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ABSTRACT

Relaxing Fundamental Assumptions in Iterative Learning Control
by
Ozan Berk Altin

Co-Chairs: Kira L. Barton and Jessy W. Grizzle

Iterative learning control (ILC) is perhaps best decribed as an open loop feedfor-
ward control technique where the feedforward signal is learned through repetition of
a single task. As the name suggests, given a dynamic system operating on a finite
time horizon with the same desired trajectory, ILC aims to iteratively construct the
inverse image (or its approximation) of the desired trajectory to improve transient
tracking. In the literature, ILC is often interpreted as feedback control in the iteration
domain due to the fact that learning controllers use information from past trials to
drive the tracking error towards zero. However, despite the significant body of liter-
ature and powerful features, ILC is yet to reach widespread adoption by the control
community, due to several assumptions that restrict its generality when compared to
feedback control. In this dissertation, we relax some of these assumptions, mainly
the fundamental invariance assumption, and move from the idea of learning through
repetition to two dimensional systems, specifically repetitive processes, that appear in
the modeling of engineering applications such as additive manufacturing, and sketch
out future research directions for increased practicality: We develop an £, adaptive
feedback control based ILC architecture for increased robustness, fast convergence,

and high performance under time varying uncertainties and disturbances. Simulation

XV



studies of the behavior of this combined L£;-1LC scheme under iteration varying un-
certainties lead us to the robust stability analysis of iteration varying systems, where
we show that these systems are guaranteed to be stable when the ILC update laws
are designed to be robust, which can be done using existing methods from the litera-
ture. As a next step to the signal space approach adopted in the analysis of iteration
varying systems, we shift the focus of our work to repetitive processes, and show
that the exponential stability of a nonlinear repetitive system is equivalent to that of
its linearization, and consequently uniform stability of the corresponding state space

matrix.
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CHAPTER 1

Introduction

ILC is best decribed as an open loop feedforward control technique where the feed-
forward signal is “learned” through repetition of a single task. As the name suggests,
given a dynamic system operating on a finite time horizon with the same desired
trajectory, ILC aims to iteratively construct the inverse image (or its approximation)
of the desired trajectory to improve transient tracking. In the literature, ILC is often
interpreted as feedback control in the iteration domain due to the fact that learning
controllers use information from past trials to drive the tracking error towards zero.
In an abstract manner, let P : U — Y, where U is the space of admissible inputs
and Y is the space of outputs. Assuming that P is known and there are no exoge-
nous inputs affecting the output, the classical ILC problem can be stated as that of
finding a controller C' that maps the input history ug, u1,...,ux_1 € U to the current
input wu such that the output y, = Puy converges to a desired reference r in the
image of P, or a small neighborhood of it, as the iteration number £ — oco. In most
cases, (' is designed to consider the information from only the previous iteration,
thus giving rise to the name first order ILC. More generally, ILC can be viewed as
a special class of repetitive processes (also known as multipass processes earlier in
the literature) [2]; that is systems where the dynamics at trial & is a function of the
output history yo, y1,...,yr—1. In ILC, the trial domain dynamics are induced on the

input uy through the design of an update law as the process is inherently a static or



memoryless repetitive process.

Relatively speaking, ILC is a young but well established area of research. The
roots of ILC can be traced back to the works of Uchiyama [3], published in Japanese,
with Arimoto’s 1984 paper [4] widely accepted as among the first! formal works on
ILC, although some earlier ideas that align with the ILC paradigm have appeared in
the 1970s [7]. Despite the significant body of literature, ILC is yet to reach widespread
adoption by the control community: Wherein the search terms “robust control” and
“’adaptive control” generate over 10,000 and 11,000 papers, respectively, “iterative
learning control” generates merely 465 papers® in ieeeXplore.ieee.org [3]. Apart
from the fact that ILC is much younger than conventional control disciplines, one
reason for this disparity is that ILC is subject to several assumptions that restrict
its generality when compared to feedback control. Yet, ILC is a very powerful tech-
nique that has the potential to equip modern systems with enhanced capabilities: It
is hypothesized in [9] that ILC is loosely based on human learning. This hypothesis is
supported by the findings of Zhang et al. [10], and Zhou et al. [11]. This potential is
further underlined by the fact that as opposed to some other intelligent® control tech-

niques, ILC is simple, easy to implement, and more importantly has proven stability

and convergence conditions guaranteeing perfect tracking.

!Craig [5], and Casalino and Bartolini [6] have published two other similar papers in the same
year independently of Arimoto, although these two papers have not attracted the same level of
attention.

2As of the end of 2005. As of April 5, 2016, the search terms “robust control” and “’adaptive
control” generate over 58,319 and 71,632 papers, respectively, “iterative learning control” gener-
ates 2,714 papers.

3In [12], the authors argue that ILC is an intelligent control technique since it “uses conventional
control methods to solve lower level control problems”, and “attempts to build upon and enhance the
conventional control methodologies to solve new challenging control problems”, based on a report
by Panos Antsaklis [13].


ieeeXplore.ieee.org

1.1 The Invariance Assumption in ILC

ILC offers several advantages over feedback control such as improved transient re-
sponse, potential for “noncausal”* operation, and the ability to compensate for repet-
itive effects, without resorting to high gain feedback. The standard assumption in

classical ILC is that of iteration invariance, of
1. The time interval [0, 7] in which the system operates,
2. The plant P,
3. The desired reference r,
4. The exogenous disturbance d,
5. The initial condition z(0).

Here P may be thought of as an open loop stable plant, or the input-output relation-
ship of a closed loop stabilized plant. Although unrealistic, the above assumptions
lead to simple yet powerful results. For instance, consider the following single-input

single-output (SISO) discrete linear time invariant (LTI) system

p(t+ 1) = Axg(t) + Bug(t), xx(0) = zo,

yk(t) = Cl’k(t),

for all t € {0,1,...,T} and k € N, where z;(t) € R™ is the state vector, ug(t) € R is
the input, yx(t) € R is the output, and A, B, C' are appropriately sized real matrices.

Assume that the system has relative degree 1. Take the update law

Upr1(t) = up(t) +Ur(t+1) —y(t+ 1)),

40f course, ILC is subject to causality in the strict sense as we can only process information from
past trials. However, the operator that we use to process this data can be noncausal in the sense
that the input ugy1(t) can depend on ug—_;(¢t + 7) for some t,7 > 0 and [ € {0,1,...,k}.



where r(t) € R is the reference signal. Then y;(t) — r(t) as k — oo if and only
if |1 —ICB| < 1, or equivalently if [C'B € (0,2). Hence, the sign of the first nonzero
Markov parameter is all that is necessary to construct the feedforward inverse that
achieves perfect tracking, since the the inequality can be satisfied by decreasing [[|
provided we choose sgn(l) = sgn(C'B).

The idea of learning an input signal u., that would achieve perfect tracking is a
very attractive feature of classical ILC. However, in practice, perfect tracking could
be an infeasible, inachievable, or undesired objective. For instance, in the presence
of measurement noise, a more reasonable strategy would be to design controllers that
converge to a neighborhood of the origin. If P is subject to some uncertainty, the
perfect tracking objective can result in update laws that violate certain robustness
criteria and result in unstable algorithms. Alternatively, in some contexts (e.g. pick
and place robotic applications), a subset of [0, 7] could be of interest rather than the

whole interval [14-17].

1.2 The Feedback-Learning Analogy

As stated before, the paradigm of ILC can be readily connected to feedback control
by selecting the iteration as the dependent variable as opposed to time. A more direct
treatment of this issue is discussed in several papers, where the converged ILC system
is found to be equivalent to a feedback controller for causal algorithms [18-22]. To
further underline the similarities between feedback and learning, let us have a closer
look at the definition of feedback control. Broadly speaking, the objective in feedback
control, or control theory in general, is to manipulate the input of a system in a way
so that the output behaves as desired. In today’s automated world, control is vital for
the proper operation of many devices and offers the development of new technologies

which would have otherwise been impossible. Control actively shapes society by



enabling modern machinery to be fast, efficient, consistent, and reliable. A nice way
of interpreting control theory is that control engineers seek to find procedures that
would solve given classes of problem objectives dynamically as opposed to finding
solutions themselves: In the classical tracking problem for a plant P, it may indeed
be possible to compute explicitly an input u that solves the problem. However, this

fundamentally relies on the unrealistic assumptions that:
1. P is known perfectly and is invariant in time.
2. P is not subject to exogenous disturbances.

For instance, if in addition to the above assumptions, we assume P to be invertible,
we may uniquely select u = P~!r for a given reference r. However, by synthesizing a
feedback relationship, we can compensate for exogenous disturbances and variations
in P over time. Thus, roughly speaking, we can claim that control engineers design
controllers that “learn” the desired task asymptotically in tzme. It is the job of the
engineer to find controllers that achieve the best performance in terms of trade-offs
imposed by closing the loop, that are sufficiently general, flexible, robust, and easily
implementable.

In terms of the terminology used in describing feedback control, ILC “learns” the
desired task asymptotically in the iteration domain. As such, it is the job of the
engineer to find controllers that achieve the best performance in terms of trade-offs
imposed by closing the iteration loop, that are sufficiently general, flexible, robust,
and easily implementable. In practice, much as in conventional feedback control, by
synthesizing a recurrence relationship, we can compensate for violations of certain
assumptions listed above. For instance, iterative learning of an optimal feedforward
action as opposed to analytical computation can compensate for changes in P over
time (iteration), with the converged error e, = 0 given that P varies slowly. This

idea can be interestingly linked to more general methods such as the proof of the



Picard-Lindelof theorem, where the solution of the ordinary differential equation is
constructed through an iterated sequence, or more strongly to inversion techniques
that rely on Picard-like iterations [23]. Similar ideas are also used in system identifi-
cation [24-27]; for example in [28] power iteration like methods are used to estimate
the H., norm of a system.

Regardless, in an increasingly automated and smart world, it is desirable that the
assumptions are relaxed in theory in order for ILC to find use in a broader application
space and be more widely adopted. Especially when a perceived advantage of ILC
over other intelligent control methods is simplicity [9], it is necessary that the focus

of ILC is shifted from “control” to “learning”.

1.3 About Repetitive Processes

The feedback in the iteration domain interpretation of ILC is a powerful analogue
that paves the way into repetitive processes, which are two dimensional (2D) dynamic
systems that are characterized by sequences of finite passes who contribute to the
evolution of the future passes. These systems appear in applications such as additive
manufacturing (AM), wherein products are built via layer by layer deposition; a
specific example being laser metal deposition (LMD) [29,30]. An LTI repetitive

process can be described as follows:

T () = Az (1) + Byi(t) + Buuesa (),

Yrr1(t) = Cappa (8) + Dy(t) + Dyupa (t),

for all t € [0,7] and k € N, where A, B,C, D, B,, D,, are continuous real matrices
of appropriate size. Here, the output at layer k acts as a forcing function on the
dynamics of layer k + 1. In the simplest case of a perfect AM process, the layer

to layer dynamics would be a perfect integrator, i.e. D = I and B = 0. Ignoring



initial conditions and fixing ur = u, one way to interpret this process is that the filter

defined by (A, B, C, D) is applied recursively to find y satisfying

y(s) = (C(sI — A)'B+ D)y(s) + (C(sI — A)"' By, + D,)u(s).

The interpretation discussed here shows that recursive algorithms for one dimensional
(1D) dynamic systems fall within the field of repetitive processes. Of course, one
problem that arises here is whether the process converges in a stable fashion to the

equilibrium signal y.

1.4 Problem Statement

Moore, Chen, Ahn, and Xu [31-33] have identified possible directions for future ILC

research as listed below:

e Nonlinear ILC: Nonlinear update laws have not been extensively researched in

ILC, save for adaptive learning laws for locally Lipschitz plants.

e Spatiotemporal dynamical systems: ILC theory for partial differential equa-
tions is not well understood. The practical infeasibility of having continuous

measurements point out to different directions for research.

e Performance analysis: Linear ILC is relatively mature and hence performance
oriented methodologies, design limitations, guidelines are increasingly impor-

tant.

e Fractional order dynamics: Fractional systems are an interesting new area of
research, examples of such systems can be found with polymers, piezo materials,

silicon gel etc.

e Network controlled systems and cooperative ILC: Consensus building, control



under uncertain communication topologies, intermittent sensing and actuation

are some problems associated with these areas.

In addition to the above, based on our previous discussion we pose the following

questions:

e Can the iteration invariance assumptions on P,d,z(0) be relaxed, while still

maintaining the powerful features of classical ILC?

e [s it possible for a system to “learn” when r is iteration varying, under certain

conditions?

e [s it possible to shift the dependence from time to another variable? Can iter-

ation varying time intervals be considered?

e What are the limits of achievable performance and robustness bounds for iter-

ation invariant or varying systems?

The inspiration for the first question is drawn mainly from additive manufacturing.
While every repetitive system would be subject to variance in P, d and x(0), additive
manufacturing is an application area in which the change from iteration to iteration
can be quite high and uncertain. Repetitive process theory [2] provides another good
motivation for this area in terms of the layer by layer material deposition procedure,
as discussed before. The second question targets applications that do not involve
repetitive operation in the classical sense; a potential application for this scenario
is flight control, where gain scheduling and adaptive feedback control is common.
The third question aims to generalize the fundamental objective from the typical
tracking problem. For instance, for a robot that involves repetitive motion we may
wish to minimize the time elapsed to complete each action, or some other performance
measure. On a higher level, we may wish that the robot “learns” a different action

from previous actions; that is we expect that the robot extrapolates a new task based



on prior learned tasks in its memory®. Finally, we wish to maximize performance and
robustness bounds for iteration varying and invariant systems to provide a systematic
and practical framework, in order to encourage the widespread adoption of ILC for

different practical applications.

1.5 Contributions and Organization of the Disser-
tation

This dissertation addresses some of the problems raised in Section 1.4 by moving from
a robust ILC framework towards stability analysis of nonlinear repetitive processes.

The specific problems we focus on are listed as follows:

1. Can the iteration invariance assumptions on P,d,z(0) be relaxed, while still

maintaining the powerful features of classical ILC?

2. Is it possible for a system to “learn” when r is iteration varying, under certain

conditions?

3. What are the limits of achievable performance and robustness bounds for iter-

ation invariant or varying systems?

4. Nonlinear update laws have not been extensively researched in ILC, save for
adaptive learning laws for locally Lipschitz plants. What are necesssary and

sufficient conditions for stability?

After providing a brief technical overview of ILC in Chapter 2, and presenting prior
literature as it relates to our problem statement in Chapter 3, along with a categorical
review of general ILC literature, the original work that led to this dissertation is

presented in Chapters 4 to 6.

>This has been explored previously in [34,35] for the output tracking problem. Extending this
approach to higher level learning remains an open question.



Chapter 4 presents an original robust ILC framework for precision motion control
applications, motivated by the plant invariance problem. This framework uses £;
adaptive feedback control to decrease parameter uncertainty and thereby reduce con-
servativeness in the learning algorithms to obtain better performance. The integration
of the feedback control strategy into a learning framework raises questions of stability
and design trade-offs which are addressed throughout the chapter. Through simu-
lations on the model of a flexure bearing based nanopositioner, it is shown that £,
adaptive control provides up to an order of magnitude improvement in transient
tracking, in addition to significantly increasing predictability of the system under
sudden parameter changes from iteration to iteration. This Chapter is partially based
on [36-38].

The simulation scenario of abrupt parameter changes from iteration to iteration
naturally leads to the analysis of iteration varying systems, which is discussed in
Chapter 5. The specific problem tackled in the chapter is the robust stability and
performance of ILC systems violating the restrictive invariance assumption in an
abstract vector space setting. It is shown through basic mathematical analysis that
robust monotonic update laws lead to stable systems when the iteration varying plant
uncertainties are within the uncertainty set, and that the performance of the invariant
certain system can be recovered if the uncertainties are convergent along the iteration
axis. Some comments are made on the design trade-offs between predictability and
nominal performance, and an optimization approach is suggested for the update law
design for iteration varying uncertain systems. The findings of the chapter are verified
via simulations and experiments on a linear motion control stage. This Chapter is
partially based on [39,40].

As a natural next step to the holistic signal space approach adopted in the anal-
ysis of iteration varying systems, the focus of our work shifts to repetitive processes

in Chapter 6. As the existing literature on repetitive processes is predominantly on
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LTI systems, and repetitive processes in AM applications such as laser metal depo-
sition [29,30] appear as nonlinear models, the chapter analyzes exponential stability
properties of nonlinear time varying repetitive processes from a local perspective.
New definitions of stability that depend on initial state sequences as well as the
initial output are developed. The exponential stability criterion of LTI systems is
extended to the time varying case. This spectral radius criterion is connected to non-
linear systems through local stability analysis, which is conducted partially by using
abstract Lyapunov functionals. Our main result shows that exponential stability of
a nonlinear system and its linearization is equivalent, which can be guaranteed by
making sure that the relevant state space matrix is uniformly Schur over all time. We
use this result to analyze local stability of Picard iterations with nonconstant initial
states, as well as nonlinear ILC algorithms. Simulation studies are conducted on the
model of an actuated Van der Pol oscillator with time varying damping; it is shown
that an ILC algorithm using the second derivative of the error can solve the problem
of uniformly tracking a sinusoidal reference, without any stabilizing feedback. This
Chapter is partially based on [41,42].

Concluding remarks, along with plans and suggestions for future research direc-
tions are given in Chapter 7. For a more compact presentation, additional technical

material for Chapters 4 and 6 are given in Appendices A and B, respectively.
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CHAPTER 2

Technical Overview of ILC

In this chapter, we will present a brief overview of ILC. We start with the classical
ILC problem, which will be first formulated in an abstract setting to keep some
generality as we saw in Chapter 1: Let P:U — Y be a mapping where U is the
space of admissible inputs and Y is the space of outputs. When P is known and
there are no exogenous inputs affecting the output, the problem can be stated as
that of finding a controller C' that maps the input history ug, uy,...,ux_1 € U to the
current input ug € U such that the output y, = Pu; converges to a desired reference r
in the image of P, as the iteration number £ — oo. In most cases, C' is designed to
consider the information from only the previous iteration, thus giving rise to the name
first order ILC. Algorithms that consider multiple iterations on the other hand, are
called higher order ILC.

Now let us consider the case where U and Y are Banach spaces equipped with
suitable norms, consistent with the approach in [7] and [2]. We base this assumption
on the fact that Banach spaces are the natural settings of contraction mapping based
ILC problems, which rely on the celebrated fixed point theorem. This is hardly a
restriction as we can assume most spaces that we work on in practice to be complete®.

For instance, £, and [, spaces, which provide a general framework in time driven

SCompleteness is not even a vital property and is just needed to ensure that a fixed point ex-
ists. The contraction condition is sufficient to guarantee that we converge to a limit point in the
completion of the space, as we will discuss in the following pages.
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dynamic systems, are well known to be complete normed spaces. Our motivation
in considering the problem in a Banach space setting is twofold: First, we would
like to keep the analysis simple, general, and intuitive. Second, we wish not to limit
the discussion to dynamic systems in the classical sense; that is, systems defined by
ordinary differential equations. Indeed, as mentioned in Chapter 1, there are other
areas of research in control and related fields that bear significant resemblance to the
problem of iteratively constructing an input to track a desired reference.

To develop the notions of stability, convergence, and boundedness for ILC prob-
lems, let us give some basic definitions. Of course, in ILC, such concepts should all
be defined over the iteration domain. Hence we assume that the plant P is well posed
in the sense of basic input-output stability; that P is either a bounded operator, or
in the case that P represents an unstable dynamic system on a time interval [0, 7],
the escape time is larger than 7. For a rigorous study of these issues, we define the
spaces U £ [I1en U and Y = [[en Y. An element  in these spaces will be defined
so that x;, denotes the kth coordinate. Alternatively, we define x £ (29, 21,...) to
be a mapping from N, the set of nonnegative integers, to U or Y, where each z; can
be an element of U, Y. In addition, we introduce the following definitions where the
spaces X and V are in {U,Y}. We will use ||.|| to denote vector and induced operator

norms in the relevant spaces.

Definition 2.1. Let x be an element of X“. We say z is bounded if ||z|| < oo and

unbounded otherwise, where ||z|| £ supcy ||z-

The definition of boundedness is in essence the familiar notion of uniform bound-
edness, renamed to reflect the repetitive nature of the ILC problem. Readers would
also note that U“ and Y*“ are not normed spaces since our definition of the norm en-

tails the possibility of unbounded elements. However, this is merely a formality and

"This is more of a theoretical assumption. In practice, we would most likely be working on a
stable or stabilized system.
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will not affect our analysis as any truncated vector in these spaces has a finite norm.
This is akin to the definition of input-output stability via the extended space L.
Boundedness will not be studied in detail in this chapter since due to the discrete
nature of the ILC problem convergence implies boundedness; we will say that z € X*

converges to an element ¥ € X if x;, — 7.

Definition 2.2 (Asymptotic Stability). Let H : X — X. An iterative system defined
by the equality .1 = Hxy for all k € N is asymptotically stable if for all € > 0 there

exists § > 0, and a neighborhood X of the unique fixed point Z of H such that

|zo|| <6 = lzk]| <€, VE€EN,

and z converges to Z for all o € X.

Asymptotic stability is usually an insufficient condition in practice since asymptot-
ically stable systems may exhibit large transient growth before beginning convergent
behavior [9,43]. A stronger notion is monotonic convergence, which is ubiquitous in
contraction mapping based ILC. In fact, this is one of the strongest stability notions
that we have for the problem since convergence of any kind implies boundedness by

virtue of the discrete nature of the problem.

Definition 2.3 (Monotonic Convergence). An asymptotically stable system is called
monotonically convergent if there exists a neighborhood X, of the fixed point such

that for all zo € X N Xy,

17 = zpal <Al =], VEEN.

Before proceeding with the analysis, we will recall a fundamental result from
metric spaces; Banach’s celebrated fixed point (or contraction mapping) theorem.

The theorem plays a very important role in classical ILC as most of the fundamental
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convergence results can be proven with little to no effort through the formulation
of a contraction. By treating the theorem seperately, we will see that the design
of stable, monotonically convergent iterative learning controllers becomes almost a

trivial matter even in an abstract setting.
Theorem 2.1 (Banach Fixed Point). Let H : X — X be a contraction mapping on
a complete normed space X ; i.e. there exists v < 1 such that

|Hz — Hyl| < vllz —yll, Vz,yeX.
Then, H has a unique fized point £ = Hx. Moreover, for any xo € X, the sequence
generated by vp1 = Hxy, for all k € N converges to T