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EXECUTIVE SUMMARY 

Driving measurements, data processing, model development, and model-based analyses 

were undertaken to lay a foundation for studying stop-and-go adaptive cruise control 

(ACC) as well as to begin creating a methodical approach for guiding the development 

and evaluation of driver assistance systems (DAS), as a class. This study built upon 

UMTRI' s prior capabilities in ACC measurement, data analysis, and modeling, 

concentrating on the n~anual control of stop-and-go driving as a baseline for considering 

the application of ACC to this driving regime. Using stop-and-go as the case-in-point 

application, it then sought to advance at least some basis for methodical developmenlt of 

DAS systems even though fbndamental theory is broadly lacking in this arena. What is 

truly needed, of course-a " science of driving"--does not exist. What is sought as ;I 

pragmatic alternative is an approach that will cut down product-development time and 

render a useful basis fbr understanding system performance, in light of the complexity of 

each driver-assistance application. 

This project was exploratory. It undertook a set of subtasks which, although yielding 

results that are instructive in their own right, do not by themselves constitute a 

compellingly methodical path toward the development and evaluation of stop-and-go 

ACC. Five kinds of tasks were pursued: 

1) A survey of related human factors literature was performed. It showed that a) certain 

basic aspects of human visual and psychomotor performance and even cognition at 

the "production" level are understood at least in a rudimentary way, and b) 

previously published modeling concepts do provide a helpful background for 

developing a model of manual stop-and-go headway control, but c) the complete 

dimensions of human control during stop-and-go driving go vastly beyond published 

knowledge. 

2) Lacking a developed scientific understanding of the driving process for the stop-and- 

go application, new empirical measurements were conducted under as naturalistic a 

driving exercise as was practicable. Using vehicles equipped with ACC-type sensors 

and other instrumentation, data records were obtained from both staged stopping tests 

and normal driving on Detroit-area freeways and surface streets in order to compile a 

useful base of stop-and-go manual driving data. 

3) These data were processed and examined from many points of view in order to: a) 

reveal essential elements of the manual control of speed and headway in stop-and-go 



environments, and b) guide the creation of a model that would explain as much of the 

manual control behavior as possible. The data exist in a Microsoft Access format and 

are readily portable for examination by others. 

4) A model of manual stop-and-go control developed for this project was then validated 

against the measured data. The differences between model predictions and measured 

data were studied for possible model refinements, and the overall modeling challenge 

was appraised in light of this experience to gain a first-round measure of the 

complexity resident in stop-and-go control. The model structure divided the range 

and range-rate phase space into seven zones, each with its own rules for modulating 

speed, based upon a hybrid of considerations from visual psychometrics, sliding 

control analysis, crash-avoidance rationalization, and empirical fitting. The model 

was created in MATLAB/SIMULINK@CO~~ and could be downloaded as an ACC 

control algorithm with little difficulty. 

5) The continuous model-dlference was computed between what the modeled-driver 

would have done and what each test driver did when tracking a preceding vehicle in 

actual tests, as a means of isolating the events in which the actual driver departed 

markedly from an apparent headway-only control criterion. A few video records were 

examined coincident with these events to identify the conditions that provoked what 

were called the altercontrol responses of the driver. That is, the driver exhibited 

altercontrol whenever responding to something other than the immediate headway 

constraint. Transitions to altercontrol are thought to reveal circumstances in which, if 

ACC were enabled, either a driver intervention would ensue or the driver's judgement 

on ACC system acceptability would probably be influenced in a significant way. 

This project was confined essentially to the study of manual stop-and-go driving. A 
modest data set and an associated model describing the mechanics of manual control in 

this domain have set the stage for a more orderly examination of stop-and-go ACC in a 

subsequent phase of the work. It is recommended that the next step in this research 

include the implementation and trial operation of an ACC-controlled vehicle whose high- 

level algorithm is basically that of the manual driver model developed here. It is also 

recommended that the domain of altercontrol be catalogued at least in an introductory 

way so that an orderly scoring of the ACC driving experience can be related to the 

headway-determined versus altercontrol phenomena that are observed within manual 

driving. 



1.0 Introduction 

This document constitutes the final report in a research study sponsored by Bayerische 

Motoren Werke AG (BMW) at the University of Michigan Transportation Research 

Institute (UMT'RI). The overarching goal of this research is to create a methodical 

approach for guiding the development and evaluation of driver assistance systems (DAS), 

as a class. This long-term purpose was pursued in an incremental fashion here, by using 

stop-and-go adaptive cruise control (ACC) as the case-in-point application. Although 

actually focusing the investigation on manual control of stop-and-go driving, the study 

sought to advance an initial basis for methodical development and evaluation of a stop- 

and-go ACC system controller in subsequent phases of the work. Since fundamental 

theory is broadly lacking in this arena (that is, no " science of driving" exists upon which 

to postulate the functional principles for ACC system design or its evaluation), a 

pragmatic approach is sought. Such a methodical approach would seek to cut down 

product development time and render a useful basis for understanding system 

performance, by means of only a "necessary and sufficient" treatment of the complexity 

that is embedded both within an individual driver's behavior and across the sociological 

influences arising from other nearby drivers. 

A review of the literature was followed in this study by driving measurements, clata 

processing, model development, and model-based analyses in order to create a baselline 

understanding of manual control of stop-and-go driving. Each of the individual subtasks 

in this effort is presented and discussed in sections 2 through 5 of this report. In section 

6, the elements that might comprise a methodical approach for DAS development and 

evaluation are discussed in the context of the subtasks. Conclusions and 

recommendations are presented in section 7. The report also contains an appendix .A, 

which presents brief comments on documents examined from the human factors 

literature, appendix B, which presents the M A T L A B / S I M U L ~ ' ~ K @ ~ ~ ~ ~ ~ ~ ~ S  covering a 

developed model of manual stop-and-go control, and appendix C, which contains a set of 

plots comparing model results with measured data. 

2.0 Literature Review 

In undertaking this literature review, perhaps the greatest challenge has been to bound the 

scope of the question. When considering a stop-and-go ACC system, relative to an ACC 



system that provides only low levels of deceleration, one must take into consideration a 

much broader view of the driving environment. In many respects, the challenge of 

understanding the driving environment grows immensely. The traditional approach of 

concentrating on the vehicle immediately in front of the equipped vehicle may no longer 

apply, as stop-and-go ACC is no longer limited to a simple following task. The dynamics 

of the driving task broaden with stop-and-go ACC and may, in fact, have to consider 

multiple preceding vehicles, as well as vehicles in adjacent lanes. Unfortunately, 

although not surprisingly, a review of literature found no reported research that was 

specific to stop-and-go ACC, nor was there any literature regarding driver behavior while 

stopping in traffic (with the exception of an article by Ludmann et al., 1997). 

Rather than adopt a single approach to describing and understanding driver behavior 

specific to the use of stop-and-go ACC system, it was felt that an initial look at a variety 

of approaches was warranted. Schiff and Arnone (1995) state that driving "involves the 

integrated activities of sensing, perceiving, deciding, and acting. Before any decisions or 

actions can be made, the human factors scientist must become aware of phenomena in the 

sensing and perceiving realm." This includes being able to identify what information is 

relevant in the driving task, understanding how drivers detect this information, examining 

how they respond naturally to it, and finally, developing systems that can respond in a 

manner that is not in conflict with the driver's natural response or expectations of the 

system (model). Therefore, this review was approached in sections, not completely 

independent of one another, which address recent literature in the areas of classical 

sensory psychophysics related to driving, ecological psychology and driving, mental 

workload and mental modeling of the driving task, driver braking and steering behavior 

in response to obstacles, and modeling of driver behavior. 

2.1 Historical Background 

Previously there have been two dominant, although not totally independent, approaches 

for representing driver behavior, a classical sensory-psychophysical approach and an 

ecological approach to perception. Perhaps nowhere is the historical account of these 

different approaches better described than in a book chapter by Schiff and Arnone. 

Beginning with the early work of Gibson on flow theory, to the recent trends in 

calculating time-to-collision, Schiff and Arnone outline the different research paths taken 

by proponents of the two approaches to driver perception. It is the opinion of Schiff and 

Arnone that practitioners in the fields of engineering and human factors need to carefully 



choose their research methods in order to ensure ecological validity, while continuing to 

recognize the substantial contributions of sensory psychophysics and incorporating 

principals of human factors design. Further emphasized is the need to recognize the 

complexity of driving, and the fact that it is not a simple sensory task. 

"Of all the skills demanded by contemporary civilization, the one ofdriving 

an automobile is certainly the most important to the individual, in the sense 

that a defecr in it is the greatest threat to life. But despite the consequenrt 

importance of knowledge about the nature and acquisition of this skill, no 

more than a beginning in this direction has been made by psychologists, 

and that chiefly in the field of devising tests to measure some of the inferred 

components. A systematic set of concepts is needed in terms of which we 

can describe precisely what goes on when a man drives an automobile, and 

such a theory, if it is to be useful, must have practical as well crs 

psychological validity." 

Such was the opening statement of an article written by James J. Gibson and 

Laurence Crooks in 1938. More than 60 years since the publication of this article, it can 

be legitimately argued that psychology, and perhaps more specifically the fields of human 

factors, ergonomics, and cognitive psychology, are not considerably closer to 

understanding the global nature of" what precisely goes on when a man" or woman 

"drives an automobile." Although a good deal of effort has gone into understanding 

various perceptual components of the driving task in isolation, there remains a great deal 

of inference regarding the task of driving. To date, the process of understanding driver 

behavior has focused almost exclusively on basic models of visual perception, in isolated 

andlor situation-specific scenarios with little attention to the overall task we know as 

driving. 

Gibson and Crooks emphasized in their article what they termed the "field of safe 

travel." They described this field as an indefinitely bounded zone that included all the 

elements a driver needed to take into consideration at any given moment of the driving 

task. Elements prominent in the shaping of the field of safe travel were the driver's 

motivation, perception of the driving environment, and expectations (based in part on 

learned behavior). This field, stated the authors, could be thought of as a zone that 

protruded from the front of the automobile, bounded in part by the physical constraints of 

the roadway, but chiefly determined by the presence of objects (especially, other 

vehicles). We know today, however, that this "zone" actually extends around the entire 



perimeter of the vehicle, the bounds of which are heavily dependent on the driving 

scenario or maneuver. 

Gibson and Crooks described several driving scenarios, and how a driver might adjust 

hisher field of safe travel on the basis of these scenarios (e.g., following a lead vehicle, 

negotiating an intersection, allowing for pedestrians crossing the street, etc.), as well as 

potential obstacles to the drivers' ability to appropriately adjust their field of safe travel. 

A skilled driver, it was said, "recognizes the valances of obstacles quickly and 

automatically projects their clearance-lines correctly." Here, the term "valance" 

constitutes a scalar repulsion or attraction attribute that characterizes every element in the 

near-field driving environment. What Gibson and Crooks were attempting to describe is 

a theoretical framework for a very complex psychomotor process in which the driver's 

expectations are combined with perceived information in order that decisions can be 

made on how to control the vehicle within this environment. 

The work of Gibson and Crooks became the basis of much of Gibson's later work. It 

included a functional approach to visual psychophysics, which sought to describe how 

humans perceive dynamic optical information, and in turn how this information is used to 

move through space (i.e., walking, driving, flying, etc.). What makes the Gibson and 

Crooks article such a compelling starting point for the discussion of stop-and-go ACC, or 

any form of driver assistance system, is the recognized scope of information that is 

required by the driver. Specifically, it is suggested that the shape of the field of safe 

travel is determined by the driver's motivation, perception of the driving environment, 

and expectations that are based on learned behavior. 

The challenge in designing stop-and-go ACC may lie primarily in identification of the 

later two components, since driver motivation can be largely, although not completely, 

addressed by permitting adequate driver input to the system (i.e., headway adjustment, set 

speed, etc.) and fitted control strategies (e.g., the maximum level of ACC control 

authority v i s -h i s  the ACC functionality). The question therefore becomes: how does 

the driver perceive the driving environment, and what are hisher expectations? 

Furthermore, can this be modeled such that the driver's supervisory tactics are understood 

and that the system's influences on supervisory performance can be meaningfully 

expressed and measured? Concerning the system itself, we desire that conflicts posed by 

sensed obstacles be recognized quickly and automatically, the same as a driver perceives 

them, and that control actions be executed that conform to the driver's expectations. If a 



system cannot be designed to perceive and behave in the same manner as a driver, thlen 

the limits of system capability must be conveyed to facilitate supervisory transitions. 

Appendix A presents citations of pertinent research literature, with brief summaries 

included for many of the articles. The ultimate approach toward understanding driver 

behavior, like that argued by Schiff and Arnone, must include the integration of the 

central driver activities including sensing, perceiving, deciding, and acting. While there 

is no evidence in the open literature of a comprehensive model of driver behavior in stop- 

and-go traffic, the research listed in the appendix provides several critical elements 

toward that end. 

2.2 Summary 

While a review of literature found little that was specific to stop-and-go driving behavior 

or driver behavior with ACC, numerous articles, from a variety of research arenas 

complement or provide insight to the development of a stop-and-go ACC system. 11n 

addition, other publications are cited in subsequent sections of this report, as the 

published work was used in the consideration of driver modeling. On the basis of the 

literature reviewed, significant effort remains before we will gain a working 

understanding of what in a stop-and-go environment goes on in the mind of a person 

driving. 

3.0 Staged Tests of Stop-and-go Driving 

The data collected in 1996 during UMTRI's field operational test (FOT) of ACC failed to 

capture information on stop-and-go driving due to a lockout of sensory data when tlhe 

preceding vehicle's speed fell below 30% of the speed of the host vehicle. Accordingly, 

the two separate test activities that were undertaken during the present study both 

involved revisions in the s o h a r e  of the FOT vehicles so that this lockout provision was 

disabled, thereby yielding range and range-rate measurements down to zero speed, albeit 

with some incidence of false detection of other standing objects. The first of the ne:w 

tests were of the staged variety, by which two vehicles were driven through various 

stopping sequences on a 0.6 krn portion of local road that was closed to through traffic. 

In the discussion that follows, the test methods, results, and general observations from 

staged testing are presented. 



3.1 Test Method 

Eight UMTRI employees, excluding engineering personnel who were active in driver 

assistance research, were asked to participate in a one-hour driving exercise that involved 

stopping behind a confederate vehicle that was driven by an UMTRI technician. Subjects 

were asked to come to a stop behind the confederate vehicle, when necessary, as if they 

were driving behind this vehicle in normal stop-and-go traffic. A total of 26 stops were 

done by each subject at mild braking levels per the test procedure outlined below, from a 

nominal initial speed of 35 mph (56 krnlh). Human-use approval was obtained from the 

University's Internal Review Board for these tests and a human factors professional 

accompanied each subject while test driving was underway. 

Both test vehicles were 1996 Chrysler Concorde sedans equipped with all of the 

instrumentation that had been provided for their earlier use in the FOT project. The 

vehicles were driven only in the manual mode of control, with the ACC feature 

deactivated. Throughout the tests, the Leica ODIN-4 infrared sensor outputted range and 

range-rate data that continually tracked the headway condition down to stop. Data 

collected continually in both vehicles against the common GPS time base allowed later 

synchronism of signals from one vehicle to the other such as, for example, in measuring 

latency in the subject's response, following the illumination of brake lamps in the 

preceding vehicle. Although a complete description of the instrumentation system is 

given in the FOT report [3], it suffices here to say that the recorded variables included 
range, range-rate, velocity, and the state of the brake pedal switch on both test vehicles, 

with 10-Hz sampling. The record was obtained first via an on-board hard disk and later 

downloaded into a Microsoft Access database. 

3.1.1 Test Procedure 

The basic test procedure involved the subject vehicle stopping as necessary in response to 

stopping by a preceding confederate vehicle. Tests were done in two segments that were 

differentiated by the initial headway state that caused the subject to brake. In both cases, 
the test subject began at a nominal initial speed of 35 mph (56 kmh). 

In the first segment, the subject braked in response to brake application by the 

preceding vehicle, from an initially comfortable, headway-keeping condition. At a 

random location along the course, the technician in the preceding vehicle braked to a 

complete stop, using a calibrated U-tube manometer to guide in the achievement of a 



nominal steady rate of deceleration between 0.1 and 0.3 g's. The subject then responded, 

braking as necessary to take up a final stopped position. (Notwithstanding the instruction 

to subjects to behave "as in normal stop-and-go driving," it was observed that final 

headway values were somewhat longer than are observed in more naturalistic stop-and-go 

contexts, presumably as a result of the missing psychological factor by which drivers 

perceive the expectations of others behind them-absent in this case-to close up the gap 

in queued traffic. A total of 18 stops were conducted in this first segment of the tests. In 

six of the stops, and in random placement during the sequence of 18 stops, a 

supplemental "go, again" segment was executed after the subject vehicle had come to a 

complete halt. That is, the preceding vehicle moved forward again a distance of 10 to 20 

meters and stopped a second time, whereupon the subject likewise moved ahead and 

stopped again, thereby representing behavior under the "creeping" type of movements 

that often prevail during stop-and-go driving. 

After the initial eighteen test stops, an additional six stops were conducted in which 

the preceding vehicle was already stopped in the roadway before the subject vehicle 

arrived. To accomplish this, the subject was asked to wait at the turnaround point while 

the confederate driver proceeded to approximately the middle of the course, and stopped. 

The subject then pulleld out onto the road and proceeded at a steady speed of 

approximately 56 km/h until they encountered, and braked to a stop comfortably behind, 

the previously stopped confederate. Clearly, this latter test segment was to characte~rize 

the encounter with stopped traffic ahead, recognizing that the rear-end crash scenario, 

" lead-vehicle not moving" [17] has a special significance in the statistical crash reclord, 

(accounting for approximately 314 of all rear-end crashes in the United States). 

3.1.2 Test Sequence 

The test sequence is shown below. This sequence was employed in every case by the 

driverltechnician in the confederate vehicle but was not known to the subject driver, 

ahead of time. The "creep" indication at the right denotes the cases in which the 

preceding vehicle moved ahead a short distance and stopped again, following a corr~plete 

stop by the subject. 

Segment 1 



Confederate Vehicle 

Test Run Nominal Braking Level (g's) Creep? 

1 0.2 No ...................................................................................................................... 

2 0.1 No ..................................................................................................................... 
3 0.3 No ...................................................................................................................... 
4 0.1 Yes ...................................................................................................................... 

5 0.3 No ...................................................................................................................... 

6 0.2 Yes ...................................................................................................................... 

7 0.2 No ...................................................................................................................... 

8 0.1 No ...................................................................................................................... 

9 0.3 Yes ...................................................................................................................... 

10 0.3 Yes ...................................................................................................................... 

11 0.2 No ...................................................................................................................... 

12 0.1 No ...................................................................................................................... 
13 0.3 No ...................................................................................................................... 

14 0.1 Yes .. .................................................................................................................... 
15 0.3 No ...................................................................................................................... 

16 0.2 No ...................................................................................................................... 
17 0.2 Yes ................................................................................................................... 
18 0.1 No ..... ............................................................................................................. 

Segment 2 

Runs 19 through 24 
(The subject vehicle came to a stop from an initial speed of 35 mph (56 km/h), behind the 

previously-stopped confederate.) 

3.2 Results 

Four types of test results will be shown in this section. They are 1) example time 

histories depicting the three differing test procedures, 2) aggregated data showing the 

influence of initial range and lead-vehicle deceleration level on the latency in brake 

applications by the subject, 3) the characteristics associated with the brake-onset response 

of subjects approaching the previously stopped vehicle in the roadway, and 4) 

distributions of the deceleration response of subjects in the differing tests. 



3.2.1 Sample time histories discussing highlights 

Shown in Figure 1 is a set of time histories that are more or less characteristic of the 

stopping responses seen in each of the tests in which the lead vehicle simply braked to a 

halt from an initial condition of steady headway-keeping. The figure shows in its top two 

plots the velocity and deceleration comparisons of both vehicles followed, at the bottom, 

by the range value at which the vehicles were separated throughout the stop. In the 

velocity comparisons, we see that the subject's velocity remained continuously abovr: that 

of the lead vehicle, thereby causing range to shrink monotonically throughout the sto:p. 

(Please note that the peculiar inflection in the velocity traces at approximately 28 ft/sec, 

both going down and going up in speed, constitutes an anomaly of the Chrysler engine 

controller, through which the speed measurement is recovered on both vehicles. The 

anomaly is something of a distraction in these data but does not represent an actual 

change in the velocity profile of the vehicles, themselves.) 

In the Vdot comparisons, we see that the subject apparently released the throttle 

within approximately one second of the rise in the lead vehicle's deceleration (at 

approximately t = 1.5 sec) and then applied the brake after a total of approximately 3 

seconds (beginning at approximately t = 4.5 sec). The subject's initial braking level was 

initially brought to a higher value of deceleration than that of the lead vehicle, eventually 

dissipating only as the lead vehicle came to a stop. Having sustained a monotonic 

velocity difference all the way to a stop, the range steadily declined to a final value of 

approximately 33 ft ( I  Om) when stopped. This final range value is an example of th~e 

somewhat longer-than-natural result that was commonly observed in these staged tests, 

lacking the induced compression that seems to derive when many vehicles form up in a 

queue. Note that the initial range in this test was approximately 133 fi (41m). 

In Figure 2 are shown time histories representing the tests in which the lead vehicle 

brakes to a halt and then begins to creep forward and stop again after the subject vehicle 

has reached its stopped condition. Again, the top two plots compare the velocity and 

deceleration responses of both vehicles, with the range variable shown at the bottonn. The 

velocity comparison shows that the subject velocity remains invariably behind the 

velocity response of the lead vehicle, either above it while decelerating or below while 

accelerating such that range grows monotonically during lead-vehicle acceleration and 

shrinks monotonically during lead-vehicle deceleration. 
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Figure 1. Sample time history of stop-and-go driving 
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that the initial range in this test was approximately 108 fi (33m). Later in this section we 

shall relate the initial range values, and the deceleration levels of the lead-vehicle's 

braking, to the time latency of the subject's braking response following the onset of 

braking by the confederate. 
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Figure 2. Two successive stop-and-go sessions 

- Subject Vehicle -Preceding vehicle I 
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Figure 3 shows the time history responses for the test in which the subject brakes to a 

stop upon encountering the previously stopped confederate. The range signal shows, in 

this example, that the vehicle was detected by the range sensor only after braking by the 

subject was already underway, when the remaining range had fallen to within 300 ft (92 

m). Please note that the late acquisition of the lead vehicle may have been influenced by 

the vertical curvatwe of the course over which testing was done -a factor having no 

significance in the earlier tests for which range was maintained to relatively short values 

throughout the stop. The Vdot data show that the subject tended to rather gradually 

increase deceleration in the mid-stop regime and then relaxed the braking level over the 

last 4 seconds or so. 

3.2.2 Aggregated distributions and measures 

Shown in Figure 4 are data taken from the 144 stops conducted as segment 1 tests (i.e., 

responding to lead-vehicle braking). Data are shown from only the first portion of these 

stops that is excluding the creep-ahead maneuver at the end of some of the tests. 

In the top portion of figure 4 is shown a scatter plot of the results presenting the 
widely dispersed relationship between the subject's braking latency and the average 

deceleration. At first glance, one might suggest that there is no significant relationship 

between lead-vehicle deceleration level and latency. The next three plots, however, 

isolate the results according to three separate windows of the deceleration level in the 

preceding vehicle, plotting time latency against the initial range value at which the 

subject's braking was initiated. The three respective plots serve to segment the average 

deceleration of the preceding vehicle in successive tenths of a g. We note firstly that the 

initial range values, across the eight subjects, covered values from as short as 21 ft (6.4m) 

to as long as 250 fi (76m). The fitted linear regression lines, whose slopes are shown in 

the inset boxes, reveal that the latency in brake response is firstly determined by the range 

value at the moment of brake onset in the preceding vehicle and, secondly, by the level of 

deceleration that the lead vehicle generates. All three plots show that latency values tend 

to cluster tightly around 0.3 to 0.7 seconds whenever the initial range is short, say 30 ft 
(9m) or so. As range increases above that regime, the rate of influence of range on 
braking latency is strongly influenced by the deceleration level of the lead vehicle. Since 

the test subjects did not know which deceleration level would be invoked in any test, 

these very limited results tend to suggest that drivers are able to size up the rate of change 



of Rdot relatively early in the stopping sequence and to adopt the timing of their brakle 

onset to the presented level of deceleration ahead. 
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Figure 3. Brake to a stop upon encountering a stopped vehicle 
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Figure 4. Latency results from segment 1 of the staged tests 



One interesting issue that arises from the test encounter with a previously stopped 

vehicle involves the level of crash conflict tolerated by the approaching subject beforle the 

braking response begins. When initially detecting that a stopped vehicle is blocking the 

road, the subject is first observed to coast for a while, with throttle h l ly  released. At 

some later point in the process, braking is applied and the vehicle is brought to a stop 

behind the lead vehiclle. The moment of brake onset can be meaningfully described by 

the values of range, tirne-to-impact, and the deceleration-to-avoid-impact that prevail 

when the brake pedal switch closes. (Such data were the primary interest of the National 

Highway Traffic Safety Administration when they approved extending an UMTRI 
cooperative agreement to allow the usage of the government-owned FOT test vehicles in 

this project. Basically, NHTSA's interest traces to the prospect of a crash-warning 
function in which one simple argument of the warning algorithm is, "don't warn until the 

conflict with a stopped-vehicle-ahead has exceeded the threshold beyond which the great 

majority of drivers will already have begun braking. If the brake is not applied when 

such a condition develops, then trigger the warning." Thus, the NHTSA interest in the 

data was largely to identif) the characteristics of the conflict, which if unaccompanied by 
braking, would quite certainly warrant a warning notice of some kind. Some discuss;ion 

of the staged test data:, below, addresses this proposition.) 

Figure 5 shows that the range at which braking begins is distributed rather wide1:y 

around the 250 f t  (76 m) position, for this nominal range of initial speed. While ranges as 

short as 100 ft (30m) may at first seem surprising, this minimum value is typically 
associated with the response in which throttle release occurred very early in the sequence 

such that a more moderate time-to-impact value prevailed by the time the 100-ft ran,ge 

value was reached. 

Figure 5. Distribution of initial range at brake on set while approaching a stopped 

vehicle 



Figure 6 presents the time-to-impact distribution for the same set of stops. We see 

that while 5- and 6-second values are common, braking delays down to even a 3-second 

margin of time-to-impact occur in approximately 8% of the cases. By way of 

comparison, Figure 7 shows the corresponding distribution of time-to-impact values that 

were collected at the moment of brake onset from manual driving by 108 subjects during 

UMTRI's field operational test that was referenced earlier. Some 61,000 cases of brake 

application are represented in the data of Figure 7. 

Figure 6. Staged-test results: distribution of time-to-impact value at brake onset while 

approaching a stopped vehicle 

Figure 7. FOT results: distribution of time-to-impact values at the time of initial brake 

application (Vinitial > 25 mph) 

In the FOT data, of course, a very broad array of actual and perceived conflict 

conditions had arisen to prompt braking by the subject, not simply*the previously- 



stopped-vehicle scenario. Both plots show that brake applications with less than 2.5 

seconds time-to-impact (i.e., the bin boundary separating the 2-second and 3-second 

results) are relatively infrequent-occurring in approximately 1.4% of the entire FOT 

data sample above 25 mph (40 kmih) and zero cases out of the 48 previously stopped,, 

staged testing. Considering the NHTSA interest, however, failure to brake within sorne 

minimum time-to-impact value, by itself, would seem to constitute an insufficient 

criterion for warning. If triggered whenever the time-to-impact falls below 2.5 seconds 

without brakes being applied, for example, the warning would still occur in about 1 out of 

every 70 braking cases, which is approximately once every 50 miles of travel. This ralte of 

occurrence would probably constitute a profound nuisance. At much shorter than 2.5 

seconds-to-impact, however, normal human response delays would ensure a very low 

utility level for the warning. 

Taking the discussion to the next step, a considerably better distinction between the 

previously stopped and the FOT manual braking results is observed when one considers 

the variable called decel-to-avoid. This measure expresses the deceleration level that 

would be needed, for the given closing condition-with negative Rdot-in order to just 

avoid a crash if the deceleration began immediately as a step function following brake 

onset and was sustained until the vehicle was stopped. Here, the comparison of Figure 8 

and Figure 9 show tha.t decel-to-avoid values above approximately 0.2 g's are extremely 

infrequent over the broad spectrum of braking events (in the FOT data) and occurred in 

only one of the staged tests with a previously stopped confederate vehicle. The FOT data 

yield a decel-to-avoid value exceeding 0.2 g's at the moment of brake onset only once in 

1,300 stops (approximately once every 1,000 miles of driving.) 

Figure 8. Staged-test results: deceleration to avoid (RdotA2/2Range) values at the time 

of initial brake application (for Vinitial > 25 mph) 



Figure 9. FOT results: deceleration to avoid (RdotA212Range) values at the time of 

initial brake application (for Vinitial > 25 mph) 

As a final consideration from braking tests responding to a previously stopped 

vehicle, Figure 10 shows the distribution of average deceleration values that prevailed 

across the 48 tests, overlaid on data from 1,900 cases drawn from FOT results in which 

the driver braked from the same nominal range of initial velocities to a complete stop. 

The FOT results represent braking behind impeding vehicles that were also engaged in 

stopping (i.e., they were not previously stopped when the subject first encountered them). 

The figure shows that the limited data from staged tests approaching a previously stopped 

vehicle yield a deceleration distribution that does not differ markedly from that observed 

in naturalistic data for stopping with impeding vehicles present, but not previously 

stopped. Indeed, average decelerations around 0.1 g tend to dominate braking 

distributions in the lower range of speeds, while a somewhat lower average (around 0.075 

g) tends to dominate when braking at highway speeds. 
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Figure 10. Distribution of average deceleration during a stop from 35 mph 
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3.3 Observations on Manual Stop-and-Go Control from Staged Tests 

The principal observations that seem appropriate here involve the meaningfulness of the 

staged-test procedure. Two results seem to be somewhat anomalous. Namely, the 

distribution of initial headway values that were maintained during 18 segment 1 tests 

seem to include an unusual frequency of very short headways. Alternatively, the 

headway value remaining when the subject has stopped was often seen to be relatively 

longer than is normally seen when traffic stops in a queue. These observations would 

seem to imply that the non-naturalistic character of the staged tests was influencing 

behaviors toward some unnatural responses. On the other hand, it does not appear th~at 

the braking response, once it is deemed necessary, either initiates or is modulated in a 

way that is unnatural--except insofar as the terminal condition, once stopped, may leave 

a somewhat longer-than-natural static headway. 

Moreover, these tests were seen as useful for planning the subsequent set of tests in 

real traffic by providing rudimentary samples of stop-and-go kinematics data for trial 

processing. They also served to explore lead-vehicle-decelerations up to 0.3gYs, plus the 

previously stopped scenario, both of which certainly arise in the naturalistic environment, 

but not with the dense frequency of occurrence as could be cultivated in staged testing. 

Data samples from staged testing were also used as empirical evidence for developing a 

model of manual conlrol, as is presented under section 5.1, below. 

4.0 Concurrent Protocol Driving Tests 

4.1 Test Method 

Concurrent protocol testing sought to obtain data on stop-and-go driving in as naturalistic 

a situation as feasible. This was done in order to identify differences between how 

human drivers regulate their speed and range while following a vehicle, and how an 

ACC-type (i.e., headway-based only) control algorithm might do the same, althouglh, 

only manual driving was being measured here. It is expected that observed discrepimcies 

could be accounted for by identifying other information used by the human driver that is 

not available to a headway-only controller. 

For example, the ACC-type control model is blind to most of the visual environment 

available to a driver. It bases its operation on measures of the host vehicle's velocity and 



acceleration and its range to the forward vehicle. Unlike an ACC system, a human driver 

is free to sample information from a variety of other sources. For example, visual cues 

arise from throughout the road scene (e.g., brake lamps ahead, traffic flow in adjacent 

lanes, traffic density, traffic signals, signs, road geometry, etc.). 

Drivers may also employ situational strategies to optimize some aspects of their drive. 

For example, they may attempt to minimize drive time by searching for the fastest path 

through a congested area. They may attempt to conserve fuel by avoiding sharp 

accelerations. They may want to protect themselves against cut-ins by minimizing the 

range to the forward vehicle. They might increase safety by following at a greater 

distance, obtain smoother rides by avoiding potholes, maintain acceleration forces within 

a comfort range, or select lanes to maximize crash-avoidance options. They may, in fact, 

employ combinations of all these strategies in fluid, situation-dependent decisions about 

how to control the vehicle. 

Given these possibilities, this study attempts to assess how well performance can be 

accounted for with a headway-control model alone, and looks for other environmental 

factors from a videotape record of the drive to account for discrepancies between the 

model and observed driving performance. 

4.1.1 Task Description 

1 .  Subjects: Eight drivers, between the ages of 29 and 5 1 (average age, 38), were asked 

to drive a predefined route through the Detroit metropolitan area and environs. There 

were seven male subjects and one female. 

2. Procedure: The subjects were advised that they were participating in a study to 

investigate how people drive in stop-and-go traEc, and that data fiom their driving 

would be recorded. They were also told that the drive would specifically target 

Detroit morning rush-hour traffic. Subjects were encouraged to report driving 

strategies that they were aware of using, things they were looking at during the drive, 

and any thoughts they had related to the drive. A video camera was mounted in the 

vehicle to record the forward scene out the windshield throughout the driving session. 

It also recorded verbal reports subjects made during the drive. An experimenter 

accompanied six of the subjects; two subjects made the drive unaccompanied. During 

the drive, the experimenter periodically prompted subjects to make reports on their 

driving. Such prompting, however, was kept to a minimum to prevent the subject 

fiom becoming overly self-conscious of his driving, and to avoid creating an 



impression that the subject's performance was being evaluated for correctness. 

Experimenters used a "Concern" button to mark events in the vehicle-record so that 

the videotape could be synchronized with vehicle data. All drives began at 

approximately 7:00 a.m. so that a roadway targeted for congestion could be reached at 

the projected peak rush hour. 

3.  Driving route. The driving route was selected according to the following criteria: a) 

The route included both principal arterial surface streets and segments of limited- 

access-highway traffic so that a variety of stop-and-go situations could be observed. 

Traffic on the surface-street portion of the route was regulated mainly by traffic- 

control signals (e.g., traffic lights, stop signs). Peak-hour traffic volumes princip;ally 

induced the stop-and-go activity on the freeway (highway) portion of the route. The 
route was planned to permit observation of how such differences affect driving 

behavior. b) The incidence of highway stop-and-go traffic was a consequence of 
traffic volume, not road construction or accidents. This constraint was established for 

two reasons. Traffic accidents are random events that do not occur with any 

consistency from day to day. They also vary in the degree to which they disable 

traffic. We also avoided construction sites, since they create congestion by lane 
closure and may induce drivers to compete for position in particular lanes. Drivers 

are often forewarned about construction-related congestion by signs identifying the 
approximate foward location. Traffic congestion induced by excessive volume, on 

the other hand, is not marked in any way, and is thus not anticipated by the 
approaching driver. c) The highway stop-and-go traffic recurs regularly from day to 

day with a high probability. Since some highways in the metro-Detroit area are 

monitored for traffic volumes, and the resulting data are published electronically over 

the internet, it was possible to select a consistently congested section of freeway as 

the target for testing. d) The driving route took no more than two hours maximum 

time for a round trip. This constraint was motivated by the practical limits of some of 

the recording equipment, as well as by our sense of how long a reasonable drive 

session should be. 

The adopted target route was an 83-mile loop shown in Figure 11. It contains an 

average of 3.68 miles of stop-and-go highway travel, 50 miles of ordinary highway 

traffic, and 33 miles of arterial surface street traffic. Stop-and-go highway traffic was 

largely confined to a 5-mile portion of the John C. Lodge Freeway near metro-Detroit. 
Other, less reliable incidents of stop-and-go traffic occurred at the merge point between I- 
275 and 1-696. Stop-and-go arterial traffic was confined to Michigan Ave (US-12) :born 



Dearborn to Ypsilanti. This route contained a wide variety of traffic conditions including 

four areas of urban traffic (Dearborn, Inkster, Wayne, and Ypsilanti) controlled by traffic 

lights; some uncontrolled rural areas; varying numbers of traffic lanes (four to six); 

divided and undivided roadways; varying speed limits (25-40 mph); and sparse pedestrian 

activity. 
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Figure I 1. Schematic map of drive route 

4.2 Results 

4.2.1 Results drawn from the video records 

Video Coding. An attempt was made to apply a coding scheme to some of the video data 

so that it could be incorporated into the analysis of vehicle data. The objective was to 

classify aspects of the driving situation which cannot be detected by ACC sensors, but 

which might be relevant to explain discrepancies between driver behavior and ACC- 
controlled behavior. Unfortunately, such coding proved to be extremely unwieldy. Apart 

from the laborious nature of the coding task, we found it difficult to faithfully capture the 

dynamics of the driver's strategy. Since this study is essentially an exploratory effort, it 

also seemed more efficient to direct our use of the video record to investigate specific 



discrepancies between the headway based-predictions and driver behavior. 

Consequently, coding data was produced from video recording for only one subject. 

Subject Verbal Protocols. Subjects differed in the degree to which they made verbal 

reports while driving. Over the course of the drive, there was an average of 28 comments 

(range 43 to 15). Of these comments, 42% were statements related to driving strategy 

(e.g., "I don't like to get behind a tall van. [I pick a] lane based on roughness of the 

road"), and 55% were simple observations about the driving situation (e.g., "'There are a 

lot of brake-pedal-tappers out this morning."). Most strategy comments focused on t.he 

following topics: 

Lane selection (e.g., avoiding potholes, merging traffic from entrance ramps, 

maximizing collision-avoidance options, maximizing speed, avoiding 
congestion) 

"...trying to get over a lane to get onto I-275N.. make sure I don't get 

myself locked up here in tra@c,..there's a car riding along behind me, I 

want to get over a lane just in case he's trying to getpast ... " 

"...the lanes to my right are moving a little faster but looking ahead, there 

is nothing that would lead him to believe that the lane he is in ib 

permanently stalled, so he doesn't have really any desire to change lanes ... 1 

think when we get through this bend, it will pick up speed ... we may be 

doing 20, 25 mph soon!" 

"I'm caught behind this truck right now; this is not what I want ... " 
Defensive measures (e.g., following distance, gap maintenance, avoidance of 

trucks and vans to maximize visibility) 

One driver changed lanes when he noticed someone pass him on the right (he 

explicitly commented on it). 

"...the reason I stay in this lane (he's in the center lane as he says this) is 

that ifsomething happens, I have two ways to go ...(I feel that you alwa-ys 

need) an escape route ... " 
Speed strategy (e.g., maintain traffic flow, minimizing variation in velocity, 

conservation of fuel by avoiding brake application, avoiding vans and trucks 

because they are slow) 



4.2.2 Prominent differences observed, freeways versus streets 

Basic driving characteristics. The drivers completed the drive in an average time of 117 

minutes (range 1 11 to 123), averaging speeds of 42.3 mph (range 40.6 to 44.6). Table 1 

summarizes the driving characteristics of each portion of the route. Notably, the average 

time spent on surface streets versus highway segments was approximately the same, 

although the surface-street-route distance was shorter (and traversed, predictably, at a 

slower rate). It is also notable that the Lodge Freeway, hosting the regularly predictable 

stop-and-go traffic, posted slower average speeds than the other freeway segments. 

Each driver encountered highway stop-and-go traffic at approximately the same 

location on the Lodge Freeway, although there were differences between subjects in both 
the duration and extent of the traffic. The average time spent in highway stop-and-go was 

approximately 1 1 minutes (range 8 to 17 minutes), and the average distance traveled was 

3.68 miles (range 3.1 to 4.7 miles). 

Table 1. Route segment average length, speed, and duration 

Plymouth Rd .77 1.90 25.15 

Surface Michigan Ave 23.48 37.48 37.7 
Streets River Rd- .53 1.93 16.39 

Washtenaw Ave 4.24 10.09 23.07 
Huron Parkway 3.01 5.62 32.4 

Total 32.03 57.02 33.70 

M-14 14.21 12.23 70.06 
1-275 7.79 9.24 51.81 

Highway 1-696 9.24 1 1.67 48.81 
Lodge 13.02 20.00 39.63 
1-94 4.93 5.27 57.35' 

Total 49.19 58.41 50.53 

4.2.3 Quantitative results 

The data fiom the concurrent Protocol tests have been stored in computer files. These 

files have been searched for sections containing stopping andlor going (braking andlor 

accelerating) operations. There are now data files for numerous stops and start-ups on 

urban arterial streets. Figure 12 shows time histories for a typical stopping maneuver 

fiom long range on an arterial street. 
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Figure 12. Stopping from long range on an arterial street 

In addition, there are data sets pertaining to stop-and-go driving on an urban freeway. 

The example of stop-and-go freeway driving, as shown in Figure 13 indicates that tlhere is 
a period of approximately 50 seconds between stops with the speed going fiom 0 to about 



15 m/s (50 Ws) and then back to 0 during the first 500 seconds (8 minutes) of congested 

freeway driving. 
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Figure 13. Stop-and-go driving on an urban freeway 



Differences between fieeway and surface-street, stop-and-go driving were expected, 

since the contexts under which the two types of driving occur are different. Surface-street 

stops predominantly occur in response to traffic signals. Such signals are usually clearly 

visible well in advance of stopping. They are located in predictable and expected places, 

although the time a light changes may occasionally be unexpected. Highway stop-and- 

go, in contrast, occurs in response to congestion-more cars are on the road. Here, 

stopping occurs in response to the braking behavior of the vehicle(s) immediately ahead. 

Driving is also more competitive--drivers might protect against cut-in by closing the 

forward gap. On the whole, stopping is less predictable in the freeway context than on 

surface streets. After all, the point of a limited access highway is to provide a rapid 

(nonstop) route from place to place.' 

One way the differences in gap-maintenance strategy might be manifest in the drive 

data is to look at the distribution of time-headway data. We might expect to see that 

during low-speed (less than 3 5 mph or 56 kmlh) segments of driving, the time-headway 

is, on average, smaller during freeway driving than during surface street driving, 

reflecting the tactic of guarding against cut-in by closing the headway. 

To test for this pattern, three sections of the drive-route were analyzed for each 

subject, taking the average headway time for all speeds greater than 0 but below 35 mph 

(56 km/h). The speed criteria were applied to indirectly select for stop-and-go highway 

traffic and to eliminate higher-speed driving in which headway time declines. Of course, 

only data were used in which a preceding vehicle was detected. 

Figure 14 shows that on the arterial street segment, headway times are longer for most 

subjects than on the freeway segments. An analysis of variance confirmed this result, F 

(2,14) = 1 1.1 1, p < .O1. The mean values of time-headway for 1-696 and the Lodge 

freeway were shorter (1.64, 1.84 sec) than for the M-12 surface arterial (3.46 sec). Thus, 

there is evidence that drivers tend to apply a different following strategy during low- 

speed highway driving, than they do on arterial surface streets. The result is consistent 

with the hypothesis that low-speed driving on highways is a consequence of higher traffic 

volume and that such a condition increases the probability that vehicles will cut into gaps 

between vehicles. To discourage cutting in, drivers close the headway gap reducing their 

headway times. 

To help mitigate some of the stop-uncertainty, drivers look at brake lights in adjacent lanes and on 
vehicles ahead of the immediately preceding vehicle for prior warning. 
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Figure 14. Average time headway for sections of roadway for each subject 

Another possibility is that driver expectations of flow disturbance are partly 

responsible for differences in time headway. On highways, one expects traffic to flow 

continuously and at a relatively high speed. On arterial streets, one generally expects to 

be stopped periodically by traffic signals and by abrupt maneuvers conducted by other 
drivers, especially at intersections. Stop-and-go highway traffic is not normally 

anticipated. Drivers might close the headway gap in anticipation that traffic will return to 

posted speeds (up ahead) or simply out of frustration for having their route strategy 

thwarted. 

Yet another possibility is that on surface streets, drivers approaching stop signs or 

stoplights no longer attempt to maintain the kind of time headway used in flowing traffic. 

Aware that they are required to stop, they perhaps see little advantage in maintaining 
small time headway. Instead, they try to decelerate gently and evenly, allowing large 

gaps and longer time headway to the preceding vehicle. Of course, a green or yellow 

traffic light might encourage the opposite behavior if the driver attempts to "get through" 

the light. 



The summary data presented above cannot distinguish between these driver strategies, 

nor are the strategies ~nutually exclusive. A driver could reduce the time headway in 

stop-and-go highway traffic both out of frustration and as an attempt to prevent cut-ims. 

4.3 Observations on Manual Stop-and-go Control from these Tests 

Examination and iterative investigation of the quantitative results for stopping shows that 

there is a distinct qualitative difference between those stops initiated at long range and 

those initiated at relatively short range. This difference can be seen by comparing the 

data previously shown in Figure 12 with the data for stopping from a short range as 

shown in Figure 15. The qualitative differences between these situations have been 

interpreted as follows: 
1) When the driver knows approximately the distance to the stopping point and is not 

particularly concerned with the range to the preceding vehicle (because the range is 

not small enough to pose a threat), the driver uses a control tactic based on the 

available stopping distance. 

2) When the driver is concerned that the range to the preceding vehicle is smaller than 

desirable, the driver chooses to use a control tactic in which range is maintained at 

approximately its current value until the speed of the following vehicle is nearly equal 

to that of the preceding vehicle and until the range is acceptable for the speed for 

travel. 

With regard to the development of driver models, these observations are used as 

clues, which serve as the basis for lines of thinking (called "leads"). These leads have 

been pursued in developing control tactics suitable for use in a model representing the 

behavior of drivers in stop and go situations. The structure of that model is exp1aine:d in 

section 5.0. The results of the modeling activity are very encouraging. Comparisons 

between the model and operational data are also presented in section 5.0. 

Further iterative investigation into data pertaining to periods of stop-and-go driving 

has led to the following observation: 

When the following vehicle is at relatively short range and the preceding vehicle is 

accelerating or decelerating, the driver chooses a control tactic such that the velocity of 
the following vehicle matches the velocity of the leading vehicle with good fidelity 

except for a slight time lag. Clearly, this observation might have been anticipated because 

a following vehicle is more or less forced to mimic the operation of its preceding vehicle 

in stop-and-go driving. If the driver of a following vehicle does not promptly mimic the 



operation of the preceding vehicle, another driver in an adjacent lane is likely to cut into 

the resulting gap. 
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Figure 15. Stopping from short range on an arterial street 

Range, ft. 
300 -. 

200 - 

100 

0 1 

\ -_ - 
0 5 10 15 20 25 

Time, s 



Again this control tactic has been incorporated into a model for emulating driving 

behavior in stop-and go driving. And again the modeling results are presented in 

Section 5.0. 

Interestingly, this observation implies that drivers have some means for deducing the 

acceleration (increasing or decreasing speed) of a preceding vehicle. In the past, we knave 

viewed the driver as being capable of sensing and perceiving only range, range rate, and 

velocity. Since we believe that the driver has no sensor for directly measuring the 

acceleration of a remote object, we find (assert) that the driver has a capability that is 

somewhat like differentiation for determining and estimating the acceleration of a rennote 

vehicle. 

5.0 Modeling Manual Control of Stop-and-Go Driving 

UMTRI's model of the manual control of headway is based on ideas pertaining to vehicle 

dynamics, control systems, and human factors. Rasmussens's paper entitled Skills, hlules, 

and Knowledge; Signals, Signs, and Symbols, and other Distinctions in Human 

Performance Models, [16] has had a large influence on the form of our model and our 

approach to modeling driver behavior. Slotine and Li's book entitled Applied Nonlinear 

Control [I 51 has provided us with insights concerning techniques referred to as 

" feedback linearization" and " sliding surfaces." We have extended and adapted these 

nonlinear control concepts to aid in building driver models that incorporate skills, rules, 

and knowledge levels in representing the performance and behavior of skilled human 

operators. 

In the context of this modeling effort, a skilled driver is a person who knows how to 

manipulate the brake and accelerator pedals to make the vehicle respond as desired. In 

this sense the skilled driver understands the vehicle's dynamic response to control inputs. 

This means that the driver essentially has the skill to convert a desire for a certain type of 

motion into control actions that will achieve that desired motion (at least to an acceptable, 

that is, satisficing level of performance in most situations). This understanding of the 

input-output characteristics of the vehicle is a learned capability, which becomes nearly 

automatic to the extent that the driver has great confidence in his or her ability to control 

vehicular motion even though the driver cannot explain in detail how such control is 

executed. 



Various ideas concerning vehicle dynamics, control systems, and human factors are 

combined in this section to form a driver model. The result is a model that uses 

information concerning the current driving situation to determine how the driver 

manipulates the brake and throttle controls. 

An essential aspect in making a realistic model is to infer from physical evidence 

what the driver is trying to do. Since we have no direct means of measuring what the 

driver is thinking, we need to examine the qualitative results and the quantitative data to 

see if we can ascertain the rules that the driver is using. In order to solve this puzzle 

concerning the driver's rules we have methodically followed leads like those described in 

section 4.3. We have iterated on interpretations of these leads until a relatively clear 

mental image of the driver's control rules has emerged. 

Armed with this mental image, we have built a computerized model so that we can 

use it to test our theory of driving against the physical data recorded during real driving. 

Computer predictions have been compared to observed data from actual stop-and-go 

driving, leading to further refinements and improvements in our model. We now believe 

that the resulting computerized model is useful not only as a means for emulating driver 

performance but also as the basis for a prototype stop-and-go ACC system. 

5.1 Model developed during this study 

The model developed in this study is an extension and refinement of the driver modeling 

approach described in TRB paper Evolving Model for Studying Driver Vehicle System 

Performance in Longitudinal Control of Headway by Fancher and Bareket [14]. The 

driver characteristics identified in the FOT final report [3] have been considered during 

the development of the following model. 

5.1.1 The Model Structure and Rationale 

Figure 16 taken from the FOT report shows the skills, rules, and knowledge levels of 

driver behavior as they fit into a block diagram of the driving situation. At the skills level 

the driver does routine tasks associated with manipulating the brake and accelerator 

pedals. At the rules level, the driver is looking for signs indicating whether to change 

tactics in response to a changing situation. Essentially, there are different rules for 

different situations. At the rules level, the driver decides which set of rules to use. The 

knowledge level, operating at the highest level of cognition, is concerned with knowledge 



of the overall system. The inputs to the knowledge level are "symbols" denoting items 

concerning the status of the overall system. In the context of longitudinal control of 

headway, the knowledge level is where supervision takes place. It is where strategic plans 

are made based on goals and motivations and factual knowledge. 

Plans 
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Figure 16. Skills, rules, and knowledge levels of driver control 

In our mental images of the driver, the rules and skills levels of behavior can be 

represented fairly directly using concepts borrowed from nonlinear control theory. Figure 

17 is a control system type of diagram indicating the flow of information between 

different elements of the system. 
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Figure 17. Flow of control information in the driver-vehicle system 
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The rules reside in the commander element. These rules utilize observations of range, 

range-rate, and velocity to determine the desired level of acceleration or deceleration for 

coping with the current driving situation. The commander also contains the relationships 

employed in deciding which rules to use in particular situations. In this context, 

psychological signs correspond to the results of examining pertinent inequalities, which 

identify different driving situations such as closing from long range, following at nearly 

constant speed, too close to the preceding vehicle, etc. 

The commander sends an acceleration~deceleration command to the controller as 

shown in Figure 17. The controller accepts this command with little or no critical 

evaluation. Rather the controller's purpose is simply to manipulate the brake and 

accelerator pedals in a manner that will cause the vehicle to perform in accordance with 

the desired acceleration or deceleration command. 

In achieving its purpose the controller performs an operation which is essentially the 

inverse of the operation described by the vehicle's equations of motion. The net effect of 
this arrangement is that the controller-vehicle combination becomes approximately an 

integrator. Hence, the desired acceleration command is integrated to obtain a velocity that 

approximates the desired velocity signal. 

Note that this arrangement has very powerful practical implications with regard to 

deducing the control rules built into the commander. We can look at the headway 

situation and deduce acceleration/deceleration commands without having to concern 

ourselves with the vehicle's equations of motion. Although the vehicle's equations of 

motion determine the tracking rules built into the controller, they have little influence on 

the structure of the commander. 

The point of this discussion is to establish a particular perspective on the development 

of driver assistance systems. The first half of this perspective applies to the controller. It 

may be summarized as follows: 

Movements of the vehicle's controls (in this case brake and accelerator pedals) 

produce forces that determine the motion of the vehicle. These forces are equivalent to 

certain levels of acceleration per the equations of motion. By developing a controller, 

which converts acceleration commands to movements of the vehicle's controls, we can 

convert the controller-vehicle combination into a subsystem with a commanded 

acceleration as its input and a velocity that is the integral of the commanded acceleration 

as its output. 



We will portray these features algebraically in the next section. The purpose here is 

to explain the concepts behind the structure of our model for representing longitudinal 

control of headway. 

The other half of this perspective deals with the commander and the perceptual 

aspects of recognizing the driving situation. For addressing this portion of the control 

synthesis, we have found a range versus range-rate phase space to be a useful construct. 

For example, we believe that the driver is concerned with the range being too small as 

well as with rapid closure as indicated by a negative range-rate. Suppose there are 

perceptual boundaries approximately as indicated in the following range versus range-rate 

diagram, Figure 18. These boundary lines define six zones as depicted in Figure 19, with 

the horizontal line near the center of the diagram representing the desired comfortable 

range for the present speed condition. 

R (Range) 

for available range 

/ 
\ / 

R ta/o s4a11 / 
(stress) / 

/ 
/ 

Crash 
7- 

Rdot (Range rate) 

Figure 18. Perceptual boundaries in range-versus-range-rate space 

It appears reasonable to postulate that zone 1 is the most stressful zone such that the 

driver may be willing to brake hard if the situation is characterized by an range, and 

range-rate, coordinate in this zone, 

In zone 6 the driver is not too close but the range-rate is of concern. The driver is 
expected to commence slowing in this zone. See appendix D and references [3] and [14]. 



Zone 2 is a transition region between Rdot < 0 (closing) and Rdot > 0 (separating). In 

this zone the driver has difficulty perceiving range rate but knows that the range is too 

short. Examination of test data indicates that drivers tend to brake in this region but they 

usually get off the brake as soon as they detect that Rdot > 0. There is a tendency to 

sustain any control action that had begun in zone 1, if zone 2 is entered from zone 1. 

R (Range) 

Zone I Zone 3 

Crash 
7 

Rdot (Range rate) 

Figure 19. Controller zones in range-versus-range-rate space 

With regard to situation trajectories, which are time indexed (time ordered) sets of 

(Rdot, R) points in the phase plane, trajectories on the left side (Rdot < 0) must go down 

and trajectories on the right side (Rdot > 0) must go up, because of the obvious influence 

of Rdot on the trend in R. Horizontal tangents to the trajectories are only physically 

possible for Rdot = 0, otherwise, a horizontal tangent represents infinite acceleration. (Of 

course, due to measurement inaccuracies, measured trajectories may cross the Rdot = 0 

axis with non-zero slopes.) The point here is illustrated by the observation that zone 2 
cannot be reached from zone 4, for example. Further reasoning of this type indicates that 

zone 2 is usually entered from zone 1. 

Proceeding counter-clockwise, we need to postulate how the driver chooses to change 

speed in zone 3. The driver is too close in zone 3 but the vehicles are separating. The 

driver knows that the range will increase if speed is simply maintained or reduced 
slightly. If the lead vehicle accelerates rapidly, the driver may even consider speeding up 

to close the otherwise expanding gap before another driver attempts to take it. 



In zone 4 the drive:r is not too close and is able to perceive the rate of separation of the 

lead vehicle. In this zone it is reasonable for the driver to speed up and try to catch the 

lead vehicle if it is not going too fast. I 

It appears to be problematical to develop a simple qualitative rationale for describing 

driver behavior in zone 5. The driver is not threatened by short range or by closing tolo 

fast. In this zone other factors may be more important to the driver than closeness or 

closing threats. For example, the reason for keeping range small might be to keep 

another vehicle from cutting-in. Other considerations could include the intent to exit 

(turn off) soon or anticipation of a traffic light ahead, thereby allowing plenty of distance 

for stopping. 

Finally there is need for a seventh zone in which R is so large that the driver is si~mply 

unconcerned with the range to the preceding vehicle. In this zone the driver  modulate:^ the 

throttle to get the desired speed of travel (corresponding more or less, to the set-speed 

value when in ACC operation). 

However, the above considerations do not exhaust the need to distinguish zones of 

behavior because there are limits on the accuracy with which drivers can perceive range. 

These limits are believed to be approximately k 10 percent. For example, in perceiving a 

range value of 30 m (I00 ft), variations between 27m (90 ft) and 33 m (1 10 ft) would 

look almost the same to the driver as the 30 m (1 00 ft) value. The addition of these 

perceptual boundaries yields the R-versus-Rdot diagram shown in Figure 20, where Rh is 

the desired range value for the operating conditions. 

The shaded control region (the trapezoidal "box") corresponds to a driver dead :zone 

in which the driver cannot readily determine accurate values for range or range rate. In a 

sense, the principal goal of the headway-control system is to get into the box. 

A diagonal line through the corners of the box has been constructed in Figure 2 1 to 

create a vector field that will cause trajectories in the phase plane to converge toward the 

box. Clearly this is a creative step in the sense that it will allow us to make a 

computerized system that behaves like a driver in certain situations. 

The diagonal line constitutes a sliding surface. It serves as a simplifying abstraction 

of reality in that trajectories in zone 3 are based on trying to get to the line (within the 

limits of the maximum allowable acceleration or deceleration. Through this process we 

have created a vector field, which has the property that trajectories in the phase space will 





The wedge, the name given for zone 1 in this figure, is an operating sector in which 

stopping distance rules are used to determine the commanded deceleration. 

Zone 4 has two parts: 4.1 and 4.2. In zone 4.2, the driver is assumed to hold velocity 

constant. In zone 4.1 the driver gradually increases speed toward that of the preceding 

vehicle. Zone 4, altogether, is the sector in which the driver's choice of control actions 

does not depend conceptually upon the preceding vehicle. However, in zone 4.1 we use 

the speed of the preceding vehicle as if it were a reasonable estimate of the set speed 

value. (This works out well for most situations in which the leading vehicle tends to 

travel at a reasonable "free" speed when the opportunity presents itself.) 

There is one matter left with regard to explaining the structure of the model. That is, 

we need an explicit means for determining the desired range value Rh. During the 

development of ACC systems, there has been considerable discussion of this matter. We 

have sometimes used Rh as a function of the velocity V of the ACC vehicle and at other 

times we have used Rh as a function of the velocity of the preceding vehicle, Vp. For 

stopping situations we have found that either way works. However, for starting frorn a 

stop, we observe that Rh needs to be a function of Vp if the following vehicle is going to 

" go" at all. Furthermore in the context of stop-and-go driving, we have found that Rh 
must "bottom out" at some minimum range value and must also be adjusted according to 

the acceleration of the lead vehicle Vpdot. Although work continues to determine an 

appropriate expression for Rh. It has been described by an equation of the form: 

and 
R,dot = ThVpdot , which is approximated using 

- 
Vpdot = V p  dot 

where: Rf is the minimum range, 
Th is the headway time for Vp = a constant, and - 
V ,  dot is the estimated acceleration (deceleration) of the preceding 

vehicle. 

There is a subtle point here. If, according to the model, the driver of the following 

vehicle tries to accelerate faster than the preceding vehicle, the preceding vehicle will be 

an impediment such that the range will stay relatively short. However, if the preceiding 

vehicle chooses to accelerate more rapidly than the driver of the following vehicle 



expects, a relatively large range gap may develop. Sometimes the expectation built into 

the model may be different from a particular driver's expectations in a specific situation 

at a certain time and place. This factor will sometimes cause range discrepancies in 

comparisons between model predictions and measured behavior during the positive- 

acceleration phases of stop-and-go operation. 

5.1.2 Implementation of Relationships Describing the Model 

The model of manual control of headway is implemented in SIMULINKB, which is a 

commercial simulation package that is part of MATLAB@. In order to develop a 

computerized model of this type, one formulates differential and algebraic equations, 

inequalities, and logical expressions describing the system to be represented by the 

computerized model. The process of implementing the relationships describing the 

system is graphical in that a special type of information flow diagram is constructed by 

interconnecting sets of elements representing standard mathematical and logical 

operators. Using the graphical approach in SIMULMK@, we have constructed a 

computerized representation of the system to be studied. This representation is a type of 

analogy. It allows us to experiment with models; both in the sense of (1) trying different 

features in the model and (2) predicting what the driver-vehicle system will do in new or 

different driving situations. 

A recent set of information flow diagrams for this model is included in appendix B to 

this report. The mathematical and logical expressions used in the model are presented 

and discussed here for various sections and subsections of the model. 

Driver's (ACC) World 

First consider a section of the model called the driver's (or ACC's) world. In this section, 

the situation outside of the driver's vehicle is included in the model. The principal 

independent variable in this part of the representation is the velocity of the preceding 

vehicle Vp. We either use measured time histories of Vp as the input to the simulation or 

we artificially generate Vp time histories that are representative of interesting events such 

as impeding (lead) vehicle braking. 

Since the driver may suddenly become aware of a particular preceding vehicle, the 

initial conditions of range and velocity may be important inputs to certain computer runs 

simulating these types of driver-related events. 

The basic equations representing the outside world are: 



Rdot = Vp - V 

Where V is the velocity computed in the vehicle section of the model. Expressions 

(4) and (5) are very simple since the model only considers the driving characteristics of 

the single preceding vehicle-hence, the name " ACC world." Traffic signals, other 

vehicles, entrance ramps, poor visibility, slippery roads, etc. are not included in the 

simplified model. 

Commander 

The commander section employs expressions pertaining to (1) perception and 

recognition, (2) decision/selection processes, and (3) rules for generating acceleration 

commands. 

The primary inputs to the commander section are range, range rate, and velocity. 

There are a number of parameters used in this section, and their values determine the: type 

of behavior represented by the model. 

The sensors for gathering range, range-rate, and velocity information are not 

represented explicitly, but perceptual capabilities are included in the expressions 

representing the commander. Accordingly, the expressions do not distinguish between 

actual range and sensed range. This pragmatic abstraction of reality considerably 

simplifies the expressions used in the commander. 

Certain expressions used in the commander employ an estimate of the acceleration of 

the preceding vehicle. This estimation process is described by the following equation 

This is a first-order system with a time constant, Tc. Experimenting with the mlodel 

has shown that the model functions satisfactorily for 1 s < Tc <2.8 s. (A wider range for 

Tc might be acceptable. However, we haven't tried a wider range.) 

To solve equation (6) in the computer we need to include an integrator, in this sense 

equation (6) becomes: 

and 



We see the need for further investigation as to the computation of the desired range, Rh. 

In most of the results presented here, the desired range is determined as follows: 

Rhdot - Th . Vpdot = 
-(Rh-Rf -Th.Vp) = -- - eh - e,dot 

Teh Teh 

and 

where Rf is the desired range at a stop when Vp = V = 0, Th is the desired headway time, 

and Teh is a factor that determines the importance of the term containing Vpdot. 

A typical average value for Rf is 3m (1 0 ft). Th has been found to be dependent on 

driver characteristics with a representative value around 1.4 s in these driving exercises. 

We have used Teh = 0.5 sec with reasonable success in matching simulation results to 

actual driving behavior, but the exact value does not appear to be critical. In addition, it is 

not clear how best to estimate the value of Teh. Nevertheless, we currently think that an 

effect like that represented by equation (9) needs to be included in the model. 

The desired range, Rh, forms the basis for sets of inequalities defining zones of 

different types of behavior within each of which specific rules are employed for 

determining the commanded acceleration. The psychological signs by which a driver 

selects different sets of rules correspond to whether the following inequalities are true or 

false. 

An Rdot, R point that satisfies all of the following inequalities is in zone 2 (i.e., the 

central box): 

R < ( l + A ) . R h  1 
R > ( l - A ) - R h  I 
R > -B *Rdot 

R > B. Rdot J 
If all the inequalities (1 1) are satisfied, the logical variable COM2 is made equal to 1, 

and the command variable Vcdot2 is selected as the command to the controller. (The 

expression for Vcdot2 will be presented later on in this section.) Experience gained by 

experimenting with the model has led us to select parametric values such that A=0.13 and 

B=8 sec. 



An Rdot, R point that satisfies the following expression is in the wedge (Zone 1): 

R < -B .Rdot 

R >  ( I - A * ) . R ~  - A . B . R ~ o ~  (12) 

If (12) is satisfied, COMl is made equal to 1 and Vcdotl is selected as the command to 

the controller. 

Zone 4 (for both 4.1 and 4.2) is defined by the following inequality (with R expressed 

in meters): 

R > R h + 2 4  (13) 

If (13) is satisfied, COM4 is equal to 1 and the rules for Zone 4 are used. 

The logical expression for selecting the rules for zone 3 is: 

COM3 ={not COM~) and (not COW) and (not C O M ~ )  

When COM3 is equal 1, Vcdot3 is sent to the controller. 

The rules for the acceleration commands for the various zones are as follows: 

Zone 2 : Vcdot2 = qpdot + Rdot / T2 (1 5 )  
(Note that this rule is based on the need to satisfy the relationship T2 Rdotdot t Rdot = 0 

where Rdotdot = Vpdot - Vdot) 
1n2 
V 

Zone 1 : Vcdotl = - 
-2 DS 

where: 

(Note that Ds is an estimate of the stopping distance available to the driver.) 

Zone 3 : Vcdot3 = fpdot 
e 

where 

e =  A . B . R ~ o ~ +  R - ( ~ - A ~ ) . R ~  (19) 
and it is assumed that Rhdot * Th . @dot (i.e., e,dot = 0 )  

(Note that e is a measure of the distance from the diagonal line that serves as the sliding 

surface, defined by A - B  dot + R -(I - A*).  R~ = 0 )  

Zone 4 : For Rdot < 0 , Vcdot4 = 0 (20) 

(This rule means do not change speed.) 



For Rdot 2 0, Vcdot4= (VP - V) 
10 

(This rule means that speed will be changed until V = Vp, or until Rdot becomes 

negative, or until the trajectory leaves zone 4.) 

These rules (as described by expressions (4) through (21)) may seem to be 

complicated. They contain linear and nonlinear equations and there is logic and 

switching involved. However, these provisions afford flexibility to the method 

employed. We have taken the open-loop equations for the vehicle's response and 

systematically converted that open-loop system into a closed-loop system that satisfies 

our goals and objectives as indicated by expressions (4) through (21). We have converted 

the original vehicle system into a system that perfoms what we need for representing 

driver control. 

This process is like that of feedback linearization used in nonlinear control theory, 

except that feedback linearization is usually used to convert a nonlinear system (the plant) 

into a chosen form of linear system. However, there is no reason why the same technique 

cannot be used to convert an original system into a nonlinear system of our choosing or 

preference. This allows us to include nonlinear relationships such as those associated 

with the stopping distance calculations. It allows us to use algebra to synthesize the 

system, given sensors for measurement of the quantities needed for our equations. We 

simply use the sensed quantities to solve for the acceleration commands. In this case, 

since there was no sensor for Vpdot, we used an approximate differentiator. Otherwise, 

even though it may appear that there are many differential equations involved, we are 

only solving algebraic equations in the process of converting the system into one that 

satisfies our objectives. 

5.1.3 Comparison of Model Predictions with Measured Results 

The model of driver behavior has been exercised extensively. We have comprehensively 

compared simulated results versus measured results for 6 1 stop-and-go driving events. 

These events involved five different drivers, driving on different days, but on the same 

route. For each driver, the longest stop-and-go driving episode, covering a number of 

successive stops, occurred on the same section of freeway regardless of the day or the 

driver. 

Sixty-one sets of graphs have been prepared for comparing simulated with measured 

results. A complete compendium of these graphs is included in appendix C. Figure 22 (a 



and b) (run 133.103) is an example that shows reasonably good agreement between 

model predictions and measured results. The input to the simulation is the measured, time 

history of Vp as shown in the graph presented in the left column next to the top of the 

figure. 

The top left plot of figure 22a shows good agreement between Vdata and Vsim for the 

same motion of the preceding vehicle. This qualitatively good fit between measurernent 

and simulation of the velocity of the driver's vehicle is typical of almost all of the cases 

studied. If V data and Vsim are not very much alike, range data (Rdata) and range 

simulated (Rsim) will be greatly different. 

In this case with Vsim FS Vdata, inspection of the time histories for range data and 

range sim shows that they are reasonably similar. We have chosen to use the root-rnean- 

square value (RMS) of the difference between Rsim and Rdata to quantify the goodness 

of fit for this run. The value is 1.5 m (5 ft.) for this case. Experience gained by trying 

many driving situations and model features indicates that this RMS value represents a 
good fit for this model. 

(Since the events (situations) simulated are not for equal periods of time, care needs 

to be exercised in comparing the results of different simulation runs. Nevertheless, RMS 

values less than 3m (10 ft) appear to represent a good fit. Between 3m (10 fi) and 6m (20 

ft) is considered a fair fit. Poor is between 6 m (20 ft) and 12 m (40 ft) on this scale:, and 
RMS values exceeding 12m (40 fl) are judged to be bad.) 

Figure 22a also includes time histories for Rdot, Vdot, throttle angle, and brake 

pressure as well as a range-versus-range-rate diagram. The details of these graphs have 

been used in trying to improve the model conceptually and also to improve the fit to 

measured data. Up until now, we have focused mainly on the velocity and range 

variables. However, we have observed that an apparently good fit in the range-versus- 

range-rate diagram means an excellent fit overall. After all, range and range-rate need to 

show good agreement in their individual plots for the (range-rate, range) trajectories to 

match well in the phase plane. 

Figure 22b (1 33.103B) shows an expanded presentation of the velocity, range, imd 

range-rate data for this example of a single stop-and-go event. In this run, the parameter, 

Th, is based upon that part of the situation in which the driver is decelerating above 0.08 

g. It is postulated that during the braking part of the stop-and-go maneuver the driver's 

choices are largely constrained by the behavior of the impeding vehicle. In the 



accelerating part, the driver may or may not be constrained by the motion of the 

preceding vehicle. If the driver wants to accelerate faster than the preceding vehicle, the 

preceding vehicle presents an impediment (an impeding vehicle). On the other hand, if 

the preceding vehicle accelerates faster than a following driver wants to accelerate, the 

follower is not constrained much by the preceding vehicle and may use other factors in 

deciding on an acceleration level. In the case when the driver's desired acceleration is 

actually constrained by the acceleration of the preceding vehicle, the preceding vehicle 

serves literally as a leading vehicle (i.e., determining the pace of progression). In any 

event, since Th is based on the deceleration phase of the situation, one might in general 

expect a better fit to the deceleration part than to the positive acceleration part of the 

range time history. 

Figure 23a (run 133.40) shows results for an example of stop-and-go driving. There are 

stops occurring at roughly every 50 seconds in this case. The maximum speed reaches 

nearly 15 d s  (50 ftls) between stops. As with single stop-and-go events, the match 

between Vdata and Vsim appears to be very good. Upon completion of the initial 

transient into stop-and-go motion, range data and range sim are nearly alike, with the 

forced oscillations going between a maximum of approximately 21 to 24 m (70 to 80 ft) 

and a minimum of 3 m (10 ft). 

Figure 23b (run 1 13.40) provides a close look at the very good fit between simulated 

and measured values of velocity, range-rate, and range for this example. Even though the 

event goes on for 500 s (until it is interrupted by a sudden change in the Rdot signal), the 

RMS value of the difference in range is only 4.5 m (15 ft). 



Model 153, Th = 2.2, Tc = 1.4, T2 = 1.4, T3 = 2.2, Driver: 2133.103 
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Figure 22a. Single stop and acceleration, comparing model and 
measured results 

4 7 



Model 153,Th=2.2, Tc= 1.4, T2= 1.4, T3 =2.2, rms= 5.03, rneanRerr= 3.32 
Driver: 2133.103 
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Figure 22b. (continued). Expanded V, Rdot, Range comparisons. 



Model 153,Th= 1.6,Tc= 1.4,T2= 1.4, T3= 1.6,Driver: 2133.40 
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Figure 23a. Stop-and-go driving, comparison of model and measured results 



Model153,Th=1.6,Tc=1.4,T2=1.4,T3=1.6,rms= 14.84,meanRerr= 11.17 
Driver: 21 33.40 
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Figure 23b (continued). Expanded V, Rdot, and Range comparisons 



Frankly, this is a better fit then we had any reason to expect based upon our original 

knowledge and understanding of stop-and-go driving. However, the process of 

methodically following "leads" into the observed phenomena appears to be useful as 

long as we focus on trying to understand what the data (physical evidence) tells us about 

the possible control mechanisms that underly these phenomena. 

Clearly figures 22 and 23 pertain to examples for which the model works well. Figure 24 

presents a case for which the model does not work well. The preceding vehicle suddenly 

reduced speed by 40 percent and then promptly resumed speed. After that, the preceding 

vehicle executed a stop-and-go cycle. On the one hand, the model showed roughly the 

same velocity excursions as did our subject driver. (Compare the Vdata with Vsim traces 

at the upper left of figure 24a and at the top of figure 24b.) However, the differences 

between Rdot data and Rdot sim are substantial, with Rdot sim not over shooting as imuch 

as Rdot data. This results in a rather large difference in the range-time histories, shown at 

the lower right of figure 24a. Given that there are cases with large RMS differences in 
range, there is reason to pursue clues that might lead to a better understanding of the 

phenomena involved. Nevertheless, from the perspective of using this model in an K C -  

system control algorithm, one could argue that the model's smoothness attribute makes it 

in some ways better than the driver's behavior. 



Model 153, Th = 1.2, Tc = 1.4, T2 = 1.4, T3 = 1.2, Driver: 2133,126 
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Figure-24a. Example where driver actions do not correspond to a headway control 
model 
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Model 153,Th= 1,2,Tc= 1.4,T2= 1.4, T3 = 1.2, rms= 39.51,meanRerr= 25.31 
Driver: 21 33.126 
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Figure 24b (continued). Expanded V ,  Rdot, and Range comparisons 
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Since Th is a major factor in determining the desired range, Rh, and since the rule 

(equation) for Rh ultimately determines how the model responds to the motion (Vp) of 

the preceding vehicle, parametric sensitivity to Th was explored over a range of values 

from 0.8s to 2.0s, for all of the 61 stop-and-go events. The results expressed as RMS 

differences in range are tabulated in Table 2 and displayed in a scatter plot in Figure 25. 

The runs presented previously in figures 22,23, and 24 are specially indicated in Table 2 

and Figure 25 by their assigned "plot index" numbers, 1,7, and 14, respectively. Please 

note that four data points (one for each value of the Th parameter) appears at each value 

of the plot index in the figure. Clearly, the RMS results for data files 2133-103 and 

2133 - 40 are good while the results for file 2133-126 are bad for any value of Th. In the 

table, Rf, is the mean of the range values that prevail between the vehicles when the lead 

vehicle is stopped. If no such data points exist in a particular file, an arbitrary number of 
99.9 is displayed in the table (clearly, however, this is not the value of Rf that was used as 

a parameter in the simulation.) 

Table 2. RMS Values for BMW stop-and-go model 
RMS values for values of 

S & G File l'4ame Final Headway Time (Th, sec.) 
Range, 0.8 1 1.2 1 1.6 1 2 
Rf, ft. 

1 2133-103 10.6 14.3 10.7 8 5.8 1 Th = 2.2 sec (figure 22) 

Plot index 

2 
3 
4 
5 
6 
7 Th = 1.2 sec (figure 24) 
8 
9 
10 
1 1  
12 
13 
14 Th = 1.6 sec (figure 23) 
15 
16 
17 
18 
19 
20 
2 1 
22 
23 
24 
25 

Notes 



RMS values for values of 
Headway Time (n, set.) Notes 

Work continues for examining ways to determine meaningful parameter values in the 

model. In that sense we are only part of the way towards developing a finished model of 

this type. With regard to the headway time, Th, we have come to appreciate its 

importance for matching test results. This importance can be seen by examining the 

entries in Table 2 and the corresponding points in Figure 25. In most cases there is at 

least one value of headway time Th that corresponds to an RMS value less than 6m. (20 

ft). However, there are a number of cases for which the RMS difference is much larger 



than 6 m (20 ft) regardless of the headway time selected. This evidence supports the view 

that headway control does not always predominate in the driver's strategy and tactics, 

even during a concentrated sequence of stop-and-go driving. 

RMS Range (ft) r = 0.3m) 

1 7 14 Plot index 

Figure 25. Influence of Th on RMS measure of fit 

With regard to considering the development of a stop-and-go ACC system based 

upon the driver model, it appears that a driver-adjustable headway-time feature may be 

desirable for reasons of driver comfort and convenience. 

Further efforts to develop an understanding of the influence of the headway time, Th, 

have been pursued empirically using a least-squares approach for fitting Th with a linear 

equation. For example, in all the test data for which Vp > 10 Wsec, R > 10 ft, and the 

brake is on, we find that the following equation fits the data: 



When examining accelerating, following and, braking individually, we obtain the 

following results: 

For accelerating, (Vpdot > 0.1 g): 

T h =  1.12 +0.017R- 0.023 Vp 

where r = 0.81 

For following, (-0.1 g 5 Vpdot 5 0.1 g): 

Th = 1.17 + 0.012 R - 0.016 Vp 

where r = 0.92 

For decelerating, (Vpdot < -. 1 g): 

Th = 2.06 + 0.027 R -. 0.055 Vp 

where r = 0.88 

Hence we can see that accelerating and decelerating phases of the stop-and-go cycle 

are indeed being handled differently and, as we might have expected, drivers are moire 

conservative when deceleration is taking place. There is much more that could be pursued 

here. In general, we can say that an understanding of how to determine Th and Rh is 

crucial to developing a better model. 

Another point with regard to the development of a stop-and-go ACC system has to do 

with control near the end of a stop at very short range. The model needs some work here 

if it is to represent the basis for a prototype ACC system. As can be seen by examining 

the model results in figure 22a, there are periods of very high levels of brake pressure at 

approximately 14 and 20 seconds in this example situation. These results nevertheless 

indicate that the model needs improvement when range approaches Rf (the final 

minimum range). We believe that adjustments to the Rh command circuit and to the rules 

for zones 1 and 3 will alleviate the problem, although fidelity in sensor outputs at very 

short range is an obvious implementation issue as well. 

In summary, we find that the model accounts for much of driver behavior in stop-and- 

go situations. The ability to fit test data appears to be fair to good in most cases. 

Nevertheless there is considerable room for improvement. Methods for determining 

parametric values for use in the model have not been developed to the point where ,they 

constitute nearly routine procedures. In particular there is a need for further examination 

of how to determine the driver's desired range and the headway-time parameters such as 



Th and Teh. Even so, we believe that we can modify the form of the driver model and use 

engineering judgment to create a prototype stop-and-go ACC system that will operate 

reasonably well in a vehicle. We recommend the development of such an ACC algorithm 

and its use in an ACC-equipped vehicle as a next step in this research effort. 

By examination of Table 2 (and Figure 25) one can readily identify the situations that 

are distinguished by large RMS values of the difference between the headway control 

model and the measured data. These cases warrant special attention because the behavior 

of the driver-vehicle system is not explained by headway-control considerations alone. 

The study of information from such cases provides the opportunity to learn about 

additional factors that influence the speed and range values that are sought by the driver. 

Such considerations are the subject of the next section. 

5.1.4 Use of Model-difference to Isolate Altercontrol Tactics 

The driver's actions in longitudinal control are clearly governed both by the reality of 

the immediate headway constraint, such as the ACC function offers to address, and by a 

host of other considerations that may be quite unrelated to the prevailing headway. Thus 
we might say that all longitudinal control can be divided into operational zones covered 

either by headway-only terms of control or by the sum of all other terms for control. 

Here we shall adopt the term H,,,, to represent the domain for ACC-like control of 
headway (and maximum cruise speed) and the term altercontrol to represent the entire 

domain of "other" control tactics by which drivers address the situational complexities 

that lie outside of the headway dimension. We will first lay out the conceptual basis for 

finding transitions to altercontrol from actual driving data and then we will present crude 

illustrations of applying this concept, revealing example altercontrol tactics in manual 

stop-and-go driving. 

Conceptual Basis for Isolating Altercontrol 

As shown in figure 26, the scope of concern of the H,,,, controller is confined to the 

immediate headway space and essentially represents that which an ACC controller is 
tasked to manage (albeit with the possibility of human-like features for dealing with lane 
constraints, transition to a new headway target, stopping dynamics, and the like.) 

Altercontrol must deal with everything else. Altercontrol includes, for example, all 

circumstances in which throttle and/or brake are modulated to enable passing maneuvers, 

to respond to traffic signals and signs, to anticipate out-of-lane conflicts such as a 
pending cut-in or the converse case in which a preceding vehicle is anticipated to vacate 



its currently impeding position by turning right or left when traffic clears. A1tercontro:l 

also includes a host of other cautionary tactics such as arise when the driver is uncertain 

about another vehicle's movements, when downrange vision is occluded by nearby 

vehicles, when construction zones violate lanernarking conventions, etc. 

Figure 26. Headway and nonheadway considerations in manual driving 



The importance of discriminating the situations in which Honly versus altercontrol 

prevails is that the boundaries between them define temporal events that will have distinct 

importance for determining ACC system acceptance. That is, if ACC is assigned as the 

Honly controller, its boundaries with the domain for altercontrol will coincide with either 

driver intervention events or moments of subjective judgment on system acceptance, even 

if manual intervention on ACC does not occur. If, as an investigative method, the ACC 

developer can carefully map out the entire manual driving experience according to its 

Honl, and altercontrol topography, he will thereby gain a distinct upgrade toward a 

methodical approach for ACC development and performance evaluation. 

Here, we must recognize that the manually-executed version of H,,, control may 

differ in significant ways from the H,,, control characteristics of an ACC system. On the 

hurnan side, despite the extent that H,,, control is individualized by the idiosyncrasies of 

a specific driver, there are underlying constraints simply posed by stereotypical human 
capability such as temporal response bandwidths, the resolution on human visual 

perception, the psychological appraisal of headway risks, and the psychomotor 
consistency/reliability of the human actor as a headway servomechanism. There are also 

intentional factors-satisficing theory for example suggests that a substantial degree of 
control sloppiness arises from the person's sense of disutility in doing it better. 

On the machine side, the ACC-provided form of H,,, control is flexible in its 

definition, limited only by the technological scope of the system and the investment made 

in sensing and computing. What might be labeled as altercontrol space in the human 
context may be partially bitten off by a more extended ACC functionality. 

Clearly, once an ACC controller is installed, its role is to accomplish its version of 

Honly control in a way that somehow complements the driver's exclusive role in 

accomplishing what's left as altercontrol. But in the stop-and-go environment, the 

complexity of demands for altercontrol can be high. It is believed that the driver will 

perceive benefit from an ACC controller that manages the headway regime while 

situating the driver for seemless transitions back into altercontrol. The strength of these 
perceptions will largely determine the acceptability of any stop-and-go ACC system. 

Thus, if by definition the ACC controller is unable to accomplish altercontrol tasks, the 
mere identification of the temporal boundaries that distinguish altercontrol versus Honl, 

control constitutes an important step toward the methodical development of stop-and-go 

ACC. 



If a reasonable model exists for describing manual control of headway (that is, a 

model of the human Honly controller such as that presented earlier), the opportunity exists 

to use such a model for methodically isolating events in manual driving during which 

altercontrol is being applied. The straightforward context for isolating such events is lby 

means of manual driving experiments using an instrumented vehicle. With the full 

complement of basic headway-related data then on hand, one can simply compute the 

continuous difference between the range response that a human driver actually did 

employ in the test (viz., R=f(m), using m to denote the comprehensive manual controller, 

and the headway range that the manual H,,, model computes (viz., the range response:, 

R=f(Honly)), given the speed profile of an impeding vehicle. 

As diagrammed in figure 27, exact correspondence between R(Honly) and R(m) lying 

along the 45" line would derive under all driving conditions for which a simple ACC 

controller is judged to be fully satisfactory. When the range value that is maintained 

under H,,,, control is longer than the manual driver would actually prefer, such that the 

operating state lies in the lower right portion of the graph, the driver would experience 

frustration with the impediment that H,,, control imposes and would apply more throttle 

in order to close up the range gap. When the range value under H,,,, control is shorter 

than the manual drivel. prefers, such that the operating state lies in the upper left portion 

of the graph, the driver experiences discomfort and perhaps apprehension over the crash 

potential, thereby calling for more braking. 

more throttle 

Short Long 

R = @only) 
(R satisfying headway constraint, alone) 

Figure 27. Range as controlled in manual driving vs. range as would be controllled by 

an H,,, control model (or an actual ACC system). 



Shown in figure 28 are example scenarios in which the continuous difference between 

the actually measured range resulting from a manual driving test, R(m), and the computed 

model result, R(Hon,,), is plotted as a function of time. Four scenario segments are shown, 

beginning at the left as follows: 

R(m) begins to grow longer than R(Honly) -that is, the difference value grows 

positive - as the actual driver elects to coast after observing a traffic signal 

turning amber. Clearly, the altercontrol tactic is to begin managing speed in 

response to the traffic control device, thereupon departing from simple (H,,,,) 

control. 

The difference value grows abruptly more positive as the driver begins to brake 

for a red light, even though the preceding vehicle goes through the intersection. A 

stiff phase of altercontrol has set in, placing the operating point in the safety- 

critical, upper-left comer of the diagram that was shown above in figure 27. 

The difference value grows positive as the driver shows a precautionary coasting 

response due to having noticed braking in the adjacent lane. A great variety of 

such throttle-release episodes is thought to dominate the altercontrol space. The 

failure of simple H,,, control to afford almost any of these coasting responses will 

likely influence the net level of comfort perceived in any crude form of stop-and- 

go ACC system. 

The difference value goes negative as the driver accelerates toward an impeding 

vehicle which is clearly, from the driver's broad appraisal of the scene, about to 

vacate the lane ahead by turning off of the roadway. Failure of simple ACC to 

provide a comparable response may tend to fi-ustrate some drivers and thereby 

discourage utilization. The situationally driven tightening of headway gaps, in 

order to discourage cut-in behavior, is another classical context in which negative 

differences in [R(m) - R(HOn,,)] would arise. 

Clearly the previously mentioned computation of the RMS difference between 

measured and modeled range variables provided one means of detecting an extended 

segment (or stream) of driving data in which altercontrol may have dominated the driving 

tactics. Another detection method would simply involve the finding of threshold 

exceedances, for some defined tolerance band on the [R(m) - R(H,,,,)] difference variable 

such as is in figure 28. By whatever computational scheme, the ability to detect moments 

of transition from H,,, to altercontrol in data from a manual driving sequence offers the 

possibility of a synchronized video appraisal such that the altercontrol domain may 



become catalogued, graded, and assessed according to the severities and the probabilities 

of its contents. With such rigor, the possibility of cognitive modeling could be ushered 

in, seeking to represent the decision-making and vigilance tasks that are embedded in 

manual driving, thereby establishing the baseline from which for ACC-assisted driving 

will be executed. Insights from cognitive modeling may then stimulate innovative 

approaches in ACC system design that make its usage in stop-and-go driving less 

frustrating and less risky. 

In the short section which follows, two example cases of computed model difference, 

as obtained from manual-driving data are presented for isolating video segments showing 

transitions to altercontrol. It remains for later work to mechanize such methods and to 

begin the great chore of cataloguing, grading, and assessing the probabilities in the 

altercontrol domain. 

Example result for R(m) - R(Honly) 
(where R(Honly) is from an ACC-like control rule) 

driver brakes for red 
light, while preceding 
vehicle goes through 

d driver coasts, noting brake 
lamps in next lane 

driver accelerates,'seeing 
that right-turner will clear 

Figure 28. Typical scenarios to show variation of actual and computed result 

Test Examples Illustrating Transitions to Altercontrol 

All vehicle data measured from manual driving were partitioned into sequences of 

following activity call streams. Typically, a stream starts when the host vehicle first gets 



behind another vehicle. This can happen as a consequence of a cut-in, lane change, or 

simple merge. The stream continues until the host vehicle stops following the lead 

vehicle, as indicated by an abrupt change in the sensed forward range. For the purposes 

of evaluating the stop-and-go model of manual headway control, we attempted to model 

only streams that contained full stops of the host vehicle. 

Comparisons were made between the velocity and range predicted by the model and 

the recorded driver behavior. Where large discrepancies in the RMS difference were 

evident, we consulted the videotape record to determine whether other factors (beyond 

the domain of measured headway variables might be influencing the driver's behavior. 

The following two cases provide an admittedly ad-hoc means of illustrating the general 

idea for isolating such factors from recorded data. 

Driver 133, Stream 1 10 

Figures 29a and 29b present quantitative model versus data comparisons and the 

corresponding video segment for driver 133 and stream 1 10. The stream begins when the 

host vehicle moves laterally into the lane, taking a position behind a lead vehicle at a 

relatively high speed (-45 mph or 73kmh). The model predicts that the driver would 

first attempt to lengthen his range to the preceding vehicle. Instead, measured data show 

that the driver maintains a much shorter range than was predicted. There are two possible 

reasons for this: 

In the audio track of the videotape, shortly after lane entry, the driver comments 

that the traffic light up ahead is green. Perhaps he is tolerating a shorter range in 

order to slip through the light before it turns red. 

Although no rearward video was recorded, it is also possible that the host driver 

has just merged into a relatively small gap between two vehicles. If so, proper 

driving etiquette might prescribe that he not decelerate in the normal manner that 

the model dictates, lest he annoy the driver behind him. 

As the stream continues, we see the driver's response conforms to that of the model down 

to the stopping point. (The driver failed to make the green light.) When the traffic light 

changes to green again, the response of the host driver deviates in another way from the 

model predictions, this time allowing a much larger gap to accumulate between him and 

the lead vehicle. In this case, it appears that the driver lags behind in order to move into 

position for a lateral maneuver into the right lane behind another vehicle. 





I Figure 29b. Video sequence for Driver 133, Stream 110. I 
The sequence (from left to right) shows the starting merge (frame 1) behind the light 
colored vehicle. After the traffic signal turns green (frame 3) considerable range 
opens up between the host vehicle and the preceding one. As explained in the text, 
this may be accounted for by the merge to the right behind the dark vehicle (frame 
5,6, and 7). I 



Driver 143, Stream 155 

Like figure 29, figure 30 (parts a and b) shows time-history data (actual and modeled) 

and video results for driver 143 stream 155. Here the driver merges behind a black 

pickup truck and follows it at a relatively close range. The driver's initial time-headway 

is approximately .5 sec and rises to about .8 sec. This headway gap is unusually short. It 

may have been a consequence of the host driver anticipating a change to the right lane, 

which is clear of traffic. Interestingly, both the host vehicle and the lead pickup truck 

initiate the same lane change at the same time, thwarting the host driver's goal to move to 

a clear lane. Both vehicles then come to a stop at a traffic light. When the light changes 

to green, we see the pickup truck briskly break away from the other vehicles in adjacent 

lanes, trailed closely behind by the host driver. The host driver then changes into the left 

lane when he is far enough ahead of the left-lane traffic, so that he can pass the pickup. 

The driver, in this case, seems to be searching for a clear lane to move into and appears to 

be willing to temporarily compromise range safety to achieve this goal. The model, 

having no such motivation, does not behave in this fashion. 

In these cases, we see evidence that drivers may modify their following behavior to 

support other strategic goals: to move into clear lanes, to fit into gaps, to clear past trafic 

in other lanes, etc. It is likely that many more altercontrol strategies of this kind are 

employed. 
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Figure 30a. Annotated time history of a stop-and-go event for driver 143 





5.2 Considerations of the applicability of ACT-R and SOAR for driver modeling 

It is clear from the preceding results that driver behavior is both dynamic (i.e., it 

adapts to different driving situations) and goal-oriented (i.e., a strategy is chosen by the 

driver to momentarily achieve some desired outcome). A model that does not take into 

account the specific driving context will find it difficult to accurately model driver 

behavior. Perhaps control-theoretic formalisms used to model driver behavior could be 

supplemented by the use of models that are more directly attuned to modeling behavior. 

In particular, we investigated two cognitive modeling systems: ACT-R and Soar. 

Both ACT-R and Soar are types of production systems used over the last fifteen years 

to model human information processing. In a nutshell, a production system is a method 

of organizing a large collection of decision-making elements called productions. A 

production is a data structure containing a conditional part and an action part. When a 
stimulus is presented to a production system, it is encoded into some form of internal 

representation in the system's working memory. A production whose conditional part 

matches working memoryfires, that is, its action is executed. The action changes 

working memory so that new conditions are instantiated. Other productions matching the 

new conditions then fire and the process continues until either no fwther matches can be 

made between the productions and conditions, or until a stop condition is reached. 

Over the years, Soar has been used to model planning behavior (Akyiirek, 1992), 

multitasking in driving (Aasman & Michon, 1992), concept acquisition (Miller, 1993), 

short-term memory (Newell, 1990), syllogistic reasoning (Polk & Newell, 1988), 
sentence comprehension (Lewis, 1993), and tactical air-combat simulation (Rosenbloom 

et al., 1994). Likewise ACT-R has been used to model a wide variety of human behavior 

ranging from perceptual-motor skill, memory, learning, cognitive arithmetic, to 

analogical reasoning (Anderson, 1998). Given the amount of exposure these models have 

received over the years, it seems reasonable to look to them to provide a framework in 

which to help organize the various conditions that may affect human driving behavior. 

Use of either Soar or ACT-R as a modeling framework requires extensive training in 

each system. Such training is provided to the user community through annual workshops, 

published tutorials, training materials, user guides, reference manuals, and books. The 

amount of such training material is not only indicative of the amount one needs to know 

to effectively use these systems, but also of the extent of the growing user communities. 



Assuming it is helpful to organize driving behavior into a systematic framework, how 

should we select which of these frameworks to adopt? Both Soar and ACT-R are, at 

heart, Turing machines. Each can be "programmed" to achieve similar outcomes. The 

differences between the two systems lie in the degree to which each attempts to mirror 

human information PI-ocessing. Although Soar began as a model of human problem 

solving, and has been promoted as a unified theory of cognition (or, UTC) (Newell, 

1990), since Newell's death in 1992, the status of Soar as a psychological theory has 

diminished. Instead, much of the current research and development using Soar has been 

focused on simulatiori of intelligent agents in tactical air-combat situations (Rosenbloom 

et al., 1994). Little fkther work seems to have been done to further promote Soar as; a 

UTC. Indeed, there has been strong criticism of Soar as a UTC (e.g., Cooper and 

Shallice, 1995) which has been left unanswered. Evolution of the Soar framework itself 
has not always been justified in terms of a psychological model. Some changes appear to 

be motivated by concerns about computational efficiency and technical elegance. 

In contrast ACT-K, through the careful stewardship of John Anderson, is somewhat 
better positioned as a cognitive model. Anderson is a cognitive psychologist and has 

made great effort to relate all of ACT-R's architectural features back to psychological 
principles. As a consequence, it is more likely that success in modeling driving behavior 
within the constraints set by ACT-R may lead to more compelling insights into driving 

behavior. 

ACT-R is a computer-based system for modeling cognitive behavior. There is now a 

version known as ACT-RIPM that includes perceptual and motor functions as well ;as 
cognitive functions. It seems that at some point in the future we might be able to use 

ACT-R to study driver control of headway. However, there is a lot to learn and 

understand before one is able to use ACT-R with confidence in a new application. 

Nevertheless, there appear to be fundamental psychological principles and understanding 

of constraints on human cognition that are built into ACT-R. For now we can strive to see 

if we can deduce what these principles may be and to use them in our models to the: 

extent possible. 

The notion of a production system appears to be a fundamental feature of ACT-R. In 

simple terms this means that the rules for producing actions or answers are the results of 
"if, then " statements. These rules are compiled from factual andlor perceptual 

knowledge that is held in declarative memory plus procedural knowledge that is held in 

procedural memory. In a certain sense, a person can reflect on and acknowledge the 



items in declarative memory but is not consciously aware of the items in procedural 

memory. There is also a goal stack and a current goal that is part of the system for 

deciding which procedure to use in a given situation. The decision process depends upon 

considerations that, at least at first, seem complicated and complex. Some of the 

complexities considered are: 
conflict resolution between alternative rules 

ways of making retrieval requests in declarative memory 

how new rules are formulated 

how skills are learned 

the speed of retrieval of information 

the latencies in completing productions 

goal structures 

expected gain 
probability of achieving a goal 

the cost of solving a problem 
activation-based retrieval of information 

Even though the process is complex, each production " firing" may be summarized as 

consisting of three stages: 
conflict resolution in selecting a production that matches the goal 

declarative retrieval of the knowledge chunks used in the production 
production execution including motor involvement 

With regard to the model presented in this report, there may be some correspondence 
between Anderson's views as expressed by ACT-R and Rasmussen's hierarchy of skills, 

rules, and knowledge. Very loosely, we have resolved the conflicts by assigning rules to 

each situation that we have considered. We use mainly factual information that the driver 

perceives ahead. And we assert that an experienced driver has finely honed skills that 

facilitate the execution of the commands produced by the rules. It seems that an ACT-R 

approach could aid studies that sought to address complicated issues such as: 

the ability to treat situations in which drivers choose productions (altercontrols) 
that are based on more than just considerations of headway control 

the ability of drivers to learn how to supervise ACC systems 

driver decisions to intervene on ACC and drive manually 

the risks drivers may be willing to tolerate during ACC driving 



Just as in all human decision-making, a basic question is whether the outcome will be 

worth the effort. In surnrnary, is the cost of learning to become fluent in ACT-R worth the 

time it would take to do it? 

6.0 Outlook for a Methodical Approach 

There are elements of a methodical or at least systematic approach in what we have been 

doing in this research effort. In this section we attempt to generalize from the current 

stop-and-go ACC context to driver-assistance systems in general. 

A main postulate of the envisioned methodical approach is: 

Designing a control device to assist the driver will require one or more models (either 

conceived in the mind of the designer and/or computerized) of how the driver manually 

perfonns the nominal function that the driver assistance system seeks to address. 

In this regard, an initial step in model formulation is to gather physical evidence of 

human behavior in driving situations that are pertinent to the driver assistance function 

desired. For example, for stop-and-go ACC we have measured range, range rate, and 

velocity in headway-control situations in manual driving, with a sample of subjects. 

The next step after gathering physical evidence would be to develop a basic foml of 

model covering the constraints in human performance that apply to sensing, perceiving, 

recognizing, deciding, and responding. One needs to follow up on leads derived from 

clues found in the physical evidence. Human factors, psychology, control systems, and 

vehicle-dynamics literature and techniques need to be examined and studied to aid in 

penetrating to an understanding of what the data (physical evidence) reveal about the 

underlying principles or mechanisms that explain (predict) human control. 

In this context the system designer obtains,valuable knowledge concerning the types 

of sensing that are needed. In addition, the designer develops the basis for evaluating how 

a proposed driver assistance system would match human performance in the domain of 

the targeted function, or otherwise complement the human role that may be undertallten as 

the system supervisor. 

Given the experience obtained in developing a model of manual stop-and-go driving, 

we recommend organizing the model around skill-based, rule-based, and knowledgc2- 

based behavior. This will yield a model that has the planner, commander, and contr~oller 

functional elements derived in this study. 



With regard to developing a controller element that performs at the skills level, we 

would use vehicle-dynamics expertise to develop an appropriate inverse dynamics model 

of the vehicle. This will, at least to first order, mean that the combined vehicle model plus 

controller element acts like an integrator. In the ACC-type application this integrator 

receives a desired force (that is, desired acceleration) command. Figure 3 1 and the 

equations shown in the figure provide an example of how this approach was applied to 

the skills-level controller in the stop-and-go ACC study. 

How do I get What do 
what I want? I know? 

Control: 

I internal 
situation, 

Inverse Dynamics reasoning: 
F(Contro1) = M Vdot + Fd 

Control = F-I(M  dot + ~ d )  
But if Control = F-I (M Vcdot + Fd), 

V = I ~ c d o t  dt, which is what I want. 

Figure 3 1. Emphasizing the inverse dynamics role in the system 

To provide the command input to the skills-level controller, we would develop rules 

and associated signs used for recognizing pertinent situations. Figure 32 illustrates an 

example case taken from this study of stop-and-go ACC. The equations in the figure 

delineate the development from a desired sliding surface (based upon Rh) to an 

acceleration command Vcdot to be used when the signs call for tracking a preceding 

vehicle. 



Whatdo Whatdo 
I observe? I want? - 

Command 

A 

V, internal 
situation 

Desired Dynamics reasoning: 
T Rdot + R = Rh, Rdot = Vp - V, 
T R d o t + R - R h = e ,  
edot + e/Te =O 
Vcdot = Vpdot + (Rdot -Rhdot + elTe)(l /T) 

Figure 32. Emphasizing the role of the desired dynamics relationships in the system 

Once the model of manual driving becomes functional and useful for making predict.ions, 

it provides the basis for creating the design for a proposed driver assistance system. This 

design will incorporate ideas concerning sensor requirements and the control algoritlm. 

The formalism and rigor associated with developing the computer model for manual 

driving will have aided in developing a quantitative means for trying and evaluating such 

ideas. The modeling effort should even prove useful in predicting how the driver will1 

supervise the driver-assistance system. It may also aid in developing ideas for driver 

interfaces involving information displays, controls, and feedback assurances. 

This brings us to the present state in the study of stop-and-go ACC. As we have 

recommended in section 5.1.3, the next step is to build a working prototype and gather 

some more physical evidence. We need new information and feedback from supervisors 

of this new functionality. We need to develop a better understanding of how people cope 

with the special responsibilities and situations presented under stop-and-go ACC control 

and the situations that cause them to arise. We need to understand the time margins that 

drivers desire in order to be comfortable with their supervisory skills. We need to 

discover when drivers will simply turn the system off and drive manually. 

In addition to creating a model of the corresponding manual driving functions and 

then developing and learning fiom a stop-and-go ACC prototype, we also anticipate that a 



methodical approach will draw value from the model-difference technique for 

highlighting events that provoke altercontrol. Especially with stop-and-go ACC as the 

functionality in question, we tend to believe that the complexity of the application 

environment will cause the suitability of any system solution to be heavily determined by 

the system's compatibility with transitions to altercontrol. Our view of the methodical 

approach thereby includes some use of the model difference method. Below we have 

listed three applications of the basic technique that might aid in understanding the 

boundaries between the system's H,,,, control domain and the driver's exercise of 

altercontrol. 

1) First, one can exercise a manual Honly control model to highlight model differences 

from manual driving data, in the same manner that we have discussed and very 

briefly illustrated in Section 5.1 -4. That is, one would continuously subtract the 

modeled range history, R(Honly), representing human control of headway, alone, 

from the complete range history, R(m), that was measured during manual driving 

throughout each tracking stream. The purpose of this exercise is to help 

mechanize an orderly cataloguing of normal manual altercontrol situations, 

according to their type, severity, and frequency. 

2) Next, one could implement, in place of the manual Honly model, the designed 

model representing a candidate stop-and-go ACC controller to again highlight 

model differences from manual driving data. Comparison of these model 

differences (i.e., R(m) minus R(ACC)) with those found under application 1, 

above (i.e., R(m) minus R(H,,,,)) should reveal how well the candidate ACC 

algorithm will mimic manual headway control, or by implication, yield the same 

manually expressed boundary with altercontrol. 

3) A companion test scheme is also envisioned for helping the researcher detect and 

perhaps gain a better intuitive understanding of the altercontrol domain. By this 

technique, one would embed either the manual HonIy model, or a candidate ACC 

range controller as a real-time computation on board a manually driven, but ACC- 

sensor-equipped, vehicle platform. The continuous model difference, also 

computed on board, would be used to modulate an audible feedback tone, perhaps 

whose tonal frequency varied continuously according to the magnitude of the 

model difference. Although the tonal feedback scheme may require a substantial 

dead zone around the zero-difference level in order to subdue the annoyance 

factor, we anticipate that the alerting value of the feedback, while a researcher is 



actually engaged in the driving process could be instructive. (Please note that we 

are imagining a research tool here and not a product feature.) 

Once the appropriate manual model has been constructed, the prototype system has 

been developed and tested in an exploratory way, and the altercontrol boundaries have 

been mapped out and understood, the methodical approach could then consider the 

warrants for an enveloping model of the closed-loop human-and-ACC control system. 

Such modeling would only proceed together with new empirical data taken from 

increasingly naturalistic testing of a system prototype with lay subjects. Additionally, 

meaningful measures must be formulated for characterizing driverlvehicle compatibility 

as it is observed during naturalistic operation. 

At this level, one must deliberately seek to understand feedback paths between PLCC 

system manifestation and the driver's processes of a) learning system operation and b) 

executing system supervision and interventions. Whether cognitive modeling tools prove 

useful in the future for representing such processes remains to be seen. At this juncture, 

our expectation is that while the study of cognition models has helped to illuminate .the 

scope of the overall problem, only minimal representation of cognitive processes at 'the 

knowledge level of our controller are likely to be practicable in the near term. 

7.0 Conclusions and Recommendations 

This project has involved a cursory examination of manual stop-and-go driving. The fact 

that the effort was so productive, in terms of data collection using instrumented vehicles, 

database compilation, processing of driving data, and the development and validation of a 

manual control model, was due to the availability of preexisting research tools that 

enabled each of these efforts. These tools were, for the most part, created earlier at 

UMTRI under sponsorship from the National Highway Traffic Safety Administration, 

whose gracious support is hereby acknowledged. 

The basic conclusion from this work is that a rather broad exploration of the stop-and- 

go driving context has yielded the draft version of an ACC control algorithm that 

reasonably approximates manual headway management in this driving regime. The 

project has also made progress on methods for documenting concurrent driving 

experience and for delineating the headway-only versus altercontrol phases that prevail in 

such driving. 

Useful products from the effort include: 



r a modest database documenting the stop-and-go driving time histories of eight 

drivers over a 2 112-hour route 

r a MATLAB/SIMULINK@ code representing the manual control of headway and 

speed in the stop-and-go environment 

r an appendix of experimental results comparing model prediction with actual 

driving behavior over 61 driving segments that include a complete stop 

Consideration has also been given to literature that helps assess the modeling steps by 

which higher-level cognitive decisions would factor into the driver model. At this point it 

seems more advisable to consider the overlay of a modest set of decision processes onto 

the mechanistic model developed here than to adopt anything like the production system 

models, ACT-R or Soar. 

It is recommended that the next step in this research include the implementation and 

trial operation of an ACC-controlled vehicle whose high-level algorithm is basically that 

of the manual driver model developed here. It is also recommended that the domain of 

altercontrol be catalogued at least in an introductory way so that an orderly scoring of the 

ACC driving experience can be related to the headway-determined versus altercontrol 

phenomena that are observed within manual driving. 
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APPENDIX A 
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The major conclusion from vision research conducted over a six-year period is that glance durations 

are a reasonably consistent measure of driver "in car" visual performance. Glance duration is 

impacted more by the demands of the driving task than by the visual characteristics of" in car" 

targets. Glance frequency, rather than glance duration, is considered to be a more sensitive measure 

of visual workload imposed by the usage of in-car elements. 

Summala, H., Lamble, D. and Laakso, M. (1998). Driving experience and perception of the lead car's 

braking when looking at in-car targets. Accident Analysis and Prevention, 30(4), 401-407. 

Detection of the lead cars brake lights is substantially impaired in daylight when the following 

driver is looking at the dashboard. Brake lights do not contribute at all to the detection of the lead 

car's braking when the following driver is looking at areas inside the vehicle such as the console. 

Different levels of driver experience did not affect the detection of closing headway in the 

peripheral regime of one's vision. 

Ecological Psychology and Driving 
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developments particularly in the areas of ecological and cognitive psychology. The author 

concludes that the general taxonomy of objective conditions in traffic is required; that a detailed 

analysis of motorist's cognitive representation is essential; and that better interaction between 

related fields is critical to advancing our knowledge of traffic psychology. 
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suggesting that controlling a moving vehicle is more strongly influenced by individual differences 
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stimuli outside of the vehicle at a distance were associated with higher variability than tasks using 

stimuli near the subject. 



Ranney, T. (1994). Models of driving behavior: A review of the literature. Accident Analysis and 

Prevention, 26(6), 733-750. 
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stimulus, the awareness of the driver, the type of brake stimulus, and country in which experiment 

took place. 
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This research showed that a lognormal function could be used to model the probability density 
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BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.3, Tc = 2.8, T2 = 2.8, T3 = 2.3 

Driver: ~133~03.txt 

Time (sec) Time (sec) 
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Time (sec) 

Range data 

- Rangesim 
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. . . . . .  - Vdol sim 

Time (sec) 

Time (scc) 



BMW Model, data vs. simulation (RunB). 
Model 151, l'h = 2.3, Tc = 2.8, T2 = 2.8, T3 = 2.3, rms = 4.74, meanRerr = 3.73 

Driver: ~133~03.txt 

60 I I I I I I 1 

Rdot 
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BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.8, Tc = 2.8, T2 = 2.8, T3 = 1.8 

Driver: ~133~04.txt 

0 50 IW 
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BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.8, Tc = 2.8, T2 = 2.8, T3 = 1.8, rms = 16.32, meanRerr = 11.63 

Driver: ~133~04. txt  

Rdot 
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BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.0, Tc = 2.8, T2 2.8, T3 = 2.0 

Driver: ~133~09.txt 
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T i e  (see) 
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BMW Model, data vs, simulation (RunB). 
Model 151, Th = 2.0, Tc = 2.8, T2 = 2.8, T3 = 2.0, rms = 7.20, meanRerr = 5.54 

Driver: ~133~09.txt 

Range 
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BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.8, Tc = 2.8, T2 = 2.8, T3 = 1.8 

Driver: z133110.txt 
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BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.8, Tc = 2.8, T2 = 2.8, T3 = 1.8, rms = 36.53, meanRerr = 26.72 

Driver: ~133~10.txt 

Range 
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BMW Model, data vs, simulation (RunB). 
Model 151, Th = 1.9, Tc = 2.8, T2 = 2.8, T3 = 1.9 

Driver: z133115.txt 

Time (sec) 
M loo 

Time (sec) 

Time (sec) T i e  (see) 

" - 
0 M 

Time (scc) 

I - Range data 
. . . . . . . . . .  



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.9, Tc = 2.8, Ti = 2.8, T3 = 1.9, rrns = 31.36, meanRerr = 24.47 

Driver: ~133~15.txt 

Rdot 

Range 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.1, Tc = 2.8, T2 = 2.8, T3 = 2.1 

Driver: ~133~23.txt 

Range data 

- Range rim 

75 

I I Vdotsim I I 
-15 

0 50 

T i e  (sec) 

- V s ~ m  

0 50 
T i e  (sa) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

50 
Time (wc) 

- V data . . .  



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.1, Tc = 2.8, T2 = 2.8, T3 = 2.1, rms = 11.35, meanRerr = 9.06 

Driver: ~133~23.txt 

Rdot 
20. I I I I I I I 

10 - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . .  : . . . .  . .  . . . . . -  

. :. . . . . . . . . . . .  : . . . . . . . . . . . .  :. . . . . . . . . . . .  .: . . . . . . . . . . . .  

-20 - . . . . . . . . . .  .:. . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-30- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -40- : . . . . , -  

-50 I I I I 

0 10 20 30 40 50 60 70 80 

Range 
200 1 I I I I I I !I 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.4, Tc = 2.8, T2 2.8, T.3 = 1.4 

Driver: ~133~26.txt 

50 100 

Time (sec) 

-15 I 
0 50 100 

Time (rec) 

0 50 100 

Time (sec) 

0.4-1 -- 

0 so 100 

Timc (sa) 

50 100 
Timc (see) 



Rdot 



BMW Model, data vs, simulation (RunB). 
Model 151, Th = 1.6, Tc = 2.8, T2 = 2.8, T3 = 1.6 

Driver: ~133~32.txt 

- Vsim 

50 

Time (s) 
50 

Time (xc) 

50 
Time (sa) 

50 
Time (sec) 

Range data 

- Range sim 

Time (sa) Time (scc) 

M 
Tic  (rcc) 



'BMW Model, datavs. simulation (RunB), 
Model 151, l'h = 1.6, Tc = 2.8, T2 = 2.8, T3 = 1.6, rms = 19.81, meanRerr = 13.23 

Driver: ~133~32.txt 

Rdot 

0 20 40 60 80 100 120 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.6, Tc = 2.8, T2 = 2.8, T3 = 1.6 

Driver: ~133~41.txt 

T i e  (see) 

50 
Time ( ~ c )  

. . .  

. . .  

0 
T i e  ( ~ c )  

Range drua 

- Range sim 

50 

Time (w) 

0 

Time (w) 



Rdot 

BMW Model, data-vs. simulation (RunB). 
Model 151, Th = 1.6, Tc = 2.8, T2 = 2.8,'T3 = 1.6, rms = 38.26, meanRerr = 22.98 

Driver: ~133~4l . tx t  

70 I I I I I I 

. , 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . -  

. . _ . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . -  

. . . . . . . . . . . . . . . . . . . . . . .  . " . ' . ' . . . . " ' . . / . " " " . . .  . . -  

. . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . .  

.-- I 
0 10 20 30 40 50 60 70 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.5, Tc = 2.8, T2 = 2.8, T3 = 2.5 

Driver: ~133~44.txt  

- Vsim u 
50 

T i e  (sec) 

50 
Time (scc) 

50 

T i e  (sec) 

- VdM sim 

-15 

M 
Time (scc) 





BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.9, Tc = 2.8, T2 = 2.8, T3 = 1.9 

Driver: ~133~55.txt  

Time (set) 

0 50 100 I50 
Timc (see) 

. . . . . . . . . . . . . . . . . . .  
Range daa 

. . . . . .  Rangesim 

0 50 1W 150 
Time (set) 

Time (scc) 

. . . . . . . . . . . . . . . .  

. . . . . . . . .  

0 50 100 150 

Time (sic) 

Timc (see) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.9, Tc = 2.8, T2 = 2.8, T3 = 1.9, rms = 34.85, meanRerr = 25.34 

Driver: ~133~55.txt 



BMW Model, data vs. simulation (RunB). 
Model 151, Th 1.2, Tc = 2.8, T2 = 2.8, T3 = 1.2 

Driver: ~133~70 . tx t  

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  - V data . . .  

- Vsim 

. . . . . . . . . . . . . . . . . .  

0 50 100 
Time (SCC) 

Range data 

- Rangesim 

,5 

Time (sec) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . .  
R-Rdoc data 

. . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . .  

0 
I 

0 50 100 
Time (sec) 

. . . . . . . . . . . . . . . . . . . . . . . . .  

0 50 100 

Time (SEX) 

SO I00 

Time (KC) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.2, Tc = 2.8, T2 = 2.8, T3 = 1.2, rms = 19.55, meanRerr = 12.11 

Driver: z133,70.txt 

Range 
I I 

. . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . _ . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 20 40 60 80 100 
,; YL 

120 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.1, Tc = 2.8, T2 = 2.8, T3 = 2.1 

Driver: ~133~75.txt 

.I5 
0 50 100 150 

T i e  (sec) 

75 

Time (see) Time (sec) 

50 1 w 
Time (KC) 

- Vsim 

0 50 100 150 
Time (xc) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  - Vdala 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.1, Tc = 2.8, T2 = 2.8, T3 = 2.1, rms = 45.12, meanRerr = 30.65 

Driver: ~133~75.txt 

Range 

Rdot 
20 - I I I I I I I I 

. . . . . . . . . . . . . . . . .  

. . . . . . .  .:, . . . . . . . .  

: . . . . . . . . . . -  

. . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . > . . . . . . . . . . , . . . . . . . . . .  \ . . . . . . . . . . . . . . . . . . . . . . .  

-60 I I I I I I I I 

0 20 40 60 80 100 120 140 160 180 

40 

-5o-.. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - 

. . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . .  . . . . . . . . . . . . . . . . . . . . . . . .  



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.6, Tc = 2.8, T2 = 2.8, T3 = 1.6 

Driver: ~133~0 . tx t  

. . . . . . . . . . . . . . . .  . . . . . .  I ' ' - Vdcisim 

0 50 100 150 200 250 300 350 400 450 9 0  
T i e  (stc) 

. < - 

0 50 100 150 200 250 300 350 400 450 500 

Time (sce) 

0 
0 50 100 150 200 250 300 350 400 450 500 

Time (scc) 

" 0  50 100 150 200 250 300 350 400 450 500 
Time (scc) 

. . . . . . . . . . . . . . . . . . . . . . . . . .  
Range dlua - Rangesim . . . . . . . . . . . . . . . . . . . . . . . . . .  

5 
L 
5 

" 0  50 100 150 200 2% 300 350 400 450 500 
Time (scc) 

0 50 100 150 200 250 300 350 400 450 500 
Time (stc) 

R-Rdci data 

- R-Rdci sim 

Time (sec) 



BMW Model, data vs. simulation (RunB). . 
Model151,Th=1.6,Tc=2.8,T2=2.8,T3=1.6,rms= 15.34,meanRerr= 11.36 

Driver: ~133~0.txt  

Rdot 

Range 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.0, Tc = 2.8, T2 = 2.8, T3 = 2.0 

Driver: ~133~ . tx t  

0 
0 50 

Time (sec) 

50 
Time (sec) 

Range data 

- Range sim 

. .  . . . .  . . . . . . . . . . .  200 .,. - R.Rda dau 

50 

Time (sec) 

50 

Time (SK) 



BMW Model, data vs. simulation (RunB). 
Model 151, 'I'h = 2.0, Tc = 2.8, T2 = 2.8, T3 = 2.0, rms = 24.63, meanRerr = 19.57 

Driver: ~ 1 3 3 ~ . t x t  

Range 
250 I I I I I I I 1 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

150 - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , . . . . . . . . . . . -  . . . . . . . . . .  

---?--- . . . . . . . . . . .  . . . . . . . . . .  . . . . . . . . . . .  . . . . . . . . . .  ,:. .:, .:. . . . . . . . . . .  .\ . . . . .  . ; .- 

\ . . . . . . . . . . .  . . . . . . . . . .  

-------c ------- - 
0 10 20 30 40 50 60 70 80 

Rdot 
20 I I I I I I I 

10 - . . . . . . . . . .  .:. . . . . . . . . . . .  ; . . . . . . . . . . .  . I . .  . . . . . . . . . .  . .  . . . . . . . . . . .  . . . . . . . . . .  . . . . . . . . . .  .- 

. . . . . . .  . I .  . . . . . . . . . . .  . I .  . . . . . . . . . .  . I .  . . . . . . . . . . .  . . .  ,- 

. . . . . . . .  :. . . . . . . . . . . .  ,: . . . . . . . . . . . .  :. . . . . . . . . . . .  .: . . . . . . . . . . . .  

-30 I I I 

0 10 20 30 40 50 60 70 80 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.6, Tc = 2.8, T2 = 2.8, T3 = 2.6 

Driver: ~143~01.txt 

-15 
0 

Time (see) 

. . . . . . . . . . . . . .  . . . . . . . . . . . . . .  

- Vdot sim 

0 
Time (sex) 

-25 -20 - 5  -10 -5 0 5 10 
Rdot (Wac?) 

0 

Time (see) 

0 
Time (sec) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.6, Tc = 2.8, T2 = 2.8, T3 = 2.6, rms = 16.51, meanRerr = 14.10 

Driver: z143101.txt 

Rdot 

Range 
300 1 I I I I I I I I 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.0, Tc = 2.8, T2 = 2.8, T3 = 2.0 

Driver: ~ 1 4 3 ~  11.txt 

0 

Time (sec) 

0 
Time (sec) 

- Range data - Rangesim 

0 
T i c  (w) 

- Vdm sim u 
0 

Timc (sa) 

Time (ss) 

0 

Timc (sa) 

0 
Timc (m) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.0,Tc = 2.8,T2 = 2.8,T3= 2.0, rms = 8.35, meanRerr = 6.95 

Driver: ~143~11.txt 

Rdot 
30 I I I I I I I I I 

-40 , I I I I I I I I I 

0 5 10 15 20 25 30 35 40 45 50 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.3, Tc = 2.8, T2 = 2.8, T3 = 1.3 

Driver: ~143~26.txt  

Vdala . . -  

- Vsim 

50 

Time (w) 

50 

Time (scc) 

" O f ,  1 

0 50 100 
Time (sw) 

R-RdM data 

- R-RdM sim 

M 
Timc (set) 

50 

T i e  (scc) 

U) 

Timc (atc) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.3, Tc = 2.8, T2 = 2.8, T3 = 1.3, rms = 37.18, meanRerr = 30.56 

Driver: ~143~26.txt  

Rdot 

Range 
350 I I I I I 

. . . . . . . . . . .  I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . -  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . .  r.-.-~.-..~. .;. .  . . . . . . . . . . . .  . . ;  . . . . . . . . . . . . . . .  . :  ...- 
\ .  

I 0 I 

0 20 40 60 80 100 . ,120 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.0, Tc = 2.8, T2 = 2.8, T3 = 1.0 

Driver: ~143~55.txt 

0 
Time ( a )  

75 

Range dm 

- Range sim 

Time (a) 

- Vsim 5 

0 
Time (M) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

- Vdas im 

-15 
0 

Time (stc) 

- Vdata 

Time (sec) 

. . .  

Time (sec) 



BMW Model, data vs, simulation (RunB). 
Model 151, Th = 1.0, Tc = 2.8, T2 = 2.8, T3 = 1.0, rms = 19.21, meanRerr = 16.35 

Driver: ~143~55.txt  

Rdot 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 0.9, Tc = 2.8, T2 = 2.8, T3 = 0.9 

Driver: ~143~1 . tx t  

0 M 100 
T i e  (scc) 

0 50 100 I50 
Timc (scc) 

-- 
50 100 150 

Time (scc) 

0 50 100 I50 

Timc (scc) 

.20 . . . . . . . . . . . . . . . . . . . .  t - Rda sim 

50 I00 

Time (ss) 

0 50 100 
Time (=) 



Rdot 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.9, Tc = 2.8, T2 = 2.8, T3 = 1.9 

Driver: ~143~0.txt 

0 
Time (scc) 

0 
Tic (scc) 

Ranpc d m  

- Range sim 

0 
Timc (ss) 

R-Rdu data 

- R-Rda sim 

Timc (scc) 

Time (a) 

- R ~ M  data 

0 

Time (ss) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.9, Tc = 2.8, T2 = 2.8, T3 = 1.9, rms = 8.90, meanRerr = 7.41 

Driver: ~143~0.txt  

Rdot 

. . . . . . . .  

. . . . . . . .  . . . .  . . . .  

. . . . .  I . .  



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.1, Tc = 2.8, T2 = 2.8, T3 = 1.1 

Driver: ~ 1 4 3 ~ 5 . t x t  

- Vsim 

. . . . . . . . . . . .  

50 100 

Time (sec) 

50 100 

Time (sec) 

Range data - Range sim 

I 

0 50 100 
T i e  (sec) 

.- 
0 M 100 

Time (sec) 

50 100 

Time (w) 

1- Rdol data I ' - 
-25 

0 50 100 

T i c  (w) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.1, Tc = 2.8, T2 = 2.8, T3 = 1.1, rms = 18.38, meanRerr = 14.75 

Driver: ~143~5.txt 

. . . . . . .  . . . . . . . . . . . . .  - 

. . . . . .  . : .  . . . . . . . . . . .  ., 

. . . . . . . . . . . . . . . . . . .  . . -  

0 20 40 60 80 100 120 140 

Rdot 
1 0 7  I I I I 1 

Range 
1001 I I I I I !I 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.3, Tc = 2.8, T2 = 2.8, T3 1.3 

Driver: ~143~6.txt  

- Vsim 

. . . . . . . . . . .  

0 50 100 150 200 250 300 
Timc (see) 

.- 
0 50 I00 IS0 200 250 300 

Timc (sec) 

0 50 100 150 200 250 300 
Time (sec) 

0 50 100 1.50 200 250 300 
Time (W) 

Range diua 

- Range sim 

Time (w) Time (w) 

R d a  (Wscc) Time (sa) 



BMW Model, data vs. simulation (RunB). 
Model 151, 'I'h = 1..3, Tc = 2.8, T2 = 2.8, T3 = 1.3, rms = 17.32, meanRerr = 15.05 

Driver: ~143~6.txt 

Rdot 
10 1 I I I I I 

Range 
140 I I I I I I 

1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I 
I 

0 50 100 1 50 200 250 300 350 



BMW Model, data vs, simulation (RunB). 
Model 151, Th = 1.5, Tc = 2.8, T2 = 2.8, T3 = 1.5 

Driver: z143,2.txt 

- Vsim 

50 
Tie (sec) 

50 
Time (sec) 

Range data 

- Range sim 

Time (sec) 

. . . . .  . . . . .  . . .  . . . . . . . . . . . .  

VdMdula - Vdotsim 

50 
Time (sec) 

50 

Time (sec) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.5, Tc = 2.8, T2 = 2.8, T3 = 1.5, rms = 17.62, meanRerr = 14.43 

Driver: z143,2.txt 

Rdot 

Range 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.7, Tc = 2.8, T2 = 2.8, T3 = 1.7 

Driver: ~143~7 . tx t  

- V sim 

50 
T h e  (w) 

50 
Time (scc) 

Range data 

- Range rim 

0 50 
Time (see) 

. . . . . . . . . . . . .  

. . . . . . . . . . . . . . . .  - Vdoc sim 

M 

T h e  (scc) 

Time (sa) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.7, Tc = 2.8, T2 = 2.8, T3 = 1.7, rms 25.06, meanRerr = 20.48 

Driver: ~143~7. txt  

Rdot 

Range 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.3, Tc = 2.8, T2 = 2.8, T3 = 2.3 

Driver: z150117.txt 

50 
Time (sec) 

50 
Time (sa) 

0 50 
Timc (sec) 

50 
Timc (sa) 

Time (m) Time (sec) 

V 

-25 -20 -15 -10 -5 0 5 10 
Rda  (WSCL:) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th 2.3, Tc = 2.8, T2 = 2.8, T3 = 2.3, rms = 13.32, meanRerr = 10.96 

Driver: z15OI17.txt 

Rdot 

Range 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.3, Tc = 2.8, T2 = 2.8, T3 = 1.3 

Driver: z150122.txt 

Time (RC) Timc (sec) 

Time (sec) Time (sex) 

. . . . . . . . . . . . . . . . .  
. Rdoc data 

Time (m) Time (sex) 

R-Rdd data 

- R-Rddsim 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.3, Tc = 2.8, T2 = 2.8, T3 = 1.3, rms = 26.49, meanRerr = 20.44 

Driver: z150122.txt 

100. I I I 1 I 

Rdot 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.1, Tc = 2.8, T2 = 2.8, T3 = 2.1 

Driver: z150124.txt 

Time (sec) 

Irn m 

Time (m) 

Time (~a) 

Time (sa) 



Rdot 

Range 
350 1 I I I I I I I 1 



BMW Model, data vs, simulation (RunB). 
Model 151, Th = 1.3, Tc = 2.8, T2 = 2.8, T3 = 1.3 

Driver: z150125.txt 

V data . . .  
- V s ~ m  

0 50 100 
Timc (scc) 

Tie (scc) 

Rangc d a  

- Range aim 

50 

Timc (sec) 

-.a 

0 50 100 
Timc (sec) 

. . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . .  

M 
Tie (sec) 

0 loo 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.3, Tc = 2.8, T2 = 2.8, T3 = 1.3, rms = 16.74, meanRerr = 12.54 

Driver: z150125.txt 

Rdot 

. . . . . . . . . .  

60 , 80 1 00 120 

Range 
250 - I I I I I 

100 - . . . . . . . . . . 

0 20 40 60 80 100 120 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.5, Tc = 2.8, T2 = 2.8, T3 = 1.5 

Driver: z150128.txt 

Time (w) 

w 

Time ( ~ c )  

. . .  . .  
Range dab 

. . . . . .  . . . . . . . . . . . . . . . . . . .  ISo.. - Rangcsim 

0 
0 50 100 

Time (ss) 

. . . . .  . 1 -  Vdot data - Vdot sim 

-15 
0 50 100 

T i c  (scc) 

0 50 100 
Time (scc) 

Time (ss) 

Rda (Rlsec) 



BMW Model, data vs, simulation (RunB). 
Model 151, Th = 1.5, Tc = 2.8, T2 = 2.8, T3 = 1.5, rms = 14.62, meanRerr = 11.23 

Driver: z15O128.txt 

Rdot 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.3, Tc = 2.8, T2 = 2.8, T3 = 2.3 

Driver: z150138.txt 

V data . 

- V sim 

0 
Time (sec) 

0 
Time (ss) 

Range data 

- Rangesim 

0 
Time (sec) 

. .  " " " " : "  

R-Rda data 

Tie (sec) 

Time (sec) 

Time (sec) 

0 
Time (sec) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.3, Tc = 2.8, T2 = 2.8, T3 = 2,3, rms = 28.50, meanRerr = 17.68 

Driver: z150138.txt 

Rdot 

Range 
I I I I I I I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . .  : . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - 
' /' 
2' . . . . . , . . . . . . . . .  . . . . . . . . . . . . . . . . . . . < . . . . . . . . . . . . . . . . . . . . . . . . . . . ># . - . . . . . . . . . . .  " 

' .  , . -C4 - 4 -7 

. . . . . . . .  . . . . . . . .  . . . .  :. . . . . . . . .  :. . . . . . . . .  :. :. . . . . . . . .  .,.r7.-. . . . .  .:. .:. . . . . . . .  .- 
,'? 

/ *  
. . . . . . . . .  . . . . . . . . .  . . .  ; . . . . . . . . .  ; . . . . . . . . .  .: .: . .  ./'. . . .  .: . . . . . . . . .  .: .:. . . . . . . .  .- 

. . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . .  \/ - . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . .  ..................................... .- 

I I I I I I 0 
0 5 10 15 20 25' 30 35 40 45 50 



BMW Model, data vs. simulation (RunB). 
Model.lSl,Th= 1.8,Tc=2.8,T2=2.8,T3= 1.8 

Driver: zl5O139.txt 

0 50 
Time (sex) 

M 

Time (ss) 

1 

. . . . . . . . . . . . . . . .  - Range dua  

. . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . .  - Rdoldala 

. . 

-25 .20 -IS -10 ' 4 0 5 10 
Rdoc (n/lcc) Time (ss) 



BMW Model, data vs, simulation (RunB). 
Model 151, Th = 1.8, Tc = 2.8, T2 = 2.8, T3 = 1.8, rms = 24.73, meanRerr = 19.39 

Driver: z150139.txt 

Rdot 
20 I I I I I I 

. . . . . . . . . . . . . . . . .  . . . . . . .  . . . . . . . . . . . . .  . . . . . . . . . . . . .  . . . . . . . . . . . . .  . . . . . . . . . . . . .  -20 - ; .:. :. 

-40- . . . . . . . . . . . .  
, . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  -60- 

-80 
0 10 20 30 40 50 60 70 

Range 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 0.9, Tc = 2.8, T2 = 2.8, T3 = 0.9 

Driver: z150141.txt 

Time (sec) 

0 
Time (sec) 

Ranpe data 

- Range sim 

I 

0 
Time (sec) 

0 

T i e  (sec) 

.20 . . . . . . . . . . . . . . . . . . . . .  
II Rdotfim " " " -  

-25 
0 

u 
Time (sec) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 0.9, Tc = 2.8, T2 = 2.8, T3 = 0.9, rms = 20.00, meanRerr = 15.19 

Driver: z150,41.txt 

Rdot 
20 I I I I I 

-1 5 I I I I I 

0 5 10 15 20 25 30 

Range 
120 I I I I I 

0 I I I I I 

0 5 10 15 20 25 30 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 5.4, Tc = 2.8, T2 = 2.8, T3 = 5.4 

Driver: z15O143.txt 

SO 

Time (scc) 

50 

Time (scc) 

50 
Time (sc~) 

0 50 
Time (sa) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 5.4, Tc = 2.8, T2 = 2.8, T3 = 5.4, rms = 54.93, meanRerr = 47.94 

Driver: z150143.txt 

Rdot 

Range 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.4, Tc = 2.8, T2 = 2.8, T3 = 1.4 

Driver: z150147.txt 

0 50 100 
Time (src) 

Time (scs) 

Range daa 

- Range rim I- . . . . . . . . . . . .  " " . . . . .  . . . . . .  

. . . . . .  

0 100 
Time (sec) 

.- 
0 M 100 

Time (scc) 

-25 
0 50 100 

Time (sec) 



Rdot 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . -  

. . . . . . . . . -  

BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.4, Tc = 2.8, T2 = 2.8, T3 = 1.4, rms = 21.38, meanRerr = 16.69 

Driver: z150147.txt 

100 I I 

Range 
I I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

' . 

I 

0 50 100 1 50 

80 . . . / y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - 
I \ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

40- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 
0 50 100 150 



BMW Model, data vs, simulation (RunB). 
Model 151, Th = 1.6, Tc = 2.8, T2 = 2.8, T3 = 1.6 

Driver: z150154.txt 

Timc (ss) 

... 

75 

A 

0 
0 

Time (SIX) 

.$ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Vda daa . . . . . . . . . . . . . . . . . . . .  

- Vda sirn 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

.I5 I 
0 

Time (SIX) 

0 
Timc (SIX) 

- Vsirn 

- Vdaca 

-. 
0 

Timc (xc) 

. . .  



BMW Model, data vs. simulation (RunB). 
Model 151, Th 1.6, Tc = 2.8, T2 = 2.8, T3 = 1.6, rms = 40.18,meanRerr = 31.85 

Driver: z15OI54.txt 

Rdot 

0 5 10 15 20 25 30 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.1, Tc = 2.8, T2 = 2.8, T3 = 1.1 

Driver: z150157.txt 

. . . . . . . . . . . . . . . .  .I0 - Vdadara . . . . . . . . . .  

.I 5 

1 , d i m  1 ,  , 1 
Tie (sec) Time (sec) 

Time (xc) Time (~cc) 

Time (w) T i c  (scc) 

0 M 100 150 200 250 300 
Time (a) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.1, Tc = 2.8, T2 = 2.8, T3 = 1.1, rms = 17.82, meanRerr = 13.38 

Driver: z150157.txt 

Rdot 

Range 
I I I I I I 

. . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  150- :. : . .  . . . . . . . . . . . . -  

. . .  . . . . . . . . . .  ,- 

0 
0 50 100 150 200 250 300 350 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.2, Tc = 2.8, T2 = 2.8, T3 = 2.2 

Driver: z150179.txt 

0 50 100 150 
Timc (sa) 

Time (sa) Time (xf) 

0 50 100 150 

T i e  (see) 

0 M 100 150 
Tie (sa) 

0 100 150 
T i e  (uc) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.2, Tc = 2.8, T2 = 2.8, T3 = 2.2, rms = 85.66, meanRerr = 67.41 

Driver: z150179.txt 

Rdot 

-40 I I I I I I I I I 

0 20 40 60 80 1 00 120 140 1 60 180 200 



BMW Model, data vs, simulation (RunB). 
Model 151, Th = 1.6, Tc = 2.8, T2 = 2.8, T3 = 1.6 

Driver: z15051.txt 

I 
0 SO 100 

Time (sec) 

01 I 
0 50 100 

Time (sec) 

I - Vdotsim I I 
-15 

0 XI 100 
T i e  (sec) 

H) 

Time (wc) 

. .  . . . . . . . . . . . . . . . .  
Ma data 

-25 
I I J 

0 XI 100 
Time (wc) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.6, Tc = 2.8, T2 = 2.8, T3 = 1.6, rms = 44.96, meanRerr = 36.33 

Driver: z15051.txt 

Rdot 

Range 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.2, Tc = 2.8, T2 = 2.8, T3 1.2 

Driver: z15056.txt 

0 50 100 150 200 250 300 350 400 450 
Timc (sec) 

Timc (sec) 

"0 50 100 150 200 fi0 300 350 400 450 
Time (sa) 

I- Vda sim 

-15  .- 
0 50 100 150 200 250 300 350 400 450 

Time (5%) 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  
Rda dala 

" " " " " . .  . . . . . . . . .  

-25 I J 
0 50 I00 150 200 2.50 3MI 335 400 450 

Time (sec) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.2, Tc = 2.8, T2 = 2.8, T3 = 1.2, rms = 13.39, meanRerr = 10.94 

Driver: z15056.txt 

Rdot 

0 50 100 150 200 250 300 350 400 500 

Range 



BMW Model, data vs. simulation (RunB). 
Model 151, Th 1.2, Tc = 2.8, T2 = 2.8, T3 = 1.2 

Driver: z15090.txt 

Time (w) 

Time (sa) 

. . . . . . . . . . . . . . . . . .  
Range dra 

"0 M IW 150 200 250 300 350 400 450 500 
Timc (xc) 

-25 -20 -15 -10 -5 0 5 10 
Rdoc (Rlscc) 

I I - Vdolsim I I 
-15 

0 50 100 150 200 250 300 350 400 450 500 

Time (xc) 

Timc (sa) 

5 

0 

5 , I,,' , . 1 . '1. . . I ]  

g.lo I [  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 
f 

. . . . . . . . . . .  -15 . . . . . . . . . . . . . . . . -  
Rdoc data 

-20 . .  " . . . . . . .  " " . . . . . . . . . . .  

0 50 100 150 200 2.50 3M) 350 400 450 %XI 
Timc (sa) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.2, Tc = 2.8, T2 = 2.8, T3 = 1.2, rms = 17.75, meanRerr = 13.81 

Driver: z15090.txt 

Rdot 

. . . . . . . . . . -  



BMW Model, data vs, simulation (RunB). 
Model 151, Th = 1.7, Tc = 2.8, T2 = 2.8, T3 = 1.7 

Driver: z15140.txt 

- V sim 

Timc (scc) 

0 M 100 I50 200 250 
Time (scc) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

- Vdocdala . . . . . . . . . . . . . . . . . . . . . . . . . .  

- Vdds im 

-15 
0 50 100 150 200 250 

Time (sec) 

- 
-25 1 

0 50 100 IS0 200 250 
Timc (w) 

Timc (scc) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.7, Tc = 2.8, T2 = 2.8, T3 = 1.7, rms = 34.27, meanRerr = 25.31 

Driver: z15140.hrt 

Rdot 



BMW Model, data vs, simulation (RunB). 
Model 151, Th = 1.5, Tc = 2.8, T2 = 2.8, T3 = 1.5 

Driver: z15142.txt 

0 50 100 150 200 
Time (xc) 

_ - R-Rda sim 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.5, Tc = 2.8, T2 = 2.8, T3 = 1.5, rms = 16.74, meanRerr = 11.80 

Driver: z15142.txt 

Rdot 

. . . . . . . . , . , . , . . - 

I I 

Range 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.3, Tc = 2.8, T2 = 2.8, T3 = 2.3 

Driver: z15157.txt 

T i e  ( w )  

200 . . . . . . . . . . . . . . . . . . . . .  - Range data 

0 
Time (set) 

T i e  (sec) 

Time (sec) 

50 

Time (sec) 

Rdd (WJCE) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.3, Tc = 2.8, T2 2.8, T3 = 2.3, rms = 19.39, meanRerr = 12.44 

Driver: z15157.txt 

Rdot 
40 I I I I I I I I I 

. . . . . . . . . . . .  20 - 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . .  -40- 
I 
I 

I I I I I I 1 I 
I 

-60 ' I 

0 10 20 30 40 50 60 70 80 90 100 

Range 
250 I I I I I I I I I 

. . . .  .:. . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . .  . . . .  2 . .  . . . . . . .  ;. . . . . .  .- 

I L r l  

0 10 20 30 40 50 60 70 80 90 100 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.9, Tc = 2.8, T2 = 2.8, T3 = 1.9 

Driver: z15159.txt 

Vdata . . .  

0 50 100 150 200 
Time (sec) 

0 50 100 150 200 
Time (sex) 

0 50 100 150 
Time (sec) 

.. -- 

0 50 100 150 200 

Time (sec) 

0 M I00 I50 200 

Time (sec) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.9, Tc = 2.8, T2 = 2.8, T3 = 1.9, rms = 45.81, meanRerr = 30.44 

Driver: z15159.txt 

Rdot 

Range 
200 1 I I I I 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.0, Tc = 2.8, T2 = 2.8, T3 = 2.0 

Driver: z15163.txt 

75 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - V d a u  . . .  

- V sim 

50 
Time (sec) 

Timc (a) 

z o o . . .  . . . . . . . . . . . . . . . . . .  . . . . .  - Range data 

. . . . . .  - Range sim 

01 I 
0 50 100 

T i e  (sec) 

0 L  I 
-25 -20 1 5  -10 -5 0 5  10 

Rda (R/sa) 

- 
-15 I 

0 50 100 
Timc (a) 

50 
Time (w) 

. 1 5 t ~ 7  . . . . . . . . . . . . . . . . . . . . . . . . . .  I - Rda data 

50 

T i e  (sa) 



BMW Model, data vs, simulation (RunB). 
Model 151, Th = 2.0, Tc = 2.8, T2 = 2.8, T3 = 2.0, rms = 55.73, meanRerr = 44.95 

Driver: z15163.txt 

Rdot 

Range 
400 I I I I I 

0 20 40 60 80 1 00 120 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.0, Tc = 2.8, T2 = 2.8, T3 = 2.0 

Driver: z151,O.txt 

V data . . 

0 50 100 
Tie (a) 

50 100 

Timc (sx) 

0 50 100 
Tie (sec) 

50 

Time (w) 

50 

T i e  (x) 

Timc (scs) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.0, Tc = 2.8, T2 = 2.8, T3 = 2.0, rms = 83.13, meanRerr = 70.41 

Driver: z151,O.txt 

100 I I I I I 

Rdot 

Range 

50 - . . . . , . . . . . . .  . . . ; . . . .  . . . . .  

0 I 

0 20 40 60 80 1 00 120 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.5, Tc = 2.8, T2 = 2.8, T3 = 2.5 

Driver: z15180.txt 

Timc (ss) 

. . . . . . . .  

0 50 100 150 200 
Time (KE) 

Timc (set) 

0 - Vsirn 

2 . . . . . . . . . . . . . . . . . . . . . . . . .  50 - 
3 
3 

25 .  . . . . . . .  """""" . . . . . . . . . . . . . . . . . . .  

0 L 

0 50 100 150 200 

- V data 

T i e  (ss) 

. . .  

T i  (~c) Time (sec) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.5, Tc = 2.8, T2 = 2.8, T3 = 2.5, rms = 64.55, meanRerr = 50.83 

Driver: z15180.txt 

Rdot 

. . . . . . . , . . . . . . . . . -  

I I 

0 50 100 150 200 250 

Range 
300 1 I I I I 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.3, Tc = 2.8, T2 = 2.8, T3 = 1.3 

Driver: z15189.txt 

Time (set)  

7J 

z s - 

Range dm 

- Range sim 

. . . . . . . . . . . . .  . . . . . . . . . . .  . . . .  - Vdala . . 
- Vsim 

50 

T i  (see) 

0 
0 M 

Time (see) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

50 

Time (see) 

0 

Time (sec) 

Rda (A/=) T i  (rs) 



BMW Model, data vs. simulation (RunB). 
Model 151, l'h = 1.3, Tc = 2.8, T2 = 2.8, T3 = 1.3, rms = 15.86, meanRerr = 12.77 

Driver: z151s9.txt 

Rdot 
10 I I I 1 I I 

. . . . . . . . . . . .  5 - . . . . . . . . . . . .  . . . .  . . . . . .  . . . . . . . . . . .  .- 

0 - . . . . . . . . . . . .  . . . . .  . .- 

. . . . . . . . .  . . .  .- 

1 .  

. . . . . . . . .  .:. . . . . . . . . . . . . .  : . . . . . . . . . . . . .  .:. . . . . . . . . . . . .  .:. . . . . . . . . . . . . .  ; .  .- 

. . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . -  

-25 I I I I I I 

0 10 20 30 40 50 60 70 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.1, Tc = 2.8, T2 = 2.8, T3 = 2.1 

Driver: z15191.txt 

Time (sec) 

I m  w 

Timc (scc) 

-- ~ 

200. . . . . . . . . . . . . . .  """ - Range daa 

0 50 100 I50 
T i c  (w) 

Timc (sec) 

0 
0 50 100 150 

Time (sec) 

0 50 100 I SO 200 

Time (scc) 

Rda ( 1 1 1 ~ )  Time (scc) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.1, Tc = 2.8, T2 = 2.8, T3 = 2.1, rms = 54.78, meanRerr = 36.78 

Driver: z15191.txt 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.7, Tc = 2.8, T2 = 2.8, T3 = 1.7 

Driver: z15195.txt 

M 

Time (sec) 

50 
Time (a) 

Range dab 

- Rangeaim 

M 

Time (scc) 

50 100 

Time (sec) 

Rdol data 

11 Rdolsim 1 . 1  



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.7, Tc = 2.8, T2 = 2.8, T3 = 1;7, m s  = 33.32, meanRerr = 27.28 

Driver: z15195.txt 

Rdot 
20 . I I I I I 

10 - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

... 

. . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; . . . . .  . .  . . . . . . -  

. . . . . . . . . . . . . . .  . .  20 - ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . -  

-30 
0 20 40 60 80 100 120 



BMW Model, data vs. simulation (RunB). 
Model 151,Th=3.2,Tc=2.8,T2=2.8,T3=3.2 

Driver: z153105.txt 

- Vsim 

0 M 100 150 
Time (see) 

0 50 100 IS0 
Time (see) 

- . . . . . . . . .  . . . . . . . .  " 1  - Range daa 

0 50 100 I50 
Time (sec) 

0 M 100 150 

Tune (sec) 

0 SO 100 150 

Time (sec) 

-. 
0 50 100 I50 

Time (m) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 3.2, Tc = 2.8, T2 = 2.8, T3 = 3.2, rms = 21.36, meanRerr = 15.65 

Driver: z153105.txt 



BMW Model, data vs, simulation (RunB). 
Model 151, Th = 2.9, Tc = 2.8, T2 = 2.8, T3 = 2.9 

Driver: ~153~11.txt  

50 
Tie (sec) T i e  (sec) 

Y- 

O 50 
Timc (sec) 

50 

Timc (sec) 

- Ranpcdva - Range sim 

. . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . .  

0 50 

T i e  (sec) 

M 
Time (wc) 



BMW Model, data vs, simulation (RunB). 
Model 151, l'h = 2.9, Tc = 2.8, T 2  = 2.8, T3 = 2.9, rms = 24.95, meanRerr = 18.60 

Driver: ~153~11.txt 

Range 
200 I I I I I 

0 - I I I I I 

0 10 20 30 40 50 60 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 3.2, Tc = 2.8, T2 = 2.8, T3 = 3.2 

Driver: ~153~14.txt 

T i e  (set) 

Time (sec) 

. . . . . .  

. . . . . . .  - Ranee sim 

n 50 

Timc (sec) 

Timc (sec) 

Timc (sec) 

0.5 

Timc (sec) 

04 

50 
Time (sec) 

. . . . . . . . . .  " " ' . . " . ' . . ' " " ' " ' .  " ' " " "  



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 3.2, Tc = 2.8, T2 = 2.8, T3 = 3.2, rms = 75.07, meanRerr = 47.15 

Driver: ~153~14.txt 

Rdot 

Range 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.5, Tc 2.8, T2 = 2.8, T3 = 2.5 

Driver: ~153~16.txt  

50 

Time (set) 

50 

Time (sec) 

0 50 
Time (sec) 

. . . . . .  . . . . . . . . . . . . . . . . . . . . .  - Range data 

0 
0 M 1DO 

Time (scc) 

-25 1 
0 50 100 

Time (sec) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.5, Tc = 2.8, T2 = 2.8, T3 = 2.5, rms = 76.95, meanRerr = 61.49 

Driver: ~153~16.txt 

Rdot 
20 I I I I I 

-30 I I I I I 

0 20 40 60 80 100 120 

Range 
200 

150 

I I I I I 

..__-----. ,/---- '.--&-. 
--c-\ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - . . . . . . ,  ? >--?, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I : \ 

I \ 
I , \  

I , \ 

0 20 40 60 80 1 00 120 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.2, Tc = 2.8, T2 = 2.8, T3 = 2.2 

Driver: ~153~52.txt  

Tie (ss) 

Time (ss) 

- Range dam - Rmgc sim 

Tie (sec) 

Time (ss) 

50 

Time (sec) 

. . . . . .  
- Rda data - R d ~ s i m  

Time (sec) 

. . . . . . . . . . . . .  

. . . . . . . . . . . . .  

. . . . . . . . . . . . .  . . . . . . . . . .  

-25 -20 -15 -10 -5 0 5 10 
Rda (Rlss) Time (scc) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.2, Tc = 2.8, T2 = 2.8, T3 2.2, rms = 27.52, meanRerr = 18.64 

Driver: ~153~52.txt 

Rdot 
20 I I I I I I I 

-30- 

-40- 

-50 I I I I I I I 

0 10 20 30 40 50 60 70 80 

. . . . . . . . . . . . . . . . . . . . . . . .  , .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . -  

. ! '  



BMW Model, data vs, simulation (RunB). 
Model 151, Th = 2.6, Tc = 2.8, T2 = 2.8, T3 = 2.6 

Driver: ~153~56.txt 

0 
Timc (sec) 

- Range dm - Range sim i 
0 

Timc (m) 

.- 
. . . .  . . . . . . . . . . . . . . . . . .  150 . : .  I . .  

g 
& 
B m . . . . . . . . . . . . . . . . . .  ' . . . . . . . . . . . . . . . . ' " . . . . . .  

- Vdol sim 

-15 
0 

Time (sec) 

0 
Time (sec) 

Timc (sa) 

Timc (sa) 



BMW Model, data vs. simulation (RunB). 
Model 151, 'I'h = 2.6, Tc = 2.8, T2 = 2.8, T3 = 2.6, rms = 10.39, meanRerr = 8.21 

Driver: ~153~56.txt 

Rdot 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 3.8, Tc = 2.8, T2 = 2.8, T3 = 3.8 

Driver: ~153~60.txt 

V data . 
- Vsim 

50 
Time (scc) 

Range data 

- Range sim 

100 

,J 

50 

Time (sec) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

M 
Time (sce) 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 '  
A.. A 

0 M 
Time (m) 

M 
Time 



Rdot 

Range 
I I I I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . .  . . . . . . . . . . . -  

. . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . .  ................................................. 

. . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

\ ,  
- '  I J 

. . . . . . . . . . . . . .  0 -  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - .\ . -- ,,,,,, 1 ,,------------------------- -l-.--' 

-50 I 1 I I I I I 

0 10 20 30 40 50 60 70 80 



BMW Model, data vs, simulation (RunB). 
Model 151, Th = 1.0, Tc = 2.8, T2 = 2.8, T3 = 1.0 

Driver: ~153~1.txt 

50 100 

Time (xc) 

50 

Time (sec) 

0 50 I00 
Time (set) 

0 50 100 

Time (m) 

100 

Timc (xc) 

I 
0 50 100 

Timc (scc) 

50 
Time (set) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.0, Tc = 2.8, T2 = 2.8, T3 = 1.0, rms = 17.06, meanRerr = 12.57 

Driver: ~153~1.txt 

1 00 I I I I I I 1  

Rdot 

. . . . . . . . . -  



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.9, Tc = 2.8, T2 = 2.8, T3 = 1.9 

Driver: ~153~7 . tx t  

0 50 100 
Time (scc) 

- a >  

0 50 100 I50 
Time (sec) 

T i  (sa) Time (sec) 

Time (ss) Time (sec) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 1.9, Tc = 2.8, T2 = 2.8, T3 = 1.9, rms = 43.42, meanRerr = 25.90 

Driver: ~153~7.txt  

Rdot 

-30- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-50 I I I I I I I I 

0 20 40 60 80 100 120 140 160 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  * . . . . . . . . . . . . . . . . . . . . . . . . . - . . . . . . . . . . . . . . . . . . . . . . . .  - 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.0, Tc = 2.8, T2 = 2.8, T3 = 2.0 

Driver: z153,8.txt 

- Vsim 

Time (sec) 

Time (m) 

-25 -20 -15 -10 -5 0 5 10 
Rdol (rL/sa) 

u 
0 50 100 150 200 250 300 350 400 

Time (sa) 

0 M 100 150 200 250 300 350 400 

Tie (m) 

' . 1 5 f .  . ' .  1-1 . . . . . . . . . . . . . . . .  I 
Rdd data 

-25 
I I J 

0 50 100 150 200 250 300 350 400 

Time (m) 

0 50 100 150 200 250 300 350 400 

Tic (a=) 



BMW Model, data vs. simulation (RunB). 
Model 151, Th = 2.0, Tc = 2.8, T2 = 2.8, T3 = 2.0, rms = 16.97, meanRerr = 13.94 

Driver: z153,8.txt 

Rdot 
20 I I I I I I I 

Range 





APPENDIX D 

The observation that drivers tend to use short headway times appears to be puzzling, 

although a clue to this preference can be gained by noting the characteristic human 

threshold on detection of the rate of change of visual angle. The visual angle subtended 

by an object at range R with maximum edge boundaries separated by a distance W is 

illustrated in Figure 33. The following relationship between the visual angle 8 and range 

R represents the connection between the longitudinal world represented by R and the 

vertical-plane world view that is projected on the driver's eye: 

W = R 8  

I 
i Object 
i 
1 Width "W" 1 Observer 
i (6 ft for a Car) 
I 

W = R e 8  

For the human eye the threshold for 
reliable detection of 

I 

a looming object is = 0.003 rad/sec 

1 Rdot = k 0 . 0 0 0 5 * ~ ~  Wsec 

i 
I 

L 
Figure 33. The visual angle, 8 

There is an interesting type of symmetry associated with this relationship, as shown 

here: 

R=W/8  and 8 = W K  (2) 

Differentiating the expressions for R and 8 yields: 

Rdot = - €)dot/ 8 and Bdot = - Rdot/R2 

Considerations pertaining to headway control have centered mainly on the range- 

versus-range-rate space, however the above equations can be used to transform from the 

vehicle dynamics perspective expressed in terms of range and range rate to the driver's 

perspective defined by visual angle 8 and its time rate of change Bdot. The phase space 

defined by 8 versus Bdot is considered to be a mind's eye representation of the headlway 

situation as the driver sees it. 



As a direct result of this transformation, a threshold on Bdot can be transformed from 

the mind's eye to a perception boundary in the range versus range rate diagram. The 

following expression, which is also listed in Figure 33, is a direct result of transforming 

the perceptual threshold given by Bdot = h0.003 radianslsec as suggested in reference 

[l 11 into the range-versus-range-rate phase space: 

Rdot = h 0.0005 R2 (where R and Rdot are in ft and Aisec) (4) 

This expression has been used in a driver model to aid in developing bounds on the 

vehicle following capability of a driver [14]. The idea is that, if the driver's perceptual 

ability is limited, the driver's ability to develop useful commands is correspondingly 

limited. Observations of driver following behavior show that driver performance is 

characterized by a type of hunting behavior about a point defined by the apparent desired 

range at Rdot = 0. The hypothesized theory is that the driver has only a limited ability to 

determine range as well as a threshold limiting the ability to measure range rate. In a 
sense, the driver is not able to do perfect following because the driver does not have the 

resolution capability needed to follow perfectly. 

Even though the relationships discussed here is non-linear, we have used a linear 

approximation to represent this effect in Figures 18 through 2 1. 



APPENDIX E 

Primary and Derived Channels Collected with the FOT Vehicle DAS 

The numerical data flow starts with the collection of 38 primary signals at a rate of 

10Hz from various sources on-board each FOT vehicle. These sources include ADC's 

infrared sensors, the vehicle's engine control unit, the video camera, the GPS, and the 

driverlvehicle interface. A list of the 38 primary signals is given in table 1. This table 

shows the name, type, description, and units of each signal. It also has a column called 

Logged. This column indicates if the signal is permanently stored on disk. Some of the 

logical signals are stored in a more compact format than that used for time histories. This 

format is explained later in this section under Transition Files. The following 

nomenclature is used in the column " Logged" to indicate which file the data is logged 

into: " H" - time history; " G" - GPS history, " T" - transition table. 

The numerical data processing begins as these primary channels are read into the 

memory of the DAS. The computer then calculates what are called derived channels. 

These channels are combinations and manipulations of the primary signals. Examples of 

derived channels include: Vp (velocity of the preceding vehicle), road grade, distance, 

near, following, etc. There are 67 derived channels. The 3 1 floating-point derived 

channels are given in table 2. The remaining 36 are logical channels and are listed in table 

3. Both tables show the name of the derived signal, a description (which includes its 

derivation), units, and whether it is logged to disk. 



Table 1. Primary channels 
Name 

AccMode 

Accel 
AccEnable 
Altitude 
Backscatter 
Blinded 
Brake 
Cancel 
AccOn 
Cleaning 
Coast 
Concern 
CurveRadius 
DateITirne 
Downshift 
EastVelocity 
EcuError 

Headway Time 
Headwayswitch 
Latitude 
Longitude 
NetworkError 

NewTarget 
Northvelocity 
Range 
RDot 
ReducedRange 
Resume 
Set 
Throttle 
Tracking 
Upvelocity 
VacError 

VacTime 

ValidTarget 
VCommand 
Velocity 
VSet 

Integer t"' 
Logical 
Logical 
Float 
Float 
Logical 
Logical 
Logical 
Logical 
Logical 
Logical 
Logical 
Float 
Double 
Logical 
Float 
Logical 

Float 
Integer 
Float 
Float 
Logical 

Logical 
Float 
Float 
Float 
Logical 
Logical 
Logical 
Float 
Logical 
Float 
Logical 

1 Float 

Logical 
Float 
Float 
Float 

Description 
O=off, l=standby, 2=Not Operating On a Target 
(NOOT), 3= Operating On a Target (OOT) 
True if accel button is pressed 
True after 1st week 
Altitude 
Backscatter (0 to 1023) 
True if ODIN 4 blinded bit is on 
True if brake pedal is pressed 
True if cancel button is pressed 
True if cruise or ACC switch is on 
True if ODIN 4 cleaning bit is on 
True if coast button is pressed 
True if concern button is pressed 
Curve radius 
UTC Days since 12/30/1899 + fraction of day 
True if controller requests downshift 
East velocity, + for east 
True when a VAC to ECU communication error 
occurs 
Selected headway time 
headway switches, 1,2, or 4 
Latitude, + for north 
Longitude, + for east 
True when a DAS to Video communication error 
occurs 
True for .3 sec with new target 
North velocity, + for north 
Distance to target 
Rate of change of range 
True if ODIN 4 reduced range bit is on 
True if resume button is pressed 
True if set button is pressed 
Throttle percent 
True when tracking a target 
Up velocity, + for up 
True when a VAC to DAS communication error 
occurs 
Time since ignition switch was turned on (based on 
VAC system clock) 
Tracking AND Velocity > 25mph 
Velocity commanded by controller 
Vehicle velocity 
Cruise speed set by driver 

Units 

m 

ft 
days 

sec 

radians 
radians 

min 

Wsec 
Wsec 
Wsec 



Table 2. Floating point derived channels 

Name 

AverageBackscatter 
AverageDNearEncounter 
AverageVDot 
CDot 
D 
DecelAvoid 
Degreeofcurvature 
Distance 
DistanceEngaged 
DNearEncounter 
DScore 

Flow 
Grade(GPS) 
Heading 

HeadwayTimeMargin 
Hinderance 
ManMaxAvgDNear 

Rangecheck 
RangeNear 
Rpt03 
Thpt03 
TimeToImpact 
TrackingError 
TScore 
VDot 
VehicleResp 

VP 
VpDot 

Description 
0 second moving average of Backscatter 
second moving average of DNearEncounter 
second moving average of -VDot 
erivative of Degreeofcurvature 
~ o t ~  / (2*(Range- 0.7 Vp)*32.2) 
~ o t ~  / (2sRange-32.2) 
728.996 1 CurveRadius 
xtegral of velocity 
itegral of velocity while engaged 
DOC* / (2*(Range - 0.3*Vp)*32.2) 
'DScoreRegion then DScore = (D-0.03) / 0.47; if 
ScoreRegion then DScore = 1 
aximurn value of AverageDNearEncounter while 

EngNearEncounter is true 
axirnum value of AverageVDot while 

EngBrakeIntervention is true 
elocity / (Range + L) 
pvelocity / sqrt( ~ o r t h ~ e l o c i t y ~  + ~ a s t ~ e l o c i t y ~ )  
eading angle calculated fiom Northvelocity and 
Eastvelocity 
ange 1 Velocity 
elocity / Vset 
aximum value of AverageDNearEncounter while 

ManNearEncounter is true 
aximum value of AverageVDot while 

ManBrakeIntervention is true 
1.7 Vp + R D O ~ ~  1 ( 2.0.5.32.2) 
1.5 * Vp fRDot 1 (2m0.1 e32.2) 
ange - R D O ~ ~  / (2*0.03*32.2) 
pt03N'p if RDot < 0 or RangeNp if RDot >= 0 
tange ! Rdot 
imeconstant Rdot + Range - Th * Vp 
TScoreRegion then TScore = (0.7-Tho) I 0.7 
erivative of Velocity I 32.2 
Command - Velocity 
elocity + RDot 
erivative of Vp / 32.2 

Units 

g 's 
g's 

leglsec 

g's 
g 's 
deg 

miles 
miles 

g's 

g's 

g's 

iehlsec 

deg 

sec 

g ' s 

g's 

ft 
ft  
ft  

sec 
sec 
ft 

g's 
fPs 
fps 
g 's 



Name 

AccBi 
AccFollowing 
AccNe 
AccTracking 
AlwaysTrue 
Backscatterwarn 
CccBi 
CccNe 
Closing 
Cutin 
DScoreRegion 
Engaged 
EngBrakeIntervention 

EngNearEncounter 

Following 
HeadwayLong 
HeadwayMedium 
Headwayshort 
LDegOfCurvature 
LVpDot 
ManlBi 
ManlNe 
Man2Bi 
Man2Ne 
ManBrakeIntervention 

ManNearEncounter 

Near 
Separating 
Stopped 
TScoreRegion 
ValidTargetVgt35 
ValidTargetVgt50 
vgt35 
Vgt40 
Vgt50 
WasEngaged 

Table 3. Logical derived channels 
1 Description 

15-sec oneshot - AccEnable AND EngBrakeIntervention 
Following AND 0.9Rh < Range <l.lRh 
15-sec oneshot - AccEnable AND EngNearEncounter 
AccMode > 2 
Always True 
Backscatter > 50 
15-sec oneshot - NOT(AccEnab1e) AND EngBrakeIntervention 
15-sec oneshot - NOT(AccEnab1e) AND EngNearEncounter 
NOT(Near ) AND RDot <-5 
Range < RangeNear AND RDot >O 
ValidTargetVgt35 AND RDot <= 0 AND Range > RangeCheck 
AccMode > 1 
15-sec oneshot - Brake AND Vgt40 AND AverageVDot > 0.05 
AND WasEngaged 
15-sec oneshot - ValidTargetVgt40 AND AverageBackscatter 4 0  
AND AverageDNearEncounter > 0.05 AND WasEngaged 
NOT(Near OR Cutin) AND -5 <= RDot <= 5 
True if long headway switch is pressed 
True if medium headway switch is pressed 
True if short headway switch is pressed 
I Degreeofcurvature I > 3 AND V>50 
VpDot < -0.05g1s AND V>35 
15-sec oneshot - NOT(AccEnab1e) AND ManBrakeIntervention 
15-sec oneshot - NOT(AccEnab1e) AND ManNearEncounter 
15-sec oneshot - AccEnable AND ManBrakeIntervention 
15-sec oneshot - AccEnable AND ManNearEncounter 
15-sec oneshot - Brake AND Vgt40 AND AverageVDot > 0.05 
AND NOT WasEngaged 
15-sec oneshot - ValidTargetVgt40 AND AverageBackscatter <10 
AND AverageDNearEncounter > 0.05 AND NOT WasEngaged 
Range < RangeNear AND RDot <O 
NOT(Cutin) AND RDot > 5 
Velocity <3 
ValidTargetVgt35 AND RDot <= 0 AND Range <= RangeCheck 
ValidTarget AND V>35 
ValidTarget AND V>50 
Velocity > 35 
Velocity > 40 
Velocity > 50 
True if engaged within the last 15 seconds 

Logged 
T 
H 
T 

H 
T 
T 
H 
H 

T 

H 
T 
T 
T 

T 
T 
T 
T 

H 
H 


