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Abstract

Computer security is a topic of paramount importance in computing today. Though enor-
mous effort has been expended to reduce the software attack surface, vulnerabilities remain.
In contemporary attacks, subverting the control-flow of an application is often the cor-
nerstone to a successful attempt to compromise a system. This subversion, known as a
control-flow attack, remains as an essential building block of many software exploits.

This dissertation proposes a multi-pronged approach to securing software control-flow to
harden the software attack surface. The primary domain of this dissertation is the elimination
of the basic mechanism in software enabling control-flow attacks. I address the prevalence
of such attacks by going to the heart of the problem, removing all of the operations that inject
runtime data into program control. This novel approach, Control-Data Isolation, provides
protection by subtracting the root of the problem; indirect control-flow. Previous works
have attempted to address control-flow attacks by layering additional complexity in an effort
to shield software from attack. In this work, I take a subtractive approach; subtracting the
primary cause of both contemporary and classic control-flow attacks. This novel approach
to security advances the state of the art in control-flow security by ensuring the integrity
of the programmer-intended control-flow graph of an application at runtime. Further, this
dissertation provides methodologies to eliminate the barriers to adoption of control-data
isolation while simultaneously moving ahead to reduce future attacks.

The secondary domain of this dissertation is technique which leverages the process by
which software is engineered, tested, and executed to pinpoint the statements in software
which are most likely to be exploited by an attacker, defined as the Dynamic Control Fron-
tier. Rather than reacting to successful attacks by patching software, the approach in this
dissertation will move ahead of the attacker and identify the susceptible code regions before
they are compromised.

In total, this dissertation combines software and hardware design techniques to eliminate
contemporary control-flow attacks. Further, it demonstrates the efficacy and viability of
a subtractive approach to software security, eliminating the elements underlying security
vulnerabilities.
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Chapter 1

Introduction

There are no solutions, only trade-offs.

Thomas Sowell

The rise of the information age has resulted in an increasing dependence on computing
platforms. We rely on computer hardware and software for our daily communication, com-
mute, work, and entertainment, both past and present [9, 132, 96, 122, 69, 115, 45, 16]. The
increasing dependence on computers has correlated positively with increasing interest in
compromising the security of systems [34]. Many high-profile software exploits have begun
to motivate an intense interest in secure computing [32, 17, 72].

At the heart of many attacks today are control-flow attacks, including buffer over-
flows, code reuse attacks, return-to-libc, code gadgets, and Linux rootkits, among others
[76, 106, 91, 25, 108]. As such, many mitigation techniques have been proposed and imple-
mented to address the rising tide of exploitation [80, 2, 21, 24, 127, 126, 142, 149, 40, 113].
Consequently, many attempts to measure the software attack surface have also been made
[6, 139, 105, 88, 148, 5]. However, despite the knowledge of these exploits for decades [25],
control-flow attacks persist.

The software attack surface has been the interest of both researchers and adversaries
extending for decades [119], starting in the 1960’s with US government policy to address
the potential existence of foreign threats to information systems [146] and the 1970’s [145]
with access control software in the computing industry. The struggle for secure systems
continues today, with computing security evolving into a significant industry with a cost
of billions USD every year [53]. The efforts of both security researchers and attackers has
evolved over time and as protective measures have been implemented, commensurate effort
from adversaries has answered [28, 114, 29, 49, 63, 64, 65].
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1.1 The Software Attack Surface

The software attack surface encapsulates all avenues in which an adversary can gain access
to a system and potentially cause damage or adverse effects to that system [94]. A pervasive
building block involved in exploiting the attack surface is the control-flow attack, which
either alters the sequence of program instructions executed and/or newly injected instructions
by an adversary. The end goal of a control-flow attack is arbitrary code execution, which
has the most powerful effect of any security defect as an attacker has full control of the
executing application. Further, code injection remains one of the most common types of
software attack on the Internet [3], which still pervades despite years of research [117].

Security in computing systems has long been an add-on, integrated after the develop-
ment of software and systems has been completed [116, 48, 57]. Further, security has been
considered as a non-functional requirement in software engineering, to the detriment of
secure systems [133]. The culture of the industry with respect to security has a profound
impact on the software attack surface, and a culture of security has been assessed to have a
non-trivial impact on the integration of security in computing [93, 125]. Ultimately, security
can be greatly benefitted from a top-down, pervasive, approach ultimately reducing the
software attack surface [102].

1.1.1 The Cycle of Exploitation of the Software Attack Surface

As alluded to in Section 1.1, a longstanding struggle has occurred between system designers
and their adversaries. Developers spend significant time and effort engineering systems.
Indeed, over 90% of the effort in software engineering occurs outside of the actual coding
of the software [112]. Further, the majority of the effort expended in software engineering
occurs after the deployment of the system to the customers and users. After deployment
of software and systems, failures begin to accrue, from small to total in scope [35]. These
failures occur due to many factors including defects in design and implementation. As we
will highlight in this work in Chapter 4, failures in practice originate from the complex
interactions of systems and components.

When a failure manifests in the system, it has the potential for discovery by developers.
Once discovered, the software maintainers then analyze the failure to determine the root
cause. Unfortunately, this analysis is done without the depth of the engineering effort
expended in designing the system. Additionally, once a defect manifests in the system,
software engineers are under greater pressure to implement and release a fix, in the form
of a software patch. This pressure to mitigate the effects of the defect are increased in the

2



event the defect has been disclosed before a patch can be distributed. To further complicate
the issue, the procedures of the initial software engineering effort such as extensive code
reviews, design documents, and test suite development are often not present for the analysis,
coding, and testing of the software patch. The consequence of the rushed timing and limited
resources results in software patches which are of lesser quality than the original application
code. It is no secret that many bug fixes spawn new exploits [97, 70]. One of the most
notable cases of this issue is the Heartbleed bug identified in OpenSSL [32, 141]. The results
of automated bug fixes are similar, where such fixes are often unverified and remain unfixed
[79]. Regardless of the source, software patches are developed with less engineering support
and rigorous testing than the original code, resulting in the higher likelihood of injecting
more defects.

Many bug fixes are documented as Common Vulnerability and Exposures (CVE) [41] in
the National Vulnerabilities Database (NVD) [100]. Reviewing these records reveals patches
are often implemented as simple conditional branches, which guard the defect condition,
a mere symptom of the manifestation of the defect. The rapid deployment and limited
engineering of updates and fixes results in overall greater vulnerability in the software attack
surface.

The Heartbleed bug discovered in OpenSSL [32] serves as an example for the cycle
of software update and subsequent exploitation. An open source Transport Layer Secu-
rity (TLS) implementation, OpenSSL provides encrypted communication between a user’s
web browser and a web server. The software implements Secure Sockets Layer (SSL) to
encrypt the data transmitted between hosts on an internet. SSL is often the technology
used to facilitate https, in this case representing Hypertext Transfer Protocol over SSL.
Encrypting data transmitted over a network mitigates, among others, man-in-the-middle
attacks. These attacks are accomplished when an adversary poses as the intended recipient
of communication for both participants.

Occasionally, during lulls in communication between hosts, the connection is verified
as active using signaling between hosts, referred to as “keep-alive”. A security defect
was injected into the codebase due to an incorrectly implemented patch to the OpenSSL
code. This defect gave an attacker the ability to arbitrarily read up to 64 KB of the victim’s
memory, which could potentially include the private encryption key of the victim server.

The code enabling the vulnerability is shown in Figure 1.1. This line of code is made
vulnerable by the lack of bounds checking on arguments to the function memcpy. This
defect was not in the original OpenSSL implementation, but was added to implement RFC
(Request For Comments) 6520 of the TLS specification. A period of two years passed
between the addition of the defect and the discovery by the security community. The degree
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memcpy(bp, pl, payload); 

Figure 1.1 Heartbleed Bug Vulnerable Code. The Heartbleed bug [32] was a significant security
vulnerability in the OpenSSL implementation of Transport Layer Security (TLS) encrypting two-
thirds of all apache-based web servers. The defect, enabled by this single line of code, arose from the
lack of bounds checking on an argument to the memcpy function call and persisted for two years.

to which the defect was exploited is unknown, but the vulnerability was widespread. Almost
two-thirds of apache-based web servers, comprising a near majority of top web sites, were
found to be vulnerable [50].

The continuous competition between the security community and attackers is played
out in an ongoing cycle of exploitation. Software is engineered, developed, and deployed.
Upon release of the software, adversaries begin probing for vulnerabilities which can be
exploited for the gain of the attacker. As defects are discovered and exploited, they are
addressed by the software maintainers who then patch the software. The newly patched
software is released, whereupon the attackers seek and find new open avenues in the software
attack surface. This cycle continues as long as the software remains in use and of value to
compromise for an adversary.

Attack Mitigating Defense Attack Evolution Persistent Threat 

Stack Smashing Non-Executable Stacks Heap Sprays 

Arbitrary Code 
Execution via Control-

Flow Attack 

Heap Sprays Non-Executable Heap 
Return-Oriented 
Programming 

Return-Oriented 
Programming 

Address Space Layout 
Randomization (ASLR) 

Code Gadgets 

 

Table 1.1 Escalation of Attacks and Defenses As defenses have been created to mitigate arbitrary
code execution, adversaries have evolved attacks. The attacks and defenses shown are but a small
sample of defense measures and the attacks they have inspired. Throughout the history of attacks
and defenses, arbitrary code execution (the ability of an attacker to select the code to execute rather
than the programmer) has remained. In this work, we break the cycle of exploitation by eliminating
the root of attacks and moving ahead of adversaries.

An excellent example of this cycle is the control-flow attack, detailed below in Section
1.1.4. In short, control-flow attacks derail the execution of code from the programmer-
intended code to attacker selected code. Over time, there have been many defenses created
against such attacks. Once these defenses are in place, they are subsequently broken or
circumvented by agile attackers. This is summarized in Table 1.1, which depicts the escala-
tion in attack and defense. A critical enabling factor of this escalation is that each defense
is designed to break the specific, current avenue of an attack. They do not address the
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underlying defect and make assumptions about the ability of an attacker to use other means
to exploit the same inherent vulnerability. Table 1.1 is not a taxonomy of all exploits and
defense mechanisms, but instead serves to demonstrate the resourcefulness of adversaries to
evolve attacks to compromise the same underlying vulnerability.

1.1.2 The Evolution and Commercialization of Malware

To further compound the difficult task of hardening the software attack surface, efforts
of adversaries have increased dramatically over time. Defined as any malicious software
including viruses, Trojans, worms, adware, and spyware, malware represents the efforts of
attackers to gain control over or cause detrimental effects to a system. Originally, software
exploits were largely the domain of individuals, e.g., the Melissa virus [54], and government
organizations [120]. However, today software exploitation and malware have increasingly
shifted to the domain of professional hackers, becoming a corporatized endeavor. This shift
is of paramount importance, as such a trend dramatically increases the resources available
to adversaries. Recent attacks such as the carbanak APT (Advanced Persistent Threat) [74]
demonstrate the scope and impact of contemporary software exploitation. This expansive
attack was perpetrated across more than 30 nations and involved more than 100 financial
banking institutions. Carried out over a two-year period, this attack has been estimated to
have extracted up to one billion USD from the victim institutions. The attack, attributed
to a criminal gang, embodies the shift in software attacks to a venture of organized crime.
Crimeware has become ubiquitous in contemporary computing, replacing the old model of
amateur hackers [8].

A consequence of the commercialization of the exploitation of the software attack sur-
face is the dramatic increase of efforts to compromise systems. This effort can be seen in
the significant increase in the number of new, unique, types of malware which have been
discovered on the Internet. Extending in analysis from 1984 until today, the number of types
of malware which have been discovered has eclipsed 500 million, with over 390,000 new
malicious programs registered every day [13]. The number of new malware discovered each
year has increased year over year, with a dramatic increase each year beginning in 2007[13].

1.1.3 Breaking the Cycle of Exploitation

The sheer volume of this increase has profound impact on the approach of defenders in
the effort to harden the software attack surface. To date, the approach of researchers in
addressing the rising tide of exploitation [80, 2, 21, 24, 127, 126, 142, 149, 40, 113] could
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be classified as one of mitigation, developing mechanisms to shield the software attack
surface from the avenues previously exploited by attackers. The result of these attempts at
mitigating the effects of malware begets the cycle of exploitation detailed in Section 1.1.1.
Given the unyielding and resource-intensive efforts of adversaries, there is no expectation
that time alone will yield increasing success in mitigating the effects of malware. To this
end, a pivotal approach is necessary to counter the rising tide of exploitation, and more
importantly to break the cycle of exploitation.

To achieve this goal, this work details two novel approaches to hardening the software
attack surface: eliminating the underlying vulnerabilities which enable exploits, and moving
ahead of attackers by identifying the vulnerabilities before they are exploited. As the soft-
ware attack surface represents all avenues for an adversary to compromise a system, this
work focuses on one of the most essential building blocks for many software exploits today:
control-flow attacks. These attacks have pervaded for years and are used in attacks such as
stack smashing, heap sprays, return oriented programming, and code gadgeting, as shown
in Table 1.1 [76, 106, 91, 25, 108]. These attacks not only constitute a major contribution
to the software attack surface, they have managed to evolve over time, circumventing the
mitigation approaches of previous works [80, 2, 21, 24, 127, 126, 142, 149, 40, 113]. This
dissertation details the methods necessary to break the ongoing cycle of exploitation for
control flow attacks in order to establish control-flow security.

1.1.4 Control-Flow Attacks

Control-flow attacks are the subversion of the program execution to attacker-selected code.
The realization of a control-flow attacks is manifested via code injected as user data, or
as the unintended sequence of execution of existing code. At a finer granularity, these
attacks violate, at runtime, the control-flow graph (CFG) of an application. The control-flow
graph of an application is the collection of basic blocks of code (defined as a single-entry,
single-exit block of instructions) and the edges which connect these blocks. The CFG
encapsulates the programmer-intended order of execution for program instructions.

Contemporary control-flow attacks result from malicious user data injected into the
program counter (PC). This is achieved when a malicious user corrupts data, typically
achieved through the exploitation of a defect in some part of the executing code. The
canonical example is the stack smashing attack. This attack leverages a buffer overflow (or
buffer overrun), an element of exploitation first identified over four decades ago [25] and
still pervasive today [36]. Buffer overflows occur when the boundary of a buffer is exceeded
when writing data to the buffer. This overflow causes data in memory following the buffer
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boundary to be overwritten, corrupting other program data. Stack smashing occurs when
a data buffer, which is a local variable contained on the program stack, is overrun. The
result is a stack buffer overflow, and the consequences of the overflow is the overwriting of
other data items on the stack with the overflow of data exceeding the buffer capacity. The
intended consequence of the stack buffer overflow is the corruption of the return address
on the program stack. If the overflow is crafted correctly, the data provided to the buffer
will be used as the return address when the compromised function executes a return
statement. Thus, rather than returning control to the calling function, the attacker has now
selected the next instruction to be executed. Originally, the malicious data taken as the new
return address would point directly to the overwritten buffer, which would be malicious
code instead of the intended data though that is less common today as program stacks are
generally made to be non-executable via memory protection. Stack smashing attacks have
been focus of significant work, but remain a security concern today [135].

The cost of such attacks is notoriously difficult to estimate. However, recent reports
indicate that, worldwide, corporations and individuals incurred $500 Billion USD cost in
remediation of exploits arising from malware contained in pirated software [53].

1.2 Contemporary Control-Flow Attacks Rely on Mixing
of Control with Data

The software attack surface constitutes a substantial threat to computer security. Software
vulnerabilities facilitate a wide array of security exploits: buffer overflows, heap spray
attacks, return-to-libc, integer underflow, code gadgets, and a host of others. In the com-
mercialization of the malware industry [53], new and more serious threats have emerged
such as Crimeware, which perpetrate identity theft for the purpose of monetary gain [75].
Control-flow attacks, which permit arbitrary code execution, have emerged as a primary
means to exploit software.

This work drives to the heart of pervasive control-flow attacks by directly attacking
the root of the problem: user-data derived control-flow. Contemporary research to protect
control-flow has been focused on verifying the user data to be injected into the program
counter [2, 21, 66, 80, 127, 142, 150, 149] in an effort to establish trusted user data for
control-flow targets. Prior works approach control-flow security by layering additional
complexity on top of user data in an effort to shield the vulnerability from attack. In this
work we adopt a subtractive approach by removing the actual vulnerability. We simply do

not trust any user data, and instead remove all avenues for such data to be injected into the
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program counter.

The mechanisms developed in this dissertation put forward the ideal of a subtractive

approach to addressing control-flow security. As contemporary control-flow attacks are
dependent on the pollution of control structure with user data, this work provides solutions
and detailed analysis of eliminating the basic, essential building blocks of such attacks.
These building blocks are the programming structures and mechanisms which allow user
data to reach the program counter of a processor. Thus, the first accomplishment of this work
is to eliminate the avenues which allow the corruption of control with data. However, in the
face of removing ubiquitous building blocks of software the efficiency of a software-only
solution remains a challenging task.

1.3 Hardware-Software Co-Design Can Greatly Enhance
Control-Data Isolation

The effort of attackers to exploit the software attack surface continues to grow in the mal-
ware arms race [49]. Indeed, most attacks continue to be conducted within the application
layer [55]. In this realm of exploitation, arbitrary code execution, generally achieved by
control-flow attacks, pervade as a primary means to attack software. Control-data isolation
(CDI), detailed within this dissertation in Chapter 2, eliminates contemporary control-flow
attacks. However, barriers remain to the practical, wide-spread adoption of control-data
isolated.

A software only solution, control-data isolation [12] implemented in Chapter 2, retains
greater than desired runtime overheads for some applications. In the face of this, a more
efficient implementation is desired. To that end this dissertation addresses the non-trivial
performance impacts of CDI programs by introducing hardware that virtually eliminates
the performance penalty associated with ensuring secure control flow at runtime. We
demonstrate in Chapter 3 that through high-accuracy memoization of programmer-intended,
compiler-selected indirect control transitions, we can nearly eliminate the runtime costs
of eliminating contemporary control-flow attacks. In addition, we demonstrate that the
structures we add to speed up CDI execution can easily perform the double duty of multi-way
control point prediction, thereby providing even opportunities to speed up CDI program
execution, compared to targets with simple indirect control predictors (e.g., BTB).

Additionally, architectural additions to computer hardware can increase the security
guarantees of techniques like CDI. As contemporary control-flow attacks can be eliminated
by the work in this dissertation, attackers will seek another avenue to gain control over
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systems. This never-ending cycle of exploitation is the hallmark of computer security to date.
The cycle begins with the release of a piece of software. Malicious entities then compromise
the software to exploit for their own gain. The developers of the software then analyze the
attack, evaluate the vulnerability, and make changes to patch the system against the specific
attack. This software is then released, where the cycle continues. A prominent feature of
this dissertation is the inclusion of techniques to break the cycle of exploitation, getting
ahead of the attackers before they strike.

To this end, control-data isolation is extended to protection of paths, addressing impossi-
ble paths of execution through the code. Analysis of paths of execution for security purposes
has been the effort of research as well [80, 129, 4]. However, contemporary control-flow
attacks, such as code gadgets and return-oriented programming, rely on a single compro-
mised indirect control-flow instruction to derail execution to begin the attack. Eliminating
the vulnerability of all edges will drive attackers to seek paths of exploitation.

1.4 Latent Software Defects are Control-Flow Path De-
pendent

The vast majority of security attacks are enabled by software bugs. Defects which escape
detection of software quality assurance can have global impact, such as the Code Red and
Sapphire/Slammer worms which utilized buffer overflows for system exploitation. Fueled
by these and other high-profile exploits, buffer overflows remain a top security concern
[101, 36]. Programs written in popular languages such as C and C++ are a rich source of
buffer overflow bugs, as these languages cannot, without high overhead, systematically
eliminate buffer overflow vulnerabilities [42]. This then places the burden on methods such
as control-data isolation and software testing to find potential buffer overflow vulnerabilities
before they are exploited and disallow their effects of derailing control flow.

As control-data isolation eliminates contemporary control-flow attacks, path-based con-
trol flow analysis and security becomes all the more pressing in importance. Though simple
hardware additions can eliminate many impossible paths of execution, they are not a panacea
to security. Thus, parallel effort into eliminating the software bugs which lead to exploits
remains crucial. Understanding the way in which latent defects are exploited can reveal
critical insight into their prevention.

The majority of security-related faults in software reside in the least likely to be exe-
cuted code sequences, and by extension, the least tested portions of code [81]. Attackers
use this information to reduce the effort in finding vulnerabilities. A malicious user will
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provide permutations of typical application inputs in an effort to cause slight (but expected)
deviations from the well-travelled, and thus well-tested, path of normal execution. This
exploit-rich code exists just beyond the well-trodden execution paths of testers and users,
yet is readily reachable by attackers.

To break the cycle of exploitation, it is necessary to find defects before attackers to.
The dynamic control frontier (DCF) [11] is a collection of paths rooted in dynamically
executed paths. However, these paths are special in that, had the final control decision in
these paths executed a different basic block, it would create a new, never-before-seen path.
This defines the frontier of the path space executed by an application with respect to a set
of inputs. Collectively, the DCF represents the most readily accessible paths of execution
which are unlikely to be executed by end-users; consequently, these paths have a high degree
of reachability for an attacker. Accordingly, any latent defects in the unexecuted portions
of the dynamic control frontier paths are unlikely to be found by users and developers, but
these bugs can be quickly uncovered by attackers.

It is interesting to look at the dynamic control frontier of an application arising from the
test inputs of developers. Indeed, we show that this is valuable as we find real vulnerabilities
at these locations. However, it is more intriguing to examine the dynamic control frontier
for a non-trivial sized population of end users. An attacker is most interested in this frontier
as it represents code paths which have not been tested nor executed with any frequency by
any user of a particular program. In contrast, any paths frequently executed by users which
are not represented in the test suites will probably be devoid of showstopper bugs, as users
would otherwise complain. As such, in the construction of a system to profile the DCF, we
must be mindful that such a system should analyze the DCF of a large population of users
without imposing an unacceptable impact on individual user performance.

1.5 Contributions of this Work

In this dissertation, I detail a diversity of solutions to ensuring control-flow security. This
includes methodologies for run time enforcement of the programmer-intended CFG of an
application, and the discovery of software defects leading to exploits.

Software-Based Control-Flow Security. The first contribution to control-flow security
in this dissertation is a novel technique for the dynamic enforcement of the programmer-
intended control-flow graph of an application. This solution appears in Chapter 3 of this
work. A fundamental building block of software exploitation today is the successful com-
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pletion of a control-flow attack. These attacks violate, at runtime, the programmer specified
CFG of an application. The flow of execution is then diverted from that which the program-
mer intended to attacker selected code. Contemporary control-flow attacks are propagated
by an attacker injecting malicious runtime data into the program counter of an application.
In Chapter 2, I present control-data isolation, a novel approach to enforce the CFG of
dynamically executing software. This work directly addresses the root of the problem in
contemporary control-flow attacks; indirect control flow. By eliminating the use of indirect
control-flow instructions, the link between malicious runtime data and the program counter
is severed. Specifically, in Chapter 2 this work makes the following contributions:

• Chapter 2 presents an effective, efficient, and scalable approach to enforcing the

CFG of an application at runtime. We implement control-data isolation (CDI) as a

compilation-based transformation to existing software applications and library code.

This work advances the state-of-the-art in control-flow attack protection by targeting

and eliminating the root cause: the injection of user data into the program counter.

• Presentation of an llvm-based compiler implementation that generates control-data

isolated code for non-trivial programs and shared libraries, eliminating the use of

indirect control flow in compiled programs.

Hardware-Based Control-Flow Security. Chapter 3 builds on the first contribution in

control-data isolation, resulting in a hardware-software co-design which accelerates the

validation of indirect control-flow edges at runtime. As the use of indirection in the program

counter is pervasive in computing, eliminating its use can incur runtime overheads. This

work details how simple hardware extensions to modern processors can eliminate nearly

all overheads associated with the control-flow security methodology detailed in Chapter 2.

Specifically, Chapter 3 of this work makes the following contributions:

• Chapter 3 shows how simple hardware additions for CDI support can guard a program

from control-flow attacks.

• Demonstration that edge caching eliminates nearly all of the slowdowns associated

with the execution of indirect jump validation sleds, the hallmark of CDI protection.

• Exploration of the use of the edge cache as an indirect branch predictor enables

speedups for select CDI-compliant programs compared to architectures with simple
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BTB-based indirection prediction.

• Development of an optimization technique which extends control-flow security to

paths of execution. This optimization, leveraging the non-speculative Return Ad-

dress Stack (RAS), addresses the future security concerns of path-based control-flow

attacks.

• Further hardware optimization to extend Control-Data Isolation to address execution

of path-based control-flow attacks. As CDI eliminates contemporary control-flow

attacks by securing the CFG of software at runtime, the future of attacks may exploit

control flow which adheres to the programmer-defined CFG. The final contribution of

Chapter 3 directly addresses future threats by including a new hardware structure, the

non-speculative Return Address Stack.

Software-Based Control-Flow Path Analysis. Leveraging the knowledge of how soft-
ware is engineered, tested, and executed by end users, this dissertation details a novel
approach to control-flow security for software. This approach changes the relationship be-
tween attackers, users, and developers. The work in Chapter 4 details the change of exploit
mitigation from a cycle of reactive solutions, to a proactive approach. The current industry
approach to software exploitation is reactionary: when attackers successfully compromise
a software system, the exploit is evaluated and a mitigating fix is developed and deployed.
Specifically, in Chapter 4 this work makes the following contributions:

• Chapter 4 presents the dynamic control frontier. This frontier defines the line of

demarcation between heavily tested paths of execution and those which are untested,

both by developers and end users. This frontier comprises a bridge between current

industry standard of software testing such as code and branch coverage, and the next

level of software testing in path-based testing coverage metrics. As it is currently

infeasible to achieve complete testing coverage of all possible paths of execution

in non-trivial software applications, the dynamic control frontier specifies the paths

where software defects which lead to exploits are likely to hide.

• Presentation of an effective, scalable, and decentralized approach to identifying the

dynamic control frontier for a program running across a large population of users.

• Presentation of a software implementation for harvesting dynamic control frontier
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information from individual user machines. The approach utilizes dynamic code in-

strumentation to limit the impact to application execution while providing appropriate

coverage of the dynamic control frontier in the aggregation of users.

• Demonstration of the value of the dynamic control frontier by showing that many

known security vulnerabilities may be found there. We show that dynamic control

frontier paths sensitize known exploits identified by the NIST National Vulnerabilities

Database.

• Evaluation of the effectiveness of the approach by exploring the performancecost

tradeoffs while harvesting DCF paths. We also developed a novel whole-path analysis

technique that allows us to gauge the coverage of the approach (i.e., the total percent

of dynamic control frontier paths found as a function of total population run time).

We present results for a wide range of non-trivial software packages that show our

approach achieves good coverage while keeping performance impacts low.

Lastly, Chapter 5 will offer conclusions on the insights of this work, along with future
directions for research in control-flow security.

Summary. In summary, this dissertation targets three pillars of control-flow security, as
shown in Figure 1.2. This dissertation directly addresses the longstanding vulnerabilities
of control-flow security through exploit analysis and the adoption of a subtractive solution,
removing the intrinsic mechanisms which enable control-flow exploits. This is accomplished
through a multi-pronged approach to the pervasive use of control-flow attacks in compromis-
ing the software attack surface. First, the role control-flow plays in exploits is analyzed. This
analysis then informs the approach of directly addressing the root of contemporary attacks,
indirect control-flow. Rather than the historical approach of mitigation, this work subtracts
the root mechanism enabling the vulnerability. This work demonstrates the feasibility,
efficacy, and efficiency of the elimination of indirect control-flow in software. Subsequently,
this work demonstrates how to eliminate the practical barriers to adoption of the techniques
proposed through hardware-software co-design. Finally, this dissertation addresses the
future of control-flow attacks after it eliminates their contemporary counterparts through
path-based control-data isolation.
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Figure 1.2 Elements of This Dissertation. This dissertation targets three pillars of control-flow
security. Chapter 2 targets software solutions to eliminate the root vulnerability of contemporary
control-flow attacks, through the introduction of control-data isolation (CDI). Chapter 3 develops effi-
cient hardware solutions to eliminate any remaining barriers to adoption of CDI, including significant
improvements in performance and security. Chapter 3 also details solutions to extend CDI protection
from ensuring control-flow edges to securing paths of execution. Chapter 4 details execution path
analysis to pinpoint where latent defects hide in software. This path analysis provides critical insight
to heavyweight software defect analysis, narrowing the state space for comprehensive software
testing.
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Chapter 2

Control-Data Isolation

People who pride themselves on their “complexity” and deride others for

being “simplistic” should realize that the truth is often not very

complicated. What gets complex is evading the truth.

Barbarians inside the Gates and Other Controversial Essays

Thomas Sowell

Computer security has become a central focus in the information age. Though enormous
effort has been expended on ensuring secure computation, software exploitation remains a
serious threat. The software attack surface provides many avenues for hijacking; however,
most exploits ultimately rely on the successful execution of a control-flow attack. This
pervasive diversion of control flow is made possible by the pollution of control flow structure
with attacker-injected runtime data.

Many control-flow attacks persist because the root of the problem remains: runtime data
is allowed to enter the program counter. In this paper, we propose a novel approach: Control-
Data Isolation. Our approach provides protection by going to the root of the problem and
removing all of the operations that inject runtime data into program control. While previous
work relies on CFG edge checking and labeling, these techniques remain vulnerable to
attacks such as heap spray, read, or GOT attacks and in some cases suffer high overheads.
Rather than addressing control-flow attacks by layering additional complexity, our work
takes a subtractive approach; subtracting the primary cause of contemporary control-flow
attacks. We demonstrate that control-data isolation can assure the integrity of the program-
mer’s CFG at runtime, while incurring average performance overheads of less than 7% for a
wide range of benchmarks.
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2.1 Introduction

The software attack surface constitutes a substantial threat to computer security. Software
vulnerabilities facilitate a wide array of security exploits: buffer overflows, heap spray
attacks, return-to-libc, integer underflow, code gadgets, and a host of others. Today, the risk
of software exploitation has escalated beyond DDOS attacks and amateur attacks such as the
Melissa virus [54]. In the commercialization of the malware industry, new and more serious
threats have emerged such as Crimeware, which perpetrate identity theft for the purpose
of monetary gain [75]. As most attacks are conducted within the application layer [56].
Control-flow attacks, which permit arbitrary code execution, have emerged as a primary
means to exploit software.

Our work drives to the heart of pervasive control-flow attacks by directly attacking
the root of the problem: user-data derived control-flow. Contemporary research to protect
control-flow has been focused on verifying the user data to be injected into the program
counter (PC) [2, 21, 68, 80, 127, 142, 150, 149] in an effort to establish trusted user data
for control-flow targets. These previous works approach control-flow security by layering
additional complexity on top of user data in an effort to shield the vulnerability from attack.
In this work we adopt a subtractive approach by removing the actual vulnerability. We simply

do not trust any user data, and instead remove all avenues for such data to be injected into

the program counter.

2.1.1 Control-Flow Attacks

Control-flow attacks implement the redirection of program execution to attacker-selected
code, either injected as user data or existing code in the form of code gadgets. These attacks
violate, at runtime, the control flow graph (CFG) of an application by corrupting the PC
with user-injected data, thereby allowing a program to execute a control edge not defined by
the programmer.

As introduced in Chapter 1, Control-flow attacks exploit an inherent weakness ubiquitous
in software development: determination of control-flow target addresses at runtime. It is the
enmeshed relationship between the Program Counter and runtime data which creates the
fundamental weakness of software to control-flow attacks. The classic example of such an
attack is the stack buffer overflow. When input to a buffer exceeds the pre-allocated size on
the program stack, the return address in the stack frame may be overwritten. In this case, the
user data is used as the target of a return instruction, which can then jump to malicious code
including the input buffer on the stack.
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As a critical element of software exploitation, considerable effort has been expended
to address control-flow attacks. Countermeasures such as stack protection, Address Space
Layout Randomization (ASLR), and Non-Executable Data (NXD) have been widely adopted.
Though many counter-measures have been devised [2, 21, 24, 127, 126, 142, 149], control-
flow attacks remain a pervasive threat to computer security [101] due to the persistence of
mixing runtime data with program control. Recently, mitigating techniques such as Control
Flow Integrity (CFI) [2] and its descendants [150, 149], Program Shepherding [80], and
taint analysis [67] have been proposed. These techniques, which propose increased security
through verification of runtime data, retain several vulnerabilities. Some are susceptible
to CFG forgery attacks or allow the PC to target the middle of a basic block (or even the
middle of an instruction). They also place constraints on their threat models that weaken
their protections, such as the requirement of non-executable data or the assumption that an
attacker cannot read or infer the contents of data memory. Additionally, most works do not
address call-graph based control flow (i.e., dynamic library calls and returns). In this work,
we relax the constraints of previous work, by assuming that the attacker has free reign over
all of data memory (read, write, and execute), while also addressing the important issues
of call-graph protection and dynamically introduced code such as shared libraries. The
limitations of previous works are discussed further in Section 2.8 and Table 2.2.

2.1.2 Control-Data Isolation

Previous works attempt to mitigate control-flow attacks through verification of the runtime
data which enters the program counter. Though this additional layer infers increased security,
it nevertheless leaves the original, fundamental vulnerability: user data is injected directly
into the PC. By contrast, this work eliminates arbitrary control flow by eliminating the

connection that exists between the PC and user data, a technique which we call Control-
Data Isolation (CDI). By disallowing the use of runtime data as control-flow targets, the
programmer can ensure that all executions adhere to their specified control-flow graph
(CFG).

In this paper, we implement CDI by generating code without the use of return and
indirect jump/call instructions, the two types of instructions in modern architectures that
connect user data and the PC. This creates some challenges in creating arbitrary code, in
particular for calls/returns, indirect function calls, and shared libraries, but we show in
Sections 2.2 and 2.3 how to implement (and subsequently optimize) these code sequences
without the use of indirect control-flow instructions. The programs we create completely

sever the link between the PC and user data, and if the entire system adheres to the principles
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of control-data isolation, all control changes are limited to valid CFG edges, eliminating

the way attackers execute control-flow attacks today.

2.1.3 Contributions of this Chapter

Primary accomplishment of this chapter is the identification the common thread of software

exploitation and the direct elimination of the root cause: the direct injection of user data into

the control structure of software. The majority of this chapter is derived from the published

work “Getting in Control of Your Control-Flow with Control-Data Isolation” [12]. This

chapter makes the following contributions:

• We present an effective, efficient, and scalable approach to enforcing the CFG of an

application at runtime. We implement control-data isolation (CDI) as a compilation-

based transformation to existing software applications and library code. We advance

the state-of-the-art in control-flow attack protection by targeting and eliminating the

root cause: the injection of user data into the program counter.

• We present an llvm-based compiler implementation that generates control-data iso-

lated code for non-trivial programs and shared libraries, eliminating the use of indirect

control flow in compiled programs.

• We analyze a diverse set of programs and design and evaluate targeted, profile-guided

optimizations to improve the performance of control-data isolated code.

• We evaluate the efficiency of CDI, showing through detailed experiments that the

performance and storage costs are minimal, less than many of the previously proposed

control-flow attack mitigation techniques.
This chapter, Chapter 2, encapsulates the following work. Section 2.2 provides an

in-depth analysis of CDI. Section 2.3 details our implementation approach of eliminating
all indirect control flow, while Section 2.4 addresses dynamic code from shared libraries.
Section 2.6 provides detailed analysis of our llvm compiler-based implementation, PitBull.
Experiments testing our method and a full analysis of results are delivered in Section 2.7.
Finally, Section 2.8 evaluates related works, and Section 2.9 highlights chapter conclusions.
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2.2 Protecting Control Flow with Control-Data Isolation

Control-flow attacks work by injecting malicious runtime data into the program counter of
a susceptible target process. They are a divergence from the programmer-defined CFG of
an application, occurring when an attacker creates new control-flow edges from user data
at runtime. This can take many forms such as return-oriented programming, heap spray
attacks, stack smashing, and even hijacking calls to library functions.

2.2.1 Threat and Trust Model

The goal of a control-flow attack is to subvert the control flow of a vulnerable process and
execute code of the attacker’s choosing. In this work, we consider the attacker to play
a powerful role. An adversary is assumed to possess arbitrary read, write, and execute
privilege to data memory, including the stack and heap. That is, we start from the position
that an attacker controls all of data memory. In traditional compilation techniques, many
control-flow target addresses are derived from or stored in data memory; hence, once an
attacker gains some level of read/write/execute control over data memory, there are typically
many avenues to direct program flow to code of their choosing. This is precisely how control
flow attacks are currently accomplished.

We do make the assumption that the attacker cannot arbitrarily overwrite executing code
segments at runtime. We see this assumption of non-writable code (NWC) as a fundamental
element of security. Without this one protection, the attacker could simply substitute their
own code for that of the application, obviating the need for control-flow attacks. Similarly,
the program loader is trusted, as a compromised loader could simply replace system code
with malicious code at load time. It is important to note, however, that the loader can be
protected against attacks with CDI, in the same way as other applications.

An important aspect of our relaxed threat model is the assumption that data segments,
specifically the heap, may contain executable code. As long as the non-writable code require-
ment is met, an application may execute code in the heap with full CDI protections. Previous
works including all works based on CFI [2], expressly forbid the execution of code on the
heap. This requirement is due to their susceptibility of forgery attacks. As they rely on labels
placed at target locations, a heap spray attack could create forged labels which fraudulently
identify malicious code as acceptable targets for an indirect call or jump. Our work is not
susceptible to this attack, as all targets are embedded into the existing programmer-specified
and loader-blessed instructions, eliminating the need to trust destination labels.

The key element of both our threat model and CDI principle is that user data expressly
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cannot be trusted. An important distinction between CDI and previous works such as CFI
[2], and its descendants [24, 150], is their use of a shadow stack [111] to secure all return
instructions. As the shadow stack is resident in data memory, it is inherently susceptible to
attack and requires additional protection measures, increasing the potential attack surface.
CDI provides the same protection against control-flow attack for all indirect instructions,
obviating the need to trust or shield user data.

2.2.2 CDI Threat Protection

The implementation of CDI eliminates the possibility of any runtime data being used as
a control-flow target address. In this work we accomplish this goal by disallowing the
execution of indirect control-flow instructions. Simply put, an indirect jump, call, or return
will never be executed. This eliminates the critical element pervasive to control-flow attacks.
Without these instructions, stack smashing, heap spray, buffer-overflows, return-to-GOT,
and return-to-libc attacks are crippled, as they all rely on the ability to derail the control-flow
of a process, currently achieved by polluting the data value of indirect control-flow targets.
Further, the availability of useful code gadgets and any remaining control-flow attacks are
diminished to legal traversals of the program’s CFG, since it is not possible to jump to
the middle of a basic block (or instruction). By addressing, and removing, the root of the
problem we can significantly reduce the software attack surface by limiting control to the
programmer-specified CFG. The extent of the protection is determined by the degree to
which the code running on the machine adheres to CDI principles. If all code running
utilizes CDI, then user-injected data cannot find its way into the PC, and the system is hard-
ened against control-flow attacks. To facilitate this ultimate goal, we focus on CDI-based
compilation for applications, libraries, and dynamically introduced code objects, such as
shared libraries.

In our relaxed threat model, we enable code to be executed in data space. This supports
the use of a prevalent technology previous works have not: just-in-time compilation (JIT)
and dynamically-generated code. JITted code presents challenges to CDI implementation,
such as jump tables for loop unrolling. However, problems analogous to this have already
been addressed by our work for similar structures such as the global offset table (GOT).
In essence, CDI compliant code does not inhibit just-in-time compilation. The process of
integration for dynamically-compiled code is found in Section 2.5.
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2.2.3 Achieving Higher Levels of Protection by Isolating Control and
Data

The threat model defined above creates many opportunities for ambitious attackers to achieve
arbitrary code execution. Some instructions, namely indirect control flow instructions, derive
control flow, in whole or part, on runtime data. When an attacker gains some level of control
over data memory, this runtime data can be manipulated in a malicious manner, permitting
an attacker to use (and abuse) the programmer’s indirect jumps at will. This can be observed
in attacks such as code gadgets, heap sprays, and buffer overflows. These attacks must, at
some point, rely on a control-flow target derived from user data which may be injected by
an attacker.

Int baz() {
  return; }

Int bar() {
  return; }

Int foo() {
  /* fptr */
  fptr = %cx;
  if(*fptr==bar)
   call bar;
Ret_1:
  else if(*fptr==baz)
   call baz;
Ret_2:
  else 
   call InvalidCFG!
Work:
          }      
      

Int bar() {
  if([%sp] == Ret_1)
   inc %sp;
   jump Ret_1;
  else
   call InvalidCFG!;}

Int baz() {
  if([%sp] == Ret_2)
   inc %sp;
   jump Ret_2;
  else
   call InvalidCFG!;}

Int foo() {
  /* fptr */
  fptr = %cx;
  call *fptr;
Work:
          }     

Vulnerable Code

Control-Data Isolated Code

 
Figure 2.1 CDI Control Flow Protection. Indirect branches are converted to direct conditional
branches, severing the link between potentially malicious runtime data and the program counter.

To assure that the program’s execution adheres to the CFG defined by the programmer,
we isolate control-flow from runtime data. To achieve this end, we focus on all control
flow decisions at runtime including those which are encapsulated in the executable code
objects and control transfers in between. Thus with CDI, all valid edges in the CFG of
an application are encoded in the programmer-specified and loader-blessed instructions
of an application. This CFG functions as the golden model which completely defines the
valid control flow of an application. That is to say, any dynamic paths which adhere to the
CFG are potentially secure, but any paths which violate the CFG are explicitly insecure.
By embedding all control-flow targets within programmer-written instructions, rather than
derived from user data, we eliminate the weakness in software which enables control-flow
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attacks.
Figure 2.1 depicts a simple code sequence vulnerable to control-flow attacks, and an

equivalent code sequence constructed with CDI that is protected from control-flow attacks
(the full details of this process are discussed in Section 2.3). To prevent exploitation of indi-

rect control flow instructions, we simply remove them from software. The indirect branches
are replaced by direct branches, which only allow predetermined know-valid edges. The
permissible targets of these instructions, i.e., Ret 1, Ret 2, bar, and baz, are identified
via CFG discovery.

The control-data isolated code has no avenue for potentially malicious runtime data
to be injected into the PC. As such, all target addresses of control-flow come from the
programmer-specified text segment of an application. By eliminating the use of indirect
instructions, attacks such as Stack Smashing become impossible to implement directly on
the programmer’s CDI-protected code. Similarly, attacks such as Heap Spray attacks rely
on the execution of a control-flow instruction which derives its target from data memory.
Even rootkits, where 96% of Linux rootkits integrate control-flow attacks [108], rely on
subverting data which is injected into the program counter. Additionally, return-oriented
programming (ROP) attacks, including those without any function calls, are defeated as
these attacks rely on an initial derailment of the control-flow from the CFG by user data
injected into the PC.

Implementing CDI requires validation of all control targets, which in turn requires
complete knowledge of the CFG. Indirect control flow instructions such as function point-
ers make control flow graph discovery a challenge. In spite of this, previous works have
demonstrated that the task of CFG discovery is achievable [2, 24, 134, 144, 150, 149]. Our
CFG discovery approach is addressed in-depth in Section 2.3. Another key challenge, often
overlooked by previous works, is control flow transfer between dynamically-linked objects
such as shared libraries. Our work solves this issue, as detailed in Section 2.4.

Indirect control flow is an intrinsic part of modern software, so its removal has the
potential to adversely impact the performance of programs. We address this concern by
leveraging profile-guided code generation to efficiently select validated targets, which is
detailed in Section 2.3. We develop an efficient, effective CDI software implementation
which assures the runtime integrity of a program’s CFG, demonstrated in Section 2.6. At
first glance, it may appear that eliminating indirect control flow will inherently result in
program slowdowns. However, previous research into devirtualization demonstrates that
such a process is utilized to facilitate program speedups [15, 73, 78]. Devirtualization is the
process by which dynamic virtual function calls are replaced with object test and direct calls,
similar to the process depicted for fptr in Figure 2.1. By leveraging superior branch pre-
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Analyze Whole-Program CFG

Convert Indirect Branches to Direct MBRs

Convert MBRs to Native Instr. Conditional Branch Sleds

Execute Program, Profiling Sled Usage

Indirection-Free Binary

Source Code

Optimized Indirection-Free Binary

Generate Profile-Optimized Sleds

 

Figure 2.2 CDI Compilation Flow. CDI-protected, indirection-free code is generated from appli-
cation source code. This process converts indirect control-flow to direct branching, which is then
profiled to optimize runtime performance of CDI-hardened code.

diction, devirtualization has been proven to improve execution speed in the object-oriented
languages to which it has been applied.

2.3 Control-Data Isolation via Elimination of Indirect
Control Flow

The work of creating software free of indirect control flow can be accomplished at varying
stages in software development. In this work we propose a combination of a compile-time
and load-time solutions that eliminate the use of indirect instructions in binaries. To achieve
this, we must discover the CFG of an application and from it identify the indirect branching
instructions and their control-flow targets. This information is used in eliminating indirec-
tion by substituting hard-coded, direct control flow into the target application. We also
implement and identify several optimizations to apply when creating applications free of
indirect control-flow.

An overview of this approach is shown in Figure 2.2. The CDI process begins by
discovering the CFG of an application, and subsequently identifying all indirect control
flow instructions, i.e., returns and indirect jumps and calls. These are then converted to
multi-way branches (MBRs) and a complete target set for each MBR is then identified. A
sled of conditional branch/direct jump pairs, one for each target, is substituted for each
MBR. The sled does the work of converting indirect jumps to direct ones, by comparing the
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proposed target one-by-one with all of the validated potential targets of the indirect jump.
An example of a sled is depicted in Figure 2.1 by the instructions:

if(*fptr==bar) call bar;

else if(*fptr==baz) call baz;

which are substituted for the vulnerable indirect call. When a matching target is found, a
direct jump is made to the validated target; otherwise, an invalid control-flow decision is
declared. The resulting code is dynamically profiled and optimized for performance. This
process is studied in further detail in Section 2.3.3.

2.3.1 CFG Discovery

To enforce the golden-model CFG at runtime, a complete CFG which encapsulates all
possible paths through a program for non-trivial software applications must be determined.
Lifting binary code to determine the CFG of an application is both an active and well
researched topic [7, 19, 18, 134]. However, such a task is made difficult specifically due
to indirect control flow. Previous works such as CFI have been able to determine the pre-
cise CFG from binary analysis, while in this work we obtain such information from our
llvm-based compilation flow.

We shall only consider indirect control flow instructions for CFG analysis, as direct
control flow instructions are both trivial for building a CFG and they are not subject to code
injection attacks (given the non-writable code assumption of our threat model). The key
issue, then, to constructing a runtime invariant CFG is to determine the set of all possible
targets for each and every indirect control flow instruction, as shown in Figure 2.3.

Considering software at a low level, indirect control flow may be categorized into three
groups: jumps, calls, and returns. Indirect jumps, such as those arising from switch state-
ments, are implemented for performance when the case set for a switch statement is
large. At compile time, the target set of basic blocks for the case statements is known,
making resolution of control flow edges simple. Other indirect jumps often have but a single
target, e.g., process linkage table (PLT) entries. These must be resolved at load time for
shared library linking. In any case, the exact address will be known at least by load time,
thus, the potential targets of indirect jumps are knowable before execution begins.

Direct function calls and returns may be resolved from the call graph for an applica-
tion. Indirect calls and their returns, however, are a special challenge which arises from
programming constructs like function pointers. Pointer analysis in general is difficult for
compilers, limiting optimization possibilities. However, in terms of CFG construction,
function pointer analysis has distinct advantages over conventional pointer analysis. Most
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for each instruction inst in application 

  if type(inst)  == return 

  target_set(inst) == all instruction  

after call_sites  

  elseif type(inst)  == indirect_call 

  target_set(inst) = all function  

where function_type(function) 

     == call_type(inst) 

  elseif type(inst)  ==indirect_jump 

  target_set(inst) = all instruction  

where instruction == target(inst)    

  elseif type(inst)  == virtual_call 

  target_set(inst) = all function  

where vptr(inst) ∈ vtable(function)    

  elseif type(inst)  == optimized_switch 

  target_set(inst) = all instruction  

where instruction == case(inst)    

  elseif type(inst)  == function_pointer_call 

  target_set(inst) = all function_ptr  

where function_type(function_ptr)  

 == function_type(inst) 

  replace inst with multi-way_branch mbr  

where target_set(mbr) ==target_set(inst) 

Figure 2.3 Indirect Instruction Target Set for CFG Construction. For each individual indirect
jump, indirect call, or return, all allowable control flow edges must be determined prior to
executing the code.

compilers, including gcc and g++, enforce function pointer assignment by argument and
return types. We leverage this knowledge for greater precision in call-graph CFG analysis.
There are special conditions which can work to defeat efficient function pointer analysis,
such as function pointer casting and return type casting, using data types such as void *.
However, a complete and correct (but perhaps conservatively constructed) CFG remains
determinable. In the worst-case analysis, a function pointer may be assumed to reach any
function. Performing function pointer analysis provides a more concise CFG, which further
reduces potential code gadgets. Concurrently, this also improves runtime performance by
reducing the size of conditional branch sleds for indirect function calls.

Virtual functions are implemented as indirect calls via the vptr attribute. Previous
work has shown that these may be converted to direct calls by source code rewriting [83].
During compilation however, the same essential information for vtable implementation, i.e.
class inheritance and overriding, is leveraged to derive a valid target set for a vptr directed
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call.
Returns are the most prevalent of all indirect instructions. In theory, the potential set

of targets for any return can be determined by identifying all call sites for a function. In
practice this does not always hold true, as programming constructs such as tail calls must be
detected to reveal the true target. By reverse CFG walking, all reachable paths are found to
determine possible return targets.

Position independent code (PIC) are code objects where the resolved address of any
instruction is not known until the library is loaded. This presents a special challenge to
discovering the CFG when considering objects compiled with PIC. However, the CFG for
this code is fully discoverable at compile-time, as the underlying information about target
sets for multi-way branches is available without dependence on addressing information.

2.3.2 Indirection Elimination

Elimination of indirect control-flow is the heart of this work. This severs the link between po-
tentially insecure data and the program counter. Once a complete CFG has been constructed
for an application, indirect control flow is no longer necessary for correct execution.

Indirection elimination is the process by which indirect control flow is replaced by direct
control flow. The most straightforward approach is to replace an indirect branch with an
equivalent set of conditional branches. This construct, called a sled, tests a potential target
address against the known set of valid targets identified by CFG discovery. For example,
a return statement would be replaced by a series of if...then statements, where each
if statement tested a potential known-valid return address, which if matched would lead
to a direct jump to the valid target. This process is depicted in returning from functions
bar() and baz() in Figure 2.1. After complete indirection conversion has been achieved,
all targets are reached by direct jumps or calls. Consider the event where an attacker is able
to corrupt the data for a return, i.e., stack smash. All potential valid targets will be tested
against the tainted value, which will fail to redirect control flow. At the end of any sled, a
direct call to an abort function is inserted. This allows for the graceful exit of the program
under attack, which can also be used to collect information on the attack.

Though elegant, CDI may introduce inefficiencies to runtime performance. Some instruc-
tions, particularly returns, may have a large set of valid control transfer targets. Performance
implications are explored in detail in Section 2.7.
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2.3.3 CDI Performance Optimizations

Assessing potential runtime implications of CDI, there are two major elements which may
contribute to a degradation in performance. The first is the number of targets for each
multi-way branch. A large set of valid targets will generate a correspondingly large sled of
conditional branches. This creates both a larger binary and the potential to execute a greater
number of instructions before taking the intended edge. There are several ways to address
this concern.

Multi-Way Branch Target Ordering. A significant optimization is the profile-guided
ordering of conditional branches in multi-way branch sleds, the process of which is shown
in Figure 2.4. Dynamic profiling of edge counts can dictate insertion order of conditional
branches. Complex orderings could be envisioned, such as tuning for branch prediction
accuracy. However, the simple method of ordering edges by descending execution frequency
provides a highly effective way to minimize the average number of not-taken branches
which must be executed before arriving at the correct edge.

Single Target Set Reduction. The simplest optimization is the reduction of single-target
indirect instructions to unconditional, direct jumps.

Frequent Function Cloning. Another straightforward optimization is function duplica-
tion for frequently called functions, which can proportionately reduce the set of valid return
targets for each individual function clone. This optimization works well for small functions
with many call sites.

Large Target Set Resolution. This optimization replaces a series of conditional branches
with another mechanism which has either constant or logarithmic time complexity, e.g., a
binary search tree. Any search method would incur some overheads, creating a minimum
threshold to seek an alternate for a series of conditional branches. For example, a long series
of conditional branches where the first is almost exclusively taken will execute faster than a
search over the same targets in the average case.

The second major performance factor in indirection elimination is branch prediction
performance for the inserted conditional branches. Branch mispredictions have non-trivial
impact on runtime performance of applications. As such, addressing the predictability of the
extra branches inserted to eliminate indirection is a concern. The only controllable dimen-
sion to conditional branch insertion is their ordering. Choosing an ordering by execution
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Figure 2.4 Dynamic Profiling for CDI Optimization. The runtime performance of multi-way
branches implemented with direct conditional branches is greatly impacted by target ordering. By
profiling target execution counts, we leverage inherent branch bias and order conditional branches by
execution frequency.

frequency, ascending or descending, provides the average-case performance benefit of exe-
cuting the most predictable branches first. Both the overwhelmingly taken and never taken
branches will be nearly perfectly predictable. However, ordering with the most oft-taken
branches first provides the added benefit of executing less untaken branches in the best and
average case.

2.3.4 Detecting Attacks in CDI Protected Programs

When a control flow attack occurs on a CDI protected program, the realized effect is to
exhaust the list of allowable targets in a conditional branch sled without taking any edge.
This will also happen in the event of a non-malicious data corruption bug affecting a po-
tential control-flow target. When this happens, the application will instead directly call a
handler routine which gracefully exits the program. This handler can aid in debug/diagnosis
by obtaining information about the crash, in the form of a unique ID for the call and the
offending target address. This data can then be analyzed to determine the nature of the
unexpected control edge.

To prevent control-flow attacks, it is essential to disallow any control flow which violates
the predetermined CFG. All control flow is classified as either authorized or illegal, to
facilitate our relaxed attack model (only a single illegal edge is needed to perform a heap
spray attack). By disallowing all illegal CFG edges, we remove the essential element of
control-flow attacks, thereby hardening software against them.
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2.4 CDI Implementation for Shared Libraries

Not all control flow edges originate and terminate within a target binary. Many applications
make calls to functions in dynamically-linked libraries at runtime. In order to provide
protection for any application, the library code it calls should also adhere to the principle of
CDI. To achieve this, we extend the use of indirection elimination to shared libraries.

2.4.1 Dynamic Nature of Shared Libraries

Shared libraries are referred to as such because a single copy of the library can be loaded
once into physical memory and shared at multiple start addresses by multiple processes
running concurrently. Further, they are dynamically linked when an application is loaded
into memory. The dynamic nature of shared libraries make them a natural match for indirect
control-flow. However, this also creates a natural vulnerability to control-flow attacks as
well. An example of this is the return-to-libc attack [29], which circumvents non-executable
stack protection to call attacker-desired functions in libc.

The dynamic nature of shared libraries, and their pervasive use of indirect control flow,
presents new challenges for implementing CDI. These challenges include position indepen-
dent code (PIC), the use of indirect jumps in the PLT in conjunction with the global offset
table (GOT), and returns to potentially many different applications from a shared function
in a library. Here we demonstrate the process of CDI in the context of shared libraries on
Linux systems, though similar methods would be applicable to other approaches such as
Dynamically Linked Libraries (DLL’s) for Windows.

The current implementation of dynamically-linked shared libraries on Linux operating
systems works as follows. Shared library code is compiled separately from application code
and linked together when the application is executed. This linking is accomplished by the
resolution of shared symbols in the symbol table of all linked objects. Each function call
to a shared library is facilitated by the PLT and the GOT. When a function is called, the
application executes a direct call to the PLT entry in the application code associated with
the shared library function. The PLT entry then executes an indirect jump to the function,
the target of which is stored in the GOT. When the library function completes execution,
control returns to the original call site.

To facilitate the sharing of libraries, the address of a shared library function in the virtual
address space must be resolved, as this is typically a randomized location in the memory
space due to ASLR. When a function is called for the first time, the target address of the PLT
jump in the GOT will not target the desired library function, but instead the next instruction

29



in the PLT entry. This is a direct jump to a helper function which will determine the actual
address of the desired function, via the program loader using the symbol tables of the code
objects. Once the target address is established, the corresponding entry in the GOT is
overwritten with the actual address of the desired function. This process is called binding,
typically seen as lazy binding where the binding between objects is done at runtime upon the
first invocation of a library function. This introduces an inherent weakness to control-flow
attack, as the GOT table of function addresses could be overwritten with data at runtime
which is then directly injected into the PC at the next shared library function invocation.
Attacks on the GOT due to this weakness have been demonstrated [28, 114].

2.4.2 Enforcing CDI for Shared Libraries

Elimination of indirect control-flow removes the need to establish trust in user data. Target
set resolution for MBRs remains the same process regardless of whether code is static,
relocatable or position-independent. However, PIC code cannot contain absolute address
references. To remedy this, all conditional branch/direct jump sleds are comprised of
PC-relative address references. This allows all jumps and calls within PIC code to be
implemented as direct jumps and calls.

In order to enforce CDI for shared library calls, our work eliminates the use of all indirect
jumps implemented in the current structure using the PLT and GOT. An overview of our
shared library implementation is depicted in Figure 2.5. Shared libraries remain separately
compiled and linked by the program loader when an application is executed. As before,
the PLT is used to invoke the library function. However, with CDI the program loader will
overwrite the indirect jump instruction in the PLT entry with a direct call to the address
of the library function, which was previously being written into the GOT as an indirect
target. This is depicted in the application in Figure 2.5. We enforce dynamic linking at
load time (i.e., non-lazy binding) before any runtime data is encountered. Thus, all control
transfer targets are derived from programmer-specified instructions and the program loader,
side-stepping any need to trust runtime data.

The task of returning from a shared library call is the last challenge in eliminating
indirect control flow, and it requires eliminating the use of the return instruction. Here
we leverage the same mechanism used to call the library function: the PLT. The return
instruction is replaced with a direct, PC-relative jump to a new PLT entry whose purpose is
to return control-flow back to the calling code object. This PLT entry then contains a direct
jump to one of two locations. In the case where only one dynamically-linked code object in
a process address space may call a given function, the PLT of the called function contains a
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Figure 2.5 CDI for Shared Library Control Flow Transfer. All indirect control flow is replaced
by direct calls and jumps, resolved at load time and written to the PLT, obviating the need for the
GOT in function calls. In the case where more than one object may invoke a library function within
the same process, an RLT entry is created, which executes a sled to return execution to the calling
code object PLT entry. This then selects the correct return point in the application. Each process has
a unique copy of the PLT and RLT while continuing to share the library code.

direct jump back to the PLT of the calling function. If there is more than one code object in
a process address space which may call the library function (e.g., malloc() is called by
both the application and library other than libc) then the single direct jump from the PLT will
prove insufficient. In this case, a new code object is defined, referred to as the return linkage
table (RLT). An RLT entry holds a conditional branch/direct jump sled which contains the
return target addresses for all of the possible calling code objects within the address space
of the process calling the library function. The PLT entry in the called function will then
directly jump to its respective RLT entry. When the prospective return address is compared
to the list of allowable targets and a match is found, the RLT then executes a direct jump to
the target. The RLT is depicted in the shared library object in Figure 2.5.

The inclusion of direct jumps in the PLT and RLT require that they not be shared in
memory (as they will differ for each application). Thus, they are aligned on page boundaries
immediately following the shared PIC code of the library. This facilitates the ability to reach
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the PLT for each application by the same instruction in the library function. Consequently,
all the benefits of shared libraries are retained such as dynamic linking and a single copy of
large libraries like glibc. Additionally, the elimination of indirection in the implementation
of shared libraries effectively removes the ability to perpetrate GOT-based attacks and any
attack which exploits a return instruction, as not a single return instruction will remain
in any code executed by a process.

It should be noted that the elimination of indirection in PIC is greatly aided by PC-
relative instructions in the x86-64 and ARM ISAs. In other ISAs such as 32-bit x86, PIC
implementation is more complicated by lack of PC-relative jump instructions. In such a
case, CDI can still be readily achieved. To accomplish this, sharing would be disallowed,
and libraries would be implemented as relocatable code, which is identical in implementing
CDI as application code.

2.5 CDI Compliant Code for Dynamic Compilation

As discussed in Section 2.2.2, the threat and trust model for CDI is fully compatible with
dynamically generated code or just-in-time compilation. Previous works based on CFI [2]
are subject to label spoofing attacks, making additional assumptions about memory security
such as disallowing code execution from the heap [10]. By contrast, CDI does not rely on
labels at the targets of indirect jumps but instead verifies targets at the source of the indirect
edge, as discussed in Section 2.2.1. This significant difference enables the integration of
dynamically generated code.

2.5.1 Dynamically Generated Code

The previous sections of this chapter have dealt with applications and software code objects
which are compiled in advance of execution, referred to as ahead of time compilation.
Alternate solutions, such as interpreted languages like Python and virtual machines like
the Java Virtual Machine (JVM) [131] allow code to be executed without being previously
compiled. While application of CDI to interpreted code is outside of the scope of this work,
the underlying applications which execute the interpreted code, such as CPython and JVMs,
are precompiled applications and thus can be compiled to be CDI compliant. In this section,
we will analyze the applicability of CDI to dynamically generated code for the Java Virtual
Machine, though such an analysis could be generalized to other dynamically generated code.

Early implementations of JVMs were criticized for slow execution [87]. To accelerate

32



execution of Java bytecode, frequently executed code can be compiled to machine code,
which can then be directly executed on hardware avoiding the overhead of the virtual ma-
chine. This is also known as just-in-time compilation (JIT). Over time, compilation for
JIT has become much more sophisticated, employing advanced compilation optimizations
[62]. The application of control-data isolation to just-in-time compilation is straightforward.
All intra-object control-flow would be made CDI compliant through the same compilation
strategy outlined in Section 2.3. Similarly, control-flow between interpreted code such as
the JVM and compiled code would be implemented as described in Section 2.4.

2.5.2 Threat and Trust Model for Dynamically Generated Code

Enabling control-data isolation for dynamically generated code requires revisiting the se-
curity model detailed previously in Section 2.2.1. The result is the identification of two
additional potential security concerns. The first is the attestation of dynamically generated
code to assure CDI compliance. This is achieved through verification that the code state-
ments comply with the intrinsic properties of CDI compliant code, as detailed in Section
2.5.3. The second is the assurance that once the dynamically generated code is written to
memory, it can not be overwritten by an attacker. For this second issue, memory protection
mechanisms such as mprotect on Linux or VirtualProtect on Windows operating
systems can be used to protect code at the page granularity from arbitrary modification. This
is precisely the same assumption as made in Section 2.2.1.

2.5.3 Properties of CDI Compliant Code

To assess the compliance of a given code object, we must first identify the properties of CDI
compliant code. As detailed in Section 2.2.3, control-data isolation is realized in this work
by the removal of all indirect control flow. However, simply scanning a disassembled binary
for indirect instructions is insufficient to determine whether code is CDI compliant. The
removal of indirect instructions during the CDI process results in some essential properties
of an application or code object. Here we detail those properties, and it is these properties
that render CDI-compliant code immune to control-flow attacks such as code gadgets, heap
sprays, buffer overflows, and stack smashing, among others.

Complete absence of indirect control-flow instructions. The first property of control-
data isolated code is the complete absence of indirect control-flow instructions. That is,
there are no instructions which modify the instruction pointer that reference registers or
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memory locations. The only allowable control-flow altering instructions contain targets
which are hard-coded within the instruction.

All control-flow altering instructions target the beginning of a valid instruction. An-
other property is that no control transfer will ever target an arbitrary byte in the code, i.e.,
the middle of an instruction.

All call instructions target the first instruction of a valid function. As a result of the
CDI compilation flow is that only valid function targets of a call instruction are allowable
for any function call.

All control-flow altering instructions target a valid instruction within the same code
object. As all indirect instructions are eliminated, all control-flow must originate and
terminate within the code object. The exception to this is the inter-object control flow
detailed in Section 2.4. The example of this is the use of the global offset table and process
linkage table. These instructions are explicitly identified and handled in the manor shown in
Figure 2.5.

2.5.4 CDI-compliant Code Attestation

Given the identification of properties of CDI compliant code in Section 2.5.3, we now
detail the process for attestation of CDI compliant machine code, the algorithm for which is
shown in Figure 2.6. Whenever a code object is dynamically compiled, it is first verified
to comply with the properties of all CDI compliant code. The first step of this process is
the disassembly of the code object, identifying all of the instructions in the code object.
The disassembled code is then scanned for any indirect control-flow instructions, failing the
verification if any exist in the code.

The control-flow graph for the code object is then constructed. Unlike the heavyweight
process of determining a CFG from the original code, the lack of indirection makes the
determination of the precise CFG straightforward. Constructing a CFG from compiled
code has long been accomplished with static binary rewriting techniques. Static binary
rewriting has been employed in Control-Flow Integrity [2] and derivative works, such as
that by Zhang and Sekar [150]. Once the CFG is constructed, all edges can be verified
as compliant to the properties identified in Section 2.5.3. The inter-object control-flow,
such as the mechanisms to return to the JVM once execution completes, is implemented in
the precise fashion identified for linking dynamically-linked libraries as shown in Section
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Figure 2.6 CDI Code Attestation]. Dynamically generated code is attested to be CDI compliant
in accordance with the threat and trust model additions detailed in Section 2.5.2. The process begins
with a code object which has been compiled with the CDI principle, as identified in Section 2.3.2.
This object is then disassembled to identify all instructions, which are examined to verify no indirect
instructions are present. The control-flow graph of the object is then discovered. The properties
inherent to all control-data isolated code, detailed in Section 2.5.3 are each then verified against the
list of instructions and CFG. In the case that all properties hold for the code object, it is considered
verified to be CDI compliant.

2.4.2. Following the above procedure for CDI compliance attestation and object linking as
detailed above and in Figure 2.6, the JIT compiled-code pages are marked as non-writable
code, completing the verification process for ensuring dynamically compiled code is CDI
compliant.

2.6 PitBull: Compiler-Based Control-Data Isolation

To validate our control-data isolation enforcement via indirection conversion, PitBull
(Positive Indirection elimination By lllvm) was built. PitBull is a compiler optimization
utilizing the llvm compiler infrastructure [86]. The set goal was to establish feasibility
for indirection-free executables. Of equal importance, this also facilitates the analysis of
runtime performance implications of CDI.
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Figure 2.7 PitBull Compilation Flow. Applications are compiled to be free of indirect control
flow instructions. Leveraging the llvm compiler infrastructure, optimization passes identify all valid
targets of indirect control flow and insert conditional branches in replacement.

The llvm optimization-based implementation of PitBull, shown in Figure 2.7, works as
follows. The target applications are first compiled to llvm-IR with the clang compiler. All
IR files are then linked by the llvm-link tool. A standard optimization pass is then performed
by the llvm tool opt. At this point the target executable has been compiled into llvm-IR
and is ready for our indirection conversion optimization passes, invoked again with the
llvm tool opt. The primary pass first identifies the nodes and edges of the CFG relevant
to indirect calls, jumps, and returns. Function pointer analysis is performed to identify
control flow edges not readily available from the standard dot-callgraph llvm opt pass. Once
the targets of indirect control flow instructions have been identified, indirect call and jump
instructions are replaced with a series of if..then (icmp..br)statements. For each
allowable target, a compare is made to the candidate target, followed by a direct jump to
the allowable target. A second pass then aggregates call and return data in preparation for
the ensuing assembly-level rewriting passes. The transformed llvm-IR is then compiled to
assembly via the llvm llc tool.

At this point, indirect calls and jumps have been eliminated from the target application.
Returns are then handled by assembly code rewriting. First, a label is placed after each call
of the program. Next, all return statements are replaced with a series of compares and direct
jumps. The set of valid return targets, provided by the first opt pass, have their correspond-
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ing newly inserted labels compared to the stack pointer. Each compare is followed by a
conditional direct jump to the compared label. After all compares and conditional jumps are
inserted, a terminating call to the attack handling routine is inserted. Since we substitute
direct jumps for returns, the stack pointer is incremented before any compares, which then
compares to the stack pointer minus one word.

All indirect instructions have now been replaced by compares and direct jumps. The code
is then assembled and an executable is produced. We note that the process for relocatable
code is exactly the same as that for static application code. When the code is relocated at
load time, the relocation table will update all absolute address references with their new
location, for both the compares and direct jump instructions.

To facilitate shared libraries, we also eliminate indirect control flow instructions in
PIC code. This requires a more nuanced approach than static or relocatable code. The
target sets for indirect branching instructions are identified exactly as before. However, the
inserted sleds must be PIC-compliant and may not contain absolute address references. To
implement this, our system instead utilizes PC-relative instructions. For each allowable
target, a comparison is made to the candidate target, followed by a PC-relative direct jump.

In our framework, we do not implement load-time functionality. This means that our
current llvm compiler-based implementation does not provide our proposed CDI protection
against GOT-based attacks. However, we do model overheads associated with dynamic
library implementation, including non-lazy binding. Further, the additional sled added to the
calling application PLT, depicted in Figure 2.5, is simulated by adding the sled as padding
to the return location of the called library function. The execution of library calls would be
nearly identical in performance, save the last step would be a direct call from the PLT. As
stated for devirtualization in Section 2.2.3, this is expected to improve execution time for
calls. Returns from libraries would potentially suffer from additional RLT entry traversal.
However, this impact would be minimal, as in our benchmarks only 2% of control transfer
from library calls require an RLT entry, while the remainder would jump directly from the
PLT of the shared library to the PLT of the application.

2.7 Experimental Evaluation

To fully understand the runtime implications of CDI, the performance of our compiler imple-
mentation was evaluated. The testing platform consists of 64-bit x86 workstations running
Ubuntu 12.04 LTS Precise Pangolin with Linux kernel 3.5.0-39-generic. Compilation and
optimization is accomplished with clang and llvm, both release version 3.3. All optimization
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passes are registered llvm passes, while the assembly code rewriting is performed using Perl.

2.7.1 Benchmark Applications

Several security-sensitive and network-facing applications were chosen to evaluate runtime
performance. These include sha1sum, sha256sum, sha512sum, and md5sum from the GNU

Coreutils suite, as well as tcpdump, a popular network packet analyzer and bftpd, an ftp
server. The SPECINT2000 benchmarks were also included to allow a direct comparison
between our work and earlier works such as CFI [2]. We further implemented CDI for the
musl libc library [99], due to a known lack of compatibility between clang and glibc.

2.7.2 Performance Evaluation

SPEC benchmarks were executed with the standard runspec interface. Other benchmarks
were executed while processing as input large, 45GB network capture files. Results are
timed and averaged over 5 runs, shown in Table 2.1. The runtime overheads shown reflect
the increase in runtime for benchmarks relative to the original, unmodified applications.
Default compilation parameters are held constant for both original and modified binaries.
The nave runtime overheads represent the performance overhead without any subsequent
optimizations. Ranging from almost zero to nearly 2× slowdown, the nave implementation
averages about 45% for all benchmarks. When optimizations are applied (as detailed in
Section 2.3.3), we see a dramatic decline in the execution overheads for all benchmarks,
where over half have no perceivable overhead at all. There is also a noticeable difference in
runtime overheads between SPEC benchmarks and the network-facing applications. SPEC
benchmarks, by design, are generally compute-intensive workloads. However, the remaining
applications, such as tcpdump, typically have performance which is I/O bound. For these
workloads, which are a prime candidate for CDI protection, the cost for such protection is
hidden by I/O overhead.

2.7.3 Impact of Optimization

As observed in Table 2.1, optimization has a considerable impact on performance. There are
two main factors which influence this; the heavily biased nature of dynamic branch execu-
tion, and the execution frequency of indirect control flow instructions. In our experiments,
we implemented an optimization based on execution frequency of indirect branch targets.
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Benchmark 

Optimized 
Runtime 

Overhead 

Naïve  
Runtime 

Overhead 
Binary Size 

Increase 

Valid Control Flow Edges per Indirect Instruction 

Static Dynamic 

Max Mean Median Mode Max Mean Median Mode 

gzip 0.7% 4.3% 14% 45 5.7 2 2 15 3.0 2 1 

vpr 1.0% 2.5% 33% 116 5.1 3 2 20 2.7 2 1 

gcc 34.4% 59.2% 112% 194

6 
30.3 8 2 648 5.5 2 0 

mcf 0% 0% 10% 2 1.0 1 1 2 1.0 1 1 

crafty 4.0% 10.0% 29% 33 5.8 3 2 16 2.4 2 2 

parser 5.3% 39.3% 46% 216 8.3 3 2 151 6.1 2 2 

eon 22.8% 51.2% 73% 114 7.2 2 0 33 0.5 0 0 

perlbmk 20.9% 189.1% 148% 537 31.4 18 18 134 3.8 1 0 

vortex 20.1% 143.0% 42% 192 11.7 4 3 158 8.7 2 1 

bzip2 0.9% 1.5% 9% 3 2.1 2 2 3 1.4 1 1 

twolf 0.7% 1.1% 24% 18 3.8 2 2 8 1.5 1 1 

md5sum 0% 0% 25% 8 2.6 2 2 3 1.0 1 0 

sha1sum 0% 0% 22% 8 2.6 2 2 3 1.0 1 0 

sha256sum 0% 0% 20% 8 2.6 2 2 3 1.0 1 0 

sha512sum 0% 0% 16% 8 2.6 2 2 3 1.0 1 0 

bftpd 0% 0% 81% 109 6.8 2 2 41 1.5 0 0 

tcpdump 0% 1.2% 174% 400 75.5 65 65 14 0.1 0 0 

SPEC Avg. 10% 45.6% 49% 134 10.2 4.4 2 108 3.7 1.5 1 

 

 
Average 6.5% 29.6% 52% 293 10.2 4.4 2 74 2.5 1.2 0 

Table 2.1 Control-Data Isolation Performance. The optimized runtime overhead from CDI ap-
pears in the first column. The last 8 columns detail indirect control flow edges metrics for benchmarks.
The static details the properties of the CFG related to indirect control flow instructions. Dynamic
data reflects the runtime control edges seen during execution. Together, these contrast dynamic and
static properties of control flow. Runtime overhead can be seen to positively correlate with control
flow edges.

Benchmark applications were profiled to collect edge counts for the MBR edges. This
information is then fed back into a second compilation. Edge counts are utilized to order
conditional branch insertion for indirection conversion, by descending order of execution
frequency. This yields the optimized performance shown in Table 2.1.

When considering the dynamic behavior of branches, it has long been known that
branches are heavily biased to one particular branch direction during execution [147]. This
biased property strongly facilitates the high accuracy of modern branch prediction.

Though indirect branches are more difficult to predict [41], they remain highly biased
as well [142]. To assess this bias, we profiled execution of benchmarks to determine the
distribution of dynamically executed targets, shown in Figure 2.8. When indirect control
flow instructions are broken down into binary branch decisions, the resulting control flow
points, taken individually, become more easily predicted than the original indirect branch.
As shown in Table 2.1, the dynamic target set is considerably smaller than the static set.
The data in Figure 2.8 strongly supports our MBR optimization, previously identified by
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Figure 2.8 Indirect Branch Bias. Branching instructions are heavily biased in execution. The per-
centage of instructions as a function of the most common targets for each indirect branch/call/return
are binned by execution frequency. For all benchmarks combined, the most commonly executed
target of each MBR accounts for over 66% of all edges executed.

Chang and Hwu [33] for multi-way branches implemented for switch statements. In their
work, any switch statement with less than ten branches would be implemented as sleds
of conditional branches and direct jumps, ordered by profiled execution frequency. This
highlights the crucial factor for runtime overheads; dynamic branching properties, not static,
are the driving force behind runtime performance.

The second property of software which heavily dictates the performance of indirection
conversion is the relative execution frequency of indirect control flow. For all benchmark
applications, indirect instructions accounted for 1% of the total instructions executed. Cou-
pling this with highly biased branches, it is no surprise that indirection-free transformations
incur minimal overheads.

As shown in Table 2.1, runtime overheads generally tend to be positively correlated with
the size of target sets for indirect instructions. One indirect instruction in the gcc benchmark
had 648 different valid targets executed at runtime (a return instruction). That implies
that at least once, a function was forced to execute 647 not-taken conditional branches before
finding the correct edge for a return. This highlights the opportunity for low time-complexity
alternatives to conditional branch insertion, as discussed in Section 2.3.3., which is left for
future work.

2.8 Related Work

This work is conducted in light of many techniques which have been devised in an attempt
to address control-flow attacks. An abridged list is presented here, divided into software and
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hardware approaches. Direct comparisons are summarized in Table 2.2.

 

Work 

Explicit Dependencies 
Susceptible to these 

Attacks 
Relies on Data 

Memory 

Security 

Eliminates 

Usage of 

Indirect 

Control 
NWC ASLR W⊕X 

Shadow 

Stack 
Heap 

Spray 
GOT Read 

This work Yes No No No No No No No Yes 

Abadi et al. 

[1] 
Yes No Yes Yes No Yes No Yes No 

Xia et al. 

[142] 
Yes No No No Yes Yes No Yes No 

Budiu et al. 

[24] 
Yes No Yes Yes No Yes No Yes No 

Zhang, 

Sekar [150] 
Yes No No Yes No No No Yes No 

Kiriansky 

et al. [80] 
Yes No No No No No Yes Yes No 

Cowan et 

al. [43] 
Yes No No No Yes Yes Yes Yes No 

Table 2.2 CDI Related Works. The first set of columns details what system dependencies are
explicitly required to maintain the purported security benefits of a work. The next set details which
vulnerabilities a work provides no hardening against. The final column states whether a work elimi-
nates the root cause of contemporary control flow attacks: indirect control-flow. Our work remains as
the single one to harden against all control-flow attacks while maintaining only the most fundamental
dependency of NWC. NWC=non-writable code, Shadow Stack=separate stack in memory to verify
return address targets, GOT=Attacks on calls to libraries, Read=Technique is weakened if attacker
can read or infer any data memory contents or locations.

2.8.1 Software Mechanisms

An important work in this area is Control Flow Integrity (CFI) by Abadi et al. [2], which
spurred an avalanche of interest in the dynamic enforcement of software CFGs at runtime.
The relatively low overhead, simple solution set a high bar for all subsequent efforts. In
their work, the authors utilized a labeling system to verify the authenticity of a target ad-
dress. Return instructions are guarded by a shadow stack, with the code segment register
functioning as the shadow stack pointer. Though CFI is an elegant solution, it relies on a
more restrictive attack model than our work while incurring greater execution overheads.
Further, with reliance on a shadow stack located in data memory, and not addressing shared
library calls and returns, there are continued concerns about control-flow attacks. In contrast,
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CDI’s threat model assumes that the attacker fully owns data memory, with read, write, and
execute privilege.

A recent work which expands upon CFI is Control Flow Integrity for COTS Binaries
[150] by Zhang and Sekar. This work provides a solid implementation for CFI instrumenta-
tion for stripped binaries. However, it was not extended to protect control transfer between
shared library and application code (e.g., GOT attack [28]). It also retains limitations from
binary-rewriting such as not handling dynamic code generation.

G-Free [104] is a compiler-based approach to eliminating ROP attacks. This is a two-
pronged approach of excising unintended return or return-like instructions, along with
encryption-based verification of the context in which indirect branches are executed (e.g., a
return instruction is executed only after the first block of the function in which it resides
has been executed). Though this appears to constrain code gadgets, the approach offers no
protection from non-code gadget attacks such as heap spray and return-to-GOT.

Another foundational work is Secure Execution Via Program Shepherding by Kiriansky
et al. [80]. Utilizing dynamic binary instrumentation, Program Shepherding enforces a
security policy by monitoring control flow transfer at runtime. Though Program Shepherding
could enforce a policy similar to CDI, it still cannot determine all valid indirect branching
targets without nontrivial compilation support (such as what we propose in this work). The
CFG as enforced by program shepherding is emblematic of the actual CFG, and therefore
cannot offer the same level of protection as CDI. When an application’s CFG is discovered
at runtime, the targets of indirect jumps cannot be known before they execute, and therefore
cannot be verified dynamically. This allows a jump to the middle of an x86-64 instruction,
permitting unfettered code gadgets within an application.

Recently, compiler-based solutions have also been proposed. One such work is Enforcing
Forward-Edge Control-Flow Integrity in gcc & llvm [137], which instruments applications
with CFI checks and labels at compile time. Though Tice et. al. achieve low runtime
overheads, they do not address return instructions, which constitute the majority of indirect
control flow. Their approach remains vulnerable to code gadgets, as the range verification
for jumping to compiled executables allows jumping to the middle of instructions.

Another compiler-based approach to CFI is Control-Flow Restrictor: Compiler-based
CFI for iOS [109]. In their work, Pewny and Holz share the most commonality with our
work, applying a similar MBR conversion approach. However, focusing on iOS on an ARM
platform, they do not explore large, complex applications with many functions or topics
such as PIC or shared libraries.
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2.8.2 Hardware Solutions

A variety of hardware-based solutions have been proposed to address control flow security.
One example is Architectural Support for Software-Based Protection [24]. That work is an
extension of the original CFI [2] work, with a proposed ISA extension to move CFI label
checking into hardware. This work carries with it the same weaknesses as CFI. Another
hardware solution is offered in the work CFIMon: Detecting Violation of Control Flow
Integrity using Performance Counters by Xia et al. [142]. This work leverages existing
hardware in the form of performance counters. Though their solution has low overheads, it
has to contend with deficiencies such as false positives and negatives, as well as allowing
suspicious branch targets to execute, making the technique readily susceptible to heap spray
attacks.

It should be noted that all previous works may be classified as mitigation techniques.
That is, they all seek to guard, verify, or otherwise shield the root of the problem for
control-flow attacks: indirect branching. As such, they all rely heavily on a host of security
assumptions, which are in turn susceptible to attack. Regardless of the proposed solutions, of
which there are many, control-flow attacks persist. In contrast, our work directly addresses
the root issue and permanently removes it by isolating control from user data.

2.9 Chapter Conclusions

Computer security has become a dominant topic in the information age. The software attack
surface has remained as a chief area of security exploit for years. Though vulnerabilities
have been well studied, exploitations persist. Given the continuing nature of these attacks,
this work directly addresses and eliminates the prevailing root of the problem: indirect
control flow.

In this work we presented a novel approach to software security, called control-data
isolation, which eliminates the link between potentially malicious runtime data and program
control by eliminating the use of indirect control in generated software. We have shown that
eliminating the root cause giving rise to the predominant mode of control-flow attacks is
not only feasible, but has minimal impact on runtime performance. Control-data isolation
provides a greater level of security than previous proposals while experiencing overheads
that are comparable or better. We feel strongly that by directly addressing control-flow
attacks, rather than mitigating them, the overall software attack surface can be greatly
diminished.
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Chapter 3

Locking Down Insecure Indirection with
Hardware-Based Control-Data Isolation

Matter is plastic in the face of Mind.

Valis

Philip K. Dick

Arbitrary code injection pervades as a central issue in computer security where attackers
seek to exploit the software attack surface. A key component in many exploits today is the
successful execution of a control-flow attack. Control-Data Isolation (CDI) has emerged
as a work which eliminates the root cause of contemporary control-flow attacks: indirect
control flow instructions. These instructions are replaced by direct control flow edges dic-
tated by the programmer and encoded into the application by the compiler. By subtracting
the root cause of control-flow attack, Control-Data Isolation sidesteps the vulnerabilities
and restrictive threat models adopted by other solutions in this space (e.g., Control-Flow
Integrity). The CDI approach, while eliminating contemporary control-flow attacks, intro-
duces non-trivial overheads to validate indirect targets at runtime. In this work we introduce
novel architectural support to accelerate the execution of CDI-compliant code. Through the
addition of an edge cache, we are able to cache legal indirect target edges and eliminate
nearly all execution overhead for indirection-free applications. We demonstrate that through
memoization of compiler-confirmed control flow transitions, overheads are reduced from
19% to 0.5% on average for Control-Data Isolated applications. Additionally, we show
that the edge cache can efficiently provide the double-duty of predicting multi-way branch
targets, thus providing even speedups for some CDI-compliant executions, compared to an
architecture with unsophisticated indirect control prediction (e.g., BTB).
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3.1 Introduction

Computer security has become an ever-rising concern in the modern world. At the heart of
security lies the software attack surface. This surface provides attackers with a wide range
of opportunities to exploit computing systems. Well known vulnerabilities run the range
from code gadgets, return-to-libc, heap spray attacks, rootkits, the classic yet still pervasive
buffer overflows, and a plethora of other attacks. The effort of attackers to exploit the soft-
ware attack surface continues to grow in the malware arms race [49]. Indeed, most attacks
continue to be conducted within the application layer [55]. In this realm of exploitation,
arbitrary code execution, generally achieved by control-flow attacks, pervade as a primary
means to attack software.

We build on a novel control-flow attack elimination method, Control-Data Isolation
(CDI) [12], which protects programs from control-flow attacks by eliminating all indirect
control transfers. We address the non-trivial performance impacts of CDI programs, by
introducing hardware that virtually eliminates the performance penalty associated with
ensuring secure control flow at runtime. We demonstrate that through high-accuracy mem-
oization of programmer-intended, compiler-selected indirect control transitions, we can
nearly eliminate the runtime costs of eliminating contemporary control-flow attacks. In
addition, we demonstrate that the structures we add to speed up CDI execution can easily
perform the double duty of multi-way control point prediction, thereby providing even
opportunities to speed up CDI program execution, compared to targets with simple indirect
control predictors (e.g., BTB).

3.1.1 Control-Flow Attacks

As we have shown in Chapter 1, control-flow attacks persist as a primary building block
for software exploitation. These attacks target the program counter (PC) of a system, redi-
recting program execution to code of the attackers choosing. This code can be existing
code in the application space, or injected by the attacker as user data. In any case, all forms
of control-flow attacks corrupt the PC of an executing application with the injection of
malicious user data. These attacks violate the programmer-intended control-flow graph
of an application. A classic example of control-flow attacks is a buffer overflow. In this
attack, a buffer located on the stack (i.e., local function variable) receives malicious input,
overflowing the bounds of the array, overwriting the return address on the stack and directing
execution to attacker-injected code on the stack. This chapter will continue to build upon
Chapter 2 in the elimination of control-flow attacks.
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As detailed in Chapters 1 and 2, control-flow attacks and code injection have grown
as a major threat to computing, many works have sought to address them. These include
mechanisms such as Stack Guard [44], Point-Guard [43], Address Space Layout Random-
ization (ASLR), Read or Execute memory page protections, and others. Additionally,
these attacks have received considerable attention within the research community. Earlier
works such as Program Shepherding [80] have attempted to address control-flow attacks,
as well as Control Flow Integrity (CFI)[1] which has inspired many descendant works
[37, 52, 98, 107, 127, 142, 149, 110]. Adoption of these countermeasures serves to make
control-flow increasingly difficult, but ultimately, these countermeasures only represent
stumbling blocks for attackers, as they have repeated devised more sophisticated attacks
(e.g., heap spray attacks), and blended attacks (e.g., canary key read attacks), such that
control flow attacks remain a dire software vulnerability to this day.

At the heart of all contemporary control flow attacks lies an inherent weakness pervasive
in software: indirect control flow. That is, attackers exploit the operation of determining
control flow targets at runtime from user-injected data. The mixing of runtime data and the
program counter continues to enable such attacks.

3.1.2 Control-Data Isolation

Control-Data Isolation (CDI) [12], detailed in full in Chapter 2 of this dissertation, has been
proposed to eliminate contemporary control-flow attacks. CDI, reviewing from Chapter
2, takes the approach of removing the inherent weakness software has to contemporary
control-flow attacks: indirect control flow. By stopping the mixing of control information
and user data, through the elimination of all indirect control transfer instructions, CDI
removes the one tool attackers have to force a program off the programmer-intended
CFG. As such, programs that enforce CDI inherently enforce the control-flow graph (CFG)
of an application. That is, all dynamic control flow decisions are hard-coded directly into
the instructions of an application text segment protected as executable and non-writable in
memory.

Reviewing the concepts of Chapter 2, CDI works by compiling the program without
indirect control instruction, e.g., jumps through register, returns, indirect calls, and replacing
them with multiway branch code sequences that validate any attempted multiway branch
target is to an expected and valid control target. The compiler, using whole-program control
and call graph analysis, generates the complete list of valid indirect targets, which is then
embedded into the program using a “sled” code sequence construct. Previous work has
shown that this approach works for regular programs as well as shared libraries, and even
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dynamically generated code with a limited degree of operating system support.
The major limitation to approaches such as CDI (as well as CFI and other such works) is

the performance penalty associated with executing these conditional branch sleds in lieu of
indirect instructions. This arises from the relevant frequency of indirect instructions such as
return, as well as the potentially long sleds for popular functions. As well, such sleds can
inflate the binary of applications, causing added pressure to instruction caches. Additionally,
executing more direct control-flow instructions also increases load on prediction mechanisms
such as the BTB and conditional branch predictor of a processor.

3.1.3 Advancing CDI with Architecture Support

To facilitate the adoption of Control-Data Isolated code, this chapter introduces a novel,
conditional branch sled-backed, capability to safely allow indirection. Our work couples
an indirect jump (such as jreg, indirect call, and return) with a sled of direct compares
and jumps. When indirect instructions are first encountered in a program execution they
are not yet validated. Thus, they will not be executed and the sled comprising all allowable
control-flow transitions for the indirect instruction is instead executed. If the sled indicates
that an indirect jump target is valid, it will result in a taken conditional branch. This valid
control flow edge is comprised of the indirect PC address and the target address of the taken
conditional branch. This valid CFG edge is then stored in an edge cache. As indirect control-
flow instructions are encountered in program execution, we first probe the edge cache by
the indirect PC address and register-derived target address. If this edge is represented in
the edge cache it was formerly generated by executing the direct control flow encoded in
the sled. In this case, the sled is skipped, and the indirect control instruction is allowed to
execute. If the indirect instruction and its proposed target cannot be validated by the edge
cache, the sled is executed to its valid edge and this new edge consisting of source and target
addresses is cached.

Using this approach, we ensure that all control-flow edges are validated against the
whitelist of targets represented in the sleds. As our results show in Section 3.5, a trivial
fraction of sleds is actually executed resulting in nearly no slowdown for this powerful
control-flow protection mechanism. Additionally, we observe that the information contained
in the edge cache, combined with history information, could provide double-duty as an
indirect branch predictor. We propose additions to the indexing mechanism of the edge
cache for prediction of indirect branches. Accurate indirect branch prediction remains an
important problem in computing and continues to be the subject of contemporary research
efforts [51, 118, 124]. Works such as ITTAGE [124] continue as even small improvements

47



to prediction rates can yield worthwhile performance gains. As such, we show that, com-
pared to architectures with only simple BTB-based indirection prediction, using the edge
cache additionally as an indirect predictor results in a modest speedup for CDI-compliant
programs, with some applications reaching up to over 6% performance improvement.

3.1.4 Contributions of this Chapter

The primary achievements of this chapter are two-fold. The first is the elimination of
the potential overheads of Control-Data Isolation remaining from the previous work of
Chapter 2. The second purpose of this chapter is to extend the principles of CDI to paths
of execution. The majority of this chapter is derived from the publication “Locking Down
Insecure Indirection with Hardware-Based Control-Data Isolation” [10] This chapter makes
the following contributions:

• We show how simple hardware and software for CDI support can guard a program

from control-flow attacks.

• We demonstrate that edge caching eliminates nearly all of the slowdowns associated

with the execution of indirect jump validation sleds.

• We explore how the use of the edge cache as an indirect branch predictor enables

speedups for select CDI-compliant programs compared to architectures with simple

BTB-based indirection prediction.

• We detail a novel hardware mechanism to extend the principal of control-data isolation

toward the elimination of path-based control-flow attacks. As shown in Chapter 2,

CDI eliminates contemporary control-flow attacks. In this chapter, we show how

simple hardware support can eliminate future attacks in control-flow security which

violate the programmer-intended paths of execution for applications.

This chapter, Chapter 3, encapsulates the following work. Section 3.2 reviews how
control flow is protected by Control-Data Isolation and details how to accelerate execution
of CDI-compliant code while Section 3.3 details our proposed edge cache and indirect
prediction mechanisms. Section 3.4 then provides details of our implementation and Section
3.5 shows and discusses results. Section 3.7 highlights related works in control-flow security
and we conclude in Section 3.8.
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3.2 Protecting Control Flow with Control-Data Isolation

Arbitrary code injection attacks are the end goal for many attackers. At the heart of code
injection are contemporary control-flow attacks. CDI protects against the subversion of
control flow at runtime by eliminating the use of indirection.

3.2.1 Threat and Trust Model

In this work, we adopt a relaxed threat model and minimal trust model, similar to previous
CDI work [12]. In our threat model, an attacker is presumed to possess great influence
over a system. In this, we assume that any attacker has arbitrary and complete control over
data memory. That is, an attacker is assumed to be allowed read, write, and even execute
privilege over data memory.

Delineating our trust model is simple. We only presume that an attacker does not possess
the ability to overwrite information from the code segment of an application at runtime.
That is, we rely on memory protection of write or execute for the code of a target appli-
cation. We consider this a basic tenet of security. Violation of this trust obviates the need
for a control-flow attack, as arbitrary code injection would be replaced by arbitrary code
replacement.

3.2.2 Control-Data Isolation Mechanism

Contrary to prior works, CDI takes a subtractive approach to preventing code injection. In
prior works, control-flow attacks have been addressed by layering additional complexity
onto the software stack in an effort to shield software from exploitation. These additional
layers of complexity are intended to protect the underlying indirect control instructions
from malicious user data. However, the additional layers rely on supplemental, restrictive,
security assumptions and may be subject to attack themselves, such as the Rio platform
supporting Program Shepherding [80]. Further, recent work by Davi and Sadeghi [47] have
demonstrated that the policy of recent course-grained CFI works [37, 52, 98, 107, 150] are
still subject to control-flow attacks. Control-Data Isolation has emerged as a novel approach
in addressing and eliminating control-flow attacks by subtracting the root cause of indirect
control flow. Specifically, control-data isolated code completely removes indirect control
flow from software, thereby severing the path between user data and the program counter.
Without this capability, it is not possible to exit the programmer specified CFG.

Control-Data Isolation is achieved by a compilation process, which replaces unsafe,
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indirect control-flow, instructions with direct control-flow instructions. First, the entire
control flow and call graph of an application must be determined. This enables the encoding
of the programmer-intended edges of a CFG into the direct branches of an application. Once
the CFG is fully discovered, all indirect instructions such as return’s, indirect calls and
indirect jumps are converted into Multi-Way Branches (MBRs), where each allowable target
of an MBR is defined and encoded by an edge in the CFG. These MBRs are subsequently
converted to what are referred to as conditional branch sleds consisting of a sequence of
compares and direct jumps. In essence, the sled constitutes a whitelist of allowable targets
for any particular indirect jump; any transfer not contained in the whitelist of targets
results in termination of the program. Figure 3.1 demonstrates how validated sleds with
direct branches can replace an indirect call instruction. Rather than trust the register or mem-
ory indirect reference of the instruction, these sleds completely define all allowable control
targets. At each point in the original application where an indirect instruction would appear,
control instead falls through to the sled, which compares the potential target contained
in the register (the stack pointer in the case of a return instruction) to each allowable
target embedded in the instructions. A direct jump or call is then taken when an offered
target matches. In the event all possible direct control-flow instructions are exhausted for
a given sled, the target is considered malicious, and the program execution is terminated
with a message. It is important to note that, though CDI is implemented via compilation,
the potential to implement CDI on existing binaries. Operations such as discovering the
complete CFG of an application, can be achieved by static binary rewriting [1].

Control-Flow 

Attack 

Vulnerable Code

Control-Data 

Isolated Code

void unsafe() {
  ptr = %rbx  
  call *ptr;

          

  ret
}

void safe() {
  ptr = %rbx
  if(ptr == func1)
    call func1;
  else if(ptr == func2)
    call func2;
  else 
    call attck_detected;

          
  if(*%ip == ret1)
    jmp ret1;
  else if(*%ip == ret2)
    jmp ret2;
  else
    call attck_detected;
}

sled

sled

Figure 3.1 Control-Data Isolated Code [12]. CDI replaces all indirect control flow instructions
such as indirect calls, jumps, and returns with direct, conditional control flow instructions. For each
indirect instruction, all allowable targets are determined by the compiler. This encodes the CFG of
an application within the binary, represented by the conditional branch sleds.
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3.2.3 Runtime Overheads Executing CDI-Compliant Code

Previous work by Arthur et al. [12] has demonstrated the benefits and viability of indirection-
free software execution. However, performance concerns persist. Runtime overheads remain
well above average for important applications, even with a number of compiler optimization
proposed in the previous work. The runtime overheads of executing CDI compliant code
arise from these sources.

The first cause of runtime overhead from control-data isolated code stems from an
increase in dynamic instruction execution counts, due to executing indirect call validation
sleds. Instructions such as the return instruction, a single 1-Byte instruction in the x86-64

ISA results in multi-byte compare and jump instructions for each potential return address
target. For functions with many potential return sides, the associated sleds can become very
large. In the case of 176.gcc, we observed this expansion to double the total number of
instructions executed over the native application. The second cause of runtime overheads
is directly related to the first; the increase in binary size from the inserted sleds leads to
increased pressure on the L1 instruction cache, leading to increased instruction cache misses
and program stalls. The third source of overheads from CDI-protected code is related to
the conditional branch prediction accuracy. With the introduction of slides, there can be a
significant increase in the number of branch instructions, which places additional pressure
on already overprescribed branch predictor resources. In the previous example of 176.gcc,
half of the additional dynamic instructions are direct conditional branches, dramatically
increasing demand on branch prediction resources.

In previous efforts that implemented software-only CDI frameworks, runtime overheads
of program execution were reported as relatively low on average, about 7% for a range of
benchmarking applications and 10% average performance overheads for the SPECINT2000

benchmark suite. However, some applications incur particularly high individual overheads,
with 176.gcc incurring a 34.4% slowdown, as well as 253.perlbmk, and 255.vortex suffer
from over 20% slowdown each.

Optimization is essential for reducing overheads from CDI-compliant code. The primary
optimization for CDI compilation is the ordering of conditional branches in sleds. Since
the sled will execute until an outgoing edge matches the potential target, CDI software
is profiled for execution counts for the edges of each sled. This information is then used
to order the sled branches by execution frequency, most frequent first. This assures, for
profile-represented workloads, the desired target will be reached sooner on average. It has
been demonstrated that optimization strongly impacts runtime overheads, as 253.perlbmk

and 255.vortex suffer 189% and 143% runtime overhead, respectively for un-optimized
sled execution. This serves to demonstrate that workloads which are non-representative
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of the profiled execution will likely suffer unacceptably high runtime overheads, and thus
experience increased benefit from memoization of sled edges.

3.3 Architectural Acceleration of CDI

To directly address these important concerns with control-data isolated code, we propose
integration of the CDI principle with secure and efficient processor support via novel
architectural additions.

3.3.1 Caching Indirect Control Transitions

CDI-compliant code identifies, before runtime, all allowable control-flow transitions of an
application. These control-flow transitions define the entire space of the allowable edges
of the control-flow graph (CFG) of an application. This CFG is then encoded in the binary
of an application as direct control flow edges for all control transitions. We enable the
determination, at runtime, of the allowable targets of indirect branch of an application,
without always executing the conditional branch sled which replaced it. This property of
knowing the allowable control, at the beginning of a conditional branch sled, can allow
skipping the execution of the sled and directly transferring control to the predetermined,
allowed target.

In this work, we propose the inclusion of a new structure to be added to the processor:
the edge cache. The goal of the edge cache is simple: when queried, verify a proposed target
of an indirect instruction as adhering to the programmer-defined CFG encoded in a CDI-
compliant application binary. This would enable the immediate selection of the allowable
target without the overhead of executing the associated sled. The system integration of the
edge cache is shown in Figure 3.2 with functionality shown in Figure 3.3.

In the operation of the edge cache, the application executes as normal until an indirect
instruction is reached. At that point the edge cache is accessed for the potential control-flow
transfer. If the cache verifies the control flow edge, the instruction is allowed to execute and
the program continues as expected. However, if the edge cannot be found in the edge cache,
the edge is considered to be unverified. As all indirect instructions in CDI-compliant code
are backed by a sled of compares and direct jumps which validate all legal targets, execution
simply advances to this sled.

When an indirect instruction is committed, two outcomes are possible. In the event that
the source and target pair was verified by the edge cache, the instruction commits as usual.
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Figure 3.2 Edge Cache System Integration. The predictor array is accessed in parallel with the
Branch Target Buffer (BTB) for predicting the targets of indirect control flow. Before an indirect
instruction is committed, the edge cache is referenced. If the edge has been executed previously, it
has been derived from the Control-Flow Graph (CFG) and is allowed to commit. If the edge cache
misses on the edge the instruction is squashed and execution is directed to the sled for the indirect
instruction.

In the event that the target was not verified, the address of the instruction is retained. In
this case, whenever the next taken branch of the executed validation sled is subsequently
committed, the address of that direct branch target is also retained. This pair of addresses
then defines a validated control-flow edge for the indirect instruction, as the target must arise
from a taken branch in the sled following the instruction. This edge (indirect PC and target
address) is then added to the edge cache for verification of future instances of the edge.

3.3.2 Edge Cache Architecture

The cache is designed as a set-associative cache, and is indexed with the virtual address
comprised of the xor of the source and target addresses of an attempted control-flow edge.
Owing to the nature of the cache to assure secure control flow of an application, all address
fields in the cache must contain the full 64 bits for each of the source and target addresses
for an entry, shown in Figure 3.3. This is to prevent aliasing of malicious, attacker-injected
addresses with valid entries contained within the cache. For replacement within a set of the
cache, whenever an entry is accessed, the useful bit is incremented. Whenever a new entry
is added, a victim is randomly chosen from the set of ways whose useful bit is not set. In the
event all useful bits are set, all bits are reset and a victim is chosen at random. Whenever the
edge cache is accessed, the full source and target addresses comprise the tag for matching
the query. The size of the edge cache and associated structures is demonstrated in Table 3.1.
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Figure 3.3 Edge Cache Validation of Indirect Edges. The edge cache enables memoization
of indirect control flow edges to accelerate CDI-compliant code execution. The edge cache is an
n-way, set-associative cache which, in conjunction with the region table, stores the source and target
addresses of previously seen edges comprised of indirect instruction source addresses and direct,
conditional branch targets executed from the sled. Whenever an indirect instruction (e.g., return or
indirect call) instruction reaches commit, the source and target addresses are verified against control
edge information stored in the edge cache and region table. The highest n bits of an address are
stored in the region table to exploit address locality, while the lowest 64-n address bits remain in the
edge cache. If the edge cache misses on the access, execution falls through to the conditional branch
sled backing the indirect instruction. Otherwise the instruction is allowed to commit.

The edge cache is accessed whenever an indirect instruction is committed (e.g., return
instruction). Since the potentially large conditional branch sled will be executed whenever
verification fails, it is imperative to achieve a high hit rate when polling the edge cache.
Factors which influence the hit rate of the edge cache include cache parameters such as size,
associativity, and replacement policy. In the case of the edge cache, the point in the pipeline
at which the cache is accessed can also have an impact on the rate of verification.

The immediate intuition is to poll the edge cache when an instruction is fetched, much
like would be done in the case of a Branch Target Buffer (BTB). However, this policy can
lead to excessive misses for the edge cache. At the time an indirect instruction is decoded,
the instruction address is known but the target may only be speculated. This gives rise to
targets which are not valid control-flow targets for a given branch. Such an instruction can
never be confirmed by the edge cache, as it would not be derived from the conditional branch
sled executed whenever an indirect instruction is not verified. This situation leads to more
frequent executions of conditional branch sleds, as the mispredicted instruction will result
in a fall through to the sled and the sled is guaranteed to complete execution (i.e., if the
mispeculation could be discovered later, the sled will continue to execute). Further, when
an incorrect target supplied by prediction is verified by the edge cache, but subsequently
identified as mispredicted, the resolved target must still be verified.

To avoid the default of executing the conditional branch sleds on unverifiable edges, we
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instead poll the edge cache when an instruction reaches commit. A mispredicted indirect
instruction is generally identified as such after the execute stage when the actual target be-
comes known. At the commit stage, the resolved target is always known and can be verified
by the edge cache. This eliminates the execution of sleds when prediction mechanisms alias.

However, it also is the case that at commit, any unverified edge will result in execution
of the conditional branch sled for the indirect instruction as well as result in squashing all
instructions speculatively executed after the unverified edge. This increases the penalty per
sled executed, but reduces the incidence of such executions. Given the length of longer
sleds can exceed two thousand targets for some applications (such as 403.gcc) we observed
placing the verification of edges at commit to be more efficient.

To minimize the performance impact of squashing while executing CDI-enabled code,
the edge cache is polled immediately at the beginning of the commit stage. This allows
identification of mispredicted indirect instructions before the fetch stage is notified of the
misprediction. At this point the resolved target is known and the edge cache can be polled
for the instruction and target addresses. In the event that the edge is verified, the resolved
target is allowed to execute and fetching begins at the target address. In the event that
the edge cannot be verified, the instruction is not allowed to direct execution flow and
the program counter is updated to the fall through to the first instruction of the associated
sled. For instructions which are correctly predicted, the edge cache is also polled. If the
instruction and target address pair are verified, then the instruction is allowed to commit
as normal. However, if the edge cache cannot verify the edge the instruction is treated as a
mispredicted instruction. Program control will once again be directed to the fall through
address to execute the sled, identical to the procedure when a mispredicted instruction
cannot be verified.

As highlighted earlier in Section 3.2, whenever an edge cannot be verified and a sled
is executed, the edge cache must be updated. Execution of the sled initiates the recording
of the PC of the instruction that initiated the sled, plus the PC of the valid target that the
sled selected. When ultimately committed, this ¡source, target¿ address pair are used to
update the edge cache. Note that, so long as instructions are committed in order, only a
single pair may be in flight at any one time assuring that the target will come from the sled
corresponding to a given indirect instruction.

3.3.3 Minimizing Edge Cache Storage

To eliminate any aliasing in the edge cache, the entire 64-bit virtual address for each source
and target must be stored. To mitigate storage size, we include the addition of the region
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table. As identified by Seznec [124], targets of indirect branches possess address locality.
We exploit this knowledge by sharing the highest n bits of addresses in the region table.
Each source and target address field in the edge cache are replaced by a region pointer and
region offset, moving the region address to the region table, as shown in Figure 3.3.

Due to the finite size of the region table, it is possible to have a stale region pointer
which references an evicted entry in the region table. To avoid reconstructing an invalid
address, we must flush the edge cache, region table, and predictor array whenever such an
event would happen. To mitigate flushing, we add a generation bit to the region table and
edge cache. Whenever an entry in the region table must be replaced, the generation bit is
checked. If the bit is unset (0), the entry is replaced and the generation bit is set. If the bit is
already set, the flush occurs. Whenever the region table is accessed, the generation bit is
compared to that in the edge cache. If they match, then the region address is used and edge
validation proceeds as normal. Otherwise, the entry in the edge cache is invalidated and
execution is directed to the sled. The addition of a single generation bit greatly reduces the
number of flushes for our benchmark applications by two orders of magnitude, with flushing
occurring about every half-billion instructions.

We add a 32-entry, 4-way set associative region table. Each entry stores a 46-bit region
address, a generation bit, a useful bit for replacement, and a valid bit. This reduces source
and target storage requirements in the edge cache from 64 bits each to 18 bits for the region
offset, 5 bits for the region pointer, and one generation bit. As shown in Table 3.1, this
reduces the size for a 1,024-entry edge cache from 16kB in storage to 6.25kB, a reduction of

61%. The number of bits for the region offset is chosen by the resulting number of regions
which must be cached. A region offset of 14 bits (matching typical page granularity) results
in the number of regions exceeding 1,000 for some of our benchmark applications shown in
Section 3.2. However, for a region offset of only 18 bits, this is reduced to 63. The final
configuration with resulting storage sizes can be seen in Table 3.1 in Section 3.5.1.

3.3.4 Indirect Branch Prediction with the Edge Cache

Branch prediction has significant impact on runtime performance. Further, indirect branch
misprediction constitutes a disproportionate share of the total cost of branch misprediction
relative to conditional branches [77]. Unlike conditional branches where only two outcomes
are possible, indirect branches can have large target sets. Work in indirect branch prediction
is continually evolving and improving [56, 118, 124, 143, 51].

The edge cache is extremely efficient at verification of previously executed, programmer-
intended control flow edges. This also creates an opportunity to use the edge information to
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enhance indirect branch prediction. Since the edge cache may only contain edges which
are known to be valid (i.e., obey the compiler-encoded CFG of an application) these edges
may be used as secure predictions for indirect control flow instructions. We leverage this in
our implementation to predict targets for our sled-backed indirect instructions. We retain
the usage of the Return Address Stack (RAS) to predict the targets of sled-backed return
instructions, as the RAS is the most accurate prediction mechanism available for this task.
Note that all indirect target predictions are ultimately subject to verification by the edge
cache.

Whenever a potentially control-flow altering instruction is fetched the branch predictor is
queried to determine the next instruction address to be fetched. At that time, the RAS is used
for return instructions while the directional branch predictor and BTB are referenced
for other instructions. For our sled-backed indirects, the RAS is used for the return
instructions and the edge cache is referenced for predictions otherwise. The edge cache has
an advantage over the traditional BTB prediction in that multiple targets can be stored for
each source instruction address, with each potentially differentiated for prediction by the
addition of history information. We leverage the Global History Register (ghr) available
in existing branch prediction resources to incorporate path history information to enhance
edge cache provided predictions.
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Figure 3.4 Predictor Array-Based Indirect Prediction. The edge cache is leveraged to provide
indirect branch prediction via the predictor array. This array is a direct-mapped cache which contains
indices to the edge cache. When an indirect instruction is fetched, the predictor array is indexed with
the xor of source address and global history register. The resultant edge is tag matched based on the
source address of the indirect instruction and that of the source stored in the edge cache. Whenever
an indirect instruction is retired, the predictor array is updated.

The use of the edge cache as a prediction mechanism, however, proves to be problematic
for indexing the cache. The edge cache must provide a very high rate of verification, as we
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will highlight in Section 3.5. To achieve this, the edge cache is indexed using the simple
xor of the source and target addresses of an edge, seen in practice to have both effective
dispersion and low aliasing. Prediction is the tendering of the target, however, and thus the
target address cannot be used to index the edge cache for the prediction. Source indexing,
even coupled with history information, has lower dispersion and higher aliasing, which is
intolerable as the penalty for executing sleds can be high.

We sidestep this issue with the addition of a predictor array. This structure can be
indexed separately from the edge cache, satisfying the disparate requirements of verification
and prediction. The predictor array is a direct-mapped cache which holds pointers to the
potential predicted targets in the edge cache. As return instructions are over 85% of the
dynamic occurrences of indirect instructions in our benchmarks, the number of entries in
the predictor array can be much less than that of the edge cache. The storage requirement
for each entry is also minimal, consisting of enough bits to point to any entry in the edge
cache. For example, a 2,048-entry edge cache would require 11 bits of information for each
predictor array entry. When accessing the set-associative edge cache, the source address is
used as the tag. The predictor array is indexed by the simple xor of the instruction address
and ghr, using the lowest n bits. That is a 256-entry predictor array would use the lowest
8 bits of the address xor ghr history. Performance of the predictor array is discussed in
Section 3.5.

To maximize available resources, the edge cache and BTB are accessed in parallel for
prediction. If the edge cache provides a target as described above, then that target is used
for speculative execution. However, should the prediction request miss in the edge cache,
then any target offered by the BTB will be taken. This reduces load on the BTB while still
providing a second opportunity to predict the outcome of an indirect instruction. Since every
control transition involving an indirect instruction must be validated at commit, the edge
cache and predictor array can be update whether the target was predicted by the edge cache
or the BTB. Both correctly predicted and mispredicted instructions prompt an update to the
edge cache and predictor array, to accommodate both missed and correct predictions offered
by the edge cache and BTB. Note that this does not apply to return instructions, which
are predicted exclusively by the RAS. Consequently, return instructions only update the
edge cache when they cannot be validated, and never update the predictor array.
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3.4 Methodology

To evaluate the efficiency and efficacy of Control-Data Isolation-enabled hardware, we
modeled the operation of an edge cache using the gem5 simulator infrastructure [20]and the
SPECINT2000 and SPECINT2006 benchmark applications.

3.4.1 Implementation Platform

We leverage the gem5 simulator to assess the impact of CDI-compliant applications and
their acceleration using the edge cache. We use the O3 detailed CPU model in gem5, in
conjunction with the simple memory model and execute applications in isolation using the
syscall emulation mode. The processor is configured to match an Intel Haswell processor.
That is, L1 instruction and data caches are both 32kB, 8-way associative, a 256kB L2 cache,
and an 8MB 8-way associative L3 cache are also included. Cache line size is 64 bytes, with
a 2.4 GHz processor. The target architecture is x86-64.

3.4.2 Benchmark Applications

To evaluate the performance of accelerating CDI-protected code, we evaluated the SPEC2000

and SPEC2006 Integer benchmark applications [130]. All applications were first compiled
to be CDI-compliant using the llvm compiler infrastructure [86]. Some of the benchmarking
applications, however, are not present in our analysis due to compilation issues with our
llvm infrastructure.

3.4.3 Hardware/Software Co-Design

To develop the hardware-enabled memoization of valid control-flow edges we implement
the CDI algorithm in the llvm [86] compiler infrastructure. Indirect control flow instructions
are removed during the compilation flow, substituting conditional branch sleds and direct
jumps and calls instead. In our work we follow the procedure outlined in the previous work
by Arthur et al. [12] to eliminate indirection from our benchmark applications.

First, an application is compiled to a single llvm-IR using the clang compiler. The CFG
for the application is then discovered, including function pointer analysis to determine a
complete CFG for an application. This enables the determination of all permissible targets
for each individual indirect control-flow instruction. At this point, each indirect control flow
instruction is backed by a sled of compares and direct control-flow transition instructions
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which define the set of allowable edges for that instruction. However, unlike software-based
CDI, we do not remove the indirect instructions. Instead, the sled is placed as the fall through
for the indirect instruction, and is executed in the event the edge cache cannot validate the
prospective edge for the indirect instruction. To handle the return from an indirect call
instruction, a direct jump is placed between the call and the sled, which is also bypassed
when execution falls through to the sled.

3.5 Experimental Evaluation

We evaluated our CDI-compliant implementation with several metrics to determine the effi-
cacy of CDI-acceleration. These include runtime performance (i.e., overhead of executing
CDI-compliant code), edge cache-enabled indirect branch prediction, and security analysis
of the Control-Data Isolation policy.

3.5.1 Runtime Performance Analysis

The impact of executing the conditional branch sleds associated with control-data isolated
code are the chief concern in achieving indirection-free, secure application execution. This is
a primary purpose of this work: to eliminate any performance penalty arising from execution
of conditional branch sleds substituted for indirect instructions. The results of the edge cache
on mitigating sled execution are shown in Figure 3.5. A 1024 entry, 8-way set associative
edge cache was used in conjunction with a 32-entry, 4-way set associative region table and a
256-entry predictor array to obtain the depicted results, the storage size of which is depicted
in Table 3.1.

It can be seen in Figure 3.5 that the addition of the edge cache almost eliminates the
runtime overheads of software-based CDI protection. The average speed up for all bench-
marks is 0.995 from native, non-CDI compliant code (with indirection and without sleds).
This means that executing CDI-compliant code, on average for all benchmarks, results in a
slowdown of 0.5%. This is possible due to very high memoization rates for the edge cache
coupled with edge cache-based branch prediction. The greatest challenge is represented by
176.gcc and 403.gcc. These applications result in slowdowns of 3.1% and 4.0% respectively.
However, on some benchmarks we observe a non-trivial speedup over native execution,
notably 400.perlbench with a speedup of 0.983, an improvement of almost 2% over native
execution. This happens due to the high density of indirect calls coupled with a non-trivial
improvement in edge cache prediction over simple BTB-based prediction for this benchmark.
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Figure 3.5 Speedup Over Native Execution. The performance of edge cache-accelerated CDI is
shown, normalized to the baseline of native application execution (no sleds are executed). We see
that caching control flow edges is highly effective at eliminating the overheads of sled execution,
with an average of 0.995 times the application execution speed of non-CDI compliant code. Without
the use of the edge cache, performance suffers with an average 19% slowdown. These results are
achieved with the configuration depicted in Table 3.1: a 1,024 entry, 8-way set associative edge cache
with a 32-entry 4-way set associative region table and a 256 entry predictor array.

Attribute Size in Bits 

----Edge Cache Size---- 
Source, Target Address Offset 18 x 2 

Region Table Ptr. for Source, Target Address 5 x 2 

Region Table Generation Bit (Source,Target) 1 x 2 

Useful Bit, Valid Bit 1 x 2 

Total Bits per Entry 50 

Number of Entries 1024 

Total Size of Edge Cache 6.25 kB 

----Region Table Size---- 
Region Address 46 

Generation Bit, Useful Bit, Valid bit 1 x 3 

Total Bits per Entry 49 

Number of Entries 32 

Total Size of Region Table 196 Bytes 

----Predictor Array Size---- 
Pointer to Edge Cache 10 

Number of Entries 256 

Total Size of Predictor Array 320 Bytes 

Total Size of All Components 6.75 kB 
 

Table 3.1 Storage Size of Edge Cache and Components. The edge cache has 1024 entries at 50
bits per entry with a tag size of 32 bits. The region table contains 32 entries with 49 bits per entry and
a tag size of 48 bits. The predictor array contains 256 entries with 10 bits per entry, direct mapped.

Without the edge cache, performance for software-enabled CDI protection results in an
average speed up of 0.84, a slowdown of 19% for the average of all benchmarks.

Edge cache validation rates, shown in Table 3.2, strongly affects the overheads from
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Benchmark 

Edge 

Cache 

Validation 

Rate Benchmark 

Edge 

Cache 

Validation 

Rate 

164.gzip 0.9999 401.bzip2 0.9999 

175.vpr 0.9999 403.gcc 0.9964 

176.gcc 0.9959 429.mcf 0.9999 

181.mcf 0.9999 445.gobmk 0.9993 

253.perlbmk 0.9998 456.hmmer 0.9999 

255.vortex 0.9996 458.sjeng 0.9995 

256.bzip2 0.9999 462.libquantum 0.9999 

300.twolf 0.9999 464.h264ref 0.9996 

400.perlbench 0.9999 473.astar 0.9999 

  Average 0.9994 

Table 3.2 Edge Cache Validation Rate. The edge cache validation rate has a large impact on
the performance of CDI-compliant code. As such, a very high rate of validation is desired. For all
benchmark applications, validation rate exceeds 99%.

CDI-compliant code. We can see an impact on 176.gcc from a validation rate of 0.9959
results in program slowdowns of 3.1%. It was observed that for the same application, a
drop in edge cache validation rate to 0.9795 arising from a direct-mapped cache with 1,024
entries results in a slowdown of 6.1% for the application execution. This is due to the high
penalty of executing sleds, partly arising from the validation time at commit, which results
in squashing speculated instructions at each fall through to a sled. Further reducing the edge
cache size to 512 entries (8-way) incurs a slowdown of over 10% for the same benchmark.

Predictor Array Size mpki Runtime Speedup 

32 entries 18.94 0.9237 

64 entries 18.69 0.9464 

128 entries 17.14 0.9987 

256 entries 14.55 1.0170 

512 entries 14.40 1.0179 
 

Table 3.3 Predictor Array Sensitivity on Predicting Indirect Branches. Increasing the re-
sources available to the predictor improves the prediction rate and subsequent application perfor-
mance. Indirect branch mispredicts decrease appreciably until reaching a predictor array size of 512
entries. The benchmark shown is 400.perlbench.

3.5.2 Indirect Branch Prediction Analysis

To further mitigate runtime overheads, we also leverage the edge cache using the predictor
array. Since not all benchmark applications contain instructions such as indirect calls, we
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show prediction performance for a subset of applications which contain a non-trivial number
of dynamic indirect call instructions in Table 3.4. Some benchmarks, such as 253.perlbmk

contain non-trivial quantities of indirect jumps arising from switch statements. These
are eliminated at compile time using the lowerswitch llvm opt tool compiler flag,
and thus we do not evaluate the prediction capability for such instructions. As a result,
the mispredictions per thousand instructions (mpki) is naturally diminished merely by our
compilation flow.

Benchmark 

Native 

mpki 

edge 

cache 

mpki 

CDI 

+BTB 

Pred. 

Speedup 

CDI 

+edge 

speedup 

176.gcc 2.592 1.046 0.968 0.969 

253.perlbmk 2.429 0.517 0.960 0.981 

400.perlbench 19.226 14.549 0.953 1.0170 

403.gcc 2.696 1.103 0.960 0.960 

458.sjeng 1.291 0.340 0.989 1.000 

464.h264ref 0.827 0.483 0.998 1.001 
 

Table 3.4 Indirection Misprediction Rate of CDI-Compliant Code. Indirect instructions can be
predicted leveraging the edge cache. In the process of creating CDI-compliant code, indirect jumps,
such as those arising from switch statements, are converted to direct control flow automatically and
are removed. Thus they are considered regular, direct control flow for CDI-compliant code, rather
than sled-backed indirects. This changes the volume of indirect predictions, reducing mispredic-
tions per thousand instructions (mpki) automatically. Benchmarks shown are those with non-trivial
dynamic executions of indirect calls, which are the instructions predicted by the edge cache and
predictor array. One particular benchmark, 400.perlbench, has large dynamic counts of indirect call
instructions, and thus benefits from the enhanced prediction of the edge cache.

We perform sensitivity analysis on the size of the predictor array using the 400.perlbench

benchmark application. We see in Table 3.3 that prediction accuracy continues to improve
until moving from 256 to 512 entries, where doubling of predictor slots has a marginal
effect. Note that prediction is achieved through the addition of a 320-byte predictor array
(256 entries). For the same benchmark, increasing the number of BTB entries by 4X still
underperforms compared to the predictor array.

3.5.3 Security Analysis

Control-Data Isolation reduces the software attack surface via the elimination of the weak-
ness which enables contemporary control-flow attacks. However, the eliminated indirect
control-flow instructions are then replaced with direct control transitions. Previous works
have endeavored to assess the reduction in potential target space of Control-Flow Integrity
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compliant applications. An interesting measure for target space reduction was introduced
by Zhang and Sekar, who proposed the simple metric average indirect target reduction
(AIR)[150]. This metric evaluates the average number of allowable targets for individual in-
direct instructions. We adopt this metric for the CDI policy and compare our implementation
to that of Zhang and Sekar, as shown in Table 3.5.

 

Benchmark 

Bin CFI: 
CFI for 
COTS 

Binaries 
[150] 

CDI 
Indirect 
Target 

Reduction 

CDI 
Architectural 

Target Set 
Reduction 

400.perlbench 97.89% 100.00% 99.999% 

401.bzip2 99.37% 100.00% 99.999% 

403.gcc 98.34% 100.00% 99.999% 

429.mcf 99.25% 100.00% 99.999% 

445.gobmk 92.20% 100.00% 99.999% 

456.hmmer 98.61% 100.00% 99.999% 

456.sjeng 99.10% 100.00% 99.999% 

462.libquantum 98.89% 100.00% 99.999% 

464.h264ref 99.52% 100.00% 99.999% 

473.astar 98.95% 100.00% 99.999% 

Average 98.21% 100.00% 99.999% 

Table 3.5 Average Indirect Target Reduction. Zhang and Sekar [150] introduced the metric
Average Indirect Target Reduction (AIR) which measures the percentage reduction of the average
target space for instructions of an application. That is, if no policy exists to restrict indirect control
flow, the average indirect instruction can target any byte in a binary, or 0% reduction. The AIR value
reflects what part of the binary space cannot be targeted for an indirect instruction on average. This
metric effectively represents the granularity of control-flow protection policies. CDI-compliant code
completely eliminates indirect instructions, resulting in a 100% AIR value. However, in our work we
allow indirects to execute edges encoded in their respective sleds. The target reduction for our work
can be seen in the third column. This clearly is a reduced space, on the order of tens of edges per
indirect on average as opposed to thousands in the case of course-grained CFI seen in [150].

3.5.4 Area and Power Analysis

We leverage the McPat [89] and CACTI [136] tools from Hewlett-Packard Labs to eval-
uate the area, power, and timing overheads from utilizing the edge cache and associated
components. Estimation included output of the gem5 simulation, in conjunction with the
information contained in Table 3.1 for 32nm technology. Overall, the design yielding the
performance shown in Figure 3.5 added an extra area of 0.443 mm2, an addition of 1% over
the base design. The worst-performing benchmark, 403.gcc, incurred less than 1% additional
estimated power for the application execution. This low area and power overhead results
from the small edge cache size in conjunction with the relatively rare dynamic occurrence
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of indirect instructions, about 1 in 100 on average for all benchmarks.

3.6 Extending Control-Data Isolation to Advance Path-
Based Control-Flow Security

Control-Data Isolation (CDI) enforces, at runtime, the control-flow graph (CFG) of an
application. Detailed in Chapters 2 and 3 of this dissertation, CDI eliminates contemporary
control-flow attacks by subtracting the root cause: indirect control-flow. Due to the continual
evolution of attacks, the research community must continue to pursue the elimination of
vulnerabilities. Both recent [31] and past [80] works have identified the potential of attacks
subverting the path of code execution while strictly adhering to the CFG of an application.
As the underlying vulnerability in contemporary control-flow attacks is eliminated with CDI,
the specter of path-based attacks advances to the forefront in reducing the software attack
surface.

In anticipation of the future evolution of attacks, we introduce the non-speculative Re-
turn Address Stack (nRAS). This novel mechanism dramatically reduces the reliance on
CDI compliant code to verify the target address of return instructions. Using a secure,
non-speculative RAS, the precise edge of the CFG can reliably be determined. Leveraging
this information, trust in the static CFG information encoded in the binary of the application,
along with the memorization of CFG edges in the edge cache, can be avoided in 99.84% of
all dynamic occurrences of the return instruction, as shown in Table 3.6. Thus hardening the
software attack surface against path-based control-flow exploits like those detailed in [31].

3.6.1 Path-Based Attacks

Due to the relentless efforts of attackers in compromising software systems, researchers
must continue to advance existing defense mechanisms. Control-data isolation is a defense
mechanism which eliminates contemporary control-flow attacks, thereby closing the door
on many software exploits. However, security research has identified that control-flow
attacks could potentially advance to path-based attacks which do not violate the control-flow
graph (CFG) of an application. The most recent example of this is a work by Carlini et
al. [31] which demonstrates that an application could potentially be compromised without
violating the programmer defined CFG. The revelation that some avenue of attack may be
present within the confines of the CFG points to the next logical step in the evolution of
control-flow attack defense: control-data isolation which enforces programmer intended
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paths of execution.

Whenever an attacker corrupts the target return address on the program stack, the sled
of conditional branches and direct jumps used in CDI enforces the CFG of an application.
However, an attacker may still force the execution of an edge in the CFG which is not
the programmer intended edge in a given dynamic instance, so long as that edge is valid
within the context of the CFG. This type of attack is outline in detail by Carlini et al. [31].
Thus, eliminating indirect instructions can not, taken alone, eliminate this type of attack.
Essentially, an attacker could still exploit the paths of execution while still constrained to
executing edges intended by the programmer. As such, the protections of CDI would not
suffice in addressing such attacks.

3.6.2 Impossible Paths

Control-data isolation eliminates these attacks by eliminating the mechanism necessary to
initiate such an attack, indirect control-flow instructions. However, both recent [31] and
previous [80] works have detailed the likely evolution of control-flow attacks: path-based
attacks which do not violate the CFG of an application, but still provide value to attackers.
An example of such an attack is demonstrated by a simple call and return sequence of
program functions. A given function may be called by, and subsequently return to, multiple
caller functions. However, at runtime it should only return to the calling function for each
given dynamic instance of the callee. An attacker may seek to subvert an application by
corrupting data for the return instruction, but in such a way as to still target a valid edge
of the control-flow graph. This results in the execution of an impossible path, as shown in
Figure 3.6.

3.6.3 Advancing Control-Data Isolation with the Non-Speculative Re-
turn Address Stack

The impossible path shown in Figure 3.6 is permitted by the white-list of targets for the
return instruction in the function baz in CDI-compliant code. This constitutes an attack on
the sled of conditional branches and direct jumps which compromise the software imple-
mentation of CDI. The CFG of an application encodes all programmer-intended control
edges in software, but does not exclude the impossible path seen in Figure 3.6, nor does it
encode the valid path. To address this newly important vulnerability, we will detail a novel
approach to the attempted execution of impossible paths and prohibit such paths whenever
discovered. This is achieved through the addition of modest architectural extensions which
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int bar() { 

   ... 

   baz(); 

   ...    

void baz() { 

   ... 

   return; 

}       

int foo() { 

   ... 

   baz(); 

   ...    

foo() 

baz() 

bar() foo() 

Valid 

Path 

Impossible 

path 

Figure 3.6 Impossible Paths. An attacker may subvert control-flow of an executing application by
targeting an invalid address while still respecting the CFG of an application. Both functions foo and
bar may call baz. However, in a specific instance of baz, control-flow must return to the calling
function.

track the history of function calls and returns, at the instruction level, which is then used
to verify control transfer from return instructions. Through the addition of a simple
non-speculative Return Address Stack (nRAS), function return target addresses can be
verified to be the correct, single allowable target. Utilized in conjunction with the existing
CDI mechanisms, this can narrow the allowable target set from edges statically determined
by the CFG to but a single allowable target at runtime.

3.6.4 Contributions of the Non-Speculative Return Address Stack

The goal of this extension to CDI is to reduce the software attack surface through the

identification, and subsequent elimination, of infeasible paths at runtime. Thus, with the

addition of the non-speculative RAS, the following further contributions are made:

• We demonstrate that simple hardware additions, along with existing CDI mechanisms,

extends CDI protections to infeasible path executions.

• We demonstrate that keeping a non-speculative stack of return addresses can eliminate

over 99% of all infeasible paths.

• Further, we demonstrate that the security of an application, as measured by the AIR

metric proposed by Zhang and Sekar [150], is improved by more than four orders of

magnitude for common benchmarking applications.
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3.6.5 The Return Address Stack

To accelerate the execution of instructions, many processors use speculative execution.
Rather than wait for the target address of a control-flow altering instruction, a speculative
address is used to immediately continue fetching instructions. One mechanism to support
speculative fetch of instructions is the Return Address Stack (RAS). The RAS is imple-
mented as a fixed size stack. Whenever a call instruction is executed, the return address
(the next instruction after the call) is pushed onto the stack. When a return instruction is
fetched, the subsequent fetching of instructions is directed to the address popped from the
return address stack. When the target is eventually determined from the program stack, it
is compared to the speculative address supplied by the RAS. In the event of an incorrect
prediction the speculative instructions are squashed, and execution is directed to the address
indicated by the program stack. Various program events can cause the RAS to hold an incor-
rect value. These include limitations to the size of the RAS and programming paradigms
which violate the matching of calls and returns. Examples are recursion which overflows
the limited capacity of the RAS, and setjump longjump, which unwinds the program stack
to an earlier program stack frame.

3.6.6 The Non-Speculative Return Address Stack

Earlier in Section 3.3.1, the edge cache [10] was introduced to enforce the CFG of an
application at runtime. The edge cache is referenced at commit to validate prospective
indirect control-flow edges, and the software“sled” was executed whenever the edge cache
could not verify the to-be-committed control edge. Since in any case all control edges must
be derived from the program instructions, all control-flow is determined in advance by the
programmer. This, then, eliminates contemporary control-flow attacks.

However, future attackers may seek to exploit an application while adhering to the
CFG of an application. In this event, the sled of conditional branches and direct jumps
is subverted. The attacker, rather than choosing a target outside of the sled, chooses an
alternate target within the sled. As our threat model allows the attacker complete control of
data memory, we must assume this type of attack will eventually emerge. Recent literature
[31] has established this type of attack as feasible and potentially desirable to attackers.

To directly address future attacks on the sled, and by extension the edge cache, the
non-speculative Return Address Stack is introduced. Though the speculative RAS for target
prediction has a high prediction accuracy, it does not offer any guarantee of a given target
address. Thus, we introduce the non-speculative return address stack. With this minimal
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hardware addition to the design of a processor, we can conservatively guarantee the validity
of the return addresses. That is, given a dynamic occurrence of a return instruction, we can
determine whether the target is valid without the need to consult the edge cache. When this
ability reaches high probability, we can proportionally eliminate attacks on the sled and
edge cache of CDI.

3.6.7 Eliminating Control Path Attacks with the Non-Speculative Re-
turn Address Stack

The non-speculative RAS (nRAS) records the only allowable target address for a matching
call/return instruction pairs. Whenever the target of a return instruction does not match the
value recorded on the non-speculative RAS, it is a potential an attack on the control-flow of
an application. With the non-speculative RAS, we can address such attacks.

However, the non-speculative RAS, just as the speculative return address stack, can
not be guaranteed accurate at all times. To address this, we conservatively assert when
the non-speculative RAS will be absolutely correct. To this end, there are three factors to
consider in ensuring accuracy. These include speculative execution, overflow of a finite
stack, and program control which violates the strict paring of calls and returns.

Speculative execution has a non-trivial impact on the accuracy of the RAS for return
target prediction [128]. To address this, we implement the non-speculative RAS. Simply put,
this is a RAS which is employed at the commit stage, when the edge cache is also interfaced.
By checking the nRAS at commit, we eliminate changes to the stack by speculatively
executed instructions.

The correctness of the stack can also be compromised by call stack depths which exceed
the fixed capacity of the stack. The canonical example of this is the use of recursion. When
the depth of recursion exceeds stack capacity, the stack can no longer guarantee validity of
return addresses. To account for this, we conservatively consider that in the face of recursion
which overflows the nRAS, the target addresses contained can no longer be guaranteed. In
such cases we fall back on CDI, which still enforces the CFG of an application.

Not all programming paradigms adhere to strict call and return matched pairs. An
example of this is the setjump, longjump pair. This programming concept, implemented
in the C standard library with the setjmp and longjmp functions, is used to return to a
stack frame arbitrarily distant in the program stack. Essentially, it serves as an indirect jump
to a previous execution point in the instruction stream, so long as it is to a function with a
valid frame on the program stack. Whenever this happens, the program stack is “unwound”,
and the intervening stack frames are eliminated. However, the RAS (and likewise nRAS) is
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not updated and thus is out of sync with the subsequent return instructions. It is important
to note that programming constructs like setjump/longjump are not implemented special
instructions, and can not be detected by observance of instructions at the commit stage. To
address such stack unwinding, we propose the addition of the Stack pointer Address Stack
(SAS) to detect when control flow violates call/return pairs, detailed below.

3.6.8 Detecting Stack Unwinding with the Stack Pointer Address
Stack

To determine, with certainty, when the non-speculative RAS will contain the only allow-
able target of a return instruction, we introduce the Stack pointer Address Stack (SAS). A
companion to the nRAS, the SAS will contain stack pointer addresses. Whenever a call
instruction is committed, the return address target will be pushed on the nRAS. In parallel to
this, the content of the stack pointer register is pushed on the SAS. This is now considered,
within the context of the currently executing function, the line of demarcation between the
current stack frame and the previous stack frame. Whenever an instruction is committed
which modifies the stack pointer, the new address will be compared against the value on the
top of the SAS, determined by peaking at the top of the stack without popping the address.
In normal execution, the stack will grow downward in addresses, pushing and popping from
the program stack. The stack pointer, generally, will not point to an address greater than
that at the beginning of the currently executing function. Whenever an update to the stack
pointer results in an address greater than that on the top of the SAS, it is conservatively
assumed that the stack is being unwound, and that the non-speculative RAS will no longer
contain values which are certain to match dynamic occurrences of return targets.

3.6.9 Dynamic Enforcement of the Valid Control-Flow Graph Edge

The non-speculative RAS is considered to contain the only allowable target address of a re-
turn instruction at execution. As identified in Section 3.6.7, accuracy of the non-speculative
RAS can not be always guaranteed. Thus, we conservatively determine at what times the
non-speculative RAS will be considered accurate. If, at any time, the previously detailed
events undermine the accuracy of the RAS, the non-speculative RAS and SAS are flushed.
This makes utilization of the nRAS simple: whenever a value exists on the nRAS, it is
considered to be irrefutably accurate. If the target address of a return instruction, at commit,
does not precisely match the address popped from the non-speculative RAS it is considered

70



to be an attack. In such an event, an exception is raised and the program is halted to prevent
the control-flow attack. The algorithm for the nRAS is shown in Figure 3.7.

Execute Instructions

Peek SAS

No

Modify %rsp

Exceed SAS?

Flush nRAS/SAS

Yes

Execute Instructions

Push nRAS/SAS

No

call

Overflow?

Flush nRAS/SAS

Yes

Execute Instructions

Attack Detected

return

nRAS Empty?

Pop nRAS/SAS

No

Yes

Match?

Yes
No

call 

Instruction Algorithm

return 

Instruction Algorithm

%rsp Modifying 

Instruction Algorithm
(a) (b) (c)

Verify 

target 

with 

CDI

 

Figure 3.7 Algorithm for Non-Speculative Return Address Stack Operation. During execu-
tion the non-speculative Return Address Stack (nRAS), in conjunction with the Stack Pointer
Stack(SAS), verifies return instruction address targets at the commit stage. (a) Whenever a call
instruction is executed, the return address is pushed on the nRAS, along with the current stack pointer
on the SAS. In the event the nRAS/SAS overflow, both structures are flushed and execution continues.
(b) Whenever a return instruction is executed, the non-speculative RAS is checked. If the nRAS
is empty, the potential target is verified using CDI. If the RAS contains an entry, it is considered the
only valid target for the return. If the top of the RAS matches the potential target, the instruction
is allowed to commit and execution continues as normal. If the top of the stack does not match the
target, an attack is declared, and program execution halts. (c) When any other instruction which
modifies the stack pointer (%rsp) is executed, the new stack value is compared to the top of the SAS.
If the stack pointer exceeds the value on the SAS, the instruction is assumed to unwind the stack, and
the nRAS and SAS are flushed.

3.6.10 Methodology of the Non-Speculative Return Address Stack

To evaluate the efficacy of the non-speculative Return Address Stack, we modeled the
operation of the nRAS and the SAS using the Pin dynamic binary instrumentation platform
[92] and the SPECINT2000 and SPECINT2006 benchmarking applications [130].

We leverage the Pin dynamic binary translation platform, using a custom Pintool to in-
spect all instructions and implement the algorithm defined in Figure 3.7. The benchmarking
applications are compiled using gcc/g++, enabling the use of all benchmark applications
which were incompatible with our llvm compiler infrastructure [86] used in Section 3.4.2.
The applications were executed to completion using the reference input set, monitoring the
performance of the non-speculative return address stack and the stack pointer address stack.
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3.6.11 Experimental Evaluation of the Non-Speculative Return Ad-
dress Stack

We evaluated our non-speculative RAS implementation for security and performance for
CDI-compliant execution while reducing the attack surface for impossible paths. This
includes the ratio of return instructions verified by the nRAS and the reduction in attack
surface as determined by the reduction in the AIR metric [150] as shown in Section 3.5.3.

Table 3.6 shows the accuracy of the non-speculative RAS. For all benchmarks, there is a
99.84% reduction in the usage of the edge cache and sled to verify indirect edges for CDI
compliance. This is a substantial reduction of the attack surface for exploiting impossible
paths of execution. This is demonstrated in Table 3.7, where the Average Indirect target
set Reduction is shown. Here, we have expanded the information found in Table 3.5 to
include the number of targets, on average, which our nRAS optimized approach allows per
indirect instruction. Here, we see an improvement of four orders of magnitude over related
work [150]. The result is an average of only 3.0 valid targets per indirect instruction. It
is important to note that not only are these targets only valid CFG edges, they are also a
subset of the CDI sled, reducing the software attack surface by eliminating 99.84% of all
impossible paths.

3.7 Related Work

Our efforts in accelerating Control-Data Isolated code are related and influenced by earlier
works in control-flow security and branch prediction. A short list is presented herein and
comprises software, hardware, and hybrid approaches.

3.7.1 Software Mechanisms

The primary related work is that of Arthur et al. in Getting in Control of Your Control Flow
with Control-Data Isolation [12]. In this work, the authors introduce the central idea of
control-data isolation. As described earlier in Section 3.2, this approach to control-flow
security is a departure from previous approaches. As opposed to works such as CFI[1] and
its descendants [37, 46, 110, 142, 150, 149], CDI advocates for the eradication of the root
cause of contemporary control-flow attacks: indirect control flow. Key advantages of this
work are the relaxed security model which assumes that an attacker may establish arbitrary
control of data memory and the obviation for the need of associated, additional, protection
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Benchmark 
Number sled 

bypass 
Number 
sled runs 

nRAS 
overflow 

SAS 
detect 
frame 
escape 

Percent 
nRAS 

accuracy 

Probability 
to avoid 

execution 
of sled for 

return 
164.gzip 410,581,174 0 0 0 100% 1.0000 

175.vpr 141,492,333 0 0 0 100% 1.0000 

176.gcc 350,432,523 237,301 13,959 0 100% 0.9993 

181.mcf 6,062,555 0 0 0 100% 1.0000 

186.crafty 2,290,979,532 516,866 30,404 0 100% 0.9998 

197.parser 4,264,999,987 23,147,046 1,361,591 0 100% 0.9946 

252.eon 1,497,965,400 15,877 934 0 100% 0.9999 

253.perlbmk 1,143,125,183 19,548 1150 1 100% 0.9999 

254.gap 3,508,781,456 6,813,972 400,822 0 100% 0.9980 

255.vortex 1,990,941,766 2,349,484 138,205 0 100% 0.9988 

256.bzip 849,459,603 0 0 0 100% 1.0000 

300.twolf 2,065,113,192 0 0 0 100% 1.0000 

SPEC2000 avg. 1,502,635,721 2,758,341 162,255 0.83 100% 0.9982 

400.perlbench 4,647,481,951 71,827 4,228 52 100% 0.9986 

401.bzip2 1,328,875,062 0 0 0 100% 1.0000 

403.gcc 977,241,911 755,258 44,427 0 100% 0.9992 

429.mcf 399,208,096 8,584 505 0 100% 0.9998 

445.gobmk 3,544,928,759 40,772,544 2,398,385 0 100% 0.9863 

456.hmmer 1,395,740,543 0 0 0 100% 1.0000 

458.sjeng 22,160,089,625 5,180,424 304,731 0 100% 0.9998 

462.libquantum 971,815,011 0 0 0 100% 1.0000 

464.h264ref 26,835,787,507 2,906 171 0 100% 0.9999 

471.omnetpp 16,393,081,883 415 40 2 100% 0.9999 

473.astar 9,376,154,736 0 0 0 100% 1.0000 

483.xalancbmk 24,693,188,486 391,157,521 23,009,266 0 100% 0.9749 

SPEC2006 avg. 9,393,632,798 36,495,790 2,146,812 5 100% 0.9975 

Average (all) 5,468,480,345 19,627,066 1,154,534 2 100% 0.9984 

Table 3.6 Non-Speculative RAS Performance. The performance of the non-speculative RAS
(nRAS) and the Stack pointer Address Stack (SAS) is shown to be effective at the determination
of a single target for return instructions. The number of sled runs and sled bypasses reflect the
probability that the nRAS is considered to be accurate, and thus the only allowable target for the
dynamic instance of the return instruction. The number of times the RAS was exceeded is found in
the fourth column. The fifth column shows the count of the SAS detecting a change in stack pointer
which indicates a potential stack unwind (e.g., longjump). It is important to note that one-hundred
percent of the times the non-speculative RAS is considered to be the only source of the allowable
target, it is correct, shown in the sixth column. Lastly, the methodology allows the precise, single
allowable target to be determined 99.84% of the time, dramatically reducing the attack space from
impossible paths. For all measurements, a nRAS and SAS size of 16 entries was used.

mechanisms. We seek to advance that work by establishing a secure platform to accelerate
performance of CDI-compliant code.

A seminal work in the area of control flow security is Control Flow Integrity [1] by Abadi
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Benchmark 

Bin CFI: 
CFI for 
COTS 

Binaries 
[150] 

CDI 
Indirect 
Target 
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Average 

Target Set 
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CDI 
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Average 
Target Set 

Size 

400.perlbench 97.89% 100.00% 99.999% 99.9999% 26,083 6 

401.bzip2 99.37% 100.00% 99.999% 99.9999% 466 1.3 

403.gcc 98.34% 100.00% 99.999% 99.9999% 61,954 11 

429.mcf 99.25% 100.00% 99.999% 99.9999% 174 1.0 

445.gobmk 92.20% 100.00% 99.999% 99.9999% 315,695 1.4 

456.hmmer 98.61% 100.00% 99.999% 99.9999% 4,534 1.6 

456.sjeng 99.10% 100.00% 99.999% 99.9999% 1,415 1.1 

462.libquantum 98.89% 100.00% 99.999% 99.9999% 574 1.0 

464.h264ref 99.52% 100.00% 99.999% 99.9999% 2,859 2.6 

Average 98.13% 100.00% 99.999% 99.9999% 45,972 3.0 

 

Table 3.7 Non-Speculative RAS Security Performance. Compared to previous work on course-
granularity CFI [150] by Zhang and Sekar, the use of the nRAS in conjunction with CDI reduces the
average allowable targets from tens of thousands to 3.0. Further, all targets in this work are valid
edges of the CFG of an application. For all measurements, a non-speculative RAS and SAS size of
16 entries was used.

et al. The reportedly low overhead solution employs labels and checks to protect indirect
calls and jumps. Whenever an indirect control flow instruction is executed, the label is read
from the target location and checked against the label at the source. If the two match, the
indirect instruction is allowed to execute. Return instructions are protected using a shadow
stack which is used to verify the prospective return address from the normal program stack.
In practice, CFI has a prohibitive runtime overhead. This resulted in subsequent works
based on CFI to relax CFG edge constraints (expanding aliasing of target sets) resulting
in course-grained CFI. Further, CDI relies on the shadow stack which must reside in data
memory making it subject to potential attack.

Another important work in this area is Control Flow Integrity for COTS Binaries [150].
This paper by Zhang and Sekar demonstrated a robust implementation of course-grained
CFI. This work brought overheads to marginal levels for SPEC benchmarks and was shown
to work on more substantial applications as well. However, this work inherits the original
issues relevant to the original CFI, including a more restrictive threat model. Additionally,
as shown in Table 3.5, the cost of reducing overhead is greatly increasing the allowable
edges for each indirect instruction. The reduction in runtime overhead in [150] is achieved
by adopting a course-grained approach to CFI. Table 3.5 shows the large difference in the
allowable targets, and thereby protection level, of our work in contrast to the work of Zhang
and Sekar. Whereas our work averages tens of valid targets for each indirect instruction,
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their work allows thousands to tens of thousands of valid targets on average for indirect
instructions.

Recently, other works have endeavored to demonstrate exploits which directly challenge
CFI policy. Stitching the Gadgets: On the Ineffectiveness of Course-Grained Control-Flow
Integrity Protection [47] demonstrates vulnerabilities of course-grained CFI policies of
various works, including [37, 52, 98, 107, 150]. The authors are able to demonstrate the
existence of a set of Turing-complete code gadgets, even under the most restrictive combined
policy of the CFI works scrutinized. By enforcing a fine-grained control-flow security policy
and eliminating the use of indirect control flow, both CDI and our work are not subject to
the attacks delineated in [47].

3.7.2 Hardware Solutions

Our work is not the first to propose hardware-assisted protection mechanisms. A recent
work in this space is Hardware-Assisted Fine-Grained Control-Flow Integrity: Towards
Efficient Protection of Embedded Systems Against Software Exploitation by Davi, Koeberl,
and Sadeghi [46]. This work targets embedded systems, enforcing a CFI policy which uses
labels to verify potential indirect targets. In their algorithm, call instructions are only allowed
to transfer program execution to labeled call sites. Similarly, returns are only allowed to
target call labels which are active (i.e., have been called but have not yet returned). Though
lightweight, the solution is still more course grained than our work (e.g., any call may target
any function). Also, in common with all CFI-type works, the methodology is subject to
label spoofing attacks, which require additional assumptions about memory security (e.g.,
no code may execute from the heap). Fundamentally, all works which derive from CFI rely
on the target of an indirect control flow instruction. As our work is based on CDI, rather
than CFI, our approach does not suffer this weakness.

3.7.3 Control-Data Isolation in Contrast to CFI

The related works above [1, 37, 52, 110, 142, 150, 149] derive from the policy inheriting
from Control Flow Integrity [1]. An essential differentiation between CFI and our work in
Control-Data Isolation is the reliance on the targets of indirect control transitions to verify
their integrity. That is, the target provides self-reported information (labels) which are
matched with the indirect instruction. This has an inherent weakness to label spoofing which
requires CFI to use a restrictive attack model to address. This cannot be mitigated merely by
code protection, which could potentially protect existing code. Any code injected into the
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address space of the application could contain a spoofed label. That is, in CFI-related works,
a system must never allow execution of code which the programmer does not expect to exist.

In contrast, the security guarantees with CDI are fully contained and encoded in the indirect
instruction, via the sled. In CDI no target is trusted and, so long as the application binary is
not modified, any injected code cannot be reached. Simply put CFI relies on no unexpected

code appearing in the system while CDI makes all unexpected code unreachable.

3.7.4 Indirect Branch Prediction

Due to the impact on performance, indirect branch prediction remains a current topic of
research. Value based BTB indexing by Farooq et al. [51] uses compiler support to help
increase indirect branch prediction accuracy. This work stores multiple targets for a given
indirect instruction in the BTB, which are used in conjunction with hint instructions placed
in the application binaries during compilation. Whenever an indirect instruction is executed,
it is preceded by the hint instruction, which is used to access the correct target from the
BTB. The authors demonstrate improvement over BTB prediction as well as tagged target
cache prediction. Though our compiler infrastructure encodes the CFG into the binary with
direct control flow, no hints are provided from the CDI compilation process.

In the work by Kim et al. [77], indirect calls are predicted as edges of multi-way
branches, leveraging existng prediction mechanisms to model indirect calls as a collection
of conditional branches. Though the authors demonstrate a performance improvement, the
dynamic discovery of edges prohibits such a mechanism from being repurposed for security
guarantees.

3.8 Chapter Conclusions

Control-Data Isolation presents a novel approach to eliminating contemporary control-flow
attacks. In this work, we demonstrate that a fine-grained protection policy can be imple-
mented with virtually no overhead. By eliminating all indirect control flow, program control
must adhere to the programmer-intended CFG. Using the edge cache, memoization of
safe control edges eliminates the overhead associated with executing direct control-flow
sleds while mitigating the need for accurate profiling. We believe that accelerating CDI-
compliant execution through architectural support can tear down the key remaining barrier
to widespread adoption of CDI-enabled code that was execution overheads.
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Chapter 4

Scalable Profiling for Likely Security
Bug Sites

Adding manpower to a late software project makes it later.

The Mythical Man Month: Essays on Software Engineering

Frederick P. Brooks Jr.

Software bugs comprise the greatest threat to computer security today. Though enormous
effort has been expended on eliminating security exploits, contemporary testing techniques
are insufficient to deliver software free of security vulnerabilities. Control-data isolation
eliminates contemporary control-flow attacks by removing a key component of the attack:
indirect control flow. However, adversaries still retain the ability to control and corrupt data
memory.

This chapter proposes a novel approach to security vulnerability analysis: dynamic
control frontier profiling. Security exploits are often buried in rarely executed code paths
hidden just beyond the path space explored by end-users. Therefore, this chapter details
Schnauzer, a distributed sampling technology to discover the dynamic control frontier, which
forms the line of demarcation between dynamically executed and unseen paths. This frontier
may then be used to direct tools (such as white-box fuzz testers) to attain a level of testing
coverage currently unachievable. Further, in this chapter demonstrates that the dynamic
control frontier paths are a rich source of security bugs, sensitizing many known security
exploits.

4.1 Introduction

In Chapter 2, we detailed Control-Data Isolation (CDI) [12] which severs the link between
user data and the program counter (PC). Accomplished by the elimination of indirect
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control-flow, CDI eliminates contemporary control-flow attacks. However, the underlying
defect which allowed an adversary to mount an attack, e.g., by subverting user data, still
remains. An example is the stack smashing attack, detailed in Chapter 1 and Chapter 2.
Though such an attack can not achieve arbitrary code execution in CDI-compliant code, the
data on the program stack may still be corrupted by an adversary. This could result in a
Denial-of-Service (DOS) attack, which denies service to a legitimate user when the program
crashes due to the corrupted data on the program stack. Though much less powerful than
arbitrary code execution, enabled by control-flow attacks, DOS and other attacks remain a
potential threat in CDI-compliant code.

The tools of an adversary, e.g., the corruption of data memory, remain due to the un-
derlying defects in software. These defects, whether injected inadvertently by design or
fabrication, pervade in software and provide the root of the software attack surface. This
chapter goes an important step further in the elimination of control-flow attacks; addressing
the defects in software which provide adversaries the avenues to mount attacks.

The vast majority of security attacks are enabled by software bugs. Defects which escape
detection of software quality assurance can have global impact, such as the Code Red and
Sapphire/Slammer worms which utilized buffer overflows for system exploitation. Fueled
by these and other high-profile exploits, buffer overflows remain a top security concern
[101]. Programs written in popular languages such as C and C++ are a rich source of buffer
overflow bugs, as these languages cannot, without high overhead, systematically eliminate
buffer overflow vulnerabilities [42]. This then places the burden on test to find potential
buffer overflow vulnerabilities before they are exploited.

Commercial software is heavily tested before deployment. Indeed, coding consumes
only a small percentage of development effort [112], while studies have shown that testing
comprises greater than fifty percent of the cost of software development [26, 84]. Regardless,
software defects continue to escape detection.

Understanding the way in which latent defects are exploited can reveal critical insight
into their prevention. The majority of security-related faults reside in the least likely to be
executed code sequences, and by extension, the least tested portions of code [81]. In an effort
to heighten initial customer satisfaction, developers tend to focus their limited test resources
on the code paths they anticipate users will execute most often, creating significant overlap
in developer test and user execution. This in turn shapes a common discovery model used by
attackers to locate defects. A malicious user will provide permutations of typical application
inputs in an effort to cause slight (but expected) deviations from the well-travelled, and thus
well-tested, path of normal execution. Given the combined nature of testing and exploitation
discovery models, the location of defects most likely to be exploited can be identified. This
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exploit-rich code exists just beyond the well-trodden execution paths of testers and users,
yet is readily reachable by attackers. We identify these locations as the dynamic control
frontier (DCF)[11].

The dynamic control frontier is a collection of paths rooted in dynamically executed
paths. However, these paths are special in that, had the final control decision in these
paths executed a different basic block, it would create a new, never-before-seen path. This
defines the frontier of the path space executed by an application with respect to a set of
inputs. Collectively, the DCF represents the most readily accessible paths of execution
which are unlikely to be executed by end-users; consequently, these paths have a high degree
of reachability for an attacker. Accordingly, any latent defects in the unexecuted portions
of the dynamic control frontier paths are unlikely to be found by users and developers, but
these bugs can be quickly uncovered by attackers.

It is interesting to look at the dynamic control frontier of an application arising from the
test inputs of developers. Indeed, in this Chapter it will be shown that this is valuable as we
find real vulnerabilities at these locations. However, it is more intriguing to examine the
dynamic control frontier for a non-trivial sized population of end users. An attacker is most
interested in this frontier as it represents code paths which have not been tested nor executed
with any frequency by any user of a particular program. In contrast, any paths frequently
executed by users which are not represented in the test suites will probably be devoid of
showstopper bugs, as users would otherwise complain. As such, in the construction of a
system to profile the DCF, we must be mindful that such a system should analyze the DCF
of a large population of users without imposing an unacceptable impact on individual user
performance.

4.1.1 Contributions of this Chapter

The goal of this work is not to fix software bugs which drive security exploits; existing tools
will be utilized for this purpose. Our goal is to instead show such tools, which often suffer
from exponential path explosion, where they can best focus their efforts to find real-world,
mission-critical security exploits. This goal merits the works namesake: schnauzer. Utilized
by law enforcement, emergency responders, and medical professionals the schnauzer is a
working dog that is exceptionally capable of locating critically important items (illegal drugs,
missing persons, etc.). The schnauzer does not actually find the desired item; it instead
zeroes in on the locations where its human partner should search – the perfect metaphor for
our work.

The value of the DCF is not to identify code paths with the highest density of bugs. The
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value of the DCF is to identify the code paths which are least tested by developers and users,
while also most readily accessible to attackers. We will demonstrate that there is mounting
evidence that bugs hidden within the DCF are more likely to be exploited, and therefore are
of the greatest merit to discover.

This chapter builds upon the works in Chapter 2 and Chapter 3 in leveraging control-flow
to eliminate contemporary attacks. Previous work in CDI, both software [12] and hardware
[10], eliminate malicious control-flow essential to contemporary control-flow attacks. How-
ever, the defects in software which give adversaries the requisite control over data memory,
also a necessity for control-flow attacks, still remain. This chapter directly addresses the
underlying software defects which give rise to the powerful adversary identified in the threat
model detailed in Chapter 2. Whereas CDI eliminates the direct injection of malicious data
into the program counter, this chapter details a novel mechanism to identify the defects
facilitating the corruption of data.

The primary accomplishment of this chapter is the development of a low-overhead,

efficient software mechanism that effectively identifies the dynamic control frontier over a

large population of users of an application. This frontier is the line of demarcation between

frequently executed code paths, and those paths which are untested, pinpointing the paths

of execution most likely to harbor future security exploit-enabling bugs. The majority of

the work in this chapter is derived from the publication “Schnauzer: Scalable Profiling for

Likely Security Bug Sites” [11]. In this work, we make the following novel contributions:

• Presentation of an effective, scalable, and decentralized approach to identifying the

dynamic control frontier for a program running across a large population of users.

• Presentation of a software implementation for harvesting dynamic control frontier

information from individual user machines. The approach utilizes dynamic code in-

strumentation to limit the impact to application execution while providing appropriate

coverage of the dynamic control frontier in the aggregation of users.

• Demonstration of the value of the dynamic control frontier by showing that many

known security vulnerabilities may be found there. We show that dynamic control

frontier paths sensitize known exploits identified by the NIST National Vulnerabilities

Database.

• Evaluation of the effectiveness of the approach by exploring the performancecost

tradeoffs while harvesting DCF paths. Also, herein is developed a novel whole-path
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analysis technique that allows us to gauge the coverage of the approach (i.e., the total

percent of dynamic control frontier paths found as a function of total population run

time). We present results for a wide range of non-trivial software packages that show

our approach achieves good coverage while keeping performance impacts low.
This chapter, Chapter 4, encapsulates the following work. Section 4.1.2 provides an

in-depth overview of the dynamic control frontier. Section 4.2 details our DCF profiler,
Schnauzer. Experiments conducted to evaluate the benefits and costs of DCF profiling, and
a full analysis of the results are delivered in Section 4.3. Finally, Section 4.4 lists related
works while Section 4.5 gives chapter conclusions.

4.1.2 Dynamic Control Frontier Discovery

Security exploits arise from bugs which escape detection by the developer. Often, hidden
bugs only appear when sensitized by the proper path [26]. For example, attempting to free a
pointer after already doing so previously (double free). The predominance of path-sensitized
bugs follows from the observation that commercial software generally achieves both branch
and code coverage but remains deficient with respect to path coverage. Unfortunately,
achieving path coverage is currently an intractable problem for applications of any apprecia-
ble size. This is due to the explosion in the number of paths, ultimately limiting path testing
to a tiny subset [103].

Given the combination of path explosion and the need for path sensitization to activate
bugs, it is inherent that exhaustive testing to locate bugs is an infeasible approach [152].
Thus, software testers are forced to constrain the path space to some feasible subset [26].
The quandary of test allocation, or the optimal test resource allocation problem (OTRAP)
[103], is generally approached from the perspective of software reliability and cost [71, 140],
rather than security. Identifying the subset of paths which are likely to contain bugs, which
are in turn likely to be exploited, would yield the highest productivity in test relevant to
potential exploit detection.

This subset of paths, deemed highly likely to result in exploits, is encompassed by the
dynamic control frontier. The dynamic control frontier represents the border of dynamic
execution between dynamically seen paths and those which are unseen. The first unexecuted
basic block of these dynamic control frontier paths represents a location that is likely to hide
a security exploit.

Consider the known security bug modeled in Figure 4.1, a high-level representation of an
exploit discovered in OpenSSL. The bug, documented in the National Vulnerability Database
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Figure 4.1 Path Sensitization Represented is the high-level overview of a security bug from the
National Vulnerability Database (CVE-2012-2110 and CVE-2012-2131) for the OpenSSL appli-
cation. In experimentation, this vulnerability was found to be sensitized by the dynamic control
frontier. Here, a buffer overflow attack results from crafted data of an RSA public key. Note that the
vulnerability is only sensitized by a single path (N, Y), indicated in red.

[100] and which enables a buffer overflow attack, is only sensitized by a specific path of
execution. When handling DER encoded data, maliciously crafted data can activate the
vulnerability. Note that the (N, N) (Y, N) and (Y, Y) paths were seen with some frequency
while running OpenSSL ssltest and do not sensitize the bug, but the path (N, Y) was not
seen, and hence represents the DCF where the bug was sensitized by the untested path.

Paths which remain unexecuted, that are not comprehensively tested, will continue to
harbor latent bugs. This space, all un-executed paths, is still far too large for comprehensive
testing. However, the code paths which are immediately outside the dynamic execution are
the ones which are the most readily reachable by attackers. Because the dynamic control
frontier is unlikely to ever be executed, the security bugs in this code will typically only
be fixed when an active exploit is exposed. Debugging the DCF will force any attacker to
probe deeper into the code. This will raise the bar in terms of the amount of effort required
to attack programs, and make it much more difficult for an attacker to find good security
bugs. In Section 4.3 we show that the number of dynamic control frontier paths is relatively
few and quite rich in security exploits.

As defined in Figure 4.2, the dynamic control frontier of an application are the sets of
length-n paths, comprised of basic blocks, where the first n-1 blocks have been seen to
be executed, but the full series of n basic blocks has not been seen to execute. Thus, the
dynamic control frontier is a path in which the last control decision to basic block bbn creates
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𝐷𝐶𝐹(𝑃) = {𝑝𝑖 , 𝑝𝑗 , … 𝑝𝑚}  

𝑝𝑖 = 〈𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛−1, 𝑏𝑏𝑛〉 |  

〈𝑏𝑏1, … , 𝑏𝑏𝑛−1〉 ∈ 𝐸𝑋(𝑃) 

∧ 〈𝑏𝑏1, … , 𝑏𝑏𝑛−1, 𝑏𝑏𝑛〉 ∉ 𝐸𝑋(𝑃) 

𝐸𝑋(𝑃) = { … 𝑎𝑙𝑙 𝑝𝑎𝑡ℎ𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 … }  

Figure 4.2 Dynamic Control Frontier. The dynamic control frontier of an application P, DCF(P),
is the set of paths p, comprised of a series of n basic blocks. These paths consist of basic blocks,
where the first n-1 basic blocks were in fact executed in EX(P), but the whole series of n was not.

a never-before-seen path of execution. Basic block bbn is the likely site of a security exploit,
sensitized by the path leading to it (bb1,..., bbn-1). More formally, the dynamic control
frontier is defined as follows. The dynamic control frontier DCF(P), of an application P, is
the set of paths p comprised of a series of n basic blocks. These paths consisting of n basic
blocks, where the first n-1 basic blocks form a path (of length n-1) in the set of executed
paths, EX(P), but the full length-n path of basic blocks is not contained in the set of executed
paths EX(P).

4.1.3 Computing the Dynamic Control Frontier

Determining the exact dynamic control frontier, which we call the ground truth DCF, for
a given application execution can be accomplished by analyzing its execution trace. The
ground truth DCF computation method is given in Figure 4.3. First, a trace of basic blocks
is collected for an application in execution with respect to a set of inputs. This trace is
then scanned for all length-n paths of basic blocks. These paths are sorted into sets by their
length-n-1 path prefixes. For each path within the set of paths with common path prefixes, if
there exists any control exit from the n-1 block (the last block of the path prefix) which is
not represented in the set, then this path prefix, along with the unseen control exit block, is a
member of the set of ground truth DCF paths.

4.1.4 Profiling the Dynamic Control Frontier

Establishing the ground-truth set of dynamic control frontier paths, needed to provide good
coverage of the dynamic control frontier paths for an application, is prohibitively expensive
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𝐸𝑋(𝑃) = { … 𝑎𝑙𝑙 𝑝𝑎𝑡ℎ𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 … } 

𝐺𝑇𝐷𝐶𝐹(𝐸𝑋(𝑃)) = { … 𝑎𝑙𝑙 𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 𝐷𝐶𝐹 𝑝𝑎𝑡ℎ𝑠 … } 

𝑝𝑥 = 〈𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛−1, 𝑏𝑏𝑛〉 

𝑝𝑝𝑦 = 〈𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛−1〉 

𝑃𝑅𝐸𝐹𝐼𝑋(𝑝𝑥) = 〈𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛−1〉 ∈  𝑝𝑥 

𝐸𝑄(𝑝𝑥, 𝑝𝑝𝑦) = 𝑃𝑅𝐸𝐹𝐼𝑋(𝑝𝑥) ↔  𝑝𝑝𝑦 

( ∀𝑝𝑝𝑠 ∈ 𝐸𝑋(𝑃))[ ∃𝑝𝑡[𝐸𝑄(𝑝𝑡 , 𝑝𝑝𝑠) ∧ 𝑝𝑡 ∉ 𝐸𝑋(𝑃)] →  𝑝𝑡 ∈ 𝐺𝑇𝐷𝐶𝐹(𝐸𝑋(𝑃))] 

Figure 4.3 Ground Truth Dynamic Control Frontier. The ground truth DCF of an execution
instance EX(P) of application P, GTDCF(EX(P)), is a set of paths p, comprised of a series of n basic
blocks. These ground truth paths are those where their length-(n-1) path prefix was executed, EX(P),
but their entire length-n paths were not.

to do widely. Analyzing an execution trace assumes a finite application run. Also, such
a trace grows to unmanageable size after long execution periods. For example, collecting
a trace consisting of purely conditional branch information, limited to instruction address
and branch direction, while executing the SQLite test suite quick test accrues over 300 GB
of data during ground truth analysis of a 154 billion instruction length execution. Further,
keeping track of all potential DCF paths during a programs execution is a significant perfor-
mance overhead; for example, the ground truth DCF analysis of SQLite using Pin-based
instrumentation [92] resulted in an average application slowdown of 26×.

Thus, a practical method must be developed to profile an application for the ground
truth DCF. This can be achieved by sampling a small subset of the paths executed by an
individual user and combining these samples over a large user population. While observing
the execution of an application, at occasional intervals, a path is selected for profiling. A
hypothesis is made from the length-(n-1) prefix seen in execution and the length-n path
derived from this prefix which is not seen (i.e., the hypothesis is constructed by taking the
opposite branch direction out of the last control decision seen to execute). We then hold this
hypothesis for an extended period of time, waiting to see if the path is executed, and thus the
hypothesis refuted. If the hypothesis path is not seen to be executed for this holding period,
it is considered a good candidate for a DCF path. If, however, the hypothesis is seen to be
executed, the hypothesis is refuted and not considered further.

The dynamic control frontier can be established for any single execution of an applica-
tion. However, this frontier will vary depending on the inputs to an application for a given
instance. Consequently, the DCF discovered for a single user is of limited value. A user
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may run the application with inputs which ultimately refute a hypothesis considered a good
candidate by another user. Potential DCF candidates are therefore collected into a single
global path filter database which is shared with all users over time.

Initially, dynamic control frontier path hypotheses will be sampled by multiple users. If
a path is refuted, it will be removed from the global path filter. Otherwise, as hypotheses in
the global path filter age they come to represent true dynamic control frontier paths. These
venerable DCFs can then be used to filter hypothesis creation on individual hosts as profiling
these high-confidence DCF paths would provide no benefit. Figure 4.4 depicts an overview
of DCF sampling.

Users

Developer

Analysis

New DCF Paths

Developer

Test

Global Path
         Filters

Test

Coverage

High-Confidence
 DCF Paths

Refuted Global Path
              Filter DCFs

 

Figure 4.4 Dynamic Control Frontier Sampling System. Users profile application execution
while sampling to discover dynamic control frontier paths. These DCFs drive developer analysis,
which directs testing methods. Global path filters coordinate work between users.

4.1.5 Leveraging the Dynamic Control Frontier

Once dynamic control frontier paths begin to materialize, they must be harnessed to find
security vulnerabilities. We can use white-box testing to deeply analyze DCF paths for
security vulnerabilities. White-box testing has emerged as an effective testing approach to
overcome this limitation [60]. White-box testing is designed to fully explore the dynamic
control flow within a code module. The approach essentially is the reverse of fuzz testing.
Rather than buffeting the code with random inputs in the hope of exposing new code paths,
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the approach instead selects a specific code path for testing and then uses SAT-based tools
to deduce the inputs to the program or function that would cause the path to execute.

White-box testing has offered the ability to improve fuzz testing by a considerable mar-
gin [61], however, the approach still has limitations. For any non-trivial program, the number
of paths that must be explored by white-box testing quickly overwhelms the computational
capability of existing tools. For example, if the code in Figure 2.1 is embedded within a
loop, the number of paths will be exponential with the number of loop iterations, e.g., at
1000 iterations the number of unique paths is 21000.

DCFs have the potential to become a divining rod for white-box testing tools, showing
them where to spend their efforts to search for vulnerabilities. The DCF instructs which
path to follow to reach the likely bug site; the SAT engine typically found in white-box
testing tools can determine the inputs necessary to execute the DCF path (or determine
that it is an infeasible path of execution). It is interesting to note that a key insight from
white-box testing is that bugs are not far from the path of execution; they are just out of
reach. Dynamic control frontier profiling leverages this same insight by identifying code just
beyond the demarcation of executed code. To effectively expose bugs, attackers must explore
code that is not executed by any user. As such, there is much promise to improve security
vulnerability analysis via white-box testing by identifying dynamic control frontier code
paths over a large population of users machines.

4.2 Schnauzer: A Distributed DCF Profiler

To validate our distributed approach to profiling the dynamic control frontier, Schnauzer
was built. Our profiler was implemented as a client tool utilizing the DynamoRIO dynamic
instrumentation tool platform [23]. The goal in developing Schnauzer was to push DCF
analysis into the user space by using sampling to demonstrate the potential to minimize
runtime overheads associated with DCF profiling, all the while achieving coverage of the
ground truth DCF.

Efficiency is critical when profiling in the user space. Thus, profiling at the abstract
level of the basic block is undesirable. As such, the conditional branches of an application
are preferred to model paths for the dynamic control frontier. Conditional branches are
chosen as they may be observed directly from the execution stream, unlike basic blocks.
Furthermore, they provide an elegant representation of the control flow of an application,
reducing the amount of information necessary when compared to basic block analysis. A dy-
namic control frontier path is simply then a path derived from a length-n executed path
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of conditional branches in which the trailing conditional branch only goes one direction
in this case the length-n DCF path is the same path that exits in the opposite (and yet unseen)
direction.

The DynamoRIO implementation of Schnauzer, shown in Figure 4.5, works as follows.
An application begins unmodified execution through DynamoRIO. At random, bounded
sampling intervals, the next n conditional branch edges are instrumented. At each branch
edge seen during execution, a few assembly-level path tracking instructions are added, as
shown in Figure 4.6, to record the occurrence of the path to a memory location when the
edge is re-executed. Upon reaching the last branch in the length-n path, the unseen edge
of this last branch becomes a potential node on the dynamic control frontier. A function
call, referred to as the refuting instrumentation, is inserted at this edge which, when called,
invokes a routine in our DynamoRIO client to evaluate the path leading to the edge. This
path/node combination constitutes a DCF hypothesis, as it has not yet been seen during
execution and the path formulation information for this hypothesis is recorded.
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Figure 4.5 DynamoRIO DCF Profiling Client. The application executes unmodified until a path
is selected for profiling, at which time lightweight instrumentation is added only to the selected
path. This instrumentation updates the path history when executed. In the event the last edge of
a hypothesis is executed (the refutation instrumentation), the path history is checked for a match.
Hypotheses may persist across application executions.

The application then continues to execute uninterrupted. If at any time the refutation
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instrumentation call is invoked (i.e., the previously unseen branch edge from the last branch
in the hypothesis is taken), the function will compare the recorded incoming path to the
hypothesis’ path prefix to determine if the path leading up to the edge matches that of the
current hypothesis. If the dynamic path matches the hypothesis, then that hypothesis is
refuted, and the DynamoRIO code cache is flushed to remove the potential DCF hypothesis.
By only instrumenting paths which are hypothesized to be DCF paths, overheads remain
low.

If after some long period of aging time a hypothesis has not been seen in the execution
trace, this hypothesis is considered confirmed. At that time, it is added to the set of dynamic
control frontier hypotheses, which will be reported en masse to the developers at a later
time. Before any new hypothesis is formed, it is checked against the global path filter
plus the internal list of recently recorded DCFs to avoid duplication of effort. Our client
also loads and stores hypothesis and global path filter state whenever profiling is invoked.
Accordingly, profiling persists across an arbitrary number of application executions. The
work of confirming hypotheses, as well as initiation of random sampling, is performed by
a separate thread of execution created within DynamoRIO. This allows such work to be
completed without slowing the target application.

DynamoRIO 

Basic Block

DynamoRIO 

Basic Block

CBR to branch target edge
Tracking (or Refuting) 

instrumentation
Jump to fall-through edge

Tracking (or Refuting) 

instrumentation
Jump to branch target

Branch

Target Edge

Fall-Through

Edge

(a) (b)
 

Figure 4.6 DynamoRIO DCF Profiling Dynamic Instrumentation. DynamoRIO basic blocks
(a) are instrumented with assembly-level instructions inserted only on branch edges for paths being
actively sampled. (b) Shows the layout of new basic blocks with instrumentation. Note that for a
single active hypothesis, only the relevant subset (tracking or refuting) would occur, and only on a
single edge for each conditional branch in the hypothesis.
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4.3 Experimental Evaluation and Results

To fully understand the benefit of the DCF, both the cost and accuracy of DCF profiling
were evaluated.

4.3.1 Benchmark Applications

Benchmarks were carefully selected to represent commonly used programs. These programs
are popular, network facing applications which increases their profile to attack. Additionally,
we sought out programs that had access to high-quality test suites, especially fuzz testers,
such that DCF path profiling could run for extended periods of time to locate the code that
developers (knowingly or not) chose not to test. The OpenSSL (1.0.1c) toolkit, Python

interpreter (2.7.1), Tor (The Onion Router 0.2.2.37), InspIRCd Internet Relay Chat server
(1.1 and 2.0), and Pidgin(2.10.4) executed the regression test suites with their respective
distributions. The SQLite (3.7.7) benchmark was executed with the fuzz testing components
of the standard tcl test library. The tshark network analysis tool (1.6.0) was tested with the
fuzz test generation tool included with the tshark distribution.

4.3.2 Experimental Framework

The testing platform consists of 64-bit x86 servers running Ubuntu 11.04 Natty Narwhal

with Linux kernel 2.6.38-10-generic. All path information was gathered using either the
DynamoRIO [23] or the Pin [92] binary instrumentation tools to instrument benchmark ap-
plications. There are four major variables relevant to DCF profiling; path length-n, sampling
interval, hypothesis age threshold, and the number of concurrent hypotheses for a given
analysis. Of these, path length has a direct relationship with the DCF, while the other three
are sampling parameters.

Since bugs are often sensitized by a particular path, the DCF has an important rela-
tionship with path length. The bug represented in Figure 4.1 would not be sensitized by
a path length of 1 (branch coverage), as all branches involved see both edges in normal
execution. This yields no ground truth DCF paths, as described by Figure 4.3, and the bug
would therefore escape detection by DCF profiling. This observation motivates the desire
for longer DCF paths. However, as path length grows, the odds of the same path executing
again reduces, potentially resulting in the DCF becoming the set of all paths. To determine
the optimal path length for DCF profiling, the relationship between path length and known
security defects was explored. This analysis, shown in Section 4.3.6, determined that a path
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length of 4 was most effective. For this reason, the subsequent experiments were conducted
with a path length of 4 conditional branches.

To further reduce the runtime overhead due to instrumentation, long intervals of time
can elapse between hypothesis formulation and the aging threshold. In all overhead and cov-
erage experimental results shown, the sampled hypothesis formulation period is randomly
distributed between 1 and 100 milliseconds of instrumented program run time while the
hypothesis aging period is 10 seconds. These values were found to facilitate an effective
coverage rate while maintaining accuracy of profiled dynamic control frontier paths with
respect to the ground truth DCF.

The number of concurrent path hypotheses is limited to a single hypothesis. While
imposing the lowest overhead, a single hypothesis also limits sampling capacity. Later in
Section 4.3.5, we show that a single hypothesis is virtually as effective as multiple concurrent
hypotheses in establishing coverage of the DCF ground truth.

4.3.3 Ground Truth Dynamic Control Frontier

A custom pintool was created to perform whole-path analysis of a program to discover
all of the dynamic control frontier paths. The whole-path analyzer generates the entire
conditional branch trace for all of the programs test inputs. We then scan this trace for all
unique length-n paths, and then rescan the trace to determine which of the discovered paths
exit in only one direction. The opposite exit of the paths’ prefix constitutes the complete
set of DCF paths that our sampling system could discover, and these paths form the ground
truth necessary to gauge coverage of the proposed sampling mechanism. Table 4.1 shows
the application trace and ground truth DCF set size for all benchmarks. The number of
ground truth DCF paths is seen to be very few when compared to the potential path space
arising from the large execution traces.

To assess the reduction in path space, we statically analyzed the potential number of
length-n paths which could be executed for an application. A conservative estimate was
made based on extending the cyclomatic complexity measure (CCM) [95] to include inter-
procedure paths. Developed by McCabe, CCM is a simple metric to assess path complexity
for a function. Leveraging CCM, we estimated the number of length-n paths within a given
function. We then extended this to inter-procedure paths by identifying the length-n paths
which may extend beyond the function, both leading into and exiting from the function,
for all call sites within the code base. This measure, though an estimate, is considered
quite conservative as it does not consider the path space expansion arising from loops. This
inter-procedure complexity measure adapted from CCM is shown in the third column of
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Application # Instructions Profiled 

# Potential Length-n 

Paths 

# Ground Truth 

DCF Paths 

SQLite 16,948,864,926 13,642,304 17,351 

OpenSSL 5,014,034,838 23,221,696 10,086 

tshark 684,000,546 38,467,136 178 

Python 656,068,272 12,175,712 35,206 

Tor 118,310,256 1,191,280 10,639 

InspIRCd 46,246,206 11,165,696 3,950 

Pidgin 4,762,914 6,833,360 3,641 

Table 4.1 Benchmark Applications. Profiled instruction trace size for ground truth analysis is
shown in the second column. The third column represents the potential number of length-4 paths,
measured from an inter-procedure cyclomatic complexity measure. The final column shows the
number of length-4 DCF paths within the profile trace.

Table 4.1 for all benchmarks.

4.3.4 Analysis of DCF Sampling

We evaluated the runtime overhead from profiling with Schnauzer as well as the accuracy of
the coverage with respect to the ground truth DCF. Figure 4.7 details the runtime overhead
experienced when profiling applications with our DynamoRIO client.
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Figure 4.7 Sampling Overhead. Runtime overheads for applications are minimally above the
slowdown experienced from the DynamoRIO core with a NULL client.

In all cases the majority of execution slowdown (2.82× average application runtime
overhead) is attributed to the DynamoRIO core, which averages 2.45× runtime performance
penalty compared to native execution. This small Schnauzer instrumentation overhead is
due to a lightweight approach of only instrumenting code paths which are being actively
profiled, which results in a 15% overall increase in execution time relative to DynamoRIO
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with a NULL client. The slight improvement in overhead experienced by SQLite from our
client is attributed to the alteration of fundamental DynamoRIO operating mechanisms (e.g.,
code cache) which affects performance, in this case positively.

Given the general-purpose nature and powerful flexibility of DynamoRIO, a lighter-
weight DCF path-specific dynamic instrumentation tool could potentially significantly
improve DCF profiling performance. Indeed, custom tools have been shown to be highly
effective when compared to binary instrumentation platforms like DynamoRIO and Pin.
Zhao et al. demonstrate a low-overhead tool for shadow memory translation with Umbra
[151], while Bosman et al. develop a dynamic taint analysis tool, Minemu [22], which is
significantly faster than any competing general-purpose solution. Minemu demonstrated
that, for such dynamic analyses, slowdown was not a fundamental property but instead arose
from non-specialized implementations.

DynamoRIO was chosen as an initial development platform for power and flexibility
combined with rapid accurate prototyping of DCF profiling. Although runtime overheads
demonstrated generally remain higher than desired, we believe initial deployment is certainly
possible (and planned) with the current framework for a range of applications.

Because we locate DCFs with sampling, there is legitimate concern as to whether or not
the technique will observe all of the possible (ground truth) DCFs, and moreover, will all
of the DCFs be identified in a reasonable amount of run time. As shown in Figure 4.8, our
profiler locates the vast majority of DCFs in a short period of time. Larger applications, with
billions of instructions, necessitate trillions of instructions of execution to receive good pro-
filing coverage of all possible DCFs. This translates to at most ten thousand users profiling
the application a single time each, certainly within reach of a modest user population.

Additionally, because sampling may deem a path a DCF, which in fact both directions
were executed (but only one was observed), the accuracy of sampling must also be measured.
Figure 4.9 shows the accuracy with which DCF paths are selected while profiling. Accuracy
is given as the percentage of likely DCF paths, discovered by sampling, which are in the
set of ground truth DCF paths for the application trace. Some applications achieve perfect
accuracy while sampling, and overall Schnauzer is almost 99% accurate in profiled DCF
paths with respect to the ground truth DCF.

4.3.5 Schnauzer Profiling Scalability

The dynamic control frontier is most valuable when it is derived from a sizeable popula-
tion of end-users. Further, it is expected to profile an application for its entire life cycle.
Schnauzer must therefore scale with application size, duration of execution, and population
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Figure 4.9 Sampling Accuracy. The percentage of likely DCF paths discovered by sampling
which appear in the set of ground truth DCF paths.

of users.
As shown in Table 4.1, the number of DCF paths for an application is quite small when

compared to the potential path space of such a long execution trace, greatly narrowing
the domain for test. It must be considered, however, to what extent the dynamic control
frontier path space will grow as an application execution continues unbounded. Figure 4.10
demonstrates that as trace length grows ever larger, the ground truth DCF path space grows
linearly. This gives confidence that the path space for test, the number of ground truth paths
which must be discovered while sampling, and the incidental work such as updating the
global path filter, will all remain within a bounded, manageable range.

Schnauzer scales very well with increasing path length. As shown in Figure 4.11, to
facilitate the highest degree of path sensitivity, path length has no appreciable effect on
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path space remains small. The application shown is SQLite, executing increasing durations of the
fuzz testing component of the test suite.

sampling overhead for paths ranging from 1 to 64 conditional branches. This is due to
the lightweight approach for path instrumentation, as only a few assembly-level instructions
are added to the path. As well, the number of DCF paths will increase linearly with path
length. Given this, paths of up to a length of 64 conditional branches may be analyzed with
little impact to performance, should the need for greater path sensitivity arise.
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Figure 4.11 Path Length Scaling. As the profiled path length increases in Schnauzer, the perfor-
mance overhead rises slowly. For paths up to 64 conditional branches, little difference is seen. The
benchmark shown is Tor.

Profiling overheads are kept low by limiting sampling frequency and the number of
paths concurrently being sampled. Figure 4.12 reveals only a single path need be actively
profiled at any time. The utilization of a global path filter and local list of recently sampled
DCF paths eliminates redundant work and allows all DCF paths to be discovered in an
acceptably similar amount of time, regardless of the number of concurrent hypotheses.

Scalability at the system level is achieved as well. Given the rate of dynamic control
frontier path discovery while profiling SQLite, the overall bandwidth requirement from a
population of users to the aggregation point at the developer is under 5 bytes/second per
user. Such a result suggests that a single central server shard could likely serve 10,000s of
individual user machines performing DCF path profiling. As the path space of an application
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Figure 4.12 Concurrent Hypotheses. The number of active hypotheses has minimal impact on
sampling coverage. This is due to the inclusion of the global path filter and local sampled path list to
eliminate redundant sampling. Benchmark shown is tshark.

is explored, the influx of new path information will decrease. To enhance profiling over the
entire life cycle of an application, the aging time for a DCF hypothesis can be increased.
Increasing this age threshold brings profiled DCF paths closer to the ground-truth set of
DCF paths for the entire lifecycle of an application.

4.3.6 DCF Correlation with Real Vulnerabilities

It has been shown that a large execution trace can contain a tractable number of dynamic
control frontier paths for comprehensive test. However, it is necessary to demonstrate that
this information delineating the frontier of dynamic execution is also a fertile source of
real security exploits. To establish the relationship between the dynamic control frontier
and security exploits, we sought to find if profiled DCF paths indeed sensitized important
security bugs. The DCF paths gleaned from ground-truth analysis were compared to bug
reports from fixed security bugs. Fixed bugs were chosen so as to know the precise location
of an exploited bug within the source code. These bug locations could then be compared
to the profiled DCF paths. If the location of a known bug is found to be sensitized by and
located directly at the end of a DCF path, then the bug can be said to have been effectively
hidden behind the dynamic control frontier.

As seen in Table 4.2, known security bugs are sensitized by the dynamic control frontier.
A total of 14 security exploits were found at the dynamic control frontier for the profiled
benchmark applications. The security exploits are drawn from the National Vulnerability
Database (NVD) [100], which is maintained by the National Institute of Standards and Tech-
nology (NIST). The database was searched for Common Vulnerability Exposures (CVEs)
[41] existing in benchmark applications. Not all vulnerabilities listed in the NVD for our
benchmark applications were sensitized by DCF paths. Some, such as configuration errors,
are beyond the scope of DCF path analysis. Others were simply not sensitized by the set of

95



Application Vulnerability Security Advisory 

OpenSSL 

Buffer Overflow CVE-2012-2110 

Buffer Overflow CVE-2012-2131 

Integer Underflow CVE-2012-2333 

SQLite Buffer Overflow CVE-2007-1888 

Tor 
DoS CVE-2011-0492 

Buffer Overflow CVE-2011-1924 

Pidgin DoS CVE-2011-4939 

tshark 

Format String CVE-2009-0601 

DoS CVE-2011-0538 

DoS CVE-2012-2394 

Python 
DoS CVE-2010-2089 

DoS CVE-2012-2135 

InspIRCd 
Buffer Overflow CVE-2008-1925 

Heap Overflow CVE-2012-1836 

 

Table 4.2 Software Vulnerabilities Sensitized by Dynamic Control Frontier Paths. Known
software vulnerabilities identified in the NIST National Vulnerabilities Database (NVD) were shown
to be sensitized by DCF paths.

DCF paths profiled from our test inputs. However, these results are a strong affirmation that
the control frontier indeed harbors bugs which are likely to be exploited.

It is interesting to note that profiling the dynamic control frontier is not only fruitful
for finding security bugs. We also have early evidence that it is a prime target to search for
software bugs in general. To this end, a separate analysis of the SQLite application was
performed. In this analysis the ground-truth DCF was compared to the most recently fixed
bugs in the SQLite code base. We found that 12 of the most recent 20 bugs fixed in SQLite
lay on code paths sensitized by the dynamic control frontier. Of those 12 bugs, 5 were
clearly enabling security vulnerabilities.

To determine an optimal path length for our experiments, the benchmarks were profiled
for DCF paths of varying length, as shown in Figure 4.13. These sets of DCF paths were
then analyzed to determine which vulnerabilities, listed in Table 4.2, would be sensitized
by the set of DCF paths for a given path length. Within the scope of our experiments, the
number of DCF paths increases roughly linearly with path length. More vulnerabilities are
identified by the growing set of DCF paths. All vulnerabilities shown in Table 4.2 were
discovered with a path length of 4 branches, with no other CVE entries indicated by longer
paths. Therefore, this path length was selected our experiments. This coincides with the
observation that bugs may be more likely to be found with shallow control flow activation
rather than being correlative with path coverage [24]. It is important to note that even in the
event that this path length is not optimal for another application, Schnauzer is amenable to
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longer paths as well.
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Figure 4.13 Impact of DCF Path Length on Vulnerability Discovery. Shown is the relation-
ship between path length and vulnerabilities discovered, for the sum of all benchmarks listed in
Table 4.1 and vulnerabilities identified in Table 4.2. Benchmarks were profiled for paths of varying
lengths. As path length increases, the number of DCF paths increases, with more bugs sensitized.
All vulnerabilities in Table 4.2 are discovered by the set of DCF paths profiled for a path length of 4.

4.4 Introduction

Much work has been done in the pursuit to identify and fix security vulnerabilities. Even
more effort has been expended to deliver comprehensive testing of applications. Some
related works are entirely complementary to Schnauzer. Other efforts assist in building a
foundation for finding vulnerabilities but are not entirely sufficient themselves to accomplish
the central goal of identifying code paths likely to be exploited, and thus DCF paths could
be a powerful mechanism to focus analysis effort.

4.4.1 Hot Path Analysis

The preponderance of path analysis has historically been performed to identify hot, or
heavily executed, paths. This is common in compiler optimizations but is also used for
testing purposes. The work of Vaswani et al. [138] defines a hardware-based programmable
path profiling mechanism. This work focuses primarily on solutions for hot path analysis,
limiting its adaptability to dynamic control frontier profiling. Buse and Weimer [27] utilize
static analysis to identify hot paths which are determined to be over 50% of total runtime
of an application and generated by only 5% of feasible paths. This work highlights the
difficulty of path profiling before application deployment.
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4.4.2 Path Analysis and Distributed Sampling

The concept of distributed sampling and end-users performing testing tasks has become
a more prevalent topic. Greathouse et al. have demonstrated the feasibility of distributed
sampling for otherwise heavyweight security vulnerability analyses. The applications are,
however, dataflow analyses [67, 68]. Ko et al. extensively investigate the concept of End
User Software Engineering, which highlights the changing mindset of end-users playing
a more involved role in the software life cycle [82]. Chilimbi et al. [38] have proposed a
method to determine which paths were dynamically executed by deployed software that had
never been tested, termed Efficient Path Profiling. This may be quite useful, but it focuses
on finding latent bugs which are likely to directly impact users, thus focusing on software
reliability. This is in contrast to DCF profiling, which seeks to enhance software security. A
key assertion in this work was that edge profiling is sorely inadequate in comparison to path
profiling. This built upon the previous work of Chilimbi et al. for Residual Path Profiling
[39] which also focused solely on highly executed paths. Path-based data has been proposed
by Liblit et al. to generate useful information on program crashes, specifically paths defined
by conditional branches [90]. While this lends credibility to the usefulness of conditional
branch-based path information, the purpose is strictly limited to post-mortem analysis of
application failures. Ayers et al. [14] employ a different methodology to achieve these same
ends.

4.4.3 Complementary Works

Testing technology has evolved along with software engineering techniques. Many useful
tools exist which identify an ever-increasing ratio of bugs before deployment.

Godefroid et al. have implemented DART [59], a tool to automatically generate random
tests to explore all possible code. This is a highly useful tool that could likely be made more
effective with DCF profiling. Though it seeks to explore all sections of code, it cannot test
all potential paths. A key challenge is that DART may never complete execution, making
the determination of when to cease testing difficult.

The practice of fuzz testing supplies a software unit under test with a random generation
of inputs in an attempt to break the unit, in the form of failed assertions and core dumps.
The technique is sometimes called black-box testing because it creates inputs without regard
to the internal structure of the software under test. This approach is very good in theory;
however, in practice the probability of generating the correct set of inputs to achieve all
possible paths within a given unit under test is effectively zero for non-trivial codes. Despite
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limitations, the approach has been effective at exposing security flaws. For example, Googles
cross fuzz tool generates random web pages for testing browsers, and it has exposed hun-
dreds of potential security flaws in all major browsers [123]. When coupled with dynamic
program analysis tools that can identify security vulnerabilities without active exploits, such
as taint analysis [121] or input bounds checking [85], fuzz testing becomes a power tool in
the war against attackers.

While effective, pure random fuzz testing has limited penetration on complex program
control sequences. Another important work related to DCF profiling is Microsofts white-box
fuzz testing tool SAGE [60]. This tool developed by Godefroid et al. strongly advances
white-box fuzz testing of enterprise-level software. SAGE has become a primary tool for
bug detection within Microsoft. The tool takes a test suite, with hand-generated and fuzz-
generated tests, and then uses SAT-based techniques to derive new program inputs to change
the direction of one branch in an existing dynamic code path. The newly derived code path
is then subjected to symbolic execution analysis that includes input bounds checking, taint
analysis and overflow checking. Approximately one-third of all Windows 7 security bugs
found have been identified by SAGE. A highly representative example is a bug identified
by SAGE which affected code that parsed ANI-format animated cursors [58]. The bug had
escaped detection by extensive black-box testing over many years and generations of the
Windows operating system. Using modest desktop hardware, SAGE was able to detect the
bug within a few hours.

Random fuzz testing comprised the basis for testing four out of seven of our benchmark
applications. Even so, we find vulnerabilities sensitized by DCF paths for these fuzz tested
executions. The reality is that random fuzz testing does not provide deep code penetration
[26, 30, 60]. This work is just another demonstration of the limitation of random fuzzing.

Even in light of such strong performance, many bugs are left undetected. A key challenge
to any testing platform is the path space associated with a software application. Testing every
path which may be executed remains infeasible for the foreseeable future. The infeasibility
of complete path analysis is what makes DCF path analysis useful. Our work is to distill
path data which may direct existing testing technologies. Applications such as DART and
SAGE suffer the inadequacy of limited path exploration. The implementation of DCF path
analysis can assist by directing such tools to high-value paths that likely contain security
vulnerabilities.

Concolic execution tools allow deeper penetration of application code. However, these
tools (such as KLEE [30]) have no path preference, including DCF paths. Indeed, in
achieving code coverage, KLEE will execute the basic block where the defect lies, but not
necessarily with the path required to sensitize the bug. We fully expect this to be the case,
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as industry has currently moved into an era of full code coverage for test. This property of
concolic execution, however, does not preclude discovering DCF paths anyway. Table 4.1
shows Schnauzer identified 17,351 length-4 DCF paths for SQLite, one of which sensitized
the buffer overflow vulnerability identified in Table 4.2. This significantly narrows the field
of discovery from the 13.6 million paths facing KLEE. As path lengths increase, the path
space increases dramatically. The same measure for SQLite estimated almost 200 billion
length-16 paths.

This further highlights how contemporary test can benefit from DCF analysis. Even
when code coverage is achieved, vulnerability-enabling defects still remain. Current white-
box testing attempts to brute-force application code to provide deeper penetration. DCFs
provide a heuristic to narrow the path space faced by code penetration testing.

4.5 Chapter Conclusions

Bugs in software remain the greatest security threat in programs today. There is much
compelling evidence in the testing literature (e.g., analysis of Windows 7 security bugs [60])
which suggest that the key to finding and fixing security vulnerabilities is to analyze code
paths at the dynamic control frontier. In this work we presented a comprehensive technique
for profiling an application to discover the dynamic control frontier. We have shown that
by using a distributed profiling approach, such profiling can be achieved efficiently for a
substantial population of users. Furthermore, we have demonstrated the high value of DCF
paths by correlating our discovered paths to 14 known security advisory vulnerabilities doc-
umented in the National Vulnerabilities Database. We feel strongly that efficient user-based
dynamic control frontier path profiling, combined with existing white-box testing techniques
and heavyweight dynamic security vulnerability analysis tools, will be a powerful weapon
in the future fight against attackers.
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Chapter 5

Conclusion

Systems program building is an entropy-decreasing process, hence

inherently metastable. Program maintenance is an entropy-increasing

process, and even its most skillful execution only delays the subsidence of

the system into unfixable obsolescence.

The Mythical Man-Month: Essays on Software Engineering

Frederick P. Brooks Jr.

Security has come to the forefront of computing in the information age. Despite contin-
uing effort to harden the software attack surface, control-flow attacks have persisted as a
fundamental building block in the exploitation of computing systems.

5.1 Dissertation Summary

This dissertation represents a novel approach to addressing contemporary control-flow at-
tacks. Taking a subtractive approach, where the fundamental building blocks of attacks
are removed from software, this work moves beyond the mitigation approach employed by
competing works to date.

The novel approaches detailed within this dissertation are enabled by three main insights.
First, isolation of control and data eliminates the mechanisms attackers have relied on for
decades. Second, design for security is a fundamental principle which can eliminate barriers
to adoption for techniques to harden the software attack surface, such as CDI. This design
for security principle is demonstrated in the hardware-software co-design detailed in this
dissertation in Chapter 3. Lastly, software exploits are heavily control-flow dependent. With
this insight it is possible to foreshadow attacks, eliminating the root defects before they are
exploited.

Chapter 2 detailed the process of control-data isolation, a novel approach to ensuring
the programmer-intended control-flow graph of software at runtime. The primary accom-
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plishment of CDI is to eliminate the direct injection of malicious user data into the program
counter. This is achieved in practice through the elimination of the fundamental build-
ing blocks of control-flow attacks; indirect control flow. The result is the elimination of
contemporary control-flow attacks, an essential element of many software exploits.

Chapter 3 proposes efficient hardware extensions to eliminate the remaining barriers
to adoption for control-data isolation proposed in Chapter 2. Through the memoization of
programmer-intended control-flow graph edges, the edge cache virtually eliminates run-
time overheads for control-data isolation compliant code. In addition to the performance
optimization for control-data isolation, Chapter 3 also presents a novel method to address
potential future control-flow attacks, the non-speculative return address stack. This stack
can conservatively determine the single, precise target of return instructions at runtime. This
minimal hardware addition extends the control-data isolation principle to paths of execution.

In Chapter 4, the intersectionality of control-flow paths and software defects was estab-
lished. The technique developed in Chapter 4 leveraged the way software is engineered,
tested, and used to determine where latent bugs reside in the control-flow of an application.
By profiling the execution frontier of a wide user base, software developers can focus finite
testing resources for heavyweight path testing. The result is a methodology to get ahead of
attackers. This in turn makes software security a proactive, rather than reactive, endeavor.

5.2 Future Control-Flow Security Research

Although this dissertation represents a non-trivial pivot in the approach to control-flow
security, the pursuit in hardening the software attack surface is never-ending. Control-Data
isolation, detailed in this work, has been implemented as proof of concept. However, in the
security community full implementation is highly valued. To this end, the exploration of a
CDI compliant, whole-system implementation would be effective in proving the efficacy of
CDI in the face of existing and future attacks. Thus, extending the compilation framework
in Chapter 2 to a full LAMP stack would be a positive direction for future research in
control-flow security.

An interesting topic arising from this work is the form future control-flow attacks will
take. As the mechanisms used in contemporary control-flow attacks are eliminated, attackers
will seek other ways to exploit a system. In the context of control-flow, the likely candidate
for future exploitation will be attacks that adhere to the control-flow graph of an application.
That is, as control edges are made secure through CDI attackers may seek to compromise
the paths of execution at runtime. The addition of the non-speculative return address stack
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in Chapter 3 is a step in the extension of CDI to path-based security. However, much work
remains. This work has demonstrated that the control-flow graph of software can, with
high efficiency, always be assured at runtime. However, it is yet unknown if the paths of
execution within the bounds of the control-flow graph can be protected in all cases, and if
so, at what cost.

A key element of this dissertation is the elimination of underlying mechanisms which
create the software attack surface. This has been proposed as a subtractive approach to
security, as detailed in Chapter 2. This subtraction has arisen as a consequence of avoiding
the same pitfalls of the many attempts to mitigate control-flow attacks for decades. However,
future work involves the generalization of the subtractive approach for the software attack
surface in general. In this dissertation application of the subtractive approach has been ad

hoc and has grown out of the acceptance of the failure of mitigation approaches to address
control-flow attacks. However, no generalization of the subtractive approach has yet been
proposed. This is a strong area for future work as attackers have long demonstrated the
ability to circumvent additive security measures.

Given the ubiquity of control-flow attacks, many countermeasures have been adapted.
However, these have been concentrated on resource-rich domains like servers and laptops.
With the rise of the Internet of Things (IoT), low cost devices are set to become more
connected, and likewise more vulnerable to attack. These systems lack many of the protec-
tions developed for more expensive computing platforms. This in turn lowers the bar for
adversaries to successfully compromise a system and execute a control-flow attack. The
adoption of CDI for embedded devices which will drive the IoT in the future is an essential
avenue for future work. Development of a whole-system implementation for this target
domain represents a significant future application of Control-Data Isolation.

Owing to the threat model detailed in Chapter 2, the robust solutions in this dissertation
lift arbitrary restrictions on an adversary assumed in other works. This in turn accommodates
a wider domain of application, including such technologies as dynamically generated code
and just-in-time compilation. The enabling of control-flow security in turn elevates the
threat and trust model of future systems. A primary example of this is the attestation of
CDI compliant code. Chapter 2 detailed the properties of CDI compliant code and the
algorithm for verification of these properties. However, work remains in the integration of
CDI compliant attestation for systems and the mechanisms necessary to implement CDI
attestation in practice.
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5.3 Conclusion

Within this dissertation, a novel approach to control-flow security has been presented in
detail. The realization of the techniques presented in this work represents a pivot in the
approach to assuring the control-flow of an application at runtime, in the adoption of a
subtractive approach to eliminating control-flow attacks. Through the analysis of the role of
control-flow in the software attack surface, to the elimination of the building blocks of at-
tacks, this dissertation demonstrates the key in the elimination of contemporary control-flow
attacks.
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