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Abstract  

Based on a large panel of Czech manufacturing firms, we estimate firm-level production 
functions in 2003–2007 using the Levinsohn and Petrin (2003) and Wooldridge (2009) 
approaches, correcting for the measurement error in capital. We show that measurement error 
plays a significant role in the size of the estimated capital coefficient. The capital coefficient 
estimate approximately doubles (depending on the particular industry) when we control for 
capital measurement error. Consequently, while the majority of industries exhibit constant or 
(in)significantly decreasing returns to scale when the standard methods are used, increasing 
returns cannot be rejected in some industries when the estimation is corrected for capital 
measurement error. 
 
JEL Codes: C23, C33, D24, O47. 
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Nontechnical Summary 
 
Relating production inputs and productivity to aggregate output by means of the production 

function is necessary for understanding the driving sources of economic growth. Looking at 

the microeconomic evidence, the estimation of firm-level production functions is a non-trivial 

exercise owing to simultaneity bias between unobserved productivity shocks and inputs used 

in production. Among the popular methods used to address simultaneity bias, Levinsohn and 

Petrin (2003) rely on intermediate input as a proxy to invert out unobserved productivity from 

the regression residual in a two-step estimation, while Wooldridge (2009) proposes a one-step 

estimation. 

 

Production function estimates may be affected by measurement issues. In particular, capital is 

often recorded in the available datasets in acquisition (book-keeping) values that do not reflect 

the amount of capital used in production. The previous literature relies either on a kind of 

perpetual investment method where the capital is derived from book-keeping values and 

depreciation, or on the stock of fixed assets deflated by the industry-wide average deflator. 

Capital is thus measured with an error which should be addressed in the estimation of 

production functions. 

 

To address the capital measurement problem, we estimate production functions using the 

Wooldridge (2009) approach, accounting for capital measurement error by using appropriate 

instruments for capital. We also modify the Levinsohn and Petrin (2003) approach to estimate 

production functions implemented in Stata (see Petrin, Poi, and Levinsohn, 2004), while 

modification for other measurement errors in variables would be a straightforward extension.  

 

In particular, we estimate firm-level production functions in 2003–2007 using a large panel of 

Czech manufacturing firms with 20 or more employees containing balance sheet and income 

statement information. As the dataset contains mainly financial data, we complement the 

dataset with firm-level information on material consumption in physical units. The advantage 

of our data is that all intermediate inputs are reported in physical units so that there is no 

problem with prices and deflating, which might be yet another source of measurement error. 

 

We show that the measurement error in capital is a substantial problem that affects production 

function estimates. Depending on the particular industry, the estimated capital coefficient 
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approximately doubles when we control for capital measurement error. Consequently, while 

the majority of industries exhibit constant or (in)significantly decreasing returns to scale when 

the standard Wooldridge (2009) or Levinsohn-Petrin (2003) routines are used, increasing 

returns cannot be rejected in some industries when the capital measurement error is corrected 

for. 
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1. Introduction 

Relating aggregate output to productivity and production factors by means of production 

function is the basis for understanding the sources of economic growth.1 At the 

microeconomic level, however, estimating firm-level production functions is a non-trivial 

exercise owing to simultaneity bias caused by the relationship between unobserved 

productivity shocks and inputs used in production. Hence, it entails similar problems as the 

estimation of matching functions in labor economics (see, for example, Galuščák and Münich, 

2007). 

 

A number of methods have been developed to address the simultaneity bias in production 

function estimation. While Blundell and Bond (2000) use method of moments techniques, 

other approaches rely on finding proxy variables for productivity shocks, which are used to 

invert out productivity from the regression residual in a two-step estimation (Olley and Pakes, 

1996; Levinsohn and Petrin, 2003). Wooldridge (2009) proposes a one-step estimation 

implemented in a generalized method of moments framework. 

 

Another problem in production function estimation is posed by measurement issues. While 

labor as a measure of production input is available in datasets used in the estimation of 

production functions, the stock of capital is difficult to measure. Capital is often recorded in 

acquisition (book-keeping historical) values that reflect neither the amount of capital used in 

current production nor its market valuation. Levinsohn and Petrin (2003) as well as many 

other researchers use a kind of perpetual investment method where the capital is derived from 

book-keeping values and depreciation.2 Another approach uses real capital as the stock of 

fixed assets deflated by the average deflator within industries (see, for example, Geršl, 

Rubene, and Zumer, 2007).3 However, all these studies treat capital, after these adjustments, 

                                                 
1 In the CNB’s (Czech National Bank) core forecasting model, the key concept is implied aggregate technology, 
which determines the steady-state growth of the economy (Andrle et al., 2009). Similarly, in the previously used 
CNB quarterly projection model, the long-term trend was captured by potential output growth (Coats, Laxton, 
and Rose, 2003). Both concepts of long-term economic growth, while different in nature, may be related to 
aggregate total factor productivity in sectors. 
2 The main problem in this approach is that the depreciation rate and the initial stock of capital are unknown; see 
Hernández and Mauleón (2002, 2005) for suggestions on how to estimate the stock of capital. Furthermore, 
Hájková (2008) shows that capital services better account for productive capital input in production than the 
capital stock net of depreciation and that the net capital stock underestimates the contribution of capital input to 
production particularly in fast-growing Czech industries. 
3 Ornaghi (2006) shows that the use of common (industry-wide) price deflators leads to misleading results in the 
estimation of production function parameters. 
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as correctly measured and recorded. We argue that capital is measured with an error which 

should be, and needs to be, addressed in production function estimation. 

 

Recent research into production functions for the Czech economy has focused on the 

macroeconomic approach,4 while the literature on the estimation of individual firm-level 

production functions is scant. Lizal, Singer, and Baghdasarian (2001) estimate the production 

functions of Czech industrial firms in the mid-1990s as a by-product of the investment and 

labor adjustment cost function. They find that Czech industrial firms exhibit decreasing 

returns to scale.5 Individual production functions are also estimated in Geršl, Rubene, and 

Zumer (2007), who investigate the inflows of foreign direct investment into Central and 

Eastern European countries, focusing on the analysis of productivity spillovers. Using firm-

level data on manufacturing industries for the period 2000–2005, they estimate the total factor 

productivity of domestic firms using the Levinsohn and Petrin (2003) approach. Kátay and 

Wolf (2008) construct a proxy for capacity utilization, allowing them to estimate firm-level 

total factor productivity that is clean of cyclical capacity utilization, and use these estimates in 

the decomposition of value added growth in Hungarian manufacturing industries in 1993–

2004 into the contributions of primary inputs and total factor productivity growth. 

 

Each production function for an individual firm is an approximation of an underlying 

production function around the point of current operation. Industries use different 

technologies and the individual firm technologies may have a different shape than the 

aggregate overall industry production function. For an illustration of this feature, we refer the 

reader to Earnhart and Lizal (2006), and mainly Earnhart and Lizal (2008), who examine the 

link between production and pollution emissions from the perspective of the shape of the 

relationship and find that certain industries exhibit the commonly assumed linear dependence 

of emissions on production while other industries show a more complex pattern. In particular, 

both the metals sector and the energy sector enjoy economies of scale of emissions vis-à-vis 

                                                 
4 Dybczak et al. (2006) apply the aggregate production function to approximate the path of potential output in the 
Czech economy using trend total factor productivity. Deriving production functions in key sectors during 1995–
2005, they decompose the total factor productivity growth into intra-industry, inter-industry, and reallocation 
effects. 
5 Returns to scale in individual manufacturing industries in Hungary and Bulgaria in 1995–2001 are estimated in 
Dobrinsky et al. (2008) and used in the estimation of mark-ups. In particular, constant returns are rejected for 
most manufacturing industries in Bulgaria in favor of decreasing returns and approximately for a half of 
industries in Hungary in favor of increasing returns. Dobrinsky et al. (2008) argue that the lower returns to scale 
in Bulgaria than in Hungary are consistent with the different transition paths of these two economies. They also 
find that small firms often operate with decreasing returns to scale. 
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production at lower production levels, while facing diseconomies of scale at higher 

production levels. In contrast, the chemicals sector encounters neither economies nor 

diseconomies of scale, with an apparent proportional relationship between emissions and 

production. 

 

In this paper, we correct for measurement error in capital in the estimation of production 

functions. We do so by using appropriate instruments for capital in the Wooldridge (2009) 

method. We also modify the Levinsohn and Petrin (2003) approach (LP hereafter) to 

estimating production functions, which is implemented in Stata (see Petrin, Poi, and 

Levinsohn, 2004), correcting for the measurement error in capital. Using a two-stage 

approach, we generate predicted values of capital in the first stage of the LP routine and use 

these predictions as the capital data input in the LP method together with the prediction error 

of the capital. We also modify the current LP non-parametric bootstrap used to obtain the 

standard errors of the coefficient estimates to account for the instrumental variable regression 

in the first stage. We demonstrate that measurement error correction significantly raises the 

coefficient estimates of capital, leading to a situation where increasing returns cannot be 

rejected in some manufacturing industries. 

 

The paper is organized as follows. Section 2 describes the methodology, focusing on the LP 

and Wooldridge (2009) approaches and describing the correction in measurement error in 

capital. Section 3 describes the data, while in Section 4 we report the results. Section 5 

concludes the paper. 

 

 

2. Estimation Strategy 

To illustrate the identification of production functions, let us consider a standard Cobb-

Douglas production function (omitting firm subscripts) 

,0 tttltkt lky εωβββ ++++=          (1) 

where yt is the log of real value added (or revenue), kt is the log of quasi-fixed input (real 

capital), lt is the log of freely variable input (labor),6 and εt is an iid error term. The 

productivity shock ωt is unobservable to the econometrician but known to the firm, which 

                                                 
6 Given these assumptions, one could use the equality of the marginal product of labor and the price of labor 
(wage) as another identification restriction. However, such restriction is not used in Levinsohn and Petrin (2003) 
or Wooldridge (2009). 
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decides on production and factor utilization. The unobserved productivity shock ωt is 

therefore correlated with factor inputs, so that estimating (1) with ordinary least squares 

without controlling for ωt yields biased parameter estimates. 

 

The simultaneity problem can be solved using method of moments techniques (Blundell and 

Bond, 2000), which involve differencing. While differencing removes the unobserved 

individual productivity shock, it also removes much of the variation in the explanatory 

variables. In addition, Wooldridge (2009) shows that the instruments are weakly correlated 

with the differenced explanatory variables, leading to bias in finite samples. Other literature 

therefore focuses on finding proxy variables for productivity shocks and then uses the 

information in the proxies to invert out productivity from the residual. For example, Olley and 

Pakes (1996) use investment as a proxy for the unobserved productivity shock in a two-step 

estimation of production functions. On the other hand, Levinsohn and Petrin (2003) argue that 

many firms have zero-investment observations, leading to efficiency loss in the estimation 

using the Olley and Pakes approach, while non-convex adjustment costs may also affect the 

responsiveness of investment to the shocks. We also add that the firm may even wish to 

disinvest and such cases are not directly distinguishable from zero investment observations 

and one would need to employ a switching regression framework. As a solution, Levinsohn 

and Petrin still rely on a two-step approach, but use intermediate inputs such as materials or 

energy to invert out the unobserved productivity shock.  

 

In the Levinsohn and Petrin approach, demand for the intermediate input is assumed to 

depend on the firm’s capital kt and the productivity shock ωt: 

( )., ttt kfm ω=         (2) 

Under mild assumptions about the firm’s production technology, Levinsohn and Petrin 

demonstrate that the intermediate demand function (2) is monotonically increasing in ωt so 

that it can be inverted as  

( )., ttt mkg=ω         (3) 

The final identification restriction assumes that ωt follows a first-order Markov process 

[ ] ,1| tttt E ξωωω += −         (4) 

where ξt is an innovation to productivity that is uncorrelated with quasi-fixed capital kt, but 

not necessarily with labor lt. 
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Petrin, Poi, and Levinsohn (2004) implement in Stata the method of Levinsohn and Petrin, 

based on third-order polynomial approximation of the unknown function in (3). Using (3), 

equation (1) becomes 

( ) ttttltkt mkglky εβββ ++++= ,0       (5) 

or 

( ) ,,1 ttttt mkly εφβ ++=        (6) 

where 

0),,|( =tttt mklE ε         (7) 

and 

( ) ( ).,, 0 ttttktt mkgkmk ++= ββφ       (8) 

In (6), a third-order polynomial approximation in kt and mt is substituted in place of Φt and the 

parameter βl is estimated using ordinary least squares. This completes the first stage of the 

Levinsohn-Petrin routine. 

 

In the second stage, the coefficient βk is identified. First, estimated values of Φt are computed 

from (6) as 

.1 ttt ly
∧∧∧

−= βφ          (9) 

Then for a candidate value βk
* it is possible to calculate (up to a constant) a prediction of ωt 

using 

.*
tktt kβφω −=

∧∧

        (10) 

A consistent non-parametric approximation to [ ]1| −ttE ωω  is given by the predicted values 

from the regression 

ttttt ϑωγωγωγγω ++++= −−−

∧
3

13
2

12110      (11) 

which is called ].|[ˆ
1−ttE ωω  Given *,ˆ

kl ββ , and ]|[ˆ
1−ttE ωω , the estimate of βk is defined as a 

solution to the minimization of the squared sample residuals 

.]|[ˆˆˆmin
2

1
*

1* ∑ ⎟
⎠
⎞

⎜
⎝
⎛ −−− −

t
tttktt Ekly

k

ωωββ
β

     (12) 

Finally, a bootstrap based on random sampling from observations is used to construct 

standard errors for the estimates of βl and βk. 
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Levinsohn and Petrin assume that given the quasi-fixed capital, the firm decides on labor and 

then, given the labor, determines the use of material input. On the other hand, Ackerberg et al. 

(2006) argue that decisions on labor lt and intermediate input mt are taken simultaneously, so 

that the approach of Levinsohn and Petrin suffers from collinearity problems. Given that (2) 

holds, labor may also be chosen as lt=h(kt,ωt). While h is a different function than f, 

substituting (3) yields lt=h(kt,g(kt,mt))=i(kt,mt). Labor is thus a function of capital and material 

input, invalidating the identification of the labor coefficient in the first step.7 

 

Instead of a two-step approach, Wooldridge (2009) proposes to estimate βl and βk in one step. 

Given a production function (1), assume that the error term εt is uncorrelated with labor, 

capital, and material input as in (7), but also with all lags of these: 

.0),,,...,,,,,,|( 111111 =−−− mklmklmklE tttttttε     (13) 

Another assumption in Wooldridge (2009) is to restrict the dynamics of unobserved 

productivity shocks as 

( )( ),,)()|(,...),,,|( 1111111 −−−−−−− === tttttttttt mkgjjEmklkE ωωωω  (14) 

where ωt-1=g(kt-1,mt-1) is used. Now for productivity innovations at we can write 

,)( 1 ttt aj += −ωω         (15) 

where 

.0),,,...,,,,|( 111111 =−−− mklmklkaE ttttt      (16) 

Variable inputs lt and mt are thus correlated with productivity innovations at, but capital kt and 

all past values of lt, mt, and kt are uncorrelated with at,. Substituting (15) and (14) into (1) 

yields 

( )( ) ,, 110 ttttktlt umkgjkly ++++= −−βββ      (17) 

where ut =at + εt and 

.0),,,...,,,,|( 111111 =−−− mklmklkuE ttttt      (18) 

 

To estimate βl and βk, we need to specify the functions g and j in (17). Similarly as Levinsohn 

and Petrin, we may consider low-degree polynomials in the function g of order up to three. In 

(15), we may assume that the productivity process is a random walk with drift, so that (15) 

becomes 

                                                 
7 Ackerberg et al. (2006) propose an alternative approach that is still a two-step one, but unlike in Levinsohn and 
Petrin (2003), the production function parameters are identified in the second step. 
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.1 ttt a++= −ωτω         (19) 

Plugging (19) and ωt-1=g(kt-1,mt-1) into (1) yields 

( ) ( ) ,, 110 ttttktlt umkgkly +++++= −−ββτβ     (20) 

where ut =at + εt and (18) holds. 

 

Equation (20) with polynomials in kt-1 and mt-1 of order up to three approximating for the 

function g could be estimated using pooled IV, using kt, lt-1, mt-1, kt-1, and polynomials 

containing mt-1 and kt-1 of order up to three as instruments for lt.8 Given (16), this approach is 

robust to the Ackerberg et al. (2006) critique and unlike in Levinsohn and Petrin, 

bootstrapping is not required to obtain robust standard errors. 

 

While value added, labor, and intermediate input are provided in the data for the identification 

of production functions, another problem is the measurement error in capital in equation (1), 

yielding biased production function estimates. In particular, the capital coefficient is 

attenuated toward zero (see Levinsohn and Petrin, 2003). Hence, we have to acknowledge that 

capital is measured with an error and one has to use a method that explicitly takes such data 

properties into account.  

 

To account for the measurement error in capital, we modify the Levinsohn-Petrin routine in 

the first stage, where we use instrumental variable regression instead of ordinary least squares 

in (5), employing appropriate instruments for capital. In particular, given the iid measurement 

error et, the true values of capital ttt ekk −=
∧

 are obtained as predicted values from the OLS 

estimation of  

,...110 tNtNtt ezzk ++++= γγγ       (21) 

where z1t,…, zNt are determinants (instruments) of capital and γ0 is a firm-specific fixed effect. 

Equation (5) then becomes 

( ) ,,ˆˆ
0 ttttltkt mkglky εβββ ++++=      (22) 

where 

.0)|( =tteE ε          (23) 
                                                 
8 This approach is used in Petrin and Levinsohn (2011). In fact, Wooldridge (2009) proposes to estimate 
equations (5) and (17) in a generalized method of moments framework as a two-equation system with the same 
dependent variable and with different sets of instruments. He argues that two-step estimators like Levinsohn and 
Petrin (2003) are inefficient because contemporaneous correlation in the errors across the equations is ignored 
and because serial correlation and heteroskedasticity are not efficiently controlled for.  
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When higher-order polynomials are used in place of g in (22), the first-step estimates in the 

Levinsohn and Petrin approach are not consistent.9 However, this can be solved by using 

linear approximation of g, which we use in one set of our results. 

 

In the second stage, we use the predicted values of capital, so that (12) becomes 

.]|[ˆˆˆˆmin
2

1
*

1* ∑ ⎟
⎠
⎞

⎜
⎝
⎛ −−− −

t
tttktt Ekly

k

ωωββ
β

     (24) 

Finally, we derive the standard errors of the coefficient estimates using a non-parametric 

bootstrap. While the Levinsohn-Petrin routine samples with replacement from firms and 

derives estimates of the standard errors from the variation in the coefficient estimates across 

the bootstrapped samples, we sample the observations from a distribution that reflects the 

uncertainty in the capital value. In particular, the capital values for each firm are drawn with 

100 replications from a distribution ,ttk η+
∧

 where tk
∧

 is the predicted capital (including the 

fixed effect) from the regression (21) and ηt ~ N(0,σk
2). The parameter σk

2 is the firm-specific 

variance of predicted capital tk
∧

 obtained by bootstrap with 1,000 replications.10 

 

In the Wooldridge (2009) approach, the correction for measurement error in capital is 

straightforward. In particular, we have to find appropriate instruments for capital kt in (20). In 

the estimation, we use the same instruments for capital as in our modified LP approach. 

 

 

3. Data Description 

We estimate firm-level production functions for 2-digit NACE level manufacturing industries 

(excluding petroleum and refining) using a large panel of Czech manufacturing firms with 20 

or more employees in 2002–2007 containing balance sheet and income statement information 

gathered by the Czech Statistical Office. While the dataset contains mainly financial 

variables, we complement the dataset with firm-level information on material consumption in 

physical units from the Czech Statistical Office. The advantage of our data compared to 
                                                 
9 To see the point, consider g = d1(kt–et) + d2(kt–et)2 + d3(kt–et)3. Then E(kt–et)2 ≠ E2(kt–et) and E(kt–et)3 ≠  

E3(kt–et) when tk
∧

 is used instead of kt in the estimation of (5). 
10 The sampling is thus performed twice. First, the firm-specific variance of the predicted capital is obtained, 
and, second, standard LP sampling is done where capital is randomly drawn from the distribution reflecting the 
firm-specific variance of the predicted capital. 
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Levinsohn and Petrin (2003) and Wooldridge (2009) is that all intermediate inputs are 

reported in physical units so that there is no (even potential) problem with prices and 

deflating.11 

 

Our sample covers economically active firms with non-zero electricity consumption and non-

zero employment in each year and without organizational changes such as mergers and 

acquisitions. In the dataset, we imputed missing values as averages of adjacent observations.12 

The number of observations across industries and summary statistics are illustrated in Table 1. 

The real value added growth in manufacturing industries is displayed in Figure 1. It is derived 

from the sample as the weighted sum of year-on-year growth in firms’ real value added. 

 

Table 1: Summary statistics 
 N Mean Std. Dev. 
Manufacture of food products, beverages and tobacco products (NACE 15–16) 
Log real value added 1510 10.384 1.305 
Log hours worked 1510 12.164 0.983 
Log capital 1510 10.709 1.671 
Log real capital 1510 10.597 1.667 
Log electricity consumption 1510 13.912 1.453 
Log depreciation 1510 8.600 1.624 
Log employment 1510 4.701 0.972 
Log gas consumption 1510 12.319 1.764 
    
Manufacture of textiles, wearing apparel and leather (NACE 17–19) 
Log real value added 829 10.316 1.288 
Log hours worked 829 12.056 1.073 
Log capital 829 9.709 2.117 
Log real capital 829 9.599 2.117 
Log electricity consumption 829 13.081 2.102 
Log depreciation 829 7.638 1.971 
Log employment 829 4.670 1.070 
Log gas consumption 829 11.321 1.865 
    
Manufacture of wood, pulp and paper, publishing and printing (NACE 20–22) 
Log real value added 620 10.468 1.444 
Log hours worked 620 12.030 1.025 
Log capital 620 10.415 1.932 
Log real capital 620 10.302 1.930 
Log electricity consumption 620 13.545 2.107 
Log depreciation 620 8.334 1.874 
Log employment 620 4.595 1.021 
Log gas consumption 620 11.288 2.183 

                                                 
11 The dataset used in the estimation is unbalanced, which accounts for firms’ death and attrition. As firms’ exit 
depends on their productivity, there is a sample selection bias when using balanced panels. Olley and Pakes 
(1996) show that using the full sample instead of the balanced panel leads to more plausible production function 
estimates.  
12 This accounts for about 6% of all the observations. Our results are robust when these observations are dropped 
from the sample. 
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Manufacture of chemicals (NACE 24)  
Log real value added 444 11.443 1.372 
Log hours worked 444 12.238 1.031 
Log capital 444 11.364 1.792 
Log real capital 444 11.247 1.793 
Log electricity consumption 444 14.135 2.355 
Log depreciation 444 9.295 1.730 
Log employment 444 4.805 1.043 
Log gas consumption 444 12.555 2.273 
    
Manufacture of rubber and plastic products (NACE 25) 
Log real value added 613 11.192 1.248 
Log hours worked 613 12.338 1.029 
Log capital 613 10.885 1.560 
Log real capital 613 10.771 1.555 
Log electricity consumption 613 14.174 1.690 
Log depreciation 613 8.924 1.537 
Log employment 613 4.902 1.030 
Log gas consumption 613 11.240 1.737 
    
Manufacture of other non-metallic mineral products (NACE 26) 
Log real value added 728 11.197 1.443 
Log hours worked 728 12.381 1.094 
Log capital 728 11.183 1.844 
Log real capital 728 11.068 1.844 
Log electricity consumption 728 14.522 1.900 
Log depreciation 728 9.053 1.866 
Log employment 728 4.948 1.091 
Log gas consumption 728 12.917 2.420 
    
Manufacture of metals (NACE 27–28)  
Log real value added 1673 10.491 1.240 
Log hours worked 1673 12.188 1.056 
Log capital 1673 10.390 1.813 
Log real capital 1673 10.278 1.810 
Log electricity consumption 1673 13.928 1.887 
Log depreciation 1673 8.363 1.718 
Log employment 1673 4.754 1.059 
Log gas consumption 1673 11.837 1.855 
    
Manufacture of machinery and other equipment (NACE 29) 
Log real value added 1510 10.826 1.231 
Log hours worked 1510 12.221 1.044 
Log capital 1510 10.280 1.732 
Log real capital 1510 10.167 1.729 
Log electricity consumption 1510 13.335 1.714 
Log depreciation 1510 8.299 1.646 
Log employment 1510 4.771 1.049 
Log gas consumption 1510 11.261 1.712 
    
Manufacture of electrical and optical machinery and equipment (NACE 30–33) 
Log real value added 1250 11.012 1.407 
Log hours worked 1250 12.310 1.202 
Log capital 1250 10.213 1.871 
Log real capital 1250 10.099 1.870 
Log electricity consumption 1250 12.966 1.944 
Log depreciation 1250 8.206 1.902 
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Log employment 1250 4.876 1.213 
Log gas consumption 1250 10.889 1.748 
    
Manufacture of motor vehicles and other transport equipment (NACE 34–35) 
Log real value added 669 11.584 1.613 
Log hours worked 669 12.850 1.265 
Log capital 669 11.459 2.066 
Log real capital 669 11.342 2.065 
Log electricity consumption 669 14.298 1.956 
Log depreciation 669 9.493 2.110 
Log employment 669 5.416 1.269 
Log gas consumption 669 12.263 1.792 
    
Manufacture of furniture, other manufacturing, recycling (NACE 36–37) 
Log real value added 622 10.152 1.308 
Log hours worked 622 12.055 0.958 
Log capital 622 10.175 1.533 
Log real capital 622 10.064 1.531 
Log electricity consumption 622 12.992 1.525 
Log depreciation 622 8.007 1.465 
Log employment 622 4.638 0.977 
Log gas consumption 622 10.940 1.647 
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Figure 1: Real value added growth in manufacturing industries 
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Note: Weighted sum of 100*log(y(t)/y(t–1)), where weights are based on nominal value added within industries in a given 
year. 
 

 

4. Estimation Results 

When using balance sheets or other data, one has two competing options for calculating value 

added. The accounting measure is the sum of the firm’s sales, stocks, and new investments 

minus intermediate inputs and sales and services costs. As the balance sheets contain 

undefined values for some variables, there is high portion of missing values. As an 

alternative, the value added may be defined as an economic proxy utilizing the firm’s profit, 

depreciation, and wage bill. As the results do not differ qualitatively, we further limit 

ourselves to the precise accounting measure of value added described above. This is 

accompanied by 2-digit NACE deflators of value added obtained from the Czech Statistical 

Office. 
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The main contribution of our paper concerns the issue of capital measurement. Capital is 

defined as the sum of tangible and intangible assets at the beginning of the period, net of 

depreciation. In essence, as the capital is measured using historical book value, one has to 

account for measurement error. As the capital deflator we use the average inflation rate, or, 

alternatively, the interest rate of new borrowing, which reflects the cost of capital, to verify 

whether the definition of the discount factor matters in the estimation.13 

 

As a freely available input factor for production, we use the number of hours worked. As a 

proxy for unobserved productivity shocks we use the consumption of electricity in physical 

units (MWh). Depreciation, the full-time equivalent of the average number of employees, and 

gas consumption in physical units are used as available instruments for capital. 

 

The results by industries in 2003–2007 are summarized in Table 2. The first estimation 

(column 1) uses the Wooldridge (2009) approach where real capital (deflated by the inflation 

rate)14 is instrumented using depreciation, employment, and gas consumption in physical units 

as instruments. In column 2, the Wooldridge (2009) estimates are reported assuming that real 

capital is exogenous. Comparing columns 1 and 2, we see that correcting for capital 

measurement error significantly increases the coefficient estimate of capital. 

 

In column 3 we show the production function estimates using the LP method as implemented 

in Stata. In general, except for two industries (rubber and plastic products – NACE 25; other 

manufacturing – NACE 36–37) we do not observe a significant difference between columns 2 

and 3. The estimation using Wooldridge (2009) thus yields similar results to Levinsohn and 

Petrin (2003), while the Wooldridge (2009) estimates are robust to the Ackerberg et al. (2006) 

critique. Without the measurement error in capital, both methods thus yield quantitatively 

similar results. 

 

Table 2: Production function estimates in 2003–2007 

  (1) (2) (3) (4) (5) (6) 
  Man. of food (NACE 15–16)     
Log hours 0.636*** 0.686*** 0.700*** 0.690*** 0.700*** 0.687***
                                                 
13 A significant amount of literature deals with the issue of using the right discount factor for capital; see, for 
example, Levinsohn and Petrin (2003).  
14 We also used the interest rate of new borrowing as an alternative capital deflator. The results are similar and 
are available from the authors on request. 
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  [0.0403] [0.0372] [0.0348] [0.0347] [0.0323] [0.0383] 
Log real capital 0.578*** 0.282*** 0.301*** 0.581*** 0.348*** 0.541***
  [0.122] [0.0362] [0.0721] [0.103] [0.0519] [0.0994] 
Observations 1510 1510 1510 1510 1510 1510 
Firms 467 467 467 467 467 467 
Returns to scale 1.214* 0.968 1.001 1.271** 1.048 1.228**
  Man. of textiles (NACE 17–19)     
Log hours 0.675*** 0.553*** 0.587*** 0.586*** 0.609*** 0.607***
  [0.0576] [0.0866] [0.0885] [0.0851] [0.0958] [0.0881] 
Log real capital 0.609*** 0.165*** 0.156* 0.305*** 0.264*** 0.298***
  [0.185] [0.0487] [0.0796] [0.101] [0.0946] [0.0967] 
Observations 829 829 829 829 829 829 
Firms 279 279 279 279 279 279 
Returns to scale 1.284 0.718*** 0.744** 0.891 0.872 0.904 
  Man. of wood (NACE 20–22)    
Log hours 0.580*** 0.606*** 0.657*** 0.640*** 0.654*** 0.639***
  [0.0737] [0.0908] [0.0971] [0.0830] [0.0900] [0.0758] 
Log real capital 0.697*** 0.254*** 0.260** 0.326*** 0.315*** 0.458***
  [0.144] [0.0588] [0.111] [0.118] [0.110] [0.153] 
Observations 620 620 620 620 620 620 
Firms 201 201 201 201 201 201 
Returns to scale 1.277* 0.859 0.917 0.965 0.969 1.097 
  Man. of chemicals (NACE 24)     
Log hours 0.624*** 0.574*** 0.610*** 0.608*** 0.629*** 0.619***
  [0.100] [0.140] [0.129] [0.147] [0.115] [0.115] 
Log real capital 1.997*** 0.374*** 0.465*** 1.204*** 0.424** 1.206***
  [0.561] [0.0993] [0.146] [0.197] [0.185] [0.213] 
Observations 444 444 444 444 444 444 
Firms 120 120 120 120 120 120 
Returns to scale 2.621*** 0.948 1.075 1.812*** 1.052 1.825***
  Man. of rubber (NACE 25)     
Log hours 0.548*** 0.618*** 0.642*** 0.629*** 0.644*** 0.623***
  [0.0705] [0.0671] [0.0727] [0.0701] [0.0723] [0.0584] 
Log real capital 0.733*** 0.290*** 0.464*** 0.601*** 0.451*** 0.610***
  [0.136] [0.0798] [0.0792] [0.165] [0.0805] [0.152] 
Observations 613 613 613 613 613 613 
Firms 216 216 216 216 216 216 
Returns to scale 1.281** 0.908 1.106 1.229 1.096 1.233 
  Man. of other mineral products (NACE 26)   
Log hours 0.345*** 0.392*** 0.430*** 0.421*** 0.436*** 0.425***
  [0.0514] [0.0644] [0.0606] [0.0637] [0.0601] [0.0692] 
Log real capital 0.803*** 0.328*** 0.265** 0.392*** 0.297*** 0.482***
  [0.191] [0.0796] [0.115] [0.132] [0.0948] [0.143] 
Observations 728 728 728 728 728 728 
Firms 200 200 200 200 200 200 
Returns to scale 1.148 0.72*** 0.695** 0.814 0.733** 0.907 
  Man. of metals (NACE 27–28)    
Log hours 0.638*** 0.664*** 0.684*** 0.680*** 0.705*** 0.700***
  [0.0398] [0.0445] [0.0430] [0.0379] [0.0404] [0.0438] 
Log real capital 0.575*** 0.243*** 0.247*** 0.371*** 0.228*** 0.339***
  [0.104] [0.0365] [0.0551] [0.0912] [0.0596] [0.0721] 
Observations 1673 1673 1673 1673 1673 1673 
Firms 592 592 592 592 592 592 
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Returns to scale 1.213** 0.906* 0.931 1.052 0.934 1.039 
  Man. of machinery (NACE 29)     
Log hours 0.711*** 0.812*** 0.857*** 0.849*** 0.883*** 0.874***
  [0.0452] [0.0426] [0.0517] [0.0452] [0.0438] [0.0416] 
Log real capital 0.633*** 0.171*** 0.185*** 0.406*** 0.193*** 0.405***
  [0.108] [0.0350] [0.0363] [0.0753] [0.0422] [0.0852] 
Observations 1510 1510 1510 1510 1510 1510 
Firms 502 502 502 502 502 502 
Returns to scale 1.344*** 0.983 1.041 1.255*** 1.076 1.279***
  Man. of electrical and optical machinery (NACE 30–33) 
Log hours 0.728*** 0.820*** 0.845*** 0.843*** 0.868*** 0.862***
  [0.0392] [0.0485] [0.0493] [0.0453] [0.0402] [0.0396] 
Log real capital 0.747*** 0.172*** 0.204** 0.336*** 0.162* 0.344***
  [0.122] [0.0437] [0.0837] [0.115] [0.0886] [0.0975] 
Observations 1250 1250 1250 1250 1250 1250 
Firms 367 367 367 367 367 367 
Returns to scale 1.475*** 0.993 1.049 1.179 1.03 1.206**
  Man. of motor vehicles (NACE 34–35)   
Log hours 0.642*** 0.647*** 0.719*** 0.685*** 0.717*** 0.690***
  [0.0861] [0.0812] [0.0911] [0.0794] [0.0868] [0.0788] 
Log real capital 0.597*** 0.13 0.174 0.576*** 0.171 0.623***
  [0.176] [0.0923] [0.115] [0.145] [0.107] [0.136] 
Observations 669 669 669 669 669 669 
Firms 192 192 192 192 192 192 
Returns to scale 1.239 0.777** 0.894 1.261 0.888 1.314**
  Man. other (NACE 36–37)     
Log hours 1.112*** 1.055*** 1.093*** 1.089*** 1.101*** 1.101***
  [0.0971] [0.135] [0.137] [0.125] [0.119] [0.138] 
Log real capital 0.758 0.140* 0.270** 0.752** 0.247** 0.837**
  [0.485] [0.0783] [0.135] [0.321] [0.118] [0.363] 
Observations 622 622 622 622 622 622 
Firms 206 206 206 206 206 206 
Returns to scale 1.87* 1.196 1.363** 1.841** 1.348** 1.937**

Notes: Standard errors in brackets, *** p<0.01, ** p<0.05, * p<0.1. Real value of capital (deflated by the average inflation 
rate). Returns to scale (log labor + log real capital) and significance level of Wald test of constant returns reported. 
           (1) Wooldridge (2009); real capital is instrumented using depreciation, employment, and gas consumption. 
           (2) Wooldridge (2009). 
           (3) Levinsohn-Petrin (2003). 
           (4) Levinsohn-Petrin (2003); real capital is instrumented using depreciation, employment, and gas consumption. 
           (5) Levinsohn-Petrin (2003); linear approximation used in (6). 
           (6) Levinsohn-Petrin (2003); real capital is instrumented using depreciation, employment, and gas consumption; linear 

approximation used in (6). 
 

In column 4 of Table 2, we use the LP method with correction for the measurement error in 

real capital. In particular, we estimate (21) using OLS and generate predicted values of capital 

that are then used as the capital data input to the LP method. The modified non-parametric 

bootstrap is employed to get corrected standard errors of the coefficients.  

 

As in the Wooldridge (2009) approach (columns 1 and 2), we observe a major difference 

between columns 4 and 3 in Table 2 in all industries except for manufacture of wood (NACE 
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20–22); the coefficient associated with real capital often more than double, while the changes 

in the labor coefficient estimates are minor.15 Based on our results using the Wooldridge 

(2009) and Levinsohn and Petrin (2003) approaches we see that measurement error in capital 

is a substantial problem that affects production function estimates. Not accounting for the 

measurement error in capital yields an estimate biased toward zero. 

 

As we have shown in Section 2, using predicted values of real capital in the first stage of the 

LP routine yields inconsistent estimates. We therefore repeat the estimation in columns 3 and 

4 in Table 2, assuming linear approximation in place of the function g in equations (5) and 

(22). The results of this exercise are reported in columns 5 and 6 in Table 2. The difference in 

the coefficient estimates between columns 3 and 5 and between columns 4 and 6 is small in 

most industries, suggesting that measurement error in capital affects the estimates more than 

specific assumptions approximating the unknown function g in equations (5) and (22). 

 

Table 3: Returns to scale in Czech manufacturing industries, 2003–2007 
  (1) (2) (3) (4) 
Food products, beverages and tobacco products (NACE 15–16) 1.214* 0.968 1.001 1.271** 
Textiles, wearing apparel and leather (NACE 17–19) 1.284 0.718*** 0.744** 0.891 
Wood, pulp and paper, publishing and printing (NACE 20–22) 1.277* 0.859 0.917 0.965 
Chemicals (NACE 24) 2.621*** 0.948 1.075 1.812***
Rubber and plastic products (NACE 25) 1.281** 0.908 1.106 1.229 
Other non-metallic mineral products (NACE 26) 1.148 0.72*** 0.695** 0.814 
Metals (NACE 27–28) 1.213** 0.906* 0.931 1.052 
Machinery and other equipment (NACE 29) 1.344*** 0.983 1.041 1.255***
Electrical and optical machinery and equipment (NACE 30–33) 1.475*** 0.993 1.049 1.179 
Motor vehicles and other transport equipment (NACE 34–35) 1.239 0.777** 0.894 1.261 
Furniture, other manufacturing, recycling (NACE 36–37) 1.87* 1.196 1.363** 1.841** 

Notes: Returns to scale (log labor + log real capital) and significance level of Wald test of constant returns reported. 
           *** p<0.01, ** p<0.05, * p<0.1. 
           (1) Wooldridge (2009); real capital is instrumented using depreciation, employment, and gas consumption. 
           (2) Wooldridge (2009). 
           (3) Levinsohn-Petrin (2003). 
           (4) Levinsohn-Petrin (2003); real capital is instrumented using depreciation, employment, and gas consumption. 
 

 

The correction for measurement error of capital affects returns to scale. Table 3 repeats the 

returns to scale estimates from columns 1–4 in Table 2 for manufacturing industries. While 

most industries using the standard methods of Wooldridge (2009) and Levinsohn and Petrin 

(2003) exhibit constant or decreasing returns to scale (see columns 2 and 3 in Table 3), we 

                                                 
15 Similar results are obtained when using gas consumption as a proxy to invert out the unobserved productivity 
shock in the LP routine and electricity consumption as an instrument for real capital. These alternative results are 
available from the authors upon request. 
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cannot reject the presence of increasing returns in a number of industries when the estimation 

is corrected for measurement error in capital (columns 1 and 4). The difference in the results 

hinges on the correction of measurement error in capital, while the degree of the polynomial 

used in the estimation does not play a crucial role. 

 

 

5. Conclusions 

Based on our results we conclude that the measurement error of capital is a substantial 

problem that affects production function estimates. The estimated capital coefficient 

approximately doubles (depending on the particular industry) when we control for capital 

measurement error. The estimated standard errors of the coefficients naturally also increase 

when measurement error in capital is assumed, although the difference in the coefficients is so 

substantial that one can reject the identity of the coefficient with and without measurement 

error control. Consequently, while the majority of industries using standard Wooldridge 

(2009) and Levinsohn and Petrin (2003) estimation exhibit constant or (in)significantly 

decreasing returns to scale, measurement error correction sometimes leads to a situation 

where even increasing returns to scale cannot be rejected. 

 

To sum up, we conclude that an estimation that ignores possible measurement error in capital 

might suffer from significant underestimation of the effect of capital on value added 

formation and that the contribution of capital to value added growth in Czech manufacturing 

industries was probably higher in 2003–2007 than based on estimates without controlling for 

measurement error in capital.  
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