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ABSTRACT 
 

Streptococcus pneumoniae, a member of the diverse microbial community 

of the human nasopharynx, is subjected to competitive interactions. Since 

colonization is a prerequisite for pneumococcal pathogenesis, understanding the 

dynamics of bacterial competition is important for identifying factors that aid in 

colonization and carriage. To eliminate competitors, pneumococcus is known to 

secrete antimicrobial peptides or bacteriocins.  Pneumococcal bacteriocins and 

their role in competition have been well characterized. However, a class of 

modified bacteriocins named lantibiotics, and their role in promoting 

pneumococcal competition is less well understood. Though several lantibiotic loci 

have been identified in pneumococcus, none have been found with antimicrobial 

activity. Recently, our laboratory identified a clinical isolate of pneumococcus, 

P174, with a broad spectrum of inhibitory activity attributed to a novel lantibiotic 

locus, termed pneumolancidin (pld). In addition to encoding genes required for 

the modification, processing, regulation and immunity to lantibiotic peptides, four 

open reading frames predicted to encode four highly homologous lantibiotic 

peptides were also found. This posed the question of whether the Pld peptides 

were redundant in function or had specialized roles. Lantibiotic peptides are 

known to function as antimicrobials and autoinducers. To determine the role of 

each peptide as it relates to inhibition and induction, individual in-frame peptide 
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deletions were constructed. Strains carrying the mutation were assayed for their 

ability to inhibit the growth of other strains and their ability to upregulate the pld 

locus. The first three peptides, PldA1-3, were found to be required for signaling 

while PldA4 was found to be dispensable. Because upregulation of the locus is 

needed to determine whether specific peptides were involved in inhibition, the 

ability of the peptide deletion strains to inhibit could not be evaluated. However, a 

serendipitous mutant, P174act, was discovered that allowed for distinct 

phenotypes to be observed for each of the Pld peptide deletion strains. Through 

structural elucidation, it was found that PldA1 and PldA3 are structurally similar 

yet have specialized roles in signaling and inhibition, respectively. The Pld 

peptides represent a novel strategy for bacterial competition and provide insight 

into structure-function relationships of lantibiotics.  
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CHAPTER I 

 
INTRODUCTION 

 

Abstract 

Lantibiotics are a class of bacteriocins produced by many Gram-positive bacteria 

with activity primarily against other Gram-positive strains. Lantibiotics undergo 

extensive posttranslational modifications that are required for activity as 

antimicrobials and as autoinducers that upregulate their own expression. They 

are promising for use as potential therapeutics for many reasons. First, 

lantibiotics are quite potent; nanomolar concentrations are typically sufficient to 

inhibit bacterial growth. Second, many lantibiotics demonstrate a dual 

mechanism of action, which make it more difficult for target bacteria to develop 

resistance. While these key features could certainly prove useful in the treatment 

of antibiotic resistant bacteria, the reliance of lantibiotics on intracellular 

machinery for their functionality make lantibiotics notoriously difficult to 

synthesize and current methods of purification from host cells are laborious. 

Understanding how the production of lantibiotic peptides is regulated within the 

cell will be useful to improve output and purification. Likewise, characterization of 

the protein structures and how those structures relate to overall function will be 

fundamental to our understanding of these entities as therapeutics and will 

provide new insight into the design of innovative, potentially breakthrough 
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antimicrobials. This review will focus on the biosynthesis, regulation, and 

structure of lantibiotic peptides produced by S. pneumoniae and closely related 

Gram-positive bacteria. 

.

1.1 Bacterial Competition 

Bacteria often exist in polymicrobial communities found either in the 

environment or in the host. To survive, bacteria have evolved multiple 

mechanisms to promote either cooperative or competitive relationships for 

access to limited resources. Cooperative interactions result in beneficial 

outcomes to all groups involved. Competitive interactions, on the other hand, 

result in a negative outcome for one group and can occur in two ways, indirect 

(exploitative) or direct (interference). Indirect competition refers to a bacterial 

cell’s ability to utilize nutrients more efficiently than neighboring bacteria, 

preventing it from being able to utilize the required nutrients essential for survival. 

This mechanism has been noted to play a role in shaping the gut microbiota. As 

an example, commensal Escherichia coli strains were able to outcompete 

pathogenic enterohemorrhagic E. coli (EHEC). This was shown using a mouse 

model in which mice were treated with streptomycin to eliminate facultative 

anaerobic bacteria so that specific E.coli strains can introduced into the mouse 

and competitive experiments can be performed. Commensal E. coli was shown 

to confer a protective effect by utilizing sugars more efficiently than EHEC [1, 2]. 

Direct competition refers to bacteria producing specific factors or altering abiotic 

factors that can that directly inhibit their competitors’ growth. An example of direct 
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competition through manipulation of abiotic factors can be seen with a recently 

discovered Streptococcus species found in the oral cavity that has the capacity to 

the pH of the environment through increased arginine catabolism [3]. Higher pH 

values inhibit the growth of Streptococcus mutans, a caries causing pathogen, 

effectively eliminating the competition by creating an inhospitable environment 

[3].  In addition to altering abiotic variables, bacteria can also produce factors that 

are directly (or actively) inhibitory to bacteria. Production of antimicrobial peptides 

is one common strategy used by bacteria.  

 

1.2 Bacteriocins 

Bacteriocins are antibiotics that are ribosomally synthesized small 

peptides. Bacteriocins exert an antimicrobial effect on either a wide or narrow 

range of competing bacteria [4]. Nearly all bacteria that have been studied 

encode at least one bacteriocin in their genome, however, the Gram-positive 

lactic acid bacteria (LAB) are the best-known producers of bacteriocins [5].  

The LAB, which comprise the Lactobacillus, Streptococcus, Leuconostoc, 

Pediococcus, and Lactococcus genera primarily, are named for their ability to 

convert glucose into lactic acid.  This property makes them useful in the food 

industry, not only for their ability to ferment certain foods, but also for their ability 

to prevent spoilage and colonization by pathogenic bacteria by either production 

of bacteriocins and/or lowering the pH through lactic acid production. Some of 

the LAB or their bacteriocin products can be added to food because they fall into 

the category of generally recognized as safe by the food industry. Bacteriocins 
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that are produced by LAB can be divided into two classes: Class I are post- 

translationally modified lanthionine-containing peptides (otherwise known as the 

lantibiotics),and Class II are unmodified, non-lanthionine containing peptides [4]. 

Class II bacteriocins can be further divided into four subclasses: Class IIa are 

known as pediocin-like and are characterized by their listericidal activity, class IIb 

are two peptide bacteriocins, class IIc are circular bacteriocins, and class IId are 

other linear, non-pediocin single peptide bacteriocins.  

The class I lantibiotics will be the main focus of this introduction because 

of their potent antimicrobial activity. With the rise of antibiotic resistant bacteria, 

there is a demand for new antimicrobials. One option that is being pursued is the 

use of lantibiotics to treat bacterial infections. Lantibiotics undergo 

posttranslational modifications that are required for their antimicrobial activity. 

These modifications impart additional benefits including resistance to proteolytic 

degradation and stability at high temperatures. Most importantly, resistance to 

lantibiotics is more difficult to acquire because of their dual mechanism of action 

in killing bacteria, a combination of binding to lipid II and pore formation in the 

bacterial membrane. Further understanding of how these lantibiotic peptides 

function and their structures will be useful in the development of new 

antimicrobials. 

 

1.3 Lantibiotics 

 Approximately100 lantibiotics have been discovered and it is expected 

that this number will continue to grow as more microbial genomes are sequenced 
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and mined for lantibiotic associated genes. Lantibiotics undergo extensive 

posttranslational modifications that are required for their function as both an 

antimicrobial and auto-inducer. The following sections will explore the 

biosynthesis, regulation, structures, and mechanisms of self- immunity of some 

of the best-characterized lantibiotics. 

1.3.1 Biosynthesis of lantibiotics 

 Lantibiotic loci can be found encoded on the chromosome, often as part of 

an intergrative conjugative element (ICE) or on an extra chromosomal plasmid. 

This suggests that lantibiotic loci can be transmitted through horizontal gene 

transfer between strains and species. Lantibiotics are subject to extensive 

posttranslational modifications that result in the creation of lanthionine or 

methyllanthione residues. The name lantibiotic arises from the presence of the 

unusual residue lanthionine combined with the antimicrobial properties of the 

lanthione containing peptides, eg, lanthionine-containing antibiotics [6].  The 

nomenclature for generic lantibiotic genes uses lan, or a specific abbreviation of 

the lantibiotic, i.e. nis for nisin, followed by a letter to designate the function of the 

gene product. The lantibiotic is first translated into a prepeptide that is encoded 

by lanA. The prepeptide lantibiotic has an N-terminal leader sequence that is 

required for recognition by the modification machinery and for transport outside 

of the cell and a C-terminal propeptide that will be modified. Lantibiotics can be 

divided into three different classes depending on their modification machinery 

and function [7, 8]. 
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 Class I lantibiotics are modified by two separate modification enzymes 

encoded by lanBC. In the case of nisin, the prototypical lantibiotic produced by 

Lactococcus lactis and discovered in 1928, modification is catalyzed by NisB and 

NisC [9, 10]. Figure 1.1 is included as an overview of nisin biosynthesis. Nisin is 

encoded by nisA and is first translated into a prepeptide form of 57 amino acids. 

NisB is responsible for dehydration of serines and threonines that are found in 

the C terminal propeptide creating 2,3-didehydroalanine (Dha) or (Z)-2,3-

didehydrobutyrine (Dhb), respectively. NisC catalyzes formation of thioether 

linkages of cysteines to either Dha or Dhb creating lanthionine (Lan) or 

methyllanthionine (MeLan) residues, respectively [11-14].  NisBC has been 

shown to form a complex at the membrane and interacts with dedicated ABC 

transporter, NisT [15]. Once transported outside of the cell, the leader sequence 

of the prenisin is cleaved by a membrane bound subtilisin-like serine protease, 

NisP, removing 23 amino acids from the N-terminus [16]. Not all lan systems 

encode a dedicated serine protease. In the case of subtilin, three different serine 

proteases, not encoded by the locus, were identified that could process subtilin 

[17]. After modification and cleavage of the leader sequence, nisin is able to 

function as an antimicrobial and autoinducer for the upregulation of the nis locus 

by interaction with its cognate two component system, NisKR [18].  It was 

determined that the N-terminus of fully modified nisin was required for interaction 

with NisK to initiate a signaling cascade involving the phosphorylation of NisR 

[16, 18, 19]. Phosphorylated NisR is able to bind to the promoter regions of 

nisABTCIP, nisRK, and nisFEG [18, 20, 21] . There is a transcriptional attenuator 
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located between nisA and nisBTCIP which allows for higher expression of nisA 

but allows some read through of the downstream genes encoding the 

biosynthetic machinery under basal conditions [21]. This arrangement likely 

ensures the correct ratio of prenisin peptides to biosynthetic machinery enzymes. 

In addition to being upregulated in response to exogenous nisin, nisRK is also 

expressed constitutively so that the cell can immediately respond to nisin 

allowing for the rapid upregulation of the genes encoding immunity proteins, 

nisFEG and nisI [22]. An internal promoter upstream of nisI within the operon 

nisABTCIP was recently discovered which contributes to a basal level of 

immunity, further protecting nisin producing cells from nisin mediated inhibition 

[23]. 
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Figure 1.1 Biosynthesis of Nisin. A schematic of the nisin locus is shown 
above. An arrow above an open reading frame (ORF) depicts a promoter region. 
The promoters of nisI and nisRK are constitutively expressed. The other 
promoters are activated upon nisin exposure through NisRK signaling, creating a 
positive feedback loop as NisA is expressed. There is read-through allowing 
nisABTCIP to be transcribed on a single transcript. A transcriptional attenuator 
found in between nisA and nisBTCIP is present to allow for the correct 
stoichiometry of nisin to biosynthetic machinery. Nisin is first translated along 
with an N-terminal leader peptide that is needed for recognition by NisBC. After 
modification of NisBC, prenisin is secreted out of the cell by NisT. The leader 
peptide is cleaved by NisP resulting in the release of functional nisin which can 
either activate the nis locus in other nis positive strains or kill sensitive cells 
through lipid II binding and subsequent pore formation.   
  

Class II lantibiotics combine the action of dehydration and cyclization into 

a single modification enzyme called LanM [24].  Another difference between 

class I and class II lantibiotics is the N-terminal cleavage event. Instead of the 

cleavage occurring through an outer membrane protease, in class II lantibiotics 

the dedicated ABC transporter, LanT carries out the cleavage. LanT contains an 

N-terminal peptidase domain that recognizes a conserved cleavage motif ending 

in double glycine, GA, or GS sequence. This sequence is cleaved concomitantly 

with secretion releasing the mature peptide [25, 26]. In the case of mersacidin, a 

class II lantibiotic produced by Bacillus sp., it was found that  the regulation of 

mersacidin locus was under the control of a single response regulator, 

MrsR1[27]. Immunity to mersacidin was found to be under the control of the two 

component system MrsR2/K2 [27]. Although functional mersacidin is needed to 

induce expression of mrsA, it is unclear how MrsR1 is activated because it does 

not rely on MrsK2-dependent phosphorylation. This suggests that there might 

another histidine kinase not encoded by the locus that interacts with mersacidin 
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[27]. Two-peptide lantibiotics are members of the class II lantibiotics but their loci 

encode two separate LanM proteins that each modifies its own specific peptide 

[28, 29].  Two-peptide lantibiotics work synergistically to achieve an antimicrobial 

effect [30]. 

 Class III lantibiotics, unlike class I and II, do not have antibacterial activity 

and will not be discussed further. 

 While the four different classes of lantibiotic synthetases create either Lan, 

MeLan, or other Lab structures, many lantibiotics contain alternative 

modifications that are catalyzed by other enzymes. Some of the structures 

include S-aminovinyl-D-cysteine (AviCys) or S-aminovinyl-3-methyl-D-cysteine 

(AviMeCys) which can be found on the lantibiotics epidermin and mersacidin, 

respectively, and are a result of either EpiD or MrsD catalysis, respectively [31-

33]. Lantibiotics containing AviCys or AviMeCys have been found to be required 

for antimicrobial activity [34, 35]. Other modifications include the creation of a 

lysinoalanine bridge and a hydroxy-aspartate that are both found in the lantibiotic 

cinnamycin and duramycin [36, 37]. Formation of lysinoalanine and hydroxyl-

aspartate was attributed to the action of Cinorf7 and CinX in cinnamycin [36]. 

Interestingly, the hydroxyl-aspartate plays a role in cinnamycin’s ability to bind 

phosphatidylethanolamine (PE), which is different from the typical target, lipid II 

[38, 39]. Binding of PE prevents activation of phospholipase A2 that can lead to 

immunomodulatory effects on eukaryotic cells [40]. Duramycin, a lantibiotic that 

is structurally similar to cinnamycin, also has the same mechanism of action and 

is currently in phase II clinical trials for treatment of cystic fibrosis (CF) because it 
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was able to improve mucus clearance in CF patients. The mechanism of action 

likely affects membrane permeability of epithelial cells lining the airways that 

increases efflux of chloride ions, and reverses the defect in CF. [41-43]. 

1.3.2 Structure-Function Relationships  

 Lantibiotics are capable of inhibiting sensitive strains at nanomolar 

concentrations and this has been attributed to the lantibiotic’s mechanism of 

action . Nisin, which is part of the type-A(I) classification class of lantibiotics  

based on structure, is cationic and linear [44]. It has a total of five rings, three 

located on the N-terminus named A-C, and two more rings on the C-terminus 

named D-E (Fig.1.2). The two domains are separated by a flexible hinge region. 

Rings A and B of nisin are able to bind to the pyrophosphate of lipid II, which 

differs from the binding site of vancomycin [45, 46]. Deletion of the N-terminal 

rings or even changing the Lan to MeLan in ring A is sufficient to abrogate lipid II 

binding . Lipid II serves an important role in transporting cell wall precursors from 

the cytoplasm to the peptidoglycan layer. Lipid II is made in limited amounts and 

therefore, binding of nisin sequesters lipid II and cell wall synthesis is arrested. In 

addition to sequestering lipid II, nisin through its flexible hinge is able to insert its 

C-terminus into the membrane forming pores, which depolarizes the membrane 

potential leading to rapid cell lysis [47]. Decreasing the length of the hinge region 

in nisin from three amino acids to one was sufficient to abrogate its ability to form 

pores but lipid II binding was unaffected [48]. However, random mutagenesis 

yielding smaller sized amino acids such as alanine in the hinge region could 

enhance antimicrobial effect of either nisin A or nisin Z, presumably by increasing 
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accessibility of the C-terminus to the membrane and decreasing steric hindrance 

[49, 50]. Because of nisin’s dual mechanism of action, resistance to nisin is more 

difficult to acquire and has been used by the food industry for over 50 years.

 

Figure 1.2. Structure of Nisin. Nisin is a linear, cationic lantibiotic peptide. 
Functional nisin is 34 amino acids in length. Rings A-E are labeled in the above 
figure. Rings A and B are involved in lipid II binding and rings D and E are 
involved in pore formation. The hinge region is located from amino acid 20-22. 
Dehydroalanine and dehydrobutyrine are represented by the symbol Dha and 
Dhb,respectively, and are depicted in blue circles. Lanthionine (Ala-S-Ala) and 
methylanthionine (Abu-S-Ala) rings are represented in blue. 
  

Mersacidin, a type-B lantibiotic, is globular in shape consisting of four 

rings (A-D) and does not have a net charge [35, 51]. Mersacidin is able to bind 

lipid II via its ring C which is conserved in other mersacidin like lantibiotics but 

does not form pores like nisin and other flexible, cationic lantibiotics, most likely 

because it does not have a hinge region connecting a positively charged C-

terminus [52-54]. Through site directed mutagenesis, it was found that 

replacement of threonine residues involved in ring formation with serines in 

mersacidin abrogated lantibiotic production either because it cannot be properly 

modified or processed or because the resulting structure could not function as an 

autoinducer [55]. It was also found that the structure of ring B in mersacidin was 

most important for activity as insertions and deletions were not tolerated yet 
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amino acid substitutions could be made [55]. Overall, Appleyard et al. concluded 

that predictions of the activity of lantibiotics based on amino acid changes are 

hard to generalize [55]. 

 Whereas the lantibiotics of structure class A and B have been single 

peptide lantibiotics, there are cases of multi-peptide lantibiotics. Two peptide 

lantibiotics work synergistically to bring about antimicrobial activity, which 

includes binding to lipid II and formation of pores in most cases [56]. The two 

peptides (Lanα and Lanβ) tend to have very limited sequence identity and each 

peptide undergoes modification by a specific LanM protein encoded by lanM1 

and lanM2. After modification, the structures of Lanα and Lanβ are different [28, 

57]. Lanα tends to have a globular structure similar to mersacidin while lanβ is 

flexible and linear [30, 58]. It was shown in the case of lacticin 3147 that Ltnα 

binds to lipid II, which then recruits Ltnβ causing pore formation [30].  

Enterococcal cytolysins represent a unique approach to lantibiotic- 

mediated inhibition that includes the ability to sense the presence of sensitive 

cells. A unique property of cytolysin is that it is able to inhibit both eukaryotic and 

prokaryotic cells. Unlike other examples of two peptide lantibiotics, cytolysin, has 

only one modification enzyme that modifies both CylLL and CylLS [59, 60]. 

Interestingly, after a secondary cleavage event by CylA, the two peptides, CylLL″ 

and CylLS″ , play different roles [60, 61] . In the absence of target cells, CylLL″ 

and CylLS″ form an inactive complex and cytolysin expression is not upregulated 

in Enterococcus faecalis [62]. However, in the presence of eukaryotic cells, 
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CylLL″ has a higher affinity for binding to eukaryotic membranes, freeing up 

CylLS″ which then is able to relieve derepression of the cytolysin locus [62]. 

1.3.3 Mechanism of Self-Immunity 

 In addition to encoding the genes for the structural peptide, a lantibiotic 

producing strain must also express genes required for protection against the 

effect of its own lantibiotic. Two mechanisms of immunity exist in most lan 

systems encoded by the lanFEG and lanI genes.  The systems that protect nisin 

producing strains from their own peptide have been best studied and some 

version of these strategies are used by all previously reported lantibiotic systems.   

 NisFEG is an immunity ABC transporter that confers protection against 

nisin [63]. NisF is the nucleotide binding domain (NBD) of the ABC transporter 

that provides energy to the transporter by binding and hydrolyzing ATP as it 

contains the characteristic motifs found in other ATPases such as Walker A, 

Walker B, E-loop, and the H-loop as well as the C- and D-loops that are 

specifically found in some ABC transporters [64-67]. This E-loop was found to be 

important for immunity as mutating this glutamic acid residue resulted in little to 

no immunity [67]. This E-loop may be important in communication between NisF 

and the transmembrane domains (TMDs), NisE and NisG, to activate transport;  

the Q-loop was found to have this role in non-immunity transporters [67, 68]. 

NisE and NisG make up the heterodimer that forms the permease component of 

the transporter. Deletion of any single component of the ABC transporter disrupts 

immunity [63]. NisFEG is able to export nisin from the membrane into the 

environment without altering or destroying the peptide. 
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 NisI is a two domain protein consisting of 245 amino acid residues that is 

lipid anchored at its N-terminus to the outside of the cell membrane [69]. Some 

NisI escapes membrane attachment and is secreted into the environment [70]. 

Secreted NisI is able to protect the cell from nisin mediated killing by binding to 

nisin without modifying or degrading the molecule [22, 70-73]. The C-terminus of 

NisI seems to play a role in the protective effect of NisI as it was shown that 

deleting up to 22 amino acids from the C-terminus decreased immunity and could 

not prevent nisin mediated pore formation [73, 74]. To verify that this phenotype 

was not attributed to an improper folding of NisI, a chimera immunity protein was 

created fusing the C-terminus of NisI to the N-terminus of a different lantibiotic 

immunity protein, SpaI, which confers protection against the lantibiotic subtilin. 

Although the structures of subtilin and nisin are very similar, the immunity 

proteins are very specific and SpaI does not protect against nisin. The chimera 

immunity protein with the C-terminus of NisI was found to protect against nisin 

[74]. This suggests that the C-terminus of NisI is able to inhibit pore formation 

mediated by nisin although the exact mechanism is unclear.  

Nisin binding directly to NisI is unlikely to represent the only mechanism 

for protection. It was recently found that when L. lactis was exposed to high 

concentrations of nisin that would saturate NisI binding, L. lactis was still 

protected from nisin-,mediated inhibition in a NisI dependent manner. AlKhatib et 

al. propose that the C-terminus of NisI might be able to bind to lipid II, preventing 

nisin from binding and inhibiting subsequent pore formation. Additionally, L. lactis 

expressing either NisI or NisI with the 22 amino acids deleted from the C-
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terminus important for binding to nisin, were shown to induce long chains of 

bacteria at high concentrations of nisin [73]. As nisin concentrations decrease, 

the phenotype was restored to wildtype (WT). Although the exact mechanism of 

how long chain formation impacts immunity or how NisI induces this 

morphological change is unknown. 

 NisI and NisFEG are believed to function cooperatively to provide full 

immunity. A strain containing a deletion of either immunity protein was shown to 

have only 10-30% of full immunity.  It appears that  NisI contributes quantitatively 

more to immunity than NisFEG  [72, 75]. Although some lantibiotics like the 

mersacidin locus only encode MrsFGE, it is believed that lantibiotics capable of 

binding to lipid II and forming pores require the actions of both immunity proteins 

[27, 76]. 

 

1.4 Streptococcus pneumoniae 

 S. pneumoniae, a Gram-positive bacteria, is a common colonizer of the 

human nasopharynx [77]. It has been shown that colonization by pneumococcus 

happens early in life and often with more than one capsule type or serotype [78]. 

By adulthood, carriage decreases, therefore, young children represent the major 

pneumococcal reservoir [79]. Although, pneumococcus is a commensal, it has 

the ability to transition to a pathogenic form. Once it gains access to other sites in 

the body, pneumococcus is able to cause a variety of diseases ranging from otitis 

media to more severe, invasive diseases such as pneumonia, meningitis, and 

bacteremia [80]. Worldwide it has been estimated that about 1.6 million people 
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die from pneumococcal infections [81]. In the United States, about 4 million 

people have a pneumococcal related illness each year and 22,000 of those 

infections result in death [82]. Of the 4 million, 1.2 million of those cases are 

caused by drug resistant pneumococcus [82]. 

Currently, there are vaccines to protect against specific serotypes of 

pneumococcus that are known to cause severe disease. Although these 

vaccines have proven effective at preventing pneumococcal disease in 

susceptible populations, the use of these vaccines has altered the composition of 

colonizing pneumococcal populations to include less common serotypes.  Many 

of these replacement serotypes are capable of causing severe infections [83, 84]. 

The reason for this is attributed to the ability of pneumococcus to evade the 

immune system by undergoing capsule switching along with the high pre-existing 

diversity in capsule type [85].  

Antibiotics can be used to treat pneumococcal infections.  However, the 

continued use of penicillin, which was historically the first drug of choice, resulted 

in the rapid emergence of penicillin resistant strains [86]. Although the 

introduction of vaccines has eliminated certain antibiotic resistant serotypes, 

antibiotic resistance continues to be a problem and further complicates treatment 

[87-89]. 

Studying pneumococcal competition is important not only for the 

identification of bacteriocins which may be used as a future therapeutic, but also 

for identifying factors that are important for successful colonization. By knowing 

what factors are important for colonization, specifically through competitive 
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interactions mediated by the secretion of bacteriocins, we can predict which 

pneumococcal strain will be gain prominence in a population and target those 

specific strains.  The following sections will examine what is known about 

pneumococcal bacteriocins, especially lantibiotics. 

1.4.1. Pneumococcal Bacteriocins 

 S. pneumoniae is known to secrete bacteriocins that mediate competition 

in the human nasopharynx [90]. The bacteriocin- like peptide (blp) locus is found 

in all sequenced pneumococcal strains and contains not only the genes encoding 

the bacteriocins but also genes required for transport, processing, regulation, and 

immunity [91, 92]. The Blp bacteriocins are small, unmodified peptides that 

contain an N-terminal leader peptide that directs the Blp bacteriocins to BlpAB. 

BlpAB is an ABC transporter complex that contains a peptidase domain that 

cleaves off the leader peptide upon secretion [93]. After cleavage and secretion, 

the Blp bacteriocins are functional and can inhibit strains that lack the 

corresponding immunity proteins [94]. Expression of the blp-associated genes is 

upregulated when the signaling pheromone, encoded by blpC interacts with the 

two component system, BlpRH [92]. Expression of blpC itself is also upregulated 

in response to BlpC signaling, which creates a positive feedback loop [92].  

Another pneumococcal bacteriocin is the competence induced bacteriocin 

(Cib). Competence is the ability of bacteria to uptake exogenous DNA and 

integrate into the genome. Pneumococcal competence is controlled by a 

signaling pheromone named competence stimulating peptide (CSP) which 

interacts with its cognate histidine kinase, ComD, to upregulate genes necessary 
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for competence development [95]  The genes upregulated through CSP-

mediated signaling include,the two peptide bacteriocin, CibAB. CibAB has been 

shown to play a role in competence-mediated fratricide, resulting in allolysis of 

noncompetent cells [96]. 

Several putative lantibiotic loci have been identified in pneumococcal 

genomes although no antimicrobial activity has been attributed to these clusters 

[97-100]. Some loci have been shown to have antimicrobial function when 

expressed under  heterologous conditions, for example, heterologous expression 

of a two-peptide lantibiotic, PneA1 and PneA2, derived from a sequence found in 

the pneumococcal strain, D39, was able to undergo modification using the nisin 

biosynthetic enzymes, NisBC [101]. Modification by NisBC was successful upon 

replacement of PneA’s leader peptide sequence with that of nisin [101]. 

However, the two peptides did not act synergistically when combined and the 

resultant peptide was only found to have antimicrobial activity against 

Microcococcus flavus [101]. The modifications generated by NisBC may not 

reflect the true structure of PneA. This is an interesting method to study the 

function of  lantibiotics that lack antimicrobial activity in their native backgrounds 

[101]. Recently, the same locus was found to be under the control of a quorum 

sensing system identified as TprA/PhrA and was upregulated in the presence of 

galactose but repressed under high glucose growth conditions [100]. 

Interestingly, the nasopharynx is high in galactose but low in glucose suggesting 

that the locus may be active on this surface. It is not clear whether the peptides 

that may be produced by this locus under high galactose conditions have 
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inhibitory activity as the authors in this study did not demonstrate any 

antimicrobial function [100]  

Some lantibiotic loci that have been identified in pneumococcus have 

been located on integrative and conjugative elements (ICE). ICE are acquired by 

pneumococcal strains because they harbor genes with beneficial properties such 

as antibiotic resistance genes [102]. Pneumococcal strain ATCC700669 was 

found to contain a lantibiotic locus on an ICE termed ICESp23FST81 [97]. In 

addition to the lantibiotic locus, other cargo genes that code for antibiotic 

resistance and DNA repair enzymes were found which might explain the 

prevalence of this ICE in pneumococcal genomes [97]. Notably, pneumococcal 

strain ATCC700669 is a member of the serotype 23F sequence type 81 lineage, 

a pandemic strain, suggesting that having an ICESp23FST81 may have 

contributed to its fitness and transmission, although antimicrobial activity was not 

observed from its lantibiotic locus [97].  

To summarize, lantibiotic loci in pneumococcus have been identified 

although antimicrobial activity has not been described for any of them. Two 

lantibiotic loci located on ICE have been disseminated in the pneumococcal 

population indicating these lantibiotic loci may be under positive selective 

pressures. The contribution of these lantibiotic loci to competitive dynamics and 

colonization is unknown but may represent an additional strategy to compete with 

other bacteria in the nasopharynx. My dissertation research examines the first 

functional lantibiotic locus expressed in a clinical isolate of Streptococcus 

pneumoniae, P174. This locus encodes the named lantibiotic, pneumolancidin 
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(pld) that demonstrates broad-spectrum antimicrobial activity. Understanding 

lantibiotic structure, function and regulation and will provide further insight into 

how bacterial metabolites can shape a host-associated microbial community. 

  

1.6  Outline of the Thesis 

 The central goal of this thesis is to characterize the pneumolancidin (pld) 

locus in Streptococcus pneumoniae. The pld locus is noteworthy not only 

because of the broad spectrum of inhibition associated with it, but also the 

presence of four highly homologous lantibiotic peptides. Lantibiotic peptides are 

known to have two roles, acting as both a growth inhibitor for some cells and an 

auto-inducer.  In Chapter I, I dissect the role of each Pld peptide as it relates to 

growth inhibition, locus upregulation, and immunity using a genetic approach. I 

also characterized the role of each gene in the pld locus. Additionally, I 

uncovered the reason why some strains that possess the pld locus are 

nonfunctional. Finally, I examined the biological significance of having a 

functional pld locus using a staggered colonization mouse model. In Chapter II, a 

biochemical approach was employed to assess the role of purified Pld peptides. 

PldA1 and PldA3 were successfully purified and their bioactivities were 

determined. The complete structural elucidation of PldA1 and PldA3 was also 

achieved. In Chapter IV, I discuss the significance of my thesis research, and the 

future directions needed to address near-term and longer-term questions. 
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CHAPTER II 
 

CHARACTERIZATION OF A MULTI-PEPTIDE LANTIBIOTIC LOCUS IN 
STREPTOCOCCUS PNEUMONIAE 

 

N Maricic, ES Anderson, AE Opipari, EA Yu, and S Dawid, mBio 2016 

7(1):e01656-15 

Abstract 

Bacterial communities are established through a combination of cooperative and 

antagonistic interactions between the inhabitants.  Competitive interactions often 

involve the production of antimicrobial substances including bacteriocins, which 

are small antimicrobial peptides that target other community members. Despite 

the nearly ubiquitous presence of bacteriocin encoding loci, antimicrobial activity 

has only been attributed to a small fraction of gene clusters. In this study, we 

characterize a novel locus in the pathogen Streptococcus pneumoniae that 

drives the production of a bacteriocin called pneumolancidin (pld) with broad 

antimicrobial activity. The locus encodes an unusual tandem array of four 

inhibitory peptides, three of which are absolutely required for antibacterial 

activity. The three peptide sequences are similar, but appear to play distinct roles 

in regulation and inhibition.  A modification enzyme typically found in loci 

encoding a class of highly modified bacteriocins called lantibiotics was required 

for inhibitory activity. The production of pneumolancidin is controlled by a two 
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component regulatory system that is activated by the accumulation of modified 

peptides.  The locus is located on a mobile element that has been found in many 

pneumococcal lineages although not all elements carry the pld genes.  

Intriguingly, a minimal region encoding only the genes required for 

pneumolancidin immunity was found in several Streptococcus mitis strains.  The 

pneumolancidin producing strain can inhibit nearly all pneumococci tested to date 

and provided a competitive advantage in vivo.  These peptides not only represent 

a unique strategy for bacterial competition but are also an important a resource 

to guide the development of new antimicrobials.   

 

2.1  Introduction 

Streptococcus pneumoniae is a common colonizer of the human nasopharynx, a 

highly diverse polymicrobial environment [103-105]. Bacterial competition 

between members of the microbiome is often mediated by antimicrobial peptides 

called bacteriocins.  In pneumococci, competition is enhanced in strains with a 

functional bacteriocin locus during nasal colonization of the mouse [90]. 

Bacteriocin production in pneumococcus is controlled by the blp locus, which has 

been identified in all sequenced strains [90, 93, 106]. Most pneumococcal 

genomes also contain the cib locus which encodes a highly conserved two 

peptide bacteriocin, CibAB, that has been shown to play a partial role in 

competence mediated fratricide resulting in allolysis of noncompetent cells [96]. 

Both the blp and cib loci are predicted to encode Class II, or unmodified peptide 

bacteriocins. 
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Lantibiotics are a specific class of bacteriocins that are characterized by their 

extensive posttranslational modifications.  Secretion of functional lantibiotics has 

not been described in pneumococcus. Precursor lantibiotic peptides are modified 

intracellularly by one or more enzymes encoded by genes contained within the 

specific lan locus. The most common modification involves the dehydration of 

serines and threonines and through a thioether linkage, cyclization of the 

dehydrated amino acids to cysteines creating either lanthionine or 

methyllanthionine, respectively [11-14, 24]. Following modification, the pre-

lantibiotic is transported out of the cell by a dedicated ABC transporter that 

recognizes a conserved signal sequence [14]. The signal peptide is either 

cleaved concomitantly with secretion by the transporter, or by an alternative 

protease [16].  Cleavage of the signal sequence renders the lantibiotic active and 

able to exert an antimicrobial effect on susceptible cells by either binding to lipid 

II and blocking cell wall synthesis and/or forming pores [107]. This dual 

mechanism of action can be combined in a single lantibiotic peptide or split 

among two peptides. Modification of a two-peptide lantibiotic typically requires 

two LanM, each one specific for one peptide [28, 57, 108-110]. Self-immunity to 

lantibiotics can occur through expression of a lipoprotein that is thought to 

competitively bind to the lantibiotic or through production of an efflux ABC 

transporter. Some loci encode for both immunity strategies, in these cases partial 

immunity defects are noted when one gene is deleted. In most cases, the 

lantibiotics also function as signaling peptides and interact with a cognate 

histidine kinase, LanK. Binding of the lantibiotic to the histidine kinase results in 
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upregulation of the locus via a two component regulatory cascade [18, 111, 112]. 

Some potential lantibiotic encoding clusters have been described in 

pneumococcus, however, no activity has been attributed to these loci. Some 

members of the pandemic pneumococcal strain, Spain23F sequence type 81 

lineage, that at one point was found to be responsible for 40% of pneumococcal 

disease in America, carry a locus that appears to have all required elements for 

lantibiotic expression, but no inhibitory activity has been detected in strains 

carrying this locus [97, 98]. In this study, we report the identification of the first 

functional lantibiotic locus in pneumococcus. The activity derived from this locus 

inhibits a significant number of pneumococci and other Gram-positive pathogens.  

It requires the concerted action of three similar but distinct structural peptides, all 

of which appear to be modified by the same LanM enzyme. To our knowledge, 

the requirement for three homologous peptides for full inhibitory activity of a 

lantibiotic has not been described previously and represents a unique approach 

to bacterial antagonism.   

2.2  Results 

2.2.1 Identification of a functional lantibiotic locus in P174 

During previous work on the blp locus, we noted that an invasive serotype 

23F isolate derived from a patient in South Africa had significant antibacterial 

activity against  all but one pneumococcal isolate despite containing an 

inactivating mutation in the blp bacteriocin locus [93]. Deletion of the upstream 

regulator of the cib or blp bacteriocins (comDE or blpC, respectively) did not 

abrogate inhibitory activity suggesting that the inhibitory activity was derived from 
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a previously undescribed locus (Fig. 2.1A). Transposon mutagenesis localized 

the activity to a locus predicted to encode a series of lantibiotic peptides.
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Fig.2.1. Inhibitory activity and genetic structure of the pld lantibiotic locus. 
A) Overlay assays were performed using either P174 wildtype or deletion 
mutants of either upstream regulators of the blp or cib locus or a deletion of the 
pldM gene that was identified in the transposon mutagenesis screen. A TIGR4 
strain was used as the overlay strain. B) The pld locus of P174 and the 
corresponding locus of S. mitis, and S. pneumoniae ATCC700669 are shown 
above. The percentage of amino acid identity between the predicted proteins 
found in S. mitis B6 and P174 homologues is noted above the B6 ORFs. 
Presumed functional designations are indicated by the color of the ORF. Regions 
of DNA homology between sequences are shown as grey background. C) Amino 
acid alignment demonstrating the homology between predicted structural 
proteins PldA1-4. The proposed signal peptide sequence cleavage point is 
shown with a vertical arrow. Shared amino acid residues in the functional peptide 
are highlighted in yellow. Amino acid residues in red indicate sites of possible 
modification catalyzed by PldM.  D) Deletions of various genes in the pld locus of 
P174 were constructed and assayed for inhibitory and signaling activity as well 
as immunity to WT lantibiotic.  Inhibition and signal secretion were tested by 
stabbing the strain of interest and overlaying with the sensitive indicator strain, 
TIGR4 or the reporter strain P174 pldM-lacZ, respectively. The chromogenic 
substrate, X-gal was included in the overlay mixture for signaling assay. 
Immunity was determined by stabbing P174 and overlaying with each of the 
deletion mutants. 
 

A schematic of the locus is shown in Fig. 2.1B. We chose to designate this 

lantibiotic locus as pneumolancidin and the corresponding genes abbreviated to 

pld per the standards of nomenclature for lantibiotics. A  nucleotide BLASTn of 

the pld locus found in P174 demonstrated that a homologous gene cluster is 

found  in a pneumococcal strain designated PN1, isolated from Papua New 

Guinea in the 1970’s [99]. The locus encodes two ABC transporters, the 5’-most 

genes consist of two ORFs, pldFE that encode an ATP binding protein and a 

permease, respectively. These genes share 99% amino acid identity with an 

ABC transporter identified in PN1 and 97% similarity with a transporter encoded 

in the Streptococcus mitis B6 genome. Based on conserved domains PldF 
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serves as the nucleotide binding domain of an immunity ABC transporter. 

Although it does not contain a typical E-loop which is conserved in all LanF 

proteins of immunity ABC transporters, we chose to name the genes pldFE 

based on the location of these genes in the locus, homology, and likely immunity 

function [67]. The proteins also share homology to bacitracin ABC transporters 

found in a number of streptococcal species that provide resistance to bacitracin 

and can provide cross resistance to heterologous lantibiotics such as nisin and 

gallidermin  [113-115]. A second ABC transporter, pldT, was identified in the 3’ 

region of the locus. The second ABC transporter shared 31% identity at the 

amino acid level to the mersacidin ABC transporter, MrsT, in Bacillus sp. and 

contains conserved domains involved in lantibiotic export and cleavage. The only 

modification enzyme found in the locus is encoded by the pldM gene. PldM is a 

member of the LanM family of modification enzymes. The pld locus contains 

coding sequences for a two component regulatory system, pldKR, which is 

homologous to genes found in the S. mitis B6 strain. Homologs of S. mitis B6 

pldKR are adjacent to the immunity pldFE homologs, but the surrounding region 

lacks the remainder of the pneumococcal pld locus (Fig. 2.1B). Flanking either 

end of the pld locus in P174 are regions of significant homology to the ICE 

element found in the S. pneumoniae strain ATCC 700669. This strain has a 

lantibiotic locus in the precise location of the pld locus although the genes in the 

two loci share no homology (Fig 2.1B).  

A region encoding the putative structural proteins was identified upstream 

of pldFE. A tandem array of four possible ORFs were identified (pldA1-4), each 
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encoding a peptide with a  signal sequence followed by a sequence with a large 

number of serines, threonines and cysteines typically found in lantibiotic 

peptides. The predicted Pld peptides do not share homology to known lantibiotic 

peptides. The four ORFs are homologous to each other and the N-terminal 

leader sequence of each peptide is followed by a double glycine, GA, GS, or 

double alanine motif suggesting the point of peptidase cleavage. The active 

peptides of PldA1 and PldA2  would be predicted to differ by only two amino 

acids (Fig. 2.1C). 

2.2.2 Identification of the genes required for lantibiotic activity and immunity. 

To determine the role of each gene in the pld locus of P174, individual deletions 

were constructed and assayed for inhibition and immunity to the P174 secreted 

lantibiotic. Deletions in pldM, pldT and pldK, encoding the modification enzyme, 

lantibiotic transporter, and histidine kinase, respectively all resulted in loss of 

inhibition (Fig. 2.1D). When tested for immunity, the pldM and pldT deletion 

strains retained immunity to P174 while the pldK mutant lost immunity confirming 

the requirement for the regulatory proteins for activation of lantibiotic immunity. 

To determine the role of pldFE, an inframe, unmarked mutation of both genes 

was introduced into P174.  This mutant, P174 ∆pldFE, lacked inhibition in overlay 

assays and was sensitive to WT secreted lantibiotic peptide, suggesting that this 

ABC transporter is required to initiate immunity or is directly involved in protection 

from its own lantibiotic (Fig. 2.1D).  As expected, Pld peptides are required for 

inhibition but not for immunity since a strain carrying a deletion of all 4 peptides 

had loss of inhibition but retained immunity (Fig. 2.1D). P174 displays an 
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interesting self-inhibitory phenotype in which the formation of a halo of decreased 

density of growth can be seen when P174 is plated against itself, suggesting that 

there is a lapse in the development of immunity in this assay which allows for 

some degree of self-inhibition in the presence of functional lantibiotic peptides. 

This phenomenon is also seen when P174 is grown as a single strain lawn where 

it is noted to form occasional plaque-like structures that are characterized by 

areas of partial clearing.  Although the mechanism for the development of 

plaques is unknown, we hypothesize that these are areas in which the pld locus 

is spontaneously activated in a portion of the population, resulting in the inhibition 

of any neighboring cells that are delayed in their production of immunity.   

2.2.3 Modified lantibiotic peptides are required for activation of the locus. 

In addition to their inhibitory activity, lantibiotic peptides also often serve as 

inducers by interaction with the cognate histidine kinase leading to upregulation 

of the entire lan locus. Upregulation of the locus is dependent upon the 

concentration of the lantibiotic peptides. Similar to other lantibiotic loci, we found 

that the Pld peptides are required for activation of transcription of the pld locus.   

We compared the activation of a pld reporter construct to the signal secreted by 

P174 in the P174 and P174 ΔpldA1-4 background (Fig. A1). The reporter strain 

in the wildtype background produced a large zone of signaling when plated over 

a peptide secreting strain, while only a small zone was seen when the reporter in 

the P174∆pldA1-4 background was tested.  Because the stabbed strain secretes 

the same amount of peptide in each overlay, this result suggests that 

propagation of the signal within the overlay results in a larger activation zone and 
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further suggests that this propagation requires the lantibiotic peptides.   Similarly, 

P174 ΔpldA1-4 does not secrete a signal that can stimulate the reporter strain 

P174 pldM-lacZ, further supporting the role of Pld peptides as inducers of the pld 

locus (Fig. 2.1D). To determine if the Pld peptides need to be modified and 

secreted to act as inducers, P174ΔpldM or P174ΔpldT were stabbed and 

overlaid with the WT reporter (Fig. 2.1D). Stimulation of the pld locus was not 

seen in either overlay confirming that the induction signal of the locus is an 

extracellular, modified peptide. As expected, the P174ΔpldK strain, which lacks 

the histidine kinase regulator was not able to secrete a signal, consistent with a 

loss of both inhibition and immunity in this strain (Fig. 2.1D). Surprisingly, the 

strain carrying the unmarked pldFE mutation, missing the genes that are 

proposed to play a role in immunity, also did not secrete a signal despite 

retaining the genes encoding the peptides and the regulatory, modification and 

secretion proteins (Fig. 2.1D). This may be due to development of a 

compensatory mutation that prevents the activation of the locus in the setting of 

reduced immunity, or because the immunity transporter plays an undefined role 

in regulation.  We attempted to evaluate the kinetics of activation of the locus in 

broth culture using the pldM-lacZ reporter strain, but this strain failed to show any 

induction of the locus during growth in broth, presumably because the 

concentration of peptides never reaches the level required to support activation 

of the locus under these conditions (data not shown). 

Given the unusual presence of four homologous but not identical putative 

functional peptides, we wanted to determine the function of each peptide 
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individually in inhibition and signaling. Individual, in frame, unmarked peptide 

deletions were tested for inhibition, immunity and evidence of signal secretion 

(Fig. 2.2). P174 lacking pldA1, pldA2, or pldA3 had identical phenotypes in that 

all three deletion strains had a loss of inhibitory activity and signal secretion (Fig. 

2.2A), suggesting that all three peptides are required for activation of the locus.  

These strains had nearly wildtype levels of immunity to P174, with only a small 

zone of clearing that most likely represents some degree of delayed production 

of immunity.  P174 ∆pldA4 was fully inhibitory and secreted a signal that was 

indistinguishable from P174 suggesting that this gene is dispensable for inhibition 

(Fig. 2.2A).  

 

Figure 2.2. Deletion of the lantibiotic peptide in either P174 or the 
hyperinducible P174act background. In frame, unmarked peptide deletion 
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mutants were constructed and assayed for inhibitory and signaling activity as well 
as immunity to WT lantibiotic.  Evidence of inhibition and signal secretion were 
tested by stabbing the strain of interest and overlaying with the sensitive indicator 
strain, TIGR4, or the reporter strain P174 pldM-lacZ, respectively. Immunity was 
determined by stabbing P174 and overlaying with each of the deletion mutants. 
Peptide deletion mutants that were made in either the P174 background (A) or 
the P174act background (B). C) Phenotypic complementation was assayed using 
P174act ∆pldA3 and P174act ∆pldA1. Both strains were stabbed progressively 
more closely to each other and the plate subsequently overlaid with TIGR4. 
Pictures were taken at a higher magnification (2x) than other overlays to better 
appreciate the inhibitory effect.  
 

2.2.4 Hyperinducible strain of P174 has a decreased threshold for locus 

activation. 

Surprisingly, we found that certain isolates derived from allelic exchange of the 

counter selectable Janus cassette with a cloned copy of the peptide region that 

was being used for constructing peptide deletions, had an altered lantibiotic 

production phenotype which we have designated as P174act. When the pldM 

reporter plasmid was integrated into this strain, it exhibited evidence of greater 

pldM transcription in overlay assays when stimulated with P174 and produced a 

large number of plaque-like formations in the overlay lawn when compared with 

the reporter in the wildtype background (Fig.2.3A). When P174act was stabbed 

into plates, there was no significant difference in inhibition or signaling compared 

with the wildtype strain (Fig. 2.2A & B). To determine the mutation responsible for 

the hyperinducible phenotype of P174act, we sequenced the entire fragment that 

was used for allelic exchange. Sequencing revealed a single base pair mutation 

presumably attributable to a PCR error that was located in the intergenic region 

between pldA4 and pldFE (Fig. 2.3B). The mutation was found in the cloned 

fragment used for transformation and, using linkage analysis on transformants 
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that resulted from allelic exchange with the plasmid carrying the mutation, was 

absolutely linked to the hyperinducible phenotype (data not shown). The mutation 

resulted in a change of a thymidine to a cytosine at the first T of the proposed 

TATA box preceding pldFE (Fig. 2.3B). Because this mutation was in an 

intergenic region downstream of the peptide ORFs, we reasoned that this single 

base pair change was affecting transcription of key genes in the locus by either 

disrupting a transcriptional attenuator (allowing for increased read-through) or 

affecting a promoter element (in particular by altering RNA polymerase binding at 

the -10 region) either of which might result in changes in downstream gene 

expression. DNA analysis failed to demonstrate any sequences likely to form a 

stem-loop typical of a transcriptional attenuator. To further examine this, a 4bp 

deletion that included the site of the mutation was constructed in the P174 and 

both the inhibition and immunity phenotype of the resulting strain was assessed 

(Fig.2.3C). The strain carrying this deletion lost both inhibition and immunity 

making the presence of a transcriptional terminator at this site unlikely and 

suggesting that the mutation that results in the act phenotype was affecting the 

activity of a promoter element preceding pldEF.  
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Figure 2.3. A hyperinducible strain contains a mutation that is affecting the 
promoter upstream of pldFE. A) Response to exogenous peptides was tested 
in either P174 pldM-lacZ or P174act pldM-lacZ. P174 was stabbed multiple times 
into TS plates and overlaid with either reporter. B) Location of the single base 
pair mutation resulting in the hyperinducible phenotype in the intergenic region 
between pldA4 and pldFE. The site of the mutation is marked by an asterisk. The 
4 bp region shown in red was deleted in strain P174Δ4bp. The proposed TATA 
box preceding the pldF ORF is underlined. The distance to the start codon of 
pldF as denoted by N. C) Overlay assays assessing inhibition and immunity 
phenotype of the 4bp deletion that included the site of the activating mutation. 
For inhibition, the P174Δ4bp strain was stabbed and overlaid with TIGR4. For 
immunity, P174 was stabbed onto a TS plate and overlaid with the P174Δ4bp 
strain.  
 

2.2.5 Genes involved in immunity, regulation and peptide modification are not 

part of an operon. 
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We attempted to determine the transcriptional units of the locus and to compare 

RNA levels in wildtype and hyperinducible backgrounds using both RT-PCR and 

northern blotting, however, transcripts could not be detected in broth grown 

organisms and RNA isolated from plate grown organisms was too degraded for 

use in RT experiments (data not shown). As an alternative approach to 

determining minimal transcriptional units and relative activity of various genes in 

the pld locus, we constructed three additional reporters in either the P174 or 

P174act background through plasmid integration in which the reporter gene lacZ 

was fused to the region upstream of either pldK ,pldFE, or pldA1. All constructed 

reporter strains were tested for inhibition and signal secretion. All of the fusion 

constructs retained the wildtype inhibitory phenotype (Fig.A2a) demonstrating 

that insertion of the reporter plasmid at either of these locations did not disrupt 

the function of the locus. Like the pldM reporter, the pldFE reporter demonstrated 

signal detection when overlayed over P174. The pldA1-lacZ fusion in either 

background was upregulated in response to exogenous peptides indicating that 

the peptides are autoregulated (Fig.A2a). Although the pldK reporter can secrete 

wildtype levels of peptide by signal secretion assay and inhibits the TIGR4 strain 

in overlay assays, this reporter in either P174 or P174act background was not 

activated by P174 when used in an overlay assays (Fig.A2b). This indicates that 

the genes involved in regulation are not inducible with exogenous peptides and 

that the pldFE, pldKR and pldM genes are all controlled by separate promoters 

since the peptide inducible promoters of pldFE and pldM flank either side of the 

non-induced pldFE genes (Fig. 2.1B). The lack of appreciable lacZ expression in 
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the pldKR reporter suggests that the regulatory genes are produced at very low 

levels and are not part of the positive feedback regulation in response to 

secreted peptides. In addition, the lack of appreciable activity of this reporter in 

the P174act background suggests that the alteration of the promoter in front of 

pldFE that is responsible for the hyperinducible phenotype does not appreciably 

alter expression of the downstream regulatory genes.   

2.2.6 The hyperinducible mutation functions only when directly upstream of 

pldFE. 

To better determine the role of the mutation in the hyperinducible phenotype, we 

created two additional reporter plasmid integrations into the promoter of pldF in 

which the P174act mutation was placed upstream of lacZ only or upstream of 

pldF only (Fig. 2.4A). The activity of these strains in reporter overlay assays was 

compared with the wildtype reporter strain, P174 pldF-lacZ by using cell free 

supernatant preparations of cultures of P174act to activate the locus (Fig. 2.4A). 

Only the reporter that had the mutation directly upstream of the pldF gene had 

the hyperinducible (multiple plaque forming) phenotype as seen with the multiple 

spots of lacZ expression (Fig.2.4A). When comparing the relative activity of the 

wildtype reporter strain with the strain containing the mutation only in front of 

lacZ, it appeared that the reporter with the mutation had relatively less induction 

suggesting that the mutation may decrease the activity of the pldF promoter 

(Fig.2.4A).   

To better understand the hyperinducible phenotype, we used cell free 

supernatant preparations of cultures of P174act as an inducer to measure β-
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galactosidase activity (Fig. 2.4B). Two fold dilutions of the cell free supernatant 

were used to induce the wildtype P174 pldF-lacZ reporter strain and the same 

reporter with the act mutation in front of lacZ (P174 PactpldF-lacZ) or in front of 

pldF (P174act P174pldF-lacZ). The P174act P174pldF-lacZ strain showed a clear 

dose response to increasing concentrations of supernatant (Fig 2.4B). P174 

pldF-lacZ or P174 P174actpldF-lacZ strains showed no appreciable activation of the 

locus (Fig 2.4B). These findings suggest that the act mutation results in a 

decreased threshold for signaling resulting in enhanced transcription of the locus 

even at low peptide concentrations and confirms our observations on plates that 

the mutation must lie directly 5’ to the start codon of pldF to demonstrate the 

hyperinducible phenotype.   
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Figure 2.4. Transcriptional Activity of pldF-lacZ fusion strains in either P174 
or P174act background. A) Schematics of the pldF-lacZ reporter strains are 
shown after plasmid integration. Dotted lines denote the plasmid-derived 
sequence; the lacZ gene is shown as a light blue arrow. An asterisk depicts the 
site of the act mutation. To the right of the corresponding schematic of the locus 
is the phenotype of each construct grown on TS plates containing X-gal in which 
5 µl of crude P174act derived supernatant was added to the center of a lawn for 
induction. Response to supernatants was evidenced by the blue halos. B) 
Transcriptional activity of the promoter driving lacZ was assessed in in broth 
grown organisms using strains P174, P174 pldF-lacZ, P174PactpldF-lacZ, and 
P174actP174pldF-lacZ. Two fold dilutions of crude P174act derived supernatant 
was added to the strains at an OD620 of 0.2 and induced for 1.5 hours.  Activity 
was determined by calculating Miller Units. To account for endogenous β-
galactosidase activity, wildtype P174 was included.  
 

2.2.7 Three distinct phenotypes for peptide found in the P174act background. 
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Given the decreased threshold for signaling in the hyperinducible 

background, the three unmarked peptide mutations that lacked inhibition in 

overlay assays in the wildtype background were moved into this background and 

assessed for secretion of signaling and inhibitory peptides (Fig. 2.2B). In this 

background, the three deletion strains had three distinct phenotypes in overlay 

assays. The pldA1 deletion in the P174act background retained signal secretion 

but lost inhibition. The strain carrying the pldA2 deletion was indistinguishable 

from the P174 wildtype strain. The P174act ∆pldA3 deletion strain had the most 

dramatic phenotype and lost all signal secretion and inhibition.  The inhibitory 

defect in the P174act∆pldA1 strain could be phenotypically complemented by 

placing an adjacent stab of the P174act∆pldA3 strain confirming the overall 

integrity of the locus in each deletion mutant (Fig. 2.2C). It is important to note 

here that the active peptide sequences of PldA1 and PldA2 only differ by two 

conserved amino acids. The difference in the phenotypes of the pldA1 and pldA2 

knockout in the P174 and P174act backgrounds suggest that both are required 

for signaling when thresholds are at wildtype levels, but PldA2 plays less of a role 

in inhibition than PldA1 when the signaling threshold is low.   

2.2.8 Broad spectrum of inhibitory activity derived from pld locus. 

P174 lantibiotic derived inhibitory activity was examined using a previously 

described collection of 50 pneumococcal isolates from South Africa and the 

alternative lantibiotic expressing ATCC 700669 [93]. Additionally, a selection of 

non-pneumococcal strains was tested for sensitivity to P174. Inhibitory activity 

was found against all but one of the pneumococcal strains as well as isolates of 
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Streptococcus oralis, Listeria monocytogenes, Streptococcus pyogenes, 

Streptococcus agalactiae, and Lactococcus lactis (Table 2.1). Further information 

on the pneumococcal and streptococcal strains tested can be seen in Table A1. 

Strains that were sensitive to P174 were also tested against P174 ∆pldK to 

confirm that activity was attributed to the pld locus. A single strain, P130 was the 

only pneumococcal isolate that had immunity when tested against P174 in the 

overlay assay. 

Table 2.1.  Spectrum of Inhibitory Activity for P174.  

Strain Inhibition by P174 
pld negative Streptococcus pneumoniae + (50/50) 
pld positive Streptococcus pneumoniae  + (4/5) 
Lactococcus lactis ATCC 14365 + 
Streptococcus pyogenes Clinical Isolates and Lab strains  + (12/12)¥ 

Listeria monocytogenes 10403S + 
Streptococcus agalactiae Clinical and Lab Strains  + ( 6/15)¥ 

Streptococcus mitis ATCC 49456 - 
Staphylococcus aureus Clinical Isolate - 
Enterococcus faecalis ATCC 29212 - 
Vancomycin resistant Enterococcus faecalis ATCC 51299 - 
 
*=includes all but one member of the South African strain collection, ATCC 
700669, and the four lanM positive strains from the University of Michigan clinical 
isolate collection.  
+= zone of clearance was detected. 
-= no inhibitory activity was detected. 
¥= the number of strains killed over the total number of strains tested 
 

2.2.9 Pneumolancidin producing strains have an advantage in invasion of 

colonization in vivo. 

To determine if pneumolancidin production provides a competitive advantage 

during colonization we compared the ability of a producing strain to invade a 

colonized mucosal surface to an otherwise isogenic non-producer.  Using a 



 

42  

staggered inoculation model, colonization was first established with the sensitive 

P174∆pldK strain for three days followed by introduction of either producer 

P174stR or non-producer P174 ∆pldA1-4. P174stR was able to invade the 

established community of P174∆pldK in the nasopharynx better than P174 

∆pldA1-4 (Fig. 2.5). Levels of P174∆pldK were lower in the mice inoculated with 

the wildtype strain suggesting that colonization results in the eviction of some 

resident organisms, however this difference was not statistically significant.  To 

account for difference in overall colonization density, we assessed the ratio of 

invading to resident (I/R) CFU per mouse in each condition.  While, only 1 of 20 

of the P174 ∆pldA1-4 inoculated mice had an I/R greater than 1, 7/19 mice 

inoculated with the wildtype strain had a predominance of the invading strain 

(Fig. A3). 

 

Figure 2.5. Competitive advantage of the pld locus in vivo. Mice were either 
colonized with P174ΔpldK or sterile PBS at day zero. At day 3, mice were 
challenged intranasally with either P174 or P174ΔpldA1-4. Nasal washes were 
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obtained 3 days post inoculation and CFU calculated by differential plating. Data 
for P174 are shown in purple, P174ΔpldK in red and P174ΔpldA1-4 in blue. 
Median and interquartile range are shown. Dotted line indicates the limit of 
detection (L.O.D). Statistical analysis was perfomed using an unpaired Mann-
Whitney test. * = p<0.05. **=p<0.01.  
 

2.2.10 Identification and characterization of additional strains with a pld-like 

locus. 

P130, which has immunity to pneumolancidin was shown to encode a pld 

locus by PCR and sequencing. The locus in P130 has the same gene content as 

P174, but overlay assays failed to demonstrate any evidence of lantibiotic-

mediated inhibition. The pld locus of P130 is nearly identical to the locus in the 

previously identified PN1 strain and the fully sequenced BHN418 strain and does 

not contain any large deletions or frameshift mutations that might account for the 

lack of activity. MLST analysis of the pld positive strains P174, P130, BHN418, 

and PN1 was determined to assess their genetic similarity (Table A2). P130 and 

BHN418 differed by only a single MLST allele while P174 did not share any 

common alleles with these strains. It appears that acquisition of the pld locus is a 

relatively unique property of P174 because the locus is not found in three publicly 

available, fully sequenced strains (GA05245, GA17227 and GA41301) that share 

the same founder ST as P174 (ST242). In fact, these strains lack the associated 

ICE element all together suggesting that P174 may have recently acquired the 

element. 

To determine if more pneumococcal strains could be identified that contain 

the locus, we screened a collection of over 400 clinical isolates for the presence 

of the pldM gene using PCR. Four strains were identified and were categorized 
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by serotyping and MLST analysis (Table A2). One of the newly identified clinical 

isolates was found to be from the same clonal complex as BHN418 and P130, 

but this isolate was neither active nor immune to P174. Three NT isolates with 

the locus were identified as belonging to the 448 sequence type. A genome 

sequenced isolate from this same ST, MNZ14 was found to have a pld locus that 

encodes all of the elements found in P174 with the exception of an apparent 

disruption of the gene encoding the peptide transporter, pldT [116]. The three 

pldM positive NT isolates from our collection lacked both inhibition and immunity 

to P174 mediated inhibition (not shown). 

2.2.11 P130 contains an inactive locus due to a mutation in PldM. 

Using allelic replacement, lysates from P130 were used to transform P174 

containing an exchangeable cassette replacing the entire pld locus. All of the 

resulting transformants lacked inhibitory activity suggesting that a mutation in the 

pld locus was responsible for the lack of P130 derived inhibitory activity. Amino 

acid sequence alignment of the PldM gene products from both strains 

demonstrated that the P130 strain contained a C867Y mutation in one of the 

critical residues required for zinc coordination (Fig.A4). It was shown previously 

that mutating any one of the conserved cysteine residues resulted in a loss of 

cyclization activity in the NisC enzyme [117]. To confirm that the mutation alone 

would result in a strain with P130 phenotype, the region of the pldM gene in P174 

containing the site of the mutation was exchanged with the P130 allele. The 

resulting strain, P174 PldM C869Y, was unable to inhibit (Fig.A4). Replacement 

of the P174 locus with the P130 pld versions of pldA1-4, pldF, and pldKR 
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resulted in a fully inhibitory strain (not shown) suggesting that the pldM mutation 

alone was responsible for the P130 phenotype. Reciprocal gain of function 

experiments in P130 could not be performed because P130 was not 

transformable.  

2.3  Discussion 

This work describes the first functional lantibiotic locus found in 

pneumococcus. The locus encodes the genes required for inhibitory activity 

against other pneumococci and closely related Gram positive organisms. It is 

found as cargo of an ICE element and has been identified in unrelated isolates 

suggesting that the locus is moving through the pneumococcal population via 

either conjugation or horizontal gene transfer. Not only has this locus 

disseminated in distinct pneumococcal lineages, but the two component system 

and pldFE genes of the locus share significant homology to a region in the S. 

mitis B6 genome. Genetic exchange between S. pneumoniae and S. mitis is 

common and contributes to the genomic diversity of the species [118]. The 

region of homology in the S. mitis B6 genome is sufficient for immunity to the pld 

peptides via the PldKR mediated upregulation of the PldFE ABC transporter. S. 

mitis ATCC 49456, was found to contain the pldK gene by PCR (data not 

shown). This isolate was immune to inhibition by P174 which may be due to the 

presence of the four pld genes, although without deletion analysis, the 

requirement for the pld homologues for immunity cannot be verified.   

All pneumococcal strains that we have identified apart from P174 that 

contain the pld locus lack inhibitory activity.  P130 has pld mediated immunity 
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that seems to derive from the pld locus. The mutation responsible for lack of 

inhibition was localized to a SNP within the pldM gene that results in the mutation 

of a critical residue involved in zinc coordination which is required for enzymatic 

activity of the modification enzyme. This same mutation is found in the 

sequenced strains PN1 and BHN418, perhaps explaining why no inhibitory 

activity has been attributed to these strains [99]. Disruption of the modification 

enzyme has been seen in the lantibiotic locus encoded by S. suis as way to 

prevent production of active lantibiotics but retain lantibiotic immunity [119]. Four 

other pneumococcal isolates were identified that were pld positive but these 

strains were not immune to P174, unlike P130. Loss of lantibiotic production may 

occur because of the energetic cost of production leading to the selection of a 

mutation rendering the locus nonfunctional. The energetic cost of the pld locus 

may be particularly high in pneumococcal strains due to in-vitro evidence of 

imperfect self-immunity demonstrated by plaque-like structure formation when 

strains are grown at high density.  Staggered colonization experiments 

demonstrate that pneumolancidin production does provide a competitive 

advantage in vivo, even in the relatively difficult task of invading an existing 

community.  Only 9 of 20 pre-colonized mice that were challenged with the non-

producing strain had evidence of any appreciable invasion, while 15 of 19 mice 

challenged with the producing strain were colonized with the invading strain.   

P174 lantibiotic peptides do not share homology to any other known lantibiotic 

peptides. Interestingly, the peptides are homologous to each other which may 

indicate a remote gene duplication event.  The tandem array of similar genes 
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encoding peptide antibiotics is reminiscent of some loci that encode the highly 

modified thiocillins.  Several of these loci are characterized by a tandem array of 

identical structural peptides that are modified by a series of enzymes to create 

the antibacterial molecule. The whole cluster of four structural peptides has been 

shown to be required for the antimicrobial activity of the tcl locus in Bacillus 

subtilis, however, to our knowledge, the requirement for multiple copies has not 

been explored but may be related to optimal gene dosage because a strain 

carrying a deletion of the four structural genes can be complemented with a 

single copy expressed on a multi-copy plasmid [120]. 

Other, more typical lan systems that express two structural peptides 

usually encode two separate modification enzymes where each is uniquely 

dedicated to the modification of one peptide [28, 57]. A seven lantibiotic peptide, 

cerecidin, in Bacillus cereus has been described that is associated with a single 

modification enzyme, although it was not shown to be functional in vivo [121]. We 

are currently working on purifying the active peptides to determine the specific 

role of each peptide in inhibition and stability. 

P174 is immune to its own lantibiotic although in overlay assays there is 

some degree of self-inhibition that is characterized by a halo of decreased growth 

around the stab. This phenotype is only seen when strains that can produce 

inhibition themselves are grown in the overlay. This may be indicative of a lapse 

in developing immunity in response to exogenous peptides when broth grown 

organisms are applied over stabs in which the locus has already been 

upregulated. When the overlay strain is placed over an actively secreting stab, 
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lantibiotic-mediated signaling derived from the stabbed strain activates some 

cells in the overlay and kills others. The activated overlay strains in turn kill or 

activate surrounding strains resulting in a wave of combined signaling and 

inhibition. The fact that the wave of signaling and inhibition requires signal 

propagation within the overlay strain is supported by the activity of the three 

reporter strains (pldA1-4 knockout, P174, and P174 act) with increasing ability to 

amplify the response to secreted signals and correlated increased zones of 

signaling when placed in overlay over P174.  

Although our inability to examine pld specific transcripts directly has 

hampered characterization of transcriptional control of the locus, we have 

described the activity of a series of reporter constructs in plate assays in an 

attempt to determine the likely transcriptional units. Unlike many other lantibiotic 

loci in which the entire cluster of lan genes is encoded on a single transcript, we 

have shown that the genes clusters downstream of pldA1-4 are controlled by 

separate promoters. The separate control of each of the gene clusters is further 

supported by the fact that plasmid integrations into the presumed promoters of 

pldFE, pldKR and pldM did not disrupt inhibitory activity. In fact, unlike the pldFE 

and pldM genes, the intervening pldKR genes are not upregulated in response to 

P174 peptide at all. The lack of peptide responsiveness of these genes may 

serve to dampen the positive feedback loop that occurs during peptide 

stimulation, by limiting the amount of regulatory proteins on the cell surface.    

We describe the identification of a serendipitously isolated hyperinducible strain. 

Based on the location of mutation in the presumed TATA box of the promoter 
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preceding pldFE and our results with the pldFE reporter strains, the most likely 

explanation of the phenotype is that the mutation affects expression of only 

pldFE, the proposed immunity transporter. Based on preliminary data, the variant 

phenotype of P174act seems to be attributable to decreased levels of PldFE, 

leading to increased sensitivity of the cell to exogenous peptides. The pldFEKR 

cluster falls in to the family of Bce regulatory/transporter proteins typified by the 

bacitracin resistance gene cluster BceRS-BceAB. In these cases, the transporter 

appears have dual role, functioning as a resistance protein by pumping out 

antibiotics and as a regulator interacting with the two component system to 

upregulate gene expression [122-124]. One possible interpretation of our findings 

is that altering the ratio of immunity transporter to regulatory gene products 

results in increased sensitivity to signaling peptide. Alternatively, it is possible 

that PldFE binds the Pld peptides with different affinity.  If this is true, then 

decreased production of the immunity transporter complex may change effective 

concentrations of the peptides. 

We have not yet tested whether the pld locus in P174 provides resistance 

against other cell wall targeting antimicrobials. Since bacitracin transporters often 

mediate resistance to other antibiotics, this could explain the maintenance of the 

pld locus in strains that are not producing functional lantibiotics [113-115].  

Wildtype P174 only produces appreciable pld mediated inhibition in plate grown 

organisms. This property has hampered our attempts at large-scale purification. 

We have noted, however, that the P174act strain can produce appreciable 

quantities of peptides during growth in broth, presumably due to the decreased 
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threshold for signaling. This mutant may serve as a useful tool for large-scale 

purification of this potent lantibiotic that inhibits nearly all pneumococcal strains 

tested. In addition the manipulation of immunity transporter quantities for 

increased yield of inhibitory peptides may be translatable for use in other lan 

systems with a bacitracin-like immunity transporter.   

We have shown that the P174 pld locus has the interesting property of 

requiring the presence of three very similar peptides for self-signaling to occur in 

a wildtype background. This may be a result of a gene dosage effect, such that 

three copies of nearly identical genes are required for to reach the threshold for 

activation; this assumes that all three peptides have the same function. 

Alternatively, the three peptides may form a complex and each peptide of the 

complex is uniquely required for signaling. The potential for separate roles of the 

individual peptides could not be assessed in the P174 background because the 

block in signaling does not allow us to assess differences in inhibition. In contrast 

to the individual peptide knockouts in the wildtype background, the individual 

knockouts in the P174act background each had a distinct phenotype, most likely 

due to the lower threshold for activation noted in this strain.  The phenotypes of 

individual peptide knockouts noted in this background confirm the absolute 

requirement for PldA3 for signaling. Of note, PldA3 is the most divergent of the 

three peptides, with two more cysteine amino acids in the active domain 

compared with PldA1 and 2 and would be predicted to have a very different 

structure. In addition, the single peptide deletions in the P174act background 

demonstrated that either PldA1 or PldA2 are sufficient to promote signal 
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secretion in combination with PldA3, but that PldA1 is more important for 

inhibition than PldA2. This may be either because more PldA1 is made than 

PldA2 or because the two peptides differ in their inhibitory activity on the target 

cell surface. We are currently working to isolate each of the three peptides to 

better understand their contribution to the remarkable anti-pneumococcal activity 

of pneumolancidin. 

 

2.4  Materials and Methods 

Bacterial strains, plasmids, and growth conditions 

All pneumococcal strains used are described in Table A2 and all primers used 

are described in Table A3. All pneumococcal strains were plated on either 5% 

sheep’s blood (SBA)  or tryptic soy agar plates (TSA)  with 0.5% catalase 

(Worthington, Lakewood, NJ) (4,741 U) and incubated at 37 °C with 5% CO2. 

For growth in liquid culture, all pneumococcal strains were grown in Todd-Hewitt 

broth supplemented with 0.5% yeast extract (THY). Escherichia coli strains were 

grown in Luria-Bertani (LB) broth or LB agar. 

All pneumococcal strains were plated on either 5% sheep’s blood (SBA)  

or tryptic soy agar plates (TSA)  with 0.5% catalase (Worthington, Lakewood, NJ) 

(4,741 U) and incubated at 37 °C with 5% CO2. For growth in liquid culture, all 

pneumococcal strains were grown in Todd-Hewitt broth supplemented with 0.5% 

yeast extract (THY). Escherichia coli strains were grown in Luria-Bertani (LB) 

broth or LB agar. Antibiotic concentrations used were as follows: for S. 

pneumoniae, 500 μg/ml kanamycin, 100 μg/ml streptomycin, 5 μg/ml of 
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neomycin, 2 μg/ml chloramphenicol, 1 μg/ml erythromycin, and 200 μg/ml 

spectinomycin; and for E. coli, 50 μg/ml kanamycin, 20 μg/ml chloramphenicol, 

100 μg/ml erythromycin, and 100 μg/ml spectinomycin. The South African 

collection of pneumococcal isolates has been previously described [93]. The 

clinical isolate collection consists of 457 disease causing pneumococcal isolates 

that were collected by the microbiology lab from existing patient samples at the 

University of Michigan between 2004 and 2006.    

Disruption of blp and com loci in P174 

To disrupt the blp or cib locus, P537 was made that contained the Janus 

cassette in place of the blp locus or P1535 that contained a Janus insertion at the 

comD gene [93, 125]. Genomic DNA was extracted from either P537 or P72 and 

used to transform competent P174. Colonies were selected for the presence of 

the Janus cassette by plating on kanamycin plates. Allelic exchange of the 

appropriate locus for the Janus was confirmed by PCR [125]. 

 

Transposon mutagenesis of P174 

 Mutagenesis of P174 genomic DNA was performed as previously 

described by van Opijnen et al., 2007[126]. The transposon mutagenized 

genomic DNA was then used to transform P174 and transposon insertion 

mutants selected on spectinomycin plates. Transformants were screened for loss 

of inhibitory activity by overlay assay using a 96 well replicator to stab the strains 

into agar plates. The overlay strain used was the universally sensitive 

pneumococcal strain, P537. Lysates of transformants unable to inhibit strain 
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P537 were used to back transform strain P174 and the original phenotype 

confirmed on overlay assay. Confirmed mutants were sequenced using universal 

transposon specific and universal primers as previously described to determine 

the location of the transposon insertion [126]. The entire pld locus from P174 and 

P130 was sequenced by using a combination of chromosome walking and 

plasmid rescue.   

 

Construction of individual pldA deletions, whole peptide deletions, and 

complementation.  

In frame, unmarked deletions of the genes encoding individual peptides 

were constructed using the counter-selectable  Janus cassette. First, the pldA1-4 

region plus 500bp up- and downstream was amplified using primers 1 and 2. 

This product was cloned into pCR2.1 generating plasmid pE93. A blunt-ended 

janus cassette amplified using primers 5 and 6 was ligated into an inverse PCR 

product generated using primers 3 and 4. A streptomycin resistant version of 

P174 was transformed with the ligation product creating P174 pldA1-4::Janus 

[127]. This strain, containing the Janus cassette in place of the four putative 

peptide ORFs was used to make individual peptide and whole peptide deletions. 

Four separate inverse PCR reactions followed by plasmid religation were 

performed on plasmid E93 to create individual in frame unmarked deletions of 

the individual peptides using primer pairs 7 and 8, 9 and 10, 11 and 12 and 13 

and 14. Primers 3 and 4 were used to create an unmarked whole deletion of the 

peptide region.  Resultant plasmids were transformed into P174 pldA1-4::Janus. 
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All transformants were verified by PCR using primers 7 and 14 and sequenced to 

ensure the absence of PCR generated mutations. To complement P174pldA1-

4::Janus, E93 was used to transform back all four of the peptides and the 

resulting strain tested for inhibition and immunity.  

 

Disruption or deletions of other genes in lan locus. 

To disrupt pldK and pldT, a small internal fragment of both genes was 

amplified using either primer pair 15 and 16, or 17 and 18, respectively. Both 

PCR products were cloned into pCR2.1 and then moved into E68, an integrative 

plasmid with the spectinomycin resistance gene.  The resulting plasmids were 

used for transformation into P174 and plated on spectinomycin plates. 

Transformants were PCR verified using forward primer 15 or 17 for either the 

pldK or the pldT, respectively, and either primer 19 or 20 to determine 

orientation. 

Disruption of pldM was achieved by using the transposon mutant identified 

in the transposon mutagenesis screen. To verify inhibitory activity was 

attributable to disruption of lanM, lysates were prepared from the original 

transposon mutant andre-transformed into P174. To delete pldEF, an in-frame, 

unmarked deletion of this region was made by allelic exchange. The Janus 

cassette was amplified from P174pldA1-4::Janus using primer pair 1 and 23 

creating a NsiI site at the 3’ end of the Janus. This PCR product was digested 

with NsiI and ligated to the NsiI digested PCR product of 22 and 16. The ligated 

product was transformed into P174strepR kanamycin resistant transformants 
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were verified by size by PCR with primers 1 and 16. To generate a pldFE 

deletion, PCR products using  primer pair 1 and 21 and primer pair 22 and 16 

were ligated and transformed into P174pldA1-4EF::Janus with selection on 

streptomycin.  The appropriate deletion was confirmed by PCR and sequencing. 

To create a 4 bp deletion in the intergenic region between pldA4 and 

pldFE which included the site of the mutation, the Janus cassette was extended 

from P174pldA1-4::Janus to cover the site of the mutation. The Janus from 

P174pldA1-4::Janus was amplified using primer pair 1 and 23 and ligated to the 

product of primer pair 33 and 34 after digestion with NsiI. The ligated product 

was transformed into P174strepR, resulting in P174pldA1-4mut::Janus. Next, site 

directed mutagenesis was used on plasmid E93 using primer pair 35 and 36 the 

resulting product used to transform P174pldA1-4mut::Janus. The mutation was 

verified by sequencing. 

 

Construction of Reporter Plasmid and Strains 

The reporter plasmid was constructed in a derivative of the lacZ containing 

integrative plasmid, pEVP3.  This plasmid was first made kanamycin-resistant 

due to the inherent chloramphenicol resistance of P174. The kanamycin 

resistance cassette was added to pEVP3 at a unique EcoRI site creating plasmid 

E65. A PCR product containing 500bp upstream of the pldM gene and the first 

207 nt of the pldM coding sequence was amplified using primer pair 24 and 25. 

This product was cloned into E63 creating a transcriptional fusion of the pldM 

promoter and lacZ. This reporter plasmid was used to transform P174, P174 
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∆pldA3, or in P174act and transformants selected on kanamycin. Colonies were 

screened using primer pair 24 and 26.  

To generate the pldK reporter, a 500bp fragment containing 451 bp 

upstream of pldK through the first 15 codons was amplified with primer pair 37 

and 38. This PCR product was cloned into pE65 into unique XbaI and NsiI sites. 

The resulting plasmid E180 was transformed into either P174 or P174act.  To 

generate the pldF-lacZ fusion strain, a 500 bp fragment containing the first 36 bp 

of pldF from either P174 or P174act was cloned into E65 using XbaI and NsiI 

sites with primer pair 39 and 40. The resulting plasmid E181 or E182, containing 

P174 or P174act DNA, respectively, was then transformed into either P174 or 

P174act. Confirmation of correct integration of the plasmid was done using 

primer pair 39 and 26. To generate a pldA1-lacZ fusion, a PCR product 

containing approximately 500 bp upstream of pldA1 and through the first 13 

codons of pldA1 was generated and cloned into E65 using XbaI and NsiI sites 

with primer pair 47 and 48. The resulting plasmid E188 was transformed into 

either P174 or P174act. Transformants were verified with primer pair 47 and 26.  

 

Linkage analysis  

To demonstrate that the lack of inhibitory activity in P130 was linked to the 

pld locus, an exchangeable Janus cassette was used to replace the entire pld 

locus of P174. The deletion was created by ligating the product of primer pair 1 

and 23 on P174 pldA1-4::Janus to the product of primer pair 39 and 40 from 

P174 and transforming into P174 strepR. The correct insertion was verified using 
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primer pairs 1 and 40. P174 pldA1-4EFKRMT::Janus was transformed with 

genomic DNA of P130 and selected on streptomycin.  Transformants were 

verified by PCR. 

To make the specific mutation in pldM in the P174 background, a Janus 

cassette was introduced into a unique BsrGI site in a cloned version of pldM 

made using primer pair 41 and 42. The resulting ligation was then transformed 

into P174 strepR, creating P174 pldM::Janus. Verification of transformants was 

done using primer pair 41 and 42. To exchange just the area of difference 

between the two alleles, P174 pldM::Janus was transformed with a PCR product 

from P130 produced using primer pair 45 and 46. 

 

Overlay assays for inhibition, signaling, and immunity 

Overlay assays were used to screen inhibition , immunity and signaling  

were performed as described previously [128].  All overlays were repeated at 

least three times and performed on three separate occasions to evaluate for 

consistency to the methods.  To test activity of supernatants on plates obtained 

from P174act grown to an OD620 of 0.5, a lawn of a reporter strain was spread 

onto a TS plate containing X-gal and catalase. Spots of the filter sterilized 

supernatants were added on top of the dried lawn and then incubated at 37°C 

overnight. 

 

Screening of the South African and Clinical Isolate Collection for lan genes 
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To identify other strains that might possess the pld locus, the collection 

was screened by PCR using primers 27 and 28 that amplified an internal 

conserved region of pldM. Reactions were run on an agarose gel and the 

presence of a 300 bp band indicated pldM positive strain. To determine if these 

strains had the same peptide region as P174 any positive strains were also 

screened with primers 31 and 32. 

 

MLST of clinical isolates 

MLST analysis was performed by sequencing the seven housekeeping 

genes using previously described methods [129].  Sequences obtained from 

using universal primers for each allele were entered into the website 

http://spneumoniae.mlst.net/ to generate an allele type contributing to a 

sequence type.

 

Miller Assays 

Reporter strains containing pldF-lacZ  in either P174 or P174 act background 

were grown to an OD of 0.2, 40µl was added to a microtiter plate containing 

catalase and either 40 µl of supernatants from ∆pldK or from P174 act that was 

diluted in two fold serial dilutions in THY. Plates were incubated for 1.5 hours and 

Miller Units determined as described [130, 131]. 

Staggered mouse colonization assays 

All mice were purchased from Jackson laboratories and were housed in 

accordance with Institutional Animal Care and Use Committee protocols. This 

http://spneumoniae.mlst.net/
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protocol was described previously with some modifications [90]. Ten 6 to 7-week-

old BALB/c mice were inoculated intranasally with 10 μl containing 4 × 107 CFU 

of animal passaged strain of P174 ∆pldK resuspended in PBS. At 3 days post 

inoculation,  approximately 107 CFU of either animal passaged P174 strepR or 

P174 ∆pldA1-4 strepR  were intranasally inoculated into  mice either previously 

colonized with P174 ∆pldK or PBS. Five control mice received PBS followed by 

the two invading strains.  After three days, mice were sacrificed and nasal 

washes were collected by tracheal lavage using 200µl of PBS. The lavage fluid 

was diluted in PBS and plated on TSA with selection.  All plates contained 

neomycin to prevent growth of the natural flora. Strains were differentiated on 

streptomycin or spectinomycin containing media.  The experiment was repeated 

once and the cumulative data from both experiments is shown. One mouse in the 

producer arm died during the course of the experiment, colonization for this 

mouse was not determined.   
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CHAPTER III 
 

LANTIBIOTIC PEPTIDES, PNEUMOLANCIDIN A1 AND A3, OF 
STREPTOCOCCUS PNEUMONIAE HAVE DIFFERENT BIOACTIVITIES 

DESPITE STRUCTURAL SIMILARITIES 
 

Abstract 

Lantibiotics undergo posttranslational modifications that result in the 

creation of lanthionine or methyllanthione rings that are required for their function 

both as antimicrobials and autoinducers. Two-peptide lantibiotics require the 

actions of two modification enzymes and are structurally different. This difference 

in structures contributes to their specialized role in inhibition. Recently, a 

lantibiotic locus, encoding pneumolancidin (pld), was found in Streptococcus 

pneumoniae.  This locus contains four open reading frames arranged in a 

tandem array that are predicted to encode four highly homologous lantibiotic 

peptides. A gene encoding a single modification enzyme, pldM, was found in the 

locus suggesting that the four Pld peptides might be modified by the same 

enzyme and thus adopt similar structures. Our previous data demonstrate that 

these peptides, despite significant homology, have specialized functions related 

to the antimicrobial and autoinduction function of the lantibiotic locus. Using 

genetic analysis, it was shown that the Pld peptides (1-3) play specialized and 

unique roles in inhibition and the ability to upregulate the locus. In the WT setting, 
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each peptide was required for inhibition. This could be explained by a 

requirement for a specific gene dosage rather than a requirement for the 

individual properties of each peptide.  To determine if gene dosage rather than 

unique activity attributable to each peptide might explain the requirement for all 

three Pld peptides, we created a pld locus that contained a pldA1 duplication that 

replaced the ORF of pldA2. If gene dosage alone explained the requirement for 

pldA2, then we predicted that this strain would retain inhibitory activity.  However, 

this strain was not able to kill or signal arguing in favor or a specific role for 

PldA2. Additionally, expression of PldA3 alone was not sufficient to kill or signal 

in the WT (P174) or lab generated hyperinducible strain (P174act) background 

despite being required for signaling.  This data combined suggests that a 

complex may be required for activity consisting of PldA3 and at least one other 

Pld peptide. The structures of pneumolancidin A1 and A3 from Streptococcus 

pneumoniae have been solved using nuclear magnetic resonance spectroscopy 

(NMR) and tandem mass spectrometry (MS/MS). Purified PldA1 and PldA3 were 

found to be structurally homologous but with distinct functions that were not 

consistent with genetic analysis. Despite having similar structures, PldA1 was 

only able to upregulate the pld locus in a reporter strain but did not have any 

inhibitory activity while PldA3 was able to inhibit a sensitive strain but lacked 

evidence of signaling activity. The Pld peptide structures will provide further 

insight into structure-function relationships. 

. 
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3.1 Introduction 

Lantibiotics are a class of bacteriocins that undergo posttranslational 

modifications resulting in creation of lanthionine or methyllanthione residues [6]. 

Creation of these residues involves the dehydration of serines and threonines 

which are then linked to cysteines via a thioether bridge. In type II lantibiotics, the 

dehydration and thioether formation is catalyzed by a single enzyme, LanM [24]. 

In type I lantibiotics, two modification enzymes are required for both dehydration 

and cyclization, LanB and LanC, respectively [11-14]. After modification, the 

prelantibiotic peptide is secreted by a dedicated ABC transporter encoded by 

LanT [14]. The signal peptide which is needed both for recognition by the 

modification enzyme is then either cleaved by LanT or by an outer membrane 

protease, LanP [16, 25, 26]. After cleavage of the signal peptide, the lantibiotic is 

functional. Lantibiotics exert an antimicrobial effect by targeting lipid II, an 

important cell wall precursor, and some lantibiotics are capable of subsequent 

pore formation [45-47, 56]. Lantibiotics act as signaling pheromones and are able 

to interact with a cognate histidine kinase, LanK, initiating transcription of the lan 

locus [18, 111, 112]. Immunity is conferred by either an ABC transporter and/or 

an immunity protein, LanI [63, 71, 72, 132].  

Streptococcus pneumoniae is known to secrete antimicrobial peptides 

called bacteriocins, an important mediator of competition [90, 93, 96, 106]. 

Although putative lantibiotic loci are encoded in many pneumococcal strains it is 

unknown if expression of these lantibiotics occur [97-101].  We recently 

described the first functional lantibiotic locus in a clinical isolate of 
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pneumococcus, P174 [133]. The pneumolanicidin (pld) locus of P174 encodes 

four highly homolous Pld peptides. This locus only encodes a single modification 

enzyme, PldM, unlike other examples of multi-peptide lantibiotic loci, suggesting 

that the structures of the peptides may be similar. Using genetic analysis, we 

found three of the four peptides, PldA1-3, were required for both inhibition and 

signaling of the reporter strain. A hyperinducible mutant strain (P174act) was 

discovered in which a lowered threshold of exogenous Pld peptides was needed 

for activation. When individual PldA deletions were tested in this background , 

the Pld peptides were found to have specialized roles.  A PldA1 deletion in 

P174act was found to secrete a signal but inhibition was lost, a PldA2 deletion 

strain was able to signal and inhibit, and a PldA3 deletion strain did not inhibit or 

signal. This suggested that PldA1 was important for inhibition, PldA2 was 

dispensable for inhibition and signaling, and PldA3 was required for signaling 

with an undetermined role in inhibition. To better dissect the role of these Pld 

peptides, we tested the bioactivity of purified Pld peptides against 

pneumococcus. 

The pld locus has been found in a number of pneumococcal strains and in 

Streptococcus salivarus, however the structure of the Pld peptides has not been 

solved [99, 134]. From a structure perspective, lantibiotics can be separated in to 

two classes that predict their activity. Type-A lantibiotics have a linear structure 

that is important for forming pores in the membranes of sensitive strains [47]. 

Type-B lantibiotics are globular in shape and do not form pores but bind to lipid II 

[53]. In the case of known two-peptide lantibiotics, one is typically structurally 
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similar to type-A and the other is similar to type-B [135]. The Pld peptides do not 

share homology with any known lantibiotics so structure predictions could not be 

made based on primary sequence alone. To better understand the function of 

these unique peptides, we purified two of the three functional peptides and 

determined their structure using a combination of MS/MS and NMR.  Here we 

demonstrate that despite the similarity in structures of the Pld peptides, they are 

able to play specialized roles in antimicrobial activity and auto-induction which 

may require complex formation. 

 

3.2 Results 

3.2.1 Gene dosage is not a contributing factor for functioning of Pld peptides and 

PldA3 alone does not activate the pld locus 

We previously showed that individual in-frame unmarked deletions of the 

genes encoding the first three petides, PldA1, 2 or 3 resulted in a strain that 

could neither inhibit nor upregulate the locus in the reporter strain. A deletion of 

the gene encoding the last putative peptide, PldA4, did not result in loss of 

signaling or inhibition. This suggested that in the WT setting, PldA1-3 were 

required for signaling to occur, most likely forming a complex that is recognized 

by PldK. Since the peptides are homologous to one another, a deletion of the 

genes encoding any of the three functional peptides, PldA1-3, could perturb the 

stoichiometry that is needed for optimal activity. To test this hypothesis, a 

duplication of pldA1 was made in place of pldA2, essentially creating a pldA2 

deletion with a pldA1 duplication. Although PldA2 was deleted, the relative ratio 
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of Pld peptides to PldFE should be unchanged as compared to the WT 

containing PldA1-4. The resulting strain, P174pldA1+/∆pldA2::pldA1 was unable 

to inhibit or signal suggesting that altered gene dosage does not explain the 

phenotype of how the Pld peptides might be functioning (Fig 3.1). 

Peptide deletions created in the hyperinducible strain, P174act, had 

distinct phenotypes.  P174act∆pldA1 could not inhibit but could still secrete a 

signal indicating that PldA1 may be important for inhibition but was dispensable 

for signaling, at least in this background. P174act∆pldA2 was able to inhibit and 

signal suggesting that the role of PldA2 was dispensable in this background. 

P174act∆pldA3 was unable to inhibit or signal suggesting that PldA3 is required 

for signaling at a minimum, its role in inhibition could not be assessed using a 

genetic approach. We had shown previously that the mutant, P174act, required 

less of the Pld peptides for activation of the locus. Since the mutation in P174act 

results in the  downregulation of the genes encoding the immunity transporter, 

PldFE, it is possible that excess of PldFE might play a role in sequestering free 

peptides.  

Since PldA3 was required in both wildtype and P174 act backgrounds for 

both signaling and inhibition, strains were constructed that only expressed PldA3 

and PldA4 in either P174 or P174act backgrounds. Consistent with previous 

data, the pldA1-2 deletion containing strain, P174∆pldA1∆pldA2 ,did not exhibit 

any inhibitory or signaling activity.  Because we had previously shown that in 

P174act, expression of PldA3 in combination with either PldA1 or PldA2 was 

sufficient for signaling,we wanted to determine if PldA3 alone was sufficient for 
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signaling when expressed in this background. P174act∆pldA1∆pldA2 was unable 

to inhibit or signal the reporter strain suggesting that at least one other Pld 

peptide, either PldA1 or PldA2, is needed for signaling to occur (Fig. 3.1). 

 

Figure 3.1. Evaluation of signaling and inhibition in either PldA1 duplication 
or PldA3 only expressing strains. Inhibition and signal secretion was assessed 
using the overlay assay. For the overlays, each strain was stabbed onto an agar 
plate and then overlaid with either a Pld sensitive strain, TGR4, or a reporter 
strain P174pldM-lacZ to detect either inhibition or signal secretion, respectively. 
As controls, P174 and P174act were included for comparison. 

 

3.2.2 Purified PldA1 and PldA3 have different bioactivities and undergo a 

secondary cleavage event 

To gain a better understanding of the role of the Pld peptides, we separated the 

Pld peptides by purification to test their bioactivity directly. Since expression of 
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Pld peptides is only seen with growth on solid media, multiple stabs of P174act 

were made onto BSA plates. Broth media, THY, was overlaid on top of the 

plates. The 5.5L of media, containing Pld peptides, was collected and subjected 

to an organic resin extraction. Three different solvents, methanol, ethanol, and 

propanol were used to elute the Pld peptides from the resin. Of the three, the 

ethanol with 0.1%TFA contained the most Pld peptides based on activity of 

fractions upon dilution (Fig. 3.2). The specific activity of the ethanol fraction was 

higher as compared to either methanol or propanol fractions (Fig.3.2).  
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Figure 3.2. Inhibitory and signaling activity of different solvents used for 
elution of Pld peptides from resin. The following solvents, 80% methanol, 
ethanol with 0.1%TFA, and propanol with 0.1% TFA were used sequentially to 
wash the resin beads. To quantify the amount of Pld peptides that were eluted, 
serial dilutions starting from 20mg/ml of total protein were made and 5 µl were 
spotted on either a plate containing a lawn of a Pld sensitive strain, TGR4, to 
assess inhibition (A) or a plate containing a lawn of reporter strain, P174pldM-
lacZ, to detect exogenous Pld peptides (B). Ethanol with 0.1% TFA exhibited 
inhibition and signaling at higher dilutions as compared to either 80% methanol 
or propanol. Signaling activity of propanol eluted resin fraction was not seen and 
not included in the above figure (B). DMSO was also included as a control and 
did not exhibit inhibition or signaling activity (not shown). 
 

The ethanol fraction collected from P174act was subjected to HPLC analysis. To 

determine which peaks may contain Pld peptides.  P174∆pldK was used as a 

control to determine relevant peaks to collect for purification since Pld peptide 

production is abrogated in this mutant. Peaks absent in the chromatogram of 
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P174∆pldK but present in  P174act represented potential peaks containing Pld 

peptides. Using this comparison, peaks 1-6 were collected and tested for 

inhibition and signaling. Two peaks, 3 and 6, were identified that contained PldA1 

and PldA3 based on MS/MS analysis (Fig 3.3,B1,B9).  The fraction containing 

PldA1 was able to activate the reporter strain but could not inhibit the sensitive 

strain. The fraction containing PldA3 was able to inhibit a sensitive strain, albeit 

at a higher concentration than expected, but this substance could not upregulate 

the reporter strain. The specialized roles determined for each purified Pld peptide 

was in direct contrast to what was previously deduced using information from the 

individual peptide deletions [136].  

 

Figure 3.3 HPLC purification of Pld peptides and bioactivity. Reverse-phase 
HPLC separation of the peptides was done using a C-8 column. Each numbered 
peak represents a fraction that was collected and assayed for inhibition or 
signaling by pipetting 5µl spots of a 0.1mg/µl starting concentration dissolved in 
DMSO to either a lawn of a Pld sensitive strain, TGR4, or a reporter strain, 
P174pldM-lacZ, respectively. Peaks in which PldA3 and PldA1 were found are 
shown by arrows along with an inset depicting their bioactivity. Additionally, a 
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fragment containing the first eight N-terminal amino acids was found in peak 1 
but did not contain activity. 
 

Purified PldA1 was unstable as attempts to quantify the activity of PldA1 failed 

and activity could not be reproduced. Additionally, upon dilution of PldA3 to 

determine the MIC, inhibition was seen only at a two-fold dilution and activity was 

lost at higher dilutions. The instability and low activity prevented any synergistic 

activity experiments.  

3.2.3 PldA1 and PldA3 are structurally similar and found to undergo a secondary 

processing event 

Structures of PldA1 and PldA3 were elucidated using extensive 1D/2D 

NMR and HRMS/MS studies (Appendix B). The predicted amino acid sequence 

of PldA3 acted as preliminary template towards the primary structure of the 

peptide but the monoisotopic mass of [M- 3H2O+H]+ was observed to be 

2511.3772 Da, suggesting further modifications. We proceeded with MS/MS 

mass spectrometry data for initial characterization, which suggested that PldA3 

was truncated eight amino acids (between lysine and methionine) after the 

predicted leader sequence cleavage site. The truncated N-terminus of PldA3 was 

detected by MS/MS in peak 1 during HPLC purification, suggesting that a 

secondary processing event is occurring outside of the cell (Figs.B3 and 3.3). .  

To determine structures, NMR spectroscopic data were obtained for PldA3 

(Fig.B4-8). In addition, HSQC spectra unambiguously established no aliphatic 

unsaturation by absence of NMR signal in pre-requisite spectral region of 5.0 – 

6.5 ppm, confirming the absence of Dha and Dhb residues in PldA3( Fig. B6).  
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The Lan/MeLan rings in PldA3 were established with short range NOESY, 

(Fig.B7). The C-terminal MeLan spin system S--Ala24-His23-Val22-Asn21-

Asn20-Abu19—S was established based on NOE observed between assigned 

downfield Ala24-Hα (4.17 ppm) and Thr18-β (3.38 ppm) along with correlation 

between NH doublet at 7.25 ppm, CH singlet at 6.71 ppm in His23 ring residues 

and Thr18-Hβ proton at 3.79 ppm. Moreover, the largest MeLan ring in PldA3 

between S-Ala17 and Abu2 was assigned through an unequivocal NOE 

observed between Thr18-β (3.38 ppm) and CH3 singlet at 1.73 ppm in Met1; the 

spin system also showed distinct connectivity between Ala17-Hα (4.18 ppm), 

NH17 (7.74 ppm) and CH3 doublets in Leu3 (1.10 and 0.99 ppm).  

A similar experimental approach using HR MS/MS and extensive 1D/ 2D 

NMR was followed to determine the structure of PldA1(Fig. B9-13). Pld A1 

showed a high resolution time of flight electrospray ionization mass spectrometry 

(ESIMS) [M-2H2O+H]+ ion peak at m/z 2610.4430. Again, the observed m/z for 

PldA1 was less than calculated m/z of mature peptide, indicating truncation in 

PldA1 apart from predicted leader peptide cleavage side, which corresponded to 

removal of the first 7 amino acids at the N-terminus. As in the case of PldA3, 

fragmentation between amino acids situated within the Lan and MeLan rings is 

typically not observed by MS/MS, enabling us to map out topological ring 

systems in PldA1. Interestingly, unlike PldA3, here all the Cys residues were 

observed to be involved in forming Lan/ MeLan rings. All Lan/MeLan rings were 

confirmed with NOESY (Fig.B13).  
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To affirm the MS/MS fragmentation and structural obscurities, 2D 

gHSQCAD, gCOSY and NOESY spectrums were recorded in CD3OD -d6 (Fig. 

B11-13). Interestingly, PldA1 contained an isopeptide linkage between Glu16 and 

Lys23 which was confirmed by NOESY and MS/MS (Fig. B9 & B13). Although 

the presence of an isopeptide in a lantibiotic peptide has not been described 

before, it may be important in maintaining the correct shape and protein stability 

which is needed for PldA1’s role in signaling. The isopeptide bond has been 

shown to be important for providing thermal stability and protection against 

proteolysis in other proteins such as pili [137]. Furthermore, there were no 

chemical shifts observed within the expected spectral region of 5.0-6.5 ppm in 

gHSQCAD, ruling out the possibility of any dehydration of Thr14 and Thr18 for 

completing the structure of PldA1 (Fig. B11). 

 

Figure 3.4 Deduced structures of PldA1 and PldA3. The structures of both 
PldA1 and PldA3 are shown above and resemble type-B lantibiotics.  Both 
peptides contain a single lanthionine (Ala-S-Ala) and either two methyllanthionine 
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rings (Abu-S-Ala) in PldA1 or three methyllanthionines in PldA3. PldA3 contains 
a single unreactive Cys.  
 

 

3.3 Discussion 

 This work describes the structural characterization of two pneumolancidin 

peptides, PldA1 and PldA3, which are secreted by a clinical isolate of 

pneumococcus, P174. We had previously shown using genetic analysis that 

PldA3 is required for upregulation of the pld locus because strains with a PldA3 

deletion in either the wildtype P174 or P174act background lacked evidence of 

signaling or inhibition.  Genetic analysis also suggested that PldA1 was required 

for inhibition as a pldA1 knockout in the P174act background lacked evidence of 

inhibition, but retained the ability to upregulate the locus of the reporter strain 

[133]. We hypothesized that gene dosage might be playing a role in how these 

peptides function because PldA1 and PldA2 are nearly identical in sequence. 

The intergenic region upstream of pldA2 was retained in the construction of the 

PldA1 duplication to eliminate any possibility that the intergenic region might be 

important in the difference of function.  There are examples of lantibiotics in 

which the ratios of peptides is controlled by gene dosage, and is important for 

their biological activity. For example, Bacillus cereus SJI encodes three precursor 

lantibiotic peptides named bicereucin [138]. Two of the peptides, BsjA1 and 

BsjA3, are identical in sequence, and were found to exhibit synergistic 

antimicrobial activity with BsjA2 in a 2:1 ratio [138]. Hence, two copies of BsjA1 

are needed to form the optimal ratio needed for antimicrobial effect.  Given this 
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example from a similar system, we thought gene dosage may explain the 

requirement for all three Pld peptides in the WT background.  PldA1 and PldA2 

differ by only two amino acids, F15Y and T19S, in the active peptide sequence 

with F15Y representing a conserved change in overall shape of the two amino 

acids. A deletion of the gene encoding either PldA1 or PldA2 in a P174 

background resulted in a strain that did not signaling activity. We reasoned that if 

gene dosage was the explanation for the requirement for both PldA1 and PldA2 

rather than any unique function for the peptides, increasing the amount of PldA1 

in a strain deficient in PldA2 would restore the strain to wildtype function. 

However, signaling was not restored in the ∆pldA2 strain expressing the PldA1 

duplication indicating that gene dosage is not the explanation for the requirement 

for both peptides.  We are currently creating a  pldA1 duplication in the P174act 

background.  We hypothesize that this strain should look identical to the pldA2 

deletion strain in this background with wildtype inhibition and signaling.   

 Compared with the single pldA1 or pldA2 mutations in the P174act 

background, a deletion of both pldA1 and pldA2 resulted in a complete loss of 

activity supporting the hypothesis that complex formation may needed for 

recognition by PldK  [133]. Specifically, PldA3 might require either PldA1 or 

PldA2 to form a signaling complex. When examining the function of the purified 

peptides, PldA3 alone inhibits a Pld sensitive strain but does not signal our 

reporter strain (Fig.3.3). Conversely, purified PldA1 upregulates the pld locus in 

the reporter strain but lacks evidence of inhibition (Fig. 3.3). Based on the 

instability of purified PldA1, this would suggest the role of PldA3 as a stabilizing 
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factor for PldA1 and possibly PldA2. Without PldA3, PldA1 is unstable and 

cannot signal the reporter strain nor inhibit which is the case when pldA3  is 

deleted in both P174 and P174act [133]. Since we were not able to recover 

purified PldA2, it was not possible to determine its role in either signaling or 

inhibition. PldA2 seems to play a less important role in inhibition as compared to 

PldA1 based on the loss of inhibition that is observed when PldA2 and PldA3 are 

expressed but not when PldA1 and PldA3 are expressed.  Although, the PldA1 

duplication replacing PldA2 was not sufficient to recover inhibitory activity it may 

indicate that relative ratios of each peptide may be important in forming a 

functional complex. Currently, we do not know the expression levels of these Pld 

peptides or the stoichiometric requirement of these complexes. Additionally, it is 

unknown if PldA3 can inhibit in complex with PldA1, or if the formation of this 

complex is just needed for signaling. Another possibility is that PldA3 may be 

required to stabilize either PldA1 or PldA2 or both. In the absence of PldA3 in 

either P174 or P174act, inhibition and signaling is abrogated which may be 

explained by the fact that without PldA3, PldA1 and/or PldA2 are unstable and 

therefore, nonfunctional (Fig. 3.1). This may also be the reason why purified 

PldA1 is unstable. In the future, we plan to study the stability of PldA1 with and 

without PldA3. 

 Since lantibiotics are known to exert an antimicrobial effect at even 

nanomolar concentrations, it was puzzling that PldA3 was not able to inhibit at 

more than two fold dilution.  One hypothesis might be that the secondary 

cleavage event was an artifact of the purification strategy and might not 
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represent the functional peptides in vivo. To address this issue, Laser Ablation 

Electrospray Ionization (LAESI) -MS will be used to analyze the lantibiotic 

peptides that are found in the zone of clearance of overlay plates.  A secondary 

cleavage event was not predicted because the pld locus does not encode a 

second protease that would be predicted to cleave beyond the typical GG motif 

recognized by PldT during export. Some lan loci do not encode either a LanT- or 

LanP-like protease. Instead, proteolytic cleavage is achieved by co-opting a 

protease not encoded by the lan locus. In the case of subtilin, three different 

serine proteases not encoded in the subtilin locus, were able to cleave the leader 

peptide [17]. Other lan loci encoding type II lantibiotics, such as cytolysin and 

bicereucin, encode a dedicated protease in addition to the ABC transporter 

containing a peptidase domain [60, 138]. To identify a protease, a PCR of P174 

was performed to detect the presence of a surface exposed serine protease 

named Subtilase Family Protein (SFP). SFP was identified in D39 and was found 

to play a minimal role in virulence [139]. However, PCR did not detect the 

presence of the gene ecoding SPF in P174 suggesting that there might be 

another protease present.  Genomic sequencing of P174 is currently being 

performed which may help to identify other proteases that might contribute to 

PldA processing.  

 The structures of PldA1 and PldA3 resemble the globular lantibiotics of the 

type-B classification similar to the well characterized lantibiotic, mersacidin. 

Mersacidin binds to lipid II but does not form pores in membranes. PldA3 might 

also be able to bind lipid II but further experiments are needed to confirm 
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mechanism of action. Interestingly, the Pld peptides play specialized roles 

despite sharing similar structures. Site directed mutagenesis will need to be done 

to identify residues that are required for signaling and those required for 

inhibition. PldA3 contains an extra methyllanthionine that may be important for 

inhibition. Interestingly, PldA1 contains an isopeptide bond that has been found 

in other proteins to play an important role in maintaining protein shape and 

rigidity [137]. It is possible that the isopeptide bond is needed for the correct 

structure to interact with PldK and would be a likely candidate for mutagenesis. It 

is also possible that the methyllanthionine ring in PldA1 which is replaced by a 

lanthionine ring in PldA2 might play an important role in antimicrobial activity. 

Despite similar structures, the Pld peptides are specialized and able to perform 

diverse functions, reminiscent of the Enterococcal lantibiotic, cytolysin. Cytolysin 

consists of two peptides, CylLL″ and CylLS″, that form an inactive complex when 

target cells are abscent.  When bacteria encounter target cells, CylLL″ has a 

higher affinity for membranes than CylLs.  CylLL binding frees up CylLS″ which is 

then able to activate the cytolysin complex.  

We believe that the Pld peptides are also able to form complexes with 

each other, which contributes to their specialized activity despite similarity in 

structures.  We present a model in which the Pld peptides are forming complexes 

for bioactivity and increased stability of PldA1 and PldA3. When PldA1 and PldA3 

are in complex together, inhibition of sensitive cells and upregulation of the locus 

is able to occur. Although PldA2 was not recovered and bioactivity of PldA2 is 
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unknown, it is possible that PldA2 also forms a complex with PldA3 that is 

needed for signaling but not for inhibition. 

This represents a novel strategy for producing specialized, highly 

homologous lantibiotic peptides that may prove useful in the development of new 

antimicrobials. 

3.4 Materials and Methods 

Bacterial strains, plasmids, and growth conditions. 

All pneumococcal strains and plasmids used are described in Table 3.1. All 

primers used are described in Table 3.2..All pneumococcal strains were plated 

on either 5% sheep’s blood agar (SBA) or tryptic soy agar (TSA) plates with 0.5% 

catalase (Worthington, Lakewood, NJ) (4,741 U) and incubated at 37°C with 5% 

CO2. For growth in liquid culture, all pneumococcal strains were grown in Todd-

Hewitt broth supplemented with 0.5% yeast extract (THY). Antibiotics were 

added when indicated in the following amounts: 500 μg/ml kanamycin and 100 

μg/ml streptomycin. Escherichia coli strains were grown in Luria-Bertani (LB) 

broth or LB agar and supplemented with 50 µg/ml of kanamycin when indicated. 

Table 3.1. List of strains and plasmids used. 

Strain Description Source 
P174 Clinical isolate from South Africa,  

contains pld locus; ErmR, ChlR, NeoR 
 

[93] 

P174act P174 containing a single base pair 
mutation T->C in the intergenic region 
upstream of pldF 

[136] 
 

P174strepR P174 backtransformed with  
lysates of a strepR strain to confer strep  
resistance 
 

P174pldM-lacZ P174 with lacZ fused to pldM and used 
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as reporter to detect the presence of 
exogenous peptides 

TGR4 Pld sensitive strain 
P174pldA1-4::Janus P174 with Janus replacing  

peptide region of the pld locus; KanR, 
StrepS 

P174pldA1pldA2::Janus P174 with Janus replacing pldA1pldA2 In this 
study 

P174actpldA1pldA2::Janus P174act with Janus replacing 
pldA1pldA2 

In this 
study 

P174pldA1+/∆pldA2::pldA1 P174 containing a pldA1 duplication in 
place of pldA2 

In this 
study 

P174∆pldA1∆pldA2 P174 containing a deletion of 
pldA1pldA2 along with the intergenic 
region between pldA1 and pldA2 

In this 
study 

P174act∆pldA1∆pldA2 P174act containing a deletion of 
pldA1pldA2 along with the intergenic 
region between pldA1 and pldA2 

In this 
study 

Plasmids Description Source 
E115 pCR2.1 TOPO vector containing the 

pldA1-4 region with pldA1 deleted using 
inverse PCR 

[136] 

E123 pCR2.1 TOPO vector containing the 
pldA1-4 region with pldA2 deleted using 
inverse PCR 

E186 pCR2.1 TOPO vector containing 500bp 
up and downstream of pldA1-4 region 
but with pldA1pldA2 deleted 

In this 
study 

E187 pUC57 containing pldA1 duplication in 
place of pldA2 along with 500bp 
upstream and downstream 

In this 
study 

 

Table 3.2 List of primers used. 

Primer # Sequence Description 
1 5’-

GGCCGCTCCCGGGATCCGTTTGATTTTTAATGGAT
AAT-3’ 

Forward 
primer for 
amplification 
of Janus 
cassette and 
adds a SmaI 
site 

2 5’-ACCTCCCGGGCCCCTTTCCTTATGCTTTTGGAC-
3’ 

Reverse 
primer for 
amplification 
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of Janus 
cassette and 
adds a SmaI 
site 

3 5’-GGTGTGGACTTTGAAGAACA-3’ 
 

Forward 
primer 500 bp 
upstream of 
Pld peptide 
region 

4 5’-GAGAAGTGTTGTTTTTCCAC-3 Reverse 
primer 500 bp 
upstream of 
Pld peptide 
region 

 

Construction of pldA1 duplication and pldA1pldA2 deletion strains 

 To create a duplication of pldA1, a strain containing a Janus cassette replacing 

pldA1 and pldA2 was made first. The Janus cassette contains a kanamycin 

resistance marker (kan) and a counterselectable rpsL+ marker and is used as 

genetic tool to construct allelic replacements. P174 pldA1pldA2::Janus was made 

by digesting plasmid E115 and E123 with SmaI. E115 contains the pldA region 

along with 500bp up and downstream DNA and has a pldA1 deletion that was 

created through inverse PCR and contains a SmaI site in between the start and 

stop codon of pldA1. E123 is like E115 but pldA2 has a SmaI site in between 

start and stop codon. Both plasmids were digested with BamHI and SmaI site. 

The digest released product from E123 was used to ligate into the digested 

plasmid E115 so that the upstream region of pldA1 was included and the 

intergenic region between pldA2 and pldA3 creating plasmid E186. The Janus 

cassette from P174 pldA1-4::Janus was amplified using primer pair 1 and 2  

adding a SmaI site on either end of the Janus.  The SmaI digested Janus and 
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E186 were ligated together and transformed into P174strepR creating P174 

pldA1pldA2::Janus. 

A DNA fragment of 1500bp was synthesized by GenScript containing 

500bp upstream of P174’s pldA1 and 500bp downstream of pldA2. The ORF 

encoding pldA2 was replaced with pldA1 and the intergenic region between 

pldA1 and pldA2 was unchanged. This DNA fragment contained two copies of 

pldA1 and was ligated into pUC57 creating E187. The resulting plasmid E187 

was transformed into P174 containing a Janus cassette replacing both the pldA1 

and pldA2 genes.  Allelic replacement of the Janus was confirmed with primer 

pair 3 and 4. 

 For construction of the pldA1pldA2 deletion, plasmid E186 was 

transformed into either P174pldA1pldA2::Janus or P174actpldA1pldA2::Janus. 

Confirmation that the Janus cassette had been replaced was determined with 

primer pair 3 and 4 as well as sequencing. 

Inhibition and signal secretion overlay assays 

Overlays assays used to detect inhibition and signaling were performed as 

described previously [133].  

Organic resin extraction 

Since Pld peptides are only expressed when grown as stabs on agar 

plates, a biphasic growth system was used for purification.  P174act was stabbed 

into plates and 30ml of growth media, THY, was overlaid on top of the plates. 

Following incubation overnight at 37 °C and 5% CO2,  media was collected and 

centrifuged. Supernatants were filtered sterilized using a 0.22 µm size filter. XAD-
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16 resin was added to supernatants to extract organic material from the media 

and incubated with shaking overnight. Three sequential washes ranging in 

polarity, starting with 80% methanol, ethanol with 0.1% TFA, and propanol were 

used to elute lantibiotic peptides from the resin. Washes were collected and dried 

using a rotary evaporator and pH was maintained between 4 and 5. Dried 

extracts were then resuspended in DMSO at a concentration of 20 mg/ml. Two 

fold serial dilutions were made in DMSO and 5µl spots were made on plates 

containing a lawn of a sensitive strain, P250, or a reporter strain, P174pldM-lacZ, 

that responds to exogenous Pld peptides along with X-gal. 

HPLC analysis of Ethanol fraction 

After determining that ethanol with 0.1% TFA contained the highest 

specific activity, fractions were dried down using a rotary evaporator. The dried 

fraction was dissolved in HPLC grade methanol at a concentration of 50 mg/µl 

and 50 µl was injected into the HPLC using a reverse phase Luna 5 µm C8 (2) 

100 Å 50 × 1.0 mm column. The solvent used was H2O with 0.1% TFA (A) and 

acetonitrile with0.1% TFA (B). A linear gradient of 30% to 40% of solvent B in 53 

minutes at a flow rate of 6 ml/min was used for separation. To identify peaks that 

contained possible Pld peptides, fractions collected from a isogenic nonproducer 

strain, P174∆pldK, was also analyzed.  Peaks present in the chromatogram of 

P174act but absent chromatogram of P174∆pldK were chosen for bioactivity 

analysis. Peaks collected were dried down and dissolved in DMSO at a final 

concentration of 0.1mg/µl. Samples were tested by pipetting 5µl on plates 
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containing a lawn of a sensitive strain, P250, or a reporter strain, P174pldM-lacZ, 

that responds to exogenous Pld peptides along with X-gal. 

MS/MS and NMR 

Mass spectrometric analysis of extracts was performed using an Agilent 

6520 Q-TOF mass spectrometer equipped with an Agilent 1290 HPLC system, 

maintained at the University of Michigan core facility in the Department of 

Chemistry. LC for mass spectrometry was conducted using Luna 5 µm C8 (2) 

100 Å 50 × 1.0 mm column and a solvent system of methanol (w/ 0.1% FA) and 

H2O (w/ 0.1% FA) at flow rate of 0.3 mL/ min with linear gradient from 30% B to 

90% B in 11 min. Preliminary LCMS analysis of HPLC fractions was performed 

on a Shimadzu 2010 EV ESI spectrometer.   

All NMR spectra were acquired on a Varian INOVA 600 MHz at the NMR 

core facility in Life Sciences Institute University of Michigan using DMSO-d6 

solvent. 

 

3.5 Notes 

  This work was done in collaboration with Drs. David Sherman and 

Ashootosh Tripathi at the University of Michigan. 
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CHAPTER IV 
 

DISCUSSION 
 

Introduction 

Streptococcus pneumoniae is subject to competitive interactions in the 

nasopharynx. Since colonization is a prerequisite for pathogenesis, 

understanding the competitive interactions of pneumococcus among other co-

colonizing bacteria is important in identifying factors that enhance the likelihood 

of a successful colonization. One factor important in pneumococcal competition 

is the production of antimicrobial peptides. The Blp and Cib peptides are two 

well-described examples of unmodified bacteriocins that pneumococcus secretes 

to eliminate competitors [90, 93, 96, 106]. Additionally, production of the Blp 

peptides is upregulated when competence is initiated, indicating that, in addition 

to removing competitors, DNA released during bacterial lysis can be used for 

recombination [140, 141]. Together these activities, the elimination of competitors 

and subsequent uptake of DNA, has made pneumococcus a successful, 

adaptable pathogen. Although vaccines and antibiotics are used to remove the 

more pathogenic pneumococcal strains from the population, this has only 

provided an opportunity for other pneumococcal strains to colonize and cause 

disease [84].  
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Possible alternatives that are being investigated for eradicating pathogenic 

bacteria include the use of a modified bacteriocin or lantibiotic. Unlike umodified 

bacteriocins, lantibiotics undergo posttranslation modifications that make them 

resistant to proteolytic degradation, thermal inactivation, and provide stability at 

low pH [142]. These biochemical properties make them useful to pursue as a 

therapeutic.  Therefore, we became interested in finding a lantibiotic that would 

demonstrate potent anti-pneumococcal activity. Although several lantibiotic loci 

have been described in pneumococcus, none have been associated with 

antimicrobial activity until recently.   

My thesis work has been  centered around characterizing the 

pneumococcal lantibiotic, pneumolancidin (pld), secreted by P174 using a 

comprehensive approach that involved careful genetic and biochemical 

dissection of the function of genes in the locus, described in chapter II and III, 

respectively. The pld  locus had broad spectrum inhibitory activity, including the 

ability to kill 54 out of 55 pneumococcal strains, making it an attractive candidate 

for future development as a therapeutic.   

Notably, four homolgous pld peptides were found in tandem. A single 

modification enzyme encoded by the gene pldM was also found on the locus. 

The presence of a single modification enzyme with multiple lantibiotic peptides is 

different from the previously described two peptide lantibiotics. For most two 

peptide lantibiotics, two different modification enzymes are encoded that 

separately modify each peptide [28]. The sequence homology between the 

LanA1 and LanA2 is typically low, and therefore, the requirement for two different 
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LanM  enzymes, LanM1 and LanM2, is necessary to have both peptides properly 

modified [28, 57]. After processing and cleavage, the peptides are functional 

yielding Lanα and Lanβ. As expected, the structures of Lanα and Lanβ are 

different from each other and are required for their specific role in inhibition of 

sensitive strains. Lanα typically resembles type-B lantibiotics like mersacidin, and 

binds to lipid II, an important bacterial cell wall precursor. Lanβ resembles type-A 

lantibiotics like nisin, and forms pores upon recognition of the complex between 

Lanα and lipid II [30]. In other multipeptide lan systems in which a single lanM is 

encoded in the locus, the lan peptides are identical in sequence suggesting 

similar structures with redundancy in the peptide’s function.  The pld locus did not 

express the same characteristics as of other multipeptide lantibiotic systems that 

have been described. Rather than expressing several identical peptides, the 

amino acid sequences of PldA1-4 were found to be similar but not identical in the 

context of a signle  pldM gene, indicating that there might be discrete functions of 

these Pld peptides. 

Since lantibiotic peptides are known to function as both antimicrobials and 

as autoinducers, the aim of my dissertation was to dissect the individual the roles 

of the putative Pld peptides A1-4 using both a genetic approach (chapter II) and 

a biochemical approach (chapter III). 

 

The role of the pld peptides 

In the WT setting, it was found that PldA1-3 were each required for 

signaling with the exception of PldA4 (Fig. 2.2).. This suggested that Pld peptide 
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A1-3 were each required for upregulation of the locus, perhaps forming a 

complex that is recognized by the histidine kinase, PldK. The requirement for 

complex formation for signaling is unprecedented in other lantibiotic systems.  

Luckily, a serendipitous mutant of P174 was discovered which was 

characterized by a lowered threshold for activation of the pld locus (Fig.2.4). A 

single base pair mutation was found in the intergenic region between pldA4 and 

pldF that resulted in downregulation of the immunity transporter presumably due 

to the disruption of the -10 RNA polymerase binding site, leading to activation of 

the pld locus at lower peptide concentrations (Fig. 2.3). Peptide deletions were 

assayed in this background and found to have distinct phenotypes (Fig 2.2). 

PldA1 was implicated in inhibition, PldA2 was found to be dispensable for 

inhibition and signaling, and PldA3 was required for signaling and possibly for 

inhibition (Fig 2.2). 

While the peptide deletions in the P174act background helped to provide 

clues as to the function of each of the Pld peptides in signaling, we sought to 

purify the individual peptides to clarify the specific role of each peptide in both 

signaling and inhibition. We also wanted to assess the bioactivity of purified Pld 

peptides and elucidate their stuctures. Using HPLC, we were only able to purify 

PldA1and PldA3. Based on our genetic studies, we predicted that PldA1 would 

kill sensitive strains and PldA3 would be the autoinducer although data from the 

wildtype strains suggested complex formation was likely to be vital.  The activities 

of purified PldA1 and PldA3 were somewhat surprising. A preparation of 

PldA1only had evidence of signaling but not inhibition, while a preparation of 
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PldA3 only had evidence of inhibitory activity but not signaling.   Both 

preparations were active only at very high concentrations that are unlikely to be 

physiologic. 

One explanation for difference in activity between purified Pld peptides 

and the phenotypes of the peptide deletion strains, might be that PldA3 helps to 

stabilize PldA1 and PldA2 through formation of a complex. In the absence of 

PldA3 inP174act, signaling is abrogated even in the presence of PldA1which was 

found to signal in its purified form (Fig 2.2 & 3.3). If PldA1 is unstable without 

PldA3, it would make sense that P174act∆pldA3 is unable to signal or inhibit. 

PldA1 is unstable and cannot upregulate the locus including expression of PldA3, 

which is needed for inhibition. In summary, PldA3 is necessary for signaling and 

requires the presence of either PldA1 or PldA2 presumably through the formation 

of a complex which stabilizes PldA2 and PldA1. When PldA3 and PldA1 are 

expressed by P174act, inhibition occurs (Fig 2.2). In contrast, expression of 

PldA3 and PldA2 does not result in inhibitory activity (Fig. 2.2). This suggests 

that PldA2 is not as important for inhibition compared to PldA1. This is surprising 

because of the high sequence similarity between PldA1 and PldA2, differing by 

only two amino acids. Specifically, T19S, is involved in the formation of a 

methyllanthionine ring in PldA1 which would be replaced by a lanthionine ring in 

PldA2. This may account for their difference in activity. However, since PldA2 

was not purified, we cannot state this with certainty nor determine the function of 

PldA2 directly. Supernatants that were collected from biphasically grown P174act 

were able to signal and inhibit months after being collected suggesting that either 
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having all the Pld peptides together is important for stability or that the crude 

preparation has other stabilizing factors. Additionally, when concentrating 

supernatants it was noted that activity was retained above a 50kDa cut off 

column.   This suggests that the Pld peptides are forming complexes of very high 

molecular weights. To support the theory of a complex being formed between 

PldA1 and PldA3 that is needed for stability, purified PldA1 and PldA3 will be 

combined and tested for signaling and inhibition over time as compared to Pld 

peptides alone. If complex formation is needed, then we should expect to see 

bioactivity over longer periods of time and more potent inhibition than PldA1 or 

PldA3 alone.    

Another explanation for the lack of inhibition seen in P174act∆pldA1 could 

be that a complex is formed between PldA2 and PldA3, which is needed for 

signaling but not for for inhibition. This would be reminiscent of the cytolysin 

system in which both peptides form a complex that is inactive. In the presence of 

target cells, the larger subunit is able to bind to eukaryotic membranes freeing up 

the smaller peptide that is able to activate the cytolysin locus [60-62]. In strains 

expressing only PldA3, inhibitory and signaling activity were abrogated which 

provides evidence in support of PldA3 most likely forming a complex under in 

vivo conditions that is needed for signaling or inhibition if in complex with PldA1 

(Fig. 3.1).  

All of this data seems to suggest that the role of the Pld peptides is more 

complex than originally expected and represents a unique strategy for 

specialization of function described for lantibiotic peptides. Interestingly, the 
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structures of PldA1 and PldA3 both contained globular domains on opposite ends 

of the peptides, and both had different bioactivity. It can be hypothesized that 

PldA2 most likely resembles PldA1 structurally and yet is not as important for 

inhibitory activity as compared to PldA1. This indicates that the two amino acids 

that are different between PldA1 and PldA2 are enough to confer  specificity 

although site directed mutagenesis will have to be done to verify this hypothesis. 

The sizes of the Pld peptides were found to be smaller than predicted and 

the cleaved N-terminal portion was identified in culture supernatants after HPLC 

separation (Fig. 3.3).  These data suggest that a secondary cleavage event is 

occurring after removal of the N-terminal leader peptide by PldT. It is possible 

that the secondary cleavage event is an artifact of the purification process and is 

contributing to the instability of the peptides. The pld locus does not encode an 

additional protease in addition to PldT but it may be able susceptible to another 

protease for secondary cleavage. This has been described in other lantibiotic  

systems [17]. To answer this, genomic sequencing of P174 is underway to 

identify possible proteases. Additionally, to show that secondary processing is 

occurring in vivo, LAESI-MS will be used to detect the presence of doubly 

processed Pld peptides in the halos surrounding stabbed P174 in the inhibition 

overlay assay. This will also provide verification that the purification process is 

not responsible for the secondary cleavage of the lantibiotic peptides. 

 

The role of the immunity transporter in regulation of pld locus 
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It is interesting and counterintuitive that decreased expression of an 

immunity ABC transporter needed for protection against the Pld peptides leads to 

an increase in the activation of the pld locus (Fig 2.4). In a WT background, it 

was shown that expression of pldFE is upregulated in response to exogenous 

Pld peptides which is absent in the P174act background following induction (Fig 

2.4).  One possible theory to explain how decreased expression of PldFE lowers 

the threshold for signaling of the pld locus is that PldFE may interact with PldK to 

initiate upregulation of the pld locus upon binding of exogenous pld peptides.  

Some preliminary data that suggest that PldFE is involved in signaling is 

the fact that a deletion of pldFE resulted in a strain with a loss of inhibition and 

signaling activity. If PldFE was involved in immunity alone, then a deletion of 

pldFE should have resulted in a lethal mutation and no transformants should 

have been recovered. However, P174∆pldFE was easily constructed.  The lack 

of transcriptional activity in this strain suggested that the pld locus is 

transcriptionally inactive either because of the essential role of PldFE in signaling 

or because a secondary mutation arose preventing the locus from being 

upregulated. If a secondary mutation is responsible for inactivity of the locus, 

sequencing of the entire pld locus in P174∆pldFE will reveal a secondary 

mutation and perhaps details regarding the role of the mutation on the regulation 

of the pld locus. Instead of sequencing, complementation of pldFE can also be 

utilized to determine if activity can be restored with an ectopic copy of the 

transporter gene.  
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In other lan systems, immunity is mediated by two proteins [63, 73]. One 

being the immunity transporter, LanFEG, which is thought to act as an efflux 

pump to remove lantibiotic peptides from the membrane [63]. The second 

immunity protein is a lipoprotein, LanI, that binds to the lantibiotic and prevents it 

from interacting with the membrane [70, 73]. In the pld locus, we found a small 

ORF predicted to encode PldI downstream of pldA4 (data not shown). To verify 

the role of PldI, a clean deletion of pldI was constructed and assayed for 

immunity. An immunity defect was observed in ∆pldI suggesting that PldI is 

involved in conferring immunity. This provides evidence that a deletion of PldFE 

may not result in a lethal mutation because of the presence of a second immunity 

protein, PldI. There is still an immunity defect even with deletion of either PldFE 

or PldI and this suggests that full immunity is reached with expression of both 

immunity proteins. In chapter II, it was shown that Streptococcus mitis is immune 

to P174 most likely because it has a region with high homology  to PldKR and 

PldFE (Fig. 2.1 & Table 2.1). After discovery of PldI, we reviewed the locus in 

S.mitis  and found it also contains pldI and the putative promoter sequence 

driving expression of pldI which means that minimal requirement for immunity is 

expression of the two component system, PldKR, and both immunity proteins, 

PldFE and PldI. It is possible other strains encode the same region to ensure 

immunity against Pld.   

 

Further evidence supporting the theory that PldFE may interact with PldK 

is the homology between PldFE and a family of ABC transporters that mediate 
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antibiotic resistance, BceAB-type. In a homologous system, Bacillus subtilis 

expresses a bacitracin immunity transporter, BceAB, that confers protection by 

binding to bacitracin, a cyclic antimicrobial peptide [124]. The binding of BceAB  

to bacitracin is recognized by the histidine kinase, BceS, which increases 

transcription of the bacitracin immunity transporter [124]. Given the homology, it 

is possible that PldFE might also be involved in signaling in a similar way by 

forming a sensory complex with PldK. We hypothesized that since expression of 

the two component system PldKR is not differentially upregulated in response to 

exogenous Pld peptides its levels likely remain constant. Altering the levels of 

PldFE may change signaling dynamics by either increasing or decreasing the 

likelihood of the two complexes finding each other. In the P174act background, 

less PldFE is expressed. When exposed to equal amounts of basal Pld peptides, 

the strain producing less PldFE will have a greater percentage of PldFE/Pld 

peptide complex to interact with and activate PldK. In the case of P174, since 

there is more PldFE than PldK, a greater proportion of PldFE does not have Pld 

peptides bound and fails to activate PldK at low peptide concentrations. This 

mechanism may also be a way to limit uncontrolled upregulation of the pld locus. 

At high exogenous Pld peptide levels, which have saturated PldFE binding 

resulting in PldK activation, upregulation of the pldFE operon occurs ensuring 

that the ratio of bound to unbound PldFE prevents further activation of PldK. 

Future experiments should be performed to verify that PldFE can form a sensory 

complex with PldK by peforming pull-down assays. Since the expression level of 

PldFE has been deduced using reporter fusions, it would be useful to confirm at 
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the protein level that downregulation of PldFE is occurring in P174act. Also, 

altering the expression of PldFE using an inducible construct would be helpful in 

determining if changing ratios of PldFE to PldK levels is sufficient to recapitulate 

the lowered threshold requirement for signaling. Ultimately, manipulation of 

PldFE might help increase output of Pld peptides and facilitate purification.  

An alternative explanation for how levels of PldFE might affect regulation 

of the pld locus is by sequestering of Pld peptides. Immunity transporters are 

known to bind to lantibotic peptides [72]. It is possible that low levels of PldFE 

frees up Pld peptides which are then able to interact with PldK . Therefore, less 

Pld peptides are needed for activation of the pld locus. This explanation would fit 

if the reason for inactivity of the pldFE KO is attributable to a secondary mutation. 

 

Advantages of having a functional pld locus 

With the homology shared between PldFE and BceAB, it would be 

interesting to assay P174’s resistance to cyclic antimicrobial peptides such as 

bacitracin and nisin. Cross protection to other antimicrobial peptides mediated by 

PldFE could also be a reason for the maintenance of the pld locus in 

pneumococcal strains. In chapter II, a pneumococcal strain, P130, was identified 

as the only strain immune to Pld peptides. Although it has immunity, inhibitory 

activity was not seen in this strain due to a mutation disrupting the function of 

PldM indicating that P130 is a cheater strain (Fig. A4). This also suggests that 

producing Pld peptides is energetically costly and instead of inactivating the 

entire locus, immunity is retained. However, other pneumococcal strains were 
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found that carry the pld locus but are not immune suggesting that the locus is 

inactive. Why do pneumococcal strains retain an inactive pld locus? It is possible 

that there are other advantageous cargo genes carried on the same ICE as the 

pld locus that are transmitted between strains.  

After screening over 400 pneumococcal strains, only P174 has been 

shown to have Pld-mediated antimicrobial activity. Using a mouse model of 

staggered colonization, we demonstrated that having a functional pld locus 

confers a competitive advantage in invading a previously colonized surface. An 

interesting potential use of a strain that produces anti-pneumococcal antibiotic 

would be as a probiotic strain to prevent other pathogenic pneumococcal strains 

from colonizing. Inoculation of a Pld peptide expressing probiotic would be most 

beneficial in populations that are at high risk of acquiring pneumococcal disease. 

Currently, lantibiotic expressing strains are being developed for use as a 

probiotic in the oral cavity, preventing other Streptococcus mutans from 

colonizing. However, additional experiments would be needed to verify the 

safety, efficacy, and length of the protective effect afforded by the probiotic Pld 

expressing strain. 

 

 

Concluding remarks 

Pneumococcus, a member of the diverse microbial community in the 

nasopharynx, is able to compete with other strains by secreting bacteriocins. 

Understanding the dynamics of bacterial competition will help to predict which 
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pneumococcal strains will dominate in the population. Since colonization is a 

prerequisite for pathogenesis, those strains able to dominate are more likely to 

cause disease. One way to combat these pathogenic strains is the use of 

bacteriocins ,specifically lantibiotics.  

There are many advantages to using lantibiotics in treating bacterial 

infections. Lantibiotics have attractive biochemical properties that make them 

desirable as therapeutics. Additionally, lantibiotic production is a common 

strategy used in competition and therefore, has evolved to be highly effective 

against bacteria. The food industry has benefitted from the use of lantibiotic 

producing strains by adding them directly to food to prevent spoilage and 

colonization by pathogenic bacteria. Nisin, a well characterized lantibiotic, has 

been used in the food industry for the past 50 years without generating any nisin 

resistant strains. Therefore, we were interested in finding a potent anti-

pneumococcal lantibiotic that could ultimately be used as therapeutic. 

We found that a clinical isolate of S. pneumoniae secretes a lantibiotic, 

pneumolancidin, that exhibits unprecedented broad spectrum antimicrobial 

activity. With the exception of the pld encoding strain, P130, we have not yet 

identified an isolate of S. pneumoniae that is immune or resistant to the 

pneumolancidin producing strain.  The locus encoding pneumolancidin was of  

unique interest because it contained a tandem array of four genes encoding the 

structural peptides.  My dissertation was focused on dissecting the role of each of 

the Pld peptides. In both chapters II and III, the interaction and function of these 

Pld peptides were shown to be more complex than originally predicted. The 
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discovery of the pld locus in several pneumococcal strains represents a unique 

strategy for competition. Our studies involving the Pld peptides will shed further 

light into how bacteria are able to shape the microbial community through 

production of these antimicrobial peptides. Additionally, a greater understanding 

of the function and structure of these Pld peptides will also aid in the 

development of future antimicrobials to combat pneumococcal infections. 
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APPENDIX A 
 

 

Supplemental figures for Chapter II. 
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Table A1. Description of pneumococcal and streptococcal strains used in 
inhibition overlay assays. 
Bacteria Strain Description  Inhibition by 

P174 
Reference 

Streptococcus 
pneumoniae 

ATCC700669 clinical isolate 
pandemic 
strain 

Y  

A74 University of 
Michigan 
clinical isolate 
collection 

Y This study 

B56 University of 
Michigan 
clinical isolate 
collection 

Y This study 

B59 University of 
Michigan 
clinical isolate 
collection 

Y This study 

D69 University of 
Michigan 
clinical isolate 
collection 

Y This study 

P124  South African 
collection- 
colonizing 
isolate 

Y [93] 

P125 South African 
collection- 
colonizing 
isolate 

Y 

P126 South African 
collection- 
colonizing 
isolate 

Y 

P127 South African 
collection- 
colonizing 
isolate 

Y 

P128 South African 
collection- 
colonizing 
isolate 

Y 

P129 South African 
collection- 
colonizing 

Y 
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isolate 
P130 South African 

collection- 
colonizing 
isolate 

N 

P131 South African 
collection- 
colonizing 
isolate 

Y 

P132 South African 
collection- 
colonizing 
isolate 

Y 

P133 South African 
collection- 
colonizing 
isolate 

Y 

P134 South African 
collection- 
colonizing 
isolate 

Y 

P135 South African 
collection- 
colonizing 
isolate 

Y 

P136 South African 
collection- 
colonizing 
isolate 

Y 

P137 South African 
collection- 
colonizing 
isolate 

Y 

P138 South African 
collection- 
colonizing 
isolate 

Y 

P139 South African 
collection- 
colonizing 
isolate 

Y 

P140 South African 
collection- 
colonizing 
isolate 

Y 

P141 South African Y 
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collection- 
colonizing 
isolate 

P143 South African 
collection- 
colonizing 
isolate 

Y 

P144 South African 
collection- 
colonizing 
isolate 

Y 

P146 South African 
collection- 
colonizing 
isolate 

Y 

P147 South African 
collection- 
colonizing 
isolate 

Y 

P148 South African 
collection- 
colonizing 
isolate 

Y 

P149 South African 
collection- 
colonizing 
isolate 

Y 

P151 South African 
collection- 
colonizing 
isolate 

Y 

P152 South African 
collection- 
colonizing 
isolate 

Y 

P153 South African 
collection- 
colonizing 
isolate 

Y 

P154 South African 
collection- 
colonizing 
isolate 

Y 

P155 South African 
collection- 
colonizing 

Y 
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isolate 
P156 South African 

collection- 
colonizing 
isolate 

Y 

P157 South African 
collection- 
invasive isolate 

Y 

P158 South African 
collection- 
invasive isolate 

Y 

P159 South African 
collection- 
invasive isolate 

Y 

P160 South African 
collection- 
invasive isolate 

Y 

P161 South African 
collection- 
invasive isolate 

Y 

P162 South African 
collection- 
invasive isolate 

Y 

P163 South African 
collection- 
invasive isolate 

Y 

P164 South African 
collection- 
invasive isolate 

Y 

P165 South African 
collection- 
invasive isolate 

Y 

P166 South African 
collection- 
invasive isolate 

Y 

P167 South African 
collection- 
invasive isolate 

Y 

P168 South African 
collection- 
invasive isolate 

Y 

P169 South African 
collection- 
invasive isolate 

Y 

P170 South African 
collection- 

Y 
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invasive isolate 
P171 South African 

collection- 
invasive isolate 

Y 

P172 South African 
collection- 
invasive isolate 

Y 

P173 South African 
collection- 
invasive isolate 

Y 

P175 South African 
collection- 
invasive isolate 

Y 

P176 South African 
collection- 
invasive isolate 

Y 

P177 South African 
collection- 
invasive isolate 

Y 

Streptococcus 
pyogenes 

HSC5 Emm 14.0 Y [143] 
SF370 Emm 1.0 Y [144] 
MEW18 Emm 89.0 Y MEW 
MEW19 Emm 28.0 Y MEW 
MEW20 Emm 1.45 Y MEW 
JRS4 Emm 6.0  Y [145] 
MGAS166 Emm 1.0 Y [146] 
MEW34 Emm 161.0 Y MEW 
MEW62 Emm 4.0 Y MEW 
MEW96 Emm 89.0  Y MEW 
MEW97 Emm 118.0 Y MEW 
SLC826 Emm 28.0 Y MEW 

Streptococcus 
agalactiae 

ATCC12386  N  
ATCC12403 III Y  
UMMC GBS 
632 

Clinical isolate Y BF 

A909 Ia N [147] 
COH1 III N [148] 
DK14 Ib N [149] 
DK23 II Y [149] 
TIGR 18RS21 II Y [147] 
CNCTC 1/82 IV N [150] 
JM9 VIII N [151] 
TIGR H36B IB Y [147] 
NT-6 VI N [152] 
H1A  Ia N BF 
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87-603 VII Y [151] 
ATCC BAA 
611 

V N [147] 

MEW= Michael E. Watson’s personal collection 
BF= Betsy Foxman’s personal collection 
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Table A2. MLST analysis of the strains positive for pldM and pldA1-4. 
 

 

 

 

 

 

 

 

Collection Strain Serotype ST aroE gdh gki recP spi xpt ddl Accession 
number 

South 
African   

174 23F 6279 15 29 4 21 30 1 5 KT630265 
130 6B 6389 7 25 8 5 10 6 14 KT630266 

Clinical 
isolates 

A74 6B 2452 7 2 8 5 10 6 14  
B56 NT 448 8 5 2 27 2 11 71  
B59 NT 448 8 5 2 27 2 11 71  
D69 NT 448 8 5 2 27 2 11 71  

Genome 
sequenced 

PN1 6A 7151 7 13 8 6 6 6 494 ERR163220 
BHN418 6B 138 7 5 8 5 10 6 14 ASHP01000000 
MNZ14 NT 448 8 5 2 27 2 11 71 ASJO01000000 
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Table A3. Strains and plasmids used in this study. 

Strains Description Reference or source 
P174 Clinical isolate from South 

Africa, contains lan locus; 
ErmR, ChlR, NeoR 

[93] 

P130 Clinical isolate from South 
Africa, contains 
nonfunctional lan locus 

[93] 

P537 Serotype 6A with Janus 
replacing blpT to 
upstream of blpY  

[93] 

P1535 D39 with Janus inserted 
in comD  

[125] 

P147 Clinical isolate from South 
Africa, belongs to the 
same MLST as P174 but 
does not contain the lan 
locus 

[93] 

P650 R6 strain with StrepR  
P174 strepR P174 backtransformed 

with lysates of P650 to 
confer strep resistance 

In this study 

P174 pldA1-4::Janus P174 with Janus 
replacing peptide region 
of the pld locus; KanR, 
StrepS 

In this study 

P174 ∆pldK P174 with Spec cassette 
inserted in pldK 

In this study 

P174 ∆pldT P 174 with Spec cassette 
inserted in 3’ ABC 
transporter 

In this study 

P174 ∆pldM P174 with Spec cassette 
inserted in lanM 

In this study 

P174 ∆pldA1 P174 with deletion of 
pldA1; StrepR 

In this study 

P174 ∆pldA2 P174 with deletion of 
pldA2; StrepR 

In this study 

P174 ∆pldA3 P174 ∆peptide 2; StrepR In this study 
P174 pldA1-4EF::Janus P174 strepR with Janus 

replacing pldA1-4 and 
pldFE; Streps KanR 

In this study 

P174act P174 containing a single 
base pair mutation T->C 
in the intergenic region 
upstream of pldF 

In this study 
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P174act ∆pldA1 P174 act containing in 
frame deletion of pldA1 

In this study 

P174act ∆pldA2 P174 act containing in 
frame deletion of pldA2 

In this study 

P174act ∆pldA3 P174 act containing in 
frame deletion of pldA3 

In this study 

P174act pldM-lacZ P174act plasmid 
integration of E110 used 
as a reporter to test for 
the presence of active 
exogenous peptides 

In this study 
 

P174 ∆pldFE P174 with pldFE deletion, 
StrepR 

In this study 

P174 ∆pldA1-4 pldM-
lacZ 

P174 pldA1-4::spect  with 
pldM-lacZ fusion 

In this study 

P174 pldM-lacZ P174 plasmid integration 
of E110 used as a 
reporter to test for the 
presence of active 
exogenous peptides 

In this study 

P174 pldF-lacZ P174 with pldF fused to 
lacZ as result of 
intergration of E181,;KanR 

In this study 

P174 PactpldF-lacZ P174 with plasmid 
integration of E182 
resulting in the lacZ being 
fused to the promoter of 
pldF including the 
mutation from P174 act; 
KanR 

In this study 

P174 act P174pldF-lacZ P174 act with plasmid 
integration of E181 
resulting in P174’s 
promoter of pldF  fused to 
lacZ ; KanR  

In this study 

P174 PpldA1-lacZ P174 with plasmid 
integration of E188 
resulting in promoter of 
pldA1 fused to lacZ ; KanR 

In this study 

P174act PpldA1-lacZ P174act with plasmid 
integration of E188 
resulting in promoter of 
pldA1 fused to lacZ;  KanR 

In this study 

Plasmids Description Source 
E65 pEVP3 with kanR   In this study 
E68 pUC19 with In this study 
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spectinomycin cassette 
inserted in place of 
ampicillin 

E93 TOPO vector with pldA1-4 
+ 500 bp upstream and 
downstream of P174 
cloned into MCS ; KanR 

In this study 

E97  500 bp middle region of 
pldT cloned into TOPO 
vector using primers 17 
and 18 

In this study 

E98 500 bp middle region of 
P174 pldK cloned into 
TOPO vector using 
primers 15 and 16 

In this study 

E102 E68 with P174 pldK 
middle region cloned in 
MCS using EcoRI 

In this study 

E103 E68 with P174 pldT 
cloned into MCS using 
EcoRI 

In this study 

E105 Inverse PCR on E93 with 
primers 3 and 4 creating 
full deletion of pldA1-4 
and unique SmaI site 

In this study 

E110 E65 with PCR fragment of 
primer pair 24 and 25 
cloned upstream of lacZ, 
reporter plasmid; KanR 

In this study 

E181 pEVP3 with P174’s pldF 
fused to lacZ, KanR 

In this study 

E182 pEVP3 with P174 act’s 
pldF fused to lacZ, KanR 

In this study 

E188 pEVP3 with pldA1 fused 
to lacZ, kanR 

In this study 
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Table A4. Primers used in this study. 

Prime
r # 

Primer Sequence Description 

1 
 

5’-GGTGTGGACTTTGAAGAACA-3’ 500 bp upstream of peptide 
region 

2 
 

5’-GAGAAGTGTTGTTTTTCCAC-3’ 500 bp downstream of peptide 
region  

3 5’-
GAGGCGCCCGGGCTATTCTTTGACA
GGAGGAT-3’ 

Forward primer for full peptide 
deletion contains SmaI site 

4 5’-
GAGGCGCCCGGGTAGATGATCATCT
TTACAGT-3’ 

Reverse primer upstream of 
peptide 1 contains SmaI site 

5 5’-
GACTTGCCCGGGTCATTAGCTTTTTT
AGTGGA-3’ 

Forward primer to amplify janus 
cassette from P271 

6 5’-
GAATTCCCCGGGGAGCACTTTGTAAG
TCTGTTG-3’ 

Reverse primer to amplify janus 
cassette from P271 

7 5’-
CCCGGGGGATAGCCTAGATTTCGATA
-3’ 

Forward primer used for 
inverse PCR to delete peptide 
1 

8 5’-
CCCGGGCATAAGGTTGCCTCCTTC-3’ 

Reverse primer used for 
inverse PCR to delete peptide 
1 

9  5’-
CCCGGGGGCTAGTTTTTCTCACCACT
-3’ 

Forward primer used for 
inverse PCR to delete peptide 
2 

10 5’-
CCCGGGCATTTTCTTCTACTCCTAC-3’ 

Reverse primer used for 
inverse PCR to delete peptide 
2 

11 5’-
CCCGGGTGTTAGATAAAACAAAAGGA
-3’ 

Forward primer used for 
inverse PCR to delete peptide 
3 

12 5’-
CCCGGGCATAATTTTACTCCGTAAAT
TT-3’ 

Reverse primer used for 
inverse PCR to delete peptide 
3 

13 5’-
CCCGGGGGATAAAACTACCTCTATTC
T-3’ 

Forward primer used for 
inverse PCR to delete peptide 
4 

14 5’-
CCCGGGCACTAAATCAAAGTGTTGTC
A-3’ 

Reverse primer used for 
inverse PCR to delete peptide 
4 

15 5’-TGTCCTTGTTTACGTCTTTC-3’ Forward primer to amplify 
middle of P174 lan histidine 
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kinase 
16 5’-TGAAATTTTTTATCGCCATC-3’ Reverse primer to amplify 

500bp of P174 histidine kinase 
17 5’-AAAGAATTTGGAACAAAAAA-3’ Forward primer used to amplify 

500 bp middle region of 3’ ABC 
transporter 

18 5’-CAATGCCAATTTGTTGACGA-3’ Reverse primer used to amplify 
500 bp middle region of 3’ ABC 
transporter 

19 5’-CCGCTCTAGAACTAGTGGATCC- 3’ Forward primer to amplify 
spectinomycin 

20 5’-
CAATTTTTTTATAATTTTTTTAATCTG-
3’ 

Reverse primer to amplify 
spectinomycin 

21 5’-
GGACGCATGCATCATCATTTCATTCC
TCCGTTTC-3’ 

Reverse primer upstream of 
first ORF of 5’ ABC transporter 
with NsiI site 

22 5’-
GCTTGGATGCATTAAGTCAAATACCA
GAGTTGC C-3’ 

Forward primer downstream of 
second ORF of 5’ ABC 
transporter with NsiI site 

23 5’-
GATCATGCATGTTTGATTTTTAATGGA
TAAT-3’ 

Forward primer that anneals to 
Janus contains NsiI site 

24 5’-
GAGTGATGCATATGGTTGTTCTAGTA
AGGTT-3’ 

Forward primer anneals to 
response regulator 207 bp 
downstream of ATG adding a 
NsiI site 

25 5’-
CATCCTCTAGATAAACTTAACCATTTT
TCAG-3’ 

Reverse primer used to amplify 
lanM 38 bp from ATG adding a 
XbaI site 

26 5’-TCAAAAATAATTCGCGTCTG-3’ Reverse internal primer of lacZ 
27 5’- ATGAATATGAGCTACAGAAC-3’ Forward internal primer of pldM   
28  5’- CGGGCATTAAAATCAATACT-3’ Reverse internal primer of pldM 
29 5’-GAAGCATCTTTAAAATCTGT-3’ Forward primer that anneals to 

peptide region found in ATCC 
700669 

30 5’-CGGATTTAAATATTTGCTAC-3’ Reverse primer that anneals to 
peptide region found in ATCC 
700669 

31 5’-GAAACTTGCACGATTTACTC-3’ Forward primer that anneals to 
peptide region found in P174 

32 5’-TGCCATGAGTATTTTGTGCA-3’ Reverse primer that anneals to 
peptide region found in P174 

33 
 

5’-
GCGCGCATGCATGAAACGGAGGAAT
G-3’ 

Forward primer that anneals 19 
bp downstream of the site of 
the hyperinducible mutation 
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and contains a NsiI restriction 
site 

34 5’- TTGATAGTTTTCCCCTGAAT-3’ Reverse primer that anneals to 
5’ABC transporter 

35 
 

5’-
GGCAAACCTTGAAAGAAAATAATGAG
AGTGTAAAAAAG-3 

Forward primer of site directed 
mutagenesis deleting CCGT 
from intergenic region 
upstream of pldFE 

36 
 

5’-
CTTTTTTACACTCTCATTATTTTCTTTC
AAGGTTTGCC-3’ 

Reverse primer of site directed 
mutagenesis deleting CCGT 
from intergenic region 
upstream of pldFE 

37 
 

5’- 
GCGCATGCATGCGTCATCGTCTTTG -
3’ 

Forward primer used to 
construct pldK-lacZ reporter, 
anneals 451 bp upstream of 
first codon of pldK and adds 
NsiI site 

38 
 

5’- 
GCGCTCTAGACAATAAAAGTGAGTT-
3’ 

Reverse primer used to 
construct pldK-lacZ reporter, 
anneals 15 codons downsteam 
of first ATG of pldK and adds 
XbaI site 

39 
 

5’- 
GCGCATGCATGAGAAATACAAATGA-
3’ 

Forward primer used to 
construct pldF-lacZ fusion, 
anneals 11bp upstream of 
pldA4 and adds NsiI site 

40 
 

5’- 
GCGCTCTAGACCAAATGTTTTCGTT-3’ 
 

Reverse primer used to 
construct pldF-lacZ fusion, 
anneals  15 codons after start 
codon of pldF and adds XbaI 
site 

41 5’-GTACAATTTCTTGAAACAAGCC-3’ Forward primer that anneals 
approximately 500bp upstream 
of second BsrGI site 

42 5’-CGCTCTTTGTCAAGATATTC-3’ Reverse primer that anneals 
approximately 500bo 
downstream of second BsrGI 
site 

43 
 

5’-
GCGCTGTACAGTTTGATTTTTAATGG
ATAAT-3’ 

Forward primer that anneals to 
Janus cassette and adds a 
BsrGI site 

44 
 

5’-
GCGCTGTACACTTTCCTTATGCTTTT
GGAC-3’ 

Reverse primer used to amplify 
the Janus cassette adding a 
BsrGI site 

45 5’-GGATTGTAGTCTATACAGTGG-3’ 
 

Forward primer that anneals 
165 bp upstream of second 
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BsrGI site in lanM 
46 
 

5’-AGAATAGCCTAAAATAGAAT-3’ Reverse primer that anneals 
700 bp downstream of second 
BsrGI site in lanM 

47 5’-
GCGCATGCATGAAAGTCATGAATGAT
-3’ 

Forward primer used to create 
pldA1-lacZ fusion that anneals 
460 bp upstream of start codon 
of pldA1 and adds a NsiI site 

48 5’-
GCGCTCTAGATTAGAGAATCAATCTC
TGG-3’ 

Reverse primer used to create 
pldA1-lacZ fusion that anneals 
37 bp after start codon of pldA1 
and adds a XbaI site 
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Figure A1. Lantibiotic Peptides Detected by Reporter Strain P174 pldM-lacZ 
and P174 ∆pldA1-4 pldM-lacZ. P174 was stabbed into a TS plates and 
incubated for approximately 6 hours. Overlays were prepared with the 
chromogenic substrate, X-gal, included in the overlay mixture with either reporter 
strain both containing a pldM-lacZ fusion with intact peptides or the same 
reporter but lacking all four structural peptides. 
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Figure A2. Inhibitory and signaling activity of pldK and pldF reporters.  
A)To confirm that the reporter constructs of pldK and pldF in either P174 or 
P174act backgrounds retained a functional pld locus, reporters were stabbed into 
TSA plates and overlayed with either a senstive strain for inhibition, or with the 
reporter, P174pldM-lacZ for signal secretion. B) The pldK reporter strains of 
either P174 or P174act was used as the overlay strain over stabbed P174 and 
assessed for their ability to respond to signal.
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Figure A3. Paired relative ratios of invaders to resident.  CFU/ml of the 
invader strain, P174 or P174∆pldA1-4, was compared to the CFU/ml of the 
resident strain, P174∆pldK, to calculate a relative ratio between strains in a 
single nasal wash. A relative ratio of 1 indicated by a line denotes equal 
colonization by the two strains. A relative ratio greater than 1 indicates more 
invader than resident strain. Statistical analysis was performed using unpaired 
Mann-Whitney test. *=p<0.05. 
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Figure A4. Inactivity of pld locus in P130 linked to mutation in PldM. A) 
Amino acid alignment of PldM of P130 and P174 in the area of interest is shown. 
Amino acids that are conserved in a zinc binding domain of PldM are shown in 
red. P130 has a tyrosine in place of the conserved cysteine. B) Overlay assays 
demonstrating inhibition of TIGR4 were performed using strains P174, P130, and 
P174 PldM C869Y.  
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APPENDIX B 

Supplemental figures for Chapter III. 

 

Figure B1. Q-TOF ESI MS deconvoluted data for PldA3 and follow up MS/MS spectra on the most 
abundant TIC peak with m/z 2086.1496 
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Figure B2. MS/MS fragmentation ions for PldA3 and the schematic representing the tertiary structure 
of PldA3. 
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Figure B3. Q-TOF ESI MS chromatogram of N-terminus cleavage of PldA3. 
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Figure B4. 1H NMR (600 MHz, DMSO-d6) spectrum of PldA3 
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Figure B5. HSQCAD NMR (600 MHz, DMSO-d6) spectrum of PldA3 with resolved and annotated 
tertiary signals. 
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Figure B6. HSQCAD NMR (600 MHz, DMSO-d6) spectrum of PldA3. 
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Figure B7. NOESYAD NMR (600 MHz, DMSO-d6) spectrum of PldA3. 
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Figure B8. gCOSY NMR (600 MHz, DMSO-d6) spectrum of PldA3. 
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Figure B9. ESI MS for PldA1 and follow up MS/MS spectra along with schematic representing the 
tertiary structure. 
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Figure B10. 1H NMR (600 MHz, CD3OD -d6) spectrum of PldA1. 
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Figure B11. HSQCAD NMR (600 MHz, CD3OD) spectrum of PldA1.  
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Figure B12. gCOSY NMR (600 MHz, CD3OD) spectrum of PldA1.  
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Figure B13. NOESYAD NMR (600 MHz, CD3OD) spectrum of PldA1. 
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