precise, assuming

that all customers are willing to consider at most k− 1 substitutes, how much improvement does

this extra flexibility give, in general, as a function of k? We show that the approximation error

of multi-attempt model relative to the true choice probability decreases exponentially in k. This

confirms our intuition that capturing higher substitution dynamics leads to a better approximation.

Unfortunately, while the theoretical bound of multi-attempt model is encouraging, its empirical

performance is somewhat discouraging as it heavily depends on the number of products n. (Per

our results in Table 1, for n= 10, 4-attempt model is better than Markov chain model; for n= 100,

even 5-attempt model is still a lot worse than Markov chain model. This is not satisfactory because

k-attempt model with k ≥ 3 requires a lot more parameters than Markov chain model.) Upon a

closer examination, however, it turns out that multi-attempt model consistently underestimates

the true choice probability, which leads to its poor empirical performance. This motivates us to

construct a modified multi-attempt model, which we call re-scaled multi-attempt model. The idea is

to start with the original k-attempt model and then re-scale it with a non-constant factor to make

the sum of probability equals one. The proposed re-scaling significantly improves the performance

of the original multi-attempt model: If the true choice model is Mutinomial Logit (MNL), we show

that re-scaled k-attempt model is exact for all k ≥ 1 (this result is reminiscent of the result in

Blanchet et al. (2016) that Markov chain model is exact for MNL); if, on the other hand, the

true choice model is not MNL, our numerical experiments show that the approximation quality of

re-scaled 2-attempt model is very close to Markov chain model and the approximation quality of

re-scaled 3-attempt consistently dominates the Markov chain model (see Table 1).

Both re-scaled 2-attempt and Markov chain models share exactly the same number of parameters;

and yet, the corresponding choice probability under re-scaled 2-attempt model can be explicitly

written. This allows us to more easily formulate an assortment optimization problem with con-

straints. In Section 3, we show that the resulting constrained assortment optimization problems

(with typical constraints discussed before) under re-scaled 2-attempt model can be written as a
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Mixed Integer Linear Fractional Program (MILFP). Although MILFP in general is difficult to

solve, many important problems in engineering and science can be formulated as MILFPs; these

have motivated intensive researches in the scientific community to develop efficient methods (both

exact and approximate) for solving large-scale MILFPs (e.g., Tawarmalani and Sahinidis 2002 and

Yue et al. 2013). On another note, the MILFP formulation of assortment optimization under re-

scaled 2-attempt model can be equivalently transformed into a 0-1 quadratic programming. Again,

although 0-1 quadratic programming is in general difficult to solve (i.e., from theoretical complexity

perspective), we do have a 50-year deep of literature on the topic of approximation algorithm for

0-1 quadratic programming (e.g., Kochenberger et al. 2014 ). Thus, we are not lacking of sophisti-

cated algorithms that can be used to solve the resulting assortment problem under our proposed

approach. Indeed, this is another advantage of having an explicit expression of approximate choice

probability as it allows us to borrow tools from existing literature in addition to using off-the-shelf

solvers. For the purpose of numerical illustrations, in this work, we will only focus on one approach,

the so-called Dinkelbach algorithm. We discuss this in more detail in Section 3.

2. Choice Approximation Models

In this section, we describe both the multi-attempt and re-scaled multi-attempt models. In addition,

we also provide results from numerical experiments to compare the approximation accuracy of these

models with Markov chain model. We denote the universe of n products by the set N = {1, ..., n}

and the no-purchase alternative as product 0. Since McFadden et al. (2000) show that any random

utility choice model can be approximated by a mixture of Multinomial Logits (MNLs) at any

degree of accuracy, we will assume that the underlying true model is a mixture of M MNL models.

Let θm, m= 1, . . . ,M , denote the probability that a random customer belongs to segment m (by

construction, we must have θ1 + ...+θM = 1) and let the MNL parameters for segment m be denoted

by uim ≥ 0 for i ∈N0 =N ∪ {0} and m= 1, ...,M . Then, for any offer set S ⊂N , the true choice

probability of product i∈ S0 := S ∪{0} is given by

π(i,S) =
M∑
m=1

θm
uim∑
j∈S0 ujm

.
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2.1. Multi-Attempt Model

Per our discussions in Section 1, under the k-attempt model, each customer considers up to k− 1

substitutes, beyond her favorite product, before she decides to not purchase anything. To illustrate,

suppose that N = {1,2,3,4} and S = {1,2}. Under 2-attempt model, a customer will purchase

product 1 if either (1) it is her favorite product among all four products and it is preferred to

the no-purchase alternative, or (2) she likes either product 3 or 4 best but unfortunately nei-

ther of these is included in S and her next favorite product is 1. Let Ui denote the utility of

product i and let S̄ denote the complement of S. Mathematically, we can write the probabil-

ity that a customer will purchase product 1 as follows: π̂2(1, S) = P (U1 >max{U0,U2,U3,U4}) +

P (U3 >U1 >max{U0,U2,U4}) + P (U4 >U1 >max{U0,U2,U3}) := λ1 + λ31 + λ41. Note that this

choice probability is the same as the choice probability under the classic exogenous demand model.

Similarly, under 3-attempt model, a customer will purchase product 1 if either (1) it is her favorite

product among all four products and the no-purchase alternative, or (2) it is her second favorite

product after either product 3 or 4, or (3) it is her third favorite product after both products 3

and 4. We can write the probability that a customer will purchase product 1 as follows:

π̂3(1, S) = P (U1 >max{U0,U2,U3,U4})

+ P (U3 >U1 >max{U0,U2,U4}) +P (U4 >U1 >max{U0,U2,U3})

+ P (min{U3,U4}>U1 >max{U0,U2})

:= λ1 +λ31 +λ41 +λ{3,4}1.

More generally, given a set of products N and an offer set S, the probability that a customer

will purchase product i∈ S0 under k-attempt model is given by

π̂k(i,S) = λi +
∑
j1∈S̄

λj1i +
∑

{j1,j2}⊆S̄

λ{j1,j2}i + · · · +
∑

{j1,j2,...,jk−1}⊆S̄

λ{j1,j2,...,jk−1}i,

where λ{j1,j2,...,jk−1}i is the probability that a customer values product j ∈ {j1, j2, . . . , jk−1} better

than i and product j′ ∈N −{j1, j2, . . . , jk−1}∪ {0} worse than i. That is,

λ{j1,j2,...,jk−1}i = P
(
min{Uj1 , . . . ,Ujk−1

}>Ui ≥max{Ul : l ∈N \{j1, j2, . . . , jk−1}∪ {0}}
)
.
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Since a customer makes a purchase as soon as her next favorite product is in S, she only needs

to consider at most |S̄| substitutes (beyond her most favorite product) before making a purchase.

This means that, under multi-attempt model, we must have: π̂|S̄|+1(i,S) = π(i,S) for all i ∈ S0.

Moreover, by construction, we also have π̂k(i,S)<π(i,S) for all k < |S̄|+ 1 and i∈ S0.

Error bound for multi-attempt model. We now derive an error bound for k-attempt model.

Let umax(S̄) be the maximum probability that the most favorite product of a random customer

from any segment m= 1, . . . ,M is included in a compliment of offer set S, S̄ :=N \S∪{0}. That is,

umax(S̄) = maxm
∑

i∈S̄ uim. The following theorem tells us that the relative error of multi-attempt

model decreases exponentially with the number of attempts k.

Theorem 1. For any S ⊂N and i∈ S0, we have:

(
1−umax(S̄)k

)
·π(i,S) ≤ π̂k(i,S) ≤ π(i,S). (1)

Proof. Per our discussions above, π̂k(i,S) = π(i,S) for k ≥ |S̄|+ 1. So, we only need to consider

the case k ≤ |S̄|. We first consider the case where the true choice model is MNL with parameters

{u0, u1, ..., un},
∑n

i=0 ui = 1. Note that, for any preference sequence j1, j2, . . . , jl, i∈N , we have:

P (Uj1 >Uj2 > · · ·>Ujl >Ui ≥max{Um :m∈N \{j1, j2, . . . , jl}∪ {0}})

=

(
uj1

1−uj1

)(
uj2

1−uj1 −uj2

)
· · ·
(

ujl
1−uj1 − · · ·−ujl

)
·ui.

The above probability is an immediate consequence of the assumption of i.i.d noises with Gumbel

distribution in the construction of MNL model and not difficult to prove (we omit the details).

Given the above formula, we can bound π̂k(i,S) as follows:

π̂k(i,S) = λi +
∑
j1∈S̄

λj1i +
∑

{j1,j2}⊆S̄

λ{j1,j2}i + · · · +
∑

{j1,j2,...,jk−1}⊆S̄

λ{j1,j2,...,jk−1}i

=
k−1∑
l=0

∑
j1,··· ,jl∈S̄

(
uj1

1−uj1

)(
uj2

1−uj1 −uj2

)
· · ·
(

ujl
1−uj1 − · · ·−ujl

)
·ui

≥
k−1∑
l=0

∑
j1,··· ,jl∈S̄

(
uj1

1−uj1

)(
uj2

1−uj2

)
· · ·
(

ujl
1−ujl

)
·ui
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=
k−1∑
l=0

l! ·

[ ∑
{j1,··· ,jl}⊆S̄
j1<j2<···<jl

(
uj1

1−uj1

)(
uj2

1−uj2

)
· · ·
(

ujl
1−ujl

)
·ui

]

=
k−1∑
l=0

l! ·

[ ∑
{j1,··· ,jl}⊆S̄
j1<j2<···<jl

(
uj1 +u2

j1
+ · · ·

) (
uj2 +u2

j2
+ · · ·

)
· · ·
(
ujl +u2

jl
+ · · ·

)
·ui

]

= ui ·

[
0! + 1!

∑
j1∈S̄

(uj1 +u2
j1

+ · · · ) + 2!
∑

{j1,j2}⊆S̄
j1<j2

(uj1 +u2
j1

+ · · · )(uj2 +u2
j2

+ · · · )

+3!
∑

{j1,j2,j3}⊆S̄
j1<j2<j3

(uj1 +u2
j1

+ · · · )(uj2 +u2
j2

+ · · · )(uj3 +u2
j3

+ · · · ) + · · ·

+(k− 1)!
∑

{j1,··· ,jk−1}⊆S̄
j1<j2<···<jk−1

(uj1 +u2
j1

+ · · · ) · · · (ujk−1
+u2

jk−1
+ · · · )

]

≥ ui ·

[
1 +

∑
j1∈S̄

uj1 +

(∑
j1∈S̄

u2
j1

+ 2!
∑

{j1,j2}⊆S̄
j1<j2

uj1uj2

)

+

(∑
j1∈S̄

u3
j1

+ 2!
∑

{j1,j2}⊆S̄
j1<j2

(u2
j1
uj2 +uj1u

2
j2

) + 3!
∑

{j1,j2,j3}⊆S̄
j1<j2<j3

uj1uj2uj3

)
+ · · ·

+

(∑
j∈S̄

uk−1
j1

+ 2!
∑

{j1,j2}⊆S̄

∏
t1+t2=k−1

ta∈N

ut1j1u
t2
j2

+ · · ·+ (k− 1)!
∑

{j1,··· ,jk−1}⊆S̄
j1<···<jk−1

uj1 · · ·ujk−1

)]

= ui ·

[
1 +

(∑
j∈S̄

uj

)
+
(∑
j∈S̄

uj

)2

+
(∑
j∈S̄

uj

)3

+ · · ·+
(∑
j∈S̄

uj

)k−1
]
,

where the fourth equality follows from identity x
1−x =

∑∞
n=1 x

n for all x∈ [0,1] and the last inequality

follows by collecting polynomial terms with the same degree.

Now, if the true choice probability is a mixture of M MNL models with parameters {uim} and

{θm} for all i∈ S0 and m∈ {1, · · · ,M}, applying the result above, we can bound π̂k(i,S) as follows:

π̂k(i,S) ≥
M∑
m=1

θmuim ·

[
1 +

∑
j∈S̄

ujm + · · ·+
(∑
j∈S̄

ujm

)k−1
]

=
M∑
m=1

θmuim ·
1−

(∑
j∈S̄ ujm

)k
1−

(∑
j∈S̄ ujm

)
≥
(

1−max
m

um(S̄)k
)
·
M∑
m=1

θm ·
uim

1−
(∑

j∈S̄ ujm

)
=
(
1−umax(S̄)k

)
·π(i,S).
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This completes the proof. �

Note that multi-attempt model best approximates the true choice model when umax(S̄) is small.

Intuitively, this is likely to happen when S is large. As mentioned in Section 1, although the theo-

retical bound of multi-attempt model is encouraging, we will show that its empirical performance

is not satisfactory: see numerical results in Table 1. This motivates us to construct a modified

multi-attempt model, called re-scaled multi-attempt model which we discuss next.

2.2. Re-scaled Multi-Attempt Model

Under the re-scaled k-attempt model, we approximate π(i,S) with π̂Rk (i,S) defined below:

π̂Rk (i,S) =
π̂k(i,S)∑
j∈S0 π̂k(j,S)

.

Two comments are in order. First, since the re-scaled k-attempt model uses the k-attempt

model as its primitive, they share the same set of parameters. In particular, all three models –

2-attempt model, re-scaled 2-attempt model, and Markov chain model – share exactly the same set

of parameters. Second, the re-scaled 1-attempt model is identical to MNL approximation. Thus, if

the underlying true choice model is MNL (i.e., there is only 1 segment of customer), the re-scaled

1-attempt model is exact.

Analogous to umax(S̄), we define umin(S̄), the minimum probability that the most favorite prod-

uct of a random customer from any segment m = 1, . . . ,M is included in S̄. That is, umin(S̄) =

minm
∑

i∈S̄ uim. The following result is an immediate corollary of Theorem 1.

Corollary 1. For any S ⊂N and i∈ S0, we have:

1−umax(S̄)k

1−umin(S̄)
·π(i,S) ≤ π̂Rk (i,S) ≤ 1

1−umax(S̄)
·π(i,S). (2)

Proof. Let π̂mk (i,S) denote the choice probability under k-attempt model by a customer that

belongs to segment m. We can write:

π̂Rk (i,S) =

∑
m θmπ̂

m
k (i,S)∑

m

∑
j∈S0 θmπ̂

m
k (j,S)

.
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Given the lower bound of π̂k(i,S) in Theorem 1, we can bound:

π̂Rk (i,S) ≥ (1−umax(S̄)k) ·π(i,S)∑
m

∑
j∈S0 θmπ̂

m
k (j,S)

≥ (1−umax(S̄)k) ·π(i,S)

maxm
∑

j∈S0 π̂
m
k (j,S)

=
1−umax(S̄)k

1−umin(S̄)
·π(i,S) .

Similarly, we also have:

π̂Rk (i,S) ≤ π(i,S)∑
m

∑
j∈S0 θmπ̂

m
k (j,S)

≤ π(i,S)

minm
∑

j∈S0 π̂
m
k (j,S)

=
1

1−umax(S̄)
·π(i,S) .

This completes the proof. �

While multi-attempt model consistently underestimates the true choice probability, re-scaled

multi-attempt model may sometimes overestimate the true probability. Note that the lower bound

in Corollary 1 is larger than the lower bound in Theorem 1. This suggests that re-scaled multi-

attempt model improves the underestimation error while admitting the overestimation error. The

important question is whether this is a good compromise overall. Our numerical results in Table

1 show that re-scaled multi-attempt model significantly improves the empirical accuracy of multi-

attempt model. Theoretically, we are also able to show the exactness of re-scaled multi-attempt

model when the true choice probability is MNL. This result is reminiscent of the result in Blanchet

et al. (2016) that Markov chain model is exact in the case of MNL.

Lemma 1. Suppose that the underlying true choice model is an MNL. For any k > 0, S ⊂N and

i∈ S0, the re-scaled k-attempt model is exact, i.e., π̂Rk (i,S) = π(i,S) for any k > 0.

Proof. Let αl(S̄) =
∑

j1,··· ,jl∈S̄
uj1

1−uj1

uj2
1−uj1−uj2

· · · ujl
1−uj1−···−ujl

. Per our note in the proof of Theorem

1, αl(S̄) · ui is the probability that a customer values product j ∈ {j1, j2, . . . , jl} better than i and

product j′ ∈N \{j1, j2, . . . , jl}∪{0} worse than i. Since a customer only purchases product i if her

other favorite products (which rank higher than i) are not in the offer set, by definition of random

utility model, we must have: π(i,S) =
∑|S̄|

l=0αl(S̄)ui. As for k-attempt model, since customers only

consider up to k−1 substitutes, we can write: πk(i,S) =
∑k−1

l=0 αl(S̄)ui. Putting all things together,

π(i,S)− π̂Rk (i,S) =

|S̄|∑
l=0

αl(S̄)ui−
∑k−1

l=0 αl(S̄)ui∑k−1

l=0 αl(S̄)u(S0)
=

ui
u(S0)

− ui
u(S0)

= 0.

This completes the proof. �
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2.3. Numerical Experiments

We conduct numerical experiments with respect to a mixture of M MNLs to compare the perfor-

mance of multi-attempt, re-scaled multi-attempt, and Markov chain (MC) models. Let n denote

the number of products and M denote the number of customer segments in the MMNL model.

For a fixed combination of number of products (n= 10,20,50,100) and number of segments (M =

3,5,10,20), we generate 100 instances. The probability distribution over different MNL segments,

θ1, ..., θM , are first generated using i.i.d samples of the uniform distribution in [0,1] and then nor-

malized such that θ1 + · · ·+θM = 1. For each segment m= 1, ...,M , the MNL parameters of segment

m, u0m, ...unm are randomly sampled from the uniform distribution in [0,1]. For each instance,

we generate a random offer set of size between n/3 and 2n/3, and compute the choice probabil-

ities under the three models. We report both the average and maximum relative errors defined

as: avg.Error = 1
400

∑400

a=1 Error(Sa) and max.Error = max1≤a≤400 Error(Sa), where Error(S) =

100% ·maxi∈S
|π̂(i,S)−π(i,S)|

π(i,S)
. The results can be seen in Table 1.

Table 1 Comparison of approximation accuracy of various models

k-attempt rescaled k-attempt
MC k= 1 k= 2 k= 3 k= 4 k= 5 k= 1 k= 2 k= 3 k= 4 k= 5

n=10
max.Error 11.69 72.06 48.89 30.42 16.58 7.20 21.95 15.44 9.68 5.10 1.95
avg.Error 2.45 48.36 21.47 8.58 2.99 0.82 5.64 3.35 1.70 0.71 0.22

n=20
max.Error 8.40 68.55 45.76 29.59 18.43 10.96 17.46 11.26 6.64 4.14 2.77
avg.Error 2.13 50.82 25.02 11.91 5.47 2.40 4.56 2.91 1.72 0.95 0.49

n=50
max.Error 8.44 63.41 39.76 24.64 15.07 9.10 13.99 10.44 7.41 5.02 3.24
avg.Error 1.76 50.68 25.58 12.84 6.41 3.18 3.66 2.40 1.51 0.91 0.53

n=100
max.Error 3.17 61.17 37.16 22.41 13.42 7.97 6.03 4.23 2.86 1.87 1.18
avg.Error 1.35 51.10 26.18 13.44 6.90 3.55 2.30 1.51 0.96 0.59 0.35

A number of observations can be made from Table 1. First, although the accuracy of multi-

attempt model improves as k increases, its rate of improvement is not satisfactory. For example,

when n = 100, the average relative error of 5-attempt model is 3.55%; in contrast, the average

relative error of Markov chain model is only about 1.35%. Considering the fact that 5-attempt

model requires much more parameters than Markov chain model, this level of performance is not

acceptable. Second, re-scaled 2-attempt model significantly improves the accuracy of 2-attempt
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model and its relative error is very close to the relative error of Markov chain model. Moreover,

re-scaled 3-attempt consistently performs better than Markov chain model. This highlights the

benefit of re-scaling.

3. Assortment Optimization

We now discuss how to use re-scaled multi-attempt model in assortment optimization. Since the

approximation quality of re-scaled 2-attempt model is very close to Markov chain model, in this

work, we will only focus our discussions on re-scaled 2-attempt model. (Our approach for re-scaled

2-attempt model is also generalizable to re-scaled k-attempt model.) We show that assortment

optimization under re-scaled 2-attempt model is not much harder than assortment optimization

under exogenous (2-attempt) demand model. In particular, it can be formulated as a Mixed Integer

Fractional Linear Program (MILFP) and can be solved using the so-called Dinkelbach algorithm.

3.1. Optimization Formulation

Let ri denote the revenue of product i and xi ∈ {0,1} be a binary decision variable for product i.

We first consider unconstrained assortment optimization problem under exogenous demand model.

This can be written as a Mixed Integer Linear Program (MILP) formulation below:

J2 = max
~x∈{0,1}n

n∑
i=1

ri

[
λi ·xi +

∑
j 6=i

λji ·xi · (1−xj)

]

= max
~x∈{0,1}n

~y∈[0,1]n(n−1)

n∑
i=1

ri

[
λi ·xi +

∑
j 6=i

λji · yji

]
s.t. yji ≤ xi, yji ≤ 1−xj, yji ≥ xi−xj ∀ i 6= j

We next consider unconstrained assortment optimization under re-scaled 2-attempt model:

JR2 = max
~x∈{0,1}n

n∑
i=1

ri

[
λi ·xi +

∑
j 6=i λji ·xi · (1−xj)

]
λ0 +

∑
j 6=0 λj0 · (1−xj) +

∑n

i=1

[
λi ·xi +

∑
j 6=i λji ·xi · (1−xj)

]
= max

~x∈{0,1}n

~y∈[0,1]n(n−1)

n∑
i=1

ri

[
λi ·xi +

∑
j 6=i λji · yji

]
λ0 +

∑
j 6=0 λj0 · (1−xj) +

∑n

i=1

[
λi ·xi +

∑
j 6=i λji · yji

]
s.t. yji ≤ xi, yji ≤ 1−xj, yji ≥ xi−xj ∀ i 6= j
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Note that JR2 is an MILFP. As discussed in Section 1, although MILFP is in general difficult to

solve, it appears in many applications in engineering and science (Tawarmalani and Sahinidis 2002).

Consequently, there is a deep and ever-growing literature on different algorithmic approaches to

solve MILFP, either exactly or approximately. When it comes to large-scale MILFP, one popular

approach is based on Dinkelbach algorithm, first developed in Dinkelbach (1967). In the context of

our assortment problem above, Dinkelbach algorithm works as follows. First, we define N(~x,~y) =∑n

i=1 ri

[
λi ·xi +

∑
j 6=i λji · yji

]
and D(~x,~y) = λ0 +

∑
j 6=0 λj0 · (1−xj)+

∑n

i=1

[
λi ·xi +

∑
j 6=i λji · yji

]
,

and let F (q) = max{N(~x,~y)− q ·D(~x,~y) : (~x,~y) ∈A∗}, where A∗ is the set of feasible (~x,~y). Now,

we proceed in three steps:

Step 1. Choose an arbitrary feasible (~x1, ~y1), set q2 = N(~x1,~y1)

D(~x1,~y1)
, and let t= 2

Step 2. Compute F (qt) and denote its optimal solution as (~xt, ~yt).

Step 3. If F (qt)≤ ε (optimality tolerance), stop and output (~xt, ~yt);

Otherwise, let qt+1 = N(~xt,~yt)

D(~xt,~yt)
, set t= t+ 1, and go back to Step 2.

Note that computing F (qt) in Step 2 requires solving an MILP with similar size as J2. So,

the running time of Dinkelbach algorithm approximately equals the running time for solving J2

multiplies the number of iterations for F (qk) to be sufficiently close to 0. It has been shown that

F (qk)→ 0 at a super-linear rate (You et al. 2009); in fact, when all the variables are binary, in the

worst case scenario, Dinkelbach algorithm only requires about log(number of variables) iterations.

This highlights the practicality of Dinkelbach algorithm for solving MILFP, especially when the

corresponding inner optimization can be quickly solved.

Dealing with constraints. Our optimization model can further accommodate a variety of

constraints on the assortment. For example, the following types of constraint from Bertsimas and

Mǐsic (2016) can be easily included: (1) At most U products can be chosen from a subset of size

B (maximum subset, also called as cardinality constraints); (2) the number of offered products

from a subset of size B cannot be greater than that from the other subset of size B (precedence

type 1); (3) a specific product must be offered to include any product from a subset of size B− 1
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(precedence type 2). Any of these constraints can be formulated as a linear constraint, and adding

linear constraints still results in an MILFP (under re-scaled 2-attempt model). Thus, we can still

use Dinkelbach algorithm.

3.2. Numerical Experiments

To compare the performance of the multi-attempt choice model in assortment optimization, we

conduct numerical experiments using the same random instances of the mixture of M MNLs as in

Section 2.3. In addition, we also generate a random number between 0 and 1 for the revenue of each

product(i.e., ri for product i). We then compute the optimal assortment under the Markov chain,

2-attempt, and re-scaled 2-attempt models, and calculate the expected revenue of each solution

under the true choice model. Table 2 summarizes the average relative gap in expected revenue from

the true optimal revenue, including the average running time, for each model. We note that all

the computational experiments are carried out on a Mac with Intel Core i5 @ 2.7 GHz and 16-GB

RAM. All models and solution procedures are coded in Matlab 2011 and the MILP problems in

the proposed algorithm are solved using CPLEX 12 with optimality tolerance of 10−5.

Table 2 Average relative gap in expected revenue for Markovian model and multi-attempt models with its

computing time in second.

Markov Chain 2-attempt rescaled 2-attempt
gap(%) time(s) gap(%) time (s) gap(%) time (s)

n=10
M = 3 0.0243 0.0011 9.5785 0.0062 0.0723 0.0193
M = 5 0.1077 0.0009 9.5440 0.0061 0.1246 0.0196
M = 10 0.0601 0.0009 9.4490 0.0064 0.0998 0.0201

n=20
M = 6 0.0558 0.0028 14.6167 0.0260 0.0751 0.0859
M = 10 0.0217 0.0027 14.5592 0.0252 0.0217 0.0834
M = 20 0.0478 0.0029 14.6049 0.0250 0.0492 0.0859

n=50
M = 10 0.0380 0.0134 21.2468 0.2997 0.0498 1.2327
M = 20 0.0380 0.0134 21.2468 0.2997 0.0498 1.2327
M = 50 0.0069 0.0169 20.7945 0.2882 0.0080 1.2406

n=100
M = 10 0.0218 0.0407 24.5002 3.3212 0.0234 14.8783
M = 20 0.0179 0.0439 23.8145 3.2690 0.0186 14.6535
M = 50 0.0044 0.0555 24.4001 3.2699 0.0045 14.5374

Observe that re-scaling significantly improves the performance of 2-attempt model. Moreover,
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the difference between the relative gap of Markov chain model and re-scaled 2-attempt model is neg-

ligible. As expected, assortment optimization under Markov chain model can be solved extremely

quickly. Although the running time of assortment optimization under re-scaled 2-attempt model is

not as short as the running time under Markov chain model, it is nevertheless still quite tractable.

Note that the running time under 2-attempt model is only about 3 seconds for n= 100. In the case

of re-scaled 2-attempt, we use about 5 iterations in the Dinkelbach algorithm, which explains the

approximate running time of 15 seconds for n= 100. The number of iterations in Dinkelbach algo-

rithm is dictated by the optimality tolerance ε (see Step 3). Practically, by adjusting the desired

optimality level, one can further reduce the running time under re-scaled 2-attempt model.

Table 3 Average relative gap in expected revenue for constrained (non-scaled and rescaled) 2-attempt models

with its computing time in second.

2-attempt rescaled 2-attempt
gap(%) time(s) gap(%) time(s)

n = 10, M = 5

No constraints 9.5541 0.0068 0.1218 0.0191
Max.subset, C = 2, B = 5, U = 3 7.8698 0.0077 0.1250 0.0203
Prec.type 1, C = 1, B = 5 9.6111 0.0076 0.1392 0.0210
Prec.type 2, C = 2, B = 5 7.1255 0.0073 0.0846 0.0218

n = 20, M =10

No constraints 14.8914 0.0268 0.0440 0.0839
Max.subset, C = 4, B = 5, U = 3 12.2535 0.0387 0.0420 0.0944
Prec.type 1, C = 3, B = 5 13.7742 0.0373 0.0534 0.0959
Prec.type 2, C = 4, B = 5 11.2007 0.0334 0.0668 0.1110

n = 50, M =20

No constraints 21.3102 0.2994 0.0229 1.2814
Max.subset, C = 5, B = 10, U = 5 14.6982 0.4824 0.0209 1.3596
Prec.type 1, C = 4, B = 10 20.3282 0.3591 0.0154 1.3101
Prec.type 2, C = 5, B = 10 17.1013 0.3500 0.0148 1.5295

n =100, M =20

No constraints 24.3847 3.3763 0.0111 15.2983
Max.subset, C =10, B = 10, U = 5 18.2043 5.5751 0.0119 16.9237
Prec.type 1, C = 9, B = 10 24.7584 4.4081 0.0125 16.8627
Prec.type 2, C =10, B = 10 20.0725 3.8482 0.0143 18.3797

Constrained problem. To see the effect of constraints in optimization performance, we solve

the optimization instances that we used in Table 2 with a combination of constraints that we

discussed in Section 3.1. For each constraint set, we create C constraints by randomly partitioning

a set of n products into (mutually exclusive) subsets of size B. The average relative gap and

computing time for each constraint are summarized in Table 3. We confirm that the constrained
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problems also can be solved quickly (less than 20 seconds when n= 100) and its performance is

very close to the true optimal performance (less than 0.2% of relative average gap).

4. Concluding Remarks

In this work, we provide a new approach to approximate a general mixed-logit-based choice model.

We show that the classic exogenous demand model can be significantly improved by re-scaling.

The resulting approximation is exact for MNL and has an empirical performance that is very close

to the performance of the recently developed Markov chain model. Moreover, since the proposed

approximation model has an explicit mathematical expression, it can be immediately used in an

assortment optimization with a variety real-world constraints. Our numerical experiments show

that our model is quite tractable for a reasonable sized problem.
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