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ABSTRACT

This dissertation contains three projects focusing on two major high-dimensional prob-
lems for dependent data, particularly neuroimaging data: multiple testing and estimation
of large covariance/precision matrices.

Project 1 focuses on the multiple testing problem. Traditional voxel-level false dis-
covery rate (FDR) controlling procedures for neuroimaging data often ignore the spatial
correlations among neighboring voxels, thus suffer from substantial loss of efficiency in
reducing the false non-discovery rate. We extend the one-dimensional hidden Markov
chain based local-significance-index procedure to three-dimensional hidden Markov ran-
dom field (HMRF). To estimate model parameters, a generalized EM algorithm is pro-
posed for maximizing the penalized likelihood. Simulations show increased efficiency of
the proposed approach over commonly used FDR controlling procedures. We apply the
method to the comparison between patients with mild cognitive impairment and normal
controls in the ADNI FDG-PET imaging study.

Project 2 considers estimating large covariance and precision matrices from tempo-
rally dependent observations, in particular, the resting-state functional MRI (rfMRI) data
in brain functional connectivity studies. Existing work on large covariance and precision
matrices is primarily for i.i.d. observations. The rfMRI data from the Human Connec-
tome Project, however, are shown to have long-range memory. Assuming a polynomial-
decay-dominated temporal dependence, we obtain convergence rates for the generalized
thresholding estimation of covariance and correlation matrices, and for the constrained ¢,

minimization and the ¢; penalized likelihood estimation of precision matrix. Properties of
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sparsistency and sign-consistency are also established. We apply the considered methods
to estimating the functional connectivity from single-subject rfMRI data.

Project 3 extends Project 2 to multiple independent samples of temporally dependent
observations. This is motivated by the group-level functional connectivity analysis using
rfMRI data, where each subject has a sample of temporally dependent image observations.
We use different concentration inequalities to obtain faster convergence rates than those in
Project 2 of the considered estimators for multi-sample data. The new proof allows more
general within-sample temporal dependence. We also discuss a potential way of improv-
ing the convergence rates by using a weighted sample covariance matrix. We apply the
considered methods to the functional connectivity estimation for the ADHD-200 rfMRI

data.



CHAPTER I

Introduction

High dimensional data refers to cases where the number of variables p is comparable
to or larger than the number of observations 7, i.e., the so-called “large p, small n” or
“large p, large n” scenarios (Donoho et al., 2000; Johnstone and Titterington, 2009). The
classical statistical methods built on the “small p, large n” assumption often fail to effi-
ciently handle high dimensional data. This has been called the “curse of dimensionality”
(Bellman, 1961). Over the last two decades, significant development has been made in
high dimensional data analysis, which is motivated primarily by numerous applications in
fields such as neuroscience, genomics, economics and finance (see Fan et al., 2014a).

Neuroimaging data are high dimensional data. The sample size n of images is usually
only a few hundred or thousand; however, the variable dimension p can vary from several
hundred for brain regions to several hundred thousand for brain voxels. Studies of men-
tal diseases such as Alzheimer’s disease, attention deficit hyperactivity disorder (ADHD),
schizophrenia and Parkinson’s disease can benefit from neuroimaging data analysis. The
abnormality found by the analysis is helpful for diagnosing the disease, monitoring disease
progression, and understanding the mechanisms underlying the disease. Examples of neu-
roimaging data are the three-dimensional (3D) *F-Fluorodeoxyglucose positron emission

tomography (FDG-PET) data and the 4D functional magnetic resonance imaging (fMRI)



data (temporally observed 3D images), which are involved with spatial and/or temporal
dependence.

Statistical methods developed for high dimensional data are largely based on certain
independent structures of the data, for which either the p variables are independent or the
n observations are independent and even identically distributed (i.i.d.). For example, many
multiple testing procedures (Benjamini and Hochberg, 1995, 2000; Genovese and Wasser-
man, 2004) are built on the former structure, and most large covariance/precision matrix
estimating methods (e.g., Rothman et al., 2008, 2009; Cai et al., 2011) assume the latter
structure. However, the validity and efficiency of these approaches are questionable for
data without such independent structures, in particular, neuroimaging data. Specifically,
the first structure is violated when the test statistic obtained at a brain voxel is correlated
with the statistics at its neighboring voxels. The second structure fails for the temporally
dependent image observations of the fMRI data.

Motivated by the need to analyze neuroimaging data, this dissertation contains three
projects focusing on the two major high-dimensional problems for dependent data: multi-
ple testing and estimation of large covariance/precision matrices. In Project 1, an efficient
multiple testing procedure is proposed for certain spatially correlated data. In Projects 2
and 3, we study the validity of three widely used estimating methods (Rothman et al.,
2008, 2009; Cai et al., 2011), originally developed for i.i.d. observations, under some
models of temporal dependence.

In Chapter II, we present Project 1, which focuses on the multiple testing problem.
Since it was introduced by Benjamini and Hochberg (1995), the false discovery rate (FDR)
has been widely used in multiple testing as an alternative measure of Type I error, specif-
ically for the family-wise error rate (FWER), which is the probability of making at least

one Type I error. FDR is defined as the expected proportion of false rejections among



the rejected hypotheses. The authors showed that there is a potential gain in power for
controlling FDR compared to controlling FWER. The corresponding measure of Type 11
error to FDR, called the false non-discovery rate (FNR; Genovese and Wasserman, 2002),
is the expected proportion of errors among the accepted hypotheses. An FDR controlling
procedure is said to be optimal (Sun and Cai, 2009) if it has the smallest FNR among all
procedures controlling FDR at a pre-specified level. Traditional FDR procedures (Ben-
jamini and Hochberg, 1995, 2000; Genovese and Wasserman, 2004) theoretically based
on independent test statistics may substantially lose the efficiency in reducing FNR un-
der certain dependence structures (Sun and Cai, 2009). To address this problem, Sun and
Cai (2009) proposed an optimal FDR procedure built on a new test statistic called the
local index of significance (LIS) and a hidden Markov chain (HMC) which models the
one-dimensional dependence structure. Wei et al. (2009) extended this procedure to test
statistics with different HMC dependence structures.

However, the one-dimensional HMC is not applicable for 3D neuroimaging data. In
Chapter II, we extend the LIS-based procedure (Sun and Cai, 2009; Wei et al., 2009) for
such data, by using a hidden Markov random field (HMRF) model, in particular, the Ising
model (see Brémaud, 1999), to capture the 3D spatial structure. When the HMRF pa-
rameters are known, an optimal property is proved for the proposed HMRF-LIS-based
procedure. In practice, the HMRF parameters are unknown. To avoid the unbounded-
ness of the original likelihood function, a penalized likelihood approach is applied to the
HMREF parameter estimation. A generalized expectation-maximization algorithm is pro-
posed for maximizing the penalized likelihood. Extensive simulations show the superiority
of the proposed approach over commonly used FDR procedures in terms of reducing FNR.
Using FDG-PET data from the Alzheimer’s Disease Neuroimaging Initiative database

(adni.loni.usc.edu), we apply the method to a comparison between patients with



mild cognitive impairment, a disease status with increased risk of developing Alzheimer’s
or other dementia, and normal controls. More signals are found by the proposed approach
than by competing methods, with most discovered signals in regions typically affected by
Alzheimer’s disease.

Chapter III is devoted to Project 2, on estimating large covariance and precision matri-
ces from temporally dependent observations. This project is motivated by the functional
connectivity analysis using resting-state fMRI data. The functional connectivity refers to
the statistical associations of activation among brain nodes (regions or voxels; Friston,
2011; Zhou et al., 2009); thus, it can be assessed by either correlations or partial correla-
tions from the covariance matrix or the inverse covariance matrix (a.k.a. precision matrix)
respectively. The traditional estimator of the covariance matrix, the sample covariance
matrix, is no longer a consistent estimator when the variable dimension p (the number of
brain nodes) grows with the sample size n, e.g., p/n — ¢ € (0,00) in the sense that its
eigenvalues may diverge from those of the covariance matrix (Bai and Yin, 1993; Bai and
Silverstein, 2010). Moreover, when p > n, the sample covariance matrix is not invert-
ible, and thus it cannot be directly applied for estimating the precision matrix by matrix
inversion. When the observations are i.i.d., many consistent estimating approaches have
been developed, such as the generalized thresholding (Rothman et al., 2009) estimation for
covariance matrix, and the constrained ¢; minimization (CLIME; Cai et al., 2011) and the
¢, penalized likelihood estimation (Rothman et al., 2008) for precision matrix. Recently,
Chen et al. (2013), Bhattacharjee and Bose (2014), and Zhou (2014) considered the esti-
mation by using temporally dependent observations. But with restrictive conditions, their
models do not fit well for the resting-state fMRI data, which may exhibit heterogeneous
long-range temporal dependence among the p time series.

To conquer this problem, we consider the aforementioned three estimating approaches



under a polynomial-decay-dominated (PDD) temporal dependence. We provide the con-
vergence rates of the considered estimators under both the spectral norm and the Frobenius
norm (that is divided by ,/p) which are widely used in the literature (Bickel and Levina,
2008a,b; Rothman et al., 2008, 2009; Cai et al., 2011). Properties of sparsistency and sign-
consistency are also established. To reduce the temporal dependence between training and
validation datasets, a gap-block cross-validation method is proposed for the tuning param-
eter selection, which performs well in simulations. We apply the considered approaches
to analyzing a single subject’s functional connectivity using the resting-state fMRI data
obtained from the Human Connectome Project (humanconnectome.org). The discovered
functional hubs may be useful for further scientific investigation.

Project 3 is presented in Chapter IV. It is an extension of Project 2 from a single sam-
ple of temporally dependent observations to multiple independent samples. This project
is motivated by estimating the group-level functional connectivity from multiple subjects
each with a sample of temporally dependent image observations. We use the sample co-
variance matrix obtained from the concatenation of all observations (Smith et al., 2013;
Ng et al., 2013) for the estimating methods considered in Project 2. The proof used in
Project 2 does not make effective use of the independence among samples. A different
proof technique can show improved convergence rates for the multiple samples except
the CLIME method for estimating the precision matrix under short-range temporal depen-
dence. Moreover, the new proof allows more general within-sample temporal dependence.
We apply the sample-covariance-matrix based methods to estimating the group-level func-
tional connectivity of ADHD patients compared to normal controls using the ADHD-200
resting-state fMRI data (neurobureau.projects.nitrc.org/ADHD200).

At the end of Chapter IV, we also discuss a potential way of improving the convergence

rates by using a weighted sample covariance matrix. Accounting for potentially different



temporal dependence structures among these samples, a weight assigned for each sam-
ple in the proposed matrix aims to be proportional with its effective sample size. Using
this matrix as the initial estimator of the covariance matrix can theoretically have faster
convergence rates than using the sample covariance matrix, if with appropriate weights.
However, to select such weights is difficult in practice.

We leave some future work for discussion in Chapter V.



CHAPTER 11

Multiple Testing for Neuroimaging via Hidden Markov Random Field

2.1 Introduction

In a seminal paper, Benjamini and Hochberg (1995) introduced false discovery rate
(FDR) as an alternative measure of Type I error in multiple testing problems to the family-
wise error rate (FWER). They showed that the FDR is equivalent to the FWER if all null
hypotheses are true and is smaller otherwise, thus FDR controlling procedures potentially
have a gain in power over FWER controlling procedures. FDR is defined as the expected
proportion of false rejections among all rejections. The false nondiscovery rate (FNR;
Genovese and Wasserman, 2002), the expected proportion of falsely accepted hypothe-
ses among all acceptances, is the corresponding measure of Type II error. The traditional
FDR procedures (Benjamini and Hochberg, 1995, 2000; Genovese and Wasserman, 2004),
which are p-value based, are theoretically developed under the assumption that the test
statistics are independent. Although these approaches are shown to be valid in controlling
FDR under certain dependence assumptions (Benjamini and Yekutieli, 2001; Farcomeni,
2007; Wu, 2008), they may suffer from severe loss of efficiency in reducing FNR when
the dependence structure is ignored (Sun and Cai, 2009). By modeling the dependence
structure using a hidden Markov chain (HMC), Sun and Cai (2009) proposed an oracle

FDR procedure built on a new test statistic, the local index of significance (LIS), and the



corresponding asymptotic data-driven procedure, which are optimal in the sense that they
minimize the marginal FNR subject to a constraint on the marginal FDR. Following the
work of Sun and Cai (2009), Wei et al. (2009) developed a pooled LIS (PLIS) procedure
for multiple-group analysis where different groups have different HMC dependence struc-
tures, and proved the optimality of the PLIS procedure. Either the LIS procedure or the
PLIS procedure only handles the one-dimensional dependency. However, problems with
higher dimensional dependence are of particular practical interest in analyzing imaging
data.

FDR procedures have been widely used in analyzing neuroimaging data, such as positron
emission tomography (PET) imaging and functional magnetic resonance imaging (fMRI)
data (Genovese et al., 2002; Chumbley and Friston, 2009; Chumbley et al., 2010, among
many others). We extend the work of Sun and Cai (2009) in this chapter by developing
an optimal LIS-based FDR procedure for three-dimensional (3D) imaging data using a
hidden Markov random field model (HMRF) for the spatial dependency among multiple
tests. Existing methods for correlated imaging data, for example, Zhang et al. (2011) are
not shown to be optimal, i.e., minimizing FNR.

HMRF model is a generalization of HMC model, which replaces the underlying Markov
chain by Markov random field. A well-known classical Markov random field with two
states is the Ising model. In particular, the two-parameter Ising model, whose formal defi-
nition is given in equation (2.1), reduces to the two-state Markov chain in one-dimension
(Brémaud, 1999). The Ising model and its generalization with more than two states, the
Potts model, have been widely used to capture the spatial structure in image analysis; see
Brémaud (1999), Winkler (2003), Zhang et al. (2008), Huang et al. (2013) and Johnson
et al. (2013), among others. In this chapter, we consider a hidden Ising model for each area

based on the Brodmann’s partition of the cerebral cortex (Garey, 2006) and subcortical re-



gions of the human brain, which provides a natural way of modeling spatial correlations
for neuroimaging data. To the best of our knowledge, this is the first work that introduces
the HMRF-LIS based FDR procedure to the field of neuroimaging.

We propose a generalized expectation-maximization algorithm (GEM; Dempster et al.,
1977) to search for penalized maximum likelihood estimators (Ridolfi, 1997; Ciuperca
et al., 2003; Chen et al., 2008) of the hidden Ising model parameters. The penalized likeli-
hood prevents the unboundedness of the likelihood function, and the proposed GEM uses
Monte Carlo averages via Gibbs sampler (Geman and Geman, 1984; Roberts and Smith,
1994) to overcome the intractability of computing the normalizing constant in the under-
lying Ising model. Then the LIS-based FDR procedures can be conducted by plugging
in the estimates of the hidden Ising model parameters. In what follows, we use the term
“HMRF” to refer to the 3D hidden Ising model.

The chapter is organized as follows. In Section 2.2, we introduce the HMRF model,
i.e., the hidden Ising model, for 3D imaging data. We provide the GEM algorithm for
the HMRF parameter estimation and the implementation of the HMRF-LIS-based data-
driven procedures in Section 2.3. In Section 2.4, we conduct extensive simulations to
compare the LIS-based procedures with conventional FDR methods. In Section 2.5, we
apply the PLIS procedure to the **F-Fluorodeoxyglucose PET (FDG-PET) image data of
the Alzheimer’s Disease Neuroimaging Initiative (ADNI), which finds more signals than

conventional methods.
2.2 A Hidden Markov Random Field Model
Let S be a finite lattice of N voxels in an image grid, usually in a 3D space. Let

O = {0, € {0,1} : s € S} denote the set of latent states on .S, where O, = 1 if the null

hypothesis at voxel s is false and ©4 = 0 otherwise. For simplicity, we follow Sun and Cai



(2009) to call hypothesis s to be nonnull if ©, = 1 and null otherwise. We also call voxel
s to be a signal if ©, = 1 and noise otherwise. Let ® be generated from a two-parameter

Ising model with the following probability distribution

1 1
2.1) Pcp(O):mexp{cpTH(H)}:Z(ﬂ 7 P B> 06, +h> 0.7,
’ (s,t) s€S

where Z(¢p) is the normalizing constant, ¢ = (8,h)", H(0) = (3_,, 0504, 25 05)",
and (s, t) denotes all the unordered pairs in S such that for any s, ¢ is among the six nearest

neighbors of voxel s in a 3D setting. This model possesses the Markov property:

—exp{0s(B Y en O+ 1)}
L+ exp{B > iene) 0r + A}

Pcp(05|0$\{s}) - P‘P(08|0N(5))

where S\ {s} denotes the set S after removing s, and N'(s) C S is the nearest neighbor-
hood of sin S.

For the above Ising model, it can also be shown that

P(0,=1,0,=1|05\(s3)P(0,=0,0,=0|05\(s4}) _ B, teN(s),
P(@s:L®t:0|05\{s,t})P(@s:0;@t:1|05\{s,t}>

(2.2) log {

0, otherwise.

Therefore, if s and ¢ are neighbors, [ is equal to a log odds ratio that describes the asso-
ciation between O, and O, conditional on all the other state variables being withheld. We

can see that /3 reflects how likely the same-state voxels are clustered together. Similarly,

PO, =1 0;,=0
log{ ( |Zt€N(s) i )} _ h,

P(@S - 0|Zt€/\[(8)@t — 0)
which is the log odds for ©, = 1 given that © »(,) are all zero. Thus, that 3 > 0Oand i < 0

implies the nonnegative dependency of state variables at neighboring voxels. In addition,
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for a voxel s with m nearest neighbors, we have

log P(O, =1] Zte./\/(s) Oy = k)
P(Os = 012 1en5 Ot = k)

P(O, = 0| X yens) O = m — )
P(O, = 1Y jen(yOi = m — k)

2.3) = mf + 2h,

where k is an integer satisfying 0 < k < m, which reflects the log ratio of the cluster
effect of signals (nonnulls) relative to the cluster effect of noises (nulls).

We assume the observed z-values X = {X; : s € S} are independent given © = 6
with

(2.4) Py(x|0) = [ ] Ps(x:/0,),

seS
where Py(x;|0;s) denotes the following distribution

L
(2.5) X0 ~ (1= ©,)N (10, 08) + O Y piN (. 07)
=1

with (0, 02) = (0, 1), unknown parameters ¢ = (pi1, 02, p1, ..., i, 02, pr) > Sor o = 1
and p; > 0. In particular, the z-value X, follows the standard normal distribution under
the null, and the nonnull distribution is set to be the normal mixture that can be used to
approximate a large collection of distributions (Magder and Zeger, 1996; Efron, 2004).
The number of components L in the nonnull distribution may be selected by, for example,
the Akaike or Bayesian information criterion. Following the recommendation of Sun and
Cai (2009), we use L = 2 for the ADNI image analysis.

Markov random fields (MRFs; Brémaud, 1999) are a natural generalization of Markov
chains (MCs), where the time index of MC is replaced by the space index of MRF. It

is well known that any one-dimensional MC is an MRF, and any one-dimensional sta-

tionary finite-valued MRF is an MC (Chandgotia et al., 2014). When S is taken to be
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one-dimensional, the above approach based on (2.1), (2.4) and (2.5) reduces to the HMC

method of Sun and Cai (2009).

2.3 Hidden Markov Random Field LIS-Based FDR Procedures

Sun and Cai (2009) developed a compound decision theoretic framework for multiple
testing under HMC dependence and proposed LIS-based oracle and data-driven testing
procedures that aim to minimize the FNR subject to a constraint on FDR. We extend these
procedures under HMRF for image data. The oracle LIS for hypothesis s is defined as
LIS (x) = Pg(0, = 0|x) for a given parameter vector ®. In our model, ® = (¢”, )7
Let LISy (x), ..., LIS n)(x) be the ordered LIS values and H 1), ..., H(n) the correspond-
ing null hypotheses. The oracle procedure operates as follows: for a prespecified FDR

level o,
1 . |
(2.6) let £ = max {@ D= E LIS (z) < a} , thenreject all Hy, i = 1,..., k.
i
=1

Parameter ® is unknown in practice. We can use the data-driven procedure that simply
replaces L1S(;)(x) in (2.6) with ITITS’(@ (x) = P3(O©@) = 0|x), where ® is an estimate of
P.

If all the tests are partitioned into multiple groups and each group follows its own
HMRE, in contrast to the separated LIS (SLIS) procedure that conducts the LIS-based
FDR procedure separately for each group at the same FDR level o and then combines the
testing results, we follow Wei et al. (2009) to propose a pooled LIS (PLIS) procedure that
is more efficient in reducing the global FNR. The PLIS follows the same procedure as
(2.6), but with LIS(y), ..., LISy being the ordered test statistics from all groups.

Note that the model homogeneity, which is required in Sun and Cai (2009) and Wei
et al. (2009) for HMCs, fails to hold for the HMRF model. In other words, P(©, = 1)

for the interior voxels with six nearest neighbors are different to those for the boundary

12



voxels with less than six nearest neighbors. We show the validity and optimality of the
oracle HMRF-LIS-based procedures in Appendix A.1.
We now provide details of the LIS-based data-driven procedure for 3D image data,

where the parameters of the HMRF model need to be estimated from observed test data.

2.3.1 A Generalized EM Algorithm

We start this subsection by showing the unboundedness of the observed likelihood func-
tion of HMRF. For any voxel ¢ € S, define a specific configuration of © by 0 = (0;)scs

with §; = 1 and 0, = 0 if s # t. Then the observed likelihood function

L(®|x) = ZP¢> z|©)F,(©)

> Py(z|© = 01)) Pp(© = 0y13)

Py(z,]0; =1) J[ Po(x:l0, = 0)Py(Os\(y = 0,6, = 1)

seS\{t}
L
1 (w0 — )? } 2
= expl ——————— ¢ + Nz, 0
(\/m p{ 20_% ; ( t; M l)
_N-1 1 el
X (27T> 2 exp —5 Z I‘? m

seS\{t}

— 0

if 4y = x; and 0? — 0 with other parameters fixed. Thus the observed likelihood func-
tion is unbounded. The similar unbounded-likelihood phenomenon for Gaussian hidden
Markov chain model has been shown in Ridolfi (1997) and Chen et al. (2014).

One solution to avoid the unboundedness is to replace the likelihood by a penalized

likelihood (Ridolfi, 1997; Ciuperca et al., 2003)

L
2.7) pL(®|z) = L(®|x) [ | 9(o7
=1
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where g(c?),1=1,..., L, are penalty functions that ensure the boundedness of pL(®|x).
We follow Ridolfi (1997) and Ciuperca et al. (2003) to choose
9 1 a
g(o}) x ﬁexp{—a—?}, a>0,b>0,

where x o< y means that z = cy with a positive constant ¢ independent of any parameter.
Note that (2.7) reduces to the unpenalized likelihood function when a = b = 0. When
a > 0 and b > 1, the penalized likelihood approach is equivalent to setting g(c?) to be
the inverse gamma distribution, which is a classical prior distribution for the variance of
a normal distribution in Bayesian statistics (Hoff, 2009). We do not impose any prior
distribution here. The choice of a and b does not impact the strong consistency of the
penalized maximum likelihood estimator (PMLE) based on the same penalty function for
a finite mixture of normal distributions (Ciuperca et al., 2003; Chen et al., 2008). Such a
penalty performs well in the simulations, though formal proof of the consistency of PMLE
for hidden Ising model remains an open question.

We develop an EM algorithm based on the penalized likelihood (2.7) for the estimation
of parameters in the HMRF model characterized by (2.1), (2.4) and (2.5). We introduce
unobservable categorical variables K = {K;:s € S}, where K, = 0 if O = 0, and
K, e {l,..,L}if©4 = 1. Hence, P(K,=0|0©,=0) = 1 and we denote P(K,=[|0,=1) =
pi. From (2.5), we let X,|K, ~ N(ug,,0%, ). To estimate the HMRF parameters ® =
(@7, )T, (©, K, X) are used as the complete data variables to construct the auxiliary
function in the (¢-+1)st iteration of EM algorithm given the observed data « and the current

estimated parameters 0N

L
Q(®|®") = Eg [log Ps(©, K, X)|z] + ) log g(a7),

=1

where Pgp(0, K, X) = P,(0)Py(X,K|0) = P,(0)[]..q Ps(X:, K|O,). The Q-
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function can be further written as follows

Q(@[@") = Qi(|@") + Qa(p|2"),

where

Qi(p|®V) = ZZR}(,&) (0, K|x)log Py(z, K|O) +Zlogg at)
® K

=1

and

Qa(|@) =) Py (Olz)log P, (©).
()

Therefore, we can maximize Q(®|®®) for ® by maximizing Q,(¢|®") for ¢ and
Q2(p|®Y) for ¢, separately.
Maximizing Q1(¢|®®) under the constraint Zle p = 1 by the method of Lagrange

multipliers yields

28) S0 Laes (D)
ZSGS ygt)(l)
(2.9) ,u(t+1) - ZSES ws (st
| Seswl(1)
(2.10) (o2 = 20F 2ses wi (1) (zy — pi"™)?
’ 2+ 3wl () |
where
S 1 s . i L
ws(l) = %, 75(i) = Pa(0 = il®), fi = N(w,07), and f = Zplfl-

=1

For Qg(cp|<I>(t)), taking its first and second derivatives with respect to ¢, we obtain

U™ (p) = %Qz(ﬂ@(ﬂ) = Egw[H(O)|z] — E,[H(O)],

I(p) = —ajwczg(so@“)):wmm(@)}.

Maximizing Q,(|®") is then equivalent to solving the nonlinear equation:
(2.11) UV (p) = Egw [H(O)|z] — E,[H(O)] = 0.
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It can be shown that equation (2.11) has a unique solution and can be solved by the
Newton-Raphson (NR) method (Stoer and Bulirsch, 2002). However, a starting point that
is not close enough to the solution may result in divergence of the NR method. There-
fore, rather than searching for the solution of equation (2.11) over all ¢, we choose a
@1 that increases Qs(|®Y)) over its value at ¢ = ). Together with the maxi-
mization of Q1 (¢|®™"), the approach leads to Q(®**V|®®) > Q(®¥|®") and thus
pL(®"Y|x) > pL(®Y|x), which is termed a GEM algorithm (Dempster et al., 1977).
To find such a **'1 that increases the QQ,-function, a backtracking line search algorithm
(Nocedal and Wright, 2006) is applied with a set of decreasing positive values )\, in the

following

(212) (p(t-f—l,m) — S0(15) 4 AmI((p(t))—lU(t+1) (So(t))7

t+1,m)

where m = 0,1,..., and 1) = ol which is the first one satisfying the Armijo

condition (Nocedal and Wright, 2006)
(2.13) QZ((P(t+1,m)|(I)(t)) _ Q2(Q0(t)‘(1)(t)) > a)\mU(t-l—l)(So(t))TI<(P(t)>71U(t+1)(SO(t)).

Since I(p®) is positive-definite, the Armijo condition guarantees the increase of Q-
function. In practice, « is chosen to be quite small. We adopt @ = 10~%, which is recom-
mended by Nocedal and Wright (2006), and halve the Newton-Raphson step length each
time by using A\, = 27"

In the GEM algorithm, Monte Carlo averages are used via Gibbs sampler to approxi-
mate the quantities of interest that are involved with the intractable normalizing constant

of the Ising model. By the ergodic theorem of the Gibbs sampler (Roberts and Smith,
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1994) (see Appendix A.2 for details),

Ut(p) ~ - Z ( (L)) H(H(W))) :

n

®2
I(p) nilz< up) ZHO(J‘P ) 7

=1

Q

where {O(t’l"”), s H(t’"’m)} are large n samples successively generated by the Gibbs sam-

pler from

CeXp {B(t) Z(s,r) 050, + Zses hgt)es}

P t 0 -
& )(0]x) 7 <5(t)a {hgt)}s€5'>

with

1 s — 2
A = b —log [ ——— exp {_M}
\/2mod 205
L (t) (t)y2
b (xs — 1)
+1o ————expl —————
& Z 2() P { 202" }

I=1 \/2m0;
and Z <B(t), {hgt)}seg> being the normalizing constant, and {81%) ... 8"} are gener-
ated from P, (0). Here for vector v, v¥? = vo”. Similarly,
C
Z(p)

where C' is the number of all possible configurations @ of ®. Then the difference between

= Eylexp{—¢"H Z exp{—¢"H H (6" )},

(>-functions in the Armijo condition can be approximated by
Qa1 @1) — Qx| @)
(So(t+l,m) _ So(t))T ZH<0(t,i,w)>

i m)T i,pt+1m)
+ log 2ic1 exp{_ip(t"'lv ) H(g( ¥ )>}
Z?:1 eXp{—go(t)TH(e(i,go(t)))}

Back to Q1(¢|<I>(t)), the local conditional probability of ® given x can also be approxi-

~
~

1
n

mated by the Gibbs sampler:

(2.14) YO (G) = Py (0, = i|x) = 1(60F®) = j),

k=1

1
n
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2.3.2 Implementation of the LIS-Based FDR Procedure

The algorithm for the LIS-based data-driven procedure, denoted as LIS for single group
analysis, SLIS for separate analysis of multiple groups, and PLIS for pooled analysis for

multiple groups, is given below:

1. Set initial values ®© = {¢® x(©1 for the model parameters & of each group;
2. Update ¢ from equations (2.8), (2.9) and (2.10);

3. Update ¢*) from equations (2.12) and (2.13);

4. Iterate Steps 2 and 3 until convergence, then obtain the estimate & of &b

5. Plug-in ® to obtain the test statistics LIS from equation (2.14);

6. Apply the data-driven procedure (LIS, SLIS or PLIS).

The GEM algorithm is stopped when the following stopping rule

(t+1) _ (0
(2.15) max %;'DZ' < e,
! ‘(I)i |+ e

where ®; is the ith coordinate of vector ®, is satisfied for three consecutive regular
Newton-Raphson iterations with m = 0 in (2.12), or the prespecified maximum num-
ber of iterations is reached. Stopping rule (2.15) was applied by Booth and Hobert (1999)
to the Monte Carlo EM method, where they set e; = 0.001, €5 between 0.002 and 0.005,
and the rule to be satisfied for three consecutive iterations to avoid stopping the algorithm
prematurely because of Monte Carlo error. We used €; = e; = 0.001 in simulation studies
and real-data analysis. Constant @ = 10~* is recommended by Nocedal and Wright (2006)
for the Armijo condition (2.13), and the Newton-Raphson step length in (2.12) is halved
by using A\, = 27 . In practice, the Armijo condition (2.13) might not be satisfied when

t+1,m)

the step length ||¢p¢ — ®|| is very small. In this situation, the iteration within Step 3
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is stopped by an alternative criterion

(t+1,m) _ (8)
max s . ©;"| “e
! |90i | + €

with €3 < €5, for example, €3 = 10~* if e = 0.001. Small @ and b should be chosen in

(2.10). We choose a = 1 and b = 2.

2.4 Simulation Studies

The simulation setups are similar to those in Sun and Cai (2009) and Wei et al. (2009),
but with 3D data. The performances of the proposed LIS-based oracle (OR) and data-
driven procedures are compared with the BH approach (Benjamini and Hochberg, 1995),
the g-value procedure (Storey, 2003), and the local FDR (Lfdr) procedure (Sun and Cai,
2007) for single group analysis; and the performances of SLIS and PLIS are compared
with BH, g-value, and the conditional Lfdr (CLfdr) procedure (Cai and Sun, 2009) for
multiple groups. The Lfdr and CLfdr procedures are shown to be optimal for indepen-
dent tests (Sun and Cai, 2007; Cai and Sun, 2009). For simulations with multiple groups,
all the procedures are globally implemented using all the locally computed test statistics
based on each method from each group. The g-values are obtained using the R package
gvalue (Dabney and Storey, 2014). For the Lfdr or CLfdr procedure, we use the propor-
tion of the null cases generated from the Ising model with given parameters as the estimate
of the probability of the null cases P(O; = 0), together with the given null and nonnull
distributions without estimating their parameters. For the LIS-based data-driven proce-
dures, the maximum number of GEM iterations is set to be 1,000 with ¢; = €5 = 0.001,
€3 = a = 107%, @ = 1 and b = 2. For the Gibbs sampler, 5,000 samples are generated
from 5,000 iterations after a burn-in period of 1,000 iterations. In all simulations, each
HMRF is on a N = 15x15x15 cubic lattice S, the number of replications M = 200 is

the same as that in Wei et al. (2009), and the nominal FDR level is set at 0.10.
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2.4.1 Single-Group Analysis
Study 1: L = 1

The MRF © = {O; : s € S} is generated from the Ising model (2.1) with parameters
(B, h), and the observations X = {X, : s € S} are generated conditionally on ® from
X0, ~ (1 —6,)N(0,1) + O,N(u1,0}). Note that the MRF © is not observable in
practice. Figure 2.1 shows the comparisons of the performance of BH, g-value, Lfdr,
OR and LIS. In Figure 2.1(1a-1c), we fix h = —2.5, set u; = 2 and 07 = 1, and plot
FDR, FNR, and the average number of true positives (ATP) yielded by these procedures
as functions of 3. In Figure 2.1(2a-2¢), we fix 8 = 0.8, set u; = 2 and 02 = 1, and plot
FDR, FNR and ATP as functions of h. In Figure 2.1(3a-3c), we fix § = 0.8 and h = —2.5,
set 07 = 1, and plot FDR, FNR and ATP as functions of ;. The corresponding average
proportions of the nulls, denoted by F,, for each Ising model are given in Figure 2.1(1d-

3d). The initial values for the numerical algorithm are set at 50 = (0 =0, ugo) =pu+1

and af © =2

From Figure 2.1(1a-3a), we can see that the FDR levels of all five procedures are con-
trolled around 0.10 except one case of the LIS procedure in Figure 2.1(3a) with the lowest
w1, whereas the BH and Lfdr procedures are generally conservative. This case of obvious
deviation of the LIS procedure is likely caused by the small lattice size /N. As a confirma-
tion, additional simulations by increasing the lattice size /N to 30x30x30 yield an FDR
of 0.1019 for the same setup. From Figure 2.1(1b-3b) and (1c-3c) we can see that the two
curves of OR and LIS procedures are almost identical, indicating that the data-driven LIS
procedure works equally well as the OR procedure. These plots also show that the LIS
procedure outperforms BH, g-value and Lfdr procedures with increased margin of perfor-

mance in FNR and ATP as [ or h increases or y is at a moderate level. Note that from

(2.2) and (2.3), we can see that 5 controls how likely the same-state cases cluster together,
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and (3, h) together control the proportion of the aggregation of nonnulls relative to that of

nulls.

Study 2: L =2

We now consider the case where the nonnull distribution is a mixture of two normal
distributions. The MRF is generated from the Ising model (2.1) with fixed parameters
B = 0.8 and h = —2.5, and the nonnull distribution is a two-component normal mix-
ture p1 N (1, 0%) + paN (g, 03) with fixed p; = p; = 0.5, g = 2, and 02 = 1. In
Figure 2.2(1a-1c), a% varies from 0.125 to 8, and p; = —2. In Figure 2.2(2a-2c), we
fix 0?2 = 1 and vary p; from —4 to —1. The initial values are set at 50 = h(® = 0,
P =1-p" =03, 4" = +1,and o}V =62 +1,1=1,2.

Similar to Figure 2.1, we can see that the FDR levels of all the procedures are controlled
around 0.10, where BH and Lfdr are conservative, and OR and LIS perform similarly
and outperform the other three procedures. In Figure 2.2(2a) at 4; = —1, additional
simulations yield an FDR of 0.1035 when the lattice size N is increased to 30x30x 30 for
the same setup.

The results from both simulation studies are very similar to those in Sun and Cai (2009)
for the one-dimensional case using HMC. It is clearly seen that, for dependent tests, in-
corporating dependence structure into a multiple-testing procedure improves efficiency

dramatically.
Study 3: misspecified nonnull

Following Sun and Cai (2009), we consider the true nonnull distribution to be the three-
component normal mixture 0.4N (u, 1) + 0.3N(1,1) + 0.3N(3, 1), but use a misspecified

two component normal mixture p; N (1, 03) + paN(pa, 05) in the LIS procedure. The

unobservable states are generated from the Ising model (2.1) with fixed parameters 5 = 0.8
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Figure 2.2: Comparison of BH (()), ¢g-value (<), Lfdr (A), OR (+) and LIS (O) for a single group with

L = 2 (see la-2c), and the one with L being misspecified (see 3a-3c).
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and h = —2.5. The simulation results are displayed in Figure 2.2(3a-3c), the true x4 varies
from —4 to —1 with increments of size 0.5. The initial values are set at 3 0 = O =,
pgo) = pgo) = 0.5, ugo) = —uéo) = —2,and 012(0) =2,1=1,2.

Figure 2.2(3a-3c) shows that the LIS procedure performs similarly to OR under mis-
specified model. Additionally, the obvious biased FDR level by the LIS procedure at

i = —1 reduces to 0.1067 when the lattice size N is increased to 30x30x30.

2.4.2 Multiple-Group Analysis

Voxels in a human brain can be naturally grouped into multiple functional regions. For
simulations with grouped multiple tests, we consider two lattice groups each with size
15x15x15. The corresponding MRFs ©; = {0, : s € S} and ©®y = {Oy, : s €
S} are generated from the Ising model (2.1) with parameters (8, = 0.2,h; = —1) and
(B2 = 0.8, hy = —2.5), respectively. The observations X = { Xy, s € S} are generated
conditionally on @y, k = 1,2, from X},|Os ~ (1 — O )N(0,1) + O N (s, 07), where
1 varies from 1 to 4 with increments of size 0.5, o = 1+ 1 and 0% = Ug = 1. The initial
values are B\” = i = O = (Y = 0, i = 4V = jiy + 1, and 02 = 2% = 2.

The simulation results are presented in Figure 2.3, which are similar to that in Wei et al.
(2009) for the one-dimensional case with multiple groups using HMCs. Figure 2.3(a)
shows that all procedures are valid in controlling FDR at the prespecified level of 0.10,
whereas BH and CLfdr procedures are conservative. We also plot the within-group FDR
levels of PLIS for each group separately. One can see that in order to minimize the global
FNR level, the PLIS procedure may automatically adjust the FDRs of each individual
group, either inflated or deflated reflecting the group heterogeneity, while the global FDR
is appropriately controlled. In Figure 2.3(b) and (c) we can see that both SLIS and PLIS
outperform BH, ¢-value and CLfdr procedures, indicating that utilizing the dependency in-

formation can improve the efficiency of a testing procedure, and the improvement is more
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Figure 2.3: Comparison of BH (()), g-value (<), CLfdr (A), SLIS (57) and PLIS (e) for two groups with
L =1.In (a), @ and A represent the results by PLIS for each individual group; for PLIS, while
the global FDR is controlled, individual-group FDRs may vary.

evident for weaker signals (smaller values of j1;). Between the two LIS-based procedures,
PLIS slightly outperforms SLIS, indicating the benefit of ranking the LIS test statistics

globally. In particular, ATP is 8.3% higher for PLIS than for SLIS when p; = 1.

2.5 ADNI FDG-PET Image Data Analysis

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly popu-
lation. The worldwide prevalence of Alzheimer’s disease was 26.6 million in 2006 and is
predicted to be 1 in 85 persons by 2050 (Brookmeyer et al., 2007). Much progress has been
made in the diagnosis of AD including clinical assessment and neuroimaging techniques.
One such extensively used neuroimaging technique is FDG-PET imaging, which is used
to evaluate the cerebral metabolic rate of glucose (CMRgl). Numerous FDG-PET studies
(Nestor et al., 2003; Mosconi et al., 2005; Langbaum et al., 2009) have demonstrated sig-
nificant reductions of CMRgl in brain regions in patients with AD and its prodromal stage
mild cognitive impairment (MCI), compared with normal control (NC) subjects. These
reduction can be used for the early detection of AD. Voxel-level multiple testing methods
are common approaches to identify voxels with significant group differences in CMRgl

(Alexander et al., 2002; Mosconi et al., 2005; Langbaum et al., 2009). We focus on the
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comparison between MCI and NC for such a purpose, and consider the FDG-PET image
data from the ADNI database (adni.loni.usc.edu) as an illustrative example.

The data set consists of the baseline FDG-PET images of 102 NC subjects and 206
patients with MCI. Each image is normalized by the average of voxel values in pons and
cerebellar vermis, which are well preserved regions in Alzheimer’s patients. In human
brain, the cerebral cortex is segregated into 43 Brodmann areas (BAs) based on the cytoar-
chitectural organization of neurons (Garey, 2006). We consider 30 of them after removing
the BAs that are either too small or not always reliably registered. We also investigate
9 subcortical regions, including hippocampus, which are commonly considered in AD
studies. A region is further divided into two if its bilateral parts in the left and right hemi-
spheres are separated completely without a shared border in the middle of the brain. We
have considered combining neighboring regions to potentially increase accuracy, but failed
to find any pair with similar estimated HMRF model parameters. Finally, 61 regions of
interest (ROIs) are included in the analysis, where the number of voxels in each region
ranges from 149 to 20,680 with a median of 2,517. The total number of voxels of these 61
ROIs is N = 251, 500. The goal is to identify voxels with reduced CMRgl in MCI patients
comparing to NC.

We apply the HMRF-PLIS procedure to the ADNI data, and compare to BH, g-value
and CLfdr procedures. We implement the BH procedure globally for the 61 ROIs, whereas
we treat each region as a group for the g-value, CLfdr and PLIS procedures. For the BH
and g-value procedures, a total number of N two-sample Welch’s ¢-tests (Welch, 1947)
are performed, and their corresponding two-sided p-values are obtained. For the PLIS and
CLfdr procedures, z-values are used as the observed data x, which are obtained from those
t statistics by the transformation z; = ®~[Gy(t;)], where ® and G are the cumulative

distribution functions of the standard normal and the ¢ statistic, respectively. The null
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distribution is assumed to be the standard normal distribution. The nonnull distribution is
assumed to be a two-component normal mixture for PLIS. The LIS statistics in the PLIS
procedure are approximated by 10° Gibbs-sampler samples, and the Lfdr statistics in the
CLfdr procedure are computed by using the R code of Sun and Cai (2007). All the four
testing procedures are controlled at a nominal FDR level of 0.001. In the GEM algorithm
for HMRF estimation, the initial values for 5 and A in the Ising model are set to be zero.
The initial values for the nonnull distributions are estimated from the signals claimed by
BH at an FDR level of 0.1. The maximum number of GEM iterations is set to be 5,000
with e, = €5 = 0.001, €3 = o = 107*, @ = 1 and b = 2. For the Gibbs sampler embedded
in the GEM, 5,000 samples are generated from 5,000 iterations after a burn-in period of
1,000 iterations. In this data analysis, the GEM algorithm reaches the maximum iteration
and is then claimed to be converged for five ROIs. Among all 61 ROIs, the estimates of
£ have a median of 1.57 with the interquartile range of 0.36, and the estimates of h have
a median of —3.71 with the interquartile range of 1.52. Such magnitude of parameter
variation supports the multi-region analysis of the ADNI FDG-PET image data because
even a 0.1 difference in 3 or A can result in quite different Ising models, see Figure 2.1(1d)
and (2d).

Figure 2.4 shows the z-values (obtained by comparing CMRgl values between NC and
MCI) of all the signals claimed by each procedure. Figure 2.5 summarizes the number of
voxels that are claimed as signals by each procedure. We can see that PLIS finds the largest
number of signals and covers 91.5%, 97.2% and 99.9% of signals detected by CLfdr, ¢-
value and BH, respectively. It is interesting to see that the PLIS procedure finds more than
17 times signals as BH, twice as many signals as g-value, and about 20% more signals
than the CLfdr procedure.

Detailed interpretations of the scientific findings are provided in Appendix A.3.
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Figure 2.4: Z-values of the signals found by each procedure for the comparison between NC and MCI.
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Figure 2.5: Venn diagram for the number of signals found by each procedure for the comparison between
NC and MCI. Number of signals discovered by each procedure: BH=8,541, ¢-value=71,031,
CLfdr=122,899, and PLIS=146,867.
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CHAPTER 111

Estimation of Large Covariance and Precision Matrices from
Temporally Dependent Observations

3.1 Introduction

Let {X,..., X} be a sample of p-dimensional random vectors, each with the same
mean p,,, covariance matrix 33 and precision matrix £2 = >~ Tt is well known that the
sample covariance matrix is not a consistent estimator of 3 when p grows with n (Bai and
Yin, 1993; Bai and Silverstein, 2010). When the sample observations X1,..., X, are
independent and identically distributed (i.i.d.), several regularization methods have been
proposed for the consistent estimation of large ¥, including thresholding (Bickel and Lev-
ina, 2008a; El Karoui, 2008; Rothman et al., 2009; Cai and Liu, 2011), block-thresholding
(Cai and Yuan, 2012), banding (Bickel and Levina, 2008b) and tapering (Cai et al., 2010).
Existing methods also include Cholesky-based method (Huang et al., 2006; Rothman et al.,
2010), penalized pseudo-likelihood method (Lam and Fan, 2009) and sparse matrix trans-
form (Cao et al., 2011). Consistent correlation matrix estimation can be obtained similarly
from i.i.d. observations (Jiang, 2003; El Karoui, 2008).

The precision matrix €2 = (w;;),xp, When it exists, is closely related to the partial cor-
relations between the pairs of variables in a vector X . Specifically, the partial correlation
between X; and X; given { X}, k # i,j} is equal to —wy;/, /Wiw;; (Cramér, 1946, Sec-

tion 23.4). Zero partial correlation means conditional independence between Gaussian or
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nonparanormal random variables (Liu et al., 2009). There is also a rich literature on the
estimation of large (2 from i.i.d. observations. Various algorithms for the ¢; penalized
maximum likelihood method (¢;-MLE) and its variants have been developed by Yuan and
Lin (2007), Banerjee et al. (2008), Friedman et al. (2008) and Hsieh et al. (2014), and
related theoretical properties have been investigated by Rothman et al. (2008), Lam and
Fan (2009) and Ravikumar et al. (2011). Methods that estimate {2 column-by-column thus
can be implemented with parallel computing include the nodewise Lasso (Meinshausen
and Biihlmann, 2006; Van de Geer et al., 2014), graphical Dantzig selector (Yuan, 2010),
constrained ¢;-minimization for inverse matrix estimation (CLIME; Cai et al., 2011), and
adaptive CLIME (Cai et al., 2016).

Recently, researchers become increasingly interested in estimating the large covariance
and precision matrices from temporally dependent observations { X, : t = 1,...,n}, here
t denotes time. Such research is particularly useful in analyzing the resting-state func-
tional magnetic resonance imaging (rffMRI) data to assess the brain functional connectivity
(Power et al., 2011; Ryali et al., 2012). In such imaging studies, the number of brain nodes
(voxels or regions of interest) p can be greater than the number of images n. The temporal
dependence of time series X is traditionally dealt with by imposing the so-called strong
mixing conditions (Bradley, 2005). To overcome the difficulties in computing strong mix-
ing coefficients and verifying strong mixing conditions, Wu (2005) introduced a new type
of dependence measure, the functional dependence measure, and recently applied it to the
hard thresholding estimator of large covariance matrix and the ¢;-MLE type methods of
large precision matrix (Chen et al., 2013). But the functional dependence measure is still
difficult to understand and to interpret. Practically, it is straightforward to describe the
temporal dependence directly by using cross-correlations (Brockwell and Davis, 1991).

By imposing certain weak dependence conditions directly on the cross-correlation matrix
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of samples { X} ,, Bhattacharjee and Bose (2014) extended the banding and tapering
regularization methods for covariance matrix. We consider a family of cross-correlation
matrices with much weaker conditions that allow the time series to have long-range tempo-
ral dependence (also called long memory), which more reasonably describes, for example,
the rfMRI data for brain connectivity studies.

A univariate stationary time series has polynomial decay temporal dependence if its
autocorrelation p(t) ~ Ct~“ as t — oo with some constants C' # 0 and o > 0. The
notation z; ~ y; means that z,/y, — 1 as ¢t — oo. This polynomial decay rate is much
slower than the exponential rates in autoregressive models. We use a generalized form of
such polynomial decay structure to the cross-correlation matrix of multivariate time series.
Note that the temporal dependence with >, |p(t)| = oo is called long memory (Palma,
2007), hence the polynomial decay processes with 0 < « < 1 have long memory. The
weak temporal dependence considered by Bhattacharjee and Bose (2014) does not cover
the polynomial decay processes with 0 < v < 3, and the short-range temporal dependence
assumption of Chen et al. (2013) excludes the case with 0 < a < 1. Moreover, neither
of their models covers the long memory processes. Later we argue that the rfMRI data do
not meet their restrictive temporal dependence conditions, but well satisfy our model that
allows any o > 0 (see Figure 3.1(a)).

Note that the estimation of large correlation matrix was not considered by either Chen
et al. (2013) or Bhattacharjee and Bose (2014), which is a more interesting problem in,
for example, the study of brain functional connectivity. Moreover, they all assumed that
Ky, = (fpi)1<i<p is known. But ., 1s often unknown in practice and needs to be estimated.
Although the sample mean X; = n~! Z?:l X; entrywise converges to /i,; in probability
or even almost surely under some dependence conditions (Brockwell and Davis, 1991; Hu

et al., 2008), extra care will still be needed when true mean is replaced by sample mean
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in the estimation of covariance. We consider unknown g, in this chapter. Also note that
the estimation of large correlation matrix and its inverse is considered in a recent work by
Zhou (2014). However, her method requires that all p time series have the same temporal
decay rate, which is rather restrictive and often violated (see Figure 3.1(b) for an example
of rfMRI data).

In this chapter, we study the generalized thresholding estimation (Rothman et al., 2009)
for covariance and correlation matrices, and the CLIME approach (Cai et al., 2011) and
an /1-MLE type method called SPICE—sparse permutation invariant covariance estimation
(Rothman et al., 2008) for precision matrix. The theoretical results of convergence rates,
sparsistency and sign-consistency are provided for temporally dependent data, potentially
with long memory, which are generated from a class of sub-Gaussian distributions in-
cluding Gaussian distribution as a special case. A gap-block cross-validation method is
proposed for the tuning parameter selection, which shows satisfactory performance for
temporally dependent data in simulations. To the best of our knowledge, this is the first
work that investigates the estimation of large covariance and precision matrices for tem-
poral data with long memory.

The chapter is organized as follows. In Section 3.2, we introduce a polynomial-decay-
dominated model for the temporal dependence, and show that it best describes the rfMRI
data comparing to the existing literature (Chen et al., 2013; Bhattacharjee and Bose, 2014;
Zhou, 2014). We also introduce the considered sub-Gaussian data generating mechanism.
We provide the theoretical results for the estimation of covariance and correlation matri-
ces in Section 3.3 and of precision matrix in Section 3.4 under the considered temporal
dependence. In Section 3.5, we introduce a gap-block cross-validation method for the tun-
ing parameter selection, evaluate the estimating performance via simulations, and analyze

a rfMRI data set for brain functional connectivity. The proofs of theoretical results are
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sketched in Section 3.6, with detailed proofs provided in Appendix B.

3.2 Temporal Dependence

We start with a brief introduction of useful notation. For a real matrix M = (1/;;), we

use the following notation for different norms, see, e.g., Golub and Van Loan (1996):

e spectral norm |[|[M||s = \/©@max(MTM), where ¢,,.x denotes the largest eigenvalue,

also pmin denotes the smallest eigenvalue;

Frobenius norm | M|/ = />, Zj ij;

matrix ¢, norm |[M||; = max; > |M;;

elementwise ¢; norm |M|; = 3. . |M;;

ig |

off-diagonal elementwise /; norm |M|; o = ), 4 | M,;|;
e clementwise /o, norm (a.k.a. max norm) |M|. = max; ; | M;;|.

Define vec(M) = vec{M;; : Vi,j} = (M7, M7, ..., MT)", where M} is the j-th
column of M. Write M > 0 when M is positive definite. Denote the trace and the deter-
minant of a square matrix M by tr(M) and det(M), respectively. Denote the Kronecker
product by ®. Write z,, < y, if x, = O(y,) and y, = O(x,,). Define [x] and |z ] to be
the smallest integer > x and the largest integer < x, respectively. Let [( A) be the indicator
function of event A, (z); = xl(x > 0) and sign(z) = I(x > 0) — I(z <0). Let A =B
denote that A is defined to be B. Denote X < Y if X and Y have the same distribution.
Denote 1,, = (1, 1,...,1)" with length n and I,,,, to be the nxn identity matrix. If with-
out further notification, a constant is independent of n and p. Throughout the rest of the

chapter, we assume p — oo as n — oo and only use n — oo in the asymptotic arguments.
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3.2.1 Polynomial-Decay-Dominated (PDD) Temporal Dependence

Let X, = (X1, ..., X,,) be the data matrix with the covariance matrix X = (0y;)pxp
for each X ;. Let R = (px;)px, be the correlation matrix for each X; and RY = (p))pp =
(cov(Xki, Xij)/\/Tkr0u)pxp be the cross-correlation matrix between X ; and X ;. Clearly,
R = RY when i = j. We say that X,,, has a PDD temporal dependence if its cross-

correlation matrices {R“} belong to
(3.1) B(Co,a) = {{R"} : |RY|o < Coli — j| *forany i # j}

with some positive constants Cy and «. This model allows an individual time series to
have the polynomial decay temporal dependence, which is long memory when 0 < o < 1.
Note that for i.i.d. observations we have a = oco. Our goal is to estimate 3, R and (2

while treating {R" },; as nuisance parameters that need not be estimated.

3.2.2 Comparisons to Existing Models

For banding and tapering estimators of 3, Bhattacharjee and Bose (2014) considered
the following weak dependence based on temporal distance. For any n > 1,

A (an) = {{Rij} . max |©7], = O(n2an)},

an§|i—j\§n

where ©7 = (0))),., with 0}/ satisfying pi; = 0} prs, anr/logp/n = o(1) and {a, }n>1
is a non-decreasing sequence of non-negative integers. That a,+/logp/n = o(1) im-

plies a,, = o(y/n). Thus,

OV : i — j| = an| , < maxg, <jiji<n [07]w = O(n"%a,) =
o(a,?). Then D i1 |©”|,, < oo, which means that their model does not allow any
individual time series to be a long memory process. Moreover, {R”} in model (3.1) is not
in the above A, (a,,) when 0 < o < 3 and |©" |, < |i — j|~* for any i # j.

Chen et al. (2013) considered the hard thresholding estimation of 3 and an ¢;-MLE

type estimation of €2 using the functional dependence measure of Wu (2005). Assume
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that { X}, the first row of X, is a stationary process with autocovariance ~, (¢), and
follow their setup by letting £(X;;) = 0, then v;(¢) = E(X;1X1,+1). By the argument
in the proof of Theorem 1 in Wu and Pourahmadi (2009) together with Lyapunov’s in-
equality (Karr, 1993) and Theorem 1 of Wu (2005), one can see that their model requires
Yoo lm(t)| < oo, which means {X7,} cannot be a long memory process. Hence their
model does not cover model (3.1) when 0 < o < 1.

Zhou (2014) was interested in estimating a separable covariance cov(X,,) = A ® B,
where X, = vec(X,x,). Her model implies that the autocorrelations {pfk}lsmgn are
the same for all %, indicating a rather restrictive model with homogeneous decay rate for
all p time series.

Now consider the rfMRI data example of a single subject which will be further an-
alyzed in Subsection 3.5.3. The data set consists of 1190 temporal brain images. We
consider 907 functional brain nodes in each image. All node time series have passed the
Priestley-Subba Rao test for stationarity (Priestley and Subba Rao, 1969) with a signifi-
cance level of 0.05 for p-values adjusted by the false discovery rate controlling procedure
of Benjamini and Yekutieli (2001). Hence the autocorrelations { p;jk} can be approximated
by tha sample autocorrelations {py(¢)} for each k. To save computational cost, we only
plot the autocorrelations in Figure 3.1. One may make a mild assumption that the cross-
correlations are dominated by the autocorrelations in the sense that |p}}| < C|pi/| for
a fixed constant C' > 0, thus only need to check the autocorrelations in practice. Fig-
ure 3.1(a) shows that max; <;<, |p:(t)| can be bounded by 10%¢~3, but not by 107¢~3. Thus
the temporal dependence assumption of Bhattacharjee and Bose (2014) does not seem to
fit the data well. For a randomly selected brain node, the least squares fitting for a log-
linear model yields |p;(¢)] = 0.26t795°, thus the applicability of Chen et al. (2013) is

in question. Figure 3.1(b) illustrates the estimated autocorrelations for two randomly se-
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Figure 3.1: Sample autocorrelations of brain nodes.
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lected brain nodes, which clearly have different patterns, indicating that the assumption of
homogeneous decay rates for all time series in Zhou (2014) does not hold. On the other
hand, Figure 3.1(a) shows that the rfMRI data have the PDD structure with & = 0.25 since
maxi <<, |pi(t)| < t7°%, assuming the cross-correlations are dominated by the autocor-

relations.

3.2.3 Sub-Gaussian Data

A random variable Z is called sub-Gaussian if there exists a constant K € [0, oo) such

that
(3.2) E(exp{t|Z — E(Z)]}) < exp {Kt*/2}, forall t € R.

It can be shown that K > var(Z) (Buldygin and Kozachenko, 2000, Lemma 1.2). We
simply call K the parameter of the sub-Gaussian distribution of Z, and call Z standard
sub-Gaussian if F(Z) = 0 and var(Z) = 1.

Throughout the chapter, we assume that the vectorized data are obtained from the fol-

lowing data generating mechanism
(33) Xpn = He + Hopns

where H = (h;;)pnxm is a real deterministic matrix, Ky, = 1, @ p,,, and the random vec-
tore = (ey,...,en)" consists of m independent standard sub-Gaussian components with
the same parameter X' > 1. We allow m = oo by requiring that for each i, ZTZI hije;
converges both almost surely and in mean square when m — oo. A sufficient and neces-
sary condition for both modes of convergence is Z‘;‘;l h?j < oo for every ¢, see Theorem
8.3.4 and its proof in Athreya and Lahiri (2006). Under these two modes of convergence, it
can be shown that £(He) = HE(e) and cov(He) = Hcov(e)H” (Brockwell and Davis,

1991, Proposition 2.7.1). Hence, for either finite or infinite m, we have E(X,,) = s
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cov(X,,) = HH” with all n submatrices of dimension p x p on the diagonal equal to
3’ and temporal correlations, particularly those in (3.1), determined by the off-diagonal

submatrices, and moreover,
(3.4) E(exp{t[Xi; — E(Xy;)]}) < exp{Ko;t*/2}, forallt € R,

which follows from Fatou’s Lemma for m = oo. The advantage of allowing m = oo
is that any case with finite m becomes a special example by adding infinite number of
columns of zeros in H. In filtering theory, matrix H is said to be a linear spatio-temporal
coloring filter (Fomin, 1999; Manolakis et al., 2005), which generates the output X,
by introducing both spatial and temporal dependence in the input independent variables
€1y Cm.

The following are two examples of (3.3) which are widely studied in the literature.

Example IIL.1 (Gaussian data). Assume that X ,,, has a multivariate Gaussian distribution
N (., A). Then A = HH with a symmetric real matrix H. If A >~ 0, then X, =
He + p,, withe = H™'(X,, — p,,,) ~ N(0, Lyxpn). If A is singular, then X, has a
degenerate multivariate Gaussian distribution, and can be expressed as X, 2 He + Hopn
with any e ~ N(0,L,,x,,). In fact, replacing “ =" in (3.3) by 2> does not affect the

theoretical results.

Example I11.2 (Moving average processes). Consider the following vector moving aver-

age processes

L
(3.5) X;=> B, wih 0<L<oo,
1=0
where the case with L = oo is well-defined in the sense of entrywise almost-sure con-

vergence and mean-square convergence, {B;} are p x p real deterministic matrices, e; =

(e1j,€25 .- ep)t with {eg : 1 < s < p, —oo < t < n} being independent standard
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sub-Gaussian random variables with the same parameter K > 1. Since every X;; is a
linear combination of {ey}, we always can find a matrix H such that X, = He with
T

e= (el ;, el , ... el)T. Itis well-known that any causal vector autoregressive mov-

ing average process of the form
Xj — Al-Xj—l — e — Aan_a = ej —I—Mlej_l —+ .- +Mbej_b

with finite nonnegative integers a and b, and real deterministic matrices {A;, M}, can be

written in the form of (3.5) with L = oo (Brockwell and Davis (1991), pp. 418).

3.3 Estimation of Covariance and Correlation Matrices

Consider the set of /,-ball sparse covariance matrices (Bickel and Levina, 2008a; Roth-

man et al., 2009)

p

(3.6) U(q, cp,v0) = {E : max Z loi; |7 < ¢, {2%};0“ < Uo} )

1<i<p
SepiT

and the corresponding set of correlation matrices

P
(3.7) R(q,cp) = {R : lrgég;; |pi|* < Cp} :
=
where constants vy > 0 and 0 < ¢ < 1. For any thresholding parameter 7 > 0, define
a generalized thresholding function (Rothman et al., 2009) by s, : R — R satisfying
the following conditions for all z € R: (i) |s,(z)] < |z|; (i) s-(2) = O for |z| < 73
(iii) |s,(z) — z| < 7. Such defined generalized thresholding function covers many widely
used thresholding functions, including hard thresholding s (z) = 2I(|z| > 7), soft thresh-
olding s7(z) = sign(2)(|z| — 7)., smoothly clipped absolute deviation and adaptive lasso

thresholdings. See details about these examples in Rothman et al. (2009). We define the

generalized thresholding estimators of 3 and R respectively by

A

S(B) = (5:(6))pwp  and  So(R) = (5-(piy)1(i # ) +1(i = 5)),,
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where 32 = (6;;)pxp is the sample covariance matrix defined by

. 1 <& 7
3.8 == X, XT_XX
(3.8) n; !

with X =n~ '3 X, andR = (Did) prcp = (64/+ /5'ii‘3jj)pxp is the sample correlation

matrix. Then we have the following results.

Theorem IIL.1. Uniformly on U(q, ¢y, vy) and B(Cy, «), for sufficiently large constant

M >0, ift = M7 and 7" = o(1) with
(3.9)
(

3Co(n'™ — ) /(1 — ),

7=/ folog(pfo)/n and  fo =< 3C,(1 +logn),

\

then
15,:(2) = Bl = Op(7),
(3.10) 1S,(2) = Z||a = Op (e, 77)
1 ~
(3.11) ];||ST(2) — 2% = 0p (¢,7*79) .

Moreover, if p > n° for some constant ¢ > 0, then

E(18:(2) - 32 ) = 0(),

(3.12) B (I5-(2) - SI) = 0 (¢r>-21),
1 . .
(3.13) B (18:(2) = 2I}) =0 (6" )

[3Co(n'=* — @) /(1 — )]V,

a>1,

Remark III.1. The constant 3 in fj is chosen for simplicity, which can be replaced by

any arbitrary constant greater than 2. It is easily seen that 7’ is continuous for a@ > 0,

and is monotonically decreasing as « increases, i.e., the temporal dependence decreases.
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Treating « as a fixed value, we have

;

n=/%(logp + logn)'/?, 0<a<l,
(3.14) 7= n~12[(logn)(logp + loglogn)]'/?, «a =1,
n~?(log p)"/?, a>1,

\

which can be further simplified to

(
n*O‘/Q(logp)l/27 O<a< ].,
(3.15) 7= {2 [(logn)(log p)] M2, o =1,
n71/2(10gp)1/27 o > 1
\

when p > n® with some constant ¢ > 0. Thus, for covariance matrix estimation, the rates
of convergence in probability given in (3.10) and (3.11) under PDD temporal dependence
with fixed o > 1 are the same as those under 1.1.d. observations given in Bickel and Levina
(2008a) and Rothman et al. (2009). The same rates of convergence in probability are
also obtained by Basu et al. (2015, Proposition 5.1) for certain short-memory stationary
Gaussian data using the hard thresholding method. Moreover, following Cai and Zhou
(2012) under the condition that p > n° and ¢, < cynt=9/2(log p)~~9/2 with some
constants ¢; > 1 and ¢y > 0, it can be shown that the convergence rates in mean-squared
norms given in (3.12) and (3.13) for the case with fixed o > 1 are minimax optimal, which

are the same as the optimal minimax rates for the i.i.d. case.

Theorem III.2 (Sparsistency and sign-consistency). Under the conditions for the con-
vergence in probability given in Theorem III.1, we have s.(6,5) = 0 for all (i,j) where
oi; = 0 with probability tending to 1. If additionally assume that all nonzero elements of
3 satisfy |o;j| > 27, we then have sign(s.(6;;)) = sign(oy;) for all (i, j) where o;; # 0

with probability tending to 1.
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Corollary IIL.1. Theorems III.1 and I11.2 hold with ﬁl, 3, 65,045 andU(q, cp, vo) replaced

by R, R, Pij, pij and R(q, c,), respectively.

3.4 Estimation of Precision Matrix

We consider both the CLIME and the SPICE methods for the estimation of €2, which

originally were developed for i.i.d. data.

3.4.1 CLIME Estimation

Following Cai et al. (2011), we consider the following set of precision matrices

p

G (g, cpy My, v9) = {9 = 0:max Y fwyl? < 6 |92 < M,

1<i<p

Jj=1

(3.16) max {0, w;; b < 00}7

1<i<p

where constants 0 < ¢ < 1, v9 > 1, and ¢, and M, are allowed to depend on p. We
also assume min{c,, M,} > 1 for simplicity because it can be shown that min{c,, M}
has a positive constant lower bound. The original set considered in Cai et al. (2011) does
not contain the condition max;{o;;, w;} < vo. But their moment conditions on X (see
their (C1) and (C2)) implies max;{o;} < vg. The additional condition max;{w;;} < vy
facilitates the proof of consistency for the temporally dependent observations, which is
easily obtained from the widely used assumption ¢p,.x(€2) < vg (Rothman et al., 2008;
Lam and Fan, 2009). Note that the above G, contains ¢,-ball sparse matrices such as those
with exponentially decaying entries from the diagonal, for example, AR(1) matrices. For
an invertible band matrix 3, its inverse matrix €2 generally has exponentially decaying
entries from the diagonal (Demko et al., 1984).

Let QZ be a solution of the following optimization problem:

(3.17) min |Qc|; subjectto [Z.Q —Luploo <A1, Q. € RPP,
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where 25 =3+ elysps 3 is given in (3.8), ¢ > 0 is a perturbation parameter introduced

—-1/2

for the same reasons given in Cai et al. (2011) and can be set to be n in practice (see

Remark I11.3 below), and ) is a tuning parameter. The CLIME estimator fla = (Wije)pxp

is then obtained by symmetrizing £, := (Wje ) pxp With

For1 <1 <p,let Bai be a solution of the following convex optimization problem:
(3.18) min |81 subjectto |X.8.; — €ilo < A1,

where 3, is a real vector and e; is the vector with 1 in the i-th coordinate and O in
all other coordinates. Cai et al. (2011) showed that solving the optimization problem
(3.17) is equivalent to solving the p optimization problems given in (3.18), i.e., {Q:} =
{(B.1,-.., ng)}. This equivalence is useful for both numerical implementation and the-
oretical analysis. The following theorem gives the convergence results of CLIME under

PDD temporal dependence.

Theorem II1.3. Uniformly on G,(q, c,, M,,vo) and B(Cy, cv), for sufficiently large con-

stant M > 0, if \y = MN, 0 <e < MXN/(2vy) and X' = o(1) with

(voM,)?, 0<ac<l,
3.19) XN :=/filog(pfi)/n and fi = fo

(UOMP)Q/O‘, a>1,

then

‘Qs - Q‘oo = OP(M;DX)’
||Qa — Q|2 =0p (Cp(MpX)l_q) )

1, A _
]_)”QE - QH%‘ =Op (Cp(MpX)Q q) .
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Moreover, if p > n® with some constant ¢ > 0, then for any constant C' > 0, there exists a

constant M' > 0 such that when M > M’ and min {p~°, M X /(2v) } <& < MX'/(2vy),

we have
E (192 - 92) = 0 (MN)?)
(320 £ (1€ = Q1) = 0 (LX),
1 /o .
(321) B (192 = 9I2) = 0 (e (M)

Remark IIL.2. The continuity and monotonicity of \" with respect to « is the same as

= M£(0<a§1)+ﬂ(a>1)/a7’. When a = oo,

those of 7’ given in Remark III.1. Meanwhile, )\’
we have )\ < \/m, and thus for i.i.d data, the convergence rates of CLIME in mean-
squared norms given in (3.20) and (3.21) attain the minimax optimal convergence rates of
the adaptive CLIME in Cai et al. (2016) under slightly different assumptions. When M,

is constant, then A’ =< 7’ and the convergence rates are analogous to those for covariance

matrix estimation given in Theorem III.1.

Remark II1.3. As discussed in Cai et al. (2011), the perturbation parameter € > 0 is
used for a proper initialization of {3_,} in the numerical algorithm, and it also ensures the
existence of E(||Q. — Q||2). When p > n¢, let M > 2uy, Cy > 1/3 and C' > 1/(2¢),
then M /2vy > n~1/2 > p=1/(2) > p=C Thus, we can simply let ¢ = n~'/2 in practice,
which is also the default setting of the R package f1are (Liet al., 2015) that implements
the CLIME algorithm. A similar choice of ¢ is given in (10) of Cai et al. (2011) for i.i.d.

observations.

To better recover the sparsity structure of €2, Cai et al. (2011) introduced additional
thresholding on Q.. Similarly, we may define a hard-thresholded CLIME estimator Q. =
(@ije)pxp BY @ije = Wijel(|@ije| > &) with tuning parameter £ > 2M,\;. Although such

an estimator enjoys nice theoretical properties given below, how to practically select £
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remains unknown.

Theorem II1.4 (Sparsistency and sign-consistency). Under the conditions for the conver-
gence in probability given in Theorem II1.3, we have &;;. = 0 for all (i, j) where w;; = 0
with probability tending to 1. If additionally assume all nonzero elements of €2 satisfy
|wij| > &+ 2M,\q, then we have sign(@;;.) = sign(w;;) for all (i, j) where w;; # 0 with
probability tending to 1.

3.4.2 SPICE Estimation

For 1.1.d. data, Rothman et al. (2008) proposed the SPICE method for estimating the
following precision matrix €2

(322) g2(8p7v() {Q Z wzy 7é 0 < 3p70<vo <@m1n(ﬂ)§@max(ﬂ>§00}>

1<i#5<p

where s, determines the sparsity of {2 and can depend on p, and v is a constant. Two

types of SPICE estimators were proposed:

(3.23) Q,, = argmin {tr(flﬁ)) log det(€2) + Ao |1, ff}
-0, 0=07

and

(3.24) Q= (Qijag)pwp = WK, W™ with

~

K,, = argmin {tr(KR) log det(K )+/\2|K|10ﬁ}

K>0, K=K
where \, > 0 is a tuning parameter, and W = diag{\/o11,- .., \/&_pp} is an estimator of
W = diag{\/o11,...,,/0p}. We can see that K, is the SPICE estimator of K := R,
The SPICE estimator (3.23) is a slight modification of the graphical Lasso (GLasso) esti-
mator of Friedman et al. (2008). GLasso uses |€2|; rather than || . in the penalty, but the
SPICE estimators (3.23) and (3.24) are more amenable to theoretical analysis (Rothman

etal., 2008; Lam and Fan, 2009; Ravikumar et al., 2011), and numerically they give similar
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results for i.i.d. data (Rothman et al., 2008). It is worth noting that for i.i.d. data, (3.23) re-

quires \/(p + s,) log p/n = o(1) but (3.24) relaxes it to /(1 + s,) log p/n = o(1). Sim-
ilar requirements also hold for temporally dependent observations. Hence in this chapter,

we only consider the SPICE estimator given in (3.24).

Theorem IIL.5. Uniformly on Gy(s,,vy) and B(Cy, ), for sufficiently large constant

M >0, if \g =M7"and 7" = o(1/\/1 + s,) with ' defined in (3.9), then

(3.25) 1Ky, — Kllp = Op(7'/5p),
10, — Q)2 = Op(7'/1 +s,),
1 A 1/
%HQ)\Q—QHF:OP (T 1+Sp/p) .

Ifadditionally assume | K, —K||s = Op(n) withn = O(7"), then with probability tending

to 1, Wijx, = 0 for all (i, j) where w;j = 0.

For the case with fixed « > 1, 7/ < +/(logp)/n, so the above results in Theo-
rem IIL.5 are the same as those given in Rothman et al. (2008, Corollary 1 and Theo-
rem 2) and Lam and Fan (2009, Theorem 4) for i.i.d. observations. By the inequal-
ity |[Ky, — K|[r/yv? < Ky, — K|l2 < |Ky, — K| (Golub and Van Loan, 1996)
and equation (3.25), the sparsistency result requires that s, = O(1) if n = 7',/5,, and
s, = O(p) if n = 7'\/s,/p. Moreover, the condition 7' = o(1/ /1 + s,) implies
sp = o(7""?) = o(n/logp), meaning that £2 needs to be very sparse. Such a condition
easily fails for many simple band matrices when p > n.

Under the irrepresentability condition, however, the sparsity requirement can be relaxed
(Ravikumar et al., 2011). In particular, define I' = R ® R. By (4, 7)-th row of I" we refer
to its [i + (j — 1)p|-th row, and by (k,)-th column to its [k 4+ ([ — 1)p|-th column. For
any two subsets 7" and 7" of {1, ..., p} x{1, ..., p}, denote I'r7» be the card(T) xcard(T")

matrix with rows and columns of I' indexed by 7" and 7" respectively, where card(7)
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denotes the cardinality of set 7. Let S be the set of nonzero entries of {2 and 5S¢ be the
complement of S in {1,...,p} x{1, ..., p}. Define kg = |R|; and sr = ||Tg5|;. Assume

the following irrepresentability condition of Ravikumar et al. (2011):

(3.26) max

ecSe

Fesrgé‘}l S 1— 5

for some 3 € (0, 1]. Define d to be the maximum number of nonzeros per row in £2. Then

we have the following result.

Theorem IIL.6. Let r = (0.5 + 2.5(1 + 8/8)kr) M7'vy, where 7' is defined in (3.9).
Uniformly on Gy(s,,vo) and B(Cy, ), for sufficiently large constant M > 0, if Ay =
8M7'/B < [6(1 + B/8)dmax{krkr, kgke}| ™t and 7' = o(min{1,[(1 + 8/8)kr]~'}),

then with probability tending to 1 we have

|Q)\2 - Q|oo S r,
||SA2,\2 — Q]2 < rmin {d, \/p+ sp} ,
1 .
%HQAQ = Qflp <7y/14 /D,

and w;;y, = 0 for all (i, j) with w;; = 0. If we further assume all nonzero elements of 2
satisfy |w;j| > r, then with probability tending to 1, sign(w;;»,) = sign(w;;) for all (i, j)

where w;; # 0.

Consider the case when [ remains constant and max{kgr, kr} has a constant upper
bound. Then the conditions in Theorem III.6 about A\, and 7’ reduce to Ay = M’7’ and
7 = o(1) with a constant M’ = 8)M /{3, and meanwhile we have |2y, — Q|| = Op(7'd).
Then the desired result of ||, — Q] = op(1) is achieved under a relaxed sparsity

condition d = o(7'7!). If d* > 1+s5,, then s, = o(7'~?) and the condition of Theorem IIL.5

satisfies. Hence ||y, — Q2 = Op(7'\/min{d?, 1+ s,}) = op(1), which is the better

rate between those from Theorems I11.5 and I11.6.
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3.5 Numerical Experiments

3.5.1 Cross-Validation

For tuning parameter selection, we propose a gap-block cross-validation (CV) method

that includes the following three steps:

1. Split the data X,,.,, into /{; > 4 approximately equal-sized non-overlapping blocks
Xj,i=1,..., Hy, such that X,,,.,, = (X}, X5, ..., X3, ). For each i, set aside block
X7 that will be used as the validation data, and use the remaining data after further

dropping the neighboring block at either side of X as the training data that are denoted

by X;*.
2. Randomly sample Hj blocks X3/ .1, ..., XYy, from X5, where X7, . - consists of
[n/H, | consecutive columns of X, foreach j = 1,..., H,. Note that these sampled

blocks can overlap. For each ¢« = H; + 1,..., H; + Ho, set aside block X as the
validation data, and use the remaining data by further excluding the [n/H;]| columns

at either side of X from X,,.,, as the training data that are denoted by X7*.

3. Let H = H,+ H,. For generalized thresholding of covariance matrix estimation, select
the optimal tuning parameter 7 among a prespecified set of candidates {7; }3-]:1 and
denote it by

. 1 AR
Ts = afé‘?}n I 12_1: 197 (%) — % I,
where ﬁ]: and ﬁlj* are the corresponding sample covariance matrices based on X and
X:*, respectively. For the estimation of correlation matrix, we replace 2;“ and 2;“* by

f{j and f{;‘* respectively. For the estimation of precision matrix, we choose the optimal

tuning parameter using the loss function tr(€23*3*) — log det(Q5*).

In the above CV method, we use gap blocks, each of size ~ [n/H, |, to separate train-

ing and validation datasets so that they are nearly uncorrelated. The idea of using gap
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blocks has been employed by the hv-block CV of Racine (2000) for linear models with
dependent data. Similar to the k-fold CV for i.i.d. data, Step 1 guarantees all observations
are used for both training and validation, but is limited due to the constrain of keeping
the temporal ordering of the observations. Step 2 allows more data splits. This is par-
ticularly useful when Step 1 only allows a small number of data splits due to large-size
of the gap block and/or limited sample size n. Step 2 is inspired by the commonly used
repeated random subsampling CV for i1.i.d. observations (Syed et al., 2012). The above
loss functions for selecting tuning parameters are widely used in the literature (Bickel and
Levina, 2008a; Rothman et al., 2009; Cai et al., 2011, 2016). The theoretical justification
for the gap-block CV remains open. However, our simulation studies show that the method

performs well for data with PDD temporal dependence.

3.5.2 Simulation Studies

We evaluate the numerical performance of the hard and soft thresholding estimators for
large correlation matrix and the CLIME and SPICE estimators for large precision matrix.
We generate Gaussian data with zero mean and covariance matrix X or precision matrix

2 from one of the following four models:

Model I: o;; = 0.6177;

Model 2: 0j; =1, 0,41 = 041, = 0.6, 0y 42 = 0i42; = 0.3, and 0;; = O for | — j| > 3;
Model 3: w;; = 0.6/l

Model 4: w;; = 1, w; i11 = wit1,; = 0.6, w; j42 = wiyo; = 0.3, and w;; = 0 for |[i—j| > 3.

Similar models have been considered in Bickel and Levina (2008a), Rothman et al. (2008),
Rothman et al. (2009), Cai et al. (2011), and Cai et al. (2016). For the temporal depen-

dence, we set pi) = 07 py; with
(3.27) O =(li—jl+1)7 1<ij<n,
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Figure 3.2: Approximation of h(z) = = for « = 0.1,0.25,0.5, 1, 2.

so that |pf)| < |63] ~ |i — j|~*. Tt is computationally expensive to simulate data X, =
vec(X,«n) directly from a multivariate Gaussian random number generator because of the
large dimension of its covariance matrix cov(X ,,). We use an alternative way to simulate
the data that approximately satisfy (3.27). Note that h(z) = 7%, € [1,n]and a > 0, can
be approximated by h(z) = Zﬁo a; exp(—b;x) with small N and appropriately chosen
{ai, b;} by the method of Bochud and Challet (2007) (see Figure 3.2). Thus, data X,

are simulated as follows: each column of X, is generated by X, = ZN

0 cin) fort =
1,...,n, where ¢; = y/a; exp(—b;), Ygi) are i.i.d. N(0,X) for all 4, and for t = 2,...,n,
Y9 = p, Y + e with p; = exp(—b;) and white noise (1 — p?)~/2e!” i.i.d. N(0, X).
It is easily seen that R = SN 2p/R = 32N a;exp{—bi(j + D}R ~ (j + 1)"°R.

Simulations are conducted with sample size n = 200, variable dimension p ranging

51



from 100 to 400, and 100 replications under each setting, for which « varies from 0.1 to
2. The i.i.d. case is also considered. For each simulated data set, we choose the optimal
tuning parameter from a set of 50 specified values (see Appendix B.3) using the gap-block
CV with H; = H, = 10 for the PDD temporal dependence and the ordinary 10-fold
CV for the i.i.d. case recommended by Fang et al. (2016). The CLIME and SPICE are
computed by the R packages flare (Li et al., 2015) and QUIC (Hsieh et al., 2014),
respectively. For CLIME, we use the default perturbation of flare with e = n~'/2,

The estimation performance is measured by both the spectral norm and the Frobenius

norm. True-positive rate (TPR) and false-positive rate (FPR) are used for evaluating spar-

sity recovering:

#1{(i,7) : 5:(pi;) # 0 and p;; # 0,4 # j}

PR = H(0d) g 20, 27} ’

and
#{(1,J) : 5:(pij) # 0and p;; = 0,4 # j}

for correlation matrix and similarly for precision matrix. The TPR and FPR are not pro-

FPR =

vided for Models 1 and 3.

Simulation results are summarized in Tables 3.1-3.3. In all setups, the sample correla-
tion matrix and the inverse of sample covariance matrix (whenever possible) perform the
worst. It is not surprising that the performance of all the regularized estimators gener-
ally is better for weaker temporal dependence or smaller p. The soft thresholding method
performs slightly better than the hard thresholding method in terms of matrix losses for
small o and slightly worse for large «, and always has higher TPRs but bigger FPRs.
The CLIME estimator performs similarly as the SPICE estimator in matrix norms, but
generally yields lower FPRs.

We notice that the SPICE algorithm in the R package QUIC is much faster than the
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CLIME algorithm in the R package flare by using a single computer core. However,
the column-by-column estimating nature of CLIME can speed up using parallel computing

on multiple cores.

3.5.3 rfMRI Data Analysis

Here we analyze a rfMRI data set for the estimation of brain functional connectiv-
ity. The preprocessed rfMRI data of a healthy young woman are provided by the WU-
Minn Human Connectome Project (www.humanconnectome.org). The original data con-
sist of 1,200 temporal brain images and each image contains 229,404 brain voxels with

size 2x2x2 mm?

. We discard the first 10 images due to concerns of early nonsteady
magnetization, and for the ease of implementation reduce the image dimension using a
grid-based method (Sripada et al., 2014) to 907 functional brain nodes that are placed in
a regular three-dimensional grid spaced at 12-mm intervals throughout the brain. Each
node consists of a 3-mm voxel-center-to-voxel-center radius pseudosphere, which encom-
passes 19 voxels. The time series for each node is a spatially averaged time series of the
19 voxels within the node. The estimated « from all 907 time series is about 0.25 (see
Subsection 3.2.2, Figure 3.1(a)).

The functional connectivity between two brain nodes can be evaluated by either cor-
relation or partial correlation. Here we follow the convention by simply calling them the
marginal connectivity and the direct connectivity, respectively. For the marginal connec-
tivity, we only apply the hard thresholding method for estimating the correlation matrix
which usually yields less number of false discoveries than the soft thresholding, and find
that 1.47% of all the pairs of nodes are connected with a threshold value of 0.12 to the
sample correlations. For the direct connectivity, we calculate the estimated partial corre-
lations {—a;;/\/@;@;;,i # j} from the precision matrix estimator Q = (Qij)pxp Both

CLIME and SPICE yield similar result, hence we only report the result of CLIME. We find
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Figure 3.3: rfMRI data analysis for brain functional connectivity. (a) Node degrees of marginal connectivity
found by hard thresholding. (b) Marginally connected nodes and their estimated correlations
to the selected hub. (c) Node degrees of direct connectivity found by CLIME. (d) Directly
connected nodes and their estimated partial correlations to the selected hub. The brain is plotted
in the Montreal Neurological Institute 152 space with Z-coordinates displayed.
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that 2.71% of all the pairs of nodes are connected conditional on all other nodes. Most of
the nonzero estimated partial correlations have small absolute values, with the medium at
0.01 and the maximum at 0.45. About 0.62% of all the pairs of nodes are connected both
marginally and directly.

Define the degree of a node to be the number of its connected nodes, and a hub to be a
high-degree node. We illustrate the node degrees of marginal connectivity and direct con-
nectivity in Figure 3.3 (a) and (c), respectively. The marginal connectivity node degrees
range from O to 164 with the medium at 2, and the direct connectivity node degrees range
from 5 to 85 with the medium at 22. The top 10 hubs found by either method are pro-
vided in Appendix B.4 with six overlapping hubs. Seven of the top 10 hubs of marginal
connectivity are spatially close to those in Buckner et al. (2009) and Cole et al. (2010)
obtained from multiple subjects. Note that they arbitrarily used 0.25 as the threshold value
for the sample correlations, whereas our threshold value of 0.12 is selected from cross-
validation. As an illustration, we plot the marginal and the direct connectivity of a single
hub in Figure 3.3 (b) and (d) respectively. The selected hub has 164 marginally connected
nodes and 79 directly connected nodes, where 80% of the directly connected nodes are
also marginally connected. It is located in the right inferior parietal cortex, a part of the
so-called default mode network (Buckner et al., 2008) that is most active during the resting

state.

3.6 Sketched Proofs of Theoretical Results

3.6.1 General Theorems

We first provide theoretical results for the following general model of temporal depen-
dence which includes the PDD temporal dependence as a special case. The proofs of these

general results are provided in Appendix B. Then the theoretical results for the PDD tem-
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poral dependence given in Sections 3.3 and 3.4 can be obtained directly by specifying the
appropriate model parameters, which will be shown in subsection 3.6.2. Consider
— AN j
(328)  A(f(n,p),g(n.p)) = {{R brmax o Y[RV < g(n,p>}
ie{1<i<n:
where f(n,p) € [1,n] is an integer-valued function and g(n,p) is a real function. We

sometimes drop the dependence of f, g on n,p for notational simplicity. Define 7, =

flog(pf)/n. Then we have the following general theorems.

Theorem IIL.7. (a). Uniformly on U(q, c,, vo) and A(f, g), for sufficiently large constant

M >0, if T = Mty with 1o = o(1), and limsup g(n,p) < 1, then

oo
(3.29) [S-(2) = Eloo = Op(70),

(3.30) 19:(2) = Zll2 = Op (75 7)
(3.31) %HST(E) — 2|7 = 0p (e ),

and s.(6,5) = 0 for all (i, j) where o;; = 0 with probability tending to 1. When all nonzero
elements of X satisfy |0;;| > 27, then sign(s,(6;;)) = sign(o;;) for all (i, j) where 0;; # 0

with probability tending to 1. Moreover, if p > n° for some constant ¢ > 0, then

(3.32) B (15:(2) = %) = 0(}),

(3:33) B (115-(2) - 2[3) = 0 (%),
1 ~ _

(3.34) B (I15:(2) = Bl ) = 0 (e ).

(b). Part (a) holds with 3, %, Gij, 0ij and U(q, ¢y, vo) replaced by R, R, Dij, pij and
R(q, ¢p), respectively.

Theorem IIL.8. Uniformly on G,(q, ¢,, M,,, vo) and A(f, g), for sufficiently large constant

M >0, if \y = M7y and 0 < e < M1y/(2v0) with 7o = o(1), and limsup vi Mg < 1,

n—oo
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then

(3.35) Q. — Qo = Op(M,7),
(3.36) 12 — Q)2 = Op (cp(My)' %),
(3.37) —Hﬂ Q1% = Op (cp(Mym0)*7)

and @;;. = 0 for all (i, j) where w;; = 0 with probability tending to 1. When all nonzero
elements of Q satisfy |w;;| > € + 2My\,, then sign(w;;.) = sign(w;;) for all (i, j) where
wij 7 0 with probability tending to 1. Moreover, if p > n® with some constant ¢ > 0, then
for any constant C' > 0, there exists a constant M' > 0 such that when M > M' and

min {p~, M7y/(2v0) } <& < M7y/(2v0), we have

E (12 - Q) = 0 ((Mym)?)
E (192 = QI) = 0 (A(Mymo)* ™).
2B (19— Q) = O (e (M) ).

Theorem IIL.9. Uniformly on Gs(s,,vo) and A(f, g), for sufficiently large constant M > 0,

if \o = Mty with g = 0o(1/y/1 + s,), and limsup ¢g < 1, then

n—0o0

(3.38) 1K, = Klr = Op(70,/5),
(3.39) 1920, — Q2 = Op(100/1+ 5,),

1 ~ /
(340) %HQ)\Q _QHF:OP (7’0 1—|—$p/p> .

When |K,, — K||; = Op(n) with n = O(ry), then with probability tending to 1, we
have @;jy, = 0 for all (i, j) where w;; = 0. Furthermore, if the conditions \y = My and

=0(1//1+ s,) are replaced by \s = 8M /8 < [6(1+ 3/8)d max{rrkr, kgrp}] "

and 7o = o(min{1, [(1+8/8)kr|™*}), let r = (0.5 + 2.5(1 + 8/8)kr) M1ovo, then under
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the irrepresentability condition (3.26), with probability tending to 1,
|Q)\2 - Q’OO S T?
HQ/\Q - QHQ < rmin {d7 \V P + SP} )

1 .
%HQM = Qflp <7y/14 /D,

and w;;y, = 0 for all (i, j) with w;; = 0, and moreover, sign(w;;y,) = sign(w;;) for all
(i, j) where w;; # 0 when all nonzero elements of Q satisfy |w;;| > r.

3.6.2 Proofs of Main Results for PDD Temporal Dependence

We first show that B(Cy, ) C A(f,g) with suitable choices of f and g. If {R"7} €

B(Cy, «v), then for any f € [1,n], we have

max Yy [RY/(2C0) < ()7 +(2) 7+ (In/f1) 7

1<j<n
1e{1<i<n:
li—jl=kf,
k=1, |n/f]}
[n/f]
<|1 +/ y dy | /f*
1
(
/) —al/(1—a), a#l,
<
F7H1 + log(n/f)], a=1.
\

Thus, B(Cy, ) C A(f,g) with

[/ —al/(1 —a), a#1,
(3.41) g =20, x

F1L + log(n/f)], a=1
We then show that all the theoretical results given in Sections 3.3 and 3.4 for B(Cy, «)

can be obtained from the general theorems in Subsection 3.6.1 by specifying appropriate f.

Proofs of Theorems II1.1, 111.2 and Corollary I1I.1. These results are for generalized thresh-
olding estimators under 5(Cjy, o). We only need to consider the choice of f such that g

given in (3.41) also satisfies the assumption lim sup g < 1 in Theorem III.7.

n—oo
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Since (3.41) gives

(

it —aft)/1-a), 0<a<l
9=2C0 X { f~Y(1 +logn —log f), a=1,

el (@), s

Mt —a)/(1—a), 0<a<l,

(3.42) < 2CH x FY(1 + logn), a=1,

[ —a)/(l-a), a>1,

\

then letting (3.42) be less than 2/3 for convenience (or any constant in (0, 1)), we obtain
f > fo with fy given in (3.9). Thus, f = | fo| + 1 is an appropriate choice, and then plug-
ging itinto 7y = \/m yields 75 =< 7’ that is given in (3.9). Hence, the theoretical
results of generalized thresholding for B(Cj, «) automatically follow from Theorem III.7

with f = | fo| + 1 and g given in (3.41). O

Proofs of Theorems 111.3 and I11.4. For CLIME, Theorem IIL8 requires lim sup vg Mg <
n—oo

1. Set v%Mgg < 2/3 for simplicity. Following the same steps shown in the above, we

obtain an appropriate choice that f = | fi| 4+ 1 with f; given in (3.19). Plugging it into

flog(pf)/n yields 7o < X that is also given in (3.19). Then apply Theorem II1.8

to B(Co, o) with f = | fi] + 1 and ¢ given in (3.41). O

Proofs of Theorems II1.5 and 111.6. For SPICE, Theorem IIL.9 requires lim sup g < 1 that
n—o0
is the same condition required by Theorem III.7 for generalized thresholding. Hence, we

use the same choice of f, i.e., f = | fo| + 1. Then apply Theorem IIL.9 to B(Cj, o) with

f=1fo] +1and g given in (3.41). ]
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CHAPTER IV

Estimation of Large Covariance and Precision Matrices from Multiple
Independent Samples of Temporally Dependent Observations

4.1 Introduction

Group-level functional connectivity analysis is important for understanding the brain
mechanisms underlying mental diseases (see, e.g., Tomson et al., 2015). We are interested
in estimating the group-level functional connectivity of p brain nodes (regions or voxels)
using n rfMRI images obtained from L subjects in a group of interest. Suppose that the
L samples are independent, and each of the n images has the same mean and the same
p X p covariance matrix 2. Our goal is to estimate 3 or the correlation matrix R for
the marginal functional connectivity, and the precision matrix 2 = X! for the direct
functional connectivity.

A traditional estimator of X is the sample covariance matrix 3 for the concatenation of
all the n image observations (Smith et al., 2013; Ng et al., 2013). Although 3 is not a con-
sistent estimator for 3 when p grows with n (Bai and Yin, 1993; Bai and Silverstein, 2010),
we can use it as the initial estimator of 3 in many consistent procedures for estimating 32,
R and (2. In this chapter, we focus on the generalized thresholding estimation of ¥ and R
as well as the SPICE and CLIME approaches of €2 for the multiple independent samples
of temporally dependent sub-Gaussian observations. We then apply these approaches to

assessing the group-level functional connectivity of patients with attention deficit hyperac-
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tivity disorder (ADHD) compared to normal controls using the rfMRI data obtained from
the ADHD-200 Preprocessed repository (neurobureau.projects.nitrc.org/ADHD200).
Multiple independent samples provide faster convergence rates. For example, when
all the L samples have the same sample size n; and the same PDD temporal dependence
B(Cy, «) defined in (3.1) with a € (0, 1), the convergence rates given in Chapter III by

applying the PDD model directly to the total Ln, observations are mainly driven by the

factor \/(logp)/(Lny)*, but we will show that using the independence of the samples,
the convergence rates are primarily controlled by the factor \/W, a faster rate
when L — oo. To achieve such an improvement, we use a different proof technique to
that in Chapter III. Recall that in Chapter 11, following the grouping idea of Bhattacharjee
and Bose (2014), we established the desirable concentration inequality from a set of in-
equalities obtained for a careful partition of the temporal observations. In this chapter, we
establish a different concentration inequality for the independent samples using the large
deviation inequalities given in Vershynin (2012). For L = 1, this new proof yields faster
rates under certain conditions for generalized thresholding estimation of 3 (or R) and the
SPICE estimation of 2. For CLIME, however, the improvement is not guaranteed. More-
over, the considered family of temporal dependence in this chapter is characterized only
by the autocorrelations of each time series without considering the cross-correlations that
need some care in Chapter III.

The gap-block cross-validation was proposed in Chapter I1I for temporally dependent
observations. With multiple independent samples, however, we no longer need gap-blocks.
The usual k-fold cross validation that partitions independent samples can be applied.

We also discuss a potential way to improve the convergence rates by replacing the sam-
ple covariance matrix > witha weighted sample covariance matrix in the estimation. Each

sample is assigned a weight to be proportional with its effective sample size. Given appro-
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priate weights, usually unknown in practice, using the weighted sample covariance matrix
can theoretically achieve better convergence rates than using 3. However, to practically
select such weights remains an open question.

In this chapter, we continue using the notation given in Chapter III if without further
notification. Also we assume p — oo as n — oo and only use n — oo in the asymptotic
arguments. The rest of the chapter is organized as follows. In section 4.2, we introduce
the sub-Gaussian data structure for the multiple independent samples. Section 4.3 pro-
vides the theoretical results for the considered estimators based on the sample covariance
matrix. The performance of the estimators is evaluated by simulations in section 4.4. In
section 4.5, we analyze the group-level functional connectivity of a ADHD group com-
pared to a normal control group using the ADHD-200 rfMRI data. We end the chapter
with a discussion of using the weighted sample covariance matrix. The detailed proofs for

all the theoretical results are provided in Appendix C.

4.2 Data Structure

Foreach / € {1,..., L}, we observe a p-variate time series ng), cee X,(fe), where each

)

¢ . . . . _ .
X E ) has mean I, covariance matrix 3 and precision matrix 2 = X 1. Write Xopsn, =

(XN, = (X9 XYY We simply call X\), the (-th sample of observations,

] 4 PXNyg

and assume such L samples are independent. In the application of fMRI data, X;(fx)n , can

be viewed as the n, images of p prespecified brain nodes for the /-th subject, and n, are
usually equal for all /.

Throughout the chapter, we assume that each sample X %1) , = Vec(X(é) ) is obtained

pPXng

from the following with its own linear filter H):

4.1) XY =HYe+1,,0p,,

pne

where the sub-Gaussian random vector € = (ey, ey, ... )T with dimension m = oo is the
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same for all samples, which is the same as in (3.3).

For the time series X i(f ) XZ(Z;L[, let @ (QZ(ZJ . )ngxn, be the autocorrelation matrix
with Q,L(j)k = corr(Xz(]), X( )) Define
(4.2) g¢ = max 19:"I2
By
(43) 18°17/ne < 1072 < 167",

we have g, € [1,ny]. We can see that g, = 1 if all the p time series of the ¢-th sample
are white noise processes, and g, = ny if every pair of data points in a univariate time
series are perfectly correlated or anti-correlated. The quantity g, naturally reflects the
maximum strength of temporal dependence within the /-th sample. We shall see that {g,}

are involved in the tuning parameters of the considered estimating procedures.
4.3 Estimating Methods Based on the Sample Covariance Matrix

In this section we study several estimating methods for ¥ and €2 based on the sample

covariance matrix defined by

®2

~

o 1
(4.4) 2:52

L n
{=1 i=1

L ny
(XZ@)>®2 B (l X§€)>

with v®? = v’ for vector v. Define gyax = max;<,<y, g¢ and

1 maxl
4.5) 7| = max 8P Z g o8P

We assume 7, = o(1) in the following. Then 71 = O(\/gmax(logp)/n).

4.3.1 Main Results

Theorem IV.1 (Generalized thresholding estimation of 3 and R). (a). For any data

{X M, generated from (4.1), uniformly on ¥ € U(q,c,,vo) where U is defined

PXNg
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in (3.6), for sufficiently large constant M > 0, if T = M1 and 71 = o(1), then
[57(32) = £loe = Op(1),
15-(£) = Zll2 = Op (71 ) ,
1 - _
LIS:(2) = Bl = Op (7).
and s, (6;;) = 0 for all (i, j) where o,; = 0 with probability tending to 1. When all nonzero

elements of ¥ satisfy |0;;| > 27, then sign(s,(6;;)) = sign(o;;) for all (i, j) where 0;; # 0

with probability tending to 1. Moreover, if p > n° for some constant c > (), then

o(m),

E(15.(%) - B2,
E (]15:(2) - =)

2B (I5:(2) = Bl) = 0 (o).

O (027'12_2‘1) ,

p

(b). Part (a) holds with ,%, Gij, 0ij and U(q, ¢y, vo) replaced by R.R, Dij, pij and
R(q, cp), respectively.
Theorem IV.2 (SPICE of Q). (a). For any data {X\), Y£_| generated from (4.1), uni-
formly on Q € Gs(sp,vo) where Gy is defined in (3.22), for sufficiently large constant

M >0, if \a = Mm and 7y = o(1/\/1 + s,), then

K>, — Kl|r = Op(711/5,),
10, — Q2 = Op(r1/1+5,),

1 .
%HQ)\Q —Qllr=0p (71\/ 1+ 5p/P> :

When ||Ky, — K|, = Op(n) withn = O(y), then with probability tending to 1, we have
Wija, = 0 forall (i,7) where w;; = 0.
(b). If the conditions Ny = Mt and 7 = o(1/\/1+ s,) in part (a) are replaced

by Ny = 8M1 /B < [6(1 + B/8)dmax{rrkr, kpkre}t] ! and 11 = o(min{l,[(1 +

67



8/B)kr|}), let r = (0.5+ 2.5(1 +8/8)kr) MTivy, then under the irrepresentability

condition (3.26), with probability tending to 1,
|Q)\2 - Q’OO S T?
HQ/\Q - QHQ < rmin {d7 VP + SP} )
1 -
%HQM —Qllr <7ry\/1+5/p,

and W;jx, = 0 for all (i, j) with w;; = 0, and moreover, sign(w;;»,) = sign(w;;) for all

(i,7) where w;;j # 0 when all nonzero elements of S satisfy |w;;| > 7.

For CLIME, we consider the following set of precision matrices

p
510 My o) = {2 0 e D osl" < 5 192 < My, e o <
]:

for 0 < ¢ < 1. The set G;(q, c,, M, vp) is the original one considered by CLIME in
Cai et al. (2011) for i.i.d. observations. It is a modified version of G, (q, ¢,, M, vo) given
in (3.16) without the condition max;<;<,w;; < vy, which was useful for the proof of the
consistency of CLIME given in Theorem III.3 for a single sample with PDD dependence.
The new proof considered here no longer needs this extra condition. Let the tuning param-
eter { > 4M,\; for the hard-thresholded CLIME estimator QE. Although how to select
an appropriate ¢ in practice is unclear, it is still of interest to present the nice properties of

sparsistency and sign-consistency for Q..

Theorem IV.3 (CLIME of Q). For any data {ng)n 4}5:1 generated from (4.1), uniformly

on Q € Gi(q,cp, My, o), for sufficiently large constant M > 0, if \y = MM, and

0 <e <7 withm =o(l), then

(4.6) Q. — Q| = Op(M?27),

4.7 12 — Qs = Op (c,(M27)' ),
1 -

(4.8) 2—9”95 - QH%‘ =Op (Cp(M;ng)2_q) )
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and @;;. = 0 for all (1, j) where w;; = 0 with probability tending to 1. When all nonzero
elements of S satisfy |w;j| > & + AM,\, sign(@;;.) = sign(w;;) for all (i,7) where
wi; # 0 with probability tending to 1. Moreover, if p > n° with some constant ¢ > 0, then
for any constant C' > 0, there exists a constant M' > 0 such that when M > M' and

min {p*C, 7'1} < e <71, we have

O ((M2T1)2) s

p

E (10 - oP)

p p

B (1192 = QIIf) = 0 (A(M2r)* ™),
1

B (19 = 23) = 0 (6 (Mm)*)

p

4.3.2 Comparison to the Results in Chapter III for . = 1 under the PDD dependence

In this subsection, we compare the convergence rates of the considered estimators ob-
tained in this chapter with those in Chapter III for the single-sample data (i.e., the case
with L = 1) under the PDD dependence defined by (3.1). As mentioned in the intro-
duction section, different proof techniques are used for the theoretical results in the two
chapters, so we have two slightly different sets of convergence rates.

The PDD dependence B(Cy, a) satisfies
(4.9) max |0\ | < Ci(jj — k| + 1) forjk=1,...,n,
1<isp

with a constant C'; dependent on C. Then

Gmax = g1 < 201 X
1+ logn, a=1,
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thus 7, = O(7(n, o)) with

;

\/ (log p)/ne, 0<a<l,
T(n, a) = V/(logn)(logp)/n, a=1,

/(logp)/n, a> 1

Remark IV.1. Consider the generalized thresholding estimators of 3 and R as well as

\

the SPICE estimators of 2. Recall that their convergence rates obtained in Chapter III are

mainly determined by

;

v/ (logp + logn)/ne, 0<a<l,

T =94 (ogn)(logp + loglogn)/n, «=1,

V/(log p)/n, a>1.

By comparing 7 = O(7(n,«a)) with 7/, we see that the convergence rates yielded by

Theorems IV.1 and IV.2 are sharper than those given in Chapter III for v € (0, 1) when

log p = o(logn) and for &« = 1 when log p = o(loglog n), otherwise they are the same.

Remark IV.2. Consider the CLIME estimator of 2. The convergence rates given by
Theorems III.3 and IV.3 under the same norm can be written by the same function of
Cp»q, M, and )\;. Recall that \; =< M£(0<O‘§1)+H(a>1)/ar’ in Theorem II1.3, and \; =
M, = O(M,7(n,«)) in Theorem IV.3. For the scenario when o > 1 and M, grows
with p, the convergence rates given in Theorem III.3 are faster than those deduced from
Theorem IV.3. Otherwise, similar to Remark IV.1, the rates obtained in Theorem IV.3 can

be better than those in Theorem II1.3.

4.3.3 Some General Remarks

Remark IV.3. If g,,., < C with a constant C, then 71 < /(logp)/n, so all the results

given in subsection 4.3.1 except Theorem IV.2 (b) reduce to those for i.i.d. observations
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given in the literature (Rothman et al., 2009; Cai et al., 2011; Rothman et al., 2008; Lam
and Fan, 2009). If additionally assume £ is constant and max{rg, xr} has a constant
upper bound, then the convergence rates of the correlation-based SPICE given in Theo-
rem IV.2 (b) are the same as those shown in Ravikumar et al. (2011) for the covariance-

based SPICE obtained by i.i.d. observations.

The quantities {g,}, sometimes are more suitable to characterize the temporal de-

pendence than the PDD model. Examples are given in the following two remarks.

Remark IV.4. A unvariate stationary time series is said to be short-memory if the matrix
¢, norm of its autocorrelation matrix is bounded by a constant. For the single-sample data,
i.e., L = 1, the PDD model sometimes cannot give suitably theoretical convergence rates
of the considered estimators for certain short-memory dependence with spiked autocor-
relations. Figure 4.1 illustrates such an example, where the autocorrelation function of a
short-memory time series has a finite number of spikes. Fitting a PDD model yields the
parameter o« < 0.2. Note that the convergence rates for &« € (0,1) are mainly driven
by the factor /(log p)/n®. However, if the other (p — 1) univariate time series are also
short-memory such that g,,,, < C with a constant C', from Remark I'V.3 we have a much

smaller factor \/(log p)/n, leading to faster convergence rates.

Remark IV.5. Suppose all the L samples have the same sample size n;, which is common
for fMRI studies, and also satisfy the PDD model in (3.1) with common Cj and «. We can
have 7y = O(7(ny,a)/v/L). If ignoring the independence among the multiple samples
and applying the PDD model to all the Ln; observations, we have 73 = O(7(Lny, «)).
Note that 7(ny, o) /v/L < 7(Lny, o) with equality only when a > 1. When a € (0,1),
7(ny, ) = 7(Lny, a)/LY=*/% = o(r(Ln,, )) if L — oo, yielding sharper convergence

rates.
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Figure 4.1: Autocorrelation function p(t),¢ > 0 of a stationary short-memory time series.

4.4 Simulation Studies

In this section, we evaluate the performance of the sample-covariance-matrix-based
estimating methods for the multiple samples of temporally dependent observations. We
only consider the hard and soft thresholding estimators of R, and the SPICE estimator of
(2 computed by the R package QUIC (version 1.1; Hsieh et al., 2014). The R package
flare (version 1.5.0; Li et al., 2015) for computing the CLIME estimator of €2 is too
slow for simulations, and the R package fastclime (version 1.2.5; Pang et al., 2014) is
not stable. Hence the CLIME estimator is not considered in our numerical examples.

We generate L=6 samples, each of sample size 200, and thus n = 1200. Each setting
is simulated with 100 replications. The temporally dependent observations are generated
by the same method used in Subsection 3.5.2 from a zero-mean Gaussian distribution with

the same model for 3 or €2. For each model of ¥ or €2, we consider the following three
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Table 4.1: Comparison of average (SD) matrix losses for correlation matrix estimation

Spectral norm

Frobenius norm

P« R Hard Soft R Hard Soft
Model 1

200 0.1 29.28(2.006) 2.934(0.039) 2.834(0.033) 52.87(1.355) 14.56(0.176) 13.53(0.170)
0.25 16.52(1.392)  2.219(0.138)  2.344(0.052) 30.86(1.073)  10.46(0.294)  10.37(0.229)
0.5 7.493(0.634) 1.315(0.081) 1.643(0.052) 16.42(0.484)  6.248(0.234)  6.609(0.182)
1 2.550(0.194)  0.722(0.049)  1.055(0.041) 8.654(0.139)  3.420(0.094) 3.882(0.104)
2 1.506(0.082)  0.536(0.041) 0.814(0.036) 6.185(0.067) 2.513(0.063)  2.897(0.076)
Mixed 12.62(1.447)  1.693(0.205)  2.010(0.249) 19.67(1.088) 7.810(0.452) 7.765(0.303)
iid. 1.366(0.081)  0.507(0.042)  0.772(0.038) 5.732(0.063)  2.327(0.059)  2.716(0.075)

400 0.1 55.64(2.527) 2.978(0.013) 2.901(0.018) 106.1(1.928)  20.88(0.105)  19.74(0.179)
0.25 31.74(1.745)  2.395(0.125)  2.494(0.043) 62.37(1.372) 15.71(0.525) 15.73(0.254)
0.5 14.20(0.795)  1.447(0.076)  1.792(0.040) 33.15(0.614)  9.430(0.268)  10.19(0.203)
1 4.288(0.210) 0.800(0.052) 1.164(0.038) 17.35(0.141)  5.113(0.102)  6.031(0.122)
2 2.322(0.076) 0.589(0.037) 0.916(0.031) 12.41(0.071)  3.748(0.102)  4.527(0.082)
Mixed  25.25(1.963) 1.848(0.187) 2.507(0.388) 39.69(1.343) 11.85(0.490) 12.08(0.324)
iid. 2.072(0.074)  0.554(0.037)  0.855(0.025) 11.51(0.059)  3.512(0.067) 4.213(0.076)

Model 2

200 0.1 29.18(1.674)  1.806(0.047) 1.734(0.018) 53.05(1.216)  12.90(0.235)  12.00(0.163)
0.25 16.40(1.186) 1.411(0.146)  1.384(0.048) 30.92(1.025) 8.275(0.425) 8.847(0.209)
0.5 7.410(0.573)  0.730(0.105) 0.881(0.041) 16.44(0.464)  4.442(0.282)  5.223(0.170)
1 2.456(0.161)  0.254(0.071)  0.487(0.024) 8.664(0.123)  1.020(0.075)  2.758(0.068)
2 1.409(0.057)  0.132(0.016) 0.353(0.017) 6.191(0.061)  0.686(0.029) 1.964(0.048)
Mixed 12.63(1.344)  0.948(0.175) 1.517(0.279) 19.69(1.008)  5.934(0.302) 6.361(0.313)
iid. 1.266(0.054)  0.122(0.015)  0.329(0.016) 5.739(0.056) 0.644(0.031)  1.832(0.045)

400 0.1 55.16(2.297) 1.817(0.042) 1.767(0.012) 106.1(1.904)  18.59(0.137)  17.59(0.174)
0.25 31.55(1.518)  1.671(0.234)  1.521(0.124) 62.44(1.290) 12.72(0.604)  13.46(0.216)
0.5 14.06(0.704)  0.842(0.191)  0.995(0.078) 33.16(0.636)  7.029(0.278)  8.147(0.167)
1 4.178(0.198) 0.314(0.050) 0.524(0.019) 17.36(0.135)  1.497(0.087)  4.274(0.067)
2 2.182(0.059) 0.139(0.014) 0.381(0.014) 12.42(0.062)  0.982(0.032)  3.074(0.054)
Mixed 25.31(1.926)  1.092(0.220)  2.025(0.322) 39.79(1.293)  8.792(0.222)  9.953(0.291)
iid. 1.923(0.049)  0.130(0.014)  0.353(0.014) 11.51(0.050)  0.914(0.035) 2.823(0.045)

scenarios for the L=6 samples:

1. Same «: all samples have the same o € {0.1,0.25,0.5,1,2};

2. Mixed a: o = 0.25 for the first and second samples, o = 0.5 for the third and fourth

samples, and o = 1 for the rest two samples;

3. The 1.i.d. case.

Two different dimensions are considered: p = 200 and p = 400. The tuning parameter for
each simulated data set is prepared with 50 different candidate values (see Appendix B.3).
We run 6-fold cross-validation with data naturally partitioned by the 6 independent sam-

ples. The estimation performance is measured by both the spectral norm and the Frobenius
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Table 4.2: Comparison of average (SD) matrix losses for precision matrix estimation

Spectral norm

Frobenius norm

P a $-1 SPICE s-1 SPICE
Model 3
200 0.1 78.11(3.163)  2.289(0.134) 273.5(3.776)  16.07(0.332)
0.25 20.15(0.957) 2.381(0.052) 70.64(1.073)  10.82(0.138)
0.5 9.102(0.407)  2.640(0.036) 31.35(0.455) 11.28(0.184)
1 4.499(0.236)  2.542(0.026) 14.84(0.251)  10.65(0.129)
2 2.961(0.158)  2.249(0.027) 9.657(0.159)  9.130(0.129)
Mixed 8.937(0.399)  2.523(0.037) 30.46(0.451)  10.69(0.160)
iid. 2.696(0.158) 2.181(0.027) 8.738(0.163)  8.779(0.126)
400 0.1 190.6(6.810)  2.276(0.139) 870.4(8.239)  22.46(0.356)
0.25 48.64(1.609)  2.570(0.029) 218.3(2.091) 16.33(0.125)
0.5 21.61(0.768)  2.798(0.025) 95.40(0.964)  17.13(0.178)
1 10.66(0.357)  2.718(0.018) 45.22(0.513)  16.42(0.129)
2 6.995(0.243)  2.538(0.019) 28.96(0.347) 15.03(0.145)
Mixed 21.80(0.732)  2.700(0.027) 93.99(0.991)  16.38(0.175)
iid. 6.287(0.224)  2.475(0.021) 25.91(0.300)  14.56(0.152)
Model 4
200 0.1 67.94(2.142)  2.511(0.305) 264.0(3.032)  14.49(0.524)
0.25 17.56(0.649)  1.114(0.063) 68.29(0.841)  6.264(0.134)
0.5 8.009(0.319) 1.271(0.048) 30.46(0.369)  6.745(0.202)
1 4.015(0.172)  1.130(0.031) 14.55(0.217)  6.276(0.155)
2 2.677(0.110)  0.942(0.026) 9.520(0.142)  5.260(0.130)
Mixed 7.867(0.314)  1.181(0.049) 29.58(0.395)  6.042(0.196)
iid. 2.453(0.123)  0.897(0.024) 8.617(0.142)  5.005(0.129)
400 0.1 169.6(5.240)  2.306(0.242) 841.5(7.070) 18.61(0.467)
0.25 43.45(1.252)  1.345(0.056) 211.4(1.765) 10.15(0.183)
0.5 19.41(0.613)  1.467(0.029) 92.66(0.830) 11.33(0.218)
1 9.630(0.282)  1.342(0.028) 44.18(0.440)  10.82(0.185)
2 6.385(0.200)  1.146(0.023) 28.43(0.312) 9.284(0.163)
Mixed 19.67(0.627)  1.395(0.040) 91.30(0.840)  10.42(0.260)
iid. 5.783(0.190)  1.092(0.022) 25.47(0.256)  8.826(0.172)

Table 4.3: Comparison of average (SD) TPR(%)/FPR(%) for Models 2 & 4

Model 2 Model 4
P « Hard Soft SPICE
200 0.1 5.85(3.03)/0.01(0.01) 39.92(3.52)/2.93(0.68) 95.88(0.96)/26.31(0.67)
0.25 43.68(3.24)/0.04(0.02) 73.75(2.46)/4.62(0.62) 99.83(0.19)/30.68(0.78)
0.5 77.88(3.81)/0.05(0.03) 98.24(0.79)/5.82(0.78) 100.00(0.03)/29.95(0.79)
1 99.85(0.21)/0.00(0.00)  100.00(0.00)/5.70(1.01) 100.00(0.00)/27.25(1.01)
2 100.00(0.00)/0.00(0.00)  100.00(0.00)/6.13(1.14) 100.00(0.00)/26.95(0.99)
Mixed 57.11(4.88)/0.02(0.02) 93.85(2.19)/5.36(0.68) 100.00(0.03)/30.71(0.87)
iid. 100.00(0.00)/0.00(0.00)  100.00(0.00)/5.60(1.02) 100.00(0.00)/26.96(0.92)
400 0.1 3.08(1.15)/0.00(0.00) 32.42(3.43)/1.38(0.47) 92.49(0.98)/15.83(0.40)
0.25 38.31(3.88)/0.02(0.01) 67.78(2.09)/2.41(0.37) 99.56(0.23)/19.25(0.49)
0.5 70.63(3.17)/0.02(0.01) 96.92(0.81)/3.15(0.44) 99.99(0.03)/19.55(0.54)
1 99.77(0.18)/0.00(0.00)  100.00(0.00)/3.15(0.35) 100.00(0.00)/17.69(0.67)
2 100.00(0.00)/0.00(0.00)  100.00(0.00)/2.91(0.54) 100.00(0.00)/17.42(0.65)
Mixed 52.73(1.67)/0.01(0.00) 89.86(1.92)/2.74(0.38) 99.99(0.03)/19.81(0.63)
ii.d. 100.00(0.00)/0.00(0.00)  100.00(0.00)/3.15(0.27) 100.00(0.00)/17.72(0.73)

74



norm. The sparsity recovering ability is evaluated by the TPR and FPR defined in Subsec-
tion 3.5.2.

The simulation results are summarized in Tables 4.1-4.3. We see that the sample corre-
lation matrix and the inverse of sample covariance matrix have the worst performance. For
the considered estimating approaches based on the sample covariance matrix, the overall
pattern is similar to what we observed in Subsection 3.5.2 for L = 1, with reduced matrix

losses due to the larger sample size.

4.5 Real Data Analysis

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder af-
fecting about 7.2% chirden worldwide (Thomas et al., 2015). ADHD can be divided into
three different types based on symptom presentation: predominantly inattentive type, pre-
dominantly hyperactive-impulsive type, and combined type. The combined type is the
most common type of ADHD. We thus analyze the group-level functional connectivity
of children with combined type ADHD (ADHD-C) compared with normal controls (NC)
using the rfMRI data obtained from the ADHD-200 Preprocessed repository (neurobu-
reau.projects.nitrc.org/ADHD200). The data set contains images with 351 regions of in-
terest (ROIs) from 15 boys with ADHD-C and 15 age-matched healthy boys. All the
subjects are medication naive and right-handed with age between 9 and 15 years. The
rfMRI data have been preprocessed by The Neuro Bureau using the Athena pipeline (see
details on the above website). Each subject has 232 temporal images. Thus, for either
ADHD-C group or NC group, p = 351, L = 15, and ny = --- = ny = 232. The time
series of each ROI is the spatially averaged time series of all the voxels within the ROL.
Following the suggestion of Ng et al. (2013), we normalize each subject’s time series by

subtracting its sample mean and dividing by its sample standard deviation to reduce the
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Figure 4.2: Absolute values of sample autocorrelation functions. For each univariate time series, the model
(t 4+ 1)~ is fitted to its absolute sample autocorrelations. Here |p,(t)| represents the absolute
sample autocorrelation function corresponding to the time series with the smallest fitted a among
all the p time series of the /-th subject. The wide solid line is the fitted curve (¢ + 1) ~%min, where
Qmin 18 the smallest fitted o among all the L subjects.

inter-subject variability.

We illustrate the temporal dependence in each group using a rough estimation of the
upper bound of ¢g,... Because the sample autocorrelation matrix is not a consistent es-
timator of the true autocorrelation matrix under the spectral norm (Wu and Pourahmadi,
2009, Theorem 1), it is not appropriate to apply the spectral norm of each sample autocor-
relation matrix for the estimation of ¢,,... Instead, we first fit the absolute values of each
sample autocorrelation function by (¢ + 1)~ using the nonlinear least-squares method.

Denote &,,;, to be the smallest fitted « that is obtained from all the L xp time series of
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one of the groups. Then approximate max,<; max;<, HG)I@ |1 by the matrix ¢; norm of

((t+ 1)*@’“1“) which gives an estimated upper bound for gy, following from (4.3).

232x232°
We obtain i, = 0.46 for the NC group and &;,, = 0.42 for the ADHD-C group, and
the corresponding ¢.,.. is roughly bounded by 44.8 and 51.2, respectively. More details
are provided in Figure 4.2.

We estimate the correlation matrix and the partial correlation matrix for the marginal
and the direct functional connectivities of the 351 ROls, respectively. The correlation ma-
trix is estimated by the hard thresholding method. We estimate the (i, j)-th off-diagonal
entry of the partial correlation matrix by —w;;/ \/m using the SPICE estimator Q=
(@ij)pxp Of the precision matrix. The optimal value of each tuning parameter is selected
from 50 different candidates (see Appendix B.3 with the largest candidate value to be 1)
by using the 5-fold cross-validation that randomly divides the 15 samples into 5 groups,
each with 3 samples, together with the one-standard-error rule (Hastie et al., 2009). We
find that about 46.5% and 63.1% of pairs of ROIs are marginally connected for the NC
and the ADHD-C groups with threshold values of sample correlations around 0.105 and
0.066, respectively. Although the ADHD-C group has a larger number of nonzero es-
timated correlations, the average of the absolute values of those nonzeros is 0.170 with
standard deviation 0.107, which is smaller than 0.215 for the NC group with standard de-
viation 0.111. In terms of the direct connectivity, about 12.6% of all the pairs of ROIs
are connected for the NC group, and 11.2% for the ADHD-C group. The averages of the
absolute values of nonzero estimated partial correlations are around 0.034 for both groups
with standard deviation 0.055 for NC and 0.056 for ADHD-C.

We reorder the estimated correlation matrix of the NC group using the average linkage
hierarchical clustering method (Everitt et al., 2011) based on the dissimilarity measure

dij = 1—|sH(p;;)| for the (4, j)-th entry, so that entries with large absolute values |sZ (p;;)|
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are clustered around the diagonal. The resulting order is also applied to the other three
estimated matrices for ease of comparison. The heat maps of the reordered estimated
matrices are shown in Figure 4.3. In the heat maps, the absolute values of the entries are
presented, the diagonals of the estimated partial correlation matrices are set as zero for
a better visual effect, and the 10 clusters chosen by visualization are framed with black
rectangles.

From Figure 4.3, we see that the ADHD-C group generally has weaker marginal con-
nectivity than the NC group, which can be clearly seen in the largest block on the lower-
right corner of the heat maps. However, both groups have very weak and similar direct
connectivities. The corresponding cluster of the largest block contains 82 ROIs. The node
strength (Barrat et al., 2004) of a brain node (i.e., a ROI here) is defined for marginal
connectivity by the sum of its absolute correlations with the other nodes of interest, and
similarly defined for direct connectivity by using absolute partial correlations instead. We
compare ADHD-C to NC by using ROIs’ node strength within the largest cluster. Fig-
ures 4.4 shows the difference of estimated node strength of ADHD-C and NC in this
cluster. We see that most ROIs in the cluster have reduced node strength of marginal con-
nectivity for ADHD-C. The two most severe losses can be seen in areas at the coordinates
Z = —44 and Z = 64 in Figure 4.4 (a). These two areas are respectively located in
the right middle temporal cortex and the left superior parietal cortex, which have been re-
ported with abnormalities for ADHD patients in the literature (Kim et al., 2002; Fan et al.,
2014b). For the direct connectivity, the estimated differences in node strength between

ADHD-C and NC are very small in this cluster.
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Figure 4.3: (a,b) Heat maps of the absolute values of estimated correlation matrices for NC and ADHD-
C. (c,d) Heat maps of the absolute values of estimated partial correlation matrices for NC and
ADHD-C.
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4.6 General Results for Estimation Using Weighted Sample Covariance Matrix

In previous sections, we use the sample covariance matrix 3 as the initial estimator
of 3 in the considered estimating procedures. In fact, we can have consistency results of
the final considered estimators by using any given initial estimator, denoted as ¥, if the

following concentration inequality
(4.10) Pl -2 < Mu] =1-0@p™)

holds with u = o(1) and some positive constants M/, M’. Smaller u yields faster conver-
gence rates. This motivates us to construct an initial estimator of 3 with the max-norm
error as small as possible.

An equivalent expression of 3 in (4.4) is

~

®2

L
(4.11) =50 (Z ﬂﬂw)) 7
n n
=1 =1
where E =n, Y " (X (¢ )) and o = nt M X () In the above expression of
f), ne/n can be viewed as the weight of the /-th sample. For i.i.d. observations, n, is
the effective sample size of the ¢-th sample. Intuitively, replacing n, and n by their cor-
responding effective sample sizes (defined in a certain reasonable way) for the temporally

dependent observations may yield a smaller u. Thus, we consider the following weighted

sample covariance matrix:

(4.12) 3 = (Ga)pxp = Xo — 1% = iwzﬁ(()e) - <iwzﬂ(£))®2;

=1 =1
where the weight @y = n,f, '/ >, n,f; " with any given f, > 0 foreach ¢ = 1,..., L.
Note that { f,} and {cf,}, with an arbitrary constant ¢ > 0, give the same weights {c;}.
The corresponding weighted sample correlation matrix is defined by R = (laij)pxp =

(5ij// 5ii6jj)pxp . By the following equivalent form of (4.12)
L ng
(4.13) =3 TZ_; S (X —
]
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it is easily shown that X is positive-semidefinite and |I~{|OO < 1. Define

max{\/(3, nege/ f7) log p, max,(ge/ fo) log p}

4.14 -
( ) E > e/ fo

which will become clear in the proof of the following Theorem IV.4. For any given {w;},
a concentration inequality in the form of (4.10) is given in Theorem IV.4 and the corre-
sponding asymptotic properties of the considered estimators started with > are given in

Theorem IV.5 that generalizes all the theorems given in Subsection 4.3.1.

Theorem IV.4. Assume data {X](fx)n J1<ie<r are generated from (4.1) with | X, < vy for

a constant vy > 0. For any constant M’ > 0, there exists a constant M > 0 such that

when 15 = o(1), we have
(4.15) P2 = Ble < M| = 1- 0.

Theorem IV.5. All the statements given in Theorems IV.1-1V.3 hold more generally when

T, 3 and R are replaced by 15, > and R respectively.

We can see that 75 is a main factor determining the convergence rates. Define two ran-
dom variables f and g with sample spaces { f;}%, and {g,}%_, respectively and P(g/f =

ge/ fo) = neg;t) o5 migt. Then 7, can be further written as

e d [ losD (var(g/f) +1) (log p) max(g/ f)
=g \EG/IPP ) (S, mea VEG/D) |

Hence, if and only if f, = cg, with an arbitrary constant ¢ > 0 for all ¢, 7, attains its

minimum. The minimum is

. lo
(4.16) o= /—Z Sf;g@
¢

when 7 = o(1). Hence, using the sample covariance matrix 3 as the initial estimator

yields the optimal 75 only when all g, are equal, e.g., when all the n observations are i.i.d..
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In fact, if gmax/ ming g, = C with a constant C, then 7y < 75 when 75 = o(1). Moreover,
when f, = 1 for all ¢, we have 7 = 71, hence Theorem IV.5 reduces to all the theorems

with 3 as the initial estimator given in Subsection 4.3.1.

4.7 Discussion

In Section 4.6 we see that using the weighted sample covariance matrix in the estima-
tion yields faster convergence rates when f, = g, for all £. However, {g,} are unknown in
practice and are difficult to be estimated. Even for stationary time series, it is well-known
that they cannot be consistently estimated using the sample autocorrelation matrix (Wu
and Pourahmadi, 2009, Theorem 1). Developing a procedure for choosing appropriate

weights in (4.12) is of great interest.
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CHAPTER V

Conclusion and Future Work

Classical statistical methods often fail to handle high dimensional data, for which the
variable dimension p is comparable to or larger than the sample size n. Although sig-
nificant development has been made in high dimensional data analysis over the past two
decades, most high dimensional methods are assumed on certain independent structures
of the data. There is a great need for statistical methods that are suitable for analyzing
large-scale neuroimaging data with spatial and/or temporal dependence.

Motivated by this need, this dissertation focused on two major high dimensional prob-
lems for dependent data. We considered (i) the multiple testing problem for spatially
correlated data in Chapter II, and (ii) the estimation of large covariance and precision ma-
trices from a single sample of temporally dependent observations in Chapter III and from
multiple independent samples in Chapter IV.

In Chapter II, we considered LIS-based FDR procedures based on HMREF for 3D neu-
roimaging data, where HMRF provides a natural way of modeling spatial correlations. The
proposed procedures aim to minimize the FNR while FDR is controlled at a pre-specified
level. We found that brain regions are spatially heterogeneous, and hence we modeled each
region separately by a single HMRF, and implemented the PLIS procedure to minimize the

global FNR. We proposed a GEM algorithm based on the penalized likelihood to obtain
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the HMRF parameter estimates, which overcomes the unboundedness of the original like-
lihood function. Numerical analysis showed the superiority of the HMRF-LIS-based pro-
cedures over commonly used FDR procedures, illustrating the value of HMRF-LIS-based
FDR procedures for spatially correlated image data.

We also proved the validity and optimality of the oracle HMRF-LIS-based procedures,
for which the parameters are known. However, when the parameters are unknown, the
asymptotic equivalence of the data-driven procedures to the oracle procedures remains
an open problem, although they performed similarly in our extensive simulations. More-
over, one can extend the Ising model to more complicated MRFs, but how to examine the
model fitness of the selected MRF is unknown. These two points are directions for future
research.

In Chapters III and IV, properties of consistency, sparsistency and sign-consistency
were established for the generalized thresholding estimation of covariance/correlation ma-
trices and for the CLIME and SPICE estimators of precision matrix using a single sample
and multiple independent samples of temporally dependent observations, respectively. A
different proof technique to that in Chapter III was used in Chapter IV. They each have
their own advantages in terms of the convergence rates.

The results obtained in these two chapters for a single sample apply to the temporal
dependence with longer memory than those in Chen et al. (2013) and Bhattacharjee and
Bose (2014). As expected, the convergence rates of considered estimators decrease as the
temporal dependence increases. Under similar conditions in Cai and Zhou (2012), it can
easily be shown that the rates of convergence in mean square are minimax optimal for
the covariance/correlation matrix estimation under temporal dependence with g, < C'
for some constant C' > (. One may consider the minimax optimal rates for the other

cases, especially for strong temporal dependence. A gap-block cross-validation method
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was proposed for the tuning parameter selection, which performed well in simulations by
using parameters f{; = Hs = 10. The theoretical justification of this intuitive cross-
validation and its optimal choices of H; and H, are of future interest.

For multiple independent samples, the results of Chapter I'V can give faster convergence
rates than those in Chapter III. Compared to using the sample covariance matrix, using the
weighted sample covariance matrix in the considered estimating methods can theoretically
improve the rates if appropriate weights are given. It is of great interest to develop a
procedure for selecting such weights in practice.

A potential way to improve the current convergence rates is incorporating the estima-
tion or modeling of temporal dependence into the estimating procedures of large covari-
ance and precision matrices. This can be an interesting topic.

In conclusion, we proposed an efficient FDR controlling procedure for certain spatially
correlated data, and we also showed that several commonly used methods of estimating
covariance and precision matrices for independent observations can be applied to a wide
family of temporally dependent data. This dissertation makes an innovative contribution

to the analysis of high dimensional dependent data, in particular, neuroimaging data.
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APPENDIX A

Supplementary Materials for Chapter 11

A.1 Theoretical Results of the Oracle LIS-Based Procedures for HMRF

In this section, we show the theoretical results of the oracle LIS-based procedures orig-
inally for HMC model in Sun and Cai (2009) (Theorems 1 to 4 and Corollary 1) and Wei
et al. (2009) (Theorems 1 and 2), including the validity and optimality of the procedures,
also hold for our HMRF model. Here, an FDR procedure is called valid if it controls FDR
at a prespecified level o, and is called optimal if it minimizes marginal FNR (mFNR) while
controlling marginal FDR (mFDR) at the level a. Note that the asymptotic equivalence
between FDR and mFDR as well as that between FNR and mFNR hold under certain con-
ditions (Genovese and Wasserman, 2002; Xie et al., 2011), but remain open questions for
both HMC and HMRFE.

Unless stated otherwise, the notation in this section is the same as in Sun and Cai (2009)
to which readers are referred. Define m;; = P(©; = j),i € S,j = 0, 1. The model homo-
geneity, i.e., m;; = 7r](-k) for all 7 in k-th HMC, is required in Sun and Cai (2009) and in Wei
et al. (2009) but fails to hold for HMRF because the boundary voxels and interior voxels
have different numbers of neighbors. However, the theory of the oracle procedures still

holds for HMREF if we redefine the average conditional cumulative distribution functions
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(CDFs) of the test statistic T'(x) = {T;(x) : i € S} by

Zies Wing (t)
Zz‘eS Tij

(A.1) GI(t) =
where G/ (t) = P(T; < t|©; = 7).

For HMC model, Sun and Cai (2009) proved the optimality of oracle LIS procedure
in their Theorems 1 to 3 and Corollary 1, and its validity in their Theorem 4; Wei et al.
(2009) showed the validity of oracle SLIS procedure in their Theorem 1, and both validity
and optimality of oracle PLIS procedure in their Theorem 2. We modify the statements in
these theorems and corollary for HMRF by

(i) replacing HMM by HMRF;
(i) in Corollary 1 of Sun and Cai (2009), replacing the definition of G’(¢) by (A.1) and
the equation g'(t)/g°(t) = (1/t)mo/m1 by g*()/g°(t) = (1/t) Doics mio/ Dies it
(111) in Theorem 2 of Wei et al. (2009), more precisely stating the optimality of oracle

PLIS procedure based on mFDR and mFNR.

For simplicity, we omit all the modified statements and only provide their proofs in the

following.

A.1.1 Modified Theorem 1 of Sun and Cai (2009) for HMRF

Proof. Following the proof of Proposition 1 in Sun and Cai (2007), we have

(A2) 9°(c)G(c) = G°(c)g'(c) > 0
and
(A.3) ()1 =G )] — g'(c)[1 = G°c)] < 0.
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Additionally, by (A.1),

E(Nyp) B Zz’eS P(T; < ¢,0;, =0)
E(R) Y P(Ti<o
Dics TioGi (0)
> ies(minGY(c) + T Gi(c))
_ G%(c) Dics o
B GO(C) ZieS Tio + G! (C) ZieS 41 7

mFDR(c) =

and

E(No1) B ZiES P(T;>c,0;,=1)
E(S)  YiesP(Ti>c
Diesmi[l — Gi(c)]
> ies(mioll = G ()] + ma[l = Gi(e)])
[1—GY)] D s ma
[1=G%c)] D g mio + [1 = GHe) D ies Tt

mFNR(c) =

Then,

d(mFDR(c)) _ (90 ©F mo

dc
icS

— G(c) Zﬂio [90(0) Zmo +9'(c) Zﬂill )

ies ies ies
/ G0)Y mo+Ge)Y Wil]
ies ies
_ [9°(0)G () = G*()g" () (Eies Tio) (ies Tir)
[G(c) Zz‘eS mio + G'(c) Zies mi)?

G(c) Z o + G'(¢) Z 7T¢1]

i€S €S

>0
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following from (A.2), and

d(mFNR() 0 1
N N .

1€S zeS €S
- ([1 — GY(0)] ZEl) ( Zﬂzo g'(c) Z%‘l) }
([1 — G(0)] Zﬂio +[1-G'(c Z?Tn)

(")

[1 =G e)] = g' ()1 = G (D ieg Tio) (D i)
([1=G%)] Y sesmio + [1 = GHe) D s min)?

<0

following from (A.3). Hence we obtain part (a) and (b) of the theorem.

For part (c), the classification risk with the loss function

Z{A (1—0,)0;+6,;(1—16)}

zGS

is

E[LA(©,5)] Z{AP i =0T, <c)+ P(©; =1,T, > ¢)}
ZES

= Z{)\WloG +ma[l — GH(o)]}

ZES

{)\GO Zﬂ'm‘i‘ 1_G1 Zﬂ'zl}

€S €S

The optimal cutoff ¢* that minimizes this risk satisfies

91 (C*) Zies i1
9°(c*) D ies Tio

Since T € T, we have g'(c*)/g"(c*) is monotonically decreasing in c¢*. Thus, A(c*) is

A:

monotonically decreasing in c*. [

A.1.2 Modified Theorem 2 of Sun and Cai (2009) for HMRF

Proof. Suppose there are v, hypotheses from the null and k;, hypotheses from the nonnull

among the r rejected hypotheses when the decision rule § (L, ¢y ) is applied with test statis-
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tic L and cutoff ¢;,. We have v, = >, ¢ P(©;, = 0,L; < cy)and k, = >, o P(©; =
1, L; < cr), and the classification risk
R)\(a) = E[L)\(oz)(e)a 5(L7 CL))]

= %ZM(O&)P(@Z- =0,L;<c)+PO©;=1,L; >cp)}
i€S

1
(A4) = N{Zml—l—)\(a)vL—kjL}.

Then following the proof of Theorem 1 in Sun and Cai (2007) using the expression (A.4)

for the classification risk I2y(4), we complete the proof. U

A.1.3 Modified Theorems 3 and 4 of Sun and Cai (2009) for HMRF

Proof. The proofs are the same as those of Theorems 3 and 4 in Sun and Cai (2009), thus

omitted. O]

A.1.4 Modified Corollary 1 of Sun and Cai (2009) for HMRF

Proof. Following the proof of Corollary 1 in Sun and Cai (2009) with the expression of

the risk I? replaced by
R=—%" {%OG%*) + ol — Gl(t*)]}
N P l Z
= i {lGo(t*) Zﬂ'io —+ [1 — Gl(t*)] Zﬂ'ﬂ}
Nt = €S

and their equation g*(t*)/¢°(t*) = (1/t)mo/m substituted by the new equation g*(¢*) /¢°(t*) =
(1/t) Y e ™o/ D ;e Tit» We complete the proof. O

A.1.5 Modified Theorems 1 and 2 of Wei et al. (2009) for HMRF

Proof. For Theorem 1 and the validity of oracle PLIS procedure in Theorem 2, the proofs
are the same as those in Wei et al. (2009). For the optimality of oracle PLIS procedure in
Theorem 2, the proof is the same as the proof of the optimality of oracle LIS procedure

given above. 0
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A.2 Gibbs Sampler Approximations

This section presents the approximations of quantities of interest in GEM. Let {2 be the
set of all possible configurations of @: Q = {0 = (6,)scs : 0, € {0,1},s € S}. By the
ergodic theorem of the Gibbs sampler (see Lemma 1 and Theorem 1 in Roberts and Smith
(1994)), for any Gibbs distribution (see definition (4.3) in Geman and Geman (1984)) 7 (9)

and any real-valued function f(@) on €2, with probability one,

1 — 4
Jim 13250 = | 1@yix(6) = Eis(@)]
where 0% i = 1,....n are samples successively generated using the Gibbs sampler by
7(6). For our HMRE, it is easy to see that both the Ising model probability distribu-
tion P,(0) and the conditional probability distribution Pg (8|x) are Gibbs distributions.
Thus by the ergodic theorem, the following quantities can be approximated using Monte

Carlo averages via Gibbs sampler:
U(t+1)(§0) = E@(ﬂ [H(©)|z] — E,[H(O)]

= Z < ot w) H(B(i"”))> :

1) = VaryH(®)

Q

= E,[(H(®) - E,[H(©))*’]

n n ®2
1 A 1 _
(1790) . (.7790)
= :<H(9 ) nE_:H(G )) ,

1@) = Ppw(Os =ilz) = Egw[L(0; = i)|a]

Q

= Egn[1(0; = )1(0 € Q)|z]

~ _Z (tk:r: :>

—— = E,lexp{—¢p"H(O)}]

Q

1 « ,
~ > exp{—@ H(6"9)},
=1
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and

Qa1 [21) — Qy("|@Y)
= E<1>(t) [log Pcp(tJrl,Tn) (@) — log Psom (@) \a:]
. 7 SO(t)
= Egol(e"™ — o) H(O)|z] +log ((—)))

1 i .
_((p(t—i-l,m) . QO(t))TZH(O(t’Z’m))
=1

n
e . T ip® ;
Zi:l eXp{—go(t) I—I(g( P ))}

where {8%) . 0%} and {81 ... 8"™®)] are large n samples successively gener-

Q

ated using the Gibbs sampler by P,(6) and P (8|x) respectively, and C'is the cardinal-

ity of set (2.

A.3 ADNI FDG-PET Imaging Data Analysis

We apply the PLIS procedure with HMREFs to the analysis of ADNI FDG-PET imag-
ing data, which is compared with BH, g-value and CLfdr procedures. Since the FDG-PET
scans were normalized to the average of pons and cerebellar vermis, areas of the brain
known to be least affected in AD, it was not surprising that almost all the signal voxels
are found with decreased CMRgl. Both PLIS and CLfdr procedures discovered signifi-
cant metabolic reduction, with a regional proportion of signals > 50%, in brain regions
preferentially affected by AD, including the posterior cingulate (BAs 23, 31; Mosconi et
al., 2008; Langbaum et al., 2009), parietal cortex (BAs 7, 37, 39, 40; Minoshima et al.,
1995; Matsuda, 2001), temporal cortex (BAs 20 to 22; Alexander et al., 2002; Landau et
al., 2011), medial temporal cortex (BAs 28, 34; Karow et al., 2010), frontal cortex (BAs
8 to 11, and 44 to 47; Mosconi, 2005), insular cortex (Perneczky et al., 2007), amygdala
(Nestor et al., 2003) and hippocampus (Mosconi et al., 2005). In regions also typically

affected in AD, such as anterior cingulate (BAs 24, 32; Fouquet et al., 2009) and occipital
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cortex (BAs 17 to 19; Langbaum et al., 2009), the proportions of signals found by PLIS are
49.6% and 39.0%, respectively, compared with 35.4% and 11.6% found by CLfdr, 12.2%
and 0.94% by g-value, as well as only 1.24% and 0.87% by BH.

With respect to the regions that are relatively spared from AD (Benson et al., 1983;
Matsuda, 2001; Ishii, 2002) or rarely reported in the literature of the disease, caudate,
thalamus and putamen are found with high proportions of signals by PLIS (> 45%) and
CLfdr (> 25%) in each of these regions; signals in medulla, midbrain, cerebellar hemi-
spheres, pre-motor cortex (BA 6) and primary somatosensory cortex (BAs 1, 2, 3, 5) are
each claimed with a proportion greater than 20% by PLIS, but very sparse found by the
other three procedures. Since MCI as a group consists of a mix of patients, many of them
will progress to AD but some will not which may include subjects with corticobasal de-
generation (Ishii, 2002), frontotemporal dementia (Jeong et al., 2005), or Parkinsonism
(Huang et al., 2007; Zeman et al., 2011; Ishii, 2014), it is not surprising that some areas

not typical of AD patients were found to be abnormal in the MCI group.
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APPENDIX B

Supplementary Materials for Chapter 111

This Supplementary Material contains the detailed proofs of the general theorems given
in Subsection 3.6.1, the instructions for selecting the candidates values of tuning parame-

ters, and additional results of the rfMRI data analysis.

B.1 Technical Lemmas

The following lemma is an extension of the “Hanson-Wright inequality” (Rudelson and
Vershynin, 2013, Theorem 1.1) and “Hoeffding-type inequality” (Vershynin, 2012, Propo-
sition 5.10) for independent sub-Gaussian data to that for a certain type of uncorrelated

sub-Gaussian data.

Lemma B.1. Let e = (ey,e3,...)" be an infinite-dimensional random vector with in-
dependent standard sub-Gaussian components, each with the same parameter K > 1
defined in (3.2). Let Y = Ae be a well-defined random vector with length d in the sense
of entrywise almost-sure convergence and mean-square convergence, and AAT = T.,.

Then for t > 0, there exists a constant ¢ > 0 only dependent on K such that

12 t
B.1 P[lYTBY — E[YTBY]| >t] <2 —emin [ ———
®D ! Y'BY 24 < 209 {~emin (g 57, ) |
and
ct?
B2) PIIBTY] 2 < exp(t) - exp { i |
F

96



where nonzero matrix B = (b;;) x4, and b is a d-dimensional nonzero vector.

Proof. Consider the nontrivial case when ¢ > 0. Let A = (a;;)axcor Am = (@ij)axm
consist of the first m columns of A, e,, = (ey, €a, ..., €,)T consist of the first m elements
ofe,and Y,, = (Y/",...,.Y,")T = A,.e,,. Foreach i, when m — oo, we have Y, =
>l aije; Ly, = > o2y aijej, with 377 e — Land Y0 agap; — 0 for i # k

following from AAT = I, 4. Thus, for dimension d and positive values 1, €5 and J, there

exists a number N such that for any m > N, we have

(B.3) P[Y'BY - Y/BY,,| >&] <9,
(B.4) Pb"Y —=b"Y,,| > ] <9,
" g o g .
(B.5) D al—1]< 52, and |» " ajar;| < d—; fori # k.
j=1 j=1

Since E(Y ,,) = A,,E(e,,) = 0 and cov(Y,,,) = A, cov(e,,)AL = A, AL we have
BlY,BY,] = Do1<ipzd Vi BV = 300 ieq Uik 225 Gijang. SO ElY'BY] =
Z?Zl b;;. By Lemma 5.5 in Vershynin (2012), there exists a constant ¢; only dependent on
K such that

sup k™ V2(Ele;|F)V* < ¢ forall j =1,2,....
k>1

Without loss of generality, we assume ¢; > 1. Then by Theorem 1.1 in Rudelson and

Vershynin (2013) and Proposition 5.10 in Vershynin (2012), for every ¢ > 0, there exists
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an absolute constant ¢y > 0 such that

Y%BYm— Z bikiaijakj

1<ik<d  j=1

P

> t/2]

=P|[|Y]BY,, — E[YBY,]| > /2]

< P|[le],AlBA, e, — Ele} AT BA, e,]| > t/3]

12 t
<2 — ]
= eXp{ CQmm(9ca*||ATTnBAm||%’3c%||A§BAm||2)}

Co . 2 t
B. <92 _
(B0 = eXp{ 9c%m1“<r\A$nBAmr\%’HA,THBAmHQ)}
and
t2
B.7) P[|b'Y,,| >1t/2] = P[|bT A, e,| > t/2] < exp(1)ex {—02—}
B.7) P['Y, >1/2] =P 2 1/2] < exp(t)exp { ~ it

Letting e < V/d, then by (B.5), we have

meax(AZ;@Am) = @max(AmAgz) = ||AmA717;||2

< [AnA,, — AAT[s + [[AAT]l2 < [|ALA;, — Towdllr +1

i=1 k>i \j=1 j=1

< (@ — DB/t 43/ +1 < \JBd2 +d) +1<0,

By Lemma 1 in Lam and Fan (2009), we have || M;Ms||r < [|[M;|2]|M;| s for real

matices M, and M, of appropriate sizes. Thus,

IALBAL|F < [|AL 2| BALF = ALl ALB |7

< [ALIEIB F = omax(AnAL) Bl < 9I|BJ|£,

IALBALl2 < AL 2l A]l2Bll2 = v/max(AnAT) Pumax (AL A Bl|2

= @maX(AmAﬁmBHZ < 9HBH27
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and

16" Avullr = [ALbIF < [[ALl2]1bllr = Vmax (An AL) b7 < 3][b]| 5.

Then from (B.6) and (B.7), we have

YZ:LBYm— Z bikzm:aijakj

1<ik<d  j=1

P

t? t
>t/2 SQexp{—cmin <—,—)}
] IB[IZ" 1B

2
P HbTYm‘ > t/Q] < exp(l)-exp {_iz}
[6]1%

and

with some constant ¢ > 0 only dependent on K. Letting e, = /4 and e, < min{t(8B|,) "', Vd},

g

then by (B.3), (B.4) and (B.5), we obtain

P[[Y'BY - E[Y'BY]| >t] =P ||[Y'BY - ) b;

i=1

‘ d

m d
<P|[Y"BY Y[ BY,|+| > bxd ayay—» b > t/2]
1<ik<d  j=1 i=1
+ P ‘YﬁBYm — Z bzk Z Q5 Qg Z t/2]
1<ik<d  j=1
d m
<P||Y'BY —Y.BY, |+ |bi||> a—1
i=1 j=1
d m
Y bl D aijars| > t/2
i=1 k#i,1<k<d j=1

o o )
expq —cmin | ——, ——
1Bl 1Bl

<P[[Y"BY —Y.BY | +t/8+1t/8 >t/2]

)
Xp 4 —cmin ,
IBIIZ " 1Bl

t2 t
(B.8) <+ 2exp {—cmin ( , )}
1B (1Bl
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and
P[p"Y| > t] < P[b'Y —b'Y,,| > t/2] + P[|b"Y .| > t/2]

ct?
(B.9) < +exp(l)-exp{ =5 o -
161/

Letting 0 — 0 on both sides of inequalities (B.8) and (B.9), we obtain (B.1) and (B.2).

]

Lemma B.2. Let € = (ey,¢ey,...)" be the same as that in Lemma B.1, and let X =
Be be a well-defined random vector with length d in the sense of entrywise almost-sure
convergence and mean-square convergence. Assume the covariance matrix of X, denoted
as X, is positive definite. Then for u > 0, there exists a constant ¢ > 0 only dependent

on K such that

) d
(B.10) P [|X[* > u] < exp(1)exp {—cdu} + exp(1) exp{ H—Ei?Idem} ’
x X

with the second term on the right hand side (RHS) of (B.10) being 0 when 3, = 1;44.

Proof. We consider the nontrivial case when © > 0. Since 3, is positive definite, there
exists a symmetric positive definite matrix »+/? such that d, = /222 LetY =
3, X and A = 3, '’B, then Y = %,"’Be = Ae. Thus, AAT = Acov(e)AT =
cov(Ae) =cov(Y) = COV(E;UzX) =, '?%, 5% = I, where the second equal-
ity holds for the infinite-dimensional e according to Proposition 2.7.1 in Brockwell and

Davis (1991). We have
PXP>u] =P[[VY + X - Y| > 4]
_ 1
(B.11) <p {m > g} PP HEldT@;/? - Idxd)Y‘ > g} |

Consider the nontrivial case when 3, # I;.4. By (B.2) in Lemma B.1 with a redefined

constant ¢ > 0 only dependent on /', we have

(B.12) P {|Y| > 4} < exp(1) exp {—cdu}
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and

1 U
p[[huey - Ly >

< exp(1) { cu }
< exp exp § — 173
1315 (22 = Loca) 3
cu
< exp(1) exp {— 73 }
1214)|%]/25* — Licall2

cdu
=exp(l)exp —
{ [EEE Idxd||§}

cdu
(B.13) < exp(1) ex {——}
PP\ 5T

The second inequality in (B.13) is obtained from Lemma 1 in Lam and Fan (2009). The

last inequality in (B.13) follows from

I ~ Towalld = mave o =17 < mae (" = 1" +1)

= m?X|90i — 1] = [|12s — Lixall2 < |12z — Lixall1,

where ¢; > 0,7 = 1,...,d, are the eigenvalues of ¥,. Plugging (B.12) and (B.13) into

(B.11) yields (B.10). ]

Lemma B.3. If i = /flog(pf)/n = o(1), then for any positive constants M, cy, cs,

there exists a constant M > 0 such that for sufficiently large n,

2
pclfexp{—c2;u} <pclfexp{—027}u } <p M

where u = M.

Proof. By 79 = o(1), for any constant M > 0, there exists a constant N(M) > 0

such that when n > N(M), we have v = M7y, < 1, thus p® fexp{—conu/f} <
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p° fexp {—conu?/f}. Since

2 1 2
P f exp {—CQnu } = exp { (01 + 0s / _ e ) logp}
f logp  flogp

{ log f CQTLMQTOZ> }
= exp c + — log p
logp  flogp

1 1
= exp cl+£f—ch2 1+&f log p
log p log p

= exp { |:_(CQM2 —c1) — (caM? — 1)12§£} logp} :

for any constant M’ > 0, choosing a constant M such that coM? — ¢; > M’ and co M? —

1>0,ie, M > /max{(c; + M')/ca,1/co}, we have p f exp {—conu?/f} < p™'.

O]

B.2 Proofs of the General Theorems

B.2.1 Proof of Theorem II1.7

Proof of Theorem II1.7 (a). Similar to the case of i.i.d. data discussed in Bickel and Levina
(2008a) and Rothman et al. (2009), the key to the proof is to find a desirable probabilistic
bound of max;<; j<, |6;; — 0;;| for temporally dependent observations. Once the bound is
established, the remaining of the proof for the convergence in probability follows the same
steps as those in the aforementioned literature.

Without loss of generality, we assume p,, = 0. We only consider data generated from
(3.3) with m = oo because any case with finite m can be constructed by adding infinite

number of zero columns in H. Since

max ]6”—0”\ < max |X1Xj|+ max

1 n
n k<X 5k 0ij
k=1

1<i,j<p 1<i,5<p 1<i,j<p
1 n
S (2
(B.14) < max |Xl{ + max |— g Xiw Xk — 0ij
1<i<p 1<i,5<p|n P
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for any u > 0, we have

P | max |a'” — Uij| Z 2u
1<i,j<p

1 n
max |— g X Xop — 045
15635 |n &= thkik g

>u
1<i<p

(B.15) <P {max 1X,|* > u} +P

Let Zij = Xij/\/o-iu Ar,f = {]‘C € 7+ U {0} : k’f +r S n}, r e {1,...,f}, and
C, ¢ be the cardinality of A, ;. For a fixed integer f and any integer 1 < j < n, we have

j=kf+r,where k = |j/f]if j/f is not an integer, otherwise k = j/f — 1. Hence,

n f f
Z Xij = Z Z Xi,kf+r and n = Z Cr7f.
j=1

r=1 k:eAr’f r=1

Moreover, for any r € {1,..., f},
n/f—=2<[n/fl-1<Cy—1<|n/f] <n/f,

thusn — f < fC,y < 2n. By 79 = /flog(pf)/n = o(1), we have f = o(n). Hence,

there exists a constant /N; such that when n > N;, we have
(B.16) n/2 < fC,.; < 2n.

We assume n > N; in the following.

Now, for the first term on the RHS of (B.15), following from (B.16) and 0;; < vy we
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have

1<i<p p

P [ n
— ZP ZXU > nu%]

=1 Ll j=1

P f 1'
= PID Y Xipger| > nu

i=1 | |r=1ked,; |

P [ s T
<SPS Xigar| > nut

i=1 | r=1 |keA,; |

p f I 2
S Z Z P Z X%kf—l—r >

=1 r=1 L k€A, ¢ f
557 | KED S ey
— Lo Lo ] . f b Lkf+r| = anf Tii

P f I 1 1 o

(B.17) < Z ZP Z Zikfir| 2 5\/j
i=1 r=1 i rf kEA, Vo

Let A" be the covariance matrix of vec {Ziyfsr : k € A, s}, then

AT 1o, <0, = max Z Fsasiehll
k£l

ab
(B.18) < max > IR < g(n,p)
T ae{l<a<m:
|Cl4—b|:kf,

k=1, [n/ 1}
by assumption (3.28). Since limsup g(n,p) < 1, there exists a constant ¢; > 0 such
n—oo
that limsup g(n,p) < ¢; < 1. Then there exists a constant No(c;) > 0 such that g <
n—o0
¢, < 1 whenn > Ny(c;). We now assume n > max{Ny, No(c;)}. By (B.18), A¥/"
is a strictly diagonally dominated matrix, thus positive definite by the Levy-Desplanques

theorem (Horn and Johnson, 2013). From equation (3.3), we have

(B.19) vec{Z pyir + k € A, ;} = P He,
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where P" is a C,, ; x pn matrix with o,/ in the (k+ 1,4+ (kf +7—1)p) entries and 0 in
all other entries for & € A, ;. By Proposition 2.7.1 in Brockwell and Davis (1991), AT =
P/"H(P"H)” holds for the case when m = oo, and since A" forall r € {1,..., f}
are positive definite, H has rank no less than max;<,<; C,.y = [(n—1)/f|+1. By (B.19),

Lemma B.2, (B.18), (B.16) and g < 1, we have

1 1 [fu
P Zikf+r| 2= 51—
C. Z ki+ 2 Vo

nf kEA, ;

20, pu c2Cy pu
< 1 _ 2R 1 _ 2 fR
< exp(l)exp { T, } + exp( )exp{ Toog

Conu
B.20 <2 1 —
( ) < 2exp( )exp{ 8U0f}

with some constant c; > 0. Plugging (B.20) into (B.17) yields

- 2 _cnu
(B.21) P Lrgag; | Xi|" > u] < 2pfexp(l) exp{ 8vof} :

For the second term on the RHS of (B.15), we use a similar argument in Bhattacharjee

-
-

and Bose (2014). Note that

1 n
_E X X — 0o
n ik<)jk Oij
k=1

P

max
1<4,j<p

S Z P %ZXikak_Uij
k=1

. nu
= Z P Z ZiZjk — Npij| =
1<ij<p Llk=1 VTiiTjj
J 2C nu
< Z P Z (Zi + CyZi)” —n (1+C2+2C,p;)| > —2
1<ij<p  L|k=1 V/ 0ii0jj
: 2C nu
82+ X PSS anr a2
1<i,j<p k=1 VTii0jj
1-ye

where constant C,; =

v € (0,1). Without loss of generality, we only consider the
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second term on the RHS of the above inequality. Then

n 2C nu
P (Zir — CyZi)* —n (14 C? —20,p;;) | > —2
kz; g~ ( g g J) \/TO__]]
f
2
Z Z Zipg+r — CoZjjpr)
r=1 keA,,
! 2 2C nu

© \/0ii0j;
2
Z z Efr C, Zj kf+r . ;
€A, V145 —2Cp; 7

r=1

2C nu
—(1+ Cz - 2C,pij)\/Tii0j;

Z Zz Kf+r T C Z] kf+r
V1405 —2Cp;

kGA,«’f

2C nu
> .
(14 C% —2Cypi;) fuo

(B.23)

Let

Zirpir — CoZ;
Z = vec { ZEkIET CoZsnssr ckeAgp,
\/1 + Cg — QCng‘j '

and T == (V’fl)crfxcrf = cov(Z), where for k,l € A, ¢,

pkf—i—r,lf—i—?" _ Cg(pkf—i-r,lf—i—r + pkf—l—r,lf—i—r)

i ij Ji
Tl = 1 Czpfijrr lf”] (1+ C'; —2C,pi;)" Y, k#1;

1, k=1

\

Similar to (B.18), we have

IT = Te, xc ll < (1420, + CH(1+ CF = 2Cp;) " max > |R|

1<b<n

ac{1<a<n:
|szb|:k‘f,
k=1,...[n/f]}
B2 < (14 G(1+C = 2Cy0) g(n.p)
1+C,\°
= (1 — Cg> g(n,p) = g(n,p)fer <1,
g
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thus I' = 0. Then there exists a symmetric positive definite matrix I''/? such that T' =

/22 LetY = I'"'/2Z. Then by (B.19), we have

(B.25) Y = Ae, with AA" =1¢, ¢

mf)

where
_ TP - PiTH
VI+C7—2Cpi;

and the second equality in (B.25) is from Proposition 2.7.1 in Brockwell and Davis (1991)

which gives AA” = Acov(e) AT = cov(Ae) = cov(Y) =1I¢, ¢, ,. Now we have

2
Ziksir = CoZjksir 2Cynu

P Z 7 — —Crp| 2 1+C2—-2C,p;;
\/1 + Cg Qngz] ( + g gpzj)f'UO

k’GAT-,f
2C nu
=P|lY'TY - C, /| > g }
|:} ’f‘ (]_ + Cg — ZCgpij)fvo
C.nu
B.26 <PllYI(T-1c .vc Y| > g
(B.26) < [| (C ey Y1 2 (g fvo]

+P {|YTY—CTJ\ > Cynu }

(14 C3 = 2Cypi;) fuo
The first term on the RHS of (B.26) obviously equals zero for u > 0 when I' = I¢, ,«c, ;»

thus we only consider the case that T'  I¢, ¢, ,. By the fact that E[Y " (T—I¢, ,«c, ,)Y] =
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tr(T" — Icr,fxcr,f) =0, (B.25), (B.1) in Lemma B.1, (B.24), (B.16) and g < 1, we have

PlYTT =1s .0 )Y|> Cynu
T, f T f

(1+CF = 2Cypij) fvo

: (Cynu)?
< 2ex — c3min ,
- p{ ’ <Wﬁ43—2QmmﬂMWF—IQﬂQA@

Cynu
(1+C2 —2Cypij) foolT = Te, <, I2
. (Cynu)?
<2exp{ — czmin )
{ ’ <[(1 + G = 2Cgpii) froPCrflIT = I, e, 1T

Cynu
(14 C2 —2Cypy;) fuo||T — ICr,fXCT,le) }
e { "~ eymin < C§n2u2 Cynu ) }
F03C 1 (1+ Cy)tg?” fuo(1 4 Cy)2g

C?nu? Cynu
| - B . g g
(B27) < 2exp { G in <2v3<1 +Co) f uo(1+ Cy)2f ) }

with some constant c3 > 0. Similarly,

P [|YTY — Oyl > Cynu ]

(1+CF = 2Cpij) fuo

< 2ex — c3min (anu)2
= U T\ ez —2C,0y) FuPCry

Cynu
(1 4+ CF = 2Cypij) fvo

C?nu? C nu
: < - i g g :
(B.28) < Zexp{ C3min (208(1+Cg)4fjvo(1+cg)2f

By (B.23), (B.26), (B.27) and (B.28), we have

n

2C,nu
P (Zin—CoZip)’ = n (14 C; —2Cepy5)| = ——
— 9g=J ( g g J) Uiiajj

nu? nu
< 4fexp {—04 min (T, 7) } ,
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with some constant ¢, > 0. Similarly,

Z (sz -+ Cngk)2 —n (1 + 092 + 2ngz'j)
k=1

< 4fexp{—c4min (nTuQ’%)}

Therefore by (B.22), we have

2C nu

P >

1
n

B.29) P

max
1<ij<p

n
E XikXjr — 0
k=1

> u] < 8p*f exp {—c4min <n7102, %) } )

From (B.15), (B.21) and (B.29), we obtain

P | max ‘(3'@] — O-z'j| Z 2u
1<i,j<p

2
(B.30) < 2pf exp(1) exp {—;Z;} +8p°f exp {_C4 min (% n_;) } '

By Lemma B.3, for any constant M’ > 0, there exists a constant M; > 0 such that when

M > M, we have

(B.31) P { max |0;; — o] > T} =O0(p™M), witht = M.

1<i,j<p
Then following the similar lines of the proof of Theorem 1 after equation (12) in Bickel
and Levina (2008a) and the proof of Theorem 1 in Rothman et al. (2009), we obtain that
for any constant M’ > 0, there exists a constant My > M; such that
P [15:(3) = S22 Cieyry ] < P[IIS-(5) = Sh > Caeyry ]
(B.32) =0(p™"),

where 7 = M1y with any constant M > M, and some constant C'; > 0 dependent on M.

Thus, we obtain (3.30).

109



By condition (iii) of the generalized thresholding function and (B.31), we have

P [|ST(§AJ) — Y| > 27} =P [ max |[s,(6;5) — 04| > 27'}

1<i,j<p

< P |: max |ST((5'¢J'> — &w\ + max |5'2J — O'z‘j’ > 27—:|

1<i,j<p 1<i4,j<p
(B.33) <P {T T max |6y —oy| > 27} _ o)
1<i4,j<p

Thus, (3.29) holds. By (B.32), (B.33) and the inequality || M||2. < p||M]|;|M] for any

p X p matrix M, we have
1 ~
P [—HST(E) —- 3% > 27‘Clcp7‘(}_q:|
p

< P[15:(2) = SIhISH(E) - Bl > 27Cre ]
< P[IS(8) = Sl = Cueyy ] + P [15:(8) ~ Sl > 27

(B.34) =0o@p™M).

Hence, we obtain (3.31).

For the sparsistency and sign-consistency, the proof follows the similar lines of the
proof of Theorem 2 in Rothman et al. (2009) by replacing their equation (A.4) with (B.31).
Details are hence omitted.

For the convergence in mean square, we additionally assume p > n° for some constant

c > 0. Now
E||S($) - B3
= E|115:(5) = 3L (I1-(3) = Tz = Creyry )|
+ B [15-(2) = SIE1(15-() - Sl < Crpmy )|
< (B15.2) - 512)° (P[I15.(2) - Sl = Cignt 7))’
+ (Crepry 9)?
®35 < (BIS.(2)-3IL) 06~ F) + (Curi
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We want to show E||S-(3) — 2|4 = O(p™) with a constant ¢5 > 0, and then choose a
sufficiently large M’ to obtain desired result. By condition (iii) of the generalized thresh-

olding function, we have ||S, (%) — 3|z < pr, then

E)5-(8) ~ 1t < B (15:(5) - Sllr + 15 - 3r)

= B[[18:(£) = Bt + I = Tk + 41 5:(E) - SIS - Slr
+415-() = SIS - SlF + 615-(E) - SR - T3]

<prt 4 B|E - E|E + 4P PE | - B + 4prE|E - 23

+ 6p*r2E||E — 2|3

—

2

<p'rt+ IS - Sl + ' (BIE - SIE )+ 4p7 (BIS - S

(B.36) + 6p* T E||E — X3

Since p > n¢, it is easy to see that for d = 1,2, 3,

d

2
. 1 & _
B.37 T-DE=1 ) =3 XaXj — XX - oy
( ) | |7 (n £ kA jk J U])

1<4,5<p
is a polynomial of variables X;; of degree 4d, 1 < ¢ < p, 1 < j < n, the number of
its terms is bounded by p®2 with a constant C, > 0, and all its coefficients are absolutely
bounded by a constant C'3 that only depends on vy. Denote by P,Ed) the k-th term in the
corresponding polynomial of X;; in (B.37). Then by the Holder’s inequality (Karr, 1993),
there exist positive constants ¢4 and c¢; for all k£ and d such that
(B.38) BIP| < ¢y T (B|X o) Fona
1,
with appropriate choices of integer constants ¢;jza € [0,c6] and Cjjpq € [1,¢7], and

> i lcijra # 0) < 4d. By inequality (3.4) and 0; < vg, we have

(B.39) E(exp{t[Xi; — E(Xi;)]}) < exp{Kwot*/2}, forallt € R.
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Then by (B.39) and Lemma 5.5 in Vershynin (2012), there exists a constant cg > 0 only
dependent on Ky such that (E|X;; — B(X;;)|[*)"/* < cgv/kforall k > 1,1 <i < pand

1 <5 < n, thus

(B.40) (B X;")Y* < esVE

with the assumption p,, = 0. Combining (B.37), (B.38) and (B.40), we have
(B.41) E||E — || = O(p©), ford = 1,2,3.

Then by (B.36), we obtain E||S, () — 3|4 = O(p®) with some constant ¢; > 0. Hence,

by (B.35), we have

E|S(2) - Z5 <07 ) + (Ciem 1)

Since 7o = /flog(pf)/n > /n~tlogp > /p~Y¢logp following from p > n¢, we
can let M’ be sufficiently large such that p®~ ¥ _0 ((CpTOl 7)?), then (3.33) holds. By

(B.33) and (B.34), we can similarly obtain (3.32) and (3.34) respectively. [
Proof of Theorem I11.7 (b). The key of the proof is to show that for any constant M’ > 0,

there exists a constant C’ > 0 such that

(B.42) P { max 1pij — pijl > C’To} =0(p™).

1<,

Similar to (B.14),

Oij — Oij XiX;
max |———~ < max + max |———— szXjk Pij
1<i,j<p | \/04i0}; 1<ij<p | \ /0405 1sijsp|N\/0ii055 1=
S 2
< X, E Xix X
< max ma ik — Pij
1<4,5<p | \/Oji 1<Z]<P n Ullajj ’
(B43) = max ‘Z‘ + max E szZ]k Pij| >
1<i,j<p 1<i,5<p | n
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where Z;, = Xii/+/0:. In (B.43), since max<; j<, |pij| < 1, we do not need to assume
maxi <<, |0i;| < vo any more and we impose the ¢,-ball sparsity assumption (3.7) on R
instead of (3.6) on 3. Then following the similar lines of the proof of Theorem II1.7 (a)
up to equation (B.31), we can obtain that for any constant M; > 0, there exists a constant

C > 0 such that

B44)  Op™™)=P| max T4 > Cy5| > P || 2L > Oy
1<4,J<p | 1/040jj V0035

for any 1 <4, 5 < p. Thus letting ¢+ = j, we have

(B.45) O(p~)=p |,/@—1 JZE 1 > Ol =P |2 -1 > Gl
O3 O 73
and
O(p_Ml):P %—1‘ >Cl7'0:| +P [ IJ —1' >Ol7'0:|
L Oii Tjj
>p |28 -] |2 1‘2012702}
73 Uj]
=P [/ 2 [ )2 2| |2 1| = o
Tii 03jj Tii 0jj
> p &u’f}jj o @ Ajj +1] > 0127_02
0ii0jj Tii 03jj
(B.46) >pP || 2% | > 0224 [ )2 o] 4|, 2 1].
Tii0jj Tii 03jj
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By (B.45), (B.46) and 7y = o(1), we have

Uuo_]j > 3017'0
O-Zlo-jj -
0;i0; [ 6; O
<P A} R 1| > 3017'0, S 1 < 017'0, I7 < 017'0
041055 Oii 0jj
[G:: G
=1 >CITO or 2 >Cl7'0
Tii 0jj
Giia Fy G
<P “H 1> Ciro+ [y — = 1|+ [y [ 22 = 1|| + O(p™™")
|V 9iio5; Tii Tjj
O' O’ - ..
i azzUj] 7] Ujj
B47) =0 ™).
Then,
P Lg%)ép |pij — pij| > 40170}
0; Oii ;i — O
< P | max 4 - + max |2 > 4C 1
1<l]<p Q/O'na'j] w/o-iio-jj 1<4,j<p | /040
G Giilras 1 Gis — G
< P | max Y 2 1) >30T | + P [ max |[———2| > ClTO:|
EREANE /Gii0j; 0405 | 1si.j<p | \/0i0jj
Giias Giv — O
< P | max S 1 >3C1| + P | max |—/—| > Oy
1<4,5<p 05104 1<i,j<p | , /00 5
— O(p_MH_Q),

following from (B.44) and (B.47). Equation (B.42) holds by letting C' = 4C; and M’ =

My — 2 > 0. Then the proof follows similar lines of the proof of Theorem II1.7 (a) after

equation (B.31), where we simply use ||S;(R) — R[4 < 16p* to bound the first term on

the RHS of the counterpart of (B.35). []
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B.2.2 Proof of Theorem IIL.8

Proof. Without loss of generality, we assume p,, = 0, and m = oo. First, we consider the

probabilistic upper bound of |32 — I,«p|oo- Note that

P n
1 . o
Z [E ZXilek: - Xin] wij — ]I(Z = ])

0~ Tpal = 03,

=1 k=1
n o p
SN ;;XW” + max |- ZszZXlkwl] ~1(i = j)
(B.43) 12}3%(19 J +12}3§p n ’; kX — (0 = j)

with X = S0 Xigwj and ):(j =ntyr Xj.. Since cov(QX};) = Q and w;; =
wyj, then we have var(X;;.) = var (3.0, wjiXy) = wj;. Besides, cov(Xy, Xjr) =
E[Xa X0, Xuwy] = X0, ouwy = 166 = j). Let Zy, = Xpw;,> and Zyg = Xipo, /%,
then p;; = corr(Zy, Z;1,) = aiil/ w; 1/211(7, = 7). From 7y = +/flog(pf)/n = o(1),
(B.16) holds when n > N; with some constant /N;. In the following proof, we assume

n > N;. Now we consider

P [ max )_(i):(j > u} <P {max | X;| max |X | > u}
1<4,5<p 1<i<p 1<j<p
(B.49) <P[maX|X|>u }+P[max|X|>u }
1<i<p 1<j<p

We first consider the second term on the RHS of the above inequality. Similar to (B.17),

f
u
B.50 P X;| > P Z ’ >—
(B.50) {max| il > } Z 1 Z shi+r| 2 90 o

j=1 r= rkaAf

Let A7f" be the covariance matrices of VeC{ZM fir ik €A, f}. Since

p p
COV(Zjkpir Zjager) = wii'eov(Y - Xoppertwsjs O Xiiparry)

s=1 t=1
k l
(B51) Z Zijwt] V OssOttPst Jtr f—H”
s=1 t=1
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AT —Tg, xo, = nax > 1cov(Ziksir Ziagir)]
S k’eAr’f:
k£l

p D
_ -1 kf+rlf+r
= max Wi E E WsjWij OssOttPsi

lEAr,f
kGAryf: s=1 t=1
k#£l
(B.52) <wjlveM2g < viMlg

following from wj_jl = ﬁgjajj < vp. Since lim sup v%Mgg < 1, there exists constants
n—oo

¢1 > 0and Ny(c;) > 0 such that ngPQg < ¢ < 1whenn > Ny(c;). We now assume n >

max{ Ny, Na(c1)}. By (B.52), A7/" is strictly diagonally dominant and is thus positive

definite. From equation (3.3),
(B.53) vec{Zprir: k € A, ;} = PI/"He,

where P77 is a C.. s % pn matrix with wj_jl/zwlj in the (k: + LI+ (kf+r— 1)p), k e
A, l=1,...,p, entries and 0 in all other entries. By (B.53), Lemma B.2, (B.52), (B.50),

(B.16), and vg Mg < 1, we have

P [max ]):(J\ > ul/Q] < pfexp(l)exp {—CQCWCU} + pf exp(1) exp {_ Gy yu }

1<j<p 4y 4vgM2g
Coni
B.54 <2 1 _
(B.54) < pfexp()eXp{ 8vof}

with some constant ¢5 > 0. For the first term on the RHS of (B.49), we still have (B.21)
here because max; 0y; < vg and g < vgM_g < 1. Thus by (B.21), (B.54) and (B.49), we

obtain

(B.55) P l max

| 2] < wrespmen {2221
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Now considering the second term in (B.48). Similar to (B.22), we have for any u > 0,

>

lg?iip - Z XX — 1(i = j)
= \? 2C,nu
1<i,j<p k=1 ! V 0iiWjj
(B.56) + Z P i(Z'k—CZ'k)Q—n(1+CQ—ZCﬁ~) > 2anu]
' t 9 gFig)| = )
1<i,j<p k=1 ! v Oiiljj
where constant C; = ;? € (0,1). Without loss of generality, we only consider the

second term on the RHS of the above inequality. Similar to (B.23),

- =\ 2 2C,nu
P (Zi—CZ-) (14 C2—20,5;)| > =2
; k g<ik n( + g gp J) — \/m
i N 2
Zigf+r — CoZipptr 2C nu

(B.57) < P ’ — —Crypl 2 —

; kezA;f ( \/1 + Cg — 20 pi; (1+ ng — 2Cypij) fvo
Let

Z = vec Zikstr — CoZinsir ke A
JI+C2—2C,5; “

and T := Wkl)crfxcrf = cov(Z). We have v = 1. For k # [,

~ —1 ~
Y= (1+ 092 — 2C,pij) [COV(Zi,sz—i-ra Zitfr) — CocoV(Z; jfiry Zjif+r)

= CoeoV(Ziapir, Zipger) + CqeoV(Zippir, Zjapar) |

kf4rl
COV(Z; ko frs Zitfir) = PMHT f+r,

and
P
7 -1 2 —
COV(Zi,kf+Tvzj,lf+T) =0y / / COV(Xz kf+7'7ZX5 lerrwsg)
s=1
P
~1/2 —1/2 512,172 ke fir ]
=0, / wjj/ ZwstOV(Xi,kf+r7Xs7lf+7«) =0, / / Z%Mﬂ frlfr

s=1
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Then together with (B.51), we obtain
~ -1 k T’,l T —1 2 —1 2 k rl r
Tkl = (1 + ng - 209pij) <piif+ T — Cy04i / / ZWSJ V Uzzasspzsf+ I
. Cg ;1/2 —1/2Zw8]mplf+rkf+r

_ k l
+ 092 JJI Z Z WsjWtj/ OssTttPst [ f—H)

s=1 t=1

Hence, similar to (B.52), we have

IT —1Ic, ;xc, |l = max | Vit
IEA,

EA,»,f:
k#£l

< (14 C2 = 2Cypy) (14 20,05 sy Z |waj /T

20t kef4rlf+r
it Y Yl ) s 57 s 47

s=1 t=1
k;él

p
< (1+ Gy = 2Copy)” (1 +2C,w5 2B fwyl
. 2
2 -1
oSl . T
s= ac{1<a<n:

la=b=m
:lvan/fJ}

< (1 + 05 - 209/51'3) (1 + ng 2 é/sz) g

< (14 C2 —2Cypi5) "' (1 + CyuoM,,)?g

(B.58) < (L4 C2 —2C,p45) ' (1 + Cy) v Mg
1+C,\?
< % veMZg =viM2g/c) <1,
1-C,

and thus ' = 0. Hence, I' = I''/2T""/2 with a symmetric positive definite matrix I''/2. Let

Y =T"'/2Z. Then by (B.19) and (B.53),

I‘fl/Z(Pifr _ ng)jfr)H
\/(1 +C2 = 2C,,)

Y = Ae with AAT =cov(Y) =1

Ty

ixc,., and A =
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Similar to (B.26),

~ 2
Zikf+r — CogZjks+r 2Cynu
P Z - — | —Cny| 2 14+ C2—2C,pi;
\/1 + Cg QCng] ( + g gng)fvo

k‘GA,«’f
- Cynu
< P\YT—To e )Y 2 G005 7o,
g ?,
Cynu
(B.59) +P {|YTY —Crgl 2 e —50 ﬁ“)fvo}
g glFij

and we only consider the nontrivial case when I' # I¢, sxC,. ;- Similar to (B.27), by

Lemma B.1 and (B.58) we have

C,nu
PllYI(T -1 Y| > g
{l ( Cr,fXCy-,f) ’ - (1 + ng _ 20gﬁij)f“0:|
C?nu C.nu
B.60 <2 — i g , g :
( ) < exp{ c3 min (%8(1 T O (1 + Cy)2f
and similar to (B.28),
C.nu
P|IYTY —C, ;| > g ]
D /12 (1+CF —2Cgpi;) fuo
C?nu? C.nu
B.61 <2 — i 9 g
( ) < exp{ c3 min (208(1+Cg)4f’vo(1+0g)2f )
with some constant c3 > 0. From (B.60), (B.61), (B.59) and (B.57), we obtain
n - \2 2C ., nu
P Ziw — CoZix) —n(1+C2—2C,pi)| > —Z
; ( g > ( g g ]) \/m

< 4fexp{—c4min (RTQH,T}—U)},

with some constant ¢, > 0. Then by (B.56),

P | ZXMX li=9)2 ]
(B.62) < 8p*fexp {—04 min (%, %) } .

From (B.48), (B.55) and (B.62), we obtain

P[22 ~ Lyl > 2]

< 4pfexp(1)exp{ 3 n;ﬁ} + 8p fexp{—cunin <n_u2 %>}
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By Lemma B.3, for any constant C” > 0, there exists a constant M/; > 0 such that with

u= Myt /4, P [|ﬁ]ﬂ —Lploo > Zu} = O(pfcl). Thus, for any constant M > M;,
P39 = Lol 2 M70/2] £ P[50 = Lol 2 Mimo/2] = 0™,
Let 0 < e < M7y/(2vp). Then

P [|5369 Lyl > MTO} <P [|$:Q —Lploo + 60 > MTO}

= P[IB50 ~ Tyl > Mro — Q)] < P[I59 — Ll > Mro/2| = O~ ).

Let \; = M. Then with probability 1 —O(p~"), |[£.Q —1I,,|e < A1. By the definition
of Q. and the equivalence between (3.17) and (3.18), on the event {]259 —Lploo < A1}
we have ||Q.|; < ||Q:H1 < 1921 and |w;.|; < |wi |1 < |wjfi for 1 < j < p, where
and w; are j-th columns of Q. fl: and €2 respectively. Thus, on the event

~ A %
Wjes sz

{|2.2 — Lp|so < M}, we have
Q. — Qo <12 — Qe = (2B — L) + QT — 32w
< HQEH1|2€Q - Ip><p|oo + HQHI‘EEQE - Ip><p|oo

(B.63) < M9+ M9l < 200 M,,

which follows from the inequality |AB|. < |A|w||/B||1 for matrices A, B of appropriate

sizes, and moreover,
”Qe —Qfz < HQE —Q; < 12Cp‘§26 - Q‘clqu < 12Cp<2MTUMp>17q>

following from Lemma 7.1 of Cai et al. (2016). Inequality (3.37) follows from the in-
equality |[M||% < p||M]||;|M| for any p x p matrix M.

For the sparsistency and sign-consistency, the proof follows the similar lines of the
proof of Theorem 2 in Rothman et al. (2009) by replacing their equation (A.4) with (B.63).

Details are hence omitted.
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For the convergence in mean square, we additionally assume p > n° with some constant
¢ > 0, and for any constant C' > 0, we let min {p~°, M7y/(2v0)} < & < Mry/(2vp).
Since Ymin(Xe) = Pmin(E + el,yp) > €, we have \2;1|00 < 1/@mn(3.) < ¢! and
H2;1||1 < p|2;1|oo < pe~'. Then by the definition of €2, and the equivalence be-
tween (3.17) and (3.18), ||l < [|25] < |=2]l, < pe~'. In addition with [|Q2]); =

max;<j<p > vy [wi| 9wy | < ¢, M9, we obtain [|€2. — Qf; < ||| + 2L

IA

pe~t + cng_q. Now,

E||€2. - Q)3 < B[ - Q|
—E [HQE — Q1 (HQE —Ql, > 120,,(2M70Mp)1*q>}
+ B (19 - QBT (1. — @ < 126,(2Mm14,)' )|
. 2\ 12 . L\ 2
< (BIQ-—0lt) (P |19 - @l > 12¢,2M70,)" ) )
+ (12¢,(2M 7o M,)9)”

(B.64) < (e + ¢, M0 (p~ /%) + (126,(2M o M,)' =)

Let M > max(vg, My). Since 7o = +/flog(pf)/n > p~'/(9, then we have ¢! <
max (pc, QUOM_lpl/(2C)) < max (pc, 2p1/(20)). When C” > 2max(2+2C,2+1/c)+2/c,

by min(c,, M,) > 1and M > v, > 1, we have

(pE_l ‘f‘CpM;_q)QO(p_C//Q) < O(pmax(2+20,2+1/c)—0’/2) _’_O<C]2JM5—2qp—C’/2)

= O(C;M§_2qp_1/c) =0 <(120p<2MTgMp)1_q)2> ,

and thus by (B.64), we have E||Q. — )3 = O ((7yM,)>"%).

Since [€2. — Q. < [ — 9y < [l + Q0 < pe + My and p |2 — Q3 <
19, — Q|19 — Qoo < (pe ! + My~ %)(pe™" + M,), similarly to (B.64), we have
E|S). — QI%, < (pe" + M,)*0(p~7"/?) + (2MmyM,)* and p~' E[|Q. — Q|3 < (pe +

M=) (pe™ + M,)O(p~“"/?) + 12¢,(2M1oM,)*~%. Let C’ be sufficiently large, then
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E|Q. — Q% = O ((10M,)?) and p~' E||Q. — Q|2 = O (¢, (10M,)?79). ]

B.2.3 Proof of Theorem II1.9

Proof. Since min; 0;; — Pmin(X) = min; €7 (X — i (Z)Lxp)e; > 0 and max; 0;; <

1X]oo < [|Z]l2 = Ymax(X), we have

(B.65) val < minoy; <maxoy; < V.

Thus,

(B.66) vp 2 < W o, [W ]2 < ",
(B.67) 1K s < W [2o] Wls <

IRl < W2 [IZ ]2 Wl < w5,

and
(B.68) vo 2 < K3 = omin(R) < @max(R) =[R2 < 5.

Under max; o;; < wg,limsup g(n,p) < 1 and 79 = o(1), we can obtain (B.31), (B.42)

n—oo

and (B.44), i.e., for any constant C’ > 0, there exists a constant C; > 0 such that with

probability 1 — O(p~¢"),

B.69 max |0, — 05| < C
( ) 19’].);1) Gij — 05| < Cimo,
(B.70) max |py; — pij| < Ci7o,
1<i,j<p
and
O/\'.A — O’.A
(B.71) max |———2| < ).
1<4,j<p | 4/040j;
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From (B.69) and (B.65), we obtain that, with probability 1 —O(p~C"), max; 6, /> < 2v3/%.
Letting i = j in (B.71), we have that, with probability 1 — O(p~¢"),
1 T o— .. 1
o(1) = 2017'01)3/2 > C17p max ;> > max Ti i) hax 0;°
1<i<p 1<i<p| oy |1<i<p
5. 5. 1 5. 1
ZmaXH%—l \/%%—1 (AIiinman/&—l 0’
1<i<p Oii Oii 1<i<p Tii
_1 1 .
1<i<p
and then by (B.66),
(B.73) Wl < W = W2+ [WH o = o(1) + 05/

Now recall the assumption that 7o = o(1//1+ s,). Following similar lines of the
proof of Theorem 1 in Rothman et al. (2008) by replacing their line 10 on page 500 by
Tn = Toy/Sp — 0, replacing their line 5 on page 501 by (B.70), replacing their inequality
(14) by IT = 0, replacing their equation (15) by Ay = C}7p/e with a sufficiently small
constant ¢ > 0, and replacing the last line on their page 501 by [Ag|; < \/5,[|A7|F,
as well as using (B.68) to establish the counterpart of their inequality (18) for K, we can
obtain (3.38).

From the proof of Theorem 2 in Rothman et al. (2008), we have

1€, — Q2 < Ko, = K2(IW = WS+ [WH ][ W]2)
W= W ([ [l [ W2+ K2 [ W l2)
< Ky, = K[[p([W™ = WL + [W o [W)

(B.74) + W =W [(HKAQ —Kp + KW o + KW o] -

Plugging (3.38), (B.72), (B.73), (B.66) and (B.67) into (B.74) yields (3.39).
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We can obtain (3.40) similarly from

12, — Q||
= WK, W — WKW}
= (W' =W (K, —K)W ' =W+ WK, (W' -W
+ (W W HKW' + WK, - K)\W!|z
<K, = K[|p([[W = W+ [[W o[ W)
W = W (Ko 2l W 2 + K2 W)
< Ky, = K[[p(|[W = W+ [W o [W )

+VBIW T = W (1K, — Klle + [K]o) W2 + IIKHzHW‘le] :

where | BA||r = ||AB||r < ||A]]2||B||r for symmetric matrices A and B (see Lemma 1
in Lam and Fan, 2009).

If additionally assuming |Ky, — K|» = Op(n) with n = O(r), the proof of the
sparsistency property is similar to the proof of Theorem 2 in Lam and Fan (2009) by using
the inequality (B.70) and (B.68). Details are hence omitted. Note that our 1> = 1, in their
notation. Also note that K , and K have the same the sparsity structures as 9 A, and €2,
respectively.

Now, we consider the properties of Q ), under the irrepresentability condition given in
(3.26). We replace the original conditions about Ay and 79 by Ay = 8M 7,/ < [6(1 +
B/8)dmax{krrr, igre}] " and 79 = o(min{1,[(1 + 8/8)kr|'}). First, we need to
show | K, —K|o = 0p(1), which is similar to the proof of Theorem 1 in Ravikumar et al.
(2011). We follow some of their notation for convenience. In the proof, their © and X
are now replaced by our K and R respectively. But we keep their W that is our R — R,
which should not be confused with our W in bold. From (B.70), for any constant 7 > 2

(note that here we use the notation 7 given in Ravikumar et al. (2011) rather than the one
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defined as 7 = M 7 for the thresholding parameter of covariance matrix estimation), there

exist constants M7 and N; such that when M > M; and n > N;, we have
(B.75) P([W|ee £ M7y) > P(|W|oo < My7o) > 1 —1/p" 2,

thus we can set their d;(n,p”) = M, and their 1/v, = oco. Then, A\, = 8M1y/3 =

83¢(n,p™)/B. From Ay < [6(1 + 3/8)d max{krkr, kg K& }] !, we have
(B.76) 6p(n,p7) < [6(1 + 8/B)d max{rrrr, kprp}] .

Then following the proof of their Theorem 1 by using (B.75) instead of their Lemma 8§,

and (B.76) instead of their (15) and (29), with probability 1 — O(p*~") we have
(B.77) Ky, — Koo < 2(1+8/8)krds(n, p7) = 2(1 + 8/8)kr M7y = o(1),

and all entries of K, in S¢ are zero. By |BA|o = |AB|o < |A|s||B||; for symmetric

matrices A and B, we have

1, — Qe = WK, W - WKW |
= (W' -W (K, -K) W' -W )+ WK, (W' -W
+ (W W HKW + WK, - K)\W|
< Ky, = Kool W = W]+ Ko oo [W 1 [W = W,
+ (Koo [ W = W W+ K, — Koo [W [ W
= Ko, = Kool [W = W+ [Ko, oo [W |2 [W = W

(B.78) + K2 [WH = W[ W o + K, — Ko [W [ W o
By inequalities (B.67) and (B.77), with probability 1 — O(p?*~") we have

(B.79) Kouloo < [Kloo + K, = Koo < K]z + [Ki, = Koo < 0F + 0(1).

125



Plugging (B.77), (B.72), (B.79), (B.66), (B.67), (B.73) into (B.78) and letting M >

max{ M, 10C v3} yields that, with probability 1 — O(p*~7),

1, — Qoo < 2(1 +8/8)kr MTo0(1) + (vg + o(1)) ’Ué/22017'021(1)/2
+ 032017'01)3/2 (0(1) + Ué/2> +2(1+8/8)kr My <0(1) + Ué/2> vé/g

(B.80) < 501 79vp 4+ 2.5(1 + 8/B)kr Moug < (0.5 4+ 2.5(1 +8/B)kr) MTov = 7,

1€, — Q2 < min{[[ 2y, — Q|1 |2, — Qlr} < min{d, \/p +5,} €0, — Qo

< min{d, \/pF s},

and

p2 |0, — Qllp < min{||Qy, — Q|2 p72 /D + 5,2, — Q)
< rmin{d,\/l—l—sp/p} =ry/1+s,/p,

where the last equality follows from /1 +s,/p < \/1+ (d — 1)p/p = V/d < d. For

any (i,j) € S, by (B.80) and |w;;| > 7, @;;», cannot differ enough from the nonzero
wi; to change sign. Since Q,\g has the same sparsity as K », and we have shown that,
with probability 1 — O(p*™7), all entries of IA{,\2 in S¢ are zero, then ), also has this

sparsistency result. [

B.3 Candidate Values for Tuning Parameters

In this section, we introduce the method selecting candidate values for the tuning pa-
rameter of each considered estimating approach. We use 7 as the general notation of
considered tuning parameters such that 7 = 7 for generalized thresholding, n = A, for
CLIME, and 1 = )\, for SPICE. The ordered candidate values 7, ..., ny of n are chosen

from a logarithmic spaced grid. Specifically, logn,...,logny are equally spaced values
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with 7; = 1y and a ratio number r € (0, 1). In numerical examples, we use N = 50 and
r = 0.01.

For the generalized trhesholding estimation of correlation matrix, we let 7y be the
largest absolute value in the off-diagonal of the sample correlation matrix so that the
thresholding estimator with 7y is a diagonal matrix.

For CLIME, we use the same 7y generated by the R package f1are (version 1.5.0;

see the function sugm) based on the following formula

ny =1I(n" #0)n* + I(n" = 0)n™

with
7" =minq max s;,— min s;
1<4,5<p 1<4,j<p
*k :
7 = maxq max S, — I S;;
1<4,5<p 1<4,5<p

S = (Sij)pxp = ﬁ] — diag{&ll, e ,&pp}.

For SPICE, we generate its 1y using the same approach implemented in the R package
huge (version 1.2.7; see the function huge.glasso; Zhao et al., 2012) for GLasso.
Thus 7y is the largest absolute value in the off-diagonal of the sample correlation matrix.

Note that SPICE is a slight modification of GLasso.

B.4 Additional Results of the rfMRI Data Analysis

The top 10 hubs for marginal connectivity and the top 10 hubs for direct connectivity
are listed in the following two tables. The coordinates of the center of each hub is given
in the Montreal Neurological Institute (MNI) 152 space. The hubs with MNI coordinates
listed in bold numbers are spatially close to those found in Buckner et al. (2009) and Cole
et al. (2010) from studies with multiple subjects. The hub illustrated in Subsection 3.5.3 is

ranked No. 1 in degree of marginal connectivity and No. 4 in degree of direct connectivity.
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Table B.1: Top 10 hubs for marginal connectivity found by hard thresholding

Rank Location MNI coordinates Degree Direct rank Direct degree
1 Inferior parietal 48, -72,24 164 4 79
2 Supramarginal -60, -36, 36 151 3 82
3 Superior frontal 0, 48, 36 150 6 73
4 Medial orbitofrontal 0, 60, -12 140 20 53
5 Inferior parietal -36, -72, 36 137 15 61
6 Supramarginal 60, -48, 36 131 1 85
7 Precuneus 0,-72,48 128 16 58
8 Precuneus 0, -72, 36 125 10 64
9 Rostral middle frontal -48, 12, 36 121 5 74
10 Inferior parietal -48, -60, 24 109 37 48

Table B.2: Top 10 hubs for direct connectivity found by CLIME

Rank Location MNI coordinates Degree Marginal rank Marginal degree
1 Inferior parietal 60, -48, 36 85 6 131
2 Precentral -48, 0, 48 82 18 98
3 Supramarginal -60, -36, 36 82 2 151
4 Inferior parietal 48, -72,24 79 1 164
5 Rostral middle frontal -48, 12, 36 74 9 121
6 Superior frontal 0, 48, 36 73 3 150
7 Caudal middle frontal 48,12, 48 68 29 87
8 Middle temporal 60, -60, 12 66 19 96
9 Precuneus 0,-72,24 65 14 101
10 Precuneus 0,-72, 36 64 8 125
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APPENDIX C

Supplementary Materials for Chapter IV

In this appendix, we prove Theorems IV.4 and IV.5 with the weighted sample covari-
ance matrix as the initial estimator. As special cases of these two theorems, all the the-
orems given in Subsection 4.3.1 using the sample covariance matrix can be immediately
obtained by letting f; = --- = fr, = 1.

Before proceeding to the proofs, we introduce a technical lemma.

Lemma C.1. Let e = (e, es,...)T be an infinite-dimensional random vector with inde-
pendent standard sub-Gaussian components, each with the same parameter K > 1 defined
in (3.2). Let X = Aeand’Y = Be be two well-defined random vector with length d in
the sense of entrywise almost-sure convergence and mean-square convergence. Then for

t > 0, there exists a constant ¢ > 0 only dependent on K such that

P[|X"Y — E(XTY)| > {]

t2 t
(C.1) < 2exp{ —cmin , ,
IAAT|7|BBT| =" \/[AAT|,[|BBT|;

and for a d-dimensional vector b,

ct?
(C.2) P[b"X|>1t] < exp(l)exp{——},
: ] 1B]I% | AAT]2

where the right hand sides of the above inequalities are zero if ATB and b" A are zero,

respectively.

129



Proof. Consider the nontrivial case when both A”B and b” A are not zero. Let A =

(@ij)dxco and B = (b;j)axco- Let Ay, = (aij)axm and By, = (b;j)axm consist of the

T consist of the first m

first m columns of A and B respectively, e,, = (e, e, ...,€)
elements of e, X, = (X1",..., X" = A e, and Y,, = (Y, ... YT = B,,e,.
By the entrywise almost-sure convergence and mean-square convergence, for each ¢, when
m — oo, we have X" = Z;”Zl aije; it X, = Z;’il ajej, Y = Z;”:l bije; it Y, =
> o1 biges, D52 af; < ooand Y072 b, < oo. Thus, for any positive d, £1, €5 and 0, there

exists a number N such that for any m > N, we have
(C.3) PXTY - X, Y| > 1] <34,
(C.4) P X —b"X,,| > 1] <0,

and foreach 1 <,7 <d,

(C.5) Z airbi, — Z aikbir| < e2/d,
k=1 k=1

(C.6) Z ik — Z aipak| < 0/d,
k=1 k=1

(C.7) > bibir = Y bibis| < 5/d.
k=1 k=1

The convergence of Z;nzl a;xbixr given in (C.5) holds because

o o o
Z laibir| < Z |ax|? Z |bi|? < o0.
k=1 k=1 k=1

By the similar argument, we obtain (C.6) and (C.7). Then we have

1AnAL P < [AATF + Ay AL — AAT|p

m o0 2

= |AAT||F + Z Zaikajk —Zaikajk
1<i,j<d | k=1 k=1
€8 < ||AAT(|p + /B(3/d)? = | AAT |5 + 9,
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and

1AL ALl < [[AAT]: + A AL, — AAT,

(C.9) < [|AAT|; 4 |ALAL — AAT||p < ||AAT ||y + 6.
Similarly,
(C.10) IB,,B | < |IBB”||z+6 and  |B,B”|. < BB +o.

By Lemma 5.5 in Vershynin (2012), there exists a constant ¢; only dependent on K such
that

sup k™ V2(Ele;|F)V* < ¢ forall j =1,2,....
k>1

Then by Theorem 1.1 in Rudelson and Vershynin (2013) and Proposition 5.10 in Vershynin
(2012), for every t > 0, there exists a constant ¢ > (0 only dependent on ¢y, i.e., only

dependent on K, such that

t? t
PIX5Y 0 — B(XLY )| > t/4] < 2exp —cmi
[1X7, (XnY )l 2 /4] < e"p{ Cmm(nA%;BmH%’||A%Bmliz)}
and
ct?
PlIbTX,.| >t/2] <exp(l)expd ———-— .
(167 Xom| > 1/2] < exp(1) p{ IIbTAmH%}
Since

|ATB,,||% = tr(ALB,, B A,,) = tr(A,,AL B,,BY)

< V(AR AL A, AT (B, B] B, BY) = [|An AL r[BuB | F,

1AL Bull2 < [AL 2Bl = v/ @uax(Am AL Pmax(B] Br)

= VPmax(AnAL)omax(BinBL) = V| An AL |2 BB 12,
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and
16" A7 = [|ALbIE < [ALIZIBIE = max(AnAL)[1B]E = A AL |l2[|b]|%
which is obtained by Lemma 1 in Lam and Fan (2009), then

Pl|XLY,, — E(XLY,)| > t/4]

t2 t
(C.11) < 2exp { —cmin ,
AL AL FIBmBLIF /A, AT, B,.BL [,

and

ct?
(C.12) Pb"X,,| >t/2 gexp(1)exp{— }
| } oTETAATT,

Lete; = t/2 and €5 = t/4, then by (C.3), (C.5), (C.11), (C.8), (C.9) and (C.10) we have

Pl X"Y — E(XTY)| > t]
< PBE(XLY ) = B(X"Y)| + XY, — B(XY 0| > 1/2]

+P[|XTY - XY ,.| > /2]

d oo

DY aubin =D ) aub
k=1

i=1 i=1 k=1

=P

+1X2Y,, - E(XTY )| > t/2]

+P[|XTY - XY ,| > e

d

2.

=1

m o0

Z by — Z @b

k=1 k=1

<P + XYY, — E(XLY )| >t/2| +0

<P[X)Y,—BE(XLY,)|>t/2—e)]+6

t? t
< 2exp{ —cmin , +9
{ (I\AmAELHFHBmB%HF \/IIAmAZIHzIIBmB%Hg)}
t2
< 2expq — cmin 7 T )
(IAAT]F +0)(IBBT» +6)

t
(C.13) +9,
V(IAAT]lz +0) (BB + 5)) }
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and by (C.4), (C.12) and (C.9) we obtain

Pb"X|>t] <P[b"X,,| >t/2] + P[b' X —b"X,,| > t/2]

ct?
< exp(1) exp{— } +0
16115 | Am AT 2
(C.14) < exp(1)e { i }+5
. < exp Xp 4§ — :
1B]I%(IAAT |2 + 6)

Letting 6 — 0 on both sides of inequalities (C.13) and (C.14), we obtain (C.1) and (C.2).

]

Proof of Theorem 1V.4. From (4.13) we see that 3 is invariant with any mean f,,, SO we
assume p,, = 0 without loss of generality.

Define Z\" = (Z1,..., Z\)) " with Z\;) = X\ /\/ou, thenby (4.1), Z\” = PVH e,
where PZ@ is a ny, X pn, matrix with 0;1/2 in the (j,z' +(j — 1)p) entries and 0 in all
other entries for j = 1,...,ny. From Proposition 2.7.1 in Brockwell and Davis (1991),
we have corr(Z\Y) = cov(Z!”) = cov(P"HWVe) = PEE)H“)COV(e)H(‘)TPZ@T =

T
POHOHO P | Since

(C.15) 12— Bl < 5900 + 120 — Zloo < )% + 120 — Zoe,
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then for any u > 0, by |X|. < vg we have
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Now, consider the first term on the RHS of (C.16). Fort =1,....,p,¢{=1,...,L, and

I—I

1<i,j<p

t > 0, by (C.2) in Lemma C.1, we have
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with some constant ¢; > 0 dependent on K. Obviously for ¢ = 0, we still have the above

inequality. Thus, Z;Li n Zi(f ) /+/Tegq is a sub-Gaussian random variable from Definition 5.7
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in Vershynin (2012), and then by their Proposition 5.10 we have
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with some constant c; > 0 dependent on ¢; and vy.
Next, consider the second term on the RHS of (C.16). Fori,j =1,...,p,{=1,...,L,

and ¢ > 0, by (C.1) in Lemma C.1 we have
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with some constant c3 > 0 dependent on K, where the last inequality follows from (4.2)

and
L corr(Z®)|2 = Lir(comr(2O)2 Z corr(29
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Obviously for ¢ = 0, we still have (C.18). Let Y\ = S, Z()Z) — nypy;, V) =
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Thus, by Definitions 5.7 and 5.13 in Vershynin (2012), gi /\/Tege and Yj 5 / ge are sub-
Gaussian and sub-exponential random variables, respectively. Then by Propositions 5.10

and 5.16 in Vershynin (2012) and g, < n,, we have
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Plugging (C.17) and (C.19) into (C.16), we obtain

P [|5: Sl > zu}
< pexp(l) exp {—Cz(zf e/ W“} T plexp(1) + 2] exp {_a@ m/ﬁ)%?}

> nege] 17 emegel fi
2 gy { _ 4o/ fo)u
+2p eXp{ max(ge/ fe) }
< [pexp(1) + p® exp(1) + 2p?] exp {— min(es, ‘34)%}
2 gy { _ 4o/ fo)u
+2p eXp{ max(ge/ fe) }

for0 < u < 1. By 7o = o(1), we have u = o(1) when u = M7, /2 with a constant M > 0.
Then plugging v = M,/2 into the above inequality yields (4.15) for any given constant

M' > 0 by choosing sufficiently large M. O

Proof of Theorem IV.5. The proofs for generalized thresholding and SPICE are identical to
the proof of Theorem II1.7 after (B.31) and the proof of Theorem IIL.9, respectively, with
corresponding notational changes. The proof for the consistency of the CLIME estimator
is identical to the proofs of Theorems 2, 5 and 6 in Cai et al. (2011) following (4.15),
where we also obtain |Q. — Q|., < 4M,\; with probability tending to 1. Then the proof
for the sparsistency and sign-consistency of the thresholded CLIME estimator follows the
same arguments for the proof of Theorem 2 in Rothman et al. (2009). Details are hence

omitted. O]
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