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ABSTRACT 

Concurrent Design of Assembly Plans and Supply Chains: 

Models, Algorithms, and Strategies 

 

 

By 

Heng Kuang 

 

 

Co-Chairs: S. Jack Hu and Jeonghan Ko 

Assembly planning and supply chain designs are two inter-dependent activities in product 

development. The traditional sequential approach of designing the supply chain after 

completing assembly planning results in long lead time for product realization and sub-

optimal product cost. The weakness of the sequential method is exacerbated nowadays as 

product proliferation brings more challenges to assembly system design and supply chain 

management. Making concurrent decisions on assembly plans and supply chain 

configurations is a desirable strategy. However, due to the complexity of both assembly 

representations and supply chain modeling, there have been limited systematic models, 
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optimization algorithms, or deep understanding of the interaction between assembly-plan 

and supply-chain designs. 

This dissertation first analyzes and compares existing assembly representation 

methods. Hyper AND/OR Graph (HAG) is then developed to incorporate both assembly 

planning and supply chain configuration information by adding one additional layer 

representing supplier information on top of a typical assembly AND/OR graph. Based on 

HAG, a DP based algorithm with a polynomial complexity for typical assembly products is 

developed to generate the assembly plans and supplier assignment at the optimal cost. For 

the problem with a lead time constraint, a revised DP algorithm with a pseudo-polynomial 

complexity is also presented. Under the scenario of product family designs, an 

investigation is carried out on the optimal strategies to design assembly supply chains 

when commonality is limited between products in the family. The impact of product 

variety on safety inventory is derived and then evaluated with a performance measure. 

Strategies of prioritized differentiation and branch balancing are suggested for optimal 

process sequencing and assembly decomposition. 

The outcome of this research are threefold: (1) it establishes a foundation for the 

research on integrated designs of assembly plans and supply chains as well as other 

concurrent design problems; (2) it offers a tool for integrated assembly plan and supply 

chain designs using which manufacturers can shorten the product development time, lower 

the product cost, and increase the responsiveness to fluctuations in supply chains; and (3) it 

provides a measure of the impact of product variety on inventory and insightful strategies 

to manage complicated assembly supply chains.
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CHAPTER 1  

Introduction 

1.1 Motivation 

Manufacturers worldwide are making efforts to increase their competitive capabilities in 

response to the global markets, diverse customer demands, and rapidly changing supplier 

environment. Competitive advantages can be gained by considering manufacturing issues in the 

three phases of product planning: product design, assembly planning, and supply chain 

configuration. Traditionally, decisions on these three phases are made in a serial pattern. First, 

one or several product designs are selected from a set of feasible designs considering market 

objectives and engineering constraints. Second, feasible assembly plans are developed, including 

decomposing the final product into subassemblies and generating assembly sequences. The 

assembly plan is guided primarily by operational objectives and manufacturing capabilities. 

Finally, the supply chain is configured under the constraints of the product and assembly designs. 

This serial pattern is known to generate solutions that suffer from two major deficiencies [1]. The 

first deficiency is the long lead time for product realization because there are often iterative 

changes among the different stages of decision makings. The second deficiency is sub-optimality 

because it is usually difficult to assess the designs in the early two stages since costs in these 

stages are difficult to define and quantify. The deficiencies are exacerbated by the product 

variety and demand uncertainty as assembly plans and supply chains become more difficult to 

manage in a product family scenario.  
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To overcome the shortcomings of sequential uncoordinated designs, Concurrent 

Engineering (CE) has received attention from both industry and academia. Over the last three 

decades, various aspects of CE have been studied, ranging from combining production 

considerations with product designs to incorporating supply chain issues with product design and 

assembly planning. For example, a survey of the U.S. auto makers reveals that suppliers have 

become more active in participating in subassembly and manufacturing plan designs [2]. CE 

reduces re-design and rework, and leads to smoother product launch. CE applications were 

reported to achieve a 30-60% reduction in time-to-market, 15-50% reduction in product life-

cycle costs, and 55-95% reduction in engineering changes and rework [3]. However, it 

complicates the design problem because it requires joint optimization with larger constraint and 

variable sets. 

Concurrent design requires sophisticated coordination between assemblers and suppliers 

from manufacturing to supply. For a complex assembly product, a small change in a 

subassembly will likely propagate through the assembly hierarchy, leading to numerous changes 

in component design, re-tooling in manufacturing, and logistics and contractual changes in 

supply chains. The particular area worth significant attention is how to adapt product modules 

for assembly and supply chains in a single product as well as product family scenarios. Literature 

review shows that there lacks systematic research on coordinating assembly decomposition in 

manufacturing and supply chains. Therefore, the following four questions are considered in this 

research: 

1.  How to represent assembly constraints and supply chain configurations cohesively? 

2.  How to coordinate the assembly processes and supply chains given the manufacturing 

and supply resources? 
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3.  How to apply the concurrent assembly plan and supply chain design method to industrial 

products and guide the designs of assembly plans and supply chains?  

4.  How to integrate the designs of assembly plans and supply chains for a product family 

so as to manage the variety induced complexity?   

1.2 Summary of Literature Review 

A summary of the review is provided below, including assembly and supply chain representation, 

concurrent design, optimization algorithms, and management of complexity incurred by variety.  

Assembly planning problems are usually modeled as graph decomposition or sequence 

generation problems, while supply chain problems are usually represented as network 

optimization ones. Due to the different characteristics of the two types of decision making 

problems, there has been no widely accepted model to represent the integrated decisions of 

assembly plan and supply chain.  

While various manufacturing factors such as tooling and processes, e.g., machining and 

additive manufacturing, have been considered in the concurrent design of manufacturing systems 

and supply chain, few studies investigated the relationship between the assembly plan and the 

supply chain, i.e., how assembly plans can affect supply chains or how assembly plans should be 

designed given supply chain configurations.  

Only a few researchers have conducted research on integrated assembly planning and 

supply chain designs. However, due to the lack of integrated modeling methods for assembly 

plan and supply chain, the decision space is huge, even for products with small complexity. 

Approximate optimization algorithms, such as Genetic Algorithm (GA), were adopted in those 
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researches to solve the integrated optimization problem. Therefore, this dissertation seeks to 

develop a model to integrate assembly plan and supply chain decisions and hence to support 

systematic studies on the concurrent decision makings. 

The research on the management of product variety induced complexity can be generally 

divided into two categories: index-based optimization and heuristic strategies. Although potential 

insights into efficient assembly supply chain designs were revealed in index-bases optimization 

research, there lacked explicit relations between the proposed indices and common measures 

such as costs, time, and quality. The heuristic strategy studies often assumed that common 

processes exist throughout product families. However, the commonality might exist only 

partially in today’s manufacturing where variety of products is a key competitive factor. Thus, 

many important questions remain unexplored, such as optimal strategy when commonality is 

limited or more generally the room for further optimization in addition to delayed differentiation.   

1.3 Research Objectives and Tasks 

The objective of this dissertation is to develop models, algorithms, and strategies to coordinate 

the complicated designs of assembly plans and supply chains. After an initial attempt to 

formulate the optimization problem in the most generic form, the two barriers in the formulation 

will be outlined. Due to the complexity of assembly constraints, we will compare and analyze the 

different assembly representations and assess the possibility to combine them with supply chain 

information and their applicability to the optimization problem. A model will then be built based 

on the selected assembly representation to incorporate the supply chain configurations. Secondly 

an algorithm that fully exploits the structural merits of the established model will be developed 

to solve the integrated optimization problem. Finally, we will extend the discussion to product 
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families, in which we will derive the optimal strategy to manage assembly supply chains in order 

to mitigate the variety induced complexity and risks. The proposed approach is summarized in 

six steps, as shown in Figure 1.1. 

 

Figure 1.1. Flow chart of the proposed approach 

The outcome of this research includes a mathematical model to support joint optimization 

for assembly plan and supply chain decisions for an individual product and optimal strategy to 

manage assembly supply chains in a product family setting. More specifically, the contributions 

include 

 Development of  a mathematical model to integrate assembly plan and supply chain 

decisions; 

 A systematic analysis of the problem of integrated design of assembly plan and supply 

chain and the development of a computationally efficient algorithm to generate the 

optimal configurations;  

 A method to assess assembly plans through the perspective of total supply chain cost and 

discussions on possible application of our findings. 
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 A tool to guide the integrated design of assembly plans and supply chains, enabling quick 

prototyping and reconfigurations. 

 An optimal strategy to manage assembly supply chains through mitigating the variety 

induced risks for a product family. 

By using this model, manufacturers could make assembly plan and supply chain 

decisions simultaneously, leading to a reduced number of design iterations, shortened lead times, 

and lower total cost. Moreover, manufacturers could design more robust assembly plans to offset 

the supply availability and cost variation in supply chain through better understandings of the 

relationship between assembly plan and supply chain.  Last but not the least importantly, the 

research on assembly supply chain designs of a product family deepens the understanding of the 

impact of assembly plans on supply chains. 

 1.4 Organization of the Dissertation 

The remainder of this dissertation is organized as follows. In Chapter 2, the integrated design 

problem is formulated as a general optimization problem, and the main research barriers are 

discussed. After a comprehensive analysis on the assembly representations, an enhanced 

AND/OR graph is developed to include both assembly plan and supply chain information. In 

Chapter 3, a DP algorithm is developed for coordinated optimization problems and case studies 

are conducted. Chapter 4 considers the coordination problem with a lead time constraint, which 

could be categorized as a resource constrained optimization problem. An algorithm is developed 

based on the one in Chapter 3 and its computational complexity is thoroughly analyzed. A case 

study is also presented in this chapter. Chapter 5 focuses on the modeling and analysis of the 
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impact of assembly plans on supply chain management under a product family scenario. An 

optimal strategy is suggested. Chapter 6 concludes the dissertation and discusses the future work. 
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CHAPTER 2  

Integrated Modeling of Assembly Plan and Supply Chain 

2.1 Introduction  

As discussed in the introduction, a question remains to be answered is in how to 

seamlessly integrate assembly plans and supply chains in one integrated model. This 

chapter starts with a literature review and identifies the research gaps. Then a simple 

example illustrates the concurrent design problem of assembly plans and supply chains. 

The concurrent design problem is formulated as an optimization problem with the goal of 

minimizing the total cost. After the identification of the challenges of the problem, existing 

methods for assembly representation will be reviewed and a model to incorporate both 

assembly and supply chain information will be developed.   

In assembly modeling, graph-based methods are commonly used for assembly 

representation. They represent topological relationships between the parts of an assembly. 

Liaison Diagram was used by Bourjault to represent the product structure [4]. Various 

representations have been proposed to model assembly sequences. Homem De Mello and 

Sanderson applied an AND/OR graph to represent assembly plans [5]. The AND/OR 

Graph is a directed hyper-graph featured with AND and OR relationships. While AND 

represents a composition relationship between an assembly and its subassemblies, OR 

represents multiple, optional assembly methods of a product or a subassembly. Wolter 

developed State Diagram with connection states between components representing 
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assembly states of a product and with transitions between the assembly states representing 

assembly work [6]. The relationship between the AND/OR graph and State Diagram, e.g., 

the transformations between two representations and model complexity comparison, was 

studied by Homem de Mello and Sanderson [7].  

Significant research has been carried out in generating assembly sequences based 

on various representations. Bourjault [4] as well as De Fazio and Whitney [8] presented 

means for generating all assembly sequences algorithmically by asking questions about the 

mating of part pairs. Homem de Mello and Sanderson transformed the assembly sequence 

problem into an assembly decomposition problem and then represented the assembly 

sequences in an AND/OR graph [9]. Ong and Wong [10] developed an algorithm to 

automatically detect subassemblies using the combined information of liaison and 

precedence graphs. Knosla and Mattikali [11] developed a method to generate assembly 

sequences from a 3D model by detecting possible collisions. Gao, Xiang, and Duan [12] 

applied gray clustering to subassembly identification based on graph system theory. Lee 

[13] constructed a weighted abstract liaison graph (WALG) to extract subassemblies based 

on stability and structural connectivity associated with liaisons. Li et al. [14] developed a 

system supporting automatic generation of an assembly system configuration with 

equipment selection and optimal manufacturing cost. Ko et al. [15] studied assembly 

decomposition considering its impact on the final product quality. Fujimoto, Fuji, and 

Nagata [16] introduced a modified genetic algorithm (GA) to cope with sequence 

nonlinearity and constraints in assembly planning. Xu and Liang [17] applied a modified 

Chebyshev goal programming approach to solve the multi-objective problem of concurrent 

optimization of product module selection and assembly line configuration. 



 

10 

In the 1980s, Supply Chain Management (SCM) addressed the need in integrating 

the key business processes, from upstream suppliers to end customers [18]. Generally 

speaking, a supply chain is a network of nodes, which could be enterprises engaged in 

activities ranging from the supply of raw materials to the production and delivery of end-

products to target customers. Each node in the supply chain network often has several 

alternative options for accomplishing its functions. Deciding which options should be used 

at each node and deciding where inventory should be placed is referred to as Supply Chain 

Configuration (SCC) [19]. Given assembly modules, supplier selection has been studied 

from various perspectives. A supply chain is often modeled as a multi-stage production 

and inventory network under a periodically reviewed base-stock policy. Graves and 

Willems [20] developed an SCC optimization model that minimizes the total supply chain 

cost including the safety stock cost, pipeline stock cost and cost of goods sold. 

Thoneemann and Bradley [21] investigated the impact of product variety on supply chain 

performance from several different perspectives. Viswanadham and Gaonkar [22] studied 

partner selection and synchronized planning in a dynamic manufacturing network. Torabi 

and Hassini [23] provided an efficient production plan that integrates the procurement and 

distribution plans into a unified framework. Gunasekaran, Lai, and Cheng [24] analyzed 

both Agile Management and Supply Chain Management with the objective of developing a 

framework for responsive supply chains. Williamson [25] examined outsourcing from the 

perspective of transaction costs. Fawcett, Magnan, and McCarter [26] provided a 

quantitative and qualitative analysis of the benefits, barriers, and bridges to successful 

collaboration in strategic supply chains. Manuj and Mentzer [27] explored the 

phenomenon of risk management and risk management strategies in global supply chains. 
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Assembly planning problems are usually modeled as graph decomposition or 

sequence generation problems while supply chain problems are typically modeled as 

network optimization ones. Due to the different characteristics of the two decision-making 

problems, there have been no widely accepted models to represent the integration of 

assembly plan and supply chain decisions. This chapter focuses on a model to integrate 

assembly planning and supply chain decisions. 

2.2 Problem Illustration 

Boujault's pen example is used to illustrate the combined decision making problem. The 

pen consists of six components: body (A), head (B), cartridge (C), ink (D), button (E), and 

cap (F), as shown in Figure 2.1. The components are joined by five connections or liaisons: 

1 (body A to head B), 2 (button E to body A), 3 (head B to cartridge C), 4 (cartridge C to 

ink D), and 5 (cap F to body A), as represented by the graph in Figure 2.2. This type of 

graphs is called the liaison graph, in which nodes represent components and edges 

represent connections between the components. Realizing a liaison is equivalent to 

performing an assembly process or task. 

 

Figure 2.1. A pen example: assembly and its components, adapted from [28]. 
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Figure 2.2. Liaison graph of the pen, adapted from [28]. 

For the supply chain of the pen assembly, assume that components A, B, C, and D 

can be purchased only in Area 1 while E and F only in Area 2. Assume further that the 

suppliers in Area 1 possess specialties only for assembly processes 1, 3, and 4, while 

assembly processes 2 and 5 can be performed only by the suppliers in Area 2. If Areas 1 

and 2 are far away from each other, the transportation cost between them can be one of the 

most significant cost elements. 

There are various ways to assemble the pen, among which the following two plans 

(sequences) are chosen for illustration: 

       Plan I: 24315, 

       Plan II: 14352. 

If Plan I is selected, the assembly plan and transportation flow are as follows:  

Purchase A in Area 1 and transport A to Area 2;  

Purchase E in Area 2, finish task 2 to assemble A and E together, and then transport 

AE back to Area 1; 

Purchase B, C, and D, and finish tasks 4, 3, and 1 to build subassembly ABCDE in 

Area 1, and then transport ABCDE to Area 2; 
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Purchase F and then assemble F with ABCDE for the final product.  

As shown in Fig. 3.3(a), there are repeated transportation flows between two areas due to 

the inappropriate assembly plans. 

Instead, if Plan II is adopted, the transportation flow could be simplified: 

A, B, C, and D will be at first purchased and assembled together in Area 1 and then 

ABCD will be transported to Area 2; 

 ABCD will be assembled with E and F to produce the final product in Area 2. 

As shown in Fig. 3.3(b), subassemblies are transported only once between the two areas. If 

the transportation cost between the two areas is a significant cost element, assembly Plan II 

has a lower total supply chain cost than assembly Plan I.  

                                         

(a) Assembly Plan I                                             (b) Assembly Plan II 

Figure 2.3. Transportation flows of the two assembly plans. 

Under the specified supply chain conditions, Plan II outperforms Plan I in terms of the 

total supply chain cost. This example demonstrates that supply chain configurations play 

an important role in optimizing assembly plans for the total cost. However, little research 

has been conducted on the interactions between assembly plans and supply chain 

configurations. 
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2.3 General Problem Formulation and Analysis 

The addressed problem will be formulated as a general optimization problem, followed by 

the identification of the challenges in the problem formulation. 

2.3.1 Problem Formulation 

Assume we need to make a product, with N  components, which can be purchased from 

suppliers located in different areas. Denote the component supplier set for component i  as 

iS . To assemble the product out of components, K assembly processes are required, which 

could be assigned to various manufacturers. The set of suppliers for assembly process j  is 

denoted as jQ . Since assembly processes have to satisfy some constraints due to 

manufacturing issues, the sequence of the K  assembly processes has to belong to a 

feasible assembly plan, the set of which is denoted as AP . Each supplier, a component 

supplier or a manufacturing process supplier, offers a price and a lead time for the service 

it provides. In this research average time and cost per product or subassembly is used, thus 

our work could be applied to companies using different strategies,   either build-to-order or 

make-to-stock.  

The problem is to decide which assembly plan to use and accordingly how to 

assign the components and assembly work to suppliers. Depending on the assembly plan 

and the supplier assignment, components and subassemblies are transported from upstream 

suppliers to downstream suppliers and/or the assemblers. The transportation cost and time 

are determined by the locations of the two suppliers related. The objective is to find an 
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assembly plan and supplier assignment so that the product could be assembled at the 

lowest cost. The cost includes component purchasing cost, assembly cost, inventory cost, 

and transportation cost. The lead time includes procurement time, assembly time, 

inventory time, and transportation time.  

For a given assembly plan ap  belonging to AP , component suppliers vector s , 

where is is the supplier for component i , and assembly suppliers vector q , where jq is the 

supplier for assembly process j , define c  as the cost function related to assembly process 

j , pc as the purchasing cost function of component, and d as the delay function related to 

assembly process j , then the addressed problem could be formulized as: 

 

1 1

min( ( | , , ) ( , ))
K N

i

j i

c j ap pc i s
 

 q s

 

Subject to: 

, ,i i j jap s q  AP S Q  

Two major challenges exist in this addressed problem. The first one is on the expressions 

of cost and time using the decision variables, i.e., the functions c and d . The next one is 

on assembly representation, since different assembly representation may lead to very 

different search spaces of assembly plans and the cost and time functions could be totally 

different depending on assembly representations. Fully exploiting the structure of the 

problem is hence a major strategy to reduce the computational work when approaching the 

problem using an exact algorithm. Hence various representations will be reviewed first and 
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their complexity and applicability to this problem will be evaluated before a new algorithm 

is developed for the coordinated optimization problem. 

2.3.2 Assembly Representation Analysis 

Significant research has been carried out in assembly representation. Most of 

representations are based on or included in the following three methods: assembly 

sequences, subassembly state diagram, and AND/OR graph. The focus of this section is 

placed on the analyses and comparison of these three representations.  

Assembly sequence (AS) is an intuitive and a frequently used way to represent the 

sequences of assembly steps. Typically assembly sequence is represented with a series of 

indices of liaisons, in which the leftmost liaison has to be accomplished first and the 

rightmost one will be done finally. The advantage of assembly sequence is its ease for 

description, which makes the modeling very simple and intuitive. However, assembly 

sequences cannot reveal the nonlinear relations between assembly processes because a 

one-dimensional representation cannot represent parallel relations. With a simple 

enumeration of assembly sequences instead of representing them in a structural way, the 

number of assembly sequences could be huge. 

Assembly State Diagram (ASD) is a directed diagram representing the state of 

fulfillment of the assembly processes. Every path from the starting node to the ending node 

is a feasible assembly plan. Then the time and cost required for the whole assembly could 

be formulated as the accumulated time and cost along the path from the starting node to the 

ending node. Hence the problem could be modeled as a Shortest Path Problem (SPP). 
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However, the ASD also has the problem of representing nonlinear relations because an 

ASD in essence merges assembly sequences in one graph.  

The AND/OR graph (AOG) shows the ways to build an assembly step by step from 

components. It contains two types of logic, i.e., AND logic and OR logic. An AND logic 

represents what a subassembly is composed of and an OR logic represents different ways 

of the composition. The AOG possesses the capability to represent nonlinear relations with 

a tree based structure, i.e., two subassemblies not connected in AOG could be done 

simultaneously. Since the vertices in an AOG are subassemblies, it is easy to integrate 

supplier information. The disadvantage of AOG over the other two is its complexity for 

modeling as it has two types of logic.  

The most important feature of a representations method is the size of the models. 

We follow the definitions of strongly connected assemblies and weakly connected 

assemblies by Homem De Mello and Sanderson [7] to illustrate the sizes of models of the 

three representation methods. The sizes of the three representations for strongly connected 

assemblies are (
𝑛(𝑛−1)

2
) !, 𝑝𝑎𝑟𝑡𝑖𝑜𝑛𝑠(𝑛), and 2𝑛 − 1. The sizes in the three representations 

for weakly connected assemblies are (𝑛 − 1)!, 2𝑛−1, and 
𝑛(𝑛+1)

2
, where n represents the 

number of components in the product. Table 2.1 provides a numerical comparison between 

these three representations. 
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Table 2.1. Size of models using the three representation methods 

 

n 

Strongly Connected Assemblies Weakly Connected Assemblies 

AS ASD AOG  AS ASD AOG  

1 1 1 1 1 1 1 

2 1 2 3 1 2 3 

3 6 5 7 2 4 6 

4 720 15 15 6 8 10 

5 3628800 52 31 24 16 15 

6 1.30e+12 203 63 120 32 21 

7 5.10e+19 877 127 720 64 28 

8 3.04e+29 4140 255 5040 128 36 

9 3.72e+41 21147 511 40320 256 45 

10 1.19e+56 115975 1023 362880 512 55 

11 1.26e+73 678570 2047 3628800 1024 66 

12 5.44e+92 4213587 4095 39916800 2048 78 

13 
1.13e+115 

27644437 8191 479001600 4096 91 

14 1.35e+140 190899322 16383 6227020800 8192 105 

15 1.08e+168 1382958545 32767 87178291200 16384 120 

 

Four features of the three assembly representation methods in addition to the size of 

the models are compared as listed below: 

1. The complexity to build models; 

2. The capability to represent nonlinear relations; 

3. The degree of difficulty in supplier information integration; 

4. The degree of difficulty in total cost and time reflection.  

The comparisons in the five aspects are summarized in the table below.    
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Table 2.2. Comparison of three assembly representation methods 

Representations Modeling 

Size 

Modeling 

Complexity 

Nonlinear 

Relation 

Supplier 

Integration 

Cost & 

Time 

Reflection 

AS Large Small No High High 

ASD Medium Medium No High Low 

AOG Small Large Yes Low Low 

 

Although AOG has a relatively high complexity for modeling, its capability to 

represent nonlinear relations, potential to integrate supply chain, and small modeling size 

make it a preferred assembly modeling option. Hence AOG is chosen for assembly 

representation in this thesis. However ASD might also find its use in assembly modeling 

for the addressed problem due to its merit in modeling the optimization problem as a SPP. 

Other researchers may find it promising to develop an algorithm based on ASD. 

2.4 Mathematical Modeling 

This section provides answers to the questions identified in the problem analysis section, 

i.e., how to represent assembly plan and supply chain cohesively as well as how to derive 

the cost and lead time functions. 

2.4.1 Hyper AND/OR Graph 

Here we proposed a new concept, the Hyper AND/OR graph, or HAG. In general, AHAG 

is defined as: 
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( , , )H V A E , where V is the set of vertices, A  is a set of triples of vertices, and 

E  is a set of non-empty subsets of V called hyper edges. 

Define C  as the set of components of product, i.e. 1 2{ , , }Nc c cC . Then V  is a 

subset of ( ) \{ } C , i.e. ( ) \{ } V C , where ( ) C is the power set of C . To make each 

element of V  a feasible subassembly, it has to satisfy the subassembly criterion, i.e. 

precedence and stability [7]. 

{ | }iv i 
v

V I , where vI is the index set of the vertices. Each iv  represents a 

feasible subassembly. Vertices with one component are called simple vertices (SV) and 

those with multiple components are called compound vertices (CV).  

{ | i }i a A a I , where aI is the index set of the AND relations. And 0 1 2( , , )i i i

i v v va ,

0 1 2

i i iv v v  .  ia represents an AND relation between 0 1,i iv v , and 2

iv , meaning subassembly

0

iv is made up with subassemblies 1

iv and 2

iv . 0

iv  is called parent vertex, 1

iv called left child 

vertex, and 2

iv called right child vertex for ease of description although it is unnecessary to 

differentiate between two child vertices. Define level of vertex as its hierarchy level and 

that of SV’s level 0.  

{ | i , }i e i  E e I e V , where eI is the index set of the edges. ie represents the 

subassemblies that can be assigned to one supplier. And | |E is the total number of 

suppliers. 
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2.4.2 Supply Chain Modeling 

HAG can reflect material and transportation flows through the extra layer of supply chain 

information incorporated. Given an AND relation ( )0 1 2v ,v ,va , the material and 

transportation flow could be seen in Figure 2.4 below: 

 

Figure 2.4. Material and transportation flow. 

To procure the subassembly through this AND relationship, supplier 0q needs to 

purchase subassembly 1v from supplier 1q and subassembly 2v from supplier 2q .    

Denote ( , )pc v q as the procurement cost of subassembly v from supplier q , 

( , )ac v q  as the assembly cost pertaining to subassembly v from assembly process provider 

q , and 1 2( , )tc q q , as transportation cost between suppliers 1q and 2q .  

Then the purchasing cost of subassembly 0v is:

0 0 1 1 1 0 2 2 2 0 0 0( , ) ( , ) ( , ) ( , ) ( , ) ( , )pc v q pc v q tc q q ac v q tc q q ac v q     . 

Similar to the above cost model, lead times include two parts, the assembly lead time as 

well as transportation lead time. Denote the subassembly procurement lead time ( , )lt v q , 
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assembly lead time ( , )at v q , and transportation lead time 1 2( , )tt s s . The lead time for a 

subassembly is determined by the one of its two subassemblies with a longer procurement 

lead time, i.e.   

0 0 1 1 1 0 2 2 2 0 0 0( , ) max( ( , ) ( , ), ( , ) ( , )) ( , )lt v q lt v q tt q q lt v q tt q q at v q     

HAG incorporates assembly information as well as supply chain information in one 

graph and conveys material and transportation flows between suppliers in a hierarchical 

way. The remaining challenge is how to calculate the total cost and lead time, which will 

be tackled in the following chapter. 

2.5 Summary 

This chapter begins with a simple pen example to illustrate the significance of the 

integrated designs of assembly plans and supply chains. A formulation of the integrated 

optimization problem is provided using the most general optimization modeling method. 

Then two major challenges are identified in the formulation, i.e., assembly representations 

as well as cost and time calculation. After a review of the three most widely used assembly 

representation methods, i.e., assembly sequence, assembly state diagram, and AND/OR 

graph, the possibilities to utilize these three representations in the addressed problem are 

discussed. AND/OR graph is chosen due to its advantages in model size, supply chain 

integration, as well as cost and time calculation. Through sharing the commonality among 

the assembly plans to the most extent, AND/OR graph has a polynomial complexity for 

weakly connected assembly products. This systematic comparison provides a fundamental 

understanding of the problem complexity and potential directions to model the problem. 
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Hyper AND/OR Graph is developed to incorporate supply chain decisions in this 

dissertation and the mathematical model is also provided. HAG serves as a good platform 

for research on the integrated decisions on assembly planning and supply chain 

configurations.  

Moreover, HAG may find various applications in a series of Resource Constrained 

Shortest Path Problems (RCSP) due to its capabilities to incorporate nonlinear constraints 

and network information. A good example is Vehicle Routing Problem (VRP), which is 

a combinatorial optimization and integer programming problem that asks “What is the 

optimal set of routes for a fleet of vehicles to traverse in order to deliver to a given set of 

customers?” In this case, the sequences between the customers could be represented in the 

AND/OR graph while the holding capacity could be represented as the hyper nodes. 

Powered by the efficient representation of HAG, we can now move on to algorithm 

development.  

https://en.wikipedia.org/wiki/Combinatorial_optimization
https://en.wikipedia.org/wiki/Integer_programming
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CHAPTER 3  

Algorithm for Integrated Design of Assembly Plan and Supply Chain 

Nomenclature 

( ) X  The set of all subsets of set X  

| |X  The cardinality of set X  

N  Number of nodes in a liaison graph 

K  Number of liaisons in a liaison graph 

l  Liaison index, 1 l K   

i , j  Component index or node index in the hyper AND/OR graph  

k  AND relation index 

ip
 

Node indexed by i in a liaison graph, 1 i N   

P  Set of nodes in a liaison graph 

( ) P  Set of all groups of components 

M  Number of compound nodes in an AND/OR graph 

qc
 

Compound nodes indexed by q in an AND/OR graph, 1 q M   

C  Set of compound nodes, representing subassemblies, in an 

AND/OR graph 

A  Set of nodes in an AND/OR graph  A C P  

ia
 

Node indexed by i in the hyper AND/OR graph, 1 i M + N   

id
 

The number of AND relations of compound node ia
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( N 1 i N +M   ) 

H  Composition relationship matrix in a hyper AND/OR graph 

s  Supplier of a component or a manufacturing process 

iS
 

The supplier set of component i, 1 i N   

lT
 

The supplier set of manufacturing process l, 1 l K   

Sp  The set of all suppliers, : { |1 }jSp j S  Sp  

S  The total number of suppliers 

Hn  The set of hyper nodes in the hyper AND/OR graph, 

: { |1 }jHn j S  Hn  

( , )pc i s  The procurement cost of component i from supplier s, s Si  

( , )mc i s  
The manufacturing cost of liaison l from candidate processor s, 

ls T  

tic( )1 2s ,s
 

The sum of transportation and inventory costs between suppliers

1s and 2s , 
1 2,s s Sp  

lisn( )i,k  
The liaison index of the k

th
 AND relation of node i, 1 i M  , 

1 k di   

sub  Subassemblies of the product 

fsub  
Final product 

cost( , )sub s  
Cost of subassembly sub from supplier s  

( , , )i k s
 

State of the DP procedure 

( , , )V i k s
 

Value function of the DP procedure 

V  The optimal cost of the final product 

1child ( )i,k
 

The left child node index of node i under AND relation k 
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2child ( )i,k
 

The right child node index of node i under AND relation k 

1opt ( )i,k,s
 

The optimal solution of the left child node of node i under AND 

relation k with supplier choice s  

2opt ( )i,k,s
 

The optimal solution of the right child node of node i under 

AND relation k with supplier choice s 

 

3.1 Introduction 

This chapter focuses on the algorithm development for the integrated optimization without 

time constraints based on the models introduced in the previous chapter. First we will 

review the related literature on concurrent designs. After the identification of research gaps 

and barriers, we will introduce the solution algorithms and provide two case studies, one 

on Boujault's pen and the other on a laptop computer. 

In recent years, researchers began to consider manufacturing factors in supply chain 

designs. Rungtusanatham and Forza [29, 30] summarized such efforts in integrating 

decision makings in design, manufacturing, and supply chains. Huang, Zhang, and Liang 

[31] considered the manufacturing processes in the supply chain configuration for a 

product family by applying a genetic algorithm. Fine, Golany, and Naseraldin [32] 

evaluated a tradeoff between the design of the product, manufacturing process, and supply 

chain through a goal programming approach. Fixson [33] assessed product architecture by 

building a tool to link product, process, and supply chain decisions.  
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In the aforementioned work, manufacturing processes were only considered as an 

option choice, while how assembly sequences and/or subassembly definition could affect 

product qualities or costs were not studied.  Shao et al. [34] developed a new integration 

model with a modified GA-based approach to facilitate the integration and optimization of 

process planning and scheduling systems. Che [35] presented a mathematical model to deal 

with production planning problem of selecting assembly sequences and suppliers. A hybrid 

heuristic algorithm, Guided-Pareto genetic algorithm (Gu-PGA), was developed to 

minimize the integrated criteria. Che and Chiang [36] integrated supplier selection, product 

assembly, as well as the logistic distribution system of the supply chain for the build-to-

order supply chain planning. A Pareto genetic algorithm (PaGA) was developed to find 

good tradeoffs among three evaluation criteria, namely costs, delivery time, and quality. 

These work provided methods to concurrently select assembly sequences and supply chain 

configurations by using heuristic algorithms. However, due to simply enumerating the 

assembly sequences, the optimization spaces were immensely large, even for problems 

with moderate sizes. Moreover, the relations between assembly and supply chain have not 

yet been revealed. This chapter aims at developing a complete and efficient algorithm to 

solve the integrated design problem. 

3.2 Problem Formulation 

This section provides a formal problem formulation based on HAG and the supply chain 

modeling introduced in Chapter 2. 
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Assume we are producing a product ( , )P C L , with N  components and K  

assembly processes, where C  is the set of components of the product, i.e.,

1 2{ , , }Nc c cC and L  is the set of assembly processes, i.e. 1 2{ , , }Kl l lL . The set of 

suppliers for component ic is denoted as ,i i NS and the set of providers of each assembly 

process is denoted as , Kj j Q . Please note that some suppliers could provide components 

as well as assembly processes, i.e. S and Q are not mutually exclusive. The purchasing cost 

for component i from supplier isS is ( )pc i,s . The assembly cost for assembly process j

from supplier
jqQ is ( , )ac j q , and the corresponding assembly lead time is ( , )at j q . 

While purchasing of components is the only action needed for simple vertices, the 

decisions of where to assign the assembly processes and subassemblies need to be made 

for compound vertices.  

Then the HAG for this product ( , , )H V A E is as follows: 

{ | }iv i 
v

V I , is the set of feasible subassemblies, where each iv  represents a 

subassembly. The number of vertices in H is | |
v

I . Define | |M N 
v

I , i.e. the number of 

CV’s in H is M , then the total number of vertices in H is M N . For ease of description, 

we re-label vertices from low levels to high levels in an ascending order using function

( )leb v so that i j if the level of iv is higher than that of jv . Hence the SV’s are labeled 

from 1 to N , while CV’s are labeled from 1N   to M N . 

{ | }i i 
a

A a I , where ( )i i i

i 0 1 2v ,v ,va . Dependent on the parent vertex of each 

AND relation, A is partitioned into M subsets, i.e.
1

M

i
i

 A A , where i A { |ja
0

jleb(v )
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, }i + N j 
a

I . The assembly process required to assemble 1

iv and 2

iv into 0

iv  could be 

indexed by function ( )fapi i . Then CV
N+iv has | |iA  AND relations with the set iA . For 

each of its AND relationship ( )j j j

j 0 1 2v ,v ,va , the two subassemblies of this CV are 
j

1v and

j

2v , where ijA . 

{ | , }i ii  
e

E e I e V . | |E is the total number of suppliers, including both 

component suppliers and assembly suppliers, which is also denoted as S . The supplier set 

for SV , [1 ]iv i ,N is iS .The corresponding assembly process to AND relationship

( )j j j

j 0 1 2v ,v ,va of CV N+iv  is ( )fapi j with an assembly supplier set lQ , where ( )l fapi j . 

Then the hyper edge pertaining to thi supplier s is {v | s or s }i j j l  e S Q , where 

( )l fapi j . 

Hence the objective is to minimize the cost of the final vertex given the assembly 

and supply chain resources, i.e. 

,
min( ( , | ))M N

q
pc v q

a
a , where M Na A , and q lQ in which ( )l fapi a . 

Three types of decisions have to be made recursively for each compound vertex,  

1. Choose an AND relation, i.e. j , among | A |i  AND relations,  

2. Select a supplier for the assembly process, i.e., q , among | |lQ , where 

( )l fapi j ,  

3. Decide where to obtain its two subassemblies ,1 2

j jv v . 
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Formulated in this way, this problem is decomposed into two sub-problems, i.e., 

how to obtain each of its two subassemblies at low costs. Dynamic Programming (DP) is 

selected for the modeling of the optimal configuration because of its merits in structured 

search. A bottom-up DP algorithm is designed to make the assembly plan and supply chain 

decisions considering the fact that the supply chain cost is cumulative.  

3.3 Algorithm Development and Analysis 

Based on the mathematical model in the previous section, the DP algorithm to the 

coordinated optimization problem without time constraints is firstly introduced, and then 

its computational complexity is analyzed.  

3.3.1 DP Algorithm Description 

For ease of the algorithm description, some definitions are given as follows. Define

| |i id  A , i.e. id is the number of possible ways to assemble subassembly iv . Define ib as 

the array of indices of AND relations belonging to subassembly iv , i.e. (k)i jb so that 

0 ,jleb(v ) i + N j 
a

I . 

State: ( , , )i k s , where i  is the index of a compound vertex in the hyper AND/OR graph 

( N 1 i N M    ), k is the AND relation index of vertex i ( ik d ), and s is the supplier 

of subassembly i .   

Actions: For each AND relation, i.e., for each way to build a compound vertex and the 

corresponding assembly process supplier, decide where to acquire its two subassemblies.    
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Value function: The total supply chain cost to produce compound vertex i is denoted as

( , , )V i k s , given the assembly type, i.e., the AND relation index ik d , as well as the 

corresponding manufacturing process provider ls S for process l , where lisn( )l i,k .  

Functional equation: Compound vertex i makes decisions on where to acquire its two 

child vertices to minimize its value function at the state ( , , )i k s . The optimization process is 

described below. 

The two subassemblies (vertices) of vertex i at state ( , , )i k s are 1

jv and 2

jv , where 

(k)i jb . We denote 1j as the left child vertex and 2j as the right child vertex, i.e.

1 1child ( , )j i k and 2 2child ( , )j i k .   

Subassembly (vertex) 1j  has 
1j

d AND relations. The liaison to accomplish and for 

each assembly method
11 jk d is 1 1 1lisn( , )l j k . The supplier for subassembly 1j  is 

denoted as 1s and 1
1l

s S . The costs related to vertex 1j include procurement of 1j from 

supplier 1s with the cost of 1( )pc s as well as the sum of the cost of transportation from 

supplier 1s  to supplier s , tc( , )1s s . 

For subassembly (vertex) 2j , similarly, the procurement cost is ( )2pc s , 
22 ls S , 

lisn( )2 2 2l j ,k , 
22 jk d  and the transportation cost tc( )2s,s . 

Hence, the value function of vertex i at state ( , , )i k s can be calculated as below: 

1 1 2 2

1 1 1 1 2 2 2 2( , , ) min min( ( , , ) tc( , )) min min( ( , , ) tc( , )) ( )
k s k s

V i k s V j k s s s V j k s s s mc s    
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where
11 jk d , 1 1 1lisn( , )l j k ,

11 ls S ;
22 ,jk d 2 2 2lisn( , )l j k ,

22 ls S ; ik d , lisn( , )l i k , 

ls S . 

The minima is recorded to trace back the assembly plan, i.e., 

1opt ( , , ) ( , )* *

1 1i k s k s  and 2opt ( , , ) ( , )* *

2 2i k s k s . 

Boundary condition: while compound vertices in the HAG are associated with decisions 

of assembly plans and subassembly suppliers, the only decision associated with a simple 

vertex is where to purchase the component. The value function of a simple vertex is the 

purchasing cost of the component. 

( , , ) ( ), 1, iV i k s pc s k s S   , if i N . 

Optimal Result: when i M N  , the minimal total supply chain cost V can be found by 

comparing the id costs provided by id  optimized assembly plans with the corresponding 

supplier chain configurations, i.e. 
,

min ( , , )
k s

V V i k s . The optimal assembly plan and supply 

chain configurations can be obtained via a top-down tracking of 1opt ( , , )i k s  and 

2opt ( , , )i k s . 

3.3.2 Computational Complexity Analysis 

As shown in the functional equation, the number of computations for the optimization at 

state ( , , )i k s is
1 2

1 2

1 21 1

| | | |
j jd d

l l

k k

S S
 

  , where 1 1child ( , )j i k , 2 2child ( , )j i k , lisn( )1 1 1l j ,k

and 2 2 2lisn( )l j ,k . Then the total number of computations for the complete optimization 
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problem is
1 2

1 2

1 2

| |

1 1 1 1 1

( | | | |)
j ji l

d dd SN M

l l

i N k s k k

S S


     

    , where lisn( , )l i k . Theoretically, id ,
1j

d ,and
2j

d

have positive correlation to the vertex index i , as complicated subassemblies usually can 

be assembled in more ways. We can calculate the theoretical computation complexity of 

this DP algorithm by studying the relationships between vertex index i  and its number of 

AND relations (i.e. id ,
1j

d , and
2j

d ). However the exact values of these numbers depend on 

assembly structures and it is not the focus of this research. A practical upper bound is 

provided instead for the computational complexity of the algorithm which can be utilized 

to estimate the performance of the algorithm running for a practical product. Define D as 

the maximum number of possible ways to assemble a subassembly, and S as the maximum 

number of suppliers for a component or a manufacturing process. Then one upper bound of 

the computational complexity of the algorithm is )(
2 2

O MD S , where M is the number of 

compound vertices in the hyper AND/OR graph. In typical products, ( )
2

M O N  and

D = O(N) , and then the upper bound of the computational complexity is
4 2

O(N S ) . In 

contrast, the enumeration has a computational complexity ( )
L N

O KNS


, where K  is the 

number of assembly plans, L  is the number of processes required, N is the number of 

components in the product, and S is the maximum number of suppliers for a component or 

a process. In typical products, ( )
2

K O N  and L = O(N) , and the computational complexity 

is 
2 2N

O(N S ) .By taking advantage of the compactness of the proposed hyper AND/OR 

graph and searching in a structured way, the DP algorithm solves the optimization problem 

with an exponential time complexity in polynomial computational time. 
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3.4 Case Studies 

Two case studies are provided in this section to illustrate the efficacy and efficiency of the 

developed algorithm. 

3.4.1 Pen Example Case Study 

The discussion on the pen example will be completed in this section. There are six 

assembly plans in total to produce the pen discussed in Chapter 2. The assembly plans with 

the optimized supply chain configurations and the corresponding optimal costs are 

presented in Figure 3.1. 

 

 

Figure 3.1. Assembly plans of the pen 
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The six assembly plans can be categorized into two groups based on the total 

supply chain cost. Assembly plans 2, 3, 5, and 6, have optimal cost around 86, while 

assembly plans 1 and 4 have costs around 108, around 20% higher than the other four 

plans. All the “good” assembly plans include the “ABCD” subassembly while the “bad” 

assembly plans do not. The result shows it is cost-effective to produce “ABCD” before 

transporting components or subassemblies to Area 2. As illustrated in Chapter 1, the 

supply chain configuration characteristic, i.e., the long distance between Areas 1 and 2, 

leads to the result. 

Through a learning tool such as a decision tree or boosting learning algorithms, the 

proposed method can provide guidelines on which intermediate products should be 

selected as subassemblies in order to keep the supply chain cost-effective. These guidelines 

can guide assembly designers in their designs of assembly plans as well as supply chain 

configurations.  

3.4.2 Laptop Computer Case Study 

The developed method is applied to a laptop assembly to evaluate how the method works 

for a practical product. The laptop case is adapted from a study [37]. Since we are only 

concerned with liaisons that require assembly processes, we do not consider the contact 

liaisons [4] denoted in dashed lines in Figure 3.2. 
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Figure 3.2. Laptop and the liaison graph, adapted from [37] 

The precedence graph in Figure 3.3 remains the same as that in that paper. The 

AND/OR graph of the laptop can be generated based on algorithms in [9]. There are a total 

of 5,280 assembly plans in the hyper AND/OR graph of the laptop. Due to such a huge 

number and complicated graph, we include only a part of the AND/OR graph in Figure 3.4. 

 

Figure 3.3. Precedence graph of the laptop, adapted from [37] 

Assume a simplified but realistic supply chain environment, in which suppliers are 

located in four districts. Most components and assembly processes could be obtained in 

District 1, while specific components or processes could be acquired in the other districts. 

The details could be found in. The numbers in the table are generated by modifying 

publically available estimated data. 
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Figure 3.4. A part of the AND/OR graph of the laptop 

District 1 and 3 can provide all the assembly processes, while District 2 has 

specialty in assembly work related to display. There are 52 suppliers, providers of 

components or assembly processes, in the supply chain. If the two suppliers are in the same 

district, the transportation cost is fairly low, roughly $1. Otherwise if they are companies 

located in different districts of the first three districts, the transportation cost is high, 

around $6. If the transportation is between District 4 and the other districts, the cost is even 

higher, around $10.   
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Table 3.1. Component availability and prices in four districts 

        Region 

 

Component 

District 1 District 2 District 3 District 4 

A 80 70 × × 

B 12 8 × × 

C 30 35 × × 

D 10 × × × 

E 85 × 85 85 

F 35 × 40 × 

G × × × 40 

H 10 × × × 

I 55 × 54 × 

J 8 × × × 

K 5 × 4 × 

L 160 × 150 155 

M 3 × × × 

 

The optimal assembly and supply chain plan generated by the proposed method is shown 

in Figure 3.5 and the corresponding material flow in Figure 3.6. 
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Figure 3.5. The optimal assembly plan with supplier assignment 

 

Figure 3.6. The material flow of the optimal assembly plan and supply chain 

Companies in District 2 are assigned the subassembly of display due to its expertise 

in display. Companies in District 3 are assigned the processor subassembly because of 

their advantages in processor production. The battery is provided by District 4. All the 

other components are purchased and then assembled in District 1. Companies in District 1 

are chosen for the most assembly work, although they offer the assembly processes at a 

higher price than those in District 3. That is because they could provide the parts such as 

palm rest and computer base so that there will be much less transportation of 
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subassemblies between districts. This result demonstrates why industrial park is a 

competitive strategy.  

Assume that District 2 can no longer provide a competitive price for display, which 

rises from $70 to $80. The optimal assembly plan with supplier assignment is shown in 

Figure 3.7. Losing the advantage of the lower price of the display, AB is not chosen as a 

subassembly, and instead ABCD is selected as a subassembly manufactured in District 1. 

The subassembly EFHIJKLM, as we could notice, does not change its supplier assignment.  

 

Figure 3.7. The optimal configuration: with increased display price in District 2 

In summary, the model can successfully and efficiently make integrated decisions 

in assembly planning and supplier assignment for the case study product under different 

scenarios. And the results can give designers suggestions on how to integrate design of 

assembly plans and supply chain configurations. 
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3.5 Summary 

A bottom-up DP algorithm with polynomial time complexity has been developed to search 

for the global optimal assembly plans and supply chain configurations with the lowest total 

cost. The effectiveness and efficiency of the method has been demonstrated through a case 

study of a laptop computer assembly. Industry cluster strategy was verified to be a 

successful one through the laptop case study. The DP algorithm solves the integrated 

decision problem with polynomial time complexity in terms of the model parameters. 

Through better understanding of the interdependence between suppliers and assembly 

plans, concurrent decisions can be made to lower the total supply chain cost and shorten 

the product development lead time. 

The developed model can be extended to address other problems such as the effects 

of the integrated decisions on product lead time, manufacturing reliability, and product 

reconfiguration. An example as we discussed in the modeling chapter is VRP, which is a 

NP-hard problem. The commercial solvers therefore tend to use heuristic due to the size of 

real world VRPs and the frequency that they may be used. The DP algorithm proposed in 

the dissertation provides a good platform to exercise the heuristics due to its advantages to 

decompose a problem into smaller problems. 

Utilized in combination with Enterprise Resource Planning (ERP), the method 

developed in this dissertation can see various applications in manufacturing industries. The 

companies can use the method to generate preliminary manufacturing and supply chain 

designs based on history data and initial product design before launching a new product. 

This preliminary design serves as a baseline for further improvement or revision from 
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experts. When a new generation of products is introduced, the method can be run for a part 

of the product to generate the optimal configurations. The partial optimization allows for 

quick iterations and evolvement between generations of products. The same technique of 

partial optimization also yields huge benefits when supply chain fluctuation happens. 

Under that situation, quick adjustment can be made based on partial optimization results 

without changing the whole configurations.  
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CHAPTER 4  

Algorithm for Integrated Design Considering Lead Time Constraint 

Nomenclature 

N  The number of components 

K  The number of assembly processes 

T  The lead time bound 

C  The set of components 

ic  Component indexed by i  

L  The set of assembly processes 

kl  Assembly process indexed by k  

iS  The set of suppliers for component i  

kQ  The set of suppliers for assembly process k  

s  Supplier for component 

s  Supplier array for all the components, where is is the supplier 

index for component i  

q  Supplier for assembly processes 

q  Supplier array for all the components, where kq is the supplier 

index for assembly process k  

ap  A feasible assembly plan 

AP  The set of feasible assembly plans 



 

44 

( )pc i,s  The purchasing cost of component i  from supplier s  

( | , , )c j apq s  The cost related to assembly process j given the supplier 

selection s  and q , as well as the assembly plan ap . 

( | , , )d j apq s  The lead time related to assembly process j given the supplier 

selection s  and q , as well as the assembly plan ap . 

( , )ac j q  The assembly cost of assembly process j from supplier q  

( , )at j q  The assembly time of assembly process j at supplier q  

iv  Vertex indexed by i  

V  The set of vertices in a hyper AND/OR graph 

ia  AND relation indexed by i  

, ,i i i

p l rv v v  The parent vertex, left child, and right child pertaining to AND 

relation i  

A  The set of all AND relations 

iA  The set of AND relations pertaining to vertex i  

leb(v)  The label of vertex v  

E  The set of hyper edges 

ie  Hyper edge indexed by i  

( )fapi j  The function for calculating the index of an assembly process for 

AND relation j  

( , , )H V A E  A hyper AND/OR graph 

| |i id  A  The number of AND relations pertaining to vertex i  

(k)i jb  The array of AND relation indices pertaining to vertex i  

1i , 2i  Indices for vertices 

1k , 2k  Indices for AND relations 
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1l , 2l  Indices for assembly processes 

1s , 2s  Indices for suppliers 

1 2,( , )tc v s s  The average transportation cost of assembly v between two 

suppliers 

1 2,( , )tt v s s  The average transportation time of assembly v between two 

suppliers 

 

4.1 Introduction 

This chapter focuses on the algorithm development of the integrated optimization problem 

considering the total lead time. This problem belongs to the category of Resource 

Constrained Optimization Problem (RCOP). Hence this chapter starts a literature review 

on RCOP. Then the formal algorithm is introduced and discussed in terms of 

computational performance. Numerical studies are also presented to demonstrate the 

efficacy and computational efficiency of the algorithm.  

Resource Constrained Scheduling Problem (RCSP) is a general scheduling problem 

on optimizing the objective function given limited total resources. RCSP contains many 

variations, the most important of which are Resource Constrained Project Scheduling 

Problem (RCPSP) and Resource Constrained Shortest Path Problem (RCSPP). Since RCSP 

are generally NP-hard, as proven in [38, 39], the algorithms for RCSP are usually 

categorized into two groups, i.e., exact algorithms for small scale problem, and 

approximation algorithms for medium or large scale problem, as summarized in [40]. The 

early attempts could date back to 1960s, when Joksch [41] approached RCSPP through 
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linear programming and dynamic programming with a conclusion that exact algorithm 

didn’t have much advantage over a naïve exhaustive search. Due to the practical 

importance of RCPSP, many exact algorithms with exponential time complexity have been 

proposed. Early examples are dynamic programming approaches by Hindelang and Muth 

[42] and Robinson [43]. The currently best known algorithms still rely on dynamic 

programming, but exploit in addition the decomposition structure of the underlying 

network. The decomposition that facilitates the computation is known as modular 

decomposition or substitution decomposition and has many applications in network and 

other combinatorial optimization problems see the comprehensive article by Mohring and 

Radermacher [44]. Feillet et al. developed an exact algorithm based on Desrochers’ label 

correcting algorithm for some Vehicle Routing Problems (VRP) and the algorithm was 

shown an experimentally efficient feature [45]. 

Various approximation algorithms have been developed through different 

perspectives. The early attempts were mainly on heuristic rules. Davis and Patterson [46] 

ran 8 different heuristic rules on 83 problems and found out that none of the heuristic rules 

tested performed consistently best on all RCPSP problems. Handler and Zang  [47] utilized 

a kth shortest path algorithm and a Lagrangian relaxation to reduce the value of k in order 

to save computational works. Hartman and Kolisch underwent an experimental evaluation 

of heuristics for RCPSP in two directions, sampling and metaheuristics, and concluded that 

simulated annealing procedure of Bouleimen and Lecocq [48] and the genetic algorithm of 

Hartmann [49], belonging to metaheuristics, were most successful [50]. Avella, Boccia, 

and Sforza [51] developed a penalty function heuristics for RCSPP based on the extension 

to the discrete case of an exponential penalty function heuristic proposed for the solution 
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of large-scale LP’s. Merkle, Middendorf, and Schmeck [52] developed an ant colony 

optimization algorithm for RCPSP and showed the advantages over several other heuristics, 

including genetic algorithm, simulated annealing, tabu search, and different sampling 

methods. Our addressed problem in this chapter, although belonging to RCSP, is not a 

typical RCPSP or RCSPP. The problem needs more study due to its own cost and 

constraint structure. 

4.2 Algorithm Development and Analysis 

Based on the algorithm developed for the problem in Chapter 3 where lead time constraint 

is not considered, a revised DP algorithm will be introduced, summarized, and analyzed in 

this section.  

4.2.1 DP Algorithm Description 

For ease of algorithm description, we give the following definitions. Define | |i id  A , i.e., 

id  is the number of feasible ways to build subassembly iv . Define ib  as the array of indices 

of AND relations belonging to subassembly iv , i.e., ( )i k jb  where 
j

pleb(v ) i + N ,

ajI . 

Define ( , , , )i k s t  as the state, where i  is the label of CV, i.e., ( )i leb v

( 1N i N M    ); k  is the index of AND relation of vertex v  ( ik d ); s  is the supplier 

of the assembly process, where 
lsQ  and ( ( ))il fapi k b ; t  ( ( )t T i ) is the lead time 
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for producing subassembly 
iv , where ( )T i is an upper bound for the lead time of 

subassembly 
iv .  

To ensure the lead time of the final product is within lead-time limit T , the 

subassemblies in the lower levels should have lower lead-time upper bounds than those in 

the higher levels. Minimizing the computational work is usually achieved by estimating 

proper upper bounds for intermediate subassemblies. However, this requires solving 

another optimization problem: finding the optimal upper bounds. Since this dissertation 

focuses on providing one solution to the time-constrained optimization problem, we loosen 

the upper bound for the lead times of the intermediate subassemblies. Define 

1,
( )

,

T i N M
T i

T i N M

  
 

 
 so that all solutions at the intermediate levels with a lead time less 

than T  will be considered as part of the possible optimal solutions. Hence, we consider 

solving the optimization problem for each ( , , )i k s  at lead-time levels from 1 to 1T  , 

where i N M  .  

Define the value function ( , , , )V i k s t  as the minimum supply chain cost to produce 

subassembly 
iv  within lead time t , given assembly choices (represented by AND relation 

index k ) and the associated process provider s (
lsS and ( ( ))il fapi k b ). By setting a 

time bound t , we guarantee that 1 2( , , , ) ( , , , )V i k s t V i k s t  if 1 2t t , which means that 

when 1 2t t , if 1( , , , )V i k s t  is less than or equal to 2( , , , )V i k s t , the latter will not be an 

optimal solution. 

Then the task of each subassembly supplier is to minimize its supply chain cost by 

selecting how to assembly the subassembly and where to acquire its two immediate child 
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subassemblies. At state ( , , , )i k s t , supplier s  has two subassemblies, (2)j

l jv  a  and 

(3)j

r jv  a , where ( )ij k b . The decision process is described below. 

For ease of description, we denote the index of vertex 
j

lv  as 
1i , i.e., 1 ( )j

li leb v . Vertex 
1i  

has 
1i

d AND relations with the index array 
1i

b . For each assembly method 1k (
11 ik d ), the 

corresponding assembly process to accomplish is 
1 1( )l fapi j , where 

11 1( )ij k b . 

Hence we may select the supplier 
11 ls S for subassembly 1i . The costs related to 

subassembly 1i  include two parts: 1) procurement cost 
1 1 1 1( , , , )V i k s t of purchasing 1i  from 

supplier 1s  within lead time 1t ; 2) transportation cost 1 1( , , )tc i s s  from supplier 1s  to 

supplier s . The lead time related to subassembly 1i  consists of the lead time 1t  of the 

subassembly itself and the transportation time 1( , , )1tt i s s  between two suppliers.  

Similarly, vertex 
j

rv  is denoted as 2i . For each assembly method 2k (
22 ik d ), the 

corresponding assembly process to accomplish is denoted as 
2 2( )l fapi j , where 

22 2( )ij k b . The costs related to subassembly 2i  include procurement cost 
2 2 2 2( , , , )V i k s t  

and transportation cost 2 2( , , )tc i s s . The lead time related to subassembly 2i  consists of the 

lead time 2t  and the transportation time 2 2( , , )tt i s s . 

Then the lead time of 
iv  is 

1 1 2 2 2max{ ( , , ), ( , , )} ( , )1lt t tt i s s t tt i s s at i s    . 

Thus, the value function is as follows: 

1 1 1 2 2 2

1 1 1 1 1 1 2 2 2 2 2 2
, , ; , , |

, ,, , , ,( , , , ) min ( ( ) ( , , ) ( ) ( , , )) ( , )
k s t k s t lt t

V i k s t V i k s t tc i s s V i k s t tc i s s ac i s


      

where  1 ( (2))ii leb a ,
11 ik d ,

11 1( ( ))il fapi k b ,
11 ls S , 1( )t T i ; 
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2 ( (3))ii leb a ,
22 ik d ,

22 2( ( ))il fapi k b
22 ls S , 2( )t T i ; 

ik d , ( ( ))il fapi k b , ls S , ( )t T i . 

The minima will be recorded to trace back the assembly plans: 

* * * * * *

1 1 1 2 2 2, , ,, ,( , , , ) ( )opt i k s t k s t k s t . 

While the CVs in the HAG are linked to deciding assembly plans and relevant suppliers, 

the only decision an SV is associated with is supplier assignment (from whom to purchase 

components). Therefore, the value function at an SV is the component purchasing cost: 

( , , , ) ( , )V i k s t pc i s , 1k  , isS , if i N . 

Depending on business scenarios, the final step may vary. In the scenario where the 

objective is to optimize the manufacturing cost of products at one specific final assembler, 

the final step is to pinpoint the optimal solutions among M Nd   assembly choices at the final 

vertex. Define V  as the optimal cost at the final assembler, then 
, |

min ( , , , )
k t t T

V V N M k s t


  , 

where 1s  . In another scenario where the objective is to optimize the cost of products to 

markets, the final assembler is also a choice to make when multiple final assemblers exist. 

Define V  as the optimal cost to the market, then 

0
, , |
min ( ( , , , ) ( , , ))

k s t t T
V V N M k s t tc N M s s


    , where 0s is the location of the market. 

4.2.2 DP Formulation Summary 

The summary of the DP formulation of the algorithm is as follows: 
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State: ( , , , )i k s t , where i is the index of compound vertex v , i.e. ( ),i leb v  

1N i N M    ; k is the AND relation index of vertex v  ( ik d );  s  is the supplier of 

assembly process, where lsQ , ( )l fapi j , and ( )ij k b ;  t is the lead time for 

producing subassembly iv .  

Value Function: The minimum total supply chain cost to produce compound vertex i with 

lead time t  at most is denoted as ( , , , )V i k s t , given the assembly type, i.e., the AND 

relation index ik d , as well as the corresponding manufacturing process provider ls S for 

process l , where ( )l fapi j . 

Functional Equation: 

1 1 2 2

1 1 1 1 1 2 2 2 2 2
, , , |

, ,, , , ,( , , , ) min ( ( ) ( , ) ( ) ( , )) ( , )
k s k s lt t

V i k s t V j k s t tc s s V j k s t tc s s ac i s


     , where  

1 2 2max{ ( , ), ( , )} ( , )1lt t tt s s t tt s s at i s     

Boundary Condition: ( , , , ) ( , ), 1, iV i k s t pc i s k s  S . 

The flow char for the algorithm is shown inFigure 4.1. 
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Figure 4.1. DP algorithm flow chart 

4.2.3 Computational Complexity Analysis 

A similar analysis can be found in the previous chapter. A upper bound for the 

computational complexity of the algorithm is ( )
2 2 2

O MD S T , where M is the number of CV 

in HAG, D is the maximum number of possible ways to assemble a subassembly, S is the 

maximum number of suppliers for a component or a manufacturing process, T is the time 

boundary. In typical products, 
2

(N )M O  and D (N)O , and the computational complexity 

is
4 2 2

( )TO N S . In contrast, the enumeration has a computational complexity of (KS )
L N

O


, 

where K is the number of assembly plans, L is the number of processes required, N is the 

number of components in the product, and S is the maximum number of suppliers for a 
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component or a process. By taking advantage of the compactness of proposed Hyper 

AND/OR graph and searching in a structured way, the DP algorithm transforms the 

problem with exponential time complexity to one with polynomial time complexity. More 

research in upper bounds of lead time, T(i), can offer more reduction space of the 

computational complexity. The ( )
2 2 2

O MD S T  complexity does not contradict the fact that 

the integrated problem is NP-hard, since T  is proportional to the number of bits in log( )N  

not N theoretically. However, in real cases, T is usually within a considerate range, the 

algorithm could solve most cases within a reasonable time range.  

4.3 Laptop Computer Case Study 

The laptop case in Chapter 3 is applied to evaluate the performances of the developed 

algorithm. District 1 and 3 can provide all the assembly processes, while District 2 can 

offer some of the assembly work related to display. 52 suppliers, providers of components 

or assembly processes, exist in the supply chain. If two suppliers are in the same district, 

the transportation cost is low, roughly $1 and the transportation time is 3 day. Otherwise if 

they are companies located in different districts of the first three districts, the transportation 

cost is high, around $6 and the transportation time is 20 days. If the transportation is 

between District 4 and the other districts, the cost is the highest, around $10, and the 

transportation time is 30 days.   

If the time bound is set to be 40, the optimal assembly and supply chain plan 

generated by the proposed method is shown in Figure 4.3. 

http://en.wikipedia.org/wiki/NP-complete
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Figure 4.2. The optimal assembly plan with supplier assignment, lead time 39 days. 

Define a route from a SV to the final vertex a path and the number of vertices along 

one path as its length.  And define the length of the longest path the depth of the assembly 

plan. The longest path is (H,HI,HIM,HKLIM,...,ABCDEFGHIJKLM) with length 9. The 

optimal assembly plan has depth of 9. Label the path with the longest lead time in red. Due 

to the long transportation time between district 3 and district 1, path in red has the longest 

lead time although it is not the longest path.  The result is almost the same as that in the 

previous chapter as shown in Figure 4.3, except that keyboard & palm rest are assembled 

into one subassembly. For ease of description, call the optimal solution with no time 

constraint Plan I, and the one with lead time constraint 40 days Plan II. Two plans have the 

same optimal cost, since they have the same supplier assignment. However, two plans 

differentiate on depth, while Plan I has a depth of 11, Plan II has a depth of 9. Plan II can 

potentially shorten its lead time through decreasing the depth of the plan. In other words, 

the proposed method could balance production of multiple subassemblies to shorten the 

lead time. 
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Figure 4.3. The optimal configuration, no lead time constraint. 

 

If time bound decreases from 40 to 35, the display subassembly cannot be assigned 

to district 2 anymore. The optimal solution is to get processor subassembly in district 1, 

although the total supply chain cost increases by a couple of dollars. The optimal solution 

with 34 days as time bound could be found in Figure 4.4. And the path with longest lead 

time switches to the longest path.  
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Figure 4.4. The optimal assembly plan with supplier assignment, lead time 34 days 

 

As shown above, this model can efficiently make integrated assembly planning and 

supplier assignment decisions for various products. The result also demonstrates its 

potential to balance parallel subassembly productions, which could shorten lead times. The 

balance here refers to height-balance of the assembly trees in the HAG, which means that a 

more balanced assembly plan tends to have lower height. In this dissertation, we call the 

height of the assembly plan as its length. 

The DP algorithm is run on a regular laptop using MATLAB, it only took 1.8 secs 

to obtain the optimal solutions. An enumerative algorithm is applied to find the optimal 

assembly plan and supplier assignment among 5280 assembly plans and around 3.5 million 

supply chain configurations for each assembly plan. Although the running time for one 

iteration, i.e. each assembly plan and one of its supply chain configurations, is only 0.028 

secs, the total running time is 0.028 5280 3500000  
85.2 10 secs, i.e. 16.4 years. This 

shows that our algorithm could sharply decrease the computational time through structural 

search.  

To further validate the computational efficiency of the proposed method, we ran the 

algorithm on randomly generated assemblies of small to medium sizes. These assembly 

structures, containing 5 to 24 components, were created to simulate realistic products 

ranging from office supplies to medium size electronics. Each component or assembly 

process was assumed to have three candidate suppliers. We ran the algorithm 8 times for 

each assembly size and calculated the average running time and size of hyper AND/OR 
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graphs, considering that the randomness of the simulated product structures and task 

precedence affects the decision spaces. The average value of the experiment data is plotted 

against the size of assemblies using double log coordinates, as shown in Figure 4.5 and 4.6. 

The former shows the HAG size, and the latter shows the computation time. Here, 

the circles represent the average values and the line represents the best linear fitting. The 

linear fitting between the logarithmic coordinates show the orders of the size of HAG and 

the running time with respect to the size of the assemblies. The results show the HAG size 

is in the second order of assembly size and running time is in the fourth order. These 

numbers are consistent with our theoretical analysis. 

 

Figure 4.5. Size of HAG vs. size of product 
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Figure 4.6. Running time vs. size of product 

4.4 Summary 

This chapter presents a systematic analysis of the time constrained problem of integrated 

design of assembly and supply chain through problem identification, feature demonstration, 

and solution discussion. A bottom-up DP algorithm with pseudo-polynomial time 

complexity is developed to search for the global optimal assembly plan and supply chain 

configuration with the lowest total cost under time constraint. The method has been 

verified through a case study of a laptop computer assembly.  

Although the upper bound of the lead time is loosened in each subassembly levels, 

the DP algorithm still solves the integrated decision problem with exponential time 

complexity using pseudo-polynomial computational time. More research in optimal upper 

bounds can help further reduce the computational complexity of the solution algorithms. 

The developed model can be extended to address other constrained optimization problems 

such as indoor material handling and transportation planning between facilities.  
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Applicability of the developed method may be demonstrated by the experiences in 

several industries in the past decades. For instance, Doran et al. surveyed suppliers at 

different tiers of French automobile manufacturers and identified how the shift from 

traditional to modular manufacturing and supply chain influenced the operations of key 

suppliers [33]. The results showed that modular approach was beneficial in many aspects 

such as cost, delivery time, and development time. Thus, the key suppliers attempted to 

transfer low value-adding activities (such as some plastic injection molding) to lower-tier 

suppliers while they were focusing on a few core businesses. However, contrary to the 

common expectation, the modular manufacturing and supply chain sometimes brought 

adverse effects. Accommodating such modular approaches might increase the management 

complexity in terms of module design, module selection, and quality control. The modular 

approach also required a new buyer-supplier relationship. The larger modules produced in 

the suppliers may lead to more profits in the suppliers but less profits in the main 

assemblers due to the increased module prices. Therefore, a better understanding on the 

interdependency of supplier selection and assembly plans for concurrent decisions is 

desirable so as to find better modular strategies. 

If the method is developed further and combined with other enterprise information 

technologies, it has a potential for strong practical impact in industry. The developed 

method in this chapter can be utilized to decide which activities to be retained at the 

assemblers themselves and which to be transferred to lower-tier suppliers, in particular in 

module design. When linked with powerful enterprise database, our method can generate 

optimal or quasi-optimal solutions for decision makers in each tier of the supply chain. 

This will help a supply chain to gain more competitiveness in the market. 
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CHAPTER 5  

Assembly Supply Chain Design for a Product Family 

5.1 Introduction 

Manufacturing companies are endeavoring to provide high variety of products to 

demanding and heterogeneous customers in order to strengthen their competitiveness in the 

global market. The proliferation of products places pressure on manufacturers as inventory 

control of components and subassemblies is becoming more and more complicated. For 

example, General Motors (GM) carried 131 different rear axle assemblies in its pickup 

truck division [53]. The uncertainty in customer demands even makes the inventory control 

more challenging. Safety stock (also called buffer stock) is a term used to describe a level 

of extra stock that is maintained to mitigate risk of stock outs due to uncertainties in supply 

and demand [54]. Serving as an insurance against stock outs, safety stock is held when 

there is uncertainty in demand, supply, or manufacturing yield. Adequate safety stock 

levels permit business operations to proceed according to their plans.   

While hedging the supply chain risks through safety inventory, manufacturers are 

facing the pressure to store excessive inventory in their supply chains. Risk pooling is an 

important concept in supply chain management for higher efficiency [55]. It suggests that 

demand variability is reduced if demand is aggregated because it becomes more likely that 

high demand from one customer will be offset by low demand from another when demand 

is aggregated. This reduction in variability allows a decrease in safety stock and thus 

https://en.wikipedia.org/wiki/Stockout
https://en.wikipedia.org/wiki/Supply_chain_management
https://en.wikipedia.org/wiki/Safety_stock
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reduces average inventory. Risk pooling may appear in various forms, such as early design 

collaborations, sharing product rollover plans, and supplier hubs [56].  

To take full advantages of risk pooling, manufacturing firms are seeking 

opportunities to build efficient assembly supply chains with efforts in product development, 

assembly planning, and supply chain management. The efficiency of assembly supply 

chains in this dissertation is defined as the capability to avoid wasting materials, capital, 

and time in producing a variety of products to meet customers’ demands. Among all the 

opportunities to increase assembly supply chain efficiency, a proper design of assembly 

plans serves as the main contributor due to its significant impact on supply chain 

management, production planning, and scheduling. Research has been conducted on 

coping with the variety induced complexity and uncertainty in assembly planning and 

supply chain management in order to enhance the efficiency of assembly supply chains. 

The efforts can be generally divided into two categories: index-based optimization and 

heuristic strategies. Index-based optimization develops new indices to represent the 

efficiency of assembly and supply chain systems, assuming that optimizing the indices will 

yield optimal system performances. The heuristic strategy studies focus more on 

discovering rules and strategies to guide assembly supply chain designs although they also 

optimizes on common indices such as average inventory levels, mean customer waiting 

time, and product costs. A brief review of the literature in both categories is presented 

below. 

In the research of the first category, minimizing complexities of assembly supply 

chains is equated to improving their efficiency. Information entropy is an intuitive measure 

for system complexity as entropy is defined as a measure of uncertainty. Deshmukh et al. 

https://en.wikipedia.org/wiki/Inventory
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[57] defined “static complexity” as a function of the structure of the system, the variety of 

sub-systems, and strength of interactions, and correlated the concept with average waiting 

time in the manufacturing systems. Hu et al. [58] utilized the uncertainty in product mix to 

represent the source of complexity and defined station and system level complexity. An 

algorithm was developed to mitigate the complexity. Kuzgunkaya and ElMaraghy [59] 

presented a new metric accounting for the complexity inherent in the various modules in 

the manufacturing system through the use of an index derived from a newly developed 

manufacturing systems classification code. Wang and Hu [60] proposed a measure of 

product variety induced manufacturing complexity based on the choices of assembly 

activities that operators make in serial, manual mixed-model assembly lines. Other indices 

are mostly graph based. Ishi and Martin [61] proposed “Process Sequence Graph” and they 

equated the node-count reduction to a reduction in inventory and complexity costs. Modrak 

and Marton [62] applied a vertex degree index for measuring a structural complexity of 

assembly supply chain networks. Although these studies proposed creative indices and 

provided propotential insights into efficient assembly supply chain designs, they usually 

did not establish explicit connections between the proposed indices and common measures 

such as costs, time, and quality. The outcomes of the research hence are difficult to be 

verified and applicable in real industrial settings.  

The research in the heuristic strategy is more successful in generating realistic and 

applicable results as it focuses mainly on business measures, such as average inventory 

level and lead time. One of the most widely accepted strategies is delayed differentiation. 

Also called postponement, delayed differentiation is a concept in supply chain 

management where the manufacturing process starts by making a generic product that is 

https://en.wikipedia.org/wiki/Supply_chain_management
https://en.wikipedia.org/wiki/Supply_chain_management
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later differentiated into specific end-products. This widely used method can be effectively 

adopted to address the final demand even if forecasts cannot be accurate enough, especially 

in industries with high demand uncertainty. Research has been conducted from various 

facets of delayed differentiation as reviewed in [63 - 66]. Lee and Tang [67] built a 

mathematic model that captures the costs and benefits related to the redesign strategy for 

postponement. The optimal point of product differentiation was characterized and 

managerial insights were derived. Swaminathan and Tayur [68] modeled the problem of 

finding semi-finished products (vanilla boxes) as a two-stage integer program with 

recourse and provided an effective solution procedure by utilizing structural decomposition 

of the problem and (sub) gradient derivative methods. Gupta and Krishnan [69] formalized 

the notion of generic subassemblies and presented an algorithm to identify the generic 

subassemblies so as to maximize the benefits from commonality of components and 

assembly operations, referred to as product family-based assembly sequence design. Forza, 

Salvador, and Trentin [70] defined three mutually exclusive and exhaustive types of form 

postponement (FP) at the company level of analysis and formalized how, why, and under 

which assumptions each FP type affects operational performance. The strategies have been 

acknowledged in academia and industry due to its simplicity for applications.  

The central idea of delayed differentiation is essentially risk pooling through 

delaying uncertainty to later stages. An implicit assumption lies underneath the strategies 

that common processes exist throughout product families. However, the commonality may 

be very limited for some products or companies in today’s manufacturing. Blecker and 

Abdelka [71] presented the insufficiencies of the delayed product differentiation principle 

by means of a simple example from the computer industry in which the degree of product 
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modularity is very high. They demonstrated that this principle cannot support optimal 

decisions concerning how variety should proliferate throughout the assembly process. 

These naturally lead to a question: what is the optimal strategy when commonality is 

limited or more generally what is the room for further optimization when we have varying 

levels of commonality? This chapter aims at answering this question. Specifically, this 

chapter presents a mathematical model with the objective to minimize inventory 

considering a product with multiple components and processes that could be differentiated. 

Starting from a discussion on a two process product, a theorem about the impact of product 

variety on their safety inventory is developed. Then a measure to approximate the impact is 

derived. Two types of problems, sequencing and decomposition, will be investigated and 

one case study will be provided. 

This chapter is organized as follows: Section 2 builds a mathematic model and 

develops theorems concerning the impact of variety on inventory in a general product 

family. Section 3 focuses on the process sequencing problem. Section 4 covers the optimal 

assembly decomposition problem, including a model and algorithm. Section 5 illustrates 

the concept and the applications of the developed method. Section 6 concludes the chapter.  

5.2 Impact of Variety on Inventory   

Consider a product with multiple components requiring multiple processes to assemble the 

components into the final product. In each step, multiple components or subassemblies are 

assembled into one larger subassembly or finally into the final product. In addition to the 

assembly process, the subassembly may require extra manufacturing processes to finish the 

subassembly, e.g., finishing, polishing, and cutting. A subassembly may need multiple 
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processes with different numbers of variants. For instance, cutting process may have 

different shapes and polishing may have different surface requirements. How to arrange 

the sequence of the manufacturing processes so as to mitigate the variety induced 

uncertainty is defined as a process sequencing problem. On the other hand, different 

assembly plans represent different combinations of components or subassemblies into 

higher level subassemblies. Different combinations may also generate different inventory 

types or levels. Which combination/assembly plan carries the lowest inventory level is 

what we refer to as an assembly decomposition problem. Before addressing the two 

problems directly, we will investigate first how the variety of a subassembly affects its 

inventory. We will start with a simple two process example. Then the problem will be 

formalized and a discussion will be extended to more general cases.  

5.2.1 Introductory Example 

Consider producing bicycle handles with one compass and grips in two colors (black and 

red) as shown in the figures below. A pair of grips and one compass need to be assembled 

to finish the handle assembly. For ease of description, we will denote the subassemblies by 

symbols and acronyms. We will denote the handles without grips or compass assembled 

the basic handles (BH).  
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Figure 5.1. Fully assembled bicycle handles and components 

Assume the demand of the handles with black grips and compass follows a normal 

distribution of (μ
1
, σ

1
) and that of the handles with red grips and compass follows a 

different normal distribution of (μ
2
, σ

2
). Assume these two demands are independent from 

each other. Assume the service level is z. If grips are assembled first as shown in Figure 

5.2, the average inventory level of the handles with black and red grips assembled will be 

𝜇1

2
+ 𝑧𝜎1  and 

𝜇2

2
+ 𝑧𝜎2 . The total inventory of the handles with grips will be 

𝜇1+𝜇2

2
+

𝑧(𝜎1 + 𝜎2).  

 

Figure 5.2. Grip assembly first sequence 

However if the compass is assembled first, the average inventory level for the 

handles with compasses assembled is 
𝜇1+𝜇2

2
+ 𝑧(√𝜎1

2 + 𝜎2
2) . Obviously (σ1 + σ2) ≥

√σ1
2 + σ2

2  since σ1 and σ2 are non-negative. The reduction of average inventory due to 

demand pooling is regarded as one of the main benefits of delayed differentiation.  
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Figure 5.3. Compass assembly first sequence 

A direct extension of the problem is what if there are no common processes, e.g., 

when there are multiple accessories, say compass, ring, and light. The example product 

mix is shown in the table below, assuming product variant demands are independent from 

each other. 

Table 5.1. Product mix 

Mix Compass Ring Light 

Red (𝜇11, σ11) (𝜇12, σ12) (𝜇13, σ13) 

Black (𝜇21, σ21) (𝜇21, σ22) (𝜇23, σ23) 

 

The illustration exhibits can be found in figures below, where blocks represent 

buffers and the lines between blocks represent the different processes. 
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Figure 5.4. Two assembly sequences for bicycle handles 

The inventory levels can be calculated for each buffer. The inventory levels for the 

end products and the basic handles are definitely the same for the two sequences. Thus the 

only difference lies in the intermediate inventories. For sequence 1, the inventory level for 

the handles with red and black grips are respectively 
𝜇11+𝜇12+𝜇13

2
+ 𝑧√σ11

2 + σ12
2 + σ13

2 , 

𝜇11+𝜇12+𝜇13

2
+ 𝑧√σ21

2 + σ22
2 + σ23

2 . Hence the total intermediate inventory level can be 

calculated as ∑
𝜇𝑖𝑗

2𝑖,𝑗 + 𝑧(√σ11
2 + σ12

2 + σ13
2 + √σ21

2 + σ22
2 + σ23

2 ) .  For sequence 2, the 

inventory levels for handles with compass, ring, and light are 
𝜇11+𝜇21

2
+ 𝑧√σ11

2 + σ21
2 , 

𝜇12+𝜇22

2
+ 𝑧√σ12

2 + σ22
2 , and 

𝜇13+𝜇23

2
+ 𝑧√σ13

2 + σ23
2 . The total intermediate inventory level 

is ∑
𝜇𝑖𝑗

2𝑖,𝑗 + 𝑧(√σ11
2 + σ21

2 + √σ12
2 + σ22

2 + √σ13
2 + σ23

2 ) . Denote √σ11
2 + σ12

2 + σ13
2 +

√σ21
2 + σ22

2 + σ23
2  as 𝐷1  and √σ11

2 + σ21
2 + √σ12

2 + σ22
2 + √σ13

2 + σ23
2  as 𝐷2 . Then the 

difference of total inventory levels between sequences 1 and 2 is 𝑧(𝐷1 − 𝐷2), which is 

only related to their uncertainty part (i.e., variation). It shows that the difference of safety 

inventory between the subassemblies only with grips and only with accessories determines 
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the performance of the two assembly sequences. As we can see, the key to the problem is 

to identify the relationship between subassembly variety and its safety inventory. 

We will provide a mathematical representation of the example problem and an 

answer in the form of lemma in the following section. 

5.2.2 In-depth Analysis of the Example Problem  

Define 𝑀  as the matrix of the standard deviation of product demand, i.e., 𝑀 =

 (
σ11 σ12 σ13

σ21 σ22 σ23
). Then 𝐷1 and 𝐷2 can be expressed as the L2,1 norm of matrix  𝑀𝑇 and 

𝑀, where  L2,1 norm [72] is the sum of the Euclidean norm of the columns of the matrix. 

L2,1 norm of a standard deviation matrix hence represents the uncertainty level  of the 

inventory of specific subassemblies. 𝐿2,1(𝑀𝑇)  represents the uncertainty level of the 

handles with only grips while 𝐿2,1(𝑀) represents that of the handles with only accessories. 

The uncertainty level difference therefore is equivalent to the difference between 

𝐿2,1(𝑀𝑇)and 𝐿2,1(𝑀).  

From the discussion above, we can see that L2,1 norm is an asymmetrical operator 

on matrices as L2,1 norm of a matrix is not necessarily equal to that of its transpose. Our 

objective is to study the asymmetry of L2,1 norm and how the asymmetry is related to the 

matrices. Numerical studies show that there is no deterministic relationship between L2,1 

norm of 𝑀 and that of its transpose; 𝐿2,1(𝑀𝑇) can be greater/less than or equal to 𝐿2,1(𝑀) 

depending on 𝑀. To nullify the dependence on 𝑀 so as to unveil the structural difference 

between these two norms, we assume the standard deviation (σ𝑖,𝑗 ) of each product is 

unknown and follows i.i.d. distributions. Multiple types of distributions may be assumed 



 

71 

for the deviations, e.g., normal, uniform, and exponential. We will assume normal 

distribution, specifically with zero mean, to conduct theoretical studies in this dissertation. 

Numerical studies provided later will show that different distribution assumptions actually 

would not change the analytical results. Also considering σ𝑖,𝑗  non-negative, we assume 

σ𝑖,𝑗 = 𝜎|𝑧𝑖,𝑗|, where 𝜎 is a coefficient and 𝑧𝑖,𝑗   follows standard normal distribution. To 

ensure that the probability density function of σ𝑖,𝑗  is continuous at σ = 0, define 𝑓(σ =

0) =
2

√2𝜋𝜎̅
. 

We can now provide a formal problem statement. Given a 𝑚 × 𝑛  matrix 𝑀 , 

𝐿2,1(𝑀𝑇) = ∑ √∑ σ𝑖𝑗
2𝑛

𝑗=1
𝑚
𝑖=1 = 𝜎 ∑ √∑ z𝑖𝑗

2𝑛
𝑗=1

𝑚
𝑖=1  and 𝐿2,1(𝑀) = ∑ √∑ σ𝑖𝑗

2𝑚
𝑗=1

𝑛
𝑖=1 =

𝜎 ∑ √∑ z𝑖𝑗
2𝑚

𝑗=1
𝑛
𝑖=1  , where z𝑖𝑗 follows i.i.d. standard normal distribution, our objective is to 

discover if there is certain inequality between E(𝐿2,1(𝑀𝑇)) and E(𝐿2,1(𝑀)) when 𝑚 < 𝑛.  

Denote 𝑌(𝑡) = √∑ z𝑖
2𝑡

𝑖=1 . Then E(𝐿2,1(𝑀𝑇)) = 𝜎̅𝑚E(𝑌(𝑛))  and E(𝐿2,1(𝑀)) =

𝜎̅𝑛E(𝑌(𝑚)) . Obviously 𝑌(𝑛)  follows a Chi distribution with 𝑡  degrees of freedom, 

E(𝑌(𝑡)) = √2
Γ(

𝑡+1

2
)

Γ(
𝑡

2
)

, and Var(𝑌(𝑡)) = 𝑡. 

If 𝑡 is even, i.e., 𝑡 = 2𝑘 , then E(𝑌(𝑡)) = 𝑘√2𝜋
(2𝑘)!

𝑘!𝑘!4𝑘
. If 𝑡 is odd, i.e., 𝑡 = 2𝑘 + 1, then 

E(𝑌(𝑡)) = √
2

𝜋

𝑘!𝑘!4𝑘

(2𝑘)!
. We will discuss the inequality between E(𝐿2,1(𝑀𝑇))  and 

E(𝐿2,1(𝑀)) in four scenarios, i.e., when 𝑚 and 𝑛 are even or odd. 

Scenario 1: 𝑚 = 2𝑙 < 𝑛 = 2𝑘 
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E(𝐿2,1(𝑀𝑇)) = 𝑚E(𝑌(𝑛)) = 2𝑙𝑘√2𝜋
(2𝑘)!

𝑘!𝑘!4𝑘  and E(𝐿2,1(𝑀)) = 𝑛E(𝑌(𝑚)) =

2𝑘𝑙√2𝜋
(2𝑙)!

𝑙!𝑙!4𝑙. →
E(𝐿2,1(𝑀𝑇))

E(𝐿2,1(𝑀))
=

(2𝑘−1)‼(2𝑙)‼

(2𝑙−1)‼(2𝑘)‼
=

(2𝑘−1)(2𝑘−3)…(2𝑙+1)

(2𝑘)(2𝑘−2)…(2𝑙+2)
< 1. 

Hence E(𝐿2,1(𝑀𝑇)) < E(𝐿2,1(𝑀)). 

Scenario 2: 𝑚 = 2𝑙 − 1 < 𝑛 = 2𝑘, 𝑙 ≤ 𝑘 

E(𝐿2,1(𝑀𝑇)) = 𝑚E(𝑌(𝑛)) = (2𝑙 − 1)𝑘√2𝜋
(2𝑘)!

𝑘!𝑘!4𝑘 , 

E(𝐿2,1(𝑀)) = 𝑛E(𝑌(𝑚)) = 2𝑘√
2

𝜋

(𝑙−1)!(𝑙−1)!4𝑙−1

(2(𝑙−1))!
= 2𝑘√

2

𝜋

𝑙!𝑙!4𝑙(2𝑙−1)

(2𝑙)!(2𝑙)
.  

→
E(𝐿2,1(𝑀𝑇))

E(𝐿2,1(𝑀))
= 𝜋𝑙

(2𝑘−1)‼(2𝑙−1)‼

(2𝑘)‼(2𝑙)‼
≤ 𝜋𝑙 (

(2𝑙−1)‼

(2𝑙)‼
)

2

< 1 . The first inequality is due to that 

𝑓(𝑡) =
(2𝑡−1)‼

(2𝑡)‼
 is a decreasing function, which can be easily verified. The second inequality 

is due to the fact that 𝑓(𝑡) <
1

√𝜋𝑡
. It can be derived using Stirling’s formula to two orders, 

𝑛! ~√2𝜋𝑛 (
𝑛

𝑒
)

𝑛

(1 +
1

12𝑛
). Plug the formula into 𝑓(𝑡), then we have 𝑓(𝑡) =

1+
1

24𝑡

(1+
1

12𝑡
)2

1

√𝜋𝑡
<

1

√𝜋𝑡
. 

Hence, E(𝐿2,1(𝑀𝑇)) < E(𝐿2,1(𝑀)). 

Scenario 3: 𝑚 = 2𝑙 < 𝑛 = 2𝑘 + 1, 𝑙 ≤ 𝑘 

E(𝐿2,1(𝑀𝑇)) = 𝑚E(𝑌(𝑛)) = 2𝑙√
2

𝜋

𝑘!𝑘!4𝑘

(2𝑘)!
  

E(𝐿2,1(𝑀)) = 𝑛E(𝑌(𝑚)) = (2𝑘 + 1)𝑙√2𝜋
(2𝑙)!

𝑙!𝑙!4𝑙.  

→
E(𝐿2,1(𝑀𝑇))

E(𝐿2,1(𝑀))
=

1

𝜋(𝑘+
1

2
)

(2𝑘)‼(2𝑙)‼

(2𝑘−1)‼(2𝑙−1)‼
≤

1

𝜋(𝑘+
1

2
)

(
(2𝑘)‼

(2𝑘−1)‼
)

2

=
𝑘

𝑘+
1

2

(1+
1

12𝑘
)4

(1+
1

24𝑘
)2

< 1.    
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The second inequality can be derived by the same procedure in scenario 2.  

Hence E(𝐿2,1(𝑀𝑇)) < E(𝐿2,1(𝑀)). 

Scenario 4: 𝑚 = 2𝑙 + 1 < 𝑛 = 2𝑘 + 1, 𝑙 < 𝑘 

 E(𝐿2,1(𝑀𝑇)) = 𝑚E(𝑌(𝑛)) = (2𝑙 + 1)√
2

𝜋

𝑘!𝑘!4𝑘

(2𝑘)!
  

E(𝐿2,1(𝑀)) = 𝑛E(𝑌(𝑚)) = (2𝑘 + 1)√
2

𝜋

𝑙!𝑙!4𝑙

(2𝑙)!
. 

 →
E(𝐿2,1(𝑀𝑇))

E(𝐿2,1(𝑀))
=

(2𝑙+1)‼(2𝑘)‼

(2𝑘+1)‼(2𝑙)‼
=

2𝑘(2𝑘−2)…(2𝑙+2)

(2𝑘+1)(2𝑘−1)…(2𝑙+3)
< 1.  

Hence E(𝐿2,1(𝑀𝑇)) < E(𝐿2,1(𝑀)). 

In summary, E(𝐿2,1(𝑀𝑇)) < E(𝐿2,1(𝑀)) when 𝑚 < 𝑛. It can be easily observed 

that the ratio between E(𝐿2,1(𝑀𝑇)) and E(𝐿2,1(𝑀)) increases with 𝑙 and decreasing with 

(𝑚 − 𝑛) in all four scenarios. 

To validate the theoretical results, we conducted numerical experiments to evaluate 

the inequality of L2,1 norms between the two. In this experiment, we randomly created 

matrix  𝑀  with 𝑚  rows and 𝑛  columns, where 𝑛 = 𝑚 + 𝑑 . We conducted repeated 

experiments for each row number 𝑚 and difference number 𝑑 ranging from 1 to 25 under 

four distribution assumptions: uniform between 0 and 1, exponential with parameter 1, and 

normal distributions with non-zero and zero means.  

Then the ratio 𝐷(𝑚, 𝑑) =
E(𝐿2,1(𝑀𝑇))

E(𝐿2,1(𝑀))
 is calculated and shown is the figure below. 

As the figure shows, the ratio decreases with 𝑑 but increases with 𝑚 under all the four 

distribution assumptions, which is consistent with our theoretical analysis. Also we can 
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observe that the uncertainty level of one subassembly is around 70% of that of the other 

when 𝑚 and 𝑑 are comparative (i.e., around the yellow zone in the figure below). Now we 

can state the findings in the lemma below. 

  

(a) Uniform distribution                                       (b) Exponential distribution 

 

(c) Normal distribution with non-zero mean        (d) Normal distribution with zero mean 

Figure 5.5. Ratio of norms vs. row number and dimension difference 

Lemma: Given a product demand standard deviation matrix 𝑀  of size 𝑚 × 𝑛 , 

where 𝑀𝑖,𝑗 =  σ𝑖,𝑗 = 𝜎|z𝑖,𝑗| and z𝑖,𝑗 follows i.i.d. standard normal distribution, L2,1(𝑀𝑇)< 
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L2,1(𝑀) when 𝑚 < 𝑛. Please note that all the inequalities mean probabilistic inequalities. 

We will directly use the inequalities in the study below. 

L2,1(𝑀𝑇 ) represents the uncertainty level of the inventory of the intermediate 

product when only the process with 𝑚 variants is completed. L2,1(𝑀) similarly represents 

the uncertainty level of the inventory of the intermediate product when only the process 

with 𝑛  variants is completed. The lemma indicates that the intermediate products with 

fewer variants will have less uncertainty. Up to this point we have only considered 

products with two points of variation. In general, industry products are much more 

complicated than the example products. Hence we need to generalize the lemma to make it 

applicable to general products.   

5.2.3. Generalization 

Now we can extend the discussion to a more general case, in which we have 𝑁 processes 

and process 𝑗  has 𝑣𝑗 number of variants. Therefore 𝑀  is a matrix with 𝑁  dimensions. 

Define L2,1(𝑀, 𝑘) =  ∑ √∑ 𝑀𝑘𝑖
2

𝑖𝑘 , where 𝑖 represents the other dimensions except for 𝑘. 

Then L2,1(𝑀, 𝑘) can represent the uncertainty level of the inventory of the intermediate 

product when only process 𝑘 is finished. Please note that 𝑘 can be a dimension with any 

length, so is its complementary dimension 𝑖. 

The lemma hence can be recast as: given a standard deviation matrix 𝑀  of 𝑁 

dimensions, whose elements follow an i.i.d. normal distribution, L2,1(𝑀, 𝑖)< L2,1(𝑀, 𝑗) 

when 𝑣𝑖 < 𝑣𝑗 , where 𝑣𝑖 is the size of dimension 𝑖 (the number of variants of process 𝑖).  
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Theorem 1: L2,1(𝑀, 𝑘) < L2,1(𝑀, 𝑙) if 𝑣𝑘 < 𝑣𝑙 , given a standard deviation matrix 𝑀, 

which is an 𝑁 dimensional matrix with each element following i.i.d. normal distribution. 

Proof: L2,1(𝑀, 𝑘) =  ∑ √∑ 𝑀𝑘𝑖
2

𝑖𝑘  where ∑ 𝑀𝑘𝑖
2

𝑖 = ∑ ∑ 𝑀𝑘𝑙𝑗
2

𝑗𝑙 , where 𝑗 represents the other 

elements except for 𝑘  and 𝑙 . Similarly, L2,1( 𝑀 ,  𝑙 ) =  ∑ √∑ 𝑀𝑙𝑖
2

𝑖𝑙 , where ∑ 𝑀𝑙𝑖
2

𝑖 =

∑ ∑ 𝑀𝑘𝑙𝑗
2

𝑗𝑙 . Denote ∑ 𝑀𝑘𝑙𝑗
2

𝑗  as 𝑚𝑘𝑙 . Then L2,1( 𝑀 ,  𝑘 )=  ∑ √∑ 𝑚𝑘𝑙
2

𝑙𝑘  < 

L2,1(𝑀, 𝑙)= ∑ √∑ 𝑚𝑘𝑙
2

𝑘𝑙 , following directly from the lemma.  

A graphical explanation is shown in Figures 5.6 and 5.7 where L2,1 norm is 

applied along dimension 1. Blocks in the figures represent product variation and the 

vectors represent the dimensions. Given a dimension along which to apply L2,1 norm, the 

L2,1 norm will sum the L2 norm of the matrix perpendicular to the assigned dimension (in 

orange). In a 2D matrix, the perpendicular matrix is a vector while in a 3D matrix the 

perpendicular matrix is a 2D matrix as shown in Figures 5.6 and 5.7. 

 

Figure 5.6. Graphical illustration of 2D L2,1 norm 
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Figure 5.7. Graphical illustration of 3D L2,1 norm 

The theorem indicates that the uncertainty level of a subassembly is positively 

correlated to the number of variants of that subassembly. Since safety inventory is linearly 

proportional to uncertainty level, the number of variants of a subassembly is a good 

reflection of its safety inventory. If we can further find a linear indicator of the uncertainty 

level, that indicator will well serve as a measure of safety inventory. 

5.2.4 Measure of Uncertainty due to Variety 

The uncertainty level of a subassembly with processes 𝑘  completed is denoted as 

𝐿2,1(𝑀, 𝑘) =  ∑ √∑ 𝑀𝑘𝑖
2

𝑖𝑘 . Denote 𝑌(𝑡) = √∑ z𝑖
2

𝑖 , hence E(𝐿2,1(𝑀, 𝑘)) = 𝜎̅𝑣𝑘E(𝑌(𝑣𝑖)), 

where 𝑣𝑘𝑣𝑖 = 𝑉 , and 𝑉  is the total number of variants of the final product. Applying 

asymptotic approximation 𝐥𝐢𝐦𝒕→∞

Γ(𝑡+
1

2
)

Γ(𝑡)√𝑡
= 1  to E(𝑌(𝑡)) = √2

Γ(
𝑡+1

2
)

Γ(
𝑡

2
)

, we have 

E(𝐿2,1(𝑀, 𝑘))~𝜎̅𝑣𝑘√2𝑣𝑖 = 𝜎̅√2𝑉√𝑣𝑘 . Hence √𝑣𝑘  is a linear measure of the safety 

inventory level of subassembly with processes 𝑘 finshed. 
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Theorem 2: E(𝐿2,1(𝑀, 𝑘))~𝜎̅√2𝑉√𝑣𝑘, given a standard deviation matrix 𝑀, which is an 

𝑁  dimensional matrix with each element following i.i.d. normal distribution and 𝑉 =

∏ 𝑣𝑖
𝑁
𝑖=1 . 

In summary, this section proves that the number of variants of a subassembly is 

positively correlated to its safety inventory level. In addition, the square root of its number 

of variants can serve as a linear measure of the safety inventory level. Now we can apply 

the results to two problems we discussed in the beginning of this section, i.e., process 

sequencing and assembly decomposition problems. 

5.3 Process Sequencing Optimization 

Consider a product requiring 𝑁 processes, where process 𝑘 has 𝑣𝑘  variants. There are in 

total ∏ 𝑣𝑖
𝑁
𝑖=1  final products. Each product can be denoted in an array (𝑎1, 𝑎2, … , 𝑎𝑁) , 

where 𝑎𝑖 represents the variant of process 𝑖, i.e., 1 ≤ 𝑎𝑖 ≤ 𝑣𝑖. Define a function 𝑓: ℕ𝑁 → ℕ 

that can transform the array into a unique number 𝑗 ∈ [1, ∏ 𝑣𝑖
𝑁
𝑖=1 ]. The distribution of 

product variant (𝑎1, 𝑎2, … , 𝑎𝑁) , is denoted as normal distribution (𝜇𝑗, σ𝑗)  where 𝑗 =

𝑓(𝑎1, 𝑎2, … , 𝑎𝑁) . Define 𝑀  as the standard deviation matrix, 𝑀 ∈ ℝ𝑁  and 

𝑀(𝑎1, 𝑎2, … , 𝑎𝑁) = σ𝑗, where 𝑗 = 𝑓(𝑎1, 𝑎2, … , 𝑎𝑁). 

Starting from the raw materials or base products, a buffer or inventory will be held 

for the processed products right after each process. Excluding the final product, there will 

be 𝑁 − 1  intermediate products. A sequence can be denoted as a string of processes 

(𝑃1, 𝑃2, … , 𝑃𝑘 … , 𝑃𝑁) , which is a permutation of the processes 1 to 𝑁 . For example, 

(𝑃1 = 1, 𝑃2 = 2, … , 𝑃𝑘 = 𝑘, … , 𝑃𝑁 = 𝑁)  represents an ordered sequence to execute the 
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processes from process 1 to 𝑁. The safety inventory for the intermediate product at step 𝑖 

can thus be represented with 𝑧𝐿2,1(𝑀, 𝑠𝑖), where 𝑠𝑖 is the array of the subscript until step 𝑖. 

Our objective is to identify a strategy to design the process sequence so as to minimize the 

total inventory of all the intermediate products. Since inventory levels of subassemblies are 

determined by their safety inventories, we can simplify our objective as minimizing the 

total safety inventory of the all the intermediate products.   

For the purpose of illustration, we assume that there are no precedence constraints 

between the processes. We will prove that the optimal strategy is to delay the processes 

with the largest number of variants as late as possible so that the number of variants is non-

increasing from stage 1 to stage 𝑁 , i.e., (𝑣𝑃1
, 𝑣𝑃2

, … , 𝑣𝑃𝑘
, … , 𝑣𝑃𝑁

)  is a non-increasing 

sequence.  

We will derive a corollary to prove our hypothesis.  

Corollary: L2,1(𝑀, (𝑠, 𝑘))< L2,1(𝑀, (𝑠, 𝑙)) if 𝑣𝑘 < 𝑣𝑙. 

The corollary follows directly from Theorem 1 by expanding the dimensions.  

Given a sequence (𝑃1
∗, 𝑃2

∗, … , 𝑃𝑗−1
∗ , 𝑃𝑗

∗) with a non-decreasing sequence in terms of the 

number of variants, we will prove that swapping any two positions with different variants 

will increase the total safety inventory level. There are two scenarios when swapping two 

positions. If we swap two positions next to each other, 𝑃𝑗
∗ and 𝑃𝑗+1

∗ , i.e., the new sequence 

is (𝑃1
∗, 𝑃2

∗, … , 𝑃𝑗−1
∗ ,  𝑃𝑗+1

∗ , 𝑃𝑗
∗, … , 𝑃𝑁

∗ ). Then the inventory levels except stage 𝑗 remain the 

same. In the original sequence, the safety inventory at stage 𝑗  is 

𝑧𝐿2,1(𝑀, (𝑃1
∗, 𝑃2

∗, … , 𝑃𝑗−1
∗ , 𝑃𝑗

∗)) , while the second has safety inventory at stage 𝑗  of 

𝑧𝐿2,1(𝑀, (𝑃1
∗, 𝑃2

∗, … , 𝑃𝑗−1
∗ , 𝑃𝑗+1

∗ )) . Define s= (𝑃1
∗, 𝑃2

∗, … , 𝑃𝑗−1
∗ ) , 𝑘 =  𝑃𝑗

∗ , 𝑙 =  𝑃𝑗+1
∗ , since 
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𝑣𝑃𝑗
∗ < 𝑣𝑃𝑗+1

∗ , by the corollary, 𝐿2,1(𝑀 , ( 𝑠, 𝑘)) < 𝐿2,1(𝑀 , ( 𝑠, 𝑙)) . Swapping the two 

positions increases the total inventory level. In the second scenario, we swap two positions 

𝑃𝑖
∗ and 𝑃𝑗

∗ at least one position far away from each other, where 𝑗 > 𝑖 + 1 and𝑣𝑃𝑖
∗ < 𝑣𝑃𝑗

∗. 

Similarly, only the inventory levels between stage 𝑖 and 𝑗 − 1 change. By applying the 

corollary 𝑗 − 𝑖 − 1 times, we can show that the inventory at each stage between the two 

swapping stages increases. In summary, swapping two positons so that the one with 

smaller number of variants is swapped to a later stage will increase the total inventory level. 

By induction, we can show that the optimal strategy is to create a sequence with 

non-decreasing number of variants to minimize the total safety inventory level. We call 

this strategy prioritized differentiation, i.e., prioritize the sequence by its number of 

variants.         

Based on the theorem on the two-process case, we develop a guideline to optimize 

process sequences, which is to delay the processes with the large number of variants as late 

as possible. This is a generalized study with the focus on safety inventory level. We can 

regard delayed differentiation as a special case of our study. Please note that the process 

referred to in this dissertation is a general concept. It might be a collection of processes in 

facilities. In that case, the inventory is the one between facilities. The results provide 

practitioners and researchers a general guideline. In addition, the impact of the sequencing 

will be more exaggerating as the processes are becoming more and more complex as 

illustrated in the discussion above. Readers do not have to limit our work to make-to-stock 

scenarios, although safety inventory is a concept mainly for make-to-stock strategies. 

However, in make-to-order scenarios, we may find other areas that still have risk pooling 
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opportunities such as the uncertainties in orders. Combined with powerful database and 

other techniques, the results may find more applications in real industrial settings. 

5.4 Assembly Decomposition Optimization 

This section will focus on the assembly decomposition so as to minimize the total 

inventory. Since we have a measure to represent the safety inventory level at each stage, it 

will be equivalent to minimizing the total number of variants at each stage. The idea is 

similar to Process Sequence Graph (PSG) in [61], in which they minimized the total 

number of nodes in PSG. They claimed that “our work at HP is currently attempting to 

quantify how the reduction in nodes might actually affect cost”. Another limitation of this 

work is that the algorithm proposed can only handle serial sequence planning while 

nowadays parallel planning is common. The DP approach to the integrated optimization of 

assembly plans and supply chain configurations [73] can be adjusted for the optimization 

in this chapter. A formal problem statement and algorithm description will be given below. 

For simplicity, this part will only consider assembly decomposition incurred variety. 

Assume the manufacture of assembly product ( , )P C L , with N  components and 

K  assembly processes, where C  is the set of product components ( 1 2{ , , }Nc c cC ) and 

L  is the set of assembly processes ( 1 2{ , , }Kl l lL  ).  

Then, the AOG ( , )H V A  for product P  is as follows: 

{ | }iv i 
v

V I , where iv  represents a subassembly. The number of vertices in H  is | |
v

I . 

Define | |M N 
v

I . The number of CVs in H  is M ; then the total number of vertices in 
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H  is M N . We label vertices from lower to higher levels in the ascending order using 

function ( )leb v  so that i j  if the level of iv  is higher than that of jv . Hence, the SVs 

are labeled from 1 to N  and the CVs from 1N   to M N . 

{ | }i i 
a

A a I , where ( )i i i

i p l rv ,v ,va . Define function ( )fapi i  as the total number of 

variants of assembling 
i

lv  and 
i

rv  into 
i

pv .  

Our objective is to choose the assembly plan out of the feasible plans to minimize 

the total measure. 

5.4.1 Optimization Algorithm 

The objective is  
,

min( ( | ))M N
q

tn v 
a

a  

Subject to  

M Na A  and lqQ , in which ( )l fapi a  

A summary of the DP algorithm is provided below. 

State: ( , )i k , where i ( 1N i N M    ) is the index of CV 
iv ; k ( ik d ) is the AND 

relation index of vertex 
iv ;  

Value Function: ( , )V i k  is defined as the total measure of CV 
iv  given the assembly 

method k . 

Functional Equation: 

1 2

1 1 2 2
;

, , )( , ) min( ( ) ( ( , ))
k k

V i k V i k V i k tn i k   , where 
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1 ( (2))ii leb a ,
11 ik d ,

11 1( ( ))il fapi k b ; 

2 ( (3))ii leb a ,
22 ik d ,

22 2( ( ))il fapi k b ; 

ik d , ( ( ))il fapi k b . 

Boundary Condition: ( , ) ( )V i k tn i , 1k  , isS  when i N . 

The optimal measure is min ( , )
k

V V M N k  . 

5.4.2 Computational Complexity 

This section discusses the theoretical and practical computational complexities of the 

solution algorithm. A similar analysis appears in Chapter 3. An upper bound for the 

computational complexity for this algorithm is 2( )O MD , where M is the number of CVs 

in the HAG, D  represents the maximum value for the numbers of feasible options to build 

a subassembly,. In common products, 2( )M O N  and ( )D O N , where N is the number 

of the components constituting the product. Hence the computational complexity of the DP 

algorithm for practical products is 4( )O N .  

5.5 Case Study 

We use Boujault's pen assembly in Chapter 3 as an example to illustrate the product supply 

chain optimization problem. The AND/OR graph of the example pen is shown in Chapter 3. 

All the six feasible assembly plans are listed in Figure 5.8 below.  
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Figure 5.8. Six assembly plans of the pen 

To satisfy the needs from customers, the company provides a wide selection of 

features of the pen. There are 3 choices of head (B: 0.2mm, 0.3mm, and 0.5mm), 6 colors 

of body (A: black, white, red, yellow, green, and blue), 3 colors of ink (D: red, black, and 

blue), and 3 types of caps (F: wooden, plastics, and metal). The total measures of each plan 

are respectively 10.0, 13.5, 14.4, 18.2, 17.3, and 18.2. The optimal assembly plan in this 

case is plan 1. This is because that it delays the processes A and F until a later stage 

comparing with other plans. Due to the assembly constraints, the last subassembly must be 

from ABCDF or ABCDE. According to our prioritization strategy, it is wise to delay F, 

hence ABCDE is chosen as the last subassembly, i.e., plan 4, 5, and 6 are ruled out. The 

number of variants of ABCDE is 54, which could be assembled through ABCD (54) and E 

(1) or AE (6) and BCD (9). Obviously decomposing ABCDE into two balanced 
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subassemblies will help reduce the uncertainty level. In addition to the height-balance 

introduced in Chapter 4, the degree of balance of sub-assemblies of a product family 

reflects the difference between the varieties of their branches. A balanced sub-assembly 

tends to have two branches with similar numbers of varieties. Hence assembly plan 1 is the 

optimal one. The example shows us how the algorithm could be utilized to optimize the 

assembly plans so that inventory is minimized. It also provides practitioners with strategies 

and insights into to assembly supply chain designs.  

 

Figure 5.9. Uncertainty level vs. variety measure with a sample size of 20 

In the figure above, the uncertainty level of all the samples from a Monte Carlos 

simulation are plotted in blue circles and the average of all the 20 experiments are plotted 

in red dots. The average inventory level for all the six assembly supply chains is around 

240 while the lowest is less than 180. A careful design of assembly supply chains can help 

achieve a 25% reduction compared to an average case if not the worst one. 
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5.6 Summary 

This chapter studied the impact of assembly sequence on safety inventory when customer 

demand is unknown and the product variety is high. Assuming the variation matrix follows 

normal distributions, we showed the structural difference lying in the assembly supply 

chain designs. We proposed a measure to reflect the efficiency of the assembly supply 

chain. Unlike other measures, which have limited connection with real indices, such as 

average production cost and lead time, the relation between the proposed measure and 

safety inventory was presented explicitly. The theorem generalized the delayed 

differentiation strategy to all products regardless of the commonality shared throughout the 

product family, which we call prioritized differentiation. A DP based algorithm was 

provided to search for the optimal assembly plans with the lowest inventory. A comparison 

between the proposed measure and the average inventory was conducted using Monte 

Carlo simulation. The numerical results confirmed the theorem, i.e., the measure and total 

safety inventory are positively correlated. The case studies illustrated the strategies of 

periodization and balancing.  

Through this study, we provided a fundamental investigation on product family 

assembly supply chain designs under uncertainty and high variety. The measure of the 

impact of the product variety on uncertainty related costs gives practitioners a concrete 

idea in the design practices. They may use the measure to approximate the uncertainty 

related costs such as tooling costs of machines, inventory costs in warehouses, and 

ergonomic concerns in assembly lines. Based on such quantitative approximation, they 

may further make decisions on how to arrange the sequences of manufacturing processes 
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or supply chains. Our study provides a fundamental understanding of the impact of 

assembly planning on supply chains. The benefits of the generalized delayed 

differentiation, or prioritized differentiation, in inventory reduction are also shown in this 

chapter. A potential of 30~ 40% reduction of uncertainty in an assembly supply chain is 

shown through the numerical studies. In combination with other considerations such as 

quality control and lead time management, more useful guidelines can be generated.  
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CHAPTER 6  

Conclusions and Future Work 

This chapter summarizes the contributions of this dissertation and discusses directions of 

future work. 

6.1 Conclusions and Contributions 

This dissertation presents the original research work on integrated assembly plan and 

supply chain designs ranging from models, algorithms, to strategies under two scenarios: 

single product and product family. The contributions are summarized below. 

 A novel model has been established to integrate assembly plans with supply chain 

configurations by grouping the assembly nodes into the Hyper AND/OR graph 

(HAG). HAG is shown to be an efficient model to represent the supply chain 

information and assembly constraints. HAG may find various applications where 

nonlinear constraints are interwoven with network information.  

 A bottom-up DP algorithm with polynomial time complexity has been developed to 

search for the global optimal assembly plan and supply chain configuration with 

the lowest total cost. The revised DP algorithm can solve the problem with a lead 

time constraint by introducing an extra state variable - lead time level. The 

computational complexity of the algorithm for the time constrained problem is 
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pseudo-polynomial. Comparing with enumerative or heuristic algorithms, our 

method exhibits the advantages of structural searches. 

 The case studies for single products illustrated the applications of our method and 

the insights designers may learn out of the results. Through better understanding of 

the interdependence between suppliers and assembly plans, concurrent decisions 

can be made to shorten the product development lead time and to lower the total 

supply chain cost. Numerical results showed that optimal designs yield a 20% 

reduction of cost and 10 % reduction in lead time in the given case study. The 

results also explained the merits of industrial clustering and branch balancing 

strategies. The method to coordinate the assembly planning and supply chain 

design enables the responsive adaptation of assembly and supply chain systems 

when companies face supply and/or technical changes. 

 The impact of variety on inventory was quantified and a useful measure was 

proposed for the design of assembly supply chains considering demand uncertainty. 

This measure allows assembly planning and supply chain practitioners to build a 

quantitative sense on variety incurred inventory. Such a sense will benefit 

practitioners from various perspectives ranging from inventory control, work shop 

scheduling, to ergonomics.  

 A generalized “delayed differentiation” (DD) strategy suggested, which is called 

prioritized differentiation (PD) in this dissertation. This PD strategy suggests 

delaying the processes or subassemblies with more variants to later stages when 

multiple options of variation exist. The significance of the PD strategy lies in the 
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fact that it assumes no commonality through the product family as DD does, which 

makes its scope of applications much wider in nowadays’ manufacturing industry.  

 A synthesis of models, algorithms, and strategies under single product and product 

family scenarios provides researchers and industrial participants a systematic 

understanding of the interaction between assembly plans and supply chains 

configurations.   

6.2 Future Work 

The future directions are discussed in the previous chapters. A quick summary of the 

potential future work is listed below. 

 Apply hyper AND/OR graph to different problems. As discussed in Chapter 2, 

HAG provides a good platform to represent nonlinear constraints and resource 

availability. It has good potential to be applied to different environments, such as 

logistics optimization and in-facility routing optimization. 

 Explore the possibility of modeling the integrated design problem as a shortest path 

problem (SPP) through utilizing state diagrams as discussed in Chapter 2. By 

modeling the problem as an SPP, all the existing SPP algorithms may be applied to 

improve the efficiency.  

 Improve the efficiency of the algorithm developed for the time constraint 

optimization problem in Chapter 4 through applying a tighter bound. As explained 

in Chapter 4, the developed algorithm relaxed the time bounds to the upper bound, 

which left much space for further optimization.    
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 Consider the correlations between the products in a family, which is not uncommon 

in industries. Taking the customized pen as an example, customers tend to match 

the color of the ink with that of the cap so that they can make an easy recognition. 

Under such circumstance, the variety of certain products may not have as much 

impact on their inventory as the others. How the strategy should be adjusted to 

certain conditions requires further investigation.  
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