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We consider the setting of a firm that sells a finite amount of resources to price-sensitive customers who

arrive randomly over time according to a specified non-stationary rate. Each customer requires a service

that consumes one unit of resource for a deterministic amount of time, and the resource is reusable in

the sense that it can be immediately used to serve a new customer upon the completion of the previous

service. The firm’s objective is to set the price dynamically to maximize its expected total revenues. This is

a fundamental problem faced by many firms in many industries. We formulate this as an optimal stochastic

control problem and develop two heuristic controls based on the solution of the deterministic relaxation of

the original stochastic problem. The first heuristic control is static since the corresponding price sequence is

determined before the selling horizon starts; the second heuristic control is dynamic, it uses the first heuristic

control as its baseline control and adaptively adjusts the price based on previous demand realizations. We

show that both heuristic controls are asymptotically optimal in the regime with large demand and large

number of resources. Finally, we consider two important generalizations of the basic model to the setting

with multiple service types requiring different service times and the setting with advance service bookings.

Key words : dynamic pricing; reusable resources; asymptotic analysis

1. Introduction

Consider a firm managing a fixed amount of resources to satisfy time-varying price-dependent

demand over a finite (selling) horizon. The resources are homogeneous, which means that customers

do not have preference over a specific unit of resource, and each arriving customer requests a single

unit of resource for a consecutive and deterministic amount of time (i.e., deterministic service time).
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If a resource is available at the time of a new arrival, the new customer is immediately admitted

into the system at the current list price and the service is immediately started without delay. (Later

in this paper we will also consider the case with advance service booking where the service can be

started at a fixed future time.) After the service is completed, the corresponding resource is released

and can be directly used to satisfy a new demand (i.e., resource is reusable). The firm’s objective

is to maximize her expected total revenues throughout the horizon by setting prices dynamically.

This is a fundamental problem faced by many firms in many different industries and the nature of

this problem is not exactly identical to the canonical revenue management problem with stochastic

demand and limited inventory (e.g., the classic model proposed in Gallego and Van Ryzin 1997).

(To be precise, although it is mathematically possible to model revenue management with reusable

resources and deterministic service time requirement using the same modeling approach as in the

classic revenue management literature, the scale of the problem primitives for the applications

considered in this paper is different from that considered in the standard revenue management

literature. Hence, a different approach is needed to properly analyze this model; see Section 3

for more discussions.) Our main contribution in this paper is in developing a real-time dynamic

pricing control that is easy to implement and has a provably good performance. We first show

how to do this for a basic setting with one service type and immediate service requirement; we

then show how our idea can be applied to more complicated settings with multiple service types

with heterogenous service time requirements and advance service booking. We believe that the

idea behind our proposed control can be potentially used to develop more sophisticated dynamic

pricing controls for other complicated real-world problems.

Our formulation captures the critical operational trade-offs faced by firms in different industries.

On the one hand, capacity needs to be sufficiently utilized throughout the selling horizon since, at

any point of time, any unused or idle capacity constitutes immediate monetary loss; on the other

hand, firms may also want to ration the capacity to anticipate potential peak periods in the future

where the system is fused with incoming demands. The main challenge here is how to properly
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balance the capacity utilization during different service cycles. (The meaning of service cycle will

be explained in Section 3. Note that, due to the difference in the scale of problem primitives as

noted above, the classic revenue management problem effectively only has one service cycle as

demands are typically modeled to be fulfilled only at the end of the selling horizon instead of on

a rolling horizon basis. This is in contrast to the setting considered in this paper, which may have

a large number of service cycles.) Although different cycles may appear to be independent of each

other, they are connected through the realization of capacity utilization since capacity is finite and

the utilization in one cycle affects the utilization in the subsequent cycle. This calls for a carefully

designed dynamic pricing control to properly manage capacity utilization across different cycles.

In the queueing literature, a finite capacitated system similar to the one considered in our work

is often termed as a loss system, since an arriving customer is rejected when the capacity is full

(on the contrary, in a delay system model, incoming customers are allowed to wait in a queue,

see Hampshire et al. 2009). Many firms providing virtual services such as telecommunication,

smart grid, and Internet-based service (Voice-over-IP, wireless data transfer) can be appropriately

modeled as loss systems. In all these examples, pricing decision is important not only because it

serves as a marketing instrument that determines the total revenues collected by the firm, but

also as a control instrument by which the firm continuously manages the utilization level of her

finite resources. There are at least two salient features of the firms’ operation problem that often

complicate the pricing decision: on the demand size, demand rates tend to change dynamically

and is better described as a time-inhomogeneous process (see Brown et al. 2005 for a statistical

study in the setting of call center); on the supply side, capacity expansion is sometimes a long-

term investment decision and the current capacity is not easily scalable within a short period

of time, thus, they must be managed properly. The effectiveness of dynamic pricing in matching

time-varying demand with limited capacity has been widely recognized and implemented by many

firms, e.g., mobile service providers in Africa charges rates of voice-call dynamically to alleviate

the burden on their bandwidth during peak periods and stimulate demand during low period
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(Economists 2009); smart grids in United States and Europe experiment with programs that bill

customers’ consumption of electricity on a time-dependent rate (Hu et al. 2015).

In addition to the two salient features mentioned above, pricing decision is also often complicated

by the fact that, once used, the same resource may continue to be used during a fixed period of

time, and different customers may request to use the resource for different length of time (i.e., dif-

ferent service time). One of the emerging business that fits this feature is cloud computing, where

firms deliver on-demand internet-based computing service to customers. Cloud computing service

providers usually have a fixed amount of computation resources and lease their available resources

to customers who arrive (either on spot or under subscription) randomly with specific request on

usage time and capacity requirements. In the provision of cloud service, researchers and practition-

ers have advocated the economic benefit of dynamic pricing strategy for many cloud service settings.

By and large, dynamic pricing has been implemented under the form of utilization-based pric-

ing (CloudSigma, Jelastic, PiCloud), real-time bidding (Amazon Elastic Computing Cloud (EC2)

Spot), and many others (Al-Roomi et al. 2013). As arguably the largest cloud computing service

provider, Amazon launched its EC2 Spot service in 2009, whose per-hourly price is determined in

real-time by a Vickrey-style auction. More specifically, after customers submit sealed bids, Amazon

will computes a market clearing price (a.k.a “spot price”). All customers with bid above spot price

win, and pay the lowest winning bid for the service with the requested features such as duration,

memory size, etc. Not too surprisingly, the resulting price trajectory is often highly non-stationary

(Xu and Li 2013) and, in spite of its flexibility, the implementation of bidding mechanism has its

own flaws. As an example, Cheng et al. (2016) shows empirically that, for the same type of comput-

ing service on Amazon EC2 Spot platform, network latency causes significant and consistent price

difference between its East and West data center, which clearly opens an arbitrage opportunity.

These problems would not have existed if the firm has a full control over the price trajectory. The

key technical question is how to implement a dynamic pricing in a way that matches time-varying

demand with fixed but reusable resources. This has motivated many researchers to investigate a
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proper dynamic pricing control under various settings where service providers fully control the

price (e.g., Xu and Li 2013, Alzhouri and Agarwal 2015, Arshad et al. 2015).

Other than the examples discussed above, many firms managing physical resources are also well

described by our model, including some classic examples that are well-known for their adoptions

of dynamic pricing such as car rental and hotel reservation. (Due to the reusable nature of their

resources, both car rental and hotel reservation are more properly modeled using the framework of

revenue management with reusable resources and deterministic service time requirements instead

of using the classic revenue management framework motivated by airline application.) Moreover,

our model can also be used to address the demand-supply matching problem faced by many emerg-

ing so-called on-demand service firms. These firms usually control a finite number of resources

and offer them to be consumed by customers who book services (either in advance or on the

spot) through internet or smartphone. Industries that have seen the booming of on-demand service

providers include vehicle rental (Zipcar, Citi-Bike), logistic (Project44), food delivery (Instacar,

Sprig), car parking (Luxe), and beauty service (StyleSeat) (Bensinger 2015). One prevalent feature

in many on-demand service firms is that demand is characterized by both a specified service type

and an intended usage time, including the starting and ending times of the service. Moreover,

since customers mostly interact with the firm using digital platforms, existing digital user inter-

faces often enable the firm to effortlessly manage demand by dynamically changing prices. Indeed,

some firms have already used dynamic pricing on a daily basis. For example, Project44 provides

dynamic pricing solutions to third-party logistics company owning their own trucks and facilities

(Project44 2015); Tock provides ticketing systems to high-end restaurants where reservation of

seats are dynamically priced (Businessweek 2015); Sprig uses its own employees to deliver fresh

made meals to customers at a delivery fee that changes dynamically (Chamlee 2016). Other firms

that have not yet deployed dynamic pricing have also acknowledged its advantage: According to

Robin Chase, the founder of Zipcar, utilizing data to correctly and dynamically set the price on

car-sharing platform can largely increase the efficiency and sustainability of the deployment of city
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services (GreenBiz 2014). Thus, although not every firms under the banner of on-demand economy

is currently using dynamic pricing, given its simplicity and good performance, we believe that our

proposed real-time dynamic pricing control can provide a useful guidance on how to do real-time

dynamic pricing when the firm finally needs it.

We want to re-emphasize that eventually different business models may have different complex-

ities that require separate customized dynamic pricing solutions. In this paper, we simply focus

on a simple model that captures the most fundamental aspects of dynamic pricing with reusable

resources and deterministic service time requirements. We hope that our result can be used to

design more sophisticated algorithms to be used in all of the aforementioned examples.

Our results and contributions. In this paper, we consider a multi-period dynamic pricing

problem faced by a revenue-maximizing firm with finite reusable resources and deterministic service

time requirements. Our analysis and results are summarized below:

1. We first consider a basic model where all customers have the same deterministic service time

requirements, there is no delay in service fulfillment, and demand rate as a function of time

and price is non-stationary. We propose a deterministic relaxation of the optimal control for-

mulation, and show that its objective value serves as an upper bound for the optimal expected

total revenues under the original stochastic control problem. This allows us to evaluate the

performance of any feasible pricing control by its average regret, defined as the average (over

T periods) difference between the optimal value of the deterministic formulation and the

expected total revenues collected under the prescribed control.

2. Our first heuristic control, which we call Deterministic Price Control (DPC), applies price pt

in period t in such a way that that the expected demand in period t equals the computed

deterministic demand rate under the deterministic formulation minus a constant. The constant

serves as a buffer on random error, for the purpose of hedging against uncertainty. The size

of this buffer needs to be carefully chosen: It needs to be large enough such that the resource

is not depleted too often; yet, it cannot be too large otherwise the total revenues collected by
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the firm will deviate too far from the optimal one. We obtain a general bound on the average

regret of DPC under arbitrary problem parameters and show that, under an optimal choice

of buffer size, the average regret of DPC converges to zero at a rate of Õ(n−
1
2 ), where n is

the size of the problem (i.e., the size of potential demand during a service cycle, which is to

be defined later, and capacity are both of order n).

3. One drawback of DPC is that the price pt to be applied during period t is already determined

at the beginning of the selling horizon and it does not take into account to the realized demand

observations during periods 1 to t− 1. This suggests a room of improvement and motivates

our second heuristic control, which we call Deterministic Price Control with Batch Adjustment

(DPC-Batch). DPC-Batch divides the selling horizon into batches of the same size. At each

period, in addition to making sure that we have the buffer as in the case of DPC, we also set

the price in such a way that the cumulatively demand errors (i.e., from expected demands)

during the previous batch is uniformly corrected by the new demands in the current batch.

We obtain a general bound for the average regret of DPC-Batch under arbitrary problem

parameters and show that, under an optimal choice of buffer size and batch size, the average

regret of DPC-Batch is of order Õ(n−
2
3 ), which significantly improves the performance of

DPC. We conduct several numerical experiments that validate our theoretical findings.

4. Finally, we consider two extensions of the basic model to include two important features often

found in practice, namely heterogeneous service time requirements (where different service

type may require different service time) and advance service booking (where different service

type may be started at different time in the future). We focus our analysis on the generalization

of DPC-Batch. For the sake of clarity how the analysis of our basic model can be extended

to a more general model, we treat these two extensions as separate instances instead of one.

Under properly chosen problem parameters, we show that the average regret of the generalized

DPC-Batch for each of these extensions is still of the order Õ(n−
2
3 ).

Organization of the paper. The related literature is reviewed in Section 2. In Section 3, we

formulate the basic model of dynamic pricing with reusable resource, and discuss our performance
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measure. We propose and analyze a static heuristic control (DPC) and its dynamic improvement

(DPC-Batch) in Sections 4 and 5, respectively. The performance of both DPC and DPC-Batch are

tested in simple numerical experiments in Section 6. Sections 7 and 8 discuss two extensions of the

basic model that allow heterogeneous service time requirements and advance booking. Finally, in

Section 9, we conclude the paper. The proof of some of the results and the details of the numerical

experiments can be found in the electronic companion for this paper.

2. Literature Review

Broadly speaking, our work is related to the extensive literature on dynamic pricing and rev-

enue management, queueing and service operations, and on-demand service platforms. In terms of

methodology, our work is related to the study of asymptotic performance of heuristic controls with

real-time adjustment. We discuss them in turn.

Dynamic pricing and revenue management. Given the space limit, we will not attempt to

discuss all the related literature but only highlight the most relevant works (interested readers are

referred to the extensive surveys by Bitran and Caldentey 2003, Talluri and van Ryzin 2006 and

Özer and Phillips 2012.) Instead, we discuss in details two papers that are most closely related to

our work, both are motivated by the revenue management problem in cloud computing setting.

Xu and Li (2013) study the dynampic pricing problem of a cloud service provider that leases

resources to customers with exponential service time and price-dependent Poisson arrival. They

obtain some structural properties for the capacitated system under stationary demand and also for

the uncapacitated system under non-stationary demand. However, no dynamic pricing heuristic

control is proposed and the optimal price is still time-consuming to compute, especially when

demand is non-stationary. Our work complements their work: We explicitly address the capacitated

system with non-stationary demand and deterministic service time requirement, and focus on

developing an easy-to-implement heuristic control instead of studying the properties of the optimal

solution. Borgs et al. (2014) study a similar problem under non-stationary demand with limited

time-varying capacity and customers’ strategic waiting. In their model, demands are assumed to
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be deterministic and the price trajectory for the whole season is announced at the beginning of the

horizon. They show that the resulting optimization problem is non-convex and propose a dynamic

programming-based algorithm that can be run in polynomial time. The key difference between our

model and theirs is on the stochasticity of demand and customer’s strategic waiting: In our model,

demand is random and, thus, an adaptive heuristic control is needed to guarantee a near-optimal

revenue. (In many service settings, especially for the on-demand platform, uncertainty in demand

pervasively exists and introduces a significant difficulty in control design.) Unlike their model, we do

not explicitly consider customer waiting behavior in our current work. Although customers’ waiting

is an important issue and needs to be properly taken into account when designing a dynamic pricing

control, proposing a provably good heuristic control under a combination of stochastic demand,

limited inventory, and customers’ waiting is a notoriously difficult problem even in the traditional

revenue management setting (see e.g., Liu and Cooper 2015 and Chen and Farias 2016 for recent

progress). Thus, we leave this for future research pursuit.

Queueing and service operations. As explained in the previous section, our model is similar

to the loss system in the queueing literature. Pricing decision in such model has been studied

extensively under various setting (e.g., Lanning et al. 1999, Courcoubetis et al. 2001 and Maglaras

and Zeevi 2005). Most of these papers propose heuristic controls based on a fluid approximation

of the original stochastic control problem under the assumption of stationary arrival and expo-

nential service time. An exception to this is Hampshire et al. (2009), where demand follows a

non-homogeneous Poisson process and the firm has to satisfy a Quality-of-Service constraints which

requires the blocking probability to be bounded. They develop a dynamic pricing control using

deterministic optimal control theory and show numerically that this control performs better than

static or myopic pricing control; however, no theoretical performance guarantee is provided of their

proposed control. Another major stream of literature studies the property of the optimal admission

control of loss system, including Miller (1969), Kelly (1991), Altman et al. (2001), Örmeci et al.

(2001), Savin et al. (2005), Gans and Savin (2007), Papier and Thonemann (2010) and Jain et al.
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(2015). Yet, none of them consider the design of practical and provably-good heuristic controls.

There are two exceptions: Levi and Radovanovic (2010) propose a heuristic control based on a

knapsack-type linear program and show the asymptotic optimality their proposed control under a

general service time distribution, and Levi and Shi (2015) generalize this heuristic control to the

setting with advance booking and provide an asymptotic upper bound on the blocking probability.

However, both Levi and Radovanovic (2010) and Levi and Shi (2015) assume stationary demand

and do not consider dynamic pricing.

Aside from the literature on loss model, dynamic pricing has also been studied in the literature

on delay model. From the modeling perspective, researchers that study optimal dynamic pricing

control either assume that customers are sensitive to price only but not delay (e.g., Low 1974,

Paschalidis and Tsitsiklis 2000, Yoon and Lewis 2004, Maglaras 2006) or customers are sensitive

to both price and delay (e.g., Chen and Frank 2001, and Ata and Shneorson 2006, Afèche and Ata

2013). Several papers study asymptotically optimal dynamic pricing controls: Çelik and Maglaras

(2008) and Ata and Olsen (2009, 2013) study a revenue maximizing control when the firm dynam-

ically quotes lead-times; Besbes and Maglaras (2009) study dynamic pricing where the market size

varies stochastically over time; assuming observable queue length and stochastic customer valua-

tion, Kim and Randhawa (2015) propose a heuristic control that continuously refines the baseline

control given by a fluid approximation, and show (somewhat surprisingly) that the average regret is

on the order of Õ(n−
2
3 ). (To the best of our knowledge, Kim and Randhawa (2015) is the only work

in the queueing literature that shows dynamic pricing can achieve an average regret with order

smaller than the more typical Õ(n−1/2).) Aside from not permitting customers to wait, our model

is different from the above cited works adopting asymptotic analysis in two aspects: (1) We assume

that the service time is deterministic (earlier works assume that it is exponentially distributed)

and the demand function can vary over time (earlier works assume a stationary willingness-to-pay

distribution), and (2) we also consider an extension with advance service booking. The appro-

priateness of using either a deterministic service time or exponentially distributed service time is
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dictated by the application context. In this paper, we choose to work with deterministic service

time because, in most of the applications that we are considering, service process is not memoryless

(as would have been implied by an exponentially distributed service time). Thus, our work com-

plements existing works in the queueing literature by developing a near-optimal dynamic pricing

control that can be applied in the setting of non-stationary demand, deterministic service time

requirements, and advance service booking. Moreover, we also complement the result of Kim and

Randhawa (2015) by showing that the Õ(n−2/3) bound is also achievable in our setting.

On-demand service platform. Our paper is also connected to the growing literature on the

operational problems faced by firms providing various types of on-demand services. Most of the

existing works focus on a specific industry and, henceforth, deal with more complicated models

than ours. (Per our discussions in Section 1, our objective in this paper is to focus on the most

fundamental aspects of revenue management with reusable resources and deterministic service time

requirements instead of addressing a particular problem instance with all its complexities.) One

line of research in this literature studies the logistic optimization problems for vehicle/bike sharing

platforms (e.g., Raviv and Kolka 2013, Shu et al. 2013, Schuijbroek et al. 2013, O’Mahony 2015

and Kaspi et al. 2016). Existing works that study pricing decisions are Pfrommer et al. (2014) and

Waserhole (2014). They both consider a network of shared mobility system and view price as an

incentive to direct customers to allocate resources in a way that inventory balancing is properly

maintained throughout the network. Different heuristic controls are proposed based on certainty

equivalent principle and are tested using numerical experiments. In contrast to our work, Pfrommer

et al. (2014) and Waserhole (2014) use platform’s expected cost of repositioning vehicle as the

objective. Another stream of literature studies the optimization of dynamic delivery fee for the

attended home delivery firms, e.g., Campbell and Savelsbergh (2006), Asdemir et al. (2009), Klein

et al. (2015). The key trade-off addressed in these works is how to use price to incentivize customers

to allocate their demands to different delivery time slots such that the profit (delivery fee minus

the cost associated with service type and time slots) is maximized. Moreover, their systems are
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capacitated in the sense that the delivery capacity within each time slots is fixed and known. In

comparison to our model, this modeling framework embraces less uncertainty since, in our model,

the available capacity at any time depends dynamically on the past demand realizations.

Real-time control. In the broader dynamic optimization literature where a multi-period

stochastic control problem is often difficult (if not impossible) to solve optimally, researchers often

resort to simple heuristic controls. A specific type of heuristic control, called real-time control,

calculates the decision at the current period as a simple (e.g., affine) function of a baseline control

and the historical information. Driven by its practicality (as the name suggests, a real-time control

adaptively adjusts the control on the fly and does not require heavy re-optimizations) and good

performance, real-time control has been investigated in various fields, including robust optimization

(Ben-Tal et al. 2004, Bertsimas et al. 2010), portfolio management (Calafiore 2009, Moallemi and

Saglam 2012), and revenue management (Atar and Reiman 2012, Golrezaei et al. 2014, Chen et al.

2014, Lei et al. 2016). Closest to our paper are Jasin (2014) and Chen et al. (2015). They both

consider the discrete-time version of the canonical dynamic pricing problem studied in Gallego and

Van Ryzin (1997), and propose real-time price controls with provable performance guarantees. As

discussed in Section 3.2, in theory, our problem can also be formulated using the same framework

as in Gallego and Van Ryzin (1997); however, the reusability of resource in our setting introduces

a non-trivial subtlety that prohibits a simple adoption of the heuristic controls proposed in Jasin

(2014) and Chen et al. (2015) into our setting. (In fact, we show numerically in Section 6 that a

simple adoption of this heuristic control performs very poorly.) Thus, our work complements exist-

ing works in the literature of real-time control by proposing a different real-time price control that

is appropriate for the setting of revenue management with reusable resources and deterministic

service time requirements.

3. Basic Model

In this section, we first discuss the setting and primitive of our basic model. Next, we discuss the

stochastic and deterministic formulations of our dynamic pricing problem. Finally, we discuss our

performance measure.
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3.1. The Setting

We consider a discrete-time model with T periods and C units of resource. (Although we assume

a discrete-time model, our results also hold for a continuous-time model with Poisson arrivals.)

For our basic model, we assume that the firm only sells one service (or product) type where each

request requires one unit of resource and n units of service time (or n periods). For example, if

n= 1, then the service started in period 1 is completed at the end of period 1 and the resource

used to fulfill this service is immediately available to fulfill a new request in period 2. Demand

rate, as a function of price, in period t is given by λt(pt), and the corresponding revenue rate

is given by rt(pt) = pt · λt(pt). Let Dt(pt) denote the realized demand in period t under price pt.

By definition, we have E[Dt(pt)] = λt(pt) and E[pt ·Dt(pt)] = rt(pt). It is typically assumed in the

literature that demand rate is invertible in price (see Assumption A1 below). Thus, by abuse of

notation, we will also write Dt(λt) =Dt(pt(λt)) and rt(pt) = pt ·λt(pt) = λt ·pt(λt) = rt(λt) to denote

the direct dependency of realized demand and revenue rate on demand rate instead of on price

(we use pt(·) to denote the inverse of λt(·)). We assume that demands across different periods are

independent, but demand rate as a function of time may be non-stationary. As is typical in the

revenue management literature (see e.g. Jasin 2014), we further assume that at most one request

arrives during each period. (Thus, λt(pt) can be interpreted as the arrival probability of a new

request in period t under price pt.) This is without loss of generality since our analysis can also

be applied to the setting where multiple requests arrive in each period. Let Ωp and Ωλ denote the

convex feasible set of price and demand rate, respectively. (For simplicity, we assume the same

feasible sets in all periods.) Below, we state some standard regularity conditions on λt(·) and rt(·):

A1. λt(pt) : Ωp→Ωλ is bounded, twice differentiable, and invertible.

A2. There exists a “turn-off” price p̄ such that pkt → p̄ implies λt(p
k
t )→ 0 for all t.

A3. For all t, λkt → 0 implies λkt · pt(λkt )→ 0 for all feasible sequences {λkt }∞k=1.

A4. rt(λt) is bounded, strictly concave, and has a finite maximizer λ∗t ∈Ωλ.
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The above assumptions are sufficiently general and are immediately satisfied by most commonly

demand functions including linear, exponential, power, and logit. The existence of a turn-off price p̄

allows the firm to effectively turn off demand whenever needed (e.g., when no resource is currently

available). It should be noted that although the theoretical turn-off price can be infinite (e.g., for

exponential demand function with λt(pt) = a · e−pt), since real-world price is never infinite, we can

assume without loss of generality that p̄ <∞. (To be precise, we can pick a sufficiently large p̄ such

that both λt(p̄) and rt(p̄) are very small. The exact value of p̄ does not affect our analysis.)

3.2. The Stochastic and Deterministic Formulations of Dynamic Pricing Problem

The dynamics of our pricing problem are as follows. First, a new request arrives at the beginning of

period t with probability λt(pt). If a unit of resource is available, the service is immediately started

(i.e., no waiting is allowed) and, once a service is started in period t, it will be completed at the

end of period t+n−1. The corresponding resource is then immediately available for a new service

in period t+ n. No intervention or cancellation is allowed, i.e., neither the firm nor the customer

can stop the service before it is completed. Since we assume at most one request arrives in each

period, at most one service is completed at the end of any period.

Let Π denote the set of all non-anticipating controls (i.e, the control that decides the price at

the beginning of period t using only the accumulated information up to, and including, the end of

period t− 1), and let pπt denote the price to be applied during period t under policy π ∈Π. The

optimal stochastic control formulation of our dynamic pricing problem is given below:

OPT : J∗ =

max
π∈Π

E

[
T∑
t=1

rt(p
π
t )

]
:

t∑
s=max{1, t−n+1}

Ds(p
π
s )≤C for all t≤ T


where the constraints must hold almost surely, or with probability one. To understand the intuition

behind the above constraints, note that the number of units of resource available at the beginning

of period t is given by C −
∑t−1

s=max{1, t−n+1}Ds(p
π
s ). Here, we only need to consider total demands

in the previous n−1 periods because any resource being used in period s <max{1, t−n+1} must
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already complete its assigned service and is either at an idle state at the beginning of period t or

currently being used to satisfy a new request arriving in period s∈ [max{1, t−n+ 1}, t−1], where

by abuse of notation we use [t1, t2] to denote {t1, t1 + 1, . . . , t2}. For a new service to be started in

period t, we must satisfy capacity constraint Dt(p
π
t )≤C−

∑t−1

s=max{1, t−n+1}Ds(p
π
s ), or equivalently∑t

s=max{1, t−n+1}Ds(p
π
s )≤C. This explains our constraints in OPT.

The exact stochastic formulation OPT is in general difficult to solve due to the famous “curse of

dimensionality” of Dynamic Programming (DP). Our focus in this paper is on the construction of

near-optimal heuristic controls using the solution of a deterministic analogue of OPT. We define

a deterministic optimization DET as follows:

DET : JD =

max
pt∈Ωp

T∑
t=1

rt(pt) :
t∑

s=max{1, t−n+1}

λs(ps)≤C for all t≤ T

 .

The above formulation is sometimes called a fluid model in the literature (e.g., Atar and Reiman

2012). Since demand is invertible in price (by Assumption A1), we can also re-write DET using

demand rates as the immediate decision variables instead of prices as follows:

DET : JD =

max
λt∈Ωλ

T∑
t=1

rt(λt) :
t∑

s=max{1, t−n+1}

λs ≤C for all t≤ T

 .

One of the benefit of the above re-formulation is that the constraints are now linear in the decision

variables and the objective is strongly concave by Assumption A4; so, DET can be efficiently

solved using an off-the-shelf convex optimization solver. Note that the constraints in DET can be

more compactly written as Aλ≤ e ·C, where λ is a column vector of demand rates, e is a column

vector of ones with an appropriate length, and A is an appropriate constant matrix. Although this

compact formulation is similar to the canonical deterministic formulation in the standard revenue

management literature (e.g., Gallego and Van Ryzin 1997), it is important to note that the size

of matrix A in our setting scales with T whereas the size of matrix A in the standard literature

is independent of T . This seemingly minor difference has an important, non-trivial, consequence

in heuristic design. This is the reason why a different approach is needed to properly analyze the

general revenue management with reusable resources and deterministic service time requirements.
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Let pD := (pDt )Tt=1 denote the optimal solution of DET, and let λD := (λDt )Tt=1 denote the cor-

responding optimal demand rates (i.e., λDt = λt(p
D
t ) for all t). Unlike in the standard revenue

management setting where the optimal deterministic price is static (i.e., pDt = pD1 for all t) when

demand rates are stationary (see e.g. Gallego and Van Ryzin 1997), the optimal solution of DET

is not necessarily static even when demand rates are stationary (except for a special case T is a

constant multiplicand of n). Below, we state additional assumptions on λD and the derivatives of

revenue rate and price as functions of demand rate. There exist positive constants ϕL , ϕU , and Ψ

such that:

A5. [λDt −ϕL, λDt +ϕU ]⊆Ωλ for all t.

A6. |r′t(λ)|, |r′′t (λ)|, and |p′t(λ)| are bounded by Ψ on [λDt −ϕL, λDt +ϕU ] for all t.

The above assumptions are sufficiently general. Assumption A5 corresponds to the case where,

at least in a deterministic world, the prices in all periods are neither too low that they collectively

induce too many demands nor too high that they collectively induce too few demands. (This reflects

what we find in most real-world settings as typical prices are neither extremely low nor outrageously

high.) On another note, this assumption is also easily satisfied when λ∗t lies in an interior of Ωλ

for all t, which is not at all uncommon given the strong concavity of rt(·) as a function of λt. The

boundedness of the derivatives of the revenue and price functions in an interior of Ωλ as stated

in Assumption A6 are also quite natural and easily satisfied by many demand functions including

linear, exponential, power, and logit. Note that we only require that these derivatives are bounded

in a certain compact subset of Ωλ instead of the whole Ωλ. The later is too restrictive and is not

possible even for the case of power demand function λt(pt) = a · p−bt since r′t(λt)→∞ as λt→ 0.

The following lemma tells us that JD is an upper bound of J∗. This result is analogous to a

standard result in the revenue management literature (e.g., Gallego and Van Ryzin 1997), and

its proof utilizes a simple argument using Jensen’s inequality. We state it here for the sake of

completeness.

Lemma 1. J∗ ≤ JD.
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One of the benefit of Lemma 1 is that it allows us to use JD as a proxy for J∗. This is particularly

useful for the purpose of evaluating the performance of different heuristic controls since J∗ is not

practically computable. We discuss this next.

3.3. Performance Measure and Asymptotic Regime

Let Rπ denote the total revenues collected under policy π throughout T periods. We are interested

in measuring the average expected total losses, or average regret, of a given control with respect

to the optimal control. However, since the optimal control is not computable as mentioned above,

we will use the deterministic upper bound as a proxy. We thus defined the average regret of a

non-anticipating control π ∈Π as follows:

AvReg(π) =
JD−E[Rπ]

T
.

Intuitively, since the expected total revenues throughout T periods under the optimal control

scales linearly with T , the above definition of average regret captures the order of relative regret

with respect to the optimal control. In this paper, we are particularly interested in the case where n

is large and C = Θ(n). This can be interpreted as the setting where total potential demands during

a service cycle is large and we have just enough resources to satisfy the demands in one cycle.

(For completeness, in Remarks 1 and 3 in Sections 4 and 5, we also discuss what happens when

C = o(n); this can be interpreted as the setting where either resources are very scarce or the length

of service time is very long. The remaining case where we have a lot more resources than what we

need to satisfy demands in one service cycle, i.e., n = O(C), is less interesting as it reduces our

dynamic pricing problem into an unconstrained problem and we can simply apply pt = pt(λ
∗
t ) for

all t.) This is not uncommon and is motivated by many practical applications discussed in Section

1. As the size of n can be very large (i.e., at least hundreds or thousands), we focus in constructing

heuristic controls that are near-optimal in the so-called asymptotic regime. We would like to note

that the setting where n is large and C = Θ(n) is also similar to the standard asymptotic setting in
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the queueing literature (e.g., Kim and Randhawa 2015) where both the demand and service rates

are scaled by the same large constant.

We say that a control π ∈Π is asymptotically optimal if JD−E[Rπ ]

T
→ 0 as n→∞ for a suitable

value of T , which may also scale with n. In this paper, we prove that both DPC and DPC-Batch

are asymptotically optimal. However, as n increases, the average regret of DPC-Batch converges to

0 faster than the average regret of DPC. (For our basic model, the convergence rate of DPC-Batch

is approximately n−2/3 whereas the convergence rate of DPC is approximately n−1/2.) For ease of

exposition, throughout the remaining of the paper, we will always assume that T
n
∈Z+.

4. Deterministic Price Control

In this section, we first introduce a simple heuristic control called Deterministic Price Control

(DPC) and then we analyze its performance.

4.1. Control Description and Statement of Result

Let Ct denote the number of units of resource available at the beginning of period t before the firm

sets a new price pt. The formal definition of DPC is given below.

Deterministic Price Control with Parameter ε (DPC(ε))

Step 1. Solve DET and get λD.

Step 2. At the beginning of each t, do:

a. If Ct ≥ 1, set pt = p̂Dt where

λt(p̂
D
t ) = λDt −

ε

n
;

b. Otherwise, set pt = p̄.

Note that DPC is parameterized by ε > 0, and ε needs to be chosen such that λDt − ε
n
∈ Ωλ

(otherwise, the second step in DPC(ε) is not well-defined). Since the targeted demand rate in

period t under DPC(ε) is λt = λDt − ε
n

, the total targeted average demands in n consecutive periods

(i.e., one service cycle) is at most C − ε, which means that we are essentially holding back ε units
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of resource. We do this for the purpose of hedging against uncertainty: If total realized demands in

the previous n periods turn out to be higher than expected, then we still have an extra ε units of

resource that can be immediately used to satisfy demand. (From a theoretical perspective, having

a positive ε is useful in making the analysis of DPC more tractable, though it may not be necessary

for the actual implementation. In Section 6, we numerically test what happens when we set ε= 0.)

The following theorem tells us the performance of DPC.

Theorem 1. There exists a constant M1 > 0 such that for all T , C, n, and ε∈ [1, nϕL],

AvReg(DPC) ≤ M1 ·
[
ε

n
+
T

n
· exp

{
− (ε− 1)2

36min{C − ε, n}

}]
. (1)

In particular, if C = a ·n for some a> 0, then using ε= 1 + 6
√
b ·n · logn for some b > 0 yields

AvReg(DPC) = O

(√
b · logn

n
+

T

n
1+ b

max{1,a}

)
. (2)

The first bound in Theorem 1 is very general; it highlights the impact of T , n, C, and ε∈ [1, nϕL]

on performance. As for the second bound, as long as T grows at a polynomial rate in n (i.e., T

can be very large, especially when n is large), we can always pick a proper b to make sure that the

term T

n
1+ b

max{1,a}
in the second bound in Theorem 1 is of order 1

n
. Thus, for all practical purposes,

the average regret of DPC when C = Θ(n) is of order
√

logn
n

. Note that we only need to have a

buffer of order
√
n · logn. Since the magnitude of cumulative demand randomness in n consecutive

periods is of order
√
n, this means that we only need to buffer a little bit more (i.e., by a factor of

√
logn) to guarantee an asymptotically optimal performance under DPC.

Remark 1 (The Case of Scarce Resource). Although we have focused our discussions in

Theorem 1 on the case C = Θ(n), the first bound in Theorem 1 also holds when C = o(n). Suppose

that demand rates are stationary and T
n
∈Z+. It is not difficult to show in this case that the optimal

deterministic solution is static, i.e., λDt = C
n

for all t. Suppose that C = nγ for some γ ∈ (0,1) and

let ϕL = ϕU = 1
2n1−γ . Then, using ε= 1 + 6

√
b ·nγ · logn for some b > 0 yields an average regret of
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order O

(√
b·logn
n2−γ + T

n1+b

)
. If γ is close to 0 (but not exactly 0), then the average regret of DPC is

practically of order
√

logn
n

. This means that DPC has a better performance in the setting of scarce

resource. However, there is a caveat: If C = Θ(1) (e.g., C = 1), then the argument breaks down and

the average regret of DPC is of order min
{

1, T
n

}
(i.e., the performance of DPC can be very poor).

This is the setting of an extremely scarce resource and a different type of heuristic control seems

to be needed to address this case. Since our focus in the paper is on the case C = Θ(n), we leave

this for future research pursuit. (See also Remark 3 at the end of Section 5.)

4.2. Proof of Theorem 1

The proof of Theorem 1 can be separated into two steps. In the first step, we construct a high-

probability event G, and show that, on the set G, we always have Ct ≥ 1 and pt = p̂Dt for all t. In

the second step, we bound the total revenue losses under DPC(ε).

Step 1

We start with the first step. Let ∆t(p̂
D
t ) = Dt(p̂

D
t ) − λt(p̂Dt ) (i.e., ∆t(p̂

D
t ) is the error from the

expected demand in period t under price p̂Dt ). For notational brevity, we will simply write λt =

λt(p̂
D
t ) and ∆t = ∆t(p̂

D
t ). For some positive δ = o(n), whose exact value is to be determined later,

define a sequence of events {Ak(ε, δ)} as follows:

Ak(ε, δ) =

max
t≤kn

∣∣∣∣∣∣
t∑

s=(k−1)n+1

∆s

∣∣∣∣∣∣ < δ

 for all k= 1, . . . , T
n

. (3)

We now analyze P(Ak(ε, δ)). Note that, for all r > 0, we can bound:

P

max
t≤kn

∣∣∣∣∣∣
t∑

s=(k−1)n+1

∆s

∣∣∣∣∣∣ ≥ δ

 ≤ E
[
exp

{
r
∣∣∣∑kn

s=(k−1)n+1 ∆s

∣∣∣}]
exp{rδ}

≤
E
[
exp

{
r
∑kn

s=(k−1)n+1 ∆s

}]
+ E

[
exp

{
−r
∑kn

s=(k−1)n+1 ∆s

}]
exp{rδ}

,

where the first inequality follows from a sub-Martingale inequality (see e.g. Williams 1991) and the

last inequality holds because e|x| ≤ ex + e−x for all x. Since Dt(λt) is a Bernoulli random variable

with success probability λt, by the Moment Generating Function of Bernoulli random variable,
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E

exp

r
kn∑

s=(k−1)n+1

∆s


 =

kn∏
s=(k−1)n+1

E [exp{r∆s}]

=
kn∏

s=(k−1)n+1

[er ·λt + 1−λt] · e−rλt ≤
kn∏

s=(k−1)n+1

e(er−1)λt · e−rλt .

Now, for all |x| ≤ 1, it holds that ex−1−x≤ x2. Moreover,
∑kn

t=(k−1)n+1 λt =
(∑kn

t=(k−1)n+1 λ
D
t

)
−

ε≤min{C − ε,n} (because at most one new request arrives in each period). So, we can bound:

E

exp

r
kn∑

s=(k−1)n+1

∆s


 ≤ exp{r2 min{C − ε,n}} for all r ∈ [0,1].

Note that similar arguments can also be applied to E
[
exp

{
−r
∑kn

s=(k−1)n+1 ∆s

}]
. Putting all

things together, for r ∈ [0,1], we have:

P(Āk(ε, δ)) ≤ 2 · exp{r2 min{C − ε,n}− rδ} for all k= 1, . . . , T
n

. (4)

Define G(ε, δ) :=∩T/nk=1Ak(ε, δ). (Per our discussions above, G(ε, δ) is our high-probability event.)

By the sub-additive property of probability,

P(G(ε, δ))≥ 1− 2T

n
exp{r2 min{C − ε,n}− rδ}. (5)

We make an important observation— on the set G(ε, δ), we always have:

t+n−1∑
s=t

Ds(p̂
D
s ) =

t+n−1∑
s=t

(
λDs −

ε

n
+ ∆s

)
≤ C − ε+ 3δ for all t+n− 1≤ T . (6)

To see why, note that for any pair (t1, t2) with t1 ∈ [(k−1)n+1, kn] and t2 ∈ [kn+1, (k+1)n] for

some k ∈ {1, . . . , T
n
}, we have:

∣∣∣∑t2
s=t1

∆s

∣∣∣ ≤ ∣∣∣∑kn

s=t1
∆s

∣∣∣+ ∣∣∣∑t2
s=kn+1 ∆s

∣∣∣ ≤ 2δ + δ = 3δ, where the

last inequality follows from the definition of δ in (3). This observation has an important implication:

If we set δ = ε−1
3

, then we always have Ct ≥ 1 and pt = p̂Dt for all t on the set G(ε, δ). For the

remaining of the proof, we will therefore assume that δ= ε−1
3

.

Step 2
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We are now ready to bound the expected regret of DPC(ε). Let {pt} be the price sequence under

DPC(ε) and let ru = maxtmaxλt∈Ωλ rt(λt). Note that

E[RDPC(ε)] = E

[
T∑
t=1

rt(pt)

]
= E

[(
T∑
t=1

rt(p̂
D
t )

)
·1{G(ε, δ)}

]

= E

[
T∑
t=1

rt(p̂
D
t )

]
−E

[(
T∑
t=1

rt(p̃
D
t )

)
·1{Ḡ(ε, δ)}

]
≥

T∑
t=1

rt(p̃
D
t ) − ruT ·P(Ḡ(ε, δ)).

Since JD−
∑T

t=1 rt(p̂
D
t ) =

∑T

t=1 [rt(p
D
t )− rt(p̂Dt )] =

∑T

t=1

[
rt(λ

D
t )− rt(λDt − ε

n
)
]
≤ T · Ψε

n
(because

ε∈ [1, nϕL], which implies λDt − ε
n
∈ [λDt −ϕL, λDt +ϕU ], and by Assumption A6), together with the

bound in (5) and Assumption A6, we have for all r ∈ [0,1]:

JD−E[RDPC(ε)]

T
≤ 1

T
·
[
TΨε

n
+ ruT ·P(Ḡ(ε, δ))

]
≤ Ψε

n
+

2ruT

n
· exp{r2 min{C − ε,n}− rδ}

Taking r= δ
2 min{C−ε,n} and substituting δ= ε−1

3
yields:

JD−E[RDPC(ε)]

T
≤ M1 ·

[
ε

n
+
T

n
· exp

{
− (ε− 1)2

36min{C − ε, n}

}]
(7)

for some M1 > 0 independent of T , C, n, and ε∈ [1, nϕL]. This completes the proof. �

5. Deterministic Price Control with Periodic Batch Adjustments

We now discuss an improvement of DPC with periodic batch adjustments. We first provide a

description of our heuristic control and then we analyze its performance.

5.1. Control Description and Statement of Result

Let m be a positive integer such that n
m
∈Z+. (This is only exposition clarity and does not affect the

key result of our analysis; we discuss this in more detail in Remark 2 at the end of this subsection.)

The idea behind our periodic adjustments is to slice the interval [1, T ] into T
m

batches, each of

length m periods, and then to adjust the prices in each batch in such a way that the cumulative

errors in the previous batch is corrected in the current batch. To be precise, let {Ti}T/mi=1 denote

a partition of [1, T ], where Ti = [(i− 1)m+ 1, im] for all i≥ 1. For convenience, we assume that
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T0 = ∅. Define ∆t(pt) =Dt(pt)−λt(pt) (i.e., ∆t(pt) is the error from expected demand during period

t under price pt), where for notational brevity we will simply write ∆t = ∆t(pt). The complete

definition of DPC with periodic batch adjustment (DPC-Batch) is given below.

DPC-Batch with Parameters m and ε (DPC-Batch(m, ε))

Step 1. Solve DET and get λD.

Step 2. At the beginning of each t, if t∈ Ti, do:

a. If Ct ≥ 1 and λDt − ε
n
− 1

m

∑
s∈Ti−1

∆s ∈Ωλ, set pt = p̂Dt where

λt(p̂
D
t ) = λDt −

ε

n
− 1

m

∑
s∈Ti−1

∆s;

b. Otherwise, set pt = p̄.

Unlike the original DPC in Section 4, DPC-Batch is parameterized by two parameters m and

ε. The value of these parameters must be carefully chosen. If m is too small, the price adjustment

scheme under DPC-Batch may not have sufficient corrective power for re-balancing total demands

in the current batch (e.g., cumulative errors in the previous batch may have the same order of

magnitude as total potential demands in the current batch); if, on the other hand, m is too large,

we already incur a lot of loss in the previous batch that is not recoverable by the adjustment in

the current batch. The following theorem tells us the performance of DPC-Batch.

Theorem 2. Suppose that ε∈
[
1, min

{
n,m,n · 1+4m·min{ϕL,ϕU}

4m+n

}]
. There exists a constant M2 > 0

such that for all T , C, n, m, and ε we have

AvReg(DPC-Batch) ≤ M2 ·
[
ε

n
+

1

m
+
T

m
· exp

{
− (ε− 1)2

64min{C − ε, m}

}]
. (8)

In particular, if C = a ·n for some a> 0, then using ε= 1+8
√
b ·nc · logn and m= dnce for some

b > 0 and c∈
(

log logn
logn

,1
)

yields

AvReg(DPC-Batch) = O

(√
b · logn

n1− c2
+

1

nc
+

T

n
c+ b

max{1,a}

)
. (9)

Similar to bound (2) in Theorem 1, as long as T grows polynomially in n, we can always pick a

proper b such that the term T

n
c+ b

max{1,a}
is of order 1

n
. Thus, the performance of DPC-Batch when
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C = Θ(n) is largely affected by the choice of c. If c is too large (i.e., close to 1), then the bound is

again of order
√

logn
n

as in Theorem 1 (i.e., we do not get any benefit from batch adjustments); if,

on the other hand, c is too small (i.e., close to 0), then the bound is of order 1. This means that,

under our proposed periodic batch adjustment scheme, the length of each batch m should neither

be too small nor too large for the most effective adjustment. Ignoring the logarithmic term in (9),

the optimal bound is achieved when c= 2/3, which yields an average regret of order
√

logn

n2/3
. This is

a significant improvement over the bound in Theorem 1.

Remark 2 (The Case n
m
6∈ Z+). In the proof of Theorem 2, we assume that n is divisible by

m for some m> 1. If, however, such m does not exist (i.e., n is a prime number), we only need

to make a minor change in the definition of a batch. Formally, let Ti = [(i− 1)m+ 1, im] for all

i= 1, . . . , b T
m
c− 1, and Tb Tm c = [(b T

m
c− 1)m+ 1, T ]. Note that each of the first b T

m
c− 1 batches still

has the same length m, but the length of the last batch is between m and 2m. With these new

batches, the definition of p̂Dt in Step 2 part a is re-defined as:

λt(p̂
D
t ) = λDt −

ε

n
− 1

|Ti|
∑
s∈Ti−1

∆s.

Following the same arguments as in the proof of Theorem 2 (in Section 5.2), it is not difficult to

check that the statement in Theorem 2 still holds under this minor alteration.

Remark 3 (The Case of Scarce Resource). Continuing our discussions in Remark 1 at the

end of Section 4, if C = nγ for some γ ∈ (0,1), then using ε = 1 + 8
√
b ·nmin{γ,c} · logn yields an

average regret of order O

(
√

logn

n
1−min{γ,c}

2

+ 1
nc

+ T

nb+min{γ,c}

)
. Note that if γ is close to 0 (but not 0),

we can choose c close to 1 and the average regret of DPC-Batch is practically of order
√

logn
n

, which

is about the same order as the average regret of DPC. This means that, when resource is very

scarce, periodic adjustment may not have a significant impact in improving performance.

5.2. Proof of Theorem 2

The proof of Theorem 2 follows similar arguments as the proof of Theorem 1. We still proceed in

two steps: In the first step, we construct a high-probability event G and show that, on the set G,
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we always have Ct ≥ 1 and pt = p̂Dt for all t. In the second step, we bound the total revenue losses

under DPC-Batch(m,ε).

Step 1

We start with the first step. For some positive δ = o(m), whose exact value is to be determined

later, define a sequence of events {Ai(ε, δ)} as follows:

Ai(ε, δ) =

max
t≤im

∣∣∣∣∣∣
t∑

s=(i−1)m+1

∆s

∣∣∣∣∣∣ < δ

 for all i= 1, . . . , T
m

. (10)

Analogous to (4) in Section 4.2, it can be shown that

P(Āi(ε, δ)) ≤ 2 · exp{r2 min{C − ε,m}− rδ} for all i= 1, . . . , T
m

and r ∈ [0,1]. (11)

Now, define G(ε, δ) =∩T/mi=1 Ai(ε, δ). By the sub-additivity property of probability,

P(G(ε, δ))≥ 1− 2T

m
exp{r2 min{C − ε,m}− rδ}. (12)

We make some important observations. First, on the set G(ε, δ), we always have:
∣∣∣ εn + 1

m

∑
s∈Ti

∆s

∣∣∣
≤ ε

n
+ δ

m
for all i. This means that, as long as the parameters ε, δ, and m are chosen such that

ε
n

+ δ
m
≤min{ϕL,ϕU}, the condition λDt − ε

n
− 1

m

∑
s∈Ti−1

∆s ∈Ωλ in Step 2 part a in the definition

of DPC-Batch is always satisfied. For the remaining of the proof, we will therefore assume that

ε
n

+ δ
m
≤min{ϕL,ϕU}. Now, suppose that t∈ Tj1 and t+n−1∈ Tj2 , where j1 < j2 and t+n−1≤ T .

We can write the total demands during [t, t+n− 1] as follows:

t+n−1∑
s=t

Ds(p̂
D
s ) =

∑
s≥t,s∈Tj1

Ds(p̂
D
s ) +

j2−1∑
j=j1+1

∑
s∈Tj

Ds(p̂
D
s ) +

∑
s≤t+n−1, s∈Tj2

Ds(p̂
D
s )

=
∑

s≥t,s∈Tj1

λDs − ε

n
− 1

m

∑
l∈Tj1−1

∆l + ∆s

+

j2−1∑
j=j1+1

∑
s∈Tj

λDs − ε

n
− 1

m

∑
l∈Tj−1

∆l + ∆s


+

∑
s≤t+n−1, s∈Tj2

λDs − ε

n
− 1

m

∑
l∈Tj2−1

∆l + ∆s


=

t+n−1∑
s=t

λDs − ε − 1

m

∑
s≥t,s∈Tj1

∑
l∈Tj1−1

∆l −
∑

s<t,s∈Tj1

∆s

+

 ∑
s∈Tj2−1

∆s−
1

m

∑
s≤t+n−1, s∈Tj2

∑
s∈Tj2−1

∆s

+
∑

s≤t+n−1, s∈Tj2

∆s.
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Since Tj contains m periods for all j, on the set G(ε, δ), we can bound:∣∣∣∣∣∣ 1

m

∑
s≥t,s∈Tj1

∑
l∈Tj1−1

∆l

∣∣∣∣∣∣ ≤ δ,

∣∣∣∣∣∣
∑

s<t,s∈Tj1−1

∆s

∣∣∣∣∣∣ ≤ δ,

∣∣∣∣∣∣
∑

s≤t+n−1, s∈Tj2

∆s

∣∣∣∣∣∣ ≤ δ

and

∣∣∣∣∣∣
∑

s∈Tj2−1

∆s−
1

m

∑
s≤t+n−1, s∈Tj2

∑
s∈Tj2−1

∆s

∣∣∣∣∣∣ ≤ δ.

Putting the above four bounds together, on the set G(ε, δ), we have:

t+n−1∑
s=t

Ds(p̂
D
s ) ≤ C − ε+ 4δ for all t+n− 1≤ T . (13)

It is worth noting that although (13) is similar to (6) in the proof of Theorem 1, the term δ in

(6) represents a bound on cumulative errors during n periods whereas the term δ in (13) represents

a bound on cumulative errors during m<n periods (i.e., the δ in (13) is potentially much smaller

than the δ in (6), which highlights the potential improvement due to batch adjustments).

Let δ = ε−1
4

. Given this and the assumption that ε
n

+ δ
m
≤min{ϕL,ϕU}, it is not difficult to see

that the following always hold on G(ε, δ): Ct ≥ 1 and λDt − ε
n
− 1

m

∑
s∈Ti−1

∆s ∈ Ωλ for all i and

t∈ Ti. As a consequence, we also have pt = p̂Dt for all t.

Step 2

We are now ready to bound the expected regret of DPC-Batch(m,ε). Let {pt} be the price sequence

under DPC-Batch(m,ε). Note that

E[RDPC−Batch(m,ε)] = E

[
T∑
t=1

rt(pt)

]
≥E

[(
T∑
t=1

rt(p̂
D
t )

)
·1{G(ε, δ)}

]

= E

[
T∑
t=1

rt(p̂
D
t )

]
−E

[(
T∑
t=1

rt(p̂
D
t )

)
·1{Ḡ(ε, δ)}

]
.

The second expectation after the last equality above can be bounded by ruT ·P(Ḡ(ε, δ)) where

ru = maxtmaxλt∈Ωλ rt(λt). As for the first expectation, suppose that t ∈ Ti for some i ≥ 2. By

Taylor’s expansion and Assumption A6, we can bound rt(p̂
D
t ) = rt

(
λDt − ε

n
− 1

m

∑
s∈Ti−1

∆s

)
≥

rt(λ
D
t )− r′t(λDt ) ·

(
ε
n

+ 1
m

∑
s∈Ti−1

∆s

)
−Ψ ·

(
ε
n

+ 1
m

∑
s∈Ti−1

∆s

)2

. Taking expectation and applying

Assumption A6 one more time yield E [rt(p̂
D
t )]≥ rt(λDt )− Ψε

n
−Ψ ·

(
2ε2

n2
+ 2

m

)
, where the inequality
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follows because (x + y)2 ≤ 2x2 + 2y2 for all (x, y) and E

[(∑
s∈Ti−1

∆s

)2
]
≤ m (by definition,

{∆s}s∈Ti−1
are independent zero-mean random variables and |∆s| ≤ 1).

Putting the bounds together, for all r ∈ [0,1], we have:

JD−E[RDPC−Batch(m,ε)]

T
≤ 1

T
·
[
TΨε

n
+ TΨ ·

(
2ε2

n2
+

2

m

)
+ ruT ·P (Ḡ(ε, δ))

]
≤ Ψε

n
+

2Ψε2

n2
+

2Ψ

m
+

2ruT

m
· exp{r2 min{C − ε,m}− rδ}.

Taking r= δ
2 min{C−ε,m} and substituting δ= ε−1

4
yields:

JD−E[RDPC−Batch(m,ε)]

T
≤ M2 ·

[
ε

n
+

1

m
+
T

m
· exp

{
− (ε− 1)2

64min{C − ε, m}

}]
(14)

for some M2 > 0 independent of T , C, n, m, and ε ∈
[
1, min

{
n,m,n · 1+4m·min{ϕL,ϕU}

4m+n

}]
. (Note

that δ = ε−1
4

and ε ≤ n+4mn·min{ϕL,ϕU}
4m+n

implies ε
n

+ δ
m
≤min{ϕL,ϕU}; 1 < ε < m ensures that r =

δ
2 min{C−ε,m} = ε−1

8 min{C−ε,m} ∈ (0,1).) To get bound (9), we further require c > log logn
logn

to ensure

r ∈ (0,1). This completes the proof. �

6. Numerical Experiments

We now conduct simple numerical experiments to illustrate the performance of the proposed heuris-

tic controls under different problem parameters. For simplicity, we assume that the demand function

(i.e., purchasing probability) is stationary over time, and is exponentially decreasing in price, i.e.,

λ(p) = exp
(
λ0− p

p0

)
. We use λ0 = 0.8 and p0 = 100. The length of selling horizon T and resource

capacity C are both set to be linear in n, and we vary n from 1,000 to 8,000. Specifically, we choose

C = 0.7 · n and T = 5 · n (i.e., n = 1,000 corresponds to the problem instance with 700 units of

resources and length of selling horizon equals 5,000 periods). The resulting deterministic problem

has a stationary optimal solution λDt ≡ λD = 0.7, with optimal objective value JD = 80.97.

Table 1 summarizes the heuristic controls tested in all experiments. Several comments are in

order regarding the implementation details. First, we implement DPC-0 to identify the impact of

injecting a buffer for deterministic control. Second, in DPCB-ε, if T/m /∈Z+, we simply set the last
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period to be of size T mod m (given the discussions in Remark 2 in Section 5, this should not affect

the performance of DPC-Batch by much). Third, LRC-k refers to a simple adoption of the self-

adjusting control proposed in Jasin (2014), where we simply re-start the control at every k periods

by setting the cumulative error to be zero (see Section EC.4 for a detailed description). Fourth, for

any combination of parameters, we simulate all the heuristic controls with 300 Monte Carlo runs

to approximate their expected total revenues. Lastly, for DPC-ε and DPCB-ε, we simply use a

grid-search method to find the optimal ε (between 0 and 1, with an increment of 0.01).

Table 1 Summary description of all heuristic controls

Label Description

DPC-0 DPC(ε) with ε= 0 (defined in Section 4.1)

DPC-ε DPC(ε) (defined in Section 4.1)

DPCB-ε DPC-Batch(m,ε) with m= dn2/3e (defined in Section 4.1)

LRC-k Linear rate control with re-starting at every k periods (see Section 4 in Jasin 2014)

Simulation results. Figures 1 and 1 show the expected total regrets of the first three heuristic

controls, where the y-axis is the scaled total expected revenue loss JD−Jπ√
n

. We do not plot the

regret of LRC-k since it performs much worse than any of the other three heuristic controls under

any k, but we report the complete numerical results in Section EC.4 in the electronic companion.

As expected, DPC-Batch dominates DPC, which in turn dominates DPC-0. Moreover, a closer

look on the average regret confirms the asymptotic optimality of all three heuristic controls. The

relatively poor performance (in fact, may not even be asymptotically optimal) of LRC suggests that

a heuristic control that performs well in the setting of canonical revenue management cannot be

directly adopted to the setting of revenue management with reusable resources and deterministic

service time requirements. This reinforces our point in Section 1 that the setting considered in our

work, though may appear identical, is not exactly the same as the setting in the standard revenue

management literature.
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Figure 1 Plot of expected average regret (%) with different ε
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7. Extension to Multiple Service Types with Heterogeneous Service Time
Requirements

In this section, we discuss a generalization of the basic model in Section 3 that allows different

service types with heterogeneous service time requirements. We first discuss the setting of the

problem and then provide a generalization of DPC-Batch.

7.1. The Setting

The firm sells K ≥ 1 service (or product) types where a request of service type k requires one unit

of resource and nk units of service time (or nk periods). For ease of exposition, we will assume that

T
nk
∈Z+ for all k= 1, . . . ,K. Moreover, without loss of generality, we also assume that the service

types are labeled in such a way that 1≤ n1 ≤ n2 ≤ · · · ≤ nK . The dynamics of the problems are as

follows: At the beginning of period t, the firm sets the prices for all service types, denoted by a

vector pt := (pt,1, . . . , pt,K)∈Ωp. (Unless otherwise noted, all vectors are to be understood as column

vectors.) For period t, a price vector pt induces a demand vector Dt(pt) = (Dt,1(pt), . . . ,Dt,K(pt))

with rate vector λt(pt) := (λt,1(pt), . . . , λt,K(pt)), where λt(pt) = E [Dt(pt)]. The corresponding

revenue rate is given by rt(pt) = E[p>t Dt(pt)] = p>t λt(pt). By the invertibility assumption (see
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below), we will also use Dt(λt) = Dt(pt(λt)) and rt(λt) =λ>t pt(λt) to denote the realized demand

vector and revenue rate as a function of demand rates, respectively. As in the basic model, we

assume that demands across different periods are independent but demands over different service

types within the same period may be correlated and demand rates as functions of time may be

non-stationary. We assume at most one request arrives in each period, i.e.,
∑K

k=1Dt,k(pt)≤ 1 (this

is without loss of generality). Let Ωp =⊗Kk=1Ωp,k and Ωλ =⊗Kk=1Ωλ,k denote the convex feasible set

for price vector and demand rate vector, respectively. The following regularity conditions are the

generalization of Assumptions A1-A4 in Section 3 to the multiple service types setting:

MA1. λt(pt) : Ωp→Ωλ is bounded, twice differentiable and invertible.

MA2. For each k, there exists a “turn-off” price p̄k such that pvk,t→ p̄k implies λt,k(p
v
t )→ 0.

MA3. λvt → 0 implies rt(λ
k
t )→ 0 for any feasible sequence {λvt }∞v=1.

MA4. rt(λt) is bounded, strictly jointly concave, and has a finite maximizer λ∗t ∈Ωλ.

The optimal stochastic control formulation of our dynamic pricing problem is given by:

OPT-M : J∗M =

max
π∈Π

E

[
T∑
t=1

rt(p
π
t )

]
:

K∑
k=1

t∑
s=max{1, t−nk+1}

Ds,k(p
π
s )≤C for all t≤ T


where the constraints must hold almost surely (or with probability one) and Π is the set of all

non-anticipating controls. Using demand rate vector as the decision variable, the deterministic

relaxation of OPT-M is given by:

DET-M : JDM =

max
λt∈Ωλ

T∑
t=1

rt(λt) :
K∑
k=1

t∑
s=max{1, t−nk+1}

λs,k ≤C for all t≤ T


As in Lemma 1, it is not difficult to show that JDM is an upper bound of J∗M . Therefore, the average

regret defined in Section 3 can still be used as a proper performance measure. Let λD := (λDt )Tt=1

denote the optimal solution of DET-M, and let pD := (pDt )Tt=1 denote the corresponding optimal

price vectors (i.e., pDt = pt(λ
D
t )). Let e be a vector of ones, with a proper dimension. Similar to

Assumptions A5-A6, we assume that there exist positive constants ϕL , ϕU , and Ψ such that the

following two conditions hold for all t:
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MA5. [λDt −ϕLe, λDt +ϕUe]⊆Ωλ.

MA6. ||∇rt(λ)||∞ and ||∇2rt(λ)||2 are bounded from above by Ψ on [λDt −ϕL, λDt +ϕU ].

We are now ready to present the generalization of DPC-Batch in the setting with multiple service

types and heterogeneous service time requirements.

7.2. A Generalized DPC-Batch and Its Performance

Let m = (m1, . . . ,mK) be a sequence of positive integers such that nk
mk
∈Z+ for all k. (As in Section

5.1, the existence of such sequence is assumed for ease of exposition and does not affect our result.

If a proper mk satisfying nk
mk
∈Z+ does not exist, then we can slightly modify our batch definition

as in Remark 2 at the end of Section 5.1.) For each service type k, we slice the selling horizon

into T
mk

batches, each of length mk periods. Let Tk,i = [(i− 1)mk + 1, imk] denote the ith batch

for service type k. The key idea behind our generalized DPC-Batch is to manage the demand

rate for each service type somewhat independently of the other service types. To be precise, the

demand rates in each batch are adjusted in such a way that the cumulative errors for a given service

type in the previous batch are corrected by the demands of the same service type in the current

batch. (This does not mean that the controls are completely decoupled since demands over different

service types are still connected through their prices, which means that the corresponding prices

adjustments need to be computed jointly.) Let ∆t := (∆t,k)
K
k=1 = (Dt,k(pt)− λt,k(pt))Kk=1 denote

the vector of errors from expected demands in period t under price vector pt (we suppress the

dependency of ∆t on pt). Also, let ε= (ε1, . . . , εK) be a sequence of real-valued constants denoting

the size of buffer for each service type, and define ik(t) such that t ∈ Tk,ik(t) for all t and k. The

complete definition of our generalized DPC-Batch with multiple service types and heterogeneous

service time requirements is given below.

DPC-Batch with Parameters m and ε (DPC-Batch(m, ε))

Step 1. Solve DET-M and get λD.
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Step 2. At the beginning of each t, do:

a. If Ct ≥ 1 and λDt,k−
εk
nk
− 1

mk

∑
s∈Tk,ik(t)−1

∆s,k ∈Ωk,λ, set pt = p̂Dt where

λt,k(p̂
D
t ) = λDt,k−

εk
nk
− 1

mk

∑
s∈Tk,ik(t)−1

∆s,k for all k;

b. Otherwise, set pt = p̄.

Note that the price vector p̂Dt in Step 2 part a is well-defined by the invertibility assumption in

MA1. Let CD
k := max1≤t≤T

∑t

s=max{1, t−nk+1} λ
D
s,k denote the maximum amount of resource used by

service type k in the deterministic model. The following theorem tells us the performance of DPC-

Batch with heterogeneous service time requests; we defer its proof to the electronic companion.

Theorem 3. Suppose that 0<n1 ≤ · · · ≤ nK ≤ 1. There exists a constant M3 > 0 such that for all

T , C, mk, εk ∈ nk ·
[

1
Kn1

, min
{

1, 1
K
· 1+4Kmk·min{ϕL,ϕU}

4mk+n1

}]
, and n1 ≥ 1

Kmin{ϕL,ϕU}
we have

AvReg(DPC-Batch) ≤ M3 ·
K∑
k=1

[
εk
nk

+
1

mk

+
T

mk

· exp

{
− (Kn1εk−nk)2

64K2n2
k min{CD

k − εk, mk}

}]
.(15)

In particular, if nk = αk ·n and CD
k = βk ·n for some 0<α1 ≤ · · · ≤ αK and βk > 0 for all k, then

using εk = αk
Kα1

(1 + 8
√
b ·nc · logn) and mk = dnce for all k, for some b > 0 and c∈ [0,1), yields

AvReg(DPC-Batch) = O

(√
b ·nc · logn

n
+

1

nc
+

T

n
c+ b

max{1,maxk{βk}}

)
. (16)

Two comments are in order. First, under a proper choice of b, setting c = 2/3 in (16) yields

an average regret of order
√

logn

n2/3
. This is the same order as the optimal bound as in Theorem 2

(with c= 2/3). Second, although the second bound in Theorem 3 only focuses on the case where

CD
k = Θ(nk) = Θ(n) for all k, the first bound in Theorem 3 holds in great generality. For example,

if nk = Θ(nαk) and CD
k = βk ·nk for some αk, βk > 0, we can use εk = nk

Kn1

(
1 + 8K

√
b ·nckk · lognk

)
and mk = dnckk e for some ck > 0 for all k, for some b > 0, and the bound in Theorem 3 becomes

AvReg(DPC-Batch) =
K∑
k=1

O

√b ·nckk · lognk
n1

+
1

n
ck
k

+
T

n
ck+ b

max{1,βk}
k

 .
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Ignoring the logarithmic term in the bound above, an optimal ck can be calculated by setting

n
3
2 ck
k = n1, or equivalently ck = 2

3
· logn1

lognk
:= c∗k. Note that the number of batches in one service cycle

for service type k under ck = c∗k is approximately n
1−c∗k
k = n

2
3 ( 1
c∗
k
−1)

1 . Since the power term on n1 is

decreasing in c∗k for all c∗k ∈ (0,1) and a larger nk implies a smaller c∗k, the service type with a longer

service time requires a larger batch size and a more frequent price adjustments during one service

cycle than the service type with a shorter service time. Overall, the average regret of DPC-Batch

for the above scenario under c∗k is of order

√
logn1

n
2/3
1

.

8. Extension to Advance Service Bookings with Homogeneous Service Time
Requirements

In this section, we consider a generalization of the basic model in Section 3 to the setting with

advance service booking or scheduling. We first discuss the setting of the problem and then we

provide a generalization of DPC-Batch.

8.1. The Setting

Similar to the basic model, the firm sells only a single service type where each request requires

a single unit of resource and n units of service time. However, unlike in the basic model where a

customer arriving in period t immediately starts her service in period t, she can now choose to start

her service at time t+ `, where `∈ [0,L]. (For simplicity, we will call a request whose service starts

` periods later as type-` request; this should not be confused with the meaning of “type” in the

previous section.) The firm controls the arrival rates of all types of requests by setting a price vector

pt = (pt,0, . . . , pt,L), where pt,` is the price of a type-` request booked in period t (note that pt,0 is

the price of service that starts immediately in period t). Demand rates in period t is denoted by

λt(pt) := (λt,0(pt), . . . , λt,L(pt)). Let Dt(pt) = (Dt,1(pt), . . . ,Dt,L(pt)) denote the realized requests

in period t (by definition, E[Dt(pt)] =λt(pt)). By the invertibility assumption (see below), we can

write the corresponding revenue rate as rt(pt) := p>t λt(pt) = λ>t pt(λt) = rt(λt). As in the basic

model, we assume that demands across different periods are independent, though demands over
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different request types within the same period may be correlated, and at most one request arrives

in each period, i.e.,
∑L

`=0Dt,`(pt) ≤ 1. Let Ωp = ⊗L`=0Ωp,` and Ωλ = ⊗L`=0Ωλ,` denote the convex

feasible set for price vector and demand rate vector, respectively. As in Section 3, we assume that

MA1-MA4 hold. (Although the definition of service, or request, types in Sections 7 and 8 are

different, from the point of view of abstraction, the demand and revenue functions in Sections 7

and 8 are essentially a multi-product variant of the functions in Section 3.)

The optimal stochastic control formulation of our dynamic pricing problem is given by:

OPT-A : J∗A =

max
π∈Π

E

[
T∑
t=1

rt(p
π
t )

]
:

L∑
`=0

t−∑̀
s=max{1, t−n−`+1}

Ds,`(p
π
s )≤C for all t≤ T


where the constraints must hold almost surely (or with probability one) and Π is the set of all

non-anticipating controls. Using demand rate vector as the decision variable, the deterministic

relaxation of OPT-A is given by:

DET-A : JDA =

max
λt∈Ωλ

T∑
t=1

rt(λt) :
L∑
`=0

t−∑̀
s=max{1, t−n−`+1}

λs,` ≤C for all t≤ T


Let λD := (λDt )Tt=1 denote the optimal solution of DET-A, and let pD := (pt(λ

D
t ))Tt=1 denote the

corresponding price vectors. As in Section 7, we assume that MA 5 and MA 6 also hold for all t.

Lastly, we define our performance measure in the setting with advance booking as follows:

AvReg(π) =
JDA −E[Rπ]

T · (L+ 1)
.

In the same spirit with Lemma 1, it is not difficult to show that J∗A ≤ JDA . However, unlike in the

basic model in Section 3 where the expected total revenues under the optimal policy throughout

T periods only scales linearly with T , the expected total revenues in the advance booking setting

may scale linearly with T · (L+ 1), especially when T is large and the demand rate function λt,`(·)

has the same order of magnitude for all t and ` (i.e., at any period t, we have the same intensity

among customers who are requesting to start their service at period t+ ` where ` = 0,1, . . . ,L),

because we are essentially collecting revenues from about n · (L+ 1) customers instead of n during

each service cycle. This explains why we divide the expected total regrets with T · (L+ 1) instead

of T in the above. We can alternatively interpret this as the average expected revenue loss per

customer.
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8.2. A Generalized DPC-Batch and Its Performance

Let {Ti}T/mi=1 denote a partition of [1, T ], where Ti = [(i− 1)m+ 1, im] for all i≥ 1. The key idea

behind our generalized DPC-Batch with advance service booking is to correct the cumulative errors

of type-` request in the previous batch with the demands of type-` request in the current batch.

Let ∆t := (∆t,`)
L
`=0 = (Dt,`(pt)−λt,`(pt))L`=0 denote the vector of errors from expected demands in

period t under price vector pt, where we suppress the dependency of ∆t on pt. For each t, let i`(t)

be such that max{t− `,1} ∈ Ti`(t). The complete definition of DPC-Batch with advance service

booking is given below.

DPC-Batch with Parameters m and ε (DPC-Batch(m, ε))

Step 1. Solve DET-A and get λD.

Step 2. At the beginning of each t≥ 1, do:

a. If Ct ≥ 1 and λDt,`− ε
n(L+1)

− 1
m

∑
s∈Ti`(t)−1

∆s,` ∈Ωλ,`, set pt = p̂Dt where

λt,`(p̂
D
t ) = λDt,`−

ε

n(L+ 1)
− 1

m

∑
s∈Ti`(t)−1

∆s,` for all `;

b. Otherwise, set pt = p̄.

The following theorem tells us the performance of DPC-Batch with advance service booking; we

defer its proof to the electronic companion.

Theorem 4. The following two bounds hold for all C, L, n and m:

1. If L≤ n and ε ∈
[
1,min

{
n(L+ 1),m(L+ 1), n · 1+m(L+1) min{ϕL,ϕU}

8m+n

}]
, there exists a constant

M4 > 0 such that

AvReg(DPC-Batch) ≤ M4 ·
[

ε

n(L+ 1)
+

1

m
+
T

m
· exp

{
− (ε− 1)2

256(L+ 1)2 min{C − ε, m}

}]
.(17)

2. If L>n and ε∈ (L+1) ·
[
2,min

{
n,m, 4mnmin{ϕL,ϕU}+2

4m+n

}]
, there exists a constant M ′

4 > 0 such

that

AvReg(DPC-Batch)≤M ′
4 ·
[

ε

n(L+ 1)
+

1

m
+
T

m
· exp

{
− (ε− 2(L+ 1)/n)2

64(L+ 1)2 min{C − ε, m}

}]
. (18)
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In particular, if C = a ·nL, L= nd, m= dnce for some a > 0, d≥ 0 and c ∈
(

log logn
logn

,1
)

, we can

bound the average regret of DPC-Batch as follows:

1. For d≤ 1, using ε= 1 + 16
√
b ·n2d+c · logn for some b > 0 in bound (17) yields

AvReg(DPC-Batch) = O

(√
b logn

n1− c2
+

1

nc
+

T

n
c+ b

max{1,a}

)
. (19)

2. For d> 1, using ε= 2 · L+1
n

+ 8
√
b ·n2d+c · logn for some b > 0 in bound (18) yields

AvReg(DPC-Batch) = O

(√
b · logn

n1− c2
+

1

nc
+

T

n
c+ b

max{1,a}

)
. (20)

The two general bounds in Theorem 4 (i.e., (17) and (18)) are proved in a very similar manner

under different requirements on ε and the relative magnitude of n and L. Together, they are the

analogue of (8) in Theore 2 and holds for general problem parameters C, m, and n. Under slightly

different choice of ε, the optimal order of (19) and (20) are both achieved when c = 2/3, which

yields an average regret of order
√

logn

n2/3
. Hence, Theorem 4 tells us DPC-Batch can be generalized

to the setting with advance service bookings without worsening the performance.

9. Closing Remarks

In this paper, we address the dynamic pricing problem with reusable resources and deterministic

service time requirements. Given the complexity of solving the stochastic control optimally, we focus

on designing provably-good heuristic controls and evaluate their performances in the asymptotic

regime. We also extend our result to the setting with heterogeneous service time requirements

and advance booking length. Given its simplicity and generality, we believe that our heuristic

controls can be tailored to address practical dynamic pricing problems faced by firms from various

industries. Methodologically, our asymptotic analysis also shed lights on the difference between

revenue management with reusable resources and deterministic service time requirements and the

canonical revenue management problems. Many possible extensions are not addressed in this paper.

For example, it is interesting to see how our analytical framework can be generalized to the setting

with stochastic service time. Another potential future direction is to analyze the “network” version

of our model, where resources can move dynamically between nodes, which is the setting of many

on-demand ride sharing models such as UBER and Lyft.
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EC.1. Proof of Lemma 1

Consider any admissible control π ∈Π. Per our notations above, π essentially corresponds to the

demand rate sequence {λπt }Tt=1. By definition, the sequence {λπt }Tt=1 satisfies the capacity constraints

in DET. Moreover, we know from Assumption A4 and Jensen’s inequality that

E

[
T∑
t=1

r(λπt )

]
=

T∑
t=1

E [pt(λ
π
t ) ·Dt(λ

π
t )] =

T∑
t=1

E [E [pt(λ
π
t ) ·Dt(λ

π
t )|Ht]] =

T∑
t=1

E [r(λπt )]≤
T∑
t=1

r (E [λπt ]) .

Therefore, we conclude that J∗ = Jπ
∗ ≤ JD. �

EC.2. Proof of Theorem 3

The proof of Theorem 3 follows similar arguments as in the proofs of Theorems 1 and 2. We still

proceed in two steps: In the first step, we construct a high-probability event G, and show that, on

the set G, we always have Ct ≥ 1 and pt = p̂Dt for all t. In the second step, we bound the total

revenue losses under DPC-Batch(m,ε).

Step 1

We start with the first step. For some δk = o(mk), whose value is to be determined later, define a

sequence of events {Ak,i(εk, δk)} as follows:

Ak,i(εk, δk) =

max
t≤imk

∣∣∣∣∣∣
t∑

s=(i−1)mk+1

∆s,k

∣∣∣∣∣∣ < δk

 for all i= 1, . . . , T
mk
, k= 1, . . . ,K. (EC.1)

Analogous to (4), it can be shown that

P
(
Āk,i(εk, δk)

)
≤ 2 · exp{r2

k min{CD
k − εk,mk}− rkδk} for all rk ∈ [0,1]. (EC.2)

Define G(ε,δ) = ∩Kk=1 ∩
T/mk
i=1 Ai,k(εk, δk), where δ = (δ1, . . . , δK). By the sub-additivity property

of probability, we have:

P(G(ε,δ))≥ 1− 2T
K∑
k=1

exp{r2
k min{CD

k − εk,mk}− rkδk}
mk

. (EC.3)
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Now, we make some observations. First, on the set G(ε,δ), we always have:
∣∣∣ εknk + 1

mk

∑
s∈Tk,i

∆s,k

∣∣∣
≤ εk

nk
+ δk

m
for all i and k. This means that, as long as the parameters εk, δk, and mk are chosen such

that εk
nk

+ δk
mk
≤min{ϕL,ϕU}, the condition λDt,k−

εk
nk
− 1

mk

∑
s∈Tk,ik(t)

∆s,k ∈Ωλ,k in Step 2 part a of

DPC-Batch is always satisfied for all t. For the remaining of the proof, we will therefore assume

that εk
nk

+ δk
mk
≤ min{ϕL,ϕU}. Now, suppose that t ∈ Tk,ik and max{1, t − nk + 1} ∈ Tk,jk , where

t∈ [n1, T ]. We can write the total resource consumption by the end of period t as follows:

K∑
k=1

t∑
s=max{1, t−nk+1}

Ds,k(p̂
D
s )

=
K∑
k=1

 ∑
s≥max{1,t−nk+1}

s∈Tk,jk

Ds,k(p̂
D
s ) +

ik−1∑
j=jk+1

∑
s∈Tk,j

Ds,k(p̂
D
s ) +

∑
s≤t, s∈Tk,ik

Ds,k(p̂
D
s )


=

K∑
k=1

∑
s≥max{1,t−nk+1}

s∈Tk,jk

λDs,k− εk
nk
− 1

mk

∑
l∈Tk,jk−1

∆l,k + ∆s,k



+
K∑
k=1

ik−1∑
j=jk+1

∑
s∈Tk,j

λDs,k− εk
nk
− 1

mk

∑
l∈Tk,j−1

∆l,k + ∆s,k


+

K∑
k=1

∑
s≤t, s∈Tk,ik

λDs,k− εk
nk
− 1

mk

∑
l∈Tk,ik−1

∆l,k + ∆s,k


≤

K∑
k=1

t∑
s=max{1, t−nk+1}

λDs,k −
K∑
k=1

n1

nk
εk

−
K∑
k=1

(
jk ·mk−max{1, t−nk + 1}

mk

)
·

 ∑
s∈Tk,jk−1

∆s,k

 − K∑
k=1

∑
s<max{1, t−nk+1}

s∈Tk,jk

∆s,k

+
K∑
k=1

(
1− t− (ik− 1)mk

mk

)
·

 ∑
s∈Tk,ik−1

∆s,k

 +
K∑
k=1

∑
s≤t, s∈Tk,ik

∆s,k

≤C −
K∑
k=1

n1

nk
εk +

K∑
k=1

∣∣∣∣∣∣
∑

s∈Tk,jk−1

∆s,k

∣∣∣∣∣∣ +
K∑
k=1

∣∣∣∣∣∣∣∣
∑

s<max{1, t−nk+1}
s∈Tk,jk

∆s,k

∣∣∣∣∣∣∣∣
+

K∑
k=1

∣∣∣∣∣∣
∑

s∈Tk,ik−1

∆s,k

∣∣∣∣∣∣ +
K∑
k=1

∣∣∣∣∣∣
∑

s≤t,s∈Tk,ik

∆s,k

∣∣∣∣∣∣
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where the last inequality follows by the definition of ik and jk. On the set G(ε,δ), for each k, each

of the terms with | · | above is at most δk. So, we can bound:

K∑
k=1

t∑
s=max{1, t−nk+1}

Ds,k(p̂
D
s ) ≤ C −

K∑
k=1

(
n1

nk
εk− 4δk

)
for all t∈ [n1, T ]. (EC.4)

(For t < n1, we can bound the total resource consumption by the end of period t with the total

resource consumption by the end of period n1. So, the above bound also holds.) Note that (EC.4)

is the analogue of (13) in the proof of Theorem 2. An immediate choice of δ that guarantees

our resource will never run out on the set G(ε,δ) is therefore δk = n1εk
4nk
− 1

4K
. Given this and the

assumption εk
nk

+ δk
mk
≤ min{ϕL,ϕU}, we conclude that the following always hold on G(ε,δ): (i)

Ct ≥ 1 and (ii) λDt,k−
εk
nk
− 1

mk

∑
s∈Tk,ik(t)−1

∆s,k ∈Ωk,λ for all t. Consequently, pt = p̂Dt for all t.

Step 2

We now ready bound the average regret of DPC-Batch(m,ε). Let {pt} be the sequence of price

vector under DPC-Batch(m,ε). As in Step 2 in the proof of Theorem 2, we have:

E[RDPC−Batch(m,ε)] ≥ E

[
T∑
t=1

rt(p̂
D
t )

]
−E

[(
T∑
t=1

rt(p̂
D
t )

)
·1{Ḡ(ε,δ)}

]
.

The second expectation after the last equality above can be bounded by ruT ·P(Ḡ(ε,δ)) where

ru = maxtmaxλt∈Ωλ rt(λt). As for the first expectation, by Taylor’s expansion and Assumption

MA6, we can bound:

E[rt(p̂
D
t )] = E

rt
λDt,1− ε1

n1

− 1

m1

∑
s∈T1,i1(t)−1

∆s,1, · · · , λDt,K −
εK
nK
− 1

mK

∑
s∈TK,iK (t)−1

∆s,K


≥ rt

(
λDt
)
−Ψ

K∑
k=1

εk
nk
−Ψ ·

K∑
k=1

E

 εk
nk

+
1

mk

∑
s∈Tk,ik(t)−1

∆s,k

2
≥ rt

(
λDt
)
−Ψ

K∑
k=1

(
εk
nk

+
2ε2k
n2
k

+
2

mk

)

where the first inequality follows from Assumption MA6; the last inequality follows because (x+

y)2 ≤ 2x2 + 2y2 for all (x, y) and E

[(∑
s∈Tk,ik(t)−1

∆s,k

)2
]
≤mk. Putting the bounds together, for

all rk ∈ [0,1], we have:
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JDM −E[RDPC−Batch(m,ε)]

T
≤ 1

T
·

[
TΨ

K∑
k=1

(
εk
nk

+
2ε2k
n2
k

+
2

mk

)
+ ruT ·P(Ḡ(ε, δ))

]

≤
K∑
k=1

(
Ψεk
nk

+
2Ψε2k
n2
k

+
2Ψ

mk

+
2ruT

mk

· exp{r2
k min{CD

k − εk,mk}− rkδk}
)
.

Taking rk = δk
2 min{CD

k
−εk,mk}

and substituting δk = n1εk
4nk
− 1

4K
yields:

JDM −E[RDPC−Batch(m,ε)]

T
≤ M3 ·

K∑
k=1

[
εk
nk

+
1

mk

+
T

mk

· exp

{
− (Kn1εk−nk)2

64K2n2
k min{CD

k − ε, mk}

}]

for some M3 > 0 independent of T , C, mk, εk ∈ nk ·
[

1
Kn1

, min
{

1, 1
K
· 1+4Kmk·min{ϕL,ϕU}

4mk+n1

}]
, and n1 ≥

1
Kmin{ϕL,ϕU}

. (Note: εk ≥ nk
Kn1

is needed to guarantee that δk = n1εk
4nk
− 1

4K
≥ 0 and n1 ≥ 1

Kmin{ϕL,ϕU}

is needed to guarantee that 1
Kn1
≤ 1

K
· 1+4Kmk·min{ϕL,ϕU}

4mk+n1
.) �

EC.3. Proof of Theorem 4

In this section, we prove the two bounds presented in (17) and (18). The proofs of these bounds

are similar, and follow similar arguments as in the proof of Theorems 2. In what follows, we first

show (17) in two steps: In the first step, we construct a high-probability event G, and show that,

on the set G, we always have Ct ≥ 1 and pt = p̂Dt for all t. In the second step, we bound the total

revenue losses under DPC-Batch(m,ε) followed by a brief discussion on a crucial observation for

deriving the bound in (19). Finally, we will comment on which parts of the proof of (17) need to

be modified to show (18).

Proof of (17): Step 1

For some δ= o(m) whose exact value is to be determined later, define {Ai,`(ε,δ)} as follows:

Ai,`(ε, δ) =

max
t≤im

∣∣∣∣∣∣
t∑

s=(i−1)m+1

∆s,`

∣∣∣∣∣∣ < δ

 for all i= 1, . . . , T
m
, `= 0, . . . ,L. (EC.5)

Analogous to (4), it can be shown that

P
(
Āi,`(ε, δ)

)
≤ 2 · exp{r2 min{C − ε,m}− rδ} for all r ∈ [0,1]. (EC.6)
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Define G(ε, δ) =∩L`=0 ∩
T/m
i=1 Ai,`(ε, δ). By the sub-additivity property of probability,

P(G(ε, δ))≥ 1− 2T (L+ 1)

m
exp{r2 min{C − ε,m}− rδ}. (EC.7)

Note that, on the set G(ε, δ), we always have:
∣∣∣ ε
n(L+1)

+ 1
m

∑
s∈Ti

∆s,`

∣∣∣ ≤ ε
n(L+1)

+ δ
m

for all i and

`. This means that, as long as the parameters ε, δ, and m are chosen such that ε
n(L+1)

+ δ
m
≤

min{ϕL,ϕU}, the condition λDt,` − ε
n(L+1)

− 1
m

∑
s∈Ti

∆s,` ∈ Ωλ,` in Step 2 part a of DPC-Batch is

always satisfied for all i. For the remaining of the proof, we will therefore assume that ε
n(L+1)

+ δ
m
≤

min{ϕL,ϕU}. Now, suppose that t−`∈ Ti` (if t−`≤ 0, then we set i` = 0) and max{1, t−`−n+1} ∈

Tj` , where n≤ t≤ T . (For t < n, we can bound total resource consumption by the end of period t

with the total resource consumption by the end of period n.) We can bound total consumption of

resource by the end of period t as follows:

L∑
`=0

t−∑̀
s=max{1, t−`−n+1}

Ds,`(p̂
D
s )

=
L∑
`=0

 ∑
s≥max{1,t−`−n+1}

s∈Tj`

Ds,`(p̂
D
s ) +

i`−1∑
j=j`+1

∑
s∈Tj

Ds,`(p̂
D
s ) +

∑
s≤t−`, s∈Ti`

Ds,`(p̂
D
s )


=

L∑
`=0

∑
s≥max{1,t−`−n+1}

s∈Tj`

λDs,`− ε

n(L+ 1)
− 1

m

∑
v∈Tj`−1

∆v,` + ∆s,`



+
L∑
`=0

i`−1∑
j=j`+1

∑
s∈Tj

λDs,`− ε

n(L+ 1)
− 1

m

∑
v∈Tj−1

∆v,` + ∆s,`


+

L∑
`=0

∑
s≤t, s∈Ti`

λDs,`− ε

n(L+ 1)
− 1

m

∑
v∈Ti`−1

∆v,` + ∆s,`


=

L∑
`=0

t−∑̀
s=max{1, t−`−n+1}

λDs,` −
L∑
`=0

t−∑̀
s=max{1, t−`−n+1}

ε

n(L+ 1)

−
L∑
`=0

(
j` ·m−max{1, t− `−n+ 1}

m

)
·

 ∑
s∈Tj`−1

∆s,`

− L∑
`=0

∑
s<max{1, t−`−n+1},

s∈Tj`

∆s,`

+
L∑
`=0

(
1− t− `− (i`− 1)m

m

)
·

 ∑
s∈Ti`−1

∆s,`

+
L∑
`=0

∑
s≤t−`,s∈Ti`

∆s,`
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≤C −
∑n

s=max{1,n−L} s

n(L+ 1)
· ε +

L∑
`=0

∣∣∣∣∣∣
∑
s∈Tj`

∆s,`

∣∣∣∣∣∣ +
L∑
`=0

∣∣∣∣∣∣∣∣
∑

s<max{1, t−`−n+1}
s∈Tj`

∆s,`

∣∣∣∣∣∣∣∣ (EC.8)

+
L∑
`=0

∣∣∣∣∣∣
∑

s∈Ti`−1

∆s,`

∣∣∣∣∣∣ +
L∑
`=0

∣∣∣∣∣∣
∑

s≤t,s∈Ti`

∆s,`

∣∣∣∣∣∣ .
where the inequality follows from the definition of i`, j`, and the fact that

∑L

`=0

∑t−`
s=max{1, t−`−n+1} 1

≥
∑n

s=max{1,n−L} s for all t≥ n. Note that L≤ n implies

n∑
s=max{1,n−L}

s=
n∑

s=n−L

s=
n(n+ 1)

2
− (n−L)(n−L− 1)

2
=

(2n−L)(L+ 1)

2
≥ n(L+ 1)

2
.

Moreover, on the set G(ε,δ), the terms with | · | in (EC.8) are all bounded by δ. Thus, we have

L∑
`=0

t−∑̀
s=max{1, t−`−n+1}

Ds,`(p̂
D
s ) ≤ C − 1

2
· ε+ 4(L+ 1)δ for all t≥ n . (EC.9)

(EC.9) is the analogue of (13) in the proof of Theorem 2. An immediate choice of δ that guarantees

our resource will never run out on the set G(ε,δ) is therefore δ = ε−1
8(L+1)

. Given this and the

assumption ε
n(L+1)

+ δ
m
≤min{ϕL,ϕU}, we conclude that the following always hold on G(ε, δ): (i)

Ct ≥ 1 and (ii) λDt,`− ε
n(L+1)

− 1
m

∑
s∈Ti`(t)−1

∆s,` ∈Ωλ,`. Consequently, we have pt = p̂Dt for all t.

Proof of (17): Step 2

We now ready to bound the average regret of DPC-Batch(m,ε). Let {pt} be the price sequence

under DPC-Batch(m,ε). By the same argument as in Step 2 of the proof of Theorem 2, we have

E[RDPC−Batch(m,ε)] ≥ E

[
T∑
t=1

rt(p̂
D
t )

]
−E

[(
T∑
t=1

rt(p̂
D
t )

)
·1{Ḡ(ε, δ)}

]
.

The second expectation after the last equality above can be bounded by ruT ·P(Ḡ(ε,δ)) where

ru = maxtmaxλt∈Ωλ rt(λt). As for the first expectation, by Taylor’s expansion and Assumption

MA6, we can bound

E[rt(p̂
D
t )] = E

rt
λDt,1− ε

n(L+ 1)
− 1

m

∑
s∈Ti0(t)−1

∆s,0, · · · , λDt,L−
ε

n(L+ 1)
− 1

m

∑
s∈TiL(t)−1

∆s,L





e-companion to Lei and Jasin: Dynamic Pricing for Reusable Resources ec7

≥ rt(λ
D
t )−Ψ

ε

n
−Ψ ·

L∑
`=0

E

 ε

n(L+ 1)
+

1

m

∑
s∈Ti`(t)−1

∆s,`

2
≥ rt(λ

D
t )−Ψ

[
ε

n
+

2ε2

n2(L+ 1)
+

2(L+ 1)

m

]
where the first inequality follows from Assumption MA6; the last inequality follows because (x+

y)2 ≤ 2x2 + 2y2 for all (x, y) and E

[(∑
s∈Ti`−1

∆s,`

)2
]
≤m for all `.

Putting the bounds together, for all r ∈ [0,1], we have:

JDA −E[RDPC−Batch(m,ε)]

T (L+ 1)
≤ 1

T (L+ 1)
·
[
TΨ

(
ε

n
+

2ε2

n2(L+ 1)
+

2(L+ 1)

m

)
+ ruT ·P(Ḡ(ε, δ))

]
≤ Ψε

n(L+ 1)
+

2Ψε2

n2(L+ 1)2
+

2Ψ

m
+

2ruT

m
exp{r2 min{C − ε,m}− rδ}.

Taking r= δ
2 min{C−ε,m} and substituting δ= ε−1

8(L+1)
yield:

JDA −E[RDPC−Batch(m,ε)]

T (L+ 1)
≤ M4

[
ε

n(L+ 1)
+

1

m
+
T

m
· exp

{
− (ε− 1)2

256(L+ 1)2 min{C − ε, m}

}]

for some M4 > 0 for all ε ∈
[
1,min

{
n(L+ 1),m(L+ 1), n · 8m(L+1) min{ϕL,ϕU}+1

8m+n

}]
, T , C, m, and

L < n. (Note that ε≤min
{
m(L+ 1), n · 8m(L+1) min{ϕL,ϕU}+1

8m+n

}
and δ = ε−1

8(L+1)
imply ε

n(L+1)
+ δ

m
≤

min{ϕL,ϕU} and r ∈ (0,1).)

Proof of (18)

We now prove the bound for the case L>n. The major difference between the proof of (17) and

(18) lies in the way we bound the total resource consumption in (EC.8). We first discuss why this

is important in dealing with large L. On the RHS of (EC.8), the negative term after C is an upper

bound for negative total buffers in DPC-Batch (i.e., the term − ε
n(L+1)

in the definition of λt,`(p̂
D
t ))

and the remaining four positive terms is an upper bound for total random errors. If L > n, the

term
∑n
s=max{1,n−L} s

n(L+1)
in (EC.8) equals

∑n
s=1 s

n(L+1)
= n+1

2(L+1)
and the bound in (EC.9) becomes

L∑
`=0

t−∑̀
s=max{1, t−`−n+1}

Ds,`(p̂
D
s ) ≤ C − n+ 1

2(L+ 1)
· ε+ 4(L+ 1)δ.

Since ε≤ n(L+ 1) (otherwise p̂Dt is not well-defined), the size of ε is at most on the order of n2.

Per our argument in Step 1 in the proof of (17), δ represents an upper bound of the total errors
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of m Bernoulli random variables (for some m), which means that δ= Ω(1). But then, 4(L+ 1)δ is

Ω(L) and we cannot always guarantee C − n+1
2(L+1)

· ε+ 4(L+ 1)δ ≤ C for all large L > n2 (i.e., we

may not be able to find a feasible ε≤ n(L+ 1) such that − n+1
2(L+1)

· ε+ 4(L+ 1)δ≤ 0). This calls for

a more careful analysis on the bound of total resource consumption.

Note that, assuming we never apply p̄ up to and including period t − ` ≥ 0, total resource

consumption of type-` request by the end of period t is
∑t−`

s=max{1, t−`−n+1}Ds,`(p̂
D
s ). We divide our

analysis into three cases: n≤ t≤L+ 1, L+ 1< t≤ n+L, and t > n+L. (For t < n, we can bound

total resource consumption by the end of period t with the total resource consumption by the end

of period n.) When n≤ t≤ L+ 1, all type-` requests with `≥ t have not consumed any resource

yet. For 0≤ ` < t, following similar arguments as in (EC.8), we have

t−∑̀
s=max{1, t−`−n+1}

Ds,`(p̂
D
s )≤


∑t−`

s=t−`−n+1 λ
D
s,`− n

n(L+1)
· ε+ 4δ if 0≤ ` < t−n

∑t−`
s=1 λ

D
s,`− t−`

n(L+1)
· ε+ 2δ if t−n≤ ` < t

When L+1< t≤ n+L, all type-` requests (for all `∈ {0,1, . . . ,L}) have already consumed some

of the resources. Following similar arguments as in (EC.8), we have

t−∑̀
s=max{1, t−`−n+1}

Ds,`(p̂
D
s )≤


∑t−`

s=t−`−n+1 λ
D
s,`− n

n(L+1)
· ε+ 4δ if 0≤ ` < t−n

∑t−`
s=1 λ

D
s,`− t−`

n(L+1)
· ε+ 2δ if t−n≤ `≤L

At last, when t > n+L, following similar arguments as in (EC.8), we have

t−∑̀
s=max{1, t−`−n+1}

Ds,`(p̂
D
s )≤

t−∑̀
s=t−`−n+1

λDs,`−
n

n(L+ 1)
· ε+ 4δ.

Given all the above bounds, the total resource consumption by the end of period t≥ n can be

bounded as follows:

L∑
`=0

t−∑̀
s=max{1, t−`−n+1}

Ds,`(p̂
D
s )
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≤



C − 2t−n+1
2(L+1)

· ε + 2 · (2t−n+ 1) · δ if n≤ t≤L+ 1

C − n(L+1)− (L−t+n)(L−t+n+1)
2

n(L+1)
· ε + 2 · (t+L−n+ 2) · δ if L+ 1< t≤ n+L

C − ε + 4(L+ 1)δ if n+L< t≤ T

We claim that, if we set δ= ε
4(L+1)

− 1
2n

and ε≥ 2(L+ 1), total resource consumption by the end

of period t≥ n is at most C−1. To see this, when n≤ t≤L+ 1, substituting δ= ε
4(L+1)

− 1
2n

yields

2t−n+ 1

2(L+ 1)
· ε − 2 · (2t−n+ 1) · δ= 2 · (2t−n+ 1)

(
ε

4(L+ 1)
− δ
)

=
2t−n+ 1

n
≥ 1.

When L+ 1< t≤ n+L, substituting δ= ε
4(L+1)

− 1
2n

yields

n(L+ 1)− (L−t+n)(L−t+n+1)

2

n(L+ 1)
· ε − 2 · (t+L−n+ 2) · δ

= ε − 4(L+ 1)δ +
(L− t+n)

2n(L+ 1)
[4n(L+ 1)δ − (L− t+n+ 1) · ε]

=
2(L+ 1)

n
+

(L− t+n)

2n(L+ 1)
[(t−L− 1)ε − 2(L+ 1)]

≥ 2(L+ 1)

n
+

(L− t+n)(t−L− 2)

n
≥ 1 (because t > L+ 1, ε > 2(L+ 1)).

Finally, when t > n+L, substituting δ= ε
4(L+1)

− 1
2n

yields ε − 4(L+ 1)δ= 2 · L+1
n
> 1.

Now, plug the choice of δ into (EC.7) and substituting r= δ
2 min{C−ε,m} , we can bound

P(G(ε, δ))≥ 1− 2T (L+ 1)

m
exp

{
− (ε− 2(L+ 1)/n)2

64(L+ 1)2 min{C − ε, m}

}
.

The remaining arguments are the same as in Step 2 of the proof of (18). Note that ε∈ (L+ 1) ·[
2,min

{
n,m, 4mnmin{ϕL,ϕU}+2

4m+n

}]
ensures ε

n(L+1)
+ δ

m
≤min{ϕL,ϕU} and r ∈ (0,1). �

EC.4. Additional Details to Numerical Experiment

We first give a detailed definition of LRC-k. Similar with DPC-Batch, we slice the selling horizon

into batches, each of which is of size k (except for the last one), i.e. Ti = [(i−1) ·k+1,min{i ·k,T}],

for all i= 1, . . . , dT/ke. LRC-k is defined as follows
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Linear Rate Control with Batch Restarting (LRC-k)

Step 1. Solve DET and get λD.

Step 2. At the beginning of each t, if t∈ Ti, do:

a. If Ct ≥ 1 and λDt − 1
m

∑
s∈Ti,s<t

∆s/[Ti− (s− (i− 1) · k)]∈Ωλ, set pt = p̂Dt where

λt(p̂
D
t ) = λDt −

1

m

∑
s∈Ti , s<t

∆s

Ti− (s− (i− 1) · k)
;

b. Otherwise, set pt = p̄.

At last, we provide the numerical results of experiment 1 in Table EC.1. We only show the results

LRC-n, since, compared to the other heuristics, LRC-k is similarly worse as LRC-n for any k.

Table EC.1 Expected regret of fifferent heuristics with varying n

n
DPC-0 DPC-ε

Regret Std AvgReg(%) Runtime (ms) Regret Std AvgReg(%) Runtime (ms) Opt. ε

500 824 0.68 2.03 0.5 420 1.27 1.04 0.5 0.29
1000 1182 0.67 1.46 1.1 580 1.26 0.72 0.9 0.32
2000 1672 0.65 1.03 2.1 773 1.18 0.48 2.0 0.26
3000 2080 0.66 0.86 3.2 955 1.20 0.39 3.0 0.26
4000 2398 0.65 0.74 4.2 1089 1.14 0.34 4.0 0.27
5000 2708 0.67 0.67 5.1 1226 1.12 0.30 4.8 0.29
6000 2983 0.66 0.61 6.4 1342 1.17 0.28 5.7 0.31
7000 3228 0.73 0.57 7.3 1433 1.27 0.25 6.4 0.31
8000 3406 0.70 0.53 8.4 1522 1.27 0.23 7.5 0.28

n
LRC-n DPCB-ε

Regret Std AvgReg(%) Runtime (ms) Regret Std AvgReg(%) Runtime (ms) Opt. ε

500 13662 8.8 33.75 19.34 390 1.27 0.96 4.4 0.17
1000 28971 15.6 35.78 39.04 461 1.26 0.57 9.5 0.17
2000 60868 25.3 37.59 75.51 542 1.18 0.33 17.5 0.16
3000 91693 31.6 37.75 119.82 660 1.20 0.27 25.7 0.17
4000 123529 36.5 38.14 157.39 751 1.14 0.23 35.4 0.15
5000 156829 44.3 38.74 197.40 816 1.12 0.20 42.8 0.13
6000 183936 42.3 37.86 236.34 874 1.17 0.18 54.2 0.15
7000 222871 53.9 39.32 277.82 879 1.27 0.16 62.3 0.14
8000 248279 49.8 38.33 328.38 919 1.27 0.14 70.1 0.13


