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ABSTRACT

An Online Actor Critic Algorithm and a Statistical Decision Procedure for
Personalizing Intervention

by

Huitian Lei

Chair: Professor Susan A. Murphy

Assistant Professor Ambuj Tewari

Increasing technological sophistication and widespread use of smartphones and wearable

devices provide opportunities for innovative health interventions. An Adaptive Interven-

tion (AI) personalizes the type, mode and dose of intervention based on users’ ongoing

performances and changing needs. A Just-In-Time Adaptive Intervention (JITAI) employs

the real-time data collection and communication capabilities that modern mobile devices

provide to adapt and deliver interventions in real-time. The lack of methodological guid-

ance in constructing data-based high quality JITAI remains a hurdle in advancing JITAI

research despite its increasing popularity. In the first part of the dissertation, we make a

first attempt to bridge this methodological gap by formulating the task of tailoring interven-

tions in real-time as a contextual bandit problem. Under the linear reward assumption, we

choose the reward function (the “critic”) parameterization separately from a lower dimen-

sional parameterization of stochastic JITAIs (the “actor”). We provide an online actor critic

algorithm that guides the construction and refinement of a JITAI. Asymptotic properties of

the actor critic algorithm, including consistency, asymptotic distribution and regret bound

of the optimal JITAI parameters are developed and tested by numerical experiments. We

also present numerical experiment to test performance of the algorithm when assumptions

x



in the contextual bandits are broken. In the second part of the dissertation, we propose

a statistical decision procedure that identifies whether a patient characteristic is useful for

AI. We define a discrete-valued characteristic as useful in adaptive intervention if for some

values of the characteristic, there is sufficient evidence to recommend a particular inter-

vention, while for other values of the characteristic, either there is sufficient evidence to

recommend a different intervention, or there is insufficient evidence to recommend a par-

ticular intervention.
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CHAPTER 1

Introduction

Advanced technology in smartphones and mobile devices provide a great platform to de-
liver Just-In-Time Adaptive Interventions (JITAI). Adaptive intervention tailors the type,
dosage or modality of the intervention according to patients’ characteristics. JITAI is a
real-time version of AI. [58] provides a definition for JITAI: ”JITAIs are interventions that

are delivered in real-time, and are adapted to address the immediate and changing needs

of individuals as they go about their daily lives.” Based on real-time information collected
on the mobile devices, JITAI personalizes, in real-time, the type, mode and dose of inter-
vention based on users’ ongoing performances and changing needs and delivers the inter-
vention on mobile devices. The real-time adaptation and delivery makes JITAI particular
promising in facilitating behavioral change. Indeed JITAIs have received increasing popu-
larity and have been used to support health behavior change in a variety of domain includ-
ing physical activity [37, 19], eating disorder [4], drug abuse [72], alcohol use [89, 76, 31]
smoking cessation [68], obesity/weight management [60] and other chronic disorders.

Despite the growing popularity of JITAI, there is a lack of guidance on constructing
high-quality evidence-based JITAI. In fact, most of the JITAIs used in existing clinical tri-
als are solely based on domain expertise. The major contribution of this dissertation is that
we make a first step to bridge the gap between the enthusiasm to deliver intervention on
mobile devices and the lack of statistical tools to guide the building to high-quality JITAI.
To achieve our goal, we first propose a general framework for constructing high quality
JITAI. We model the decision making problem, choosing (the dosage/type of) an interven-
tion based on information collected on the mobile device, as a contextual bandit problem
[43, 50]. Contextual bandit problem is a special type of sequential decision making prob-
lem where the decision maker (i) chooses an action at each round based on the context or
side information and (ii) receives an reward/feedback that reflects the quality of the action
under the context. Bandit problems have been widely applied in clinical trials, economics
and portfolio designs and have recently found applications in mobile health [65]. We pro-
vide a brief review on multi-armed bandits and contextual bandits in section 1.2. We define
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the optimal JITAI as the JITAI that maximizes the average reward subject to a stochastic-
ity constraint. We propose an online actor critic algorithm for learning the optimal JITAI.
Compared to offline learning, in online learning the data comes in in a sequential fashion
and the estimated optimal JITAI gets updated at each decision point and will be used to
choose an intervention at the next decision point. In the actor critic algorithm, the critic
estimates the reward model; actor then updates its estimate to the optimal JITAI based on
the estimated reward model. We derive asymptotic theory on the consistency and asymp-
totic normality of the estimated optimal JITAI. Asymptotic distribution of the estimated
optimal JITAI can be used to construct statistical hypothesis test on whether a component
of context is useful for tailoring intervention.

Often, the i.i.d. assumption in contextual bandits is fragile. Contexts may not be i.i.d.
but are instead influenced by the context or the intervention at previous decision points. We
conduct simulation studies to test the performance of the contextual bandit actor critic algo-
rithm under a variety of simulation settings. Results from the experiments where contexts
are i.i.d. are consistent with the asymptotic theory: bias in estimating optimal JITAI de-
creases to 0 as sample size increases. Results from the experiments where contexts follow
a first degree auto-regressive process show that the bandit actor critic algorithm is robust
to the dependency between contexts at different decision points. We also create simula-
tion settings where the context is influenced by previous actions–in one setting through a
learning effect and in the other setting through a burden effect. In both settings, we observe
robustness of the algorithm when the effect of previous actions are small.

A minor contribution of the dissertation is that we introduce a statistical decision pro-
cedure for personalizing intervention. The decision procedure is used to decide whether a
binary-valued patient characteristic is useful for personalizing decision making. We define
a characteristic to be useful if at one level of the characteristic there is sufficient evidence
to recommend a particular intervention while at the other level either there is sufficient
evidence to recommend another intervention (qualitative interaction) or there is insuffi-
cient evidence to recommend a particular intervention (generalized qualitative interaction).
The new definition is a generalization of the qualitative interaction [28] and recognizes the
increased utility when patients are provided with freedom to choose an intervention. We
propose a two stage multiple decision procedure that decides whether the evidence suggests
a qualitative interaction, and if not, whether there is a generalized qualitative interaction.

This dissertation is organized as follows. In Chapter 2, we introduce the formation of
the problem as a contextual bandit problem. Because of the nature of the our target appli-
cation, we study a parametrized class of policies unlike most contextual bandit algorithms,
which either maintain a finite class of policies or do not maintain a class of policies. By
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adding a stochasticity constraint, our definition of optimality is different from the one used
in existing literature. We present an actor critic contextual bandit algorithm for linear ex-
pected reward. We derive asymptotic theory on the consistency and asymptotic normality
of the optimal JITAI. In Chapter 3, we present a comprehensive simulation study to inves-
tigate the performance of the actor critic algorithm under various generative models. In
Chapter 4, we propose a multiple decision procedure for personalizing intervention.

1.1 A Review on Adaptive Intervention and Just-in-time
Adaptive Intervention

Adaptive interventions are interventions in which the type or the dosage of the interven-
tion offered to patients is individualized on the basis of patients characteristics or clinical
presentation and can be repeatedly adjusted over time in response to their ongoing per-
formance (see, for example, [10, 54]). This approach is based on the notion that patients
differ in their responses to interventions: In order for an intervention to be most effective,
it should be individualized and repeatedly adapted over time to individual progress. An
adaptive intervention is a multi-stage process that can be operationalized via a sequence of
decision rules that recommend when and how the intervention should be modified in order
to maximize long-term primary outcomes. These recommendations are based not only on
patients’ characteristics but also on intermediate outcomes collected during the interven-
tion, such as the patient?s response and adherence. Adaptive interventions are also known
as dynamic treatment regimes [57, 70], adaptive treatment strategies [44, 56], multi-stage
treatment strategies [80, 81] and treatment policies [52, 86, 87].

An adaptive intervention consists of four key elements. The first element is a sequence
of critical decisions in a patient care. Critical decisions might concern which intervention
to provide first and, if the initial intervention is unsuccessful, which intervention to pro-
vide second. In many settings, the risk of relapse or exacerbations is high; thus, critical
decisions must be made even after an acute response has been achieved. These decisions
may concern which maintenance intervention should be offered and whether and how signs
of impending relapse should be monitored [55]. The second element is a set of possible
intervention options at each critical decision point. Possible intervention options include
different types of behavioral and pharmacological interventions, different modes of deliv-
ery, different combinations of interventions, different approaches to enhance engagement
and adherence to the intervention, and different intervention timelines. The third element
is a set of tailoring variables that is used to pinpoint when the intervention should be al-
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tered and to identify which intervention option is best for whom. These variables usually
include information that is useful in detecting early signs that the intervention is insuffi-
ciently effective (e.g., early signs of nonresponse to intervention, adherence, side effects,
and burden), but it can also include contextual information (e.g., individual, family, so-
cial, and environmental characteristics) as well as information concerning the intervention
options already received. The logic is that the best intervention option for patients varies
according to different values of the tailoring variables. The fourth ingredient is a sequence
of decision rules, one rule per critical decision. The decision rule links individuals? char-
acteristics and ongoing performance with specific intervention options. The aim of these
decision rules is to guide practitioners in deciding which intervention options to use at each
stage of the adaptive intervention based on available information relating to the character-
istics and/or ongoing performance of the patient. Each decision rule inputs the tailoring
variables and outputs one or more recommended intervention options [18, 44, 45, 46]

A Just-In-Time Adaptive Intervention (JITAI) is an adaptive intervention designed to
address the dynamically changing needs/behavior of patients in real-time. Compared to AI,
a JITAI is more flexible in terms of the timing and location of the adaptation and delivery of
intervention. While an AI usually consists of no more than 10 total decision points, the total
number of decision points in a JITAI may range from 100 to 1000. While the adaptation
and delivery of AI usually take place at a doctor’s appointment, JITAI adapts and assigns
interventions as users go about their daily life. JITAI consists of all four key elements
mentioned in the last paragraph. For more details regarding an organizing framework for
guiding the construction of JITAIs, refer to [58].

• Decision points The total number of decision points in a JITAI can be much larger.
In addition, decision points in a JITAI may be selected by the scientists or specified
by the user. Scientists may choose decision points at fixed time points of the day,
any time when the user is at high risk of falling back to his/her unhealthy behavior.
In addition, the user may request help/intervention and thus select a decision point at
his/her own need.

• Tailoring variables Tailoring variables in a JITAI are obtained via active sensing and
passive sensing. Active sensing is reported by the user through a questionnaire. It can
be initiated by the user, or by the mobile devices. While Active sensing requires user
engagement, passive sensing, on the contrary, uses advanced technology to assess
user’s environmental and social context while requiring minimal or no engagement
from the user. Examples of passive sensing include GPS and accelerometers. The
former is used to measure the user’s geographical location and the latter is used to
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measure the user’s physical activity level.

• Intervention options While intervention options in AI is usually designed to tar-
get long-term health outcomes, intervention options in a JITAI is usually short in
their duration and are targeted for behavioral change in a the moment as opposed to
longer term outcome. Examples of intervention options in JITAI include encourag-
ing messages and recommendations that target behavioral changes in a short duration
followed the intervention.

• decision rules Similar to AI, a JITAI utilizes a sequence of decision rules, or policies,
that inputs tailoring variables and outputs an intervention option.

As a concrete example, [38] have recently designed a mobile intervention, called Heart-
Steps, seeking to reduce users’ sedentary behavior and increase physical activity such as
walking and running. Installed on Android smartphones, this application is paired with
Jawbone wristband to monitor users’ activity data such as the total step counts everyday as
well as the distribution of steps count across different location and time of the day. Heart-
steps can also access users’ current location, weather conditions, time of the day and day
of the week. Heartsteps contains two intervention components: daily activity planning
and suggestion for physical activity. When a user receives a suggestion for physical activ-
ity, s/he can respond by pressing the “thumbs-up” or “thumbs-down” buttons to indicate
whether or not s/he liked the suggestion. The user also has an option to “snooze” which
indicates that s/he does not want to receive any suggestions following the next 2, 4, 8, 12
hours. Decision points for Heartsteps can be anytime during the day when the smartphone
is turned on with internet access. Potential tailoring variables include weather, user’s ac-
tivity level during the past day/week, the frequency that a user thumbs up or thumbs down,
etc. Intervention options, as described, include daily activity planning and suggestion for
physical activity. A policy utilizes tailoring variables to recommend appropriate interven-
tions. An example policy is to suggest the user to walk outside for 10 minutes if the weather
is sunny; otherwise suggest to user to stand up and stretch for 10 minutes.

1.2 A Review on Bandit and Contextual Bandit Algorithm

The seminal paper by Robbins [69] set the stage for an important class of sequential de-
cision making problem, now widely known as multi-arm bandit problems. A multi-armed
bandit problem is a sequential decision making problem defined by a set of actions. At
each decision point, the decision maker chooses an action and observe a reward, a feed-
back for the action s/he has taken, before the next decision point. S/he does not get to
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observed feedbacks associated with other actions; in other words, the feedback is partial.
The goal of the decision maker is to maximize the his/her cumulative rewards. The multi-
armed bandit problem is stochastic if the rewards for each action are distributed according
to fixed probability distribution depending on the action and nothing else. For a stochastic
multi-armed bandit problem, the quality of a decision making algorithm is measured by
the expected cumulative rewards, or equivalently the expected regret. Regret the difference
in cumulative rewards from between the algorithm and the optimality where one always
choose the action with the highest expected reward. Let K denote the number of arms and
Ri,t be the random reward from pulling arm i at decision point t. Use {It}Tt=1 to denote the
sequence of arms that the algorithm has taken up to time T. Expected regret is the difference
between the expected cumulative rewards had the decision maker always chosen the arm
with the highest expected reward and the expected cumulative reward under a particular the
algorithm:

regret =
T∑
t=1

max
i:1≤i≤k

E[Ri,t]− E
T∑
t=1

[RIt,t]

= T max
i:1≤i≤k

E[Ri,1]− E
T∑
t=1

[RIt,t]

The most fundamental issue in tackling a multi-armed bandit problem is dealing with
the exploration and exploitation tradeoff. Exploitation encourages pulling the seemingly
best arm while exploration encourages sampling in the uncharted territory to identify the
underlying best arm with high precision. Over exploitation and under exploration is associ-
ated with higher risk of being trapped at a sub-optimal arm, which inflates the regret. Under
exploitation and over exploration, on the other hand, also increases the regret by sampling
the sub-optimal arms with higher frequency than needed. A successful bandit algorithm is
usually designed to carefully balance exploration and exploitation.

Several genres of multi-armed bandit algorithm have been proposed. [43] followed by
[3] proposed the well-known Upper Confidence Bound (UCB) algorithm, for which they
have proved theoretical optimal bound for the regret. UCB algorithm, at each decision
point, chooses the arm with the highest upper confidence bound. Arms that have been sam-
pled with low frequency have wider confidence bound and may be selected even if they
don’t have the highest estimated mean reward. Another genre of algorithms is probabil-
ity matching, among which Thompson Sampling is the most popular algorithm. Using
Bayesian heuristics, the invention of Thompson sampling dated back to early 1930s [82].
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The idea underlying Thompson sampling has been rediscovered later, [91, 75]. The basic
idea is to impose a prior distribution on the underlying parameters of the reward distribu-
tion. The algorithm updates the posterior at each decision point and select arms according
to the posterior probability of being the best arm. See [13] for a comprehensive review on
multi-armed bandits.

However, traditional multi-armed bandit problem are too restrictive under many circum-
stances. Quite often, decision makers observe side information to assist decision making.
The side information may further influence the reward together with the choice of action.
A generalization to multi-armed bandit was first proposed by [90] where a covariate that
affects the rewards for each arm is introduced. This formulation is now widely known
as contextual bandit. In the literature, contextual bandits are also called bandits with co-
variate, bandits with side information, associative bandits, and associative reinforcement
learning. At decision point t, the decision maker observes a context St and takes an action
At accordingly. A reward Rt, depending on both the action and the side information, is
revealed before the next decision point. In contextual bandit problems, the regret is the
difference in expected cumulative reward from between an contextual bandit algorithm and
the optimality where one always chooses the best arm at a given context:

regret =
T∑
t=1

RA∗
t ,t
−

T∑
t=1

RIt,t

where It is the algorithm-chosen arm at decision point t and A∗t = argmaxE(R|S =

St, A = a) is the best arm, the arm with the highest expected reward given context St. Con-
textual bandits have many applications such as online advertising, personalized news article
recommendation. For example, the goal of online advertising is to display an appropriate
and interesting advertisement when users visit the website to maximize the click-through-
rate. The set of actions are the set of advertisement for display. Choice of the advertisement
should be based on contextual information including users’ previous browsing history, IP
address, and other relevant information available to the advertiser.

In the following we review two of the most popular contextual bandit algorithms, both
of which imposes a linear reward structure. That is, the expected reward E(R|S,A) is a
linear function of a context-action feature vector. [92, 67, 61] have work on contextual
bandit that ventures outside of the linear reward structure.

LinUCB LinUCB was introduced by [50] to extend the well known upper confidence
bound (UCB) algorithm for multi-arm bandit problems to contextual bandit problems. This
algorithm assumes that the expected reward is a linear function of some context-action
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feature f(S,A). The linear function depends on an unknown reward/weight parameter.
LinUCB estimates the reward parameter at each decision point and constructs confidence
interval for this parameter. When a context St is revealed, LinUCB calculates an upper
confidence bound for the expected reward E(R|St, A = a) for all possibilities of actions.
LinUCB then chooses the action that is associated with the highest upper confidence bound
for St. LinUCB uses a tuning parameter α to control the tradeoff between exploration and
exploitation: small values of α favor exploitation while larger values of α favor exploration.
[16] provides theoretical justification for a master algorithm SupLinUCB that calls LinUCB
as a subroutine: if SupLinUCB is run with α =

√
1
2

ln(2TK
δ

), then with probability at least

1− δ, the regret of SupLinUCB is bounded by O(
√
Td ln3(KT ln(T )/δ)). α is defined in

algorithm 1, the implementation of LinUCB.
Algorithm 1: LinUCB

Input: A context-action feature vector f(s, a) with length d. T total number of
decision points. A tuning parameter α > 0. A constant ζ to guarantee the
invertibility of matrix B(t)

Initialization: B(0) = ζId, where Id is a d× d identity matrix. A(0) = 0d is a d× 1

column vector.
Start from t = 0.
while t ≤ T do

At decision point t, observe context St ;
µ̂t = B(t)−1A(t) ;
for a=1,.., K do

ut,a = µ̂Tt f(St, a) + α
√
f(St, a)TB(t− 1)−1f(St, a)

end
Draw an action at = argmaxa ut,a ;
Observe an immediate reward Rt ;
update:
B(t) = B(t− 1) + f(St, At)f(St, At)

T , A(t) = A(t− 1) + f(St, At)Rt ;
Go to decision point t+ 1.

end

Thompson sampling Under the same linear expected reward structure with an assump-
tion that the error terms are R-sub-Gaussian, [1] proposed a Thompson sampling algorithm
for contextual bandit and proved theoretical guarantee of the algorithm in terms of the regret
bound. Thompson sampling is an old heuristic and dates back to the work of Thompson
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in 1920s. The idea of Thompson sampling is choose each action by its probability of be-
ing optimal. To apply on contextual bandit problems, the algorithm starts off with a prior
distribution on the reward parameter and updates the posterior at every decision point. The
algorithm then calculates the posterior probability for each arm to be optimal and draws
an action accordingly. The authors showed that, with probability 1− δ, the total regret for
Thompson Sampling in time T is bounded as T = O(d3/2

√
T (ln(T ) +

√
lnT ln(1/δ))).

Algorithm 2 shows the implementation of Thompson sampling contextual bandit algorithm.
Algorithm 2: The Thompson Sampling Algorithm

Input: T is the total number of decision points. A constant 0 < δ < 1.
σ = R

√
9d ln(T/δ)

Initialization: B(0) = ζId, where Id is a d× d identity matrix. A(0) = 0d is a d× 1

column vector.
Start from t = 0.
while t ≤ T do

At decision point t, observe context St ;
µ̂t = B(t)−1A(t) ;
Draw µ ∼ N(µ̂t, σ

2B(t)−1) ;
Choose action at = argmaxa f(St, a)Tµ ;
Observe a reward Rt ;
update:
B(t) = B(t− 1) + f(St, At)f(St, At)

T , A(t) = A(t− 1) + f(St, At)Rt ;
Go to decision point t+ 1.

end
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CHAPTER 2

Online Learning of Optimal Policy:
Formulation, Algorithm and Theory

In this chapter, we first formulate the online learning of optimal policy as contextual bandit
problem and provide justification for doing so. We then introduce the definition of optimal-
ity: the optimal policy maximizes the average reward subject to a stochasticity constraint.
By imposing a stochasticity constraint the optimal policy is stochastic, which lowers the
risk of users’ habituation and disengagement. Furthermore, stochasticity allows the algo-
rithm to sufficiently explore different actions, a crucial requirement towards efficient online
learning. We propose an online actor critic algorithm that learns the optimal policy. The
critic imposes and estimates a linear model on the expected reward while the actor esti-
mates the optimal policy utilizing the estimated reward parameters from the critic. Finally
we develop asymptotic theory for the actor critic algorithm.

2.1 Problem formulation

2.1.1 Modeling the Decision Making Problem as a Contextual Bandit
Problem

We formulate the online learning of optimal policy as a stochastic contextual bandit prob-
lem. Following the notation in section 1.2, a contextual bandit problem is specified by a
quadruple (S, P,A,R), where S is the context space, P is the probability law on the con-
text space, A is the action space and R is a expected reward function R : S × A → R
that maps a context-action pair to a real-valued expected reward. At decision point t, the
decision maker observes a context St, take an action At after which a reward Rt is revealed
before the next decision point. The decision maker does not get to observe the reward as-
sociated other actions. Contexts are i.i.d. with distribution P . Up to decision point t, the
decision maker observes the data as a sequence of tuples {(Sτ , Aτ , Rτ )}tτ=1.
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One of the strongest assumptions in contextual bandit, if not the strongest assumption, is
that action At has a momentary effect on the reward Rt, but does not affect the distribution
of Sτ for τ ≥ t + 1. Under this assumption, one can be completely myopic and ignore the
effect of an action on the distant future in searching for a good policy. In the following, we
provide justification to formulate the online learning of optimal policy in mobile health as
a contextual bandit problem.

The assumption that previous actions do not influence future contexts makes contextual
bandit problem a simplified special case of Markov Decision Processes (MDPs). Following
the notation used in [34], a MDP is specified by a 5-tuple M = {S,A, T, R, γeval}, where
S is the context space andA is the decision space. T : S ×A×S → [0, 1] is the transition
probability function that specifies the probability P (St+1|St, At). γeval is a discount factor
that reflects how the decision maker trades off short term and long term reward. R is the
expected reward function.The goal of the decision maker is to maximize the expected value
of the sum of rewards discounted by γeval. A decision rule, or policy π is a mapping from
the context space S to the decision space A, or a probability distribution on the decision
space in the case of stochastic policy. The expected utility of policy π is

V π
M,γeval

= E(
∞∑
t=0

γtevalRt) (2.1)

where the expectation is taken over the randomness in context distribution, policy and
realized rewards. The optimal policy is the policy that maximizes the expected utility. γeval
is called evaluation horizon, a parameter specified by the decision maker when formulating
the problem. While criterion 2.1 is the one and only criterion to evaluate the performance
of a policy, a learning algorithm may use choose a planning horizon γplan different from
the evaluation horizon. In particular, by formulating the online optimal policy learning as a
contextual bandit problem and running a online contextual bandit algorithm, one essential
sets γplan = 0. One may question the validity of such a choice or whether we should model
the decision making problem as a full-blown MDP and use a larger γplan. The reason
comes in three folds. We first justify the contextual bandit formulation is reasonable given
the nature of mobile health application. We then justify the advantages of modeling and
solving the problem as a contextual bandit problem even when the underlying dynamics is
a MDP.

First of all, we envision that the assumption that previous actions do not influence future
contexts is reasonable in many mobile health applications. Compared with other exogenous
factors in users’ personal lives and professional lives, often mobile health interventions
have minimal and momentary effects on the contexts. Let’s consider the example of Heart-
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steps application introduced in the previous chapter. Contextual variables in this mobile
health application includes weather, time of the day, day of time, how hectic is the user,
GPS location and e.t.c. These variable are mostly influenced by events happening in users’
real lives and are influenced by the physical activity suggestion from Heartsteps to a mini-
mal extent. Contextual bandits have found applications and successes in online advertising
[78], article recommendation [50] and publishing messages on social networks [42].

Second of all, solving a MDP is much more computational demanding than solving a
contextual bandit problem. Contextual information in a lot of mobile health applications is
highly private. For this reason, we expect a lot of the computation to be done locally on
the mobile devices. Since extensive computation load reduces the battery life, this concern
deems the contextual bandit formulation more appropriate. The discount factor γplan used
in any planning algorithms is strongly related to the computational expense. The large γplan
is, or the longer the planning horizon is, the higher the computational burden is in general
[40, 35]. By choosing planning horizon shorter than the evaluation horizon, one trades off
the optimality of the learned policy for computational efficiency.

Last but not least, as [34] has pointed out, choosing a short planning horizon when the
transition probability is estimate from data avoids overfitting. In particular, they showed
that the planning horizon γplan controls the complexity of the policy class. Choosing a plan-
ning horizon close to the evaluation horizon increases the complexity of the policy class.
When the MDP model is estimated based on a finite dataset, increased complexity of policy
class is associated with higher risk of overfitting. Choosing a shorter planning horizon has
a regularization effect in reducing overfitting. Their reasoning is analogous to the standard
bias-variance trade off argument in machine learning literature. The planning horizon γplan
serves as a regularization parameter of a learning algorithm. The larger the sample size
is in estimating MDP, the higher the planning horizon should be. In this dissertation, we
consider the mobile health studies where the sample size is small to moderate. We there-
fore feel appropriate to choose the largest regularization by formulating the problem as a
contextual bandit problem, .

Having been first proposed in the 70s of the last century, the contextual bandit problem
has resurged in the past decades with application to online advertisement, online article
recommendation, etc. However, the application to personalized intervention on mobile de-
vices distincts our problem formulation from those in existing computer science literature.
A successful contextual bandit algorithm that makes online article recommendations is usu-
ally designed to maximize certain measure of online performance, for example, the average
click-through-rate [50]. The algorithm developer is less concerned about solving the mys-
tery of which contextual variables are useful for decision making: contextual information
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often sits in the web browser and is inexpensive to collect. In contrast, collecting con-
textual information for mobile health decision making can be expensive, time-consuming
and burdensome. For example, tracking users’ location using GPS on smartphones reduces
battery life and may undermine overall users’ experience, collecting self-reported measures
on users’ preferences is burdensome and may lead to intervention attrition. Since evaluat-
ing the usefulness of contexts are important in building high quality treatment policy for
mobile health,

1. The policy should be easily interpretable in the sense that there is a weight associ-
ated with each component of the context to reflect how it influences the choice of
intervention.

2. Scientists should be able to capture the uncertainty in the estimated weight and cre-
ate confidence intervals for the weights. The confidence intervals can be used to de-
cide whether a weight is significantly different from 0, thus answering the question
whether a particular component of the context is useful for personalizing interven-
tion.

To this end, we consider a class of stochastic parametrized treatment policies, each
one of which is a mapping from the context space S to a probability distribution on the
action space A. In this dissertation, we consider a contextual bandit problem with a binary
decision space A = {0, 1}. The probability of taking action a given context s is given by a
class of logistic functions:

πθ(A = 1|S = s) =
eg(s)

T θ

1 + eg(s)T θ

πθ(A = 0|S = s) =
1

1 + eg(s)T θ

where g(s) is a p dimensional vector that contains candidate tailoring variables. In the
parametrized policy πθ(a|s) the influence of the contextual variables on the choice of action
is reflected by the signs and magnitudes of θ. Statistical inferences such as confidence
intervals and hypothesis testing on the optimal θ can answer the scientific question whether
a particular contextual variable is useful for decision making.

2.1.2 The Regularized Average Reward

In this section, we discuss definition of optimality in learning for the optimal treatment
policy for mobile health. The most natural criterion to measure the quality of a treat-
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ment policy is the average reward. However, as lemma 1 will show, policy that maximizes
the average reward is often deterministic. Deterministic policies may lead to treatment
habituation due to the predictability and lack of variation in the recommended treatment
[66, 24, 23]. To encourage intervention variety, we impose a stochasticity constraint 2.7
that requires with high probability in contexts, the optimal policy to explore all actions with
a decision-maker-specified probability. The optimal policy is defined to the maximizer of a
regularized average reward, the Lagrangian function of the constraint maximization prob-
lem. The optimal policy is thus guaranteed to be stochastic. A nice by-product of imposing
a stochasticity constraint is that it automatically guarantees exploration. Therefore an on-
line learning algorithm need not have an explicit exploration component such as ε-greedy
or Boltzmann exploration.

A natural and intuitive definition of optimal policy is the policy that maximizes the
average reward. For example, in developing treatment policy to promote physical activity,
the objective is to increase the average daily step count. Average reward is approximated by
the discounted reward 2.1 by letting γeval approach 1. In a contextual bandit formulation
where contexts distribution are independent of treatment policy, the average reward of a
policy πθ(A = a|S = s) is the expected reward E(R|S = s, A = a) weighted by the
distribution of the contexts and the distribution of the action:

V ∗(θ) =
∑
s∈S

d(s)
∑
a∈A

E(R|s, a)πθ(a|s) (2.2)

Although our focus is a class of parametrized stochastic policies, the policy that max-
imizes the average reward 2.2 is often deterministic. The following lemma shows that,
in a simple setting where the context space is one-dimensional and finite, the policy that
maximizes the average reward may be a deterministic policy.

Lemma 1. Suppose the context space is discrete and finite, S = {s1, s2, ..., sK}. Among

the policy class πθ(A = 1|S = s) = eθ0+θ1s

1+eθ0+θ1s
, there exists a policy for which both θ0 and

θ1 are infinite that maximizes V ∗(θ). In other words, at least one of the optimal policy is a

deterministic policy.

Proof. Without the loss of generality, we assume that 0 < s1 < s2 < ... < sK . Otherwise,
if some si’s are negative, we can transform all the contexts to be positive by adding to si’s a
constant greater than min1≤i≤K si. Denote this constant byM and the corresponding policy
parameter by θ̃. There is a one-to-one correspondence between the two policy classes:

14



θ̃0 = θ0 −Mθ1

θ̃1 = θ1

Therefore if the lemma holds when all contexts are positive the same conclusion hold in
the general setting. We use p(θ) to denote the probability the probability of choosing action
A = 1 for policy πθ at the K different values of context:

(
eθ0+θ1s1

1 + eθ0+θ1s1
,

eθ0+θ1s2

1 + eθ0+θ1s2
, ...,

eθ0+θ1sK

1 + eθ0+θ1sK
)

Notice that each entry in p(θ) is number between 0 and 1 with equality if the policy is
deterministic at certain context. A key step towards proving deterministic optimal policy is
to show the following closed convex hull equivalency:

conv({p(θ) : θ ∈ R2}) = conv({(ν1, ..., νK), νi ∈ {0, 1}, ν1 ≤ ... ≤ νK or ν1 ≥ ... ≥ νK})

We examine the limiting points of p(θ) when θ0 and θ1 tends to infinity. We consider the
case where θ0 6= 0 and let θ1 = pθ0 where p is a fixed value. It holds that

eθ0+θ1s

1 + eθ0+θ1s
=

eθ0(1+ps)

1 + eθ0(1+ps)
→


0 : ifθ0 → −∞, p > −1/s

0 : ifθ0 →∞, p < −1/s

1 : ifθ0 → −∞, p < −1/s

1 : ifθ0 →∞, p > −1/s

It follows that when θ0 → −∞ and p scans through theK+1 intervals on R: (−∞,−1/s1],
(−1/s1,−1/s2], . ... (−1/sK ,∞), p(θ) approaches the following K + 1 limiting points:

(1, 1, ..., 1)

(0, 1, ..., 1)

...

(0, 0, ..., 1)

(0, 0, ..., 0)

when θ0 → ∞ and p scans through the K + 1 intervals, p(θ) approaches the following
K + 1 limiting points
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(0, 0, ..., 0)

(1, 0, ..., 0)

...

(1, 1, ..., 0)

(1, 1, ..., 1)

There are in total 2K limiting points: {(ν1, ..., νK), νi ∈ {0, 1}, ν1 ≤ ... ≤ νK or ν1 ≥ ... ≥
νK}. Each limiting point is a K dimensional vector with 0-1 entries in an either increasing
or decreasing order. Now we show that any p(θ), θ ∈ R2 is a convex combination of the
limiting points. Let p(θ) = [p1(θ), p2(θ), ..., pK(θ)]. In fact,

• If θ1 = 0, p(θ) = (1− p1(θ))(0, 0, ..., 0) + p1(θ)(1, 1, ..., 1)

• If θ1 > 0, we have 0 < p1(θ) < p2(θ) < ... < pK(θ) < 1 and

p(θ) = p1(θ)(1, 1, ..., 1) + (p2(θ)− p1(θ))(0, 1, ..., 1) + ...

+(pK(θ)− pK−1(θ))(0, 0, ..., 1) + (1− pK(θ)) ∗ (0, 0, ..., 0)

• If θ1 < 0, we have 1 > p1(θ) > p2(θ) > ... > pK(θ) > 0 and

p(θ) = (1− p1(θ)) ∗ (0, 0, ..., 0) + (p1(θ)− p2(θ))(1, 0, ..., 0) + ...

+(pK(θ)− pK−1(θ))(1, 1, ..., 0) + pK(θ)(1, 1, ..., 1)

Returning to optimizing the average reward, we denote αi = P (S = si)(E(R|S =

si, A = 1)− E(R|S = si, A = 0)).
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max
θ
V ∗(θ) = max

θ

K∑
i=1

αipi(θ) (2.3)

= max
(p1,...,pK)∈{p(θ):θ∈R2}

K∑
i=1

αipi (2.4)

= max
(p1,...,pK)∈conv({p(θ):θ∈R2})

K∑
i=1

αipi (2.5)

= max
(p1,...,pK)∈conv({(ν1,...,νK),νi∈{0,1},ν1≤...≤νK or ν1≥...≥νK})

K∑
i=1

αipi (2.6)

. Equation from 2.4 to 2.5 is followed by the fact that the objective function is linear (and
thus convex) in pi’s. Equivalency from 2.5 to 2.6 is a direct product of the closed convex
hull equivalency. Theories in linear programming theory suggests that one of the maximal
points is attained at the vertices of the convex hull of the feasible set. Therefore we have
proved that one of the policy that maximizes V ∗(θ) is deterministic.

Behavioral science literature has documented many empirical evidences and theory that
deterministic treatment policies lead to habituation and that intervention variety has proven
to be therapeutic by preventing/retarding habituation [66, 24, 23]. To encourage interven-
tion variety, we make sure that the treatment policies sufficiently explores all available
actions. When the action space is binary, which is the focus of this article, one way to
mathematize intervention variety is to introduce a chance constraint [88, 79] that with high
probability, probability taken with respect to the context, the probability of taking each
action is bounded away from 0:

Ps(p0 ≤ πθ(A = 1|S) ≤ 1− p0) ≥ 1− α (2.7)

where 0 < p0 < 0.5, 0 < α < 1 are scientists-specified constants controlling the amount
of stochasticity. Ps the probability law over the context space. The stochasticity constraint
requires that, for at least (1−α)100% of the contexts, there is at least p0 probability to take
both actions.

Maximizing the average reward V ∗(θ) subject to the stochasticity constraint 2.7 is a
chance constrained optimization problem, an active research area in recent years [59, 15].
Solving this chance constraint problem, however, involves a major difficulty – constraint
2.7 is in general a non-convex constraint on θ for many possible distribution of the context
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and many possible forms of the constraint function. Moreover, the left hand side of the
stochasticity constraint is an expectation of an indicator function. Both the non-convexity
and the non-smoothness of this inequality make the optimization problem computationally
intractable. We circumvent this difficulty by replacing constraint 2.7 with a convex alter-
native. By applying the Markov inequality, we reach a relaxed and smoother stochasticity
constraint that produces computational tractability:

θTE[g(S)Tg(S)]θ ≤ (log(
p0

1− p0

))2α (2.8)

The quadratic constraint is more stringent than the stochasticity constraint and always guar-
antees at least the amount of intervention variety the scientists have asked for. We define
the optimal policy to be the policy θ that maximizes the average reward V ∗(θ) subject
to the quadratic constraint 2.8, i.e., the maximum of the following quadratic constrained
optimization problem:

max
θ
V ∗(θ), s. t. θTE[g(S)Tg(S)]θ ≤ (log(

p0

1− p0

))2α (2.9)

Instead of solving the quadratic optimization problem, we maximize the corresponding
Lagrangian function. Incorporating inequality constraints by forming Lagrangian has been
widely used in reinforcement learning literature to solve constrained Markov decision prob-
lem [12, 8]. Given a Lagrangian multiplier λ, the following Lagrangian function J∗λ(θ):

J∗λ(θ) =
∑
s∈S

d(s)
∑
a∈A

E(R|S = s, A = a)πθ(s, a)− λθTE[g(S)Tg(S)]θ (2.10)

is referred to as the regularized average reward in this article. The optimal policy is the
maximizer of the regularized average reward:

θ∗ = argmax
θ

J∗λ(θ) (2.11)

There are two computational advantages to maximize the regularized average reward. One
advantage is that optimizing the regularized average reward function remains a well-defined
optimization problem even when there is no treatment effect. When the expected reward
does not depend on the action, E(R|S = s, A = a) = E(R|S = s), constrained max-
imization of the average reward V ∗(θ) is an ill-posed problem due to the lack of unique
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solution. In fact, all policies in the feasible set have the same average reward. The reg-
ularized average reward function, in contrast, has a unique maximizer at θ = 0p, a pure
random policy that assigns both actions with 50% probability. Therefore, maximizing the
regularized average reward gives rise to a unique and sensible solution when there is no
treatment effect. The other advantage to maximize the regularized average reward function
is computational. When the uniqueness of optimal policy is not an issue, maximization
of J∗λ(θ) has computational advantages over maximization of V ∗(θ) under constraint 2.8
because the subtraction of the quadratic term λθTE[g(S)Tg(S)]θ introduces concavity to
the surface of J∗λ(θ), thus speeding up the computation.

A natural question to ask, when transforming the constrained optimization problem 2.9
to an unconstrained one 2.11, is whether a Lagrangian multiplier exists for each level of
stringency of the quadratic constraint. While the correspondence between the constrained
optimization and the unconstrained one may not seem so obvious due to the lack of con-
vexity in V ∗(θ), we established the following lemma 2 given assumption 1. Assumption
1 assumes the uniqueness of the global maximum for all positive λ. While assumption 1
seems strong and hard to verify analytically, we have verified that this assumption holds in
our numerical experiment in chapter 3. In assumption 2 we assume the positive definiteness
of the matrix E(g(S)g(S)T ).

Assumption 1. For every 0 < λ <∞, the global maximum of J∗λ(θ) is a singleton.

Assumption 2. Positive Definiteness: The matrix E(g(S)g(S)T ) is positive definite.

Lemma 2. If the maximizer of the average reward function V ∗(θ) is deterministic, i.e.

P (πθ(A = 1|S) = 1) > 0 or P (πθ(A = 0|S) = 1) > 0, under assumption 1 and 2, for

every K = (log( p0
1−p0 ))2α > 0 there exist a λ > 0 such that the solution of the constrained

optimization problem 2.9 is the solution of the unconstrained optimization problem 2.11.

Proof. Let θ∗λ be one of the global maxima of the Lagrangian function: θ∗λ = argmaxθ J
∗
λ(θ).

Let βλ = θ∗Tλ E[g(S)Tg(S)]θ∗λ. By proposition 3.3.4 in [7], θ∗λ is a global maximum of con-
strained problem:

max
θ
V ∗(θ)

s.t. θTE[g(S)Tg(S)]θ ≤ βλ

In addition, the stringency of the quadratic constraint increases monotonically with the
value of the Lagrangian coefficient λ. Let 0 < λ1 < λ2 and with some abuse of notation,
let θ1 and θ2 be (one of) the global maximals of Lagrangian function J∗λ1(θ) and J∗λ2(θ). It
follows that
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− V ∗(θ2) + λ2θ
T
2 E[g(S)Tg(S)]θ2

≤− V ∗(θ1) + λ2θ
T
1 E[g(S)Tg(S)]θ1

=− V ∗(θ1) + λ1θ
T
1 E[g(S)Tg(S)]θ1 + (λ2 − λ1)θT1 E[g(S)Tg(S)]θ1

≤− V ∗(θ2) + λ1θ
T
2 E[g(S)Tg(S)]θ2 + (λ2 − λ1)θT1 E[g(S)Tg(S)]θ1

It follows that

θT1 E[g(S)Tg(S)]θ1 ≥ θT2 E[g(S)Tg(S)]θ2

. As λ approaches 0, the maximal of the regularized average reward approaches the maxi-
mal of the average reward function, for which E(θTg(S))2 → ∞. As λ increases towards
∞, maximal of the regularized average reward approaches the random policy with θ = 0.
It’s only left to show that θ∗Tλ E[g(S)Tg(S)]θ∗λ is a continuous function of λ. Under assump-
tion 1, we can verify that conditions in Theorem 2.2 in [25] holds. This theorem implies
that the solution set of the unconstrained optimization 2.11 is continuous in λ, sufficient to
conclude the continuity of θ∗Tλ E[g(S)Tg(S)]θ∗λ.

2.2 An Online Actor Critic Algorithm

In this section, we propose an online actor critic algorithm for the learning of optimal
policy parameter. The idea of actor critic originates from the literature of reinforcement
learning [41, 9, 84]. There, as the maximizer of the long-term discounted/average reward,
the optimal policy parameter is updated iteratively using stochastic gradient descent where
the gradient depends on the Q-function, the long-term discounted/average reward given a
particular state-action pair [77]. The learning algorithm is decomposed into two step: in
critic step the algorithm estimates the Q-function or value function after which the algo-
rithm uses the estimated Q-function or value function to update the policy. Actor critic
algorithms to solve MDP is usually two-time scaled where the actor updates at a slower
rate than the critic. The reason to do so is that both the stationary distribution of states and
the Q-function or value function depend on the policy.

Likewise, in a contextual bandit problem, estimation of the optimal policy requires as-
sistance from estimation of the expected reward E(R|S,A). The observed “training data” at
decision point t is a stream of triples {Sτ , Aτ , Rτ}tτ=1. The optimal policy can be estimated
by maximizing the aforementioned regularized average reward, which can be estimated
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empirically by:

Jλ(θ) =
1

t

t∑
τ=1

∑
a

E(R|Sτ , a)πθ(A = a|Sτ )− λθT [
1

t

t∑
τ=1

g(Sτ )g(Sτ )
T ]θ (2.12)

which requires the knowledge of E(R|S,A). In the proposed actor critic algorithm, the
critic estimates the expected reward; the estimated expected is then plugged into 2.12 to
produce an estimated optimal policy. The estimated optimal policy is used to select an
action at the next decision point.

2.2.1 The Critic with a Linear Function Approximation

We use E(R|S = s, A = a) = R(s, a) to denote the expected reward given context s and
action a. We make the following two assumptions regarding the expected reward.

Assumption 3. Linear realizability assumption: given context S = s and action A = a,

the reward has expectation E(R|S = s, A = a) = f(s, a)Tµ∗ plus a noise variable ε with

sub-Gaussian distribution. The noise variables at different decision points are i.i.d. with

mean 0 and variance σ2.

This assumption is often referred to as the “linear realizability assumption” in existing
contextual multi-arm bandits literature and is a standard assumption in this literature [1, 2,
26, 50, 16]. In addition, given context St and action At, the difference between the realized
reward Rt and the expected reward R(St, At) is εt = Rt − R(St, At). εt are assumed to be
i.i.d with mean 0 and have finite second moment.

Assumption 4. The error terms in the reward model are i.i.d with mean 0 and have finite

second moment.

The reward parameter µ is estimated by the ordinary least square estimator 1

µ̂t = (
t∑

τ=1

f(Sτ , Aτ )f(Sτ , Aτ )
T )−1

t∑
τ=1

f(Sτ , Aτ )Rτ (2.13)

. Compared to the usual ordinary least square estimation, the reward features 2.13 are
non-i.i.id. Action Aτ is drawn according to the estimated optimal policy at decision point

1When running the critic algorithm online, however, the matrix
∑t
τ=1 f(sτ , aτ )f(sτ , aτ )

T may not have
full rank when t is small. For this reason, we introduce a small regularization term when calculating the least
square estimate. See the initialization of B(t) in algorithm 1.
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τ − 1, which depends on the entire history at or before decision point τ − 1. The depen-
dency introduced presents challenges in analyzing the actor critic algorithm. Details will
be presented in section 2.3.

2.2.2 The Actor and the Actor Critic Algorithm

Once an estimated reward parameter is obtained from the critic, the actor estimates the
optimal policy parameter by maximizing the estimated average reward. With some abuse
of notation, we denote the regularized average reward function under the reward parameter
µ by

Jλ(θ, µ) =
∑
s

d(s)
∑
a

f(s, a)Tµπθ(a|s)− λθTg(s)g(s)T θ (2.14)

where d(s) is the stationary distribution of the context. In other words Jλ(θ, µ∗) = J∗λ(θ).
Plugging µ̂t into display 2.12, an estimate to the regularized average reward function at
decision point t is

Ĵt(θ, µ̂t) = Ptj(µ̂t, θ, S) (2.15)

=
1

t

t∑
τ=1

∑
a

f(Sτ , a)T µ̂tπθ(A = a|Sτ )− λθT [
1

t

t∑
τ=1

g(Si)
Tg(Si)]θ (2.16)

where P is the empirical probability law on S×A. The estimated optimal policy parameter
is

θ̂t = argmax
θ

Ĵt(θ, µ̂t) (2.17)

We propose an actor-critic on linear learning algorithm to learn the optimal treatment
policy as described in Algorithm 3. Inputs of the actor critic algorithm includes, the to-
tal number of decision points, T which is usually determined by intervention duration in
number of days and the frequency of the decision points in a single day. Inputs of the
algorithm also includes specifying the reward feature f(s, a) and the policy feature g(s).
The former can be chosen using model selection techniques on historical dataset. The lat-
ter consists of candidate tailoring variable, usually specified by domain scientists. Matrix
B(t) is used to store the summation of the outer product of reward features; B(0) is ini-
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tialized to be an identity matrix multiplied by a small coefficient ζ , because the matrix∑t
τ=1 f(Sτ , Aτ )f(Sτ , Aτ )

T may not have full rank when t is small. A(t) is used to store
the summation of f(St, At)Rt; A(0) is initialized to be a d dimensional column matrix
with all zero entries. The initial treatment policy θ0 is chosen to be the domain knowledge
driven policy, or based on historical data if available. At each decision point, the algorithm
acquires a new context St, takes an action according to policy πθt−1 and then observes a re-
ward Rt before the next decision point. The critic updates the reward parameter according
to 2.13; the actor updates the optimal policy parameter according to 2.17.

Algorithm 3: An online actor critic algorithm with linear expected reward
Input of algorithm: T , the total number of decision points; reward feature f(s, a)

with dimension d; policy feature g(s) with dimension p.
Critic initialization: B(0) = ζId×d, a d× d identity matrix. A(0) = 0d is a d× 1

column vector.
Actor initialization: θ0 is the best treatment policy based on domain theory of
historical data.
Start from t = 0.
while t ≤ T do

At decision point t, observe context St ;
Draw an action at according to probability distribution πθt−1(A|St) ;
Observe an immediate reward Rt ;
Critic update:
B(t) = B(t− 1) + f(St, At)f(St, At)

T , A(t) = A(t− 1) + f(St, At)Rt,
µ̂t = B(t)−1A(t). ;
Actor update:

θ̂t = argmax
θ

1

t

t∑
τ=1

∑
a

f(Sτ , a)Tµtπθ(A = a|Sτ )− λθT [
1

t

t∑
τ=1

g(Si)
Tg(Si)]θ

(2.18)

Go to decision point t+ 1.
end

2.3 Asymptotic Theory of the Actor Critic Algorithm

In this section, we analyze the consistency and the asymptotic normality of the actor critic
algorithm. We first show, in theorem 1 and theorem 2 respectively, that the estimated re-
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ward parameter and the estimated optimal policy parameter converge in probability to their
population counterparts as the number of decision points increases. We analyze the asymp-
totic normality of the estimated reward parameter and estimated optimal policy parameter
in theorem 3 and 4. In addition to the aforementioned assumptions, we make the following
assumptions:

Assumption 5. Boundedness: The reward R, reward feature f(S,A) and the reward pa-

rameter µ∗ are bounded with probability one. Without loss of generality, we assume that

|µ∗|2 < 1 and |f(S,A)|2 ≤ 1 with probability one.

Assumption 6. Positive Definiteness: The matrix E(g(S)g(S)T ) =
∑

s∈S d(s)g(s)g(s)T

is positive definite.

As the very first step towards establishing the asymptotic properties of the actor critic
algorithm, we show that, for a fixed Lagrangian multiplier λ the optimal policy parame-
ter that maximizes the regularized average reward 2.10 essentially lies in a bounded set.
Moreover, the estimated optimal policy parameter is bounded with probability going to 1.
Lemma 3 sets the foundation for us to leverage the existing statistical asymptotic theories.

Lemma 3. Assume that assumption 5 and 6 holds. Given a fixed λ, the population optimal

policy θ∗ lies in a compact set. In addition, the estimated optimal policy θ̂t lies in a compact

set with probability going to 1.

Proof. This lemma is proved by comparing the regularized average reward function J∗λ(θ)

at θ∗ and at 0p. The optimal regularized average reward is:

J∗λ(θ∗) =
∑
s∈S

d(s)
∑
a∈A

f(s, a)Tµ∗πθ∗(A = a|S = s)− λθ∗TE[g(S)Tg(S)]θ∗

≤
∑
s,a

d(s)
|f(s, a)|22 + |µ∗|22

2
πθ∗(A = a|S = s)− λθ∗TE[g(S)Tg(S)]θ∗

≤ 1− λθ∗TE[g(S)Tg(S)]θ∗

While on the other hand the regularized average reward for the random policy θ = 0p is

J∗λ(0p) =
∑
s,a

d(s)f(s, a)Tµ∗/2 ≥ 0

By the optimality of policy θ∗, 1 − λθTE[g(S)Tg(S)]θ ≥ 0, which leads to the necessary
condition for the optimal policy parameter:
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θ∗TE[g(S)Tg(S)]θ∗ ≤ 1

λ
(2.19)

According to assumption 6, the above inequality defines a bounded ellipsoid for θ∗, which
concludes the first part of lemma 3. To prove the second conclusion of Lemma 3, we notice
that µ̂t is bounded since the smallest eigenvalue of B(t) is bounded away from 0 by ζ and
both the reward feature and the reward is bounded with probability 1. Denote the bound by
K. By comparing Ĵt(θ, µ̂t) at θ = θ̂t and θ = 0p we have

θ̂Tt [
1

t

t∑
τ=1

g(Sτ )g(Sτ )
T ]θ̂t ≤

K

λ
(2.20)

It remains to show that the smallest eigenvalue of 1
t

∑t
τ=1 g(Sτ )g(Sτ )

T is bounded away
from 0 with probability going to 1. Using the matrix Chernoff inequality, theorem 1 in [83],
for any 0 < δ < 1,

P{λmin(
1

t

t∑
τ=1

g(Sτ )g(Sτ )
T ) ≤ (1− δ)λmin(Eg(S)g(S)T )} ≤ p[

e−δ

(1− δ)1−δ ]
tλmin(Eg(S)g(S)T )

R

(2.21)

where R is the maximal eigenvalue of g(S)g(S)T and p is the dimension of g(S). Taking
δ = 0.5, the right-hand side of the Chernoff inequality goes to 0 as t goes to∞. Therefore
with probability going to 1, inequality 2.20 defines a compact set on Rp. We have proved
the second part of the lemma.

Following this lemma, we make the following assumption:

Assumption 7. The matrix Eθ(f(S,A)f(S,A)T ) =
∑

s∈S d(s)
∑

a f(s, a)f(s, a)Tπθ(A =

a|S = a) is positive definite for θ in the compact set in Lemma 3.

Theorem 1. Consistency of the critic: Under assumptions 3 through 7, the critic’s estimate

µ̂t converges to the true reward parameter µ∗ in probability.

The non-i.i.d. nature of sample presents challenges in developing the asymptotic theory.
In particular,At depends the entire trajectory of observations before decision point t as well
as the context at the current decision point. The challenges in proving the consistency of the
reward parameter estimation is solved by exploiting the closed form of µ̂t and applying the

25



matrix Azuma’s inequality, Theorem 7.1 in [83]. We notice that, in proving the consistency
of µ̂t, that the µ̂t is consistent as long as the data generating policy θ̂t lies in a compact
set with probability going to 1, which guarantees a minimum exploration probability. The
proof of theorem 1 is outlined by showing that B(t)−1

t
is bounded with probability going to

one and that A(t)
t

converges to 0 in probability. Details can be found in the appendix.
One of the most critical assumptions in deriving the consistency of M-estimator is the

uniqueness of global maximum of the criterion function. Let h(θ) = EX(H(θ,X)) be the
population level criterion function and θ∗ be the global maxima. It is often assumed that
given any constant δ > 0, there exists a neighborhood of θ∗, denoted by B(θ∗, ε) where ε
measures the “diameter” of the neighborhood, such that h(θ) is bounded above by h(θ∗)−δ
for θ outside the neighborhood. The estimated optimal policy parameter θ̂t is “almost” an
M-estimator except that the empirical criterion function depends not only on the empirical
distribution of context but also the estimated reward parameter µ̂t. We therefore make this
assumption uniform in a neighborhood of µ∗:

Assumption 8. Uniform separateness of the global maximum: There exists a neighborhood

of µ∗ such that the following holds. J(θ, µ) as a function of θ has unique global maximum

for all µ in this neighborhood of µ∗. Moreover, for any δ > 0, there exists ε > 0 such that

J(θµ, µ)− max
θ/∈B(θµ,ε)

J(θ, µ) ≥ δ (2.22)

for all µ in this particular neighborhood of µ∗.

Under the aforementioned assumptions, the following theorem states the consistency of
the estimation of optimal policy parameter.

Theorem 2. Consistency of the actor: Under assumption 3 through assumption 8, the

actor’s estimate θ̂t converges to true optimal policy parameter θ∗ in probability.

The two steps in proving theorem 2 are to first show that if the sequence µ̂t converges to
µ∗, then θ̃t = argmaxθ J(θ, µt), the optimal policy based on the population distribution of
context, converges to θ∗, where

J(µ, θ) =
∑
s∈S

d(s)
∑
a∈A

E(R|S = s, A = a)πθ(A = a|S = s)− λθTE[g(S)g(S)T ]θ

(2.23)

We then show that θµt = argmaxθ Ĵt(θ, µ) converges to θµ = argmaxθ J(θ, µ) uniformly
in a neighborhood of µ∗. Details of the proof can be found in the appendix.
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Theorem 3 states the asymptotic normality of the critic. Proof of theorem 3 relies on the
vector-valued central limit theorem, the details of which can be found in the appendix.

Theorem 3. Asymptotic normality of the critic: Under assumption 3 through assumption 7,
√
t(µ̂t−µ∗) converges in distribution to multivariate normal with mean 0d and covariance

matrix

[Eθ∗(f(S,A)f(S,A)T )]−1σ2, where

Eθ(f(S,A)f(S,A)T ) =
∑
s

d(s)
∑
a

f(s, a)f(s, a)Tπθ(s, a)

is the expected value of f(S,A)f(S,A)T under policy θ. σ is the standard deviation of εt.

The plug-in estimator of the asymptotic covariance is consistent.

The asymptotic normality of θ̂t is established based on the asymptotic normality of µ̂t and
that the class of random functions {j(θ, µ, S) : θ ∈ Rp, |µ|2 ≤ 1} are P-Donsker. j(θ, µ, S)

is the expected reward for context S under policy θ and reward parameter µ. See details of
the proof in the appendix.

Theorem 4. Asymptotic normality of the actor: Under assumption 3 through assumption

8,
√
t(θ̂t− θ∗) converges in distribution to multivariate normal with mean 0p and sandwich

covariance matrix

[Jθθ(µ
∗, θ∗]−1V ∗[Jθθ(µ

∗, θ∗)]−1 (2.24)

, where V ∗ = σ2Jθµ(µ∗, θ∗)Eθ(f(S,A)f(S,A)TJµθ(µ
∗, θ∗)+E[jθ(µ

∗, θ∗, S)jθ(µ
∗, θ∗, S)T ].

In the expression of asymptotic covariance matrix,

j(µ, θ, S) =
∑
a

f(S, a)Tµπθ(A = a|S)− λθT [g(S)g(S)T ]θ (2.25)

and J(µ, θ) is defined in 2.23. Jθθ and Jθµ are the second order partial derivatives of J

with respect to θ twice and with respect θ and µ, respectively. jθ is the first order par-

tial derivative of j with respect to θ. The following plug-in estimator of the asymptotic

covariance is consistent.

(Ĵθθ(µ
∗, θ∗)−1[σ̂2Ĵθµ(µ∗, θ∗)Êθ(f(s, a)f(s, a)T )Ĵµθ(µ

∗, θ∗)

+
1

t

t∑
i=1

jθ(µ
∗, θ∗, si)jθ(µ

∗, θ∗, si)
T ](Ĵθθ(µ

∗, θ∗))−1 (2.26)
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A bound on the expected regret can be derived as a by-product of the square-root con-
vergence rate of θ̂t. The expected regret of an online algorithm is the difference between
the expected reward under the algorithm and that under the optimal policy θ∗:

expected regret = T
∑
s

d(s)
∑
a

E(R|S = a,A = a)πθ∗(S = s|A = a)− E[
T∑
t=1

Rt]

(2.27)

where {Rt}Tt=1 is the sequence of rewards generated in the algorithm. Straightforward
calculation shows that

expected regret =
T∑
t=1

∑
s

d(s)
∑
a

E(R|S = a,A = a)[πθ∗(S = s|A = a)− E(πθ̂t−1
(S = s|A = a))]

=
T∑
t=1

∑
s

d(s)
∑
a

E(R|S = a,A = a)E(π′
θ̂t,s,a

(S = s|A = a)(θ∗ − θ̂t−1))

where θ̂t,s,a is a random variable that lands between θ∗ and θ̂t−1. Under the boundedness
assumption on the expected reward, Theorem 4 implies the following Corollary:

Corollary 1. The expected regret of the actor critic algorithm 3 is of order O(
√
T ).

We shall point that the regret bound provided in the corollary is not comparable to the
regret bound derived for LinUCB and Thompson Sampling where there is no assumption
on the distribution of the contexts.

2.4 Small Sample Variance estimation and Bootstrap Con-
fidence intervals

In this section, we discuss issues, challenges and solutions in creating confidence intervals
for the optimal policy parameter θ∗ when the sample size, the total number of decision
points, is small. We use a simple example to illustrate that the traditional plug-in variance
estimator is plagued with underestimation issue, the direct consequence of which is the
deflated confidence levels of the Wald-type confidence intervals for θ∗. We propose to use
bootstrap confidence intervals when the sample size is finite. Evaluation of the bootstrap
confidence intervals will be provided in chapter 3.
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2.4.1 Plug-in Variance Estimation and Wald Confidence intervals

One of the most straightforward ways to estimate the asymptotic variance of θt is through
the plug-in variance estimation, the formulae of which is provided in Theorem 4. Once
an estimated variance V̂i is obtained for

√
t(θ̂i − θ∗i ), a (1 − 2α)% Wald type confidence

interval for θ∗i has the form: [θ̂i − zα
V̂i√
t
, θ̂i + zα

V̂i√
t
]. Here θi is the i-th component in θ

and zα is the upper 100α percentile of a standard normal distribution. The plug-in variance
estimator and the associated Wald confidence intervals work well in many statistics prob-
lems. We shall see that, however, the plug-in variance estimator of the estimated optimal
policy parameters suffers from underestimation issue in small to moderate sample sizes. In
particular this estimator is very sensitive to the plugged-in value of the estimated reward
parameter and policy parameter: a small deviation from the true parameters can result in
an inflated or deflated variance estimation. Deflated variance estimation produces anti-
conservative confidence intervals, a grossly undesirable property for confidence intervals.
The following simple example illustrates the problem.

Example 1. The context is binary with probability distribution P(S = 1) = P(S = −1) =

0.5. The reward is generated according to the following linear model: given context S ∈
{−1, 1} and action A ∈ {0, 1},

R = µ∗0 + µ∗1S + µ∗2A+ µ∗3SA+ ε

where ε follows a normal distribution with mean zero and standard deviation 9. The true

reward parameter is µ∗ = [1, 1, 1, 1]. Both µ∗ and the standard deviation of ε are chosen

to approximate the realistic signal noise ratio in mobile health applications. We consider

the policy class πθ(A = 1|S = s) = eθ0+θ1s

1+eθ0+θ1s
.

The differences between the plug-in estimated variance and its population counterpart

are that (1) the former uses the empirical distribution of context to replace the unknown

population distribution and (2) the unknown reward parameter and optimal policy param-

eter are replaced by their estimates. We emphasis that it is the second difference that leads

to the underestimated variance in small sample size. To see this, we ignore the difference

between the empirical distribution and the population distribution of contexts, which is

very small for sample size T ≥ 50 under a Bernoulli context distribution with equal proba-

bility. Now the plug-in variance estimator is a function of the estimated reward parameter

µ̂t and the estimated policy parameter θ̂t. Notice that in 2.17, θ̂t = [θ̂t,0, θ̂t,1] is a function

of µ̂t = [µ̂t,0, µ̂t,1, µ̂t,2, µ̂t,3] and the empirical distribution of context. If we replace the

empirical distribution in calculating θ̂t by its population counterpart, θ̂t is simply a func-

tion of µ̂t. In the rest part of the example, we drop the subscript t in the estimated reward
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parameter and denote the estimate of µ2 and µ3 by µ̂2 and µ̂3, respectively. Likewise, θ̂t,i is

replaced by θ̂i for i = 0, 1.

Figure 2.1 is the surface plot showing how the plug-in variance estimation changes

as function of the estimated reward parameter. The surface plot of the plug-in variance

estimation has a mountain-like pattern with two ridges along the two diagonals µ̂2+µ̂3 = 0

and µ̂2−µ̂3 = 0. The height of the ridge increases as both µ̂2 and µ̂3 approaches the origin.

The peak of mountain is at the origin where µ̂2 = µ̂3 = 0. The true reward parameter

(µ∗2, µ
∗
3) = (1, 1) is close to the origin and lies right on the one of the ridges. There are

four “valleys” where the combinations of µ̂2 and µ̂3 gives a small plug-in variance. The

fluctuation in the plug-in variance estimator can be roughly explained by the curvature of

the estimated regularized average reward function:

• When µ̂2 = µ̂3 = 0, J(θ, µ̂) = −λ‖θ‖2
2 +

∑
s d(s)(µ̂0 + µ̂1s). The curvature of J as

a function of θ is completely determined by the Lagrangian term −λ‖θ‖2
2.

• When µ̂2 = µ̂3, J(θ, µ̂) = (µ̂2 + µ̂3)πθ(A = 1|S = 1)−λ‖θ‖2
2 +

∑
s d(s)(µ̂0 + µ̂1s).

The curvature of J is contributed by the two terms (µ̂2 + µ̂3)πθ(A = 1|S = 1) and

the Lagrangian term.

• When µ̂2 = −µ̂3, J(θ, µ̂) = (µ̂2 − µ̂3)πθ(A = 1|S = −1)− λ‖θ‖2
2 +

∑
s d(s)(µ̂0 +

µ̂1s). The curvature of J is contributed by the two terms (µ̂2−µ̂3)πθ(A = 1|S = −1)

and the Lagrangian term.
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Figure 2.1: Plug in variance estimation as a function of
µ̂2 and µ̂3, x axis represents µ̂t,2, y axis represents µ̂t,3 and z axis represents the plug-in
asymptotic variance of θ̂0 with λ = 0.1

Due to large areas of valley the plug-in variance estimation is biased down, a direct

consequence of which is the anti-conservatism of the Wald confidence intervals. We per-

form a simulation study using the toy generative model described above. The simulation

consists of 1000 repetitions of running the online actor critic algorithm and recording the

end-of-study statistics, including the plugin variance estimate, the Wald confidence inter-

vals and the theoretical Wald confidence intervals based on the true asymptotic variance.

The first two columns in table 2.1 show the bias of plug-in variance at different sample

sizes. At all three different sample sizes, the plug-in variance estimator underestimates

the true asymptotic variance, which is 293.03 for both policy parameters. Column 3 and

column 4 show the coverage rate of the Wald-type confidence interval (CI) using the plug-

in estimated variance. It is not surprising that the confidence intervals suffer from severe

anti-conservatism, a consequence of the heavily biased variance estimation. Column 5 and

6 show the coverage rate of the Wald-type confidence interval based on the true asymptotic

variance. Comparing the coverage rates, it is clear that the anti-conservatism is due to the

underestimated variance.
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To detail how the confidence interval coverage is connected with the estimated reward

parameter (µ̂2, µ̂3), figure 2.2 and figure 2.3 present two scatter plots of µ̂2, µ̂3 for the

1000 simulated datasets at sample size 100 and 500. Different colors are used to mark the

datasets where the confidence intervals of both θ0 and θ1 cover the true parameter (blue),

only one of them cover the truth (green), neither of them covers the truth (fading yellow).

The true parameter are marked with a red asterisk. Indeed the yellow points and green

points are in the “valleys”. Some of the blue points are away from truth, but nevertheless

they remain on the ridge, which produces a high variance estimate. Comparing the two

scatter plots, as the sample size increases, the estimated reward parameter is less spread

out. Nevertheless there are still significantly many pair of µ̂2, µ̂3 that fall in the “valleys”,

leading to a underestimated variance and anti-conservative confidence intervals.
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Figure 2.4 shows the histogram for the normalized distance
ˆ√
T (θi−θ∗i )

V̂i
for i = 0, 1 where

T = 100. This is the distance between the estimated and the true optimal policy param-

eter normalized by the estimated asymptotic variance. For the Wald confidence intervals

to have descent coverage, histogram of the normalized distances need to approximate a

standard normal distribution. However, as figure 2.4 suggests, the histograms have heavier

tails compared to a standard normal due to the underestimated variance. The figure also

suggests that the percentile-t bootstrap confidence intervals can be a good remedy.
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Figure 2.4: Histograms of the normalized distance
ˆ√
T (θi−θ∗i )

V̂i
for i = 0, 1 at sample size 100

2.4.2 Bootstrap Confidence intervals

Our solution to the anti-conservative Wald confidence interval is the bootstrap confidence
interval. Upon completion of the online actor critic algorithm with a total number of T
decision points, we have recorded a sequence of contexts {Si}Ti=1 and rewards {Ri}Ti=1. We
also have the estimated reward parameter µ̂T and optimal policy θ̂T estimated at the very
last decision point. The sample of reward noise is created by {εt = Rt−f(St, At)

TµT}Tt=1.
We obtain a bootstrap sample for the estimated optimal policy θ̂bT as described in algorithm
4. In generating the bootstrapped samples, the sequence of contexts are fixed both in their
values and order as {Si}Ti=1. At each decision point, the algorithm chooses an action based
on the estimated optimal policy from the previous decision point. A bootstrapped residual
is then generated by sampling without replace from {εt}Tt=1 to create a bootstrapped reward
Rb
t . The critic and the actor then update their estimates just like algorithm 3. At the exit

of algorithm 4 (at decision point T ), we obtain a pair of µ̂bT and θ̂bT . We use the pair
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to obtain a plug-in variance estimate V̂ b. Repeating algorithm 4 for a total of B times
to get a bootstrap sample of the estimated optimal policy {θ̂bT}Bb=1 and plug-in variance
estimates {V̂ b

T}Bb=1. We create bootstrap percentile-t confidence intervals for θ∗i , the i-th
component of the optimal policy parameter. For each θ∗i , we use the empirical percentile

of {
√
t(θ̂bT,i−θ̂T,i)√

V̂ bT
}Bb=1, denoted by pα to replace the normal distribution percentile in Wald

confidence intervals. A (1− 2α)% confidence interval is

[θ̂T,i − pα
V̂i√
T
, θ̂T,i + pα

V̂i√
T

] (2.28)

where θ̂T,i is the i-th component of θ̂T .

Algorithm 4: Generating a bootstrap sample θbT , V̂
b
T

Inputs: The observed context history {St}Tt=1. A bootstrap sample of residuals
{εbt}Tt=1

Critic initialization: B(0) = ζId×d, a d× d identity matrix. A(0) = 0d is a d× 1

column vector.
Actor initialization: θ0 is the best treatment policy based on domain theory of
historical data.
while t < T do

Context is St ;
Draw an action Abt according to policy πθ̂bt ;
Generate a bootstrap reward Rb

t = f(St, A
b
t)
TµT + εbt ;

Critic update:
B(t) = B(t− 1) + f(St, At)f(St, At)

T , A(t) = A(t− 1) + f(St, At)R
b
t ;

µ̂bt = A(t)−1B(t) ;
Actor update:

θ̂bt = argmax
θ

1

t

t∑
τ=1

∑
a

f(Sτ , a)T µ̂btπθ(A = a|St)− λθT [
1

t

t∑
τ=1

g(Sτ , 1)Tg(Sτ , 1)]θ

Go to decision point t+ 1 ;

end
Plugin µbT and θbT to 2.26 to get a bootstrapped variance estimate V̂ b.
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2.5 Appendix

Proof of theorem 1.

Proof. Based on the expression of µ̂t, its L2 distance from µ∗ is

|µ̂t − µ∗|2 = A(t)B(t)−1B(t)−1A(t) + op(1) (2.29)

=
A(t)

t
(
B(t)

t
)−1(

B(t)

t
)−1A(t)

t
+ op(1) (2.30)

where A(t) and B(t) are defined in algorithm 3. The two steps to prove that |µt−µ∗|22 → 0

in probability are

1. B(t)−1

t
is bounded with probability going to 1, and

2. A(t)
t

converges to 0 in probability.

To prove the first step, we construct a matrix-valued martingale difference sequence.
Define K(θ) = Eθ[f(S,A)f(S,A)T ] =

∑
s d(s)

∑
a f(s, a)f(s, a)Tπθ(A = a|S = s)

Xi = f(Si, Ai)f(Si, Ai)
T − E(f(Si, Ai)f(Si, Ai)

T |Fi)

= f(Si, Ai)f(Si, Ai)
T −

∑
s

d(s)
∑
a

f(s, a)f(s, a)Tπθi−1
(a|s)

= f(si, ai)f(si, ai)
T −K(θi−1)

where the filtration Fi = σ{θ̂j, j ≤ i − 1} is the sigma algebra expand by the estimated
optimal policy before decision point i. By assumption 5, the sequence of random matrices
{Xi} are uniformly bounded. Applying the matrix Azuma inequality in [83], it follows that

λmax(
B(t)

t
−

∑t
i=1K(θi−1)

t
)→ 0 in probability

λmin(
B(t)

t
−

∑t
i=1K(θi−1)

t
)→ 0 in probability

Let the operators λmin and λmax represent the smallest and the largest eigenvalue of a
matrix.
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λmin(
B(t)

t
) = λmin(

B(t)

t
−

∑t
i=1K(θi−1)

t
+

∑t
i=1K(θi−1)

t
)

≥ λmin(
B(t)

t
−

∑t
i=1K(θi−1)

t
) + λmin(

∑t
i=1K(θi−1)

t
)

By assumption 7, the second term λmin(
∑t
i=1K(θi−1)

t
) is bounded with probability going

to 1. Hence we have shown that the minimal eigenvalue of B(t)
t

is bounded with probability
going to 1. Using the same proving techniques we can show that the maximal eigenvalue
of (B(t)

t
)−1 is bounded with probability going to 1.

The second step in proving theorem 1 is standard. Using the same filtration Fi, we
construct vector-valued martingale difference sequence Yi = f(Si, Ai)εi. The sequence
has bounded variance under assumption 5. The in-probability convergence of A(t)

t
to 0

follows immediately by applying the vector-valued Azuma inequality [33].

Proof of theorem 2:

Proof. Proof of the theorem consists of two steps. As the first step, we claim that if a
sequence µt converges to µ∗, θ̃t = argmaxθJ(θ, µt) converges to θ∗. By Lemma 9.1 in
[36], J(θ, µ) is an absolute continuous function. We proof the claim by contradiction.
Suppose the claim does not hold, i.e. there exist ε such that ‖θ̃t − θ∗‖2 ≥ ε for all t
by taking a subsequence if necessary. The optimality of θ̃t implies that the inequality
J(θ̃t, µt) ≥ J(θ∗, µt) holds for all t. Since θ̃t is bounded, it converges to an accumulation
point θ̃ by taking a subsequence if necessary. Let t → ∞ we have J(θ̃, µ∗) ≥ J(θ∗, µ∗).
On the other hand ‖θ∗∗ − θ∗‖2 ≥ ε, which contradicts with assumption 1.

As the second step, we prove that the following M estimator converges uniformly in a
neighborhood of µ∗, namely

θµt = argmaxθĴt(θ, µ)→ θµ = argmaxθJ(θ, µ) (2.31)

in probability, and uniformly over all µ in a neighborhood of µ∗. Arguments in the proof
are parallel to those in Theorem 9.4 in [36]. The key is to observe that the class of random
functions {j(θ, µ, s) : θ ∈ Rp, |µ|2 ≤ 1} are Glivenko-Cantelli.

Proof of theorem 3
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Proof.

µt − µ∗ = (ζId +
t∑
i=1

f(Si, Ai)f(Si, Ai)
T )−1(

t∑
i=1

f(Si, Ai)εi − µ∗)

= (
ζId +

∑t
i=1 f(Si, Ai)f(Si, Ai)

T

t
)−1
√
t

∑t
i=1 f(Si, Ai)εi

t
+ op(1)

Based on the consistency of θt, we have that ζId+
∑t
i=1 f(Si,Ai)f(Si,Ai)

T

t
converges in prob-

ability to Eθ∗(f(S,A)f(S,A)T . Now it is the key to analyze the asymptotic distribu-
tion of the martingale difference sequence {f(Si, Ai)εi}ti=1. With respect to filtration
Ft,j = σ({Si, Ai, εi}ji=1). Define M∗ = [Eθ∗(f(S,A)f(S,A)T )]−1/2 and a martingale
difference sequence {ξt,i = M∗f(si,ai)εi√

t
}ti=1 which is adapted to the filtration Ft,j and satis-

fies E(ξt,i|Ft,i−1) = 0, To apply vector Lindberg-Levy central limit theorem for martingale
difference sequences [11], we check the two conditions in this theorem:

1. The conditional variance assumption.

Vt =
t∑
i=1

E(ξ2
t,i|Ft,i−1)

=
1

t

t∑
i=1

M∗Eθi−1
(f(s, a)f(s, a)T )M∗

converges in probability to Idσ2 by consistency of θt.

2. The Lindeberg condition. For any given δ > 0,

t∑
i=1

E(ξ2
t,iI(‖ξt,i‖2 > δ)|Ft,i−1)

=
1

t

t∑
i=1

E(M∗f(Si, Ai)f(Si, Ai)
T ε2iM

∗I(‖M∗f(Si, Ai)εi‖1 >
√
tδ)|Ft,i−1)

≤1

t

t∑
i=1

E(M∗f(Si, Ai)f(Si, Ai)
T ε2iM

∗I(‖M∗f(Si, Ai)‖2ε
2
i >
√
tδ)|Ft,i−1)

By assumption 5 f(S,A) are bounded almost surely, therefore the above expression
goes to 0 as t→ 0.

The Lindberg-Levy martingale central limit theorem concludes that

39



t∑
i=1

ξt,i → N(0d, Idσ
2) in distribution

Therefore

√
t(µ̂t − µ∗)→ N(0d, [Eθ∗(f(S,A)f(S,A)T )]−1σ2) (2.32)

Proof of theorem 4.

Proof. We first prove that

Gtjθ(µ̂t, θ̂t, S)−Gtjθ(µ
∗, θ∗, S) = op(1) (2.33)

, where Gt =
√
t(Pt − P ), the empirical process induced by the “marginal” stochastic

process {Si}ti=1 formed by the history of contexts. The “full” stochastic process involves
the sequence of triples {Si, Ai, εi}ti=1, the complete history of contexts, actions and reward
errors. We consider the class of functionsF = {jθ(µ, θ, s) : ‖θ−θ∗‖2 ≤ δ, ‖µ−µ∗‖2 ≤ δ},
where jθ(µ, θ, s) is the partial derivative with respect to θ of function:

j(µ, θ, s) =
∑
a

f(s, a)Tµπθ(s, a)− λθTg(s)g(s)T θ

The boundedness assumption on reward feature, policy feature and reward ensures that the
parametrized class of functions jθ(µ, θ, s) is P-Donsker in a neighborhood of (µ∗, θ∗). In
other words F is P-Donsker, where P is the distribution of the marginal stochastic process
formed by contexts. We complete the first part of the proof by modiftying Lemma 19.24 in
[85]. It may seem that the dependence of µ̂t and θ̂t on the full stochastic process could in-
troduce complexity but a closer inspection shows that the proof goes through. The random
function jθ(µ̂t, θ̂t, S) belongs to the P-Donsker class defined above and satisfies that

∑
s

d(s)(jθ(µ̂t, θ̂t, s)− jθ(µ∗, θ∗, s))2 → 0

in probability. This is a result of the consistency of both µ̂t and θ̂t, as well as apply-
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ing the continuous mapping theorem. By theorem 18.10(v) in [85], (Gt, jθ(µ̂t, θ̂t, s)) →
(Gp, jθ(µ

∗, θ∗, s)) in distribution, where Gp is the P-Brownian bridge. The key here is that
theorem 18.10 only relies on the convergence of two stochastic processes, regardlessly of
whether the stochastic processes consist of i.i.d. observations and whether or not the two
processes are dependent. By Lemma 18.15 in [85], almost all sample paths of Gp are con-
tinuous on F . Define a mapping h : l(F)∞×F → R by h(z, f) = z(f)− z(jθ(µ

∗, θ∗, s)),
which is continuous at almost every point of (Gp, jθ(µ

∗, θ∗, s)). By the continuous mapping
theorem, we have

Gt(jθ(µ̂t, θ̂t, s)− jθ(µ∗, θ∗, s)) = h(Gt, jθ(µ̂t, θ̂t, s))→ h(Gp, jθ(µ
∗, θ∗, s)) = 0

in distribution and thus in probability, therefore 2.33 holds.
The second part of the proof begins by noticing that θt satisfies the estimating equation

Ptjθ(µ̂t, θ̂t, s) = 0, so we have

Gtjθ(µ̂t, θ̂t, s) =
√
t(Pjθ(µ

∗, θ∗, s)− Pjθ(µ̂t, θ̂t, s))

=
√
t(Jθ(µ

∗, θ∗)− Jθ(µ̂t, θ̂t))

=
√
tJ∗θθ(θ

∗ − θt) +
√
tJ∗θµ(µ∗ − µ̂t) +

√
top(‖θ̂t − θ∗‖) + op(1)

Together with 2.33 the above implies

√
t(θ∗ − θ̂t) = (J∗θθ)

−1J∗θµ
√
t(µ̂t − µ∗) +

√
top(‖θ̂t − θ∗‖) + (J∗θθ)

−1Gtjθ(µ
∗, θ∗, s) + op(1)

= Op(1) +
√
top(‖θ̂t − θ∗‖)

where J∗θθ and J∗θµ are Jθθ and Jθµ evaluated at (θ∗, µ∗). The
√
t consistency of θ̂t follows

through. Now 2.34 has become

√
t(θ∗ − θ̂t) = (J∗θθ)

−1J∗θµ
√
t(µ̂t − µ∗) + (J∗θθ)

−1Gtjθ(µ
∗, θ∗, S) + op(1) (2.34)

Since both the two non-vanishing terms on the righthand side are asymptotically normal
with zero mean,

√
t(θ∗ − θt) is asymptotically normal. The only task left is to derive the

asymptotic variance. Plugging in the formula for µ̂t, we have
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√
t(θ∗ − θ̂t) = (J∗θθ)

−1

∑t
i=1 J

∗
θµB

∗f(Si, Ai)εi + jθ(µ
∗, θ∗, Si)

t
+ op(1)

= (J∗θθ)
−1

t∑
i=1

ζt,i + op(1)

where B∗ = (M∗)2 = [Eθ∗f(S,A)f(S,A)T ]−1. {ζi =
J∗
θµB

∗f(Si,Ai)εi+jθ(µ∗,θ∗,Si)

t
}ti=1 is

a martingale difference sequence with asymptotic variance

t∑
i=1

E(ζ2
t,i|Ft,i)

=
1

t

t∑
i=1

E(ε2i g
∗
θµB

∗f(Si, Ai)f(Si, Ai)
TB∗g∗µθ

+ jθ(µ
∗, θ∗, Si)jθ(µ

∗, θ∗, Si)
T − 2JθµB

∗f(Si, Ai)jθ(µ
∗, θ∗, Si)

T εi|Ft,i)

=
1

t

t∑
i=1

σ2J∗θµB
∗Eθi−1

(f(S,A)f(S,A)T )B∗J∗µθ +
∑
s

d(s)jθ(µ
∗, θ∗, s)jθ(µ

∗, θ∗, s)T

which converges in probability to V ∗ = σ2J∗θµB
∗J∗µθ +

∑
s d(s)jθ(µ

∗, θ∗, s)jθ(µ
∗, θ∗, s)T .

Therefore the asymptotic variance of
√
t(θ∗ − θt) is (J∗θθ)

−1V ∗(J∗θθ)
−1.

42



CHAPTER 3

Numerical Experiments

In this section, we use numerical experiments to test the performance of actor-critic al-
gorithm and the bootstrap confidence intervals proposed in the previous sections under a
variety of generative models. In section 3.1, we first assess the accuracy of the estimated
optimal policy parameters and the conservatism of the bootstrap confidence intervals when
contexts at different decision points are i.i.d.. We expect the estimated optimal policy pa-
rameters to converge to the population optimal policy parameter as the total number of
decision points T increases. In section 3.2, the context dynamics deviate from i.i.d. and are
instead generated by a first degree auto regression process (AR(1)): context distribution at
decision point t+ 1 depends on the context at decision point t. We expect the performance
of the algorithm and the estimated optimal policy to be pretty robust. In section 3.3.1 and
3.3.2, we create generative models that break the most crucial assumption in contextual
bandit that actions do not influence future context. We allow distributions of the contexts
to depend on previous actions in three different ways. In section 3.3.1, one component
of the contexts is affected by previous actions through a learning effect: users pick up the
skills through previous mobile interventions to maintain healthy habit. In section 3.3.2, one
component of the contexts is affected by previous actions through a burden effect, which
describes overly-frequent intervention tends to disengage the users. In both section 3.3.1
and 3.3.2, there is a parameter, ν for the learning effect and τ for the burden effect, that
controls the size of the effect, or the amount of violation from the contextual bandit as-
sumption that the previous actions do not influence future context. We evaluate how the
performance of the contextual bandit actor critic algorithm deteriorates when the amount
of violation increases.

The generative model is motivated by the Heartsteps application for improving daily
physical activity [39, 20]. Heartsteps is mobile health application seeking to reduce users’
sedentary behavior and increase physical activity such as walking and running. Installed on
Android smartphones, this application is paired with Jawbone wristband to monitor users’
activity data such as the total step counts everyday as well as the distribution of steps count
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across different location and time of the day. Heartsteps can also access users’ current
location, weather conditions, time of the day and day of the week. Heartsteps provides
suggestions for physical activity. For the purpose of testing the actor critic algorithm, our
generative model foregoes some of complexities in Heartsteps application and focuses on
suggestion for physical activity only. There are three decision points, appropriate time
points for intervention, everyday: one in the morning, one the afternoon and one in the
evening. At each decision point, Heartstep decides whether to “push” a suggestion for
physical activity At = 1 or remain silent At = 0. The decision is tailored to users’ current
contexts. For simplicity our simulation assumes that the context at decision point t consists
of three components: St = [St,1, St,2, St,3]. The three components are:

• St,1 = weather, with St,1 = −∞ being extremely severe and unfriendly weather for
any outdoor activities and St,1 =∞ being the opposite.

• St,2 reflects users’ learning ability from previous physical activity suggestions. St,2 =

∞ represents that the user has picked up all the skills to maintain a high level of daily
physical activity while St,2 = −∞ represents the opposite.

• St,3 is a composite measure of disengagement or feeling of burden to HeartSteps
application. St,3 = −∞ reflects an extreme state that the user is paying full attention
to HeartSteps and willing to follow any its activity suggestions and St,3 = ∞ being
the opposite.

The goal of Heartstep is to reduce users’ sedentary behavior. We define the cost to be the
per hour sedentary time between two decision points. Cost at a decision point depends on
both the previous action and the previous context. In our simulation, the cost is generated
according the following linear model:

Ct = 10− .4St,1 − .4St,2 − At × (0.2 + 0.2St,1 + 0.2St,2) + 0.4St,3 + ξt,0

where ξt,0 follows i.i.d. with standard normal distribution. In this linear model, higher
values of S1 and S2, good weather and higher learning effect, are associated with less
sedentary time while a higher value of S3, disengagement, leads to increased sedentary
time. The negative main effect of At indicates that physical activity suggestion (At = 1)
has an treatment effect on reducing sedentary behavior compared to no suggestion At =

0. The negative interaction effects between At and St,1 and between At and St,2 reflect
that physical activity suggestions are more effective when the weather condition is activity
friendly or the users are equipped with good learning skills.
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We study the class of parametrized policies that include all three components of con-
text as candidate tailoring variables. The probability of recommending a physical activity
suggestion is given by the following logistic function.

πθ(A = 1|S = [S1, S2, S3]) =
eθ0+θ1S1+θ2S2+θ3S3

1 + eθ0+θ1S1+θ2S2+θ3S3

The long term average cost under policy πθ is:

C(θ) =
∑
s

dθ(s)
∑
a

E(C|S = a,A = a)πθ(A = a|S = s)

where dθ(s) is the stationary distribution of context under policy πθ. When actions have
no impact on context distributions, the stationary distribution d(s) does not depend on the
policy parameter θ. In this case, the long term average cost reduces to the average cost:

C(θ) =
∑
s

d(s)
∑
a

E(C|S = a,A = a)πθ(A = a|S = s)

This is true, for example, for the types of generative model we shall investigate in section
3.1 and 3.2. The types of generative model we investigate in section 3.3.1 and 3.3.2 al-
low actions to impact context distributions at future decision points. There, the stationary
distribution of context depends on the policy parameter θ. A stochasticity constraint spec-
ifies the proportion of contexts for which a minimal amount of exploration probability is
guaranteed. As mentioned in section **, the stochasticity constraint is introduced to pre-
vent habituation and facilitate learning.The stochasticity constraint specifies that for at least
100(1− α)% context, there is at least p0 probability of selecting both actions:

P [p0 ≤ πθ(A = 1|St) ≤ 1− p0] ≥ 1− α

A sufficient and smoother condition to satisfy the stochasticity constraint is the following
quadratic constraint:

θT
∑
s

dθ([1, s1, s2, s3][1, s1, s2, s3]T )θ ≤ (log(
p0

1− p0

))2α (3.1)

In all of the simulations shown below, we use α = 0.1 and p0 = 0.1 unless otherwise
specified.

The optimal policy θ∗ and the oracle λ∗. Theory established in section 2.1.2 has
that for every pair of (p0, α) there exists a Lagrangian multiplier λ∗ such that the optimal
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solution to the regularized average cost function:

θ∗ = argmin
θ

C(θ) + λθT
∑
s

dθ([1, s1, s2, s3][1, s1, s2, s3]T )θ (3.2)

satisfies the quadratic constraint with equality. Furthermore, λ increases as the stringency
of the quadratic constraint: increased value of λ is associated with a decreased value of
the quadratic term θ∗T

∑
s dθ∗([1, s1, s2, s3][1, s1, s2, s3]T )θ∗. For a fixed pair of (p0, α), we

perform a line search to find the smallest λ, denoted as λ∗, such that the minimizer to the
regularized average cost, denoted as θ∗ satisfies the quadratic constraint. We recognize the
difficulty in solving the optimization problem due to the non-convexity of the regularized
average cost function. In search for a global minimizer, we therefore use grid search,
for a given λ, to find a crude solution to the optimization problem. We then improve the
accuracy of the optimal solution using pattern search function. The regularized average cost
function is approximated by Monte Carlo samples. 5000 Monte Carlo samples are used to
approximate the regularized average cost for simulation in section 3.1 and 3.2 where the
stationary distribution of contexts does not depend on the policy. For the simulations in
section 3.3.1 and 3.3.2 where context distribution depends on the policy, we generate a
trajectory of 100000 Monte Carlo samples and truncate the first 10% of the samples to
approximate the stationary distribution.

Estimating lambda online. In practice the decision maker has no access to the oracle
Lagrangian multiplier λ∗. A natural remedy is to integrate the estimation of λ∗ with the
online actor critic algorithm that estimates the policy parameters. An actor critic algorithm
with a fixed Lagrangian multiplier solve the “primal” problem while the “dual” problem
searches for λ∗. Our integrated algorithm performs a line search to find the smallest λ
such that the estimated optimal policy satisfies the quadratic constraint. The stationary
distribution of the contexts is approximated by the empirical distribution. Estimating λ

can be very time consuming, therefore in our simulation the algorithm performs the line
search on λ every 10 decision points. Similar ideas with gradient based updates on λ

have appeared in reinforcement literature to find the optimal policies in constrained MDP
problems, see [12, 8] for examples.

Simulation details The simulation results presented in the following sections are based
on 1000 independent simulated users. For each simulated user, we allow a burn-in period of
20 decision points. During the burn-in period, actions are chosen by fair coin flips. After the
burn-in period, the online actor critic algorithm is implemented to learn the optimal policy
and obtain an end-of-study estimated optimal policy at the last decision point. Both bias and
MSE shown in all of the following tables are averaged over 1000 end-of-study estimated
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optimal policies. For each simulated user the 95% bootstrapped confidence intervals for
θ∗ is based on 500 bootstrapped samples generated by algorithm 4. We expect with 95%

confidence that the empirical coverage rate of a confidence interval should be within 0.936

and 0.964, if the true confidence level is 0.95.

3.1 I.I.D. Contexts

In this generative model, we choose the simplest setting where contexts at different deci-
sion points are i.i.d.. We simulate context {[St,1, St,2, St,3]}Tt=1 form a multivariate normal
distribution with mean 0 and identity covariance matrix. The population optimal policy
is θ∗ = [0.417778, 0.394811, 0.389474, 0.001068] at λ∗ = 0.046875. Table 3.1 and table
3.2 list bias and mean squared error (MSE) of the estimated optimal policy parameters.
Both measures shrink towards 0 as T , sample size per simulated user, increases from 200
to 500, which is consistent with the convergence in estimated optimal policy parameter
as established in Theorem 2. Table 3.3 shows the empirical coverage rates of percentile-t
bootstrap confidence interval at sample sizes 200 and 500. At sample size 200, the empir-
ical coverage rates are between 0.936 and 0.964 for all θi’s. At sample size 500, however,
the bootstrap confidence interval for θ2 is a little conservative with an empirical coverage
rate of 0.968. The symmetric Efron bootstrap confidence intervals are anti-conservative at
sample size 200 but have descent coverage at sample size 500, as shown in table 3.4.

T(sample size) θ0 θ1 θ2 θ3

200 −0.081 −0.090 −0.089 0.010

500 −0.053 −0.037 −0.034 −0.002

Table 3.1: I.I.D. contexts: bias in estimating the optimal policy parameter. Bias=E(θ̂t)−θ∗.

T(sample size) θ0 θ1 θ2 θ3

200 0.054 0.052 0.052 0.055

500 0.027 0.024 0.021 0.029

Table 3.2: I.I.D. contexts: MSE in estimating the optimal policy parameter.
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T(sample size) θ0 θ1 θ2 θ3

200 0.962 0.942 0.938 0.945

500 0.96 0.948 0.968 0.941

Table 3.3: I.I.D. contexts: coverage rates of percentile-t bootstrap confidence intervals for
the optimal policy parameter.

T(sample size) θ0 θ1 θ2 θ3

200 0.946 0.92* 0.921* 0.939

500 0.947 0.937* 0.952* 0.945

Table 3.4: I.I.D. contexts: coverage rates of Efron-type bootstrap confidence intervals for
the optimal policy parameter. Coverage rates significantly lower than 0.95 are marked with
asterisks (*).

If we change the estimation goal by imposing a stringent stochasticity constraint, the
learning rate of the actor critic algorithm slows down. To see this, we compare two sets
of experiments. One is conducted with α = ps = 0.1 in the stochasticity constraint.
There is at least 90% of the contexts there is at least 10% chance of selecting both actions.
Results of the experiment have been shown in tables 3.1 through table 3.4. The other set
of experiment is conducted with α = 0.2 and ps = 0.1; that is, under this specification
there is at least 10% probability of choosing both actions for at least 80% of the contexts.
In a nutshell, we enforce less stochasticity in the optimal policy in the second experiment
setting. The Lagrangian multiplier λ∗ = 0.046875 in the first experiment setting while
in the second experiment setting we have λ∗ = 0.0281. In the latter setting, minimizing
the regularized average cost 3.2 becomes a harder optimization problem due to the lack
of curvature of regularized average cost at the optimal policy. A regularized average cost
function with a smaller λ∗ is “flatter” around the optimal policy. Comparing the curvature
of the regularized average cost function at the optimal, Hessian matrix in the first setting has
a condition number of 1.25 and determinant 1.9654e− 04 while the Hessian matrix in the
second setting has a condition number of 1.30 and a determinant 4.3702e−05. On top of the
increased difficulty in optimization, the online actor critic algorithm explores less when the
stochasticity constraint is more stringent, which makes the learning of optimal policy less
efficient. The combination of these two reasons contribute to a performance degradation
of the algorithm in the second experiment. In the second experiment the oracle lambda
is λ∗ = 0.028 and the optimal policy is θ∗ = [0.574245, 0.529603, 0.531282,−0.000]

which is a more deterministic policy than the optimal policy in the first experiment with
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θ∗ = [0.417778, 0.394811, 0.389474, 0.001068] at λ∗ = 0.046875. Table 3.5 and table 3.6
list the bias and MSE in the second experiment setting. Both the bias and MSE diminish
towards 0 as sample size increases, albeit at a slower rate than that in the first experiment.
Table 3.3 and table 3.7 shows that the percentile-t bootstrap confidence intervals for θ1 and
θ2 are anti-conservative at sample size 200 while in the first experiment confidence intervals
attain descent coverage at the same sample size.

T(sample size) θ0 θ1 θ2 θ3

200 −0.109 −0.105 −0.117 0.015

500 −0.054 −0.030 −0.038 −0.002

Table 3.5: I.I.D. contexts with a lenient stochasticity constraint: bias in estimating the
optimal policy parameter. Bias=E(θ̂t)− θ∗

T(sample size) θ0 θ1 θ2 θ3

200 0.121 0.107 0.104 0.106

500 0.056 0.047 0.046 0.055

Table 3.6: I.I.D. contexts with a lenient stochasticity constraint: MSE in estimating the
optimal policy parameter.

T(sample size) θ0 θ1 θ2 θ3

200 0.962 0.929* 0.926* 0.95

500 0.968 0.941 0.954 0.951

Table 3.7: I.I.D. contexts with a lenient stochasticity constraint: coverage rates of
percentile-t bootstrap confidence interval. Coverage rates significantly lower than 0.95
are marked with asterisks (*).

3.2 AR(1) Context

In this section we study the performance of the actor critic algorithm when the dynamics of
the context is an auto-regressive stochastic process. We envision that in many health appli-
cations, contexts at adjacent decision points are likely to be correlated. Using HeartSteps
as an example, weather (S1) at two adjacent decisions points are likely to be similar so are
users’ learning ability (S2) and disengagement level S3. One way to incorporate the corre-
lation among contexts at near-by decision points is through a first degree auto-regression
process. We simulate the context according to
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St,1 = 0.4St−1,1 + ξt,1,

St,2 = 0.4St−1,2 + ξt,2,

St,3 = ξt,3

Here we choose ξt,1 ∼ N(0, 1− 0.42), ξt,2 ∼ N(0, 1− 0.42) and ξt,3 ∼ N(0, 1) so that the
stationary distribution of St is multivariate normal with zero mean and identity covariance
matrix, same as the distribution of St in the previous section. The initial distribution of
St, t = 1 is a multivariate standard normal.

The oracle Lagrangian multiplier is λ∗ = 0.05 and the population optimal policy is
θ∗ = [0.417, 0.395, 0.394, 0], same as in the i.i.d. experiment. Bias and MSE of the esti-
mated policy parameters are shown in table 3.8 and table 3.9. Empirical coverage rate of
the percentile t bootstrap confidence interval is reported in table 3.10. Both the bias and
MSE diminish towards 0 as the sample size increases from 200 to 500, a clear indication
that convergence of the algorithm is not affected by the auto-correlation in context. The
bootstrap confidence interval for θ3 is anti-conservative at sample size 200, but recovers
descent coverage at sample size 500.

T(sample size) θ0 θ1 θ2 θ3

200 −0.093 −0.089 −0.076 0.006

500 −0.046 −0.032 −0.040 −0.005

Table 3.8: AR(1) contexts: bias in estimating the optimal policy parameter. Bias=E(θ̂t)−θ∗

T(sample size) θ0 θ1 θ2 θ3

200 0.058 0.053 0.047 0.057

500 0.025 0.022 0.024 0.028

Table 3.9: AR(1) contexts: MSE in estimating the optimal policy parameter

T(sample size) θ0 θ1 θ2 θ3

200 0.963 0.952 0.957 0.927*

500 0.969 0.962 0.96 0.949

Table 3.10: AR(1) contexts: coverage rates of percentile-t bootstrap confidence intervals.
Coverage rates significantly lower than 0.95 are marked with asterisks (*).
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We continue investigating the influence of auto-correlation on the learning rate, the rate
at which MSE in policy estimation shrinks towards 0. To do so, we simulate contexts
from the following dynamics and compare the MSE when the auto-regression coefficient η
ranges from 0 to 0.9:

St,1 = ηSt−1,1 + ξt,1,

St,2 = ηSt−1,2 + ξt,2,

St,3 = ξt,3

Both St,1 and St,2 are generated from first degree auto-regressive process with coefficient
η while we leave St,3 as i.i.d.. The noise terms ξt,1 and ξt,2 are independently normally
distributed with mean 0 and standard deviation

√
1− η2 so that the long-term stationary

distribution of St,1 and St,2 are standard normals. ξt,3 has a standard normal distribution.
The auto-regression coefficient η is directly related to the (partial) auto-correlation coeffi-
cient and captures the amount of dependency between contexts at adjacent decision points.
Figure 3.1 and Figure 3.2 show how relative MSE, relative to the MSE when η = 0, for
the estimated optimal policy parameters changes as the auto-regressive coefficient η in-
creases. The relative MSE for θ1 and θ2 has a general increasing pattern as η increases,
indicating that stronger auto-correlation among contexts at adjacent decision points slows
down the learning rate. MSE for θ3, the coefficient for S3, is not grossly affected by the
auto-correlation in S1 and S2 compared to the other three coefficients.
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Figure 3.1: Relative MSE vs AR coefficient η at sample size 200. Relative MSE is relative
to the MSE at η = 0.
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Figure 3.2: Relative MSE vs AR coefficient η at sample size 500. Relative MSE is relative
to the MSE at η = 0.

3.3 Context is Influenced by Previous Actions

We realized that, in many health applications, actions may influence the distribution of
contexts, albeit to a minimal extend. For example, the variety of Heartsteps suggestions
broaden users’ knowledge on how to keep themselves active, which reduces users’ seden-
tary time. We refer to such effect of actions on context as a learning effect. On the other
hand, if HeartSteps application annoys the users with high volume of activity suggestions,
some users may experience a burden effect. Burden effects are due to intervention burden.
They cause a overall feeling of burden and lack of engagement, which could be eventually
reflected on an increase in users’ sedentary time. In this section, we first investigate the
performance of actor critic algorithm when a learning effect presents. Later we investigate
performance of the algorithm when there is a burden effect.

3.3.1 Learning Effect

In this section, we study how actor critic algorithm behaves under a generative model with a
learning effect. This generative model represents the type of users who are actively engaged
with Heartsteps application and pick up the skills and tactics to stay active as they use the
application on a daily basis. To incorporate the learning effect in our generative model,
we add a main effect of the previous action in the model of St,2: St,2 increases if there is
a physical activity suggestion At−1 = 1 at the previous decision point. In this generative
model, initial distribution of St (t=1) are simulated from a multivariate normal distribution
with mean 0 and identity covariance matrix. After the first decision point, contexts are
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generated according to the following stochastic process:

ξt ∼ Normal4(0, I),

St,1 = 0.4St−1,1 + ξt,1,

St,2 = 0.4St−1,2 + νAt−1 + ξt,2,

St,3 = ξt,3,

where ν is a parameter that controls the size of the learning effect. When ν = 0, the context
dynamics reduce to a first degree auto-regressive process, the same we investigated in sec-
tion 3.2. We envision that, in real life, the impact on St,2 from the previous action should
not exceed the impact on St,2 from St−1,2, the previous learning ability. Therefore we study
the performance of the actor critic algorithm on three types of users with ν = 0, 0.2, 0.4.
The three types of users, with ν = 0, 0.2, 0.4, are users with no learning, moderate learning
and large learning effect. Table 3.11 lists the optimal policy θ∗ and the oracle λ∗ at the three
different values of ν. Large values of Lagrangian multiplier λ is needed when the size of
learning effect increases so that the quadratic constraint is satisfied by the corresponding
optimal policy. The optimal policy parameter θ∗ follows a pattern that the relative mag-
nitude of θ∗0 compared to the other three coeffients increases as ν increases. This pattern
aligns well with our intuition: for the more enthusiastic learner, Heartsteps should recom-
mend physical activity suggestions more often regardless of the context.

ν λ∗ θ∗0 θ∗1 θ∗2 θ∗3

0.0 0.06 0.341 0.327 0.326 0

0.2 0.08 0.481 0.231 0.231 −0.004

0.4 0.11 0.574 0.161 0.165 0

Table 3.11: Learning effect: the optimal policy and the oracle lambda.

Table 3.12, Table 3.13 and Table 3.14 list the bias, mean squared error (MSE) and the
empirical coverage rate of the bootstrap confidence interval for the optimal policy parame-
ter θ∗ when sample size, the total number of decision points, is 200. Table 3.15, Table 3.16
and Table 3.17 have the same measures for sample size 500. Table 3.12 and Table 3.15
also document the bias in estimating the Lagrangian multiplier online. The bandit actor
critic algorithm estimates the optimal policy parameter with low bias and MSE for users
with no learning effect (ν = 0). Bootstrap confidence intervals have descent coverage. The
results align well with the results obtained from section 3.2. Bias and MSE in estimating
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the optimal policy parameter, notably θ0, θ1 and θ2, increase as the learning effect levels
up. The bias remains stable as sample increases from 200 to 500. Confidence intervals
for θ0, θ1 and θ2 suffer from severe anti-conservatism. Degrading of algorithm is partially
due to the fact that bandit actor critic algorithm chooses policies that minimize the average
cost and does not take into account the effect of policy on the stationary distribution of
contexts. This results in an estimated optimal policy that does not recommend physical
activity suggestion as aggressively as one should, which is reflected on an underestimated
θ0 and positive biases in estimating θ1 and θ2. In addition to the myopic view of the bandit
algorithm, degrading of the algorithm can be partially attributed to the bias in estimating
λ online, as shown in table 3.12 and table 3.15. The oracle Lagrangian multiplier λ∗ is
chosen so that the optimal policy parameter satisfies the quadratic constraint 3.1 while the
online bandit actor critic algorithm estimates the Lagrangian multiplier so that the bandit-
estimated optimal policy satisfies the quadratic constraint. To separate the consequence of
the underestimated λ from the consequence of the myopia of the bandit algorithm, we test
the bandit algorithm using a fixed λ∗. Results of those experiments are shown in table 3.35
through table 3.40 in the appendix. There the optimal policy parameters, especially θ0, are
still estimated with large bias and MSE for users with moderate and large learning effect.

Estimation of θ3, the policy parameter for S3, is pretty robust to the addition of a learn-
ing effect in the generative model. θ3 is estimated with low bias and MSE, which shrink
towards 0 as sample size increases. Moreover, bootstrap confidence intervals for θ3 have
descent coverage rate at different levels of learning effect. Such robustness is critical since
in practice it is important to screen out components of the context, such as S3, that are not
useful for personalizing intervention. We conduct additional experiments with correlated
St,2 and St,3 by simulating (ξt,2, ξt,3) from multivariate normal distribution with mean 0 and
covariance matrix

Σ = [1,−0.3;

−0.3, 1]

. We observe that the quality in estimating θ3 does not change with the introduction of
correlation between S2 and S3. Results are listed in the appendix from table 3.41 through
3.46.
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ν λ∗ θ∗0 θ∗1 θ∗2 θ∗3

0 0.00 −0.021 −0.035 −0.034 0.012

0.2 −0.01 −0.163 0.047 0.047 0.016

0.4 −0.04 −0.262 0.104 0.094 0.012

Table 3.12: Learning effect: bias in estimating the optimal policy parameter while estimat-
ing λ online at sample size 200. Bias=E(θ̂t)− θ∗

ν θ∗0 θ∗1 θ∗2 θ∗3

0 0.048 0.037 0.038 0.044

0.2 0.070 0.035 0.035 0.042

0.4 0.113 0.041 0.037 0.039

Table 3.13: Learning effect: MSE in estimating the optimal policy parameter while esti-
mating λ online at sample size 200.

ν θ0 θ1 θ2 θ3

0 0.97 0.958 0.952 0.947

0.2 0.925* 0.934* 0.93* 0.942

0.4 0.864* 0.886* 0.898* 0.941

Table 3.14: Learning effect: coverage rates of percentile-t bootstrap confidence intervals
for the optimal policy parameter at sample size 200. λ is estimated online. Coverage rates
significantly lower than 0.95 are marked with asterisks (*).

ν λ∗ θ∗0 θ∗1 θ∗2 θ∗3

0 −0.01 0.003 0.011 0.016 −0.002

0.2 −0.02 −0.145 0.086 0.089 0.001

0.4 −0.05 −0.251 0.136 0.134 −0.003

Table 3.15: Learning effect: bias in estimating the optimal policy parameter while
estimatingλ online at sample size 500. Bias=E(θ̂t)− θ∗
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ν θ∗0 θ∗1 θ∗2 θ∗3

0 0.023 0.018 0.016 0.023

0.2 0.042 0.024 0.023 0.020

0.4 0.085 0.034 0.031 0.017

Table 3.16: Learning effect: MSE in estimating the optimal policy parameter while esti-
mating λ online at sample size 500.

ν θ0 θ1 θ2 θ3

0 0.98 0.949 0.963 0.954

0.2 0.907* 0.887* 0.889* 0.95

0.4 0.724* 0.777* 0.778* 0.946

Table 3.17: Learning effect: coverage rates of percentile-t bootstrap confidence intervals
for the optimal policy parameter at sample size 500. λ is estimated online.Coverage rates
significantly lower than 0.95 are marked with asterisks (*).

Another view to the performance of the bandit actor critic algorithm is through the box
plot of the regularized average cost of the estimated optimal policy. Figure 3.3 displays
three side-by-side box plots, one for each value of ν, of the regularized average cost of
the end-of-experiment policies at sample size 200. The three asterisks are the regularized
average costs of the optimal policies in table 3.11. Comparing the three types of users,
the regularized average cost decreases as the learning effect levels up, an artifact that more
learning reduces the sedentary time (cost). The bottom whisker of each box plot stays
above the asterisks. The discrepancy between the optimal regularized average cost and the
median regularized average costs of the end-of-experiment policies increases as the learn-
ing effect elevates, which indicates the worsened quality of the bandit-estimated optimal
policy when the size of the learning effect increases. In addition, variance in regularized
average costs inflates as the learning effect elevates, a consequence of both increased insta-
bility of the algorithm and increased difficulty in solving the optimization problem. Figure
3.4 displays box plots of regularized average costs at sample size 500. As sample size in-
creases, regularized average costs are less variable but their discrepancies from the optimal
policy value remain stable.
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Although our results show no sign that the optimal policy estimated by the bandit actor
critic algorithm will converge to the optimal policy, we observe convergence in the esti-
mated policy as sample size T grows. We conjecture that, when actions affect contexts
distributions, the bandit algorithm converges to the policy πθ∗∗ that satisfies the following
equilibrium equation:

θ∗∗ = argmin
θ

∑
s

dθ∗∗(s)
∑
a

πθ(A = a|S = s)E(C|A = a, S = s)− λ∗∗θTEθ∗∗ [g(S)g(S)T ]θ

(3.3)

where λ∗∗ is the smallest λ such that θ∗∗
∑
s

dθ∗∗(s)g(s)Tg(s)θ∗∗ ≤ (log(
p0

1− p0

))2α

(3.4)

When actions do not influence contexts distributions, the equilibrium equation is the same
system of equations satisfied by the optimal policy. When previous actions have an impact
on context distribution at later decision points, the stationary distribution of context is a
function of policy. We call solution to equation 3.4 the myopic equilibrium policy. The
myopic equilibrium policy minimizes the regularized average cost under the stationary
distribution generated by itself. Such policy achieves an “equilibrium state” and there is no
motivation to leave the current policy. The myopic equilibrium policies for different level
of learning effect are listed in table 3.18. Table 3.19 through table 3.22 list the bias and
MSE in estimating the myopic equilibrium policy when sample size is 200 and 500. Our
conjecture is confirmed by results presented in these tables.

ν θ∗0 θ∗1 θ∗2 θ∗3

0 0.341 0.327 0.326 0

0.2 0.273 0.260 0.260 0

0.4 0.211 0.200 0.200 −0.000

Table 3.18: Learning effect: the myopic equilibrium policy.
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ν θ∗0 θ∗1 θ∗2 θ∗3

0 −0.070 −0.079 −0.078 0.013

0.2 −0.054 −0.065 −0.066 0.012

0.4 −0.042 −0.050 −0.057 0.011

Table 3.19: Learning effect: bias in estimating the myopic equilibrium policy at sample
size 200. Bias=E(θ̂t)− θ∗∗

ν θ∗0 θ∗1 θ∗2 θ∗3

0 0.052 0.042 0.043 0.044

0.2 0.047 0.037 0.037 0.042

0.4 0.046 0.033 0.032 0.039

Table 3.20: Learning effect: MSE in estimating the myopic equilibrium policy at sample
size 200.

ν θ∗0 θ∗1 θ∗2 θ∗3

0 −0.046 −0.032 −0.028 −0.001

0.2 −0.036 −0.025 −0.023 −0.003

0.4 −0.030 −0.018 −0.017 −0.004

Table 3.21: Learning effect: bias in estimating the myopic equilibrium policy at sample
size 500. Bias=E(θ̂t)− θ∗∗

ν θ∗0 θ∗1 θ∗2 θ∗3

0 0.025 0.019 0.017 0.023

0.2 0.023 0.017 0.015 0.020

0.4 0.023 0.015 0.014 0.017

Table 3.22: Learning effect: MSE in estimating the myopic equilibrium policy at sample
size 500.

3.3.2 Burden Effect

In this section, we study behavior of the actor critic algorithm in the presence of an inter-
vention burden effect. Generative model with a burden effect represents the type of users
who disengage with Heartsteps application and the recommend intervention if the appli-
cation provides physical activity suggestions at high frequency. When users experience
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intervention burden effects, they become frustrated and have a tendency of falling back to
their unhealthy behavior which leads to an increase in sedentary time. In our burden effect
generative model, St,3 represents the disengagement level whose value increases if there is
a physical activity suggestion at the previous decision point At−1 = 1. The positive main
effect of St,3 in the cost model 3.5 reflects that higher disengagement level is associated
with higher cost (higher sedentary time). The initial distribution of St are simulated from
multivariate normal distribution with mean 0 and identity covariance matrix . After the first
decision point, contexts are generated according to the following stochastic process:

St,1 = 0.4St−1,1 + ξt,1,

St,2 = 0.4St−1,2 + ξt,2,

St,3 = 0.4St−1,3 + 0.2St−1,3At−1 + 0.4At−1 + ξt,3

We simulate the cost, sedentary time per hour between two decision points, according to
the following linear model:

Ct = 10− .4St,1 − .4St,2 − At × (0.2 + 0.2St,1 + 0.2St,2) + τSt,3 + ξt,0. (3.5)

where parameter τ controls the “size” of the burden effect: the larger τ is, the more severe
burden effect is. We study the performance of on algorithm on five models with τ =

0, 0.2, 0.4, 0.6, 0.8. Different values of τ represent users who experience different levels of
burden effect. τ = 0 represents the type of users who experience no burden effect while
τ = 0.8 represents the type of users who experience a large burden effect.

Table 3.23 lists the oracle λ∗ and the corresponding optimal policy θ∗ at different levels
of burden effect. Higher level of burden effects calls for increased value of oracle λ∗ to
keep the desired intervention stochasticity. The negative sign of θ∗3 at ν ≥ 0.2 indicates that
the application should lower the probability of pushing an activity suggestion when the
disengagement level is high. The magnitude of θ∗3 rises with the size of the burden effect,
implying that as burden effect increases the application should further lower the probability
of pushing activity suggestions at high disengagement level. θ∗0 decreases to be negative
when τ increases, which indicates that as the size of burden effect grows, the application
should lower the frequency of activity suggestions in general.
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ν λ∗ θ∗0 θ∗1 θ∗2 θ∗3

0.0 0.06 0.3410 0.3269 0.3264 0
0.2 0.05 0.0844 0.3844 0.4 -0.1609
0.4 0.06 -0.1922 0.3547 0.3312 -0.2313
0.6 0.08 -0.3312 0.2488 0.2234 -0.2687
0.8 0.1 -0.3883 0.2078 0.2 -0.2687

Table 3.23: Burden effect: the optimal policy and the oracle lambda.

Table 3.24, 3.25 and 3.26 list the bias, MSE and the empirical coverage rate of the
percentile-t bootstrap confidence interval at sample size 200. Table 3.27, 3.28 and 3.29
list these three measures at sample size 500. When there is no burden effect (τ = 0), St,3
has no influence on the cost and is therefore considered as a “noise” variable. The optimal
policy parameters are estimated with low bias and MSE under the generative model with
τ = 0 and the bootstrap confidence intervals have descent coverage, both of which are clear
indications that the algorithm is robust to presence of noise variables that are affected by
previous actions. As burden effects level up, we observe an increased bias and MSE in the
estimated optimal policy parameters, θ0 and θ3 in particular. The empirical coverage rates
of bootstrap confidence intervals for θ0 and θ3 are below the nominal 95% level. There
are two reasons to explain the increased bias and MSE. The most important one is the
near-sightedness of bandit actor critic algorithm. The bandit algorithm chooses the policy
that maximizes the (immediate) average cost while ignoring the negative consequence of a
physical activity suggestion At = 1 on the disengagement level at the next decision point.
The bandit algorithm therefore tends to “over-treat” in general and in particular at high
disengagement level, which is reflected in an over-estimated θ0 and θ3. The second reason
comes from the bias in estimating λ, the Lagrangian multiplier. The oracle Lagrangian mul-
tiplier λ∗ is chosen so that the optimal policy parameter satisfies the quadratic constraint
3.1 while the online bandit actor critic algorithm estimates the Lagrangian multiplier so
that the bandit-estimated optimal policy satisfies the quadratic constraint. To separate the
consequence of underestimated λ from the consequence of the myopia of the bandit algo-
rithm, we implement the bandit algorithm with oracle λ∗. Results of these experiments are
shown in table 3.47 through table 3.52 in the appendix. We observe that, even with the
use of oracle λ∗, the overestimation of θ0 and θ3 as well as the anti-conservatism of the
confidence intervals are still present.

Overall, the estimation of θ1 and θ2 shows robustness to the presence of burden effects.
θ1 and θ2 are estimated with low bias and MSE under the presence of small to moderate
burden effects (τ = 0.2, 0.4). While we observe biases in estimating θ1 and θ2 under
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moderate to large burden effects (τ = 0.6, 0.8), the magnitude of such bias increases slowly
with the size of the burden effect. Empirical coverage rates of the bootstrap confidence
intervals for θ1 and θ2 are descent for τ = 0.2, 0.4 and only degrades slowly under 95%

when τ = 0.6, 0.8.

τ θ∗0 θ∗1 θ∗2 θ∗3

0 −0.027 −0.036 −0.030 0.003

0.2 0.229 −0.093 −0.104 0.164

0.4 0.506 −0.063 −0.035 0.235

0.6 0.645 0.043 0.073 0.272

0.8 0.702 0.084 0.096 0.272

Table 3.24: Burden effect: bias in estimating the optimal policy parameter while estimating
λ online at sample size 200. Bias=E(θ̂t)− θ∗

τ θ∗0 θ∗1 θ∗2 θ∗3

0 0.058 0.037 0.036 0.036

0.2 0.110 0.044 0.046 0.063

0.4 0.313 0.040 0.037 0.091

0.6 0.473 0.038 0.041 0.110

0.8 0.550 0.043 0.045 0.110

Table 3.25: Burden effect: MSE in estimating the optimal policy parameter while estimat-
ing λ online at sample size 200.

τ θ0 θ1 θ2 θ3

0 0.963 0.963 0.955 0.942

0.2 0.853* 0.946 0.937 0.862*

0.4 0.565* 0.96 0.954 0.776*

0.6 0.39* 0.937 0.916* 0.739*

0.8 0.329* 0.908* 0.899* 0.739*

Table 3.26: Burden effect: coverage rates of percentile-t bootstrap confidence intervals for
the optimal policy parameter at sample size 200. λ is estimated online. Coverage rates
significantly lower than 0.95 are marked with asterisks (*).
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τ θ∗0 θ∗1 θ∗2 θ∗3

0 0.006 0.010 0.017 −0.008

0.2 0.263 −0.048 −0.057 0.153

0.4 0.539 −0.018 0.012 0.224

0.6 0.678 0.088 0.120 0.261

0.8 0.735 0.129 0.143 0.261

Table 3.27: Burden effect: bias in estimating the optimal policy parameter while
estimatingλ online at sample size 500. Bias=E(θ̂t)− θ∗

τ θ∗0 θ∗1 θ∗2 θ∗3

0 0.027 0.018 0.016 0.019

0.2 0.096 0.020 0.019 0.042

0.4 0.318 0.018 0.016 0.069

0.6 0.487 0.026 0.030 0.087

0.8 0.568 0.035 0.037 0.087

Table 3.28: Burden effect: MSE in estimating the optimal policy parameter while estimat-
ing λ online at sample size 500.

τ θ0 θ1 θ2 θ3

0 0.973 0.949 0.955 0.942

0.2 0.714* 0.95 0.962 0.788*

0.4 0.217* 0.951 0.961 0.635*

0.6 0.101* 0.886* 0.835* 0.545*

0.8 0.07* 0.806* 0.788* 0.546*

Table 3.29: Burden effect: coverage rates of percentile-t bootstrap confidence intervals for
the optimal policy parameter at sample size 200. λ is estimated online. Coverage rates
significantly lower than 0.95 are marked with asterisks (*).

Figure 3.5 and 3.6 assess the quality of the estimated optimal policies by comparing
the regularized average cost with the optimal regularized average cost in table 3.23. Figure
3.5 does the comparison at five levels of burden effect: τ = 0, 0.2, 0.4, 0.6, 0.8, at sample
size 200. As the burden effects level up, the overall long-run average cost goes up, which
is simply an artifact of the increasing main effect size of the disengagement level. Having
a higher long-term average cost, the estimated optimal policy by the contextual bandit
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algorithm is always inferior then the optimal policy. The gap of inferiority, as measure by
the difference between the median long-run average cost and the long-run average cost of
the optimal policy increases as τ increases. When sample size increases from 200 to 500,
we observe less variation in the long-run average cost of the estimated optimal policies.
Nevertheless, the gap of inferiority remains stable .
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The conjecture regarding the convergence of our bandit algorithm in a full-blown MDP
is again supported by results shown in table 3.30 through table 3.34. Table 3.30 lists the
solution to the myopic equilibrium system of equations 3.4. Solution remains unchanged
at different levels of burden effect since the underlying contexts dynamics is unchanged at
different levels of burden effect. The shrinking bias (table 3.31 and table 3.33) and MSE
(table 3.32 and 3.34) are consistent with our conjecture that the estimated optimal policy
by the bandit algorithm converges to the myopic equilibrium policy.

τ θ∗0 θ∗1 θ∗2 θ∗3

0 0.392 0.372 0.371 −0.001

0.2 0.392 0.372 0.371 −0.001

0.4 0.392 0.372 0.371 −0.001

0.6 0.392 0.372 0.371 −0.001

0.8 0.392 0.372 0.371 −0.001

Table 3.30: Burden effect: the myopic equilibrium policy.

τ θ∗0 θ∗1 θ∗2 θ∗3

0 −0.078 −0.081 −0.075 0.004

0.2 −0.078 −0.081 −0.075 0.004

0.4 −0.078 −0.081 −0.075 0.004

0.6 −0.078 −0.081 −0.075 0.004

0.8 −0.078 −0.081 −0.075 0.004

Table 3.31: Burden effect: bias in estimating the myopic equilibrium policy at sample size
200. Bias=E(θ̂t)− θ∗∗

τ θ∗0 θ∗1 θ∗2 θ∗3

0 0.063 0.042 0.041 0.036

0.2 0.063 0.042 0.041 0.036

0.4 0.063 0.042 0.041 0.036

0.6 0.063 0.042 0.041 0.036

0.8 0.063 0.042 0.041 0.036

Table 3.32: Burden effect: MSE in estimating the myopic equilibrium policy at sample size
200.
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τ θ∗0 θ∗1 θ∗2 θ∗3

0 −0.045 −0.036 −0.028 −0.007

0.2 −0.045 −0.036 −0.028 −0.007

0.4 −0.045 −0.035 −0.028 −0.007

0.6 −0.045 −0.035 −0.028 −0.007

0.8 −0.045 −0.036 −0.028 −0.007

Table 3.33: Burden effect: bias in estimating the myopic equilibrium policy at sample size
500. Bias=E(θ̂t)− θ∗∗

τ θ∗0 θ∗1 θ∗2 θ∗3

0 0.029 0.019 0.017 0.019

0.2 0.029 0.019 0.017 0.019

0.4 0.029 0.019 0.017 0.019

0.6 0.029 0.019 0.017 0.019

0.8 0.029 0.019 0.017 0.019

Table 3.34: Burden effect: MSE in estimating the myopic equilibrium policy at sample size
500.

3.4 Appendix

3.4.1 Learning Effect: Actor Critic Algorithm Uses λ∗

The following tables present, when there is a learning effect, the simulation results from
running the actor critic algorithm that uses λ∗ throughout.

ν θ∗0 θ∗1 θ∗2 θ∗3

0.0 −0.004 −0.025 −0.025 0.011

0.2 −0.202 0.012 0.010 0.012

0.4 −0.355 0.029 0.021 0.005

Table 3.35: Learning effect: bias in estimating the optimal policy parameter at sample size
200. The algorithm uses λ∗ instead of learning λ online. Bias=E(θ̂t)− θ∗.
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ν θ∗0 θ∗1 θ∗2 θ∗3

0.0 0.061 0.039 0.040 0.042

0.2 0.082 0.026 0.026 0.028

0.4 0.152 0.017 0.016 0.017

Table 3.36: Learning effect: MSE in estimating the optimal policy parameter at sample
size 200. The algorithm uses λ∗ instead of learning λ online.

ν θ0 θ1 θ2 θ3

0.0 0.948 0.939 0.935* 0.947
0.2 0.856* 0.936 0.929* 0.945
0.4 0.433* 0.94 0.926* 0.944

Table 3.37: Learning effect: coverage rates of percentile-t bootstrap confidence intervals
for the optimal policy parameter at sample size 200. The algorithm uses λ∗ instead of
learning λ online. Coverage rates significantly lower than 0.95 are marked with asterisks
(*).

ν θ∗0 θ∗1 θ∗2 θ∗3

0.0 −0.019 −0.014 −0.008 −0.003

0.2 −0.219 0.018 0.023 0.001

0.4 −0.373 0.032 0.032 −0.003

Table 3.38: Learning effect: bias in estimating the optimal policy parameter at sample size
500. The algorithm uses λ∗ instead of learning λ online. Bias=E(θ̂t)− θ∗.

ν θ∗0 θ∗1 θ∗2 θ∗3

0.0 0.025 0.017 0.016 0.019

0.2 0.064 0.011 0.011 0.012

0.4 0.148 0.008 0.007 0.007

Table 3.39: Learning effect: MSE in estimating the optimal policy parameter at sample
size 500. The algorithm uses λ∗ instead of learning λ online.
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ν θ0 θ1 θ2 θ3

0.0 0.956 0.940 0.949 0.955
0.2 0.613* 0.932* 0.932* 0.946
0.4 0.035* 0.916* 0.913* 0.945

Table 3.40: Learning effect: coverage rates of percentile-t bootstrap confidence intervals
for the optimal policy parameter at sample size 500. The algorithm uses λ∗ instead of
learning λ online. Coverage rates significantly lower than 0.95 are marked with asterisks
(*).

3.4.2 Learning Effect with Correlated S2 and S3: Actor Critic Algo-
rithm Uses λ∗

ν θ∗0 θ∗1 θ∗2 θ∗3

0 −0.020 −0.034 −0.034 0.011

0.2 −0.160 0.048 0.049 0.016

0.4 −0.262 0.106 0.096 0.009

Table 3.41: Learning effect with correlated S2 and S3: bias in estimating the optimal pol-
icy parameter at sample size 200. The algorithm uses λ∗ instead of learning λ online.
Bias=E(θ̂t)− θ∗

ν θ∗0 θ∗1 θ∗2 θ∗3

0 0.048 0.037 0.043 0.048

0.2 0.070 0.036 0.040 0.046

0.4 0.115 0.042 0.041 0.041

Table 3.42: Learning effect with correlated S2 and S3: MSE in estimating the optimal
policy parameter at sample size 200. The algorithm uses λ∗ instead of learning λ online.

ν θ0 θ1 θ2 θ3

0 0.972 0.963 0.95 0.952

0.2 0.926* 0.934* 0.928* 0.944

0.4 0.859* 0.893* 0.892* 0.941

Table 3.43: Learning effect with correlated S2 and S3: coverage rates of percentile-t boot-
strap confidence intervals for the optimal policy parameter at sample size 200. The algo-
rithm uses λ∗ instead of learning λ online. Coverage rates significantly lower than 0.95 are
marked with asterisks (*).
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ν θ0 θ1 θ2 θ3

0 0.005048 0.011879 0.014148 -0.001817

0.2 -0.14299 0.089469 0.08766 0.002411

0.4 -0.25172 0.13707 0.13359 -0.003746

Table 3.44: Learning effect with correlated S2 and S3: bias in estimating the optimal pol-
icy parameter at sample size 500. The algorithm uses λ∗ instead of learning λ online.
Bias=E(θ̂t)− θ∗

ν θ∗0 θ∗1 θ∗2 θ∗3

0 0.023 0.018 0.018 0.025

0.2 0.042 0.025 0.024 0.022

0.4 0.085 0.033 0.033 0.019

Table 3.45: Learning effect with correlated S2 and S3: MSE in estimating the optimal
policy parameter at sample size 500. The algorithm uses λ∗ instead of learning λ online.

ν θ0 θ1 θ2 θ3

0 0.983 0.95 0.967 0.952

0.2 0.895* 0.876* 0.903* 0.953

0.4 0.717* 0.773* 0.791* 0.949

Table 3.46: Learning effect with correlated S2 and S3: coverage rates of percentile-t boot-
strap confidence intervals for the optimal policy parameter at sample size 500. The algo-
rithm uses λ∗ instead of learning λ online. Coverage rates significantly lower than 0.95 are
marked with asterisks (*).

3.4.3 Burden Effect: Actor Critic Algorithm Uses λ∗

τ θ∗0 θ∗1 θ∗2 θ∗3

0 −0.027 −0.036 −0.030 0.003

0.2 0.229 −0.093 −0.104 0.164

0.4 0.506 −0.063 −0.035 0.235

0.6 0.645 0.043 0.073 0.272

0.8 0.702 0.084 0.096 0.272

Table 3.47: Burden effect: bias in estimating the optimal policy parameter at sample size
200. The algorithm uses λ∗ instead of learning λ online. Bias=E(θ̂t)− θ∗.
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τ θ∗0 θ∗1 θ∗2 θ∗3

0 0.058 0.037 0.036 0.036

0.2 0.110 0.044 0.046 0.063

0.4 0.313 0.040 0.037 0.091

0.6 0.473 0.038 0.041 0.110

0.8 0.550 0.043 0.045 0.110

Table 3.48: Burden effect: MSE in estimating the optimal policy parameter at sample size
200. The algorithm uses λ∗ instead of learning λ online.

ν θ0 θ1 θ2 θ3

0 0.963 0.963 0.955 0.942

0.2 0.853* 0.946 0.937 0.862*

0.4 0.565* 0.96 0.954 0.776*

0.6 0.39* 0.937 0.916* 0.739*

0.8 0.329* 0.908* 0.899* 0.739*

Table 3.49: Burden effect: coverage rates of percentile-t bootstrap confidence intervals for
the optimal policy parameter at sample size 200. The algorithm uses λ∗ instead of learning
λ online. Coverage rates significantly lower than 0.95 are marked with asterisks (*).

τ θ∗0 θ∗1 θ∗2 θ∗3

0.0 −0.018 −0.014 −0.006 −0.009

0.2 0.288 −0.031 −0.040 0.149

0.4 0.516 −0.042 −0.011 0.223

0.6 0.591 0.005 0.037 0.262

0.8 0.606 0.006 0.020 0.263

Table 3.50: Burden effect: bias in estimating the optimal policy parameter at sample size
500. The algorithm uses λ∗ instead of learning λ online. Bias=E(θ̂t)− θ∗.
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τ θ∗0 θ∗1 θ∗2 θ∗3

0.0 0.029 0.017 0.015 0.016

0.2 0.121 0.022 0.021 0.042

0.4 0.294 0.018 0.016 0.066

0.6 0.367 0.011 0.012 0.079

0.8 0.379 0.008 0.008 0.076

Table 3.51: Burden effect: MSE in estimating the optimal policy parameter at sample size
500. The algorithm uses λ∗ instead of learning λ online.

ν θ0 θ1 θ2 θ3

0.0 0.944 0.950 0.952 0.933*
0.2 0.689* 0.943 0.959 0.815*
0.4 0.159* 0.944 0.954 0.6*
0.6 0.006* 0.941 0.928* 0.295*
0.8 0* 0.94 0.944 0.144*

Table 3.52: Burden effect: coverage rates of percentile-t bootstrap confidence intervals for
the optimal policy parameter at sample size 500. The algorithm uses λ∗ instead of learning
λ online. Coverage rates significantly lower than 0.95 are marked with asterisks (*).
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CHAPTER 4

A Multiple Decision Procedure for Personalizing
Intervention

Increasing pharmaceutical and medical research are focusing on developing personalized
intervention/medicine that is targeted to a specific subgroup of patients. There is substan-
tial evidence on the heterogeneity in molecular pathogenesis and intervention responses.
Personalized intervention utilizes a decision rule that inputs patients’ characteristics and
outputs a prescription given a set of candidate interventions. Clinical trials which recruit
highly heterogenous patients usually record a large amount of baseline patient information,
which can be useful inputs in personalizing treatment. Collecting such information, how-
ever, may be expensive or time-consuming in real clinical settings. Therefore statistical
methodology needs to be developed to identify information useful for personalizing inter-
vention. Many statisticians have contributed works on developing statistical methodology
for personalized treatment with the goal of extracting (a combination of) useful variables
from a (high-dimensional) set of baseline variables (for example, [30], [14]).

The goal of this chapter is to develop hypothesis testing method for personalizing treat-
ments. We focus on identifying the usefulness of a particular patient characteristic, referred
to as biomarker in the following discussion. We define a discrete-valued biomarker as use-
ful in personalizing treatment if for a particular value of the biomarker, there is sufficient
evidence to recommend one treatment, while for other values of the biomarker, either there
is sufficient evidence to recommend a different treatment, or there is insufficient evidence
to recommend a particular treatment. This definition generalizes the concept of qualitative
interaction in [28], where a biomarker is deemed useful only if there is sufficient evidence
that the recommended treatments varies given different values of the biomarker. It is worth
pointing out that [71], [73] also recognized that qualitative interaction is not the only type
of interaction useful for personalizing decision making. They redefined qualitative interac-
tion by saying that “a qualitative interaction does require a reversal of effect, but includes
situations where there is a treatment effect for one subset and no treatment effect for an-
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other”. In my following discussion, I will to the definition of qualitative interaction in [28]
as restricted qualitative interaction.

We consider the scenario where the biomarker is binary and thus divides the patients
into subgroup 1 and subgroup 2. We also assume that there are two candidate treatments,
treatment A and treatment B. The mean treatment response in subgroup i under treatment
X is denoted by µiX , where i ∈ {1, 2}, X ∈ {A,B}. The treatment effects are denoted by
θ1 = µ1A − µ1B and θ2 = µ2A − µ2B, respectively in subgroup 1 and subgroup 2. The null
hypothesis that the biomarker is not useful for personalizing treatment is

H : θ1 = θ2 = 0, or θ1θ2 > 0 (4.1)

Given θ1 = θ2 = 0, there is not enough evidence to demonstrate a treatment effect in
neither subgroup. Given θ1θ2 > 0, the same treatment should be recommended regardless
of the value of the biomarker. Therefore the biomarker is useful in personalized decision
making in neither of the two scenarios.

The alternative hypothesis that the biomarker is useful for personalizing treatment is
the complement of H:

K : θ1 = 0, θ2 6= 0, or θ1 6= 0, θ2 = 0, or θ1θ2 < 0 (4.2)

Under the scenario where θ1 = 0, θ2 6= 0 or θ1 6= 0, θ2 = 0, a particular treatment is
recommended to one subgroup of patients while the other subgroup, factors such as local
considerations, such as costs, side effects and preferences can be the deciding factor in
choosing a treatment. We call this scenario a generalized qualitative interaction. Given
θ1θ2 < 0, the existence of a restricted qualitative interaction, different treatments should
be enforced in different subgroups.

The following illustrative example for personalizing treatment in treating ADHD chil-
dren is based on Adaptive Pharmacological and Behavioral Treatments for Children with
ADHD Trial (Pelham, personal communication). A potential biomarker is children’s his-
tory of ADHD medication use. Assign biomarker value 1 to medication naive children
and assign value 2 to children with a previous ADHD medication intake. The two active
treatments are medication and behavioral intervention. The existence of a qualitative inter-
action (θ1θ2 < 0) suggests that different treatment ought to be prescribed based children’s
prior medication use. Suppose that, however, medication and behavioral intervention may
not appear to work differently for ADHD children with a prior medication use, whereas
for medication naive children, behavioral intervention has a positive treatment effect over
medication. Knowing that a child has previously taken medication, in this case, provides
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the decision makers to the freedom to choose based on local considerations. For instance,
parents who object to medications due to the side-effects or the potential increasing dose
down the line may choose behavioral intervention while parents who are less reluctant to
utilize time-consuming treatments may opt for medication.

This chapter is organized as the following. In section 4.1, we provide a brief literature
review on the related work including the test of restricted qualitative interaction, multiple
hypothesis testing and multiple decision theory. Our philosophy and our methodology is
motived by some of the existing works. In section 4.2, we propose a two-stage testing
procedure for the hypothesis testing problem with null hypothesis H and alternative hy-
pothesis K. In the end of the chapter, we discuss generalization of the current methods and
future works.

4.1 Literature Review

4.1.1 The test of qualitative interaction

The null hypothesis that [28] used for detecting qualitative interaction is HG : θ1θ2 ≥ 0.
Assuming normality and known variances, they developed a likelihood ratio test for the
hypothesis. The maximum likelihood estimators of θ1 and θ2 are denoted by θ̂1 and θ̂2,
respectively. The test statistic takes the form:

TGS = min{max{θ̂1, θ̂2},max{−θ̂1,−θ̂2}} (4.3)

The critical value is chosen to control the type I error rate at the least favorable config-
urations (LFC), which are (θ1, θ2) = (0,∞), (0,−∞), (∞, 0), (−∞, 0). They’ve shown
that, when there are two subgroups, the critical value for size α test is zα, the upper 100α

percentile of the standard normal distribution.
One of the main criticisms Gail and Simon’s likelihood ratio test has received is its

poor power. The test is biased, both in finite sample and asymptotically, in the sense that
the power function evaluated at the alternative space may be lower than the size of the
test. Asymptotically, the power of Gail and Simon’s test is close to 2α2 in places near the
origin in the alternative space. Bias of the likelihood ratio test indicates that no matter how
large the sample size is, there will always exist points in the alternative space at which the
probability of correctly rejecting the null hypothesis may be smaller than the probability of
a false rejection. The bias of test only gets worse when the number of subgroups increases:
the power of the test near the origin decreases exponentially when the number of subgroups
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increases.
A few authors have published work in an attempt to improve the power of Gail and

Simon’s test. [63] proposed a range test for detecting the qualitative interactions. The
range and the likelihood ratio test are identical when there are two subgroups. The range
test outperforms Gail and Simon’s likelihood ratio test, if the number of subgroups is more
than two and the signs of the treatment effects are consistent in the majority of subgroups
(for example, 80% of the subgroups). In all other scenarios the likelihood ratio tests has
better power. [5] and [93] proposed hypothesis testing procedures which can be applied
to the testing of qualitative interactions when there are two subgroups. The power of their
new methods dominate that of Gail and Simon’s. Both methods carefully enlarge Gail and
Simon’ rejection region while controlling for the type I error rate. Both methods, however,
received criticism from [62], who argued that both methods are counter-intuitive, for the
rejection regions are not monotone and include samples that are arbitrarily close to the null
space.

[32] summarized the challenges in hypothesis testing in which the null is a composite
hypotheses about a vector of parameters. The lack of pivotal quantities and possibly the
dependency of the distributions of test statistics on nuisance parameters motivated the use
of least favorable configuration. The such-derived critical value, which is based on the
distribution of the test statistic at the LFC, is a conservative. The power of such tests are
inevitably sacrificed at parameter values far away from the LFC. Hansen proposed a testing
method with improved power based on data-driven LFC. In stead of searching the entire
null space for the LFC, he used the data to narrow down the search. Let θ be the parameter
of interest and θ ∈ Θ0 be the null hypothesis. The old way to calculate the critical value,
given a test statistic T , is to take the supreme of all upper α percentile of the distribution of
T , with the supremum being taken over the entire Θ0. Hansen proposed to first estimate θ
by θ̂n and define Cε ≡ Nε(θ̂n)∩Θ0, where Nε( ) is the ε neighborhood and n is the sample
size. The data-dependent critical value is the supremum of all upper α percentile of the
distribution of T , with supremum taken over Cε. The power of Hansen’s test procedure
dominates that of the LFC test. He provided guidance on how to choose ε as a function of
n and proved that the test is asymptotically similar on the boundary ∂Θ0. The idea of data-
driven critical values has gained attention in both statistical and econometrical societies.
See [6], [51]) for examples.
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4.1.2 Multiple Hypothesis Testing, Multiple Decision Theory

The following two articles [47], [48] set the foundation for multiple decision theory and
bridged multiple decision problem with hypothesis testing problem. In the very begin-
ning of the first article, Lehmann compared the pros and cons of formulating a statistical
inference procedure as a hypothesis testing problem and a multiple decision problem:

“One of the attractions of formulating statistical problems in terns of hypothesis testing

is the resulting structural simplicity. However, at the same time this reduction to a choice

between only two decisions frequently causes complications by creating a class of alterna-

tives which combines too many different elements. In many such cases, if one is willing to

forego structural simplicity and to divide the class of alternatives into its- natural compo-

nents, one obtains a multiple decision problem, which admits a simpler and more natural

solution than the apparently less complex testing problem.”
We resonate with Lehmann’s message. Often, the alternative hypothesis is comprised

of different components, each of which may lead to a remarkably different consequence.
By using an accept-reject decision rule one implicitly treats different components in the
alternative as if they impact the real-life problem in similar way.s This oversimplification
can be misleading and can cause difficulty in interpreting the decisions. In our testing
problem, the alternative space consists of three parts {θ : θ2 = 0, θ1 6= 0}

⋃
{θ : θ1 6=

0, θ2 = 0}
⋃
{θ : θ1θ2 < 0}. When the null hypothesis H is rejected, it is desirable to

make finer conclusion on which part of the alternative space θ belongs to, since in the
three different scenarios we form different decision rules in recommending personalized
treatment. If the conclusion is {θ : θ2 = 0, θ1 6= 0}, we recommend to conduct follow-up
study to confirm the treatment effect in subgroup 1 while the recommendation in subgroup 2
can be based on local considerations. On the other side, if the conclusion is {θ : θ1θ2 < 0},
two more clinical trials should be conducted to confirm the crossover treatment effects in
the two subgroups. By forming the problem as a multiple decision problem, we are able to
make finer decisions than an oversimplified accept-reject decision.

Lehmann considered a multiple decision problem induced by simultaneously testing a
family of hypotheses {Hγ : θ ∈ ωγ} where γ ∈ Γ. Different decisions corresponds to
different statements regarding which of the hypotheses are false and which of them are
true. The family of hypotheses partitions the parameter space into what Lehmann called
“atoms”. Each atom is defined by

Ωi =
⋂
γ∈Γ

ω
xiγ
γ
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where xiγ = 1 if hypothesis Hγ is true and xiγ = −1 if hypothesis Hγ is false for the given
Ωi. The loss function, when the true θ ∈ Ωi but the decision is that θ ∈ Ωk, is

ωik =
∑
γ∈Γ

(εikγaγ + εkiγbγ)

where εikγ equals 1 if xiγ = 1, xkγ = −1 and 0 otherwise. The loss function is additive in
the sense that it sums up all the losses for making Type I errors and Type II errors.

Lehmann proved a main theorem in [47]. Suppose that for each hypothesis Hγ , the
test ϕ0

γ uniformly minimizes the risk among all tests that are similar on the boundary at
level αγ = bγ

aγ+bγ
and that the family {ϕ0

γ, γ ∈ Γ} is compatible. Under certain regularity
conditions, the product procedure is unbiased and uniformly minimizes the risk among all
unbiased decision procedure of the product problem, assuming the same loss function is
used.

4.1.2.1 The three principles

There are three fundamental principles the multiple hypotheses and multiple decision the-
ory: the closure principle, the partitioning principle and the sequential rejection principle.
Before explaining the principles, let’s first recall the (strong) control of the family wise
error rate (FWER).

The strong control of FWER ([49]): Given a family of probability measures P = {Pθ :

θ ∈ Θ} and a family of hypotheses indexed by I: H = {Hi}i∈I , a multiple test ψ = {ψi}i∈I
is said to control the FWER in the strong sense if

∀θ ∈ Θ : Pθ(
⋃
i∈I(θ)

{ψi = 1}) ≤ α (4.4)

where I(θ) = {i ∈ I : θ ∈ Hi}. An equivalent definition is that

∀∅ 6= J ⊂ I : ∀θ ∈ HJ =
⋂
j∈J

Hj : Pθ(
⋃
j∈J

{ψj = 1}) ≤ α (4.5)

In contrast, ψ is said to control the FWER in the weak sense if

∀θ ∈ HI =
⋂
i∈I

Hi : Pθ(
⋃
i∈I

{ψi = 1}) ≤ α (4.6)

The closure principle first appeared in [53] who considered simultaneous testing of
a family of hypotheses H = {Hi}i∈I that is closed under intersection. Specifically, the
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intersection
⋂
i∈J Hi is either empty or belongs toH for any J ⊂ I . A natural requirement

for a decision rule is coherence, meaning that if Hi is accepted and Hi ⊂ Hj , Hj should
also be accepted. The closure principle says that, if a decision rule ψ = {ψ}i∈I is coherent
and each ψi controls the type I error rate for component hypothesis Hi, ψ controls the
familywise error rate for testingH in the strong sense. One way to interpret the short proof
given in [53] is that the coherence property guarantees that controlling the FWER for H
amounts to controlling the type I error rate for the global hypothesis

⋂
i∈I Hi. Another

way to put it is that the strong and the weak control of FWER is equivalent for a coherent
test. A theorem which is originally presented in [74] showed that given any multiple test ψ
which strongly controls the FWER at α can be “conherentized” by defining ψ̄ with ψ̄i =

maxj:Hj⊇Hi ψj . The resulting test still controls the FWER in the strong sense and is at least
as large as ψ which may lead to better power. Last but not least, when the hypotheses
of interest H is not closed under intersection, one can consider the smallest closure of H
without additional cost due to the one-to-one correspondence between a coherent multiple
level α test forH and that for the ”closure” ofH.

In general, when the intersection of a subset of hypotheses is empty, the closure prin-
ciple still applies. Starting from the set of hypotheses of primary interest H, one generate
its closure H̄ which contains all non-empty intersection of a subset of hypotheses from H.
Given Hi, Hj ∈ H̄, we call Hj a descendant hypothesis of Hi if Hj ⊂ Hi, which means
that Hj is generated by intersecting Hi with some other hypotheses. Hi is an ascendant

hypothesis of Hj . When a hypothesis does not have any descendants, it’s minimal. For ex-
ample, the global hypothesis in the last paragraph is a minimal hypothesis. Notice that all
minimal hypotheses are disjoint and that a multiple test of a disjoint family of hypotheses
controls the FWER at level α if and only if it controls the type I error rate at level α for
each component hypothesis. The closed testing procedure begins by testing all minimal hy-
potheses at level α. One proceeds to test a hypothesis Hi if all of its descendent hypotheses
are rejected; otherwise Hi is automatically accepted.

The partitioning principle was proposed by [27] upon noticing that for a family of
disjoint hypotheses, a test ψ has multiple level α if and only if every component ψi has
level α for testing Hi. Naturally, if one partition the union of all hypotheses

⋃
i∈I Hi into a

set of disjoint base hypotheses {Θi} so that each Hi can be written as the sum of some base
hypotheses. Finding the level α test for each Hi and then “coherentizing” (by applying
the closure principle) can now be replaced by finding level α tests for each Θi followed by
“coherentizing”. A natural partition (the coarsest partition) for a closed family H is given
by Θ(Jp) = {Θi : i ∈ Jp}, where Θi = Hi

⋂
(
⋃
j:Hj⊂Hi Hj)

c and Jp = {i ∈ I : Θi 6= ∅}.
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In general, when determining a rejection rule which controls the type I error rate one usually
looks for the LFC of the test statistic over the null hypotheses. Restricting the LFC to Θi

as opposed to Hi may lead to a less conservative rejection rule and possibly an increased
power.

[29] proposed the sequential rejection principle of familywise error control. The gen-
eral sequential rejective multiple testing procedure encompasses many well-known meth-
ods including those based on the closure principle and the partitioning principle. One
important feature of sequential procedures is that decision of rejection made at one step de-
pends on the set of hypotheses rejected in the previous steps. Rejection of hypotheses make
the rejections of the remaining easier. Another notable feather is that at each step it is only
necessary to control the FWER with respect to the distributions under which all previous
rejections are correct rejections (i.e., assuming no type I error has been made). Specifically,
in testing a family of hypotheses H, any sequential procedure can be described by a ran-
dom and measurable function N which maps the power set 2H to itself. At each step, this
function inputs the set of rejected hypotheses and outputs what to reject next. Let Ri ⊆ H
be the set of hypotheses rejected up till step i, and

R0 = ∅ (4.7)

Ri+1 = Ri

⋃
N (Ri) (4.8)

LetR∞ =
⋃
iRi be the final collection of rejected hypotheses. Goeman and Solari proved

that, under monotonicity condition that for everyR ⊆ S ⊂ H, almost surely

N (R) ⊆ N (S)
⋃

S (4.9)

and the single step condition that for every θ

Pθ(N (F(θ)) ⊆ F(θ)) ≥ 1− α (4.10)

Then for every θ,

Pθ(R∞ ⊆ F(θ)) ≥ 1− α (4.11)

In the above, θ ∈ Θ is the parameter of interest and F(θ) and T (θ) is the set of false
hypotheses and the set of true hypotheses when the underlying value of the parameter is θ.
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4.2 The Decision Procedure and Controlling the Error Prob-
abilities

Our aim is to develop a statistical decision making procedure for personalizing treatment
based on data collected from two arm randomized clinical trials. We achieve the following
objectives:

• When the null hypothesis that the biomarker is not useful for personalizing treatment
is rejected, the decision procedure distinguishes whether or not there is a sufficient
evidence to demonstrate a qualitative interaction, if not, identifies in which subgroup
there are evidence to demonstrate a treatment effect. In other words, the decision
procedure identifies the type of qualitative interaction.

• The power of detecting a restricted qualitative interaction of the proposed procedure,
is at least as large as Gail and Simon’s likelihood ratio test.

4.2.1 Notation and Assumptions

Our data comes from two-arm randomized clinical trials which compare two active treat-
ments, treatment A and treatment B. The biomarker is measured as a baseline variable tak-
ing value in {1, 2}. Patients with biomarker value i consists of subgroup i, for i ∈ {1, 2}.
We use p1 and p2 to denote the fractions of the two subgroups in the overall population.
We use n to denote the total sample size and ni to denote the sample size in subgroup i.
Subgroup treatment effects are denoted by θ1 and θ2 as aforementioned. We assume that
p1 and p2 are known for the moment. We also assume that, for simplicity, the proportion
of patients who are randomized to treatment A is 1

2
in each subgroup. This can be approx-

imately guaranteed by block randomization. Last but not least, we assume that the sample
fraction of patients in subgroup i, ni

n
, is equal to the population fraction pi.

We assume that the distribution of the treatment responses, among subgroup i who are
assigned treatment T , T ∈ {A,B}, follow a normal distribution with mean µiT and unit
variance.

4.2.2 The Decision Space

Compared to the standard statistical hypothesis testing problem in which one either accepts
or rejects the null hypothesis, our procedure follows the paradigm in [47] and [48] and
recognizes that different parameters in the alternative space K lead to different clinical de-
cisions. For example, when the true parameter belongs to {θ : θ1 = 0, θ2 6= 0}, the clinical
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implication is to suggest follow-up study in subgroup 2 to verify the treatment effect. On
the other hand, when the true parameter belongs to {θ : θ1θ2 < 0}, the clinical implication
might be to suggest follow-up studies in both subgroups to confirm the detected treatment
effects and the qualitative interaction. The decision space, denoted by D, contains the four
decisions that are summarized in Table 4.1. Clinical decision 1 corresponds to accept the
null hypothesis H and conclude that there is not sufficient evidence that the biomarker is
useful for personalizing decision making, while decision 2, 3, and 4 correspond to reject H
and conclude that the biomarker may be useful for personalizing decision making.

Clinical Decision
Decision 1 There is not sufficient evidence that the biomarker is useful

for personalizing decision making
Decision 2 The biomarker may be useful for personalizing decision

making, evidence suggests a treatment effect in subgroup
1

Decision 3 The biomarker may be useful for personalizing decision
making, evidence suggests a treatment effect in subgroup
2

Decision 4 The biomarker may be useful for personalizing decision
making, evidence suggests a qualitative interaction

Table 4.1: The decision space D

4.2.3 Test Statistics

We utilize three test statistics to facilitate our two-stage procedure:

T0 =
X̄1A − X̄1B − X̄2A + X̄2B

σ̂
√

4
n1

+ 4
n2

=
√
p2T1 −

√
p1T2

T1 =
X̄1A − X̄1B

σ̂
√

4
n1

T2 =
X̄2A − X̄2B

σ̂
√

4
n2
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where

σ̂2 =
1

n− 4

∑
i∈{1,2},j∈{A,B},1≤k≤nij

(Xijk − X̄ij)
2

where X̄iT is the sample average of subgroup i who are randomized to treatment T , i ∈
{1, 2} and T ∈ {A,B}. These three are the standard test statistics used for testing the null
hypothesis of no treatment effect in subgroup 1, the null hypothesis of no treatment effect
in subgroup 2 and the null hypothesis of no treatment-subgroup interaction.

4.2.4 The Two-stage Decision Procedure

Our two-stage procedure is indexed by M(c0, c1), where c0 and c1 are the critical values in
stage I and stage II. The procedure is conducted as follows:

• In stage I, utilize test statistic T0 and compare it with critical value ±c0. If T0 > c0

or T0 < −c0, proceed to stage II. Otherwise if |T0| ≤ c0, stop the testing procedure
and make clinical decision 1.

• In stage II, utilize test statistics T1 and T2 and compare them with critical value ±c1.
Clinical decisions are made according to the decision rule specified in Table 2.

Stage I serves as gate keeper for the entire decision procedure since the existence of a
quantitative interaction is the pre-requisite for a qualitative interaction. Ideas of stepwise
gate keeping procedure have appeared in the literature, in particular with application to
hypothesis testing in pharmaceutical science [21, 22]. Once the test statistics pass the gate
keeper, the second stage serves to identify whether the “signs” of the treatment effects are
consistent in the two groups. The signs of the treatment effects are consistent in the two
subgroups if they are both significantly positive, significantly negative, or indistinguishable
from 0. The decision is made according the consistency of the signs of subgroup treatment
effects. In table 4.2 we partition the sample space into 10 parts and summarize the decision
for each part. As examples, |T0| ≤ c0 corresponds the part of the sample space with
insufficient evidence for a quantitative interaction therefore we make decision 1. T0 <

−c0, T1 < −c1, |T2| ≤ c1 corresponds to the part of the sample space where patients in
subgroup 1 benefits significantly more from treatment B while subgroup 2 patients show
similar responses to both treatment. Here we make decision 2.
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Decision Rule Clinical Decision
|T0| ≤ c0 Decision 1

|T0| > c0, |T1| ≤ c1, |T2| ≤ c1 Decision 1
|T0| > c0, T1 > c1, T2 > c1 Decision 1
|T0| > c0, T1 < −c1, T2 < −c1 Decision 1
T0 > c0, T1 > c1, |T2| ≤ c1 Decision 2

T0 < −c0, T1 < −c1, |T2| ≤ c1 Decision 2
T0 < −c0, |T1| ≤ c1, T2 > c1 Decision 3
T0 > c0, |T1| ≤ c1, T2 < −c1 Decision 3
T0 > c0, T1 > c1, T2 < −c1 Decision 4
T0 < −c0, T1 < −c1, T2 > c1 Decision 4

Table 4.2: The Decision Rule for the two-stage decision procedure for personalizing treat-
ment

4.2.5 The Loss Function and Error probabilities

We specify a loss function L(θ, d) that is defined in Table 4.3. The rationale for choosing
such loss function is the following. First, the loss function is 0 whenever decision 1 is
reached. That is, we do not punish a false acceptance of the null hypothesis. Second,
the loss function is 1 when any of decision 2, 3 or 4 is reached, if θ1 = θ2. That is,
we punish a false rejection when there is no treatment-subgroup interaction. Third, in the
case that θ belongs to the null space but a treatment-subgroup interaction exists, we punish
the error of making decision 4, along with one of the decision 2 and 3. For example,
suppose that the true parameter belongs to the region {θ : θ1 > θ2 > 0} and decision
2 is reached. Since θ1 > θ2 > 0, there is a positive treatment effect in both subgroups
and subgroup 1 enjoys a larger treatment effect than subgroup 2. We argue that making
decision 3 and 4 is a more severe error than making decision 2. The reason is that, the
region {θ : θ1 > θ2 > 0} includes points (θ1, θ2) = (K, ε), where ε is infinitesimal small
and K is large. For example, ε may be smaller than a small standardized effect size (0.2
in Cohen’s benchmark), or any other clinical meaningful standardized effect size. Fourth,
when θ belongs to the alternative space where there is no qualitative interaction, we punish
the error of making decision 4 (restricted qualitative interaction), as well as the clinical
decision that is incorrect in terms of the selecting the subgroup with a treatment effect. For
example, the loss function is 1 for making decision 3 and 4 if the truth is θ1 6= 0, θ2 = 0.
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Decision 1 Decision 2 Decision 3 Decision 4
θ1 = θ2 0 1 1 1

θ1 > θ2 > 0 0 0 1 1
θ2 > θ1 > 0 0 1 0 1
θ1 < θ2 < 0 0 0 1 1
θ2 < θ1 < 0 0 1 0 1
θ1 6= 0, θ2 = 0 0 0 1 1
θ1 = 0, θ2 6= 0 0 1 0 1
θ1θ2 < 0 0 0 0 0

Table 4.3: The loss function

4.3 Choosing the Critical Values c0 and c1

We follow the minimax paradigm and select c0, c1 to minimize the supreme of the risk
function R(θ) over θ ∈ R2. Simple calculation yields that, in order to control the supreme
of the risk function, it is equivalent to control the following two expressions:

sup
θ1>θ2≥0

Pθ(T0 < −c0, |T1| ≤ c1, T2 > c1) + Pθ(T0 > c0, |T1| ≤ c1, T2 < −c1)

+Pθ(T0 > c0, T1 > c1, T2 < −c1) + Pθ(T0 < −c0, T1 < −c1, T2 > c1)

and

sup
θ1=θ2

Pθ(T0 > c0, T1 > c1, |T2| ≤ c1) + Pθ(T0 < −c0, T1 < −c1, |T2| ≤ c1)

+Pθ(T0 < −c0, |T1| ≤ c1, T2 > c1) + Pθ(T0 > c0, |T1| ≤ c1, T2 < −c1)

+Pθ(T0 > c0, T1 > c1, T2 < −c1) + Pθ(T0 < −c0, T1 < −c1, T2 > c1)

The next task is to search for the pair of (c0, c1) that controls the above error proba-
bility below level α. We use a sample of 5000 normally distributed random variables to
approximate the error probabilities in the above two displays. We fix c1 to be the critical
value used in Gail and Simon’s likelihood ratio test for qualitative interaction and perform
a line search to find the smallest c0 to control the total error rate below α. Table 4.4 sum-
marizes the critical values at different subgroup percentages p1, the proportion of subgroup
1 patients. The table shows that larger c0 is required when the subgroup sample sizes are
imbalanced.
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p1 c0 c1

0.10 or 0.90 2.06 1.64
0.20 or 0.80 2.05 1.64
0.30 or 0.70 1.96 1.64
0.40 or 0.60 1.96 1.64

0.50 1.96 1.64

Table 4.4: The critical values c0 and c1 at α = 0.05

4.4 Comparing with Alternative Methods

Clinicians use a variety of subgroup analysis methods, in the current practice, to develop
personalizing treatments. Here we briefly discuss three most commonly-encountered meth-
ods in the clinical trials literature and compare them with our proposed method.

Gail and Simon’s likelihood ratio test of qualitative interaction [28]’s test of qual-
itative interaction can be used by clinicians who are interested in detecting qualitative in-
teractions. Following Gail and Simon’s paradigm, a biomarker is useful for personalizing
decision making only if qualitative interaction exists. That is, there is sufficient evidence
to demonstrate crossover treatment effects at different values of the biomarker. In con-
trast, according to the new definition, a biomarker is also useful for personalizing decision
making when there is not sufficient evidence to recommend a particular treatment, at some
value of the biomarker. The new definition matches the clinical practice by recognizing
the increased patients’ utility when they are given the freedom to choose a treatment based
on their preferences. Our null hypothesis that the biomarker is not useful for personalizing
decision making, is a proper subset of Gail and Simon’s null hypothesis of no qualitative
interaction. It follows that our alternative hypothesis properly contains Gail and Simon’s
alternative hypothesis of qualitative interaction by including {θ : θ1 = 0, θ2 6= 0} and
{θ : θ1 6= 0, θ2 = 0}. The proposed procedure, not only is capable to detect the restricted
qualitative interactions, but is also capable of detecting the generalized qualitative interac-
tions which are also informative for personalizing decision making (clinical decision 2 and
3).

If one puts aside the differences of the underlying hypotheses and focus only on the
intersection region of the two alternative hypotheses (θ1θ2 < 0), it is desirable that a pro-
posed procedure has at least as much the power to detect qualitative interactions as Gail
and Simon’s test. In other words, the procedure should not sacrifice the power of making
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clinical decision 4 in the presence of clinical decision 2 and 3. It is straight forward to ver-
ify that, asour procedure has the same power of detecting qualitative interactions as Gail
and Simon’s test. Recall that the second stage critical value in our decision procedure is
the critical value used by Gail and Simon. Our proposed procedure has the same power in
detecting a restricted qualitative interaction if

{(T1, T2) :
√
p2T1 −

√
p1T2 > c0, T1 > c1, T2 < −c1}

= {(T1, T2) : T1 > c1, T2 < −c1}

{(T1, T2) :
√
p2T1 −

√
p1T2 < −c0, T1 < −c1, T2 > c1}

= {(T1, T2) : T1 < −c1, T2 > c1}

One can easily verify, based on table 4.4 that the above two equality holds if 0.1 ≤ p1 ≤
0.9. In other words, our procedure has the same power in detecting a restricted qualita-
tive interaction when the subgroup sample size imbalance is not extreme; otherwise the
proposed procedure has inferior power to detect a qualitative interaction.

Subgroup analysis which tests subgroup hypotheses
[64] summarized some of the current practices in subgroup analysis. The summary

pointed out that a lot of subgroup analysis ( 37% of the reports in their survey) has been
conducted by simply testing the subgroup treatment effects in each subgroup. In the context
of two subgroups, the two subgroup hypotheses areH1 : θ1 = 0 andH2 : θ2 = 0. Decisions
are thus made based on the p-values as well as the signs of the test statistics. For example,
if the one-sided p-value associated with T1 is less than 0.025 and T1 > 0 while the p-value
associated with T2 is greater than 0.025, clinical decision 2 may be reached. This procedure,
however, cannot proper control the errors in table 4.3. In fact, a simple simulation shows
that, the error probability of making clinical decision 2 or 3 is approximately 0.25 when
θ1 = θ2 = 2, if both H1 and H2 are tested at level 0.05. The reason is that this procedure
analyze treatment effects in each subgroup separately while no effort has been taken in
analyzing the treatment-subgroup interaction. The inflated error probability at θ1 = θ2 = 2

is simply due to the sum of the Type II errors.
Subgroup analysis which tests treatment-subgroup interaction, as well as sub-

group hypotheses
A more principled way of conducting subgroup analysis (for example, [17]) is to jointly

test the hypothesis of treatment-subgroup interaction, as well as the hypotheses concerning
treatment effects in each subgroup. In the context of two subgroups, the three hypotheses
are H0 : θ1 − θ2 = 0, H1 : θ1 = 0 and H2 : θ2 = 0. One may control the familywise
error rate using Bonferroni adjustment or any other multiple testing procedure (for example,
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Holm 1979). When Bonferroni adjustment is used, the level of each individual hypothesis is
α/3. This procedure properly controls the error probabilities we proposed. The Bonferroni
adjustment itself, however, may result in using conservative critical values in our specific
problem. Our proposed procedure suggests using critical values c0 =

√
2zα/2 and c1 = zα.

Therefore, the stage I of the proposed procedure is equivalent to testingH0 at level α, while
stage II is equivalent to testing H1 and H2 at level 2α. Using unnecessarily large critical
values leads to undermined power in rejecting the null hypothesis H and making clinical
conclusion 2, 3 and 4.

The future work of this project includes

1. Generalize the framework and decision procedure to the setting where the biomarker
takes more than two values. This problem is more challenging than the binary
biomarker problem we consider due to the increased complexity of the decision space
and different types of errors.

2. Non-normal data distributions, unknown variances, multiple regression. The nor-
mality assumption we made in deriving the procedure may be an oversimplification
of the reality. It is desirable to extend the current procedure to more general data
distributions, possible with unknown variances. To obtain more precise estimates of
θ1 and θ2, a commonly-adopted method is to use regression model to adjust for the
heterogeneity in other baseline variables. There, the estimators of θ1 and θ2 and thus
the test statistics T1 and T2 will be correlated. Deriving critical values in these more
general setting may require bootstrapping.

3. Multiple decision point. In treating chronic diseases, treatment assignments usually
need to be adjusted over time according to the changing needs and performances of
the patients. It is desirable, as a consequence, to personalize decision making over
the entire course of the treatment. Our ultimate goal is to construct hypothesis testing
procedure for personalizing treatment at multiple decision points, utilizing data from
the sequential multiple assignment randomized trials ([56]).
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