
Scale-Adaptive Video Understanding

by

Chenliang Xu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2016

Doctoral Committee:

Associate Professor Jason J. Corso, Chair
Assistant Professor Jia Deng
Professor Irfan Essa, Georgia Institute of Technology
Assistant Professor Matthew K. Johnson-Roberson
Professor Benjamin Kuipers

c© Chenliang Xu 2016

All Rights Reserved

For my family and friends

ii

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Professor Jason J. Corso, for all the

advices and support over the past five years. I could not have imagined having a

better advisor for my Ph.D. study. I would also like to thank Professor Irfan Essa,

Professor Benjamin Kuipers, Professor Jia Deng and Professor Matthew Johnson-

Roberson for their roles on my thesis committee.

My sincere thanks also goes to Dr. Manmohan Chandraker, who has provided

numerous guidance and mentorship during my internship and beyond.

I would like to thank my fellow lab members for their help in the past: Al-

bert Y. C. Chen, Jeff Delmerico, Caiming Xiong, Pradipto Das, Ran Xu, Wei Chen,

Gang Chen, Suren Kumar, David Johnson, Vikas Dhiman, Richard F. Doell, Shao-

Hang Hsieh, Parker Koch, Ryan Szeto and Theodore Nowak.

Finally, I would like to thank my wife, Yankun, my family and my many friends

for their support, encouragement, and company during these years.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . xvii

ABSTRACT . xix

CHAPTER

I. Introduction . 1

1.1 Motivation . 1
1.1.1 Space-Time Groupings of Voxels 4
1.1.2 Scale Selection in Supervoxel Hierarchies 5

1.2 Thesis Statement . 8
1.3 Overview . 8

1.3.1 Contribution 1: Library and Benchmark for Scale
Generation . 8

1.3.2 Contribution 2: A Streaming Hierarchical Frame-
work for Scale Generation 9

1.3.3 Contribution 3: A Visual Psychophysical Study of
Semantic Retention 10

1.3.4 Contribution 4: Scale Selection by Post Hoc Guidance 10
1.3.5 Contribution 5: Joint Scale Selection and Video La-

beling . 11
1.3.6 Contribution 6: A New Problem of Actor-Action

Video Understanding 11
1.4 Relevant Publications . 12

II. Related Work . 14

iv

2.1 Video Representation . 14
2.1.1 Interest Points . 15
2.1.2 Trajectories . 16
2.1.3 Supervoxels . 17
2.1.4 Patches and Templates 17
2.1.5 Deep Representations 19
2.1.6 Summary . 20

2.2 Video Segmentation . 20
2.2.1 Region Segmentation 20
2.2.2 Object Segmentation 21
2.2.3 Semantic Segmentation 23
2.2.4 Summary . 24

2.3 Scales in Supervoxel Hierarchy 25

III. Scale Generation I: Library and Benchmark 27

3.1 Introduction . 27
3.2 Background . 31

3.2.1 Superpixels . 31
3.2.2 What makes a good supervoxel method? 31

3.3 Methods . 33
3.3.1 Mean Shift . 33
3.3.2 Graph-Based (GB) 34
3.3.3 Hierarchical Graph-Based (GBH) 35
3.3.4 Graph-Based Streaming Hierarchical (streamGBH) . 35
3.3.5 Nyström Normalized Cut (NCut) 36
3.3.6 Segmentation by Weighted Aggregation (SWA) . . . 37
3.3.7 Temporal Superpixels (TSP) 37

3.4 Datasets . 38
3.4.1 Processing . 40

3.5 Benchmark Evaluation . 41
3.5.1 3D Undersegmentation Error (UE3D) 42
3.5.2 3D Segmentation Accuracy (SA3D) 43
3.5.3 Boundary Recall Distance (BRD) 45
3.5.4 Label Consistency (LC) 46
3.5.5 Human-Independent Metrics 46
3.5.6 Computational Cost 48
3.5.7 Discussion . 51

3.6 Supervoxel Classification . 55
3.7 Conclusion . 62

IV. Scale Generation II: A Streaming Hierarchical Framework . 64

4.1 Introduction . 64

v

4.2 Streaming Hierarchical Video Segmentation—An Approxima-
tion for Hierarchical Video Segmentation 67

4.2.1 Streaming Hierarchical Video Segmentation—An Ap-
proximation Framework for E(S|V) 68

4.2.2 Model For Estimating Si|(Vi, Si−1, Vi−1) 70
4.2.3 Semi-Supervised Grouping Method

for Estimating Sji |(Vi, Sj−1i , Sj−1i−1 , S
j
i−1, Vi−1) 71

4.3 Graph-based Streaming Hierarchical Video Segmentation . . . 74
4.4 Experimental Evaluation . 77

4.4.1 Quantitative Performance: Benchmark Comparisons 78
4.4.2 Qualitative Performance on Long Videos 80
4.4.3 Space and Time Complexity 82

4.5 Conclusion, Limitations and Future Work 82

V. Semantic Retention in Supervoxel Segmentation 83

5.1 Introduction . 83
5.2 Supervoxels: Rich Decompositions of RGB Videos 86
5.3 Experiment Setup . 87

5.3.1 Dataset . 88
5.3.2 Study Cohort . 90
5.3.3 Human User Interface and Instructions 90

5.4 Results and Analysis . 92
5.4.1 Do the segmentation hierarchies retain enough infor-

mation for the human perceiver to discriminate actor
and action? . 92

5.4.2 How does the semantic retention vary with density
of the supervoxels? 94

5.4.3 How does the semantic retention vary with actor? . 96
5.4.4 How does the semantic retention vary with static ver-

sus moving background? 97
5.4.5 How does response time vary with action? 97
5.4.6 Easy, moderate and hard videos 99

5.5 Conclusion . 99

VI. Scale Selection I: Selection by Post Hoc Guidance 101

6.1 Introduction . 101
6.2 Supervoxel Hierarchy Flattening Problem 104
6.3 The Uniform Entropy Slice 107

6.3.1 Uniform Entropy Slice as a Binary QP 110
6.3.2 Feature Criteria . 111

6.4 Experiments . 113
6.4.1 Quantitative Evaluation 115
6.4.2 Qualitative Evaluation 116

vi

6.5 Discussion and Conclusion . 118

VII. Scale Selection II: Joint Selection and Video Labeling 122

7.1 Actor-Action Video Understanding 122
7.1.1 A2D—The Actor-Action Dataset 125
7.1.2 Problem Formulation 127
7.1.3 Experiments . 134
7.1.4 Discussion and Contributions 141

7.2 Grouping Process Models . 142
7.3 The Modeling of GPM . 145

7.3.1 Labeling Cues from Supervoxel Hierarchy 147
7.3.2 Grouping Cues from Segment Labeling 147
7.3.3 Tree Slice Constraint 148

7.4 Iterative Inference for GPM 149
7.5 The Actor-Action Problem Modeling 151

7.5.1 Segment-Level CRF Ev 152
7.5.2 Video-Level Potentials EV 152
7.5.3 The GPM Potentials Eh 154
7.5.4 Inference . 155

7.6 Experiments . 156
7.7 Conclusion . 161

VIII. Conclusion . 163

BIBLIOGRAPHY . 166

vii

LIST OF FIGURES

Figure

1.1 Example of human descriptions of YouTube videos. Each video has
five one-sentence descriptions written independently by human anno-
tators. 3

1.2 Illustration of supervoxel segmentation. (a) A video contains a se-
quence of frames. (b) A 3D lattice is built with nodes as voxels and
edges linking voxels within a frame and across frames. (c) Voxels
are being segmented into four groups, i.e. supervoxels, denoted by
distinct colors. 4

1.3 An input video and its three sampled levels from the supervoxel hier-
archy. The paired boxes denote objects and their appropriate levels
of scale, where going up causes undersegmentation (i.e. merge with
other objects), and going down causes oversegmentation (i.e. have
too many fragmented segments). 6

2.1 Results of detecting the strongest space-time interest points in a foot-
ball sequence (a) and in a hand clapping sequence (b). The interest
points correspond to space-time corners. Figure from [98]. 15

2.2 An overview of the process to extract dense trajectories. Figure
from [203]. 16

2.3 An overview of the Action Bank method. It is a high-level template-
based video representation. Figure from [163]. 18

2.4 An overview of the two-stream ConvNet architecture. Figure from
[175]. 19

2.5 An example output of video object segmentation. Figure from [102]. 22

viii

2.6 An example of the semantic video segmentation. Images are taken
from the CamVid dataset [17]. 23

3.1 A toy example of a single groundtruth segment g with five different
supervoxel segmentations. We show the example in 2D for simple
illustration. We draw the groundtruth segment g as a 2x2 dashed
square shape. All supervoxel segments are shown in solid square
shapes and are defined in three different sizes: 1x1 (e.g. s1 in (a)),
1.5x1.5 (e.g. s1 in (b)), and 2x2 (e.g. s1 in (e)). Segment s3 in (c)
and (e) is offset by 1/4. The gray areas are counted toward SA3D.
The scores of UE3D, SA3D and BRD for each cases are shown in
Tab. 3.1. 44

3.2 Graphs plot the number of supervoxels per-video (x-axis) against
various metrics (y-axis). Datasets are organized by columns and met-
rics are organized by rows. Black arrows in each row are used to in-
dicate the direction of better performance with regard to the metric.
Plot ranges along the y-axis are aligned for all metrics except UE3D.
Plotted dots are the average score of linear-interpolated values from
all videos in a dataset at the same number of supervoxels per-video. 49

3.3 Graphs plot the number of supervoxels per-frame (x-axis) against
various metrics (y-axis). Datasets are organized by columns and met-
rics are organized by rows. Black arrows in each row are used to in-
dicate the direction of better performance with regard to the metric.
Plot ranges along the y-axis are aligned for all metrics except UE3D.
Plotted dots are the average score of linear-interpolated values from
all videos in a dataset at the same number of supervoxels per-frame. 50

3.4 Plots for Label Consistency (LC) against the number of supervoxels
per-video (x-axis). Black arrow indicates the direction of better
performance. Plotted dots are the average score of linear-interpolated
values from all videos in a dataset at the same number of supervoxels
per-video. 51

3.5 Plots for Label Consistency (LC) based on the number of supervoxels
per-frame (x-axis). Black arrow indicates the direction of better
performance. Plotted dots are the average score of linear-interpolated
values from all videos in a dataset at the same number of supervoxels
per-frame. 52

ix

3.6 Visual comparative results of the seven methods on videos. Each su-
pervoxel is rendered with its distinct color and these are maintained
over time. We recommend viewing these images zoomed on an elec-
tronic display. In the top part, we show a video from [115] where
label consistency is computed and shown in black and white (white
pixels indicate inconsistency with respect to groundtruth flow). In
the middle part, we show videos from SegTrack v2 and BuffaloXiph,
where groundtruth object boundaries are drawn in black lines. We
show a video from BVDS on the bottom. 53

3.7 Plots on the top are the pixel-level average per-class accuracy (left)
and global accuracy (right) for both training and testing sets when
supervoxels directly take groundtruth labels (the most frequent ones
in volumes). Plots on the bottom are the pixel-level classification
performance on the test set with SVMs trained on supervoxels. We
show the plots in the range of 100 to 900 supervoxels every 100 frames
(x-axis). The plotted dots are from actual segmentations rather than
interpolated values. We note that [17] report 53.0% average per-class
and 69.1% global accuracy using random forests trained on pixels
with both appearance and geometric cues, where we only use ap-
pearance cues with supervoxels. 58

3.8 Pixel-level labeling accuracy for each semantic class in the CamVid
dataset, where the percentages of total pixels for each class are shown
on top. All plots are shown in the range of 0 to 1000 supervoxels every
100 frames (x-axis). The first six plots (horizontal) are plotted with
an accuracy range from 0 to 1, and the other plots are from 0 to 0.3.
We do not show the class Sign Symbol (0.17%) here due to its low
accuracy for all methods. 59

3.9 Example results on two short clips from the CamVid daytime test
video. Images in the first column are video frames and groundtruth
labels and the remaining columns are individual methods with super-
voxel segmentation and semantic labeling on supervoxels. 61

3.10 Example results on a clip from the CamVid dusk test video. Images
in the first column are video frames and groundtruth labels and the
remaining columns are individual methods with supervoxel segmen-
tation and semantic labeling on supervoxels. 62

x

4.1 Three different processing paradigms for video segmentation. (a)
Frame-by-frame processing such that each frame is independently
segmented, but no temporal information is used. Even though it
is fast, the results and temporal coherence are poor. (b) Stream
processing segments the current frame only based on a few previously
processed frames. It is forward-only online processing, and the results
are good and efficient in terms of time and space complexity. (c) 3D
volume processing that represents a model for the whole video. It
is bidirectional multi-pass processing. The results are best, but the
complexity is too high to process long and streaming videos. 66

4.2 Framework of streaming hierarchical video segmentation. 68

4.3 Sub-framework for hierarchical segmentation for single subsequence Vi. 70

4.4 Illustration of posing Eq. 4.8 as a semi-supervised problem. 72

4.5 Example of the three cases in the additional merging criteria: (a), the
initial status of semi-supervised grouping; (b-d) three different cases,
when sa and sb needed to be merged: (b) sa ⊂ Sj−1i and sb ⊂ Sj−1i ;
(c) sa ∩ Sj−1i−1 6= ∅ and sb ⊂ Sj−1i ; (d) sa ∩ Sj−1i−1 6= ∅ and sb ∩ Sj−1i−1 6= ∅ 73

4.6 Example long term video StreamGBH output with k = 10. (a) the
video with frame number on top-left, (b) the 5th layer, (c) the 10th
layer, (d) the 14th layer segmentations. Faces are obscured for pri-
vacy concerns in the figure. 76

4.7 Quantitative experiments on the benchmark dataset. Left: 3D Un-
dersegmentation Error. Middle: 3D Boundary Recall. Right: Ex-
plained Variation. Top Row: performance of Streaming GB/GBH
with different k against full-video versions. Bottom Row: compari-
son against streaming methods. 78

4.8 Mean duration of segments vs. number of segments. 80

4.9 (top) Qualitative comparison of k = 10 for the streaming methods.
(bottom) Shot change of StreamGBH with k = 10. (a) the video
with frame number on top-left, (b) the 5th layer segmentation, (c)
the 10th layer segmentation, (d) the 14th layer segmentation. 81

xi

5.1 Example output of the streaming hierarchical supervoxel method in
Chapter IV. From left to right columns are frames uniformly sam-
pled from a video. From top to bottom rows are: the original RGB
video, the fine segmentation (low level in the hierarchy), the medium
segmentation (middle level in the hierarchy), and the coarse segmen-
tation (high level in the hierarchy). 84

5.2 A comparison of different video feature representations. From top to
bottom rows are: the RGB video, the supervoxel segmentation [221],
extracted boundaries of supervoxel segmentation, space-time interest
points [98], and optical flow [178]. 87

5.3 A snapshot of the RGB videos in our dataset. The actors in the top
two rows are humans and in the bottom two rows are animals. The
dataset consists of two kinds of actors, eight actions and two types
of background settings, resulting in a total of 32 videos. 88

5.4 A snapshot of the user interface for the experiment. 90

5.5 The performance of supervoxel semantic retention of actor and ac-
tion on three levels from the supervoxel segmentation hierarchy: fine,
medium and coarse. The percentages on top are computed when both
the actor and action of supervoxel perception are correctly matched
to ground truth. The middle and bottom rows are the response time
figures when the supervoxel perception is correctly matched and in-
correctly matched respectively. 94

5.6 Performance comparison between human actors and animal actors.
The percentages on top are computed when both the actor and action
of supervoxel perception are correctly matched to ground truth. The
response time plots include both correctly and incorrectly matched
supervoxel perceptions. 95

5.7 Performance comparison between static background and moving back-
ground. The percentages on top are computed when both the actor
and action of supervoxel perception are correctly matched to ground
truth. The response time plots include both correctly and incorrectly
matched supervoxel perceptions. 96

5.8 Response time of eight different actions for both correctly and incor-
rectly matched perceptions. 97

xii

5.9 Visualization of videos with different levels of semantic retention.
From top to bottom rows are videos picked from high, moderate, and
low retention resepectively. Frames are uniformly sampled from each
video. We notice that supervoxel motion plays an important role in
helping human observers locate the actor in a supervoxel segmen-
tation video, which is hard to see in the montages. Therefore, we
encourage people to view those videos in our project website for a
better visualization. 98

6.1 The uniform entropy slice (UES) selects supervoxels from multiple
hierarchical levels in a principled way to balance the amount of infor-
mation contributed by each selected supervoxel, according to some
feature criterion (motion in this figure). UES Selection shows what
levels are used and UES Flattening shows the final supervoxel out-
put. Here, UES avoids oversegmentation of the background (present
in Levels 1 and 2) and undersegmentation of the dancers (present in
Levels 4 and 5); even just Level 3 joins the dancers’ face with their
shirts. 102

6.2 Example of supervoxel hierarchy selection by UES with a motion
criterion on video boxers. The motion criterion drives the algorithm
to select finer levels of the hierarchy (brighter regions on bottom
row) on the dominant moving objects. The boxer on the right and
the head of the boxer on the left are being selected from finer levels
in the supervoxel hierarchy while the background segments are from
coarser levels in the hierarchy. The boxer on the right (in an offensive
posture) is moving much more than the boxer on the left. 103

6.3 Illustration of the segmentation tree creation process. On the top of
the figure, left, middle and right are bottom-up levels in a supervoxel
hierarchy: T 1, T 2 and T 3 respectively. From left to middle, V4 and
V5 are merged together, and V3 remains itself as V1 in the middle.
From middle to right, V1 and V2 are merged together to a single top
node V0. The corresponding tree-graphs are in the bottom row. . . . 105

6.4 Slices in the example supervoxel tree. (a) - (d) list all 4 possible
slices of the segmentation tree (excluding the root node). Each slice
is highlighted as a thick black curve, and nodes on the slice are darkened.106

6.5 Supervoxel tree T and the corresponding path matrix P . The path
P2 is highlighted to illustrate the path matrix P in which each row
specifies a root-to-leaf path through the tree. 107

xiii

6.6 Example hierarchy node entropy for the motion feature criterion. (a)
is the raw video girl from SegTrack, (b: coarse) – (h: fine) are node
entropy from various levels in the hierarchy. The entropy color from
dark blue to dark red maps entropy changing from low to high (using
the jet colormap in Matlab). Notice how the entropy of the girls limbs
is relatively higher than that of the background for corresponding
hierarchy levels. 108

6.7 Different feature criteria focus on different parts of the video dancers.
Here, the motion feature focuses mostly on the dominant man in front
and some attention to the woman in the back. On the other hand,
the human-ness criterion focuses on both dancers, while the object-
ness also focuses on the chairs in the back. All these feature criteria
try to avoid undersegmentation of interesting objects as shown in the
top level in GBH (the woman merged with the door and bench in
the back), and maintain a uniform clean background. In the UES
Selection images (left two columns), the dark red to dark blue means
the finer levels to coarser levels in the supervoxel hierarchy tree. . . 112

6.8 UES helps avoid foreground undersegmentation and background over-
segmentation on video birdfall2. GBH and SWA on the top row show
the middle levels from each hierarchy. A white circle means the bird
has no segmentation leak, whereas a white rectangle means a seg-
mentation leak with the surrounding tree branches. Here, we use the
motion criterion. 116

6.9 Comparison of UES against baseline methods on video girl from Seg-
Track. UES on Motion and SAS (based on motion) have identical
number of supervoxels in their final outputs. We also show a simple
selection of the middle level from GBH as well as UES on Object-ness
for comparison. 117

6.10 UES on Object-ness selects the parachute segments and the human,
while UES on Motion fails. 117

6.11 UES on Motion and Human-ness on video danceduo. 119

6.12 UES on Motion, Human-ness and Car-ness on video nocountryforold-
men from [65]. For Motion and Human-ness, the moving man is
selected from the finer levels, while most others are from coarser lev-
els. For car-ness, the car and nearby regions are selected from finer
levels. The red selection around the window is to avoid leaks. 120

xiv

7.1 Montage of labeled videos in our new actor-action dataset, A2D. Ex-
amples of single actor-action instances as well as multiple actors doing
different actions are present in this montage. Label colors are picked
from the HSV color space, so that the same objects have the same
hue (refer to Fig. 7.2 for the color-legend). Black is the background.
View zoomed and in color. 124

7.2 Statistics of label counts in the new A2D dataset. We show the
number of videos in our dataset in which a given [actor, action] label
occurs. Empty entries are joint-labels that are not in the dataset
either because they are invalid (a ball cannot eat) or were in insuf-
ficient supply, such as for the case dog-climb. The background color
in each cell depicts the color we use throughout the chapter; we vary
hue for actor and saturation for action. 126

7.3 Histograms of counts of joint actor-actions, and individual actors and
actions per video in A2D; roughly one-third of the videos have more
than one actor and/or action. 127

7.4 Visualization of different graphical models to solve Eq. 7.1. The figure
here is for simple illustration and the actual voxel or supervoxel graph
is built for a video volume. 130

7.5 Comparative example of semantic segmentation results. These sam-
ple only two frames from the each dense video outputs. 140

7.6 Example results from the trilayer model (upper are good, lower are
failure cases). 141

7.7 An overview of the grouping process model. The left side shows
an input video and its segment-level segmentation. The right side
shows the same video being segmented into a supervoxel hierarchy.
During inference, the CRF defined on the segment-level starts with a
coarse video labeling. It influences what supervoxels are active in the
hierarchy. The active supervoxels, in turn, affect the connectivities in
the CRF. This process is dynamic and continuous, where the video
labeling is being iteratively refined. 144

7.8 The video labeling of actor-action is refined by GPM. First row shows
a test video car-jumping with its labelings. The second row shows a
supervoxel hierarchy and the third row shows the active nodes in the
hierarchy with their dominant labels. 154

7.9 Visualization of two nodes of the bilayer model in our efficient inference.156

xv

7.10 Visual example of the actor-action video labelings for all methods.
(a) - (c) are videos where most methods get correct labelings; (d) -
(g) are videos where only GPM models get the correct labelings; (h)
- (g) are difficult videos in the dataset where the GPM models get
partially correct labelings. Colors used are from the A2D benchmark. 160

xvi

LIST OF TABLES

Table

3.1 The scores of UE3D, SA3D and BRD for the toy example in Fig. 3.1.
The larger the better for SA3D, and the small the better for UE3D
and BRD. The top two scores are bolded for each metric. BRD is
calculated strictly for vertical boundary matching only and horizon-
tal boundary matching only in this toy example, which is slightly
different than Eq. 3.5. 45

3.2 Computational cost. 48

5.1 Confusion matrix for actor discrimination. 92

5.2 Confusion matrix for action discrimination. 93

6.1 Quantitative comparison of UES against the other two baseline meth-
ods on SegTrack dataset. We evaluate on two different hierarchical
supervoxel methods: SWAT and GBH. The leading scores of each
metric per video are in bold font. 114

7.1 Single-label and multiple-label actor-action recognition in the three
settings: independent actor and action models (näıve Bayes), joint
actor-action models in a product-space and the trilayer model. The
scores are not comparable along the columns (e.g., the space of in-
dependent actors and actions is significantly smaller than that or
actor-action tuples); the point of comparison is along the rows where
we find the joint model to outperform the independent models when
considering both actors and actions. <A, A> denotes evaluating in
the joint actor-action product-space. 135

xvii

7.2 Average per-class semantic segmentation accuracy in percentage of
joint actor-action labels for all models (for individual classes, left, and
in summary, right). The leading scores of each label are displayed in
bold font. The summary scores on the right and indicate that the
trilayer model, which considers the action and actor models alone as
well as the actor-action product-space, performs best. 137

7.3 The overall performance on the A2D dataset. The top two rows are
intermediate results of the full model. The middle three rows are
comparison methods. The bottom two rows are our full models with
different supervoxel hierarchies for the grouping process. 157

7.4 The performance on individual actor-action labels using all test videos.
The leading scores for each label are in bold font. 159

xviii

ABSTRACT

Scale-Adaptive Video Understanding

by

Chenliang Xu

Chair: Jason J. Corso

The recent rise of large-scale, diverse video data has urged a new era of high-level

video understanding. It is increasingly critical for intelligent systems to extract se-

mantics from videos. In this dissertation, we explore the use of supervoxel hierarchies

as a type of video representation for high-level video understanding. The supervoxel

hierarchies contain rich multiscale decompositions of video content, where various

structures can be found at various levels. However, no single level of scale contains

all the desired structures we need. It is essential to adaptively choose the scales for

subsequent video analysis. Thus, we present a set of tools to manipulate scales in

supervoxel hierarchies including both scale generation and scale selection methods.

In our scale generation work, we evaluate a set of seven supervoxel methods in

the context of what we consider to be a good supervoxel for video representation. We

address a key limitation that has traditionally prevented supervoxel scale generation

on long videos. We do so by proposing an approximation framework for streaming

hierarchical scale generation that is able to generate multiscale decompositions for

arbitrarily-long videos using constant memory.

xix

Subsequently, we present two scale selection methods that are able to adaptively

choose the scales according to application needs. The first method flattens the entire

supervoxel hierarchy into a single segmentation that overcomes the limitation induced

by trivial selection of a single scale. We show that the selection can be driven by

various post hoc feature criteria. The second scale selection method combines the

supervoxel hierarchy with a conditional random field for the task of labeling actors

and actions in videos. We formulate the scale selection problem and the video labeling

problem in a joint framework. Experiments on a novel large-scale video dataset

demonstrate the effectiveness of the explicit consideration of scale selection in video

understanding.

Aside from the computational methods, we present a visual psychophysical study

to quantify how well the actor and action semantics in high-level video understand-

ing are retained in supervoxel hierarchies. The ultimate findings suggest that some

semantics are well-retained in the supervoxel hierarchies and can be used for further

video analysis.

xx

CHAPTER I

Introduction

1.1 Motivation

Recent advances in technology and rapid growth of consumer electronics have

made video capturing ever easier and more diverse than before. In addition to tra-

ditional devices, such as surveillance cameras and camcorders, modern devices such

as smartphones, action cameras (e.g. GoPro Hero), wearable devices (e.g. Google

Glass), dashboard cameras and even drones (e.g. DJI Phantom) are also capturing

videos. The cost of a mobile consumer video recording device is also negligible com-

pared to what it was ten years ago, which makes video recording accessible to almost

everyone on the earth. For example, the number of smartphone subscriptions alone

has reached 3.2 billion worldwide in 2015 and is anticipated to reach 6.3 billion in

2021 according to the annual Mobility Report from Ericsson [123].

In addition to this ease in capturing video, the sharing of video content is becoming

more straightforward and popular. For example, YouTube gets more than 400 hours

of uploaded video content every minute as of July 20151. The Ericsson report [123]

again shows that video content currently accounts for 41% - 55% of mobile data

traffic, and that it will account for over two-thirds of mobile data traffic by 2021.

1Industry keynote speech by Susan Wojcicki at VidCon 2015, https://www.youtube.com/

watch?v=O6JPxCBlBh8.

1

This tremendous growth of video data has urged a new era of video understanding,

which requires an intelligent system to understand the underlying semantics in videos

that are consistent with human perceptions. Not only is it needed for off-line systems

that index and retrieve videos, but also for real-time interactive systems (agents) that

communicate with humans and the environment.

However, comprehensive video understanding is complicated and requires both in-

video evidence and out-of-video knowledge. Figure 1.1 shows an example of human

descriptions of videos from YouTube. Human descriptions not only include common

focuses such as actions (e.g. crawling, walking and flying), actors performing actions

(e.g. baby, dog and cat) and their spatiotemporal relationships (e.g. along, next to

and toward), but also richer information such as location (e.g. floor, beach and sky),

attributes (e.g. carpeted, little and in red), inferred relationships (e.g. his dog and his

cat) and fine-grained categories (e.g. seagulls). At the same time, video content poses

many challenges: the video recording is often subject to irregular motion and changes

in lighting; objects and actions can appear at various spatiotemporal locations and

scales; and the dynamics of actions and interactions are computationally demanding

to model.

Clearly, video understanding has a huge assortment of problems that need to

be addressed. This dissertation presents a small but steady step towards achieving

the goal of comprehensive video understanding. We study the basics of video rep-

resentation, and in particular, we focus on supervoxel hierarchies (see Sec. 1.1.1 for

the definition of supervoxels). We motivate the task of scale selection in Sec. 1.1.2.

We propose tools for both scale generation and scale selection. Our efforts lead to

improved performance in joint modeling of actors, actions and their spatiotemporal

locations in video understanding.

2

Time

Time

Time

Time

1. A dog and a male baby crawl across the floor.
2. A little boy is crawling on the ground along with a dog.
3. A baby and a brown dog are crawling across a carpeted floor.
4. A small child and a dog are crawling along the floor.
5. A dog and a kid crawl on a green floor.

1. A man is walking with his dog and cat on the beach.
2. A man in red is walking on a sandy beach with a cat and a white dog.
3. A man is walking his dog and his cat across the sand.
4. A man walks a dog and a cat walks alongside them.
5. A man walks a white dog next to a cat on the beach.

1. A flock of seagulls flying in a heavy wind on a cloudy day.
2. A group of seabirds are flying together under the blue and cloudy sky.
3. A flock of birds is flying through a cloudy sky.
4. Many birds are flying in the sky.
5. Seagulls fly on a partly cloudy day.

1. One baby stands near a fence playing with a green toy, while another baby walks toward the fence.
2. A little boy is putting a toy into his mouth while another boy is walking towards him.
3. A baby is walking with his hands up towards a gate and another baby who is teething something.
4. Two babies are standing and one is eating something green.
5. Two babies, one with a brown suit walk near a fence.

(a)

(b)

(c)

(d)

Figure 1.1: Example of human descriptions of YouTube videos. Each video has five
one-sentence descriptions written independently by human annotators.

3

(a) (b) (c)

Figure 1.2: Illustration of supervoxel segmentation. (a) A video contains a sequence
of frames. (b) A 3D lattice is built with nodes as voxels and edges linking
voxels within a frame and across frames. (c) Voxels are being segmented
into four groups, i.e. supervoxels, denoted by distinct colors.

1.1.1 Space-Time Groupings of Voxels

Images have many pixels; videos have more. It has thus become standard practice

to first preprocess images and videos into more tractable sets by either extracting

salient points [165] or oversegmenting the image into superpixels [158]. They are

more perceptually meaningful than raw pixels, which are merely a consequence of

digital sampling [158].

In this dissertation, we explore a mid-level video representation—the supervoxel

segmentation (see Chapter II for a survey of video representations). We believe

that supervoxel segmentation has great potential to benefit early video analysis. We

define a supervoxel as the video analog to a superpixel. Concretely, given a 3D

lattice Λ3 on all voxels2, a supervoxel v is a subset of the lattice v ⊂ Λ3 such that

the union of all supervoxels comprises the lattice and they are pairwise disjoint:
⋃

i vi = Λ3 ∧ vi
⋂

vj = ∅ ∀i, j pairs. Figure. 1.2 illustrates this concept.

Different supervoxel algorithms treat space and time differently in a video and

apply various grouping strategies. There are many plausible supervoxel methods and

yet, the literature contains little understanding as to when and where each is most

2The video analog to pixels.

4

appropriate. Indeed, aside from our work [214, 216], we are not aware of a single

comparative study on supervoxel segmentation. Thus, we explore the set of criteria

that makes a good supervoxel algorithm and how well do the existing algorithms

perform. Furthermore, we quantify their performance in a recognition task as a

proxy for subsequent high-level use of supervoxels.

Although videos are orders of magnitude bigger than images, most methods in

literature require all voxels in a video to be loaded into memory before computing

supervoxels, which is clearly prohibitive for even medium length videos. For example,

for a 480p video running 20 seconds at a typical frame rate of 30 frames-per-second,

the resultant number of pixels is over 180 million, which requires large amount of

memory to load and process the video. Furthermore, in many applications such as

surveillance and interaction, it is impractical to expect the whole video to be available.

To address these limitations, data stream algorithms provide a possible solution: each

video frame is processed only once and does not change the segmentation of previous

frames. Therefore, we investigate such possibilities in an approximation framework

for streaming hierarchical video segmentation. Notice that there are a few methods

[145, 65] in literature that process a video in a streaming fashion, but none of them

is able to maintain a hierarchy.

1.1.2 Scale Selection in Supervoxel Hierarchies

Supervoxels are typically computed by unsupervised grouping processes. No mat-

ter if the algorithm is hierarchical or flat, it can output multiple segmentations for

an input video and they are spread in a fine-to-coarse scale space, where coarser lev-

els/scales contain larger supervoxels (w.r.t. the number of voxels in the grouping)

and finer levels contain more fragmented supervoxels, and various structures can be

found at various levels (see Fig. 1.3). The various scales of segmentation together de-

fine a supervoxel hierarchy. However, no single level in the hierarchy contains all the

5

Time

S
ca
le

co
ar
se

fin
e

In
pu
t

Figure 1.3: An input video and its three sampled levels from the supervoxel hierarchy.
The paired boxes denote objects and their appropriate levels of scale,
where going up causes undersegmentation (i.e. merge with other objects),
and going down causes oversegmentation (i.e. have too many fragmented
segments).

desired structures we need—it is susceptible to undersegmentation at coarser levels

and oversegmentation at finer levels for different video parts. To obtain a good seg-

mentation for a given task, we need to select and combine supervoxels from different

scales.

Indeed, we are unaware of a principled approach to make use of this rich in-

formation in the hierarchies. Despite a few methods [77, 93] that do operations on

hierarchies (see Chapter II for detail), most methods that use supervoxels usually pick

a single level of scale [190, 120]. We believe that ignoring the intrinsic multiscale

nature of video content is a key limitation to the use of supervoxels in video analysis.

If we look at the history of computer vision, scale is a fundamental problem

and has been studied in various aspects, from features to systems. In fact, it dates

6

back to the 80s, where Witkin [211] discovered that a one-dimensional signal could

be unambiguously segmented into a hierarchy of multiscale regions. However, it

does not easily transfer to higher-dimensional data. Built upon Lindeberg’s scale-

space theory [110], Lowe [121] created the scale-invariant SIFT feature, where scale

is handled in two ways: by sampling different image resolutions and by sampling

Gaussian kernels with different variances. In a recent object detection system [46],

scale is handled by sliding windows over different image resolutions.

We study the scale selection problem in supervoxel hierarchies. First, we are

interested in exploring the possibilities of driving the scale selection attention by

different post hoc feature criteria. The feature criteria provide a doorway to apply

situation-specific guidance post hoc, and they span the spectrum of unsupervised,

such as video motion, to class-specific supervised, such as human-ness and car-ness

from raw detector responses. We would like to know how different selections are

computed with criterion-specific foci of attention.

Second, we explore scale selection in a particular application, i.e. video labeling

of actors and actions. Here, we aim to label each pixel in a video with a pair of actor

and action labels. Existing methods based on conditional random fields (CRFs) for

image labeling either exhaustively optimize over an entire hierarchy [92, 103], or apply

Gaussian kernels for approximation [88]. It is computationally infeasible and also

suboptimal to model the dynamics of actions when extending these methods to videos.

Instead, we formulate the scale selection and video labeling in a joint framework,

where CRFs are built dynamically for video labeling and the same constraint in our

first method is used to select supervoxels. The new model has the ability to adaptively

add long-ranging interactions to infer pixel labels based on supervoxel evidences from

various levels in a hierarchy.

7

1.2 Thesis Statement

Supervoxel hierarchies provide rich multiscale decompositions of video content.

No single level in the scale space contains all desired structures. We can improve

performance in post hoc segmentation and video labeling tasks by adaptively choosing

supervoxels from various scales in the hierarchy.

1.3 Overview

In this section, we present an overview of the dissertation by summarizing the key

contributions.

1.3.1 Contribution 1: Library and Benchmark for Scale Generation

As motivated in Sec. 1.1.1, there are many plausible supervoxel scale generation

algorithms and little understanding as to when and where each is most appropriate.

To that end, in Chapter III, we study seven supervoxel algorithms, including both

off-line and streaming methods, in the context of what we consider to be a good super-

voxel: namely, spatiotemporal uniformity, object/region boundary detection, region

compression and parsimony. For the evaluation we propose a comprehensive suite of

seven quality metrics to measure these desirable supervoxel characteristics. In addi-

tion, we evaluate the methods in a road scene labeling task as a proxy for subsequent

high-level uses of the supervoxels in video analysis. We use six existing benchmark

video datasets with a variety of content-types and dense human annotations. Our

findings lead us to conclusive evidence that the hierarchical graph-based (GBH), seg-

mentation by weighted aggregation (SWA) and temporal superpixels (TSP) methods

are the top-performers among the seven methods. They all perform well in terms

of segmentation accuracy, but vary in regard to the other desiderata: GBH captures

object boundaries best; SWA has the best potential for region compression; and TSP

8

achieves the best undersegmentation error.

We release our implementation of the supervoxel methods, as well as the evaluation

benchmark, to the public3. Since our initial release in 2012, the LIBSVX benchmark

has been widely used in evaluation of supervoxel methods by the computer vision

community, including but not limited to [221, 220, 23, 143, 160, 196, 100, 34, 192].

1.3.2 Contribution 2: A Streaming Hierarchical Framework for Scale

Generation

The use of video segmentation as an early processing step in video analysis lags

behind the use of image segmentation for image analysis, despite many available video

segmentation methods. As we discovered in our evaluation work, a major reason for

this lag is simply that videos are orders of magnitude bigger than images; yet most

methods require all voxels in the video to be loaded into memory, which is clearly

prohibitive for even medium length videos.

In Chapter IV, we address this limitation by proposing an approximation frame-

work for streaming hierarchical video segmentation motivated by data stream algo-

rithms: each video frame is processed only once and does not change the segmentation

of previous frames. We implement the graph-based hierarchical segmentation method

within our streaming framework. Notice that the method we proposed is the first and

remains the only one as of the time of writing this dissertation that is able to generate

a hierarchy of multiscale segmentations for arbitrarily-long videos with constant mem-

ory. We perform thorough experimental analyses on the LIBSVX benchmark. Our

results indicate the graph-based streaming hierarchical method outperforms other

streaming video segmentation methods and performs nearly as well as the full-video

hierarchical graph-based method.

3Link to download: http://www.supervoxel.com.

9

1.3.3 Contribution 3: A Visual Psychophysical Study of Semantic Re-

tention

In Chapter V, we present a visual psychophysical study of semantic retention in

supervoxel hierarchies. To be specific, we conduct a systematic study of how well

the actor and action semantics are retained in a video supervoxel segmentation. Our

study has human observers watching supervoxel segmentation videos and trying to

discriminate both the actor (human or animal) and the action (one of eight everyday

actions). We gather and analyze a large set of 640 human perceptions over 96 videos

at 3 different supervoxel scales. Our ultimate findings suggest that some semantics

are well-retained in the video supervoxel hierarchies and can be used for further video

analysis.

1.3.4 Contribution 4: Scale Selection by Post Hoc Guidance

As motivated in Sec. 1.1.2, supervoxel hierarchies contain rich multiscale infor-

mation and we need to adaptively choose scales for different video parts for a given

task.

In Chapter VI, we present the first method of scale selection in this dissertation. It

flattens the entire hierarchy into a single segmentation that overcomes the limitation

induced by a trivial single-level scale selection—undersegmentation at coarser levels

and oversegmentation at finer levels. Our method, called the uniform entropy slice,

seeks a selection of supervoxels that balances the relative level of information in the

selected supervoxels based on some post hoc feature criterion. For example, with a

criterion of object-ness, in regions nearby objects, our method prefers finer supervoxels

to capture the local details, but in regions away from any objects it prefers coarser

supervoxels. We explore different types of feature criteria that span the spectrum

of unsupervised to class-specific supervised, where different post hoc criteria lead to

different selection attentions. We formulate the uniform entropy slice as a binary

10

quadratic program and implement four different feature criteria, both unsupervised

and supervised, to drive the flattening. Our experiments demonstrate both strong

qualitative performance and superior quantitative performance to state of the art on

benchmark internet videos.

1.3.5 Contribution 5: Joint Scale Selection and Video Labeling

In Chapter VII, we present our second method of scale selection. Existing methods

based on CRFs for video labeling are local and unable to capture the long-ranging

interactions of video parts. We propose a new model that combines the labeling CRF

with scale selection in the supervoxel hierarchy, where supervoxels at various scales

provide cues for possible groupings of nodes in the CRF to encourage adaptive and

long-ranging interactions. The new model defines a dynamic and continuous process

of information exchange: the CRF influences what supervoxels in the hierarchy are

active, and these active supervoxels, in turn, affect the connectivity in the CRF; we

hence call it a grouping process model.

Experiments are conducted on the novel task of video labeling of actors and ac-

tions. We show that, by further incorporating the video-level evidences, the proposed

method achieves a large margin of 60% relative improvement over state of the art.

1.3.6 Contribution 6: A New Problem of Actor-Action Video Under-

standing

Video labeling of actors and actions is a part of our actor-action video under-

standing work, which is described in the beginning of Chapter VII. It advances the

line of research in action understanding by jointly considering various types of actors

undergoing various actions. Indeed, there is no earlier work we know of on simulta-

neously inferring actors and actions in the video, not to mention a dataset on which

to experiment. To start, we collect a dataset of 3782 videos from YouTube and label

11

both actors and actions at the pixel-level in each video. We formulate the general

actor-action understanding problem and instantiate it at various granularities: both

video-level single- and multiple-label actor-action recognition and pixel-level actor-

action semantic segmentation. Our experiments demonstrate that joint inference

over actors and actions outperforms independent inference over them, and concludes

our argument of the value of explicit consideration of various actors in comprehensive

action understanding.

1.4 Relevant Publications

This dissertation is based on the following publications:

1. Chenliang Xu and Jason J Corso. Evaluation of super-voxel methods for early

video processing. In IEEE Conference on Computer Vision and Pattern Recog-

nition, 2012.

2. Chenliang Xu, Caiming Xiong, and Jason J. Corso. Streaming hierarchical video

segmentation. In European Conference on Computer Vision, 2012.

3. Chenliang Xu, Richard F. Doell, Stephen José Hanson, Catherine Hanson, and

Jason J. Corso. Are actor and action semantics retained in video supervoxel seg-

mentation? In IEEE International Conference on Semantic Computing, 2013.

4. Chenliang Xu, Richard F. Doell, Stephen José Hanson, Catherine Hanson, and

Jason J. Corso. A study of actor and action semantic retention in video super-

voxel segmentation. International Journal of Semantic Computing, 07(04):353–

375, 2013.

5. Chenliang Xu, Spencer Whitt, and Jason J. Corso. Flattening supervoxel hi-

erarchies by the uniform entropy slice. In IEEE International Conference on

Computer Vision, 2013.

12

6. Chenliang Xu, Shao-Hang Hsieh, Caiming Xiong, and Jason J. Corso. Can

humans fly? action understanding with multiple classes of actors. In IEEE

Conference on Computer Vision and Pattern Recognition, 2015.

7. Chenliang Xu and Jason J. Corso. Actor-action semantic segmentation with

grouping process models. In IEEE Conference on Computer Vision and Pattern

Recognition, 2016.

8. Chenliang Xu and Jason J. Corso. Libsvx: A supervoxel library and benchmark

for early video processing. International Journal of Computer Vision, 2016.

13

CHAPTER II

Related Work

In this chapter, we survey the work related to the complete dissertation. In future

chapters, we include any work that is exclusive to the content of that chapter.

2.1 Video Representation

Comparing to images, videos contain orders of magnitude more pixels and they

describe complex spatiotemporal events. Thus, it is important and non-trivial to

design compact yet expressive representations for video. In this section, we discuss a

few generic video representations that are related to this dissertation. They cover a

wide spectrum, from key points [98] to templates [163], and from hand-crafted [203]

to deeply-learned [175, 191].

Notice that these representations are often complementary rather than exclusive to

each other. For example, the improved dense trajectories [204] are used in [208] to pool

the deep convolutional features into more effective descriptors. Interest points and

trajectories are used in our work [219, 215] as features to describe the spatiotemporal

video regions of supervoxels. The use of these representations are application-oriented.

Here, we try to provide a general view of these video representations without going

into one specific application.

14

Figure 2.1: Results of detecting the strongest space-time interest points in a football
sequence (a) and in a hand clapping sequence (b). The interest points
correspond to space-time corners. Figure from [98].

2.1.1 Interest Points

Interest points are used to capture significant local variations. In images, they

are extensively studied [49, 69, 111, 166]. They are relatively stable with respect

to perspective transformation, and are used in various image analysis tasks such as

stereo matching [194], image indexing [165] and object recognition [121].

Laptev [98] extends the Harris detector [69] from the 2D spatial domain to the 3D

spatiotemporal domain, where interest points are required to have large variations

along both spatial and temporal directions in a local 3D video volume. Such interest

points are called Space-Time Interest Points (STIPs). Figure 2.1 shows this concept.

Combined with histograms of oriented gradients (HOG) and histograms of optical flow

(HOF) descriptors in a bag-of-feature setting, Laptev et al. [99] train SVM classifiers

on STIPs to classify human actions in videos.

Other methods that extract interest points in video include but are not limited

to [40, 14, 210, 213]. Furthermore, various descriptors [167, 168, 85, 224] are also

explored as features to describe the spatiotemporal interest points.

15

Figure 2.2: An overview of the process to extract dense trajectories. Figure
from [203].

2.1.2 Trajectories

Instead of modeling a video as a 3D volume, another approach is to track interest

points throughout the video. Methods applying this approach include but are not

limited to [131, 129, 180, 179, 154, 203]. Among all these methods, Wang et al. [203]

propose a way to extract dense trajectories, which has been shown to be the most

effective in terms of modeling human actions.

We briefly describe the process of extracting dense trajectories in [203]. First,

dense feature points are sampled on a grid for each spatial scale of a frame. Then

these points are tracked by median filtering in a dense optical flow field at their

corresponding scales to form trajectories. All the trajectories are forced to have

a fixed length of 15 frames. Finally, feature descriptors such as HOG, HOF and

motion boundary histograms (MBH), along the space-time location of a trajectory

are extracted. Figure 2.2 depicts this process.

When put into the same framework as Laptev et al. [99], dense trajectories have

shown strong performance in terms of classifying human actions and events in videos.

The performance can be further improved by adding a camera motion model and hu-

man detector responses [204], or by using fisher vectors to encode bag-of-features [149].

16

2.1.3 Supervoxels

Segmentation is a fundamental problem in computer vision. We find the following

definition of segmentation from the popular computer vision textbook [50].

“The core idea is collecting together pixels or pattern elements into sum-

mary representations that emphasize important, interesting, or distinctive

properties.” — Forsyth and Ponce

Supervoxels are the oversegmentation of video voxels. Each supervoxel defines a

spatiotemporal region in video that has roughly coherent color, texture and mo-

tion. There are many supervoxel methods, but they mainly fall into two categories

according to the way they model space and time in video. The first set of meth-

ods [31, 65, 146, 51] model video as a 3D volume where clustering or partitioning is

conducted simultaneously in space and time. The second set of methods [23, 196, 160]

conduct clustering or partitioning first in space, usually on the first frame, then track

or propagate the existing groupings to future frames. We survey methods from both

worlds in Sec. 2.2.1.

Supervoxels are used in various video analysis tasks. Tighe and Lazebnik [190] use

supervoxels for semantic road scene labeling in driving videos. Raza et al. [155] train

geometric context classifiers by exploring various motion and appearance features

grouped by supervoxels. Tang et al. [185] propose a weakly supervised approach to

assign supervoxels with object labels in video. Moreover, supervoxels have the ability

to localize objects [141] and actions [79]. They have also been used as higher-order

potentials for human action segmentation [122] and video object segmentation [80].

2.1.4 Patches and Templates

Other than by points, trajectories, or supervoxels, videos can also be represented

by mid-level patches and high-level templates.

17

Figure 2.3: An overview of the Action Bank method. It is a high-level template-based
video representation. Figure from [163].

Mid-Level Patches. Among all the methods, Zhu et al. [231] propose a mid-level

action representation, called acton, that is built on top of low-level descriptors to

represent a volume of interest. These actons are discovered in a weakly-supervised

manner. Jain et al. [78] propose an exemplar-based clustering approach to mine

discriminative and representative spatiotemporal patches. Lan et al. [97] represent

videos by a hierarchy of mid-level action elements. Each action element corresponds

to an action-related spatiotemporal segment discovered by a discriminative clustering

algorithm. Similar methods aligned with this concept are [124, 125].

High-Level Templates. Action bank [163] defines a unique high-level template-

based video representation. It contains a large set of templated-based action de-

tectors. For a given video, correlations are computed over each detector at multiple

scales and a feature vector is extracted by volumetric max-pooling. To build the bank,

they manually sample action templates over a large set of action classes (50 action

18

Figure 2.4: An overview of the two-stream ConvNet architecture. Figure from [175].

classes from UCF50 [156] and six action classes from KTH [167]). Within one action

class, they sample three to six action templates to capture the variations (e.g. view-

points, temporal scales). Therefore, it results in a total 205 action templates. These

templates are used to construct detectors using the action spotting framework [39].

Figure 2.3 shows an overview of the process.

2.1.5 Deep Representations

Recently deep Convolutional Networks (ConvNets) have attracted much attention

due to the availability of large-scale training set and the advances in GPU computation

power. They achieve superior performance on image recognition tasks [89, 176, 182].

The computer vision community is also pushing to adapt ConvNets to model videos.

Simonyan and Zisserman [175] propose a two-stream ConvNet architecture, where

a spatial stream ConvNet operates on individual video frames and a temporal stream

ConvNet operates on multi-frame optical flow fields. Figure 2.4 depicts their architec-

ture. Another set of works include Ji et al. [82] and Tran et al. [191], where they apply

3D convolution on a video volume. In addition, some other works use LSTM [72] to

model the information in temporal domain of a video.

19

2.1.6 Summary

We have discussed various video representations based on interest points, tra-

jectories, supervoxels, patches and templates, and neural networks. Among all the

representations, there are, in general, two approaches to model space-time in a video.

Methods such as STIPs [98], graph-based supervoxels [31, 65], and 3D ConvNets

[82, 191] consider video as a 3D volume where time is modeled as a third dimen-

sion in addition to space. The other set of methods such as dense trajectories [203]

and temporal superpixels [23] treat space and time differently, and often track inter-

est points and regions over time. In our work, we study supervoxels generated by

methods from both perspectives.

The various representations are complementary rather than exclusive to each

other, e.g. dense trajectories can be used to pool convolutional features [208] or

compute supervoxels that are consistent with long-term object motion [106]. In our

work, we use supervoxels as the basic blocks for video labeling, where we also compute

point and trajectory features and use them to describe supervoxels.

2.2 Video Segmentation

In this section, we discuss works in the broader domain of video segmentation, in-

cluding region segmentation, object segmentation and semantic segmentation. Notice

that all works we discuss here are spatiotemporal segmentation rather than temporal

only segmentation [147].

2.2.1 Region Segmentation

Region segmentation aims to decompose a video into spatiotemporal regions that

are consistent with human perceptions. The term video segmentation often refers to

region segmentation. Supervoxel segmentation is a type of region segmentation with

20

a focus on oversegmenting a video into spatiotemporal regions, such that regions not

only are more consistent with human perceptions but also have coherent color, texture

and motion. Methods in video segmentation can be used to generate supervoxels in

a process of supervoxelization [58, 214], and supervoxel hierarchies can also provide

video segmentations [220, 65]. Thus the boundary between supervoxel segmentation

and video segmentation is not salient.

We study seven segmentation methods to generate supervoxels in Chapter III in-

cluding mean shift [146], graph-based [47], hierarchical graph-based [65], streaming

hierarchical graph-based [221], Nyström normalized cut [171, 52, 51], segmentation

by weighted aggregation [169, 170, 31] and temporal superpixels [23]. These meth-

ods broadly sample the methodology space among statistical and graph partitioning

methods [5].

Notice that many other methods have been proposed in the literature for region

segmentation including but not limited to: computing watersheds [201], clustering

via Gaussian mixture modeling [63], tracking regions or superpixels [15, 198, 56],

propagating groupings in graph [119], formulating as energy minimization [199, 84,

19], modeling by trajectories [106, 143], and spectral clustering on superpixels [57].

An early survey of spatiotemporal grouping techniques is in [130]. A recent video

segmentation evaluation benchmark is proposed in [58]. We propose and establish

the evaluation benchmark for supervoxel segmentation in Chapter III.

2.2.2 Object Segmentation

Video object segmentation aims to separate the foreground moving objects and

the background, which is analogous to figure-ground segmentation in the image do-

main except that videos contain rich motion information. Figure 2.5 shows an exam-

ple output. Comparing to tracking, video object segmentation gives precise object

shapes. Various methods have been proposed in literature. According to the amount

21

Figure 2.5: An example output of video object segmentation. Figure from [102].

of supervision they require, the methods can be organized into three categories.

Interactive or supervised. Several interactive methods, such as [7, 152, 225],

require users to annotate object boundaries for a few frames. Then, they propagate

the annotations to other frames in video. Another set of methods, such as [159, 28,

193, 153, 80, 197], require users to mark the object positions in the first frame, then

track or propagate the annotated object throughout the whole video.

Weakly supervised. The weakly supervised methods [70, 185, 120, 230] typically

require some video-level tags, then they can extract the video object segmentation

along with object class information in large-scale video datasets. Methods such as [70,

185, 120] rely on a pre-processing of videos into supervoxels.

Unsupervised and fully automatic. Methods in this category generate object

segmentations in an unsupervised and fully automatic fashion. They are most ex-

tensively studied in the literature due to the promising applications. Several meth-

ods [18, 140, 42, 137] explore the motion segmentation by grouping long-term motion

trajectories into regions. Some other methods, such as [102, 126, 227, 144, 60] start

with some object proposals, then evaluate over multiple cues from both appearance

22

Time

Figure 2.6: An example of the semantic video segmentation. Images are taken from
the CamVid dataset [17].

and motion domains to get the final segmentation. They vary by the ways they

formulate the problem, e.g. [126] model it as finding a maximum weight clique in a

weighted region graph, and [227] use a layered directed acyclic graph. Another set of

methods [54, 207, 228] explore this video object segmentation problem by formulating

it as a co-segmentation of a group of similarly-recorded videos.

2.2.3 Semantic Segmentation

Given a video, semantic video segmentation aims to assign each pixel in video

with a semantic label. For example, the set of semantic labels in a road scene setting

can include both objects, e.g. car, pedestrian and bicyclist, and scene elements, e.g.

road, sidewalk, building and tree. Figure 2.6 shows an example video of the popular

CamVid driving dataset [17]. Semantic video segmentation is often referred to as

video labeling as the majority methods formulate this problem as a labeling problem

of conditional random field (CRF), where they differ by the way they obtain the

unary and the way they construct the graph.

There are two lines of works. The first line of works is essentially image-based

23

and they do not model any spatiotemporal coherence. A number of methods have

been proposed: [212, 94] model jointly the object reasoning and pixel labeling; [177]

add features by structure from motion (SFM); [88] propose efficient inference for fully-

connected CRF; [91] combine the pixel labeling with 3D reconstruction; and [45] train

ConvNets to obtain initial superpixel labels.

The second line of works models the spatiotemporal coherence in the labeling field

and they are considered as semantic video segmentation methods. Several methods

have been proposed: [24] add dynamic temporal links to connect pixels in different

frames in order to obtain consistent labeling over time; [48] add such links by SFM

cues; [132] propagate labels to future frames by learning a similarity function between

pixels; [190, 113, 77] build spatiotemporal CRF graphs using supervoxels; and [112]

further model the object interactions on top of a supervoxel graph.

2.2.4 Summary

We have discussed various video segmentation tasks including region segmenta-

tion, object segmentation and semantic segmentation. They have different aims, e.g.

object segmentation tries to extract foreground moving objects, and semantic seg-

mentation aims to label pixels in the scene densely with a set of semantic labels.

Supervoxel segmentation provides voxel groupings that can be used for both object

segmentation [65, 80] and semantic segmentation [190, 155, 185].

In our work, we extend the scope of semantic segmentation to include both actors

and actions, i.e. dog-running, cat-climbing and adult-eating are examples of the labels

in our task. We leverage supervoxels to model various relationships among actors and

actions as well as long-ranging interactions of different video parts. We do not rely

on trained object trackers [30] to track objects over time, as supervoxels have already

provided trajectories for video parts. Indeed, supervoxels are used in [26] to track

objects, and Palou and Salembier [143] first track points into trajectories and then

24

group trajectories into supervoxels.

2.3 Scales in Supervoxel Hierarchy

In this section, we survey the work that uses the rich multiscale information

contained in a supervoxel hierarchy. The concept of scale is important: objects can

appear at arbitrary scales in an image, e.g. finding faces in surveillance images versus

selfies; action can appear at different rates in a video, e.g. 100-meter performed by

professionals versus non-professionals; and not to mention that the resolution of an

image and the frame rate of a video can be easily manipulated. Indeed, the computing

of scales has been heavily studied in various video representations (see Sec. 2.1).

However, the use and manipulation of scales are relatively less explored, especially

for supervoxel hierarchies. Most methods using supervoxels [190, 80, 113, 112] only

use a single level from the hierarchy. There are only a few works in the literature

that take the advantage of multiscale information in hierarchies in their modeling of

image/video. They can be roughly organized into two categories according to the

way they manipulate the hierarchies and we discuss them next.

The first line of works contains bottom-up methods. They either grow or prune

parts in a hierarchy to propose desired regions for later processing. Uijlings et al. [195]

propose image regions for object detection by examining various object-ness criteria

in hierarchical clustering of image regions. Similarly, Oneata et al. [141] build a

supervoxel hierarchy for spatiotemporal object detection proposals in video. Jain et

al. [79] grow a hierarchy for action localization, and on the contrary, Ma et al. [125]

prune a segmentation tree for the same task.

The second line of works considers the hierarchies in a graphical model energy

minimization framework. The Pylon model [103] and associative hierarchical random

fields [93] define a hierarchical cost function over superpixels at all levels. Jain et

al. [77] propose an exact coarse-to-fine energy minimization strategy on the hierarchy

25

for semantic video segmentation. Lu et al. [122] consider a higher-order potential

between supervoxels at different levels in the hierarchy. Ren et al. [157] combine

segmentation tree path classification with a pairwise Markov random field. In addi-

tion, scales in a hierarchy can be picked during post-processing. In [45], each node is

encoded by a spatial grid of feature vectors pooled in the image region and then clas-

sified to produce a histogram of categories. The final labeling is obtained by finding

the optimal cover of the segmentation tree.

In our work, we propose two methods for scale selection that are different from the

above two lines of research. We seek to locate a best interpretation of video content by

selecting video parts from different scales in a hierarchy. We drive the scale selection

by different post hoc feature criteria in the first method, and formulate a joint model

of scale selection and video labeling in the second method.

26

CHAPTER III

Scale Generation I: Library and Benchmark

3.1 Introduction

Images have many pixels; videos have more. It has thus become standard prac-

tice to first preprocess images and videos into more tractable sets by either extrac-

tion of salient points [165] or oversegmentation into superpixels [158]. Preprocess-

ing output—salient points or superpixels—is more perceptually meaningful than raw

pixels, which are merely a consequence of digital sampling [158]. However, the same

practice does not entirely exist in video analysis. Although many methods do indeed

initially extract salient points or dense trajectories, e.g., [98], we are aware of few

methods that rely on a supervoxel segmentation, which is the video analog to a su-

perpixel segmentation. In fact, those papers that do preprocess video tend to rely

on a per-frame superpixel segmentation, e.g., [102], or use a full-video segmentation,

e.g., [65].

The basic position of this chapter is that supervoxels have great potential in ad-

vancing video analysis methods, as superpixels have for image analysis. To that end,

we perform a thorough comparative evaluation of seven supervoxel methods: five off-

line and two streaming methods. The off-line methods require the video to be available

in advance and short enough to fit in memory. They load the whole video at once and

process it afterwards. The five off-line methods we choose—segmentation by weighted

27

aggregation (SWA) [169, 170, 31], graph-based (GB) [47], hierarchical graph-based

(GBH) [65], mean shift [146], and Nyström normalized cuts (NCut) [51, 171, 52]—

broadly sample the methodology-space, and are intentionally selected to best analyze

methods with differing qualities for supervoxel segmentation. For example, both SWA

and NCut use the normalized cut criterion as the underlying objective function, but

SWA minimizes it hierarchically whereas NCut does not. Similarly, there are two

graph-based methods that optimize the same function, but one is subsequently hier-

archical (GBH). We note that, of the off-line methods, only GBH had been proposed

intrinsically as a supervoxel method; each other one is either sufficiently general to

serve as one or has been adapted to serve as one. We also note a similar selection

of segmentation methods has been used in the (2D) image boundary comparative

study [5] and nonetheless our selections share a good overlap with the ones studied

in the recent video segmentation benchmark [58].

In contrast, streaming methods require only constant memory (depends on the

streaming window range) to execute the algorithm which makes them feasible for

surveillance or to run over a long video on a less powerful machine. The two streaming

methods we choose—streaming hierarchical video segmentation (streamGBH) [221]

and temporal superpixels (TSP) [23] employ different strategies to treat video data.

The streamGBH approximates a full video segmentation by both hierarchical and

temporal Markov assumptions. Each time it segments video frames within a streaming

window, and the length of the streaming window can be as short as one frame or

as long as the full video, which equates it to full-video GBH segmentation. TSP

represents a set of methods [23, 196, 160] that computes the superpixel segmentation

on the first frame and then extends the superpixels to subsequent frames (one by

one) in a video. The TSP method [23] uses a Gaussian Process for the streaming

segmentation.

This chapter pits the five off-line and two streaming methods in an evaluation

28

on a suite of metrics designed to assess the methods on basic supervoxel desiderata

(Sec. 3.2.2), such as following object boundaries and spatiotemporal coherence. The

specific metrics we use are 3D undersegmentation error, 3D segmentation accuracy,

boundary recall distance and label consistency. They evaluate the supervoxel seg-

mentations against human annotations. We also use a set of human-independent

metrics: explained variation, mean size variation and temporal extent of supervoxels,

which directly explore the properties of each method. Finally, we compare the super-

voxel methods in a particular application—supervoxel classification—that evaluates

methods in a recognition task, which we consider to be a proxy to various high-level

video analysis tasks in which supervoxels could be used. We use six complemen-

tary video datasets to facilitate the study: BuffaloXiph [25], SegTrack v2 [193, 107],

CamVid [17], BVDS [181, 58], [115] and Middlebury Flow [8]. They span from few

videos to one hundred videos, and from sparse annotations to dense frame-by-frame

annotations.

A preliminary version of our work appears in [214]. Since its initial release, the

LIBSVX benchmark has been widely used in supervoxel method evaluation by the

community, including but not limited to [221, 220, 23, 143, 160, 196, 100, 34, 192].

In this chapter, we complement the library with the two streaming methods and a

set of new benchmark metrics on new video datasets. In addition, we add a new

experiment of supervoxel classification to evaluate methods in terms of a middle-

level video representation towards high-level video analysis. We also note that a

recent video segmentation evaluation is proposed in [58]. We distinguish our work

from them by evaluating directly on supervoxel segmentation, the oversegmentation

of a video, and using various datasets including densely labeled human annotations

with a set of novel benchmark metrics. It is our position that evaluations of both

over-segmentation and segmentation in video are necessary to establish a thorough

understanding of the problem-space within the computer vision community.

29

Our evaluation yields conclusive evidence that GBH, SWA and TSP are the top-

performers among the seven methods. They all perform well in terms of segmentation

accuracy, but vary in regard to the other desiderata: GBH captures object boundaries

best; SWA has the best potential for region compression; and TSP follows object parts

and achieves the best undersegmentation error. Although GBH and SWA, the two

offline methods, are quite distinct in formulation and may perform differently under

other assumptions, we find a common feature among the two methods (and one that

separates them from the others) is the manner in which coarse level features are

incorporated into the hierarchical computation. TSP is the only streaming method

among the three and generates supervoxels with the best spatiotemporal uniformity.

Finally, the supervoxel classification experiment further supports our findings and

shows a strong correlation to our benchmark evaluation.

The complete supervoxel library, benchmarking code, classification code and doc-

umentation are available for download at http://www.supervoxels.com. Various

supervoxel results on major datasets in the community (including the existing six

datasets [25, 193, 107, 17, 181, 58, 115, 8]) are also available at this location to allow

for easy adoption of the supervoxel results by the community.

The rest of the chapter is organized as follows. We present a theoretical back-

ground in Sec. 3.2 and a brief description of the methods in Sec. 3.3. We introduce the

datasets and processing setup in Sec. 3.4. We thoroughly discuss comparative per-

formance in terms of benchmark in Sec. 3.5 and supervoxel classification in Sec. 3.6.

Finally, we conclude this chapter in Sec. 5.5.

30

3.2 Background

3.2.1 Superpixels

The term superpixel was coined by Ren and Malik [158] in their work on learning

a binary classifier that can segment natural images. The main rationale behind su-

perpixel oversegmentation is twofold: (1) pixels are not natural elements but merely

a consequence of the discrete sampling of the digital images and (2) the number of

pixels is very high making optimization over sophisticated models intractable. Ren

and Malik [158] use the normalized cut algorithm [171] for extracting the superpixels,

with contour and texture cues incorporated. Subsequently, many superpixel methods

have been proposed [105, 199, 133, 118, 226] or adopted as such [47, 201, 29] and

used for a variety of applications: e.g., human pose estimation [134], semantic pixel

labeling [71, 188], 3D reconstruction from a single image [73] and multiple-hypothesis

video segmentation [198] to name a few. Few superpixel methods have been devel-

oped to perform well on video frames, such as [41] who base the method on minimum

cost paths but do not incorporate any temporal information.

3.2.2 What makes a good supervoxel method?

First, we define a supervoxel—the video analog to a superpixel. Concretely, given a

3D lattice Λ3 (the voxels in the video), a supervoxel v is a subset of the lattice v ⊂ Λ3

such that the union of all supervoxels comprises the lattice and they are pairwise

disjoint:
⋃
i vi = Λ3∧vi

⋂
vj = ∅ ∀i, j pairs. Obviously, various image/video features

may be computed on the supervoxels, such as color histograms and textons. In this

initial definition, there is no mention of certain desiderata that one may expect, such

as locality, coherence, and compactness. Rather than include them in mathematical

terms, we next list terms of this sort as desirable characteristics of a good supervoxel

method.

31

We define a good supervoxel method based jointly on criteria for good supervoxels,

which follow closely from the criteria for good segments [158], and the actual cost

of generating them (videos have an order of magnitude more pixels over which to

compute). Later, in our experimental evaluation, we propose a suite of benchmark

metrics designed to evaluate these criteria (Section 3.5).

Spatiotemporal Uniformity. The basic property of spatiotemporal unifor-

mity, or conservatism [133], encourages compact and uniformly shaped supervoxels

in space-time [105]. This property embodies many of the basic Gestalt principles—

proximity, continuation, closure, and symmetry—and helps simplify computation in

later stages [158]. Furthermore, Veksler et al. [199] show that for the case of super-

pixels, compact segments perform better than those varying in size on the higher

level task of salient object segmentation. For temporal uniformity (called coherence

in [65]), we expect a mid-range compactness to be most appropriate for supervoxels

(bigger than, say, five frames and less than the whole video).

Spatiotemporal Boundaries and Preservation. The supervoxel boundaries

should align with object/region boundaries when they are present and the supervoxel

boundaries should be stable when they are not present; i.e., the set of supervoxel

boundaries is a superset of object/region boundaries. Similarly, every supervoxel

should overlap with only one object [118]. Furthermore, the supervoxel boundaries

should encourage a high-degree of explained variation [133] in the resulting over-

segmentation. If we consider the oversegmentation by supervoxels as a compression

method in which each supervoxel region is represented by the mean color, we expect

the distance between the compressed and original video to have been minimized.

Computation. The computation cost of the supervoxel method should reduce

the overall computation time required for the entire application in which the super-

voxels are being used.

Performance. The oversegmentation into supervoxels should not reduce the

32

achievable performance of the application. Our evaluation will not directly evaluate

this characteristic (because we study the more basic ones above).

Parsimony. The above properties should be maintained with as few supervoxels

as possible [118].

3.3 Methods

We study seven supervoxel methods—mean shift [146], graph-based (GB) [47], hi-

erarchical graph-based (GBH) [65], streaming hierarchical graph-based (streamGBH) [221],

Nyström normalized cut (NCut) [171, 52, 51], segmentation by weighted aggrega-

tion (SWA) [169, 170, 31] and temporal superpixels [23]—that broadly sample the

methodology-space among statistical and graph partitioning methods [5]. We have

selected these seven due to their respective traits and their inter-relationships: for

example, Nyström and SWA both optimize the same normalized cut criterion, and

streamGBH extends GBH to handle arbitrarily long videos and still keeps the hier-

archy property.

We describe the methods in some more detail below. We note that many other

methods have been proposed in the computer vision literature for video segmentation,

e.g., [201, 63, 15, 119, 198, 199, 84, 130, 19, 56], but we do not cover them in any

detail in this study. We also do not cover strictly temporal segmentation, e.g. [147].

3.3.1 Mean Shift

Mean shift is a mode-seeking method, first proposed by [55]. [29] and [205] adapt

the kernel to the local structure of the feature points, which is more computation-

ally expensive but improves segmentation results. Original hierarchical mean shift

in video [37, 145] improves the efficiency of (isotropic) mean-shift methods by using

a streaming approach. The mean shift algorithm used in this chapter is presented

by [146], who introduce Morse theory to interpret mean shift as a topological de-

33

composition of the feature space into density modes. A hierarchical segmentation

is created by using topological persistence. Their algorithm is more efficient than

previous works especially on videos and large images. We use the author-provided

implementation1 to generate a supervoxel hierarchy and then stratify the pairwise

merging into a fixed-level of hierarchy.

3.3.2 Graph-Based (GB)

Felzenszwalb and Huttenlocher [47] propose a graph-based algorithm for image

segmentation; it is arguably the most popular superpixel segmentation method. Their

algorithm runs in time nearly linear in the number of image pixels, which makes it

suitable for extension to spatiotemporal segmentation. Initially, each pixel, as a node,

is placed in its own region R, connected with 8 neighbors. Edge weights measure the

dissimilarity between nodes (e.g. color differences). They define the internal difference

of a region, Int(R), as the largest edge weight in the minimum spanning tree of R.

Traversing the edges in a non-decreasing weight order, the regions Ri and Rj incident

to the edge are merged if the current edge weight is less than the relaxed minimum

internal difference of the two regions:

min(Int(Ri) + τ(Ri), Int(Rj) + τ(Rj)) , (3.1)

where τ(R) = k/|R| is used to trigger the algorithm and gradually makes it converge.

k is a scale parameter that reflects the preferred region size. The algorithm also has

an option to enforce a minimum region size by iteratively merging low-cost edges

until all regions contain the minimum size of pixels. We have adapted the algorithm

for video segmentation by building a 3D lattice over the spatiotemporal volume, in

which voxels are nodes connected with 26 neighbors in the lattice (9 to the previous

and the next frames, 8 to the current frame). One challenge in using this algorithm

1http://people.csail.mit.edu/sparis/

34

is the selection of an appropriate k for a given video, which the hierarchical extension

(GBH, next) overcomes. We use a set of k as well as various minimum region sizes

to generate the segmentation output for our experiment.

3.3.3 Hierarchical Graph-Based (GBH)

The hierarchical graph-based video segmentation algorithm is proposed by [65].

Their algorithm builds on an oversegmentation of the above spatiotemporal graph-

based segmentation. It then iteratively constructs a region graph over the obtained

segmentation, and forms a bottom-up hierarchical tree structure of the region (seg-

mentation) graphs. Regions are described by local Lab histograms. At each step

of the hierarchy, the edge weights are set to be the χ2 distance between the Lab

histograms of the connected two regions. They apply the same technique as above,

Felzenszwalb and Huttenlocher [47], to merge regions. Each time they scale the mini-

mum region size as well as k by a constant factor s. Their algorithm not only preserves

the important region borders generated by the oversegmentation, but also allows a

selection of the desired segmentation hierarchy level h, which is much better than di-

rectly manipulating k to control region size. We set a large h to output segmentations

with various numbers of supervoxels.

3.3.4 Graph-Based Streaming Hierarchical (streamGBH)

Graph-based streaming hierarchical video segmentation is proposed in detail in

Chapter IV and in our earlier work [221] to extend GBH [65] to handle arbitrarily

long videos in a streaming fashion and still maintain the segmentation hierarchy. The

algorithm approximates the full video GBH segmentations by both a hierarchical and

a temporal Markov assumption, allowing a small number of frames to be loaded into

a memory at any given time. Therefore the algorithm runs in a streaming fashion. In

our comparison experiments, we set a fixed streaming window size (10 frames) for all

35

subsequences and, again, a large h as in GBH to output segmentations with various

numbers of supervoxels.

3.3.5 Nyström Normalized Cut (NCut)

Nyström Normalized Cuts [171] as a graph partitioning criterion has been widely

used in image segmentation. A multiple eigenvector version of normalized cuts is

presented in [51]. Given a pairwise affinity matrix W , they compute the eigenvectors

V and eigenvalues Γ of the system

(D−1/2WD−1/2)V = V Γ , (3.2)

where D is a diagonal matrix with entries Dii =
∑

jWij. Each voxel is embedded in

a low-dimensional Euclidean space according to the largest several eigenvectors. The

k-means algorithm is then be used to do the final partitioning. To make it feasible

to apply to the spatiotemporal video volume, Fowlkes et al. [52] use the Nyström

approximation to solve the above eigenproblem. Their paper demonstrates segmen-

tation on relatively low-resolution, short videos (e.g., 120 × 120 × 5) and randomly

samples points from the first, middle, and last frames.

However, in our experiments, NCut is not scalable as the number of supervoxels

and the length of video increases. Sampling too many points makes the Nyström

method require too much memory, while sampling too few gives unstable and low

performance. Meanwhile, the k-means clustering algorithm is sufficient for a video

segmentation with few clusters, but a more efficient clustering method is expected

regarding the number of supervoxels. Therefore, we run NCut for a subset of our

experiments with lower solution and we set 200 sample points. We run k-means on

20% of the total voxels and k-nearest neighbor search to assign supervoxel labels for

all voxels.

36

3.3.6 Segmentation by Weighted Aggregation (SWA)

SWA is an alternative approach to optimizing the normalized cut criterion [169,

170, 31] that computes a hierarchy of sequentially coarser segmentations. The method

uses an algebraic multigrid solver to compute the hierarchy efficiently. It recursively

coarsens the initial graph by selecting a subset of nodes such that each node on the

fine level is strongly coupled to one on the coarse level. The algorithm is nearly linear

in the number of input voxels, and produces a hierarchy of segmentations, which

motivates its extension to a supervoxel method. The SWA implementation is based

on our earlier 3D-SWA work in the medical imaging domain [31].

3.3.7 Temporal Superpixels (TSP)

The temporal superpixels method computes the superpixel segmentation on the

first frame and then extends the existing superpixels to subsequent frames in a video.

Therefore, this set of methods [23, 196, 160], by their nature, are computing supervox-

els in a streaming fashion, which is similar to streamGBH with a streaming window

of one frame. We choose [23] as the representative method for evaluation. The al-

gorithm first extends the SLIC [1] superpixel algorithm to form a generative model

for constructing superpixels. Each pixel is modeled using five dimensional feature

vector: three channel color and the 2D location in image. Superpixels are inferred

by clustering with a mixture model on individual features as a Gaussian with known

variance. After generating superpixels for the first frame, the algorithm applies a

Gaussian Process with a bilateral kernel to model the motion between frames. We

use the implementation2 provided by the authors with the default parameters to run

the algorithm in evaluation.

2http://people.csail.mit.edu/jchang7/code.php

37

3.4 Datasets

We make use of six video datasets for our experimental purposes, with varying

characteristics. The datasets have human-annotator drawn groundtruth labels at a

frame-by-frame basis (four out of six) or at densely sampled frames in the video (two

out of six). The sizes of the selected datasets vary from a few videos to one hundred

videos. The set of datasets we choose are BuffaloXiph [25], SegTrack v2 [107, 193],

BVDS [181, 58], CamVid [17], Liu et al. [115] and Middlebury Flow [8]. The datasets

are originally built solving different video challenges: BuffaloXiph is gathered for

pixel label propagation in videos; SegTrack is built for object tracking; BVDS has

contributed to occlusion boundary detection; CamVid is taken in driving cars for road

scene understanding; and Liu et al. [115] and Middlebury Flow [8] are used for optical

flow estimation. Rather than evaluating supervoxel methods on a single dataset, we

conduct the evaluation on all six datasets (with only label consistency metric on

Liu et al. [115] and Middlebury Flow [8]), as the datasets are complementary and

we believe supervoxels have potential to be a first processing step towards various

video applications and problems. We briefly describe the six datasets used in our

experiments.

BuffaloXiph from [25] is a subset of the well-known xiph.org videos that have been

supplemented with a 24-class semantic pixel labeling set (the same classes from the

MSRC object segmentation dataset [174]). The eight videos in this set are densely

labeled with semantic pixels that leads to a total of 638 labeled frames, with a mini-

mum of 69 frames-per-video (fpv) and a maximum of 86 fpv. The dataset is originally

used for pixel label propagation [25] and videos in the dataset are stratified according

to camera motion, object motion, the presence of articulated objects, the complexity

of occlusion between objects and the difficulty of label propagation. Distinct regions

with the same semantic class label are not separated in this dataset.

SegTrack v2 from [107] is an updated version of the SegTrack dataset [193] and pro-

38

vides frame-by-frame pixel-level foreground objects labeling rather than the semantic

class labeling as in BuffaloXiph. It contains a total of 14 video sequences with 24 ob-

jects over 947 annotated frames. The videos in the dataset are stratified according to

different segmentation challenges, such as motion blur, appearance change, complex

deformation, occlusion, slow motion and interacting objects.

BVDS is initially introduced in [181] for occlusion boundary detection and then

used for evaluating video segmentation algorithms by [58]. It consists of 100 HD

quality videos with a maximum of 121 fpv and videos in the dataset are stratified

according to occlusion, object categories and sizes, and different kinds of camera

motion: translational, scaling and perspective motion. Each video is labeled with

multiple human annotations by a sampling rate of 20 frames. We use all 100 videos

in the evaluation ignoring the training/testing split (because BVDS is used only in

the unsupervised parts of our evaluation).

Furthermore, the dataset has three different groupings for videos with moving

objects, non-rigid motion, and considerable camera motion. Our experimental results

show that all methods preserve the same performance order over these three video

groupings, except TSP has better temporal extent than GB when only using videos

with considerable camera motion. We show this additional result in the supplement.

CamVid from [17] provides five long video sequences recorded at daytime and dusk

from a car driving through Cambridge, England. The videos are composed by over

ten minutes high quality 30Hz footage and are labeled with 11 semantic object class

labels at 1Hz and in part 15Hz that leads to a total of 701 densely labeled frames.

It also provides the training/test split, with two daytime and one dusk sequence

for training and one daytime and one dusk sequence for testing. Therefore, this

dataset in addition allows us to evaluate methods in terms of supervoxel semantic

label classification. We use all videos, in total 17898 frames3, in the evaluation in

3Wemanually exclude the corrupted frames, and organize the dataset into short clips with roughly
100 frames-per-clip. The organized short clips can be downloaded from our website.

39

Sec. 3.5, and follow the training/test split in Sec. 3.6.

The remaining two datasets, Liu et al. [115] and Middlebury Flow [8] are

used for evaluating label consistency in Sec. 3.5.4. They are densely annotated with

groundtruth flows. Liu et al. [115] contains five videos with a minimum of 14 fpv and

a maximum of 76 fpv. Middlebury Flow contains eight videos, but groundtruth for

only two frames (one optical flow estimate) is available. We treat it as a special case

where algorithms only process two frames.

3.4.1 Processing

To adapt all seven supervoxel methods to run through all videos in the datasets

within reasonable time and memory consumption, we use BuffaloXiph, SegTrack v2

and Middlebury Flow at the original resolution; Liu et al. [115] at half the original

resolution; BVDS and CamVid, the two large datasets, at a quarter of the original

HD resolution. One exception is NCut which runs at a fixed resolution of 240× 160

on BuffaloXiph and SegTrack v2 datasets (the results are scaled up for comparison)

and is not included in the experiments with BVDS and CamVid datasets due to its

high computational demands. The comparison of NCut and other methods at the

same downscaled resolution on BuffaloXiph and SegTrack are shown in our conference

version of the chapter [214], where the relative performance is similar to here.

We compare the seven methods as fairly as possible. However, each method

has its own tunable parameters; we have tuned these parameters strictly to achieve

a certain desired number of supervoxels per video (or per frame, depending on the

experiment); parameters are tuned per method per dataset. For hierarchical methods,

such as GBH, streamGBH, SWA, a single run over a video can generate fine-to-coarse

multiple levels of supervoxels. For Mean Shift, we tune the persistence threshold to

get multiple stratified segmentations. For NCut, we vary the final step K-means

clustering to get a set of supervoxels varying from 100 to 500 on BuffaloXiph and

40

SegTrack v2. We use the suggested parameters by the authors for the two other

methods (Mean Shift and TSP) and we provide all parameters to reproduce our

experiments.

After we have generated a range of supervoxels for each video in a dataset, we use

linear interpolation to estimate each methods’ metric outputs for each video densely.

The performance over a dataset at a certain number of supervoxels is drawn by

averaging the interpolated values from all videos at the same number of supervoxels.

This strategy can better align videos in a dataset and therefore avoids outliers with

too many or too few supervoxels by simply taking averaged number of supervoxels

over a dataset, especially when the videos are diverse in a dataset.

3.5 Benchmark Evaluation

Rather than evaluating the supervoxel methods on a particular application, as [68]

does for superpixels and image segmentation, in this section we directly consider all

of the base traits described in Sec. 3.2.2 at a fundamental level. We believe these

basic evaluations have a great potential to improve our understanding of when a

certain supervoxel method will perform well. Nonetheless, we further evaluate the

performances of the supervoxel classification on the CamVid dataset in Sec. 3.6.

We note that some quantitative superpixel evaluation metrics have been recently

used in [133, 105, 199, 118, 226]. We select those most appropriate to validate our

desiderata from Section 3.2.2. One way to conduct the experiments is by evaluat-

ing the frame-based measures and take the average over all the frames in the video.

However, if we directly apply these methods to the supervoxel segmentation, the tem-

poral coherence property can not be captured. Even a method without any temporal

information can achieve a good performance in those 2D metrics, which have driven

us to extend the above frame-based measures to the volumetric video-based measures

when appropriate.

41

In the rest of this section, we first introduce a pair of volumetric video-based 3D

metrics that score a supervoxel segmentation based on a given human annotation

and they are 3D undersegmentation error (Sec. 3.5.1) and 3D segmentation accuracy

(Sec. 3.5.2). We also evaluate the boundary recall distance of the supervoxel seg-

mentation to the human drawn boundaries (Sec. 3.5.3), as well as measure the label

consistency in terms of annotated groundtruth flows in a video (Sec. 3.5.4). Then we

evaluate some basic properties of supervoxel segmentation that do not require human

annotation, namely explained variation, mean size variation and temporal extent of

supervoxels, in Sec. 3.5.5. We also report the computational cost of each supervoxel

method (Sec. 3.5.6). We give visual comparison of the supervoxel segmentations

against the groundtruth annotation in Fig. 3.6. Finally, we discuss our findings in

Sec. 3.5.7.

3.5.1 3D Undersegmentation Error (UE3D)

Undersegmentation error in image segmentation was proposed in [105]. It mea-

sures the fraction of pixels that exceed the boundary of the groundtruth segment

when overlapping the superpixels on it. We extend this concept to a spatiotempo-

ral video volume to measure the space-time leakage of supervoxels when overlapping

groundtruth segments. Given a video segmented into supervoxels s = {s1, s2, . . . , sn}

and a set of annotated groundtruth segments g = {g1, g2, . . . , gm} in video, we define

the following UE3D as the average fraction of the voxels that exceed the 3D volume

of groundtruth segments:

UE3D(s,g) =
1

m

m∑
i=1

∑n
j=1 Vol(sj|sj ∩ gi 6= ∅)− Vol(gi)

Vol(gi)
, (3.3)

where Vol(·) denotes the amount of voxels that are contained in the 3D volume of a

segment. Equation 3.3 takes the average score from all groundtruth segments g. We

42

note that the score from a single groundtruth segment gi is not bounded. The metric

imposes a greater penalty when supervoxels leak on smaller groundtruth segments.

For example, if a video has a very small object, it will be equally weighted with a

large object (e.g. background). Missing a pixel in the small object has a greater

penalty than missing a background pixel. We also note that it is possible to set

different weights for groundtruth segment classes when evaluating against a dataset

with pixel semantic labels (e.g. BuffaloXiph). For a dataset with multiple human

annotations (e.g. BVDS), we simply take the average score, which equally weights

different human perceptions.

3.5.2 3D Segmentation Accuracy (SA3D)

Segmentation accuracy measures the average fraction of groundtruth segments

that is correctly covered by the supervoxels: each supervoxel belongs to only one

groundtruth segment (object) as a desired property from Sec. 3.2.2. We define the

volumetric SA3D as

SA3D(s,g) =

1

m

m∑
i=1

∑n
j=1 Vol(sj ∩ gi)1[Vol(sj ∩ gi) ≥ Vol(sj ∩ ḡi)]

Vol(gi)
, (3.4)

where ḡi = g \ {gi} and the indicator function decides when there is an association

of supervoxels between segment sj and groundtruth segment gi. Similar to UE3D,

SA3D also takes the average score from all groundtruth segments g. However, the

score from a single groundtruth segment gi is bounded in [0, 1], where the extreme

situations 1 and 0 are respectively define when gi is perfectly partitioned by a set of

supervoxels (e.g. Fig. 3.1(a)), and gi is completely missed (e.g. Fig. 3.1(b)).

We note that UE3D and SA3D are complementary to evaluate an algorithm, as

UE3D measures the leakage of all supervoxels touching a groundtruth segment and

43

S1
S2

S4S3
g

S1 S2

S4S3
g

S1 S2

S3 S4
g

S4S3

S2S1
g

S1 S2

S4S3
g

(a) (b) (c) (d) (e)

Figure 3.1: A toy example of a single groundtruth segment g with five different super-
voxel segmentations. We show the example in 2D for simple illustration.
We draw the groundtruth segment g as a 2x2 dashed square shape. All
supervoxel segments are shown in solid square shapes and are defined in
three different sizes: 1x1 (e.g. s1 in (a)), 1.5x1.5 (e.g. s1 in (b)), and 2x2
(e.g. s1 in (e)). Segment s3 in (c) and (e) is offset by 1/4. The gray areas
are counted toward SA3D. The scores of UE3D, SA3D and BRD for each
cases are shown in Tab. 3.1.

SA3D measures the fraction of the groundtruth segment that is correctly segmented.

To further elucidate the differences between UE3D and SA3D, we show a toy example

in Fig. 3.1 with scores shown in Tab. 3.1, where (c) and (d) have the same UE3D score

but different SA3D scores, and (c) and (e) have the same SA3D score but different

UE3D scores. (c) has the best scores for both UE3D and SA3D among all imperfect

segmentation cases (b)-(e). Both the metrics are evaluated in space-time, such that

they penalize supervoxels that break not only spatial boundaries but also temporal

boundaries of the groundtruth segments—a good superpixel method can achieve high

performance. However, it typically does so with a large number of supervoxels (the

temporal extent is only one frame in this case) for the per-video basis. Therefore

datasets with dense human annotations, such as BuffaloXiph and SegTrack v2, are

more precise in terms of the 3D volumetric measures.

44

Metric (a) (b) (c) (d) (e)
UE3D 0.00 1.25 0.63 0.63 1.06
SA3D 1.00 0.00 0.75 0.50 0.75
BRD 0.00 0.50 0.27 0.25 0.39

Table 3.1: The scores of UE3D, SA3D and BRD for the toy example in Fig. 3.1. The
larger the better for SA3D, and the small the better for UE3D and BRD.
The top two scores are bolded for each metric. BRD is calculated strictly
for vertical boundary matching only and horizontal boundary matching
only in this toy example, which is slightly different than Eq. 3.5.

3.5.3 Boundary Recall Distance (BRD)

So far we have introduced a pair of 3D metrics defined by the set of groundtruth

segments. They intrinsically use the groundtruth boundaries for locating the vol-

ume of the segments. We now directly evaluate the boundary recall distance, which

measures how well the groundtruth boundaries are successfully retrieved by the su-

pervoxel boundaries. We use BRD proposed in [23] to calculate the average distance

from points on groundtruth boundaries to the nearest ones on supervoxel boundaries

frame-by-frame in a video. It does not require a fixed amount of dilation for boundary

matching as in typical boundary recall measures to offset small localization errors.

The specific metric is defined as follows:

BRD(s,g) =
1∑

t |B(gt)|
T∑
t=1

∑
i∈B(gt)

min
j∈B(st)

d(i, j) , (3.5)

where B(·) returns the 2D boundaries of segments in a frame, d(·, ·) is the Euclidean

distance between the two arguments, | · | denotes the amout of pixels contained by

the argument at a frame, t indexes frames in a video (e.g. gt denotes the set of all

groundtruth segments on frame t), and i and j denote points on boundaries.

We also compute BRD for all cases in Fig. 3.1 and show the scores in Tab. 3.1.

We note that BRD captures different aspects of an algorithm than UE3D and SA3D.

45

For example, among the imperfect segmentation cases (b)-(e) (which are typical sit-

uations), (c) has the best scores in terms of UE3D and SA3D, but worse in BRD

than (d) which is poor in SA3D. Therefore, there is no single segmentation that has

the best scores for all three metrics (except the perfect partition in (a)) in this toy

example.

3.5.4 Label Consistency (LC)

LC is also proposed in [23], which provides a possible way to measure how well

supervoxels track the parts of objects given annotated groundtruth flows. Define

F = {F t−1→t|t = 2, . . . , T} as the vectorized groundtruth forward flow field in a

video, and F t−1→t(si) as the operator that projects pixels contained in si at frame

t− 1 to pixels at frame t by the flow (subjected to the image boundary). The metric

is defined as follows:

LC(s,F) =

∑T
t=2

∑n
i=1 |sti ∩ F t−1→t(si)|∑T

t=2

∑n
i=1 |F t−1→t(si)|

, (3.6)

where sti denotes the slice of supervoxel si at frame t, and the numerator measures

the agreement of supervoxel labels and the projected labels by flow. We evaluate

this metric on [115] and Middlebury Flow where the groundtruth flow annotation is

available.

3.5.5 Human-Independent Metrics

The following are human-independent metrics; in other words, they are not sus-

ceptible to variation in annotator perception that would result in differences in the

human annotations, unlike the previous metrics. They directly reflect basic properties

of the supervoxel methods, such as the temporal extent of generated supervoxels.

46

3.5.5.1 Explained Variation (EV)

The metric is proposed in [133] and it considers the supervoxels as a compression

method of a video (Sec. 3.2.2):

EV(s) =

∑
i(µi − µ)2∑
i(xi − µ)2

, (3.7)

where xi is the color of the video voxel i, µ is the mean color of all voxels in a video and

µi is the mean color of the supervoxel that contains voxel i. [43] observe a correlation

between EV and the human-dependent metrics for a specific object tracking task.

3.5.5.2 Mean Size Variation (MSV)

Chang et al. [23] propose superpixel size variation that measures the size variation

of all superpixels in a video (as a set of frames). Here, we extend their metric to

measure the size variation of the 2D slices of a supervoxel. MSV is the average score

of such variation defined by all supervoxels in a video:

MSV(s) =
1

n

n∑
j=1

√√√√∑t

(
(|sti| − |ŝi|)2 1 [|sti| > 0]

)
∑

t 1[|sti| > 0]− 1
, (3.8)

where |ŝi| =
∑

t |sti|∑
t 1[|sti|>0]

is the average size of 2D slices of a supervoxel. MSV favors

the kind of supervoxels whose 2D sizes varies minimally over time.

3.5.5.3 Temporal Extent (TEX)

TEX measures the average temporal extent of all supervoxels in a video. The

measure of supervoxel temporal extent is originally proposed in [221] as a way to

compare different streaming video segmentation methods. Later, [23] extend the

measure by normalizing over the number of frames contained in a video. We also use

47

GB GBH streamGBH SWA
Time (s) 115 1166 1000 934

Memory (GB) 6.9 9.4 1.6 19.9

TSP MeanShift NCut
Time (s) 1440 101 1198

Memory (GB) 0.9 3.8 20.9

Table 3.2: Computational cost.

it here for the evaluation. The metric is defined as follows:

TEX(s) =
1

nT

n∑
i=1

T∑
t=1

1[|sti| > 0] . (3.9)

We note that using TEX alone is not sufficient to determine what method to use,

and, in fact, it must be combined with another metric, such as UE3D, SA3D or

LC. We illustrate this point using a combination of TEX and LC, since they are

complementary. An ideal method, in terms of capturing the temporal movement of

objects in video, is expected to have long TEX and good LC. A shortcoming in either

of the metrics can hurt the performance. For example, having long TEX and bad LC

means that the supervoxels are long in the time dimension but they do not track well

the fine-grained motion of the movement.

3.5.6 Computational Cost

We report the computational cost of all methods for a typical video with 352 ×

288 × 85 voxels—we record the time and peak memory consumption on a laptop

featured with Intel Core i7-3740QM @ 2.70GHz and 32GB RAM running Linux, see

Table 3.2. All methods are implemented in C except NCut (Matlab) and TSP (Matlab

with MEX). Furthermore, all methods are single threaded except NCut running with

8 threads with resized resolution to 240× 160.

48

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

300

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BuffaloXiph SegTrackv2 BVDS CamVid

U
E3
D

SA
3D

BR
D

EV
M
SV

TE
X

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GB GBH streamGBH SWA TSP MeanShift NCut

Figure 3.2: Graphs plot the number of supervoxels per-video (x-axis) against vari-
ous metrics (y-axis). Datasets are organized by columns and metrics are
organized by rows. Black arrows in each row are used to indicate the
direction of better performance with regard to the metric. Plot ranges
along the y-axis are aligned for all metrics except UE3D. Plotted dots are
the average score of linear-interpolated values from all videos in a dataset
at the same number of supervoxels per-video.

49

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 500 1000 1500
0.5

1

1.5

2

2.5

3

0 500 1000 1500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 500 1000 1500
0

50

100

150

200

250

300

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500
0

5

10

15

20

25

30

0 500 1000 1500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 500 1000 1500
0.5

1

1.5

2

2.5

3

0 500 1000 1500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 500 1000 1500
0

50

100

150

200

250

300

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500
0

20

40

60

80

100

120

140

160

180

200

0 500 1000 1500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 500 1000 1500
0.5

1

1.5

2

2.5

3

0 500 1000 1500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 500 1000 1500
0

50

100

150

200

250

300

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 500 1000 1500
0.5

1

1.5

2

2.5

3

0 500 1000 1500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 500 1000 1500
0

50

100

150

200

250

300

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BuffaloXiph SegTrackv2 BVDS CamVid

U
E3
D

SA
3D

BR
D

EV
M
SV

TE
X

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GB GBH streamGBH SWA TSP MeanShift NCut

Figure 3.3: Graphs plot the number of supervoxels per-frame (x-axis) against vari-
ous metrics (y-axis). Datasets are organized by columns and metrics are
organized by rows. Black arrows in each row are used to indicate the
direction of better performance with regard to the metric. Plot ranges
along the y-axis are aligned for all metrics except UE3D. Plotted dots are
the average score of linear-interpolated values from all videos in a dataset
at the same number of supervoxels per-frame.

50

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GB GBH streamGBH SWA TSP MeanShift NCut

LC

Liu et al (2008a) Middlebury Flow

Figure 3.4: Plots for Label Consistency (LC) against the number of supervoxels per-
video (x-axis). Black arrow indicates the direction of better performance.
Plotted dots are the average score of linear-interpolated values from all
videos in a dataset at the same number of supervoxels per-video.

3.5.7 Discussion

We evaluate seven methods over six datasets by the metrics defined above. We

focus the evaluation in the range of 0 to 2000 supervoxels per-video (Fig. 3.2 and

Fig. 3.4) as well as 0 to 1500 supervoxels per-frame (Fig. 3.3 and Fig. 3.5). We do

the best to accommodate all methods in the above range, but not all methods can

generate the full range of plots (e.g. Mean Shift requires huge memory to generate

over 500 supervoxels per-frame for a typical video). The visualization of supervoxel

segmentations can be found in Fig. 3.6. For the rest of this section, we first discuss

the choice of two plot bases in Sec. 3.5.7.1, then conclude our findings in Sec. 3.5.7.2.

3.5.7.1 Plot Bases

We plot the results with two types of plot bases, namely the number of super-

voxels per-video and per-frame. We summarize the rationale below, which basically

distinguishes the two bases according to how space and time are treated.

Number of Supervoxels Per-Video (spv). In the earlier version of the work in

this chapter [214], the number of supervoxels per-video is used for plotting figures of

51

0 500 1000 1500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 500 1000 1500
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GB GBH streamGBH SWA TSP MeanShift NCut

Liu et al (2008a) Middlebury Flow

LC

Figure 3.5: Plots for Label Consistency (LC) based on the number of supervoxels per-
frame (x-axis). Black arrow indicates the direction of better performance.
Plotted dots are the average score of linear-interpolated values from all
videos in a dataset at the same number of supervoxels per-frame.

metric scores. Here, time is considered as an analogous, third dimension and treated

accordingly, as in the definition of supervoxels. Hence, for example, one can consider

this as a means of evaluating the compression-rate of a video as a whole. However, it

may incorrectly relate videos of different lengths.

Number of Supervoxels Per-Frame (spf). Chang et al. [23] use the number

of supervoxels per-frame (in this case, it is the same as the number of superpixels

per-frame) in their evaluation. The mindset behind that differentiates the time di-

mension in a video from the spatial dimensions, such that the plot basis is not subject

to different video lengths or motion. However, this approach fails to account for the

temporal qualities of supervoxels—a good superpixel method can do well. For ex-

ample, UE3D degenerates to UE2D for a superpixel method because it has perfect

temporal boundaries.

Summary. We hence present plots against both bases and we discuss their compar-

isons.

52

GB GBH streamGBH SWA TSP MeanShift NCut

Ti
m
e

Ti
m
e

GB GBH streamGBH SWA TSP MeanShift

Li
u

et
 a

l (
20

08
a)

Se

gT
ra

ck
 v

2
Bu

ffa
lo

Xi
ph

BV
D

S

Ti
m
e

Ti
m
e

Ti
m
e

Figure 3.6: Visual comparative results of the seven methods on videos. Each super-
voxel is rendered with its distinct color and these are maintained over
time. We recommend viewing these images zoomed on an electronic dis-
play. In the top part, we show a video from [115] where label consis-
tency is computed and shown in black and white (white pixels indicate
inconsistency with respect to groundtruth flow). In the middle part, we
show videos from SegTrack v2 and BuffaloXiph, where groundtruth ob-
ject boundaries are drawn in black lines. We show a video from BVDS
on the bottom.

53

3.5.7.2 Top Performing Methods

The metrics using human annotations, namely UE3D, SA3D, BRD and LC, reflect

different preferences for supervoxels (see Sec. 3.2.2). A perfect segmentation can have

all the best scores with respect to these metrics, while, often, a typical segmentation

has its strengths in a subset of the metrics (recall the example in Fig. 3.1). Therefore,

we organize our findings of the top performing methods by each metric and discuss

the differences among datasets, if any. Recall that our choices of datasets in Sec. 3.4

represent many different types of video data (e.g. SegTrack v2 has only foreground

object labels, and BuffaloXiph has pixel-level semantic class labels). Below we list

the key results.

UE3D. For most cases, TSP has the best performance followed by SWA and GBH.

The three methods perform similarly well on CamVid for spv in Fig. 3.2. However,

TSP stands out when evaluating for spf in Fig. 3.3.

SA3D. GBH performs best on BuffaloXiph for spv, whereas TSP performs best when

plotted by spf. GBH, SWA and TSP perform almost equally well on SegTrack v2.

TSP performs best on BVDS, where annotators are instructed to label all objects on

sampled frames of a video. SWA and GBH perform equally best on CamVid for spv,

but when plotting by spf, SWA and TSP perform the best.

BRD. GBH is the clear winner method in this metric, and following that are streamGBH

and SWA. GB has a faster trend to approach GBH than streamGBH on CamVid and

BVDS for spf.

LC. TSP (the only method that uses optical flow in the implementations we use)

has the best performance and there is a clear performance gap on Middlebury Flow,

where videos only have two frames (Fig 3.4 and 3.5). Furthermore, unlike the other

methods, the performance of TSP dose not dramatically decrease when spv and spf

increase on Middlebury Flow.

EV. SWA has the overall best performance and followed by GBH and TSP. GBH

54

ranks better than TSP on BuffaloXiph for spv, but the ordering swapped when plot-

ting against spf.

MSV. TSP has the best performance followed by streamGBH and GB except on

CamVid for spv, where GB performs the best.

TEX. GBH has the longest temporal extent for both spv and spf within the range we

plotted. We note [23] show that TSP has better performance than GBH in a different

spectrum of spf on [115] and SegTrack [193].

Over all seven methods, GB and Mean Shift are the most efficient in time. Inter-

estingly, neither GB nor Mean Shift performs best in any of the human annotation

related quality measures—there is an obvious trade-off between the computational

cost of the methods and the quality of their output (in terms of our metrics).

We have focused on the facts here. Although understanding why these various al-

gorithms demonstrate this comparative performance is an ultimate goal of our work,

it is beyond the scope of this chapter and would require a substantionally deeper

understander of how space and time relate in video analysis. To overcome this limi-

tation, we map these comparative performances onto specific problem-oriented needs

in the Conclusion (Sec. 5.5).

3.6 Supervoxel Classification

In this section, we evaluate the supervoxel methods in a particular application:

supervoxel semantic label classification. We use this application as a proxy to various

high-level video analysis problems. For example, superpixel classification scores are

frequently used as the unary term when building subsequent graphical model for scene

understanding in images, e.g., [62]. We use the CamVid dataset for this task due to its

widely use in semantic pixel labeling in videos. Recall that CamVid has videos over

ten minutes and labeled frames with 11 semantic classes at 1Hz, such as building,

tree, car and road. We follow the standard training/test split: two daytime and

55

one dusk sequence for training, and one daytime and one dusk sequence for testing.

We process the videos into supervoxel segmentations as described in Sec. 3.4.1. We

use all supervoxel methods except for the NCut method because of its high memory

requirement for these CamVid data, which rendered the size of the supervoxels too

large to train meaningful classifiers.

Supervoxel Features. [188] extract a set of low-level features on superpixels and

use the supervoxels generated by [65] for their video parsing on CamVid dataset. We

apply a similar set of features with some modifications to suit for our task. We first

dilate the 2D slices of supervoxels by 3 pixels and then extract features histograms

from supervoxel volumes. To be specific, we compute histogram of textons4 and

dense SIFT descriptors with 100 dimensions each. We also compute two types of

color histograms, RGB and HSV, with 8 bins each channel. We describe the location

of a supervoxel volume by averaging the distances of bounding boxes of its 2D slices

to image boundaries. In addition to image features, we calculate dense optical flow

and quantize flows in a supervoxel volume to 8 bins each according to vertical and

horizontal velocity, and speed magnitude. Note that the way we extract the feature

histograms is different than [188], where they use one representative superpixel of a

supervoxel (the 2D slice with largest region). We think that the volume has better

potential to represent the change of a supervoxel over time. We also note that more

sophisticated video features can be added to supervoxel volumes such as dense trajec-

tories [203] and HOG3D [85]. However, for a fair comparison of supervoxel methods,

we stick to the dense image features and optical flow in order to prevent favoring one

supervoxel method than another.

Supervoxel Labels. We assign a supervoxel with the most frequent groundtruth la-

bel occur in its volume and ignore supervoxels that fail to touch groundtruth frames

(labeled at 1Hz on CamVid). We note that this step is distinct from most image

4http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

56

superpixel classification work, e.g., [62], since videos are often sparsely labeled while

images are densely labeled. Therefore, this step may introduce more noise in both

training and testing than the image superpixel classification work, and it is closely

related to two of our benchmark metrics—UE3D in Sec. 3.5.1 and SA3D in Sec. 3.5.2.

We apply the pixel-level average per-class accuracy and global pixel accuracy to eval-

uate this supervoxel label assignment step and the top part in Fig. 3.7 shows the

performance for all six methods in the experiment. Rather than using linear interpo-

lated values as in Fig. 3.2 to 3.5, the plotted dots here map to actual segmentations

generated by a single run of the algorithm over the dataset, and the plot basis is the

number of supervoxels for every 100 frames.

Classification Performance. Finally, we use linear SVMs5 on supervoxels to get

the classification results on the test set. The output segmentations are for the entire

video but we evaluate only on the labeled frames. We again show the performance

in terms of pixel-level average per-class and global accuracy in the bottom part in

Fig. 3.7 with the number of supervoxels ranging from less that 100 to more than

900 every 100 frames. To compare with pixel-based image segmentation method, we

note that [17] report 53.0% average per-class and 69.1% global accuracy by using

both appearance and geometric cues. The supervoxel-based methods with our setup

in general achieve a better global pixel performance but a worse average per-class

accuracy (e.g. 500 supervoxels in Fig. 3.7) with respect to the range of supervoxel

numbers we sampled for the evaluation. We suspect that some classes with small

regions, such as sign symbol and bicyclist, become too small to capture when we scale

the videos down to a much lower resolution (a quarter of the original) to accommodate

all six supervoxel methods.

Fig. 3.8 shows the pixel-level labeling accuracy for each class in the dataset. For

large classes, such as road and sky, the performance of all methods is not largely af-

5http://www.csie.ntu.edu.tw/~cjlin/libsvm/

57

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Supervoxels

Av
er

ag
e

Pe
r−

C
la

ss
 P

er
fo

rm
an

ce

GB
GBH
streamGBH
SWA
TSP
MeanShift

0 100 200 300 400 500 600 700 800 900 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Supervoxels

G
lo

ba
l P

er
fo

rm
an

ce

GB
GBH
streamGBH
SWA
TSP
MeanShift

0 100 200 300 400 500 600 700 800 900

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of Supervoxels

Av
er

ag
e

Pe
r−

C
la

ss
 P

er
fo

rm
an

ce

GB
GBH
streamGBH
SWA
TSP
MeanShift

0 100 200 300 400 500 600 700 800 900
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of Supervoxels

G
lo

ba
l P

er
fo

rm
an

ce

GB
GBH
streamGBH
SWA
TSP
MeanShift

Supervoxel Label Assignment

Supervoxel Classification

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GB GBH streamGBH SWA TSP MeanShift

Av
er

ag
e

Pe
r-C

la
ss

 A
cc

ur
ac

y

G
lo

ba
l A

cc
ur

ac
y

Av
er

ag
e

Pe
r-C

la
ss

 A
cc

ur
ac

y

G
lo

ba
l A

cc
ur

ac
y

Figure 3.7: Plots on the top are the pixel-level average per-class accuracy (left) and
global accuracy (right) for both training and testing sets when supervoxels
directly take groundtruth labels (the most frequent ones in volumes).
Plots on the bottom are the pixel-level classification performance on the
test set with SVMs trained on supervoxels. We show the plots in the range
of 100 to 900 supervoxels every 100 frames (x-axis). The plotted dots
are from actual segmentations rather than interpolated values. We note
that [17] report 53.0% average per-class and 69.1% global accuracy using
random forests trained on pixels with both appearance and geometric
cues, where we only use appearance cues with supervoxels.

fected by the number of supervoxels, except the performance for building, which rises

then falls. This rise and fall results in a decrease in the overall global performance

(see bottom right in Fig. 3.7). We explain this rise and fall behavior of the building

class due to the overall scale-varying texture of buildings and the challenge to learn

classifiers on them that perform equally well at different scales; for example, smaller

supervoxels will cover small portions of buildings, say windows or bricks, which have

58

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Bu
ild

in
g

N
um

be
r o

f S
up

er
vo

xe
ls

Pixel Labeling Accuracy

G
B

G
BH

st
re

am
G

BH
SW

A
TS

P
M

ea
nS

hi
ft

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Tr
ee

N
um

be
r o

f S
up

er
vo

xe
ls

Pixel Labeling Accuracy

G

B
G

BH
st

re
am

G
BH

SW
A

TS
P

M
ea

nS
hi

ft

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Sk
y

N
um

be
r o

f S
up

er
vo

xe
ls

Pixel Labeling Accuracy

G
B

G
BH

st
re

am
G

BH
SW

A
TS

P
M

ea
nS

hi
ft

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

R
oa

d

N
um

be
r o

f S
up

er
vo

xe
ls

Pixel Labeling Accuracy

G
B

G
BH

st
re

am
G

BH
SW

A
TS

P
M

ea
nS

hi
ft

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

Si
de

w
al

k

N
um

be
r o

f S
up

er
vo

xe
ls

Pixel Labeling Accuracy

G

B
G

BH
st

re
am

G
BH

SW
A

TS
P

M
ea

nS
hi

ft

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

C
ar

N
um

be
r o

f S
up

er
vo

xe
ls

Pixel Labeling Accuracy

G

B
G

BH
st

re
am

G
BH

SW
A

TS
P

M
ea

nS
hi

ft

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
0

0.
050.

1

0.
150.

2

0.
25

C
ol

um
nP

ol
e

N
um

be
r o

f S
up

er
vo

xe
ls

Pixel Labeling Accuracy

G

B
G

BH
st

re
am

G
BH

SW
A

TS
P

M
ea

nS
hi

ft

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
0

0.
050.

1

0.
150.

2

0.
25

Fe
nc

e

N
um

be
r o

f S
up

er
vo

xe
ls

Pixel Labeling Accuracy

G

B
G

BH
st

re
am

G
BH

SW
A

TS
P

M
ea

nS
hi

ft

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
0

0.
050.

1

0.
150.

2

0.
25

Pe
de

st
ria

n

N
um

be
r o

f S
up

er
vo

xe
ls

Pixel Labeling Accuracy

G

B
G

BH
st

re
am

G
BH

SW
A

TS
P

M
ea

nS
hi

ft

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
0

0.
050.

1

0.
150.

2

0.
25

Bi
cy

cl
is

t

N
um

be
r o

f S
up

er
vo

xe
ls

Pixel Labeling Accuracy

G

B
G

BH
st

re
am

G
BH

SW
A

TS
P

M
ea

nS
hi

ft

R
oa

d
(2

5.
98

%
)

B
ui

ld
in

g
(2

0.
79

%
)

Sk
y

(1
8.

04
%

)
Tr

ee
 (1

0.
76

%
)

C
ar

 (4
.1

5%
)

Si
de

w
al

k
(6

.6
9%

)

C
ol

um
n

Po
le

 (1
.0

4%
)

Fe
nc

e
(0

.8
7%

)
Pe

de
st

ria
n

(0
.5

6%
)

B
ic

yc
lis

t (
0.

30
%

)

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

G
B

G

BH

st

re
am

G
BH

SW
A

TS

P

M
ea

nS
hi

ft

Accuracy Accuracy

F
ig

u
re

3.
8:

P
ix

el
-l

ev
el

la
b

el
in

g
ac

cu
ra

cy
fo

r
ea

ch
se

m
an

ti
c

cl
as

s
in

th
e

C
am

V
id

d
at

as
et

,
w

h
er

e
th

e
p

er
ce

n
ta

ge
s

of
to

ta
l

p
ix

el
s

fo
r

ea
ch

cl
as

s
ar

e
sh

ow
n

on
to

p
.

A
ll

p
lo

ts
ar

e
sh

ow
n

in
th

e
ra

n
ge

of
0

to
10

00
su

p
er

vo
x
el

s
ev

er
y

10
0

fr
am

es
(x

-a
x
is

).
T

h
e

fi
rs

t
si

x
p
lo

ts
(h

or
iz

on
ta

l)
ar

e
p
lo

tt
ed

w
it

h
an

ac
cu

ra
cy

ra
n
ge

fr
om

0
to

1,
an

d
th

e
ot

h
er

p
lo

ts
ar

e
fr

om
0

to
0.

3.
W

e
d
o

n
ot

sh
ow

th
e

cl
as

s
S

ig
n

S
ym

bo
l

(0
.1

7%
)

h
er

e
d
u
e

to
it

s
lo

w
ac

cu
ra

cy
fo

r
al

l
m

et
h
o
d
s.

59

distinct visual characteristics, yet a single classifier is to be learned (in our evalu-

ation). For other classes the performance increases when adding more supervoxels,

and different methods have distinct performance on different classes. For example,

GBH leads the score on pedestrian while TSP and SWA are the methods of choice on

car. Further investigation is needed to better understand these nuances.

Fig. 3.9 shows visual comparison of six methods on two clips from the daytime

test video. Although GB and Mean Shift successfully segment the sidewalk in the

supervoxel segmentation, they miss a large portion of the sidewalk in the labeling,

while the other methods capture it well. The tree tends to be better labeled by GBH.

All methods segment the moving cars well. However none of the method get the small

sign symbol in the second clip. We also show the results during dusk in Fig. 3.10.

GB works poorly here; the greedy algorithm of GB is highly sensitive to local color

thus it easily produces large incorrect segments. TSP visually segments bicyclist well

regardless the incorrect boundaries. We think this is due to the compact shape of

supervoxels that TSP generated can better track the superpixels on the bicyclist and

prevent easily merging with other large segments such as sidewalk, tree and road.

However, it also brings more fragmented segments on large smooth regions, such as

road and sidewalk and weak boundary accuracy.

Overall, GBH, SWA and TSP achieve equally strong performance in the supervoxel

classification experiment (see Fig. 3.7), and, again, they are the top performing ones

in terms of our benchmark evaluation in Sec. 3.5. Methods such as GB and MeanShift

have poor classification performance also perform less well on the benchmark metrics.

For the streaming methods, streamGBH achieves very similar performance to its full-

video counterpart GBH.

60

GB GBH streamGBH SWA TSP MeanShiftFrames

Ti
m
e

Building Tree Sky Car SignSymbol Road Pedestrian Fence ColumnPole Sidewalk Bicyclist

Ti
m
e

Figure 3.9: Example results on two short clips from the CamVid daytime test video.
Images in the first column are video frames and groundtruth labels and the
remaining columns are individual methods with supervoxel segmentation
and semantic labeling on supervoxels.

61

Building Tree Sky Car SignSymbol Road Pedestrian Fence ColumnPole Sidewalk Bicyclist

GB GBH streamGBH SWA TSP MeanShiftFrames

Ti
m
e

Figure 3.10: Example results on a clip from the CamVid dusk test video. Images
in the first column are video frames and groundtruth labels and the
remaining columns are individual methods with supervoxel segmentation
and semantic labeling on supervoxels.

3.7 Conclusion

We have presented a thorough evaluation of seven supervoxel methods including

both off-line and streaming methods on a set of seven benchmark metrics designed to

evaluate supervoxel desiderata as well as the recognition performance on a particular

application. Samples from the datasets segmented under all seven methods are shown

in Fig. 3.6, Fig. 3.9, and Fig. 3.10. These visual results convey the overall findings

we have observed in the quantitative experiments. GBH, SWA and TSP are the

top-performers among the seven methods in both our benchmark evaluation and

the classification task. They all share a common feature in that they perform well

in terms of segmentation accuracy, but they comparatively vary in performance in

regard to the other metrics. GBH captures object boundaries best making it well

62

suited for video analysis tasks when accurate boundaries are needed, such as robot

manipulation. SWA has the best performance in the explained variation metric, which

makes it most well-suited for compression applications. TSP follows object parts

and achieves the best undersegmentation error making it well-suited for fine-grained

activity analysis and other high-level video understanding problems. It seems evident

that the main distinction behind the best offline methods, namely GBH and SWA,

is the way in which they both compute the hierarchical segmentation. Although

the details differ, the common feature among the two methods is that during the

hierarchical computation, coarse-level aggregate features replace or modulate fine-

level individual features. In contrast, TSP processes a video in a streaming fashion

and also produces supervoxels that are the most compact and regular in shape. These

differences suggest a complementarity that has the potential to be combined into a

new method, which are currently investigating.

In this chapter, we have explicitly studied the general supervoxel desiderata re-

garding a set of proposed benchmark metrics including both human annotation de-

pendent and independent ones. In addition, we compare the supervoxel methods in a

particular application—supervoxel classification that evaluates methods in a recogni-

tion task, which we consider to be a proxy to various high-level video analysis tasks

in which supervoxels could be used. A strong correlation is presented between the

benchmark evaluation and the recognition task. Methods, such as GBH, SWA and

TSP, that achieve the top performance in the benchmark evaluation also perform

best in the recognition task. The obvious question to ask is how well will the findings

translate to other application-specific ones, such as tracking and activity recognition.

A related additional point that needs further exploration for supervoxel methods is

the modeling of the relationship between spatial and temporal domains in a video.

We plan to study these important questions in future work.

63

CHAPTER IV

Scale Generation II: A Streaming Hierarchical

Framework

4.1 Introduction

The video analysis literature, despite a rich history of segmentation [130], has

been dominated by feature-based methods, e.g., [98], over the last decade. More

recently, a trend to incorporate an initial oversegmentation into supervoxels followed

by various task-specific processes, such as hierarchical grouping [65] and long-range

tracking [15, 106], and superpixel flow [198], has surfaced. Many driving applications

in video, such as animation [206, 6], require a dense segmentation that feature-based

methods cannot naturally provide.

Good progress has been reported on video segmentation in recent years with meth-

ods ranging from mean shift [146], region tracking [15], interactive matting [6] and

graph-based processing [65]. To evaluate this progress and these methods’ compar-

ative suitability for early video oversegmentation into supervoxels, we have studied

a set of methods in Chapter III, with varying characteristics. The methods have

been evaluated for desirable video segment properties, such as spatiotemporal uni-

formity and coherence, explained variation, and spatiotemporal boundary extraction,

and compared on human-labeled video benchmarks. The study conclusively reports

64

that the two hierarchical segmentation methods (SWA and GBH) generate space-time

segments with the most desirable properties, paving the way for more principled use

of video segmentation going forward.

However, there are two extant limitations in the state of practice in video segmen-

tation. First, most methods build a representation on the entire video and process it at

once (e.g. a large graph for whole video). Clearly, they exhaust memory resources on

all typical and even some quite large machines (e.g., consider these loading a 320×240

video: 3 seconds of video requires 21MB of memory; 2 minutes: 840 MB; 30 minutes:

12.6 GB; 2h: 50GB, and so on). Thus, most existing video segmentation methods

are unable to handle even medium-length videos. Those methods that do process the

video online, such as streaming mean shift [145] perform comparatively worse on the

recent evaluation [214]. Note, [65] presents a hierarchical graph-based algorithm that

conclusively performs best in [214]; however, the clip-based version of their method

is restricted to the voxel-layer and is not hierarchical, reducing it to graph-based

segmentation [47], which performs comparatively worse on the benchmark. We also

note that the flow-based work of [198] can also handle videos of arbitrary length,

but outputs non-hierarchical segmentations. It is not included in the evaluation; we

expect it to perform similarly to those other non-hierarchical methods in [214].

Second, in some applications, such as surveillance and interaction [172], it is im-

practical to expect the whole video to be available. In these cases, the video is

continuously streaming in real time. These limitations seem to have stunted the use

of video segmentation; e.g., contrast the relative lack of supervoxels in the video

analysis literature with the dominance of superpixels in the image analysis litera-

ture [158, 47, 105, 199, 133, 134, 189]. Indeed, due to the lack of long-range, efficient

supervoxel methods, some researchers resort directly to frame-by-frame superpixel

methods, such as [102] who seek a video-based foreground object extraction.

To overcome these limitations, we present a principled approximation to hier-

65

(c) whole video processing(b) stream processing

past current future

(a) frame-by-frame processing

past current future

Figure 4.1: Three different processing paradigms for video segmentation. (a) Frame-
by-frame processing such that each frame is independently segmented, but
no temporal information is used. Even though it is fast, the results and
temporal coherence are poor. (b) Stream processing segments the current
frame only based on a few previously processed frames. It is forward-only
online processing, and the results are good and efficient in terms of time
and space complexity. (c) 3D volume processing that represents a model
for the whole video. It is bidirectional multi-pass processing. The results
are best, but the complexity is too high to process long and streaming
videos.

archical video segmentation. Our key contributions are twofold: (1) we propose a

streaming hierarchical video segmentation framework that leverages ideas from data

streams [136] and enforces a Markovian assumption on the video stream to approx-

imate full video segmentation and (2) we instantiate the streaming graph-based hi-

erarchical video segmentation within this approximation framework. Our method is

the first streaming hierarchical video segmentation method in the literature, to the

best of our knowledge. Fig. 4.1 illustrates the differences between frame-by-frame,

streaming, and full volume processing. Although frame-by-frame processing is effi-

cient and can achieve high-performance in spatial respects, its temporal stability is

limited.

We have implemented and evaluated our streaming hierarchical graph-based al-

gorithm both on the existing benchmark [214] and on longer length videos. Our

experiment results demonstrate the streaming approximation can perform almost as

66

well as the full-video hierarchical graph-based method and asymptotically approaches

the full-video method as the size of the streaming-window increases. However, the

streaming approximation maintains better performance of the hierarchical segmenta-

tion than full-video, non-hierarchical methods, and the proposed method outperforms

other state of the art streaming methods on longer videos.

The remainder of this chapter is organized as follows: Sec. 4.2 presents our stream-

ing hierarchical video segmentation approximation framework, Sec. 4.3 introduces the

graph-based streaming hierarchical method, Sec. 6.4 discusses our experimental anal-

ysis, Sec. 5.5 concludes the chapter.

4.2 Streaming Hierarchical Video Segmentation—An Approx-

imation for Hierarchical Video Segmentation

Problem Statement. For a given video V , consider an objective function or

criterion E(·|·) to obtain the hierarchical segmentation result S by minimizing:

S∗ = argmin
S

E(S|V) . (4.1)

Concretely, let Λ2 denote the 2D pixel lattice. We think of a video as a function

on space-time lattice Γ
.
= Λ2 × Z mapping to color space R3, s.t. V : Γ → R3.

The hierarchical segmentation results in h layers of individual segmentations S .
=

{S1, S2, . . . , Sh} where each layer Si is a set of segments {s1, s2, . . . } such that sj ⊂ Γ,

∪jsj = Γ, and si ∩ sj = ∅ for all pairs of segments. Each layer in the hierarchy

gives a full segmentation and the hierarchy itself defines a forest of trees (segments

only have one parent). There are several methods, e.g., [65, 145], for pursuing this

hierarchical segmentation. However, we are not aware of any method that has an

explicit objective function to optimize; they are all based on some criteria to pursue

hierarchical segmentation results. We consider them as greedy/gradient descent-like

67

V1 V2 V3 Vm−1 Vm

t = 0

E(S|V) S

V

S1 S2 S3 Sm−1 Sm

Figure 4.2: Framework of streaming hierarchical video segmentation.

methods to approximate the global or local minimal of an implicit objective function

E(S|V).

Next, we introduce our streaming hierarchical video segmentation framework that

approximates a solution for (4.1) by leveraging ideas from data streams [136].

4.2.1 Streaming Hierarchical Video Segmentation—An Approximation

Framework for E(S|V)

Consider a stream pointer t that indexes frames in a video V of arbitrary length.

By definition, our streaming algorithm may touch each frame of video at most a

constant number of times and it may not alter the previously computed results from

frames t̂ < t. Without loss of generality, we can conceptualize this streaming video

as a set of m non-overlapping subsequences, V = {V1, V2, · · · , Vm} with ki frames

for subsequence Vi. Thus, hierarchical segmentation result S could approximately

be decomposed into {S1, S2, · · · , Sm} as video V in Fig. 4.2, where Si is hierarchical

segmentation of subsequence Vi.

Then, to enforce the data stream properties, we make a Markov assumption.

Assume hierarchical segmentation Si of subsequence Vi is only conditioned on the

subsequence Vi−1 and its segmentation result Si−1. Therefore we can obtain a directed

68

Bayesian-like network approximating the hierarchical video segmentation model, see

Fig. 4.2, as:

E(S|V) = E1(S1|V1) + E1(S2|V2, S1, V1) + · · ·+ E1(Sm|Vm, Sm−1, Vm−1)

= E1(S1|V1) +
m∑
i=2

E1(Si|Vi, Si−1, Vi−1) , (4.2)

where, for convenience, we denote E(·|·), E1(·|·), E2(·|·) as different (hierarchical) seg-

mentation models for whole video, video subsequence and each layer of video subse-

quence, respectively. So,

S = {S1, · · · , Sm} = argmin
S1,S2,··· ,Sm

[
E1(S1|V1) +

m∑
i=2

E1(Si|Vi, Si−1, Vi−1)
]
, (4.3)

where E1(Si|Vi, Si−1, Vi−1) is hierarchical segmentation model for each subsequence

and E1(S1|V1) is a special case (no information from the previous subsequence).

Given an explicit objective function E1(·|·), Eq. (4.3) could be solved using dy-

namic programming, but because most hierarchical video segmentation methods do

not provide an explicit energy function and the configuration space of Si is too large,

we can not use dynamic programming. For our streaming scenario—to obtain S

efficiently—we again make the assumption that the hierarchical segmentation result

Si for the current subsequence Vi never influences segmentation results for previous

subsequences, it only influences the next subsequence Vi+1. Therefore, Eq. 4.3 is

approximated as:

S = {S1, · · · , Sm} =
{

argmin
S1

E1(S1|V1), · · · , argmin
Si

E1(Si|Vi, Si−1, Vi−1),

· · · , argmin
Sm

E1(Sm|Vm, Sm−1, Vm−1),
}
, (4.4)

which can be solved greedily. Start from V1, obtain S1, then fix S1 and obtain S2

69

 Hierarchical Segmentation for

Layer 1 Layer 2 Layer h

Layer 1 Layer 2 Layer h

layer
bottom top

Si

Vi

Vi−1t

Vi
S1

i S2
i Sh

i

Sh
i−1S2

i−1S1
i−1

Si−1

Si

Figure 4.3: Sub-framework for hierarchical segmentation for single subsequence Vi.

based on S1, V1, and V2. In the same way, obtain S3, S4, · · · , Si until the whole video

is completed.

Therefore, at any time, our approximation framework only needs to store two

subsequences into memory, whatever the length of video is, and each subsequence is

processed only once. The length ki of a subsequence Vi is a parameter and can range

from 1 to the full length of the video. According to the definition of data streams,

we hence name this approximation framework with greedy solution as streaming

hierarchical video segmentation. And our framework obviously can well handle

the two proposed problems of current hierarchical video segmentation mentioned in

the introduction: namely, we do not store the whole video at once and in some cases,

the whole video may not be available.

4.2.2 Model For Estimating Si|(Vi, Si−1, Vi−1)

We can hierarchically segment video of arbitrary length if we know how to solve:

Si = argmin
Si

E1(Si|Vi, Si−1, Vi−1) , (4.5)

where Si is hierarchical segmentation of subsequence Vi, s.t. Si = {S1
i , S

2
i , · · · , Sh

i }

with h layers. Sj
i is the segmentation result at the jth layer and the first layer S1

i is

the video itself, where each voxel is a segment. Continuing with a similar Markov

70

assumption, assume Sji only depends on Sj−1i , Sj−1i−1 , Sji−1 and the subsequence Vi−1

and Vi, see Fig. 4.3. Then we can obtain:

Si = argmin
Si

E1(Si|Vi, Si−1, Vi−1)

= argmin
S2
i ,··· ,Sh

i

h∑
j=2

E2(Sji |Vi, Sj−1i , Sj−1i−1 , S
j
i−1, Vi−1) . (4.6)

We can hence reformulate this using a greedy approach, as we did in Eq. 4.4:

Si = argmin
Si

E1(Si|Vi, Si−1, Vi−1)

=
{

argmin
S2
i

E2(S2
i |Vi, S1

i , S
1
i−1, S

2
i−1, Vi−1), · · · ,

argmin
Sh
i

E2(Shi |Vi, Sh−1i , Sh−1i−1 , S
h
i−1, Vi−1)

}
, (4.7)

where, recall, E2(·|·) is the conditional segmentation model for a single layer of the

subsequence. Since in the first layer, each voxel is a segment, S1
i is given. Eq. 4.7

can be solved by using the greedy solution for Eq. 4.4. In this way, we transfer

complex conditional hierarchical segmentation Si|(Vi, Si−1, Vi−1) to a simple layer by

layer conditional segmentation Sji |(Vi, Sj−1i , Sj−1i−1 , S
j
i−1, Vi−1). Thus, we can obtain Si

by pursuing segmentation Sji layer by layer.

4.2.3 Semi-Supervised Grouping Method

for Estimating Sji |(Vi, Sj−1i , Sj−1i−1 , S
j
i−1, Vi−1)

According to Eq. 4.7, now we propose a method to estimate Sji that:

Sji = argmin
Sj
i

E2(Sji |Vi, Sj−1i , Sj−1i−1 , S
j
i−1, Vi−1) . (4.8)

First, we consider Eq. 4.8 to pose a semi-supervised grouping problem, given our

streaming assumptions (not user input). Given joint segment set Sj−1i−1,i = Sj−1i−1 ∪Sj−1i ,

71

?jth layer

j − 1th layer

video Vi−1 Vi

Sj
i−1

Sj−1
iSj−1

i−1

Sj
i =

time

Figure 4.4: Illustration of posing Eq. 4.8 as a semi-supervised problem.

each small segment is described by a feature-vector on appearance from Vi∪Vi−1. S
j
i−1

is the segmentation result of the jth layer for subsequence Vi−1; since it is above the

j − 1th layer, it is seen as supervised information for segments that belong to Sj−1
i−1 ,

and these segments are hence supervised segments. The goal is to infer Sj
i : the

labels of other unsupervised segments in Sj−1
i , with fixed labels for segments in Sj−1

i−1 .

Fig. 4.4 illustrates this idea.

Now we design a general semi-supervised algorithm Hsemi−G(S
j−1
i) to infer Sj

i .

Given any unsupervised grouping method HG(S
j−1
i) that obtains segmentation result

by merging small segments into large segments iteratively (see Sec. 4.3 for a graph-

based example), we add one more step in its merging process to arrive at semi-

supervised grouping algorithm Hsemi−G(S
j−1
i). Assume there are two segments sa

and sb in the current layer, they need to be merged based on the selected grouping

method, this merging should be reevaluated according to three cases, which we call

the additional merging criteria (see an example of each case in Fig. 4.5 (b-d)):

1. If sa and sb both are unsupervised segments, as in Fig. 4.5(b), then sa and sb

can be merged.

2. If sa is an unsupervised segment and sb contains some supervised segments, as

in Fig. 4.5(c), then sa and sb also can be merged, vice versa.

3. If sa and sb both contain some supervised segments, as in Fig. 4.5(d), if they

72

Sj−1
i−1 Sj−1

i

Sj
i−1

sa sb

Sj−1
i−1 Sj−1

i
Sj−1

i−1 Sj−1
i

sa sb

Sj−1
i−1 Sj−1

i

sa

sb

(a)

(b) (c) (d)

t
Vi−1 Vi

Figure 4.5: Example of the three cases in the additional merging criteria: (a), the
initial status of semi-supervised grouping; (b-d) three different cases,
when sa and sb needed to be merged: (b) sa ⊂ Sj−1

i and sb ⊂ Sj−1
i ;

(c) sa ∩ Sj−1
i−1 �= ∅ and sb ⊂ Sj−1

i ; (d) sa ∩ Sj−1
i−1 �= ∅ and sb ∩ Sj−1

i−1 �= ∅

have the same parent, then they are merged, otherwise they are not merged.

Finally, when the merging process stops, we get large merged segments from Sj−1
i ,

they are considered as jth layer segmentation result Sj
i of hierarchical segmentation

for subsequence Vi. Then we assign unique indices to these large segments. If the

large merged segment contains some supervised segments in Sj−1
i−1 , its index is same

as parent node’s index in Sj
i−1 of the supervised segment, or assign it a new index.

This ensures consistent indices of same object in continuous subsequences and also

proposes new indices for new objects.

There are two advantages of our semi-supervised grouping method. First, from low

to high layers, more and more segments will merge with segments from the previous

subsequence and the indices of these segments from the current subsequence are the

same as the indices of the corresponding segments in the previous subsequence. Thus

in a higher layer, the indices of the segments between neighboring subsequences are

more consistent than those of a lower layer.

Second, in the third case of the additional merging criteria, we avoid merging

sa and sb when they contain some supervised segments that connect to different

parent nodes in Sj
i−1. If we do not handle this case, supervised segments in sa ∪ sb

73

will be merged and connected to the same parent node thereby contradicting with

hierarchical segmentation results Si−1 for previously processed subsequence Vi−1, and

violating the streaming constraints.

4.3 Graph-based Streaming Hierarchical Video Segmenta-

tion

Felzenszwalb and Huttenlocher [47] propose a graph-based unsupervised grouping

method for image segmentation (GB). Their objective is to group pixels that exhibit

similar appearance. First represent the image as graph with nodes as pixels and

edges connecting nodes according to their spatial relationship. The edge weight is

calculated based on the similarity of two nodes. Then the method iteratively merges

neighboring regions based on relaxed internal variation RInt(·) of regions, which we

will define below. It allows regions to be merged if the weight of the edge connecting

them is larger than their relaxed internal variations.

Although Grundmann et al. [65] have already extended the GB method to hier-

archical form, we re-derive our version directly from [47] to put it into our streaming

approximation framework; [65] do not provide a streaming version of GB. In order

to adopt this graph-based grouping method into our streaming hierarchical segmen-

tation framework, we construct a graph over the spatial-temporal video volume with

a 26-neighborhood in 3D space-time. This graph is only constructed for the current

two subsequences in process, Vi and Vi−1; this graph is the first layer of the hierarchy

and edge weights are direct color similarity of voxels. Assume we have computed the

streaming hierarchical segmentation result up to subsequence Vi using ideas from the

previous section, i.e., given the hierarchical segmentation result Si−1 of Vi−1, we infer

the hierarchical segmentation for Vi layer by layer.

Consider the jth layer of Vi as an example. We build a graph G = {V,E} based

74

on the j − 1th layer of subsequences Si−1 and Si, where each segment in the j − 1th

layer {Sj−1i , Sj−1i−1 } is a node xa that is described by a histogram of Lab color of all

voxels in the segment. If there is one edge between two segments/nodes xa ∈ V and

xb ∈ V in the first layer, then there is edge eab ∈ E between segments, and its weight

w(eab) is χ2 distance of the corresponding two histograms. Since Sji−1 ∈ Si−1 is given,

we consider Sji−1 to be semi-supervised information for nodes in graph G; thus, all

segments/nodes in Sj−1i−1 are indexed nodes, and their index can not be changed by

our semi-supervised grouping method.

According to [47], denote a region R as a subset of connected nodes in graph G.

The internal variation of region RInt(R) is the maximum edge weight emax of its

Minimum Spanning Tree (MST) plus a relaxation term:

RInt(R) = Int(R) + σ(R), with σ(R) =
τ

|R| (4.9)

s.t. Int(R) = max
e∈MST (R)

w(e) , (4.10)

where |R| is the number of voxels in region R, and τ is a constant parameter that

controls the number of segments to be computed. Our semi-supervised grouping

method Hsemi−G(·) simply combines the merging method in [47] by Eq. 4.10 and

semi-supervised information from Sji−1. First, sort the edges in increasing order in

the graph G; and then traverse the sorted edges. At each edge, check whether the

edge weight is smaller than the internal variation of both regions incident to the edge:

if not, keep traversing; if so, then use the additional merging criteria to decide whether

to merge or not. Therefore, based on our proposed semi-supervised Hsemi−G(·), we

finally obtain graph-based streaming hierarchical video segmentation. Fig. 4.6 shows

some example layer-segmentations of the method on a long video (30 seconds) with

an equal subsequence length k = 10 frames.

75

!"
!#

!"
$#

!"
%#

!"
&#

!"
'#

!"
(#

!"
)#

!"
*#

!"
+#

!"

(c
)

(b
)

(a
)

(d
)

F
ig
u
re

4.
6:

E
x
am

p
le

lo
n
g
te
rm

v
id
eo

S
tr
ea
m
G
B
H

ou
tp
u
t
w
it
h
k
=

10
.
(a
)
th
e
v
id
eo

w
it
h
fr
am

e
n
u
m
b
er

on
to
p
-l
ef
t,

(b
)
th
e

5t
h
la
ye
r,
(c
)
th
e
10
th

la
ye
r,
(d
)
th
e
14
th

la
ye
r
se
gm

en
ta
ti
on

s.
F
ac
es

ar
e
ob

sc
u
re
d
fo
r
p
ri
va
cy

co
n
ce
rn
s
in

th
e
fi
gu

re
.

76

4.4 Experimental Evaluation

Implementation. We have implemented the graph-based streaming hierarchical

video segmentation method (StreamGBH), which runs on arbitrarily long videos

with low and constant memory consumption. Our implementation adaptively handles

streaming video and can process bursts of k frames on the stream, where k can be

as few as 1 or as many as the local memory on the machine can handle. When k =

all frames, it is a traditional hierarchical graph-based video segmentation method

(GBH) [65]. When the hierarchical level h = 1, it is a single layer graph-based

streaming video segmentation method (StreamGB). When k = all frames and h =

1, it is a graph-based video segmentation method (GB) by extending Felzenszwalb’s

graph-based image segmentation [47] to the 3D video volume. StreamGBH and all of

these variants are available as part of our LIBSVX software library.

We analyze the following two aspects of StreamGBH in the context of the bench-

mark in Chapter III and provide details on the specific results in Sec. 4.4.1 and 4.4.2.

We discuss space and time complexity in Sec. 4.4.3.

Comparison between different subsequence lengths: vary k. We explore

the effectiveness of the streaming variate k in the performance of our StreamGB and

StreamGBH methods. The algorithms are expected to reach their lower bound on

performance when k = 1, and their upper bound on performance (GB/GBH) when

k = all frames, respectively.

Comparison against state of the art streaming methods. We compare our

StreamGB and StreamGBH methods against Grundmann’s clip-based graph-based

method (CGB) [65] and Paris’s streaming mean shift method [145] with fixed k = 10.

Since neither of their implementations is publicly available, we have implemented

Grundmann’s CGB method. For Paris’s Streaming Mean Shift, we use the source

code for whole video processing provided on the author’s website 1 as an upper bound

1http://people.csail.mit.edu/sparis/#code

77

200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

80

90

Number of Supervoxels

3
D

 U
n

d
e

rs
e

g
m

e
n

ta
ti
o

n
 E

rr
o

r

GBH
StreamGBH k=10
StreamGBH k=1
GB
StreamGB k=10
StreamGB k=1

200 300 400 500 600 700 800 900
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Supervoxels

3
D

 B
o

u
n

d
a

ry
 R

e
c
a

ll

GBH
StreamGBH k=10
StreamGBH k=1
GB
StreamGB k=10
StreamGB k=1

200 300 400 500 600 700 800 900
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Supervoxels

E
x
p

la
in

e
d

 V
a

ri
a

ti
o

n

GBH
StreamGBH k=10
StreamGBH k=1
GB
StreamGB k=10
StreamGB k=1

200 300 400 500 600 700 800 900
0

10

20

30

40

50

60

70

80

Number of Supervoxels

3
D

 U
n

d
e

rs
e

g
m

e
n

ta
ti
o

n
 E

rr
o

r

StreamGBH k=10
StreamGB k=10
ClipGB k=10
Mean Shift

200 300 400 500 600 700 800 900
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Number of Supervoxels

3
D

 B
o

u
n

d
a

ry
 R

e
c
a

ll

StreamGBH k=10
StreamGB k=10
ClipGB k=10
Mean Shift

200 300 400 500 600 700 800 900
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Supervoxels

E
x
p

la
in

e
d

 V
a

ri
a

ti
o

n

StreamGBH k=10
StreamGB k=10
ClipGB k=10
Mean Shift

Figure 4.7: Quantitative experiments on the benchmark dataset. Left: 3D Under-
segmentation Error. Middle: 3D Boundary Recall. Right: Explained
Variation. Top Row: performance of Streaming GB/GBH with different
k against full-video versions. Bottom Row: comparison against streaming
methods.

for the streaming mean shift implementation.

4.4.1 Quantitative Performance: Benchmark Comparisons

Data. We use the benchmark dataset, BuffaloXiph [25], and a subset of evaluation

metrics from Chapter III in the quantitative experiments. Specifically, the video

dataset is a subset of the well-known xiph.org videos that have been supplemented

with a 24-class semantic pixel labeling set (the same classes from the MSRC object-

segmentation dataset [174]). The 8 videos in this set are densely labeled with semantic

pixels and have a length of 85 frames each. This dataset allows us to evaluate the

segmentation methods against human perception.

3D Undersegmentation Error. Fig. 4.7 (left column) shows the dependency of

3D Undersegmentation Error on the number of segments. The upper-left of Fig. 4.7

shows an interesting finding. The curves of StreamGBH are more smooth than

StreamGB, and the performance of StreamGBH gradually converges to GBH as the

78

length k of incoming video subsequences increases, which agrees with our approxima-

tion framework in Sec. 4.2.1. The StreamGBH with k = 10 has comparative perfor-

mance with GBH. However the GB method performs worst among all the methods.

The reasons are twofold: (1) without a hierarchical structure, the GB method is

more dependent on the input parameters for different videos which makes the curve

less smooth and (2) without an over-segmentation stage, the GB method is partially

dependent on an enforced minimum region size, which is not robust for videos of dif-

ferent lengths. According to reason (2), StreamGB method works more reasonably.

The bottom-left of Fig. 4.7 shows our proposed StreamGBH method achieves the best

among all the other streaming methods.

3D Boundary Recall. The 3D boundary is the shape boundary of a 3D object,

composed by surfaces. It measures the spatiotemporal boundary detection: for each

segment in the ground-truth and segmentations, we extract the within-frame and

between-frame boundaries and measure recall using the standard formula. Fig. 4.7

(middle column) shows the dependency of 3D Boundary Recall on the number of

segments. StreamGBH again performs best and StreamGB is also better than the

other two in the bottom-middle of Fig. 4.7.

Explained Variation. Fig. 4.7 (right) shows the dependency of Explained Vari-

ation on the number of segments. The bottom-right of Fig. 4.7 again shows that

StreamGBH, StreamGB and mean shift methods have comparative performance when

the number of segments is larger than 500.

Mean Duration of Segments. When evaluating the performance among dif-

ferent streaming algorithms, we believe the mean duration of segments is a more

important metric, as it measures the temporal coherence of a segmentation method

more directly. Fig. 4.8 shows the dependency of mean duration of segments on num-

ber of segments. Our proposed StreamGBH and StreamGB both perform better than

the other two. ClipGB performs worst and loses most of the temporal information.

79

200 300 400 500 600 700 800 900
15

20

25

30

35

40

45

50

55

Number of Supervoxels

M
e

a
n

 D
u

ra
ti
o

n

StreamGBH k=10

StreamGB k=10

ClipGB k=10

Mean Shift

Figure 4.8: Mean duration of segments vs. number of segments.

4.4.2 Qualitative Performance on Long Videos

Here we show some qualitative results on long videos, which necessitate a stream-

ing method. Recall, Fig. 4.6 shows a long term temporal coherence of StreamGBH.

In the segmentation, objects have consistent indices along the time duration as long

as the shot is not changed (see below for a shot change detection example). We see

different details of an object in the layers of hierarchy. For example, one can find three

papers in the violin case in 5th layer, and locate a single musician body pose in 14th

layer. Note, however, the person walking behind the musician gets mixed into the

musician’s segment at frame 401 at higher layers in the hierarchy; this is a shortcom-

ing of our method due to the streaming assumptions. Fig. 4.9 (top) is a shot cut from

a long video with changes in illumination as a person enters a kitchen. StreamGB

and StreamGBH have better temporal coherence than the others. However, the arm

of the person is only able to be segmented out by StreamGBH; StreamGB has some

small noise fragments and Clip-based GB completely loses the arm on Frame 513. We

also show how StreamGBH captures a shot change in a video as Frame 931 to Frame

932 in Fig. 4.9 (bottom). Our proposed StreamGBH has a promising performance

even without any motion cues in the above experiments.

80

Figure 4.9: (top) Qualitative comparison of k = 10 for the streaming methods. (bot-
tom) Shot change of StreamGBH with k = 10. (a) the video with frame
number on top-left, (b) the 5th layer segmentation, (c) the 10th layer
segmentation, (d) the 14th layer segmentation.

81

4.4.3 Space and Time Complexity

Since our method adopts streaming techniques, at any time, we only need constant

memory to keep the previous and current video subsequences in the memory. This

constant memory is O(nk), n is the number of voxels per frame and k is the length of

video subsequence window; thus it is independent of the video length. For a p-frame

video, there are n× p voxels in total. The complexity of GBH is O(np log np). Since

our StreamGBH considers only k frames at each time, its complexity is O(np log nk).

For an arbitrarily long video, p� k and p� n where k and n are constant numbers,

thus the complexity of StreamGBH is O(p) whereas GBH is O(p log p). Therefore,

StreamGBH is more efficient in both space and time complexity. For our experiments,

the timing result on benchmark [214] for StreamGBH on average is 355 seconds for 85

frames (about 0.25 fps) generating 16 layer hierarchies; our method is not optimized

or parallelized.

4.5 Conclusion, Limitations and Future Work

We have proposed a framework for streaming hierarchical video segmentation and

a graph based streaming hierarchical approach (StreamGBH) based on our frame-

work. To the best of our knowledge, it is the first solution for fully unsupervised

online hierarchical video segmentation that can handle any arbitrarily long video

(and our code is available). We evaluate this approach on a benchmark dataset under

different metrics and qualitatively on some long videos. The results show that our

approach outperforms other state of the art streaming methods in both quantitative

and qualitative perspectives. Although our StreamGBH can process videos of arbi-

trary length, our implementation is not real time. In future, we plan to improve this

implementation to leverage parallelization hardware and optimized data structures

from data stream algorithms.

82

CHAPTER V

Semantic Retention in Supervoxel Segmentation

5.1 Introduction

We are drowning in video content—YouTube, for example, receives more than

400 hours of uploaded video content every minute. In many applications, there is so

much video content that a sufficient supply of human observers to manually tag or

annotate the videos is unavailable. Furthermore, it is widely known that the titles

and tags on the social media sites like Flickr and YouTube are noisy and semantically

ambiguous [184]. Automatic methods are needed to index and catalog the salient

content in these videos in a manner that retains the semantics of the content to

facilitate subsequent search and ontology learning applications.

However, despite recent advances in computer vision, such as the deformable parts

model for object detection [46], the scalability as the semantic space grows remains

a challenge. For example, the state of the art methods on the ImageNet Large Scale

Visual Recognition Challenge [10] have accuracies near 20% [38] and a recent work

achieves a mean average precision of 0.16 on a 100,000 class detection problem [35],

which is the largest such multi-class detection model to date. To compound this

difficulty, these advances are primarily on images and not videos. Methods in video

analysis, in contrast, still primarily rely on low-level features [183], such as space-time

interest points [98], histograms of oriented 3D gradients [85], or trajectories [202].

83

Time

C
oa
rs
e

Fi
ne

M
ed
iu
m

R
G
B

Figure 5.1: Example output of the streaming hierarchical supervoxel method in Chap-
ter IV. From left to right columns are frames uniformly sampled from a
video. From top to bottom rows are: the original RGB video, the fine
segmentation (low level in the hierarchy), the medium segmentation (mid-
dle level in the hierarchy), and the coarse segmentation (high level in the
hierarchy).

These low-level methods cannot guarantee retention of any semantic information and

subsequent indices likewise may struggle to mirror human visual semantics. More

recently, a high-level video feature, called Action Bank [163], explicitly represents a

video by embedding it in a space spanned by a set, or bank, of different individual

actions. Although some semantic transfer is plausible with this Action Bank, it is

computationally intensive and struggles to scale with the size of the semantic space;

it is also limited in its ability to deduce viewpoint invariant actions.

In contrast, segmenting the video into spatiotemporal regions with homogeneous

character, such as supervoxels, has a strong potential to overcome these limitations.

Supervoxels are significantly fewer in number than the original pixels and frequently

surpass the low-level features as well, and yet they capture strong features such as

motion and shape, which can be used in retention of the semantics of the underlying

video content. Figure 5.1 shows an example supervoxel segmentation. Furthermore,

84

results in the visual psychophysics literature demonstrate that higher order processes

in human perception rely on shape [4] and boundaries [64, 139, 142]. For instance,

during image/video understanding, object boundaries are interpolated to account for

occlusions [64] and deblurred during motion [142]. However, the degree to which

the human semantics of the video content are retained in the final segmentation is

unclear. Ultimately, a better understanding of semantic retention in video supervoxel

segmentation could pave the way for the future of automatic video understanding

methods.

To that end, we conduct a systematic study of how well the action and actor

semantics in moving video are retained through various supervoxel segmentations.

Concretely, we pose and answer the following five questions:

1. Do the segmentation hierarchies retain enough information for the human per-

ceiver to discriminate actor and action?

2. How does the semantic retention vary with density of the supervoxels?

3. How does the semantic retention vary with actor?

4. How does the semantic retention vary with static versus moving background?

5. How does response time vary with action?

Our study presents novice human observers with supervoxel segmentation videos (i.e.,

not RGB color videos but supervoxel segmentation videos of RGB color videos) and

asks them to, as quickly as possible, determine the actor (human or animal) and the

action (one of eight everyday actions such as walking and eating). The system records

these perceptions as well as the response time for them and then scores whether

or not they match the ground truth perception; if so, then we consider that the

semantics of the actor/action have been retained in the supervoxel segmentation.

We systematically conduct the study with a cohort of 20 participants and 96 videos.

85

Ultimately, our results indicate that a significant amount of semantics have been

retained in the supervoxel segmentation.

This chapter is organized as follows. Section 5.2 compares supervoxels to other

video representations. Section 5.3 describes the details of the dataset acquisition

and the experiment setup. Finally, Section 5.4 presents the results and our analysis

thereof.

5.2 Supervoxels: Rich Decompositions of RGB Videos

Considering the example in Fig. 5.1, we observe that the hierarchy of the super-

voxel segmentation captures different levels of semantics of the original RGB video.

For example, one tends to recognize the humans easier from coarser levels in the hi-

erarchy, since they are captured by fewer supervoxels; however, the coarser levels lose

the detailed content in the video, such as the woman in the painting hanging on the

wall, which is still captured at the medium level.

Comparing with other features, such as optical flow [178] and space-time interest

points (STIP) [98], which are frequently used in video analysis [183], the supervoxel

segmentation seems to retain more semantics of the RGB video (in this chapter we

seek to quantify how many of these semantics are retained for one set of actions and

actors). Figure 5.2 shows a visual comparison among those features. STIP uses the

sampled points as the data representation—this is not the full STIP representation,

which also measures gradient information—and optical flow is viewed as vectors from

voxels.

By only watching the feature videos of STIP and optical flow, as shown in the

bottom two rows of Fig. 5.2, it seems unlikely that humans could recover the content

of a video, especially when there is little motion in a video. On the other hand, one

can easily recover the content of a video by watching the supervoxel segmentation

video, likely due to the fact that the supervoxel segmentation retains the shape of

86

Time

RG
B

Se
gm

en
ta

tio
n

Bo
un

da
ry

ST
IP

O
pt

ica
l F

lo
w

Figure 5.2: A comparison of different video feature representations. From top to
bottom rows are: the RGB video, the supervoxel segmentation [221],
extracted boundaries of supervoxel segmentation, space-time interest
points [98], and optical flow [178].

the objects (boundaries of the supervoxel segmentation are also shown in the third

row of Fig. 5.2). Zitnick and Parikh [232] show that the segmentation boundaries

are in general better than classical edge detection methods, such as canny edge [20],

for automatic image understanding, and they perform as well as humans using low-

level cues. The precise goal of this chapter is to explore exactly how much semantic

content, specifically the actor (human or animal) and the action, is retained in the

supervoxel segmentation. We describe the experiment and results in the next two

sections.

5.3 Experiment Setup

We have set up a systematic experiment to study actor and action semantics reten-

tion in the supervoxel segmentation. By actor we simply mean human or animal. For

87

walking spanning running jumping eating climbing crawling flying

st
at
ic

m
ov
in
g

st
at
ic

m
ov
in
g

Figure 5.3: A snapshot of the RGB videos in our dataset. The actors in the top two
rows are humans and in the bottom two rows are animals. The dataset
consists of two kinds of actors, eight actions and two types of background
settings, resulting in a total of 32 videos.

action, we include a set of eight actions: climbing, crawling, eating, flying, jumping,

running, spinning and walking. We have gathered a complete set of videos (Sec. 5.3.1)

and processed them through the segmentation algorithm. Then, we show the segmen-

tation videos to human observers and request them to make a forced-choice selection

of actor and action (Sec. 5.3.3). Finally, we analyze the aggregate results over the

full data cohort and quantify the retention of semantics (Sec. 5.4).

5.3.1 Dataset

Data collection. We have collected a dataset with two kinds of actors (humans

and animals) performing eight different actions: climbing, crawling, eating, flying,

jumping, running, spinning and walking. We only include animals that frequently

appear in (North American) daily life, such as dogs, cats, birds, squirrels and horses.

The backgrounds of the videos fall into two categories: static (relatively static objects

such as ground and buildings with little camera changes) and moving (moving objects

in the background, such as in a traffic or dramatic camera changes). A complete RGB

88

video dataset consists of 32 videos in total (2 actors × 8 actions × 2 background types

= 32). Figure 5.3 shows a snapshot of the RGB videos we collected.

Each video is about four seconds long and the actor starts the action immediately

after the video plays. We, however, show the videos at half-frame-rate when con-

ducting the experiment to allow ample response time for the human participants. We

have attempted to exclude those videos that have ambiguity with either the actors or

the actions, and only use videos that have a major actor performing one single action.

For example, a disqualified human jumping video usually contains the running before

jumping. But, some ambiguity remains due to the general complexity of dynamic

video. The dataset used in this chapter is a complete dataset having a single video

for each actor, action and background type tuple. All videos were downloaded from

public “wild” repositories, such as YouTube.

For each of the RGB videos, we use the method described in Chapter IV to

obtain a supervoxel segmentation hierarchy. We first use ffmpeg to resize the videos

to 320x240 maintaining the original aspect ratio. We sample three different levels

from the hierarchy, similar as in Fig. 5.1. Therefore, the full set of data we used to

run the semantic retention experiment is the 96 supervoxel segmentation videos. Note

that the audio is disabled, so that the participants only have the vision perception of

the supervoxel segmentation videos (and never the RGB videos).

Data split. We create a threeway split of the 96 videos into three sets: alpha,

beta and gamma. Since each of the original 32 videos is represented in three levels

of the hierarchy, it is imperative to make the threeway split and thereby avoid one

participant seeing the same video twice but on two different supervoxel hierarchy

levels. So, each of alpha, beta and gamma have the full 32 videos, but on different

hierarchy levels (and uniformly varying over levels in each of the three splits). Based

on the ordering in the database, alpha will start with one level (say coarse) in the

hierarchy, then beta will have the next (medium) and gamma the third (fine) for one

89

Select Action

Select Actor

Figure 5.4: A snapshot of the user interface for the experiment.

original RGB video. For the next original RGB video, it will rotate, so that alpha

has the next level (now medium), beta the next (fine) and gamma will wrap around

to the first (coarse) again. This repeats through all 96 supervoxel videos. Before

the videos are shown to the participant, the order of the videos is shuffled, so that

the participant cannot deduce the contents based on an ordering of the videos (like

human human human ... animal animal animal).

5.3.2 Study Cohort

The study cohort is 20 college-age participants. To ensure generality, we exclude

those students who are studying video segmentation (and hence may have already

developed an eye for semantic content in supervoxel segmentations). Each participant

is shown one split of the videos (alpha, beta or gamma). And each participant sees a

given video only once. Participants never see the input RGB videos.

5.3.3 Human User Interface and Instructions

The user interface is web-based. Figure 5.4 shows a snapshot of it. The left part

of the participant’s screen is the supervoxel segmentation video and the right part of

90

the participant’s screen comprises two sets of buttons that allow the user to choose

either human or animal as the actor, and to choose one of the eight actions. The

participant has the option to choose unknown (the option “Don’t know act or actor”

is shown in the center of the select action area in Fig. 5.4). Such an unknown option

prevents the participant from random selection.

Initially, when the participant starts the experiment, the left part of the screen is

blank and buttons on the right side are deactivated (grayed out); once the next video

in their split is downloaded locally, it prompts the user with a “ready” message.

As soon as the participant presses the space key, it starts to show the supervoxel

segmentation video and the interface triggers a timer that records the response time

of the participant. The participant is required to respond by pressing the space key

again as soon as he or she captured enough information to reach a decision (i.e., knows

the actor and action in the supervoxel video). The amount of time between these two

space key pressing is recorded as one’s response time. After this second space key is

hit, the buttons on the right side are activated and ready for the participant to select

them. The participant can only watch the video once, which means once the video

reaches the end, the participant is forced to make a decision (or choose unknown)

without the option to watch it again. In this case, the whole video time is recorded

as one’s response time. This process is repeated for each video in the split (alpha,

beta or gamma) until the end.

Before a participant begins, s/he is instructed briefly as to the nature of the

experiment (trying to recognize the actor and action in a supervoxel video) and walked

through the user interface. They are instructed that time is recorded and important;

they should hence stop the video as soon as they know the answer. They are not

shown any example supervoxel video before the experiment starts.

91

Table 5.1: Confusion matrix for actor discrimination.

0 0 0

0.11 0.86 0.03

0.17 0.05 0.78

unknown

human

animal

un hu an

5.4 Results and Analysis

The response of a single video by one participant is defined as a supervoxel percep-

tion: < actor, action, response time >. In total, we have 640 supervoxel perceptions

collected (32 videos in each split × 20 participants). The original RGB videos are

used as the ground truth data to measure the match of the supervoxel perceptions.

We also measure the response time of the participants for both matched perceptions

and unmatched perceptions. Our analysis is organized systematically according to

five key questions regarding semantic retention.

5.4.1 Do the segmentation hierarchies retain enough information for the

human perceiver to discriminate actor and action?

Actor discrimination. Table 5.1 shows a confusion matrix of the actor discrimi-

nation. As high as 86% of the supervoxel perception correctly identifies the human

actors, 78% for the animal actors, and in average 82% for actors in general. We also

note that participants tend to choose the unknown option when they are less con-

fident of the supervoxel segmentation. There is only a small portion of unmatched

perceptions 3% and 5% that mistake human as animal or vice versa. This is hence

strong evidence showing that the supervoxel segmentation indeed has the ability to

retain the actor semantics from the original RGB videos. We suspect this binary

discrimination performance is so high because the data cohort includes videos with

one dominant actor and the human participant is able to localize this actor with the

92

Table 5.2: Confusion matrix for action discrimination.

0 0 0 0 0 0 0 0 0

0.11 0.57 0.12 0.12 0 0.01 0.01 0.04 0

0.15 0.06 0.65 0.03 0 0 0.01 0.04 0.06

0.01 0.07 0.07 0.79 0.04 0 0 0.01 0

0.19 0.01 0.04 0.09 0.57 0 0 0.01 0.09

0.19 0 0 0 0 0.76 0.04 0 0.01

0.06 0.01 0 0 0.03 0 0.90 0 0

0.20 0.03 0 0.06 0.01 0 0.01 0.69 0

0.19 0.03 0.01 0 0.01 0.01 0.03 0.03 0.70

unknown

walking

spinning

running

jumping

eating

climbing

crawling

flying

un wl sp rn jm ea cl cr fl

supervoxel motion information and then use the supervoxel shape information to de-

termine human or animal. We suspect the reason why the supervoxel perception of

animal actors is less than that of human actors is because the animals in the dataset

vary more broadly in relative location and orientation than the humans do.

Action discrimination. Table 5.2 shows a confusion matrix of the action discrimi-

nation. The top three scoring actions are climbing (90%), running (79%), and eating

(76%), while the bottom three ones are walking (57%), jumping (57%), and spinning

(65%). On average, 70.4% of supervoxel perceptions correctly match the actions.

Of the lower performing actions, only walking has been easily confused with the

other actions (12% to spinning and 12% to running, which may be due to semantic

ambiguity—see the example of the human walking in the spinning wheel in Fig. 5.9);

jumping and spinning have more unknowns (19% and 15% respectively) rather than

being confused with other actions. An interesting point to observe is that running

and climbing are perceived unknown significantly fewer than the other six actions.

93

Fine! Medium! Coarse!
62.8%! 72.8%! 76.7%!

In
co
rr
ec
t!

C
or
re
ct
!

Figure 5.5: The performance of supervoxel semantic retention of actor and action on
three levels from the supervoxel segmentation hierarchy: fine, medium
and coarse. The percentages on top are computed when both the ac-
tor and action of supervoxel perception are correctly matched to ground
truth. The middle and bottom rows are the response time figures when
the supervoxel perception is correctly matched and incorrectly matched
respectively.

We suspect this is due to the dominant unidirectional motion of these two actions.

Overall, this is more strong evidence that suggests the supervoxel segmentation can

well retain the action semantics from the original RGB videos.

5.4.2 How does the semantic retention vary with density of the super-

voxels?

Following the discussion of supervoxel hierarchy in Sec. 5.2, we seek to understand

how the supervoxel size influences retention of action and actor semantics. Recall that

we sampled three levels from the supervoxel hierarchy to obtain fine, medium and

coarse level supervoxel segmentations. Figure 5.5 shows the overall performance of

the supervoxel perception on different levels. The percentage of correctly matched

supervoxel perceptions increases when the size of supervoxels grows, suggesting that

coarse segmentations more readily retain the semantics of the action and that even

94

Human!
75.0%!

Animal!
65.9%!

Figure 5.6: Performance comparison between human actors and animal actors. The
percentages on top are computed when both the actor and action of su-
pervoxel perception are correctly matched to ground truth. The response
time plots include both correctly and incorrectly matched supervoxel per-
ceptions.

coarser segmentations could perform better (i.e., the perfect segmentation of the actor

performing the action would likely perform best). A second plausible explanation is

that for actor and action discrimination the finer details in the other levels are unlikely

to be needed.

We also show study of the response time in Fig. 5.5. Here, we plot the density

of responses (horizontal axis is time, at half-frame-rate; vertical axis is density). The

blue bars are a simple histogram and the red curve is a Gaussian kernel density es-

timate. For correct action matches, the response distributions are nearly equivalent,

and are heavily weighted toward the shorter end of the plot, indicating that if the par-

ticipant knows the answer then typically knows it quickly. However, for the incorrect

matches, we see different patterns, the fine videos are peaked at about eight seconds,

which is the maximum length for most videos, indicating the participant watched the

whole video and still got the wrong action perception. For fine videos, one expects this

due to the great number of supervoxels being perceived, which introduces more noise.

The medium and coarse scales are more uniformly distributed (although the coarse

scale also has a peak at eight seconds), indicating that sometimes the perception was

simply wrong. This may either be due to intrinsic limitation of the supervoxels to

95

Static!
77.2%!

Moving!
63.8%!

Figure 5.7: Performance comparison between static background and moving back-
ground. The percentages on top are computed when both the actor and
action of supervoxel perception are correctly matched to ground truth.
The response time plots include both correctly and incorrectly matched
supervoxel perceptions.

retain some action semantics or due to the ambiguities of the specific videos in the

dataset, which, although we did try to avoid, are present in some few cases. Further

study on this point is needed to better understand the source of the error.

5.4.3 How does the semantic retention vary with actor?

We stratify the accuracy of the matches according to the actor performing the

action. Figure 5.6 shows the overall performance by human actors and animal actors.

In general, supervoxel perception of human actors has higher match than that of

animal actors. For speed, the response time of human actors has only one peak at

around three seconds, while that of animal actors has multiple peaks, which may be

due to the greater variation in appearance of animals in the dataset than of humans.

Moreover, human activity is easier to perceive than animal as studied by Pinto and

Shiffrar [150]. Considering the result in Table 5.1, the result in Fig. 5.6 also suggests

a correlation between knowing the actor and recognizing the action correctly.

96

Climbing Crawling Eating Flying

Jumping Running Spinning Walking

Figure 5.8: Response time of eight different actions for both correctly and incorrectly
matched perceptions.

5.4.4 How does the semantic retention vary with static versus moving

background?

Figure 5.7 shows the overall performance of the supervoxel perception match for

static background and moving background. Supervoxel perception has higher match

and shorter response time in the case of static background, as expected (the dominant

actor is more easily picked out by the participant). The relatively “flat” curve in

moving background suggests the response time for a single video highly depends on

the specific background within that video.

5.4.5 How does response time vary with action?

Figure 5.8 shows the response time for the eight different actions. From the trend

of the red curves in the figure, running and crawling get the shortest response time

while the flying action takes longest. Bimodality in crawling is likely due to the

very simple human baby crawling video (short response time) and very challenging

cat preying video (long response time; see Fig. 5.9 for the example). The more

97

Time

C
oa
rs
e

Fi
ne

M
ed
iu
m

R
G
B

C
oa
rs
e

Fi
ne

M
ed
iu
m

R
G
B

Time

Animal Running Moving: 95% Correct Human Eating Static: 100% Correct

Time

C
oa
rs
e

Fi
ne

M
ed
iu
m

R
G
B

Time

C
oa
rs
e

Fi
ne

M
ed
iu
m

R
G
B

Animal Flying Moving: 80% Correct Human Climbing Static: 75% Correct

C
oa
rs
e

Fi
ne

M
ed
iu
m

R
G
B

Time

C
oa
rs
e

Fi
ne

M
ed
iu
m

R
G
B

Time

Animal Crawling Moving: 20% Correct Human Walking Moving: 30% Correct

Figure 5.9: Visualization of videos with different levels of semantic retention. From
top to bottom rows are videos picked from high, moderate, and low re-
tention resepectively. Frames are uniformly sampled from each video. We
notice that supervoxel motion plays an important role in helping human
observers locate the actor in a supervoxel segmentation video, which is
hard to see in the montages. Therefore, we encourage people to view
those videos in our project website for a better visualization.

general messages behind these results are that those unusual actions such as human

flying take more time to get a response, and that those actions whose semantics have

been strongly retained (resulting in higher match statistics, Table 5.2) are generally

98

responded to more quickly than those whose semantics have less well been retained.

5.4.6 Easy, moderate and hard videos

Finally, in Fig. 5.9, we show montages of interesting videos, some with high action

semantic retention and others with moderate or low retention. These top cases have

distinct shape and motion properties that are readily transferred to the supervoxels;

in the case of the running dog, the lateral motion is very strong. In the bottom left of

retention examples, we see a cat crawling toward prey, but the cat is off-center from

the camera and the participants likely dismiss this small off-center motion as noise

for most of the video resulting in incorrect and slow responses. On the bottom right,

we see a human walking in the spinning wheel. The human is walking; the wheel

is spinning. There is likely semantic ambiguity here and further study is needed to

understand the level and impact of the ambiguity.

5.5 Conclusion

In this chapter, we explore the degree to which actor and action semantics are re-

tained in video supervoxel segmentation. We design and conduct a systematic study

to answer a set of questions related to this semantic retention. Our experiment re-

sults indicate strong retention of actor and action semantics: supervoxel perception

achieves 82% accuracy on actor and 70% on action. The overall finding suggests

that supervoxel segmentation is a rich decomposition of the video content, compress-

ing the signal significantly while retaining enough semantic information to remain

discriminative.

The actor and action perception experiment we have reported is in a closed-

world setting. In the future, we will explore the open world problem: how much

semantic information is retained in supervoxel segmentation. We will let participants

use lingual description to describe the supervoxel perception (such as one can recover

99

the woman in the painting hanging on the wall in Fig. 5.1). We will then compare this

human perception to a machine perception using our recent video-to-text engine [33].

We will also collect a larger number of videos and conduct experiments with more

participants to overcome the limitation of 20 participants and 32 input videos.

100

CHAPTER VI

Scale Selection I: Selection by Post Hoc Guidance

6.1 Introduction

In recent years, segmentation has emerged as a plausible first step in early pro-

cessing of unconstrained videos, without needing to make an assumption of a static

background as earlier methods have [32]. For example, the key segments work [102]

proposes a method to take frame-by-frame superpixel segmentations and automati-

cally segment the dominant moving actor in the video with category independence.

Recent works in video segmentation generate spatiotemporally coherent segmenta-

tions relatively efficiently by methods like point trajectory grouping [18, 106, 53],

superpixel tracking [15, 198, 209], probabilistic methods [2, 19, 101], supervoxels by

minimum spanning trees [221, 65, 214], or compositing multiple constituent segmen-

tations [151, 108].

These advances in video segmentation have also been thoroughly evaluated. Lever-

aging contributions in image segmentation evaluation [5] and criteria for good video

segmentation [43], we have proposed the LIBSVX benchmark in Chapter III, which

implements a suite of supervoxel algorithms and tests them in a set of evaluation

metrics with multiple video datasets. Ultimately, it was determined that the two

hierarchical agglomerative methods, Grundmann et al. [65] graph-based hierarchical

method and Sharon et al. [170] segmentation by weighted aggregation, perform best

101

Level 5Level 4Level 3Level 2Level 1
Supervoxel Hierarchy

Input Video

1

Supervoxels

Selections

2

UES FlatteningUES Selection

3 4
5

2

3

5

Figure 6.1: The uniform entropy slice (UES) selects supervoxels from multiple hier-
archical levels in a principled way to balance the amount of information
contributed by each selected supervoxel, according to some feature crite-
rion (motion in this figure). UES Selection shows what levels are used
and UES Flattening shows the final supervoxel output. Here, UES avoids
oversegmentation of the background (present in Levels 1 and 2) and un-
dersegmentation of the dancers (present in Levels 4 and 5); even just
Level 3 joins the dancers’ face with their shirts.

overall due to the way in which multiscale region similarity was reevaluated as the

hierarchy was generated.

Despite these advances, hierarchical video segmentation has not yet been actively

adopted. The hierarchies contain a rich multiscale decomposition of the video, but

we are unaware of a principled approach to make use of this rich information by

flattening it to a single non-trivial segmentation. Trivial flattenings, by arbitrarily

taking a level, would carry over intrinsic limitations of the bottom-up supervoxel

methods, as Fig. 6.1 illustrates. For example, taking a low level would mean very

many supervoxels (oversegmentation), taking a high level would mean salient regions

are missed (undersegmentation), but taking a middle level would oversegment in

some regions but undersegment in others. We believe this is the key limitation to the

adoption of supervoxels for early video analysis.

In this chapter, we propose the first principled solution to overcome this key lim-

102

Input Video

UES on Motion (Selection)

Figure 6.2: Example of supervoxel hierarchy selection by UES with a motion criterion
on video boxers. The motion criterion drives the algorithm to select finer
levels of the hierarchy (brighter regions on bottom row) on the dominant
moving objects. The boxer on the right and the head of the boxer on the
left are being selected from finer levels in the supervoxel hierarchy while
the background segments are from coarser levels in the hierarchy. The
boxer on the right (in an offensive posture) is moving much more than
the boxer on the left.

itation of flattening a supervoxel hierarchy. Our emphasis is on video supervoxel

hierarchies, but the core contribution is generally applicable to image and other seg-

mentation hierarchies, given certain assumptions are met. Our approach includes

a novel model—the uniform entropy slice (UES)—and a formulation for efficiently

solving it via a binary quadratic program (QP). A slice through the hierarchy is a

flattened supervoxel segmentation generally consisting of supervoxels from various

levels of the hierarchy. The uniform entropy slice seeks to balance the amount of in-

formation in the selected supervoxels for a given feature criterion, such as motion, in

which larger supervoxels from coarser-levels with less relative motion will be selected

along with smaller supervoxels from finer-levels with more relative motion. Such a

criterion enables us to pull out the most unique and dominant regions in a supervoxel

hierarchy as shown in Figure 6.2.

The feature criterion, which drives the uniform entropy slice and hence the flat-

tening, is independent of the supervoxel hierarchy itself. We explore four different

103

cases for the feature criterion underlying the uniform entropy slice: motion, object-

ness, human-ness, and car-ness. Motion is an unsupervised criterion that emphasizes

relatively unique motion of segments in the flattened hierarchy; the other three are

supervised criteria with object-ness based on the category independent measure [3]

and human- and car-ness based on trained deformable parts models [46] from PAS-

CAL VOC [44]. The variability of these underlying feature criteria and our ultimate

findings demonstrate the high degree of versatility in the proposed method: indeed

it can take any form of a subsequent criterion and apply it to a previously computed

supervoxel hierarchy.

We have implemented and tested the uniform entropy slice on top of the state

of the art graph-based segmentation (GBH) [65] and segmentation by weighted ag-

gregation (SWA) [170] methods. Our quantitative comparison on the SegTrack [193]

dataset using the LIBSVX benchmark [214] systematically finds that UES outper-

forms the natural baseline of selecting a single level from the hierarchy as well as the

state of the art method, SAS [108], which combines multiple segmentations. Our qual-

itative results demonstrate numerous clear cases in which the flattened supervoxels

are precisely what is expected for various feature criteria, like human-ness.

Our code as well as the two-actor videos are available as part of the LIBSVX 3.0

software library.

6.2 Supervoxel Hierarchy Flattening Problem

Let M denote a given video and consider it as a mapping from the 3D lattice

Λ3 to the space of RGB colors. Each element of Λ3 is a voxel. Based on some

hierarchical supervoxel algorithm, consider an h level hierarchical oversegmentation

of the video: T .
= {T 1, T 2, . . . , T h} and V i is the node set in supervoxel level T i,

i ∈ [1, h]. Individual nodes are denoted by subscripts V i
s . The level superscript for

V i
s is dropped when the level is irrelevant. We let node V0 be the root node of the

104

V5

V0V1 V2V3

V4

V0

V1 V2

V3 V4 V5V3 V4 V5V3 V4 V5

V1 V2

Figure 6.3: Illustration of the segmentation tree creation process. On the top of
the figure, left, middle and right are bottom-up levels in a supervoxel
hierarchy: T 1, T 2 and T 3 respectively. From left to middle, V4 and V5 are
merged together, and V3 remains itself as V1 in the middle. From middle
to right, V1 and V2 are merged together to a single top node V0. The
corresponding tree-graphs are in the bottom row.

supervoxel hierarchy T , and V 1 is the set of leaf nodes in T .

We consider only supervoxel hierarchies that are trees, i.e., each node has one and

only one parent (other than the root) and each node has at least one child (other than

the leaves). Figure 6.3 shows the general creation process of such a supervoxel tree;

GBH generates such a tree. The algorithm initially builds a 26-connected voxel lattice

over the whole video clip, then iteratively constructs a region graph over the obtained

segmentation based on the minimum spanning tree merging criterion [47], and forms

a bottom-up segmentation tree structure of the regions. The regions are described

by their local texture histogram. The algorithm stops after a user-specified number

of iterations. The algorithm tends to preserve the important region boundaries in

the hierarchical merging process. We show results with both GBH and SWA, with a

small modification of SWA to turn its general graph hierarchy into a tree.

Define a tree slice as a set of nodes from the hierarchy such that on each root-

to-leaf path in the hierarchy, there is one and only one node in the slice set. Each

such slice provides a plausible flattened hierarchy. If we combine all the nodes in the

slice, then we can obtain a new composed segmentation of the original video from the

105

V0

V1 V2

V3 V4 V5

V0

V1 V2

V3 V4 V5

V0

V1 V2

V3 V4 V5

V0

V1 V2

V3 V4 V5

(a) (c) (d)(b)

Figure 6.4: Slices in the example supervoxel tree. (a) - (d) list all 4 possible slices of
the segmentation tree (excluding the root node). Each slice is highlighted
as a thick black curve, and nodes on the slice are darkened.

hierarchical supervoxels. Fig. 6.4 shows example tree slices for the segmentation tree

from the previous Fig. 6.3. The set of all tree slices includes both trivial (e.g., just

nodes from one level) and non-trivial node selections. Note that we call this a tree

slice rather than a tree cut to distinguish it from conventional use of the term cut,

which generally indicates a set of edges and not nodes as we have in the slice.

More formally, consider a binary variable xs for each node Vs in the tree T . The

binary variable xs takes value 1 if node Vs is a part of the slice and value 0 otherwise.

Denote the full set of these over the entire tree as x. Any instance of x induces a

selection of nodes in the tree T , but not all instances of x are valid. For example,

there are many instances of x that will select both a node and its ancestor. The

trivial single-level selection is x(V i) = 1 and x(T \ V i) = 0.

In a valid slice, each root-to-leaf path in the segmentation tree T has one and only

node being selected. We formulate this constraint linearly. Let P denote a p by N

binary matrix, where p = |V 1| is the number of leaf nodes in T , and N = |T | is the

total number of nodes in T . Each row of P encodes a root-to-leaf path by setting the

corresponding columns for the nodes on the path as 1 and 0 otherwise. Such a matrix

enumerates all possible root-to-leaf paths in T . Fig. 6.5 shows the path matrix P for

our example supervoxel tree from Fig. 6.3. There are three rows in the path matrix

P , which are the three root-to-leaf paths. The six columns of the path matrix P are

the six nodes (including the root node V0) in the segmentation tree T . We use the

106

V0

V1 V2

V3 V4 V5

P1 P2 P3

Supervoxel Tree

1 1 0 1 0 0

1 0 1 0 1 0

1 0 1 0 0 1

V1 V2 V3 V4 V5

P1

P2

P3

V0

Path Matrix

Figure 6.5: Supervoxel tree T and the corresponding path matrix P . The path P2 is
highlighted to illustrate the path matrix P in which each row specifies a
root-to-leaf path through the tree.

path P2 to illustrate the values on a row of P—nodes {V0, V2, V4} are on path P2.

For a given tree T , we compute the path matrix P by a breadth-first search with

complexity O(ph). The size of P is tractable for typical videos: the number of rows

is exactly the number of leaves in the tree, which is either the number of voxels or

some number of supervoxels of the smallest scale maintained in the tree (in the case

the full tree is not used); the number of columns is typically a factor of two on the

number of rows due to the agglomerative nature of the supervoxel methods.

To ensure a tree slice is a valid, we have

Px = 1p , (6.1)

where 1p is an p-length vector of all ones. This linear constraint ensures that every

root-to-leaf path (row of matrix P) has one and only one node in the slice x. If there

is more than one node being selected in Pi, then Pix > 1. If there is no node being

selected in Pi, then Pix = 0. The valid selection x is called a tree slice.

6.3 The Uniform Entropy Slice

The previous section presents the tree slice problem and a linear constraint to

assess the validity of a slice; here we present a new model based on uniform entropy

107

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.6: Example hierarchy node entropy for the motion feature criterion. (a) is
the raw video girl from SegTrack, (b: coarse) – (h: fine) are node entropy
from various levels in the hierarchy. The entropy color from dark blue to
dark red maps entropy changing from low to high (using the jet colormap
in Matlab). Notice how the entropy of the girls limbs is relatively higher
than that of the background for corresponding hierarchy levels.

to quantify a slice. The intuitive idea behind the uniform entropy slice is that we

want to select nodes in the tree that balance the information contribution to the

overall slice. We are inspired by the Uniform Frequency Images work of Hunter

and Cohen [74]. Their model is proposed for image compression; they automatically

generate an invertible warping function that downshifts the image’s highest spatial

frequencies in exchange for upshifting some of its lowest spatial frequencies, producing

a concentration of mid-range frequencies. In other words, the compressed image is

able to focus more bits on the parts of the image that have a higher frequency signal

than those with a lower frequency signal.

In our case for supervoxel hierarchies, one can relate finding the best slice in a

hierarchy to such a compression problem; we want a slice that is able to retain the

greatest amount of information relative to the number of selected supervoxels: select

bigger supervoxels from coarse levels when there is little information content and

conversely, select smaller supervoxels from fine levels when there is high information

content.

Information content is specified relative to a certain feature criterion, such as

108

motion or human-ness. We specify four such feature criteria later in Sec. 6.3.2 and

experiment with them in Sec. 6.4. For the current discussion, assume we have a

feature criterion F(·) that maps a node Vs to a discrete distribution over the feature

range. For example, consider an unsupervised motion feature criterion in which we

want the slice to focus on regions of the video that are moving uniquely relative to

the rest of the video—e.g., a girl running leftward while the camera slowly pans as

in Fig. 6.6. In this case, we compute optical flow over the video and then compute a

bivariate discrete distribution over a set of flow magnitudes and flow directions for F .

The information content of each node Vs in the hierarchy is computed by the

entropy over F(·):

E(Vs)
.
= −

∑
γ

PF(Vs)(γ) logPF(Vs)(γ) , (6.2)

with γ varying over the bivariate discrete feature range.

We next propose the uniform entropy objective, which considers the node infor-

mation content according to Eq. 6.2 and seeks a tree slice that balances the overall

information content of the selected nodes. Again, consider a valid tree slice x which is

a vector of binary variables with one xs for each node Vs in the hierarchy taking value

1 if the node is on the slice and 0 otherwise. The uniform entropy objective hence

seeks a valid tree slice that minimizes the difference in entropy of selected nodes:

x∗ = argmin
∑

Vs,Vt∈T

|E(Vs)− E(Vt)|xsxt . (6.3)

where the minimization is over valid tree slices x.

The intuition behind the uniform entropy objective is twofold. First, in a common

case, the entropy of a supervoxel in coarser levels of the hierarchy drops down when

the segment breaks up into smaller pieces at finer levels. Again consider Fig. 6.6,

which shows the node entropy for a motion feature criterion on the video girl from

109

the SegTrack dataset [193]. It is clear that the node entropy generally decreases from

coarser to finer levels, and those informative supervoxels (the girl in this case) have

overall more motion entropy than the background. It is hence plausible the slice will

select nodes around the girl at finer levels to match similar motion entropies to the

background at coarser levels in the hierarchy. Second, regions of the video that are

salient for the specified feature criterion tend to have higher entropy than non-salient

regions because of articulation and variability of the features near the salient region

boundaries. Hence, when selecting the supervoxels, our goal is to preserve the detail

in the segmentation of these salient regions and less so in the non-salient regions.

6.3.1 Uniform Entropy Slice as a Binary QP

Directly minimizing Eq. 6.3 is complex because it requires enumerating all valid

tree slices and includes a degenerate minimum which selects the root node only. We

instead reformulate the objective as the following binary quadratic program, which

we call the uniform entropy slice.

minimize
∑
s

αsxs + σ
∑
s,t

βs,txsxt (6.4)

subject to Px = 1p

x = {0, 1}N

where αs forms a vector with length equal to N , βs,t is an entry in an N by N

matrix, and σ controls the balance between the two terms. Note the Px = 1p slice

validity constraint from Eq. 6.1. Furthermore, note that there is no explicit notion

of neighborhood in the uniform entropy slice, but βs,t can be specified based on the

neighborhood structure in the tree.

The linear term makes the slice prefer simpler segmentations when possible, i.e.,

prefer coarser levels in the hierarchy rather than finer levels in the hierarchy. The

110

following is the unary potential we set:

αs = |V i| if Vs ∈ V i , (6.5)

where |V i| means the total number of supervoxels in ith level of the tree. In typical

supervoxel trees, there is a quadratic relationship between |V i| and |V i+1| due to

algorithm construction.

The quadratic term implements the uniform entropy objective

βs,t = |E(Vs)− E(Vt)||Vs||Vt| (6.6)

where |Vs| and |Vt| denote the volume of the supervoxels Vs and Vt respectively.

Although nodes in the coarser levels of the tree have relatively higher entropy than

nodes in the finer levels, the number of coarser level nodes is dramatically less than

those in the finer levels. By adding the volume factors, we push the selection down

the hierarchy unless a uniform motion entropy has already been achieved. Indeed this

behavior has generally been observed in our quantitative and qualitative experiments.

See, for example, the level of the hierarchy selection for the video girl in Fig. 6.9 in

Sec. 6.4.

We solve the QP using a standard solver (IBM CPLEX), but note that other

approaches to solving it are plausible, such as spectral relaxation [104].

6.3.2 Feature Criteria

The uniform entropy slice operates directly on a supervoxel hierarchy that was

computed by an unsupervised method such as GBH. However, the feature criteria,

which drive the tree slice optimization, provide a doorway to apply situation-specific

guidance post hoc. To illustrate this versatility, we describe four such feature criteria

that span the spectrum of unsupervised to class-specific supervised. Each of these

111

Input Video Top Level in GBH

UES on Motion (Selection and Flattening)

UES on Human-ness (Selection and Flattening)

UES on Object-ness (Selection and Flattening)

Figure 6.7: Different feature criteria focus on different parts of the video dancers.
Here, the motion feature focuses mostly on the dominant man in front
and some attention to the woman in the back. On the other hand, the
human-ness criterion focuses on both dancers, while the object-ness also
focuses on the chairs in the back. All these feature criteria try to avoid
undersegmentation of interesting objects as shown in the top level in
GBH (the woman merged with the door and bench in the back), and
maintain a uniform clean background. In the UES Selection images (left
two columns), the dark red to dark blue means the finer levels to coarser
levels in the supervoxel hierarchy tree.

have been implemented and used in our experiments (Sec. 6.4). In Figure 6.7, we

show the different feature criteria on one video and observe how different slices are

computed with criterion-specific foci of attention.

Unsupervised: Motion. The motion feature criterion has been discussed as an

example earlier and we hence do not describe it in detail here. For computing the

feature we use the Liu [114] optical flow method and compute flow on each frame of

the video. For the map F we discretize the range to four magnitude bins and eight

angular bins.

Supervised, Category-Independent: Object-ness. This demonstrates a general

category-independent, object-ness feature, as it is common in problems like video

object segmentation [102]. We sample 1000 windows per frame using [3] according to

112

their probability of containing an object. Then we convert this measure to per-pixel

probabilities by summing the object-ness score over all windows covering a pixel, and

normalizing the result over the video, which is similar to [200]. We use six quantization

levels for F .

Supervised: Human-ness and Car-ness. The last two feature criteria are class-

specific and demonstrate further post hoc flattening goals. We use the state of the art

deformable part based model [46] with previously trained PASCAL VOC detectors

to compute car-ness and human-ness. We use a low detection threshold to get more

detection bounding boxes for each frame. Then, similar to object-ness, we count the

per-pixel detection hits to obtain a detection hit map for each frame. We again set

six quantization levels for F .

6.4 Experiments

We evaluate the uniform entropy slice (UES) both quantitatively (Sec. 6.4.1) and

qualitatively (Sec. 6.4.2) on various benchmark and new, challenging unconstrained

videos. To explore the generality of UES, we apply it to supervoxel hierarchies gen-

erated by two different methods, GBH [65] as implemented in [214] and SWA [170]

as implemented in [31]. For GBH, we construct a supervoxel tree directly from its

output supervoxel hierarchy, since the method itself generates a tree structure. For

SWA, we simplify the supervoxel hierarchy, which is a general directed acyclic graph,

to a tree structure by taking the most dominant parent for each child node and denote

this variant of SWA as SWAT .

The most important parameter in UES is the ratio σ between the linear and

quadratic terms. However, we have observed that, in practice, the relative hierarchy

selection of supervoxels is not very sensitive to it. We L-1 normalize both of these

terms and in our quantitative experiments, we empirically set σ = 10 for all the

videos.

113

S
W

A
T
F
la

tt
en

in
g

G
B

H
F
la

tt
en

in
g

B
A

SE
SA

S
U

E
S

B
A

SE
SA

S
U

E
S

B
A

SE
SA

S
U

E
S

B
A

SE
SA

S
U

E
S

B
A

SE
SA

S
U

E
S

B
A

SE
SA

S
U

E
S

B
A

SE
SA

S
U

E
S

B
A

SE
SA

S
U

E
S

bi
rd

fa
ll2

9.
0

0.
0

69
.7

36
.8

38
.3

26
.5

82
.1

81
.9

84
.9

0.
66

0.
65

0.
70

1.
8

0.
0

53
.8

26
.9

27
.1

23
.2

74
.3

74
.0

82
.1

0.
83

0.
83

0.
94

ch
ee

ta
h
0.
0

0.
0

0.
0

47
.4

47
.4

47
.4

65
.7

65
.7

65
.7

1.
93

1.
93

1.
93

30
.2

30
.2

39
.4

31
.7

32
.4

34
.1

78
.3

79
.3

75
.3

1.
42

1.
43

1.
60

gi
rl

56
.4

55
.9

56
.1

7.
8

8.
2

5.
9

56
.6

56
.5

57
.7

3.
36

3.
39

3.
31

41
.9

45
.6

41
.9

11
.2

11
.1

13
.7

54
.4

54
.1

58
.1

2.
90

2.
91

3.
94

m
on

ke
yd

og
0.
0

0.
0

0.
0

52
.0

52
.2

51
.9

84
.9

86
.8

86
.7

3.
32

3.
12

3.
35

71
.9

79
.9

79
.9

37
.1

36
.6

43
.2

90
.7

90
.9

91
.0

2.
55

2.
47

2.
95

pa
ra

ch
ut

e
83
.7

85
.5

90
.3

23
.6

24
.4

22
.3

93
.2

93
.0

94
.6

1.
66

1.
69

1.
72

89
.4

89
.4

89
.4

38
.6

38
.6

38
.6

87
.4

87
.4

87
.4

10
.0

10
.0

10
.0

pe
ng

ui
n

94
.7

94
.4

94
.4

1.
8

1.
9

1.
8

73
.7

72
.3

71
.0

1.
36

1.
37

1.
27

84
.7

83
.1

85
.0

2.
2

1.
9

1.
8

66
.7

65
.4

65
.5

1.
10

0.
96

0.
88

AV
E

R
A

G
E
40
.6

39
.3

51
.8

28
.2

28
.7

26
.0

76
.0

76
.0

76
.8

2.
05

2.
03

2.
05

53
.3

54
.7

64
.9

24
.6

24
.6

25
.8

75
.3

75
.2

76
.6

3.
14

3.
11

3.
39

V
id

eo
3D

 A
C

C
U

3D
 U

E
3D

 B
R

3D
 B

P
3D

 A
C

C
U

3D
 U

E
3D

 B
R

3D
 B

P

T
ab

le
6.

1:
Q

u
an

ti
ta

ti
ve

co
m

p
ar

is
on

of
U

E
S

ag
ai

n
st

th
e

ot
h
er

tw
o

b
as

el
in

e
m

et
h
o
d
s

on
S
eg

T
ra

ck
d
at

as
et

.
W

e
ev

al
u
at

e
on

tw
o

d
iff

er
en

t
h
ie

ra
rc

h
ic

al
su

p
er

vo
x
el

m
et

h
o
d
s:

S
W

A
T

an
d

G
B

H
.

T
h
e

le
ad

in
g

sc
or

es
of

ea
ch

m
et

ri
c

p
er

v
id

eo
ar

e
in

b
ol

d
fo

n
t.

114

6.4.1 Quantitative Evaluation

Benchmark and Dataset. We use the recently published supervoxel benchmark

LIBSVX [214] to evaluate the UES with GBH and SWAT methods. The benchmark

provides six supervoxel methods and a set of supervoxel evaluation metrics. We use

the SegTrack dataset from Tsai et al. [193], which provides a set of human-labeled

single-foreground objects with six videos stratified according to difficulty on color,

motion and shape.

Baseline Methods. We compare with two baseline methods. The first is a simple

trivial slice that takes a single level from the hierarchy, which we denote as “Base”

in Table 6.1. Another method is a video extension of Segmentation by Aggregating

Superpixels (SAS) [108], which composites multiple segmentations together based

on bipartite graph matching. It achieves state-of-the-art performance on the image

Berkeley Segmentation Database [128]. To the best of our knowledge, we are not

aware of other video supervoxel selection algorithms. The number of supervoxels

from the input hierarchy varies from less than 10 to about 800. For fair comparison,

we feed SAS and UES with the unsupervised motion feature only. The scores in

Table 6.1 are generated for the same number of supervoxels for all three methods per

video. The scores of “Base” are generated by linear interpolation of nearby levels as

in [214].

3D Segmentation Accuracy measures the average percentage area of the ground-

truth segments being correctly segmented by the supervoxels. 3D Undersegmentation

Error measures the fraction of voxels that go beyond the boundary of the ground-

truth when mapping the supervoxels onto it. Along with 3D Boundary Recall, we

add 3D Boundary Precision as a new metric. Overall, the proposed UES achieves

better performance for both SWAT and GBH supervoxel hierarchies than the other

two baseline methods, and in some cases, such as 3D ACCU the improvement is

significant for both methods. We note that neither the baseline one level selection

115

Input Video GBH

UES Flattening GBH (Selection & Flattening)

UES Flattening SWA (Selection & Flattening)

SWA

LeakOK

OK OK

OK
OK

Figure 6.8: UES helps avoid foreground undersegmentation and background overseg-
mentation on video birdfall2. GBH and SWA on the top row show the
middle levels from each hierarchy. A white circle means the bird has no
segmentation leak, whereas a white rectangle means a segmentation leak
with the surrounding tree branches. Here, we use the motion criterion.

nor the SAS can correctly segment the video “birdfall2” with only a small number

of supervoxels. In some cases, such as the video “cheetah” using SWAT , the scores

are frequently the same for the three methods; this is a failure case of the overall

supervoxel hierarchies, which we have observed to have little variation in supervoxels

covered on the object at multiple levels in the hierarchy.

6.4.2 Qualitative Evaluation

UES on Motion. Figure 6.8 is an example video showing that UES can help avoid

foreground undersegmentation and background oversegmentation. UES selects the

coarse levels of the hierarchy for the background when doing so does not lead to

foreground segments leaking, as in GBH. Similarly, UES pushes the foreground and

116

Input Video Middle level GBH

UES on Motion (Selection & Flattening)SAS Output

UES on Object-ness (Selection & Flattening)

Figure 6.9: Comparison of UES against baseline methods on video girl from SegTrack.
UES on Motion and SAS (based on motion) have identical number of
supervoxels in their final outputs. We also show a simple selection of the
middle level from GBH as well as UES on Object-ness for comparison.

Input Video Motion (Selection) Object-ness (Selection & Flattening)

Figure 6.10: UES on Object-ness selects the parachute segments and the human, while
UES on Motion fails.

the corresponding leaking parts of the video down to the finer levels of the SWA

hierarchy, while it still keeps the other background regions in the coarser levels of

hierarchy.

UES vs. Baselines. In Figure 6.9, the girl is running leftward, and the camera is

also slowly moving leftward. The position of the girl in the video does not change

much, but the pose changes drastically. The articulated pose generates more motion

entropy over time than the surroundings do, which also allows UES to focus on the

girl, as shown on the right half of the figure with both motion and object-ness criteria.

In contrast, a simple selection of a middle level from GBH gives a quite fragmented

background. If we take a coarser level of the hierarchy, then the girl is merged too

much with the grass in background. SAS does merge the supervoxels, but it lacks a

focus on selection.

117

Object-ness vs. Motion. Sometimes, the motion criterion fails when the rigid

objects have same motion as the camera in a video, or in a video with chaotic motion.

The object-ness can better handle the above situations. We show an example in

Figure 6.10, where the motion completely fails to select the rigid object parachute,

because the motion of it is uniform over the video (from left to right) with the camera.

However, with the object-ness criteria, the algorithm can easily select it from the lower

levels in the hierarchy. The supervoxels in the top part of the object-ness selection

image may seem to be errors, but indeed, these are expected: the parachute moves

from left to right across the light and these selected supervoxels touch it at an earlier

frame when it was passing by.

Human-ness and Car-ness. Recall that Figure 6.7 shows an example of how

different feature criteria drive the algorithm to focus on different parts of a video.

The top level hierarchy in GBH mistakes the woman in the left with the door and

bench in the background. With the motion criterion, UES selects the man in the front

from a finer level than the woman in the back, since the man is the most dynamically

moving part of the video. Interestingly, the human-ness focuses on the two dancers

while the object-ness not only focuses on the two dancers but also on the chairs in the

back. Figures 6.11 and 6.12 further demonstrate examples of the supervised feature

criteria in comparison to the motion criterion; in both cases the unsupervised motion

criterion slices as well as the trained feature criterion suggesting the unsupervised

measure may be as useful as the trained ones, at least in cases of relatively static

backgrounds.

6.5 Discussion and Conclusion

Summary. Supervoxel segmentation has gained potential as a first step in early

video processing due to advances in hierarchical methods [65], streaming methods in

Chapter IV and related evaluations in Chapter III. However, the high-performing

118

UES on Motion (Selection & Flattening)

UES on Human-ness (Selection & Flattening)Input Video

Figure 6.11: UES on Motion and Human-ness on video danceduo.

methods generate a hierarchy of supervoxels that often renders the user with more

questions than at the outset due to the intrinsic limitations of unsupervised grouping.

We have proposed the first principled method to flatten the hierarchy, called the

uniform entropy slice (UES). Our method seeks to balance the level of information

across the selected supervoxels: choose bigger supervoxels in uninteresting regions of

the video and smaller ones in interesting regions of the video. A post hoc feature

criterion is used to drive this information selection, and is independent of the original

supervoxel process. Our experiments demonstrate strong qualitative and quantitative

performance.

Generality. Although this chapter has strictly discussed video supervoxel hierar-

chies thus far, the proposed method is general and can directly be applied to other

segmentation hierarchies, such as those on images [170] or even a hierarchical clus-

tering on top of existing trajectories [18, 202], so long as two assumptions are met.

First, the hierarchy must be a tree (or adequately transformed into one as we did for

SWA in this chapter). Second, a feature criterion can be defined to drive the slice.

Implications to Related Video Problems. The proposed uniform entropy slice

makes it plausible to provide an initial supervoxel map for further processing in prob-

lems like video object segmentation. In particular, every video object segmentation

method we are aware of [102, 227, 126] begins with an oversegmentation (typically

119

Input Video

UES on Motion (Selection and Flattening)

UES on Human-ness (Selection and Flattening)

UES on Car-ness (Selection and Flattening)

Figure 6.12: UES on Motion, Human-ness and Car-ness on video nocountryforoldmen
from [65]. For Motion and Human-ness, the moving man is selected
from the finer levels, while most others are from coarser levels. For car-
ness, the car and nearby regions are selected from finer levels. The red
selection around the window is to avoid leaks.

frame-level superpixels) and extracts a single moving foreground object. We expect

our flattened output to provide a strong input for such methods as the community

moves from single to multiple objects. Second, our method of using any feature cri-

terion is more general than the existing strictly object-ness criterion that has thus

far been used in video object segmentation. And, this has strong implications as the

community begins to consider semantic video segmentation on unconstrained videos,

which is a relatively new problem in video that has thus far focused on constrained

videos [16, 24].

Limitations. The feature criterion is independent of the supervoxel method. In

some respects, this fact is a clear benefit of the method, but it can also be considered

a limitation: there is no guarantee that the uniform entropy slice is the optimal super-

voxel segmentation for a given video and feature criterion. In other words, since the

supervoxel hierarchy is computed independent of the feature criterion, its segments

120

may not coincide with the natural ones for a given criterion. Our experiments demon-

strate that for typical feature criteria this limitation is not critical, but further work

is needed to better understand the induced error for a feature criterion-hierarchical

supervoxel method pair.

Future Work. In the future, we plan to extend UES into a streaming setting to

handle longer videos [221]. A key hurdle to overcome will be the tractability of the

subsequent NP-hard quadratic program; we plan to pursue adequate approximations

in this streaming case.

121

CHAPTER VII

Scale Selection II: Joint Selection and Video

Labeling

In this chapter, we first introduce a new video understanding task—the actor-

action video understanding, and a set of methods to model the interplay of actors

and actions in Sec. 7.1. Then we describe the novel method for joint scale selection

and video labeling, called grouping process model, and show its superior performance

on the actor-action dataset.

7.1 Actor-Action Video Understanding

Like verbs in language, action is the heart of video understanding. As such, it

has received a significant amount of attention in the last decade. Our community

has moved from small datasets of a handful of actions [61, 167] to large datasets with

many dozens of actions [156, 90]; from constrained domains like sporting [161, 138]

to videos in-the-wild [117, 156]. Notable methods have demonstrated that low-level

features [203, 98, 204, 86], mid-level atoms [231], high-level exemplars [163], structured

models [138, 187], and attributes [116] can be used for action recognition. Impressive

methods have even pushed toward action recognition for multiple views [127], event

recognition [76], group-based activities [96], and even human-object interactions [67,

122

148].

However, these many works emphasize a small subset of the broader action under-

standing problem. First, aside from Iwashita et al. [75] who study egocentric animal

activities, these existing methods all assume the agent of the action, which we call the

actor, is a human adult. Although looking at people is certainly a relevant application

domain for computer vision, it is not the only one; consider recent advances in video-

to-text [66, 9] that can be used for semantic indexing of large video databases [109],

or advances in autonomous vehicles [59]. In these applications, understanding both

the actor and the action are critical for success: e.g., the autonomous vehicle needs to

distinguish between a child, a deer and a squirrel running into the road so it can accu-

rately make an avoidance plan. Applications like these, e.g., robotic autonomy [186],

are abundant and growing.

Second, these works largely focus on action recognition, which is posed as the

classification of a pre-temporally trimmed clip into one of k action classes from a

closed-world. The direct utility of results based on this problem formulation is limited.

The community has indeed begun to move beyond this simplified problem into action

detection [229, 187], action localization [79, 125], action segmentation [83, 81], and

actionness ranking [27]. But, all of these works do so strictly in the context of human

actors.

We overcome both of these narrow viewpoints and introduce a new level of gener-

ality to the action understanding problem by considering multiple different classes of

actors undergoing multiple different classes of actions. To be exact, we consider seven

actor classes (adult, baby, ball, bird, car, cat, and dog) and eight action classes (climb,

crawl, eat, fly, jump, roll, run, and walk) not including the no-action class, which

we also consider. We formulate a general actor-action understanding framework and

implement it for three specific problems: actor-action recognition with single- and

multiple-label, and actor-action semantic segmentation. These three problems cover

123

adult
climbing

adult
crawling

adult
none

adult
noneadult

eating

adult
none

adult
rolling

adult
walking

dog
walking

baby
crawling

dog
crawling

baby
rolling

baby
walking

dog
walking

bird
climbing

bird
none

dog
none

ball
rolling

ball
jumping

baby
running

bird
flying

car
flying

bird
rolling adult

none

car
none

car
jumpingadult

none

bird
rolling

car
rolling

dog
none

cat
walking

Figure 7.1: Montage of labeled videos in our new actor-action dataset, A2D. Ex-
amples of single actor-action instances as well as multiple actors doing
different actions are present in this montage. Label colors are picked
from the HSV color space, so that the same objects have the same hue
(refer to Fig. 7.2 for the color-legend). Black is the background. View
zoomed and in color.

different levels of modeling and hence allow us to analyze the new problem thoroughly.

We further distinguish our work from multi-task learning [21] that focuses on getting

a shared representation for training better classifiers, whereas we focus on modeling

the relationship and interactions of the actor and action under a unified graphical

model.

To support these new actor-action understanding problems, we have created a

new dataset, which we call the Actor-Action Dataset or A2D (see Fig. 7.1), that is

labeled at the pixel-level for actors and actions (densely in space over actors, sparsely

in time). The A2D has 3782 videos with at least 99 instances per valid actor-action

tuple (Sec. 7.1.1 and Fig. 7.2 have exact statistics). We thoroughly analyze empirical

124

performance of both state-of-the-art and baseline methods, including näıve Bayes

(independent over actor and action), a joint product-space model (each actor-action

pair is considered as one class), and a bilayer graphical model inspired by [95] that

connects actor nodes with action nodes.

Our experiments demonstrate that inference jointly over actors and actions out-

performs inference independently over them, and hence, supports the explicit con-

sideration of various actors in comprehensive action understanding. In other words,

although a bird and an adult can both eat, the space-time appearance of a bird eat-

ing and an adult eating are different in significant ways. Furthermore, the various

mannerisms of the way birds eat and adults eat mutually reinforces inference over the

constituent parts. This result is analogous to Sadeghi and Farhadi’s visual phrases

work [164] in which it is demonstrated that joint detection over small groups of objects

in images is more robust than separate detection over each object followed a merging

process and to Gupta et al.’s [67] work on human object-interactions in which con-

sidering specific objects while modeling human actions leads to better inferences for

both parts.

7.1.1 A2D—The Actor-Action Dataset

We have collected a new dataset consisting of 3782 videos from YouTube; these

videos are hence unconstrained “in-the-wild” videos with varying characteristics. Fig-

ure 7.1 has single-frame examples of the videos. We select seven classes of actors

performing eight different actions. Our choice of actors covers articulated ones, such

as adult, baby, bird, cat and dog, as well as rigid ones, such as ball and car. The

eight actions are climbing, crawling, eating, flying, jumping, rolling, running, and

walking. A single action-class can be performed by various actors, but none of the

actors can perform all eight actions. For example, we do not consider adult-flying

or ball-running in the dataset. In some cases, we have pushed the semantics of the

125

adult

baby

ball

bird

car

cat

dog

climb crawl eat fly jump roll run walk none

105101 105 174 105 175 282 761
106104

109

99

106

105

107
110

109
106
102

107 113 36
105 117 87
102 107 112 26
107 104 120 99
105 103 99 113 53
104 104 110 176 46

Figure 7.2: Statistics of label counts in the new A2D dataset. We show the number of
videos in our dataset in which a given [actor, action] label occurs. Empty
entries are joint-labels that are not in the dataset either because they are
invalid (a ball cannot eat) or were in insufficient supply, such as for the
case dog-climb. The background color in each cell depicts the color we use
throughout the chapter; we vary hue for actor and saturation for action.

given action term to maintain a small set of actions: e.g., car-running means the car

is moving and ball-jumping means the ball is bouncing. One additional action label

none is added to account for actions other than the eight listed ones as well as actors

in the background that are not performing an action. Therefore, we have in total 43

valid actor-action tuples.

To query the YouTube database, we use various text-searches generated from

actor-action tuples. Resulting videos were then manually verified to contain an in-

stance of the primary actor-action tuple, and subsequently temporally trimmed to

contain that actor-action instance. The trimmed videos have an average length of

136 frames, with a minimum of 24 frames and a maximum of 332 frames. We split

the dataset into 3036 training videos and 746 testing videos divided evenly over all

actor-action tuples. Figure 7.2 shows the statistics for each actor-action tuple. One-

third of the videos in A2D have more than one actor performing different actions,

which further distinguishes our dataset from most action classification datasets. Fig-

ure 7.3 shows exact counts for these cases with multiple actors and actions.

To support the broader set of action understanding problems in consideration, we

126

!"#$%

&#"&%

&'(% $&% $%

&% !% $% (% "%

!"#$%&!"'$()
!"#$%

#&'%

$#% &% (%

)% !% &% $% *%

!"#$%&
!"#$%

&'#(%

$$% "% &%

&% !% #%)% *%

!"#$%&

Figure 7.3: Histograms of counts of joint actor-actions, and individual actors and
actions per video in A2D; roughly one-third of the videos have more than
one actor and/or action.

label three to five frames for each video in the dataset with both dense pixel-level

actor and action annotations (Fig. 7.1 has labeling examples). The selected frames

are evenly distributed over a video. We start by collecting crowd-sourced annotations

from MTurk using the LabelMe toolbox [162], then we manually filter each video to

ensure the labeling quality as well as the temporal coherence of labels. Video-level

labels are computed directly from these pixel-level labels for the recognition tasks. To

the best of our knowledge, this dataset is the first video dataset that contains both

actor and action pixel-level labels.

7.1.2 Problem Formulation

Without loss of generality, let V = {v1, . . . , vn} denote a video with n voxels in

space-time lattice Λ3 or n supervoxels in a video segmentation [214, 221, 23] repre-

sented as a graph G = (V , E) where the neighborhood structure of the graph is given

by the supervoxel segmentation method; when necessary we write E(v) where v ∈ V

to denote the subset of V that are neighbors with v. We use X to denote the set of

actor labels: {adult, baby, ball, bird, car, cat, dog}, and we use Y to denote the set of

action labels: {climbing, crawling, eating, flying, jumping, rolling, running, walking,

none1}.

Consider a set of random variables x for actor and another y for action; the

1The none action means either there is no action present or the action is not one of those we
have considered.

127

specific dimensionality of x and y will be defined later. Then, the general actor-

action understanding problem is specified as a posterior maximization:

(x∗,y∗) = argmax
x,y

P (x,y|V) . (7.1)

Specific instantiations of this optimization problem give rise to various actor-action

understanding problems, which we specify next, and specific models for a given instan-

tiation will vary the underlying relationship between x and y allowing us to deeply

understand their interplay.

7.1.2.1 Single-Label Actor-Action Recognition

This is the coarsest level of granularity we consider and it instantiates the stan-

dard action recognition problem [98]. Here, x and y are simply scalars x and y,

respectively, depicting the single actor and action label to be specified for a given

video V . We consider three models for this case:

Näıve Bayes: Assume independence across actions and actors, and then train a set

of classifiers over actor space X and a separate set of classifiers over action space Y .

This is the simplest approach and is not able to enforce actor-action tuple existence:

e.g., it may infer adult-fly for a test video.

Joint Product Space: Create a new label space Z that is the joint product space

of actors and actions: Z = X × Y . Directly learn a classifier for each actor-action

tuple in this joint product space. Clearly, this approach enforces actor-action tuple

existence, and we expect it to be able to exploit cross-actor-action features to learn

more discriminative classifiers. However, it may not be able to exploit the common-

ality across different actors or actions, such as the similar manner in which a dog and

a cat walk.

Trilayer: The trilayer model unifies the näıve Bayes and the joint product space

128

models. It learns classifiers over the actor space X , the action space Y and the joint

actor-action space Z. During inference, it separately infers the näıve Bayes terms and

the joint product space terms and then takes a linear combination of them to yield

the final score. It models not only the cross-actor-action but also the common char-

acteristics among the same actor performing different actions as well as the different

actors performing the same action.

In all cases, we extract local features (see Sec. 7.1.3.1 for details) and train a set of

one-vs-all classifiers, as is standard in contemporary action recognition methods, and

although not strictly probabilistic, can be interpreted as such to implement Eq. 7.1.

7.1.2.2 Multi-Label Actor-Action Recognition

As noted in Fig. 7.3, about one-third of the videos in A2D have more than one

actor and/or action present in a given video. In many realistic video understanding

applications, we find such multiple-label cases. We address this explicitly by instanti-

ating Eq. 7.1 for the multi-label case. Here, x and y are binary vectors of dimension

|X | and |Y| respectively. xi takes value 1 if the ith actor-type is present in the video

and zero otherwise. We define y similarly. This general definition, which does not tie

specific elements of x to those in y, is necessary to allow us to compare independent

multi-label performance over actors and actions with that of the actor-action tuples.

We again consider a näıve Bayes pair of multi-label actor and action classifiers, multi-

label actor-action classifiers over the joint product space, as well as the trilayer model

that unifies the above classifiers.

7.1.2.3 Actor-Action Semantic Segmentation

Semantic segmentation is the most fine-grained instantiation of actor-action un-

derstanding that we consider, and it subsumes other coarser problems like detection

and localization. Here, we seek a label for actor and action per-voxel over the entire

129

(a) (b) (c) (d)

x

y
z

x

y

x

y

z

Figure 7.4: Visualization of different graphical models to solve Eq. 7.1. The figure
here is for simple illustration and the actual voxel or supervoxel graph is
built for a video volume.

video. Define the two sets of random variables x = {x1, . . . , xn} and y = {y1, . . . , yn}

to have dimensionality in the number of voxels or supervoxels, and assign each xi ∈ X

and each yi ∈ Y . The objective function in Eq. 7.1 remains the same, but the way

we define the graphical model implementing P (x,y|V) leads to acutely different as-

sumptions on the relationship between actor and action variables.

We explore this relationship in the remainder of this section. We start by again

introducing a näıve Bayes-based model that treats the two classes of labels separately,

and a joint product space model that considers actors and actions together in a tuple

[x,y]. We then explore a bilayer model, inspired by Ladický et al. [95], that considers

the inter-set relationship between actor and action variables. Finally, we introduce a

new trilayer model that considers both intra- and inter-set relationships. Figure 7.4

illustrates these various graphical models. We then evaluate the performance of all

models in terms of joint actor and action labeling in Sec. 7.1.3.

130

Näıve Bayes-based Model First, let us consider a näıve Bayes-based model, sim-

ilar to the one used for actor-action recognition earlier:

P (x,y|V) = P (x|V)P (y|V) (7.2)

=
∏
i∈V

P (xi)P (yi)
∏
i∈V

∏
j∈E(i)

P (xi, xj)P (yi, yj)

∝
∏
i∈V

φi(xi)ψi(yi)
∏
i∈V

∏
j∈E(i)

φij(xi, xj)ψij(yi, yj)

where φi and ψi encode the separate potential functions defined on actor and action

nodes alone, respectively, and φij and ψij are the pairwise potential functions within

sets of actor nodes and sets of action nodes, respectively.

We train classifiers {fc|c ∈ X} over actors and {gc|c ∈ Y} on sets of actions

using features described in Sec. 7.1.3.3, and φi and ψi are the classification scores for

supervoxel i. The pairwise edge potentials have the form of a contrast-sensitive Potts

model [13]:

φij =

 1 if xi = xj

exp(−θ/(1 + χ2
ij)) otherwise,

(7.3)

where χ2
ij is the χ2 distance between feature histograms of nodes i and j, θ is a pa-

rameter to be learned from the training data. ψij is defined analogously. Actor-action

semantic segmentation is obtained by solving these two flat CRFs independently.

Joint Product Space We consider a new set of random variables z = {z1, . . . , zn}

defined again on all supervoxels in a video and take labels from the actor-action

product space Z = X × Y . This formulation jointly captures the actor-action tuples

as unique entities but cannot model the common actor and action behaviors among

131

different tuples as later models below do; we hence have a single-layer graphical model:

P (x,y|V)
.
= P (z|V) =

∏
i∈V

P (zi)
∏
i∈V

∏
j∈E(i)

P (zi, zj)

∝
∏
i∈V

ϕi(zi)
∏
i∈V

∏
j∈E(i)

ϕij(zi, zj) (7.4)

=
∏
i∈V

ϕi([xi, yi])
∏
i∈V

∏
j∈E(i)

ϕij([xi, yi], [xj, yj]) ,

where ϕi is the potential function for joint actor-action product space label, and ϕij is

the inter-node potential function between nodes with the tuple [x,y]. To be specific,

ϕi contains the classification scores on the node i from running trained actor-action

classifiers {hc|c ∈ Z}, and ϕij has the same form as Eq. 7.3. Fig. 7.4 (b) illustrates

this model as a one layer CRF defined on the actor-action product space.

Bilayer Model Given the actor nodes x and action nodes y, the bilayer model

connects each pair of random variables {(xi, yi)}ni=1 with an edge that encodes the

potential function for the tuple [xi, yi], directly capturing the covariance across the

actor and action labels. We have

P (x,y|V) =
∏
i∈V

P (xi, yi)
∏
i∈V

∏
j∈E(i)

P (xi, xj)P (yi, yj)

∝
∏
i∈V

φi(xi)ψi(yi)ξi(xi, yi)·

∏
i∈V

∏
j∈E(i)

φij(xi, xj)ψij(yi, yj) , (7.5)

where φ· and ψ· are defined as earlier, ξi(xi, yi) is a learned potential function over

the product space of labels, which can be exactly the same as ϕi in Eq. 7.4 above

or a compatibility term like the contrast sensitive Potts model, Eq. 7.3 above. We

choose the former. Fig. 7.4 (c) illustrates this model. We note that additional links

132

can be constructed by connecting corresponding edges between neighboring nodes

across layers and encoding the occurrence among the bilayer edges, such as the joint

object class segmentation and dense stereo reconstruction model in Ladický et al. [95].

However, their model is not directly suitable here.

Trilayer Model So far we have introduced three baseline formulations in Eq. 7.1

for semantic actor-action segmentation that relate the actor and action terms in

different ways. The näıve Bayes model (Eq. 7.2) does not consider any relationship

between actor x and action y variables. The joint product space model (Eq. 7.4)

combines features across actors and actions as well as inter-node interactions in the

neighborhood of an actor-action node. The bilayer model (Eq. 7.5) adds actor-action

interactions among separate actor and action nodes, but it does not consider how

these interactions vary spatiotemporally.

Therefore, we introduce a new trilayer model that explicitly models such variations

(see Fig. 7.4d) by combining nodes x and y with the joint product space nodes z:

P (x,y,z|V) = P (x|V)P (y|V)P (z|V)
∏
i∈V

P (xi, zi)P (yi, zi)

∝
∏
i∈V

φi(xi)ψi(yi)ϕi(zi)µi(xi, zi)νi(yi, zi)·

∏
i∈V

∏
j∈E(i)

φij(xi, xj)ψij(yi, yj)ϕij(zi, zj) , (7.6)

where we define

µi(xi, zi) =

 w(yi
′|xi) if xi = xi

′ for zi = [xi
′, yi

′]

0 otherwise
(7.7)

νi(yi, zi) =

 w(xi
′|yi) if yi = yi

′ for zi = [xi
′, yi

′]

0 otherwise
.

133

Terms w(y′i|xi) and w(x′i|yi) are classification scores of conditional classifiers, which

are explicitly trained for this trilayer model. These conditional classifiers are the main

reason for the increased performance found in this method: separate classifiers for the

same action conditioned on the type of actor are able to exploit the characteristics

unique to that actor-action tuple. For example, when we train a conditional classifier

for action eating given actor adult, we use all other actions performed by adult as

negative training samples. Therefore our trilayer model considers all relationships in

the individual actor and action spaces as well as the joint product space. In other

words, the previous three baseline models are all special cases of the trilayer model. It

can be shown that the solution (x∗,y∗, z∗) maximizing Eq. 7.6 also maximizes Eq. 7.1

(see Appendix).

7.1.3 Experiments

We thoroughly study each of the instantiations of the actor-action understanding

problem with the overarching goal of assessing if the joint modeling of actor and action

improves performance over modeling each of them independently, despite the large

space. We follow the training and testing splits discussed in Sec. 7.1.1; for assigning

a single-label to a video for the single-label actor-action recognition, we choose the

label associated with the query for which we searched and selected that video from

YouTube.

7.1.3.1 Single-Label Actor-Action Recognition

Following the typical action recognition setup, e.g., [98], we use the state-of-the-art

dense trajectory features (trajectories, HoG, HoF, MBHx and MBHy) [203] and train

a set of 1-versus-all SVM models (with RBF-χ2 kernels from LIBSVM [22]) for the

label sets of actors, actions and joint actor-action labels. Specifically, when training

the eating classifier, the other seven actions are negative examples; when we train the

134

Model Actor Action <A, A> Actor Action <A, A>
Naïve Bayes 70.51 74.40 56.17 76.85 78.29 60.13

JointPS 72.25 72.65 61.66 76.81 76.75 63.87
Trilayer 75.47 75.74 64.88 78.42 79.27 66.86

Single-Label Multiple-Label
Classification Accuracy Mean Average Precision

Table 7.1: Single-label and multiple-label actor-action recognition in the three set-
tings: independent actor and action models (näıve Bayes), joint actor-
action models in a product-space and the trilayer model. The scores are
not comparable along the columns (e.g., the space of independent actors
and actions is significantly smaller than that or actor-action tuples); the
point of comparison is along the rows where we find the joint model to out-
perform the independent models when considering both actors and actions.
<A, A> denotes evaluating in the joint actor-action product-space.

bird-eating classifier, we use the 35 other actor-action labels as negative examples.

Table 7.1-left shows the classification accuracy of the näıve Bayes, joint product

space and trilayer models, in terms of classifying actor, action and actor-action labels.

To evaluate the joint actor-action (the <A, A> columns) for the näıve Bayes models,

we train the actor and action classifiers independently, apply them to the test videos

independently and then score them together (i.e., a video is correct if and only if

actor and action are correct). We observe that the independent model for action

outperforms the joint product space model for action; this can be explained by the

regularity across different actors for the same action that can be exploited in the näıve

Bayes model, but that results in more inter-class overlap in the joint product space.

For example, a cat-running and a dog-running have similar signatures in space-time:

the näıve Bayes model does not need to distinguish between these two, but the joint

product space does. However, we find that when we consider both the actor and

action in evaluation, it is clearly beneficial to jointly model them. This phenomenon

occurs in all of our experiments. Finally, the trilayer model outperforms the other

two models in terms of both individual actor or action tasks as well as the joint

actor-action task. The reason is that the trilayer model incorporates both types of

relationships that are separately modeled in the näıve Bayes and joint product space

135

models.

7.1.3.2 Multiple-Label Actor-Action Recognition

For the multiple-label case, we use the same dense trajectory features as in

Sec. 7.1.3.1, and we train 1-versus-all SVM models again for the label sets of ac-

tor, action and actor-action pairs, but with different training regimen to capture

the multiple-label setting. For example, when training the adult classifier, we use

all videos containing any actor adult as positive examples no matter the other actors

that coexist in the positive videos, and we use the rest of videos as negative examples.

For evaluation, we adapt the approach from HOHA2 [127]. We treat multiple-label

actor-action recognition as a retrieval problem and compute mean average precision

(mAP) given the classifier scores. Table 7.1-right shows the performance of the three

methods on this task. Again, we observe that the joint product space has higher mAP

than näıve Bayes for the joint actor-action evaluation. We also observe the trilayer

model further improves the scores following the same trend as in the single-label case.

However, we also note that large improvement in the both individual tasks from

the trilayer model. This implies that the “side” information of the actor when do-

ing action recognition (and vice versa) provides useful information to improve the

inference task.

7.1.3.3 Actor-Action Semantic Segmentation

State-of-the-Art Pixel-Based Segmentation. We first apply the state-of-the-

art robust PN model [92] at the pixel level; we apply their supplied code off-the-

shelf as a baseline. The average-per-class performance is 13.74% for the joint actor-

action task, 47.2% for actor and 34.49% for action. We suspect that the modeling at

pixel and superpixel level can not well capture the motion changes of actions, which

explains why the actor score is high but the other scores are comparatively lower.

136

M
od
el

B
K

cl
im

b
ea

t
fly

ju
m

p
ro

ll
w

al
k

no
ne

cl
im

b
ea

t
ju

m
p

ro
ll

ru
n

w
al

k
no

ne
cr

aw
l

ea
t

ju
m

p
ro

ll
ru

n
w

al
k

no
ne

N
aï

ve
 B

ay
es

79
.5

21
.0

6.
2

28
.7

17
.3

28
.3

2.
8

29
.3

28
.2

24
.3

1.
6

38
.2

43
.6

1.
0

4.
4

6.
1

13
.2

5.
3

21
.9

35
.9

25
.8

4.
3

Jo
in

tP
S

75
.1

23
.0

15
.5

36
.0

19
.2

26
.6

7.
5

0.
0

19
.4

24
.6

4.
1

32
.4

28
.5

7.
5

0.
5

10
.9

24
.2

2.
1

21
.1

21
.2

38
.2

0.
0

C
on

di
tio

na
l

79
.5

23
.2

8.
4

40
.7

25
.4

30
.5

7.
5

0.
0

26
.0

30
.5

8.
0

31
.7

53
.3

9.
1

0.
0

7.
4

16
.2

3.
1

24
.6

29
.3

53
.6

0.
0

B
ila

ye
r
79
.7

24
.5

13
.3

40
.8

13
.0

35
.4

7.
0

0.
0

32
.7

32
.9

1.
1

38
.0

37
.0

7.
5

0.
1

2.
5

22
.8

2.
4

35
.9

27
.0

29
.6

0.
0

Tr
ila

ye
r

78
.5

28
.1

18
.2

55
.3

20
.3

42
.5

9.
0

0.
0

33
.1

27
.2

6.
1

49
.8

48
.5

6.
6

0.
0

9.
9

31
.0

2.
0

27
.6

23
.6

39
.4

0.
0

M
od
el

cl
im

b
cr

aw
l

ea
t

ju
m

p
ro

ll
ru

n
w

al
k

no
ne

cl
im

b
cr

aw
l

ro
ll

w
al

k
no

ne
fly

ju
m

p
ro

ll
no

ne
fly

ju
m

p
ro

ll
ru

n
no

ne
N

aï
ve

 B
ay

es
21

.5
30

.4
21

.5
11

.3
5.

0
18

.1
11

.5
25
.8

21
.6

23
.5

20
.5

8.
6

7.
4

2.
9

13
.6

6.
6

8.
6

10
.0

71
.2

22
.2

5.
5

13
.7

Jo
in

tP
S

23
.1

59
.3

44
.0

17
.5

17
.6

34
.6

28
.4

21
.4

18
.3

24
.0

28
.1

17
.2

0.
6

0.
0

6.
5

4.
7

2.
8

13
.2

74
.7

43
.9

30
.5

8.
1

C
on

di
tio

na
l

18
.5

43
.1

36
.3

25
.4

17
.4

31
.8

30
.7

12
.1

26
.5

20
.4

36
.7

13
.9

5.
6

3.
7

16
.2

21
.4

9.
0

27
.7

77
.6

43
.5

37
.2

1.
7

B
ila

ye
r

27
.2

49
.6

51
.6

25
.1

28
.4

27
.9

39
.2

0.
6

13
.2

25
.4

44
.0

24
.0

0.
0

0.
3

10
.3

6.
0

0.
0

20
.9

76
.8

37
.2

39
.6

0.
5

Tr
ila

ye
r
33
.1

59
.8

49
.8

19
.9

27
.6

40
.2

31
.7

24
.6

20
.4

21
.7

39
.3

25
.3

0.
0

1.
0

11
.9

6.
1

0.
0

24
.4

75
.9

44
.3

48
.3

2.
4

bi
rd

ca
t

do
g

ad
ul
t

ba
by

ba
ll

ca
r

M
od

el
A

ct
or

A
ct

io
n

<A
, A

>
N

aï
ve

 B
ay

es
43

.0
2

40
.0

8
16

.3
5

Jo
in

tP
S

40
.8

9
38

.5
0

20
.6

1
C

on
di

tio
na

l
43

.0
2

41
.1

9
22

.5
5

B
ila

ye
r

43
.0

2
40

.0
8

16
.3

5
Tr

ila
ye

r
43

.0
8

41
.6

1
22

.5
9

M
od

el
A

ct
or

A
ct

io
n

<A
, A

>
N

aï
ve

 B
ay

es
44

.7
8

42
.5

9
19

.2
8

Jo
in

tP
S

41
.9

6
40

.0
9

21
.7

3
C

on
di

tio
na

l
44

.7
8

41
.8

8
24

.1
9

B
ila

ye
r

44
.4

6
43

.6
2

23
.4

3
Tr

ila
ye

r
45

.7
0

46
.9

6
26

.4
6

Full Model

A
ve

ra
ge

 P
er

 C
la

ss
 A

cc
ur

ac
y

Unary Term Only

A
ve

ra
ge

 P
er

 C
la

ss
 A

cc
ur

ac
y

T
ab

le
7.

2:
A

ve
ra

ge
p

er
-c

la
ss

se
m

an
ti

c
se

gm
en

ta
ti

on
ac

cu
ra

cy
in

p
er

ce
n
ta

ge
of

jo
in

t
ac

to
r-

ac
ti

on
la

b
el

s
fo

r
al

l
m

o
d
el

s
(f

or
in

d
i-

v
id

u
al

cl
as

se
s,

le
ft

,
an

d
in

su
m

m
ar

y,
ri

gh
t)

.
T

h
e

le
ad

in
g

sc
or

es
of

ea
ch

la
b

el
ar

e
d
is

p
la

ye
d

in
b

ol
d

fo
n
t.

T
h
e

su
m

m
ar

y
sc

or
es

on
th

e
ri

gh
t

an
d

in
d
ic

at
e

th
at

th
e

tr
il
ay

er
m

o
d
el

,
w

h
ic

h
co

n
si

d
er

s
th

e
ac

ti
on

an
d

ac
to

r
m

o
d
el

s
al

on
e

as
w

el
l

as
th

e
ac

to
r-

ac
ti

on
p
ro

d
u
ct

-s
p
ac

e,
p

er
fo

rm
s

b
es

t.

137

The PN model could be generalized to fit within our framework, which we leave for

future work. We use supervoxel segmentation and extract spatiotemporal features for

assessing the various models posed for actor-action semantic segmentation.

Supervoxel Segmentation and Features. We use TSP [23] to obtain supervoxel

segmentations due to its strong performance on the supervoxel benchmark [214]. In

our experiments, we set k = 400 yielding about 400 supervoxels touching each frame.

We compute histograms of textons and dense SIFT descriptors over each supervoxel

volume, dilated by 10 pixels. We also compute color histograms in both RGB and HSV

color spaces and dense optical flow histograms. We extract feature histograms from

the entire supervoxel 3D volume, rather than a single representative superpixel [190].

Furthermore, we inject the dense trajectory features [203] to supervoxels by assigning

each trajectory to the supervoxels it intersects in the video.

Frames in A2D are sparsely labeled; to obtain a supervoxel’s groundtruth label,

we look at all labeled frames in a video and take a majority vote over intersecting

labeled pixels. We train sets of 1-versus-all SVM classifiers (linear kernels) for actor,

action, and actor-action as well as conditional classifiers separately. The parameters

of the graphical model are tuned by empirical search, and loopy belief propagation is

used for inference. The inference output is a dense labeling of video voxels in space-

time, but, as our dataset is sparsely labeled in time, we compute the average per-

class segmentation accuracy only against those frames for which we have groundtruth

labels. We choose average per-class accuracy over global accuracy because our goal

is to compares actor and action rather than full video labeling.

Evaluation. Table 7.2–right shows the overall performance of the different methods.

The upper part is results with only the unary terms and the lower part is the full

model performance. We not only evaluate the actor-action pairs but also individual

actor and action tasks. The conditional model is a variation of bilayer model with

different aggregation—we infer the actor label first then the action label conditioned

138

on the actor. Note that the bilayer model has the same unary scores as the näıve

Bayes model (using actor φi and action ψi outputs independently) and the actor unary

of the conditional model is the same as that of the näıve Bayes model (followed by

the conditional classifier for action).

Over all models, the näıve Bayes model performs worst, which is expected as it

does not encode any interactions between the two label sets. We observe that the

conditional model has better action unary and actor-action scores, which indicates

that knowing actors can help with action inference. We also observe that the bilayer

model has a poor unary performance of 16.35% (actor-action) that is the same as näıve

Bayes but for the full model it improves dramatically to 23.43%, which suggests that

the performance boost again comes from the interaction of actor and action nodes

in the full bilayer model. We also observe that the full trilayer model has not only

much better performance in the joint actor-action task, but also better scores for

actor and action individual tasks in the full model, as it is the only model considered

that incorporates classifiers in both individual actor and action tasks and also in the

joint space.

Table 7.2–left shows the comparison of quantitative performance for specific ac-

tors and actions. We observe that the trilayer model has leading scores for more

actor-action tuples than the other models. The trilayer model has significant im-

provement on labels such as bird-flying, adult-running and cat-rolling. We note the

systematic increase in performance as more complex actor-action variable interactions

are included. We also note that the tuples with none action are sampled with greater

variation than the action classes (Fig. 7.2), which contributes to the poor performance

of none over all actors. Interestingly, the näıve Bayes model has relatively better per-

formance on the none action classes. We suspect that the label-variation for none

leads to high-entropy over its classifier density and hence when joint modeling, the

actor inference pushes the action variable away from the none action class.

139

Ground-Truth N-Bayes JointPS Conditional Bilayer Trilayer

adult
climbing

baby
rolling

dog
crawling

bird
eating

dog
rolling

dog
rolling dog

rolling baby
rolling

baby
rolling

adult
climbing

adult
eating

adult
climbing

adult
climbing

adult
climbing

dog
eating

dog
running

cat
walking

dog
walking

dog
crawling

dog
crawlingdog

crawling

dog
crawling

bird
eating

Figure 7.5: Comparative example of semantic segmentation results. These sample
only two frames from the each dense video outputs.

Fig. 7.5 shows example segmentations. Recall that the näıve Bayes model consid-

ers the actor and action labeling problem independent of each other. Therefore, the

baby-rolling in the second video get assigned with actor label dog and action label

rolling when there is no consideration between actor and action. The bilayer model

partially recovers the baby label, whereas the trilayer model successfully recovers the

baby-rolling label, due to the modeling of inter-node relationship in the joint actor-

action space of the trilayer model. We also visualize more example outputs of the

140

Ground Truth Trilayer Ground Truth Trilayer

dog
climbing

baby
rolling

bird
rolling

adult
none

adult
jumping

bird
flyingdog

rolling

bird
rolling

adult
eating

adult
crawling

adult
walking

dog
walking

adult
none

car
jumping

ball
jumping

Figure 7.6: Example results from the trilayer model (upper are good, lower are failure
cases).

trilayer model in Fig. 7.6. Note that the fragmented segmentation in the ball video

is due to poor supervoxel segmentation algorithm in the pre-processing step. We

also show trilayer failure cases in the bottom row of Fig. 7.6, which are due to weak

cross-class visual evidence.

7.1.4 Discussion and Contributions

Our thorough assessment of all instantiations of the actor-action understanding

problem at both coarse video-recognition level and fine semantic segmentation level

provides strong evidence that the joint modeling of actor and action improves perfor-

mance over modeling each of them independently. We find that for both individual

actor and action understanding and joint actor-action understanding, it is beneficial

to jointly consider actor and action. A proper modeling of the interactions between

actor and action results in dramatic improvement over the baseline models of the

näıve Bayes and joint product space models, as we observe from the bilayer and

141

trilayer models.

We set out with two goals: first, we sought to motivate and develop a new, more

challenging, and more relevant actor-action understanding problem, and second, we

sought to assess whether joint modeling of actors and actions improved performance

for this new problem. We achieved these goals through the three contributions:

1. New actor-action understanding problem and dataset.

2. Thorough evaluation of actor-action recognition and semantic segmentation prob-

lems using state-of-the-art features and models. The experiments unilaterally

demonstrate a benefit for jointly modeling actors and actions.

3. A new trilayer approach to recognition and semantic segmentation that combines

both the independent actor and action variations and product-space interactions.

7.2 Grouping Process Models

The task of actor-action semantic segmentation is challenging—the benchmarked

leading method, the trilayer model, only achieves a 26.46% per-class accuracy for the

joint actor-action video labeling. The method builds a large three-layer CRF on video

supervoxels, where random variables are defined for sets of actor, actor-action, and

action labels, respectively. It connects layers with potential functions that capture

conditional probabilities (e.g. conditional distribution of actions given a specific actor

class). Although the model accounts for the interplay of actors and actions, the

interactions are restricted to the local CRF neighborhoods, which, based on the low

absolute performance, is insufficient to solve this unique actor-action problem for

three reasons.

First, we believe the pixel-level model must be married to a secondary process that

captures instance-level or video-level global information in order to properly model

the actors performing actions. Lessons learned from images strongly supports this

argument—the performance of semantic image segmentation on the MSRC dataset

142

seems to hit a plateau [173] until information from secondary processes, such as con-

text [93, 135], object detectors [94] and a holistic scene model [223], are added. How-

ever, to the best of our knowledge, there is no method in video semantic segmentation

that directly leverages the recent successes in action recognition.

Second, the two sets of labels, actors and actions, exist at different granularities.

For example, we want to label adult-clapping in a video. The actor, adult, can prob-

ably be recognized by looking only at the lower human body, e.g. legs. However, in

order to recognize the clapping action, we have to either locate the acting parts of

the human body or simply look at the whole actor body.

Third, actors and actions have different emphases on space and time in a video.

Actors are more space-oriented—they can be fairly well labeled using only still images,

as in semantic image segmentation [174, 223], whereas actions are space- and time-

oriented. Although one can possibly identify actions by still images alone [222], there

are strong distinctions between actions in time. For example running is faster and

thus may results more repeated motion patterns than walking for a common time

duration; and walking performed by a baby is very different compared to an adult,

despite the two actor classes may easily confuse a spatially trained detector.

Here, we overcome the above limitations in two ways: (1) we propose a novel

grouping process model (GPM) that adaptively adds long-ranging interactions to the

labeling CRF; and (2) we incorporate the video-level recognition into segment-level

labeling by the means of global labeling cost and the GPM. The GPM models a

dynamic and continuous process of information exchange of a labeling CRF and a

supervoxel hierarchy. The supervoxel hierarchy provides a rich multi-scale decompo-

sition of video content, where object parts, identities, deformations and actions are

retained in space-time supervoxels across various levels in the hierarchy [220, 79, 141].

Rather than using object and action proposals as separate processes, we directly lo-

cate the actor and action groupings in the supervoxel hierarchy by the labeling CRF.

143

1 1 0 0

0 1

0

L

s
The Tree Slice Problem

The Video Labeling Problem

S
upervoxel H

ierarchy

Selected Nodes

fine
coarse

Input Video

Segment-Level

initial
Iterations... G

ro
up

in
g

C
ue

s Labeling C
ues

final

T

V

Video Labeling
slice

Input Video

Figure 7.7: An overview of the grouping process model. The left side shows an input
video and its segment-level segmentation. The right side shows the same
video being segmented into a supervoxel hierarchy. During inference, the
CRF defined on the segment-level starts with a coarse video labeling.
It influences what supervoxels are active in the hierarchy. The active
supervoxels, in turn, affect the connectivities in the CRF. This process
is dynamic and continuous, where the video labeling is being iteratively
refined.

During inference, the labeling CRF influences what supervoxels in a hierarchy are

active, and these active supervoxels, in turn, influence the connectivities in the CRF,

thus refining the labeling.

Directly solving the joint energy function of GPM is hard. However, it can be

efficiently solved by decomposing it into two subproblems, a video labeling problem

and a tree slice problem, such as Chapter VI, where the former one can be solved by

graph cuts and the latter one can be rewritten into a binary linear program. Therefore,

the inference of GPM is dynamic and iterative as shown in Fig. 7.7. Throughout the

entire process, information is being exchanged at various levels in the supervoxel

hierarchy, thus the multiscale space-time representation is explicitly explored in our

model.

We conduct thorough experiments on the large-scale actor-action video dataset

(A2D). We compare the proposed method to the previous benchmarked leading

method, the trilayer model, as well as two leading semantic segmentation meth-

ods [93, 88] that we have extended to the actor-action problem. The experimental

results show that our proposed method outperforms the second best method by a

144

large margin of 17% per-class accuracy (60% relative improvement) and over 10%

global pixel accuracy, which demonstrates the effectiveness of our modeling.

7.3 The Modeling of GPM

In this section, we give the general form of GPM, and Fig. 7.7 shows an overview.

We define the detailed potentials adapted to the actor-action problem in Sec. 7.5.

Segment-Level. Without loss of generality, we define V = {q1, q2, . . . , qN} as a

video with N voxels or a video segmentation with N segments. A graph G = (V , E)

is defined over the entire video, where the neighborhood structure E(·) is induced by

the connectivities in the voxel lattice Λ3 or the segmentation graph over space-time in

a video. We define a set of random variables L = {l1, l2, . . . , lN} where the subscript

corresponds to a certain node in V and each li takes some label from a label set L.

The GPM is inherently a labeling CRF, but it leverages a supervoxel hierarchy to

dynamically adjust its non-local grouping structure.

Supervoxel Hierarchy. Given a supervoxel hierarchy generated by a hierarchical

video segmentation method, such as GBH [65], we extract a supervoxel tree2, denoted

as T = {T1, T2, . . . , TS} with S total supervoxels in the tree, by ensuring that each

supervoxel at a finer level segmentation has one and only one parent at its coarser

level (Sec. 7.6 details the tree extraction process in the general case). We define a

set of random variables s = {s1, s2, . . . , sS} on the tree supervoxels, where st ∈ {0, 1}

takes a binary label to indicate whether the tth supervoxel is active or not. Each

supervoxel in the hierarchy connects to a set of nodes in the segment-level according

to their overlap in voxel lattice Λ3. Thus we have st, which is connected to a set of

random variables at the segment-level CRF, denoted as Lt ⊂ L. Intuitively, when

st is active, the fully-connected clique containing all nodes in Lt is considered in

2We add one virtual node as root to make it a tree if the segmentation at the coarsest level
contains more than one supervoxel.

145

the labeling CRF; otherwise, when st is inactive, that fully-connected clique is not

evaluated.

Supervoxel hierarchies, such as [65, 31], are built by iteratively recomputing and

merging finer supervoxels into coarser ones based on appearance and motion features,

where the body parts of an actor and its local motion are contained at the finer levels

and the identity of the actor and its long-ranging action are contained at the coarser

levels. However, choosing an arbitrary level in a hierarchy can be risky—going too

coarse will cause overmerging and going too fine will lose the meaningful actions. It is

challenging to locate the supervoxels in a hierarchy that best describe the actor and

its action. Here, the GPM uses the evidence directly from the segment-level CRF to

locate supervoxels across various scales that are best supported by the labeling L.

Once the supervoxels s are selected, they provide strong labeling cues to the segment-

level CRF—the CRF nodes connected to the same supervoxel are encouraged to have

the same label.

The objective of GPM is to find the best labeling L∗ and the best selection s∗

that minimize the following energy:

(L∗, s∗) = argmin
L,s

E(L, s|V , T)

E(L, s|V , T) = Ev(L|V) + Eh(s|T) (7.8)

+
∑
t∈T

(Eh(Lt|st) + Eh(st|Lt)) ,

where Ev(L|V) and Eh(s|T) encode the energies at the segment-level and in the

supervoxel hierarchy, respectively; Eh(Lt|st) and Eh(st|Lt) are conditional energy

functions defined as directional edges in Fig. 7.7. To keep the discussion general, we

do not define the specific form of Ev(L|V) here—it can be any labeling CRF, such

as [93, 88, 173]. We define the other terms next.

146

7.3.1 Labeling Cues from Supervoxel Hierarchy

Given an active node st in the supervoxel hierarchy, we use it as a cue to refine

the segment-level labeling Lt and we define the energy of this process as:

Eh(Lt|st) =

∑

i∈Lt

∑
j 6=i,j∈Lt

ψhij(li, lj) if st = 1

0 otherwise.
(7.9)

Here, ψhij(·) has the form:

ψhij(li, lj) =

 θt if li 6= lj

0 otherwise,
(7.10)

where θt is a parameter to be tuned. ψhij(li, lj) penalizes any two nodes in the field

Lt that contain different labels. Eq. 7.9 changes the graph structure in Lt by fully

connecting the nodes inside, and has clear semantic meaning—-this set of nodes in Lt

at the segment-level are linked to the same supervoxel node st and hence expected to

be from the same object, taking evidences from the appearance and motion features

used in a typical supervoxel segmentation method.

7.3.2 Grouping Cues from Segment Labeling

If the selected supervoxels are too fine, they are subject to losing object identity

and long-ranging actions; if they are too coarse, they are subject to overmerging

with the background. Therefore, we set the selected supervoxels to best reflect the

segment-level labeling while also respecting a selection prior. Given a video labeling

L at the segment-level, we select the nodes in the supervoxel hierarchy that best

correspond to the current labeling:

Eh(st|Lt) = (H(Lt)|Lt|+ θh)st , (7.11)

147

where | · | denotes the number of video voxels and θh is a parameter to be tuned that

encodes a prior of the node selection in the hierarchy. H(·) is defined as the entropy

of the labeling field connected to st:

H(Lt) = −
∑
γ∈L

P (γ; Lt) logP (γ; Lt) , (7.12)

where P (γ; Lt) =
∑

i∈Lt
δ(li=γ)

|Lt| and δ(·) is an indicator function. Intuitively, the first

term in Eq. 7.11 pushes down the selection of nodes in the hierarchy such that they

only include the labeling field that has the most consistent labels, and the second

term pulls up the node selection, giving penalties for going down the hierarchy.

7.3.3 Tree Slice Constraint

The active nodes in s define what groups of segments the GPM will enforce during

labeling; hence the name grouping process model. However, not all instances of s are

permissible: since we seek a single labeling over the video, we enforce that each

segment in V is associated with one and only one active node in s. This notion was

introduced in Chapter VI by a way of tree slice: for every root-to-leaf path in T ,

there is one and only one node being active.

We follow Chapter VI to define a matrix P that encodes all root-to-leaf paths in

T . Pp is one row in P , and it encodes the path from the root to pth leaf with 1s for

nodes on the path and 0s otherwise. We define the energy to regulate s as:

Eh(s|T) =
P∑
p=1

δ(PT
p s 6= 1)θτ , (7.13)

where P is the total number of leaves (also the number of such root-to-leaf paths) and

θτ is a large constant to penalize an invalid tree slice. The tree slice selects supervoxel

nodes to form a new video representation that has a one-to-one mapping to the 3D

148

video lattice Λ3.

7.4 Iterative Inference for GPM

Directly solving the objective function defined in Eq. 7.8 is hard. Here, we show

that we can use an iterative inference schema to efficiently solve it—given the segment-

level labeling, we find the best supervoxels in the hierarchy; and given the selected

supervoxels in the hierarchy, we refine the segment-level labeling.

The Video Labeling Problem. Given a tree slice s, we would like to find the best

L∗ such that:

L∗ = argmin
L

E(L|s,V , T) (7.14)

= argmin
L

Ev(L|V) +
∑
t∈T

Eh(Lt|st) .

The above can have a standard CRF form depending on how Ev(L|V) is defined. The

second energy term Eh(Lt|st) can be decomposed to a locally fully connected CRF,

and its range is constrained by st such that the inference is feasible even without

Gaussian kernels [88].

The Tree Slice Problem. Given the current labeling L, we would like to find the

best s∗ such that:

s∗ = argmin
s

E(s|L,V , T) (7.15)

= argmin
s

Eh(s|T) +
∑
t∈T

Eh(st|Lt) .

The above equation can be rewritten as a binary linear program of the following form:

min
∑
t∈T

αtst s.t. Ps = 1P and s ∈ {0, 1}S , (7.16)

149

where αt = H(Lt)|Lt|+θh. Note that this optimization is different than that proposed

by the original tree slice in Chapter VI, which incorporated quadratic terms in a

binary quadratic program. We use a standard solver (IBM CPLEX) to solve the

binary linear programming problem.

Iterative Inference. The inference of the above two subproblems is iteratively

carried out, as depicted in Fig. 7.7. To be specific, we initialize a coarse labeling

L by solving Eq. 7.14 without the second term, then we solve Eq. 7.16 and 7.14 in

an iterative fashion. Each round of the tree slice problem enacts an updated set of

grouped segments, which are then encouraged to be assigned the same label during

the subsequent labeling process. We notice that the solution converges after a few

rounds.

Relation to AHRF. The associative hierarchical random field (AHRF) [93] performs

inference exhaustively from finer levels to coarser levels in the segmentation tree T ,

whereas the GPM explicitly models the best set of active supervoxels by the means of

a tree slice. AHRF defines a full multi-label random field on the hierarchy; our model

leverages the hierarchy to adaptively modify the labeling field. Our model is hence

more scalable to videos. Furthermore, the GPM assumes that the best representations

of the video content exist in a tree slice rather than enforcing the agreement across

different levels as in AHRF. For example, a video of long jumping often contains

running in the beginning. The running action exists and has a strong classifier signal

at a fine-level in a supervoxel hierarchy, but it quickly diminishes when one goes to

higher levels in the hierarchy where supervoxels capture longer range in the video and

would then favor the jumping action.

Relation to FCRF. The fully-connected CRF (FCRF) in [88] imposes Gaussian

mixture kernels to regularize the pairwise interactions. Although our model fully

connects the nodes in each Lt for a given iteration of inference, we explicitly take

the evidence from the supervoxel groupings. Equation 7.11 restricts the selected

150

supervoxels to avoid overmerging. Although a more complex process, in practice, our

inference is efficient (see Sec. 7.6 for running time).

7.5 The Actor-Action Problem Modeling

We train segment-level classifiers to capture the local appearance and motion of

the actors’ body parts. They have some ability to localize the actor-action, but

the predictions are noisy; they use no context, for example. In contrary, video-

level recognition, as a secondary process, captures the global information of actors

performing actions and have good prediction performance at the video-level. However,

it is not able to tell where the action is happening. These two streams of information

are captured at the segment-level and at the video-level, and hence are complementary

to each other. In this section, we fuse them together in a single model, leveraging the

grouping process model as a means of marrying the two.

Let us first define notation, extending that from Sec. 7.3 where possible. We use

X to denote the set of actor labels (e.g. adult, baby and dog) and Y to denote the set

of action labels (e.g. eating, walking and running). The segment-level random field L

now takes two sets of labels—for the ith segment, lXi ∈ X takes a label from the actors

and lYi ∈ Y from the actions. We denote Z = X ×Y as the joint product space of the

actor-action labels. We define a set of binary random variables v = {v1, v2, . . . , v|Z|}

on the video-level, where vz = 1 denotes the zth actor-action label is active at the

video-level. They represent the video-level multi-label recognition problem. Again,

we have the set of binary random variables s defined on the supervoxel hierarchy as

in Sec. 7.3.

Therefore, we have the total energy function of the actor-action semantic segmen-

151

tation defined as:

(L∗, s∗,v∗) = argmin
L,s,v

E(L, s,v|V , T)

E(L, s,v|V , T) = Ev(L|V) +
∑
z∈Z

EV(vz|V) + EV(L,v)

+ Eh(s|T) +
∑
t∈T

(Eh(Lt,v|st) + Eh(st|Lt)) , (7.17)

where the term Eh(Lt,v|st) now models the joint potentials of the segment-level

labeling field Lt and the video-level label v, which is slightly different from its form

in Eq. 7.9. We have two new terms, EV(vz|V) and EV(L,v), from the video-level,

where vz is the zth coordinate in v. We explain these new terms next.

7.5.1 Segment-Level CRF Ev

At the segment-level, we use the same bilayer actor-action CRF model from

Sec. 7.1 to capture the local pairwise interactions of the two sets of labels:

Ev(L|V) =
∑
i∈V

ψvi (l
X
i) +

∑
i∈V

∑
j∈E(i)

ψvij(l
X
i , l

X
j) (7.18)

+
∑
i∈V

φvi (l
Y
i) +

∑
i∈V

∑
j∈E(i)

φvij(l
Y
i , l
Y
j) +

∑
i∈V

ϕvi (l
X
i , l

Y
i) ,

where ψvi and φvi encode separate potentials for random variables lXi and lYi to take the

actor and action labels, respectively. ϕvi is a potential to measure the compatibility of

the actor-action tuples on segment i, and ψvij and φvij capture the pairwise interactions

between segments, which have the form of a contrast sensitive Potts model [13, 173].

7.5.2 Video-Level Potentials EV

Rather than a uniform penalty over all labels [36], we use the video-level recogni-

tion signals as global multi-label labeling costs to impact the segment-level labeling.

152

We define the unary energy at the video-level as:

EV(vz|V) = −(ξV(z)− θT)θBvz , (7.19)

where ξV(·) is the video-level classification response for a particular actor-action label,

and Sec. 7.6 describes its training process. Here, θT is a parameter to control response

threshold, and θB is a large constant parameter. In other words, to minimize Eq. 7.19,

the label vz = 1 only when the classifier response ξV(z) > θT .

We define the interactions between the video-level and the segment-level:

EV(L,v) =
∑
x∈X

δx(L)hx(v)θV +
∑
y∈Y

δy(L)hy(v)θV , (7.20)

where δx(·) is an indicator function to determine whether the current labeling L at

the segment-level contains a particular label x ∈ X or not:

δx(L) =

 1 if ∃i ∈ V : lXi = x

0 otherwise.
(7.21)

Similarly, hx(·) is another indicator function to determine whether a particular label

x is supported at the video-level or not:

hx(v) =

 0 if ∃z ∈ Z : vz = 1 ∧ g(z) = x

1 otherwise,
(7.22)

where g(·) maps a label in the joint actor-action space to the actor space. θV is a

constant cost for any label that exists in L but not supported at the video-level. We

define δy(·) and hy(·) similarly. To make the cost meaningful, we set θB > 2θV . In

practice, we observe that these labeling costs from video-level recognition help the

segment-level labeling to achieve a more parsimonious-in-labels result that enforces

153

Ground-Truth

Coarse-To-Fine Supervoxel Hierarchy

Tree Slice Selection

Ev + EV Ev + EV + Eh

Figure 7.8: The video labeling of actor-action is refined by GPM. First row shows
a test video car-jumping with its labelings. The second row shows a
supervoxel hierarchy and the third row shows the active nodes in the
hierarchy with their dominant labels.

more global information than using local segments alone (see results in Table 7.3).

7.5.3 The GPM Potentials Eh

The energy terms Eh(s|T) and Eh(st|Lt) involved in the tree slice problem are

defined the same as in Sec. 7.3. Now, we define the new labeling term:

Eh(Lt,v|st) = (7.23)
∑

i∈Lt

∑
j 6=i,j∈Lt

ψhij(l
X
i , l

X
j ,v)

+
∑

i∈Lt

∑
j 6=i,j∈Lt

φhij(l
Y
i , l
Y
j ,v) if st = 1

0 otherwise.

Here, ψhij(·) has the form:

ψhij(l
X
i , l

X
j ,v) = (7.24) θt if lXi 6= lXj , ∃z ∈ Z : vz = 1 ∧ g(z) = f(st)

0 otherwise,

154

where f(·) denotes the dominant actor label in the segment-level labeling field Lt

that connected to st, and we define ψhij(l
Y
i , l
Y
j ,v) similarly. This new term selectively

refines the segmentation where the majority of the segment-level labelings agree with

the video-level multi-label labeling.

We show in Fig. 7.8 how this GPM process helps to refine the actor’s shape (the

car) in the labeling process. The initial labelings from Ev + EV propose a rough

region of interest, but they do not capture the accurate boundaries or shape. After

two iterations of inference, the tree slice selects the best set of supervoxels in the

GBH hierarchy that represents the actor (the car), and they regroup the segment-

level labelings such that the labelings can better capture the actor shape. Notice

that the car body in the third column merges with the background, but our full

model (fourth column) overcomes the limitation by selecting different parts from the

hierarchy to yield the final labeling.

7.5.4 Inference

The inference of the actor-action problem defined in Eq. 7.17 follows the iterative

inference described in Sec. 7.4. The tree slice problem is efficiently solved by binary

linear programming. Although we could solve the video labeling problem with loopy

belief propagation, it would be expensive due to the two sets of labels over which

the CRF is defined. Here, we derive a way to solve it efficiently using graph cuts

inference with label costs [11, 12, 36]. We show this conceptually in Fig. 7.9 and

rewrite Eq. 7.18 as:

Ev(L|V) =
∑
i∈V

ξvi (li) +
∑
i∈V

∑
j∈E(i)

ξvij(li, lj) , (7.25)

155

lXi

lYi

lXj

lYj
ljli

'v
i 'v

j

 v
ij

�v
ij

⇠v
ij

Figure 7.9: Visualization of two nodes of the bilayer model in our efficient inference.

where we define the new unary as:

ξvi (li) = ψvi (l
X
i) + φvi (l

Y
i) + ϕvi (l

X
i , l

Y
j) , (7.26)

and the pairwise interactions as:

ξvij(li, lj) = (7.27)

ψvij(l
X
i , l

X
j) if lXi 6= lXj ∧ lYi = lYj

φvij(l
Y
i , l
Y
j) if lXi = lXj ∧ lYi 6= lYj

ψvij(l
X
i , l

X
j) + φvij(l

Y
i , l
Y
j) if lXi 6= lXj ∧ lYi 6= lYj

0 if lXi = lXj ∧ lYi = lYj .

We can rewrite Eq. 7.23 in a similar way, and they satisfy the submodular property

according to the triangle inequality [87]. The label costs can be solved as in [36].

Parameters. We manually explore the parameter space based on the pixel-level

accuracy in a heuristic fashion. We first tune the parameters involved in the video-

level recognition, then those involved in the segment-level labeling, and finally, those

involved in GPM by running the iterative inference as in Sec. 7.4.

7.6 Experiments

We evaluate our method on the A2D dataset and evaluate the performance. We

compare with the top-performing trilayer model, and two strong semantic image

156

Ev + EV
Ev

Model Ave. Glo. Ave. Glo. Ave. Glo. Ave. Glo. Ave. Glo. Ave. Glo. Ave. Glo. Ave. Glo. Ave. Glo.
45.9 76.9 47.2 76.8 24.8 75.0 46.7 76.5 50.0 76.9 31.5 74.8 41.7 77.7 42.1 76.5 18.2 75.4
57.3 85.7 59.4 85.9 42.4 84.8 60.4 86.0 67.0 86.5 55.4 85.4 50.6 85.1 55.1 84.4 33.3 83.6

AHRF 38.0 64.9 29.0 63.9 13.9 63.0 38.1 66.6 29.7 65.8 16.6 64.8 37.0 60.6 28.3 59.3 11.3 58.5
FCRF 44.8 77.9 45.5 77.6 25.4 76.2 45.9 77.6 47.4 77.7 32.1 76.1 40.2 78.8 42.2 77.5 19.4 76.5

Trilayer 45.7 74.6 47.0 74.6 26.5 72.9 47.0 74.1 50.3 74.6 33.9 72.7 41.0 75.6 42.3 74.5 20.4 73.4
GPM (TSP) 58.3 85.2 60.5 85.3 43.3 84.2 61.5 85.4 68.2 86.0 56.5 84.8 51.7 84.5 56.2 83.8 33.9 83.0
GPM (GBH) 61.2 84.9 59.4 84.8 43.9 83.8 63.1 85.1 69.3 85.7 57.6 84.5 51.7 84.1 56.3 83.3 33.9 82.5

Actor Action <A, A>
All Test Videos Single Actor-Action Videos Multiple Actor-Action Videos

Actor Action <A, A> Actor Action <A, A>

Table 7.3: The overall performance on the A2D dataset. The top two rows are inter-
mediate results of the full model. The middle three rows are comparison
methods. The bottom two rows are our full models with different super-
voxel hierarchies for the grouping process.

segmentation methods, AHRF [93] and FCRF [88]. For AHRF, we use the publicly

available code from [93] as it contains a complete pipeline from training classifiers

to learning and inference. For FCRF, we extend it to use the same features as our

method.

Data Processing. We experiment with two distinct supervoxel trees: one is ex-

tracted from the hierarchical supervoxel segmentations generated by GBH [65], where

supervoxels across multiple levels natively form a tree structure hierarchy, and the

other one is extracted from multiple runs of a generic non-hierarchical supervoxel seg-

mentation by TSP [23]. To extract a tree structure from the non-hierarchical video

segmentations, we first sort the segmentations by the number of supervoxels they

contain. Then we enforce the supervoxels in the finer level segmentation to have one

and only one parent supervoxel in the coarser level segmentation, such that the two

supervoxels have the maximal overlap of the video pixels. We use four levels from

a GBH hierarchy, where the number of supervoxels varies from a few hundred to

less than one hundred. We also use four different runs of TSP to construct another

segmentation tree where the final number of nodes contained in the tree varies from

500 to 1500 at the fine level, and from 50 to 150 at the coarse level.

We also use TSP to generate the segments for the base labeling CRF. We extract

the same set of appearance and motion features as in Sec. 7.1.3 and train one-versus-

157

all linear SVM classifiers on the segments for three sets of labels: actor, action,

and actor-action pair, separately. At the video-level, we extract improved dense

trajectories [204], and use Fisher vectors [149] to train linear SVM classifiers at the

video-level for the actor-action pair. We use the inference schema described in Sec. 7.4

and Sec. 7.5.4, and follow the train/test splits used in Sec. 7.1.1. The output of our

system is a full video pixel labeling. We evaluate the performance on sampled frames

where the ground-truth is labeled.

Results and Comparisons. We evaluate performance for joint actor-action and

separate individual tasks. Table 7.3 shows the overall results of all methods in three

different calculations: when all test videos are used; when only videos containing

single-label actor-action are used; and when only videos containing multiple actor-

action labels are used. Roughly one-third of the videos in the A2D dataset have

multiple actor-action labels. Overall, we observe that our methods (both GPM-TSP

and GPM-GBH) outperform the next best one, the trilayer method, by a large margin

of 17% average per-class accuracy and more than 10% global pixel accuracy over all

test videos. The improvement of global pixel accuracy is consistent over the two sub-

divisions of test videos, and the improvement of average per-class accuracy is larger on

videos that only contain single-label actor-action. We suspect that videos containing

multiple-label actor-action are more likely to confuse the video-level classifiers.

We also observe that the added grouping process in GPM-TSP and GPM-GBH

consistently improves the average per-class accuracy over the intermediate result

(Ev + EV) on both single-label and multiple-label actor-action videos. There is a

slight decrease on the global pixel accuracy. We suspect the decrease mainly comes

from the background class, which contributes a large portion of the total pixels in eval-

uation. To verify that, we also show the individual actor-action class performance in

Tab. 7.4 when all test videos are used. We observe that GPM-GBH has the best per-

formance on majority classes and improves Ev+EV on all classes except dog-crawling,

158

E
v

+
E

V
E

v

E
v

+
E

V
E

v

M
od
el

B
K

cl
im
b
cr
aw
l

ea
t

ju
m
p

ro
ll

ru
n

w
al
k

no
ne

cl
im
b

ea
t

ju
m
p

ro
ll

ru
n

w
al
k

no
ne

cr
aw
l

ea
t

ju
m
p

ro
ll

ru
n

w
al
k

no
ne

81
.0

22
.1

60
.4

45
.2

20
.0

18
.9

32
.3

26
.8

31
.5

25
.3

29
.8

4.
4

29
.5

45
.2

6.
5

0.
0

17
.0

26
.6

1.
1

38
.1

29
.8

38
.7

0.
0

89
.9

73
.3

77
.6

68
.0

47
.1

49
.4

49
.8

39
.8

0.
0

41
.9

48
.0

31
.0

69
.8

48
.0

18
.7

0.
0

45
.8

58
.9

30
.7

61
.4

25
.1

72
.4

0.
0

A
H

R
F

69
.2

0.
0

56
.0

6.
1

1.
1

0.
0

0.
0

15
.3

10
.9

18
.3

38
.8

0.
0

8.
8

0.
0

9.
3

0.
0

13
.2

16
.4

0.
0

0.
0

0.
0

0.
0

0.
0

FC
R

F
82

.2
21

.6
64

.5
46

.3
25

.3
12

.0
50
.9

26
.9

33
.8

25
.3

33
.6

2.
5

33
.9

48
.9

21
.5

0.
8

11
.7

35
.7

2.
2

31
.9

25
.2

40
.2

0.
0

Tr
ila

ye
r

78
.5

33
.1

59
.8

49
.8

19
.9

27
.6

40
.2

31
.7

24
.6

33
.1

27
.2

6.
1

49
.8

48
.5

6.
6

0.
0

9.
9

31
.0

2.
0

27
.6

23
.6

39
.4

0.
0

G
P

M
 (T

S
P

)
89

.1
74

.6
79

.8
70

.7
49
.3

51
.5

50
.6

40
.4

0.
0

42
.5

49
.3

31
.9

71
.1

46
.4

18
.8

0.
0

45
.3

60
.2

31
.3

62
.5

25
.8

74
.0

0.
0

G
P

M
 (G

B
H

)
88

.4
74
.8

81
.0

76
.4

49
.3

52
.4

50
.4

41
.0

0.
0

42
.8

52
.3

33
.7

71
.7

48
.0

19
.1

0.
0

44
.1

61
.5

31
.4

62
.6

25
.7

74
.2

0.
0

M
od
el
cl
im
b
cr
aw
l

ro
ll

w
al
k

no
ne

fly
ju
m
p

ro
ll

no
ne

cl
im
b

ea
t

fly
ju
m
p

ro
ll

w
al
k

no
ne

fly
ju
m
p

ro
ll

ru
n

no
ne

A
ve
.

G
lo
.

13
.8

32
.8

38
.3

20
.0

0.
0

3.
8

10
.4

4.
5

0.
0

28
.1

14
.1

51
.6

18
.2

33
.1

7.
2

0.
0

25
.7

78
.0

35
.7

45
.9

1.
8

24
.8

75
.0

63
.6

64
.0

55
.4

60
.6

0.
0

11
.3

26
.7

20
.5

0.
0

58
.7

35
.4

65
.8

17
.2

44
.2

41
.1

0.
0

40
.8

83
.4

67
.3

63
.7

0.
0

42
.4

84
.8

A
H

R
F

21
.3

5.
5

39
.8

13
.5

0.
0

3.
2

2.
3

13
.6

1.
5

14
.6

11
.4

19
.9

5.
0

29
.6

7.
5

0.
0

18
.1

68
.0

13
.6

47
.9

12
.2

13
.9

63
.0

FC
R

F
3.

4
23

.4
41

.0
17

.8
0.

0
3.

7
0.

3
1.

0
0.

0
25

.9
16

.1
57

.3
17

.1
35

.0
7.

4
0.

0
13

.7
78

.4
55

.4
43

.7
1.

8
25

.4
76

.2
Tr

ila
ye

r
20

.4
21

.7
39

.3
25

.3
0.

0
1.

0
11

.9
6.

1
0.

0
28

.1
18

.2
55

.3
20
.3

42
.5

9.
0

0.
0

24
.4

75
.9

44
.3

48
.3

2.
4

26
.5

72
.9

G
P

M
 (T

S
P

)
65

.3
64

.7
57

.2
60

.5
0.

0
11
.3

27
.0

20
.8

0.
0

62
.2

37
.1

66
.6

17
.4

45
.4

42
.2

0.
0

42
.9

84
.5

69
.2

64
.8

0.
0

43
.3

84
.2

G
P

M
 (G

B
H

)
65
.4

65
.0

58
.4

61
.5

0.
0

11
.3

28
.3

21
.1

0.
0

60
.6

38
.8

66
.5

17
.5

45
.9

47
.9

0.
0

41
.2

86
.3

70
.9

65
.9

0.
0

43
.9

83
.8

bi
rd

ca
t

do
g

ad
ul
t

ba
by

ba
ll

ca
r

T
ab

le
7.

4:
T

h
e

p
er

fo
rm

an
ce

on
in

d
iv

id
u
al

ac
to

r-
ac

ti
on

la
b

el
s

u
si

n
g

al
l

te
st

v
id

eo
s.

T
h
e

le
ad

in
g

sc
or

es
fo

r
ea

ch
la

b
el

ar
e

in
b

ol
d

fo
n
t.

159

Ground-Truth AHRF Trilayer GPM (GBH)GPM (TSP)FCRF

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

adult-eating

adult-eating

adult-eating
adult-eating adult-eating adult-eating

adult-none adult-none

baby-crawling

car-running
car-running

car-running car-running car-runningcar-running

baby-rolling

baby-rolling

baby-rolling

baby-rolling

baby-rolling baby-rolling

dog-eating

dog-crawling dog-crawling dog-crawlingcar-rolling car-rolling

baby-crawling

adult-none

bird-eating
bird-eating bird-eating

adult-walking

adult-walking
adult-walking

cat-climbing

bird-walking bird-walking bird-walking

adult-walking adult-walking adult-walking

car-running

bird-flying

dog-walking

car-running car-running

dog-walking

ball-flying

adult-walking

car-jumping

car-running

adult-walking

adult-walking

car-running

adult-running

ball-rolling

adult-running adult-walking adult-walking

ball-rolling ball-rolling

adult-crawling adult-crawlingadult-crawling

adult-none

adult-none adult-walking

dog-walking dog-rolling

car-jumping

adult-crawlingadult-jumping car-flying

bird-walking
adult-none

Figure 7.10: Visual example of the actor-action video labelings for all methods. (a)
- (c) are videos where most methods get correct labelings; (d) - (g)
are videos where only GPM models get the correct labelings; (h) - (g)
are difficult videos in the dataset where the GPM models get partially
correct labelings. Colors used are from the A2D benchmark.

which further shows the effectiveness of the grouping process. The performance of our

method using the GBH hierarchy is slightly better than our method using the TSP

hierarchy. We suspect that this is due to the GBH method’s greedy merging process

that complements the Gaussian process in TSP, such that the resulting segmentation

complements the segment-level TSP segmentation we used.

Figure 7.10 shows the visual comparison of video labelings for all methods, where

(a)-(c) show cases where methods output correct labels and (d)-(g) show cases where

our proposed method outperforms other methods. We also show failure cases in (h)

160

and (i) where videos contain complex actors and actions. For example, our method

correctly labels the ball-rolling but confuses the label adult-running as adult-walking

in (h); we correctly label adult-crawling but miss the label adult-none in (i).

Inference Speed. We empirically set the stopping criteria by observing a balance

between the performance gain and the running time. We set two iterations for all

experiments. For all the test videos, GPM-GBH has an average inference speed of 8.6

seconds-per-video (spv) faster than 26.7 spv of GPM-TSP. Both of them are faster

than 142 spv of the trilayer model in Sec. 7.1. The experiments are conducted with

a Linux server with AMD Opteron 6380 2.5GHz CPU.

7.7 Conclusion

Our thorough experiments on the A2D dataset show that when the segment-

level labeling is combined with secondary processes, such as our grouping process

models and video-level recognition signals, the semantic segmentation performance

increases dramatically. For example, GPM-GBH improves almost every class of actor-

action labels compared to the intermediate result without the supervoxel hierarchy,

i.e., without the dynamic grouping of CRF labeling variables. This finding strongly

supports our motivating argument that the two sets of labels, actors and actions, are

best modeled at different levels of granularities and that they have different emphases

on space and time in a video.

Besides the new actor-action video understanding problem, we make the following

contributions to the actor-action semantic segmentation problem:

1. A novel model that dynamically combines segment-level labeling with a hierarchical

grouping process that influences connectivities of the labeling variables.

2. An efficient inference method that iteratively solves the two conditional tasks by

graph cuts for labeling and binary linear programming for grouping allowing for

continuous exchange of information.

161

3. A new framework that uses video-level recognition signals as cues for segment-level

labeling thru global labeling costs and the grouping process model.

4. Our proposed method significantly improves performance (60% relative improve-

ment over the next best method) on the recently released large-scale actor-action

semantic video dataset.

Future Work. We set two directions for our future work. First, although our

model is able to improve the labeling performance dramatically, the opportunity of

this joint modeling to improve video-level recognition is yet to be explored. Second,

our grouping process does not incorporate semantics in the supervoxel hierarchy; we

believe this would further improve results.

162

CHAPTER VIII

Conclusion

Understanding the structure of the multiscale decompositions in visual data is of

core importance to computer vision. Recall that no single level in the supervoxel

hierarchy contains all desired structures. To that end, we have presented a set of

tools to manipulate scales in supervoxel hierarchies including both scale generation

and scale selection methods; and we have demonstrated that we can improve the

performance on post hoc segmentation and video labeling tasks by adaptively choosing

supervoxels from various levels in a hierarchy.

Scale generation. In the first part of scale generation, we evaluate a set of seven

supervoxel methods in the context of what we consider to be a good supervoxel

for video representation: namely, spatiotemporal uniformity, object/region boundary

detection, region compression and parsimony. In addition to the basic properties, we

evaluate the methods in a supervoxel classification task as a proxy for subsequent

high-level uses of supervoxels in video analysis. The metrics and benchmark we

developed have become the de facto standard evaluation for supervoxel methods. In

the second part of scale generation, we address a key limitation that has traditionally

prevented the supervoxel scale generation on long videos. We do so by proposing an

approximation framework for streaming hierarchical scale generation motivated by

the data stream idea: each frame is processed only once and does not change the

163

segmentation of previous frames. Our method represents the first and remains the

only one, as of the time of writing this dissertation, that is able to generate multiscale

decompositions for arbitrarily-long videos using constant memory.

Scale selection. We have subsequently presented two scale selection methods that

are able to adaptively choose the scales for given applications. The first scale se-

lection method flattens an entire supervoxel hierarchy into a single segmentation

that overcomes the limitation induced by trivial selection of a single scale level—

undersegmentation at coarser levels and oversegmentation at finer levels. Our method,

called uniform entropy slice, selects supervoxels from various scales by balancing the

relative level of information entropy in the field. We show that the selection can be

driven by different post hoc feature criteria, such as motion-ness and object-ness, and

that they result in different selection attentions. The second scale selection method

combines the supervoxel hierarchy with a CRF for the task of video labeling of actors

and actions. We formulate the scale selection problem and the video labeling problem

in a joint framework. It defines a dynamic and continuous process of information ex-

change: the CRF influences which supervoxels in the hierarchy are active, and these

active supervoxels, in turn, affect the connectivity in the CRF. We show that it is

beneficial to adaptively choose the scales in the context of actor-action video labeling.

Aside from the computational methods, we present a visual psychophysical study

of semantic retention in supervoxel hierarchies, where we conduct a systematic study

of how well the actor and action semantics are retained in video supervoxel segmen-

tation. The ultimate findings suggest that some semantics are well-retained in the

video supervoxel hierarchies and can be used for further video analysis.

Therefore, this dissertation has laid down a foundation and provided a set of tools

for further exploring the abilities of using supervoxels as a type of video representation

for subsequent video analysis.

Many research problems have been revealed by this dissertation. We are interested

164

in exploring them in the future. The space-time of video can not only be modeled

as a 3D volume, but also as 2D space plus 1D time, where time is treated differ-

ently from space. In Chapter II, we show that methods are proposed by both ideas

across almost every type of video representation: interest points versus trajectories;

two-stream CNN versus 3D convolution; and 3D supervoxel versus temporal super-

pixels. We believe the modeling of space and time is tightly tied with application

needs. Therefore, we are interested in exploring when and where each spatiotemporal

modeling in appropriate.

From fine-grained actions to activities and events, there are different granularities

in video analysis. We explore scale generation and selection to the point that coarse

action classes can be distinguished, such as bird-flying and adult-jumping. However,

we know that seagulls fly differently than hummingbirds do, and that the same person

can either jump far or jump near. We are interested in exploring whether supervoxels

are able to model these fine-grained actions. Furthermore, their ability to model

interactions and activities is also yet to be explored.

165

BIBLIOGRAPHY

166

BIBLIOGRAPHY

[1] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua,
and Sabine Susstrunk. Slic superpixels compared to state-of-the-art superpixel
methods. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2012.

[2] Chad Aeschliman, Johnny Park, and Avinash C Kak. A probabilistic framework
for joint segmentation and tracking. In IEEE Conference on Computer Vision
and Pattern Recognition, 2010.

[3] Bogdan Alexe, Thomas Deselaers, and Vittorio Ferrari. What is an object? In
IEEE Conference on Computer Vision and Pattern Recognition, 2010.

[4] Ori Amir, Irving Biederman, and Kenneth J. Hayworth. Sensitivity to nonac-
cidental properties across various shape dimensions. Vision Research, 62(0):35
– 43, 2012.

[5] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour
detection and hierarchical image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(5):898–916, 2011.

[6] Xue Bai and Guillermo Sapiro. Geodesic matting: A framework for fast in-
teractive image and video segmentation and matting. International Journal of
Computer Vision, 82(2):113–132, 2009.

[7] Xue Bai, Jue Wang, David Simons, and Guillermo Sapiro. Video snapcut:
robust video object cutout using localized classifiers. In ACM Transactions on
Graphics, volume 28, page 70. ACM, 2009.

[8] Simon Baker, Daniel Scharstein, JP Lewis, Stefan Roth, Michael J Black, and
Richard Szeliski. A database and evaluation methodology for optical flow. In-
ternational Journal of Computer Vision, 92(1):1–31, 2011.

[9] Andrei Barbu, Alexander Bridge, Zachary Burchill, Dan Coroian, Sven J.
Dickinson, Sanja Fidler, Aaron Michaux, Sam Mussman, Siddharth
Narayanaswamy, Dhaval Salvi, Lara Schmidt, Jiangnan Shangguan, Jef-
frey Mark Siskind, Jarrell W. Waggoner, Song Wang, Jinlian Wei, Yifan Yin,
and Zhiqi Zhang. Video in sentences out. In Conference on Uncertainty in
Artificial Intelligence, 2012.

167

[10] A. Berg, J. Deng, S. Satheesh, H. Su, and L. Fei-Fei. Imagenet large scale vi-
sual recognition challenge, http://www.image-net.org/challenges/LSVRC/

2011/, 2011.

[11] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 26(9):1124–1137, 2004.

[12] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy min-
imization via graph cuts. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 23(11):1222–1239, 2001.

[13] Yuri Y Boykov and M-P Jolly. Interactive graph cuts for optimal boundary
region segmentation of objects in nd images. In IEEE International Conference
on Computer Vision, 2001.

[14] Matteo Bregonzio, Shaogang Gong, and Tao Xiang. Recognising action as
clouds of space-time interest points. In IEEE Conference on Computer Vision
and Pattern Recognition, 2009.

[15] William Brendel and Sinisa Todorovic. Video object segmentation by tracking
regions. In IEEE International Conference on Computer Vision, 2009.

[16] Gabriel J Brostow, Julien Fauqueur, and Roberto Cipolla. Semantic object
classes in video: A high-definition ground truth database. Pattern Recognition
Letters, 30(2):88–97, 2009.

[17] Gabriel J. Brostow, Jamie Shotton, Julien Fauqueur, and Roberto Cipolla.
Segmentation and recognition using structure from motion point clouds. In
European Conference on Computer Vision, 2008.

[18] Thomas Brox and Jitendra Malik. Object segmentation by long term analysis
of point trajectories. In European Conference on Computer Vision, 2010.

[19] Ignas Budvytis, Vijay Badrinarayanan, and Roberto Cipolla. Semi-supervised
video segmentation using tree structured graphical models. In IEEE Conference
on Computer Vision and Pattern Recognition, 2011.

[20] John Canny. A computational approach to edge detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, (6):679–698, 1986.

[21] Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

[22] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2(3):27,
2011.

[23] Jason Chang, Donglai Wei, and John W. Fisher III. A video representation us-
ing temporal superpixels. In IEEE Conference on Computer Vision and Pattern
Recognition, 2013.

168

[24] A. Y. C. Chen and J. J. Corso. Temporally consistent multi-class video-object
segmentation with the video graph-shifts algorithm. In WMVC, 2011.

[25] A. Y. C. Chen and Jason J. Corso. Propagating multi-class pixel labels through-
out video frames. In Proceedings of Western New York Image Processing Work-
shop, 2010.

[26] Sheng Chen, Alan Fern, and Sinisa Todorovic. Multi-object tracking via con-
strained sequential labeling. In IEEE Conference on Computer Vision and
Pattern Recognition, 2014.

[27] W. Chen, C. Xiong, R. Xu, and J. J. Corso. Actionness ranking with lattice
conditional ordinal random fields. In IEEE Conference on Computer Vision
and Pattern Recognition, 2014.

[28] Prakash Chockalingam, Nalin Pradeep, and Stan Birchfield. Adaptive
fragments-based tracking of non-rigid objects using level sets. In IEEE In-
ternational Conference on Computer Vision, 2009.

[29] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward
feature space analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24(5):603–619, 2002.

[30] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Kernel-based object
tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25(5):564–577, 2003.

[31] Jason J Corso, Eitan Sharon, Shishir Dube, Suzie El-Saden, Usha Sinha,
and Alan Yuille. Efficient multilevel brain tumor segmentation with inte-
grated bayesian model classification. Medical Imaging, IEEE Transactions on,
27(5):629–640, 2008.

[32] A. Criminisi, G. Cross, A. Blake, and V. Kolmogorov. Bilayer segmentation of
live video. In CVPR, 2006.

[33] Pradipto Das, Chenliang Xu, Richard Doell, and Jason J. Corso. A thousand
frames in just a few words: lingual description of videos through latent topics
and sparse object stitching. In IEEE Conference on Computer Vision and
Pattern Recognition, 2013.

[34] Kleber Jacques Ferreira de Souza, Arnaldo de Albuquerque Araújo, et al.
Graph-based hierarchical video segmentation based on a simple dissimilarity
measure. Pattern Recognition Letters, 2014.

[35] Thomas Dean, Mark A Ruzon, Mark Segal, Jonathon Shlens, Sudheendra Vi-
jayanarasimhan, and Jay Yagnik. Fast, accurate detection of 100,000 object
classes on a single machine. In IEEE Conference on Computer Vision and
Pattern Recognition, 2013.

169

[36] Andrew Delong, Anton Osokin, Hossam N Isack, and Yuri Boykov. Fast approx-
imate energy minimization with label costs. International journal of computer
vision, 96(1):1–27, 2012.

[37] Daniel DeMenthon and Remi Megret. Spatio-temporal segmentation of video
by hierarchical mean shift analysis. In Statistical Methods in Video Processing
Workshop, 2002.

[38] J. Deng, A. Berg, K. Li, and L. Fei-Fei. What does classifying more than 10,000
image categories tell us? In European Conference on Computer Vision, 2010.

[39] Konstantinos G Derpanis, Mikhail Sizintsev, Kevin Cannons, and Richard P
Wildes. Efficient action spotting based on a spacetime oriented structure repre-
sentation. In IEEE Conference on Computer Vision and Pattern Recognition,
2010.

[40] Piotr Dollár, Vincent Rabaud, Garrison Cottrell, and Serge Belongie. Be-
havior recognition via sparse spatio-temporal features. In IEEE International
Workshop on Visual Surveillance and Performance Evaluation of Tracking and
Surveillance, 2005.

[41] Fabio Drucker and John MacCormick. Fast superpixels for video analysis. In
IEEE Workshop on Motion and Video Computing, 2009.

[42] Ali Elqursh and Ahmed Elgammal. Online motion segmentation using dynamic
label propagation. In IEEE International Conference on Computer Vision,
2013.

[43] Çigdem Eroglu Erdem, Bülent Sankur, and A Murat Tekalp. Performance
measures for video object segmentation and tracking. IEEE Transactions on
Image Processing, 13(7):937–951, 2004.

[44] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
pascal visual object classes (voc) challenge. International Journal of Computer
Vision, 88(2):303–338, 2010.

[45] Clément Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learn-
ing hierarchical features for scene labeling. Pattern Analysis and Machine In-
telligence, IEEE Transactions on, 35(8):1915–1929, 2013.

[46] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan.
Object detection with discriminatively trained part-based models. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 32(9):1627–1645, 2010.

[47] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image
segmentation. International Journal of Computer Vision, 59(2):167–181, 2004.

170

[48] Georgios Floros and Bastian Leibe. Joint 2d-3d temporally consistent semantic
segmentation of street scenes. In IEEE Conference on Computer Vision and
Pattern Recognition, 2012.

[49] Wolfgang Förstner and Eberhard Gülch. A fast operator for detection and
precise location of distinct points, corners and centres of circular features. In
Intercommission Workshop of Int. Soc. for Photogrammetry and Remote Sens-
ing, 1987.

[50] David A. Forsyth and Jean Ponce. Computer Vision: A Modern Approach.
Prentice Hall Professional Technical Reference, 2002.

[51] Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. Spectral
grouping using the nyström method. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 26(2):214–225, 2004.

[52] Charless Fowlkes, Serge Belongie, and Jitendra Malik. Efficient spatiotemporal
grouping using the nystrom method. In IEEE Conference on Computer Vision
and Pattern Recognition, 2001.

[53] Katerina Fragkiadaki, Geng Zhang, and Jianbo Shi. Video segmentation by
tracing discontinuities in a trajectory embedding. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2012.

[54] Huazhu Fu, Dong Xu, Bao Zhang, and Stephen Lin. Object-based multiple
foreground video co-segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition, 2014.

[55] Keinosuke Fukunaga and Larry Hostetler. The estimation of the gradient of a
density function, with applications in pattern recognition. IEEE Transactions
on Information Theory, 21(1):32–40, 1975.

[56] Fabio Galasso, Roberto Cipolla, and Bernt Schiele. Video segmentation with
superpixels. In Asian Conference on Computer Vision, 2012.

[57] Fabio Galasso, Margret Keuper, Thomas Brox, and Bernt Schiele. Spectral
graph reduction for efficient image and streaming video segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition, 2014.

[58] Fabio Galasso, Naveen Shankar Nagaraja, Tatiana Jimenez Cardenas, Thomas
Brox, and Bernt Schiele. A unified video segmentation benchmark: Annotation,
metrics and analysis. In IEEE International Conference on Computer Vision,
2013.

[59] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In IEEE Conference on Computer
Vision and Pattern Recognition, 2012.

171

[60] Daniela Giordano, Francesca Murabito, Simone Palazzo, and Concetto Spamp-
inato. Superpixel-based video object segmentation using perceptual organiza-
tion and location prior. In IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

[61] Lena Gorelick, Moshe Blank, Eli Shechtman, Michal Irani, and Ronen Basri.
Actions as space-time shapes. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 29(12):2247–2253, 2007.

[62] Stephen Gould, Richard Fulton, and Daphne Koller. Decomposing a scene into
geometric and semantically consistent regions. In IEEE International Confer-
ence on Computer Vision, 2009.

[63] Hayit Greenspan, Jacob Goldberger, and Arnaldo Mayer. Probabilistic space-
time video modeling via piecewise gmm. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 26(3):384–396, 2004.

[64] Kalanit Grill-Spector. The neural basis of object perception. Current opinion
in neurobiology, 13(2):159–166, 2003.

[65] Matthias Grundmann, Vivek Kwatra, Mei Han, and Irfan Essa. Efficient hi-
erarchical graph-based video segmentation. In IEEE Conference on Computer
Vision and Pattern Recognition, 2010.

[66] Sergio Guadarrama, Niveda Krishnamoorthy, Girish Malkarnenkar, Sub-
hashini Venugopalan, Raymond Mooney, Trevor Darrell, and Kate Saenko.
Youtube2text: Recognizing and describing arbitrary activities using seman-
tic hierarchies and zero-shot recognition. In IEEE International Conference on
Computer Vision, 2013.

[67] Abhinav Gupta, Aniruddha Kembhavi, and Larry S Davis. Observing human-
object interactions: Using spatial and functional compatibility for recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(10):1775–
1789, 2009.

[68] Allan Hanbury. How do superpixels affect image segmentation? In Progress in
Pattern Recognition, Image Analysis and Applications, pages 178–186. Springer,
2008.

[69] Chris Harris and Mike Stephens. A combined corner and edge detector. In
Alvey Vision Conference, 1988.

[70] Glenn Hartmann, Matthias Grundmann, Judy Hoffman, David Tsai, Vivek
Kwatra, Omid Madani, Sudheendra Vijayanarasimhan, Irfan Essa, James Rehg,
and Rahul Sukthankar. Weakly supervised learning of object segmentations
from web-scale video. In European Conference on Computer Vision Workshops,
pages 198–208. Springer, 2012.

172

[71] Xuming He, Richard S Zemel, and Debajyoti Ray. Learning and incorporating
top-down cues in image segmentation. In European Conference on Computer
Vision, 2006.

[72] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[73] Derek Hoiem, Alexei A Efros, and Martial Hebert. Automatic photo pop-up.
In ACM Transactions on Graphics, volume 24, pages 577–584. ACM, 2005.

[74] Adam Hunter and Jonathan D Cohen. Uniform frequency images: adding
geometry to images to produce space-efficient textures. In Visualization 2000.
Proceedings, pages 243–250. IEEE, 2000.

[75] Y. Iwashita, A. Takamine, R. Kurazume, and M. S. Ryoo. First-person animal
activity recognition from egocentric videos. In IEEE International Conference
on Pattern Recognition, 2014.

[76] Hamid Izadinia and Mubarak Shah. Recognizing complex events using large
margin joint low-level event model. In European Conference on Computer Vi-
sion, 2012.

[77] Aastha Jain, Shuanak Chatterjee, and Rene Vidal. Coarse-to-fine semantic
video segmentation using supervoxel trees. In IEEE International Conference
on Computer Vision, 2013.

[78] Arpit Jain, Abhinav Gupta, Mikel Rodriguez, and Larry S Davis. Representing
videos using mid-level discriminative patches. In IEEE Conference on Computer
Vision and Pattern Recognition, 2013.

[79] Mihir Jain, Jan Van Gemert, Hervé Jégou, Patrick Bouthemy, Cees Snoek,
et al. Action localization with tubelets from motion. In IEEE Conference on
Computer Vision and Pattern Recognition, 2014.

[80] Suyog Dutt Jain and Kristen Grauman. Supervoxel-consistent foreground prop-
agation in video. In European Conference on Computer Vision, 2014.

[81] Hueihan Jhuang, Juergen Gall, Silvia Zuffi, Cordelia Schmid, and Michael J.
Black. Towards understanding action recognition. In IEEE International Con-
ference on Computer Vision, 2013.

[82] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks
for human action recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(1):221–231, 2013.

[83] Yan Ke, Rahul Sukthankar, and Martial Hebert. Spatio-temporal shape and
flow correlation for action recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, 2007.

173

[84] Sohaib Khan and Mubarak Shah. Object based segmentation of video using
color, motion and spatial information. In IEEE Conference on Computer Vision
and Pattern Recognition, 2001.

[85] Alexander Kläser, Marcin Marsza lek, and Cordelia Schmid. A spatio-temporal
descriptor based on 3d-gradients. In British Machine Vision Conference, 2008.

[86] Orit Kliper-Gross, Yaron Gurovich, Tal Hassner, and Lior Wolf. Motion in-
terchange patterns for action recognition in unconstrained videos. In European
Conference on Computer Vision, 2012.

[87] Vladimir Kolmogorov and Ramin Zabin. What energy functions can be mini-
mized via graph cuts? Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, 26(2):147–159, 2004.

[88] Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected
crfs with gaussian edge potentials. In Advances in Neural Information Process-
ing Systems, 2011.

[89] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems, 2012.

[90] Hildegard Kuehne, Hueihan Jhuang, Est́ıbaliz Garrote, Tomaso Poggio, and
Thomas Serre. Hmdb: a large video database for human motion recognition.
In IEEE International Conference on Computer Vision, 2011.

[91] Abhijit Kundu, Yin Li, Frank Daellert, Fuxin Li, and James M. Rehg. Joint se-
mantic segmentation and 3d reconstruction from monocular video. In European
Conference on Computer Vision, 2014.

[92] Lubor Ladicky, Christopher Russell, Pushmeet Kohli, and Philip HS Torr. As-
sociative hierarchical crfs for object class image segmentation. In IEEE Inter-
national Conference on Computer Vision, 2009.

[93] Lubor Ladicky, Craig Russell, Pushmeet Kohli, and Philip HS Torr. Associa-
tive hierarchical random fields. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 36(6):1056–1077, 2014.

[94] L’ubor Ladickỳ, Paul Sturgess, Karteek Alahari, Chris Russell, and Philip HS
Torr. What, where and how many? combining object detectors and crfs. In
European Conference on Computer Vision, 2010.

[95] Lubor Ladickỳ, Paul Sturgess, Chris Russell, Sunando Sengupta, Yalin Bas-
tanlar, William Clocksin, and Philip HS Torr. Joint optimization for object
class segmentation and dense stereo reconstruction. International Journal of
Computer Vision, 100(2):122–133, 2012.

174

[96] Tian Lan, Yang Wang, Weilong Yang, and Greg Mori. Beyond actions: Dis-
criminative models for contextual group activities. In Advances in Neural In-
formation Processing Systems, 2010.

[97] Tian Lan, Yuke Zhu, Amir Roshan Zamir, and Silvio Savarese. Action recogni-
tion by hierarchical mid-level action elements. In IEEE International Confer-
ence on Computer Vision, 2015.

[98] Ivan Laptev. On space-time interest points. International Journal of Computer
Vision, 64(2):107–123, 2005.

[99] Ivan Laptev, Marcin Marszalek, Cordelia Schmid, and Benjamin Rozenfeld.
Learning realistic human actions from movies. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2008.

[100] Juho Lee and Seungjin Choi. Incremental tree-based inference with dependent
normalized random measures. In Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics, pages 558–566, 2014.

[101] Juho Lee, Suha Kwak, Bohyung Han, and Seungjin Choi. Online video segmen-
tation by bayesian split-merge clustering. In European Conference on Computer
Vision, 2012.

[102] Yong Jae Lee, Jaechul Kim, and Kristen Grauman. Key-segments for video
object segmentation. In IEEE International Conference on Computer Vision,
2011.

[103] Victor Lempitsky, Andrea Vedaldi, and Andrew Zisserman. A pylon model for
semantic segmentation. In Advances in Neural Information Processing Systems,
2011.

[104] Marius Leordeanu and Martial Hebert. A spectral technique for correspondence
problems using pairwise constraints. In ICCV, 2005.

[105] Alex Levinshtein, Adrian Stere, Kiriakos N Kutulakos, David J Fleet, Sven J
Dickinson, and Kaleem Siddiqi. Turbopixels: Fast superpixels using geomet-
ric flows. IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(12):2290–2297, 2009.

[106] José Lezama, Karteek Alahari, Josef Sivic, and Ivan Laptev. Track to the
future: Spatio-temporal video segmentation with long-range motion cues. In
IEEE Conference on Computer Vision and Pattern Recognition, 2011.

[107] Fuxin Li, Taeyoung Kim, Ahmad Humayun, David Tsai, and James M. Rehg.
Video segmentation by tracking many figure-ground segments. In IEEE Inter-
national Conference on Computer Vision, 2013.

175

[108] Zhenguo Li, Xiao-Ming Wu, and Shih-Fu Chang. Segmentation using superpix-
els: A bipartite graph partitioning approach. In IEEE Conference on Computer
Vision and Pattern Recognition, 2012.

[109] Dahua Lin, Sanja Fidler, Chen Kong, and Raquel Urtasun. Visual semantic
search: Retrieving videos via complex textual queries. In IEEE Conference on
Computer Vision and Pattern Recognition, 2014.

[110] Tony Lindeberg. Scale-space theory: A basic tool for analyzing structures at
different scales. Journal of Applied Statistics, 21(1-2):225–270, 1994.

[111] Tony Lindeberg. Feature detection with automatic scale selection. International
Journal of Computer Vision, 30(2):79–116, 1998.

[112] Buyu Liu and Xuming He. Multiclass semantic video segmentation with object-
level active inference. In IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

[113] Buyu Liu, Xuming He, and Stephen Gould. Joint semantic and geometric
segmentation of videos with a stage model. In IEEE Winter Conference on
Applications of Computer Vision, 2014.

[114] Ce Liu. Beyond pixels: exploring new representations and applications for mo-
tion analysis. PhD thesis, Massachusetts Institute of Technology, 2009.

[115] Ce Liu, William T Freeman, Edward H Adelson, and Yair Weiss. Human-
assisted motion annotation. In IEEE Conference on Computer Vision and Pat-
tern Recognition, 2008.

[116] Jingen Liu, Benjamin Kuipers, and Silvio Savarese. Recognizing human actions
by attributes. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2011.

[117] Jingen Liu, Jiebo Luo, and Mubarak Shah. Recognizing realistic actions from
videos “in the wild”. In IEEE Conference on Computer Vision and Pattern
Recognition, 2009.

[118] Ming-Yu Liu, Oncel Tuzel, Srikumar Ramalingam, and Rama Chellappa. En-
tropy rate superpixel segmentation. In IEEE Conference on Computer Vision
and Pattern Recognition, 2011.

[119] Siying Liu, Guo Dong, Chye Hwang Yan, and Sim Heng Ong. Video segmen-
tation: Propagation, validation and aggregation of a preceding graph. In IEEE
Conference on Computer Vision and Pattern Recognition, 2008.

[120] Xiao Liu, Dacheng Tao, Mingli Song, Ying Ruan, Chun Chen, and Jiajun Bu.
Weakly supervised multiclass video segmentation. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 2014.

176

[121] David G Lowe. Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision, 60(2):91–110, 2004.

[122] Jiasen Lu, Ran Xu, and Jason J. Corso. Human action segmentation with
hierarchical supervoxel consistency. In IEEE Conference on Computer Vision
and Pattern Recognition, 2015.

[123] Anette Lundvall. Ericsson mobility report. Technical report, Ericsson, 2016.

[124] Shugao Ma, Leonid Sigal, and Stan Sclaroff. Space-time tree ensemble for action
recognition. In IEEE Conference on Computer Vision and Pattern Recognition,
2015.

[125] Shugao Ma, Jianming Zhang, Nazli Ikizler-Cinbis, and Stan Sclaroff. Action
recognition and localization by hierarchical space-time segments. In IEEE In-
ternational Conference on Computer Vision, 2013.

[126] Tianyang Ma and Longin Jan Latecki. Maximum weight cliques with mutex
constraints for video object segmentation. In IEEE Conference on Computer
Vision and Pattern Recognition, 2012.

[127] Marcin Marszalek, Ivan Laptev, and Cordelia Schmid. Actions in context. In
IEEE Conference on Computer Vision and Pattern Recognition, 2009.

[128] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database
of human segmented natural images and its application to evaluating segmen-
tation algorithms and measuring ecological statistics. In IEEE International
Conference on Computer Vision, 2001.

[129] Pyry Matikainen, Martial Hebert, and Rahul Sukthankar. Trajectons: Action
recognition through the motion analysis of tracked features. In IEEE Interna-
tional Conference on Computer Vision Workshops, 2009.

[130] Remi Megret and Daniel DeMenthon. A survey of spatio-temporal grouping
techniques. Technical report, UMD, 2002.

[131] Ross Messing, Chris Pal, and Henry Kautz. Activity recognition using the
velocity histories of tracked keypoints. In IEEE International Conference on
Computer Vision, 2009.

[132] Ondrej Miksik, Daniel Munoz, J Andrew Bagnell, and Martial Hebert. Efficient
temporal consistency for streaming video scene analysis. In IEEE International
Conference on Robotics and Automation, 2013.

[133] Alastair P Moore, Simon Prince, Jonathan Warrell, Umar Mohammed, and
Graham Jones. Superpixel lattices. In IEEE Conference on Computer Vision
and Pattern Recognition, 2008.

177

[134] Greg Mori, Xiaofeng Ren, Alexei A Efros, and Jitendra Malik. Recovering
human body configurations: Combining segmentation and recognition. In IEEE
Conference on Computer Vision and Pattern Recognition, 2004.

[135] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan
Lee, Sanja Fidler, Raquel Urtasun, and Alan Yuille. The role of context for
object detection and semantic segmentation in the wild. In IEEE Conference
on Computer Vision and Pattern Recognition, 2014.

[136] S. Muthukrishnan. Data streams: Algorithms and applications. Foundations
and Trends in Theoretical Computer Science, 1(2), 2005.

[137] Manjunath Narayana, Allen Hanson, and Erik Learned-Miller. Coherent motion
segmentation in moving camera videos using optical flow orientations. In IEEE
International Conference on Computer Vision, 2013.

[138] Juan Carlos Niebles, Chih-Wei Chen, and Li Fei-Fei. Modeling temporal struc-
ture of decomposable motion segments for activity classification. In European
Conference on Computer Vision, 2010.

[139] J Farley Norman, Flip Phillips, and Heather E Ross. Information concentration
along the boundary contours of naturally shaped solid objects. Perception,
30(11):1285–1294, 2001.

[140] Peter Ochs and Thomas Brox. Object segmentation in video: a hierarchical
variational approach for turning point trajectories into dense regions. In IEEE
International Conference on Computer Vision, 2011.

[141] Dan Oneata, Jérôme Revaud, Jakob Verbeek, and Cordelia Schmid. Spatio-
temporal object detection proposals. In European Conference on Computer
Vision, 2014.

[142] Haluk Öǧmen. A theory of moving form perception: Synergy between mask-
ing, perceptual grouping, and motion computation in retinotopic and non-
retinotopic representations. Advances in Cognitive Psychology, 3(1):67–84,
2007.

[143] G. Palou and P. Salembier. Hierarchical video representation with trajectory
binary partition tree. In IEEE Conference on Computer Vision and Pattern
Recognition, 2013.

[144] Anestis Papazoglou and Vittorio Ferrari. Fast object segmentation in uncon-
strained video. In IEEE International Conference on Computer Vision, 2013.

[145] Sylvain Paris. Edge-preserving smoothing and mean-shift segmentation of video
streams. In European Conference on Computer Vision, 2008.

178

[146] Sylvain Paris and Frédo Durand. A topological approach to hierarchical seg-
mentation using mean shift. In IEEE Conference on Computer Vision and
Pattern Recognition, 2007.

[147] Nilesh V Patel and Ishwar K Sethi. Video shot detection and characterization
for video databases. Pattern Recognition, 30(4):583–592, 1997.

[148] Mingtao Pei, Yunde Jia, and Song-Chun Zhu. Parsing video events with goal
inference and intent prediction. In IEEE International Conference on Computer
Vision, 2011.

[149] Xiaojiang Peng, Changqing Zou, Yu Qiao, and Qiang Peng. Action recognition
with stacked fisher vectors. In European Conference on Computer Vision, 2014.

[150] Jeannine Pinto and Maggie Shiffrar. The visual perception of human and animal
motion in point-light displays. Social Neuroscience, 4(4):332–346, 2009.

[151] Jordi Pont-Tuset and Ferran Marques. Supervised assessment of segmentation
hierarchies. In European Conference on Computer Vision, 2012.

[152] Brian L Price, Bryan S Morse, and Scott Cohen. Livecut: Learning-based
interactive video segmentation by evaluation of multiple propagated cues. In
IEEE International Conference on Computer Vision, 2009.

[153] S Avinash Ramakanth and R Venkatesh Babu. Seamseg: Video object seg-
mentation using patch seams. In IEEE Conference on Computer Vision and
Pattern Recognition, 2014.

[154] Michalis Raptis and Stefano Soatto. Tracklet descriptors for action modeling
and video analysis. In European Conference on Computer Vision, 2010.

[155] S Hussain Raza, Matthias Grundmann, and Irfan Essa. Geometric context from
videos. In IEEE Conference on Computer Vision and Pattern Recognition, 2013.

[156] Kishore K Reddy and Mubarak Shah. Recognizing 50 human action categories
of web videos. Machine Vision and Applications Journal, 2012.

[157] Xiaofeng Ren, Liefeng Bo, and D Fox. Rgb-(d) scene labeling: Features and
algorithms. In IEEE Conference on Computer Vision and Pattern Recognition,
2012.

[158] Xiaofeng Ren and Jitendra Malik. Learning a classification model for segmen-
tation. In IEEE International Conference on Computer Vision, 2003.

[159] Xiaofeng Ren and Jitendra Malik. Tracking as repeated figure/ground seg-
mentation. In IEEE Conference on Computer Vision and Pattern Recognition,
2007.

179

[160] Matthias Reso, Jörn Jachalsky, Bodo Rosenhahn, and Jörn Ostermann. Tem-
porally consistent superpixels. In IEEE International Conference on Computer
Vision, 2013.

[161] M.D. Rodriguez, J. Ahmed, and M. Shah. Action mach a spatio-temporal maxi-
mum average correlation height filter for action recognition. In IEEE Conference
on Computer Vision and Pattern Recognition, 2008.

[162] Bryan C Russell, Antonio Torralba, Kevin P Murphy, and William T Freeman.
Labelme: a database and web-based tool for image annotation. International
Journal of Computer Vision, 77(1-3):157–173, 2008.

[163] Sreemanananth Sadanand and Jason J Corso. Action bank: A high-level rep-
resentation of activity in video. In IEEE Conference on Computer Vision and
Pattern Recognition, 2012.

[164] Mohammad Amin Sadeghi and Ali Farhadi. Recognition using visual phrases.
In IEEE Conference on Computer Vision and Pattern Recognition, 2011.

[165] Cordelia Schmid and Roger Mohr. Local grayvalue invariants for image retrieval.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(5):530–
535, 1997.

[166] Cordelia Schmid, Roger Mohr, and Christian Bauckhage. Evaluation of inter-
est point detectors. International Journal of Computer Vision, 37(2):151–172,
2000.

[167] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human ac-
tions: a local svm approach. In IEEE International Conference on Pattern
Recognition, 2004.

[168] Paul Scovanner, Saad Ali, and Mubarak Shah. A 3-dimensional sift descriptor
and its application to action recognition. In ACM International Conference on
Multimedia, 2007.

[169] Eitan Sharon, Achi Brandt, and Ronen Basri. Fast multiscale image segmenta-
tion. In IEEE Conference on Computer Vision and Pattern Recognition, 2000.

[170] Eitan Sharon, Meirav Galun, Dahlia Sharon, Ronen Basri, and Achi Brandt.
Hierarchy and adaptivity in segmenting visual scenes. Nature, 442(7104):810–
813, 2006.

[171] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–
905, 2000.

[172] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio,
Richard Moore, Alex Kipman, and Andrew Blake. Real-time human pose recog-
nition in parts from a single depth image. In IEEE Conference on Computer
Vision and Pattern Recognition, 2011.

180

[173] Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi. Texton-
boost: Joint appearance, shape and context modeling for multi-class object
recognition and segmentation. In European Conference on Computer Vision,
2006.

[174] Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi. Texton-
boost for image understanding: Multi-class object recognition and segmenta-
tion by jointly modeling texture, layout, and context. International Journal of
Computer Vision, 81(1):2–23, 2009.

[175] Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks
for action recognition in videos. In Advances in Neural Information Processing
Systems, 2014.

[176] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. In International Conference on Learning Repre-
sentations, 2015.

[177] Paul Sturgess, Karteek Alahari, Lubor Ladicky, and Philip Torr. Combining
appearance and structure from motion features for road scene understanding.
In British Machine Vision Conference, 2009.

[178] Deqing Sun, Stefan Roth, and Michael J Black. Secrets of optical flow estimation
and their principles. In IEEE Conference on Computer Vision and Pattern
Recognition, 2010.

[179] Ju Sun, Yadong Mu, Shuicheng Yan, and Loong-Fah Cheong. Activity recogni-
tion using dense long-duration trajectories. In IEEE International Conference
on Multimedia and Expo, 2010.

[180] Ju Sun, Xiao Wu, Shuicheng Yan, Loong-Fah Cheong, Tat-Seng Chua, and
Jintao Li. Hierarchical spatio-temporal context modeling for action recognition.
In IEEE Conference on Computer Vision and Pattern Recognition, 2009.

[181] Patrik Sundberg, Thomas Brox, Michael Maire, Pablo Arbeláez, and Jitendra
Malik. Occlusion boundary detection and figure/ground assignment from op-
tical flow. In IEEE Conference on Computer Vision and Pattern Recognition,
2011.

[182] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In IEEE Conference on Computer
Vision and Pattern Recognition, 2015.

[183] A. Tamrakar, S. Ali, Q. Yu, J. Liu, O. Javed, A. Divakaran, H. Cheng, and
H. Sawhney. Evaluation of low-level features and their combinations for complex
event detection in open source videos. In IEEE Conference on Computer Vision
and Pattern Recognition, 2012.

181

[184] J. Tang, S. Yan, R. Hong, G.-J. Qi, and T.-S. Chua. Inferring semantic concepts
from community-contributed images and noisy tags. In ACM International
Conference on Multimedia, 2009.

[185] Kevin Tang, Rahul Sukthankar, Jay Yagnik, and Li Fei-Fei. Discriminative
segment annotation in weakly labeled video. In IEEE Conference on Computer
Vision and Pattern Recognition, 2013.

[186] Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R Walter,
Ashis Gopal Banerjee, Seth J Teller, and Nicholas Roy. Understanding nat-
ural language commands for robotic navigation and mobile manipulation. In
AAAI Conference on Artificial Intelligence, 2011.

[187] Yicong Tian, Rahul Sukthankar, and Mubarak Shah. Spatiotemporal de-
formable part models for action detection. In IEEE Conference on Computer
Vision and Pattern Recognition, 2013.

[188] Joseph Tighe and Svetlana Lazebnik. Superparsing: scalable nonparametric
image parsing with superpixels. International Journal of Computer Vision,
2010.

[189] Joseph Tighe and Svetlana Lazebnik. Superparsing: scalable nonparametric
image parsing with superpixels. In European Conference on Computer Vision,
2010.

[190] Joseph Tighe and Svetlana Lazebnik. Superparsing: scalable nonparametric
image parsing with superpixels. International Journal of Computer Vision,
2012.

[191] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar
Paluri. Learning spatiotemporal features with 3d convolutional networks. In
IEEE International Conference on Computer Vision, 2015.

[192] Subarna Tripathi, Youngbae Hwang, Serge Belongie, and Truong Nguyen. Im-
proving streaming video segmentation with early and mid-level visual process-
ing. In IEEE Winter Conference on Applications of Computer Vision, 2014.

[193] David Tsai, Matthew Flagg, and James M Rehg. Motion coherent tracking with
multi-label mrf optimization. In British Machine Vision Conference, 2010.

[194] Tinne Tuytelaars and Luc J Van Gool. Wide baseline stereo matching based on
local, affinely invariant regions. In British Machine Vision Conference, 2000.

[195] Jasper RR Uijlings, Koen EA van de Sande, Theo Gevers, and Arnold WM
Smeulders. Selective search for object recognition. International Journal of
Computer Vision, 104(2):154–171, 2013.

182

[196] Michael Van den Bergh, Gemma Roig, Xavier Boix, Santiago Manen, and Luc
Van Gool. Online video seeds for temporal window objectness. In IEEE Inter-
national Conference on Computer Vision, 2013.

[197] David Varas and Ferran Marques. Region-based particle filter for video object
segmentation. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2014.

[198] Amelio Vazquez-Reina, Shai Avidan, Hanspeter Pfister, and Eric Miller. Mul-
tiple hypothesis video segmentation from superpixel flows. In European Con-
ference on Computer Vision, 2010.

[199] Olga Veksler, Yuri Boykov, and Paria Mehrani. Superpixels and supervoxels
in an energy optimization framework. In European Conference on Computer
Vision, 2010.

[200] Alexander Vezhnevets, Vittorio Ferrari, and Joachim M Buhmann. Weakly
supervised semantic segmentation with a multi-image model. In IEEE Interna-
tional Conference on Computer Vision, 2011.

[201] Luc Vincent and Pierre Soille. Watersheds in digital spaces: an efficient algo-
rithm based on immersion simulations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 13(6):583–598, 1991.

[202] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Action recognition by dense
trajectories. In IEEE Conference on Computer Vision and Pattern Recognition,
2011.

[203] Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu. Dense tra-
jectories and motion boundary descriptors for action recognition. International
Journal of Computer Vision, 2013.

[204] Heng Wang and Cordelia Schmid. Action recognition with improved trajecto-
ries. In IEEE International Conference on Computer Vision, 2013.

[205] Jue Wang, Bo Thiesson, Yingqing Xu, and Michael Cohen. Image and video
segmentation by anisotropic kernel mean shift. In European Conference on
Computer Vision, 2004.

[206] Jue Wang, Yingqing Xu, Heung-Yeung Shum, and Michael F Cohen. Video
tooning. In ACM SIGGRAPH, 2004.

[207] Le Wang, Gang Hua, Rahul Sukthankar, Jianru Xue, and Nanning Zheng.
Video object discovery and co-segmentation with extremely weak supervision.
In European Conference on Computer Vision, 2014.

[208] Limin Wang, Yu Qiao, and Xiaoou Tang. Action recognition with trajectory-
pooled deep-convolutional descriptors. In IEEE Conference on Computer Vision
and Pattern Recognition, 2015.

183

[209] Shu Wang, Huchuan Lu, Fan Yang, and Ming-Hsuan Yang. Superpixel tracking.
In IEEE International Conference on Computer Vision, 2011.

[210] Geert Willems, Tinne Tuytelaars, and Luc Van Gool. An efficient dense and
scale-invariant spatio-temporal interest point detector. In European Conference
on Computer Vision, 2008.

[211] Andrew P. Witkin. Scale-space filtering. In International Joint Conference on
Artificial Intelligence, 1983.

[212] Christian Wojek and Bernt Schiele. A dynamic conditional random field model
for joint labeling of object and scene classes. In European Conference on Com-
puter Vision, 2008.

[213] Shu-Fai Wong and Roberto Cipolla. Extracting spatiotemporal interest points
using global information. In IEEE International Conference on Computer Vi-
sion, 2007.

[214] Chenliang Xu and Jason J Corso. Evaluation of super-voxel methods for early
video processing. In IEEE Conference on Computer Vision and Pattern Recog-
nition, 2012.

[215] Chenliang Xu and Jason J. Corso. Actor-action semantic segmentation with
grouping process models. In IEEE Conference on Computer Vision and Pattern
Recognition, 2016.

[216] Chenliang Xu and Jason J. Corso. Libsvx: A supervoxel library and benchmark
for early video processing. International Journal of Computer Vision, 2016.

[217] Chenliang Xu, Richard F. Doell, Stephen José Hanson, Catherine Hanson, and
Jason J. Corso. Are actor and action semantics retained in video supervoxel
segmentation? In IEEE International Conference on Semantic Computing,
2013.

[218] Chenliang Xu, Richard F. Doell, Stephen José Hanson, Catherine Hanson, and
Jason J. Corso. A study of actor and action semantic retention in video super-
voxel segmentation. International Journal of Semantic Computing, 07(04):353–
375, 2013.

[219] Chenliang Xu, Shao-Hang Hsieh, Caiming Xiong, and Jason J. Corso. Can
humans fly? action understanding with multiple classes of actors. In IEEE
Conference on Computer Vision and Pattern Recognition, 2015.

[220] Chenliang Xu, Spencer Whitt, and Jason J. Corso. Flattening supervoxel hi-
erarchies by the uniform entropy slice. In IEEE International Conference on
Computer Vision, 2013.

[221] Chenliang Xu, Caiming Xiong, and Jason J. Corso. Streaming hierarchical
video segmentation. In European Conference on Computer Vision, 2012.

184

[222] Bangpeng Yao, Xiaoye Jiang, Aditya Khosla, Andy Lai Lin, Leonidas Guibas,
and Li Fei-Fei. Human action recognition by learning bases of action attributes
and parts. In IEEE International Conference on Computer Vision, 2011.

[223] Jian Yao, Sanja Fidler, and Raquel Urtasun. Describing the scene as a whole:
Joint object detection, scene classification and semantic segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition, 2012.

[224] Lahav Yeffet and Lior Wolf. Local trinary patterns for human action recogni-
tion. In IEEE International Conference on Computer Vision, 2009.

[225] Jenny Yuen, Bryan Russell, Ce Liu, and Antonio Torralba. Labelme video:
Building a video database with human annotations. In IEEE International
Conference on Computer Vision. IEEE, 2009.

[226] Gang Zeng, Peng Wang, Jingdong Wang, Rui Gan, and Hongbin Zha.
Structure-sensitive superpixels via geodesic distance. In IEEE International
Conference on Computer Vision, 2011.

[227] Dong Zhang, Omar Javed, and Mubarak Shah. Video object segmentation
through spatially accurate and temporally dense extraction of primary object
regions. In IEEE Conference on Computer Vision and Pattern Recognition,
2013.

[228] Dong Zhang, Omar Javed, and Mubarak Shah. Video object co-segmentation
by regulated maximum weight cliques. In European Conference on Computer
Vision, 2014.

[229] Weiyu Zhang, Menglong Zhu, and Konstantinos G. Derpanis. From actemes to
action: A strongly-supervised representation for detailed action understanding.
In IEEE International Conference on Computer Vision, 2013.

[230] Yu Zhang, Xiaowu Chen, Jia Li, Chen Wang, and Changqun Xia. Semantic
object segmentation via detection in weakly labeled video. In IEEE Conference
on Computer Vision and Pattern Recognition, 2015.

[231] Jun Zhu, Baoyuan Wang, Xiaokang Yang, Wenjun Zhang, and Zhuowen Tu.
Action recognition with actons. In IEEE International Conference on Computer
Vision, 2013.

[232] C Lawrence Zitnick and Devi Parikh. The role of image understanding in con-
tour detection. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2012.

185

