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ABSTRACT 

 

 

EVALUATION OF CONSTRUCTION WORKERS’ PHYSICAL 

DEMANDS THROUGH COMPUTER VISION-BASED KINEMATIC 

DATA COLLECTION AND ANALYSIS 

by 

JoonOh Seo 

 

 

Construction workers are frequently exposed to considerable physical demands as 

construction tasks largely rely on manual handling tasks. Excessive physical demands beyond 

one’s capabilities may lead to productivity, safety, and health issues in construction. Assessing 

physical demands from work helps not only to identify the fundamental cause of the gap between 

physical demands and capabilities, but also to find an appropriate method of intervention to 

eliminate the gap. Although many researchers have worked on methods for evaluating physical 

demands, the use of these methods in construction is limited due to the difficulty in collecting 

reliable kinematic data with the required level of detail according to evaluation methods. In 

addition, a discussion on how excessive physical demands affect workers’ time and cost 

performance in construction is sparse. 

With this background, the overarching goal of this dissertation is twofold: 1) to enable 

practitioners to evaluate construction workers’ physical demands on sites in a timely manner 

without technical sophistication or skill, and 2) to enhance our understanding of the impact of 

excessive physical demands on construction operations. Specifically, computer vision-based 

approaches are proposed to non-invasively collect kinematic data by recording and processing 



xii 
 

video sequences. This data can be used to quantify and evaluate physical demands through postural 

ergonomic risk assessment and biomechanical analysis. Also, worker-oriented modeling and 

simulation of construction operations is proposed to capture the interactive effects between 

excessive physical demands and construction operations by combining a Discrete Event 

Simulation (DES) model with biomechanical and fatigue models. This approach enables us to 

evaluate workers’ fatigue from operations in the early design stages, and then to quantify the 

impact of fatigue on workers’ time and cost performance. The proposed approaches have been 

tested through a series of laboratory tests and case studies, proving their feasibility and 

applicability under real conditions at construction sites. Ultimately, continuous evaluation and 

monitoring of physical demands during construction tasks using the proposed approaches will 

enhance the understanding of the gap between physical work demands and workers’ capability, 

and offer a firm foundation for the improvement of workers’ health (e.g., reducing WMSDs), as 

well as productivity in construction.  
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CHAPTER 1  

 

INTRODUCTION 

 

1.1  BACKGROUND 

The construction industry is labor intensive, and relies largely on manual handling tasks. 

Despite recent advancements in construction technologies, a large portion of construction work is 

still performed by manual workers due to low-level of automation and mechanization (Khoshnevis 

2004; Ardiny et al. 2015). As a result, construction labor costs are one of the largest cost 

components in the project budget, accounting for 33-50% of total costs (Hanna 2001).  

Combined with non-standardized operations in unstructured environments, high labor 

intensiveness in construction has had adversary impacts on construction performance in terms of 

productivity, safety, and health. Labor productivity in construction has been stagnant or even 

decreased while other industries such as manufacturing have shown a sustained increase in labor 

productivity, resulting in 25% of higher productivity (Rojas and Aramvareekul 2003; Teicholz 

2013). The construction industry showed the largest number of fatal occupational injuries, and the 

fourth-highest non-fatal injury rate (i.e., cases per 10,000 full-time workers) in 2014 (BLS 2015a; 

BLS 2015b). Also, construction workers are frequently exposed to forceful and repetitive exertions 

with awkward postures, which leads to work-related musculoskeletal disorders (WMSDs) such as 

strains, tendonitis, back and wrist injuries (Everett 1999; Boschman et al. 2012).  As a result, in 

construction, WMSDs account for 31% of nonfatal occupational injuries and illnesses involving 

days away from work (BLS 2015b).  

Previous research efforts have tried to address worker-related issues by identifying causes, 

and eliminating them. One of the well-established theories used to explain the fundamental causes 
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of those issues is a demand-capability model in Figure 1.1 (Armstrong et al. 2001; Karwowsky 

2001; Mitropoulos et al. 2009). The basic premise of this model is that human performance is 

affected by human─system interactions (Salvendy 2012). In order to achieve the goals of the given 

system, the system assigns jobs to humans, who create specific task demands. However, as workers 

have limited capabilities, a mismatch between the task demands and worker capabilities could 

occur under the given system. According to Karwowsky (2001), “the gap between the demands 

and capabilities can lead to human errors and accidents, characteristics of a sub-optimal, unsafe 

situation in which the final product is low in quantity and poor in quality.” The task demands 

range from physical demands to cognitive demands (Grandjean 1989). Considering that over 70% 

of the construction workforce is engaged in physical activities involving heavy load lifting and 

awkward postures (U.S. Census Bureau 2012; Mitropoulos and Memarian 2012), identifying and 

eliminating the gap between physical demands and capabilities is crucial to establishing an 

efficient and safe working environment.  

 

Figure 1.1: Demand-Capability Model (adapted from Armstrong et al. (2001)) 

 

From an ergonomics perspective, identifying the gap between physical demands and worker 

capabilities starts from assessing: 1) worker or population physical capabilities; and 2) physical 

demands from the job, equipment, and environment (Armstrong et al. 2001). As all human being 

have different capabilities, quantitative information about worker capabilities should be provided 

on both an individual and population basis (Chaffin et al. 2006).  Previous research efforts have 

investigated the various physical capabilities of specific populations such as anthropometry, range 

of motion or muscle strength and endurance, and human variability according gender and age 

through self-reports or objective measurements at field or laboratory conditions (Chaffin et al. 

2006; Cooper et al. 2010). For assessing physical demands, extensive information on both what 
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and how the worker does should be obtained directly from the job through discussions with 

workers and supervisors, worker observation, and the measurement of work layout or assessment 

of various stresses using instrumentation (Armstrong et al. 2001).  

Assessing physical capabilities and demands from the job enables us to not only identify the 

fundamental cause of the gap between them, but also to find an appropriate form of intervention 

to eliminate the gap. Armstrong et al. (2001) proposed two complementary means to match job 

demands and worker capabilities: 1) the use of assistive devices (e.g., gloves to relieve tool 

pressure points, special glasses for reading a computer screen) to improve worker capabilities; and 

2) the design of the job, equipment, and environments to reduce job demands, and thus to 

accommodate a variety of worker capabilities. In the ergonomic perspective that aims to design 

the job to fit the worker, the latter approach is preferred because designing for all workers is the 

only way to fundamentally eliminate the gap (Armstrong et al. 2001; Chaffin et al. 2006).   

According to Bernold and AbouRizk (2010), “one of the prime beneficiaries of ergonomics 

is the construction industry, with its physically demanding work.” However, despite an increasing 

need for applying ergonomic approaches in construction, both research and practice have focused 

exclusively on providing general ergonomic guidelines for working postures or material handling 

without an in-depth understanding of physical demands from construction tasks under real 

conditions. Generally, several iterations are required to obtain more detailed descriptions on the 

job such as actions, movements, and forces (Armstrong et al. 2001). Unlike manufacturing, 

construction is characterized as unique design according to projects, non-standardized work 

procedures, and unstructured and continuously changing work environments. Unique 

characteristics of the construction industry may hinder iterative job analyses, making it challenging 

to quantify and assess physical demands at construction sites.  

 

1.2 CURENT APPROACHES TO ASSESS PHYSICAL DEMANDS 

Physical demands are determined not only by external loads in the physical work 

environment, but also by a worker’s response to these external loads (Radwin et al. 2001). The 

external loads are affected by the geometry of the workplace, the type of tools used, and the work 

objects (e.g., materials) and environmental conditions (Armstrong et al. 1993). However, under 
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the same working conditions, the way a worker performs a task (e.g., working postures) could vary 

depending on an individual’s preference, experience and techniques, leading to variations on 

postures, motions and force exertions. According to Radwin et al. (2001), “these external loads 

are transmitted to through the biomechanics of the body to create internal loads on tissues and 

anatomical structures.” The internal loads are stresses that disturb the internal state of the 

individual mechanically, physiologically, and psychologically, resulting in cascading responses on 

the preceding internal stress (Armstrong et al. 1993). For example, biomechanical stresses refer to 

tissue forces (e.g., muscle forces) at each body part that are produced as a result of force exertion 

and movement of the body. Creating muscle forces on the human body leads to physiological 

disturbances on the human body such as energy consumptions, production of metabolic substrates 

or by-products, and localized or whole body fatigue. If the biomechanical or physiological 

responses exceed the individual’s tolerance, one may experience discomfort and pain that may 

lead to anxiety about the workload.  

Previous research efforts have developed diverse approaches to evaluate physical demands 

by measuring external or internal stresses through self-reports, observations or instrumentation 

(Janowitz et al. 2006). External stresses include repetitive motions, sustained postures, and 

external forces (Radwin et al. 2001). These external stresses can be directly measured using 

instrumentation, for example, motion capture systems, goniometers, and force gauges in both 

laboratory and occupational settings (Chaffin et al. 2006). In occupational settings, due to their 

ease of learning, repeatability, and application, postural ergonomic risk assessments through 

human observations have been widely used, enabling rapid assessments of occupational tasks 

(Karhu et al. 1981; Kivi and Mattila 1991; Kee and Karwowski 2007). Those include, but are not 

limited to, Ovako Working Posture Analysing System (OWAS) (Karhu et al. 1977, Karhu et al. 

1981), postural targeting (Corlett et al. 1979), Rapid Upper Limb Assessment (RULA) 

(McAtamney and Corlett 1993), Posture, Activity, Tools and Handling (PATH) (Buchholz et al. 

1996), and Rapid Entire Body Assessment (REBA) (Hignett and McAtamney 2000). These 

methods aims to capture postures (some include hand loads) through human observations using 

checklists, and provide overall indices or scores to determine the degree of risk of exposure (David 

2005). Videotaping is often used to supplement human observation.  
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Internal stresses are generally evaluated by using physiological or psychophysical measures. 

For example, to quantify biomechanical stresses (e.g., muscle forces), indirect electrophysiological 

measures such as amplitude changes in integrated electromyograms and frequency shifts in 

electromyogram spectra are commonly used (Radwin et al. 2001). It has been found that there is a 

quantitative relationship between a processed electromyographic signal and the corresponding 

force produced by skeletal muscle (Perry and Bekey 1980). Other physiological measures used to 

evaluate internal stresses include heart rate, oxygen consumption, substrate consumption and 

metabolite production (Radwin et al. 2001). However, most of above measures can be obtained 

only under laboratory conditions due to the need for complex instrumentation. Alternatively, 

model-based approaches have provided an in-depth understanding of internal responses of the 

human body to external loads (Armstrong et al. 1993). Previous research efforts have found a 

strong relationship between external loads and internal responses to the loads, and thus 

biomechanical and physiological mathematical models have been developed to quantitatively 

describe some of these relationships (Radwin et al. 2001). These models help to quantitatively 

estimate internal loads under given external stress factors. The psychophysical methods rely on an 

individual’s subjective evaluation to estimate magnitudes of internal stresses or to assess the 

severity of body part discomfort as a result of a task (Olendorf and Drury 2001). Those include 

Rated Perceived Exertion (Borg 1981), and Body Part Discomfort Scale (Corllett and Bishop 

1976).  

 

1.3 PROBLEM STATEMENTS 

Although many researchers have worked on methods for evaluating physical demands, the 

use of these methods in occupational settings, especially in construction is limited due to the 

difficulty in collecting reliable data on working postures and motions with the required level of 

detail according to evaluation methods. For example, postural ergonomic assessment methods are 

best used for initial assessments to screen risky tasks that need ergonomic interventions (Janowitz 

et al. 2006). However, as these methods rely on human observations to record postures, issues with 

the reliability and practicability of these methods—due to a lack of precision, and time-consuming 

procedures—have been reported (Burdorf et al. 1992). The disadvantages and limitations of 

observational methods are magnified in construction tasks that involve dynamic work situations 
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such as complex and non-repetitive work patterns in relatively large work spaces, resulting in the 

limited use of observational methods. Also, the need for well-trained analysts may hinder the 

evaluation of real tasks in construction where the few practitioners responsible for health and safety 

at construction sites have little ergonomic expertise.  

For more in-depth analysis of physical demands, collecting kinematics (motion) data is 

needed, which is challenging in construction. Body kinematics—a description of a person’s 

postures or movements—is not only necessary in the analysis of external stresses from the job, but 

also useful for estimating internal stresses using biomechanical models (Radwin et al. 2001). Also, 

kinematics data provides contextual information on the fundamental causes of physical demands 

as a worker’s behavior is affected by physical work environmental factors (e.g., geometry of the 

workplaces, types of tools), as well as individual factors (e.g., anthropometry, preferred working 

techniques). Current approaches to measure body kinematics rely on complex motion capture 

systems that need instruments (e.g., goniometers), sensors (e.g., accelerometers) or markers (e.g., 

optical motion capture systems). Due to the possibility of interfering with on-going work, however, 

these approaches can work better in laboratory settings by simulating tasks in a controlled 

environment. The representation of the tasks in data collection is generally based on extensive 

field or video observations to reflect general working methods and styles (Kim et al. 2011). 

However, it is difficult to reflect all possible variations in diverse construction sites and workers’ 

working styles in the laboratory.  

In addition, despite the increasing attention paid to the adversary effects of excessive 

physical demands, discussion on how excessive physical demands affect workers’ time and cost 

performance in construction is sparse. Construction is one of the most human-oriented industrial 

sectors (Loosemore et al. 2003), and thus human performance is a critical factor in construction 

projects’ success. As most work activities involve interaction between humans and systems (e.g., 

including tasks, equipment, tools, and software), how to maximize human performance (e.g., 

productivity) without causing detrimental results on workers’ health under the given interactions 

is extremely important (Salvendy 2012). However, current approaches to evaluate physical 

demands mainly focus on identification of potential health issues such as the risk of WMSDs. A 

lack of a tool with which we can understand the potential impact of excessive physical demands 

on construction operations prohibits us from using knowledge on human aspects (e.g., workers’ 
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response to work) in our planning and control decisions to improve work performance (e.g., 

productivity) and well-being. 

1.4 RESEARCH OBJECTIVES AND APPROACHES 

With this background, the overarching goal of this research is twofold: 1) to enable 

practitioners to evaluate construction workers’ physical demands on sites in a timely manner 

without technical sophistication or skill; and 2) to enhance our understanding of the impact of 

excessive physical demands on construction operations. Specific objectives in this research are 

listed below.    

1. To enable an automated initial assessment of postural stresses to compare different 

jobs or tasks within a job to determine a prioritization of ergonomics efforts: The 

major obstacle for the use of postural ergonomic assessment methods is manual procedures 

to collect postural information at construction sites through human observations. An 

automated and easily applicable means for postural ergonomic evaluation is necessary to 

identify risk tasks that need further in-depth analysis and timely interventions.   

2. To enable non-invasive kinematics measurements required for in-depth analysis of 

physical demands at construction sites: Postural requirements and workers’ movements 

in the workplace vary greatly according to types of tasks and individuals. Non-invasive 

kinematics measurements that 

3.  

4.  do not require the introduction of any instruments into the body enable us to not only 

identify the severity of postures (e.g., body angles), but also to understand variability on 

how workers perform tasks (e.g., movement patterns, range of motions etc.) under real 

conditions without interfering with on-going work.   

5. To test the feasibility of on-site biomechanical analysis using the kinematics data 

obtained from sites for quantifying musculoskeletal stresses on different body parts: 

Even though postural and kinematics analysis provides an understanding of the external 

factors that lead to excessive physical demands, internal stresses such as musculoskeletal 

stresses can rarely be measured directly. A slightly different posture, combined with the 
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external forces and body weight, can create potentially hazardous loading conditions on 

certain musculoskeletal tissues (Chaffin et al. 2006). Through on-site biomechanical 

analysis that estimate musculoskeletal stresses at each body part using kinematics data 

directly obtained from sites, we can identify when and in which body parts workers are 

exposed to internal stresses under given external factors, which can contribute to the 

development of interventions to effectively reduce physical demands.            

6. To develop a means to model interactions between human aspects (i.e., muscle fatigue) 

and tasks and to evaluate the impact of excessive physical demands on construction 

operations:  Biomechanical analysis using the kinematic data reflecting possible 

operational scenarios can estimate physical demands from construction operations, 

enabling us to evaluate their impacts on workers’ performance (e.g., productivity). When 

workers are exposed to excessive physical demands without proper rest time, they suffer 

from a significant level of physical fatigue that could generate diverse detrimental impacts 

on the project performance. A systematic understanding and management of workers’ 

fatigue in planned operations of which activities and resources are determined prior to work 

can greatly contribute to workers’ productivity, safety, and health—all by taking proper 

actions before severe fatigue takes place.  

  

To achieve these research objectives, an inter-disciplinary approach is used in this research. 

The first approach taken in this research is computer vision-based posture classification that 

enables an automated initial assessment of postural stresses by automatically recognizing and 

evaluating workers’ postures on video sequences (Research Objective #1). The central hypothesis 

of this approach is that different postures on images create distinguishable image pixel patterns, 

allowing classification algorithms to learn the patterns and differentiate the postures on images 

with a higher accuracy than human observations. The substantial novelty of the proposed research 

is the development of virtual human modeling to create training datasets without a significant 

effort to manually collect massive datasets. Because computer vision-based classification relies 

heavily on machine learning techniques, one of its key challenges is to reflect variations caused by 

viewpoints or anthropometric differences (Poppe 2010). Since viewpoints and anthropometry of a 

virtual human model can be easily adjusted to match diverse viewpoints and anthropometries 
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prevalent in real construction sites, virtually created training datasets can be universally applicable 

to classify postures for any real-world images, and thus, can minimize the efforts to manually 

collect massive and extensive datasets. 

Another approach used in this research is vision-based motion capture to non-invasively 

collect kinematics information while performing construction tasks at sites (Research Objective 

#2). Vision-based motion capture is considered an attractive solution to the limitations on existing 

motion capture approaches (Corazza et al. 2006). The main advantage of the vision-based motion 

capture is that it does not require any markers or sensors attached to the subject during motion 

capture, and allows researchers to generate human-skeleton–based motion data. As will be 

introduced in Chapter 3, kinematics measurement directly from sites will open the door toward 

analyzing diverse in-depth analysis of physical demands based on workers’ postures and 

movements.  

Another approach taken in this research is motion-data driven on-site biomechanical 

analysis using vision-based motion data (Research Objective #3). The implementation of on-site 

biomechanical analysis may broadly involve two technical challenges. One is to collect accurate 

motion data without interfering with on-going works in construction sites; the other is to process 

the motion data to make it compatible with existing computerized biomechanical analysis tools. 

While the vision-based motion capture approaches described above can be used to collect motion 

data required for biomechanical analysis, the compatibility issue still remains. Also, it should be 

further investigated whether the vision-based motion data can provide acceptable accuracy for 

biomechanical analysis. As will be introduced in Chapter 4, a semi-automated process to convert 

the motion data into available data and represent motions in biomechanical analysis tools is 

proposed to address the compatibility issue. Additionally, through sensitivity analysis of 

musculoskeletal stresses on motion data errors, whether vision-based motion data is viable for 

biomechanical analysis is discussed.  

  The final approach taken in this research is worker-oriented modeling and simulation of 

construction operations by combining a Discrete Event Simulation (DES) model with 

biomechanical and fatigue models to capture the interactive effects between excessive demands, 

muscle fatigue and construction operations (Research Objective #4). Specifically, when combined 

with DES simulations, biomechanical analysis using the kinematic data  (Research Objective #3) 
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enables us to estimate physical demands from possible operational scenarios.  Then, the proposed 

dynamic fatigue models estimate the level of muscle fatigue of each worker as a function of the 

estimated physical demands. Workers’ strategies to mitigate muscle fatigue, such as taking 

voluntary rests, are, in turn, modeled in the DES to understand how muscle fatigue affects time 

and cost performance of the planned operation. A clear identification and quantification of the 

dynamics underlying construction operations through this approach can have tremendous potential 

to improve how the construction workforce is working as well as how workplaces and processes 

are designed. 

 

1.5 THE STRUCTURE OF THE DISSERTATION 

This dissertation is a compilation of the studies used to achieve the proposed research 

objectives. This dissertation is composed of 6 Chapters, and Chapters 2 – 5 introduce each of the 

studies that corresponds to a research objective. Following is the list of the Chapters.     

Chapter 1: Introduction. This chapter covers the background, problem statements, and 

objectives and approaches of the proposed research.     

Chapter 2: Automated Postural Ergonomic Risk Assessment Using Vision-based Posture 

Classification. This chapter introduces a study to classify working postures on video sequences 

through vision-based posture classification algorithms, and validate, aiming at automating current 

observation methods. Additionally, this chapter also introduces the results of laboratory testing to 

test the feasibility of the proposed approach.  

Chapter 3: Three Dimensional Body Kinematics Measurement Using Vision-based 

Motion Capture Approaches. This chapter introduces vision-based motion capture approaches 

that invasively collect kinematics information while performing construction tasks at sites, and the 

comparison of motion data accuracy through laboratory tests. This chapter also discusses the 

potential applications of the motion data for in-depth analysis of physical demands.  

Chapter 4: Motion Data-Driven Biomechanical Analysis Using Vision-based Motion 

Data. This chapter introduces a motion-data–driven biomechanical analysis on construction 

manual tasks using motion data obtained from vision-based motion capture approaches. A case 
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study on lifting tasks is also introduced to see the feasibility of on-site biomechanical analysis 

using the motion data.  

Chapter 5: Simulation-based Assessment of Workers’ Muscle Fatigue and Its Impact on 

Construction Operation. This chapter introduces a simulation-based framework to estimate 

physical demands and corresponding muscle fatigue from the planned operation, and then evaluate 

the impact of muscle fatigue on construction operations. In addition, a case study on masonry work 

is described to demonstrate how the proposed framework can be applied to the actual construction 

operation. 

Chapter 6: Conclusions and Recommendations. This chapter provides a summary of the 

conclusions that can be drawn from the research. Several recommendations for future work 

stemming from this research are also provided.  
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CHAPTER 2  

 

AUTOMATED POSTURAL ERGONOMIC RISK ASSESSMENT USING 

VISION-BASED POSTURE CLASSIFICATION 

 

2.1 INTRODUCTION 

Workers perform diverse tasks in workplaces that have different levels of risks associated 

with physical demands. Practitioners must identify problematic tasks and activities in order to 

establish priorities across a range of tasks, and to allocate appropriate levels of resources toward 

the improvement of in-depth job analyses and workplace interventions (Li and Buckle 1999). 

Among various types of methods for the assessment of physical exposure, postural ergonomic 

assessment methods have been commonly used for initial screening assessments due to the 

advantages of being quick and easy to use (Janowitz et al. 2006). Postural ergonomic risk 

assessment methods aim to systematically record exposure to risky postures through human 

observations, and then determine overall indices or scores that indicate relative levels of physical 

exposure.  

Even though observation-based postural ergonomic risk assessment methods appear to be 

best matched to the needs of occupational safety and health practitioners, these methods have not 

been widely applied in construction due to their manual procedures and need for trained analysts. 

In contrast to manufacturing, working conditions are continuously changing as the work progresses, 

and equivalent tasks are performed differently depending on projects. As a result, safety and health 

practitioners may need more frequent assessments to reflect changing conditions, which is a great 

burden to them. Also, despite the severity of ergonomic injuries, safety and health practitioners in 

construction do not generally possess the requisite ergonomic expertise to use these methods, and 

thus just focus on providing simple ergonomic training to workers. As a result, an effective and 
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easily accessible means for postural ergonomic risk assessment is required to assess physical 

exposure during construction tasks. 

Computer vision can provide one alternative for an automated, non-invasive, and cost-

effective means to facilitate the use of postural ergonomic evaluation methods in construction. 

Vision-based action recognition has been especially successful when applied to capture changes 

in postures (i.e., motions) from images (Weinland et al. 2011), suggesting its potential to classify 

postures at a specific moment. However, one of the key challenges is that massive and 

comprehensive training datasets are essential to reflect variations according to viewpoints or 

anthropometric differences because it heavily relies on machine learning techniques (Poppe 2010). 

Thus, persistent challenges in obtaining such training datasets must be overcome (Golparvar-Fard 

et al. 2013). In addition, intra- and inter-class variations due to dynamic environments (e.g., 

lighting conditions) and human variability (e.g., clothing, anthropometry etc.) in construction 

should be also addressed. In this regard, to achieve high postural classification performance, it is 

important to select image features that have the capacity to not only differentiate diverse postures 

on real-world images, but also to generalize over these variations. 

To address this issue, this study proposes vision-based posture classification algorithms 

using training datasets obtained by modeling human motions in a virtual environment. Because 

viewpoints and anthropometry of a virtual human model can be easily adjusted to match real 

conditions, virtually created training datasets are universally applicable to classify postures from 

any real-world image, and thus can minimize the efforts to collect extensive datasets. In addition, 

features from body silhouettes are extracted to represent images for minimizing differences in 

color and texture between virtual and real-world images, as well as capturing local variations due 

to moving body parts. The algorithms are tested on a set of video images containing different 

simulated postures by eight subjects that are collected at the laboratory. Based on the results, 

potential issues and future studies are discussed. 

 



 

14 
 

2.2 LITERATURE REVIEW 

2.2.1 Current Approaches for Postural Ergonomic Risk Assessment 

Awkward postures that are combined with external forces (e.g., hand loads) can create 

excessive musculoskeletal stresses beyond the internal tolerances of tissues, leading to WMSDs 

(Radwin et al. 2001). Therefore, the majority of current techniques for measuring and evaluating 

workers’ exposure to the risk factors of WMSDs focus on postural stresses, providing overall 

indices or scores to determine the degree of risk of each posture (David 2005). Since the advent of 

the Posturegram, the first systematic postural recording method developed by Priel (1974), a 

number of observational postural ergonomic evaluation methods have been developed for 

systematically recording exposure to postural stresses (David 2005). Those include, but are not 

limited to, Ovako Working Posture Analysing System (OWAS) (Karhu et al. 1977, Karhu et al. 

1981), postural targeting (Corlett et al. 1979), Rapid Upper Limb Assessment (RULA) 

(McAtamney and Corlett 1993), PATH (Buchholz et al. 1996), and Rapid Entire Body Assessment 

(REBA) (Hignett and McAtamney 2000).  

Generally, these methods evaluate whole body postures that are defined by combining 

different postures at specific body parts (Karwowski and Marras 1998). For example, OWAS 

defines postures at three body parts such as a back (e.g., standing, twisting, bending etc.), arms 

(e.g., arms below or above the shoulder level) and legs (e.g., standing on both straight legs, 

squatting, kneeling, walking, sitting etc.) respectively according to pre-defined postural codes as 

shown in Figure 2.1(a). Other methods such as REBA also have similar postural classifications 

with OWAS as they are developed based on OWAS, even though details of posture classifications 

are different each other (See Figure 2.1(b)). Once observations and corresponding posture 

classifications are made, the posture combinations are classified into four action categories that 

are evaluation indices to determine postural stresses (e.g., ‘1’ with minimum risks to ‘4’ with a 

very harmful effect on the musculoskeletal system).  

  



 

15 
 

 

Figure 2.1: Examples of Postural Classification in OWAS and REBA 

 

Among these methods, work-sampling based approaches such as OWAS are recommended 

for the construction tasks that are non-cyclical and irregular (Buchholz et al. 1996). OWAS has 

been tested in diverse physically demanding tasks in construction such as hammering, scaffolding, 

and laying bricks etc. (Kivi and Mattila 1991; Mattila et al. 1993; Li and Lee 1999; Saurin and de 

Macedo Guimarães 2008). From these studies, the OWAS method proved to be well suited for 

analyzing working postures in construction, providing opportunities to identify tasks involving a 

large portion of poor postures, and thus to improve working postures (Kivi and Mattila 1991).  

2.2.2 Computer Vision-based Posture Classification 

Computer vision-based action recognition has drawn attention for automated monitoring of 

workers in construction (Seo et al. 2015a). This approach aims to recognize actions by: 1) 

collecting 2D or 3D training images; 2) extracting human features from the images; 3) training 

classifiers; and 4) classifying diverse actions from an individual or a sequence of image frames 

(i.e., testing images) (Poppe 2010). It has been studied for several applications in construction, 

including productivity analysis (Gong et al. 2011), safety monitoring (Han and Lee 2013), and 

ergonomics training (Ray and Teizer 2012). These studies have proved the applicability of vision-

based action recognition in construction, indicating the potential for vision-based posture 
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classification needed to automate existing postural ergonomic evaluation procedures only by 

collecting video or time-lapse images on sites.  

Despite its potential, significant challenges still exist in the application of computer vision 

techniques for posture classification. For example, there are large variations of postures on images 

according to viewpoints. The same postures, observed from different viewpoints, can lead to very 

different image observations, which may result in classification errors (Poppe 2010). Therefore, 

collecting multi-view images from a set of cameras for training and matching an observation to 

recorded views have been suggested to alleviate viewpoint issues (Weinland et al. 2011; Ogale et 

al. 2004; Rogez et al. 2006; Ogale et al. 2007). However, it is difficult to collect training images 

for construction workers from all possible viewpoints that would exist in real conditions, which 

severely limits its applicability. 

In addition, human variability in anthropometry (e.g., weight and height) can create large 

variations in posture (Poppe 2010). Differences in body length and mass could result in differences 

in silhouettes of postures, which may lead to intra-class variations. Wearing safety equipment or a 

waist tool bag could also cause variations in silhouettes. In particular, posture classification for 

workers holding materials or hand tools may require pre-processing on images to detect materials 

or tools and distinguish them from silhouettes of postures, which is challenging as well.   

Further, vision-based posture classification has to detect more details based on less 

information from images than action recognition, which is also very challenging. Unlike action 

recognition that is based on whole body motions from a sequence of image frames, posture 

classification needs to detect different postures according to body parts. Computer vision 

algorithms for posture classification, as a result, should be sensitive to localized variations. A range 

of combinations of postures that exist in real worlds makes it more challenging to classify postures 

on back, upper, or lower limbs respectively. In addition, the temporal structure of motion features 

in a sequence of images commonly used for action recognition would be not effective for posture 

classification problems because a posture is a configuration of a person’s body in space at a specific 

moment (Haslegrave 1994).  
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2.3 METHOD 

This study aims to classify postures defined by existing postural ergonomic evaluation 

methods from video or time-lapse images. Figure 2.2 shows the overall research procedure of the 

proposed approach. The underlying mechanism of the developed approach is that different 

postures on images create distinguishable image pixel patterns (i.e., image features), allowing 

classification algorithms to learn the patterns from training images and differentiate the postures 

on testing images. As discussed earlier, one of the key challenges of vision-based approaches is 

the creation of comprehensive training images that reflect variations in real conditions (e.g., 

viewpoints or workers’ anthropometry). To address this issue, a novel approach to create training 

datasets by using virtual human modeling is introduced. In addition, this study proposes an 

algorithm for vision-based posture classification based on image features from body silhouettes 

that are obtained through a background subtraction. As a result, posture classification algorithms 

make a classifier learn diverse postures using silhouettes-based features from virtual training 

images, and then to classify postures on real-world images by using the learned classifier 

 

 

Figure 2.2: Overall Procedure for Vision-based Posture Classification 

 

2.3.1 Virtual Training Datasets 

Training images for diverse postures are obtained by using virtual human modeling that is 

an emerging technology for motion simulation in a virtual environment (VE), which helps to study 

human-system interactions in workplaces (Demirel and Duffy 2007). A virtual human model with 
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specific population attributes (e.g., height and weight), which is inserted and animated according 

to human motion capture data in a 3D virtual space will be used to generate virtual training image 

datasets as shown in Figure 2.3.  

 

 

Figure 2.3: Procedure for Virtual Training Datasets 

 

First, the motion data from actual workers at construction sites is collected by using motion 

capture systems such as a RGB-D sensor and an Inertial Measurement Unit (IMU)-based motion 

capture system (A in Figure 2.3). The use of a virtual human model allows us to manipulate any 

posture from any viewpoint of workers with substantial anthropometric variability without 

collecting real workers’ motion data. However, this study intends to collect real workers’ motion 

data because our own manual manipulation of postures may miss important postures given non-

standardized and complex construction work. Thus, the purpose of collecting real workers’ motion 

data in this step is to encompass as diverse a range of workers’ postures as possible. Collecting 

real workers’ motion data also preserves time and energy because it eliminates the need to collect 

additional training datasets even though there are new data to be analyzed. Existing computer 

vision-based action recognition approaches, by contrast, require massive training datasets that have 

to be continuously collected (Poppe 2010). Further, if there is any missing posture, a virtual human 

model enables us to create that posture by simply modifying existing postures without collecting 

that real posture, making it possible to easily update the training datasets.  

Once motion data are obtained, a virtual human model is constructed and simulated based 

on the motion data in the VE (B in Figure 2.3). Specifically, as body shapes (i.e., silhouettes on 

images) are significantly influenced by anthropometry, virtual human models that represent  

diverse weight and height distributions among a specific population need to be created by varying 

a virtual human model’s shape. Then, the scene of the human model is projected onto an image 

sphere, creating a sequence of images containing human postures. By changing the virtual camera 
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positions, virtual video sequences from all possible viewpoints that would exist in real conditions 

can be created (C in Figure 2.3).  

Each video image should then be labeled according to body postures to be used as training 

datasets. Existing postural ergonomic assessment methods define whole body postures by 

combining different postures at specific body parts (Karwowski and Marras 1998). For example, 

OWAS defines postures at three body parts such as a back (e.g., standing, twisting, and bending), 

arms (e.g., arms below or above the shoulder level) and legs (e.g., standing on both straight legs, 

squatting, kneeling, walking, and sitting) respectively, according to pre-defined postural codes. 

Other methods such as RULA or REBA also have similar postural classifications with OWAS as 

they are developed based on OWAS, even though details of posture classifications are different 

each other. Postures on each video image can be automatically identified by using corresponding 

motion data where three-dimensional joint positions and body angles are available (D in Figure 

2.3). The use of 3D skeleton data enables not only accurate and instant postural labeling for training 

datasets, but also extension of this approach to any types of postural ergonomic assessment 

methods only by changing the criteria to define postures of interest.  

2.3.2 Background Subtraction 

By using silhouettes, the proposed approach is color invariant, which allows to avoid 

possible confusion caused by workers’ different color clothes and lighting conditions. As a result, 

the proposed approach can be universally applicable to diverse environments in construction. As 

the proposed approach relies on silhouette images for posture classification, it is important to 

extract clear body silhouettes. This study applies background subtraction and noise removal 

algorithms to obtain silhouette images from video sequences, and then detect the Region of Interest 

(ROI) with a bounding box containing a body silhouette as shown in Figure 2.4.  
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Figure 2.4. Procedures for Background Subtraction and Detection of ROI 

 

Background subtraction is a widely used approach for detecting moving objects in videos 

from static cameras (Piccardi 2004). Generally, background subtraction techniques detect the 

foreground region (e.g., moving objects) by comparing the current frame with the background 

model. For example, when the difference between the current value of a pixel p and the value of 

model b is higher than the threshold T, the current pixel can be defined as a foreground. This study 

applies one of the state-of-the-art background subtraction algorithms, ViBe, that is robust to 

lighting changes and appearance of new objects in the scene by updating the background model 

over time (Barnich and Droogenbroeck 2011). Also, Vibe enables real-time processing of images. 

This algorithm considers the problem of background subtraction as a classification problem. It 

classifies a new pixel value (𝑣(𝑥), the value of the pixel located at x in the image) by comparing 

the value with its corresponding background model, ℳ(𝑥) (Equation 2.1) taken in the N previous 

frames. Specifically, if the number of background pixel samples that are closed to the new pixel 

value in a Euclidean color space is higher than a given threshold, the new pixel is classified as 

background.  

                   ℳ(𝑥) = {𝑣1, 𝑣2, … , 𝑣𝑁}  where 𝑣𝑖 is a background pixel samples                     (2.1) 

However, the foreground mask after subtracting background could have some noisy pixels 

in the background. As shown in Figure 2.4, for example, shadows on a wall and high contrast 

edges result in the false detection of background regions (Elgammal et al. 2000). To remove the 

noisy pixels in the background, several noise removal algorithms are implemented. For example, 

objects containing fewer than 50 pixels are removed, and then a median-based filter replaces the 
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noisy pixels ( 𝑓(𝑥, 𝑦),  a pixel value at the position of (x,y)) by median values 

(𝑔(𝑥, 𝑦), 𝑎 𝑚𝑒𝑑𝑖𝑎𝑛 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑝𝑖𝑥𝑒𝑙) in a 5×5 pixel window as shown in Equation 2.2 (Dong and 

Xu 2007). This study used the MATLAB function ‘medfilt2’ for median filtering.  

                               𝑔(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛 (∑ ∑ 𝑓(𝑥 − 𝑖, 𝑦 − 𝑗)2
𝑗=−2

2
𝑖=−2 )                         (2.2) 

In addition, a morphological closing is applied to fill in the thin gulfs and small holes on 

body silhouettes by using the MATLAB function ‘strel’ and ‘imclose’ (Maragos 2005). Once a 

clear silhouette is generated, a bounding box is placed around the silhouettes, serving as a ROI for 

feature extraction.  

 

2.3.3 Silhouette-based Feature Extraction 

Once a clear silhouette is generated, image features that represent body postures are 

extracted based on shapes and radial histograms of the silhouette within the bounding box as shown 

in Figure 2.5. The fundamental idea behind the use of shape- and radial histogram-based features 

is that a human body has a specific range of joint motion that creates unique characteristics of body 

silhouettes. As a result, each body posture can be encoded using these features that represent the 

variability of body silhouettes according to various postures.  

 

 

Figure 2.5: Feature Extraction from Body Silhouette 

 

This study developed shape-based features such as: 1) the aspect ratio of the bounding box 

(horizontal length of the bounding box / vertical length of the bounding box); 2) the ratio of the 

minor to the major axis of the ellipse that is fit to the silhouette (length of the minor axis / length 

of the major axis of the ellipse); and 3) the orientation of the ellipse. Bounding boxes and ellipses 
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that fit body silhouettes were obtained using the MATLAP function ‘regionprops’. Figure 2.5A 

shows that different postures create distinct values of these features. To extract more detailed 

shape-based features, the bounding box is further divided into 2×1 (2 subsets) and 2×2 (4 subsets) 

sub-windows, and the features are extracted from each sub-window.  

To extract radial histograms of the silhouette, the bounding box is normalized as a square 

of which length is the bigger side of the bounding box (Tran and Sorokin 2005). Then, the 

silhouette’s center of gravity ((𝑥𝑐 , 𝑦𝑐)) was calculated by using the following equations.  

𝑥𝑐 =  
1

𝑁𝐶
∑ 𝑥𝑖

𝑁𝐶
𝑖=1 , 𝑦𝑐 =  

1

𝑁𝐶
∑ 𝑦𝑖

𝑁𝐶
𝑖=1                                             (2.3) 

The normalized bounding box of which center is the silhouette’s center of gravity is divided 

into 8, 12, 16 and 20 slices respectively, and the ratio of black versus white pixels in each slice is 

histogrammed as shown in Figure 2.5B.  

2.3.4 Classification Algorithm 

Once image features are constructed, a classifier needs to learn the features from training 

datasets for classifying postures in new testing images. As a classifier, Support Vector Machines 

(SVMs) are applied. SVMs are discriminative classifiers that have been widely used for action 

recognition (Poppe 2010). Basically, the SVM classification aims to separate the set of training 

vectors belonging to two separate classes, 

𝒟 =  {(𝑥1, 𝑦1), … , (𝑥𝑙, 𝑦𝑙) }, 𝑥 ∈  𝑅𝑛, 𝑦 ∈ {−1, 1},                                (2.4) 

with a hyperplane,  

< 𝑤, 𝑥 >  +𝑏 = 0                                                              (2.5) 

where the parameters w, b are constrained by  

𝑚𝑖𝑛𝑖 |〈𝑤, 𝑥𝑖〉 + 𝑏| = 1.                                                     (2.6) 

The set of vectors is said to be optimally separated by the hyperplane if it is separated 

without error and the distance between the closest vector to the hyperplane is maximal. Even 

though the SVM classifier was originally developed for two-class classification, it can be extended 
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to multi-class classification by combining a number of two-class classification SVMs to form a 

multi-class classifier (Hsu and Lin 2002). This study implemented the one-against-one method 

that constructs k(k-1)/2 classifiers (k is the number of classes) where each one is trained on data 

from two classes, and predict the class of a testing vector based on majority voting (Kreßel 1999).  

2.3.5 Post-processing for Noise Removal 

The proposed algorithms perform posture classification based on frame-by-frame 

processing, which means that each frame is classified independently. Under real conditions, 

workers perform tasks by changing their postures from one to another, and a specific posture is 

maintained for a certain period. As a result, if the classification results show variations in a short 

period of consecutive frames, they could be incorrectly classified postures. To remove this noise, 

classified postures that do not continue for more than 10 consecutive image frames are labeled as 

dominantly classified postures near the frames as shown in Figure 2.6.  

 

Figure 2.6: Post-processing on Classification Results 

 

2.4 LABORATORY TESTING  

To test the feasibility of the proposed approach, laboratory-based tests were conducted. The 

primary purpose of the tests is to examine whether training images from a virtual environment 

independent of testing conditions (i.e., real-world environment) are applicable for classifying 

workers’ postures on real-world images with a higher accuracy than human observations. Previous 

research efforts found that trained analysts showed more than 10% of errors in classifying postures 

(Burt and Punnett 1999; Paquet et al. 2001; Spielholz et al. 2001; Lowe 2004; Weir et al. 2011). 

Also, this study also investigates the effect of the anthropometry and viewpoint on classification 

performance.  
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2.4.1 Testing Postures 

For this test, three representative postures according to different body parts such as back-

bending for back posture, arm-raising for arm posture, and knee-bending for leg posture were 

selected as shown in Figure 2.7. Each posture is defined based on the OWAS criteria. For example, 

in OWAS, when the upper body is bent forward or backward 20° or more, the posture is considered 

back-bending. An arm-raising means both arms at or above should level, and a squat posture is 

when both knees are bent on a 150° or smaller angle.  

 

 

Figure 2.7: Examples of postures in training and testing images 

 

2.4.2 Data Collection 

The tests were performed at the Construction Laboratory at the University of Michigan. 

Eight male subjects who have different anthropometries such as height (ranges from 4.1th to 95.9th 

percentile, (CDC 2012)) and Body Mass Index (BMI) (ranges from 5th to 75th percentile, (Flegal 

et al. 2012)) were recruited to consider human variability in silhouettes as shown in Table 2.1.  
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Table 2.1: Subjects’ Heights and BMIs 

 #1 #2 #3 #4 #5 #6 #7 #8 Average 

Height 163cm 
(4.1 %tile) 

173cm 
(34.4 %tile) 

175cm 
(44.7 %tile) 

175cm 
(44.7 %tile) 

180cm 
(70.4 %tile) 

180cm 
(70.4 %tile) 

181cm 
(74.8 %tile) 

189cm 
(95.9 %tile) 

177cm 

BMI 25.6 
(normal) 

18.5 
(under) 

24.4 
(normal) 

25.2 
(normal) 

23.5 
(normal) 

29.3 
(over) 

26.3 
(over) 

25.8 
(over) 

24.9 

Note: under (underweight, < 18.5 BMI), normal (normal weight, 18.5 – 24.9 BMI) and over (overweight, 

25.0 – 29.9 BMI)  

 

The subjects were asked to simulate each posture 10 times repeatedly. For example, the 

subjects stood straight at the beginning, and then: 1) bent their back up to 90°; 2) raised their arms 

to the top of their head; or 3) bent their knees like squatting, followed by a standing posture again. 

They were provided several practices to simulate the postures identically.  

While simulating each posture, videos were recorded from three viewpoints (left, back left 

diagonal, and back views) as shown in Figure 2.8. These views were chosen after considering that 

front views are not easily available in construction sites where workers generally face workspace 

such as walls.  

 

Figure 2.8:  Testing Images from Three (left, left-diagonal and back) Views 

 

From videos (30 frames per second), 60,091 image frames in total (averagely 7,500 image 

frames per subject) were extracted as testing images as shown in Table 2.2. Also, motion data for 

each subject was collected using a RGB-D sensor (i.e., Microsoft KinectTM) to identify postures 



 

26 
 

on corresponding images as ground truth. For training data, nine different virtual human models 

that respectively represent 15th, 50th and 85th percentile males for height and Body Mass Index 

(BMI) were created, and simulated in a virtual environment using the motion data from one of the 

subjects. Next, image sequences from the same viewpoints with testing images were extracted. 

Both training and testing images were processed to obtain body silhouettes, and then to extract 

image features using MATLAB.  

 

Table 2.2: Numbers of Testing Images of Each posture according to Viewpoints 

Postures Viewpoints 

Left Left-diagonal Back Sub-total 

Standing 9,616 7,676 9,906 27,198 

Back-bending 3,829 3,070 3,937 10,836 

Arm-raising 4,823 3,355 3,862 12,040 

Knee-bending 3,640 3,122 3,255 10,017 

Sub-total 21,908 17,223 20,960 Total: 60,091 

 

 

2.4.3 Testing Conditions and Measures 

Testing the proposed algorithms has three purposes: 1) testing overall classification 

performance according to three views of testing images without considering selection of optimal 

training images (Test #1); 2) investigating the effect of viewpoints on classification performance 

(Test #2); and 3) investigating the effect of anthropometry of virtual models on classification 

performance (Test #3).  

For Test #1, each viewpoint of training and testing images are selected, and tested 

respectively. Also, all training images (from nine virtual models, and from three views) are used 

to learn the SVM classifier. As measures of classification performance (Test #1), the accuracy, 

precision and recall are calculated in a confusion matrix that is used to describe the performance 

of a classification model as shown in Figure 2.9. 
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Figure 2.9: Measures of Classification Performance 

 

Test #2 is to test the hypothesis that selection of training images from the same viewpoint 

with testing images would increase the classification performance. For this test, two sets of 

training images were selected: 1) one is from a left view and 2) the other is from a left diagonal 

view. Testing images from a same view (i.e., a left view) of the first set of training images were 

selected. Then, each subject’s posture classification was performed using both two sets of 

training images, respectively. The classification accuracy when selecting the same view of 

training images was compared with the accuracy when selecting the other view of training 

images using a paired t-test. 

Test #3 is to test the hypothesis that selection of training images from a virtual model that 

has similar anthropometry with the subject would increase the classification accuracy. For this 

test, nine sets of training images according to anthropometry of virtual models (3 (short, average, 

tall) × 3 (underweight, medium, overweight)) were selected, and using each set of training 

images, each subject’s postures were classified. The classification accuracy when selecting a 

virtual model that has similar anthropometry with the subject (See Table 2.1) was compared 
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with the average accuracy when selecting other virtual models. For this comparison, a paired t-

test was used.  

2.4.4 Testing Results 

  

A. Testing Images from a Left View 

 

B. Testing Images from a Left-diagonal View 

 

C. Testing Images from a Back View 

 
Notes: 1. Standing, 2. Back-bending, 3. Arm-raising, and 4. Knee-bending  

Figure 2.10: Confusion Matrices for Classification Results 

 

Figure 2.10 shows overall classification performance using confusion matrices that contain 

information about actual and predicted posture classifications for testing images from each view 

(left, left-diagonal and back views) (Test #1).  This result indicates that the proposed algorithms 

performed better for images from a left view (88.6%) than images from left-diagonal (85.6%) or 

back (78.4%) views. This result indicates that a side view of images is recommended to obtain the 

best classification results. One notable thing is that there is almost no confusion between back-
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bending, arm-raising, and knee-bending postures when using left and left-diagonal views. This is 

because these three postures create clearly differentiable body silhouettes on images from left and 

left-diagonal views. Most classification errors occurred due to confusion between standing 

postures and the other postures. Further investigation revealed that the cause of errors was due to 

similarity of postures in transitions between standing and other postures, which will be described 

in detail in the discussion section. 

The results from Test #2 show the importance of selecting a viewpoint of training images. 

As shown in Table 2.3, the mean accuracy when using same views for both training and testing 

images was 88.7% while it dropped to 80.8% if the different view was used for training images (P 

= 0.004, paired t-test). A slightly different view of images can produce large variations on body 

silhouettes, and thus views between training and testing images should match each other to obtain 

better classification results.  

 

Table 2.3: Classification Accuracy According to Selection of Views for Training Images 

Subjects 

Classification Accuracy 

Training: Left View 

Testing: Left View 

Training: Left-diagonal View 

Testing: Left View 

#1 90.7% 87.5% 

#2 81.6% 83.0% 

#3 84.1% 81.6% 

#4 89.0% 82.6% 

#5 85.5% 83.7% 

#6 89.3% 72.4% 

#7 94.7% 70.0% 

#8 94.2% 85.8% 

Mean 88.7% 80.8% 

Standard Deviation 4.3% 5.9% 

Note: P = 0.004, paired t-test 

 

Table 2.4 shows the classification accuracy according to selection of virtual models for 

training images (Test #3). Training images from virtual models that have similar anthropometry 
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with the subjects showed statistically higher accuracies (mean: 85.8%, standard deviation: 2.4%) 

than the ones (mean: 83.0%, standard deviation: 3.7%) when using other virtual models (P-

value=0.004, paired t-test). This result indicates that the shape of body silhouettes could vary 

according one’s anthropometry (e.g., height, BMI), affecting classification performance. As a 

result, posture classification algorithms should consider inter-subject variability on height and 

body mass.  

  

Table 2.4: Classification Accuracy According to Selection of Virtual Models for Training 

Images 

Subjects 
Classification Accuracy 

Similar Anthropometry* Different Anthropometry 

#1 85.6% 81.7% 

#2 84.2% 82.0% 

#3 83.9% 77.4% 

#4 89.4% 89.1% 

#5 81.9% 79.6% 

#6 85.1% 81.3% 

#7 87.3% 85.9% 

#8 89.0% 86.6% 

Mean 85.8% 83.0% 

Standard Deviation 2.4% 3.7% 

Note: P-value = 0.004, paired t-test 

* Classification accuracy when using training images from a virtual model that has 

similar anthropometry (i.e., height and BMI) with a subject 

 

The mean accuracy (85.8%) when using training images from a specific virtual model was 

slightly lower than 88.6% of the overall accuracy that was obtained using all virtual models. This 

implies that, in each subject’s body silhouettes, there are some variations that training images from 

a single virtual model with specific anthropometry could not fully reflect. So, combined training 

images from virtual models with all possible anthropometry can result in better classification 

performance by addressing issues due to intra-subject variability on height and body mass. 
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2.5 DISCUSSION 

 

 

Figure 2.11: Classification Result for Two Cycles of Each Posture.  

 

The results from the tests in the previous section show 88.6% of classification accuracy 

when selecting optical training images. To investigate where errors came from, classification 

results (two cycles of each posture) before post-processing were visualized in Figure 2.11. In this 

figure, gray dots denote the ground truth postures for consecutive frames (one frame: 1/30 second) 

while blue and red dots are correctly and incorrectly classified frames respectively. By observing 

incorrectly classified image frames, errors within a few of consecutive images were found, but 

those can be removed through the proposed post processing. As noted in the subject 4.4.4, most 

errors occurred in transitional postures that mean postures near the frame in transition between 
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standing and other postures (i.e., back-bending, arm-raising, knee-bending). As this study defined 

each posture based on body angles (e.g., 20° of back bending angles, 150° of knee angles), postures 

with body angles close to the criteria show similar body silhouettes that result in classification 

errors. By excluding three frames before and after the frame in transition, the overall accuracy was 

increased to 92.6%. If 10 frames were removed, almost over 98% of accuracy can be achieved. 

Although this testing is based on all image frames, observations for postural ergonomic risk 

assessment methods such as OWAS are generally made at fixed intervals of usually 45 or 60 

seconds (Buchholz et al. 1996). Also, these transitional postures could amount to only a small 

portion of total working postures in practice. As a result, the possibility that the transitional frames 

are selected could be relatively low. Therefore, errors due to transitional postures can be alleviated 

in real situations, and over 90% of the accuracy is expected. However, for further improvement, 

algorithmic solutions to deal with transitional postures are required. Chalamala and ALP (2016) 

found that probabilistic classifiers are a better choice than deterministic approaches such as SVMs 

for continuous actions with random changes of classes. They proposed a probabilistic model based 

on both transition probabilities (between walking and running) and occurrence probabilities 

(walking or running), resulting in better performance than deterministic approaches. Even though 

further studies are required to test the feasibility of the probabilistic approach, this approach can 

be one of the viable solutions to reduce errors due to transitional postures.    

When considering more than 10 % of observational errors for observation-based postural 

recording (Lowe 2004), achieving about 90% of posture classification accuracy can be acceptable. 

Despite significant differences in color and texture between virtual training and real-world testing 

images, the proposed approach shows robust performance, suggesting great potential for 

automated postural ergonomic risk assessment. In addition, the testing results imply that the use 

of virtual human models similar to real workers and the selection of same viewpoints with real-

world views are important to increase accuracy. Adjustability of these factors when creating virtual 

training datasets enables us to achieve the best performance for classifying testing images.  

Despite the potential of the proposed vision-based posture classification algorithm, several 

obstacles still remain to apply it under real conditions. First of all, the test for this algorithm was 

made only for single postures according to body parts. However, under real conditions, 

combinations of postures (e.g., back-bending + knee-bending, knee-bending + arm-raising) are 
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frequently observed. As a result, the proposed approach needs to be further validated for more 

complex postures involving combinations of different postures at each body part. Also, relatively 

large hand tools and materials workers are holding can significantly affect the shape of body 

silhouettes extracted from background subtraction, which may lead to classification errors. To 

address this issue, more sophisticated post processing algorithms such as detecting an object and 

recovering clear body silhouettes are required. In addition, as workers are continuously moving at 

the workplace, the views of workers that a video camera captures are continuously changing. Even 

though selection of same views for training images is the most significant factor to improve 

classification accuracy, it is required to determine which views of training images should be 

selected for moving workers. Automated object orientation detection that identifies rotation angles 

of an object based on statistical pattern recognition techniques can be a solution to determine which 

orientation the target worker is facing on images (Vailaya et al. 2002).   

 

2.6 CONCLUSIONS  

In this chapter, this study proposed vision-based posture classification based on machine-

learning algorithms to automate existing postural ergonomic evaluations methods. Specifically, a 

novel method to create training datasets for diverse postures in a virtual environment was proposed. 

The method can create training images using virtual human models of which body mass and 

viewpoints can be adjusted as needed. In addition, this study designed new features to reflect local 

variations in postures on images by dividing the ROI into small patches, and learned different 

classifiers. To test the feasibility of the proposed approach, laboratory–based tests were conducted 

with eight male subjects who have different anthropometry. From the testing results, it was found 

that the proposed algorithm can provide robust posture classification with 88.6% of accuracy, 

when testing the algorithm on testing images from a left view. This result indicates the potential 

of virtual training datasets for posture classification from real-world images that have variations 

in viewpoints and workers’ anthropometry. From the results, potential issues to be addressed to 

improve accuracy were found, such as sampling images in specific time intervals.     

Even though the proposed approach needs to be further validated for more complex postures 

at construction sites and refined to address remaining obstacles such as automated viewpoint 
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detection, vision-based posture classification has great potential to automate current observational 

ergonomic evaluation methods. The proposed approach will enable practitioners to perform 

postural ergonomic evaluation in a practical manner without technical sophistication or skill, only 

by taking videos at a fixed location. Vision-based ergonomic evaluation can quickly evaluate all 

tasks in the workplace, and then identify risky tasks that need immediate interventions, enabling 

more effective use of resources to improve construction tasks.  
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CHAPTER 3  

 

THREE DIMENSIONAL BODY KINEMATICS MEASUREMENT USING 

VISION-BASED MOTION CAPTURE APPROACHES 

 

3.1 INTRODUCTION 

In-depth analysis of physical demands begins with measuring body kinematics, which  

refers to body position, displacement, velocity and acceleration (Zatsiorski 2002). Human motion 

not only impacts the involved musculoskeletal system (e.g., muscles, tendons)—either on its own  

or combined with external forces—but also serves an important accompanying role by transmitting 

forces generated from a body (i.e., active muscle contraction) to the external environment (Radwin 

et al. 2001). Even though the level of detail in required kinematic descriptions varies according to 

the evaluation to be made, three-dimensional (3D) measurement of motion data is generally 

necessary to understand complex motion produced by a human (Chaffin et al. 2006).  

One of the challenging issues for body kinematics measurement and analysis for 

occupational tasks is the lack of an effective and non-invasive means for data collection at 

workplaces. At present, optical motion capture systems are the most popular solution to obtain 3D 

full-body motion data, and have been widely used for diverse applications including clinical 

motion analysis and biomechanical studies. However despite their precision and reliability, their 

applications in practice have been hindered by the need for complex laboratory settings, the high 

cost of devices, and the time consuming procedure for data collection (Aminian and Najafi 2004). 

Alternatively, motion capture approaches using lightweight and potable kinematic sensors (e.g., 

acceleration and angular rate sensors) have provided effective solutions for in-field motion 

measurement. Combined with wireless data transmission techniques, these approaches enable us 

to obtain real-time motion data without any sophistication. However, the possibility of interfering 
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with on-going work due to the need to wear a full-body suit equipped with sensors should be 

overcome for occupational application.  

Recently, vision-based motion capture approaches have gained increasing interest. These 

approaches appear to be very promising as in-field motion data collection methods by addressing 

some of the major challenges that exist with optical and sensor-based motion capture systems. For 

example, as these approaches obtain body kinematics data by processing 2D or 3D images directly 

collected from real conditions, they don’t need complex laboratory settings or sensors attached to 

a human body. Also, 2D or 3D images can be collected using any type of existing ordinary video 

cameras or low-cost 3D image sensing devices (e.g., RGB-D sensors, stereovision cameras). For 

their ease of use, non-invasiveness, and cost-effectiveness vision-based approaches can broaden 

the spectrum of their applications for job analysis under real conditions. Despite these advantages, 

however, several challenges such as sensitivity to occlusions (errors due to occluded body parts), 

computationally expensive algorithms (requires lots of processing time), and limited operating 

ranges of 3D image sensors (e.g., RGB-D sensors) still remain (Han and Lee 2013; Han et al. 

2013a; Starbuck et al. 2014; Liu et al. 2016). Given the strengths and limitations of each approach, 

understanding the performance and potential applications of vision-based motion capture 

approaches will lead to more appropriate uses of these approaches in construction.  

With this background, this chapter evaluates the accuracy of motion data from vision-based 

motion capture approaches through an experimental study. Specifically, three emerging vision-

based approaches for collecting motion data during construction tasks are selected. Those are: 1) 

multiple camera-based (Han and Lee 2013; Liu et al. 2016); 2) RGB-D sensor-based (Han et al. 

2013a); and 3) stereo-vision camera-based (Starbuck et al. 2014) approaches.  Also, a marker-

based motion capture system (OptotrakTM, Northern Digital, Inc., Waterloo, Canada) is used as the 

ground truth of motion data. To compare the accuracy of motion data, selected joint angles from 

vision-based approaches are compared with the ones from OptotrakTM during performing several 

dynamic tasks.  

The rest of this chapter is organized as follows. Literature review section (Section 3.2) 

provides technical aspects and procedures of vision-based approaches to be evaluated. The next 

section (Section 3.3) demonstrates experimental comparison of vision-based motion capture 

approaches with results. Then, performance of vision-based approaches and their potential 
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application areas for analyzing construction tasks are discussed (Section 3.4). Finally, the 

conclusion section (Section 3.5) summarizes the findings of this study. 

 

3.2 LITERATURE REVIEW ON VISION-BASED MOTION CAPTURE APPROACHES 

This section describes technical aspects and procedures of three vision-based motion capture 

approaches. Additionally, by reviewing previous work on vision-based motion capture approaches, 

the pros and cons of each approach are summarized.  

3.2.1 Multiple Camera-based Motion Capture Approach 

A multiple camera-based motion capture approach aims to estimate the 3D locations of body 

joints by processing 2D images from two different views using multiple video cameras or a 3D 

camcorder that has two lenses in one camera (Han and Lee 2013). Han and Lee (2013) proposed 

a motion capture process that consists of: 1) 2D pose estimation from one view of images; 2) 

correspondence matching of body joints on the other view of images; and 3) 3D reconstruction of 

body joints using the corresponding joint locations identified. However, this approach suffered 

from the need for extensive training images to detect joint locations on testing images, and 

significant computation time for 2D pose estimation. To address this issue, Liu et al. (2016) 

modified Han and Lee (2013)’s approach by proposing body joint tracking that accelerates the 2D 

pose estimation process without the prior knowledge (training images for joint detection). Figure 

3.1 shows an overview of the modified approach.   
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Figure 3.1: An Overview of a Multiple Camera-based Motion Capture Approach 

 

The main idea of 2D joint tracking is that continuous tracking of body joints on consecutive 

image frames enables the fast estimation of 2D skeletons (Liu et al. 2016). To do this, the locations 

of body joints of interest should be initialized on the first image frame (A in Figure 3.1). Then, the 

algorithm tracks the joints in consecutive images by detecting the image patch with the most 

similar color histogram with that of the initialized target (B in Figure 3.1). A modified particle 

filter tracker was used to specify a number of reliable candidates for the targets in the subsequent 

frames, which can reduce computation time (Shan et al. 2007). The tracking of different body 

joints is performed independently, resulting in a 2D skeleton model.  

The next process is to identify the corresponding body joints on the image from the other 

viewpoint (C in Figure 3.1). Several feature descriptors such as SIFT (Scale-Invariant Feature 

Transform) (Liu et al., 2011) and SURF (Speeded Up Robust Features) (Uijlings et al., 2010; Bay 

et al., 2008) are used for this step. Specifically, by comparing the features of a pixel with the feature 

descriptors, conjugate pairs of body joints can be found (Han and Lee 2013). Also, to obtain more 

reliable corresponding locations of body joints, the search pace is constrained by epipolar 

geometry (Hartley and Zisserman 2003), considering that the corresponding joints on the other 

view of images should lie on the epipolar line between two views of images (Han and Lee 2013). 
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In addition to epipolar geometry, the homography, which refers to a projective transformation that 

maps one plane to the other, is computed based on matched features and applied to minimize the 

search space for correspondence matching (Han and Lee 2013).  

Once pairs of corresponding body joints are detected from two different viewpoints of 

images, a 3D reconstruction algorithm detects the 3D positions of each joints through triangulation, 

resulting in 3D full-body skeleton-based motion data. As shown in D of Figure 3.1, the position of 

a 3D position of each body joint can be found as the intersection of the two projection rays. If we 

know the optical center of two cameras and camera parameters (e.g., relative positions between 

cameras), the joint positions can be reconstructed in a 3D space. The most widely used technique 

to calculate the camera parameters is Zhang (2000)’s method. This method requires a planar 

checkerboard grid to be placed at different orientations (more than 2) in front of the camera, and 

then compute a projective transformation between the image points by using the extracted corner 

points of the checkerboard pattern. Then, the camera’s intrinsic and extrinsic parameters are 

recovered using a closed-form solution. Given the camera’s information, the linear triangulation 

method using Singular Value Decomposition (SVD) (Hartley and Zisserman 2003) computes the 

depth of each body joints in a 3D space, resulting in a 3D skeleton (Han and Lee 2013).  

The strength of a multiple camera-based motion capture approach is that it enables 

researchers to use ordinary video cameras to obtain motion data. Not only do we benefit from its 

cost effectiveness, but also benefit from zoom lenses that collect video images from a distance. 

Even though environmental conditions such as illuminations may affect the performance of 3D 

skeleton extraction, post image processing enables us to obtain clear images even in a noisy 

environment. From previous studies that investigated the accuracy of this approach, about ± 10 cm 

of errors in body length (Han and Lee 2013) and up to 20 degrees of errors (Liu et al. 2016) in 

joint rotation angles have been reported. These errors came from either incorrectly detected joint 

locations or inaccurate camera calibration process. Especially, the performance of this approach 

was significantly affected by frequent self-occlusions of forearms (e.g., elbows and hands), which 

led to larger errors (Han and Lee 2013; Liu et al. 2016).  
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3.2.2 RGB-D Sensor-based Approach 

While a multiple camera-based approach requires complicating image processing, the use 

of RGB-D images (i.e., 2D images plus depth information) collected from RGB-D sensors (e.g., 

Kinect™) has simplified the process for vision-based motion capture algorithms (Shotton et al. 

2013). Several computer vision algorithms have been developed to estimate human poses by 

detecting the 3D positions of body joints directly from RGB-D images (Lee and Cohen 2006; 

Plagemann et al. 2010; Siddiqui and Medioni 2010; Shotton et al. 2013). Recently, motion capture 

solutions such as iPi Desktop Motion Capture (www.ipisoft.com) and OpenNI 

(http://www.openni.org) that use a Microsoft Kinect sensor have provided effective solutions for 

extracting skeleton-based motion data from RGB-D images obtained by RGB-D sensors.  

The Kinect sensor that was initially developed for video gaming is capable of providing 

both depth and color information at the resolution of 640×480, and the rate of 30 frames per second 

(Rafibakhsh et al. 2012). This sensor is equipped with the infrared (IR) projector, the color camera 

and the IR camera. Using the projected structured IR lights, it measures the depth, reconstructing 

3D scenes with point cloud (Zhang 2012). Combined with the 3D sensing feature of the Kinect, 

the iPi Desktop Motion Capture software provides a marker-less solution for collecting full-body 

motion data. Figure 3.2 shows an example of an RGB-D image with a pre-defined body model, 

and the corresponding motion data. Basically, the algorithm in this software is model-based, which 

means that motion data can be tracked by matching the surface of a pre-defined body model with 

a depth image (A in Figure 3.2). Then, the tracked motion data can be exported into any type of 

motion data format, such as the Biovision Hierarchy (BVH) motion data (B in Figure 3.2). This 

software also provides several post-processing algorithms to refine tracking and filtering 

algorithms for noise removal and smoothing.  

 

http://www.ipisoft.com/
http://www.openni.org/
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Figure 3.2: RGB-D (i.e., KinectTM) Sensor-based Motion Capture 

 

The following are advantages of an RGB-D sensor-based motion capture approach: 1) no 

need for markers or sensors attached to human body, which allows for motion capture without 

interfering with on-going work; 2) low cost (e.g., approximately 150 – 250 USD); 3) an easy-to-

use and easy-to-carry means for in-field motion data collection (Han et al. 2013a). Technically, 

this approach is robust to self-occlusions because the iPi software provides an inverse kinematics 

algorithm that can adjust incorrectly tracked body parts due to occlusions. However, as the Kinect 

use IR light, the use of this approach is limited only in an indoor environment due to its sensitivity 

to sunlight. Also, the short operating range of the Kinect sensor (within 4 m) is one of the 

disadvantages of this approach.   

3.2.3 Stereovision Camera-based Motion Capture Approach 

A stereovision system is designed to extract 3D information from a stereo image pair (Jin et 

al. 2010). Stereo vision works in a similar way to 3D sensing in human vision. It begins with 

identifying image pixels that correspond to the same point in a physical scene observed by multiple 

cameras. The 3D position of a point can then be established by triangulation using a ray from each 

camera. The more corresponding pixels identified, the more 3D points that can be determined with 

a single set of images. Correlation stereo methods attempt to obtain correspondences for every 

pixel in the stereo image, resulting in tens of thousands of 3D values generated with every stereo 
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image. A Bumblebee XB3TM manufactured by Point Grey Technologies (www.ptgrey.com) is one 

of the widely used stereovision camera system. The stereo cameras employed measure line-of-

sight distance using two lenses with a narrow baseline in a self-contained unit. This allows for both 

optical and depth data to be collected with few environmental restrictions (e.g. outdoor 

environments) and limited field-of-view.  

Starbuck et al. (2014) proposed a stereovision camera-based motion capture approach that 

addressed the short operating range of an RGB-D sensor. The 3D point cloud data collected from 

the stereovision camera was converted into a format used by an existing kinematic modeling 

software solution (i.e., iPi Motion Capture software) designed for use with RGB-D sensors. The 

iPi software was not intended for use with stereovision cameras and provides no built-in 

framework for modifying the system such that alternative data sources can be utilized. In order to 

implement the proposed approach, a stand-alone program was developed for generating disparity 

maps in the same uncompressed AVI format that is available in the iPi software. Then, using the 

same algorithm described in the subsecsion 3.2.2, skeleton-based motion data was extracted. 

Through a laboratory test, the proposed method was proved to be comparable to the traditional 

RGB-D sensor-based approach.  

A stereovision camera-based approach provides additional advantages, beyond the benefits 

from the RGB-D sensor-based approach. For example, the use of this approach do not suffer from 

environmental conditions, allowing both indoor and outdoor applications. Also, the operating 

range of the stereovision camera is flexible according to lens field-of-view, lens separation, and 

image size (Woodfill et al. 2004). However, as computing depth information from two images is 

a computationally intensive task, the frame rate relies on the performance of hardware (Woodfill 

et al. 2004).  

 

3.3 EXPERIMENTAL COMPARISN OF VISION-BASED MOTION CAPTURE 

APPROACHES 

The section describes an experimental test to assess the accuracy of three vision-based 

motion capture approaches: 1) a multiple camera-based approach; 2) an RGB-D sensor-based 

approach; and 3) a stereovision camera-based approach.  



 

43 
 

3.3.1 Testing Conditions 

For this test, one male subject was recruited. Figure 3.3 shows experimental conditions for 

the comparison. Three image sensors were located in front of the subject to collect 2D or 3D 

images from a front view. The KinectTM (640×480 resolution with 30 frames per second), 

Bumblebee XB3TM stereovision camera (320×240 resolution with about 10 frames per second) 

and 3D camcorder (1920×1080 resolution with 29 frames per second) were positioned 4, 6 and 8 

meters away from the subject, respectively. The positions of the KinectTM and Bumblebee XB3TM 

were determined based on the optimal operating distance proposed by the manufacturer. As the 

3D camcorder has zoom lenses, its position was selected to obtain a clear view of the subject’s 

whole body.  

The OptotrakTM system uses active markers attached on body joints to track body motions. 

As a result, if the markers are captured by at least one of cameras, the system can provide accurate 

3D positions of the markers with an accuracy of up to 0.1 mm. The markers were attached to the 

subject’s center and left body joints, including neck, low back, shoulder, elbow, wrist, hip, knee 

and ankle joints. Two Optotrak cameras were positioned to the left side of the subject to prevent 

possible data loss due to occlusions of the markers.  

In the experiment, human motion was simultaneously recorded with these devices. For the 

synchronization of motion data, the subject was asked to do a T-pose (i.e., a pose where the legs 

are straight and the arms are pointing sideways in a T shape) at the beginning of the recording. 

Data synchronization was manually performed by identifying the same frame for the T-pose.  
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Figure 3.3: Experimental Settings and Testing Devices 

 

3.3.2 Testing Tasks  

To compare the accuracy of motion data for diverse tasks, one male subject simulated three 

types of tasks: 1) basic tasks with movements of specific body parts; 2) lifting; and 3) walking as 

shown in Figure 3.4. The basic tasks are to test the accuracy of simple motions that involve 

movements of specific body parts. Those include arm-raising to the front and the side, elbow-

bending, back-bending, back-twisting and knee-bending. For more dynamic motions with whole 

body movements, a lifting and placing task was selected. Specifically, the subject was asked to 

simulate the lifting task by pretending to lift an object from the bottom, and placing it to the side. 

Also, a walking task was intended to reflect rapid repetitive movements. The subject repeatedly 

performed each task five times.  
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Figure 3.4: Testing Tasks 

 

3.3.3 Measures for Accuracy Comparison 

Previous studies have used 3D positions of body joints, body link lengths or joint rotation 

angles as measures of motion data accuracy (Han and Lee 2013; Han et al. 2013a; Starbuck et al. 

2014; Liu et al. 2016). However, due to the difference in body models used in each vision-based 

approach, the use of these measures may lead to unexpected biases that obstruct the accuracy of 

the comparison. For example, joint locations and corresponding body link lengths from a multiple 

camera-based approach can be calculated based on the joint locations of the subject. Instead, as 

RGB-D sensor- and stereovision camera-based approaches use pre-defined body models that have 

fixed body lengths, joint locations and corresponding body link lengths are affected by the 

anthropometry of the body models. Also, while both RGB-D sensor- and stereovision camera-
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based approaches provide motion data in a BVH file format that defines body postures using joint 

rotational angles, these rotational angles are not available in multiple camera-based motion data.  

To address this issue, this study defined new body angles that are available from all 

approaches as shown in Figure 3.5. Specifically, the body angles at each body part were basically 

defined by angles between the vector of the body segments and the vertical vector. For example, 

the vector of the upper arm is obtained using 3D shoulder and elbow locations, and the angle 

between the vector of the upper arm and the vertical vector (y axis) is calculated as an upper arm 

(i.e. shoulder) angle. The other body angles such as lower arm (i.e., elbow), trunk flexion, upper 

leg (i.e., hip) and lower leg (i.e., knee) angles are calculated using the same way. However, the 

trunk axial rotation angle that indicates how much the back is twisted was computed by using 

shoulder and hip vectors that were projected onto x-y plane.  

 

Figure 3.5: Body Angles to be Compared 

 

As the markers for OptotrakTM were attached to the skin near the joints, the joint locations 

from the ground truth motion data may slightly differ from the locations from vision-based 

approaches. To adjust possible discrepancies due to this difference, the body angles were calibrated 

using the angles from a T-pose. Also, the body angles from each approach were smoothed using a 

Savitzky–Golay filter (Savitzky and Golay 1964) that has been widely used for post processing of 

motion data (Esser et al. 2009).  
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3.3.4 Results  

Figure 3.6 shows plots of body angles from three vision-based motion capture approaches 

and an OptotrakTM during diverse basic tasks. Through the visual investigation, it was found that 

overall body angles from vision-based approaches were closely matched with body angles from 

an OptotrakTM, while back (flexion and rotation) and upper leg angles from a multiple camera-

based approach in particular showed some discrepancies during the middle of the tasks.  

 

 

Figure 3.6: Comparison of Body Angles between Vision-based Motion Capture Approaches and 

an OptotrakTM during Basic Tasks  
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For the quantitative assessment during these tasks, mean and standard deviation of absolute 

errors (MAEs and S.D. of AEs), and maximum and minimum errors (MAX and MIN) in body 

angles between three vision-based approaches and an OptotrakTM were calculated as shown in 

Table 3.1.  

Table 3.1: Accuracy of Vision-based Motion Capture Approaches during Basic Tasks 
(Unit: degrees) 

Body 

Angles 

Metrics RGB-D Sensor 

(KinectTM) 

Stereovision Camera 

(Bumblebee XB3TM) 

Multiple Camera  

(3D Camcorder) 

1. Arm-raising to the front 

Upper Arm 

MAE 5.9 3.0 11.3 

S.D. of AE 2.5 2.6 6.8 

MAX -0.6 9.9 12.0 

MIN -9.9 -3.2 -22.0 

2. Arm-raising to the side 

Upper Arm 

MAE 4.7 8.2 7.6 

S.D. of AE 2.3 3.8 4.2 

MAX -1.9 -0.3 7.6 

MIN -11.1 -14.3 -16.8 

3. Elbow-bending    

Lower Arm 

MAE 4.9 8.1 16.2 

S.D. of AE 3.4 4.0 4.2 

MAX 8.6 14.0 24.5 

MIN -9.8 -2.7 10.1 

4. Back-bending    

Back 

Flexion 

MAE 2.5 15.5 12.5 

S.D. of AE 2.1 11.2 12.5 

MAX 7.6 0.0 39.0 

MIN -3.9 -34.3 -19.7 

5. Back-twisting    

Back Axial 

Rotation 

MAE 3.1 11.0 21.9 

S.D. of AE 1.9 8.6 18.5 

MAX 4.6 8.6 22.5 

MIN -6.5 -23.8 -64.5 

6. Knee-bending    

Upper Leg 

MAE 5.4 4.3 9.8 

S.D. of AE 5.5 4.6 12.0 

MAX 3.3 9.3 32.4 

MIN -13.7 -14.0 -4.9 

Lower Leg 

MAE 1.0 2.4 2.7 

S.D. of AE 1.1 2.6 2.8 

MAX 4.1 7.6 8.1 

MIN -1.7 -6.5 -3.3 

Average MAE 4.2 6.2 11.6 

Average S.D 2.8 4.4 8.1 
Notes: MAE (Mean Absolute Error), AE (Absolute Error), S.D. (Standard Deviation), MAX (Maximum 

Value of Errors), MIN (Minimum Value of Errors)  
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Average MAEs of three approaches during basic tasks were 4.2 (RGB-D sensor-based), 6.2 

(stereovision camera-based) and 11.6 (multiple camera-based) degrees, respectively. One of the 

reasons for the least accurate results from a multiple camera-based approach is that it showed 

relatively larger errors in lower arm (16.2 degrees of MAE), truck flexion (12.5 degrees of MAE) 

and trunk rotation (21.9 degrees of MAE) angles than other body angles. As shown in A3 (elbow-

bending), A4 (back-bending) and A5 (back-twisting) tasks in Figure 3.4, an elbow or a hip was 

occluded by a lower arm or a torso, which may lead to incorrect detections of these joints in a 

multiple camera-based approach. Excluding these body angles, a multiple camera-based approach 

showed 7.9 degrees of average MAEs.  

RGB-D sensor- and stereovision camera-based approaches provided robust results even in 

the presence of self-occlusions as they rely on data-rich 3D information (i.e., 3D point clouds).  

An RGB-D sensor-based approach showed the most accurate (4.2 degrees of average MAE) and 

reliable (2.8 degrees of average S.D.) results for all body angles. A stereovision camera-based 

approach also provided relatively accurate motion data, resulting in 6.2 degrees of MAE, but 

showed higher S.D. (4.2 degrees) than RGB-D sensor-based approaches. These two approaches 

use same methods to extract motion data from 3D point clouds. Thus, one possible cause of 

different accuracies between them is that a KinectTM has higher resolutions and frame rates than 

Bumblebee XB3TM. 

Figure 3.7 shows body angles during a lifting and placing task. Even for a complex task that 

involves simultaneous whole body movements, all three vision-based approaches provided robust 

results for all body parts. Unlike basic tasks, any severe discrepancies in body angles from a 

multiple camera-based approach were not observed.  
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Figure 3.7: Comparison of Body Angles between Vision-based Motion Capture Approaches and 

an OptotrakTM during a Lifting and Placing Task 

 

Average MAEs of three approaches during a lifting and placing task were 6.5 (RGB-D 

sensor-based), 6.6 (stereovision camera-based) and 10.9 (multiple camera-based) degrees, 

showing similar errors in body angles during basic tasks (Table 3.2). Again, in motion data from 

a multiple camera-based approach, larger errors in back (torso flexion and rotation) angles were 

observed while upper arm angles were relatively accurate because of no severe occlusion of an 

elbow. Both RGB-D sensor- and stereovision camera-based approaches showed robust results in 
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this task, even though errors in body angles in a RGB-D sensor-based approach were slightly 

increased.  

 

Table 3.2: Accuracy of Vision-based Motion Capture Approaches during a Lifting and 

Placing Task 

(Unit: degrees) 

Body 

Angles 

Metrics RGB-D Sensor 

(KinectTM) 

Stereovision Camera 

(Bumblebee XB3TM) 

Multiple Camera  

(3D Camcorder) 

Upper Arm 

MAE 3.5 4.6 4.4 

S.D. of AE 2.4 3.8 3.3 

MAX 4.4 6.5 10.4 

MIN -6.3 -13.1 0.3 

Lower Arm 

MAE 3.6 7.6 7.5 

S.D. of AE 1.9 4.7 3.6 

MAX 8.3 16.2 11.1 

MIN -4.9 -12.1 -19.3 

Back 

Flexion 

MAE 10.3 11.0 22.7 

S.D. of AE 5.1 5.2 11.2 

MAX 16.9 18.4 35.5 

MIN 2.9 3.1 2.2 

Back Axial 

Rotation 

MAE 8.4 5.5 18.8 

S.D. of AE 6.2 5.2 4.8 

MAX 11.3 7.2 -10.5 

MIN -23.4 -20.0 -31.1 

Upper Leg 

MAE 6.9 7.1 10.3 

S.D. of AE 6.2 4.7 2.7 

MAX 1.5 7.0 14.9 

MIN -19.4 -13.9 4.6 

Lower Leg 

MAE 6.0 4.0 1.5 

S.D. of AE 5.0 1.8 1.4 

MAX 7.2 4.0 3.7 

MIN -17.5 -6.7 -6.1 

Average MAE 6.5 6.6 10.9 

Average S.D. 4.5 4.2 4.5 
Notes: MAE (Mean Absolute Error), AE (Absolute Error), S.D. (Standard Deviation), MAX (Maximum 

Value of Errors), MIN (Minimum Value of Errors)  

 

On the other hand, a walking task showed larger discrepancies in the patterns of body angles 

from all three vision-based approaches as shown in Figure 3.8. A multiple camera-based approach 

showed similar average MAEs (11.0 degrees) with other tasks (Table 3.3). However, considering 

that variations of body angels during walking are relatively smaller (less than 50 degrees, except 

lower arm angles) than other tasks, this error is quite significant. Also, in motion data from both 
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RGB-D sensor- and stereovision camera-based approaches, the largest errors were observed 

among three tasks, showing 7.1 and 12.6 degrees of average MAEs (Table 3.3). Considering that 

a walking task involves more rapid movements than other tasks, these approaches seem to be 

affected by the speed of movements. In particular, a stereovision camera-based approach 

significantly suffers from rapid movements due to a low frame rate.  

  

 

Figure 3.8: Comparison of Body Angles between Vision-based Motion Capture Approaches and 

an OptotrakTM during a Walking Task 
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Table 3.3: Accuracy of Vision-based Motion Capture Approaches during a Walking Task 

(Unit: degrees) 

Body 

Angles 

Metrics RGB-D Sensor 

(KinectTM) 

Stereovision Camera 

(Bumblebee XB3TM) 

Multiple Camera  

(3D Camcorder) 

Upper Arm 

MAE 7.1 4.5 10.9 

S.D. of AE 4.0 2.3 5.5 

MAX 1.8 6.5 -2.0 

MIN -13.3 -8.7 -19.3 

Lower Arm 

MAE 10.7 15.9 15.0 

S.D. of AE 6.3 11.6 7.7 

MAX 1.1 17.1 28.0 

MIN -20.6 -41.8 -25.4 

Back 

Flexion 

MAE 5.4 17.3 3.5 

S.D. of AE 1.5 1.4 2.2 

MAX 7.9 20.4 9.4 

MIN 2.3 15.0 -1.7 

Back Axial 

Rotation 

MAE 4.8 21.3 15.3 

S.D. of AE 4.8 5.3 8.1 

MAX 8.8 32.0 27.9 

MIN -24.4 14.6 -18.6 

Upper Leg 

MAE 8.8 12.1 11.6 

S.D. of AE 6.6 7.2 5.5 

MAX 3.8 4.9 23.1 

MIN -21.2 -27.3 -18.9 

Lower Leg 

MAE 5.6 4.2 9.7 

S.D. of AE 5.1 2.7 8.9 

MAX 16.6 11.6 32.5 

MIN -4.3 -6.9 -5.0 

Average MAE 7.1 12.6 11.0 

Average S.D. 4.7 5.9 6.3 

Notes: MAE (Mean Absolute Error), AE (Absolute Error), S.D. (Standard Deviation), MAX (Maximum 

Value of Errors), MIN (Minimum Value of Errors)  
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3.4 DISCUSSION 

3.4.1 Performance of Vision-based Motion Capture Approaches 

Specifications and accuracies of three vision-based motion capture approaches are 

summarized in Table 3.4. The experimental tests in the previous section presented 5.9, 8.5 and 

11.2 degrees of average MAEs for RGD-D sensor-based, stereovision camera-based and multiple 

camera-based approaches, respectively.  

 

Table 3.4: Comparison of Specifications and Accuracies of Vision-based Motion Capture 

Approaches 

Performance RGB-D Sensor 

(KinectTM) 

Stereovision 

Camera 

(Bumblebee 

XB3TM) 

Multiple Camera 

(3D Camcorder) 

Specifications Raw Data 3D images 3D images 2D images 

Operating Range Less than 4m Less than 10 m 

(unlimited, with 

zoom lenses) 

Unlimited with 

zoom lenses 

Resolution  640×480 320×240 1920×1080 

Frame Rate  30 fps About 10 fps 29 fps 

Processing Time 

per frame* 

About 2 seconds About 2 seconds About 2 seconds 

Accuracy 

(MAEs) 

Basic Tasks 4.2° 6.2° 11.6° 

Lifting and Placing 6.5° 6.6° 10.9° 

Walking 7.1° 12.6° 11.0° 

Average 5.9° 8.5° 11.2° 

* Total time required to process one raw image frame, varies depending on computing power 

 

A multiple camera-based approach that uses 2D images showed larger errors in body angles 

than the other two approaches that are based on 3D images (RGD-D sensor-based and stereovision 

camera-based approaches). However, considering that 2D images contain less information (e.g., 

RGB pixel values) than 3D images (e.g., RGB pixel values + depth information) and occlusions 

are critical to track body joints, about 10 degrees of average MAEs in a multiple camera-based 
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approach are promising. Despite relatively larger errors, a multiple camera-based approach has 

several competitive advantages from a practical point of view, compared with the other two 

approaches. For example, as all types of ordinary cameras can be used to collect 2D images, 

additional investments on devices are not required. Due to the use of zoom lenses, its operating 

range is theoretically unlimited. Less sensitivity to rapid movements is another strength of this 

approach. In addition, there is room for further improvement if occlusion issues are handled. In 

these tests, a 3D camcorder was used to obtain two images from different views. However, as the 

distance between two lenses is very short (3.5 cm), both images are affected by self-occlusions. If 

two independent cameras are positioned away from each other, possibly, it could be possible to 

obtain at least one clear view of images, reducing errors due to self-occlusions.  

A RGB-D sensor-based approach showed the most accurate and reliable results for all three 

tasks as it uses data-rich 3D images and has a high resolution and frame rate. Despite robust 

performance of this approach, the short operating range (less than 4m) and sensitivity to sunlight 

of a RGB-D sensor may limit its application to confined and indoor areas. Alternatively, a 

stereovision camera-based approach can be a practical solution by taking an advantage of its ability 

to collect 3D images at both indoor and outdoor conditions and longer operating range. As the 

quality of 3D point clouds from Bumblebee XB3TM is significantly affected by the distance from 

the scene, it is recommended to set a stereovision camera within 10m. However, a binocular 

stereovision system theoretically works with any types of two 2D cameras that are separated by a 

short distance, and are mounted parallel to one another. As a result, this approach is flexible in 

terms of operating ranges if zoom lenses are used. Recently, a stereovision system with adjustable 

zoom lens control has been introduced (Kim et al. 2014), enabling more practical application of 

this approach. Also, the use of an advanced 3D reconstruction algorithm and a high performance 

computer can achieve a higher frame rate that was revealed as a critical factor to reduce errors in 

a stereovision camera-based approach.  

3.4.2 Potential Application Areas of Vision-based Motion Capture Approaches in 

Construction 

Three vision-based approaches tested in this study are considered practical means to collect 

motion data under real conditions, even though about 5-10 degrees of errors in body angles exist. 

Despite environmental constraints, a RGB-D sensor-based approach can provide accurate and 
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reliable motion data with about 5 degrees of errors in body angles. While stereovision camera-

based and multiple camera-based approaches show a little bit higher errors, the use of these 

approaches is not limited by environmental conditions. In construction, tasks are performed in 

unstructured and varying environments, and thus work methods and postures are changing over 

time. Collecting motion data using these non-invasive and cost effective approaches enable us to 

understand how workers interact with the environment at construction sites, providing in-depth 

analysis of physical demands, specifically when accuracies would not significantly matter.  

For example, vision-based motion capture data can be used to specify the severity of 

working postures. As described in Chapter 2, existing postural ergonomic risk assessment methods 

determine the level of ergonomic risks based on classified postures through human observation. 

Some methods such as RULA or REBA require detailed segmentations of body postures according 

to body angles. For example, in RULA, trunk postures are categorized into four groups according 

to trunk flexion angles (0°, 0°-20°, 20°-60° and over 60°). Even though vision-based posture 

classification can determine whether a back is bent or not, it may not accurately classify more 

specific back postures as defined in RULA. In this case, the use of vision-based motion capture 

approaches enables more detailed analysis of body postures, providing accurate posture 

classification results.  

Also, as the continuous measurement of workers’ motions during performing tasks is 

enabled using vision-based motion capture approaches, diverse in-depth motion analysis for 

understanding physical demands can be facilitated. Traditionally, pre-determined-motion-time-

systems have been widely used to identify workloads during occupational tasks (Laurig et al. 1985). 

As these systems rely on human observations to describe workers’ manual activities, significant 

human effort is generally required. However, by using a time series motion data from vision-based 

approaches, it is possible to accurately and automatically quantify motion-time values for these 

systems. Also, trajectory analysis using vision-based motion data helps to evaluate work efficiency, 

as well as the risk of ergonomic injuries. For example, shorter trajectories of body movements may 

imply more efficient movements of a human body, indicating smaller physical demands. Previous 

studies on movement patterns during occupational tasks found that a more ‘dynamic’ pattern of 

movements is believed to be associated with a lower incidence of WMSD development (Kilbom 
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and Persson 1987, Kilbom 1994). Analysis of motion patterns and trajectories using vision-based 

motion data can broaden our understanding on the job from an ergonomic perspective.   

Another application area is evaluation of musculoskeletal stresses through biomechanical 

analysis. It has been found that external load factors such motions and musculoskeletal stresses 

have significant correlations each other, and thus by understanding the relationships, internal 

forces can be estimated using mathematical models. One of the examples of the models is a 

biomechanical model. Motion data is one of the important inputs for biomechanical models. 

Motion data collected from vision-based approaches helps to perform biomechanical analysis 

under real conditions. This topic will be further described in Chapter 4.  

 

3.5 CONCLUSIONS 

The chapter describes the potential of vision-based motion capture approaches as a means 

of measuring workers’ motions. Three emerging vision-based motion capture approaches for 

construction tasks are compared through a laboratory test while performing three different tasks. 

The accuracy of these approaches was computed by comparing body angles from each approach 

and a marker-based motion capture. The comparison results indicated that the overall errors in 

body angles are about more or less 10 degrees, which is promising.  

From a practical perspective, vision-based motion capture approaches have great potential 

as non-invasive motion data collection methods at construction sites. Even though several 

obstacles such a limited operating range (RGB-D sensor-based), low frame rates (stereovision 

camera) and occlusions (multiple camera-based) still remain to obtain more accurate data from 

these approaches, further algorithm refinements and hardware developments are expected to 

address these issues.  

As the tests of vision-based approaches were made in a laboratory setting, further 

investigation of the accuracy of vision-based motion data is required for construction tasks 

performed at real sites. Despite some errors that exist in motion data, vision-based motion data can 

be used for diverse in-depth analysis without sacrificing its reliability to better understand workers’ 

physical demands during occupational tasks including construction.    
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CHAPTER 4  

 

MOTION DATA-DRIVEN BIOMECHANICAL ANALYSIS USING 

VISION-BASED MOTION CAPTURE APPROACHES1 

 

4.1 INTRODUCTION 

The previous chapters highlighted vision-based approaches that enable us to analyze and 

evaluate workers’ postures and motions while performing tasks at construction sites. Although 

kinematics information is useful to understand external factors that result in excessive physical 

demands, it may be not enough to predict potentially hazardous loading conditions on specific 

musculoskeletal tissues (Chaffin et al. 2006). As described in Chapter 1, external physical loads 

such as voluntary motions and external forces (e.g., hand loads) are transmitted to the human body, 

creating internal forces such as muscle forces (Armstrong et al. 1993). A slightly different posture, 

combined with the external forces and body weight, can create potentially excessive internal loads 

on musculoskeletal tissues that could lead to tissue damage, pain or discomfort and even disability 

(Chaffin et al. 2006). In this regard, understanding of how external loads (i.e., motions and force 

exertions) result in internal forces acting on the human body is necessary to prevent WMSDs.  

Unlike external stresses, internal stresses on the musculoskeletal system can rarely be 

measured directly. To address this issue, previous research efforts have developed mathematical 

models (i.e., biomechanical models) that quantify the relationship between external loads and 

corresponding musculoskeletal stresses, and thus estimate the internal forces (Radwin et al. 2001). 

However, biomechanical models and analyses have been applied in only limited or controlled 

                                                           
1 This chapter is partially adapted from Seo, J., Starbuck, R., Han, S., Lee, S., and Armstrong, T. (2014). "Motion-

Data–driven Biomechanical Analysis during Construction Tasks on Sites” Journal of Computing in Civil Engineering, 

ASCE, 29(4). 
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environments due to the difficulty of collecting and analyzing the motion data required for 

biomechanical models. Compared to other industries such as manufacturing where work methods 

and processes are usually fixed when designing workplaces, construction takes place in 

unstructured and varying environments, and thus work methods and postures are changing over 

time. Further, task requirements in construction vary depending on project-specific context 

(Mitropoulos and Memarian 2012), which results in different levels of physical exertion by 

workers’ musculoskeletal systems. As a result, an effective and easily accessible means for on-site 

biomechanical analysis is required to assess risk factors (e.g., awkward postures, forceful exertions) 

that may cause excessive musculoskeletal stresses beyond human capability during construction 

tasks under real conditions.  

In the previous chapter (Chapter 3), vision-based motion capture approaches were proposed 

to invasively collect motion data under real conditions. The vision-based approaches also have 

immense potential to replace complex motion capture systems that previous biomechanical studies 

have relied on to collect motion data, and thus to enable on-site biomechanical analysis at 

construction sites. However, two research challenges still remain unanswered. First, due to the 

differences on how to define postures and motions between vision-based approaches and existing 

biomechanical analysis tools, the vision-based motion data is not directly applicable in the existing 

tools. Second, as described in Chapter 3, approximately 5°-15° of errors in body angles exist in 

the vision-based motion data, which may lead to significant inaccuracies in estimated internal 

loads from biomechanical analysis. For example, Chaffin and Erig (1991) reported that an error of 

±10 degrees in the joint angles could cause the biomechanical analysis results to vary up to ±30% 

at specific body joints (e.g., knees and angles). 

Therefore in this chapter, this study tests the feasibility of on-site biomechanical analysis 

using the vision-based motion data for quantifying musculoskeletal stresses on different body parts. 

Specifically, this study aims to answer the following questions: 1) how to process the vision-based 

motion data for existing computerized biomechanical analysis tools; and 2) whether the accuracy 

of the vision-based motion data is acceptable for biomechanical analysis. 

This chapter will proceed with an overview of biomechanical analysis for assessing 

musculoskeletal stresses. This is followed by detailed descriptions on the proposed motion data 

conversion methods to enable biomechanical analysis using vision-based motion data. Finally, this 
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study investigates the sensitivity of the estimated joint moments from biomechanical analysis to 

errors in the joint angles from vision-based motion data.  

 

4.2 BIOMECHANICAL ANALYSIS FOR ASSESSING MUSCULOSKELETAL 

STRESSES 

4.2.1 Biomechanical Models and Analysis 

Biomechanical models have helped to understand how external factors create 

musculoskeletal stresses such as joint moments or muscle forces that can rarely be measure directly 

(Chaffin et al. 2006). Based on the assumption that the actions of the human body follow the laws 

of Newtonian mechanics, the biomechanical models estimate musculoskeletal loads during 

occupational tasks as a function of external exposure data, like motions and external forces 

(Chaffin et al. 2006). As a result, biomechanical models help one to identify hazardous loading 

conditions with excessive musculoskeletal stresses that may contribute to the development of 

WMSDs during occupational tasks (Marras and Radwin 2005).  

Biomechanical models have been widely used to understand physical demands for diverse 

construction tasks. Hsiao and Stanevich (1996) found that the techniques used to handle end frames 

for scaffolding tasks varied among construction workers. Through biomechanical analyses on 

different lifting and carrying strategies, they found that construction workers are exposed to 

significant biomechanical stresses at the shoulders, elbows, and torso due to the heavy weight and 

bulky size of scaffold planks, and the restricted work space inherent during erection and 

dismantling of scaffolds (Hsiao and Stanevich 1996). Pan and Chiou (1999) analyzed different 

drywall installation techniques using biomechanical models by simulating the tasks at the 

laboratory, and found that considerable biomechanical stresses at the workers’ shoulders, torsos, 

and hips were produced due to awkward working postures (e.g., twisted and asymmetric postures) 

adopted by the workers. Golabchi et al. (2015) used 3D SSPPTM to identify risky tasks taking place 

in a construction prefabrication shop, and recommend an ergonomically safe workplace design. 

These studies indicate that construction workers are exposed to excessive physical demands by 

both working postures and workplace design, and biomechanical analysis during construction 
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tasks can be used not only to provide feedback to workers on their working postures, but also to 

ergonomically design workplaces.  

4.2.2 Data Collection for Biomechanical Analysis 

Collecting motion and external force data for biomechanical analysis requires complex 

instrumentation such as marker-based motion capture systems or force measurement devices. As 

a result, previous biomechanical studies have relied on laboratory experiments to collect these data 

by simulating tasks in a controlled environment. While vision-based motion capture approaches 

enable the collection of motion data without interfering with on-going work (See Chapter 3), 

external force measurement under real conditions is still challenging.  

External forces that act against the human body (e.g., hand and foot forces) are generally 

produced during the manual handling of loads and materials (e.g., lifting, lowering, carrying, 

pushing and pulling, climbing) (Frings-Dresen et al. 2000). Figure 4.1 shows conceptual diagrams 

of external forces according to types of tasks. During lifting tasks (including lowering and 

carrying), hand forces are determined by the weight of an object or material, and foot forces are 

the sum of hand forces and the bodyweight when ignoring acceleration effects. Hand and foot 

forces during pushing or pulling tasks are more complex to understand as ground conditions (e.g., 

coefficient of friction) and postures (e.g., direction of exertion) are also important factors to 

determine hand and foot forces (Al-Eisawi et al. 1999; Lee et al. 1991; De Looze et al. 2000). 

Climbing activities such as ladder climbing requires pulling on hands and pushing on feet to lift 

up the bodyweight. There are ample evidences on specific movement patterns while climbing, 

which may determine body mass distribution through a ladder (McIntyre 1983; Lee et al. 1994; 

Armstrong et al. 2008).  
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Figure 4.1: External Forces During Diverse Tasks 

 

While it is relatively easy to estimate external forces (e.g., weight of an object) for lifting 

tasks, measurement of these forces for pushing or pulling, and ladder climbing generally replies 

on instrumentation in laboratory setting. To estimate hand and foot forces under real conditions, 

especially during pushing/pulling and ladder climbing, previous research efforts have developed 

non-invasive approaches such as mathematical models (Al-Eisawi et al. 1999; Seo et al. 2013) or 

minimally invasive approaches that use light-weight and low-cost sensors (Frings-Dresen et al. 

2000; Hoozemans et al. 2001; Jacobs and Ferris 2015). For example, Al-Eisawi et al. (1999) 

developed multiple regression models that estimate horizontal and vertical hand loads during cart 

pushing and pulling tasks as a function of the minimum required force and handle height. Seo et 

al. (2013) proposed hand and foot force prediction models for ladder climbing activities by fitting 

polynomial lines to experimental data. In construction, a hand-held digital gauge has been used to 

measure pushing and pulling forces during diverse tasks at site (Frings-Dresen et al. 2000; 

Hoozemans et al. 2001). Also, Jacobs and Ferris (2015) have explored the feasibility of low-cost 

sensors such as pressure sensors on shoe insole as a means of estimating ground reaction forces. 

Even though further studies are required to improve accuracy and reliability, these are viable 

approaches to collect external force data at construction sites.    

4.2.3 Computerized Biomechanical Analysis Tools 

Because an estimation of internal loads requires tedious computations with three-

dimensional whole-body biomechanical models, several computerized software packages such as 
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3D SSPPTM (Three-Dimensional Static Strength Prediction Program) and OpenSim have provided 

practical solutions to study musculoskeletal stresses. 

3D SSPPTM is quasi-static biomechanical analysis software developed by the Center of 

Ergonomics at the University of Michigan (Chaffin et al. 2006). With posture data, anthropometry 

data, and force parameters, workers’ motions can be simulated in a virtual 3D environment. Based 

on the biomechanical simulation, static strength requirements (e.g. joint moments) for certain tasks 

are predicted, including the spinal compression force using the static biomechanical model (Center 

for Ergonomics, University of Michigan 2011) that assumes the effects of acceleration and 

momentum are negligible (i.e., quasi-static postures). Importantly, based on the analysis results of 

postures, the body parts that endure forceful exertion can be found as compared with the relevant 

human capacity such as the National Institute for Occupational Safety and Health (NIOSH)-

recommended limits for percent capables (i.e., the percentage of the population with the strength 

capability to generate a moment larger than the resultant moment) (Center for Ergonomics, 

University of Michigan 2011). For example, Figure 4.2(a) shows an example of the biomechanical 

analysis result in 3D SSPPTM. The left three images in Figure 4.2(a) are the same pose from 

different viewpoints, and the right image in Figure 4.2(a) shows the analysis result. The limits in 

the bar graphs—green to yellow transition, and yellow to red transition—correspond to the NIOSH 

Action Limit (AL) and Maximum Permissible Limit (MPL) (NIOSH 1981) that were substantiated 

epidemiologically and biomechanically (Jäger and Luttmann 1999). The joint moments below the 

AL can be achieved by 99% of men and 75% of women, which means almost every type of worker 

can perform the task. On the other hand, the joint moments beyond the MPL can be exerted only 

by 25% of men and 1% of women, and thus should not be permitted to prevent musculoskeletal 

injuries. For back compression forces, the AL is set to 3,400N, and the MPL is set to 6,400N. As 

a result, if the bar that represents joint moments and back compression forces in certain postures 

is in the red zone, the body segments have a high risk of getting injured.  
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Figure 4.2: 3D SSPPTM: (a) User Interface, (b) Angular Configurations of a Human Model 

 

Generally, a biomechanical model requires three types of input data: 1) anthropometric 

factors (body lengths, masses, and centers of mass of body segments), 2) force parameters (external 

forces exerted on hands and feet), and 3) body angles at each body joint. In 3D SSPPTM, 

anthropometric factors are set as default values for a US industrial population, and can be adjusted 

based on the subject’s height and weight. Force parameters referring to hand forces during lifting, 

pushing, and pulling—foot forces are determined by summing body weight and hand force 

vectors—specify external forces during tasks. While anthropometric factors and force parameters 

can be included by simply inputting the subject’s height and weight, and hand forces in 3D SSPPTM, 

postural angles should be determined from motion data. The body model in 3D SSPPTM defines a 

posture as body segment angles with 3 degrees of freedom, and thus can be manipulated by 

inputting the angles for each frame, as shown in Figure 4.2(b).  

OpenSim (Delp et al. 2007) is a freely available software package that estimates 

biomechanical stresses including inertial forces exerted on human body joints due to changes in 

the velocity and direction of the motion (Anderson et al. 2012). Given the motion and external 

force data, OpenSim performs inverse dynamics analysis with a multibody musculoskeletal system 

that has rigid skeletal bones with virtual markers, as shown in Figure 4.3, to calculate joint 

moments (Symeonidis et al. 2010). OpenSim is designed to conduct biomechanical simulation 
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with experimental data, such as marker positions and kinematics obtained from marker-based 

motion capture systems. For this reason, the Track Row Column (TRC) file format that contains 

markers’ geometric information from optical motion capture systems such as VICONTM is the only 

motion data format available in the current version of OpenSim.  

 

 

Figure 4.3: A Screenshot of OpenSim Window and a Multibody Model with Virtual Markers 

 

Figure 4.4 shows Input and Output for 3DSSPPTM and OpenSim. While 3DSSPPTM simulate 

postures by inputting body angles at specific instances, OpenSim requires time-series motion data 

in the .trc file format. However, the motion data extracted from vision-based approaches are not 

readily applicable to these biomechanical analysis tools because of compatibility issues in body 

models of the motion data and these tools.  
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Figure 4.4: Input and Output for 3DSSPPTM and OpenSim 

 

Figure 4.5 shows 3D skeleton models from vision-based motion capture approaches (Han 

et al. 2012; Han et al. 2013b). Vision-based motion capture data generally characterizes motions 

using Euler rotation angles at a body joint in a local coordinate system (i.e., defined for each body 

joint), for example, as in the Biovision Hierarchical (BVH) format—one of the most widely used 

motion data formats (Meredith and Maddock 2001)—which is different from the process used to 

define motions in 3D SSPPTM and OpenSim. Specifically, 3D SSPPTM defines a human posture 

with horizontal and vertical angles in a global coordinate system (i.e., defined for a full body). 

OpenSim simulates motions using marker-based motion data that contains positions of markers 

rather than body joints (i.e., more than one markers generally attached to one body joint). In this 

regard, a motion data reconfiguration that converts vision-based motion capture data into the 

proper form for ergonomic analysis tools is the key to the successful implementation of on-site 

biomechanical analysis.  
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Figure 4.5: Skeleton-based Motion Data: (a) 3D Skeletons from Han et al. (2012; 2013b), (b) an 

Example of Skeleton Model in BVH Motion Data 

 

4.3 MOTION DATA–DRIVEN BIOMECHANICAL ANALYSIS  

This section provides the details on the processes that automatically convert the BVH 

motion data from vision-based motion capture approaches into available file formats in existing 

biomechanical analysis tools, 3D SSPPTM and OpenSim, thus allowing us to perform 

biomechanical analysis using the motion data without any time-consuming data processing. The 

feasibility of the proposed data processing was experimentally tested by conducting an experiment 

on lifting tasks. 

4.3.1 Automated Motion Data Processing for Static Biomechanical Analysis in 3D SSPPTM 

An automated process was proposed to convert the BVH motion data into postural angles 

defined in 3D SSPPTM, and then to run biomechanical analysis, given the BVH motion data as 

shown in Figure 4.6. BVH motion data defines hierarchical body segments as local translation and 

rotation information from a root body joint (e.g., a hip). However, the definitions of rotation angles 

and the coordinate system in BVH motion data are different from the definitions and coordinate 

system in 3D SSPPTM. To address the difference, this study computed the body angles required for 

3D SSPPTM based on spatial information (local translations and rotations) in BVH motion data. 
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First, 3D positions (x-y-z coordinates) of all of the body joints in the BVH motion data are 

iteratively computed from the root joint using local translations and rotations (i.e., a transformation 

matrix) based on the predefined hierarchical structure of a human skeleton in the BVH motion data. 

Then, the joint angles are computed based on the vectors of bones between two connected body 

joints in a local coordinate system of the body, following the definitions of horizontal, vertical, 

and rotational angles for each body joint in 3D SSPPTM (Center for Ergonomics, University of 

Michigan 2011). 

 

 

Figure 4.6: Work Flow for Automated Motion Data Processing in 3D SSPPTM 

 

The postural angles calculated from the BVH motion data for each frame are integrated in 

a batch file that allow automatic analysis of tasks just by importing the batch file into 3D SSPPTM 

(Center for Ergonomics, University of Michigan 2011). Figure 4.7(a) show an example of a batch 

file automatically generated, containing information to run a biomechanical analysis in 3D SSPPTM. 

All lines in the batch file have one command describing relevant data. Types and functions of 

commands used in a batch file are illustrated in Figure 4.7(b). For example, 

‘ANTHROPOMETRY’, ‘HANDLOADS’, and ‘SEGMENTANGLES’ commands are for 

inputting anthropometry data (gender, height, and weight), hand forces required to perform the 

tasks, and body angles. Specifically, the values for body angles are computed directly from the 

BVH motion data. The other commands—such as ‘COMMENT’, ‘DESCRIPTION’, 

‘AUTOEXPORT’, ‘FRAME’, and ‘EXPORT’—are used to set configurations of output data 

(.exp). By running this batch file in 3D SSPPTM, an external text file (.exp) containing the results 
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(e.g., summary results, joint moments, back compression forces, and strength capabilities) from a 

biomechanical analysis can be generated. 

 

 

Figure 4.7: Batch File to Run 3D SSPPTM: (a) an Example of a Batch File, (b) Commands in a 

Batch File 

 

4.3.2 Automated Motion Data Processing for Dynamic Biomechanical Analysis in OpenSim 

The procedures required to run OpenSim with marker data (i.e., TRC file) are as follows 

(Anderson et al. 2012): 1) scaling that adjusts both the mass properties (mass and moment-of-

inertia) and the dimensions of the body segment for the subject using locations of markers; 2) 

inverse kinematics to create motions in the body model by matching experimental markers with 

virtual markers and to calculate joint angles; 3) inverse dynamics that determines the net forces 

and torques at each joint that produces movement by solving the equations of motion with the 

given motion data (joint angles from inverse kinematics) and external force data. For scaling 

(adjusting anthropometric factors) and inverse kinematics (calculating body angles) processes, 

marker positions in the TRC marker data are the primary sources; however, such marker 
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information is not available in the BVH motion data. To enable these two processes to be done 

with the BVH motion data, this study developed a user-friendly stand-alone system that 

automatically generates joint moments from motion capture data. This system is based on the 

OpenSim API to generate a human multibody model (.osim) with anthropometric and physical 

properties (e.g., body mass, center of mass, and moment of inertia) fitted to the subject, and a 

motion file (.mot) containing information on joint angles at each body joint from the BVH motion 

data; Figure 4.8 illustrates the overall workflow.  

 

 

Figure 4.8: Work Flow for Automated Motion Data Processing in OpenSim 

 

First, the proposed system creates a multibody model consisting of body segments and joints 

based on the hierarchical structures of bones and joints in the BVH motion data (Figure 4.9(a)). In 

addition, anthropometric parameters of the multibody model—such as mass, length, mass-center 

location, and moment-of-inertia of each body segment—are determined using a subject’s height 

and weight based on previous studies on these anthropometric parameters (Zatsiorsky et al. 1990; 

DeLeva 1996). The next step is to generate a motion file (.mot) containing joint angles from the 
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BVH motion data. Because both the BVH motion data and the motion file (.mot) in OpenSim 

define motions as joint rotations in degrees relative to the initial position of the joint, geometric 

information on skeleton structures from  the BVH motion data are immediately written to the 

motion file in OpenSim (.mot). The multibody model that has motion information is shown in 

Figure 4.9(b).  

 

 

Figure 4.9: Multibody Model from the BVH Motion Data: (a) a Multibody Model with 

Anthropometric Parameters Fitted to the Subject, (b) Represented Motions in the Multibody 

Model Based on the BVH Motion Data 

 

Once the OpenSim body model (.osim) and the motion file (.mot) are generated, the system 

also creates a configuration file (.xml) that will be used by the OpenSim inverse dynamics 

simulator to integrate the model (.osim), motion (.mot) and external force (.mot) files. The inverse 

dynamics simulator is an executable module built from the source codes for inverse dynamics from 

OpenSim, and thus enables us to perform inverse dynamics using the configuration file. The 

simulator saves the joint moments from dynamic biomechanical analysis to a storage file (.sto). 

These workflows are automatically processed only by inputting a subject’s anthropometric 

information (height and weight) and the BVH motion data in the stand-alone system.  

To verify the proposed approach, motion data during ladder climbing from one male subject 

was collected by using an optical motion capture system, VICONTM, because climbing activities 

involve dynamic movements of the whole body. The raw data captured from VICONTM was 
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converted into the motion data in different file formats: .TRC and .BVH. Then, this study 

compared anthropometric parameters and joint angles from the proposed approach that uses BVH 

motion data with the parameters and angles from the existing approach of OpenSim that uses TRC 

motion data. To measure the differences in anthropometric parameters, the percentage error 

between the values was used. For joint angles, the normalized root-mean-square errors (NRMSE) 

between the values from the proposed approach and the ones from the existing approach were 

calculated during one cycle of climbing (240 frames, 2 seconds). As shown in Table 4.1, the 

differences in anthropometric parameters except for the radius of gyration of a lower leg were less 

than 5%. The radius of gyration is determined by the square root of the moment of inertia divided 

by the mass. Considering that only the dynamic rotational moment is affected by the value of the 

moment of inertia, the error in the inertial parameters of a lower leg would not significantly affect 

the joint moments at a knee joint. In addition, NRMSE values for body angles at elbows and knees 

were 0.079 and 0.081, respectively (Figure 4.10). These results indicate that the proposed approach 

accurately estimates anthropometric parameters and joint angles based on BVH motion data, 

compared with the values from the existing approach. 

 

Table 4.1: Comparison of Anthropometric Parameters from OpenSim and the Proposed Approach 

Anthropometric Parameters 
Existing 

approach 

Proposed  

approach 
% of Error 

Upper 

arm 

Mass (Kg) 1.96 1.97 -0.22% 

Length (m) 0.29 0.30 -5.43% 

Distance from center of mass to proximal joint  

as % of length 
57.37% 57.72% -0.62% 

Radius of gyration as % of length, transverse 26.73% 26.89% 0.61% 

Radius of gyration as % of length, longitudinal 15.70% 15.80% 0.60% 

Radius of gyration as % of length, frontal 0.28 0.29 0.60% 

Lower 

leg 

Mass (Kg) 3.50 3.30 5.71% 

Length (m) 0.43 0.42 2.30% 

Distance from center of mass to proximal joint  

as % of length 
43.42% 44.58% -2.69% 

Radius of gyration as % of length, transverse 27.11% 25.10% -7.43% 

Radius of gyration as % of length, longitudinal 8.63% 10.20% 18.26% 

Radius of gyration as % of length, frontal 0.27 0.25 -9.89% 
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Figure 4.10: Comparison of Body Angles between Existing and Proposed Approaches 

 

4.3.3 A Case Study on Lifting Tasks 

The feasibility of the proposed automated motion data processing was tested by conducting 

a case study on lifting tasks with postural variations. An RGB-D sensor–based motion capture 

approach was used to collect BVH motion data, and then, both static and dynamic biomechanical 

analyses were performed in 3D SSPPTM and OpenSim. The results of joint moment estimation by 

applying the proposed approaches are presented, and then are compared with previous studies that 

estimated joint moments during lifting tasks using optical motion capture data in this subsection.  

4.3.3.1 Motion Data Collection  

Motion data during the concrete block lifting was collected by mimicking the tasks in a 

laboratory as shown in Figure 4.11. A male subject (175 cm, 70kg) was asked to stand in a T-pose, 

facing the RGB-D sensor, and then repeatedly lift a 20-kg (196-N) concrete block from one side 

on a floor and move it to the opposite side 10 times. This protocol reflects practices during masonry 

work in which a worker lifts a block in stock, and puts it on a wall. Then, he was asked to lift a 

block using the squat technique in which the back remains straight and the knees are bent (Garg 

and Moore 1992) (Figure 4.11(a)). After taking a break to minimize fatigue, he was asked to apply 

the stoop technique in which the back is bent to lift a block (Figure 4.11(b)). During the trials, 

KinectTM took RGB-D images at a frame rate of 30 Hz, as shown at the top of Figure 4.11, and the 

images were processed in iPi Desktop Motion Capture to extract BVH motion data, as shown at 

the bottom of Figure 4.11.  
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Figure 4.11: Motion Data Collection during Concrete Block Lifting: (a) Squat Lifting, (b) Stoop 

Lifting 

 

4.3.3.2 Results from Static and Dynamic Biomechanical Analyses  

The BVH motion data was post-processed by applying the proposed motion data conversion 

methods to obtain postural angles for 3D SSPPTM and OpenSim. Anthropometric factors were 

adjusted based on the subject’s height and weight. To determine external forces (e.g., hand and 

foot forces), it was assumed that the magnitude of external force exerted on each hand was 98 N, 

and that the direction of the forces was downward. In addition, the foot forces were assumed as a 

sum of the weight of the subject and a concrete block. Based on these data, static and dynamic 

biomechanical analyses were conducted to estimate joint moments during squat and stoop lifting.  

Figure 4.12 shows joint moments at L5/S1 (i.e., an intervertebral disc between the fifth 

lumbar and first sacral vertebra), left knee, and left elbow joints during one cycle of squat and 

stoop lifting (i.e., lift, carry, and put down a concrete block) from the static and dynamic 

biomechanical analyses. In the graphs, the solid lines indicate joint moments from dynamic 

biomechanical analysis while the dotted lines indicate joint moments from static biomechanical 

analysis. Overall, the results show that joint moments from dynamic biomechanical analysis are 
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higher than those from static analysis. In a dynamic biomechanical model, the moment at a certain 

body joint is defined as the sum of the static moment and the dynamic inertial forces (i.e., the 

instantaneous acceleration effect due to the tangential rotation force and the rotational acceleration 

effect) (Chaffin et al. 2006). According to the study by McGill and Norman (1985), the peak 

lumbar moment in a static condition was 84% of the peak lumbar moment in a dynamic condition 

during lifting loads. The results are similar to the results from this study, by showing that the peak 

static joint moments at the L5/S1 disc are 79% and 73% of the peak dynamic joint moments at the 

L5/S1 disc during squat and stoop lifting, respectively. One of the reasons why the results showed 

higher dynamic joint moments compared with static joint moments than the previous study is that 

the subject lifted a load from waist height in the previous study, while the subject in this case study 

lifted a concrete block from the floor. The lifting speed when lifting a load (200N) from the floor 

level could be about 25% higher than the speed during lifting from waist height (Lavender et al. 

2003). Thus, differences in lifting heights may contribute to differences in lifting speeds, resulting 

in higher dynamic joint moments in this case study than the ones from the previous study.  

 

 

Figure 4.12: Biomechanical Analysis Results during Squat and Stoop Lifting 

 

With regard to lifting techniques, the squat lifting is less stressful to the back from both 

static and dynamic analyses in this case. This result corresponds to the previous study that the 
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squat lifting produced fewer maximum lumbar joint moments than the stoop lifting when a subject 

lifted the heavy object (15kg) (Hwang et al. 2009). However, this result is not always the case 

because the stoop lifting can maintain the object closer to the torso than squat lifting, resulting in 

the reduced moment arm of the load (Chaffin et al. 2006). For this reason, previous studies 

recommended squat lifting only when the subject can put an object between the feet to minimize 

the moment arm of the load (van Dieën et al. 1999). In addition, the joint moments at a knee during 

stoop lifting are higher than those during squat lifting, which is similar to the results from the 

previous study (Hwang et al. 2009). No significant difference in elbow joint moments was 

observed in the results from a case study because the joint angles between squat and stoop lifting 

were similar, as shown in Figure 4.12.  

4.3.4 Considerations for Motion-data Driven Biomechanical Analysis 

This subsection discusses considerations when applying the proposed approaches for on-

site biomechanical analysis and when analyzing the results in the context of tasks. The results from 

the case study imply that the motion data–driven biomechanical analysis provides a robust measure 

of musculoskeletal stress from both static and dynamic points of view, given motion capture data 

(e.g., BVH files). In addition, the usability issue of the proposed method is also important from 

the practical perspective in making the biomechanical models useful when performing ergonomic 

evaluations during tasks (Chaffin 1997). In this context, it should be clear that the automatic 

processes of motion data obtained directly from work places enable ergonomists and practitioners 

to identify a potential risk of WMSDs that exists in certain tasks and work environments by 

evaluating hazardous internal loading conditions in a timely manner without technical 

sophistication or skill.  

Notably, in-depth understanding of the differences in body configurations between the BVH 

motion data and the 3D SSPPTM body model may lead to the further improvement on the accuracy 

of biomechanical analysis. Skeleton structures of the multibody model in OpenSim follow those 

in the BVH motion data excluding joints in hands, and thus the motions can be exactly simulated 

according to the motions in the BVH motion data. In the other hand, 3D SSPPTM has its own 

skeleton structures that are different from those in the BVH motion data, which makes errors when 

calculating joint angles. For example, in 3D SSPPTM, the trunk flexion angle is defined as an angle 

between the projection of the trunk-axis (the center of the hips to the center of the shoulders) and 
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the positive Y-axis as shown at the bottom of Figure 4.13(a). In the top view of the skeleton model 

in 3D SSPPTM (the top of Figure 4.13(a)), it is found that hips and shoulders are aligned. On the 

other hand, the hips are located slightly forward in the Y-axis, compared with the shoulders (the 

top of Figure 4.13(b)). The differences in skeleton structures and joint positions cause errors in the 

trunk flexion angle that is calculated from the BVH motion data (the bottom of Figure 4.13(b)), 

resulting in slightly different postures in 3D SSPPTM. Generally, the hierarchical structures of 

bones and joints in the BVH motion data vary depending on the type of motion capture system and 

algorithm. For this reason, when applying the BVH motion data to 3D SSPPTM, one should 

consider the differences in skeleton structures between skeleton models in 3D SSPPTM and motion 

data, and adjust them if the differences are significant.  

 

 

Figure 4.13: Comparison of a Trunk Flexion Angle in (a) 3D SSPPTM and (b) BVH Motion Data 

 

When applying biomechanical analysis on construction tasks, the selection of adequate 

analysis should be made considering the purpose of the analysis due to differences in tolerance 

limits under static and dynamic conditions. The results from the case study indicated that 

acceleration effect could increase joint moments up to 30% in lifting tasks. Therefore, static 

analysis using 3D SSPPTM is appropriate for tasks involving slow motions where accelerations can 
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be ignored, while tasks involving jerking motions require dynamic biomechanical analysis in 

OpenSim. However, it should be noted that there is no available threshold to determine whether 

the dynamic joint moments are hazardous or not. Tissue injuries occur when the applied 

musculoskeletal stresses exceed the failure tolerance referring to the strength of the tissue (McGill 

1997). Because it is difficult to specify individual differences in joint strength, population-based 

data is generally used to determine hazardous internal loads. For example, 3D SSPPTM compares 

the joint moments produced at various body joints during tasks with the static strength moments 

reported from studies of various populations performing different types of exertions by setting the 

maximum permissible limit as the joint strength that only 25% of men and 1% of women can exert 

(Center for Ergonomics, University of Michigan 2011). However, because dynamic strengths are 

more complex than static strengths, studies on dynamic joint strengths have not yet been fully 

conducted (Chaffin et al. 2006). This means that joint moments from dynamic biomechanical 

analysis is hard to be used to determine the degree of risk in a given population of workers, but 

can only be relatively compared.  

 

4.4 SENSITIVITY ANALYSIS OF MOTION ERRORS ON MUSCULOSKELETAL 

LOADS 

Vision-based motion capture approaches enable us to collect motion data required for 

biomechanical analysis under real conditions. However, possible errors in vision-based motion 

data would be detrimental to the reliability of the analysis results. In this section, this study 

explored the sensitivity of musculoskeletal loads to errors in motion data to empirically examine 

whether errors in vision-based motion data is acceptable for biomechanical analysis of 

construction tasks.  

4.4.1 Methodology  

For the sensitivity analysis, one cycle of motion data (105 frames, 3.5 s) during squat and 

stoop lifting was selected. As a biomechanical analysis tool, 3D SSPPTM was selected because it 

provides not only values of musculoskeletal loads (e.g., joint moments, back compression forces), 

but also ‘Strength Percent Capable’ that helps to identify excessive loads beyond one’s strength.  
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Chaffin and Erig (1991) have investigated the sensitivity of the Percent Capable according 

to postural errors by varying angles only on the specific joints (e.g., knees or ankles) with the most 

limiting Percent Capable. However, motion errors could occur on any joints in the body, and the 

combination of errors in different body angles may lead to increase or decrease of musculoskeletal 

loads. To understand how errors on joint angles of a whole body cause variations in 

musculoskeletal loads, errors of joint angles were randomly created on upper limbs (i.e., horizontal 

and vertical angles on shoulders and elbows), a torso (i.e., trunk flexion angles), and lower limbs 

(i.e., horizontal and vertical angles on hips and knees) with the range of ±5°, ±10°, ±15° and ±20°, 

respectively. During the cycle, the errors were uniformly distributed within each error range. Then, 

motions with each error range were simulated in 3D SSPPTM to obtain joint moments (Nm) (elbow, 

shoulder, L5/S1, hip and knee joints), corresponding Percent Capables and back compression 

forces (L4/L5 disc). As a measure of accuracy in musculoskeletal loads according to motion errors, 

the Mean Absolute Percentage Error (MAPE) was computed using the following equation: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑀𝑆𝐿𝑛𝑜 𝑒𝑟𝑟𝑜𝑟,𝑡−𝑀𝑆𝐿𝑤𝑖𝑡ℎ 𝑒𝑟𝑟𝑜𝑟𝑠,𝑡

𝑀𝑆𝐿𝑛𝑜 𝑒𝑟𝑟𝑜𝑟,𝑡
|𝑛

𝑡=1                                         (1) 

 MAPE: Mean Absolute Percentage Error 

 MSL: Musculoskeletal Loads (i.e., joint moments, Percent Capables, and back 

compression forces) 

 t = time frames 

 n = total time frames (105) 

 

4.4.2 Results 

Figure 4.14 shows musculoskeletal loads on selected joints (e.g., elbows, L4/L5 and knees) 

according to four different ranges of errors of whole body joint angles during squat and stoop 

lifting. Variations on joint moments increase as motion errors increase from ±5° to ±20°, but the 

plots of joint moments and back compression forces for each error range show similar overall 

patterns. However, the knee joint moments with an error of more than ±10° in body angles showed 

irregular fluctuations during the cycle of both squat and stoop lifting.  
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(a) Squat Lifting 

 

(b) Stoop Lifting 

Figure 4.14: Patterns of Musculosksletal Loads According to Errors in Joint Angles 
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Tables 4.3 and 4.4 show MAPEs of joint moments and back compression forces for each 

error range in body angles during squat and stoop lifting, respectively. A ±10° error produce 

variations in the loads, ranging from 3.9% and 13.8% during squat lifting, and from 6.0% to 11.6% 

during stoop lifting according to body joints (except knee joints). When the error range increased 

to ± 20°, MAPEs of joint moments was almost doubled. Compared with other joints, however, 

knee joints show higher MAPEs (186.3% for squat lifting, 44.1% for stoop lifting), indicating that 

knee joint moments are the most sensitive to errors in joint angles. As such, more accurate motion 

data would be required if reliable joint moments at knees are needed.  

Tables 4.5 and 4.6 show MAPEs of ‘Strength Percent Capable’ at each body joint during 

squat and stoop lifting, respectively. These results indicate that higher errors in motion data could 

be acceptable to predict values for ‘Strength Percent Capable’. The sensitivity analysis shows that 

even ± 20° of errors in motion data would create less than 10% of errors in the values of ‘Strength 

Percent Capable’ for upper limbs and a back. However, again, more accurate motion data with an 

error of less than ± 10° would be required if less than 10% of errors for lower limbs such as hips 

and knees are needed.  
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Table 4.2: Mean Absolute Percentage Error (MAPE) of Joint Moments (Nm)/Back Compression Forces (N) according to Errors 

in Body Angles during Squat Lifting 

Body Part 
Range of Errors in Body Angles 

± 5° ± 10° ± 15° ± 20° 

Upper Limbs 
Elbow (Joint Moments) 1.8% 3.9% 5.7% 6.8% 

Shoulder (Joint Moments) 2.9% 6.3% 9.1% 10.1% 

Back 
L5/S1 (Joint Moments) 8.1% 13.8% 19.7% 20.6% 

L4/L5 (Back Compression Forces) 6.2% 10.0% 14.6% 16.0% 

Lower Limbs 
Hip (Joint Moments) 6.9% 12.2% 18.7% 22.4% 

Knee (Joint Moments) 26.2% 49.5% 49.6% 186.3% 

 

 

Table 4.3: Mean Absolute Percentage Error (MAPE) of Joint Moments (Nm)/Back Compression Forces (N) according to Errors 

in Body Angles during Stoop Lifting 

Body Part 
Range of Errors in Body Angles 

± 5° ± 10° ± 15° ± 20° 

Upper Limbs 
Elbow (Joint Moments) 6.4% 11.6% 15.4% 17.9% 

Shoulder (Joint Moments) 5.9% 10.9% 18.3% 22.1% 

Back 
L5/S1 (Joint Moments) 2.9% 6.0% 8.8% 12.6% 

L4/L5 (Back Compression Forces) 2.6% 5.6% 7.5% 11.3% 

Lower Limbs 
Hip (Joint Moments) 5.7% 11.6% 16.4% 21.1% 

Knee (Joint Moments) 11.9% 19.8% 33.7% 44.1% 
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Table 4.4: Mean Absolute Percentage Error (MAPE) of ‘Strength Percent Capables (%)’ according to Errors in Body Angles 

during Squat Lifting 

Body Part 
Range of Errors in Body Angles 

± 5° ± 10° ± 15° ± 20° 

Upper Limbs 
Elbow 0.1% 0.1% 0.1% 0.2% 

Shoulder 1.1% 2.3% 3.1% 3.6% 

Back L5/S1 0.7% 1.2% 1.9% 1.8% 

Lower Limbs 
Hip 2.9% 5.8% 7.7% 9.4% 

Knee 4.5% 8.9% 13.0% 16.0% 

 

 

Table 4.5: Mean Absolute Percentage Error (MAPE) of ‘Strength Percent Capables (%)’ according to Errors in Body Angles 

during Stoop Lifting 

Body Part 
Range of Errors in Body Angles 

± 5° ± 10° ± 15° ± 20° 

Upper Limbs 
Elbow 0.0% 0.1% 0.1% 0.1% 

Shoulder 0.2% 0.3% 0.6% 1.0% 

Back L5/S1 1.1% 2.3% 5.0% 5.5% 

Lower Limbs 
Hip 4.3% 8.5% 10.8% 13.8% 

Knee 2.2% 3.8% 7.2% 8.0% 
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4.4.3 Considerations for Interpreting Results from Motion-data Driven Biomechanical 

Analysis 

The reliability and practicability of the proposed on-site biomechanical analysis during 

construction tasks relies on not only automated motion data processing, but also on the accuracy 

of motion data collected at site. As described in Chapter 3, vision-based motion data showed a 

different range of errors on joint angles according to body parts, which may lead to inaccuracies 

when analyzing musculoskeletal stresses using biomechanical analysis. In particular, upper limb 

motions showed larger errors than lower limb motions.  

The sensitivity analysis in the previous subsection revealed that it is important to obtain 

accurate motion data with an error of less than ± 10° in body angles for reliable biomechanical 

analysis (less than 10 % of errors in musculoskeletal stresses). Even though further improvement 

of accuracy are required in vision-based motion data that has more than 10° of errors in body 

angles according the body parts, the use of vision-based motion data for biomechanical analysis is 

promising from a practical perspective.  

First, as inaccurate motion data would not significantly affect the musculoskeletal load 

patterns during a cycle of tasks, detecting postures with relatively higher musculoskeletal stresses 

is possible.  For example, during lifting tasks, a back is a potentially problematic body region at 

the beginning and end of the lifting cycle as workers are exposed to the highest back compression 

forces as shown in Figure 4.14.  Instead, upper limbs (e.g., elbows) should exert the highest joint 

loads at the middle of the cycle. Despite variations in musculoskeletal loads due to motion errors, 

these trends are not changed, making it possible to understand specific moments and corresponding 

postures with relatively high musculoskeletal loads.   

More importantly, Percent Capables in 3D SSPPTM would not be significantly affected by 

errors in body angles. By comparing the Percent Capables with the limits provided by NIOSH, 3D 

SSPPTM detects excessive physical demands beyond one’s strength capability that may lead to 

WMSDs. As a result, the Percent Capable is a more intuitive measure of the risks of WMSDs than 

a joint moment. Vision-based motion capture approaches can provide motion data with an error of 

less than 20° in joint angles, and except knee joints, this range of errors would create only about 

5% of errors in the Percent Capables.  
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4.5 CONCLUSIONS 

This study proposed motion data–driven biomechanical analysis during construction tasks 

using motion data obtained from vision-based motion capture approaches. Body angles required 

for 3D SSPPTM are computed directly from positions of body joints generated from BVH motion 

data. For OpenSim, this study created a multibody model with anthropometric parameters adjusted 

for a subject based on the hierarchical structures of bones and joints in the BVH motion data, and 

computed joint angles based on joint rotations in degrees that are available in the BVH motion 

data. The proposed motion data processing for OpenSim was verified by comparing 

anthropometric parameters and joint angles from the proposed approach with those from the 

existing approach in OpenSim. In addition, this study conducted a case study on lifting tasks to 

test the feasibility of the proposed motion data processing for both static and dynamic 

biomechanical analyses. The results showed that the proposed approaches for motion data 

processing were successfully used to perform static and dynamic biomechanical analyses by 

showing similar results from previous studies.  

Using the motion data during lifting tasks, this study also conducted the sensitivity analysis 

of motion data errors to estimated musculoskeletal loads on selected body joints. From this analysis, 

less than ± 10° of errors in motion data (i.e., body angles) are required for reliable biomechanical 

analysis. However, the use of vision-based motion data with more than ± 10° of errors would not 

significantly affect biomechanical analysis results from the practical perspectives because of non-

significant variations in load patterns and less-sensitivity of motion errors to the ‘Percent Capables’.  

Combined with vision-based motion capture, the proposed motion data-driven 

biomechanical analysis is promising in quantifying internal loads (e.g., musculoskeletal stresses) 

and identifying risky tasks under real conditions. In construction where laboratory-based 

biomechanical studies are not feasible, on-site biomechanical analysis has great potential to 

provide in-depth analysis of physical demands from construction tasks, which other ergonomic 

evaluation methods (e.g., self-reports, observational methods, and direct measurements) cannot 

provide. Ultimately, the continuous monitoring of musculoskeletal stresses during construction 

tasks using the proposed approach will enhance the understanding of the gap between physical 

work demands and workers’ capability, and offer a firm foundation for the improvement of 

workers’ health (e.g., reducing WMSDs), as well as productivity in construction.  
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CHAPTER 5  

 

SIMULATION-BASED ASSESSMENT OF WORKERS’ MUSCLE 

FATIGUE AND ITS IMPACT ON CONSTRUCTION OPERATIONS2 

 

5.1 INTRODUCTION 

As presented in the previous chapter, on-site biomechanical analysis at construction sites 

can be very useful to quantify physical demands on the human musculoskeletal system, and detect 

specific moments when physical demands (e.g., joint moments) exceed one’s capability (e.g., joint 

strength). However, even during a submaximal force exertion, one could experience excessive 

physical demands beyond one’s strength because muscle strength decreases as an adaptation of the 

neuro-muscular system to prevent serious damage to muscles (Chaffin et al. 2006). This adaptation 

process can be defined as ‘muscle fatigue,’ which refers to “any exercise-induced reduction in the 

capacity to generate force or power output” (Chalder et al. 1993; Vøllestad 1997). When workers 

are exposed to excessive physical demands without proper rest time, they suffer from a significant 

level of localized muscle fatigue that could generate diverse detrimental impacts on the project 

performance. A systematic understanding and management of workers’ fatigue in planned 

operations of which activities and resources are determined prior to work can greatly contribute to 

workers’ productivity, safety, and health—all by taking proper actions before severe fatigue takes 

place.  

Metabolic demands in different muscle groups and corresponding localized muscle fatigue 

not only limit the acceptable workloads for manual handling tasks that are performed for short and 

                                                           
2 This chapter is adapted from Seo, J., Lee, S., and Seo, J. (2016) “Simulation-based Assessment of Workers’ Muscle 

Fatigue and Its Impact on Construction Operations” Journal of Construction Engineering and Management, ASCE 

(Accepted). 
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intensive periods (Bhattacharya and McGlothlin 1996), but also contribute to cardio-respiratory 

(i.e., oxygen consumption) or –vascular (i.e., heart rate) responses, resulting in whole-body fatigue 

(Chaffin 1973). To manage workers’ fatigue, evaluating the muscle fatigue from planned 

operations should take precedence. Previous research efforts to evaluate muscle fatigue during 

occupational tasks have focused on identification of potential health issues due to excessive 

physical demands by estimating muscle fatigue from given workloads. For example, one of the 

widely used methods to predict muscle fatigue is fatigue models that mathematically represent 

physiological or mechanical mechanisms of fatigue (Liu et al. 2002; Xia and Frey Law 2008; Ma 

et al. 2009). These approaches aim to detect ergonomic risks due to muscle fatigue that may 

contribute to the development of WMSDs (Vøllestad 1997; Perez et al. 2014). Manifestations of 

muscle fatigue during occupational tasks are also associated with work performance contributing 

to costs associated lost productivity. However, understanding the direct impact of muscle fatigue 

on time and cost performance is challenging due to the lack of a tool for modeling interactions 

between human aspects (i.e., muscle fatigue) and construction operations prior to work (Seo et al. 

2015b).  

To address these issues, this study proposes a simulation-based framework to estimate 

physical demands and corresponding muscle fatigue from the planned operation, and then evaluate 

the impact of muscle fatigue on construction operations. Specifically, this study combine a 

Discrete Event Simulation (DES) model with biomechanical and fatigue models to capture the 

interactive effects between muscle fatigue and planned operations. The planned construction 

operation is modeled at the work element level (e.g., placing concrete blocks, lifting drywall etc.) 

in DES that represents a breakdown of construction work into the fundamental segments of work 

involving different levels of physical demands. The physical demands from each work element are 

then estimated using a biomechanical model, simulating varying physical demands from tasks over 

time. The fatigue models estimate time-varying changes of muscle fatigue under estimated 

physical demands from the biomechanical model, which, in turn, affects construction operations 

in DES. Such a comprehensive and cyclic representation of muscle fatigue and corresponding 

operational behaviors over time allows us to see the impact of muscle fatigue on construction 

operations and vice versa, thereby enabling a better understanding of muscle fatigue resulting from 

construction operations prior to work. In addition, a case study on masonry work is conducted to 

demonstrate how the proposed framework can be applied to the actual construction operation. 
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Based on the case study, the benefits of the proposed approach for understanding how workers’ 

fatigue under given workloads affect construction operations is discussed.  

 

5.2 MUSCLE FATIGUE AND ITS IMPACT ON OCCUPATIONAL TASKS 

Fatigue has been defined as “the decline in the ability of an individual to maintain a level of 

performance”, but the issue of fatigue is complex due to the various physiological and 

psychological phenomena which contribute to it (De Luca 1983). During physical activities, 

fatigue is largely associated with muscle fatigue, measured as a loss of muscle performance during 

repeated or continuous activation (Chalder et al. 1993; Helbostad et al. 2007). Muscle fatigue 

induces discomfort and pain, and in the long term, is believed to contribute to WMSDs (Armstrong 

et al. 1993; Chaffin et al. 2006). As a result, for risk reduction associated with muscle fatigue, it 

may be necessary for managers to adjust work design by providing appropriate rest breaks or 

reducing workloads (Gerard et al. 2002). 

While performing physical tasks, it is hard to maintain muscular strength (i.e., maximum 

force-producing capacity) because sustained force exertions without sufficient recovery generate 

muscle fatigue that causes the decline in muscle power output (Chaffin et al. 2006). Figure 5.1 

adapted from McGill (1997) illustrates the relationship between force exertions (i.e., physical 

demands) and reduction in muscular strength (i.e., muscle fatigue). To perform a physical task 

(e.g., lifting heavy objects), one needs to exert forces on muscles. The required forces should be 

less than a worker’s physical capacity (i.e., muscular strength). However, as one performs the task 

repeatedly over time, muscles become fatigued, resulting in the reduction of muscle strength due 

to accumulation of fatigue substances on muscle fibers (dashed line in Figure 5.1). If appropriate 

recovery time (e.g., rest time) is not provided, the forces required to perform the task become 

higher than the decreased muscle strength at some point. This is called ‘fatigue failure’ (McGill 

1997), and the time to fatigue failure refers to the endurance time (Chaffin et al. 2006).  
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Figure 5.1: Relationship between Physical Demands and Muscle Fatigue 

 

Fatigue failure indicates that forceful exertions beyond one’s muscle capacity can result in 

significant detrimental effects on both workers’ health and work performance (e.g., productivity). 

Repeated over-exertion beyond one’s muscular capacity may cause mechanical degradation of the 

tissues such as muscle damage (i.e., acute injuries). In the long term, muscle fatigue without 

sufficient recovery reduces the tissues’ stress-bearing capacity as a result of an outcome of cellular 

changes, and thus may result in chronic conditions such as WMSDs (Kumar 2001). In addition, 

work performance (e.g., productivity) may also be affected by muscle fatigue, which can then 

cause a decrease in Margin of Manoeuver (MM) (Durand et al. 2009). MM is an ergonomic 

concept that is defined as the possibility or freedom a worker has to develop different ways of 

working in order to meet production targets, without having adverse effects on his or her health 

(Durand et al. 2009). The level of MM can be determined by working conditions (e.g., production 

or quality target, work flexibility) and personal parameters (e.g., the person’s physical capacity). 

Reduction of workers’ capacity due to excessive physical demands (i.e., muscle fatigue) would 

decrease the MM at work, which, in turn, may jeopardize the balance between attaining production 

targets and preserving workers’ health conditions (Durand et al., 2011). Accordingly, when 

workers recognize muscle fatigue (physical demands beyond muscular capacity), workers will 

apply appropriate work adjustment strategies (i.e., taking voluntary pauses or slowing down work 

pace) to cope with manifestation of muscular fatigue, which results in delay of work by sacrificing 

production targets.  



 

90 
 

Unlike machine-paced work such as manufacturing, construction tasks are self-paced, 

allowing workers a degree of autonomy in determining their optimal work pace or rest strategy 

(Xiang et al. 2014). As a result, a conflict between attaining production targets and preserving 

workers’ health frequently occurs during construction operations as workers continuously try to 

adjust their work activity to match variations in their personal (e.g., fatigue, pain) and working 

conditions (e.g., available work time, MM) (Durand et al. 2009). Determining optimal operational 

designs to minimize this conflict is of importance for achieving performance goals, and thus 

requires comprehensive understanding of the effect of excessive physical demands (i.e., muscle 

fatigue) on planned construction operations not only to prevent health issues, but also to minimize 

unexpected productivity loss.  

 

5.3 PREVIOUS RESEARCH EFFORTS ON ASSESSING PHYSICAL DEMANDS AND 

MUSCLE FATIGUE 

There have been several research efforts to measure physical demands and muscle fatigue 

during occupational tasks. Direct measurements during performing tasks or subjective evaluations 

after performing tasks are commonly used to quantify workers’ physical demands from work and 

the degree of muscle fatigue (Vøllestad 1997; Abdelhamid and Everett 2002; Mitropoulos and 

Memarian 2012). However, estimating physical demands and muscle fatigue prior to work is 

challenging because there are no observable operations involved yet prior to work (Perez et al. 

2014). In this section, a review on simulation- or model-based approaches to estimate physical 

demands and muscle fatigue prior to work will be presented.  

5.3.1 Methods to Assess Physical Demands Prior to Work 

To estimate and evaluate physical demands prior to work, laboratory-based or virtual task 

simulation has been commonly used in ergonomic studies (Badler et al. 1993; Chaffin 2005; Reed 

et al. 2006; Nussbaum et al. 2009; Salvendy 2012). Laboratory-based simulation aims to evaluate 

ergonomic risks of occupational tasks at the stages of planning, scheduling and designing, 

performing simulated tasks by subjects at the laboratory (Stanton 2006; Nussbaum et al. 2009; 

Salvendy 2012). While simulating the task, a set of measures (e.g., anthropometric, kinematic, 

kinetic and electromyography etc.) are collected to estimate physical demands and corresponding 
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ergonomic risks using physiological or biomechanical ergonomic assessment methods (Nussbaum 

et al. 2009). Recently, virtual visualization and simulation using Digital Human Modeling (DHM) 

have provided proactive solutions for workplace ergonomic considerations, such as the ergonomic 

analysis of human posture and workplace design (Shaikh et al. 2004). This approach creates an 

avatar (i.e., virtual human), and inserts it into 3D graphic renderings of workplaces, enabling a 

designer or engineer to investigate different design options of a product or a workplace in the early 

stages of the design (Reed et al. 2006; Chang and Wang 2007; Demirel and Duffy 2007). However, 

because developing laboratory-based or virtual simulations is time-consuming, these approaches 

focus on specific tasks with higher ergonomic risks at the workstation level that are feasible for 

experimental settings (Czaja and Sharit 2003; Chaffin 2005).  

To understand physical demands at the system level in the early design phase, previous 

research efforts have used DES from an ergonomic perspective (Keller 2002; Neumann and 

Kazmierczak 2005; Kazmierczak et al. 2007; Neumann and Medbo 2009; Perez et al. 2014). DES 

has been recognized as a useful technique for analyzing operational design alternatives or 

optimizing resources with many applications in diverse industries including construction 

(Martinez and Ioannou 1999; AbouRizk 2010). DES is the representation of a system (e.g., 

sequence and times of the process) in which the state of resources (e.g., materials, equipment and 

workers) change at discrete points in time (Banks et al. 2005). Generally, the state of labor 

resources is modeled as a queuing system to determine the availability of resources, and occupied 

or waiting times for events as DES focuses on the optimization of resources or cost evaluation 

(Fishman 2013). However, combined with ergonomic methods to measure physical demands (e.g., 

subjective rating, biomechanical analysis), DES enables us to analyze cumulative physical 

demands from the planned operations. For example, Keller (2002) estimated cumulative workloads 

by determining the workload of each task through subjective rating by experts, and then adding up 

the workloads according to task scenarios from DES. Neumann and Kazmierczak (2005) suggested 

DES combined with biomechanical analysis that estimates musculoskeletal loads on a back and 

shoulders based on representative postures. Cumulative loads can be calculated by multiplying 

each task’s load by its duration and summing up cumulative loads for tasks based on simulation 

results of DES (Neumann and Kazmierczak 2005). This approach, which has been applied and 

tested for manufacturing assembly systems, demonstrates great potential for the assessment of 

physical demands of alternative system configurations during a design phase (Kazmierczak et al. 
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2007; Neumann and Medbo 2009; Perez et al. 2014). Once cumulative physical demands from the 

planned operation are estimated, an analyst needs to determine whether the demands are excessive 

or not. This judgement generally relies on expert judgement (Keller 2002) or qualitative 

comparison of physical demands from diverse operational options (Kazmierczak et al. 2007). 

However, for objective evaluation, specific criteria are needed to determine if there could be 

potential health or performance issues due to excessive physical demands from the operations.  

5.3.2 Methods to Estimate Muscle Fatigue Prior to Work 

As muscle fatigue is developed gradually in sustained force exertions and is associated with 

an ability to continue the task (Enoka and Duchateau 2008), it has been used as a measure of 

cumulative workload (Village et al. 2005). Muscle fatigue has been studied using a wide variety 

of models, protocols and assessment methods (Vøllestad 1997). Electromyography is most often 

used to assess the level of muscle fatigue during or after task performance (Sommerich et al. 1993). 

In case of fatigue measurement prior to work, however, model-based measurement has been 

widely used (Vøllestad 1997; Perez et al. 2014). Most of exiting muscle fatigue models is based 

on the quantitative relationships between static (i.e., constant) workloads and Maximum 

Endurance Time (MET) (e.g., time to fatigue) that are empirically derived from laboratory 

experiments (Hagberg 1981; Sato et al. 1984; Manenica 1986; Rohmert et al. 1986; Rose et al. 

1992; Rose et al. 2000). However, due to the assumption of constant force exertions to estimate 

MET, these models are not suitable for evaluating fatigue during construction tasks that involve 

time-varying force exertions and irregular pauses (e.g., short breaks). To address this issue, 

dynamic fatigue models have been introduced to estimate the level of fatigue as a function of 

varying force exertions over time. For example, Liu et al. (2002) proposed a set of dynamic 

equations to describe the effect of muscle fatigue and recovery as a function of the number of 

Motor Units (MUs) being activated by the voluntary drive. Despite the ability to reflect varying 

voluntary efforts (i.e., force exertions), the application of this model is limited to theoretical studies 

on muscle physiology, neural control mechanisms, and clinical applications because it is difficult 

to specify the number of motor units during specific occupational tasks. Based on Liu et al. 

(2000)’s approach, Xia and Frey Law (2008) developed a mathematical muscle fatigue model that 

can predict muscle fatigue for complex tasks with varying intensities. This approach, however, has 

to specify diverse model parameters (e.g., the number of MUs to exert a certain level of forces, 
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muscle compositions of body segments etc.) and inputs (e.g., angular velocity and joint angles for 

performing a task), and thus it is too complex to be used for occupational tasks. Compared with 

these models (Liu et al. 2000; Xia and Frey Law 2008), the dynamic fatigue model proposed by 

Ma et al. (2009) is more suitable for evaluating muscle fatigue during occupational tasks due to its 

applicability to any types of force exertions (e.g., both static and dynamic exertions) on specific 

body parts (e.g., upper limbs, back or lower limbs) and simplicity of input data (i.e., muscle force). 

By defining muscle fatigue as a reduction of the maximum exertable force capacity of muscle, this 

model estimates the reduced capacity of muscle based on muscle force history on specific body 

parts (i.e., accumulated physical demands), and thus can detect fatigue failure described in Figure 

5.1. However, this model does not take into account fatigue recovery, which makes it difficult to 

be used to understand fatigue resulting from construction tasks. There is a significant amount of 

irregular pauses and short breaks in construction tasks, which can account for up to 31% of the 

total working time (Serpell et al. 1995). 

For the use of fatigue models prior to work, estimation of physical demands from the 

planned operation is required. As described earlier, DES combined with biomechanical analysis 

can be a promising tool for estimating cumulative physical demands on specific body parts during 

the whole operation, and thus can provide input for fatigue models to investigate the level of 

muscle fatigue during the planned operation. For example, Perez et al. (2014) proposed 

combination of DES, biomechanical analysis and static fatigue models to estimate physical 

demands and then to calculate corresponding ‘fatigue rate’ that refers to the relative degree of 

muscle fatigue levels for manufacturing assembly tasks. However, as this approach focused on 

detection of potential ergonomic risks due to muscle fatigue from diverse operational scenarios, it 

can’t capture the interaction between production system design and muscle fatigue. As described 

earlier, manifestation of muscle fatigue during work can result in delay of work to be recovered 

from fatigue that may affect the work performance of workers. Modeling of this interaction is not 

reflected in Perez et al. (2014)’s work, which makes it difficult to understand how excessive 

physical demands would affect operation performance, and how to optimize operational designs 

to achieve production targets without sacrificing workers’ health. In addition, this approach 

estimated muscle fatigue under static conditions where the level of force exertions during each 

activity is constant, which may not be suitable for construction activities involving dynamic force 

exertions. 
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5.4 METHOS 

This study proposes a simulation-based framework for systematically assessing muscle 

fatigue and its impact on construction operations. This framework is intended to depict the 

relationship between cumulative physical demands and corresponding muscle fatigue as shown in 

Figure 5.1, aiming to detect fatigue failures that result from excessive demands during the planned 

operation. One of the novel features of this framework is that the impact of excessive physical 

demands on construction operations can be simulated by modeling workers’ behaviors to cope 

with muscle fatigue such as voluntary rests. In addition, both fatigue generation and recovery 

processes are reflected in this framework, capturing the dynamics of muscle fatigue in construction 

that involves time-varying force exertions and irregular idling. Figure 5.2 shows the overview of 

the proposed framework which integrates DES, biomechanical and fatigue models to represent 

interactions between human aspects (i.e., muscle fatigue) and construction operations prior to work.  

 

 

Figure 5.2: Overview of Proposed Framework 

 

5.4.1 Modeling of Construction Operations Using DES 

The first step of the framework needs to model the construction operation in DES. Different 

types of simulation modeling approaches have been used to understand the real system, and these 
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include but not limited to DES, System Dynamics (SD), and Agent-Based Modeling (ABM). 

Among them, DES is the most widely used modeling approach due to its process-centric approach 

that enables the quantitative analysis of operations and processes (Martinez 2009; Zankoul et al. 

2015). By using DES as a simulation platform for modeling construction operations and workers’ 

behaviors, the proposed framework helps to quantify the effect of fatigue on construction 

performance. However, one of the limitations of DES is that entities’ behaviors at the individual 

level are pre-determined while workers’ behaviors should be dynamically determined by the 

current fatigue level in this framework. To address this issue, workers’ physical demands and 

corresponding level of fatigue are externally modeled using biomechanical and fatigue models. 

Then, the strategy to mitigate muscle fatigue (i.e., tacking a rest to be recovered from fatigue) is 

combined into the DES by holding workers in queues such as idling when workers are in fatiguing 

conditions. These will be described in more detail in the following sections. 

The basic modeling element of the DES model is a ‘work element’. Construction operations 

are defined by collections of work tasks that can be further divided into work elements (Halpin 

1992). For example, one of the examples of physically demanding construction operations, 

masonry work consists of several work tasks such as scaffolding, material preparation, and brick 

(or block) laying. The task, brick (or block) laying can be decomposed in to work elements (i.e., 

basic tasks) such as lifting drywalls or placing bricks (or blocks) (Everett and Slocum 1994). As 

each work element generally involves different levels of physical demands, modeling the operation 

at the work element level is helpful to capture dynamic changes of physical demands through 

biomechanical analysis in the next step.  

To determine model behaviors, the work elements’ attributes such as the duration or priority 

of a work element and the amount of resource that flows from one element to another should be 

further defined based on prior knowledge on the operation. Especially, the durations of defined 

work elements can be empirically determined through time-motion studies on existing operations 

(e.g. direct and continuous observation of construction operations) (AbouRizk and Halpin 1992). 

By simulating the DES model, the states of workers (e.g., types of work elements including idling 

the workers are involved at specific moments) throughout the operation can be predicted. 



 

96 
 

5.4.2 Estimation of Workloads of Given Operations through Biomechanical Analysis 

Once a DES model for the operation is developed, physical demands from each work 

element are estimated using a biomechanical model. Biomechanical modeling and analysis aims 

to estimate musculoskeletal stresses (e.g., muscle forces) required to perform a task as a function 

of postures, external loads and anthropometric data (Chaffin et al. 2006). It provides an effective 

means to understand physical demands on the musculoskeletal system of human body during 

construction tasks (Seo et al. 2014).  

This study applied 3DSSPPTM that is a computerized biomechanical analysis tool to estimate 

physical demands from each work element (Chaffin et al. 2006). Using 3DSSPPTM, physical 

demands from work (i.e., required forces to perform tasks) can be estimated as a percentage of 

Maximum Voluntary Contraction (%MVC: level of muscle forces compared to an individual’s 

maximum muscle strength) that can be a direct input for the dynamic fatigue models. As muscle 

forces to be exerted on a group of muscles vary depending on postures, a collection of 

representative working postures is required to obtain reliable %MVC for specific work elements. 

Laboratory-based simulations of tasks and motion measurement using motion capture devices (e.g., 

marker-based or Inertial Measurement Unit (IMU)-based) can be used to collect data of working 

postures during occupational tasks. Physical demands from each work element are then added up 

according to the states of workers (i.e., working or idling) obtained from the DES, generating 

physical demands during the entire operation over time.  

5.4.3 Estimation of Muscle Fatigue Using Dynamic Fatigue Models 

Dynamic fatigue models aim to estimate muscle fatigue at a group of muscle level at specific 

body parts (e.g., shoulders, knees or a back) as a function of estimated physical demands from the 

previous step. The dynamic fatigue models consist of a fatigue generation model to estimate the 

reduction of muscle strength due to continuous physical demands (e.g., %MVC)  and a fatigue 

recovery model to predict how much muscle fatigue (i.e., reduced muscle strength) can be 

recovered during non-working time (e.g., rest or idle time).  

The mathematical model developed by Ma et al. (2009) is used for the fatigue generation 

model in this study (See Eq. (1)). The model is based on the motor unit activation pattern on 

muscles of which force and movement are produced by contraction of muscle fibers, representing 
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the process of fatigue generation in mathematics. This model was validated with 24 existing static 

models that estimate METs under isometric exertions by comparing the calculated METs, and 

qualitatively or quantitatively validated with three existing dynamic models by comparing specific 

model parameters (Ma et al. 2009). Eq. (1) can be explained as follows: 

  

 MVC : Maximum voluntary contraction (maximum capacity of muscle)  

 𝐹𝑐𝑒𝑚(𝑡): Current exertable maximum force (current muscle strength) 

 𝐹𝑙𝑜𝑎𝑑(𝑡): Forces required for the task (e.g., workloads)  

 𝑡: current time (seconds)  

 

Fcem(t) describes the capacity of the muscle group (i.e., current muscle strength) while Fload(t) 

means the forces which the muscle needs to produce to perform tasks at a time instant t. By 

dividing Fcem(t) and Fload(t) by MVC that is a measure of force that can be exerted maximally by 

one’s muscle group, both the current muscle strength and physical demands can be expressed 

proportional to one’s MVC (%MVC), reflecting individual’s difference in muscle strength. As a 

result, the equation indicates that the current capacity of muscle strength can be determined by the 

negative exponential function of cumulative physical demands from work.  

However, one of the critical limitations of this model is that this model does not reflect the 

recovery from fatigue during non-working time (e.g., rest or idle time), which is essential to 

measure the impact of fatigue on work performance. To address this issue, a recovery model based 

on the physiological recovery rate on muscle groups is proposed as shown in Eq. (2). Empirical 

studies on recovery from muscle fatigue found that reduced muscle strength after fatiguing 

exertions can be recovered quickly in 5-10 minutes up to about 90%MVC while more than 30 

minutes are additionally required to be fully recovered (Lind 1959; Mills 1982; Kuorinka 1988; 

Bogdanis et al. 1995; Fulco et al. 1999; Shin and Kim 2007). This is due an exponential 

relationship between recovery time and levels of fatigue recovered (Lin et al. 2009). Especially, 

𝐹𝑐𝑒𝑚(𝑡)

𝑀𝑉𝐶
=  𝑒∫ −

𝐹𝑙𝑜𝑎𝑑(𝑢)

𝑀𝑉𝐶
 𝑑𝑢

𝑡
0                                            (1) 
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Mills (1982)’s experiments on the recovery time for the hand and forearm showed it took about 10 

minutes to be recovered from 40%MVC to 90%MVC. Based on this study (50%MVC recovery in 

10 minutes), this study assumed 5% of average recovery rate per one minute for the recovery of 

up to 90%MVC. In addition, as 30 minutes are additionally required to be fully recovered from 

90%MVC (10%MVC recovery in 30 minutes), this study assumed 0.3% of recovery rate for the 

recovery from 90%MVC to 100%MVC. As a result, the proposed fatigue recovery model reflects 

the exponential behavior of fatigue recovery that show a fast recovery rate at the beginning of 

recovery and a relatively slow recovery rate at the end of recovery.     

 

 

 Fcem(ta): Current exertable maximum force at start time a of non-working time 

 Fload(tb): Current exertable maximum force at finish time b of non-working time 

 

As a result, the fatigue models quantify the current muscle strength as a function of time-

varying values of physical demands. By comparing the current muscle strength with the physical 

demands from the operation, fatigue failure (i.e., physical demands beyond the current muscle 

strength) can be detected. 

5.4.4 Modelling of Interactions between Muscle Fatigue and Operations 

Once fatigue failure is detected, workers may want to adjust work to mitigate muscle fatigue. 

For example, they may want to slow down work pace or change postures to reduce muscle forces 

exerted at fatiguing body parts. However, these strategies still expose workers to the certain level 

of physical demands, and changing postures may lead to even higher risk of injury due to reduced 

postural stability (Kumar 2001). This research adapted voluntary rests as a fatigue mitigation 

strategy by workers to be recovered from muscle fatigue.  Specifically, when fatigue failure occurs, 

these voluntary rests are added in the DES model by hindering the onset of the following work 

element, and thus making workers stay at the queue. This model behavior results in the delay of 

work, increasing both total duration and cost. As a result, this framework can evaluate the impact 

𝐹𝑐𝑒𝑚(𝑡𝑏) = (1 + 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒 ×  (𝑏 − 𝑎)) 𝐹𝑐𝑒𝑚(𝑡𝑎)                    (2) 
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of muscle fatigue on time and cost performance due to excessive physical demands during the 

planned construction operation. 

The duration of voluntary rests that workers would take could vary depending on their level 

of muscle fatigue. Bonen and Belcastro (1975) found that subjects would choose optimal recovery 

time that allows them to be recovered from fatigue at the fastest rate when they can determine the 

duration of rests during intensive exercise. Seiler and Hetlelid (2005) also found that self-selected 

recovery duration is subjectively determined to maintain expected performance level during 

interval training.  Based on these findings, it was assumed that the duration of voluntary rests are 

determined by the gap between the current level of muscle strength after finishing the preceding 

work element and the desired level of muscle strength by workers. For example, as a worker can 

perceive the level of muscle fatigue, he or she may want to take a rest until the muscle strength is 

recovered sufficiently enough to exert forces for the next task (at least 10%MVC higher than the 

following physical demand).  

 

5.5 CASE STUDY ON MASONRY WORK 

The proposed framework is applied to a case study to demonstrate the usefulness of 

evaluating muscle fatigue and its impact on construction operations. The operation for the case 

study is masonry work for building a three-story research complex, located at the north campus of 

the University of Michigan. Site conditions obtained from this project served as basic conditions 

for developing a DES model for masonry work. As shown in Figure 5.3, the masonry work was to 

build a concrete block wall with 7 courses and 24 concrete blocks (6 inches (width) × 8 inches 

(height) × 16 inches (length)) per course. A crew for this operation consisted of three masons and 

one laborer. The masons took a major role in masonry work such as cutting and laying blocks, or 

installing rebar if needed while the laborer performed supportive tasks, mainly material handling 

tasks (e.g., preparation and distribution of material (e.g., block, mortar)). Total work duration for 

building the concrete block wall was about 54 minutes including about 4 minutes of idle time (e.g., 

chatting with co-workers).  

This case study focused on evaluation of muscle fatigue on upper limbs, especially shoulders 

that are one of the most demanding body parts during masonry work that involve frequent heavy 
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lifting tasks. In construction workers, low back and shoulder pain are the most frequent self-

reported musculoskeletal disorders (Faber et al. 2009). Especially, Yates et al. (1980) found that 

upper body strength could be the most limiting factor in lifting task instead of back strength during 

lifting tasks.  

Figure 5.3: Site Conditions 

 

The case study examines how different operational plans affect workers’ muscle fatigue on 

shoulders, and in turn, time and cost performance of the masonry work. First, by changing crew 

composition (i.e., the number of masons and laborers), the optimized resource plan (i.e., crew 

composition) was selected to minimize time and cost without consideration of muscle fatigue as 

the typical DES analysis does. Then, the operation was simulated using the crew composition that 

is optimized only for time and cost by considering fatigue effects on the operation simulation. 

Through comparison between simulation results without and with consideration of muscle fatigue, 

potential conflicts between achieving performance targets and preserving workers’ health are 

described. Specifically, this study focuses on muscle fatigue on shoulders because shoulder pain 

is one of the frequently reported musculoskeletal disorders by masonry workers due to heavy 

lifting, working above shoulder level and repetitive movements (Goldsheyder et al. 2004; Faber et 

al. 2009).  

5.5.1 DES Model Development 

To develop a DES model for this masonry work, tasks by masons and laborers are divided 

into work elements based on observations as shown in Table 5.1. While masons perform the work 

elements, M1, M2 and M6 once for each course, M3 to M5 are repeated for the next blocks to 
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complete the full course of concrete blocks. Material handling tasks by laborers are to deliver 

mortar (L1) and concrete blocks (L2) to masons. It was assumed that there are enough materials 

prepared, and thus the laborers just deliver materials to masons who have the least amount of 

material first not to make them idle due to lack of materials during this operation. The duration of 

each work element was determined based on time-motion analysis of the observed operation.  

Table 5.1: Work Elements and Durations for Masonry Work 

Crew Work Elements Durations 

(seconds) 

Mason M1. Setting up (e.g., setting a string for reference) 

M2. Spreading two parallel lines of mortar using a trowel 

M3. Lifting and laying a concrete block onto the mortar lines 

M4. Tapping the top of the block to level it & collecting the excessive 

        mortar mix that  squeezes out from under the block 

M5. Spreading mortar at the side of the block just laid on 

M6. Rechecking each block for level and alignment when the course has   

        been completed. 

40.0 

92.0 

4.6 

19.3 

 

6.0 

47.0 

 

Laborer L1. Delivering mortar 

L2. Delivering concrete blocks 

10.0 

10.0 

 

Based on these assumptions and descriptions on the masonry work operation, a DES model 

for this masonry work operation was constructed in STROBOSCOPE (State and Resource Based 

Simulation of Construction Processes) (Martinez 1996) as shown in Figure 5.4. STROBOSCOPE 

is a programmable and extensible simulation system designed for modeling complex construction 

operations in detail and for the development of special-purpose simulation tools (Martinez and 

Ioannou 1999). Work elements by masons and laborers are modeled independently, but resources 

such as concrete blocks and mortar are shared by both masons for resource consumption and 

laborers for resource production. The total simulation time to build the wall with the same crew 

composition (i.e., three masons and one laborer) of this case operation was 48 minutes while the 

actual duration was 54 minutes from the field observation. However, about 4 minutes of idle time 

such as chatting with co-workers that was not associated with the operation were found from the 

observation, which was not considered in the model. If this idling is excluded, the model performed 

well to represent this masonry work, showing 4% of the difference in working time (48 minutes 

vs. 50 minutes). Though it is only one instance, it can be a good reality check of the developed 

DES model. 
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Figure 5.4: DES Model for Masonry Work 

 

To identify the optimal design for this operation without considering the effect of muscle 

fatigue, the model was simulated by varying crew compositions. Table 5.2 shows time and cost 

performance (e.g., total duration, labor productivity and cost rate) by varying the numbers of 

masons and laborers. The results imply that adding an additional laborer would not reduce total 

duration in this operation as work progress is determined by masons, and material supply by one 

laborer is sufficient not to delay the work progress by masons. As a result, a crew with two masons 

and one laborer is recommended for this operation because this crew shows the highest 

productivity and the lowest cost rate (hourly labor costs for masons and laborers are obtained from 

RS Means (2015)). However, if the objective is to choose the fastest completion, a crew with three 

masons and one laborer can be chosen.  
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Table 5.2: Simulation Results According to Different Crew Compositions 

Crew Combination Simulation Results 

# of masons # of laborer 
Total duration 

(hr) 

Labor productivity 

(blocks/hr/person) 

Cost rate (labor cost) 

($/block) 

1 1 1.74 48.2 0.81 

2 1 1.05 53.6 0.75 

3 1 0.81 51.7 0.80 

1 2 1.74 32.1 1.17 

2 2 1.05 40.2 0.97 

3 2 0.81 41.3 0.96 

 

5.5.2 Biomechanical Analyses on Work Elements 

Biomechanical analyses were performed to estimate physical demands on shoulders from 

each work element using in 3DSSPPTM. To collect working postures required to perform 

biomechanical analyses on work elements, laboratory experiments were conducted in a controlled 

environment. Five experienced masons were recruited to examine postural variations of their 

working techniques, and were asked to perform laying block tasks with a comfortable pace. 

Masons’ motions were collected using an Inertial Measurement Unit (IMU)-based motion capture 

system. Working techniques for each work element were similar except lifting technique. In some 

cases, masons lifted and laid a concrete block with one hand while they typically used both hands. 

This study assumed two-hand lifting as a representative lifting technique because it is 

recommended to reduce ergonomic risks during lifting tasks (Cheung et al. 2007). Hand loads were 

estimated based on what types of objects (e.g., blocks, mortar, a trowel and a shovel) workers were 

handling. 

Table 5.3 shows average physical demands on shoulders as %MVC to perform work 

elements from biomechanical analyses based on collected motion data and estimated hand loads. 

To compute %MVC, this study assumed 50th percentile of workers for anthropometry (e.g., height 

and weight) and muscle strength. For example, for laying a concrete block (M3) that is the most 

physically demanding work element performed by masons, a mason has to exert muscle forces on 

shoulders up to 35% of one’s maximum muscle strength. The other work elements required force 

exertions less than 10%MVC. Work elements by laborers are more physically demands than the 

ones by masons because delivering mortar (L1) and concrete blocks (L2) involve heavy material 

lifting, showing 35%MVC and 40%MVC, respectively. Based on the physical demands for each 
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work element from biomechanical analyses and duration and sequencing of work elements from 

DES, total physical demands by both masons and laborers during this operation were obtained.    

 

Table 5.3: Average Physical Demands (%MVC) from Work Elements 

Work Elements Physical Demands (%MVC) 

Masons 

M1 5% 

M2 10% 

M3 35% 

M4 5% 

M5 10% 

M6 10% 

Laborers 
L1 35% 

L2 40% 

 

5.5.3 Evaluation of Muscle Fatigue for Different Crew Compositions 

To examine how muscle fatigue due to excessive physical demands affects the operation of 

masonry work, the level of muscle fatigue by workers (i.e., a mason and a laborer) was evaluated 

for different crew compositions using the proposed dynamic fatigue models. Figure 5.5 shows 

physical demands and corresponding muscle fatigue for a mason and a laborer according to 

different crew compositions when voluntary rests to be recovered from fatigue are not considered.  

The red line indicates ‘current exertable maximum forces (%MVC)’ that refers current muscle 

strength while the blue line means ‘forces required for the tasks (%MVC)’ that refers physical 

demands from the operation. Based on the previous simulation results from the DES model that 

did not take into account muscle fatigue impact (e.g., Table 5.2), it was found that the crew with 

two masons and one laborer or with three masons and one laborer was recommended to achieve 

the best performance in terms of time or cost. However, when muscle fatigue is taken into 

consideration, the laborer could experience ‘fatigue failure’ in both crew compositions  due to 

excessive physical demands from work elements (e.g., delivering mortar and concrete blocks) 

while the masons would not become fatigued before finishing the operation. As mentioned above, 
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‘forces required for the tasks (%MVC)’ beyond ‘current exertable maximum forces (%MVC)’ 

indicates fatigue failure that may result in health issues such as WMSDs.  

  

Figure 5.5: Fatigue Evaluation for Masonry Work with Different Crew Compositions 

 

Figure 5.6 shows how muscle fatigue can affect work performance during masonry work 

with a crew composition of three masons and one laborer. As described above, the laborer could 

experience fatigue failures due to excessive physical demands at the beginning of the operation 

(about 11.6 minutes) (Figure 5.6A). Whenever fatigue failures occur, the laborer may want to take 

voluntary rests to be recovered from muscle fatigue, which can decrease work performance of the 
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operation (Figure 5.6B). Unexpected idling due to the laborer’s muscle fatigue results in the 

increase of total duration from 48 minutes to 54 minutes because the masons also have to wait 

until materials are provided by the laborer. As a result, due to the impact of muscle fatigue by the 

laborer, work progress can be delayed about 12.5%, resulting in reduction of labor productivity 

(9.7%) and increase of cost rate (10%).  

 

 

Figure 5.6: Impact of Muscle Fatigue on Work Performance (Crew Composition: Three Masons 

and One Laborer) 

 

5.6 DISCUSSION 

The case study on masonry work demonstrates how the proposed framework can be applied 

to actual construction operations. As found in the case study, excessive physical demands beyond 

one’ physical capacity may result in both health and performance issues even during a short-term 

operation (i.e., less than an hour).  However, masons and laborers are generally exposed to more 

workloads than the ones handled in the case study (i.e., 56 blocks per mason) during a whole day 
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(a typical production rate per mason is 150 blocks per day (RS Means 2015)). Thus, more severe 

adversary effects on performance and ergonomic risk caused by excessive physical demands are 

expected when the analysis is expended to a longer operation (e.g., days and weeks).   

As this study primarily focuses on the methodological development and demonstration of 

the proposed framework, testing the accuracy of the fatigue recovery equation (Eq. (2)) and its 

impact on time and cost performance is beyond the scope of the research. This framework goes 

beyond Neumann and Kazmierczak (2005)’s or Perez et al. (2014)’s approaches from a 

methodological perspective, enabling us to estimate varying physical demands and corresponding 

muscle fatigue generation and recovery using comparable measures (i.e., %MVC), and thus to 

identify potential impact of muscle fatigue on construction operations. This novelty of the 

proposed framework is of importance for construction tasks involving different levels of physical 

demands (e.g., work intensity and duration) and irregular rest/pause.  

Evaluation of muscle fatigue in early stages of the design of the construction operations is 

important because it can provide a great opportunity to mitigate occupational health risks such as 

WMSDs (Nussbaum et al. 2009). When the planned construction operation is expected to have 

fatigue failures, a manager may want to redesign work places and tasks. Considering limited 

resources for redesigning, it is important to set a priority of work elements to be redesigned. 

Estimating physical demands (%MVC multiplied by duration) from work elements using the 

proposed framework can provide criteria to determine the target work element for intervention. In 

the case study on masonry work, it was found that delivering concrete blocks by laborers is the 

most physically demand work element. In terms of design of workplaces, reducing the distance 

between a pile of concrete blocks and the wall, if site conditions allow, can reduce the duration for 

material delivering, contributing to decrease physical demands. In addition, providing appropriate 

guideline or training on working techniques can also help workers minimize physical demands 

from work. For example, asymmetric load carrying such as one-hand carrying may have a greater 

injury potential compared to symmetric carrying techniques, especially when transporting loads of 

20% of bodyweight or more (Devita et al. 1991). Laborers who carry heavy materials such as 

mortar and concrete blocks are recommended to distribute hand loads symmetrically or to carry 

them interchangeably on the left and right arms (Drury et al. 1989; Devita et al. 1991). As described 
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above, understanding of potential ergonomic issues due to muscle fatigue from the planned 

construction operations helps to develop ideas for effective ergonomic interventions prior to work.  

The proposed framework can also serve as a tool for optimization of construction operations 

considering workers’ physical capacity. DES has been a useful technique for construction 

operation modeling to develop better project plans, optimize resource usage, reduce costs and 

duration, or improve overall project performance in construction (Martinez and Ioannou 1999; 

AbouRizk 2010). For building accurate models which represent construction operations, modeling 

of resources and their state is one of the important elements because operations can be sensitive to 

resource properties (e.g., size, weight and cost) that are allocated to specific activities (Martinez 

and Ioannou 1999). Resources in construction generally refer to materials, equipment and labor, 

all of which has a set of constant attributes in DES, for example, an amount of materials required 

for one cycle of an activity, working capacity of equipment or labor. However, unlike other 

resources, there is significant variability in human capacities which are affected by physical 

demands from work (Chaffin et al. 2006). However, consideration of human aspects such as 

fatigue has been seen as the ‘missing link’ in discrete event simulation (Baines et al., 2004). As the 

case study found, selection of optimized operational scenarios in terms of time and cost are not 

necessarily optimal decision making when considering limited human capacity. Given constraints 

regarding human aspects, specifically limited physical capacity, the DES that considers reduced 

physical capacity of workers during construction operations enables managers to experiment with 

diverse alternatives for resource allocation (e.g., the number of workers and crew compositions) 

to prevent unexpected performance loss due to excessive physical demands. For example, in the 

case study above, the operational scenario with the crew of three masons and one laborer may 

result in unexpected delay of work (e.g., 12.5% of increased total duration) due to muscle fatigue 

by the laborer, showing the cost rate of 0.88 $/block (Figure 5.6B). To prevent the unexpected 

delay by the laborer, adding one more laborer (e.g., three masons and two laborers) is 

recommended, even though the cost rate could be slightly increased up to 0.96 $/block (Figure 

5.7). As described in this example, understanding of muscle fatigue and its impact on work 

performance can support decision making when designing construction operations.  

 



 

109 
 

 

Figure 5.7: Simulation Result When Adding One More Laborer (Three Masons and Two 

Laborers)] 

 

If an additional resource like one more laborer is not available, the detection of fatigue 

failures during construction operations can be still useful by pursuing the optimal work-rest 

schedule that provides appropriate duration of rests in a timely manner (Kopardekar and Mital 

1994). In construction, work-rest schedules are generally determined just based on working time 

without considering variations of physical demands according to types of operations. Using the 

proposed framework, fatigue failures due to excessive demands can be detected, which provide 

the right timing of rests for workers. In addition, simulating diverse scenarios of the duration and 

frequency of rest breaks in the DES model, the optimal work-rest schedule that permits a recovery 

from muscle fatigue without jeopardizing the work progress can be determined.   

The proposed framework aims to understand localized muscle fatigue at specific body parts 

in the perspective of biomechanical demands (e.g., muscle forces) from work. However, 

contractile process to exert forces in muscle also requires a lot of energy that refers to metabolic 

demands (i.e., energy demands) (Sahlin et al. 1998). When the metabolic demands from prolonged 

physical activities exceed human’s capacity to produce energy, workers could experience whole 

body fatigue that also significantly affects work performance (Walters et al. 1993). Especially, in 

construction where long work hours are common, accumulative effects of metabolic demands such 

as energy depletion could be also critical to work performance (Hallowell 2010). Alvanchi et al. 

(2011) investigated the impact of working hours and overtime on workers’ performance on the 
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basis of human energy consumption, and found that almost 20% of productivity loss could exist 

depending on the amount of metabolic demands. Further studies are needed to reflect workers’ 

fatigue at the whole body level in the proposed framework.  

 

5.7 CONCLUSIONS 

This research introduces a new approach for modeling interactions between human aspects 

(i.e., muscle fatigue) and construction operations. The proposed framework estimates physical 

workloads by combining DES and biomechanical analysis, predicts the level of fatigue under 

estimated workloads using dynamic fatigue models, and then evaluates the impact of muscle 

fatigue on the planned operation. The case study on masonry work was performed to demonstrate 

the usefulness of the proposed framework. Specifically, the results from the case study indicate 

that the optimized operational scenario only for time and cost performances may expose workers 

excessive physical demands, and thus an unexpected delay of the operation due to workers’ muscle 

fatigue could be observed. This implies that incorporating muscle fatigue into the operational 

design phase provides systematic understanding of the trade-off between time and cost 

performances and ergonomic risks. As a result, this approach has great potential as an effective 

means to design optimized operations considering limited human capacity, as well as to assess 

potential ergonomic risks due to excessive physical demands.  

As this framework is built on validated models (e.g., DES, biomechanical and fatigue 

models), it is not the scope of this research to validate each step in the framework. However, this 

framework requires integration of different models that may result in unexpected model behaviors. 

A validation for fully integrated models will be further needed to identify potential issues due to 

interacted model behaviors. Even though several limitations and research challenges remain, they 

do not negate the potential application of this framework. If workers’ fatigue due to excessive 

physical demands from operations could be evaluated in the early design stages, it would open the 

door to not only more pro-active management of ergonomic aspects in the design of construction 

operation, but also optimization of construction operations considering workers’ physical capacity. 

Ultimately, the proposed framework provides opportunities to take into account both workers’ 

health and work performance in early design stages. 
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CHAPTER 6  

 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 SUMMARY OF RESEARCH 

This research effort started with the following overarching research goals: 1) to enable 

practitioners to evaluate construction workers’ physical demands on sites in a timely manner 

without technical sophistication or skill; and 2) to enhance our understanding of the impact of 

excessive physical demands on construction operations. Considering these goals, the research had 

these four more specific research objectives: 1) to enable an automated initial assessment of 

postural stresses to compare different jobs or tasks within a job to determine a prioritization of 

ergonomics efforts; 2) to non-invasively and accurately collect kinematics data required for in-

depth analysis of physical demands at construction sites; 3) to test the feasibility of on-site 

biomechanical analysis using the kinematics data obtained from sites for quantifying 

musculoskeletal stresses on different body parts; and 4) to develop a means to model interactions 

between human aspects (i.e., muscle fatigue) and tasks and to evaluate the impact of excessive 

physical demands on construction operations.  

To achieve these research objectives, four inter-related studies were conducted. A summary 

of these studies’ results and implications are as follows. 

1. Automated Postural Ergonomic Risk Assessment Using Vision-based Posture 

Classification: This study proposed vision-based posture classification algorithms using virtual 

training image datasets and silhouette-based image features. From laboratory tests, it was found 

that the proposed approach can achieve about 90% of classification accuracy for four 

representative working postures (e.g., standing, arm-raising, back-bending and knee-bending). 
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This result supports the potential of virtual training datasets for posture classification from real-

world images that have variations in viewpoints and workers’ anthropometry. Also, it was found 

that selection of optimal training images that reflects actual views and workers’ anthropometry is 

an important factor to achieve better performance, which can be addressed by using virtual training 

images without significant efforts to extensive training images from a real world.  

2. Three Dimensional Body Kinematics Measurement Using Vision-based Motion 

Capture Approaches: This study evaluated the accuracy of motion data from three vision-based 

motion capture approaches (e.g., RGB-D sensor-based, stereovision camera-based and multiple 

camera-based approaches) through an experimental study. The results showed that vision-based 

motion data can measure body kinematics with about 10 degrees of errors in body angles. Based 

on specification and performance comparison of these approaches, it was concluded that multiple 

camera- and stereovision camera-based motion capture approaches have great potential as in-field 

motion data collection methods from a practical perspective.  Also, it was found that given 

inaccuracies in motion data vision-based approaches can be used for diverse in-depth analysis 

without sacrificing its reliability to better understand workers’ physical demands during 

occupational tasks including construction.    

3. Motion Data-Driven Biomechanical Analysis Using Vision-based Motion Capture 

Approaches: This study tested the feasibility of on-site biomechanical analysis using the vision-

based motion data by proposing automated motion data processing. The results from the 

experiment showed that the proposed approaches for motion data processing were successfully 

used to perform static and dynamic biomechanical analyses by showing similar results from 

previous studies. Also, the sensitivity analysis of motion data errors to estimated musculoskeletal 

loads revealed that the use of vision-based motion data with more than ± 10° of errors would not 

significantly affect biomechanical analysis results from the practical perspectives because of non-

significant variations in load patterns and less-sensitivity of motion errors to the ‘Percent Capable’ 

that is an indicator of excessive physical demands. 

4. Simulation-based Assessment of Workers’ Muscle Fatigue and Its Impact on 

Construction Operations: This study proposed a simulation-based framework to estimate physical 

demands and corresponding muscle fatigue from the planned operation, and then evaluate the 

impact of muscle fatigue on construction operations. The results from the case study on masonry 



 

113 
 

work indicate that the optimized operational scenario only for time and cost performances may 

expose workers excessive physical demands, and thus an unexpected delay of the operation due to 

workers’ muscle fatigue could be observed. Specifically, during masonry work, this delay could 

result in 12.5% of increased total duration. This implies that incorporating muscle fatigue into the 

operational design phase provides systematic understanding of the trade-off between time and cost 

performances and ergonomic risks. If workers’ fatigue due to excessive physical demands from 

operations could be evaluated in the early design stages, it would open the door to not only more 

pro-active management of ergonomic aspects in the design of construction operation, but also 

optimization of construction operations considering workers’ physical capacity. 

 

6.2 FUTURE RESEARCH 

While this work has expanded our understanding of construction workers’ physical demands 

and their impact on construction operations, many methodological and technical challenges remain 

which still warrant further attention in future research efforts. A few such questions follow. 

 1. Whether vision-based posture classification can be applied to more complex postures 

involving combinations of different postures according to body parts? Further, is the proposed 

algorithm robust to environmental noise that exists at actual construction sites?  

2. How accurate are vision-based motion capture approaches when they are applied to real-

world scenes? How can vision-based motion capture approaches be further refined and improved 

to obtain more accurate and reliable motion data?   

3. Is there a possibility that errors in vision-based motion data may lead to significant bias 

for estimating musculoskeletal stresses at construction sites? Further, how can practitioners use 

biomechanical analysis results to improve both productivity and health issues? 

4. Are combined models for evaluating the impact of muscle fatigue on construction 

operations generalized enough to reflect diverse conditions at construction sites? Is muscle fatigue 

on a specific body part dominant for a worker to decide to take a rest?  
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