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ABSTRACT

Functional Analytic Perspectives on Nonparametric Density Estimation

by

Robert A. Vandermeulen

Chair: Clayton Scott

Nonparametric density estimation is a classic problem in statistics. In the standard

estimation setting, when one has access to iid samples from an unknown distribution,

there exist several established and well-studied nonparametric density estimators. Yet

there remains interesting alternative settings which are less well-studied. This work

considers two such settings. First we consider the case where the data contains some

contamination, i.e. a portion of the data is not distributed according to the density we

would like to estimate. In this setting one would like an estimator which is robust to

the contaminating data. An approach to this was suggested in Kim and Scott (2012).

The estimator in that paper was analytically and experimentally shown to be robust,

but no consistency result was presented. In Chapter II it is demonstrated that this

estimator is indeed consistent for a class of convex losses. Chapter III introduces a new

robust kernel density estimator based on scaling and projection in Hilbert space. This

estimator is proven to be consistent and will converge to the true density provided

certain assumptions on the contaminating distribution. Its efficacy is demonstrated

experimentally by applying it to several datasets. Chapter IV considers a different

setting which can be thought of as nonparametric mixture modelling. Here one would

x



like to estimate multiple densities with access to groups of samples where each sample

in a group is known to be distributed according the same unknown density. Tight

identifiability bounds and a highly general algorithm for recovery of the densities are

presented for this setting.

Functional analysis is a unifying theme of these problems. Hilbert spaces in partic-

ular are used extensively for the construction of estimators and mathematical analysis.
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CHAPTER I

Introduction

There are two major thrusts of research presented in this thesis and they will be

introduced separately.

1.1 Kernel Density Estimation

Density estimation is one of the oldest problems in statistics. Given data one

would like to estimate its underlying distribution. Oftentimes the data is known to

come from a parametric class of distributions, such as the class Gaussian distributions.

In this case one simply needs to estimate the parameters of the distribution. When

the data come form a class which is too complicated to effectively model, or perhaps

wholly unknown distribution, one resorts to using a nonparametric density estimator.

There are several examples of such estimators, but arguably the most commonly used

estimator is the kernel density estimator. The estimator is as follows. Let f : Rd → R

be a pdf and X1, . . . , Xn be iid samples from f . Let kσ (x, x′) be a radial smoothing

kernel of the form kσ (x, x′) = σ−dq (‖x− x′‖2 /σ) for some function q ≥ 0 such that

q (‖·‖2) is a pdf on Rd. Then

f̄nσ :=
1

n

n∑
i=1

kσ (·, Xi)

1



is the well-known kernel density estimator (KDE) (Silverman (1986), Scott (1992),

Devroye and Lugosi (2001)).

This estimator has many desirable properties. Foremost it is universally consis-

tent. If we allow n → ∞ and σ → 0 with a rate satisfying nσd → ∞ then we have

that
∥∥f − f̄nσ ∥∥ p→ 0 in both the 1 and 2 norms Devroye and Lugosi (2001). With more

restrictive assumptions on the kernel, density f , and rate on σ the consistency extends

further to the ∞ norm Giné and Guillou (2002). The KDE also avoids boundary is-

sues associated with another popular nonparametric density estimator, the histogram

Silverman (1986).

One issue with kernel density estimators is a lack of robustness. This work contains

two major contributions to the problem of robust kernel density estimation. The first

contribution is proving the consistency of a previously proposed robust kernel density

estimator.

1.1.1 Consistency of The Robust Kernel Density Estimator

In Kim and Scott (2012) the authors suggest a modification of the KDE to in-

duce robustness. In order to construct this estimator we additionally assume that

kσ is positive-semidefinite. Thus kσ (x, x′) = 〈Φσ (x) ,Φσ (x′)〉Hσ , where Hσ is the

reproducing kernel Hilbert space (RKHS) associated with kσ (Aronszajn, 1950), and

Φσ (x) := kσ (·, x) is the canonical feature map (Steinwart and Christmann, 2008).

Some kernels satisfying these properties include the multivariate Gaussian, Laplacian,

and Student kernels.

With this notation, the KDE may be written as

f̄nσ =
1

n

n∑
i=1

Φσ (Xi) ,

the mean of the mapped data. The sample mean is easily shown to be the unique

2



solution of a least squares problem

f̄nσ = argmin
g∈Hσ

1

n

n∑
i=1

‖g − Φσ (Xi)‖2
Hσ .

Replacing the squared loss with a robust loss ρ, yields a robust kernel density estima-

tor:

fnσ = argmin
g∈Hσ

1

n

n∑
i=1

ρ
(
‖g − Φσ (Xi)‖Hσ

)
. (1.1)

This construction was first introduced by Kim and Scott (2012) where they established

several properties including a representer theorem, a convergent iterative algorithm,

and the influence function. The representer theorem states that

fnσ =
n∑
i=1

αiΦσ (Xi) ,

where αi ≥ 0 and
∑n

1 αi = 1.

In this work we will establish consistency of the RKDE in the L1 norm for a class

of convex losses.

1.1.2 Related Work

The consistency of kernel density estimators has been established under the L1

norm with very weak assumptions on distribution and kernel (Devroye and Lugosi ,

2001). Necessary conditions on n and σ for L1 consistency of the KDE are n → ∞

with σ → 0 and rate on bandwidth nσd → ∞. Sup-norm consistency has also been

established for a less general class of kernels and densities requiring more restrictive

regularity conditions (Silverman (1978), Stute (1982), Einmahl and Mason (2000),

Deheuvels (2000), Giné and Guillou (2002), Gine et al. (2004), Wied and Weissbach

(2012)).

3



Consistency proofs tend to proceed by decomposing the error into a stochastic

estimation error and a non-stochastic approximation error, namely

∥∥f̄nσ − f∥∥ ≤ ∥∥f̄nσ − f̄σ∥∥+
∥∥f̄σ − f∥∥ ,

Where f̄σ =
∫
kσ (·, x) f (x) dx =

∫
Φσ (x) f (x) dx. The right summand is shown to

go to zero analytically and the left summand is shown to go to zero with techniques

from empirical process theory. We will show a simple proof of the consistency of the

KDE using this decomposition and Bennett’s inequality for Hilbert space to control

the stochastic term. However, this decomposition is less fruitful for the RKDE, for

which fσ does not have a closed form expression (see Section 5.1). Instead, we use

a completely different technique by investigating the convergent iterative algorithm

used to compute the RKDE in Kim and Scott (2012).

1.1.3 Scale and Project Kernel Density Estimator

In Chapter III we introduce a new robust kernel density estimator. We consider

the situation where most observations come from a target density ftar but some

observations are drawn from a contaminating density fcon, so our observed samples

come from the density fobs = (1− ε) ftar + εfcon. It is not known which component a

given observation comes from. When considering this scenario in the infinite sample

setting we would like to construct some transform that, when applied to fobs, yields

ftar. We introduce a new formalism to describe transformations that “decontaminate”

fobs under sufficient conditions on ftar and fcon. We focus on a specific nonparametric

condition on ftar and fcon that reflects the intuition that the contamination manifests

in low density regions of ftar. In the finite sample setting, we seek a nonparametric

density estimator that converges to ftar asymptotically. Thus, we construct a weighted

KDE where the kernel weights are lower in low density regions and higher in high

4



density regions. To do this we multiply the standard KDE by a real value greater than

one (scale) and then find the closest pdf to the scaled KDE in the L2 norm (project),

resulting in a scaled and projected kernel density estimator (SPKDE). Because the

squared L2 norm penalizes point-wise differences between functions quadratically,

this causes the SPKDE to draw weight from the low density areas of the KDE and

move it to high density areas to get a more uniform difference to the scaled KDE.

The asymptotic limit of the SPKDE is a scaled and shifted version of fobs. Given

our proposed sufficient conditions on ftar and fcon, the SPKDE can asymptotically

recover ftar.

In this work we present a new formalism for nonparametric density estimation,

necessary and sufficient conditions for decontamination, the construction of the SP-

KDE, and a proof of consistency. We also include experimental results applying the

algorithm to benchmark datasets with comparisons to the RKDE, traditional KDE,

and an alternative robust KDE implementation. Many of our results and proof tech-

niques are novel in KDE literature.

1.2 Nonparametric Mixture Models

Chapter IV addresses a different sort of problem which is related to mixture mod-

elling. A finite mixture model P is a probability measure over a space of probability

measures where P ({µi}) = wi > 0 for some finite collection of probability measures

µ1, . . . , µm and
∑m

i=1wi = 1. A realization from this mixture model first randomly

selects some mixture component µ ∼ P and then draws from µ. Mixture models

have seen extensive use in statistics and machine learning.

A central theoretical question concerning mixture models is that of identifiability.

A mixture model is said to be identifiable if there is no other mixture model that

defines the same distribution over the observed data. Classically mixture models

were concerned with the case where the observed data X1, X2, . . . are iid with Xi

5



distributed according to some unobserved random measure µi with µi
iid∼ P. This

situation is equivalent to Xi
iid∼
∑m

j=1wjµj. If we impose no restrictions on the

mixture components µ1, . . . , µm one could easily concoct many choices of µj and wj

which yield an identical distribution on Xi. Because of this, most previous work

on identifiability assumes some sort of structure on µ1, . . . , µm, such as Gaussianity

Anderson et al. (2014); Bruni and Koch (1985); Yakowitz and Spragins (1968). In

this work we consider an alternative scenario where we make no assumptions on

µ1, . . . , µm and instead have access to groups of samples that are known to come

from the same component. We will call these groups of samples “random groups.”

Mathematically a random group is a random element Xi where Xi = (Xi,1, . . . , Xi,n)

with Xi,1, . . . , Xi,n
iid∼ µi and µi

iid∼ P.

In this setting identifiability is now concerned with the distribution over Xi and

the value of n, the number of samples in each random group. We call a mixture of

measures P n-identifiable if it is the simplest mixture model (in terms of number of

mixture components) that yields the observed distribution on Xi. We also introduce a

concept which is stronger than identifiability. We call P n-determined if it is the only

mixture model that yields the observed distribution on Xi. In this work we show that

every mixture model with m components is (2m− 1)-identifiable and 2m-determined.

Furthermore we show that any mixture model with linearly independent components

is 3-identifiable and 4-determined. We also show that a mixture model with jointly

irreducible components is 2-determined. These results hold for any mixture model

over any space and cannot be improved. Finally, using these results, we demonstrate

some new and old results on the identifiability of multinomial mixture models.

We also include algorithms for the recovery of the mixture components culmi-

nating in a algorithm for the recovery of mixtures of categorical distributions with

m arbitrary mixture components provided 2m − 1 samples per group. We include

experimental results showing that this algorithm does indeed recover the mixture

6



components from data.

1.2.1 Previous Work

In classical mixture model theory identifiability is achieved by making assumptions

about the mixture components. Some assumptions which yield identifiability are

Gaussian or binomial mixture components Bruni and Koch (1985); Teicher (1963).

If one makes no assumptions on the mixture components then one must leverage some

other type of structure in order to achieve identifiability. An example of such structure

exists in the context of multiview models. In a multiview model samples have the

form Xi = (Xi,1, . . . , Xi,n) and the distribution of Xi is defined by
∑m

i=1wi
∏n

j=1 µ
j
i .

In Allman et al. (2009) it was shown that if µji are probability distributions on R with

µj1, . . . , µ
j
m linearly independent for all j and n ≥ 3, then the model is identifiable.

The setting which we investigate is a special case of the multiview model where

µji = µj
′

i for all i, j, j′. If the sample space of the µi is finite then this problem is

exactly the topic modelling problem with a finite number of topics and one topic for

each document. In topic modelling each µi is a “topic” and the sample space is a

finite collection of words. This setting is well studied and it has been shown that one

can recover the true topics provided certain assumptions on the topics Allman et al.

(2009); Anandkumar et al. (2014); Arora et al. (2012). This problem was studied

for arbitrary topics in Rabani et al. (2014). In this paper the authors introduce an

algorithm that recovers any mixture of m topics provided 2m−1 words per document.

They also show, in a result analogous to our own, that this 2m − 1 value cannot be

improved. Our proof techniques are quite different than those used in Rabani et al.

(2014), hold for arbitrary sample spaces, and are less complex. Additional connections

to previous work are given in Chapter IV.
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CHAPTER II

Consistency of Robust Kernel Density Estimators

In this chapter we present a proof of the consistency of the robust kernel density

estimator (RKDE) described in Kim and Scott (2012). First we will introduce the

statistical setting for the estimator and quickly review the classic kernel density es-

timator (KDE). Next we demonstrate a new proof of the consistency of the KDE.

Components of this proof will be useful for proving the consistency of the RKDE. Af-

ter this we introduce the RKDE and a few results from Kim and Scott (2012). Then

we will prove the consistency of the RKDE. For readability many of the lemmas will

only include proof sketches and full proofs can be found at the end of the chapter.

Let f : Rd → R be a pdf and X1, . . . , Xn be iid samples from f . Let kσ (x, x′) be a

radial smoothing kernel of the form kσ (x, x′) = σ−dq (‖x− x′‖2 /σ) for some function

q ≥ 0 such that q (‖·‖2) is a pdf on Rd. Then

f̄nσ :=
1

n

n∑
i=1

kσ (·, Xi)

is the well-known KDE (Silverman (1986), Scott (1992), Devroye and Lugosi (2001)).

We will additionally assume that kσ is positive semi-definite. Thus kσ (x, x′) =

〈Φσ (x) ,Φσ (x′)〉Hσ , where Hσ is the reproducing kernel Hilbert space (RKHS) as-

sociated with kσ (Aronszajn, 1950), and Φσ (x) := kσ (·, x) is the canonical feature

map (Steinwart and Christmann, 2008). With this notation we have that the KDE

8



can be represented as

f̄nσ =
1

n

n∑
i=1

Φσ(Xi).

Using basic techniques from calculus of variations it is straightforward to show that

the KDE is equal to the minimizer of a least squares problem

f̄nσ = arg min
g∈Hσ

1

n

n∑
i=1

‖g − Φσ (Xi)‖2
Hσ .

By replacing the squared loss with a robust loss ρ we arrive at the RKDE from Kim

and Scott (2012)

arg min
g∈Hσ

1

n

n∑
i=1

ρ
(
‖g − Φσ (Xi)‖Hσ

)
.

Note that for radial kernels we have

‖Φσ (x)‖Hσ =
√
σ−dq (‖x− x‖2 /σ)

=
√
q(0)σ−d/2

which does not depend on x. Because of this, we will abuse notation slightly and let

‖Φσ‖Hσ , ‖Φσ (x)‖Hσ . Note that as σ → 0, ‖Φσ‖Hσ grows without bound, a fact we

will use frequently. Throughout this chapter σ will implicitly be a function of n, such

that σ → 0 as n→∞. We will use fnσ to denote the RKDE for a general loss ρ and

f̄nσ to denote the special case corresponding to ρ (·) = (·)2, i.e. the classic KDE.

9



2.1 Novel KDE Consistency Proof

First we will introduce a construction that will be used frequently throughout the

chapter:

Dσ =

{∫
Φσ(x)dν(x)

∣∣∣ν is a probability measure

}
.

Note that this and all Hilbert space valued integrals are Bochner integrals; see Stein-

wart and Christmann (2008) for a basic introduction to Bochner integrals. For this

chapter these integrals can be thought of as the convolution of the kernel with a mea-

sure. This in turn implies that all elements of Dσ are pdfs. In fact all of the density

estimators in this chapter will be an element of some Dσ.

We will now present a novel proof of L1 consistency of the kernel density estimator.

Theorem II.1. If n→∞ and σ → 0 with nσd →∞ then
∥∥f̄nσ − f∥∥1

p→ 0.

Proof. Let f̄σ = EX∼f [Φσ (X)]. By the triangle inequality we have

∥∥f − f̄nσ ∥∥1
≤
∥∥f − f̄σ∥∥1

+
∥∥f̄nσ − f̄σ∥∥1

.

The left term in the sum goes to zero by elementary analysis (Devroye and Lugosi ,

2001). We only need to show that
∥∥f̄nσ − f̄σ∥∥1

p→ 0. First we show convergence in the

RKHS.

Lemma II.2. Let ε > 0. For sufficiently small σ,

P
(∥∥f̄nσ − f̄σ∥∥Hσ ≥ ε

)
≤ exp

{
− nε2

4 ‖Φσ‖2
Hσ

}
.

Therefore if n→∞ and σ → 0 with nσd →∞, then
∥∥f̄nσ − f̄σ∥∥Hσ p→ 0.

10



Proof Sketch. Observe that

E
[
f̄nσ
]

= E

[
1

n

n∑
1

Φσ (Xi)

]
= EX∼f [Φσ (X)] = f̄σ.

This fact combined with Bennett’s inequality for Hilbert space yields the inequality

in the lemma, after some trivial manipulations. The second part of the lemma is a

simple consequence of the inequality.

The previous lemma follows from Bennett’s inequality for Hilbert space, but Ho-

effding’s or Bernstein’s inequality for Hilbert space would also suffice (Pinelis , 1994).

For other examples of simple proofs using concentration inequalities see Caponnetto

and Vito (2007) and Bauer et al. (2007). The next lemma allows us to bound L1

norms over sets of finite Lebesgue measure. Let λ denote Lebesgue measure.

Lemma II.3. Let S ∈ Rd be a set with finite Lebesgue measure and g ∈ Hσ. Then

∫
S

|g(x)| dx ≤ 2
√
λ(S) ‖g‖Hσ .

Proof Sketch. We will present a proof for the situation where g > 0. For the general

case we can split the following integral into two parts corresponding to the subsets of

11



S where g is positive and g is negative. We have,

∫
S

g (x) dx

2

=

∫
S

〈Φσ (x) , g〉Hσ dx

2

=

〈∫
S

Φσ (x) dx, g

〉
Hσ

2

≤

∥∥∥∥∥∥
∫
S

Φσ (x) dx

∥∥∥∥∥∥
2

Hσ

‖g‖2
Hσ

=

∫
S

∫
S

〈Φσ (x) ,Φσ (x′)〉Hσ dxdx
′ ‖g‖2

Hσ

=

∫
S

∫
S

kσ (x, x′) dxdx′ ‖g‖2
Hσ

≤
∫
S

1dx ‖g‖2
Hσ

= λ (S) ‖g‖2
Hσ .

For pdfs embedded in RKHSs, Lemma II.3 allows us to show that Hσ convergence

implies L1 convergence.

Lemma II.4. Let f : Rd → R be a pdf and gnσ and hnσ be sequences of (possibly

random) densities in a sequence of spaces Dσ (again σ is implicitly a function of n).

If ‖gnσ − f‖1

p→ 0 and ‖gnσ − hnσ‖Hσ
p→ 0 then ‖gnσ − hnσ‖1

p→ 0 .

Proof Sketch. Define B (y, r) to be the open ball centered at y with radius r and χS

to be the indicator function on the set S. Let ε > 0. Choose r large enough that∫
B(0,r)C

f (x) dx < ε/3 (this is possible by Lemma II.11 in Section 2.3). Since B (0, r)

12



and B (0, r)C partition Rd we have

‖gnσ − hnσ‖1 =
∥∥∥(gnσ − hnσ)

(
χB(0,r) + χB(0,r)C

)∥∥∥
1

=
∥∥(gnσ − hnσ)χB(0,r)

∥∥
1

+
∥∥∥(gnσ − hnσ)χB(0,r)C

∥∥∥
1
. (2.1)

The left summand goes to zero in probability by Lemma II.3 so it becomes bounded

by ε/3 with probability going to one. Since
∥∥∥(f − gnσ)χB(0,r)C

∥∥∥
1

p→ 0 we have∥∥∥gnσχB(0,r)C

∥∥∥
1

p→
∥∥∥fχB(0,r)C

∥∥∥
1
< ε/3. Since gnσ and hnσ are densities and both of

them are converging to have the same amount of mass in B (0, r), their mass in

B (0, r)C must also be converging. This means

∣∣∣∣∥∥∥hnσχB(0,r)C

∥∥∥
1
−
∥∥∥gnσχB(0,r)C

∥∥∥
1

∣∣∣∣ p→ 0 so∥∥∥hnσχB(0,r)C

∥∥∥
1

becomes bounded by ε/3 with probability going to one. Thus the right

summand of (2.1) becomes bounded by 2ε/3 with high probability. Putting these

results together we have ‖gnσ − hnσ‖1 < ε with probability going to one.

The previous lemma is a bit more general than is necessary for the current theorem,

but it will be handy later. In this case gnσ in the last lemma is replaced by f̄σ and hnσ

is replaced with f̄nσ , thus completing our proof of Theorem II.1.

It is worth noting that Lemma II.2 also implies consistency with respect to L2

and L∞ norms, assuming suitable conditions ensuring that the approximation error

goes to zero. L2 consistency is implied as long as kσ (·, x) ∈ L2
(
Rd
)

for all x ∈ Rd,

(in particular, kσ need not be a reproducing kernel) because Lemma II.2 holds for

general Hilbert spaces. L∞ consistency follows from the Cauchy-Schwarz inequality,

∣∣f̄nσ (x)− f̄σ (x)
∣∣ =
∣∣〈Φσ (x) , f̄nσ − f̄σ

〉
Hσ

∣∣
≤‖Φσ‖Hσ

∥∥f̄nσ − f̄σ∥∥Hσ .
Unfortunately the ‖Φσ‖Hσ term in the last line yields a suboptimal rate on the band-

13



width, nσ2d →∞.

2.2 RKDE Consistency

We begin by reviewing some results about the RKDE.

2.2.1 Previous Results

Before we prove consistency of the RKDE, we will introduce some additional

technical background on the RKDE from Kim and Scott (2012). First we will define

some properties ρ may have. Let ρ : [0,∞) → [0,∞), ψ , ρ′, and ϕ (x) , ψ (x) /x.

Consider the following properties:

(B1) ρ is strictly convex

(B2) ρ is strictly increasing, ρ(0) = 0 and ρ(x)/x→ 0 as x→ 0

(B3) ϕ(0) := limx→0
ψ(x)
x

exists and is finite

(B4) ψ is bounded

(B5) ρ′′ exists and is nonincreasing on (0,∞)

(B6) ϕ is nonincreasing.

Some examples of losses satisfying all of these properties are ρ (x) =
√
x2 + 1− 1,

ρ (x) = x arctan (x), and ρ (x) = x− log (1 + x). It is easy to show that property (B1)

guarantees the existence and uniqueness of fnσ (Kim and Scott , 2012). Let f be a pdf

and X1, · · · , Xn be iid samples from f . Let Jnσ (·) be the empirical risk introduced in

(1.1). Taking the Gateaux derivative of the risk gives us

δJnσ (g;h) = −

〈
1

n

n∑
1

ϕ
(
‖Φσ (Xi)− g‖Hσ

)
(Φσ (Xi)− g) , h

〉
Hσ

.

If (B2) and (B3) are satisfied then a necessary condition for g = fnσ is that the

Gateaux derivative at g is 0 for all directions h, which is equivalent to left term in the

inner product being 0 (Lemma 1 Kim and Scott (2012)). A straightforward algebraic
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manipulation of the last condition gives us

∑n
1 ϕ
(
‖Φσ (Xi)− g‖Hσ

)
Φσ (Xi)∑n

1 ϕ
(
‖Φσ (Xj)− g‖Hσ

) = g.

With this in mind we introduce the following functional,

Rn
σ : Hσ → Hσ : g 7→ Rn

σ(g) =

∫
ϕ
(
‖Φσ(x)− g‖Hσ

)
Φσ(x)dµn(x)∫

ϕ
(
‖Φσ(y)− g‖Hσ

)
dµn(y)

=
n∑
1

αi (g) kσ (·, Xi)

where

αi (g) =
ϕ
(
‖Φσ(Xi)− g‖Hσ

)∑n
1 ϕ
(
‖Φσ(Xj)− g‖Hσ

)
and µn is the empirical measure corresponding to the sample. This function is the

Iterated Reweighted Least Squares algorithm (IRWLS) from Kim and Scott (2012),

which is used to compute the RKDE in practice. From Corollary 6 in Kim and Scott

(2012) it is easy to show that if (B1), (B2), (B3), (B5), and (B6) are satisfied (note

that (B4) is used later), the sequence {Rn
σ (0) , Rn

σ (Rn
σ (0)) , . . .} converges in Hσ to

fnσ , which is the unique fixed point of Rn
σ.

2.2.2 Consistency Theorem and Proof

Theorem II.5. Let f ∈ L2
(
Rd
)

and let ρ satisfy (B1)-(B6). If nσd →∞ and σ → 0

as n→∞ then ‖fnσ − f‖1

p→ 0.

We know that ψ is bounded by (B4). In the proofs that follow it will be assumed,

for simplicity, that supx ψ (x) = 1. Note that any loss with bounded ψ can be adapted

such that supx ψ (x) = 1. This is done by dividing ρ by supx ψ (x) and does not affect

the RKDE. The longer and more technical proof sketches are contained in a subsection
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after this one.

The following lemma helps us establish the behavior of elements in Dσ with large

norms.

Lemma II.6. For all g ∈ Dσ, ‖g‖2
Hσ ≤ ‖g‖∞.

Proof. By the definition of Dσ, let g =
∫

Φσ(x)dν(x), where ν is a probability mea-

sure.

‖g‖2
Hσ = 〈g, g〉Hσ =

〈∫
Φσ(x)dν(x), g

〉
Hσ

=

∫
〈Φσ(x), g〉Hσ dν(x)

=

∫
g(x)dν(x) ≤

∫
‖g‖∞ dν(x) = ‖g‖∞ .

This lemma allows us to show that an element in Dσ with large norm will have

most of its mass concentrated around one point. An element of Dσ having most of the

mass around one point causes its general risk to be large. The Vapnik-Chervonenkis

inequality allows us to show that all such elements will, with high probability, have

high empirical risk.

Lemma II.7. If σ → 0 and n→∞ then P
(
‖fnσ ‖

2
Hσ ≥

9
10
‖Φσ‖2

Hσ

)
→ 0.

The constant 9
10

was chosen simply for convenience, it could be replaced with any

positive value less than one.

The following result will be used to prove Lemma II.9 and Theorem II.5.

Lemma II.8.
∥∥f̄σ∥∥Hσ ≤ ‖f‖2.

Proof. Using the Cauchy-Schwarz inequality and Young’s inequality (Devroye and

16



Lugosi , 2001) we have

∥∥f̄σ∥∥2

Hσ
=

〈∫
f(x)Φσ(x)dx,

∫
f(y)Φσ(y)dy

〉
Hσ

=

∫
f(x)

〈
Φσ(x),

∫
f(y)Φσ(y)dy

〉
Hσ
dx

=

∫
f(x) (f ∗ kσ) (x)dx

= 〈f, f ∗ kσ〉2

≤ ‖f‖2 ‖f ∗ kσ‖2

≤ ‖f‖2 ‖f‖2 ‖kσ‖1

= ‖f‖2
2 .

Lemma II.7 shows that fnσ is, with high probability, in a ball of radius
√

9
10
‖Φσ‖Hσ .

Lemma II.9 shows that, on that ball, Rn
σ is a contraction mapping.

Lemma II.9. Let n → ∞, σ → 0, and nσd → ∞. There exists CR such that, with

probability going to one, the restriction of Rn
σ to BHσ

(
0,
√

9
10
‖Φσ‖Hσ

)
is Lipschitz

continuous with Lipschitz constant CR ‖Φσ‖−1
Hσ .

This lemma is the final key to proving Theorem II.5.

Proof of Theorem II.5. Using the triangle inequality we get

‖f − fnσ ‖1 ≤
∥∥f − f̄nσ ∥∥1

+
∥∥f̄nσ − fnσ ∥∥1

.

We know the left term of the summand goes to zero in probability by Theorem II.1,

so it is sufficient to show that the right summand goes to zero in probability. By

Lemma II.4 it is sufficient to show that
∥∥fnσ − f̄nσ ∥∥Hσ goes to zero in probability.
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Notice that Rn
σ(0) = f̄nσ and recall Rn

σ (fnσ ) = fnσ . Using Lemma II.7 and II.9, with

probability going to 1, the following holds

∥∥f̄nσ − fnσ ∥∥Hσ = ‖Rn
σ(0)−Rn

σ (fnσ )‖Hσ

≤ ‖fnσ − 0‖Hσ ‖Φσ‖−1
Hσ CR

<

√
9

10
‖Φσ‖Hσ ‖Φσ‖−1

Hσ CR

=

√
9

10
CR.

Since
∥∥f̄nσ − f̄σ∥∥Hσ p→ 0 and

∥∥f̄σ∥∥Hσ ≤ ‖f‖2 < ∞ (by Lemma II.8), for arbitrary

s > 0 we have
∥∥f̄nσ ∥∥Hσ < ‖f‖2 + s with probability going to one. Applying the

contraction mapping steps again we get, with probability going to 1, that

∥∥f̄nσ − fnσ ∥∥Hσ = ‖Rn
σ(0)−Rn

σ (fnσ )‖Hσ

≤ ‖fnσ − 0‖Hσ ‖Φσ‖−1
Hσ CR

≤
(∥∥fnσ − f̄nσ ∥∥Hσ +

∥∥f̄nσ ∥∥Hσ) ‖Φσ‖−1
Hσ CR

≤

(√
9

10
CR + ‖f‖2 + s

)
‖Φσ‖−1

Hσ CR.

The last line goes to zero as σ → 0, completing our proof.

2.2.3 Proof Sketches

Proof Sketch of Lemma II.7. We know that fnσ ∈ Dσ, so to prove this lemma we will

show that as n → ∞ and σ → 0, all vectors in Dσ with Hσ-norm greater than or

equal to
√

9
10
‖Φσ‖Hσ will have empirical risk greater than the zero vector. Define

Jnσ : Hσ → R as the empirical risk function

Jnσ (g) =
1

n

n∑
1

ρ
(
‖Φσ (Xi)− g‖Hσ

)
.
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Let gnσ be the minimizer of Jnσ when restricted to vectors in Dσ with Hσ-norm greater

than or equal to
√

9
10
‖Φσ‖Hσ . By Lemma II.6 there must exist x∗ such that gnσ (x∗) ≥

9
10
‖Φσ‖2

Hσ , this causes most of of the mass of gnσ to reside near x∗. It is possible to show

that, given any r > 0 and ε > 0, for sufficiently small σ, that supx∈B(x∗,r)C g
n
σ (x) <

3
20
‖Φσ‖2

Hσ + ε. As n gets large, Jnσ becomes well approximated by Jσ where

Jσ (g) =

∫
ρ
(
‖Φσ (x)− g‖Hσ

)
f (x) dx. (2.2)

We will substitute Jσ for Jnσ (in the formal proof we work with Jnσ and invoke the

VC inequality to relate it to the population risk). Since ρ is increasing, the following

holds for sufficiently small σ,

Jσ (gnσ) ≥
∫

B(x∗,r)C

ρ
(
‖Φσ (x)− gnσ‖Hσ

)
f (x) dx

≥
∫

B(x∗,r)C

ρ

(√
‖Φσ‖2

Hσ − 2 〈gnσ ,Φσ (x)〉Hσ + ‖gnσ‖
2
Hσ

)
f (x) dx

≥
∫

B(x∗,r)C

ρ

(√
‖Φσ‖2

Hσ − 2

(
3

20
‖Φσ‖2

Hσ + ε

)
+ ‖gnσ‖

2
Hσ

)
f (x) dx.

Since ε can be set to be arbitrarily small and ‖gnσ‖
2
Hσ ≥

9
10
‖Φσ‖2

Hσ the last term has

an approximate lower bound of

&
∫

B(x∗,r)C

ρ

(√
‖Φσ‖2

Hσ −
6

20
‖Φσ‖2

Hσ +
9

10
‖Φσ‖2

Hσ

)
f (x) dx

≥ ρ

(
‖Φσ‖Hσ

√
32

20

)
inf
y

∫
B(y,r)C

f (x) dx.
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Finally r can be chosen to be sufficiently small so that infy
∫
B(y,r)C

f (x) dx is arbi-

trarily close to one. Thus as n→∞ and σ → 0, with probability going to one

Jnσ (gnσ) & ρ

(
‖Φσ‖Hσ

√
32

20

)
.

Now, notice that

Jnσ (0) =
1

n

n∑
1

ρ
(
‖Φσ (Xi)− 0‖Hσ

)
= ρ

(
‖Φσ‖Hσ

)
.

It then follows that, with probability going to one, Jnσ (gnσ) > Jnσ (0).

Proof Sketch of Lemma II.9. Let g, h ∈ BHσ
(

0,
√

9
10
‖Φσ‖Hσ

)
. We have

‖Rn
σ (g)−Rn

σ (h)‖Hσ

=

∥∥∥∥∥
∫
ϕ
(
‖Φσ (x)− g‖Hσ

)
Φ (x) dµn (x)∫

ϕ
(
‖Φσ (y)− g‖Hσ

)
dµn (y)

−
∫
ϕ
(
‖Φσ (x′)− h‖Hσ

)
Φ (x) dµn (x′)∫

ϕ
(
‖Φσ (y′)− h‖Hσ

)
dµn (y′)

∥∥∥∥∥
Hσ

.

(2.3)

Note that all integrals are over the same measure. Consider the situation if the

integrals were evaluated at one point, we have that

∣∣∣∣∣ϕ
(
‖Φσ (x)− g‖Hσ

)
ϕ
(
‖Φσ (y)− g‖Hσ

) − ϕ
(
‖Φσ (x)− h‖Hσ

)
ϕ
(
‖Φσ (y)− h‖Hσ

) ∣∣∣∣∣ (2.4)

=

∣∣∣∣∣ N

ϕ
(
‖Φσ (y)− g‖Hσ

)
ϕ
(
‖Φσ (y)− h‖Hσ

)∣∣∣∣∣
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where

N = ϕ
(
‖Φσ (x)− g‖Hσ

)
ϕ
(
‖Φσ (y)− h‖Hσ

)
. . .

− ϕ
(
‖Φσ (x)− h‖Hσ

)
ϕ
(
‖Φσ (y)− g‖Hσ

)
.

We will now find a lower bound on the denominator. Note that since g and h live in

BHσ

(
0, ‖Φσ‖Hσ

√
9
10

)
, that ‖Φσ (y)− g‖Hσ and ‖Φσ (y)− g‖Hσ grow without bound

as σ → 0. Since ρ is convex ψ must be increasing and since ψ has a supremum of

1, ψ (z) is well approximated by 1 for large z. Thus we have, for small σ that the

denominator is well approximated as follows

ϕ
(
‖Φσ (y)− g‖Hσ

)
ϕ
(
‖Φσ (y)− h‖Hσ

)
=
ψ
(
‖Φσ (y)− g‖Hσ

)
‖Φσ (y)− g‖Hσ

ψ
(
‖Φσ (y)− h‖Hσ

)
‖Φσ (y)− h‖Hσ

≈ 1

‖Φσ (y)− g‖Hσ ‖Φσ (y)− h‖Hσ

≥ 1

‖Φσ‖2
Hσ

(
1 +

√
9/10

)2

=CD ‖Φσ‖−2
Hσ

where CD =
(

1 +
√

9/10
)−2

. We will now find an upper bound on the numerator.

By the triangle inequality

∣∣ϕ (‖Φσ (x)− g‖Hσ
)
ϕ
(
‖Φσ (y)− h‖Hσ

)
. . .

− ϕ
(
‖Φσ (x)− h‖Hσ

)
ϕ
(
‖Φσ (y)− g‖Hσ

)∣∣
≤
∣∣ϕ (‖Φσ (x)− g‖Hσ

)
ϕ
(
‖Φσ (y)− h‖Hσ

)
. . .

− ϕ
(
‖Φσ (x)− g‖Hσ

)
ϕ
(
‖Φσ (y)− g‖Hσ

)∣∣ . . .
+
∣∣ϕ (‖Φσ (x)− g‖Hσ

)
ϕ
(
‖Φσ (y)− g‖Hσ

)
. . .

− ϕ
(
‖Φσ (x)− h‖Hσ

)
ϕ
(
‖Φσ (y)− g‖Hσ

)∣∣.
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Consider the second summand,

∣∣ϕ (‖Φσ (x)− g‖Hσ
)
ϕ
(
‖Φσ (y)− g‖Hσ

)
. . . (2.5)

− ϕ
(
‖Φσ (x)− h‖Hσ

)
ϕ
(
‖Φσ (y)− g‖Hσ

)∣∣
= ϕ

(
‖Φσ (y)− g‖Hσ

) ∣∣ϕ (‖Φσ (x)− g‖Hσ
)
− ϕ

(
‖Φσ (y)− h‖Hσ

)∣∣
≤ 1

‖Φσ (y)− g‖Hσ

∣∣ϕ (‖Φσ (x)− g‖Hσ
)
− ϕ

(
‖Φσ (x)− h‖Hσ

)∣∣
≤ 1

‖Φσ‖Hσ
(

1−
√

9
10

)∣∣ϕ (‖Φσ (x)− g‖Hσ
)
− ϕ

(
‖Φσ (x)− h‖Hσ

)∣∣.
Just as ϕ (z) becomes well approximated by 1

z
for large z, ϕ′ (z) becomes well approx-

imated by −1
z2 . Using this it can be shown that there exists CL > 0 such that, for suffi-

ciently small σ, ϕ
(
‖Φσ (y)− · ‖Hσ

)
is Lipschitz continuous on BHσ

(
0,
√

9
10
‖Φσ‖Hσ

)
with Lipschitz constant ‖Φσ‖−2

Hσ CL. Now we have

∣∣ϕ (‖Φσ (x)− g‖Hσ
)
− ϕ

(
‖Φσ (x)− h‖Hσ

)∣∣ ≤ ‖g − h‖Hσ ‖Φσ‖−2
Hσ CL.

It now follows that (2.5) is less than or equal to ‖Φσ‖−3
Hσ CN for some CN > 0. Return-

ing to (2.4), we can now show that it has an upper bound of
2‖Φσ‖−3

HσCN

‖Φσ‖−2
HσCD

= ‖Φσ‖−1
Hσ

2CN
CD

.

This generally describes the behavior of the values found in (2.3). To take care of the∫
Φσ (x) dµn (x) terms, note that by Theorem II.1

∥∥∫ Φσ (x) dµn (x)− f̄σ
∥∥
Hσ

p→ 0 if

nσd →∞. By Lemma II.8,
∥∥f̄σ∥∥Hσ ≤ ‖f‖2 so

∥∥∫ Φσ (x) dµn (x)
∥∥
Hσ

becomes bounded

with high probability, thus completing our proof sketch.

2.3 Proofs of Lemmas

For convenience the proofs have been split up into two subsections, one for proofs

from the KDE section and the other for proofs from the RKDE section.
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2.3.1 KDE Consistency Proofs

The following lemma is a Hilbert space version of Bennett’s inequality (Smale and

Zhou, 2007) and will be used in the proof of Lemma II.2.

Lemma II.10. Let H be a Hilbert space and {ξi}mi=1 be m (m < ∞) independent

random variables with values in H. Also, assume that for each i, ‖ξi‖H ≤ B < ∞

almost surely. Let δ2 =
∑m

i=1 E [‖ξi‖2
H]. Then

P

(∥∥∥∥∥ 1

m

m∑
i=1

(ξi − E [ξi])

∥∥∥∥∥
H

≥ ε

)
≤ exp

{
−mε

2B
log

(
1 +

mBε

δ2

)}
,∀ε > 0.

Proof of Lemma II.2. We will apply Lemma II.10. From the lemma statement let

ξi = Φσ(Xi) and m = n yielding, for all ε > 0

P
(∥∥f̄nσ − f̄σ∥∥Hσ ≥ ε

)
≤ exp

{
− nε

2 ‖Φσ‖Hσ
log

(
1 +

n ‖Φσ‖Hσ ε
n ‖Φσ‖2

Hσ

)}

= exp

{
− nε

2 ‖Φσ‖Hσ
log

(
1 +

ε

‖Φσ‖Hσ

)}
.

As σ → 0 then 1 + ε
‖Φσ‖Hσ

→ 1 so for sufficiently small σ

log

(
1 +

ε

‖Φσ‖Hσ

)
≥ ε

2 ‖Φσ‖Hσ

and

P
(∥∥f̄nσ − f̄σ∥∥Hσ ≥ ε

)
≤ exp

{
− nε2

4 ‖Φσ‖2
Hσ

}

which goes to zero as n
‖Φσ‖2Hσ

→∞, or equivalently nσd →∞. So
∥∥f̄nσ − f̄σ∥∥Hσ p→ 0.
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Proof of Lemma II.3. Let S+ = {s|s ∈ S, g(s) ≥ 0} and S− = S \ S+. We have

∫
S

|g(x)| dx =

∫
S+

g(x)dx+

∫
S−

−g(x′)dx′

=

∫
S+

〈g,Φσ(x)〉Hσ dx+

∫
S−

〈−g,Φσ(x′)〉Hσ dx
′

=

〈
g,

∫
S+

Φσ(x)dx

〉
Hσ

+

〈
−g,

∫
S−

Φσ(x′)dx′

〉
Hσ

≤ ‖g‖Hσ


∥∥∥∥∥∥
∫
S+

Φσ(x)dx

∥∥∥∥∥∥
Hσ

+

∥∥∥∥∥∥
∫
S−

Φσ(x′)dx′

∥∥∥∥∥∥
Hσ

 . (2.6)

Now consider

∥∥∥∥∥∥
∫
S+

Φσ(x)dx

∥∥∥∥∥∥
2

Hσ

=

〈∫
S+

Φσ(x)dx,

∫
S+

Φσ(x′)dx′

〉
Hσ

=

∫
S+

∫
S+

〈Φσ(x),Φσ(x′)〉Hσ dxdx
′

=

∫
S+

∫
S+

kσ (x, x′) dxdx′

≤
∫
S+

1dx′

= λ(S+)

and a similar result can be shown for S−. Plugging back into (2.6) we get

∫
S

|g(x)| dx ≤ ‖g‖Hσ
(√

λ (S+) +
√
λ (S−)

)
≤ ‖g‖Hσ 2

√
λ (S).
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Lemma II.11. Let f be a pdf, ε > 0, and y ∈ Rd. There exists r > 0 such that

∫
B(y,r)

f(x)dx ≥ 1− ε.

or equivalently

∫
B(y,r)C

f(x)dx < ε.

Proof. We will prove the second statement. Consider the following, where i ∈ N,

∫
B(y,i)C

f (x) dx =

∫
χB(y,i)C (x) f (x) dx.

Clearly as i → ∞, χB(y,i)Cf → 0 pointwise. Since χB(y,i)Cf is dominated by f ,∫
χB(y,i)C (x) f (x) dx →

∫
0dx = 0 by the dominated convergence theorem. Thus

there exists n ∈ N where
∫
B(y,n)C

f (x) dx < ε.

Proof of Lemma II.4. Let ε > 0; by Lemma II.11 let r > 0 such that
∥∥fχB(0,r)C

∥∥
1
<

ε/3. From Lemma II.3 we have

∥∥(gnσ − hnσ)χB(0,r)

∥∥
1

p→ 0.
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Since ‖gnσ − f‖1

p→ 0, we have
∥∥gnσχB(0,r)

∥∥
1

p→
∥∥fχB(0,r)

∥∥
1
, and therefore

∣∣∣∣∥∥∥hnσχB(0,r)C

∥∥∥
1
−
∥∥∥fχB(0,r)C

∥∥∥
1

∣∣∣∣ =

∣∣∣∣(1− ∥∥hnσχB(0,r)

∥∥
1

)
−
(
1−

∥∥fχB(0,r)

∥∥
1

)∣∣∣∣
=

∣∣∣∣∥∥hnσχB(0,r)

∥∥
1
−
∥∥fχB(0,r)

∥∥
1

∣∣∣∣
≤
∥∥(hnσ − f)χB(0,r)

∥∥
1

≤
∥∥(hnσ − gnσ)χB(0,r)

∥∥
1

+
∥∥(gnσ − f)χB(0,r)

∥∥
1

p→ 0.

Thus,
∥∥∥hnσχB(0,r)C

∥∥∥
1

p→
∥∥∥fχB(0,r)C

∥∥∥
1
. Since

∥∥fχB(0,r)C

∥∥
1
< ε/3, we have

P
(∥∥hnσχB(0,r)C

∥∥
1
≥ ε5/12

)
→ 0. (2.7)

Now to finish the proof,

P (‖hnσ − gnσ‖1 > ε)

= P
(∥∥(hnσ − gnσ)χB(0,r)

∥∥
1

+
∥∥(hnσ − gnσ)χB(0,r)C

∥∥
1
> ε
)

≤ P
(∥∥(hnσ − gnσ)χB(0,r)

∥∥
1
≥ ε/4

)
+ P

(∥∥(hnσ − gnσ)χB(0,r)C

∥∥
1
> 3ε/4

)
We’ve already shown the left summand goes to zero, now we take care of the right

term

P
(∥∥(hnσ − gnσ)χB(0,r)C

∥∥
1
> 3ε/4

)
≤ P

(∥∥hnσχB(0,r)C

∥∥
1

+
∥∥gnσχB(0,r)C

∥∥
1
> 3ε/4

)
≤ P

(∥∥hnσχB(0,r)C

∥∥
1
≥ 5ε/12

)
+ P

(∥∥gnσχB(0,r)C

∥∥
1
> ε/3

)
The left summand goes to zero by (2.7). Since

∥∥∥gnσχB(0,r)C − fχB(0,r)C

∥∥∥
1
→ 0 and∥∥∥fχB(0,r)C

∥∥∥
1
< ε

3
, with probability going to one, we have

∥∥∥gnσχB(0,r)C

∥∥∥
1
≤ ε/3 and the
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right summand goes to zero. This completes our proof.

2.3.2 RKDE Consistency Proofs

Lemma II.12. Let f : Rd → R be a pdf. For all ε > 0, there exists s > 0 such that∫
B(z,s)

f (x) dx ≤ ε for all z ∈ Rd.

Proof. We will proceed by contradiction. Let {xi}∞1 be a sequence in Rd such that∫
B(xi,1/i)

f (x) dx > ε. Clearly the sequence must be bounded or else f would not

be a pdf. Let xij be a convergent subsequence and let x′ be its limit. Let {rj}∞1
be a sequence in R+ converging to zero with B

(
xij , 1/ij

)
⊂ B (x′, rj). So we have∫

B(x′,rj)
f (x) dx > ε, for all j. We know

∫
B(x′,rj)

f (x) dx =

∫
χB(x′,rj) (x) f (x) dx

and fχB(x′,rj) → 0 pointwise. Since fχB(x′,rj) is dominated by f , the dominated

convergence theorem yields

lim
j→∞

∫
B(x′,rj)

f (x) dx = lim
j→∞

∫
f (x)χB(x′,rj) (x) dx

=

∫
lim
j→∞

f (x)χB(x′,rj) (x) dx

=

∫
0dx

= 0

but
∫
B(x′,rj)

f (x) dx > ε, a contradiction.

Corollary II.13. Let f : Rd → R be a pdf with associated measure µ, ε > 0 and

r > 0. There exists s > 0 such that for all x ∈ Rd, µ (B (x, r + s) \B (x, r)) < ε.

Proof. We will omit a full proof; the general strategy is the same as the previous

proof. Find a series of annuli with width decreasing to zero that have probability
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greater than ε. Next find a convergent subsequence of annuli centers, let its limit be

x′. Finally construct a series of annuli centered at x′ with probability measure greater

than ε and width going to zero and arrive at the same contradiction.

Lemma II.14. Let s > 0. If σ → 0 then σ−dq (s/σ)→ 0.

Proof. We will proceed by contradiction. Suppose σ−dq (s/σ) does not converge to

zero, then there exists C > 0 such that we can find arbitrarily small σ satisfying

σ−dq (s/σ) > C. (2.8)

It is well known that there exists Cd such that the Lebesgue measure of a ball in Rd

of radius r is Cdr
d. Since q is nonincreasing (Scovel et al., 2010) this along with (2.8)

implies that there exists arbitrarily small σ satisfying

∫
B(0,s)

σ−dq (‖x‖2 /σ) dx ≥
∫

B(0,s)

σ−dq (s/σ) dx

>Cds
dC

where the last term must be less than or equal to 1. Now, by Lemma II.11, there

exists r > 0 such that

∫
B(0,r)

q (‖x‖2) dx =

∫
B(0,rσ)

σ−dq (‖x‖2 /σ) dx ≥ 1− Cds
dC

2
.
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For sufficiently small σ we have

1 ≥
∫

B(0,rσ)

σ−dq (‖x‖2 /σ) dx

≥
∫

B(0,rσ)

σ−dq (‖x′‖2 /σ) dx′ +

∫
B(0,s)\B(0,rσ)

σ−dq (‖x‖2 /σ) dx

≥1− Cds
dC

2
+

∫
B(0,s)\B(0,rσ)

σ−dq (‖x‖2 /σ) dx.

Because q is nonincreasing this is greater than or equal to

1− Cds
dC

2
+ Cd

(
sd − (rσ)d

)
σ−dq (s/σ) .

As σ → 0 , Cd

(
sd − (rσ)d

)
→ Cds

d, so by (2.8) we can find some σ where the last

term is greater than or equal to

1− Cds
dC

2
+ Cds

dC
2

3
.

The last line is greater than 1, a contradiction.

Proof of Lemma II.7. Let conv be the convex hull operator. Define

Qn
σ = conv (Φσ(X1), . . . ,Φσ(Xn))

⋂
BHσ

(
0,

√
9

10
‖Φσ‖Hσ

)C

.

Clearly Qn
σ ⊂ Dσ since Φσ (Xi) is a density for all i. By the representer theorem in

Kim and Scott (2012), fnσ ∈ conv (Φσ (X1) , . . . ,Φσ (Xn)). We also know that fnσ is

the minimizer of Jnσ , where Jnσ : Hσ → R is the empirical risk function

Jnσ (g) =
1

n

n∑
i=1

ρ
(
‖Φσ (Xi)− g‖Hσ

)
.
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From these facts if we can show

P (Jnσ (0) < Jnσ (g), ∀g ∈ Qn
σ)→ 0

then we have proven the lemma.

Since Qn
σ is compact and Jnσ is continuous (Kim and Scott , 2012) the set

arg min
g∈Qnσ

Jnσ (g)

contains at least one element. Let gnσ be an arbitrary minimizer of Jnσ restricted to Qn
σ.

Let µ be the measure associated with f . From Lemma II.12 we can choose r > 0 such

that µ (B (x, r)) ≤ 1
10

, for all x ∈ Rd. Choose s > 0 such that µ
(
B (x, r + s)C

)
≥ 4

5
,

for all x ∈ Rd. The previous statement is satisfied by finding s such that, for all x,

µ (B (x, r + s) \B (x, r)) < 1
10

, which is possible by Corollary II.13. By Lemma II.6

we know there exists x∗ such that gnσ(x∗) ≥ 9
10
‖Φσ‖2

Hσ (x∗ is implicitly a function of

n). By the definition of Qn
σ, let gnσ =

∑n
i=1 βiΦσ(Xi) with βi ≥ 0 and

∑n
1 βi = 1.

Since gnσ(x∗) ≥ 9
10
‖Φσ‖2

Hσ and q is nonincreasing we have

9

10
‖Φσ‖2

Hσ ≤
n∑
i=1

βikσ(Xi, x
∗)

=
∑

i:Xi∈B(x∗,r)

βikσ(Xi, x
∗) +

∑
j:Xj∈B(x∗,r)C

βjkσ(Xj, x
∗)

=
∑

i:Xi∈B(x∗,r)

βikσ(Xi, x
∗) +

∑
j:Xj∈B(x∗,r)C

βjσ
−dq

(
‖Xj − x∗‖2 /σ

)
≤

∑
i:Xi∈B(x∗,r)

βi ‖Φσ‖2
Hσ + σ−dq (r/σ)

The last line is due to the fact q must be nonincreasing (Scovel et al., 2010). From

Lemma II.14 we know that σ−dq(r/σ) → 0 as σ → 0 , so for sufficiently small σ we
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have

17

20
‖Φσ‖2

Hσ <
∑

i:Xi∈B(x∗,r)

βi ‖Φσ‖2
Hσ

and thus

17

20
<

∑
i:Xi∈B(x∗,r)

βi. (2.9)

Again, since q nonincreasing, for sufficiently small σ

sup
y∈B(x∗,r+s)C

gnσ(y) = sup
y∈B(x∗,r+s)C

n∑
i=1

βikσ (Xi, y)

= sup
y∈B(x∗,r+s)C

∑
i:Xi∈B(x∗,r)

βikσ (Xi, y)

+
∑

j:Xj∈B(x∗,r)C

βj 〈Φσ (y) ,Φσ (Xj)〉Hσ

≤ σ−dq (s/σ) +
∑

j:Xj∈B(x∗,r)C

βj ‖Φσ‖2
Hσ .

From this, (2.9) and because σ−dq(s/σ) → 0 as σ → 0, for arbitrary ε > 0 we

have, for sufficiently small σ,

sup
y∈B(x∗,r+s)C

gnσ(y) < ε+
3

20
‖Φσ‖2

Hσ .

Recall that we assumed that supx ψ(x) = supx ρ
′ (x) = 1 and ρ (0) = 0. Because ρ is
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strictly increasing, for sufficiently small σ,

Jnσ (gnσ) =
1

n

n∑
i=1

ρ
(
‖Φσ(Xi)− gnσ‖Hσ

)
=

1

n

∑
i:Xi∈B(x∗,r+s)

ρ
(
‖Φσ(Xi)− gnσ‖Hσ

)
. . .

+
1

n

∑
j:Xj∈B(x∗,r+s)C

ρ
(
‖Φσ(Xj)− gnσ‖Hσ

)
≥ 1

n

∑
j:Xj∈B(x∗,r+s)C

ρ
(
‖Φσ(Xj)− gnσ‖Hσ

)
=

1

n

∑
j:Xj∈B(x∗,r+s)C

ρ

(√
‖Φσ‖2

Hσ − 2gnσ(Xj) + ‖gnσ‖
2
Hσ

)

≥ 1

n

∑
j:Xj∈B(x∗,r+s)C

ρ

(√
‖Φσ‖2

Hσ − 2

(
3

20
‖Φσ‖2

Hσ + ε

)
+

9

10
‖Φσ‖2

Hσ

)

= µn
(
B(x∗, r + s)C

)
ρ

(√
‖Φσ‖2

Hσ
32

20
− 2ε

)

≥ inf
x
µn

(
B (x, r + s)C

)
ρ

(√
‖Φσ‖2

Hσ
32

20
− 2ε

)
.

Since ρ is strictly convex we know that ψ is strictly increasing. Because ψ has a

supremum of 1 and is strictly increasing we know that for any 1 > εψ > 0 there exists

bψ such that for all x > bψ, ψ(x) > 1− εψ. Then, for sufficiently small σ,

ρ

(√
‖Φσ‖2

Hσ
32

20
− 2ε

)
=

√
‖Φσ‖2Hσ

32
20
−2ε∫

0

ψ (x) dx

≥

√
‖Φσ‖2Hσ

32
20
−2ε∫

bψ

ψ (x) dx

≥ (1− εψ)

(√
‖Φσ‖2

Hσ
32

20
− 2ε− bψ

)
(2.10)
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For sufficiently small σ we have

√
‖Φσ‖2

Hσ
32

20
− 2ε ≥ ‖Φσ‖Hσ

√
32

20
− 2ε.

Since the complements of all open balls, in this case, all balls with radius r + s,

have a finite shattering dimension (Devroye and Lugosi , 2001), and by our choice

of r and s we know, with probability going to one, that infx µn

(
B (x, r + s)C

)
→

infx µ
(
B (x, r + s)C

)
≥ 0.8. Because of this for any εB > 0 we have, with probability

going to one, that infx µn

(
B (x, r + s)C

)
≥ 0.8−εB. Since 4

5

√
32
20
> 1, we can choose

εψ and εB such that
(

4
5
− εB

)
(1− εψ)

√
32
20
> 1. Using these facts with (2.10) we

have, for sufficiently small σ, with probability going to one

Jnσ (gnσ) ≥ inf
x
µn

(
B (x, r + s)C

)
(1− εψ)

(√
‖Φσ‖2

Hσ
32

20
− 2ε− bψ

)

≥
(

4

5
− εB

)
(1− εψ)

(
‖Φσ‖Hσ

√
32

20
− 2ε− bψ

)

> ‖Φσ‖Hσ .

Now consider

Jnσ (0) =
1

n

n∑
i=1

ρ
(
‖Φσ (Xi)− 0‖Hσ

)
= ρ

(
‖Φσ‖Hσ

)
=

‖Φσ‖Hσ∫
0

ψ (x) dx+ ρ (0)

≤

‖Φσ‖Hσ∫
0

1dx

= ‖Φσ‖Hσ .

33



So as n→∞ and σ → 0 we have

P (Jnσ (gnσ) ≤ Jnσ (0))→ 0,

thus finishing the proof.

Proof of Lemma II.9. Let g, h ∈ Hσ such that ‖g‖2
Hσ ≤

9
10
‖Φσ‖2

Hσ and ‖h‖2
Hσ ≤

9
10
‖Φσ‖2

Hσ . Cross multiplication gives us

‖Rn
σ (g)−Rn

σ (h)‖Hσ

=

∥∥∥∥∥
∫
ϕ
(
‖Φσ(x)− g‖Hσ

)
Φσ(x)dµn(x)∫

ϕ
(
‖Φσ(y)− g‖Hσ

)
dµn(y)

−
∫
ϕ
(
‖Φσ(x′)− h‖Hσ

)
Φσ(x′)dµn(x′)∫

ϕ
(
‖Φσ(y′)− h‖Hσ

)
dµn(y′)

∥∥∥∥∥
Hσ

=

∥∥∥∥AB
∥∥∥∥
Hσ

where

A =

[∫
ϕ
(
‖Φσ (x)− g‖Hσ

)
Φσ (x) dµn (x)

] [∫
ϕ
(
‖Φσ (y′)− h‖Hσ

)
dµn (y)

]
−
[∫

ϕ
(
‖Φσ (x′)− h‖Hσ

)
Φσ (x′) dµn (x′)

] [∫
ϕ
(
‖Φσ (y)− g‖Hσ

)
dµn (y)

]

and

B =

[∫
ϕ
(
‖Φσ(y′)− h‖Hσ

)
dµn(y′)

] [∫
ϕ
(
‖Φσ(y)− g‖Hσ

)
dµn(y)

]
.

Note that A ∈ Hσ and B ∈ R+. We will now find a lower bound on B. As shown in

the proof for Lemma II.7 there exists b > 0 such that ψ (x) > 1/2 for all x ≥ b. By
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the reverse triangle inequality

‖Φσ(y′)− h‖Hσ ≥
∣∣‖Φσ‖Hσ − ‖h‖Hσ

∣∣
≥ ‖Φσ‖Hσ

(
1−

√
9

10

)

which grows without bound as σ → 0. So for sufficiently small σ

ϕ
(
‖Φσ(y′)− h‖Hσ

)
=
ψ
(
‖Φσ(y′)− h‖Hσ

)
‖Φσ(y′)− h‖Hσ

≥ 1

2 ‖Φσ(y′)− h‖Hσ

≥ 1

2
(
‖Φσ‖Hσ + ‖h‖Hσ

)
≥ 1

‖Φσ‖Hσ 2
(

1 +
√

9
10

) .
A similar result can be shown for ϕ

(
‖Φσ(y)− g‖Hσ

)
, so there exists CB > 0 such

that, for sufficiently small σ,

B ≥ ‖Φσ‖−2
Hσ CB.

Now we will focus on A. To make the following manipulations simpler we will let

ϕ
(
‖Φσ (z)− k‖Hσ

)
= Tσ (z, k) .
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A is equal to

[∫
Tσ (x, g) Φσ(x)dµn(x)

] [∫
Tσ (y′, h) dµn(y′)

]
. . .

−
[∫

Tσ (x′, h) Φσ(x′)dµn(x′)

] [∫
Tσ (y, g) dµn(y)

]
=

∫ {
Tσ (x, g) Φσ(x)

[∫
Tσ (y′, h) dµn(y′)

]
. . .

−Tσ (x, h) Φσ(x)

[∫
Tσ (y, g) dµn(y)

]}
dµn(x)

=

∫
Φσ(x)

[
Tσ (x, g)

[∫
Tσ (y′, h) dµn(y)

]
. . .

− Tσ (x, h)

[∫
Tσ (y, g) dµn(y)

]]
dµn(x)

=

∫ ∫
Φσ(x)

[
Tσ (x, g)Tσ (y, h)− Tσ (x, h)Tσ (y, g)

]
dµn(y)dµn(x).

We will now bound the inner term. Using the triangle inequality we have

∣∣Tσ (x, g)Tσ (y, h)− Tσ (x, h)Tσ (y, g)
∣∣ (2.11)

<
∣∣Tσ (x, g)Tσ (y, h)− Tσ (x, g)Tσ (y, g)

∣∣+
∣∣Tσ (x, g)Tσ (y, g)− Tσ (x, h)Tσ (y, g)

∣∣

= Tσ (x, g)
∣∣Tσ (y, h)− Tσ (y, g)

∣∣+ Tσ (y, g)
∣∣Tσ (x, g)− Tσ (x, h)

∣∣.
We will bound the second summand in the last equality; a similar technique can
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bound the first summand.

ϕ
(
‖Φσ(y)− g‖Hσ

)
=
ψ
(
‖Φσ(y)− g‖Hσ

)
‖Φσ(y)− g‖Hσ

≤ 1

‖Φσ(y)− g‖Hσ

≤ 1∣∣‖Φσ‖Hσ − ‖g‖Hσ
∣∣

≤ 1

‖Φσ‖Hσ
(

1−
√

9
10

) . (2.12)

A similar result can be shown for ϕ
(
‖Φσ(x)− g‖Hσ

)
.

Consider z ≥ ‖Φσ‖Hσ
(

1−
√

9
10

)
, then

|ϕ′ (z)| =
∣∣∣∣(ψ (z)

z

)′∣∣∣∣
=

∣∣∣∣zψ′ (z)− ψ (z)

z2

∣∣∣∣
≤ |zψ

′ (z)|+ |ψ (z)|
z2

.

We will now analyze the behaviour of ψ′, specifically, there exists sufficiently large r

such that ψ′ (x) ≤ 1
x

for all x ≥ r. We will proceed by contradiction. Suppose this

is not the case. Then there exist positive numbers t1, t2 and t3 such that ψ′ (ti) >
1
ti

and ti
ti+1

< 1
3
. We know ψ′ is nonincreasing by (B5) and nonnegative; we also know ψ
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is bounded above by 1 so

1 ≥
∞∫

0

ψ′ (x) dx

≥
t2∫
t1

ψ′ (x) dx+

t3∫
t2

ψ′ (y) dy

≥ t2 − t1
t2

+
t3 − t2
t3

≥ 2− 2

3
,

a contradiction. From this we have that for sufficiently large z,

|zψ′ (z)|+ |ψ (z)|
z2

≤
z 1
z

+ 1

z2

=
2

z2
.

Thus, for sufficiently small σ, on the space
[(

1−
√

9
10

)
‖Φσ‖Hσ ,∞

)
, ϕ is Lipschitz

continuous with Lipschitz constant 2
(

1−
√

9
10

)−2

‖Φσ‖−2
Hσ . Therefore we have

|ϕ (‖Φσ(x)− g‖)− ϕ (‖Φσ(x)− h‖)|

≤
∣∣‖Φσ (x)− g‖Hσ − ‖Φσ (x)− h‖Hσ

∣∣2(1−
√

9

10

)−2

‖Φσ‖−2
Hσ

≤ ‖g − h‖Hσ 2

(
1−

√
9

10

)−2

‖Φσ‖−2
Hσ .

Combining the last inequality with (2.12) we have that for sufficiently small σ, (2.11)

is less than or equal to

4 ‖g − h‖Hσ

(
1−

√
9

10

)−3

‖Φσ‖−3
Hσ .
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Using this bound we can do the following. Let

τ ,
[
Tσ (x, g)Tσ (y, h)− Tσ (x, h)Tσ (y, g)

]
,

and

τ ′ ,
[
Tσ (x′, g)Tσ (y′, h)− Tσ (x′, h)Tσ (y′, g)

]
,

and

κ , 4 ‖g − h‖Hσ

(
1−

√
9

10

)−3

‖Φσ‖−3
Hσ ,

we have

‖A‖2
Hσ =

∥∥∥∥∫ ∫ Φσ(x)τdµn(x)dµn(y)

∥∥∥∥2

Hσ

=

〈∫ ∫
Φσ(x)τdµn(x)dµn(y),

∫ ∫
Φσ(x′)τ ′dµn(x′)dµn(y′)

〉
Hσ

=

∫ ∫ ∫ ∫
ττ ′ 〈Φσ(x),Φσ(x′)〉Hσ dµn(y)dµn(y′)dµn(x)dµn(x′).

Since 〈Φσ(x),Φσ(x′)〉Hσ ≥ 0 for all x, x′, for sufficiently small σ, the last line is less

than or equal to

∫ ∫ ∫ ∫
κ2 〈Φσ(x),Φσ(x′)〉Hσ dµn(y)dµn(y′)dµn(x)dµn(x′)

=

∫ ∫
κ2 〈Φσ(x),Φσ(x′)〉Hσ dµn(x)dµn(x′)

= κ2

∥∥∥∥∫ Φσ (x) dµn (x)

∥∥∥∥2

Hσ
.

Returning to the original notation, this means, for sufficiently small σ

‖A‖Hσ ≤
∥∥∥∥∫ Φσ (x) dµn (x)

∥∥∥∥
Hσ

4 ‖g − h‖Hσ

(
1−

√
9

10

)−3

‖Φσ‖−3
Hσ .
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From our proof of the consistency of the KDE we know that

∥∥∥∥∫ Φσ(x)dµn(x)− f̄σ
∥∥∥∥
Hσ

p→ 0

and from Lemma II.8
∥∥f̄σ∥∥Hσ ≤ ‖f‖2 so

∥∥∫ Φσ(x)dµn(x)
∥∥
Hσ

is bounded by some

constant with probability going to one. Note that this is the only probabilistic step,

which does not depend on g or h, so the result holds over the whole ball in Hσ. So

there exists CA > 0 such that

‖A‖Hσ ≤ ‖g − h‖Hσ ‖Φσ‖−3
Hσ CA

with probability going to one (we can omit “for sufficiently small σ” since σ → 0 as

n→∞). Finally we get with probability going to one as nσd →∞

∥∥∥∥AB
∥∥∥∥
Hσ

=
‖A‖Hσ
B

≤ ‖g − h‖Hσ
CA ‖Φσ‖−3

Hσ

CB ‖Φσ‖−2
Hσ

= ‖g − h‖Hσ CR ‖Φσ‖−1
Hσ .
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CHAPTER III

Robust Kernel Density Estimation by Scaling and

Projection in Hilbert Space

In this chapter we introduce a new type of robust kernel density estimator we

call the scale and project kernel density estimator. To do this we first introduce

and analyze general contamination models for nonparametric density estimation and

propose a contamination model for our estimator. Next we construct an estimator

and show that it will asymptotically approach the desired decontaminated density if

the assumptions of the contamination model are satisfied. Finally we demonstrate

that the estimator is effective, even when the contamination model is not satisfied,

by applying the algorithm to several datasets with varying amounts of contamination

and comparing its performance to other estimators.

3.1 Nonparametric Contamination Models and Decontami-

nation Procedures for Density Estimation

What assumptions are necessary and sufficient on a target and contaminating

density in order to theoretically recover the target density is a question that, to the

best of our knowledge, is completely unexplored in a nonparametric setting. We

will approach this problem in the infinite sample setting, where we know fobs =
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(1−ε)ftar +εfcon and ε, but do not know ftar or fcon. To this end we introduce a new

formalism. Let D be the set of all pdfs on Rd. We use the term contamination model

to refer to any subset V ⊂ D ×D, i.e. a set of pairs (ftar, fcon). Let Rε : D → D be

a set of transformations on D indexed by ε ∈ [0, 1). We say that Rε decontaminates

V if for all (ftar, fcon) ∈ V and ε ∈ [0, 1) we have Rε((1− ε)ftar + εfcon) = ftar.

One may wonder whether there exists some set of contaminating densities, Dcon,

and a transformation, Rε, such that Rε decontaminates D × Dcon. In other words,

does there exist some set of contaminating densities for which we can recover any

target density? It turns out this is impossible if Dcon contains at least two elements.

Proposition III.1. Let Dcon ⊂ D contain at least two elements. There does not exist

any transformation Rε which decontaminates D ×Dcon.

Proof. Let f ∈ D and g, g′ ∈ Dcon such that g 6= g′. Let ε ∈ (0, 1
2
). Clearly

ftar ,
f(1−2ε)+gε

1−ε and f ′tar ,
f(1−2ε)+εg′

1−ε are both elements of D. Note that

(1− ε)ftar + εg′ = (1− ε)f ′tar + εg.

In order for Rε to decontaminate D with respect to Dcon, we need

Rε ((1− ε)ftar + εg′) = ftar

and

Rε ((1− ε)f ′tar + εg) = f ′tar,

which is impossible since ftar 6= f ′tar.

This proposition imposes significant limitations on what contamination models

can be decontaminated. For example, suppose we know that fcon is Gaussian with

known covariance matrix and unknown mean. Proposition III.1 says we cannot design

Rε so that it can decontaminate (1 − ε)ftar + εfcon for all ftar ∈ D. In other words,
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it is impossible to design an algorithm capable of removing Gaussian contamination

(for example) from arbitrary target densities. Furthermore, if Rε decontaminates V

and V is fully nonparametric (i.e. for all f ∈ D there exists some f ′ ∈ D such that

(f, f ′) ∈ V) then for each (ftar, fcon) pair, fcon must satisfy some properties which

depend on ftar.

3.1.1 Proposed Contamination Model

For a function f : Rd → R let supp(f) denote the support of f . We introduce the

following contamination assumption:

Assumption (A). For the pair (ftar, fcon), there exists u such that fcon(x) = u for

almost all (in the Lebesgue sense) x ∈ supp(ftar) and fcon(x′) ≤ u for almost all

x′ /∈ supp(ftar).

See Figure 3.1 for an example of a density satisfying this assumption. Because

fcon must be uniform over the support of ftar a consequence of Assumption A is that

supp(ftar) has finite Lebesgue measure. Let VA be the contamination model contain-

ing all pairs of densities which satisfy Assumption A. Note that
⋃

(ftar,fcon)∈VA ftar is

exactly all densities whose support has finite Lebesgue measure, which includes all

densities with compact support.

The uniformity assumption on fcon is a common “noninformative” assumption

on the contamination. Furthermore, this assumption is supported by connections to

one-class classification. In that problem, only one class (corresponding to our ftar) is

observed for training, but the testing data is drawn from fobs and must be classified.

The dominant paradigm for nonparametric one-class classification is to estimate a

level set of ftar from the one observed training class Theiler and Cai (2003); Lanckriet

et al. (2003); Steinwart et al. (2005); Vert and Vert (2006); Sricharan and Hero (2011);

Schölkopf et al. (2001), and classify test data according to that level set. Yet level

sets only yield optimal classifiers (i.e. likelihood ratio tests) under the uniformity
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εf
con

(1-ε)f
tar

Figure 3.1: Density with contamination satisfying Assumption A

assumption on fcon, so that these methods are implicitly adopting this assumption.

Furthermore, a uniform contamination prior has been shown to optimize the worst-

case detection rate among all choices for the unknown contamination density El-Yaniv

and Nisenson (2007). Finally, our experiments demonstrate that the SPKDE works

well in practice, even when Assumption A is significantly violated.

3.1.2 Decontamination Procedure

Under Assumption A ftar is present in fobs and its shape is left unmodified (up

to a multiplicative factor) by fcon. To recover ftar it is necessary to first scale fobs by

β = 1
1−ε yielding

1

1− ε
((1− ε)ftar + εfcon) = ftar +

ε

1− ε
fcon.

After scaling we would like to slice off ε
1−εfcon from the bottom of ftar + ε

1−εfcon. This

transform is achieved by

max

{
0, ftar +

ε

1− ε
fcon − α

}
, (3.1)

where α is set such that (3.1) is a pdf (which in this case is achieved with α = r ε
1−ε).

We will now show that this transform is well defined in a general sense. Let f be a
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1-1/β

Original Density Scaled Density Shifted to pdf

β-1

Figure 3.2: Infinite sample SPKDE transform. Arrows indicate the area under the
line.

pdf and let

gβ,α = max {0, βf (·)− α}

where the max is defined pointwise. The following lemma shows that it is possible

to slice off the bottom of any scaled pdf to get a transformed pdf and that the

transformed pdf is unique.

Lemma III.2. For fixed β > 1 there exists a unique α′ > 0 such that ‖gβ,α′‖L1 = 1.

Figure 3.2 demonstrates this transformation applied to a pdf. We define the

following transform RA
ε : D → D where RA

ε (f) = max
{

1
1−εf(·)− α, 0

}
where α is

such that RA
ε (f) is a pdf. The remaining mathematical proofs for this chapter are

deferred to Appendix A.

Proposition III.3. RA
ε decontaminates VA.

The proof of this proposition is an intermediate step for the proof for Theorem

III.8. For any two subsets of V ,V ′ ⊂ D×D, Rε decontaminates V and V ′ iff Rε decon-

taminates V
⋃
V ′. Because of this, every decontaminating transform has a maximal

set which it can decontaminate. Assumption A is both sufficient and necessary for

decontamination by RA
ε , i.e. the set VA is maximal.

Proposition III.4. Let {(q, q′)} ∈ D×D and (q, q′) /∈ VA. RA
ε cannot decontaminate

{(q, q′)}.
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3.1.3 Other Possible Contamination Models

The model described previously is just one of many possible models. An obvious

approach to robust kernel density estimation is to use an anomaly detection algorithm

and construct the KDE using only non-anomalous samples. We will investigate this

model under a couple of anomaly detection schemes and describe their properties.

One of the most common methods for anomaly detection is the level set method.

For a probability measure µ this method attempts to find the set S with smallest

Lebesgue measure such that µ(S) is above some threshold, t, and declares samples

outside of that set as being anomalous. For a density f this is equivalent to finding

λ such that
∫
{x|f(x)≥λ} f(y)dy = t and declaring samples were f(X) < λ as being

anomalous. Let X1, . . . , Xn be iid samples from fobs. Using the level set method for

a robust KDE, we would construct a density f̂obs which is an estimate of fobs. Next

we would select some threshold λ > 0 and declare a sample, Xi, as being anoma-

lous if f̂obs(Xi) < λ. Finally we would construct a KDE using the non-anomalous

samples. Let χ{·} be the indicator function. Applying this method in the infinite

sample situation, i.e. f̂obs = fobs, would cause our non-anomalous samples to come

from the density p(x) =
fobs(x)χ{fobs(x)>λ}

τ
where τ =

∫
χ{f(y)>λ}f(y)dy. See Figure

3.3. Perfect recovery of ftar using this method requires εfcon(x) ≤ ftar(x) (1− ε) for

all x and that fcon and ftar have disjoint supports. The first assumption means that

this density estimator can only recover ftar if it has a drop off on the boundary of

its support, whereas Assumption A only requires that ftar have finite support. See

the last diagram in Figure 3.3. Although these assumptions may be reasonable in

certain situations, we find them less palatable than Assumption A. We also evaluate

this approach experimentally later and find that it performs poorly.

Another approach based on anomaly detection would be to find the connected

components of fobs and declare those that are, in some sense, small as being anoma-

lous. A “small” connected component may be one that integrates to a small value, or
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λ

Original Density Threshold at λ 

Set density under threshold to 0 Normalize to integrate to 1

Figure 3.3: Infinite sample version of the level set rejection KDE
which has a small mode. Unfortunately this approach also assumes that ftar and fcon

have disjoint supports. There are also computational issues with this anomaly detec-

tion scheme; finding connected components, finding modes, and numerical integration

are computationally difficult.

To some degree, RA
ε actually achieves the objectives of the previous two robust

KDEs. For the first model, the RA
ε does indeed set those regions of the pdf that are

below some threshold to zero. For the second, if the magnitude of the level at which

we choose to slice off the bottom of the contaminated density is larger than the mode

of the anomalous component then the anomalous component will be eliminated.

3.2 Scaled Projection Kernel Density Estimator

Here we consider approximating RA
ε in a finite sample situation. Let f ∈ L2

(
Rd
)

be a pdf and X1, . . . , Xn be iid samples from f . Let kσ (x, x′) be a radial smoothing

kernel with bandwidth σ such that kσ (x, x′) = σ−dq (‖x− x′‖2 /σ), where q (‖·‖2) ∈

L2
(
Rd
)

and is a pdf. The classic kernel density estimator is:

f̄nσ :=
1

n

n∑
1

kσ (·, Xi) .

In practice ε is usually not known and Assumption A is violated. Because of this
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we will scale our density by β > 1 rather than 1
1−ε . For a density f define

Qβ(f) , max {βf (·)− α, 0} ,

where α = α(β) is set such that the RHS is a pdf. β can be used to tune robust-

ness with larger β corresponding to more robustness (setting β to all the following

transforms simply yields the KDE). Given a KDE we would ideally like to apply

Qβ directly and search over α until max
{
βf̄nσ (·)− α, 0

}
integrates to 1. Such an

estimate requires multidimensional numerical integration and is not computationally

tractable. The SPKDE is an alternative approach that always yields a density and

manifests the transformed density in its asymptotic limit.

We now introduce the construction of the SPKDE. Let Dnσ be the convex hull

of kσ (·, X1) , . . . , kσ (·, Xn) (the space of weighted kernel density estimators). The

SPKDE is defined as

fnσ,β := arg min
g∈Dnσ

∥∥βf̄nσ − g∥∥L2 ,

which is guaranteed to have a unique minimizer since Dnσ is closed and convex and

we are projecting in a Hilbert space (Bauschke and Combettes (2011) Theorem 3.14).

If we represent fnσ,β in the form

fnσ,β =
n∑
1

aikσ (·, Xi) ,

then the minimization problem is a quadratic program over the vector a =

[a1, . . . , an]T , with a restricted to the probabilistic simplex, ∆n. Let G be the Gram
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matrix of kσ (·, X1) , . . . , kσ (·, Xn), that is

Gij = 〈kσ (·, Xi) , kσ (·, Xj)〉L2

=

∫
kσ (x,Xi) kσ (x,Xj) dx.

Let 1 be the ones vector and b = G1β
n
, then the quadratic program is

min
a∈∆n

aTGa− 2bTa.

Since G is a Gram matrix, and therefore positive-semidefinite, this quadratic program

is convex. Furthermore, the integral defining Gij can be computed in closed form for

many kernels of interest. For example for the Gaussian kernel

kσ (x, x′) =
(
2πσ2

)− d
2 exp

(
−‖x− x′‖2

2σ2

)
=⇒ Gij = k√2σ(Xi, Xj),

and for the Cauchy kernel Berry et al. (1996)

kσ (x, x′) =
Γ
(

1+d
2

)
π(d+1)/2 · σd

(
1 +
‖x− x′‖2

σ2

)− 1+d
2

=⇒ Gij = k2σ(Xi, Xj).

We now present some results on the asymptotic behavior of the SPKDE. Let D

be the set of all pdfs in L2
(
Rd
)
. The infinite sample version of the SPKDE is

f ′β = arg min
h∈D
‖βf − h‖2

L2 .

It is worth noting that projection operators in Hilbert space, like the one above, are

known to be well defined if the convex set we are projecting onto is closed and convex.

D is not closed in L2
(
Rd
)
, but this turns out not to be an issue because of the form

of βf . For details see the proof of Lemma III.5 in the supplemental material.
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Lemma III.5. f ′β = max {βf (·)− α, 0} where α is set such that max {βf (·)− α, 0}

is a pdf.

Given the same rate on bandwidth necessary for consistency of the traditional

KDE, the SPKDE converges to its infinite sample version in its asymptotic limit.

Theorem III.6. Let f ∈ L2
(
Rd
)
. If n → ∞ and σ → 0 with nσd → ∞ then∥∥fnσ,β − f ′β∥∥L2

p→ 0.

Because fnσ,β is a sequence of pdfs and f ′β ∈ L2
(
Rd
)
, it is possible to show L2

convergence implies L1 convergence.

Corollary III.7. Given the conditions in the previous theorem statement,

∥∥fnσ,β − f ′β∥∥L1

p→ 0.

To summarize, the SPKDE converges to a transformed version of f . In the next

section we will show that under Assumption A and with β = 1
1−ε , the SPKDE con-

verges to ftar.

3.2.1 SPKDE Decontamination

Let ftar ∈ L2
(
Rd
)

be a pdf having support with finite Lebesgue measure and let

ftar and fcon satisfy Assumption A. Let X1, X2, . . . , Xn be iid samples from fobs =

(1− ε) ftar + εfcon with ε ∈ [0, 1). Finally let fnσ,β be the SPKDE constructed from

X1, . . . , Xn, having bandwidth σ and robustness parameter β. We have

Theorem III.8. Let β = 1
1−ε . If n → ∞ and σ → 0 with nσd → ∞ then∥∥fnσ,β − ftar∥∥L1

p→ 0.

To our knowledge this result is the first of its kind, wherein a nonparametric

density estimator is able to asymptotically recover the underlying density in the

presence of contaminated data.
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Figure 3.4: KDE and SPKDE in the presence of uniform noise

3.3 Experiments

For all of the experiments optimization was performed using projected gradient

descent. The projection onto the probabilistic simplex was done using the algo-

rithm developed in Duchi et al. (2008) (which was actually originally discovered a

few decades ago Brucker (1984); Pardalos and Kovoor (1990)).

3.3.1 Synthetic Data

To show that the SPKDE’s theoretical properties are manifested in practice we

conducted an idealized experiment where the contamination is uniform and the con-

tamination proportion is known. Figure 3.4 exhibits the ability of the SPKDE to

compensate for uniform noise. Samples for the density estimator came from a mix-

ture of the “Target” density with a uniform contamination on [−2, 2], sampling from

the contamination with probability ε = 0.2. This experiment used 500 samples and

the robustness parameter β was set to 1
1−ε = 5

4
(the value for perfect asymptotic

decontamination).
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The SPKDE performs well in this situation and yields a scaled and shifted version

of the standard KDE. This scale and shift is especially evident in the preservation of

the bump on the right hand side of Figure 3.4.

3.3.2 Datasets

In our remaining experiments we investigate two performance metrics for different

amounts of contamination. We perform our experiments on 12 classification datasets

(names given in the supplemental material) where the 0 label is used as the target

density and the 1 label is the anomalous contamination. This experimental setup

does not satisfy Assumption A. The training datasets are constructed with n0 sam-

ples from label 0 and ε
1−εn0 samples from label 1, thus making an ε proportion of

our samples come from the contaminating density. For our experiments we use the

values ε = 0, 0.05, 0.1, 0.15, 0.20, 0.25, 0.30. Given some dataset we are interested in

how well our density estimators f̂ estimate the density of the 0 class of our dataset,

ftar. Each test is performed on 15 permutations of the dataset. The experimental

setup here is similar to the setup in Kim & Scott Kim and Scott (2012), the most

significant difference being that σ is set differently.

3.3.3 Performance Criteria

First we investigate the Kullback-Leibler (KL) divergence

DKL

(
f̂ ||f0

)
=

∫
f̂ (x) log

(
f̂ (x)

f0 (x)

)
dx.

This KL divergence is large when f̂ estimates f0 to have mass where it does not.

For example, in our context, f̂ makes mistakes because of outlying contamination.

We estimate this KL divergence as follows. Since we do not have access to f0, it

is estimated from the testing sample using a KDE, f̃0. The bandwidth for f̃0 is set
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using the testing data with a LOOCV line search minimizing DKL

(
f0||f̃0

)
, which

is described in more detail below. We then approximate the integral using a sample

mean by generating samples from f̂ , {x′i}
n′

1 and using the estimate

DKL

(
f̂ ||f0

)
≈ 1

n′

n′∑
1

log

(
f̂ (x′i)

f̃0 (x′i)

)
.

The number of generated samples n′ is set to double the number of training samples.

Since KL divergence isn’t symmetric we also investigate

DKL

(
f0||f̂

)
=

∫
f0 (x) log

(
f0 (x)

f̂ (x)

)
dx = C −

∫
f0 (y) log

(
f̂ (y)

)
dy,

where C is a constant not depending on f̂ . This KL divergence is large when f0

has mass where f̂ does not. The final term is easy to estimate using expectation.

Let {x′′i }
n′′

1 be testing samples from f0 (not used for training). The following is a

reasonable approximation

−
∫
f0 (y) log

(
f̂ (y)

)
dy ≈ − 1

n′′

n′′∑
1

log
(
f̂ (x′′i )

)
.

For a given performance metric and contamination amount, we compare the mean

performance of two density estimators across datasets using the Wilcoxon signed rank

test Wilcoxon (1945). Given N datasets we first rank the datasets according to the

absolute difference between performance criterion, with hi being the rank of the ith

dataset. For example if the jth dataset has the largest absolute difference we set

hj = N and if the kth dataset has the smallest absolute difference we set hk = 1. We

let R1 be the sum of the his where method one’s metric is greater than metric two’s

and R2 be the sum of the his where method two’s metric is larger. The test statistic

is min(R1, R2), which we do not report. Instead we report R1 and R2 and the p-value

that the two methods do not perform the same on average. Ri < Rj is indicative of
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method i performing better than method j.

3.3.4 Methods

The data were preprocessed by scaling to fit in the unit cube. This scaling tech-

nique was chosen over whitening because of issues with singular covariance matrices.

The Gaussian kernel was used for all density estimates. For each permutation of each

dataset, the bandwidth parameter is set using the training data with a LOOCV line

search minimizing DKL

(
fobs||f̂

)
, where f̂ is the KDE based on the contaminated

data and fobs is the observed density. This metric was used in order to maximize the

performance of the traditional KDE in KL divergence metrics. For the SPKDE the

parameter β was chosen to be 2 for all experiments. This choice of β is based on

a few preliminary experiments for which it yielded good results over various sample

contamination amounts. The construction of the RKDE follows exactly the methods

outlined in the “Experiments” section of Kim & Scott Kim and Scott (2012). It is

worth noting that the RKDE depends on the loss function used and that the Hampel

loss used in these experiments very aggressively suppresses the kernel weights on the

tails. Because of this we expect that RKDE performs well on the DKL

(
f̂ ||f0

)
metric.

We also compare the SPKDE to a kernel density estimator constructed from samples

declared non-anomalous by a level set anomaly detection as described in Section 3.1.3.

To do this we first construct the classic KDE, f̄nσ and then reject those samples in the

lower 10th percentile of f̄nσ (Xi). Those samples not rejected are used in a new KDE,

the “rejKDE” using the same σ parameter.

3.3.5 Results

We present the results of the Wilcoxon signed rank tests in Table 3.1. Exper-

imental results for each dataset can be found in the supplemental material. From

the results it is clear that the SPKDE is effective at compensating for contamination
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Table 3.1: Wilcoxon signed rank test results

Wilcoxon Test Applied to DKL

(
f̂ ||f0

)
ε 0 0.05 0.1 0.15 0.2 0.25 0.3

SPKDE 5 0 1 2 0 0 0
KDE 73 78 77 76 78 78 78

p-value .0049 5e-4 1e-3 .0015 5e-4 5e-4 5e-4
SPKDE 53 59 58 67 63 61 63
RKDE 25 19 20 11 15 17 15
p-value 0.31 0.13 0.15 .027 .064 .092 .064
SPKDE 0 0 1 1 0 2 0
rejKDE 78 78 77 77 78 76 78
p-value 5e-4 5e-4 1e-3 1e-3 5e-4 .0015 5e-4

Wilcoxon Test Applied to DKL

(
f0||f̂

)
ε 0 0.05 0.1 0.15 0.2 0.25 0.3

SPKDE 37 30 27 21 17 16 17
KDE 41 48 51 57 61 62 61

p-value .91 .52 .38 .18 .092 .078 .092
SPKDE 14 14 14 10 10 12 12
RKDE 64 64 64 68 68 66 66
p-value .052 .052 .052 .021 .021 .034 .034
SPKDE 29 21 19 15 13 9 11
rejKDE 49 57 59 63 65 69 67
p-value .47 .18 .13 .064 .043 .016 .027

in the DKL

(
f̂ ||f0

)
metric, albeit not quite as well as the RKDE. The main advan-

tage of the SPKDE over the RKDE is that it significantly outperforms the RKDE in

the DKL

(
f0||f̂

)
metric. The rejKDE performs significantly worse than the SPKDE

on almost every experiment. Remarkably the SPKDE outperforms the KDE in the

situation with no contamination (ε = 0) for both performance metrics.
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CHAPTER IV

An Operator Theoretic Approach to

Nonparametric Mixture Models

We begin this chapter by formally developing a notion of identifiability for non-

parametric mixture models. Next we state several tight bounds for the identifiability

of finite mixture models. After a quick introduction to tensor products of Hilbert

spaces we prove these bounds. Next we introduce a highly general method for re-

covering nonparametric mixture components and demonstrate that that this method

will asymptotically recover the mixture components in a finite discrete sample space.

Finally we include experimental results demonstrating that the recovery method does

indeed work in practice.

4.1 Problem Setup

We treat this problem in a general setting. For any measurable space we define

δx as the Dirac measure at x. For Υ a set, σ-algebra, or measure, we denote Υ×a

to be the standard a-fold product associated with that object. Let N be the set of

integers greater than or equal to zero and N+ be the integers strictly greater than

0. For k ∈ N+, we define [k] , N+ ∩ [1, k]. Let Ω be a set containing more than

one element. This set is the sample space of our data. Let F be a σ-algebra over
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Ω. Assume F 6= {∅,Ω}, i.e. F contains nontrivial events. We denote the space of

probability measures over this space as D (Ω,F ), which we will shorten to D. We

will equip D with the σ-algebra 2D so that each Dirac measure over D is unique.

Define ∆ (D) , span ({δx : x ∈ D}). This is the ambient space where our mixtures

of probability measures live. Let P =
∑m

i=1 wiδµi be a probability measure in ∆ (D).

Let µ ∼ P and X1, . . . , Xn
iid∼ µ. Here X is a random group sample, which was

described in the introduction. We will denote X = (X1, . . . , Xn).

We now derive the probability law of X. Let A ∈ F×n. Letting P reflect both the

draw of µ ∼P and X1, . . . , Xn
iid∼ µ, we have

P (X ∈ A) =
m∑
i=1

P (X ∈ A|µ = µi)P (µ = µi)

=
m∑
i=1

wiµ
×n
i (A) .

The second equality follows from Lemma 3.10 in Kallenberg (2002). So the probability

law of X is

m∑
i=1

wiµ
×n
i . (4.1)

We want to view the probability law of X as a function of P in a mathematically

rigorous way, which requires a bit of technical buildup. Let Q ∈ ∆ (D). From the

definition of ∆ (D) it follows that Q admits the representation

Q =
r∑
i=1

αiδνi .

From the well-ordering principle there must exist some representation with minimal r

and we define this r as the order of Q. We can show that the minimal representation

of any Q ∈ ∆ (D) is unique up to permutation of its indices.
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Lemma IV.1. Let Q ∈ ∆ (D) and admit minimal representations Q =
∑r

i=1 αiδνi =∑r
j=1 α

′
jδν′j . There exists some permutation ψ : [r] → [r] such that νψ(i) = ν ′i and

αψ(i) = α′i for all i.

Henceforth when we define an element of ∆ (D) with a summation we will assume

that the summation is a minimal representation.

Definition IV.2. We call P =
∑m

i=1wiδµi a mixture of measures if it is a probability

measure in ∆ (D). The elements µ1, . . . , µm, are called mixture components.

Any minimal representation of a mixture of measures P with m components

satisfies P =
∑m

i=1wiδµi with wi > 0 for all i and
∑m

i=1wi = 1. Hence any mixture

of measures is a convex combination of Dirac measures at elements in D.

For a measurable space (Ψ,G) we define M (Ψ,G) as the space of all finite

signed measures over (Ψ,G). We can now introduce the operator Vn : ∆ (D) →

M (Ω×n,F×n). For a minimal representation Q =
∑r

i=1 αiδνi , we define Vn, with

n ∈ N+, as

Vn(Q) =
r∑
i=1

αiν
×n
i .

This mapping is well defined as a consequence of Lemma IV.1. From this definition

we have that Vn (P) is simply the law of X which we derived earlier. In the following

definitions, two mixtures of measures are considered equal if they define the same

measure.

Definition IV.3. We call a mixture of measures, P, n-identifiable if there does not

exist a different mixture of measures P ′, with order no greater than the order of P,

such that Vn (P) = Vn (P ′).

Definition IV.4. We call a mixture of measures, P, n-determined if there exists no

other mixture of measures P ′ such that Vn (P) = Vn (P ′).
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Definition IV.3 and IV.4 are central objects of interest in this work. Given a mix-

ture of measures, P =
∑m

i=1 wiδµi then Vn(P) is equal to
∑m

i=1wiµ
×n
i , the measure

from which X is drawn. If P is not n-identifiable then we know that there exists a

different mixture of measures that is no more complex (in terms of number of mix-

ture components) than P which induces the same distribution on X. Practically

speaking this means we need more samples in each random group X in order for the

full richness of P to be manifested in X. A stronger version of n-identifiability is

n-determinedness where we enforce the requirement that our mixture of measures be

the only mixture of measures (of any order) that admits the distribution on X.

A quick note on terminology. We use the term “mixture of measures” rather than

“mixture model” to emphasize that a mixture of measures should be interpreted a bit

differently than a typical mixture model. A “mixture model” connotes a probability

measure on the sample space of observed data Ω, whereas a “mixture of measures”

connotes a probability measure on the sample space of the unobserved latent measures

D.

4.2 Main Results

The first result is a bound on the n-identifiability of all mixtures of measures with

m or fewer components. This bound cannot be uniformly improved.

Theorem IV.5. Let (Ω,F ) be a measurable space. Mixtures of measures with m

components are (2m− 1)-identifiable.

Theorem IV.6. Let (Ω,F ) be a measurable space with F 6= {∅,Ω}. For all m, there

exists a mixture of measures with m ≥ 2 components that is not (2m−2)-identifiable.

The following lemmas convey the unsurprising fact that n-identifiability is, in

some sense, monotonic.
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Lemma IV.7. If a mixture of measures is n-identifiable then it is q-identifiable for

all q > n.

Lemma IV.8. If a mixture of measures is not n-identifiable then it is not q-

identifiable for any q < n.

Viewed alternatively these results say that n = 2m − 1 is the smallest value for

which Vn is injective over the set of mixtures of measures with m or fewer components.

We also present an analogous bound for n-determinedness. This bound also cannot

be improved.

Theorem IV.9. Let (Ω,F ) be a measurable space. Mixtures of measures with m

components are 2m-determined.

Theorem IV.10. Let (Ω,F ) be a measurable space with F 6= {∅,Ω}. For all m, there

exists a mixture of measures with m components that is not (2m− 1)-determined.

Again n-determinedness is monotonic in the number of samples per group.

Lemma IV.11. If a mixture of measures is n-determined then it is q-determined for

all q > n.

Lemma IV.12. If a mixture of measures is not n-determined then it is not q-

determined for any q < n.

This collection of results can be interpreted in an alternative way. Consider some

pair of mixtures of measures P,P ′. If n ≥ 2m and either mixture of measures is of

order m or less, then Vn (P) = Vn (P ′) implies P = P ′. Furthermore n = 2m is the

smallest value of n for which the previous statement is true for all pairs of mixtures

of measures.

Our definitions of n-identifiability, n-determinedness, and their relation to pre-

vious works on identifiability deserve a bit of discussion. Some previous works on
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identifiability contain results related to what we call “identifiability” and others con-

tain results related what we call “determinedness.” Both of these are simply called

“identifiability” in these works. For example in Yakowitz and Spragins (1968) it is

shown that different finite mixtures of multivariate Gaussian distributions will always

yield different distributions, a result which we could call “determinedness.” Alterna-

tively, in Teicher (1963) it is demonstrated that mixtures of binomial distributions,

with a fixed number of trials n for every mixture component, are identifiable pro-

vided we only consider mixtures with m mixture components and n ≥ 2m − 1. In

this result allowing for more mixture components may destroy identifiability and thus

this is what we would call an “identifiability” result. The fact that the value 2m− 1

occurs in both the previous binomial mixture model result and Theorem IV.5 is not a

coincidence. We will demonstrate a new determinedness result for multinomial mix-

tures models later in the chapter, under the assumption that n ≥ 2m. We will prove

these results using Theorems IV.5 and IV.9. To our knowledge our work is the first

to consider both identifiability and determinedness.

Finally we also include results that are analogous to previously shown results for

the discrete setting. We note that our proof techniques are markedly different than

the previous proofs for the discrete case.

Theorem IV.13. If P =
∑m

i=1wiδµi is a mixture of measures where µ1, . . . , µm are

linearly independent then P is 3-identifiable.

This bound is tight as a consequence of Theorem IV.6 with m = 2 since any pair

of distinct measures must be linearly independent.

A version of this theorem was first proven in Allman et al. (2009) by making

use of Kruskal’s Theorem Kruskal (1977). Kruskal’s Theorem demonstrates that

order 3 tensors over Rd admit unique decompositions (up to scaling and permutation)

given certain linear independence assumptions. Our proof makes no use of Kruskal’s

Theorem and demonstrates that n-identifiability for linearly independent mixture
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components need not be attached to the discrete version in any way. An efficient

algorithm for recovering linearly independent mixture components for discrete sample

spaces with 3 samples per random group is described in Anandkumar et al. (2014).

Interestingly, with one more sample per group, these mixtures of measures become

determined.

Theorem IV.14. If P =
∑m

i=1wiδµi is a mixture of measures where µ1, . . . , µm are

linearly independent then P is 4-determined.

This bound is tight as a result of Theorem IV.10 with m = 2.

Our final result is related to the “separability condition” found in Donoho and

Stodden (2003). The separability condition in the discrete case requires that, for each

mixture component µi, there exists Bi ∈ F such that µi (Bi) > 0 and µj (Bi) = 0 for

all i 6= j. There exists a generalization of the separability condition, known as joint

irreducibility.

Definition IV.15. A collection of probability measures µ1, . . . , µm are said to be

jointly irreducible if
∑m

i=1wiµi being a probability measure implies wi ≥ 0.

In other words, any probability measure in the span of µ1, . . . , µm must be a

convex combination of those measures. It was shown in Blanchard and Scott (2014)

that separability implies joint irreducibility, but not visa-versa. In that paper it was

also shown that joint irreducibility implies linear independence, but the converse does

not hold.

Theorem IV.16. If P =
∑m

i=1wiδµi is a mixture of measures where µ1, . . . , µm are

jointly irreducible then P is 2-determined.

A straightforward consequence of the corollary of Theorem 1 in Donoho and Stod-

den (2003) is that any mixture of measures on a finite discrete space with jointly

irreducible components is 2-identifiable. The result in Donoho and Stodden (2003)
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is concerned with the uniqueness of nonnegative matrix factorizations and Theorem

IV.16, when applied to a finite discrete space, can be posed as a special case of the

result in Donoho and Stodden (2003). In the context of nonnegative matrix factoriza-

tion the result in Donoho and Stodden (2003) is significantly more general than our

result. In another sense our result is more general since it applies to spaces where

joint irreducibility and the separability condition are not equivalent. Furthermore

Donoho and Stodden (2003) only implies that the mixture of measures in Theorem

IV.16 are identifiable. The determinedness result is, as far as we know, totally new.

4.3 Tensor Products of Hilbert Spaces

Our proofs will rely heavily on the geometry of tensor products of Hilbert spaces

which we will introduce in this section.

4.3.1 Overview of Tensor Products

First we introduce tensor products of Hilbert spaces. To our knowledge there

does not exist a rigorous construction of the tensor product Hilbert space which is

both succinct and intuitive. Because of this we will simply state some basic facts

about tensor products of Hilbert spaces and hopefully instill some intuition for the

uninitiated by way of example. A thorough treatment of tensor products of Hilbert

spaces can be found in Kadison and Ringrose (1983).

Let H and H ′ be Hilbert spaces. From these two Hilbert spaces the “simple

tensors” are elements of the form h ⊗ h′ with h ∈ H and h′ ∈ H ′. We can treat the

simple tensors as being the basis for some inner product space H0, with the inner

product of simple tensors satisfying

〈h1 ⊗ h′1, h2 ⊗ h′2〉 = 〈h1, h2〉 〈h′1, h′2〉 .
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The tensor product of H and H ′ is the completion of H0 and is denoted H ⊗ H ′.

To avoid potential confusion we note that the notation just described is standard

in operator theory literature. In some literature our definition of H0 is denoted as

H ⊗H ′ and our definition of H ⊗H ′ is denoted H⊗̂H ′.

As an illustrative example we consider the tensor product L2 (R) ⊗ L2 (R). It

can be shown that there exists an isomorphism between L2 (R)⊗ L2 (R) and L2(R2)

that maps the simple tensors to separable functions Kadison and Ringrose (1983),

f⊗f ′ 7→ f(·)f ′(·). We can demonstrate this isomorphism with a simple example. Let

f, g, f ′, g′ ∈ L2 (R). Taking the L2(R2) inner product of f(·)f ′(·) and g(·)g′(·) gives

us

∫ ∫
(f(x)f ′(y)) (g(x)g′(y))dxdy =

∫
f(x)g(x)dx

∫
f ′(y)g′(y)dy

= 〈f, g〉 〈f ′, g′〉

= 〈f ⊗ f ′, g ⊗ g′〉 .

Beyond tensor product we will need to define tensor power. To begin we will

first show that tensor products are, in a certain sense, associative. Let H1, H2, H3 be

Hilbert spaces. Proposition 2.6.5 in Kadison and Ringrose (1983) states that there is

a unique unitary operator, U : (H1 ⊗H2)⊗H3 → H1 ⊗ (H2 ⊗H3), that satisfies the

following for all h1 ∈ H1, h2 ∈ H2, h3 ∈ H3,

U ((h1 ⊗ h2)⊗ h3) = h1 ⊗ (h2 ⊗ h3) .

This implies that for any collection of Hilbert spaces, H1, . . . , Hn, the Hilbert space

H1 ⊗ · · · ⊗Hn is defined unambiguously regardless of how we decide to associate the

products. In the space H1 ⊗ · · · ⊗ Hn we define a simple tensor as a vector of the

form h1 ⊗ · · · ⊗ hn with hi ∈ Hi. In Kadison and Ringrose (1983) it is shown that
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H1 ⊗ · · · ⊗ Hn is the closure of the span of these simple tensors. To conclude this

primer on tensor products we introduce the following notation. For a Hilbert space

H we denote H⊗n = H ⊗H ⊗ · · · ⊗H︸ ︷︷ ︸
n times

and for h ∈ H, h⊗n = h⊗ h⊗ · · · ⊗ h︸ ︷︷ ︸
n times

.

4.3.2 Tensor Rank

A tool we will use frequently in our proofs is tensor rank, which behaves similarly

to matrix rank.

Definition IV.17. Let h ∈ H⊗n where H is a Hilbert space. The rank of h is the

smallest natural number r such that h =
∑r

i=1 hi where hi are simple tensors.

In an infinite dimensional Hilbert space it is possible for a tensor to have infinite

rank. We will only be concerned with finite rank tensors.

4.3.3 Some Results for Tensor Product Spaces

We derive some technical results concerning tensor product spaces that will be

useful for the rest of the chapter. These lemmas are similar to or are straightforward

extensions of previous results which we needed to modify for our particular purposes.

Let (Ψ,G, γ) be a σ-finite measure space. We have the following lemma that connects

tensor power of a L2 space to the L2 space of the product measure. Proofs of many

of the lemmas in this chapter are deferred to the Appendix B.1.

Lemma IV.18. There exists a unitary transform

U : L2 (Ψ,G, γ)⊗n → L2
(
Ψ×n,G×n, γ×n

)
such that, for all f1, . . . , fn ∈ L2 (Ψ,G, γ),

U (f1 ⊗ · · · ⊗ fn) = f1(·) · · · fn(·).
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The following lemma is used in the proof of Lemma IV.18 as well as the proof of

Theorem IV.6.

Lemma IV.19. Let H1, . . . , Hn, H
′
1, . . . , H

′
n be a collection of Hilbert spaces and

U1, . . . , Un a collection of unitary operators with Ui : Hi → H ′i for all i. There exists

a unitary operator U : H1⊗ · · · ⊗Hn → H ′1⊗ · · · ⊗H ′n satisfying U (h1 ⊗ · · · ⊗ hn) =

U1(h1)⊗ · · · ⊗ Un(hn) for all h1 ∈ H1, . . . , hn ∈ Hn.

A statement of the following lemma for Rd can be found in Comon et al. (2008).

We present our own proof for the Hilbert space setting.

Lemma IV.20. Let n > 1 and let h1, . . . , hn be elements of a Hilbert space such that

no elements are zero and no pairs of elements are collinear. Then h⊗n−1
1 , . . . , h⊗n−1

n

are linearly independent.

The following lemma is a Hilbert space version of a well known property for

positive semi-definite matrices.

Lemma IV.21. Let h1, . . . , hm be elements of a Hilbert space. The rank of
∑m

i=1 h
⊗2
i

is the dimension of span ({h1, . . . , hm}).

4.4 Proofs of Theorems

With the tools developed in the previous sections we can now prove our theorems.

First we introduce one additional piece of notation. For a function f on a domain

X we define f×k as simply the product of the function k times on the domain X×k,

f(·) · · · f(·)︸ ︷︷ ︸
k times

. For a set, σ-algebra, or measure the notation continues to denote the

standard k-fold product.

In these proofs we will be making extensive use of various L2 spaces. These spaces

will be equivalence classes of functions which are equal almost everywhere with respect

to the measure associated with that space. When considering elements of these spaces,

66



equality will always mean almost everywhere equality with respect to the measure

associated with that space. When performing integrals or other manipulations of

elements in L2 spaces, we will be performing operations that do not depend on the

representative of the equivalence class. The following lemma will be quite useful.

Lemma IV.22. Let γ1 . . . , γm, π1 . . . , πl be probability measures on a measurable space

(Ψ,G), a1 . . . , am, b1, . . . bl ∈ R, and n ∈ N+. If

m∑
i=1

aiγ
×n
i =

l∑
j=1

bjπ
×n
j

then for all n′ ∈ N+ with n′ ≤ n we have that

m∑
i=1

aiγ
×n′
i =

l∑
j=1

bjπ
×n′
j .

Proof of Theorem IV.5. We proceed by contradiction. Suppose there exist m, l ∈ N+

with l ≤ m such that there two different mixtures of measures P =
∑m

i=1 aiδµi 6=

P ′ =
∑l

j=1 bjδνj , and

m∑
i=1

aiµi
×2m−1 =

l∑
j=1

bjν
×2m−1
j . (4.2)

By the well-ordering principle there exists a minimal m such that the previous state-

ment holds. For that minimal m there exists a minimal l such that the previous

statement holds. We will assume that the m and l are both minimal in this way.

This assumption implies that µi 6= νj for all i, j. To prove this we will assume that

there exists i, j such that µi = νj, and show that this assumption leads to a contra-

diction. Without loss of generality we will assume that µm = νl. We will consider the

three cases where am = bl, am > bl, and am < bl.
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Case 1. If am = bl then we have that

m−1∑
i=1

ai
1− am

µ×2m−1
i =

l−1∑
j=1

bj
1− bl

ν×2m−1

and from Lemma IV.22 we have

m−1∑
i=1

ai
1− am

µ
×2(m−1)−1
i =

l−1∑
j=1

bj
1− bl

ν×2(m−1)−1.

Setting P =
∑m−1

i=1
ai

1−am δµi and P ′ =
∑l−1

j=1
bj

1−bl
δνj , we have that

V2(m−1)−1 (P) = V2(m−1)−1 (P ′)

which contradicts the minimality of m.

Case 2. If am > bl then we have

m−1∑
i=1

ai
1− bl

µ×2m−1
i +

am − bl
1− bl

µ×2m−1
m =

l−1∑
j=1

bj
1− bl

ν×2m−1
j

which contradicts the minimality of l by an argument similar to that in Case 1.

Case 3 If am < bl we have that

m−1∑
i=1

ai
1− am

µ×2m−1
i =

l−1∑
j=1

bj
1− am

ν×2m−1
j +

bl − am
1− am

ν×2m−1
l .

Again we will use arguments similar to the one used in Case 1. If l = m then

swapping the mixtures associated with m and l gives us a pair of mixtures of

measures which violates the minimality of l. If l < m then from Lemma IV.22
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we have that

m−1∑
i=1

ai
1− am

µ
×2(m−1)−1
i =

l−1∑
j=1

bj
1− am

ν
×2(m−1)−1
j +

bl − am
1− am

ν
×2(m−1)−1
l ,

which violates the minimality of m.

We have now established that µi 6= νj, for all i, j. We will use the following lemma

to embed the mixture components in a Hilbert space.

Lemma IV.23. Let γ1, . . . , γn be finite measures on a measurable space (Ψ,G).

There exists a finite measure π and non-negative functions f1, . . . , fn ∈ L1 (Ψ,G, π)∩

L2 (Ψ,G, π) such that, for all i and all B ∈ G

γi(B) =

∫
B

fidπ.

From Lemma IV.23 there exists a finite measure ξ and non-negative functions

p1, . . . , pm, q1, . . . , ql ∈ L1 (Ω,F , ξ) ∩ L2 (Ω,F , ξ) such that, for all B ∈ F , µi(B) =∫
B
pidξ and νj(B) =

∫
B
qjdξ for all i, j. Clearly no two of these functions are equal

(in the ξ-almost everywhere sense). If one of the functions were a scalar multiple of

another, for example p1 = αp2 for some α 6= 1, it would imply

µ1 (Ω) =

∫
p1dξ =

∫
αp2dξ = α.

This is not true so no pair of these functions are collinear.

We can use the following lemma to extend this new representation to a product

measure.

Lemma IV.24. Let (Ψ,G) be a measurable space, γ and π a pair of finite measures

on that space, and f a nonnegative function in L1 (Ψ,G, π) such that, for all A ∈ G,
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γ (A) =
∫
A
fdπ. Then for all n, for all B ∈ G×n we have

γ×n (B) =

∫
B

f×ndπ×n.

Thus for any R ∈ F×2m−1 we have

∫
R

m∑
i=1

aip
×2m−1
i dξ×2m−1 =

m∑
i=1

aiµ
×2m−1
i (R)

=
l∑

j=1

bjν
×2m−1
j (R)

=

∫
R

l∑
j=1

bjq
×2m−1
j dξ×2m−1.

The following lemma is a well known result in real analysis (Proposition 2.23 in

Folland (1999)), but it is worth mentioning explicitly.

Lemma IV.25. Let (Ψ,G, γ) be a measure space and f, g ∈ L1 (Ψ,G, γ). Then f = g

γ-almost everywhere iff, for all A ∈ G,
∫
A
fdγ =

∫
A
gdγ.

From this lemma it follows that

m∑
i=1

aip
×2m−1
i =

l∑
j=1

bjq
×2m−1
j .

Applying the U−1 operator from Lemma IV.18 to the previous equation yields

m∑
i=1

aip
⊗2m−1
i =

l∑
j=1

bjq
⊗2m−1
j .

Since l +m ≤ 2m Lemma IV.20 states that

p⊗2m−1
1 , . . . , p⊗2m−1

m , q⊗2m−1
1 , . . . , q⊗2m−1

l
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are all linearly independent and thus ai = 0 and bj = 0 for all i, j, a contradiction.

Proof of Theorem IV.6. To prove this theorem we will construct a pair of mixture

of measures, P 6= P ′ which both contain m components and satisfy V2m−2 (P) =

V2m−2 (P ′). From our definition of (Ω,F ) we know there exists F ∈ F such that F

and FC are nonempty. Let x ∈ F and x′ ∈ FC . It follows that δx and δx′ are different

probability measures on (Ω,F ). The theorem follows from the next lemma. We will

prove the lemma after the theorem proof.

Lemma IV.26. Let (Ψ,G) be a measurable space and γ, γ′ be distinct probability

measures on that space. Let ε1, . . . , εt be t ≥ 3 distinct values in [0, 1]. Then there

exist β1, . . . , βt, a permutation σ : [t]→ [t], and l ∈ N+ such that

l∑
i=1

βi
(
εσ(i)γ +

(
1− εσ(i)

)
γ′
)×t−2

=
t∑

j=l+1

βj
(
εσ(j)γ +

(
1− εσ(j)

)
γ′
)×t−2

where βi > 0 for all i,
∑l

i=1 βi =
∑t

j=l+1 βj = 1, and l, t− l ≥
⌊
t
2

⌋
.

Let ε1, . . . , ε2m ∈ [0, 1] be distinct and let µi = εiδx + (1− εi) δx′ for i ∈ [2m].

From Lemma IV.26 with t = 2m there exists a permutation σ : [2m] → [2m] and

β1, . . . , β2m such that

m∑
i=1

βiµ
×2m−2
σ(i) =

2m∑
j=m+1

βjµ
×2m−2
σ(j) ,

with
∑m

i=1 βi =
∑2m

j=m+1 βj = 1 and βi > 0 for all i.

If we let P =
∑m

i=1 βiδµσ(i)
and P ′ =

∑2m
j=m+1 βjδµσ(j)

, we have that V2m−2 (P) =

V2m−2 (P ′) and P 6= P ′ since µ1, . . . , µ2m are distinct.

For the next proof we will introduce some notation. For a tensor U ∈ Rd1⊗· · ·⊗Rdl

we define Ui1,...,il to be the entry in the [i1, . . . , il] location of U .
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Proof of Lemma IV.26. From Lemma IV.23, there exists a finite measure π and non-

negative functions f, f ′ ∈ L1 (Ψ,G, π)∩L2 (Ψ,G, π) such that, for all A ∈ G, γ (A) =∫
A
fdπ and γ′ (A) =

∫
A
f ′dπ.

Let H2 be the Hilbert space associated with the subspace in L2 (Ψ,G, π) spanned

by f and f ′. Let (fi)
t
i=1 be non-negative functions in L1(Ψ,G, π) ∩ L2(Ψ,G, π) with

fi = εif + (1− εi) f ′. Clearly fi is a pdf over π for all i and there are no pair

in this collection which are collinear. Since H2 is isomorphic to R2 there exists a

unitary operator U : H2 → R2. From Lemma IV.19 there exists a unitary operator

Ut−2 : H⊗t−2
2 → R2⊗t−2

, with Ut−2 (h1 ⊗ · · · ⊗ ht−2) = U(h1)⊗· · ·⊗U(ht−2). Because

U is unitary it follows that

Ut−2

(
span

({
h⊗t−2 : h ∈ H2

}))
= span

({
x⊗t−2 : x ∈ R2

})
.

An order r tensor, Ai1,...,ir , is symmetric if Ai1,...,ir = Aiψ(1),...,iψ(r)
for any i1, . . . , ir and

permutation ψ : [r]→ [r]. A consequence of Lemma 4.2 in Comon et al. (2008) is that

span ({x⊗t−2 : x ∈ R2}) ⊂ St−2(C2), the space of all symmetric order t − 2 tensors

over C2. Complex symmetric tensor spaces will always be viewed as a vector space

over the complex numbers and real symmetric tensor spaces will be always be viewed

as a vector space over the real numbers.

From Proposition 3.4 in Comon et al. (2008) it follows that the dimension of

St−2 (C2) is

 2 + t− 2− 1

t− 2

 = t−1. From this it follows that dimSt−2 (R2) ≤ t−1.

To see this consider some set of linearly dependent tensors x1, . . . , xr ∈ St−2 (C2) each

containing only real valued entries, i.e. the tensors are in St−2 (R2). Then it follows

that there exists c1, . . . , cr ∈ C such that

r∑
i=1

cixi = 0.
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Let < denote the real component when applied to an element of C, and the real

component applied entrywise when applied to a tensor. We have that

0 = <

(
r∑
i=1

cixi

)
=

r∑
i=1

< (cixi) =
r∑
i=1

< (ci)xi.

Thus it follows that x1, . . . xr are linearly dependent in St−2 (R2) and thus the dimen-

sionality bound holds. From this we get that

dim
(
span

({
h⊗t−2 : h ∈ H2

}))
≤ t− 1.

The bound on the dimension of span ({h⊗t−2 : h ∈ H2}) implies that
(
f⊗t−2
i

)t
i=1

are

linearly dependent. Conversely Lemma IV.20 implies that removing a single vector

from
(
f⊗t−2
i

)t
i=1

yields a set of vectors which are linearly independent. It follows that

there exists (αi)
t
i=1 with αi 6= 0 for all i and

t∑
i=1

αif
⊗t−2
i = 0. (4.3)

There exists a permutation σ : [t]→ [t] such that ασ(i) < 0 for all i ∈ [l] and ασ(j) > 0

for all j > l with l ≤
⌊
t
2

⌋
(ensuring that l ≤

⌊
t
2

⌋
may also require multiplying (4.3)

by −1). This σ appears in the lemma statement, but for the remainder of the proof

we will simply assume without loss of generality that αi < 0 for i ∈ [l] with l ≤
⌊
t
2

⌋
.

From this we have

l∑
i=1

−αif⊗t−2
i =

t∑
j=l+1

αjf
⊗t−2
j . (4.4)

From Lemma IV.18 we have

l∑
i=1

−αif×t−2
i =

t∑
j=l+1

αjf
×t−2
j
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and thus

∫ l∑
i=1

−αif×t−2
i dπ×t−2 =

∫ t∑
j=l+1

αjf
×t−2
j dπ×t−2

⇒
l∑

i=1

−αi =
t∑

j=l+1

αj.

Let r =
∑l

i=1−αi. We know r > 0 so dividing both sides of (4.4) by r gives us

l∑
i=1

−αi
r
f⊗t−2
i =

t∑
j=l+1

αj
r
f⊗t−2
j

where the left and the right side are convex combinations. Let (βi)
t
i=1 be positive

numbers with βi = −αi
r

for i ∈ [l] and βj =
αj
r

for j ∈ [t] \ [l]. This gives us

l∑
i=1

βif
⊗t−2
i =

t∑
j=l+1

βjf
⊗t−2
j . (4.5)

We will now consider 3 cases for the value of t.

If t = 3 then l = 1 and l, t− l ≥ b t
2
c is satisfied.

If t is divisible by two then we can do the following,

l∑
i=1

βif
⊗ t

2
−1

i ⊗ f⊗
t
2
−1

i =
t∑

j=l+1

βjf
⊗ t

2
−1

j ⊗ f⊗
t
2
−1

j .

Consider the elements in the last inequality as order two tensors in L2 (Ψ,G, π)
⊗ t

2
−1⊗

L2 (Ψ,G, π)
⊗ t

2
−1

. From Lemma IV.20 and Lemma IV.21 we have that the RHS of the

previous equation has rank at least t
2

and since l ≤ t
2

it follows that l = t
2
. Again we

have that l, t− l ≥ b t
2
c.

If t is greater than 3 and not divisible by 2 then we can apply Lemma IV.18 to
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get

∫
Ψ

l∑
i=1

βif
×t−3
i fi(x)dπ(x) =

∫
Ψ

t∑
j=l+1

βjf
×t−3
j fj(y)dπ(y)

⇒
l∑

i=1

βif
×t−3
i =

t∑
j=l+1

βjf
×t−3
j .

Applying Lemma IV.18 again we get

l∑
i=1

βif
⊗t−3
i =

t∑
j=l+1

βjf
⊗t−3
j

⇒
l∑

i=1

βif
⊗ t−1

2
−1

i ⊗ f⊗
t−1

2
−1

i =
t∑

j=l+1

βjf
⊗ t−1

2
−1

j ⊗ f⊗
t−1

2
−1

j .

Recall that
⌊
t
2

⌋
≥ l so we also have that

t

2
− l ≥ −1

2

⇒ t− l ≥ t− 1

2
.

From Lemma IV.20 and Lemma IV.21 we have that the RHS of (4.6) has rank at

least t−1
2

and thus l ≥ t−1
2

. From this we have that t − l, l ≥
⌊
t
2

⌋
once again. So

l, t− l ≥ b t
2
c for any t ≥ 3. Applying Lemma IV.18 to (4.5) we have

l∑
i=1

βif
×t−2
i =

t∑
j=l+1

βjf
×t−2
j .

From Lemma IV.24 we have

l∑
i=1

βi (εiγ + (1− εi) γ′)×t−2
=

t∑
j=l+1

βj (εjγ + (1− εj) γ′)×t−2
.
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Proof of Theorem IV.9. Let P =
∑m

i=1 aiδµi and P ′ =
∑l

j=1 bjδνj be mixtures of

measures such that P ′ 6= P. We will proceed by contradiction. Suppose that∑m
i=1 aiµ

×2m
i =

∑l
j=1 bjν

×2m
j . From Theorem IV.5 we know that P is 2m − 1-

identifiable and therefore 2m-identifiable by Lemma IV.7. It follows that l > m.

From Lemma IV.23 there exists a finite measure ξ and non-negative functions

p1, . . . , pm, q1, . . . , ql ∈ L1 (Ω,F , ξ) ∩ L2 (Ω,F , ξ) such that, for all B ∈ F , µi(B) =∫
B
pidξ and νj(B) =

∫
B
qjdξ for all i, j. Using Lemmas IV.24 and IV.25 we have

m∑
i=1

aip
×2m
i =

l∑
j=1

bjq
×2m
j .

By Lemma IV.18 we have

m∑
i=1

aip
⊗2m
i =

l∑
j=1

bjq
⊗2m
j ,

and therefore

m∑
i=1

aip
⊗m
i ⊗ p⊗mi =

l∑
j=1

bjq
⊗m
j ⊗ q⊗mj .

Consider the elements in the last inequality as order two tensors in L2 (Ω,F , ξ)⊗m ⊗

L2 (Ω,F , ξ)⊗m. Since no pair of vectors in p1, . . . , pm are collinear, from Lemma IV.20

and Lemma IV.21 we know that the LHS has rank m. On the other hand, no pair

of vectors q1, . . . , ql are collinear either, so Lemma IV.20 says that there is a subset

of
{
q⊗m1 , . . . , q⊗ml

}
which contains at least m + 1 linearly independent elements. By

Lemma IV.21 it follows that the RHS has rank at least m+ 1, a contradiction.

Proof of Theorem IV.10. To prove this theorem we will construct a pair of mixture of

measures, P 6= P ′ which contain m and m+ 1 components respectively and satisfy

V2m−1 (P) = V2m−1 (P ′). From our definition of (Ω,F ) we know there exists F ∈ F
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such that F, FC are nonempty. Let x ∈ F and x′ ∈ FC . It follows that δx and δx′

are different probability measures on (Ω,F ). Let ε1, . . . , ε2m+1 be distinct values in

[0, 1]. Applying Lemma IV.26 with t = 2m + 1 and letting µi = εiδx + (1− εi) δx′ ,

there exists a permutation σ : [2m+ 1] → [2m+ 1] and β1, . . . , β2m+1, with βi > 0

for all i and
∑m

i=1 βi =
∑2m+1

j=m+1 βj = 1, such that

m∑
i=1

βiµ
×2m−1
σ(i) =

2m+1∑
j=m+1

βjµ
×2m−1
σ(j) .

If we let P =
∑m

i=1 βiδµσ(i)
and P ′ =

∑2m+1
j=m+1 βjδµσ(j)

, we have that V2m−1 (P) =

V2m−1 (P ′).

To prove the remaining theorems we will need to make use of bounded linear

operators on Hilbert spaces. Given a pair of Hilbert spaces H,H ′ we define L(H,H ′)

as the space of bounded linear operators from H to H ′. An operator, T , is in this

space if there exists a nonnegative number C such that ‖Tx‖H′ ≤ C ‖x‖H for all

x ∈ H. The space of bounded linear operators is a Banach space when equipped with

the norm

‖T‖ , sup
x 6=0

‖Tx‖
‖x‖

.

We will also need to employ Hilbert-Schmidt operators which are a subspace of the

bounded linear operators.

Definition IV.27. Let H,H ′ be Hilbert spaces and T ∈ L (H,H ′). T is called a

Hilbert-Schmidt operator if
∑

x∈J ‖Tx‖
2 < ∞ for an orthonormal basis J ⊂ H. We

denote the set of Hilbert-Schmidt operators in L (H,H ′) by H S (H,H ′).

This definition does not depend on the choice of orthonormal basis: the sum∑
x∈J ‖T (x)‖2 will always yield the same value regardless of the choice of orthonormal

basis J .
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The following properties of Hilbert-Schmidt operators will not be used in the next

proof, but they will be useful later. The set of Hilbert-Schmidt operators is itself a

Hilbert space when equipped with the inner product

∑
x∈J

〈Tx, Sx〉

where J is an orthonormal basis. The Hilbert-Schmidt norm will be denoted as ‖·‖H S

and the standard operator norm will have no subscript. There is a well known bound

relating the two norms: for a Hilbert-Schmidt operator T we have that

‖T‖ ≤ ‖T‖H S .

Proof of Theorem IV.13. Let P =
∑m

i=1 aiδµi be a mixture of measures with lin-

early independent components. Let P ′ =
∑l

j=1 bjδνj be a mixture of measures with

V3(P) = V3(P ′) and l ≤ m. From Lemma IV.23 there exists a finite measure ξ and

non-negative functions p1, . . . , pm, q1, . . . , ql ∈ L1 (Ω,F , ξ)∩L2 (Ω,F , ξ) such that, for

all B ∈ F ,
∫
B
pidξ = µi(B) and

∫
B
qjdξ = νj for all i, j. Using Lemma IV.22, IV.24 ,

and IV.25 as we did in the previous theorem proofs it follows that

m∑
i=1

aip
×2
i =

l∑
j=1

bjq
×2
j .

From Lemma IV.18 we have

m∑
i=1

aip
⊗2
i =

l∑
j=1

bjq
⊗2
j .

By Lemma IV.21 we now know that l = m and q1, . . . , qm are linearly indepen-

dent. We will now show that qj ∈ span ({p1, . . . , pm}) for all j. Suppose that

qt /∈ span ({p1, . . . , pm}). Then there exists z ∈ L2 (Ω,F , ξ) such that z ⊥ p1, . . . , pm
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but z 6⊥ qt. Now we have

m∑
i=1

aip
⊗2
i =

m∑
j=1

bjq
⊗2
j

⇒

〈
m∑
i=1

aipi ⊗ pi, z ⊗ z

〉
=

〈
m∑
j=1

bjqj ⊗ qj, z ⊗ z

〉

⇒
m∑
i=1

ai 〈pi ⊗ pi, z ⊗ z〉 =
m∑
j=1

bj 〈qj ⊗ qj, z ⊗ z〉

⇒
m∑
i=1

ai 〈pi, z〉2 =
m∑
j=1

bj 〈qj, z〉2 .

We know that the LHS of the last equation is zero but the RHS is not, a contradiction.

We will find the following well known property of tensor products to be useful for

continuing the proof (Kadison and Ringrose (1983) Proposition 2.6.9).

Lemma IV.28. Let H,H ′ be Hilbert spaces. There exists a unitary operator U :

H⊗H ′ →H S (H,H ′) such that, for any simple tensor h⊗h′ ∈ H⊗H ′, U (h⊗ h′) =

〈h, ·〉h′.

Because p1, . . . , pm are linearly independent we can do the following: for each

k ∈ [m] let zk ∈ span ({p1, . . . , pm}) be such that zk ⊥ {pi : i 6= k} and 〈zk, pk〉 = 1.

By considering elements of L2 (Ω,F , ξ)⊗3 as elements of L2 (Ω,F , ξ)⊗L2 (Ω,F , ξ)⊗2,

we can use Lemma IV.28 to transform elements in L2 (Ω,F , ξ)⊗3 into elements of

H S
(
L2 (Ω,F , ξ) , L2 (Ω,F , ξ)⊗2),

m∑
i=1

aip
⊗3
i =

m∑
j=1

bjq
⊗3
j

⇒
m∑
i=1

aip
⊗2
i 〈pi, ·〉 =

m∑
j=1

bjq
⊗2
j 〈qj, ·〉 .
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It now follows that

m∑
i=1

aip
⊗2
i 〈pi, zk〉 =

m∑
j=1

bjq
⊗2
j 〈qj, zk〉

⇒ akp
⊗2
k =

m∑
j=1

bjq
⊗2
j 〈qj, zk〉 .

Using Lemma IV.28 we have

akpk 〈pk, ·〉 =
m∑
j=1

bj 〈qj, zk〉 qj 〈qj, ·〉 . (4.6)

The LHS of (4.6) is a rank one operator and thus the RHS must have exactly one

nonzero summand, since q1, . . . , qm are linearly independent. Let ϕ : [m]→ [m] be a

function such that, for all k,

akp
⊗2
k =

〈
qϕ(k), zk

〉
bϕ(k)q

⊗2
ϕ(k).

From Lemma IV.24 we have

akµ
×2
k =

〈
qϕ(k), zk

〉
bϕ(k)ν

×2
ϕ(k),

for all k. By Lemma IV.22 we have that akµk =
〈
qϕ(k), zk

〉
bϕ(k)νϕ(k) for all k and

thus µk = νϕ(k). Because µi 6= µj for all i, j we have that ϕ must be a bijection. Let

σ = ϕ−1. By Lemma IV.22 we have that

m∑
i=1

aiµi =
m∑
j=1

bjµσ(j).

Since µ1, . . . , µm are linearly independent the last equation only has one solution for
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b1, . . . , bm, which is bk = aσ(k), for all k. Thus

P ′ =
m∑
i=1

aσ(i)δµσ(i)

which is equal to P.

Proof of Theorem IV.14. Let P =
∑m

i=1 aiδµi be a mixture of measures with linearly

independent components. We will proceed by contradiction: let P ′ =
∑l

j=1 bjδνj 6=

P be a mixture of measures with V4(P) = V4(P ′). From Theorem IV.5 we know

that P is 3-identifiable. By Lemma IV.7 it follows that P is 4-identifiable and

thus l > m. From Lemma IV.23 there exists a finite measure ξ and non-negative

functions p1, . . . , pm, q1, . . . , ql ∈ L1 (Ω,F , ξ) ∩ L2 (Ω,F , ξ) such that, for all B ∈ F ,∫
B
pidξ = µi(B) and

∫
B
qjdξ = νj (B) for all i, j.

Proceeding as we did in the proof of Theorem IV.13 we have that

m∑
i=1

aip
⊗4
i =

l∑
j=1

bjq
⊗4
j .

Suppose that there exists k such that νk /∈ span ({µ1, . . . , µm}). From this it would

follow that there exists z such that z ⊥ {p1, . . . , pm} and z 6⊥ qk. Then we would

have that

〈
m∑
i=1

aip
⊗4
i , z⊗4

〉
=

〈
l∑

j=1

bjq
⊗4
j , z⊗4

〉

⇒
m∑
i=1

ai 〈pi, z〉4 =
l∑

j=1

bj 〈qj, z〉4 ,

but the LHS of the last equation is 0 and the RHS is positive, a contradiction. Thus

we have that qk ∈ span ({p1, . . . , pm}) for all k.

Since l > m and no pair of elements in q1, . . . , qm are collinear, there must a

vector in q1, . . . , ql which is a nontrivial linear combination of p1, . . . , pm. Without
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loss of generality we will assume that q1 =
∑m

i=1 cipi with c1 and c2 nonzero. By the

linear independence of p1, . . . , pm there must exist vectors z1, z2 such that 〈z1, p1〉 = 1,

z1 ⊥ {pi : i 6= 1}, 〈z2, p2〉 = 1, and z2 ⊥ {pi : i 6= 2}. Now consider

〈
m∑
i=1

aip
⊗4
i , z⊗2

1 ⊗ z⊗2
2

〉
=

〈
l∑

j=1

bjq
⊗4
j , z⊗2

1 ⊗ z⊗2
2

〉

⇒
m∑
i=1

ai 〈pi, z1〉2 〈pi, z2〉2 =
l∑

j=1

bj 〈qj, z1〉2 〈qj, z2〉2 .

The LHS of the last equation is 0 and the RHS is positive, a contradiction.

Proof of Theorem IV.16. Let P =
∑m

i=1 aiδµi be a mixture of measures with jointly

irreducible components. Consider a mixture of measures P ′ =
∑l

j=1 bjδνj with

V2(P) = V2(P ′). From Lemma IV.23 there exists a finite measure ξ and non-

negative functions p1, . . . , pm, q1, . . . , ql ∈ L1 (Ω,F , ξ) ∩ L2 (Ω,F , ξ) such that, for all

B ∈ F ,
∫
B
pidξ = µi(B) and

∫
B
qjdξ = νj (B) for all i, j. From Lemmas IV.24 and

IV.25 we have

m∑
i=1

aipi × pi =
l∑

j=1

bjqj × qj.

From Lemma IV.18 we have

m∑
i=1

aipi ⊗ pi =
l∑

j=1

bjqj ⊗ qj. (4.7)

Suppose for a moment that P ′ contains a mixture component which does not

lie in span ({µ1, . . . , µm}). Without loss of generality we will assume that ν1 /∈

span ({µ1, . . . , µm}). Recall that joint irreducibility implies linear independence so

ν1, µ1, . . . , µm are a linearly independent set of measures and thus q1, p1, . . . , pm are

linearly independent. It follows that we can find some z ∈ L2 (Ω,F , ξ) such that
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〈z, q1〉 6= 0 and z ⊥ {pi : i ∈ [m]} for all i. From (4.7) we have the following

〈
m∑
i=1

aipi ⊗ pi, z ⊗ z

〉
=

〈
l∑

j=1

bjqj ⊗ qj, z ⊗ z

〉

⇒
m∑
i=1

ai 〈pi ⊗ pi, z ⊗ z〉 =
l∑

j=1

bj 〈qj ⊗ qj, z ⊗ z〉

⇒
m∑
i=1

ai 〈pi, z〉2 =
l∑

j=1

bj 〈qj, z〉2 .

All the summands on both sides of the last equation are nonnegative. By our con-

struction of z the LHS of the previous equation is zero and the first summand on the

RHS is positive, a contradiction. Thus, each component in P ′ must lie in the span

of the components of P.

Now we have, for all j, qj =
∑m

i=1 c
j
ipi. From joint irreducibility we have that

cji ≥ 0 for all i and j. Now suppose that there exists r, s, s′ such that crs, c
r
s′ > 0.

From the linear independence of p1, . . . , pm we can find a z such that 〈ps, z〉 = 1 and

z ⊥ {pq : q ∈ [m] \ {s}}. Applying Lemma IV.28 to (4.7) we have

m∑
i=1

aipi 〈pi, ·〉 =
l∑

j=1

bjqj 〈qj, ·〉

⇒
m∑
i=1

aipi 〈pi, z〉 =
l∑

j=1

bjqj 〈qj, z〉

⇒ asps =
l∑

j=1

bj

[
m∑
t=1

cjtpt

]〈
m∑
u=1

cjupu, z

〉

⇒ asps =
l∑

j=1

bj

[
m∑
t=1

cjtpt

]
cjs

=
m∑
t=1

l∑
j=1

bjc
j
tc
j
spt

=
m∑
t=1

pt

l∑
j=1

bjc
j
tc
j
s.
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Let αt =
∑l

j=1 bjc
j
tc
j
s for all t and note that each summand is nonnegative. Now we

have

asps =
m∑
t=1

αtpt.

We know that αs′ > 0 since brc
r
sc
r
s′ > 0. This violates the linear independence of

p1, . . . , pm. Now we have that for all i there exists j such that pi = qj. From the

minimality of the representation of mixtures of measures it follows that l = m and

without loss of generality we can assert that pi = qi for all i and thus µi = νi for

all i. Because p1, . . . , pm are linearly independent it follows that p1 ⊗ p1, . . . pm ⊗ pm

are linearly independent. We can show this by the contrapositive, suppose p1 ⊗

p1, . . . , pm ⊗ pm are not linearly independent then there exists a nontrivial linear

combination such that
∑m

i=1 κipi ⊗ pi = 0. Assume without loss of generality that

κ1 6= 0. Applying Lemma IV.28 we get that

m∑
i=1

κipi 〈pi, ·〉 = 0

⇒
m∑
i=1

κipi 〈pi, p1〉 = 0

⇒ κ1p1 ‖p1‖2
L2 +

m∑
i=2

κipi 〈pi, p1〉 = 0

and thus p1, . . . , pm are not linearly independent.

Since p1 ⊗ p1, . . . , pm ⊗ pm are linearly independent it follows that ai = bi for all i

and thus P = P ′.
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4.5 Identifiability and Determinedness of Mixtures of Multi-

nomial Distributions

Using the previous results we can show analogous identifiability and determined-

ness results for mixtures of multinomial distributions. The identifiability of mixtures

of multinomial distributions was originally studied in Kim (1984) which contains a

proof of Corollary IV.30 from this paper. An alternative proof of this corollary can

be found in Elmore and Wang (2003). These results are analogous to identifiability

results presented in this paper. Our proofs use techniques which are very different

from those used in Kim (1984); Elmore and Wang (2003). These techniques can also

be used to prove a determinedness style result, Corollary IV.31, which we have not

seen addressed elsewhere in the multinomial mixture model literature.

Before our proof we must first introduce some definitions and notation. Any

multinomial distribution is completely characterized by positive integers n and q and

a probability vector in Rq, p = [p1, . . . , pq]
T . A multinomial random variable can

be thought of as totalling the outcomes of repeated iid sampling from a categorical

distribution. With this view the value q represents the number of possible outcomes

of a trial, p is the likelihood of each outcome on a trial, and n is the number of

trials. For whole numbers k, l we define Ck,l =
{
x ∈ N×l :

∑l
i=1 xi = k

}
. These are

vectors of the form [x1, . . . , xl] where
∑l

i=1 xi = k. Using the values n and q above,

the multinomial distribution is a probability measure over Cn,q. If Q is a multinomial

distribution with parameters n, p, q as defined above then its probability mass function

is

Q
({

[x1, . . . , xq]
T
})

=
n!

x1! · · ·xq!
px1

1 · · · pxqq
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for x ∈ Cn,q. We will denote this measure as Qn,p,q. Let

M (n, q) , {Qn,p,q : p is a probability vector in Rq} ,

i.e. the space of all multinomial distributions with n and q fixed.

To show identifiability and determinedness of mixtures of multinomial dis-

tributions we will construct a linear operator Tn,q from span
(
D
(
Cn,q, 2

Cn,q
))

to

span
(
D
(

[q]×n , 2[q]×n
))

and use it to show that non-identifiable mixtures of multino-

mial distributions yield non-identifiable mixtures of measures, and likewise for non-

determined mixtures of multinomial distributions.

Since Cn,q is a finite set, the vector space of finite signed measures on
(
Cn,q, 2

Cn,q
)

is a finite dimensional space and the set {δx : x ∈ Cn,q} is a basis for this space.

Note that {δx : x ∈ Cn,q} is the set of all point masses on Cn,q, not vectors in the

ambient space of Cn,q. Thus, to completely define the operator Tn,q, we need only

define Tn,q (δx) for all x ∈ Cn,q. To this end let x = Cn,q. We define the function

Fn,q : Cn,q → [q]×n as Fn,q (x) = 1×x1 × · · · × q×xq , where the exponents represent

Cartesian powers. The definition of Fn,q is a bit dense so we will do a simple example.

Suppose n = 6, q = 4 and x = [1, 0, 3, 2]T then Fn,q (x) = [1, 3, 3, 3, 4, 4]T . Let Sn be

the symmetric group on n symbols. We define our linear operator as follows

Tn,q (δx) =
1

n!

∑
σ∈Sn

δσ(Fn,q(x)),

where σ is permuting the entries of Fn,q (x). This operator is similar to the projection

operator onto the set of order n symmetric tensors Comon et al. (2008). The following

lemma makes the crucial connection between the space of multinomial distributions

and the probability measures of grouped samples.
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Lemma IV.29. Let Qn,p,q ∈M (n, q), then

Tn,q (Qn,p,q) = Vn

(
δ∑q

i=1 piδi

)
.

Proof of Lemma IV.29. For brevity’s sake let

Q = Tn,q (Qn,p,q)

and

R = Vn

(
δ∑q

i=1 piδi

)
.

Let y ∈ [q]×n be arbitrary. We will prove that Q({y}) = R({y}) which, since y

is arbitrary, clearly generalizes to Q = R. From the definition of Vn we have that

R({y}) = (
∑q

i=1 piδi)
×n

({y}) =
∏n

i=1 pyi .

Let y̌ ∈ Cn,q be the element such that y̌i = |{j : yj = i}| for all i, i.e. the ith

index of y̌ contains the number of times the value i occurs in y. We define χ to be

the indicator function, which is equal to 1 if its subscript is true and 0 otherwise.

Consider some z 6= y̌. We have

Tn,q (δz) ({y}) =
1

n!

∑
σ∈Sn

δσ(Fn,q(z)) ({y})

=
1

n!

∑
σ∈Sn

χσ(Fn,q(z))=y.

From our definition of Fn,q and y̌ it is clear that, there must exist some r such that

the number of entries of Fn,q(z) which equal r is different from the number of indices

of y which equal r. Because of this no permutation of Fn,q(z) can equal y and thus

Tn,q (δz) ({y}) = 0. From this it follows that Tn,q (δz) ({y}) = 0 for all z 6= y̌.
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Now we will consider Tn,q (δy̌) ({y}). Again we have

Tn,q (δy̌) ({y}) =
1

n!

∑
σ∈Sn

χσ(Fn,q(y̌))=y,

so we need only determine how many permutations of Fn,q (y̌) are equal to y. Basic

combinatorics tells us that there are y̌1! · · · y̌q! such permutations. The coefficient of δy̌

in Qn,p,q is n!
y̌1!···y̌q !p

y̌1

1 · · · py̌nn so we have that Q({y}) = R({y}) by direct evaluation.

This lemma allows us to make some assertions about the identifiability of mixtures

of multinomial distributions.

In the following we will assume that all multinomial mixture models under con-

sideration have only nonzero summands and distinct components. In the context of

multinomial mixture models, a multinomial mixture model
∑m

i=1 aiQn,pi,q is identifi-

able if it being equal to a different multinomial mixture model,

m∑
i=1

aiQn,pi,q =
s∑
j=1

bjQn,rj ,q,

with s ≤ m implies that s = m and there exists some permutation σ such that

ai = bσ(i) and Qn,pi,q = Qn,rσ(i),q for all i. The mixture model is determined if the

previous statement holds without the restriction s ≤ m.

Multinomial mixture models are identifiable if the number of components m and

the number of trials in each component n satisfy n ≥ 2m− 1.

Corollary IV.30. Let m ∈ N+, n ≥ 2m− 1, and fix q ∈ N+. Let

Qn,p1,q, . . . , Qn,pm,q, Qn,r1,q, . . . , Qn,rs,q ∈M (n, q)
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with Qn,p1,q, . . . , Qn,pm,q distinct, Qn,r1,q, . . . , Qn,rs,q distinct, and s ≤ m. If

m∑
i=1

aiQn,pi,q =
s∑
j=1

bjQn,rj ,q

with ai > 0, bi > 0 for all i and
∑m

i=1 ai =
∑s

j=1 bj = 1, then s = m and there exists

some permutation σ such that ai = bσ(i) and pi = rσ(i).

Alternatively this corollary says that, given two different finite mixtures with

components in M (n, q), one mixture with m components and the other with s com-

ponents, if n ≥ 2m− 1 and n ≥ 2s− 1 then the mixtures induce different measures.

Proof of Corollary IV.30. We will proceed by contradiction and assume that there

exists two mixtures of the form above,

m∑
i=1

aiQn,pi,q =
s∑
j=1

bjQn,rj ,q

but s 6= m or s = m and there exists no permutation such that aiQn,pi,q =

bσ(i)Qn,rσ(i),q. If we apply Tn,q defined earlier, from Lemma IV.29 it follows that

Vn

(
m∑
i=1

aiδ∑q
k=1 pi,kδk

)
= Vn

(
s∑
j=1

bjδ∑q
l=1 rj,lδl

)
.

We have that P =
∑m

i=1 aiδ
∑q
k=1 pi,kδk

and P ′ =
∑s

j=1 bjδ
∑q
l=1 rj,lδl

are mixtures of

measures which are not n-identifiable. Our contradiction hypothesis implies that

P 6= P ′. From Lemma IV.8 we have that

V2m−1

(
m∑
i=1

aiδ∑q
k=1 pi,kδk

)
= V2m−1

(
s∑
j=1

bjδ∑q
l=1 rj,lδl

)
,

which contradicts Theorem IV.5.

Additionally multinomial mixture models are determined if the number of com-
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ponents m and the number of trials in each component n satisfy n ≥ 2m.

Corollary IV.31. Let n ≥ 2m and fix q ∈ N. Let Qn,p1,q, . . . , Qn,pm,q and

Qn,r1,q, . . . , Qn,rs,q be elements of M (n, q) with Qn,p1,q, . . . , Qn,pm,q distinct and

Qn,r1,q, . . . , Qn,rs,q distinct. If

m∑
i=1

aiQn,pi,q =
s∑
j=1

bjQn,rj ,q

with ai > 0, bi > 0 for all i and
∑m

i=1 ai =
∑m

j=1 bi = 1, then m = s and there exists

some permutation σ such that ai = bσ(i) and pi = rσ(i).

The proof is almost identical to the proof of Corollary IV.30, so we will

omit it. Using these proof techniques one could establish additional identifiabil-

ity/determinedness style results for multinomial mixture models along the lines of

Theorems IV.13, IV.14, and IV.16. Furthermore it seems likely that one could use

the algorithms described in the next section or from Anandkumar et al. (2014); Arora

et al. (2012); Rabani et al. (2014) to recover these components, using the transform

Tn,q.

4.6 Meta-Algorithms

Here we will present a few algorithms for the recovery of mixture components and

proportions from data. The algorithms are quite general and can be applied to any

measurable space. Unfortunately, due to the generality of the proposed algorithms,

some of the implementation details are setting specific which makes in-depth theo-

retical analysis difficult. As one concrete illustration, we will show consistency for

categorical measures.

Let
∑m

i=1 wiδµi be an arbitrary mixture of measures on some measurable space

(Ω,F ), which we are interested in recovering. Let p1, . . . , pm be square integrable
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densities with respect to a dominating measure ξ, with
∫
A
pidξ = µi (A) for all i ∈ [m]

and A ∈ F . A measure ξ and densities p1, . . . , pm satisfying these properties are

guaranteed to exist as a consequence of Lemma IV.23.

We will initially consider the situation where we have 2m samples per random

group and have access to the tensors
∑m

i=1wip
⊗2m
i and

∑m
i=1 wip

⊗2m−2
i . In a finite

discrete space, estimating these tensors is equivalent to estimating moment tensors of

order 2m and 2m−2. For measures over Rd dominated by the Lebesgue measure, one

could estimate these tensors using a kernel density estimator in Rd(2m) and Rd(2m−2)

using each sample group as a kernel center. We will also assume that p1, . . . , pm have

distinct norms. We will need to introduce tensor products of bounded linear operators.

The following lemma is exactly proposition 2.6.12 from Kadison and Ringrose (1983).

Lemma IV.32. Let H1, . . . , Hn, H
′
1, . . . , H

′
n be Hilbert spaces and let Ui ∈ L (Hi, H

′
i)

for all i ∈ [n]. There exists a unique

U ∈ L (H1 ⊗ · · · ⊗Hn, H
′
1 ⊗ · · · ⊗H ′n) ,

such that U (h1 ⊗ · · · ⊗ hn) = U1 (h1)⊗ · · · ⊗ Un (hn) for all h1 ∈ H1, . . . , hn ∈ Hn.

Definition IV.33. The operator constructed in Lemma IV.32 is called the tensor

product of U1, . . . , Un and is denoted U1 ⊗ · · · ⊗ Un.

The following equality is mentioned in Kadison and Ringrose (1983).

Lemma IV.34. Let U1, . . . , Un be defined as in Lemma IV.32. Then

‖U1 ⊗ · · · ⊗ Un‖ = ‖U1‖ ‖U2‖ · · · ‖Un‖ .

Before we introduce the meta-algorithms we will discuss an important point re-

garding computational implementation and Lemmas IV.28 and IV.32. For the re-

mainder of this paragraph we will assume that Euclidean spaces are equipped with
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the standard inner product. Vectors in a space of tensor products of Euclidean space,

for example Rd1⊗· · ·⊗Rds are easily represented on computers as elements of Rd1×···×ds

Comon et al. (2008). Linear operators from some Euclidean tensor space to another

can also be easily represented. Furthermore the transformation in Lemma IV.28 and

the construction of new operators from Lemma IV.32 can be implemented in com-

puters by “unfolding” the tensors into matrices, applying common linear algebraic

manipulations and “folding” them back into tensors. The inner workings of these

manipulations are beyond the scope of this paper and we refer the reader to Golub

and Van Loan (1996) for details. Practically speaking this means the manipulations

mentioned in Lemmas IV.28 and IV.32 are straightforward to implement with a bit

of tensor programming knowhow. Implementation may also be streamlined by using

programming libraries that assist with these tensor manipulations such as the NumPy

library for Python.

Because of the points mentioned in the previous paragraph the following algo-

rithms are readily implementable for estimating categorical distributions, where the

measures can be represented as probability vectors on a Euclidean space. We will

go into this point in more detail later. Similarly, we expect that these techniques

could be extended to probability densities on Euclidean space using kernel density

estimators with a kernel function that can be evaluated in closed form (although

implementation may be significantly more involved).

To begin our analysis we will apply the transform from Lemma IV.28 to get the

operator

C =
m∑
i=1

wip
⊗m−1
i

〈
p⊗m−1
i , ·

〉
=

m∑
i=1

√
wip

⊗m−1
i

〈√
wip

⊗m−1
i , ·

〉
.

Here C is a positive semi-definite (PSD) operator in L
(
L2 (Ω,F , ξ)⊗m−1). Let C†

be the (Moore-Penrose) pseudoinverse of C and W =
√
C†. Now W is an operator
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that whitens
√
w1p

⊗m−1
1 , . . . ,

√
wmp

⊗m−1
m . That is, W

√
w1p

⊗m−1
1 , . . . ,W

√
wmp

⊗m−1
m

are orthonormal vectors. Using the operator construction from Lemma IV.32 we can

construct I ⊗W ⊗ I ⊗W where, for all simple tensors in L2 (Ω,F , ξ)⊗2m we have,

(I ⊗W ⊗ I ⊗W ) (x1 ⊗ · · · ⊗ x2m)

= x1 ⊗W (x2 ⊗ · · · ⊗ xm)⊗ xm+1 ⊗W (xm+1 ⊗ · · · ⊗ x2m) .

Applying I ⊗W ⊗ I ⊗W to
∑2m

i=1 wip
⊗2m
i yields

m∑
i=1

wipi ⊗Wp⊗m−1
i ⊗ pi ⊗Wp⊗m−1

i ,

which can again be represented as a PSD operator

S ,
m∑
i=1

wipi ⊗Wp⊗m−1
i

〈
pi ⊗Wp⊗m−1

i , ·
〉

=
m∑
i=1

pi ⊗W
√
wip

⊗m−1
i

〈
pi ⊗W

√
wip

⊗m−1
i , ·

〉
.

For i 6= j it follows that pi ⊗
√
wiWp⊗m−1

i ⊥ pj ⊗W
√
wjp

⊗m−1
j . To see this

〈
pi ⊗W

√
wip

⊗m−1
i , pj ⊗W

√
wjp

⊗m−1
j

〉
= 〈pi, pj〉

〈
W
√
wip

⊗m−1
i ,W

√
wjp

⊗m−1
j

〉
= 〈pi, pj〉 0

= 0.
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Also note that

∥∥pi ⊗W√wip⊗m−1
i

∥∥2
=

〈
pi ⊗W

√
wip

⊗m−1
i , pi ⊗W

√
wip

⊗m−1
i

〉
= 〈pi, pi〉

〈
W
√
wip

⊗m−1
i ,W

√
wip

⊗m−1
i

〉
= ‖pi‖2 .

If p1, . . . , pm have distinct norms then it follows that

m∑
i=1

pi ⊗W
√
wip

⊗m−1
i

〈
pi ⊗W

√
wip

⊗m−1
i , ·

〉
is the unique spectral decomposition of S since the vectors p1⊗W

√
w1p

⊗m−1
1 , . . . , pm⊗

W
√
wmp

⊗m−1
m are orthogonal, have distinct norms, and thus distinct positive eigen-

values. Given an eigenvector of S, pi⊗W
√
wip

⊗m−1
i , we need only view it as a linear

operator pi
〈
W
√
wip

⊗m−1
i , ·

〉
and apply this operator to some vector z which is not

orthogonal to W
√
wip

⊗m−1
i , thus yielding pi scaled by

〈
W
√
wip

⊗m−1
i , z

〉
.

Were the norms of p1, . . . , pm not distinct, then there would not be a spectral gap

between some of the eigenvalues in S, and a spectral decomposition of S may contain

some eigenvectors that are not p1 ⊗ W
√
w1p

⊗m−1
1 , . . . , pm ⊗ W

√
wmp

⊗m−1
m , but are

instead linear combinations of these vectors.

Once the mixture components p1, . . . , pm are recovered form the spectral decompo-

sition we can estimate the mixture proportions. From these mixture components we

can construct the tensors p⊗2m−2
1 , . . . , p⊗2m−2

m . These tensors are linearly independent

by Lemma IV.20. The tensor
∑m

i=1wip
⊗2m−2
i is known. By the linear independence

of the components there is exactly one solution for a1, . . . , am in the equation

m∑
i=1

wip
⊗2m−2
i =

m∑
j=1

ajp
⊗2m−2
j ,
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so simply minimizing
∥∥∥∑m

i=1wip
⊗2m−2
i −

∑m
j=1 ajp

⊗2m−2
j

∥∥∥ over a1, . . . , am will give

us the mixture proportions. We could also use a different tensor power∥∥∥∑m
i=1 wip

⊗r
i −

∑m
j=1 ajp

⊗r
j

∥∥∥, so long as r ≥ m − 1 to guarantee independence of

the components.

We can construct a similar algorithm with 4 samples per group when the mixture

components are known to be linearly independent. The details of this algorithm

are in Appendix B.2. In such a setting it would be advisable to use the algorithms

from Anandkumar et al. (2014); Song et al. (2014) since they better studied. We

mention our algorithm for purely theoretical interest. There are likely a multitude of

possible algorithms for the recovery of mixture components whose necessary group

size depends on the geometry of the mixture components.

Taking inspiration from Anandkumar et al. (2014) and Song et al. (2014) we

can suggest yet another algorithm. The previous papers demonstrate algorithms for

recovering mixture components which are measures on discrete spaces and Rd, from

random groups of size 3, provided the mixture components are linearly independent.

Given a mixture of measures P =
∑m

i=1wiδµi with density functions p1, . . . , pm,

the tensors p⊗m−1
1 , . . . , p⊗m−1

m are linearly independent. Thus, with 3m − 3 samples

per random group, we can estimate the tensors
∑m

i=1wip
⊗3m−3
i and we can use the

algorithms from the previous papers to recover p⊗m−1
1 , . . . , p⊗m−1

m from which it is

straightforward to recover p1, . . . , pm.

We can also recover the components with 2m−1 samples per group. We will adopt

the same setting as in our first algorithm, but with 2m−1 samples per group in stead

of 2m. Let W be as before. Using Lemma IV.32 we can construct the operator I⊗W⊗

W on the space L2 (Ω,F , ξ)⊗2m−1 which maps simple tensors in the following way:

(I⊗W ⊗W ) (x1 ⊗ · · · ⊗ x2m−1) = x1⊗W (x2 ⊗ · · · ⊗ xm)⊗W (xm+1 ⊗ · · · ⊗ x2m−1).

Applying this operator to
∑m

i=1 wip
⊗2m−1
i gives us the tensor
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A ,
m∑
i=1

wipi ⊗W
(
p⊗m−1
i

)
⊗W

(
p⊗m−1
i

)
=

m∑
i=1

pi ⊗W
(√

wip
⊗m−1
i

)
⊗W

(√
wip

⊗m−1
i

)
.

From Lemma IV.28 we can transform the tensor A into the operator T ,

T =
m∑
i=1

pi ⊗W
(√

wip
⊗m−1
i

) 〈
W
(√

wip
⊗m−1
i

)
, ·
〉
. (4.8)

Now the operator TTH is

TTH =
m∑
i=1

pi ⊗W
(√

wip
⊗m−1
i

) 〈
W
(√

wip
⊗m−1
i

)
, · · ·

m∑
j=1

W
(√

wjp
⊗m−1
j

) 〈
pj ⊗W

(√
wjp

⊗m−1
j

)
, ·
〉〉

=
m∑
i=1

pi ⊗W
(√

wip
⊗m−1
i

) 〈
pi ⊗W

(√
wip

⊗m−1
i

)
, ·
〉

which is simply the operator S from the previous section. The last step is justified

since the vectors W
(√

w1p
⊗m−1
1

)
, . . . ,W

(√
wmp

⊗m−1
m

)
are orthonormal. This tensor

is precisely the tensor from which we recovered the mixture components in the first

algorithm.

4.6.1 Spreading the eigenvalue gaps for categorical distributions

Here we will introduce a trick to guarantee that the norms of the mixture

component distributions are distinct. Let
(
Ω, 2Ω

)
be a finite discrete measurable

space with Ω = {ω1, . . . , ωd}. Let µ1, . . . , µm be distinct measures on this space.

Let y1, . . . , yd
iid∼ unif (1, 2) and let ξ be a random measure on

(
Ω, 2Ω

)
defined by

ξ ({ωi}) = yi for all i. Clearly ξ dominates all µ1, . . . , µm and thus we can define
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Radon-Nikodym derivatives pi = dµi
dξ

for all i. We will treat these Radon-Nikodym

derivatives as being elements in L2
(
Ω, 2Ω, ξ

)
. We have the following lemma

Lemma IV.35. With probability one

∫
pi(ω)2dξ(ω) 6=

∫
pj(ω)2dξ(ω)

for all i 6= j.

Proof. Observe that, for all i, j,

∫
{ωj}

pidξ = pi(ωj)ξ ({ωj}) = pi(ωj)yj = µi ({ωj})

and thus pi (ωj) =
µi({wj})

yj
. We will show that ‖p1‖2

`2(Rd) 6= ‖p2‖2
`2(Rd) with probability

one, which implies ‖pi‖`2(Rd) 6= ‖pj‖`2(Rd) for all i 6= j with probability one (here and

for the rest of the paper ‖·‖`2(Rd) will denote the standard Euclidean norm on Rd and

〈·, ·〉`2(Rd) the standard inner product).

Because µ1 6= µ2 it follows that there exists some j such that µ1 ({ωj}) 6= µ2 ({ωj}).

Without loss of generality we will assume that j = 1 in the previous statement. Now

we have

P

(∫
p1 (ω)

2 dξ (ω) =

∫
p2 (ω)

2 dξ (ω)

)

= P

 d∑
i=1

µ1 ({ωi})2

yi
=

d∑
j=1

µ2 ({ωj})2

yj


= P

µ1 ({ω1})2

y1
−
µ2

(
{ω1}2

)
y1

 =

 d∑
i=2

µ1 ({ωi})2

yi
−

d∑
j=2

µ2 ({ωj})2

yj



which is clearly zero since (µ1 ({ω1}))2 − (µ2 ({ω1}))2 6= 0 and y1, . . . , yd are all inde-

pendent random variables and from a non-atomic measure.
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Applying the previous trick with the recovery algorithm for groups of size 2m −

1 we have an algorithm for recovering mixtures on finite measure spaces with m

components. The paper Rabani et al. (2014) recovers the mixture components given a

setting almost identical to ours, but we feel that our algorithm is more straightforward

and easily extended to non-discrete spaces.

4.6.2 Recovery Algorithm For Discrete Spaces

Let
(
Ω, 2Ω

)
be a finite measurable space with |Ω| = d. To simplify exposition we

will assume that Ω is simply the set of d dimensional indicator vectors in Rd, e1, . . . , ed.

Note that Euclidean space with the standard inner product is L2
(

Ω, 2Ω,
∑d

i=1 δei

)
=

`2
(
Rd
)
. Let µ1, . . . , µm be distinct probability measures on Ω. Let P =

∑m
i=1wiδµi

be a mixture of measures. Let p̃i , Ex∼µi [x] for all i. Note that p̃i,j = µi ({ej}) for

all i, j. Let X1, X2, . . .
iid∼ V2m−1 (P) with Xi = [Xi,1, . . . , Xi,2m−1].

To begin we construct the random dominating measure described in Section 4.6.1.

Let y1, . . . , yd
iid∼ unif (1, 2). The random dominating measure ξ is defined by ξ ({ei}) =

yi for all i. Let pi = dµi
dξ

, i.e. pi (ej) =
p̃i,j
yj

for all i and j. There is a bit of a

computational issue with this representation for the densities p1, . . . , pm since the

new dominating measure changes the inner product from the standard inner product.

We can remedy this with the following lemma.

Lemma IV.36. Let x, v ∈ `2
(
Rd
)
, ξ be as above, and

B =



1√
y1

0 0 · · · 0

0 1√
y2

0 · · · 0

0 0
. . .

...

...
...

. . . 0

0 0 · · · 0 1√
yd


.

Then 〈Bx,Bv〉L2(Ω,2Ω,ξ) = 〈x, v〉`2(Rd).
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Proof of Lemma IV.36. We have

〈Bx,Bv〉L2(Ω,2Ω,ξ) =

∫
(Bx)(i)(Bv)(i)dξ(i)

=
d∑
i=1

(Bx)(i)(Bv)(i)yi

=
d∑
i=1

x(i)
√
yi

v(i)
√
yi
yi

=
d∑
i=1

x(i)y(i)

= 〈x, y〉`2(Rd) .

From this lemma we have that B, when considered as an operator in

L
(
`2
(
Rd
)
, L2

(
Ω, 2Ω, ξ

))
, is a unitary transform. We are interested in estimating

the tensor
∑m

i=1wip
⊗2m−1
i , but in order to keep the algorithm operating in standard

Euclidean space we will instead transform it into `2
(
Rd
)
. To this end consider an

arbitrary i. We have

B−1pi = B−1 [pi,1, . . . , pi,d]
T

= B−1

[
p̃i,1
y1

, . . . ,
p̃i,d
yd

]T
=

[
p̃i,1√
y1

, . . . ,
p̃i,d√
yd

]T
,

and thus B−1pj = Bp̃j for all j.

We will use the following lemma to find the expected value of

E [BXi,1 ⊗ · · · ⊗BXi,2m−1]

Lemma IV.37. Let n > 1 and Z1, . . . , Zn be independent random vectors in
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Rd1 , . . . ,Rdn such that E [Zi] exists for all i. Then E [Z1 ⊗ · · · ⊗ Zn] = E [Z1]⊗ · · · ⊗

E [Zn].

Proof of Lemma IV.37. Let [i1, . . . , in] ∈ Rd1 × · · · ×Rdn be arbitrary. We have that

E [Z1 ⊗ · · · ⊗ Zn]i1,...,in = E [Z1,i1 · · ·Zn,in ]

= E [Z1,i1 ] · · ·E [Zn,in ] .

Since i1, . . . , in were arbitrary it implies that all entries of E [Z1 ⊗ · · · ⊗ Zn] and

E [Z1]⊗ · · · ⊗ E [Zn] are equal.

Recall that Xi,1, . . . , Xi,2m−1
iid∼ µ with µ ∼P. From the previous lemma and the

definition of p̃i it follows that

E [BXi,1 ⊗ · · · ⊗BXi,2m−1]

= Eµ∼P [E [BXi,1 ⊗ · · · ⊗BXi,2m−1|µ]]

= Eµ∼P [E [BXi,1|µ]⊗ · · · ⊗ E [BXi,2m−1|µ]]

= Eµ∼P [BE [Xi,1|µ]⊗ · · · ⊗BE [Xi,2m−1|µ]]

=
m∑
i=1

wiBE [Xi,1|µ = µi]⊗ · · · ⊗BE [Xi,2m−1|µ = µi]

=
m∑
i=1

wi (Bp̃i)
⊗2m−1 .

Let Yi,j = BXi,j. Now we will construct the whitening operator. To do this first

construct the operator

Ĉ =

1

(2m− 1)!

1

n

n∑
i=1

∑
σ∈S2m−1

Yi,σ(1) ⊗ · · · ⊗ Yi,σ(m−1)

〈
Yi,σ(m) ⊗ · · · ⊗ Yi,σ(2m−2), ·

〉
.

There are some repeated terms in the previous summation, which is not an issue.
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Instead we could have set Ĉ to be equal to

1

(2m− 2)!

1

n

n∑
i=1

∑
σ∈S2m−2

Yi,σ(1) ⊗ · · · ⊗ Yi,σ(m−1)

〈
Yi,σ(m) ⊗ · · · ⊗ Yi,σ(2m−2), ·

〉
,

but this would not utilize all the data, specifically Y1,2m−1, . . . , Yn,2m−1. In the second

operator the average over S2m−2 functions as a projection onto the space of sym-

metric tensors and the summation over S2m−1 in the definition of Ĉ serves a similar

purpose. Viewed alternatively, the distribution of [Yi,1, . . . , Yi,2m−1]T does not change

if we reorder the entries of the vector, so the summation is considering all possible

orderings of random groups. This symmetrization conveniently assures that Ĉ is a

Hermitian operator. This Ĉ is estimating the C mentioned in the meta-algorithm.

Let λĈ,1, . . . , λĈ,m be the top m eigenvalues of Ĉ and vĈ,1, . . . , vĈ,m be their associated

eigenvectors. We can now construct the whitening operator

Ŵ =
m∑
i=1

λ
− 1

2

Ĉ,i
vĈ,i

〈
vĈ,i, ·

〉
.

Now construct the tensor

Â =

1

(2m− 1)!

1

n

n∑
i=1

∑
σ∈S2m−1

Yi,σ(1) ⊗ Ŵ
(
Yi,σ(2) ⊗ · · · ⊗ Yi,σ(m)

)
⊗ · · ·

Ŵ
(
Yi,σ(m+1) ⊗ · · · ⊗ Yi,σ(2m−1)

)
.

Using simple unfolding techniques we can transform Â in to the operator T̂ :

T̂ =
1

(2m− 1)!

1

n

n∑
i=1

∑
σ∈S2m−1

Yi,σ(1) ⊗ Ŵ
(
Yi,σ(2) ⊗ · · · ⊗ Yi,σ(m)

)
· · ·

〈
Ŵ
(
Yi,σ(m+1) ⊗ · · · ⊗ Yi,σ(2m−1)

)
, ·
〉
,
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as well as its Hermitian, T̂H :

1

(2m− 1)!

1

n

n∑
i=1

∑
σ∈S2m−1

Ŵ
(
Yi,σ(m+1) ⊗ · · · ⊗ Yi,σ(2m−1)

)
· · ·

〈
Yi,σ(1) ⊗ Ŵ

(
Yi,σ(2) ⊗ · · · ⊗ Yi,σ(m)

)
, ·
〉
.

Let v1, . . . , vm be the top m eigenvectors of T̂ T̂H (4.8), which will be

elements of `2
(
Rd
)⊗m

. These vectors are estimates of ‖Bp̃1‖−1
2 Bp̃1 ⊗

Ŵ
√
w1 (Bp̃1)⊗m−1 , . . . , ‖Bp̃m‖−1

2 Bp̃m ⊗ Ŵ
√
wm (Bp̃m)⊗m−1 (possibly multiplied by

−1). The factors in front of the tensors normalize the tensors to have norm 1.

Using a transform of the form in Lemma IV.28, we can implement a transform

U : `2
(
Rd
)⊗m →H S

(
`2
(
Rd
)⊗m−1

, `2
(
Rd
))

which maps simple tensors x1 ⊗ · · · ⊗ xm to x1 〈x2 ⊗ · · · ⊗ xm, ·〉. Applying this

transform to v1, . . . , vm yields estimates of ‖Bp̃i‖−1

`2(Rd)Bp̃i

〈
Ŵ
√
wi (Bp̃i)

⊗m−1 , ·
〉

,

for all i. At this point one simply needs to find vectors q1, . . . , qm

which are not orthogonal to Ŵ
√
w1 (Bp̃1)⊗m−1 , . . . , Ŵ

√
wm (Bp̃m)⊗m−1 to get

‖Bp̃i‖−1

`2(Rd)Bp̃i

〈
Ŵ
√
wi (Bp̃i)

⊗m−1 , qi

〉
, which is Bp̃i, . . . , Bp̃i up to scaling. Such

vectors can be found by simply using a tensor populated by iid standard normal ran-

dom variables. After this we can recover p̃1, . . . , p̃m, up to scaling, by simply applying

B−1, which we would then want to normalize to sum to one. Alternatively we could

take the largest left singular vector of these operators. We will call these estimates

p̂1, . . . , p̂m.

Using the data we can estimate the tensor
∑m

i=1wip̃
⊗m−1
i with the estimator

Ê =
1

2m− 1

1

n

n∑
i=1

∑
σ∈S2m−1

Xi,σ(1) ⊗ · · · ⊗Xi,σ(m−1)

To estimate the mixture proportions we find the value of α = (α1, . . . , αm) which
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minimizes

∥∥∥∥∥Ê −
m∑
i=1

αip̂i
⊗m−1

∥∥∥∥∥ .
4.6.3 Consistency of Recovery Algorithm

We will now show that the recovery algorithm for categorical distributions is

consistent. Let C, Ĉ, T, T̂ ,W, and Ŵ be as they were defined in the first part of

this section. The crux of our algorithm is the recovery of the eigenvectors of TTH ,

from which we then recover the mixture components through the application of linear

and continuous transforms to the eigenvectors. In order to simplify the notation in

our explanation we will assume that the norms of p̃1, . . . , p̃m are distinct. We do

this so that there are gaps in the spectral decomposition of TTH thus making the

random dominating measure trick unnecessary. Were this not the case, we could

simply represent the probability vectors as densities with respect to some dominating

measure which makes their norms distinct, as we did in the previous section. Because

of this assumption we can simply set B to be the identity operator. From this we

have that pi = p̃i for all i and Xi,j = Yi,j for all i and j. The following theorem

demonstrates that the algorithm does indeed recover the eigenvectors of TTH .

Theorem IV.38. With T and T̂ defined as above, as n→∞ then

∥∥∥TTH − T̂ T̂H∥∥∥
H S

p→ 0.

Proof of Theorem IV.38. Let

Q =
m∑
i=1

wip
⊗2m−1
i
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and

Q̂ =
1

(2m− 1)!

1

n

n∑
i=1

∑
σ∈S2m−1

Xi,σ(1) ⊗ · · · ⊗Xi,σ(2m−1).

Note that

(I ⊗W ⊗W ) (Q) =
m∑
i=1

wipi ⊗W
(
p⊗m−1
i

)
⊗W

(
p⊗m−1
i

)
and

(
I ⊗ Ŵ ⊗ Ŵ

)
(Q̂)

=
1

(2m− 1)!

1

n

n∑
i=1

∑
σ∈S2m−1

Xi,σ(1) ⊗ Ŵ
(
Xi,σ(2) ⊗ · · · ⊗Xi,σ(m)

)
⊗ · · ·

Ŵ
(
Xi,σ(m+1) ⊗ · · · ⊗Xi,σ(2m−1)

)
.

Since the transform in Lemma IV.28 is unitary, we have that

∥∥∥T − T̂∥∥∥
H S

=
∥∥∥(I ⊗W ⊗W ) (Q)−

(
I ⊗ Ŵ ⊗ Ŵ

)(
Q̂
)∥∥∥

`2(Rd)
⊗2m−1 .

We will now show that
∥∥∥T − T̂∥∥∥ p→ 0.

∥∥∥T − T̂∥∥∥ ≤ ∥∥∥T − T̂∥∥∥
H S

=
∥∥∥(I ⊗W ⊗W )(Q)−

(
I ⊗ Ŵ ⊗ Ŵ

)(
Q̂
)∥∥∥

`2(Rd)
⊗2m−1

≤
∥∥∥(I ⊗W ⊗W )(Q)− (I ⊗W ⊗W )(Q̂)

∥∥∥
`2(Rd)

⊗2m−1

+
∥∥∥(I ⊗W ⊗W )(Q̂)−

(
I ⊗ Ŵ ⊗ Ŵ

)(
Q̂
)∥∥∥

`2(Rd)
⊗2m−1

≤ ‖I ⊗W ⊗W‖
∥∥∥Q− Q̂∥∥∥

`2(Rd)
⊗2m−1

+
∥∥∥I ⊗W ⊗W − I ⊗ Ŵ ⊗ Ŵ∥∥∥∥∥∥Q̂∥∥∥

`2(Rd)
⊗2m−1 .
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We have that E
[
Q̂
]

= Q so the first summand goes to zero in probability by the law

of large numbers. All we need to show is that
∥∥∥I ⊗W ⊗W − I ⊗ Ŵ ⊗ Ŵ∥∥∥ p→ 0.

From Lemma IV.34 we have that

∥∥∥I ⊗W ⊗W − I ⊗ Ŵ ⊗ Ŵ∥∥∥ ≤ ‖I‖∥∥∥W ⊗W − Ŵ ⊗ Ŵ∥∥∥
=
∥∥∥W ⊗W − Ŵ ⊗ Ŵ∥∥∥

≤
∥∥∥W ⊗W −W ⊗ Ŵ∥∥∥+ · · ·∥∥∥W ⊗ Ŵ − Ŵ ⊗ Ŵ∥∥∥

= ‖W‖
∥∥∥W − Ŵ∥∥∥+

∥∥∥Ŵ∥∥∥∥∥∥W − Ŵ∥∥∥
=
(
‖W‖+

∥∥∥Ŵ∥∥∥)∥∥∥W − Ŵ∥∥∥ .
The left factor converges in probability to 2 ‖W‖ and the right factor converges to

0 in probability and so we have that
∥∥∥T − T̂∥∥∥ p→ 0. From this we also have that∥∥∥T̂ T̂H − TTH∥∥∥ p→ 0.

As demonstrated earlier in this section the mixture components are recovered by

applying a composition of linear and continuous operators to the eigenvectors of TTH ,

thus consistent estimation of the eigenvectors of TTH gives us consistent estimation

of the mixture components.

4.6.4 Experiments

Here we will present some experimental results of our algorithm applied to a simple

synthetic dataset. The sample space for the experiments is Ω = {0, 1, 2}. The mixture

components of our dataset are µ1, µ2, µ3 with µ1 distributed according to a binomial

distribution with n = 2 and p = 0.2, µ2 is similar with p = 0.8 and µ3 = 1
3
µ1 + 2

3
µ2.

The component weights are w1 = 0.5, w2 = 0.3, w3 = 0.2. So our mixture of measures

is P =
∑3

i=1wiδµi . Our samples come from V5 (P), and we will apply the algorithm
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described previously with a random dominating measure and using the left singular

value estimator rather than the application of a random vector.

When considered as vectors in R3, µ1 and µ2 have the same norm. The mixture

components are also not linearly independent. We will construct our own performance

measure which measures the recovery of all the components jointly. Let µ̂1, µ̂2, µ̂3 be

the three estimates of the mixture components from some algorithm. We will view

these estimates as vectors in R3. Our metric is minσ∈S3

1
3

∑3
i=1

∥∥µi − µ̂σ(i)

∥∥
`1(R3)

. That

is, we take the sum of total variations of the best matching of the estimated mixture

components to the true components.

4.6.5 Proposed Algorithm Experiments

We include two different implementations of our proposed algorithm with two

different sample sizes. For our first experiment we generate the dominating measure

from the square of Gaussian random variables with mean 0 and standard deviation

0.03 This experiment was performed with a sample size of 50,000 random groups. We

used the Gaussian random variables instead of a uniform distribution for the random

dominating measure because the Gaussian random measure performed better. For

our second experiment we fix our dominating measure ξ as ξ ({0}) = 32, ξ ({1}) = 22

and ξ ({2}) = 1 with 50,000 random groups. For our third and fourth experiments

repeated the previous two experiments but increased the number of random groups

to 10,000,000. The purpose of the last two experiments is to demonstrate that a well

chosen dominating measure can significantly affect performance. For our proposed

algorithm we repeat the experiment 20 times and report relevant statistics. We make

one additional adjustment to the algorithm described earlier. If the estimator yields

a component which has a negative entry, we simply set the negative entry to zero and

renormalise.
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Table 4.1: Experimental Results

Method Performance
Random Dominating Measure, 50,000 samples Mean:0.1407, Variance:0.0169

Fixed Dominating Measure, 50,000 samples Mean:0.0524, Variance:0.0011
Random Dominating Measure, 10,000,000 samples Mean:0.0433, Variance:0.0062

Fixed Dominating Measure, 10,000,000 samples Mean:0.0037, Variance: 4e−6
Randomly Selected Measures Mean:0.5323, Variance:0.0203

Anandkumar, et al. Anandkumar et al. (2014) 0.3214 or 0.1758

4.6.6 Competing Algorithms

We compare our algorithm to the algorithm from Anandkumar et al. (2014) as

well as simply choosing 3 measures uniformly at random from the probabilistic sim-

plex. The randomly selected components algorithm was repeated 1000 times. The

algorithm in Anandkumar et al. (2014) is executed on the true population measures.

Note that this algorithm is not intended to be used on mixtures of measures with

linearly dependent components.

4.6.7 Results

The Results are summarized in Table 1. As expected the algorithm from Anand-

kumar et al. (2014) is not capable of recovering components which are not linearly

independent. We chose the initial vector for tensor power iteration in Anandkumar

et al. (2014) randomly and the performance of this algorithm seems to depend on the

choice of initial vector.
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CHAPTER V

Future Work, Discussion, and Conclusion

This chapter contains possible directions for future research related to the results

presented in this thesis and concluding remarks.

5.1 Robust Kernel Density Estimator Consistency

In this work we have shown that the limit of the RKDE, as n → ∞ and σ → 0,

is the distribution f . Therefore the robustness of the RKDE is not manifested in its

asymptotic limit, at least for the class of strictly convex losses we study. Rather, the

robustness of the RKDE is manifested for finite sample sizes as demonstrated by Kim

and Scott (2012).

A key feature of our work is our nonstandard analysis. Standard analysis proceeds

by the decomposition, ‖f − fnσ ‖1 ≤ ‖f − fσ‖1+‖fσ − fnσ ‖1, where fσ is the minimizer

of Jσ (defined in Eqn. (2.2)). Using proof techniques from Kim and Scott (2012) it

is easy to show that there exists a pdf, pσ, satisfying

fσ =

∫
pσ (x) Φσ (x) dx
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and

pσ (x) =
ϕ
(
‖Φσ (x)− fσ‖Hσ

)
f (x)∫

ϕ
(
‖Φσ (y)− fσ‖Hσ

)
f (y) dy

.

In the case of the classic KDE, ϕ is a constant so pσ = f . For a robust loss however, ϕ

is a non-constant function so pσ does not have a closed form expression. The fact that

fσ and fnσ do not have closed form expressions makes the standard analysis difficult.

The function Rn
σ is of some interest of its own. It is mentioned in Kim and Scott

(2012) that the IRWLS algorithm converges to the RKDE after very few iterations.

This phenomenon may be explained by the small contraction constant exhibited by

Rn
σ in Lemma II.9. It is also worth noting that the density estimator generated by

applying the IRWLS algorithm a fixed number of times is also consistent. More

precisely, let fn,kσ = Rn
σ (· · ·Rn

σ (Rn
σ (0)) · · ·), where Rn

σ is applied k times, then, given

the same consistency requirements for the RKDE,
∥∥fn,kσ − f

∥∥
1

p→ 0.

The last line of the proof for Theorem II.5 allows us to say something about the

RKDE rate of convergence. From the proof, if nσd → ∞, there exists C > 0 such

that, with probability going to one,
∥∥f̄nσ − fnσ ∥∥Hσ ≤ Cσd/2. Letting σd/2 = log(n)√

n

gives us
∥∥f̄nσ − fnσ ∥∥Hσ √

n
log(n)

≤ C, a rate of convergence of the RKDE to the KDE. We

anticipate that this result can be extended to L1 convergence of the RKDE to f and

will be a focus of future work.

We also note that just as fnσ is a robust version of f̄nσ so is fσ a robust version of f̄σ.

To see this consider the expression for pσ. For the traditional KDE ϕ is a constant,

yielding pσ = f . When using a robust loss ϕ is a decreasing function causing pσ (x)

to be smaller for more outlying x. We can consider pσ to be a robust version of f

since it suppresses low density regions of f .

The primary thrust of future work will focus on extending this result to nonconvex

functions. In Kim and Scott (2012) it was demonstrated that the RKDE performed
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well when using a Hampel loss. Though optimization in a nonconvex setting is typi-

cally difficult to analyze, a proof using the fixed point techniques from this work seem

to be a promising tool for tackling such a challenge.

5.2 Scale and Project Kernel Density Estimator

Previous works have demonstrated that adaptive kernels can significantly improve

the performance of the KDE (Terrell and Scott , 1992; Liu et al., 2007; Mahapatruni

and Gray , 2011). Considering that the SPKDE already outperforms standard KDE,

it would be interesting to see if coupling the SPKDE with some adaptive kernel

technique could yield performance superior to both the SPKDE and adaptive kernel

methods.

There are a few interesting theoretical questions regarding the SPKDE. Most

obviously one would want to know why the performance of the SPKDE is generally

superior to that of the standard KDE, even with no contaminating data. In the case

of no contamination the SPKDE does not converge to the true density, which seems

to imply that the bias of the SPKDE is somehow superior to that of the standard

KDE. A better understanding of this could lead to even better nonparametric density

estimators. A second question would be that of the sample complexity. How does

the scaling and projection affect the convergence of the density estimator?

Algorithmically it would be desirable the accelerate the optimization for finding

the kernel weights, but since the optimization is a simple quadratic program this

avenue for research is subsumed by standard optimization theory.

5.3 An Operator Theoretic Approach to Nonparametric

Mixture Models

This chapter in particular presents many possibilities for future work.
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5.3.1 Future Work Related to the Recovery Algorithm

We feel that there is significant room left for improving our proposed algorithm.

Though we do not include these experiments, we observed a phenomena that having

a large separation between the norms of the components significantly improves the

ability for the algorithm to recover the mixture components. As the experiments

demonstrate, choosing a good dominating measure which separates the norms can

improve performance. An avenue for possible improvement is intelligent selection

of a dominating measure. One possible disadvantage of choosing the dominating

measure with iid random variables is that a sort of central limit type of effect occurs

which draws the norms together. Perhaps there is some way to select the dominating

measure from the data which will improve performance.

A second improvement may come from better estimates of the C and T opera-

tors in the algorithm. Principally, estimating these depends on good estimates of

symmetric tensors which represent categorical distributions. It has been shown that

the estimation of discrete distributions can be improved by not simply using the fre-

quencies of each occurrence of each category (Lehmann and Casella, 2003; Valiant

and Valiant , 2016; Orlitsky and Suresh, 2015; Kamath et al., 2015; Han et al., 2014;

Paninski , 2005). It seems possible that leveraging the techniques used for estimating

categorical distributions with the structure of symmetric tensors can yield improved

estimates of the symmetric tensors we use and thus improve the performance of the

algorithm.

Additionally it would be desirable to find some sample complexity bounds and

convergence rates for our recovery algorithms.

5.3.2 Additional Identifiability Results

While we have derived several core identifiability and determinedness there are still

many possibilities for other such results. For example, can the techniques presented
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here be extended to identifiability results for mixture models which are not “finite”

mixture models? What happens if a mixture of measures P has an infinite number

of components or is non-atomic? Additionally it would be interesting to see if we can

derive similar results for hidden Markov models, which are essentially the stochastic

stochastic version of finite mixture models.

Returning to the realm of finite nonparametric mixture models, there are a couple

of questions worth investigating. One of these is the notion of “identifiable sub-

spaces.” Given a mixture of measures P and access to Vn (P), is it possible that

some mixture components are identifiable while others are not? We can pose a simi-

lar question. Given some mixture of measures, P, what mixture components can we

add to P so that these new components are identifiable? What does this subspace

of identifiable components look like? Given data, can we hope to recover components

in these identifiable subspaces and know with certainty that we are indeed recovering

a true mixture component? Finally we would like to completely characterize the n-

identifiability and n-determinedness of a mixture of measures based on the geometry

of its components.

5.3.3 Potential Statistical Test and Estimator

The results on determinedness suggest the possibility of a goodness of fit test.

Suppose we have grouped samples from some mixture of measures P ′ =
∑m′

i=1w
′
iδµ′i .

Further suppose some null hypothesis

H0 : P ′ = P ,
m∑
i=1

wiδµi .

We may be able to reject the null hypothesis provided we have 2m samples per group

if we have some way of consistently estimating M ,
∑m

i=1wiµ
×2m
i from the groups

of samples. We will call such an estimator M̂ . If M̂ does not converge to M then we
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can reject the null hypothesis.

One interesting observation from the proof of Theorem IV.9 is that, if P =∑m
i=1wiδµi is a mixture of measures, pi is a pdf for µi for all i, and n > m, then the

rank of
∑m

i=1 aip
⊗n
i ⊗ p⊗ni will be exactly m. This suggests a statistical estimator for

the number of mixture components. The form of this tensor is amenable to spectral

methods since it is a positive semi-definite tensor of order 2, which is akin to a

positive semi-definite matrix. Embedding the data with the kernel mean mapping,

using a universal kernel Micchelli et al. (2006), seems like a promising approach to

constructing such a test or estimator.

5.3.4 Identifiability and the Value 2n− 1

The value 2n − 1 seems to carry some significance for identifiability beyond the

setting we proposed. This value can also be found in results concerning metrics

on trees Pachter and Speyer (2004), hidden Markov models Paz (1971), and frame

theory, with applications to signal processing Balan et al. (2006). All of these results

are related to identifiability of an object or the injectivity of an operator. We can

offer no further insight as to why this value recurs, but it appears to be an algebraic

phenomenon.

5.4 Conclusion

This work has presented results concerning two extensions of the question of non-

parametric density estimation. The first extension was adapting kernel density esti-

mation to be robust to contamination and outliers. To this end we demonstrated the

asymptotic behavior of a proposed robust kernel density estimator, with optimal rate

on bandwidth. We also proposed a new robust kernel density estimator, the SPKDE.

The asymptotic behavior of this estimator was analysed, and was shown to converge

to a transformed version of the sample distribution. Provided certain assumptions
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on contaminating data, this transform will converge to the uncontaminated distri-

bution. This estimator was also shown to perform well experimentally, oftentimes

outperforming the standard KDE, even with no contamination.

The second extension was concerned with nonparametric mixture modelling. In

this setting we had access to groups of samples which were known to come from

the same density. Using measure theoretic techniques we could embed this setting

into a Hilbert space and apply functional theoretic techniques. We demonstrated

several tight bounds for identifiability and determinedness as well as a highly general

algorithm, with a proof of concept experiment, for recovering the densities. These

techniques relied heavily on the Hilbert space embedding and demonstrated the power

of this technique.
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APPENDIX A

Chapter III Additional Proofs and Experimental

Results

A.1 Proofs

Proof of Lemma III.2 and III.5. We will prove these lemmas simultaneously. The f

in lemmas III.2 and III.5 are the same and all notation is consistent between the two

lemmas. First we will show that ‖gα,β‖L1 is continuous in α. Let {ai}∞1 be a non-

negative sequence in R converging to arbitrary a ≥ 0. Since gai,β is dominated by βf

and gai,β converges to ga,β pointwise, by the dominated convergence theorem we know

‖gai,β‖L1 → ‖ga,β‖L1 , thus proving the continuity of ‖gα,β‖L1 . Since ‖g0,β‖L1 = β > 1

and ‖gα,β‖L1 → 0 as α→∞, by the intermediate value theorem there exists α′ such

that ‖gα′,β‖L1 = 1. This proves the existence part of Lemma III.2. Let f̃β = gα′,β.

Clearly D is convex so the closure (in L2) D̄ is also convex. Since D̄ is a closed

and convex set in a Hilbert space, arg ming∈D̄ ‖g − βf‖L2 admits a unique minimizer.

Note that f̃β being the unique minimizer is equivalent to showing that, for all c in D̄
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(Theorem 3.14 in Bauschke and Combettes (2011))

〈
c− f̃β, βf − f̃β

〉
≤ 0.

Because this is continuous over the c term and D is dense in D̄ we need only show

that the inequality holds over all c ∈ D. To this end, note that for all x,

βf (x)−max {0, βf (x)− α′} ≤ α′

and that if f̃β(x) > 0 then

f̃β(x) = βf(x)− α′.

From this we have

〈
c− f̃β, βf − f̃β

〉
=

〈
c, βf − f̃β

〉
−
〈
f̃β, βf − f̃β

〉
=

∫
c (x)

(
βf (x)− f̃β (x)

)
dx

−
∫
f̃β (x)

(
βf (x)− f̃β (x)

)
dx

≤
∫
c (x)α′dx

−
∫
f̃β (x) (βf (x)− (βf (x)− α′)) dx

= α′ − α′

= 0.

From this we get that f̃β is the unique minimizer. If there existed α′′ 6= α′ such that

gα′′,β was also a pdf, then there would be two minimizers of arg ming∈D̄ ‖g − βf‖L2 ,

which is impossible since the minimizer is unique, thus proving the uniqueness of
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α′.

Proof of Proposition III.4. In this proof we will be working with a hypothetical ftar

and fcon in D. Define “Assumption B” to be that there exists two sets S ⊂ supp(ftar)

and T ⊂ Rd, which have nonzero Lebesgue measure, such that fcon(T ) > fcon(S). We

will now show that Assumption A not holding is equivalent to Assumption B.

A⇒not B: Let S ⊂ supp(ftar) and T ⊂ Rd both have nonzero Lebesgue measure.

From Assumption A we know for Lebesgue almost all s ∈ S that fcon(s) = u, for

some u and fcon(T ) ≤ u Lebesgue almost everywhere.

not A⇒B: If Assumption A is not satisfied either fcon is not almost Lebesgue

everywhere uniform over supp(ftar) or fcon is Lebesgue almost everywhere uniform

on supp (ftar) with value u but there exists some set Q ⊂ Rd of nonzero Lebesgue

measure such that fcon (Q) > u. Both of these situations clearly imply Assumption

B.

This proves that the negation of Assumption A is Assumption B.

Let fcon and ftar satisfy Assumption B and ε ∈ (0, 1) be arbitrary. By Lemma III.2

we know there exists a unique α such that max
{

1
1−ε ((1− ε)ftar(·) + εfcon)− α, 0

}
is a pdf. First we will show that α < ess supx

ε
1−εfcon(x). If ess supx

ε
1−εfcon(x) = ∞

then clearly α < ess supx
ε

1−εfcon(x). Let r = ess supx
ε

1−εfcon(x) <∞. Let S, T ⊂ Rd

satisfy the properties in the definition of Assumption B. Observe that

∫
max

{
1

1− ε
((1− ε)ftar(x) + εfcon(x))− r, 0

}
dx

=

∫
max

{
ftar(x) +

ε

1− ε
fcon(x)− r, 0

}
dx

=

∫
S

max

{
ftar(x) +

ε

1− ε
fcon(x)− r, 0

}
dx . . .

+

∫
SC

max

{
ftar(x) +

ε

1− ε
fcon(x)− r, 0

}
dx.
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Note that on the set S we have that max
{
ftar(x) + ε

1−εfcon(x)− r, 0
}
< ftar. Now

we have

∫
S

max

{
ftar(x) +

ε

1− ε
fcon(x)− r, 0

}
dx . . .

+

∫
SC

max

{
ftar(x) +

ε

1− ε
fcon(x)− r, 0

}
dx

<

∫
S

ftar(x)dx+

∫
SC

ftar(x)dx

< 1

and thus α < r (i.e. the cutoff value for RA
ε (fobs) is lower than the essential supremum

of fcon). Because α < ess supx
ε

1−εfcon(x), on the set for which ε
1−εfcon(·) > α (which

has nonzero Lebesgue measure) we have that max
{
ftar(·) + ε

1−εfcon − α, 0
}
> ftar,

so max
{
ftar(·) + ε

1−εfcon − α, 0
}
6= ftar.

Proof of Theorem III.6. Given a set S ⊂ L2
(
Rd
)

let PS be the projection operator

onto S. Consider the following decomposition

∥∥fnσ,β − f ′β∥∥L2 =
∥∥PDnσβf̄nσ − PD̄βf∥∥L2

≤
∥∥PDnσβf̄nσ − PDnσβf∥∥L2 +

∥∥PDnσβf − PD̄βf∥∥L2

Note that we are projecting onto D̄ rather than D does not matter as was shown

in the proof of Lemma III.2 and III.5. Furthermore note that f ′β = PD̄βf . The

projection operator onto a closed convex set is Lipschitz continuous with constant 1

(Proposition 4.8 in Bauschke and Combettes (2011)) so the first term goes to zero by

standard KDE consistency (which we prove later). Convergence of the second term

is a bit more involved. First we will show that
∥∥PDnσβf − βf∥∥L2

p→ ‖PD̄βf − βf‖L2 ,
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and then we will show that this implies
∥∥PDnσβf − f ′β∥∥L2

p→ 0.

We know Dnσ ⊂ D̄ so
∥∥PDnσβf − βf∥∥L2 ≥ ‖PD̄βf − βf‖L2 . We also know that for

all δ ∈ Dnσ ,
∥∥PDnσβf − βf∥∥L2 ≤ ‖δ − βf‖L2 . Because of these two facts, in order to

show
∥∥PDnσβf − βf∥∥L2

p→ ‖PD̄βf − βf‖L2 , it is sufficient to find a sequence {gnσ} ⊂

Dnσ such that
∥∥gnσ − f ′β∥∥L2

p→ 0. Since βf > f ′β we can generate gnσ by applying

rejection sampling to X1, . . . , Xn to generate a subsample X ′1, . . . , X
′
mn which are

iid from f ′β. For all i the event of Xi getting rejected is independent with equal

probability. The probability of a sample not being rejected is greater than zero so

there exists a b > 0 such that E [mn] > bn. From this and the strong law of large

numbers we have that P
(
mnσ

d →∞
)

= 1. Using this subsample we can construct

gnσ , 1
mn

∑mn
1 kσ (·, X ′i) ∈ Dnσ which is a KDE of f ′β, so by standard KDE consistency∥∥f ′β − gnσ∥∥L2

p→ 0, and thus
∥∥PDnσβf − βf∥∥L2

p→ ‖PD̄βf − βf‖L2 .

Let f̃nσ,β , PDnσβf . Finally we are going to show that

∥∥PDnσβf − βf∥∥L2

p→ ‖PD̄βf − βf‖L2

implies that ∥∥∥f̃nσ,β − f ′β∥∥∥
L2

p→ 0.

The functional ‖βf − ·‖2
L2 is strongly convex with convexity constant 2 (Example

Bauschke and Combettes (2011)). This means that for any a ∈ (0, 1), we have

∥∥∥βf − (af̃nσ,β + (1− a) f ′β

)∥∥∥2

L2
+ a (1− a)

∥∥∥f̃nσ,β − f ′β∥∥∥2

L2

≤ a
∥∥∥βf − f̃nσ,β∥∥∥2

L2
+ (1− a)

∥∥βf − f ′β∥∥2

L2 .

Letting a = 1/2 gives us

∥∥∥∥∥βf − f̃nσ,β + f ′β
2

∥∥∥∥∥
2

L2

+
1

4

∥∥∥f̃nσ,β − f ′β∥∥∥2

L2
≤ 1

2

∥∥∥βf − f̃nσ,β∥∥∥2

L2
+

1

2

∥∥βf − f ′β∥∥2

L2
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Since ∥∥βf − f ′β∥∥2

L2 ≤
∥∥∥βf − f̃nσ,β∥∥∥2

L2

and ∥∥βf − f ′β∥∥2

L2 ≤

∥∥∥∥∥βf − f̃nσ,β + f ′β
2

∥∥∥∥∥
2

L2

we have

∥∥βf − f ′β∥∥2

L2 +
1

4

∥∥∥f̃nσ,β − f ′β∥∥∥2

L2
≤
∥∥∥βf − f̃nσ,β∥∥∥2

L2

or equivalently

∥∥∥f̃nσ,β − f ′β∥∥∥2

L2
≤ 4

(∥∥∥βf − f̃nσ,β∥∥∥2

L2
−
∥∥βf − f ′β∥∥2

L2

)
.

The right side of the last equation goes to zero in probability, thus finishing our

proof.

Proof of KDE L2 consistency. Let f̄σ = E [kσ (·, Xi)] =
∫
kσ (·, x) g (x) dx. Using the

triangle inequality we have

∥∥f − f̄nσ ∥∥L2 ≤
∥∥f − f̄σ∥∥L2 +

∥∥f̄σ − f̄nσ ∥∥L2 .

The left summand goes to zero as σ → 0 by elementary analysis (see Theorem 8.14

in Folland (1999)). To take care of the right side with use the following lemma which

is a Hilbert space version of Hoeffding’s inequality from Steinwart and Christmann

(2008), Corollary 6.15.

Lemma A.1 (Hoeffding’s inequality in Hilbert space). Let (Ω,A, P ) be a

probability space, H be a separable Hilbert space, and B > 0 . Furthermore, let

ξ1, . . . ξn : Ω → H be independent H-valued random variables satisfying ‖ξi‖∞ ≤ B
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for all i. Then, for all τ > 0, we have

P

(∥∥∥∥∥ 1

n

n∑
1

(ξi − E [ξi])

∥∥∥∥∥
H

≥ B

√
2τ

n
+B

√
1

n
+

4Bτ

3n

)
≤ e−τ ..

Note that ‖ξi‖∞ = ess supω∈Ω ‖ξi (ω)‖H . Plugging in ξi = kσ (·, Xi) we get

P

(∥∥f̄nσ − f̄σ∥∥L2 ≥ ‖kσ (·, Xi)‖L2

√
2τ

n

+ ‖kσ (·, Xi)‖L2

√
1

n
+

4 ‖kσ (·, Xi)‖L2 τ

3n

)
≤ e−τ .

It is straightforward to show that there exists Q > 0 such that ‖kσ (·, Xi)‖L2 =

Qσ−d/2, giving us

P

(∥∥f̄nσ − f̄σ∥∥L2 ≥ Qσ−d/2
√

2τ

n

+Qσ−d/2
√

1

n
+

4Qσ−d/2τ

3n

)
≤ e−τ .

Letting nσd → ∞ sends all of the summands in the previous expression to zero for

fixed τ . Because of this there exists a positive sequence {τi}∞1 such that τi →∞ and

but increases slowly enough that Qσ−d/2
√

2τn
n

+Qσ−d/2
√

1
n

+ 4Qσ−d/2τn
3n

→ 0 as n→∞,

where σ depends implicitly on n. From this it is clear that
∥∥f̄nσ − f̄σ∥∥L2

p→ 0.

Proof of Corollary III.7. Let λ be the Lebesgue measure. Let S ⊂ Rd be such that

λ (S) <∞. By Hölders inequality we have

∥∥(f ′β − fnσ,β)χS∥∥L1 <
∥∥f ′β − fnσ,β∥∥L2 ‖χS‖L2

=
∥∥f ′β − fnσ,β∥∥L2

√
λ (S).

From this we have that, that fnσ,β converges in probability to f ′β in L1 norm, when

restricted to a set of finite Lebesgue measure. Let δ > 0 be arbitrary. Choose S to be
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a set of finite measure large enough that
∫
SC
f ′β (x) dx < δ/8. Note that this implies∥∥f ′βχS∥∥L1 ≥ 7

8
δ, a fact we will use later. Notice that

∥∥f ′β − fnσ,β∥∥L1 =
∥∥(f ′β − fnσ,β)χS∥∥L1 +

∥∥(f ′β − fnσ,β)χSC∥∥L1 .

We have already shown that the left summand in the converges in probability to zero,

so it becomes bounded by δ/8 with probability going to one. To finish the proof we

need only show that the right summand is bounded by 7
8
δ with probability going to

one. Using the triangle inequality we have

∥∥(f ′β − fnσ,β)χSC∥∥L1 ≤
∥∥f ′βχSC∥∥1

+
∥∥fnσ,βχSC∥∥L1

< δ/8 +
∥∥fnσ,βχSC∥∥L1 .

Now it is sufficient to show that
∥∥fnσ,βχSC∥∥1

becomes bounded by 3
4
δ with probability

going to one. To finish the proof,

∥∥fnσ,βχS∥∥L1 +
∥∥fnσ,βχSC∥∥L1 = 1

therefore

∥∥fnσ,βχSC∥∥L1 = 1−
∥∥fnσ,βχS∥∥L1

and we know that
∥∥fnσ,βχS∥∥L1

p→
∥∥f ′βχS∥∥L1 ≥ 7

8
δ so with probability going to one∥∥fnσ,βχS∥∥L1 ≥ δ/2 and thus

∥∥fnσ,βχSC∥∥L1 < δ/2.

Proof of Theorem III.8. By the triangle inequality we have

∥∥fnσ,β − ftar∥∥L1 ≤
∥∥fnσ,β − f ′β∥∥L1 +

∥∥f ′β − ftar∥∥L1 .
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The left summand in the previous inequality goes to zero by Corollary III.7, so it is

sufficient to show that the right term is zero. The rest of this proof will effectively

prove Proposition III.3. Again let gα,β (·) = max {0, βfobs (·)− α}. From Assumption

A we know that Lebesgue almost everywhere on the support of ftar, that fcon is equal

to some value u and that fcon is less than or equal to u Lebesgue almost everywhere

on Rd. We will show that, α′ = εu
1−ε , gives us gα′,β = ftar which, by Lemma III.2,

implies ftar = f ′β. Let K be the support of ftar.

First consider x ∈ KC . Almost everywhere on KC have

gα′,β (x) = max

{
0, βfobs (x)− εu

1− ε

}
= max

{
0,

1

1− ε
fcon (x) ε− εu

1− ε

}
≤ max

{
0,

1

1− ε
uε− εu

1− ε

}
= 0.

So gα′,β is zero almost everywhere not on the support of ftar. Now let x ∈ K, then

Lebesgue almost everywhere in K we have

gα′,β (x)

= max

{
0, βfobs (x)− εu

1− ε

}
= max

{
0,

1

1− ε
((1− ε) ftar (x) + fcon (x) ε)− εu

1− ε

}
= max

{
0,

1

1− ε
((1− ε) ftar (x) + uε)− εu

1− ε

}
= max

{
0, ftar (x) +

εu

1− ε
− εu

1− ε

}
= ftar (x) .

From this we have that gα′,β = ftar which is a pdf, which by Lemma III.2 is therefore

equal to f ′β.
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A.2 Experimental Results

Table A.1: Mean and Standard Deviation of DKL

(
f̂ ||f0

)
Dataset Algorithm

ε
0.00 0.05 0.10 0.15 0.20 0.25 0.30

banana
SPKDE 0.19±0.04 0.15±0.03 0.14±0.03 0.17±0.07 0.23±0.08 0.35±0.1 0.51±0.2

KDE 0.19±0.1 0.32±0.1 0.53±0.2 0.66±0.2 0.84±0.2 1.1±0.2 1.2±0.2
RKDE 0.81±0.3 0.78±0.3 0.77±0.3 0.71±0.4 0.61±0.3 0.63±0.3 0.66±0.3
rejKDE 0.19±0.2 0.35±0.2 0.52±0.2 0.7±0.2 0.84±0.2 1.1±0.2 1.3±0.2

breast-cancer
SPKDE 3.2±0.7 3.4±0.8 3.2±0.8 3.5±0.9 3.7±1 3.9±1 4.2±1

KDE 4±0.9 4.1±1 4±1 4.3±1 4.6±1 4.8±1 5±1
RKDE 3.1±0.7 3.2±0.7 3±0.5 3.2±0.6 3.5±0.8 3.7±0.9 4±0.9
rejKDE 4±0.8 4.1±1 4.1±1 4.3±1 4.6±1 4.8±1 4.9±1

diabetis
SPKDE 0.8±0.05 0.84±0.09 0.8±0.1 0.84±0.1 0.87±0.1 0.91±0.08 0.89±0.09

KDE 1.5±0.2 1.6±0.3 1.8±0.3 1.8±0.4 1.9±0.4 2±0.3 2±0.4
RKDE 0.99±0.1 1±0.1 0.96±0.1 0.98±0.1 1±0.1 1±0.1 0.98±0.1
rejKDE 1.5±0.2 1.6±0.2 1.8±0.4 1.9±0.5 1.9±0.5 2±0.4 2.1±0.5

german
SPKDE 6.6±0.9 6.8±1 6.9±0.9 7±0.9 6.9±1 7.2±0.7 7.4±0.7

KDE 7±1 7±1 7.3±0.9 7.4±1 7.4±1 7.6±0.8 7.8±0.8
RKDE 5.4±0.7 5.6±0.8 5.8±0.7 5.8±0.8 5.9±0.8 6±0.7 6.2±0.6
rejKDE 7±1 7.2±1 7.4±1 7.5±1 7.5±1 7.7±0.8 7.8±0.7

heart
SPKDE 4±0.7 4±0.9 4.2±0.7 4.5±0.8 4.8±1 5.1±1 5.1±1

KDE 4.7±1 5.1±1 5.3±1 5.6±1 5.8±1 6.2±1 6.6±1
RKDE 3.8±0.9 3.8±0.8 3.9±0.6 4.2±0.8 4.2±0.9 4.5±1 4.9±1
rejKDE 4.8±0.9 5.3±1 5.2±1 5.6±1 5.6±1 6.3±1 6.4±1

ionosphere scale
SPKDE 13±2 13±2 13±2 13±2 12±2 11±2 11±1

KDE 15±2 14±2 14±2 15±2 14±2 13±2 14±2
RKDE 10±2 10±2 9.9±2 9.2±2 8±3 6.7±2 7.5±3
rejKDE 16±2 15±2 15±2 14±1 14±2 14±2 14±2

ringnorm
SPKDE 4.8±0.4 5.3±0.9 6.3±1 7.3±1 8±1 9.2±1 9±0.9

KDE 4.9±0.4 5.7±0.9 7.4±1 8.6±1 11±2 13±2 14±0.7
RKDE 4.4±0.2 3.8±0.6 4±0.6 4.1±0.6 4.7±1 5.7±0.6 6.1±0.5
rejKDE 5±0.3 5.8±0.8 7.3±1 8.5±1 10±2 13±1 14±0.8

sonar scale
SPKDE 30±7 31±8 30±8 33±7 33±7 33±7 35±7

KDE 31±6 31±9 31±8 32±8 34±7 35±8 35±8
RKDE 32±9 32±7 32±7 31±7 33±8 34±7 35±7
rejKDE 31±9 32±8 32±9 34±7 33±8 33±7 36±8

splice
SPKDE 21±0.3 21±0.2 21±0.3 21±0.3 21±0.2 21±0.2 20±0.4

KDE 21±0.3 21±0.2 21±0.2 21±0.3 21±0.3 21±0.2 20±0.2
RKDE 21±0.5 21±0.5 21±0.6 21±0.4 21±0.4 20±0.6 20±0.6
rejKDE 21±0.3 21±0.3 21±0.2 21±0.2 21±0.3 21±0.2 20±0.2

thyroid
SPKDE 0.59±0.2 0.69±0.4 1.1±0.8 1.3±0.8 1.2±0.7 1.1±0.7 1.3±0.6

KDE 0.6±0.2 4.5±3 11±7 16±7 20±7 22±5 32±8
RKDE 0.56±0.1 0.88±0.5 1.3±0.9 1.6±1 1.5±0.8 1.3±0.6 1.4±0.8
rejKDE 0.59±0.2 4.9±3 8.6±5 17±6 22±9 25±7 33±8

twonorm
SPKDE 4.8±0.4 4.6±0.5 4.6±0.5 4.8±0.7 5±0.9 5.4±0.9 6.2±1

KDE 4.8±0.4 4.8±0.5 4.9±0.5 5.1±0.6 5.2±0.9 5.7±0.9 6.6±1
RKDE 4.2±0.4 3.8±0.4 3.9±0.5 4±0.5 4.1±0.7 4.7±0.9 5.5±0.8
rejKDE 4.9±0.5 4.7±0.6 4.9±0.5 5±0.7 5.2±0.8 5.7±0.9 6.6±1

waveform
SPKDE 4.8±0.8 4.8±0.8 5.2±1 5.6±0.9 6.1±0.8 6.2±0.8 6.7±0.5

KDE 5±0.7 4.9±0.7 5.3±1 5.7±1 6.3±0.9 6.2±0.8 6.8±0.4
RKDE 4.5±0.7 4.4±0.6 4.7±0.9 5.2±1 5.6±0.8 5.7±0.7 6.1±0.4
rejKDE 4.9±0.7 4.9±0.7 5.4±1 5.8±0.9 6.2±0.9 6.3±0.8 6.8±0.4
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Table A.2: Mean and Standard Deviation of DKL

(
f0||f̂

)
Dataset Algorithm

ε
0.00 0.05 0.10 0.15 0.20 0.25 0.30

banana
SPKDE -0.57±0.2 -0.69±0.2 -0.73±0.2 -0.78±0.2 -0.81±0.2 -0.79±0.2 -0.75±0.2

KDE -0.85±0.2 -0.83±0.2 -0.8±0.1 -0.8±0.1 -0.8±0.1 -0.77±0.1 -0.74±0.1
RKDE 15±1e+01 12±9 11±9 8.6±9 5.7±7 6.5±9 7.1±9
rejKDE -0.73±0.2 -0.8±0.2 -0.8±0.2 -0.82±0.1 -0.82±0.1 -0.79±0.1 -0.75±0.1

breast-cancer
SPKDE -1.7±0.7 -1.8±0.7 -2±0.6 -2±0.6 -2.2±0.6 -2.4±0.6 -2.6±0.7

KDE -1.8±0.7 -1.9±0.6 -2.1±0.6 -2.1±0.6 -2.3±0.6 -2.4±0.6 -2.6±0.7
RKDE 2.2±2 1.8±3 1.4±2 0.77±2 0.29±2 -0.025±2 -0.43±2
rejKDE 0.4±2 0.1±2 -0.35±2 -0.69±1 -1±1 -1.2±1 -1.4±1

diabetis
SPKDE -3.4±0.8 -3.7±0.7 -4±0.6 -4.2±0.6 -4.5±0.5 -4.6±0.4 -4.8±0.5

KDE -3.9±0.5 -4.1±0.5 -4.3±0.4 -4.4±0.3 -4.6±0.4 -4.7±0.3 -5±0.3
RKDE -1.3±1 -1.7±2 -1.7±1 -2±1 -2.1±2 -2.6±2 -2.5±1
rejKDE -3.7±0.7 -3.9±0.6 -4.2±0.5 -4.3±0.4 -4.5±0.4 -4.6±0.4 -4.9±0.4

german
SPKDE -0.067±0.4 -0.15±0.4 -0.21±0.4 -0.26±0.4 -0.32±0.4 -0.41±0.4 -0.48±0.4

KDE -0.043±0.4 -0.12±0.4 -0.19±0.4 -0.23±0.4 -0.29±0.4 -0.38±0.4 -0.45±0.4
RKDE 0.71±0.5 0.62±0.5 0.56±0.7 0.52±0.6 0.45±0.6 0.35±0.6 0.29±0.6
rejKDE 0.26±0.5 0.16±0.5 0.07±0.5 0.039±0.5 -0.026±0.5 -0.12±0.5 -0.2±0.5

heart
SPKDE 0.7±0.7 0.44±0.9 0.17±0.7 0.071±0.7 -0.044±0.8 -0.21±0.8 -0.32±0.8

KDE 0.71±0.7 0.46±0.8 0.2±0.7 0.12±0.7 0.0049±0.8 -0.15±0.8 -0.26±0.7
RKDE 2.4±1 1.9±0.9 1.5±0.8 1.4±1 1.2±0.8 1±0.9 0.82±0.8
rejKDE 1.3±0.9 1±0.9 0.68±0.9 0.6±0.9 0.42±0.9 0.23±0.9 0.12±0.8

ionosphere scale
SPKDE 7.5±1 7.3±1 7.2±1 7.1±1 7±1 7±1 7.5±2

KDE 7.8±1 7.6±1 7.5±1 7.3±1 7.3±1 7.3±1 7.7±2
RKDE 7.6±1 7.5±1 7.4±1 7.4±2 7.6±2 8.9±4 9.9±4
rejKDE 7.7±1 7.6±1 7.4±1 7.2±1 7.2±1 7.2±1 7.6±2

ringnorm
SPKDE -3±0.4 -8±1 -10±0.8 -12±0.8 -13±0.7 -13±0.4 -14±0.4

KDE -3±0.4 -7.8±1 -9.8±0.8 -11±0.8 -12±0.7 -13±0.4 -14±0.4
RKDE -3.2±0.4 -8.1±1 -10±0.8 -12±0.8 -13±0.7 -13±0.4 -14±0.4
rejKDE -3.1±0.4 -7.9±1 -9.9±0.8 -12±0.8 -12±0.7 -13±0.4 -14±0.4

sonar scale
SPKDE -16±6 -16±5 -17±5 -17±5 -18±5 -19±5 -19±5

KDE -16±6 -16±5 -17±5 -17±5 -18±5 -19±5 -19±5
RKDE -16±6 -16±5 -17±5 -16±7 -18±5 -19±5 -19±5
rejKDE -8.2±9 -9.4±8 -9.6±8 -10±8 -11±8 -11±8 -11±8

splice
SPKDE 34±0.3 34±0.3 34±0.3 34±0.2 34±0.2 34±0.2 34±0.2

KDE 34±0.3 34±0.3 34±0.3 34±0.2 34±0.2 34±0.2 34±0.2
RKDE 34±0.3 34±0.3 34±0.2 34±0.2 34±0.2 34±0.2 34±0.2
rejKDE 34±0.3 34±0.3 34±0.3 34±0.2 34±0.2 34±0.2 34±0.2

thyroid
SPKDE -0.86±0.9 -4.1±0.9 -5.1±1 -5.9±0.5 -6.4±0.4 -6.7±0.2 -6.8±0.2

KDE -0.89±0.7 -4±0.7 -5±0.8 -5.6±0.4 -6.1±0.3 -6.3±0.2 -6.4±0.2
RKDE -0.71±0.9 -3.9±0.9 -5±1 -5.8±0.4 -6.3±0.3 -6.6±0.2 -6.8±0.2
rejKDE -0.88±0.8 -4.1±0.7 -5.1±0.8 -5.7±0.4 -6.1±0.3 -6.4±0.2 -6.5±0.2

twonorm
SPKDE -3.2±0.6 -3.8±0.5 -4±0.5 -4.4±0.4 -4.6±0.3 -4.8±0.4 -5.1±0.4

KDE -3.1±0.6 -3.7±0.5 -3.9±0.4 -4.3±0.4 -4.5±0.3 -4.7±0.4 -5±0.5
RKDE -3.3±0.6 -3.9±0.5 -4.1±0.5 -4.5±0.4 -4.7±0.3 -4.9±0.4 -5.2±0.5
rejKDE -3.2±0.6 -3.8±0.5 -4±0.5 -4.3±0.4 -4.6±0.3 -4.8±0.4 -5.1±0.5

waveform
SPKDE -7.6±0.3 -7.7±0.3 -7.9±0.3 -8±0.4 -8.1±0.3 -8.3±0.3 -8.3±0.3

KDE -7.5±0.3 -7.7±0.4 -7.8±0.4 -8±0.4 -8.1±0.4 -8.2±0.4 -8.3±0.3
RKDE -7.6±0.3 -7.8±0.3 -8±0.4 -8.1±0.4 -8.2±0.4 -8.4±0.4 -8.4±0.3
rejKDE -7.6±0.3 -7.8±0.4 -7.9±0.4 -8±0.4 -8.2±0.4 -8.3±0.4 -8.4±0.3
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APPENDIX B

Chapter IV Additional Proofs and Algorithm

B.1 Additional Proofs

Some of the proofs use Hilbert-Schmidt operators. See Definition IV.27 for the

definition of Hilbert-Schmidt operator.

Proof of Lemma IV.1. Because both representations are minimal it follows that α′i 6=

0 for all i and ν ′i 6= ν ′j for all i 6= j. From this we know Q ({ν ′i}) 6= 0 for all i.

Because Q ({ν ′i}) 6= 0 for all i it follows that for any i there exists some j such that

ν ′i = νj. Let ψ : [r] → [r] be a function satisfying ν ′i = νψ(i). Because the elements

ν1, . . . , νr are also distinct, ψ must be injective and thus a permutation. Again from

this distinctness we get that, for all i, Q ({ν ′i}) = α′i = αψ(i) and we are done.

Proof of Lemma IV.7 and IV.11. We will proceed by contradiction. Let P =∑m
i=1 aiδµi be n-identifiable/determined, let P ′ =

∑l
j=1 bjδνj be a different mixture

of measures, with l ≤ m for the n-identifiable case, and

m∑
i=1

aiµ
×q
i =

l∑
j=1

bjν
×q
j
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for some q > n. Let A ∈ F×n be arbitrary. We have

m∑
i=1

aiµ
×q
i =

l∑
j=1

bjν
×q
j

⇒
m∑
i=1

aiµ
×q
i

(
A× Ω×q−n

)
=

l∑
j=1

bjν
×q
j

(
A× Ω×q−n

)
⇒

m∑
i=1

aiµ
×n
i (A) =

l∑
j=1

bjν
×n
j (A) .

This implies that P is not n-identifiable/determined, a contradiction.

Proof of Lemma IV.8 and IV.12. Let a mixture of measures P =
∑m

i=1 aiδµi not be

n-identifiable/determined. It follows that there exists a different mixture of measures

P ′ =
∑l

j=1 bjδνj , with l ≤ m for the n-identifiability case, such that

m∑
i=1

aiµ
×n
i =

l∑
j=1

bjν
×n
j .

Let A ∈ F×q be arbitrary, we have

m∑
i=1

aiµ
×n
i

(
A× Ω×n−q

)
=

l∑
j=1

bjν
×n
j

(
A× Ω×n−q

)
⇒

m∑
i=1

aiµ
×q
i (A) =

l∑
j=1

bjν
×q
j (A)

and therefore P is not q-identifiable/determined.

Proof of Lemma IV.18. Example 2.6.11 in Kadison and Ringrose (1983) states that

for any two σ-finite measure spaces (S,S ,m) , (S ′,S ′,m′) there exists a unitary

operator U : L2 (S,S ,m)⊗L2 (S ′,S ′,m′)→ L2 (S × S ′,S ×S ′,m×m′) such that,

for all f, g,

U(f ⊗ g) = f(·)g(·).
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Because (Ψ,G, γ) is a σ-finite measure space it follows that (Ψ×m,G×m, γ×m) is

a σ-finite measure space for all m ∈ N. We will now proceed by induction.

Clearly the lemma holds for n = 1. Suppose the lemma holds for n − 1. From

the induction hypothesis we know that there exists a unitary transform Un−1 :

L2 (Ψ,G, γ)⊗n−1 → L2 (Ψ×n−1,G×n−1, γ×n−1) such that for all simple tensors f1⊗· · ·⊗

fn−1 ∈ L2 (Ψ,G, γ)⊗n−1 we have Un−1 (f1 ⊗ · · · ⊗ fn−1) = f1(·) · · · fn−1 (·). Combining

Un−1 with the identity map via Lemma IV.19 we can construct a unitary operator

Tn : L2 (Ψ,G, γ)⊗n−1 ⊗L2 (Ψ,G, γ)→ L2 (Ψ×n−1,G×n−1, γ×n−1)⊗L2 (Ψ,G, γ), which

maps f1 ⊗ · · · ⊗ fn−1 ⊗ fn 7→ f1(·) · · · fn−1(·)⊗ fn.

From the aforementioned example there exists a unitary transform Kn :

L2 (Ψ×n−1,G×n−1, γ×n−1) ⊗ L2 (Ψ,G, γ) → L2 (Ψ×n−1 ×Ψ,G×n−1 × G, γ×n−1 × γ)

which maps simple tensors g ⊗ g′ ∈ L2 (Ψ×n−1,G×n−1, γ×n−1) ⊗ L2 (Ψ,G, γ) as

Kn (g ⊗ g′) = g(·)g′(·). Defining Un(·) = Kn (Tn (·)) yields our desired unitary trans-

form.

Proof of Lemma IV.19. Lemma IV.32 states that there exists a continuous linear

operator Ũ : H1 ⊗ · · · ⊗ Hn → H ′1 ⊗ · · · ⊗ H ′n such that Ũ (h1 ⊗ · · · ⊗ hn) =

U1(h1) ⊗ · · · ⊗ Un(hn) for all h1 ∈ H1, · · · , hn ∈ Hn. Let Ĥ be the set of simple

tensors in H1 ⊗ · · · ⊗Hn and Ĥ ′ be the set of simple tensors in H ′1 ⊗ · · · ⊗H ′n. Be-

cause Ui is surjective for all i, clearly Ũ(Ĥ) = Ĥ ′. The linearity of Ũ implies that

Ũ(span(Ĥ)) = span(Ĥ ′). Because span(Ĥ ′) is dense in H ′1⊗· · ·⊗H ′n the continuity of

Ũ implies that Ũ(H1⊗· · ·⊗Hn) = H ′1⊗· · ·⊗H ′n so Ũ is surjective. All that remains to

be shown is that Ũ preserves the inner product (see Theorem 4.18 in Young (1988)).

By the continuity of inner product we need only show that 〈h, g〉 =
〈
Ũ(h), Ũ(g)

〉
for h, g ∈ span(Ĥ). With this in mind let h1, . . . , hN , g1, . . . , gM be simple tensors in
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H1 ⊗ · · · ⊗Hn. We have the following

〈
Ũ

(
N∑
i=1

hi

)
, Ũ

(
M∑
j=1

gj

)〉
=

〈
N∑
i=1

Ũ (hi) ,
M∑
j=1

Ũ (gj)

〉

=
N∑
i=1

M∑
j=1

〈
Ũ (hi) , Ũ (gj)

〉
=

N∑
i=1

M∑
j=1

〈hi, gj〉

=

〈
N∑
i=1

hi,

M∑
j=1

gj

〉
.

We have now shown that Ũ is unitary which completes our proof.

Proof of Lemma IV.20. We will proceed by induction. For n = 2 the lemma clearly

holds. Suppose the lemma holds for n− 1 and let h1, . . . , hn satisfy the assumptions

in the lemma statement. Let α1, . . . , αn satisfy

n∑
i=1

αih
⊗n−1
i = 0. (B.1)

To finish the proof we will show that α1 must be zero which can be generalized to

any αi. Applying Lemma IV.28 to (B.1) we get

n∑
i=1

αih
⊗n−2
i 〈hi, ·〉 = 0. (B.2)

Because h1 and hn are linearly independent we can choose z such that 〈h1, z〉 6= 0

and z ⊥ hn. Plugging z into (B.2) yields

n−1∑
i=1

αih
⊗n−2
i 〈hi, z〉 = 0

and therefore α1 = 0 by the inductive hypothesis.
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Proof of Lemma IV.21. Let dim (span (h1, . . . , hm)) = l and let h =
∑m

i=1 h
⊗2
i . With-

out loss of generality assume that h1, . . . , hl are linearly independent and nonzero.

From Lemma IV.28 there exists a unitary transform U : H ⊗ H → H S (H,H)

which, for any simple tensor x⊗ y, we have U(x⊗ y) = x 〈y, ·〉.

First we will show that the rank is greater than or equal to l by contradiction.

Suppose that g =
∑l′

i=1 xi ⊗ yi = h with l′ < l. Since l′ < l there must exist some j

such that hj /∈ span (x1, . . . , xl′). Let z ⊥ x1, . . . , xl′ and z 6⊥ hj. Now we have

〈z ⊗ z, h〉 =
m∑
i=1

〈z, hi〉2 ≥ 〈z, hj〉2 > 0,

but

〈z ⊗ z, g〉 =
l′∑
i=1

〈z, xi〉 〈z, yi〉 = 0,

a contradiction.

For the other direction, observe that U(h) is a compact Hermitian operator and

thus admits an spectral decomposition (Young (1988) Theorem 8.15). From this we

have that U(h) =
∑m

i=1 hi 〈hi, ·〉 =
∑∞

i=1 λi 〈ψi, ·〉ψi with (ψi)
∞
i=1 orthonormal and

λi ≥ 0 for all i since U(h) is PSD. Clearly the dimension of the span of U (h) is less

than or equal to l and thus this decomposition has exactly l nonzero terms. From this

we can let U(h) =
∑l

i=1 λi 〈ψi, ·〉ψi and applying U−1 we have that h =
∑l

i=1 λiψ
⊗2
i .

From this it follows that the rank of h is less than or equal to l and we are done.

Proof of Lemma IV.22. The lemma is obvious when n = n′. Assume that n′ < n.
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Let A ∈ G×n′ be arbitrary. We have that

m∑
i=1

aiγ
×n
i

(
A×Ψ×n−n

′
)

=
l∑

j=1

bjπ
×n
j

(
A×Ψ×n−n

′
)

⇒
m∑
i=1

aiγ
×′n
i (A) γ×n−n

′

i

(
Ψ×n−n

′
)

=
l∑

j=1

bjπ
×n′
j (A) π×n−n

′

j

(
Ψ×n−n

′
)

⇒
m∑
i=1

aiγ
×n′
i (A) =

l∑
j=1

bjπ
×n′
j (A) .

Since A was chosen arbitrarily we have that
∑m

i=1 aiγ
×n′
i =

∑l
j=1 bjπ

×n′
j .

Proof of Lemma IV.23. Let π =
∑n

i=1 γi. Because π is σ-finite for all i we can define

fi = dγi
dπ

, where the derivatives are Radon-Nikodym derivatives. Let fk be arbitrary.

We will first show that fk ≤ 1 π-almost everywhere. Suppose there exists a non π-null

set A ∈ G such that fi(A) > 1. Then we would have

γk (A) =

∫
A

fkdπ

>

∫
A

1dπ

=
n∑
i=1

γi(A)

≥ γk(A)

a contradiction. From this we have

∫
f 2
kdπ ≤

∫
1dπ

≤
n∑
i=1

γi(Ψ)

< ∞.

From our construction it is clear that fi ≥ 0 ξ-almost everywhere so we can assert
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fi ≥ 0 without issue.

Proof of Lemma IV.24. The fact that f is non-negative and integrable implies that

the map S 7→
∫
S
f×ndπ×n is a bounded measure on (Ψ×n,G×n) (see Folland (1999)

Exercise 2.12).

Let R = R1 × · · · × Rn be a rectangle in G×n. Let 1S be the indicator function

for a set S. Integrating over R and using Tonelli’s theorem we get

∫
R

f×ndπ×n =

∫
1Rf

×ndπ×n

=

∫ ( n∏
i=1

1Ri(xi)

)(
n∏
j=1

f(xj)

)
dπ×n (x1, . . . , xn)

=

∫
· · ·
∫ ( n∏

i=1

1Ri(xi)

)(
n∏
j=1

f(xj)

)
dπ(x1) · · · dπ(xn)

=

∫
· · ·
∫ ( n∏

i=1

1Ri(xi)f(xi)

)
dπ(x1) · · · dπ(xn)

=
n∏
i=1

(∫
1Ri(xi)f(xi)dπ(xi)

)
=

n∏
i=1

γ(Ri)

= γ×n(R).

Any product probability measure is uniquely determined by its measure over the rect-

angles (this is a consequence of Lemma 1.17 in Kallenberg (2002) and the definition

of product σ-algebra) therefore, for all B ∈ G×n,

γ×n (B) =

∫
B

f×ndπ×n.
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B.2 Spectral Algorithm for Linearly Independent Compo-

nents

Let p1, . . . , pm ∈ L2 (Ω,F , ξ) be linearly independent pdfs with distinct norms.

Their associated mixture proportions are w1, . . . , wm. With four samples per random

group we will have access to the tensors

m∑
i=1

wip
⊗4
i (B.3)

and

m∑
i=1

wip
⊗2
i . (B.4)

We can transform the tensor in (B.4) to an operator

C ,
m∑
i=1

wipi 〈pi, ·〉

=
m∑
i=1

√
wipi 〈

√
wipi, ·〉 .

Letting W =
√
C† we have that W

√
w1p1, . . . ,W

√
wmpm are orthonormal. Applying

I ⊗W ⊗ I ⊗W to the tensor in (B.3) we can construct the tensor

m∑
i=1

wipi ⊗Wpi ⊗ pi ⊗Wpi =
m∑
i=1

pi ⊗W
√
wipi ⊗ pi ⊗W

√
wipi.

which can be transformed into the operator

m∑
i=1

pi ⊗W
√
wipi 〈pi ⊗W

√
wipi, ·〉 . (B.5)
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Note that for i 6= j we have

〈
pi ⊗W

√
wipi, pj ⊗W

√
wjpj

〉
= 〈pi, pj〉

〈
W
√
wipi,W

√
wj
〉

= 0.

We also have that, for all i

‖pi ⊗W
√
wipi‖ =

√
〈pi ⊗W

√
wipi, pi ⊗W

√
wipi〉

=
√
〈pi, pi〉 〈W

√
wipi,W

√
wipi〉

=
√
〈pi, pi〉

= ‖pi‖

and thus the tensors p1⊗W
√
w1p1, . . . , pm⊗W

√
wmpm have distinct norms. Because

of this the spectral decomposition of the operator in (B.5) will yield the eigenvectors

p1 ⊗W
√
w1p1, . . . , pm ⊗W

√
wmpm. Then, using the techniques from Section 4.6, we

can recover the mixture components and mixture proportions.
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