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ABSTRACT

Kinetic Method for Quasi-One-Dimensional Simulation of Magnetic Nozzle
Plasmadynamics

by

Frans Ebersohn

Co-Chairs: Alec D. Gallimore and J. P. Sheehan

A novel technique was developed which models two-dimensional magnetic field effects

in a one-dimensional electrostatic particle-in-cell code. This quasi-one-dimensional

formulation incorporates two-dimensional effects through the inclusion of cross-sectional

area variation and magnetic field forces. The new method is verified with a newly

formulated set of test cases of a two-particle system, magnetic mirrors, and fully two

dimensional simulations.

Magnetic nozzle physics and ion acceleration in low temperature plasmas were

investigated with a simple test problem using these kinetic simulations. The effects

of the density variation due to plasma expansion and the magnetic field forces on

ion acceleration were investigated. The density variation only weakly affected ion

acceleration. Magnetic field forces acting on the electrons were found to be responsible

for the formation of potential structures which accelerate ions. The formation of a

high energy ion beam is seen due to ion acceleration. Strongly diverging magnetic

fields drive more rapid potential drops and the length of the radio frequency heating

region was found to significantly affect the electron temperature profiles. Simulations

xxiii



were performed with both argon and xenon. For the same driving current, argon

simulations demonstrated higher ion velocities while xenon simulations showed higher

plasma densities.

The ion acceleration physics was investigated verifying that ion acceleration occurs

due to potential structures established by the magnetic field forces on the electrons.

The effects of anisotropic electron pressure tensors were also found to be important

for determining a simple Ohm’s law used to solve for the induced electric field which

accelerates the ions. Bi-Maxwellian and non-Maxwellian velocity distributions were

seen for the electrons in the simulations along with the anisotropic temperatures, veri-

fying the need for kinetic simulations. Electron thermodynamic relations (isothermal,

adiabatic, polytropic, double adiabatic) were evaluated for a number of simulation

results.

Results from quasi-one-dimensional simulations of magnetic nozzles were used to

estimate thruster performance parameters such as specific impulse and thrust. The

performance parameters were consistent with those expected in similar devices.

Simulations with parameters similar to the Helicon Double Layer Thruster were

performed. Results from these simulations look encouraging for future device specific

studies. Similar electron temperatures and normalized density profiles are seen in the

experiments and simulations. Velocity and energy distribution functions for ions and

electrons also show similar behavior to that measured in experiments.
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CHAPTER I

Introduction

1.1 Problem Statement

One of the primary challenges in the field of Electric Propulsion (EP) is guaran-

teeing that thrusters will achieve the long lifetime needed of these devices.[1, 2, 3]

Interaction of the high energy plasma with surfaces can lead to damaging these sur-

faces and failure of the thruster. The wear of thrusters is also particularly difficult

to characterize in laboratory experiments due to the facility effects which may affect

erosion rates.[4, 5] Many of the conventional thrusters (Hall thrusters, ion thrusters,

and magnetoplasmadynamic thrusters) incorporate electrodes (anode, cathode, ac-

celeration grids, etc.) which interact directly with the plasma and utilize the plasma

as part of the current circuit. The electrodes often end up being some of the primary

points of failure. Conventional thrusters have shown great success in both the labo-

ratory and in flight despite these challenges with thruster lifetime.[6, 7, 8] There is

inherent difficulty in scaling up these devices to higher energy density plasmas due

to life-limiting surface interactions. Furthermore, scaling down of these thrusters be-

comes difficult because as the thruster size decreases the plasma-surface interaction

becomes harder to mitigate. Plasma surface-interactions have also severely limited

the operation of Magnetoplasmadynamic thrusters (MPDs). Examples of erosion mit-

igation techniques include the use of graphite optics in ion thrusters and the recent
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advent of magnetic shielding for Hall thrusters in which a carefully shaped magnetic

field is used to protect the Hall thruster channel walls. Magnetic shielding has shown

great promise for increasing the lifetime of Hall thrusters by decreasing the inter-

action of the plasma with the thruster channel walls.[9] This use of a well designed

magnetic field is a prime example of how magnetic fields can be used to improve

thruster lifetime.

Electrodeless plasma thrusters seek to alleviate lifetime issues by eliminating the

use of electrodes entirely. These electrodeless thrusters typically consist of a radio-

frequency (RF) or microwave plasma source and an applied magnetic field known as a

magnetic nozzle which directs the flow of the plasma. The magnetic field is designed

so that interaction of the plasma with the walls is minimized. Thrust is generated

by the plasma through the pressure forces on the walls of the plasma source and

the interaction of the plasma with the magnetic nozzle. Limiting the contact of

the plasma with the wall using magnetic fields allows more dense and more energetic

plasmas to be used which can lead to increases in thruster performance. Furthermore,

limiting the interaction of the plasma with walls by using magnetic fields allows these

thrusters to be scaled down effectively. The tradeoff for these improvements is the

need for addressing the new challenges of using a RF or microwave plasma source and

understanding how to best design the magnetic nozzle.

The goal of this research is to improve the understanding of the fundamental

plasmadynamics in magnetic nozzles which is essential to optimizing the performance

of electrodeless plasma thrusters. The research herein approaches this problem from a

modeling perspective and introduces a new kinetic method for studying the magnetic

nozzles physics. The methods developed are particularly useful for studying the ion

acceleration mechanisms in electrodeless thrusters. The model developed and insights

gained from the simulations also have broader applications to astrophysical plasma

jets, solar physics, and magnetic field guided plasma flows.
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1.2 Research Objectives and Contributions

The major contributions of this research include:

• A study of the operating regimes of magnetic nozzle thrusters and

identification of the physical models necessary to capture important

physics. Kinetic models were shown to be necessary for the operating regimes

of some currently being developed low-temperature magnetic nozzle thrusters.

• Development of a novel kinetic quasi-one-dimensional particle-in-cell

simulation technique for studying magnetized plasma jets. This tech-

nique includes two-dimensional effects due to the magnetic field and is enabling

due to the reduced computational cost compared to fully two dimensional sim-

ulations.

• Incorporation of quasi-one-dimensional modeling technique in a gen-

eral, parallelized one-dimensional particle-in-cell code with Monte

Carlo collisions. The code developed for this work will continue to be a

research tool at the Plasmadynamics and Electric Propulsion Laboratory.

• Formulation of a series of verification test cases for the quasi-one-

dimensional simulation model. These test cases include simulations of a

two-particle system, magnetic mirrors, and comparisons with fully two dimen-

sional simulations. The verification test cases illustrate the power of the model

and give guidelines for verifying this technique for future implementations.

• Simulation of a magnetic nozzle thruster test problem and thorough

analysis of physics. Magnetic nozzle test problem results identified effects of

varying plasma source region, magnetic field topology, and background neutral

density on ion acceleration and electron dynamics. Magnetic nozzle simulations
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demonstrate ion acceleration due to potential structures which form as a result

of magnetic field forces on the electrons.

• Simulations of the Helicon Double Layer Thruster demonstrating ap-

plications of the method to large scale problems. Results are encouraging

for future device specific studies.

• Implementation of a retarding potential analyzer for studying ion en-

ergies in magnetic nozzle thruster plume. Includes a review of operation

guidelines and critical design parameters.

1.3 Thesis Organization

The remainder of the thesis is organized as follows. Chapter II introduces the

research topic and motivates its study by giving a brief background on electric propul-

sion, magnetic nozzles, and the previous simulation studies of magnetic nozzles. An

in-depth discussion of magnetic nozzle physics is given in Chapter III. The basics

of particle simulation methods and the novel techniques developed in this work are

presented in Chapter IV. Chapter V discusses the implementation and verification of

the one-dimensional particle-in-cell code developed as part of this work. Chapter VI

presents the implementation of the quasi-one-dimensional particle simulation tech-

nique and the verification problems developed for the quasi-one-dimensional model.

The magnetic nozzle test problem simulations are presented in Chapter VII followed

by a detailed analysis of the physics of this problem in Chapter VIII. The simulations

of the Helicon Double Layer Thruster are presented in Chapter IX and finally Chapter

X summarizes this work and presents conclusions.
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CHAPTER II

Background

2.1 The Case for Space Exploration

2.1.1 Scientific Need for Exploration

Science has been one of the primary drivers behind the need for space exploration.

There are major scientific questions which can only be answered by looking outward

from our planet. Among these questions are: “Is there life (or intelligent life) outside

of our planet?”;“Where and how did life originate?”; “How was Earth, the Solar

System, the Milky way, etc. formed and how do they work?”. Answering these

scientific questions gives deep insight on how life and the universe work and how

humanity and the planet Earth are part of the bigger, universal picture.

Spaceflight is an important component in the study of the health of the planet

Earth. Monitoring Earth from orbit with missions such as NASA’s AQUA, GRACE,

LANDSAT, and TERRA, have given tremendous insight on the Earth system as a

whole as well as humanity’s impacts on this.[10, 11] Characterizing the health of

the planet as well as the chains of causes and effects on the planet’s health will be

imperative to the survival of our species on this planet.

Understanding the astrophysics of our solar system as well as the interactions

of the solar system with our planet through mechanisms such as solar activity and
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asteroid impacts can also have tremendous effects on our planet (ask the dinosaurs).

Only by improving our scientific understanding of this system can we hope to avoid

the fate of the dinosaurs.

2.1.2 Economic Need for Exploration

The expansion of humanity has been a consequence of our success and dominance

of the world around us. As we continue to grow in number and develop technologically

we will require more physical space and resources. Both of these are only supplied

in a limited quantity on our planet. We now occupy all seven continents and harvest

resources from both the land and sea to support our ever growing species. Both

population and power consumption have been and are continuing to grow.[12, 13]

Currently we are living like a man in a log cabin who uses wood from the structure

of the home itself to fuel a fire to stay warm. Eventually he will have to venture out

of his home to survive. While we are currently not in danger of consuming ourselves,

as a species we should begin to look outward for resources in preparation for when

we need to expand ourselves. Currently efforts are already underway through NASA

and companies such as Planetary Resources to achieve this through asteroid mining.

Economic reasons have led to all the major expansion of human civilization, and the

time will come when we run out of room on Earth.

2.1.3 Technological Need for Exploration

Exploration of space, a place where life was never intended to survive and where

resources are scarce inherently requires the development of new technologies. The high

cost of space exploration also drives space technology to look for the most efficient,

effective way to achieve its goals. These needs have led to the development of many

spinoff technologies which NASA readily publishes to the public. These technologies

include: the space blankets found in nearly every first aid kit, highly efficient solar cells
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used in many alternate energy power sources, and water purification systems which

produce clean water from even the most heavily contaminated water sources.[14]

In a broader sense, the modern age would not be possible without the development

of space technology due to the capabilities provided by satellites. These satellites

provide precise global positioning (GPS), radio and television, telecommunications,

and Earth observation for monitoring weather and the state of the planet.

While technology can be developed purely for the sake of development, having a

clear goal such as the exploration of space gives direction to this endeavor and will lead

to further success. The development of the technology used in space exploration in

particular will always have to strive for high efficiency and survivability in extremely

harsh physical conditions. Making technology work the best it can in the worst

conditions will naturally lead to improvements to the easier problems as well.

2.2 Cost Limitations on Space Exploration

The primary factor which inhibits further space exploration is the inherently high

costs. An example of the cost restrictions is seen in the simple metric of cost per

kilogram to get objects into Low Earth Orbit (LEO). The lowest cost to date was

with the Saturn V with a cost of around FY2016 $4,500/kg but typically these cost

are greater than $10,000/kg (FY2016). [15] These high costs result in a cascade

of further costs. Access to space is expensive, which results in the developers of

spacecraft requiring highly reliable and highly functional equipment to insure that

the costs of access are recovered. The developers can not afford another launch,

so everything has to work the first time. Development of low risk equipment with

high reliability, high factor of safety, and high functionality naturally drives costs up

further.

Since cost is such a limiting factor, an important current challenge is to reduce

the overall cost. There are two simple ways to achieve overall cost reduction: reduce
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the cost of access to space ($/kg) or reduce the mass which must be put into space

to achieve the same goals (increase functionality of spacecraft). Space Exploration

Technologies (SpaceX) is a commercial company which is currently striving to reduce

the cost of access to space through re-usable rockets. They have shown exciting re-

sults in flying back the rocket first stage, but time will tell if re-using the refurbished

first stage will lead to significant cost reductions when all costs are considered. NASA

also has an initiative with the goal of drastically decreasing launch costs to enable

further exploration. Reducing the mass of the payload is another simple method for

reducing cost. The best way to achieve mass reduction is to increase the functionality

of equipment. In particular, this work will focus on the development of advanced

spacecraft propulsion systems which reduce the overall mass (primarily due to re-

duced propellant) and increase the functionality of the spacecraft. The importance

of the propulsion system in particular will be discussed first from the perspective of

Tsiolkovsky’s rocket equation.

2.3 Propulsion and the Rocket Equation

Propulsion systems are characterized by two key performance parameters: thrust

(T ) and specific impulse (Isp). The thrust is the force exerted on the spacecraft

resulting in changes of velocity. The specific impulse can be found from the thrust

by the following equation:

Isp =
T

ṁg0

(2.1)

in which (ṁ) is the mass flow rate and (g0) constant acceleration due to gravity. If

the thrust is determined from the flux of momentum out of the thruster, Isp is a

measure of the propellant exhaust velocity (vex) according to the following relation

Isp = vex/g0. As the exit velocities increase, the energy in the propellant particles
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exiting the thruster increase. The higher the energy per particle, the fewer total

particles are needed to achieve the same spacecraft energy. When fewer particles are

needed, less fuel is required making the specific impulse a measure of how effectively

the propellant is being utilized. The decrease of required propellant is best illustrated

in the Tsiolkovsky’s rocket equation shown below:

m
dv

dt
= −ṁvex = −T (2.2)

in which m is the spacecraft mass, ṁ = dm/dt is the propellant mass flow rate, and

v is the velocity of the spacecraft. Changing a spacecraft’s orbit in space (or escaping

a planetary body’s gravity well) requires that a certain amount of kinetic energy to

be imparted to the spacecraft. This energy is gained by applying a thrust resulting

in a change in velocity of the spacecraft. The typical way to quantify this necessary

energy is through the change in velocity (∆V ). Manipulating Equation 2.2 leads to an

expression for the propellant mass (mp) needed by the rocket to achieve the required

the ∆V for a given final mass (mf ) of the spacecraft.

mp = mf

(
e

∆V
vex − 1

)
= mf

(
e

∆V
g0Isp − 1

)
(2.3)

The above equation shows exponential dependence in the amount of fuel necessary

to deliver payloads as a function of (∆V/vex). From a cost perspective the amount

of propellant should be minimized so that the total mass of the spacecraft is low.

The payload mass fraction (ζ = mf/m0) serves as a metric for determining how to

minimize the fraction of propellant. The equation for the variation of the payload

mass fraction is shown below:

ζ = e−
∆V
vex = e

− ∆V
g0Isp (2.4)

in which m0 is the total initial spacecraft mass. When vex � ∆V the total payload
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Figure 2.1: Saturn V launch. Credit:NASA

fraction approaches zero and nearly all of the spacecraft mass is dedicated to the

propellant, which is non-ideal. Instead vex should be maximized to minimize the

amount of propellant. The exponential nature of this expression results in dramatic

changes to the payload mass fraction as the ratio (∆V/g0Isp) varies. It also implies

that for a given ∆V the specific impulse should be maximized.

A simple one way mission from the Earth to the Moon can be considered using a

chemical propulsion rocket such as the RS-25 engines (Space Shuttle Main Engines)

to illustrate the effects of the rocket equation. The RS-25 engines had a specific

impulse ranging from 366 − 452 seconds depending on the conditions in which they

operated. For this exercise a constant value of 452 seconds is assumed. A one way

mission to the Moon from the surface of the Earth requires a ∆V of approximately

12 km/s. Using RS-25 engines for this mission results in a payload mass fraction of

ζ = 0.067 which means that around 7% of the mass on the launch pad is delivered

to the Moon while 93% of the mass is fuel. The rocket equation is clearly illustrated

by looking at Figure 2.1 in which the payload delivered to the moon by the Saturn

V rocket during the Apollo missions is the small section illustrated.
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Figure 2.2: Payload mass fraction variation with specific impulse.

The effect of the rocket equation on payload mass fraction is further illustrated by

Figure 2.2 which shows the payload mass fraction as a function of the specific impulse

for a number of ∆V ’s. The lower ∆V ’s show a more rapid increase in the payload

mass fraction as the Isp is increased. The chart also illustrates that large gains in

propellant mass fraction are achieved as the Isp is initially increased (e.g < 1000

seconds) while at high Isp (e.g. > 4000 seconds) there are diminishing returns. On

this graph the example moon mission is nearest the red ∆V = 10 km/s line which

has a payload mass fraction of less that 0.1. These plots illustrate the “tyranny” of

the rocket equation as well as the drastic improvements in system mass that can be

achieved by choosing highly efficient, high Isp propulsion systems. Decreasing system

mass can then significantly decrease costs of spacecraft and improve the capabilities

for further exploring space.

2.4 Propulsion Methods

Propulsion systems must do one thing, impart a force on the spacecraft to change

its velocity. Typically the force is applied by expelling a working gas one direction

while the spacecraft is accelerated in the opposite direction. Current in-space propul-
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sion technology includes cold gas thrusters, chemical rockets, nuclear thermal rockets,

and electric propulsion devices.

Cold gas thrusters are the simplest method to produce thrust in which a high

pressure gas is expanded out of a nozzle. Typical cold gas thrusters have very low

specific impulse (< 100 seconds) but are the simplest to design. Thrust is generated

in the device due to the pressure forces on the walls of the thruster and nozzle. Figure

2.3 demonstrates how thrust is generated in these simple devices by illustrating the

pressures inside the nozzle (pint) and the flow out of the nozzle. Ignoring external

pressures, the high internal pressure forces on the left walls of the nozzle are not

balanced by any pressure forces on the right. This creates a net force, the thrust,

which pushes the rocket to the left. This net force can be found by integrating all the

pressure forces on the walls, but a simpler method finds this force by considering the

fluid control volume and integrating the momentum equation. The resulting relation

is shown below which relates the thrust to the internal pressures (pint), the mass flow

rate (ṁ), and the exit velocity.

T =

‹
pintdA = ṁvex (2.5)

The maximum efficiencies of cold gas thrusters can be estimated from thermody-

namics. If the nozzle is working perfectly, all of the thermal energy of the working gas

is converted into a directed kinetic energy and expelled out of the nozzle. A simple

one dimensional energy equation can be used to estimate this ideal operation and

predict the propellant exit velocity and specific impulse. The resulting expression for

the maximum specific impulse is shown in Equation 2.6.

Isp,max =

√
2cpT0

g0

(2.6)

In this equation cp is the constant pressure specific heat and T0 is the stagnation tem-
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Figure 2.3: Schematic of thrust generation in a nozzle.

perature in the pressure vessel. A cold gas thruster using nitrogen at a temperature

of 300 K has an exit velocity of around 775 m/s and a specific impulse of around 79

seconds. These are low performance parameters but the simplicity and reliability of

these systems insures that they are still used.

Chemical rockets differ from cold gas thrusters by first heating the gas though

chemical reactions which occur in a combustion chamber. The high energy gas leads

to much higher performance and specific impulse for these types of devices as illus-

trated by Equation 2.6. Similar to cold gas devices, thrust is primarily generated

by pressure forces on the walls of the rocket. These devices however are limited to

combustion chamber temperatures of around 3500 K due to material constraints for

temperature and pressure. Furthermore, chemical rockets are limited in specific im-

pulse performance to the energy that is in the chemical bonds of the fuel. The Space

Shuttle main engines (RS-25 engines) mentioned in the previous section are some of

the best performing engines ever made operating at a maximum specific impulse of

around 452 seconds. The chemical rockets show a significant improvement over cold

gas thrusters which occurs due to the heating of the propellant by chemical reactions.

Chemical rockets are also very versatile and can be used for a broad range of thrust
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applications from milli-newtons to mega-newtons. These rockets are currently the

work-horse of modern rocket propulsion.

Nuclear Thermal Rockets (NTR) heat gas by flowing it through a heat exchanger

attached to a nuclear reactor and then passing the gas through a rocket nozzle. Energy

is imparted to the gas through a heat exchanger instead of a chemical reaction. Similar

to cold gas and chemical rockets, thrust is generated due to the pressure forces on

the thruster and nozzle walls. Generally NTR have higher specific impulse than

chemical rockets. This performance improvement is primarily attributed due to the

fact that NTR’s are able to heat the working gas to temperatures similar to chemical

rockets and use hydrogen as a fuel which has a much higher specific heat (almost

an order of magnitude) than the typical gases (water vapor for RS-25) in chemical

rockets. Specific impulses for the Nuclear Engine for Rocket Vehicle Application

(NERVA) program were reported to be around 850 seconds with a reported thrust

of 333.6 kN . [16, 17] While NTR has shown good performance these rockets have

not been extensively developed since the 1970’s when NERVA was canceled due to

budgetary concerns. Currently efforts are underway to resurrect the NTR program

at NASA.

2.5 Electric Propulsion

EP is unique compared to all the other propulsion methods because the amount

of energy which can be put into the fluid is no longer limited by chemical reactions

or the ability to exchange heat between the nuclear reactor and the fluid. Instead

the energy is limited only by the available power. The ability to add more energy to

the gas/plasma particles results in higher specific impulse and performance. Material

constraints which limit the design of combustion systems are also alleviated because

the plasma can interact with the spacecraft through the long-range electromagnetic

forces to create thrust keeping the plasma away from the walls. There are three basic
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types of EP devices that use different mechanisms to produce thrust.

The simplest type of electric propulsion devices are electrothermal devices. These

include resistojets in which a gas is heated by passing over a heated surface and arcjets

in which the gas is heated by passing through an arc discharge. Electrothermal devices

produce thrust in the same way as cold gas, chemical, and nuclear thermal rockets

due to pressure forces. The only difference is that in electrothermal devices the gas

is heated by an electrical power source through a heater or a plasma arc.

Electrostatic propulsion devices generate a plasma and then accelerate the con-

stituent charged particles using an imposed or induced electric field. These devices

are classified as electrostatic because they use the electric field component of the

Lorentz force equation, shown below, to accelerate the charged particles.

F = q(E + v ×B) (2.7)

In this equation q is the particle charge, E is the electric field, and B is the

magnetic field. Examples of electrostatic propulsion include gridded ion thrusters.

Electromagnetic propulsion devices accelerate the plasma through interactions be-

tween applied or induced magnetic fields and currents induced in the plasma. Forces

are generated here by the second term in the Lorentz force equation due to cur-

rents flowing across magnetic fields. Examples of electromagnetic thrusters include

Magnetoplasmadynamic (MPD)’s and magnetic nozzle thrusters.

The typical performance of the propulsion methods introduced in this chapter are

shown in Figure 2.4 as well as the power required. The operational regimes shown

include areas where these devices are predicted to operate in the future. Electric

propulsion systems are high specific impulse, low thrust devices, while chemical rock-

ets are low specific impulse, high thrust devices. Electric propulsion devices often

operate for months at a time to deliver the desired ∆V while chemical propulsion

devices operate at most for minutes at a time. Electric propulsion will deliver a
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Figure 2.4: Specific impulse versus thrust for common propulsion methods.

payload very efficiently (less propellant, less mass cost) but slowly, while chemical

propulsion will get a payload somewhere quickly but inefficiently. In other words,

electric propulsion maximizes payload mass fraction while chemical propulsion max-

imizes thrust thereby minimizing time of flight. Each of these propulsion types has

important applications in modern mission architectures.

2.6 Electric Propulsion and the Rocket Equation

The conclusions drawn from the Rocket Equation section suggest that propulsion

systems strive for high specific impulse to maximize the payload mass fraction. How-

ever, for electric propulsion the power system needed to run these devices should be

taken into account to truly consider performance. The simplest way to illustrate the

effects of the power system on design is to use the thruster beam power to determine

the required power. The power in the beam of the thruster is defined as Pbeam = Tvex.
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In an ideal thruster all of the power provided by the power supply would go into the

thruster beam, (e.g Psupply = Pbeam). However, there are inherent losses in the system

which result in the beam power being less than the input power from the power sup-

ply. To account for this a general efficiency, ηT , is defined so that ηTPsupply = Pbeam

.

The scaling of the power sub-systems is often defined according to a parameter

α which is the mass of the power system needed to produce the desired power with

units of kg/W . Combining all of these expressions leads to a relationship for the

scaling of the mass of the power sub-system (mps) which is a function of the power

required by the thruster and the performance characteristics.

mps = αTvex/η (2.8)

The correct way to approach this problem for the full system is to consider both

the mass of the payload and the mass of the power system in the calculation of the

final mass. The following expression for the payload mass fraction is found from this

treatment:

Γ = e−
∆V
vex

(
1− vex/v

∗

1 + vex/v∗

)
(2.9)

in which v∗ = (ηmpl)/(αT ) is a parameter which normalizes the velocity and is a

function of the payload mass (mpl). The expression for the payload mass fraction was

plotted for several values of v∗ and ∆v in Figure 2.5 illustrating a more realistic trade

space for choosing the specific impulse necessary for a particular mission. This plot

shows that a maximum for the payload mass fraction exists which depends on the

mission and thruster parameters. Each mission has an ideal specific impulse which is

set by ∆V , payload mass, thruster efficiency, and α. The maximum exists because

increasing specific impulse leads to an increase in the required power. Eventually,
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Figure 2.5: Payload mass fraction variation with specific impulse considering power
system mass and payload mass for electric propulsion system.

further increasing the specific impulse to lower the spacecraft mass does not offset

the increases in power supply mass required.

2.7 Magnetic Nozzles as Electromagnetic Propulsion

The applications of the techniques developed in this dissertations are focused on

the study of magnetic nozzles which are a particular type of electromagnetic propul-

sion. Magnetic nozzles are strong magnetic fields used to guide the flow of plasma

to generate thrust. The magnetic field effectively replaces the physical wall of con-

ventional rocket (de Laval) nozzles and guides the flow with a “magnetic wall” that

is created by electromagnetic forces on the plasma. A comparison between magnetic

nozzles and de Laval nozzles is shown in Figure 2.6 illustrating this difference.

One of the earliest studies of magnetic nozzles was performed by Andersen as a

means to create a supersonic plasma to be used for experiments. [18] Andersen’s work

demonstrated a way to produce a directed beam of energetic plasma, which naturally

found applications in space propulsion methods. A number of thruster concepts have

been developed since Andersen’s work. These thrusters include electrodeless radio
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Figure 2.6: Magnetic nozzle comparison with de Laval nozzle.

frequency thrusters, MPD’s, and high energy fusion plasma rockets. [19, 20, 21, 3,

22, 23, 24, 25] Even before the work of Andersen, devices were considered at NASA

which operate on the same principles as magnetic nozzles, although not explicitly

called magnetic nozzle devices. [23]

Electrodeless thrusters use magnetic nozzles as the primary means for accelerating

a plasma which is typically produced by an RF source. No electrodes are exposed to

the plasma and the plasma is guided by a strong magnetic field. These devices strive

to minimize the interaction of plasma with surfaces which should increase thruster

lifetime. Minimizing contact with walls should also enable these devices to scale to

higher particle and energy densities, which is necessary to push electric propulsion

devices into higher thrust density regimes. The improved plasma confinement should

also enable scaling to smaller sizes where plasma confinement is more difficult. These

are the promises of magnetic nozzle technology and are the goal of current research

and thruster development.

Magnetic nozzle thrusters in development span a broad range of powers and sizes.

Small, low power (< 300 W ) thrusters in development include the Helicon Double

Layer Thruster (HDLT), CubeSat Ambipolar Thruster (CAT), and Electron Cy-

clotron Resonance (ECR) thrusters. [25, 3, 22] These thrusters show promise for
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future small satellite (CubeSats, microsattellite) missions in power ranges between

1-300 W. Currently, these low-power thrusters are an important part of this research

and have significantly improved the understanding of magnetic nozzle physics in the

last few years.[3, 26, 27, 28, 29, 30] Higher power radio frequency (e.g. helicon)

sources (> 500 W,< 1 MW ) are also being used in magnetic nozzle propulsion

devices.[25, 31] An example of this is the VAriable Specific Impulse Magnetoplasma

Rocket (VASIMR) which generates plasma by a high power helicon source and then

further heats the plasma by an ion cyclotron resonance heating stage.[32, 25] The

plasma then undergoes a directed expansion by a magnetic nozzle. The VASIMR

experiment currently operates at 200 kW producing approximately 6 N of thrust.[33]

Scaling to much higher powers(> 1 MW) is feasible, making VASIMR a candi-

date for a number of missions including station keeping, lunar tug, and manned

missions. Many future fusion-based propulsion systems also incorporate magnetic

nozzles.[34, 35] In these theoretical devices the energetic plasma generated by the

fusion process is expanded by a magnetic nozzle. It is predicted that these devices

would operate at 1 GW generating 4.6 kN of thrust.[36] Fusion devices are not in-

cluded in Figure 2.4 and would significantly extend the regime of electromagnetic

propulsion.

Lastly, MPD research has also suggested that incorporation of magnetic nozzles

could improve performance by continuing to accelerate the plasma as it leaves the

exit of the thruster.[19, 20, 21] Strong axial guiding fields are anticipated to increase

lifetime of these thrusters by limiting the transport of energetic plasma to the walls.

2.8 Past Magnetic Nozzle Theory and Simulations

Magnetic nozzle thrusters operate in a broad range of regimes requiring that

different physical models be used. One of the important parameters for determining

these regimes is the Knudsen number (Kn = λmfp/L) which is a ratio of the mean
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free path between collisions (λmfp) to a characteristic length of the system (L). Small

Knudsen numbers (Kn < 0.01) imply that frequent collisions occur, locally the plasma

is in equilibrium, and thus the fluid description can be used. Fluid models treat the

plasma as a continuum from the macroscopic viewpoint. Individual particles are not

considered, the plasma is assumed to be in local equilibrium. Conservation equations

are solved for quantities such as for density, mean velocity, and temperature.

Large Knudsen numbers (Kn > 1.0) imply that collisions are infrequent and

that the plasma is experiencing free molecular flow. The plasma can be treated as

individual particles which follow trajectories only affected by electromagnetic fields.

Kinetic methods can still be used in this regime, but collisions are so infrequent that

they need not be considered.

A region known as the transitional regime (0.01 < Kn < 1.0) exists between

continuum and free molecular flows where fully kinetic methods should be used. The

plasma can no longer be assumed to be in equilibrium and must be treated more

generally. Insight can still be gained with fluid approaches, but the most accurate

results require a kinetic description to capture non-equilibrium effects. Kinetic meth-

ods treat the plasma either as individual particles or as a statistical distribution of

particles which is affected by electromagnetic fields and collisions. This regime is the

most challenging to model.

2.8.1 Fluid Models

One of the simplest ways to describe a plasma is to use a magnetohydrodynam-

ics (MHD) approach. In this model the plasma is treated as a single fluid by com-

bining the conservation equations for the ions and electrons and assuming quasi-

neutrality.[37, 38] The electron motion is assumed to be fast, which leads to the

simplification of the electron equations of motion to an Ohm’s law which is used to

solve for the time evolution of the magnetic field. The type of Ohm’s law (ideal,
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Figure 2.7: MHD model heirarchy. E is the electric field, U is the mean flow velocity,
B is the magnetic field, η is the resistivity, ne is the electron number
density, e is the elementary charge, J is the current density, and Te is the
electron temperature.

resistive, Hall, generalized) has large implications on the physics captured by this

model. Figure 2.7 illustrates the hierarchy of these MHD methods. MHD models

have been used in a number of studies, particularly for high density plasmas where

the MHD assumptions may hold. [39, 40, 41, 42, 39, 40, 43] Previous parametric

studies have suggested that a generalized Ohm’s law MHD model should be used

to capture the important physical mechanisms of the thrust generation process in

many current magnetic nozzle experiments such as the HDLT and VASIMR. [44, 45]

A generalized Ohm’s law method includes two fluid effects through incorporation of

the Hall term and electron pressure effects. The plasmadynamics in magnetic nozzles

has also been described by models which treat the electrons and ions as separate

fluids. [46, 47, 31, 48, 49] Quasi-neutrality is no longer assumed and the full electron

conservation equations are solved. Historically, studies of magnetic nozzles with these

models use steady-state approximations and include assumptions (e.g. isothermal or

isotropic electrons) that make the solutions computationally tractable. [46, 47, 31]

These fluid models are most appropriate for studying high density plasmas in de-

vices such as MPD’s and fusion based propulsion systems. They are not as applicable

to lower density devices such as many of the lower power electrodeless magnetic noz-

zle thrusters which have Knudsen numbers in the transitional regime. [44] Knudsen

numbers become particularly low in the plasma plume, where the density decreases
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rapidly and few particle collisions occur. The plasmadynamics in these low-density

devices may include important non-equilibrium effects, making kinetic modeling nec-

essary for the most accurate solution. There are however important insights which can

be gained from using fluid models to study these devices, but some non-equilibrium

effects which may be important will be missed.

2.8.2 Kinetic Models

A plasma can be studied kinetically by modeling the individual particle dynamics.

Treating the plasma as a collection of particles is the most general way of studying

the system but also the most complex. Particle methods have been utilized to study

important physical phenomena such as ion acceleration and plasma detachment in

magnetic nozzles. [50, 35, 51, 52, 53, 23] In particular, the particle-in-cell (PIC)

technique was used to study the formation of double layers in magnetic nozzle plasmas.

[52, 51, 54] PIC simulations have typically been limited in scope to one dimensional

[51, 54] simulations or very truncated multi-dimensional simulations [55] due to the

inherent computational costs associated with particle methods. Simulations which

include two- and three- dimensional effects of these systems are still necessary to

fully characterize many of the important physical processes. Free-molecular, particle

trajectory codes have also been used to study the detachment process. [50, 56, 57]

These codes ignore the coupling between the particles which could be very important

to the detachment process. Fully kinetic simulations using Boltzmann and Vlasov

solvers have yet to be used for studying magnetic nozzles. However, there codes have

shown great promise in other devices such as Hall thrusters. [58, 59]
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CHAPTER III

Magnetic Nozzle Physics

3.1 Introduction

Magnetic nozzles are functionally similar to de Laval nozzles by achieving thrust

through conversion of internal energy or non-directional kinetic energy of the plasma

to directed kinetic energy. A comparison between de Laval nozzles and magnetic noz-

zles is shown in Figure 3.1. The virtue of magnetic nozzles lies in minimizing contact

between the high temperature plasma and surfaces while also providing mechanisms

for thrust generation by plasma-field interaction. Magnetic field topology and thereby

the magnetic nozzle configuration is also variable, enabling versatility in nozzle shape

and thrust vectoring without gimbals.

The magnetic fields in a magnetic nozzle must initially confine the plasma plume

to a configuration which produces directed kinetic energy. Thrust is generated by

the forces that result from the interaction between the magnetic fields and the in-

duced currents. Ion acceleration occurs and non-directed energy is converted into

directed kinetic energy. Confinement must eventually be broken to ensure efficient

detachment from the closed applied magnetic field lines which may pull the plasma

back to the spacecraft. This reflects the requirements of both initial confinement and

eventual detachment. The transition from plasma containment to detachment must

be understood to optimize magnetic nozzles.
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Figure 3.1: Thrust generation mechanism comparison between magnetic nozzle and
de Laval nozzle.

This chapter presents an in-depth survey of the important physics of plasma flow

in magnetic nozzles. Previous literature reviews and discussions on the topic will be

further extended.[46, 60, 61] Findings and advances in magnetic nozzle physics are

consolidated, summarized, and analyzed to define the current status of magnetic noz-

zle theory. The relevant regimes of the different magnetic nozzle physical mechanisms

are defined with results from prominent experiments briefly summarized.

3.2 Ion Acceleration and Energy Conversion Physics

Magnetic nozzle ion acceleration mechanisms considered in this review include: A)

magnetic dipole force; B) induced electric fields; C) generalized Hall, thermoelectric,

and swirl acceleration; and D) directionalizing fluid thermal energy. Many of the

physical mechanisms discussed are intimately coupled but are considered separately

in the following sections.

3.2.1 Magnetic Dipole Force

Physical Description

Particles in strong magnetic fields will orbit around those field lines. The orbiting

particles can be imagined as small current loops centered around the magnetic field
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Figure 3.2: Sketch of magnetic dipole force in a magnetic field generated by a current
loop (I). Blue arrows are perpendicular velocities while red arrows are
parallel velocities. Thickness of the arrows represents the magnitude of
the velocity.

lines. The particle orbits are diamagnetic so that the current direction is such that

the magnetic field that would be produced by the particle orbit opposes the applied

field. The interaction of localized current distribution with the applied magnetic field

results in a force.[62] A simple sketch of the effects of this force on the velocities is

shown in Figure 3.2. Blue lines illustrate the gyration velocities while red arrows show

the velocity along the field line. The thickness of the arrows is meant to represent

the magnitude of the velocity. Velocities along the field line increase at the expense

of the gyration velocities as the particles are accelerated along the field line.

An expression for this force is shown in Equation 3.1.

Fµ = ∇ (µm ·B) (3.1)

where µm is the vector magnetic moment. The general force in Equation 3.1 can be

simplified by assuming a constant, anti-parallel scalar magnetic moment.

Fµ = (µm · ∇)B = −(µmB̂ · ∇)B (3.2)

The scalar magnetic moment for these orbiting particles has the form shown below:
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µm =
mv2
⊥

2B
(3.3)

where m is the particle mass, v is the particle velocity, and B is the magnetic field

strength. The parallel and perpendicular directions are defined with respect to the

magnetic field unless stated otherwise.

The general force in Equation 3.1 can be simplified by assuming a constant, anti-

parallel magnetic moment.

Fµ = (µm · ∇)B = −(µmB̂ · ∇)B (3.4)

The above description may also be represented by a potential energy Φµ = µm ·B.

The magnetic moment of a particle in the above equations is an adiabatic constant

of motion if the variation of the magnetic field is small over a single period of cyclotron

motion, δB � B. This condition may be represented by the relations shown in

Equation 3.5.

dB

dt
� Bωc or ∇‖B � B

v‖
ωc

or rL

∣∣∣∣∇BB
∣∣∣∣� 1 (3.5)

In these equations ωc = qB/m is the cyclotron frequency of the particle. The first

condition implies that the temporal variation of the magnetic field is small during

a cyclotron orbit. The second condition implies that the spatial variation of the

magnetic field along the magnetic field direction is small over the distance traveled

by the particle during a cyclotron orbit. The last condition is the most often used and

describes the ratio of the Larmor radius, rL = mv⊥/(qB), to the characteristic length

over which the magnetic field changes, 1/|∇B
B
|. Particles satisfying these conditions

are said to be magnetized.

The condition for maintaining magnetization must be considered more generally

when collisional effects are included. A highly collisional species may experience
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collisions on the same timescale as its cyclotron motion causing the particles to vi-

olate adiabaticity. The ratio of the cyclotron frequency of a particle to the collision

frequency is defined as the Hall parameter. The Hall parameter (Ωcol) is shown in

Equation 3.6 and gives an additional necessary condition for maintaining adiabaticity.

Ωcol = ωc/ν � 1 (3.6)

in this equation ν represents the collision frequency.

Energy Exchange

To describe adiabatic energy exchange the conservation of total kinetic energy,

Ktotal, of a particle is used, shown in Equation 3.7.

Ktotal = K⊥ +K‖ =
mv2
⊥

2
+
mv2
‖

2
= constant (3.7)

When the magnetic moment of a particle is an adiabatic invariant and the total kinetic

energy of a particle is conserved the velocity parallel to the magnetic field increases

as the magnetic field strength decreases. Combining these equations results in the

following relationship for the velocity parallel to the magnetic field.

v‖ =
√
v2
total − 2µmB/m (3.8)

In this expression both the magnetic moment and the total velocity are constant.

Electron-ion Coupling

For certain parameter regimes the heavy ions may become demagnetized while

electrons remain magnetized. Electrons maintain adiabaticity while they are mag-

netized and are accelerated from high magnetic field to weak magnetic field regions.

The ions are not magnetized and do not feel the magnetic dipole force. Acceleration
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of the electrons and not the ions leads to a charge imbalance which then leads to the

formation of a field-parallel electric field which accelerates the ions out along with

the electrons.[63, 23]

Previous Work

The behavior of magnetized particles described in this section is similar to the well

known physics of magnetic mirrors.[64] Magnetic mirrors confine particles through

a converging magnetic field while magnetic nozzles accelerate particles through a

diverging magnetic field. Insights can be gained by comparing with magnetic mirror

studies.

Experimental thrusters have suggested this mechanism as the primary means to

produce ion acceleration. The VASIMR propulsion system operating with ion cy-

clotron resonance heating has shown significant ion acceleration which it attributes

primarily to this force.[25, 65, 32, 50, 33, 66] Other theoretical, computational, and

experimental efforts have also studied and demonstrated the thrust production capa-

bilities of this mechanism. [67, 23, 24] The body of work thus far has shown that this

is an effective method for acceleration, but further study is necessary, particularly to

understand the coupling between electrons and ions as well as the conditions where

particles become demagnetized and this treatment is no longer valid.

It is important to note that this acceleration mechanism was derived primarily

from a particle or kinetic standpoint. The manifestation of this mechanism from a

fluid perspective has also been considered. A particularly important result from the

continuum treatment is that this force appears explicitly in the equations of motion

when anisotropic pressures are present in the plasma. [68]

3.2.2 Induced Electric Fields

Physical Description
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Figure 3.3: Sketch of electron driven acceleration in a magnetic field generated by
a current loop (I). The electric field is shown with gray lines while the
magnetic field is shown with black lines.

Electric fields form to strive to maintain quasi-neutrality in a plasma. Imbalances

of charge fluxes due to boundaries (e.g. sheaths), ambipolar , and forces on the

particles can drive the formation of these electric fields.

An example of an electric field that forms due to an initial imbalance of fluxes is

shown in Figure 3.3. A plasma produced in a plasma source is exposed to a vacuum.

The light electrons, which have a much higher thermal velocity (vth =
√
kBT/m)

than the heavy ions, expand rapidly into the vacuum leaving the ions behind. The

expansion leads to an imbalance of charge and establishes an electric field which

accelerates the ions out with the electrons. The electric fields driving this acceleration

mechanism have shown characteristics of double layers[69, 30, 3] or ambipolar fields

[66] which will be discussed in the sections below.

Energy Exchange

Induced field ion acceleration occurs due to an exchange of energy between the

electron energy and the field aligned ion directed kinetic energy. The thermal expan-

sion of the electrons leads the formation of a potential drop which accelerates the ions.

Considering only the induced electric fields however does not lead to net additional
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production of thrust beyond the pressure of the plasma on the walls. [70] If only

one-dimensional effects are considered no net energy is added to the axial direction.

Energy gains in the axial direction by the ions are balanced by energy losses in the

axial direction from the electron. In other words, there is no net gain of energy in

the axial direction when considering electron-ion pairs. Additional multi-dimensional

effects due to the magnetic field, induced currents, or instabilities are necessary to

explain the full energy exchange process. A mechanism must exist to couple energies

from other dimensions to the acceleration direction to generate a force which results

in directed kinetic energy. Furthermore, Fruchtman showed with a simple one dimen-

sional analysis that the requirement of zero electric fields at the boundaries of a one

dimensional treatment of the plasma require that no net momentum be imparted on

the plasma if only electric field effects are considered.

Previous Work

Double layers are sharp potential drops that occur between two regions of opposing

charge. The sharp potential accelerates the ions leading to the formation of an ion

beam. The double layer region is short (≈ 10− 100λD)s.[71] The debye length λD is

the characteristic length in a plasma over which short range electric fields are shielded

out. The essential requirements for a double layer are that the electric field inside the

double layer is much stronger than the field surrounding it and that a region exists

which violates quasi-neutrality. [26] The current-free double layer is a particular type

of double layer through which no net current flows.[72, 73] Recently, current free

double layers have been created in expanding plasmas which are guided by magnetic

nozzles. [26, 30] These double-layers are current-free because there are no electrodes

driving a current. Acceleration due to double layers in magnetic nozzles has been

shown experimentally [30, 69] and by PIC simulations.[51, 54]

A number of theories exist on what drives the formation of these current free
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double layers. One theory uses a one-dimensional four species approach including

diffusive transport to explain the formation. [74] This theory predicted that double

layers exist over a particular range of background pressures which depends on the

plasma properties. Another theory uses a quasi-one-dimensional treatment of the

plasma with three species (two electron species) to describe the double layer forma-

tion. [75] This theory predicts double layer formation when the ratio of the two

electron temperatures is greater than 10. A free-standing sheath theory also exists

which suggests that a sheath forms when plasma radius expands by 28% due to the

magnetic field. [76] There is no clear consensus yet as to which theory is the most

correct and this remains an open question. Also note that all of these theories assume

that the constituent species are isothermal.

Ambipolar ion acceleration has been observed in experiments [19, 66] and simulations.[65]

Ambipolar electric fields can reach lengths of 10, 000’s of Debye lengths making them

much longer than double layers. [66] The plasma is also no longer isothermal with

the temperature decreasing as the plasma expands.

Several models have been used to study ambipolar acceleration. One model as-

sumes a quasineutral paraxial plasma expansion along the magnetic field.[65] A species

of electrons trapped between the magnetic nozzle throat and a time-dependent rar-

efaction wave was included in this study and modeled with kinetic theory. Ions are

treated with fluid theory. The importance of adiabatic cooling of electrons is shown

in relation to the ion acceleration. Another model uses one-dimensional, steady-state,

magnetized plasma theory ignoring collisions to analyze experimental data. [66] Ions

are treated using a one dimensional energy conservation equation while electrons

are treated as a fluid. Results with this treatment verified the ambipolar accelera-

tion mechanism in experiments. Finally, an adiabatic theory is proposed which is

combined with field aligned momentum equations and the assumption of Maxwellian

plasma. [77] A simple linear relationship is found relating the variation of the electron
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temperature to the potential in the plasma.

3.2.3 Magnetic Stresses on a Fluid

Physical Description

Forces on a plasma from a fluid perspective can be found by considering the

interaction of the applied magnetic field and the induced plasma currents. The fluid

form of the Lorentz force arises from the fluid momentum equations and has the

following form for the magnetic field term J × B. Assuming non-relativistic flows

in Ampere’s law gives a description for the current density in terms of the magnetic

field, J = ∇×B/µ0. Combining these equations results in two terms which illustrate

the forces on the plasma due to the magnetic field. These are shown on the right

hand side of Equation 3.9 as the magnetic pressure (first term) and the magnetic field

convection (second term).

J ×B =−∇
(
B2

2µ0

)
+

1

µ0

(B · ∇)B = − 1

µ0

∇ ·
(
I
B2

2
−B ⊗B

)
(3.9)

In this equation B2 = B ·B. Returning to Figure 3.1, the thrust generated by de

Laval nozzles is typically derived from a steady state control volume analysis of the

pressure on the walls of the nozzle. Assuming operation in a vacuum, this analysis

leads to an expression for the thrust not in terms of the internal pressure forces on

the nozzle wall, but in terms of the mass flow rate, the exit velocity of the fluid, and

the pressure at the nozzle exit. The overall effect of the internal pressure on the walls

is thus represented by the momentum flux out of the nozzle exit and the pressure at

the nozzle exit. This description is necessary because measurement of the internal

pressures on the nozzle wall is not possible.

Magnetic nozzle thrust may also be determined by a steady state control volume
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analysis if a well defined plasma-vacuum boundary is present. The force imparted

on the spacecraft can be found by determining the total J ×B force on the plasma.

The effects of this force are significantly simplified in a control volume approach by

representing the force as the Maxwell stress tensor
(
IB

2

2
−B ⊗B

)
just derived.

Integrating the Lorentz force over a control volume leads to the following simplified

representation of the stresses on the walls of the control volume.

˚

V

J ×BdV =
1

µ0

˛
S

(
B ⊗B − IB

2

2

)
· n̂dS (3.10)

This simplification allows the total force to be determined by the surface magnetic

field forces on the control volume, similar to the description in de Laval nozzles.

Thus the total force on the plasma can be described in multiple ways: i) determine

the magnetic stress tensor terms at the surface of the control volume; ii) integrate

the J ×B over the the entire volume, iii) measure velocity and mass flow rate at the

nozzle exit. If the electric field is also taken into account the total force can more

generally be described by Equation 3.11 which is the full Maxwell stress tensor.

˚

V

(
ρeE+J ×B

)
dV =

˛
S

[
ε0

(
E ⊗E − IE

2

2

)

+
1

µ0

(
B ⊗B − IB

2

2

)]
· n̂dS (3.11)

In this equation ρe is the charge density. The full Maxwell stress tensor completely

describes the effects of the magnetic and electric field forces on a conductive material

such as a plasma. Evaluation of the right-hand side of this equations will lead to an

expression for the total force based on the surface magnetic and electric fields.

Confinement
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Confinement of the plasma must occur in order for a magnetic wall to establish.

Confinement in relation to thermal forces is characterized by the ratio of the fluid

pressure to the magnetic pressure shown in Equation 3.12.

βp =
nkBT

B2/2µ0

< 1 (3.12)

If this relation is satisfied the magnetic pressure is stronger than the thermal pressure

and confinement is possible but not guaranteed. Formation of a current layer which

shields the internal plasma requires large induced fields which are diamagnetic in

character. The diamagnetic behavior of the plasmas is also quantified by βp. For

confinement this ratio must be less than one and for the plasma to be diamagnetic in

character it must not be much less than one. For βp � 1 the plasma is confined by the

magnetic pressure but the internal fields may not be entirely canceled out. In this high

magnetic field strength regime directionalizing of thermal energy and conservation of

the magnetic moment adiabatic invariant may become intimately coupled because

the magnetic fields are not canceled out in the internal plasma.

The influence of induced fields is also characterized by the magnetic Reynolds

number (Rm) defined in Equation 3.13.

Rm = UL/η = ULσµ0 (3.13)

In this equation η and σ are the plasma resistivity and conductivity respectively. For

large Rm the plasma is highly conductive and the induced magnetic field may be large.

Large Rm implies that the plasma is confined and significant diffusion of the plasma

across the magnetic field lines does not occur. Diffusive processes become important

as Rm is decreased and may degrade the current layer which shields the inner core

of the plasma. [35] Diffusion of the plasma must be understood to characterize the

losses due to non-ideal confinement.
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Another important parameter to insure confinement of the plasma is found by

comparing the advection along the field line to the cross field diffusion using the

Peclet number. [48]

Pe =
cs/L

D⊥/R2
(3.14)

In this equation cs is the ion acoustic speed, L a characteristic length, D⊥ is the

perpendicular diffusion coefficient, and R is the characteristic radius of the plasma.

Pe ≥ 1 is required for plasma to limit the diffusion of the plasma across the magnetic

field lines. This parameter can be an important consideration for detachment by

cross-field diffusion as well, discussed later in this chapter.

Energy exchange

The energy exchange in this mechanism occurs between the random thermal en-

ergy of the plasma and the directed kinetic energy. Nozzles accelerate a fluid to

supersonic velocities through converging-diverging configurations which achieve sonic

velocity at the throat. This acceleration is driven by a pressure gradient and involves

the conversion of thermal energy into directed kinetic energy. De Laval nozzles direct

thermal motion into the axial direction with a physical wall. Magnetic nozzles can

direct thermal energy by confining the plasma to a desired geometry with a strong

guiding field. Interaction of the guiding field with the plasma can create a magnetic

wall characterized by a current layer at the plasma-vacuum boundary, as seen in Fig-

ure 3.4. If the plasma is sufficiently conductive this current layer may shield the inner

plasma from the applied field. [35, 40, 42] The function of the externally applied field

is to form this current layer which acts as a confining wall to the internal plasma.

The forces acting in this current layer replace the forces acting on the wall of a de

Laval nozzle.

The physics of energy conversion in this mechanism are based on hydrodynamics
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Figure 3.4: Magnetic nozzle configuration for directionalizing of thermal energy in a
high density, highly conductive plasma.

while the geometry of the magnetic nozzle is determined by plasma-field interaction.

Relationships based on hydrodynamics similar to those in de Laval nozzle analysis

may be used to analyze energy conversion if negligible losses occur in establishing the

magnetic wall.

Previous Work

Thrust analysis with the magnetic stress tensor was first suggested for MPD’s.[1]

Calculations using the magnetic stress tensor or similar methods to determine thrust

show agreement when compared with experimental measurements.[78, 20, 79] The

physics of converting thermal energy to kinetic energy through the use of a magnetic

nozzle has been demonstrated experimentally and computationally. [67, 19, 80, 41]

Experiments with high density plasmas have showed nozzle expansion results which

matched more closely with isentropic expansion models than with a magnetic moment

conservation model. [19]
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3.3 Momentum Transfer and the Plasma Currents

The momentum imparted on the plasma due to ion acceleration must be trans-

ferred to the spacecraft to produce thrust. The electric field alone is not enough

to transfer momentum to the spacecraft, particularly since there are no electrodes.

Magnetic nozzles transfer momentum from the plasma to the spacecraft through a

mutual Lorentz force between the source of the applied magnetic field (permanent

magnet, solenoid, etc) and the plasma. The force on the applied field source results

from the interaction of the induced magnetic field and the currents which generate

the applied field. Similarly, the force on the plasma results from the interaction be-

tween the magnetic field in the plasma plume and the induced currents. The forces

on the magnetic field source and the plasma are equal and opposite. Net thrust is

produced when the plasma and the source of the applied magnetic field generate a

mutual repelling force in the section downstream of the nozzle throat.

3.3.1 Plasma Currents

Induced currents are created throughout the magnetic nozzle plume due to the

motion of the plasma and are primarily azimuthal. The resulting currents can be ei-

ther diamagnetic, opposing the applied field, or paramagnetic, amplifying the applied

field. Diamagnetic currents create a repulsive force in the diverging section which is

desirable for thrust production while paramagnetic currents create an attractive force

resulting in drag on the plasma. Diamagnetic currents also result in the cancellation

and divergence of magnetic field lines while paramagnetic currents amplify and focus

the field lines. The ion acceleration mechanisms discussed in the previous section

primarily induce diamagnetic currents.

Previous studies have confirmed that the forces between the currents induced in

the plasma plume and currents which generate the applied field of the magnetic nozzle

are the primary mechanisms by which momentum is transfered between the spacecraft
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and the plasma. [81, 82, 83, 47, 46] Diamagnetic currents for thrust generation have

been studied in numerous experiments and have been directly measured in the diverg-

ing section of magnetic nozzle plasma plumes.[84, 85] Paramagnetic and diamagnetic

currents may exist simultaneously in a plasma due to diamagnetic surface currents

and paramagnetic volumetric currents. [82, 83, 47, 46] To produce thrust under these

conditions the force per unit length due to the diamagnetic surface currents must

exceed that of the paramagnetic volumetric currents.[83]

As an additional note, for a magnetic nozzle with both a converging and diverging

section the physics becomes more complex. For the plasma to be continually accel-

erated by the Lorentz force the currents should be paramagnetic in the converging

section and diamagnetic in the diverging section. However, if the currents are para-

magnetic in the converging section the fields do not produce a confining force on the

plasma. An analog may again be drawn to de Laval nozzles in which the pressures on

the converging wall are not in the direction which actually generates positive thrust

thus being equivalent to diamagnetic currents in the converging section of the mag-

netic nozzle. This initial convergence is necessary to effectively accelerate the fluid

to sonic or supersonic velocities.

3.3.2 Hall and thermoelectric effects on current

To describe Hall and thermoelectric currents which may be generated in the

plasma the fluid form of the electron momentum equation is simplified by assuming

the characteristic frequency for electron motion is much faster than the characteristic

frequency for the motion of the plasma as a whole (ωce � ωf ). The assumption about

the time scales, combined with the fact that the ion mass is much greater than the

electron mass (mion � me), and treatment of the plasma as a single fluid leads to the

generalized Ohm’s law shown in Equation 3.15.
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E = −U ×B +
1

neq
J ×B − 1

nee
∇(nekTe) + ηJ (3.15)

In this equation U is the center of mass velocity of the ions and electrons, n is the

number density, T is the temperature, and k is the Boltzmann constant. The terms

on the right side of Equation 3.15 will be referred to as the convective, Hall, electron

pressure, and resistive terms, respectively.

An order of magnitude analysis shows that the importance of the Hall term is

characterized by the following two ratios: ωf/ωci and ωce/νe. In these relations νe is

the collision frequency of the electrons. The first condition compares the Hall term to

the convective term while the latter compares the Hall term to the resistive term. The

larger the value of these terms the more important the Hall term becomes. The first

ratio implies that the Hall term is important when ions are effectively demagnetized

in the domain. The second ratio combined with the original assumptions made in

deriving the generalized Ohm’s law imply that the electrons must be magnetized.

Characterizing the effects of the Hall term are non-trivial due to its non-linearity.

Studies have shown that the Hall effect can generate azimuthal currents which interact

with the applied field and produce an accelerating force on the plasma.[86, 87, 88, 88]

The Hall effect describes the E × B drift of electrons which ultimately results in

current due to the lack of a equivalent E ×B drift of the demagnetized ions. It has

also been suggested that the Hall effect can produce azimuthal rotation of plasma

due to interaction between the applied field and induced radial and axial currents.

[34, 35, 44] The azimuthal velocity due to this force results in a swirl kinetic energy

of the plasma. This input of swirl kinetic energy can be a loss mechanisms or result

in the further generation of axial kinetic energy due to the conservation of the kinetic

energy and the angular momentum of the plasma as it expands. [86, 88, 87, 89]

The swirl acceleration mechanism can be considered separately, but may be strongly

coupled to the Hall acceleration mechanism. [89]
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As discussed in the previous section, in expanding magnetic nozzles the mobile

electrons establish an electron pressure gradient ahead of the slow ions. To maintain

quasineutrality an electric field is formed which accelerates ions and slows down the

fast expanding electrons. The electron pressure gradient and the resulting electric

field are represented by the electron pressure term in the generalized Ohm’s law.

Diamagnetic azimuthal currents are produced due to this thermoelectric effect which

result in an accelerating force on the plasma. [90, 88, 87, 84] Comparison of the

theory for fluid Hall and thermoelectric acceleration with experimental data has shown

agreement. [90, 88, 87, 84]

3.4 Plasma Detachment

For magnetic nozzles to produce thrust the directed kinetic energy must detach

from the applied field. Detachment is a complex problem because it is may not be

a binary phenomenon with different portions of the plume being either attached or

detached. Plasma detachment mechanisms are central to magnetic nozzle design be-

cause losses due to electromagnetic drag forces and divergence of the plasma plume

must be minimized. Detachment methods can be grouped into three categories: col-

lisionless, collisional, and magnetic reconnection detachment.

3.4.1 Collisionless Detachment

The primary means for achieving collisionless detachment are due to loss of mag-

netization, electron inertial effects, [50, 53, 91, 92, 82, 47, 46, 93, 94] and induced

magnetic field effects.[39, 95, 96, 97, 81, 31, 98, 94, 82, 46, 83]

3.4.1.1 Loss of Magnetization

Detachment due to the loss of magnetization occurs when the conditions of Equa-

tion 3.5 are violated and the plasma effectively becomes demagnetized. The third
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condition relating the Larmor radius of the particle to the characteristic length of

magnetic field changes is the most often used of these to quantify detachment. De-

magnetization implies that particles are no longer bound to single field lines. The

particle inertia becomes too much for the magnetic field force to confine it to a field

line. This behavior can best be visualized by imagining a particle which starts an

orbit around one field line but then during this orbit encounters a different magnetic

field which alters the previous orbit.

Loss of magnetization is specific to each species with electrons remaining magne-

tized at weaker magnetic fields than the heavy ions. The ions are more likely to sep-

arate from the field lines because their large mass gives them more inertia and makes

them harder to confine. Some theory predicts that the demagnetization of ions alone

does not ensure detachment of the plasma as a whole due to the formation of electric

fields between the bound electrons and the detached ions. [57, 47, 46, 82, 93, 91, 53]

Detachment in this particular complex scenario is referred to as inertial detachment

and will be discussed in the next section. Lagrangian invariants may also be used to

define distinct regions in which charged particles may be found. [56] These invariants

give conserved quantities for the particle dynamics which along with a magnetic field

structure define distinct regions that particles with known properties can reach (mass,

momentum, energy).

3.4.1.2 Particle drifts

Particle detachment can occur due to single particle drifts across curved magnetic

field lines. The following discussion is shown pictorially in Figure 3.5. When particles

enter regions with curved magnetic field lines they experience both curvature and

∇B drifts defined in Equations 3.16 and 3.17.

vR =
mv2
‖

qB

Rc ×B
R2
cB

(3.16)
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Figure 3.5: Particle drifts in a curved magnetic field. Ions and ion drifts denoted in
grey while electrons and electron drifts are denoted in white. The induced
electric field is shown in yellow. Vectors for the magnetic field gradients,
particle drift velocities, radius of curvature, and magnetic field are shown.

v∇B =
mv2
⊥

2qB

B ×∇B
B2

(3.17)

Figure 3.5 shows the flow of ion and electron particles entering a curved magnetic

field region. The resulting curvature and ∇B drift for the ions in this configuration

is in the same direction into the page. The electrons curvature and ∇B drifts are in

the same direction as well, coming out of the page. Therefore, direction of ion and

electron drifts are in opposite directions resulting in a net current and the formation

of an electric fields out of the page. The formation of an electric field then leads to

an E ×B drift shown in Equation 3.18.

vE×B =
E ×B
B2

(3.18)

Ions and electrons drift together for the E×B drift resulting in a net drift of the

plasma. This drift is in the direction of the radius of curvature and perpendicular to

B which enables the plasma to flow across the magnetic field.
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The theoretical framework behind this drift behavior was established by Schmidt

and found that a non-dimensional number defined as the polarization characterizes

this drift.[99] The polarization (κ) and the necessary condition for this drift are shown

in Equation 3.19.

κ ≡ mn

ε0B2
� 1 (3.19)

This equation relates the rest energy of the plasma to the magnetic energy.

Experimental studies have verified this drift behavior and validated the impor-

tance of the polarization parameter. [100, 101, 99] The experimental studies also

noted the importance of establishing and maintaining the necessary current structure

to drive this detachment. Currents were measured along the magnetic field lines and

conducting surface upstream of the plasma were able to short out the plasma. This

inhibits formation of the electric fields necessary for the E ×B drifts which lead to

detachment. [100, 101, 99]

3.4.1.3 Inertial Detachment

Inertial detachment concerns the scenario when only a single species becomes

demagnetized and an electric field is established to maintain quasineutrality. Figure

3.6 shows this resultant electric field which attracts the magnetized and demagnetized

particles.

Detachment of the plasma may still be achieved by the system of particles having

enough inertia to overcome the confining magnetic field forces. A hybrid Larmor

radius is introduced to better examine this behavior. Detachment in this scenario can

be imagined as the drift of a hybrid electron-ion particles. The ratio of the magnetic

inertia to the flow inertia is characterized by the non-dimensional parameter shown

in Equation 3.20. [53, 91, 82]
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Figure 3.6: Sketch of inertial detachment in a magnetic field generated by a current
loop (I). Induced electric fields are illustrated by dotted lines while mag-
netic field lines are illustrated by solid lines.

G ≈ eB

me

eB

mi

r2
0

u2
0

(3.20)

In this equation mi is the ion mass, me is the electron mass, r0 is a characteris-

tic dimension of the system, and u0 is the plasma mean velocity. The condition

for the detachment of the hybrid Larmor radius particle has been suggested to be

G−1/2|∇B
B
| ≥ 0.5. [83] It has also been shown that imposing an initial azimuthal

velocity will increase detachment efficiency and decrease nozzle divergence. [92] The

analysis based on the parameter G suggest by Hooper et al. [53] has been criticized

by Ahedo et al. [47, 94] due to the simplifying assumptions made, particularly that

of current ambipolarity. Significant theoretical and computational study has been

done to characterize the effectiveness of inertial detachment with some suggesting

demagnetization based on the hybrid Larmor radius as an effective means for detach-

ment [53, 91, 99] and others suggesting only demagnetization of electrons effectively

achieves detachment.[47, 46]
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An alternate approach to the hybrid particle method is to consider the inertia of

the two-particle system and the confining force to define a new inertial Larmor radius.

Assume that the two particles are constrained to move together by the electric field.

Next assume that the two particle system is bound to a magnetic field line. A force

balance between the confining force and centrifugal inertia leads to the following

equation.

mionv
2
⊥,ion +mev

2
⊥,e

rL,h
= qv⊥,eB (3.21)

Both the ion and electron inertial are considered, but for simplicity only the electron

Lorentz force is included due to the fact that v⊥,e � v⊥,ion. This equation can be

solved for the new, inertial Larmor radius rL,inertial.

rL,inertial = rL,e +
v⊥,ion
v⊥,e

rL,ion (3.22)

This inertial Larmor radius can also be used to determine magnetization by comparing

with length scales of the system and magnetic field gradient length scales.

Contrary to the predictions of the inertial detachment mechanism, recent exper-

iments have shown that some degree of detachment may occur even with only ion

demagnetization.[102, 30] Numerical simulations related to VASIMR have also shown

detachment occurring due to solely ion demagnetization.[50] Further study is required

to verify this behavior. Detachment by inertial means is often referred to as the “lower

limit” of detachment which can be enhanced by other detachment mechanisms.

3.4.1.4 Induced field detachment

Detachment via induced magnetic fields is possible by either stretching the mag-

netic field lines to infinity or by canceling out the applied fields and thereby demag-

netizing the plasma. Induced field detachment effectiveness can be studied by the
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currents which create these fields and is an inherently fluid phenomenon.

Magnetic field stretching occurs when the plasma kinetic energy exceeds the mag-

netic energy or equivalently when the plasma fluid velocity exceeds the Alfvén velocity.

This is characterized by the non-dimensional parameters shown in Equation 3.23.

M2
A = βf =

ρu2/2

(B2/2µ0)
> 1 (3.23)

When this condition is satisfied the fluid is considered to be super-Alfvénic (MA > 1)

and is traveling faster than the rate at which perturbations in the magnetic field

affect the flow. As a result of this behavior, magnetic field lines get dragged to

infinity. [39, 101] The currents required to produce super-Alfvénic detachment are

paramagnetic which results in convergent detachment but produce thrust losses due

to attractive forces between the applied field and induced field currents.[39, 95, 46]

Studies have shown that sub- to super-Alfvénic transition can minimize detachment

losses with a slowly diverging magnetic field. An experimental study has suggested

detachment behavior due to βf > 1 rather than ion demagnetization and shows

agreement with computational results.[96, 98, 97] Field line stretching, a condition

necessary for this detachment method, was not measured. Other experimental and

computational results have also demonstrated super-Alfvénic detachment and have

identified a mechanism for self-collimation of the plasma plume.[31]

The cancellation of the applied field by the induced field is referred to as self-

demagnetization and occurs due to the formation of diamagnetic currents in the

plasma. These currents create an axial accelerating force and a radial confining force

which are favorable for momentum transfer to the spacecraft.[93] Self-demagnetization

detachment has been demonstrated computationally.[93, 46] Strong diamagnetic cur-

rents which effectively cancel out the applied field on the magnetic nozzle axis have

been measured in experiments.[85]
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3.4.2 Collisional Detachment

Collisional detachment may be achieved through resistive diffusion across magnetic

field lines [103, 41, 104], recombination and charge exchange collisions[105, 106], and

current closure.

3.4.2.1 Diffusion

Resistive diffusion has been suggested as a means to achieve detachment and

is governed by the cross field diffusion of plasma due to collisions.[103] Resistive

detachment exhibits conflicting requirements of initial confinement necessary for the

correct nozzle geometry and eventual cross field diffusion to ensure detachment. The

resistive drag must also be minimized. Conditions to ensure this duality is satisfied for

resistive detachment in an adiabatically cooling plasma plume have been defined.[103]

In general, a gradually diverging magnetic field is preferred to ensure efficient resistive

detachment.

The magnetic Reynolds number (Rm) defined earlier can be used to quantify the

confinement of a plasma in a magnetic nozzle. For high values, resistive diffusion

is negligible compared to convective effects and confinement is achieved. For in-

termediate and low values diffusion is important and the plasma may move across

magnetic field lines. Therefore, high values of Rm are required for confinement while

intermediate to low numbers are required for detachment.[107, 104] The difficulty

with determining the magnetic Reynolds number is correctly quantifying the plasma

resistivity, which may contain anomalous contributions.

The cross field plasma diffusion can have a number of implications on magnetic

nozzle design. Cross-field diffusion is typically characterized by the flux of particles

perpendicular to the magnetic field lines, Γ⊥. This flux is shown in Equation 3.24

below in which D is known as the diffusion coefficient.
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Γ⊥ = nv⊥ = D⊥∇n (3.24)

The diffusion coefficient may take very different forms for different types of plasmas.

Classical diffusion is described by Equation 3.25 while Bohm diffusion is described by

Equation 3.26.[64]

D⊥,classical =
η⊥n

∑
kT

B2
(3.25)

D⊥,Bohm =
1

16

kTe
eB

(3.26)

It is important to note also that the resistivity for classical diffusion η is pro-

portional to (kTe)
−3/2. Thus, classical diffusion scales as (kT )−1/2/B2 while Bohm

diffusion scales as kT/B. For classical diffusion, the cross field flux increases more

quickly as the magnetic field strength decreases than for Bohm diffusion. This in-

creasing flux governs the transition from a confined plasma to a detached plasma

and suggests that a plasma exhibiting classical diffusion will transition more quickly

from a confined state to a detached state. As the plasma expands the temperature

also decreases. Using the previously shown scaling with temperature, it is found that

the cross-field flux due to classical diffusion increases even more due to the tempera-

ture decreases while the cross field flux due to Bohm diffusion has competing effects

between the temperature and magnetic field decreases.

Additionally, the Bohm diffusion coefficient is typically greater than the classical

diffusion coefficient by several orders of magnitude thereby hindering confinement and

facilitating detachment.[64] It is also possible that the diffusion characteristics change

during the expansion, behaving classically for a portion of the expansion and Bohm

for the rest.

The significantly different behavior of classical and Bohm diffusion show that
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knowing the diffusive character of the plasma is important in determining not only the

extent of cross field fluxes, but also the transition from a confined plasma to a detached

plasma. Predicting the extent at which plasma diffuses across a magnetic barrier

has been extensively studied and has shown that plasma may exhibit anomalous

resistivity several orders of magnitude greater than predicted by classical plasma

theory and Bohm diffusion.[101, 41, 103] Anomalous diffusion may be be caused by

micro-instabilities which are driven by field gradients and field line curvature.[103, 42]

The problem of anomalous turbulent transport is an active topic in Hall thrusters and

cathode plumes. These micro-turbulent fluctuations are three-dimensional in nature

and are difficult to describe physically.

As a means to achieve detachment, resistive diffusion has been largely considered

as ineffective due to the adverse affects it would have on thrust production and likely

divergent detachment that would occur.[46] Resistive effects however can not be ig-

nored as they may still be important experimentally. Far-field detachment due to

resistive effects may also be attractive particularly near the nozzle centerline where

the travel time for particle confinement may be large compared to the collision time.

Detachment may be facilitated by the presence of turbulent fluctuations which grow

as they convect out of the plasma into the plume.

3.4.2.2 Recombination and Charge Exchange Collisions

Recombination achieves detachment by the formation of neutral particles which

are no longer affected by the magnetic fields. Creation of neutrals is driven primarily

by three body recombination and requires sufficiently high electron-ion collision fre-

quency to be considered an effective means of detachment. Although initial analysis

of recombination as a means for detachment are not encouraging, recombination rates

can be increased by sharply decreasing magnetic field configurations or rapid cooling

of electrons in the expanding nozzle. [105, 106] However, a sharply falling magnetic
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field requires a very divergent magnetic field which may result in large plume diver-

gence thrust losses.

Collisions between ions and neutrals can also cause detachment through charge

exchange or backscattering collisions. During these collisions electrons are transferred

between neutrals and ions. This transfer of charge can facilitate detachment by

enabling cross field mobility and exchanging energy between the high energy ion

species and lower energy neutral species. This however may not be an effective means

of detachment due to the low energy charged species which remain after the collisions

which are more likely to remain attached to the field lines. Furthermore, charge

exchange and recombination mean free paths are typically long compared to the

system dimension and will only increase in space. [66] Generally charge exchange

represents a loss mechanism in the plasma plume because directed beam energy is

lost to neutral gas heating.

3.4.2.3 Current Closure

Demagnetized ions and magnetized electrons lead to the formation of an electric

field across the magnetic field lines which strives to achieve quasineutrality. The

motion of electrons across the magnetic field is inhibited due to their magnetization.

Inertial detachment deals with the mutual separation of the electrons and ions while

assuming that the ions and electrons have the same velocity. This assumption is

known as current ambipolarity. An additional detachment method is possible if this

assumption is not made and the species are allowed to have different velocities which

produce a net current.

For this detachment scenario it can be imagined that electrons travel back into the

high density plume where the plasma is more collisional, cross magnetic field lines,

and travel out along new magnetic field lines to supply electrons to the regions of

streaming demagnetized ions. A net current forms which supplies electrons to the
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regions of positive charge accumulation that occur due to ion demagnetization. An

example of the net current produced is seen in Figure 3.7.

Figure 3.7: Examples of currents for current closure in a magnetic nozzle generated
by a current loop (I).

This mechanism has only been sparsely studied [46], but radial and axial currents

which would characterize this type of detachment have been measured in magnetic

nozzle devices.[85] These radial and axial currents should also produce azimuthal

magnetic fields.

3.4.3 Magnetic Reconnection

Magnetic reconnection is a widely studied topic in plasma physics but has not been

sufficiently studied when relating to plasma propulsion detachment scenarios. Phe-

nomenon exhibiting magnetic reconnection physics relevant to plasma detachment are

evident in coronal mass ejections and magnetic confinement fusion experiments.[108]

The most elementary description of magnetic reconnection is shown in Figure 3.8.

An initial configuration of two magnetic field lines, (1), has a finite diffusion across the

magnetic field lines, (2), which eventually leads the magnetic field lines to tear and

reconnect into a new configuration (3) of lower energy.[38, 109] The reconfiguration

of the magnetic field lines allows plasma flows which under the previous configuration

were not possible. This characteristic of magnetic reconnection is particularly attrac-
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tive for magnetic nozzle detachment because it allows magnetic islands to form which

separate from the applied field. Magnetic reconnection is an inherently transient

phenomenon.

Figure 3.8: Simple schematic of magnetic reconnection. Magnetic fields are solid lines
while cross field diffusion is denoted by dotted lines.

The parameters typically used to characterize magnetic reconnection behavior are

the magnetic Reynolds number and the Lundquist number. The Lundquist num-

ber is defined in Equation 3.27. As both of the magnetic Reynolds number and

the Lundquist number decrease the diffusive behavior of the plasma increases and

reconnection becomes more likely.

S = vAL/η =
BL

η
√
µ0ρ

(3.27)

In this equation vA = B/
√
µ0ρ is the Alfvén velocity.

3.5 Summary of Parameters and Experiments

Numerous physical mechanisms in the thrust generation process have been pre-

sented based on a review of magnetic nozzle physics literature. Summaries of the

parameters which characterize these physical processes are shown in Appendix A. A

summary of the experiments which were mentioned in the discussion above is also

given.
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CHAPTER IV

Particle Simulation and the

Quasi-One-Dimensional Formulation

4.1 Introduction

Many magnetic nozzle devices operate at the edge of the continuum regime and

into regimes where kinetic treatment of the physics is necessary. Kinetic methods us-

ing particle, Boltzmann, or Vlasov techniques are essential to studying the important

non-equilibrium effects. Particle simulations treat the plasma or fluid as a collection

of particles or macro-particles (group of particles treated as a single particle) and

solve the equations of motion for each of the particles. Boltzmann and Vlasov simu-

lations solve for the probability distribution function using the Boltzmann or Vlasov

equations.

Particle simulations treat the plasma most generally and require few assumptions

about the behavior of the plasma. However, these simulations are inherently very

expensive and are prone to numerical noise and instabilities when an insufficient

number of particles are used or when stability criteria are not met. Boltmann and

Vlasov simulations require more assumptions about the plasma behavior than par-

ticle simulations, but are much less prone to numerical noise and are generally less

expensive numerically.
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The goal of this research is to treat the plasmadynamics in a magnetic nozzle

from the most fundamental perspective, that of the particles. Therefore, particle

simulations were chosen to study the ion acceleration mechanisms in a magnetic

nozzle. The method chosen is the particle-in-cell (PIC) method which is discussed in

detail in the next section.

This chapter will first introduce electrostatic PIC simulations and the theory be-

hind these. This will be followed by a discussion of the previous use of PIC simulations

to study magnetic nozzles. A novel PIC method will then be introduced which re-

solves one dimension spatially and includes two-dimensional effects associated with

the magnetic field effects and the plasma compression and expansion.

4.2 Particle-In-Cell Simulations

Particle-In-Cell simulations treat the plasma as a collection of macroparticles

which are free to move over a mesh or grid while the fields are solved for on the

grid. This simplification reduces the computational cost from N2 for a full particle

method to Nln(N) for PIC. Particles within a cell do not affect one another. There-

fore, only long range effects of the particles are captured on one another and effects

such as Coulomb collisions are not captured unless they are explicitly modeled by

another algorithm (Monte Carlo method, grid based collision method). Figure 4.1

shows a diagram and a flowchart of electrostatic PIC simulations. The steps that are

part of this flow chart are outlined below:

1. The location of the particles is used to weight the charge onto the grid and the

volume of each cell used to calculate a charge density (ρ).

2. The charge density and the imposed boundary conditions are then used to

calculate the potential (φ) on the grid using Poisson’s equation (∇2φ = −ρc/ε0).

3. This potential is then used to calculate an electric field (E) on the grid.
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Figure 4.1: Particle-in-cell domain and flowchart.

4. The electric field and applied magnetic field (B) are weighted from the grid to

the particles.

5. The Lorentz force, F = q(E + v × B), is then used to update the particle

velocity (v).

6. The new velocity is used to calculate an updated position (x).

7. Additional steps can be added next such as collisions, heating, or boundary

effects.

8. Repeat.

Specific methods and the resulting stability requirements will be discussed in the

next chapter as they pertain to the code developed for this research.

4.3 Previous Kinetic Simulations of Magnetic Nozzles

Previous studies with kinetic methods have focused primarily on one-dimensional

PIC [51, 54], multi-dimensional PIC simulations with unrealistic mass ratios or with

small truncated domains, [110, 52, 55] and multi-dimensional hybrid PIC.[50]

The one-dimensional PIC simulations by Meige et al and Baalrud et al studied

the formation of double layers and the ion acceleration associated with them. [51, 54]

These simulations mimicked the expansion process in the magnetic nozzle by imposing
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a particle loss frequency to the portion of the domain in which the magnetic field is

diverging. The results of these simulations showed that the formation of the double

layer was dependent on the chosen loss frequency. For sufficiently high loss frequencies

a double layer structure appeared which accelerated the ions. Distinct groups of

electrons were also seen with different temperatures.

Multi-dimensional PIC simulations have been used to study the formation of

double-layers in magnetic nozzles as well as the detachment process. The simula-

tions of Sefkow et al used a full 3D3V PIC-MCC code to study the flow of the MNX

plasma flow through a mechanical aperture.[52] The simulation domain focused only

on the flow near the aperture in order to cut down on computational costs. Double

layers where shown to form as a result of the flux imbalance that occurs as the un-

magnetized ions are lost to the aperture wall. The double layer attempts to balance

this flux loss. Electron temperatures of the bulk, aperture size, Larmor radii, and

neutral background pressure all were shown to affect the strength of the double layer.

Simulations by Rao et al use a 2D3V planar PIC code with a truncated simulation

domain to study the formation of double layers. [55] The simulation domain only

captures a small section of the plasma expansion and does not consider collisions.

Some of the two-dimensional characteristics of current free double layers seen in ex-

periments are replicated due to the radial electric field which develop in the plume.

These radial electric field are shown to be important to the overall structure of the

plume. A 2D3V PIC axisymmetric code was used to study detachment in magnetic

nozzles. [110] The mass ratio between the ions and electrons is decreased to make

these simulations tractable. Detachment was demonstrated, but these simulations

have been limited to qualitative comparisons with experiments.

Hybrid PIC simulations have been performed primarily to study detachment.

These simulations typically treat the ions as particles and the electrons as a fluid.

Simulations by Ilin et al [50] used a hybrid PIC code which treated the ions as particles
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and assumed Boltzmann electrons. These simulations illustrated plasma detachment

in the VASIMR plume, but the assumption of Boltmann electrons may be invalid due

to the changing temperatures of the electrons in the VASIMR plume.

As shown in this section, kinetic codes have primarily been used for two types

of studies. The first of these is to study the formation of double layers.[51, 54, 55]

These studies have been limited to one dimensional or truncated two-dimensional

domain. Other studies have focused on detachment but must either use a hybrid

approach or simplify the problem by changing the plasma properties. [50, 110] The

work presented herein more generally strives to model the plasma expansion along

a magnetic field. The introduced methods can not capture effects like detachment

because of the assumptions of magnetization which were made in deriving the model.

Details are presented in the next section.

4.4 Quasi-One-Dimensional Particle-In-Cell Simulations

To further advance the kinetic study of magnetic nozzles with PIC simulations

a new method was developed for the Quasi-one-dimensional quasi-one-dimensional

(Q1D) PIC simulation of magnetic nozzles through the inclusion of two-dimensional

effects in one-dimensional full PIC simulations. The effects included are: the cross-

sectional area variation of the domain and magnetic field forces. These effects are

discussed in detail below. These simulations include two-dimensional effects with-

out the cost of scaling to full two-dimensional simulations by making simplifying

assumptions about the physics. This type of simulations can be referred to as quasi-

one-dimensional, 1 1
2
−D, or flux-tube simulations.

4.4.1 Cross-sectional Area Variation

The cross-section of the one-dimensional domain was varied to include the effects

of the plasma expansion. As a simplification the plasma properties were assumed to be
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constant over the cross-section, allowing a one-dimensional domain to be used while

capturing the two-dimensional effects of the plasma compression and expansion by

the magnetic field. The area at each cell is determined by assuming that the plasma

follows the magnetic field lines enclosing the plasma in a magnetic flux surface as

shown in Figure 4.2. Knowing the structure of the magnetic flux surface then defines

the variation of the plasma cross-section. It is further assumed that a flux-tube near

the axis is chosen such the radial component of the magnetic field (Br) is much smaller

that the axial component (Bz). Integrating Gauss’ Law of Magnetism and assuming

that the radial flux is negligible leads to an expression for the cross-sectional area as

a function of the axial magnetic field along the centerline axis, as shown in Equation

4.1.

A =
Bz,in

Bz

Ain (4.1)

The variation of the cross-sectional area models the compression and expansion of

the plasma due to the magnetic field forces. The area variation couples to the rest of

the governing equations through the calculation of the density of the particles, which

in turn affects the solution of Poisson’s equation.

Figure 4.2: Flux-tube used for calculating cross sectional area variation.
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4.4.2 Magnetic Field Force

Particles feel a force along the magnetic field line similar to the magnetic dipole

force on a localized current density.[62] To capture this force, magnetized particles

are assumed to be displaced from the axis by their Larmor radii. Using Gauss’ Law

of Magnetism and assuming that the axial magnetic field does not vary significantly

over the orbit leads to an expression for an average radial magnetic field over the

particle orbit

Br = −rL
2

dBz

dz
(4.2)

In this equation rL = mv⊥
qB

is the Larmor radius, v⊥ is the perpendicular velocity, and

q is the charge of the particle. The combination of the radial magnetic field and the

perpendicular velocities results in forces along the axis of symmetry. The assumptions

made in this derivation are very similar to those made in examining magnetic mirror

physics. [64]

The force on the particles was derived in a cylindrical coordinate system. In

cylindrical coordinate systems inertial forces due to the coordinate system must be

included, as shown in Equation 4.3.

dv

dt
=

q

m
(v ×B) + acoord (4.3)

In which the acceleration due to inertial effects, acoord, is:

acoord =
v2
θ

rL
r̂ − vθvr

rL
θ̂. (4.4)

Substituting Equation 4.2 into Equation 4.3 leads to a significant simplification as

the inertial forces cancel some of the magnetic field forces. Physically, this cancellation

occurs due to the assumption of magnetization of the particles. The magnetic field
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forces confine the particles to following the axis, which is a magnetic field line. The

remaining terms are shown below in Equations 4.5 - 4.7 and represent the magnetic

dipole force on a magnetized particle as well as the kinetic energy conserving force.

dvz
dt

= − 1

2Bz

dBz

dz
v2
θ (4.5)

dvθ
dt

=
1

2Bz

dBz

dz
vθvz (4.6)

dvr
dt

= 0 (4.7)

Implicit in this derivation is the assumption of changing to a frame of reference

along the field line in which the azimuthal velocity (vθ) is in fact the velocity perpen-

dicular to the field line (v⊥) which defines the particle orbit. The velocity used in the

dipole force calculations can therefore be simplified to two dimensions, one along the

magnetic field line and one perpendicular to the magnetic field line. These simplified

equations are shown below in which s is the direction along the magnetic field line:

dv‖
dt

= − 1

2B

dB

ds
v2
⊥ (4.8)

dv⊥
dt

=
1

2B

dB

ds
v⊥v‖ (4.9)

The simplification to two-dimensions can be explained using Figure 4.3. In this

figure the magnetic field is along the ẑ direction and the velocity of the particle per-

pendicular to the field line shown by the dotted lines. The particles can be imagined

first in a Cartesian coordinate system in which they have velocities in the x̂ and ŷ

directions. These coordinates can be transformed to a cylindrical coordinate system

where they now have velocities in the r̂ and θ̂ directions. A final transformation can
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Figure 4.3: Illustration of changing to magnetic field line reference for Q1D simula-
tions.

be made to a local field line coordinate system in which each particle has only a per-

pendicular gyro-velocity. The ẑ direction is the same for each particle. Furthermore

it is assumed that the magnetic field does not change significantly in the direction

perpendicular to the field line
(
r⊥

dB
dx⊥

/B � 1
)

, which implies that the magnetic field

variation in the r− θ plane is small and the particles are bound to similar field lines.

In summary, each particle experiencing gyro-motion around a magnetic field can

be moved to a cylindrical coordinate system around a chosen magnetic field line. In

this coordinate system the particle only has a velocity along the field line (formerly

ẑ) and around the field line (formerly θ̂). Each particle can be assigned its own

coordinate system along that magnetic field line around which is it bound. If the

variation of the magnetic field is small then the particles are assigned to similar field

lines and the entire group of particles can be treated by the equations derived.
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CHAPTER V

One Dimensional Model Implementation and

Verification

The development and verification of the one dimensional code which serves as the

framework on which the Q1D model was implemented is presented in this chapter.

The one-dimensional algorithms are presented as well as the verification of these al-

gorithms. Implementation and verification of the collisional algorithms are presented

next. The code used in this work was developed from scratch and the paralellization

with Message Passing Interface (MPI) is discussed. The code was written as generally

as possible to be used beyond the current problem.

5.1 One-dimensional Algorithms

The one dimensional (1D) code was developed based on the work of Birdsall [111,

112], Verbonceuor [113, 114, 115], and Hutchinson[116] among many others.[117, 118]

A basic flowchart of the code is shown in Figure 5.1. Particles are free to move

throughout the domain while the potential, electric field, and continuum properties

are solved for on the grid. The plasma continuum properties are found by weighing

the particle properties such as mass, charge, and momentum to the grid. The charge

density on the grid is then used to solve Poisson’s equation and obtain the potential
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and electric field on the grid. Finally the electric and magnetic fields are weighed to

the particles in order to calculate the forces on the particles and move the particles.

Additional algorithms are also included to model Monte Carlo Collisions[111, 117],

RF heating[51], and Coulomb collisions.[119] The domain, particle mover, weighing

algorithms, Poisson solver, boundary conditions, and particle loading are each dis-

cussed in greater detail in the following sections.

5.1.1 Domain

The domain used in these simulations was a uniform one dimensional grid. The

addition of two-dimensional effects did not change the grid structure. The number of

grid points used in the simulation was NP . Cell centers were also defined between

each point and are used in some of the algorithms. The grid points were referred

to as Xi where X0 was the first point which was on the left boundary and XNP−1

was the final point at the right boundary (note that indexes start at 0). The total

number of cell centers including ghost cells (cells outside the solution domain) was

NC = NP + 1. The length of the domain was defined as: (L = (NP − 1) ∗∆x). A

schematic of the domain is shown in Figure 5.2.

For the results presented herein the potential, electric field, density, velocity, en-

ergy, and the magnetic field are all calculated at the grid points. The code also

contains functionality to weight or calculate the potential, density, and energy at the

cell centers while calculating or setting the electric and magnetic fields at the grid

points.

5.1.2 Particle Mover

Particles are moved according to the standard leap frog algorithm shown below

in which x is the particle location, n is the time step, and v is the particle velocity.

[112] The position and velocity are offset by half steps in time.
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Figure 5.1: Flowchart of PIC code.
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Figure 5.2: One-dimensional domain used in simulations. Index i is used for grid
points.

~xn+1 = ~xn + ~vn+1/2∆t (5.1)

~vn+1/2 = ~vn−1/2 + ~a∆t (5.2)

The acceleration term depends on the type of forces incorporated in the model.

For a simple model which only considers the electric field this becomes:

~vn+1/2 = vn−1/2 +
q ~En

m
∆t (5.3)

In this equation En is the electric field which has been interpolated to the particles.

The electric field is found by solving Poisson’s equation at the nth time step. Stability

requires a time step of ωp∆t < 2.0 but typically the time step is restricted to be

ωp∆t < 0.2 to compromise between phase error and computational cost. [112] Phase

error decreases as 1/∆t3.

The Boris algorithm was also incorporated for test cases which include a conven-

tional applied magnetic field.[120] It is important to note that the Boris method is

not used in any of the quasi-one-dimensional simulations, but is discussed because

it is modified in the new implementation. The Boris algorithm is decomposed into

three separate velocity pushes: an initial half push by the electric field, followed by

an implicit magnetic field rotation, and a final half push by the electric field. These

three separate pushes are shown below.
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~v− = ~vn+1/2 + ∆t
[ q

2m
~En
]

(5.4)

~v+ = ~v− + ∆t
q

2m
(~v+ + ~v−)× ~B (5.5)

~vn+3/2 = ~v+ + ∆t
[ q

2m
~En
]

(5.6)

In these equations ~v+ and ~v− are the intermediate velocities in the velocity push.

The optimal method for performing implicit rotation is outlined in the literature.

[112, 120] Typically the time step is restricted to ωc∆t < 0.35 to guarantee an error

of less than one percent in the rotation angle for the particle orbit.

5.1.3 Weighting Algorithm

Zeroth order and first order weighting schemes were incorporated in the code. Ze-

roth order weighting assigns a particle’s charge to the nearest grid point and imposes

the nearest point’s electric field on the particle. First order weighting imposes a linear

weighting to and from the particle using the two nearest grid points. In linear weight-

ing, each macro-particle can be imagined as a cloud of particles spanning the width

of a cell and each grid point has a sphere of influence that is a cell width wide. The

fraction of the particle cloud which falls within each grid point’s sphere of influence

is weighted to that cell.

The weighing scheme selected was applied to both the grid to particle and parti-

cle to grid weighting to guarantee consistency. For all simulations shown first order

weighting was used. First order weighting smooths the density and potential fluctu-

ations in the simulations (compared to zeroth order simulations), thereby reducing

the noise. Higher order weighting schemes also exist, but are not included due to the

additional computational costs associated with them. [111]
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5.1.4 Poisson Solver

The charge densities (ρ) at the grid points are used to solve Poisson’s equation

(∇2φ = −ρ/ε0) for the potential (φ) at the grid points. A simple central difference

discretization of Poisson’s equation is used:

φi+1 − 2φi + φi−1

∆x2
= −ρi

ε0
(5.7)

This equation can be written out for the entire domain forming the matrix equa-

tion AX = B where A is a tridiagonal matrix of coefficients, X is composed of φ’s,

and B depends on the densities and grid. The selected boundary conditions affect

the first and last row of this matrix and will be discussed later in this section because

they relate to the boundary conditions applied in the code. The tri-diagonal matrix

is solved using Gaussian elimination with partial pivoting with the Linear Algebra

PACKage (LAPACK) included in the Intel Math Kernel Libraries.

The electric field (E = −∇φ) is found at the grid points using a central difference

scheme. The boundary conditions applied for the electric field will be discussed in

the next section.

Ei = −φi+1 − φi−1

2∆x
(5.8)

5.1.5 General Boundary Conditions

A variety of boundary conditions are applied to the one dimensional domain.

These boundary conditions include periodic, Dirichlet, and Neumann conditions. Al-

though these general boundary conditions can be used, they require more careful

handling for devices which are discussed in the next section.
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5.1.5.1 Periodic

Periodic boundary conditions imply that the grid points with index i = 0 and i =

NP − 1 are the same grid point. The continuum boundary conditions for properties

such as potential are applied such that:

φ0 = φNP−1 (5.9)

On the particle side, this type of boundary is applied by injecting particles which

exit the domain at one boundary at the other boundary. The continuum quantities

(densities, etc.) found by weighting the particle properties to the grid points i = 0

and i = NG− 1 must be summed with one another to capture the effects from both

sides of each of these points.

5.1.5.2 Dirichlet

Dirichlet boundary conditions directly impose a particular parameter at the bound-

ary. For example, potentials can be imposed at the boundary points:

φ0 = φapplied,0 (5.10)

φNG−1 = φapplied,NP−1 (5.11)

Weighting for continuum properties at the boundary grid points (i = 0, NP − 1)

can be done either by doubling the weighting (more like a Neumann condition) to the

boundary cell, calculating the density based on the characteristics of the boundary

(device specific), or including the effects of an imposed density in the ghost cell to

account for particles that would be outside the domain.
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5.1.5.3 Neumann

Neumann boundary conditions impose a gradient at the grid point. In the case

of the potential this imposes an electric field at the boundary. On the particle side,

a Neumann condition implies that the charge densities in the final grid points (i =

0, NP−1) can be found by doubling the weighting to account for particles that would

be outside the domain.

5.1.6 Device Boundary Conditions

Boundary conditions can be applied so that the simulation represents a device by

incorporation of a grounded plate, floating collector, grounded plate, driving current,

or capacitor. Potentials or electric fields are imposed at the boundary based on the

type of device while the unspecified quantities are chosen to guarantee consistency.

For example, the electric field at the boundary (E0) is found by manipulating the

following equations:

E0 = −φ1 − φ−1

2∆x
(5.12)

ρ0

ε0
= −φ1 − 2φ0 + φ−1

∆x2
(5.13)

This system of equations typically has two unknowns which depend on the type

of boundary condition applied. The potential φ−1 is always an unknown and serves

primarily as a means to ensure consistency. When imposing Dirichlet boundary con-

ditions on the electromagnetic field a quantity for φ0 is imposed while φ−1 and E0 are

solved for with the known other quantities (ρ0, φ1). Note that ρ0 is found by doubling

the weighting of the charges to the i = 0, which is actually similar to a Neumann

boundary condition on the density.

When Electric field boundary conditions are applied a surface charge density (σ)
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is often used. The surface charge density is related to the electric field by solving

Poisson’s equation over a Gaussian pill box to get the following form for the electric

field at the left boundary.

E0 =
σ0

ε0
(5.14)

Similar equations are solved for the right boundary, but care must be taken with

the signs.

Grounded plate

When a boundary is grounded the potential is fixed at φ = 0. Typically the

continuum properties like the density are found by doubling the value weighted to

the point to account for the lack of weighting from the other side where no particles

are present. This is a Dirichlet boundary condition, so the Equations 5.12 and 5.13

are solved for Ebound using φbound = 0.

Driving Voltage

The boundary can be treated as an electrode with a voltage (φbound) which is

driving the device. This is a Dirichlet boundary condition which is applied just like

the grounded electrode except with a non-zero voltage.

Floating collector

This boundary is treated as a floating collector at which charge is collected. The

charge passing through the boundary is recorded and used as a charge density (σ).

Therefore, a Neumann boundary condition is applied and equations 5.13 and 5.12 are

solved for φbound using σ to find the electric field at the boundary.

Driving current
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A current can also be used to drive a boundary. In this case a boundary condition

similar to the floating collector is applied, but with an additional source for current.

The equation is shown below in which A is the domain cross section and Nex is the

number of particles which left the domain through that boundary.

dσ

dt
=
I

A
+

∑Nex

0 q

A∆t
(5.15)

This equation is used to track the surface charge density. The same procedure as

in the floating collector was then followed once the updated surface charge density is

calculated.

Capacitor

The device can also be treated as if a capacitor is connected to the boundary. The

capacitance (C) of the circuit is related to the voltage through the following equation

in which Q is the charge on the capacitor plate.

V = Q/C (5.16)

The charge on the capacitor is found by multiplying the surface charge density

σ by the electrode area A. This charge and the specified capacitance is used to

calculate the voltage on the electrode. This voltage is then applied as a typical

Dirichlet boundary condition and is relative to the potential at the other side of the

capacitor, which may be the other side of the domain.

General RLC circuits

Expressions also exist for general RLC circuits, but are not presented here because

they are not used in the simulations presented. [115] These expressions can become

fairly complex and require special treatment.

72



Note for staggered meshes

For staggered meshes in which the potential (cell-centers) and electric field (grid-

points) are on the different meshes this method becomes more complex. It is impor-

tant to also keep in mind where the boundary condition is applied, whether it is at the

cell center or the cell boundaries (which are the grid points). Application of bound-

ary conditions is similar to the standard boundary conditions used in finite-volume

computational fluid dynamics.

5.1.7 Particle Loading

Loading and injection of particles into the simulation involves sampling particle

velocities from a probability distribution function. Particles velocities can be loaded

according to any distribution function, but the focus here will be on Maxwellian or

drifting Maxwellian velocity distributions.[121, 122] The equations used for deter-

mining the velocities of loaded particles are found by mapping the velocities in the

velocity distribution function to a set of random numbers. This is achieved by inte-

grating the velocity distribution function to the desired velocity and normalizing by

the distribution integrated over all space. For a Maxwellian distribution this has an

analytical solution. An expression is found for the velocity,

v∗ = erf−1(R erf(v∗cu) + (1−R) erf(v∗cl)) (5.17)

in which v∗cl, v
∗
cu, and v∗ are the lower cut-off velocity, the upper cut-off velocity, and

particle velocity respectively. The velocities here are normalized by
√

2kT/m. The

parameter R is a random number between 0 and 1. Each direction is found indepen-

dently and drifting Maxwellians are seeded by adding a mean velocity to each of the

velocities selected by Equation 5.17. Figure 5.3 below shows the Maxwellian distribu-

tions produced using this seeding algorithm. The black line represents the analytical

distribution while the histogram shows the calculated distribution. The normalized
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(by mean) root mean square error found for a one hundred point Maxwellian distri-

bution is shown as the number of particles used to resolve it is increased.

(a) Velocity Maxwellian
distribution. Comparison
of analytical to calculated
distribution.

(b) Speed (or energy)
Maxwellian. Comparison
between analytical (black
line) and calculated(blue
histogram).

(c) RMS error normalized
by mean as the num-
ber of particles to resolve
the velocity and speed
Maxwellian is increased.

Figure 5.3: Results from loading of Maxwellian distributions.

Algorithms for the injection of Maxwellian fluxes at the boundaries have also

been implemented. Flux loading requires the integration of a flux biased, stationary

Maxwellian to map the distribution to random numbers and results in the expression

below for the velocity.

v∗ =
√
v∗2cl + v∗2cu − ln(R exp(v∗2) + (1−R) exp(v∗2cu)) (5.18)

This equation is used along with random number to correctly load the distribution

of particles originating from a Maxwellian source.

The integration required to map the velocity distribution to random numbers for

the flux of a drifting Maxwellian (as opposed to a stationary Maxwellian) does not

lead to an analytical solution. Instead numerical solutions are required to find the

particle velocities and is not currently incorporated.

Figure 5.4 shows the analytical and calculated flux-biased distributions used for

injection of non-drifting Maxwellian using the above algorithms. The black line shows

the analytical distribution while the histogram shows the calculated distribution. The

root mean square error for a one hundred point Maxwellian is also shown in Figure
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5.4 as the number of particles used for the seeding is increased.

(a) Flux biased Maxwellian distribu-
tion for injection. Comparison of an-
alytical to calculated distribution.

(b) Normalized (by mean value) RMS
error for flux biased Maxwellian with
increasing number of particles.

Figure 5.4: Results from loading of flux-biased Maxwellian distributions for particle
injection.

A method for injection of particles at the boundaries using ghost particles in

a ghost cell was also tested. Particles were loaded in the ghost cell according to a

Maxwellian or drifting Maxwellian and then allowed to flux naturally into the domain

during the particle push. Particles that do not enter the domain were deleted and

a new set of ghost particles was loaded during the next time step. Initial testing

reproduced the flux biased Maxwellian used in the conventional flux source approach

shown above. The error reduction with increasing number of particles is shown in

Figure 5.4 for the ghost cell seeding method. The ghost cell seeding method does

not require a numerical solution for integrating the drifting, flux-biased Maxwellian

which makes it attractive. However, this method can be inefficient due to the number

of particles that need to be seeded and deleted every time step.

Another important consideration for the loading and injection of particles is time

centering of the velocities. Time centering of velocities requires that an initial half

step backwards in time is performed with the grid properties so that the particle

velocity and position are off-set initially according to the leap-frog algorithm. While

not explicitly done in these simulations, it should be taken into consideration to
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improve accuracy and is necessary in some types of simulations.[121]

Loading and injection of general distributions can also be done using acceptance-

rejection sampling. This is not currently incorporated in the code, but should be

considered in the future. Acceptance-rejection sampling can be expensive computa-

tionally for an ill-chosen sampling function.

5.1.8 Heating Region

The particles were heated in the heating region according to the mechanism devel-

oped by Meige for an RF plasma. [51] The perpendicular electric field was calculated

according to:

Jy,tot = ε0
∂Ey
∂t

+ Jy,conv (5.19)

in which Ey is the electric field in the ŷ-direction and Jy is the current density in

the ŷ-direction. The ŷ-direction is in the r̂ − θ̂ plane which will be used in the Q1D

simulations and is perpendicular to the axial, magnetic field direction(ẑ) which is

spatially resolved. The ŷ notation is maintained because this heating scheme does

not translate well to axisymmetric coordinates. For an axisymmetric scheme currents

would be applied to the perpendicular direction, in which velocities are always positive

definite and could not respond correctly to the oscillating currents. The perpendicular

direction is also a quantity that is relative to each field line and a net current from

all field lines is not recoverable because the gyro-phase is not considered. Therefore,

cartesian coordinates are necessary for the heating scheme.

The plasma convective current (Jy,conv) is found by summing the current (qv)

contribution of the particles (both ions and electrons) in the heating zone, while

the total applied current is varied as desired. For the simulation presented later

the applied current was of the form Jy,tot = J0sin(ωt). Simulation using this heating

region are started by initially seeding the domain with a small number of electrons and
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ions. The varying electric field resulting from this method heats the initially seeded

electrons which can then collide with the neutral background to produce additional

ions and electrons.

5.2 One-dimensional Verification

5.2.1 Two-stream Instability

Two opposing streams of charged particles with a perturbation in their density

(and thereby electric field) can be unstable for a chosen ratio of the plasma frequency

(ωp) to the wave freque ncy (kv0). [112] The characteristic frequency for this plasma

is shown below in which each stream has a velocity of ±v0 and the perturbation has

a wave number k.

ω = ±
(
k2v2

0 + ω2
p ± ωp

√
4k2v2

0 + ω2
p

)1/2

(5.20)

The characteristic frequency has imaginary roots when kv0/ωp <
√

2 which implies

that the system is unstable and the perturbation to the density (and electric field)

will grow. This behavior was tested with the 1D PIC code by seeding two streams of

particles with velocities v0 = ±1, a small sinusoidal perturbation (k = 2π) in their

density, and a plasma frequency ωp = 1. The parameters were chosen to be the same

as those used by Birdsall et al[112] and the domain is periodic.

The results in position-velocity phase space are shown in Figure 5.5. As the

counter-flowing streams interact the grows perturbation grows, destroying the uniform

structure of the streams. In this figure the time is non-dimensionalized by the plasma

frequency. Birdsall’s results for the same test case have been digitized and are shown

for comparison. The comparison illustrates the qualitative agreement between these

results. Quantitative comparisons were not made due to errors which are inherent in

the digitization.
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(a) t = 16ωp (b) t = 17ωp

(c) t = 18ωp (d) t = 34ωp

(e) t = 60ωp

Figure 5.5: Two stream instability velocity space evolution in time. The time was
normalized by the plasma frequency. Comparisons with digitized results
from Birdsall are shown.
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(a) Figure A: Energy history in
time of directed kinetic energy
(DKE), thermal energy (TKE),
field energy (FE), and total en-
ergy (TOTE).

(b) Figure B: Growth of aver-
age electric field due to instabil-
ity compared to linear analytical
growth rate.

Figure 5.6: Energy history and instability growth in two stream instability simula-
tions. Times are shown as cycles of the plasma frequency (ωp).

The energy history of the simulation is shown in Figure 5.6. The instability causes

the perturbation to grow and transfers energy from the uniform, directed kinetic

energy to thermal and electrostatic modes. The growth of the average electric field

is also shown in comparison to that predicted by theory. Equation 5.20 predicts a

frequency of ω = 0.481i which implies a growth of the electric field as e0.481t. This

growth rate is plotted in Figure 5.6 and shows good agreement in the region where

linear effects dominate.

The results from these simulations show good agreement with those from Birdsall

as well as with the predicted theory. This simulation verified the electrostatic particle

mover, weighting/interpolation algorithms, and the periodic boundary conditions.

The ability of the solver to correctly capture instabilities and instability growth rates

was also demonstrated. Test cases of the oppositely charged two stream instability,

warm two stream instability, and beam instability have also been simulated and show

good agreement with additional results presented by Birdsall. These cases are not

shown here for the sake of brevity.
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5.2.2 Landau Damping

Damping of electrostatic waves occurs in a plasma even without the presence of

collisions. [112, 122] This phenomenon is called Landau damping and occurs due to

the energy exchanged between an electrostatic wave and particles traveling near the

phase velocity, vph = ω/k, of the wave. Particles with velocities less than the phase

velocity of the wave gain energy from the wave while particles with velocities greater

than the wave phase velocity give energy to the wave. In the case of a Maxwellian

distribution, there are more particles with velocities less than the wave, resulting in

a net transfer of energy from the wave to the particles. The transfer of energy from

the wave leads to damping of the wave.

Simulations of the Landau damping phenomenon were performed for further veri-

fication of the code. The domain chosen was one dimensional with periodic boundary

conditions. A quiet start algorithm was used for loading particle velocities according

to a Maxwellian velocity distribution.[111] If particle velocities were loaded randomly,

no damping would be seen because the velocity distribution is not as well defined.

The particle density was slightly perturbed to generate an electrostatic wave. Sim-

ulation parameters are chosen to match those of Birdsall et al [112] and Denavit et

al[122]. The number of particles was 105 and 106 which is different from that of De-

navit who used 17711 particles. The reason for the use of more particles was because

the quiet start implemented in our simulations is not as complex as that of Denavit

and required additional particles to resolve the Landau damping. The charge and

mass (ratio q/m remains the same) of the particles was changed so that all other

parameters remain the same.

The damping rate (ωi) can be determined from linear analysis and is found to

be:[111]

ω = ωp

√
π

8

(
ωp
kvth

)3

exp

(
−ω2

th

2(kvth)2

)
(5.21)
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Figure 5.7: Landau damping as the number of particles is increased as well as the
analytical damping rate.

where ωth =
√
ω2
p + 3k2v2

th. For the parameters used in this simulation a damping

rate of ωi = −0.15 is expected resulting in an exponential damping ∝ e−0.15t. The

average electric field from the simulations as well as the analytical damping solution

are shown in Figure 5.2.2. The solutions found by Denavit et al are also shown in

Figure 5.8 for comparison.

The results from Figure 5.2.2 show that the code correctly reproduces the analytic

damping rate expected for a wave traveling in a Maxwellian plasma. The periodic

oscillations of the electric field are due to the plasma frequency while the overall

decrease is due to the effects of Landau damping. The mean electrostatic energy

is damped for a finite amount of time after which growth in the average electric

field occurs. Ideally, the damping would continue indefinitely, however, the finite

number of particles used in these simulations limits the amount of damping due to

the depletion of particles from the velocity space in which damping occurs. Increasing

the number of particles allows the simulation to damp further, as illustrated. The

simulation results presented here also show good qualitative agreement with those of

Denavit. These results verify the algorithms used to load particles for a Maxwellian

quiet start, which is essential to capturing thermal instabilities in PIC simulations.
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Figure 5.8: Landua damping in simulations by Denavit.

5.2.3 Source and Collector Sheath

This solver was further verified by simulating conditions which lead to the forma-

tion of source and collector sheaths. Source sheaths form to balance particle fluxes

which occurs at the boundary of a Maxwellian plasma source. Collector sheaths form

due to an imbalance of fluxes at a physical boundary.

The region between a Maxwellian plasma source and a collecting surface was sim-

ulated with the one dimensional PIC code and compared with the results of Schwager

et al. [123] The left boundary of the domain was a Maxwellian plasma source injecting

a flux of particles into the domain. Particles which are reflected back to this boundary

from the domain were thermalized according to the source and then re-injected into

the domain. No net charge builds up at the injection boundary. The right boundary

was an electrically floating collector and net charge accumulation can occur.

The results presented herein were compared to a selected case of Schwager in

which the ion-electron mass ratio (mi/me) is 40, the electrons and ions have the same

temperature (Te = Ti), and the domain length is 44 Debye lengths (L = 44λD). The

remaining parameters, grid size, and time step are chosen to match those of presented
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Figure 5.9: Normalized potential comparison with results of Schwager.

in detail by Schwager. Time-steps were set to 0.05/ωp and six grid points were used

per Debye length. Macroparticle weights were chosen so that there were at least 400

particles per cell.[123]

Figure 5.9 shows a comparison of the non-dimensionalized potential, ψ = eφ/kT ,

simulation results from the two codes.[123] The position in the figures are shown in

terms of Debye lengths to give context for the sheath structures and compare with

Schwager et al. The code developed herein correctly captured the formation of both

the source and collector sheath. Both the magnitude of the potential drop and the

length of the sheaths are well reproduced.

The normalized (by mid-point value) electron number densities from both simu-

lations is shown in Figure 5.10. Again the two codes showed good agreement. Figure

5.11 shows the ion and electron densities together for comparison. Both our simula-

tions and those of Schwager showed that the ion density is on average higher than

the electron density in sheath regions. This is especially true at the collector sheath.
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Figure 5.10: Normalized electron density results comparison for source-collector
sheath simulation.

The same oscillatory behavior of the density is also seen in both simulations.

Further comparisons can be made with the temperatures and mean ion velocities

reported by Schwager et al. These results are shown in Figures 5.12 and 5.13 below.

Again good agreement is seen between the two codes.

Finally the velocity phase space at the end of the simulation for ions and electrons

is shown in Figures 5.14 and 5.15 respectively. These contour plots show the evolution

of the velocity distribution function in space. This again agrees well with the results

of Schwager et al and illustrates the effects of the sheath on velocity space. Certain

regions of velocity space become inaccessible by the particles due to the induced

potentials.

Sheath simulations verified the code with more complex boundary conditions

which include a flux source and collector. These results also illustrate the ability

of the code correctly capture complex potential structures.
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Figure 5.11: Normalized ion and electron densities for simulation for source-collector
sheath simulation.

Figure 5.12: Normalized (by source temperature Ts) ion and electron temperature
profile comparisons for for source-collector sheath simulation.
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Figure 5.13: Normalized (by electron thermal velocity) mean ion velocity comparisons
for source-collector sheath simulation.

Figure 5.14: Velocity phase space for ions in source-collector sheath simulation. Ve-
locity is normalized by electron thermal velocity.
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Figure 5.15: Velocity phase space for electrons in source-collector sheath simulation.
Velocity is normalized by electron thermal velocity.

5.3 Neutral Collision Algorithms

Electron-neutral elastic, inelastic, and ionization collisions were included in these

simulations as well as ion-neutral elastic and charge exchange collisions. These col-

lisions were incorporated using a PIC Monte-Carlo Collision model with the null

collision algorithm. [117]

The probability of a particle undergoing a collision can be found by first calculating

a total collision cross-section for all the different types of collisions the particle could

undergo:

σ(g)tot =
∑

σi(g) (5.22)

The probability of a particle undergoing any collision (P ) can then be found with

the following equation in which g is the relative speed between the colliding particles:

P = 1− exp(−gσ(g)totnn∆t) (5.23)

The collision frequency (ν = gσ(g)nn) is dependent of the types of collisions, the
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energy of the particle, and the background density of neutrals (nn). The probability

of a collision occurring is compared with a random number generator to determine if

a collision occurs. The type of collision is then determined by using another random

number generator and the relative fraction of each type of collision cross-section.

Typically the collision probability is determined particle by particle which is very

expensive computationally. The null algorithm was used to significantly decrease

the computational cost.[117] This algorithm imposes a constant collision frequency

(νtot) for all particles that is greater than the maximum collision frequency of all the

collision types combined over the entire domain of the simulation. The probability

using this frequency is given below:

Pnull = 1− e−νtot∆t (5.24)

This over-predicted collision frequency is used to select the number of particles

which undergo a “collision” (Ncol = PnullNtot). These particles are then randomly

chosen from the simulation domain.

The type of collision each of the potential colliding particles undergoes is then

determined. Collision frequencies for each type of collision are calculated using the

particle properties and are normalized by the total collision frequency which was used

to select the particles. These normalized quantities are the probability the particle

has of undergoing a specific kind of collision. Random numbers are used to select

which kind of collision. A range of the random number space corresponding to the

probability of each collision is determined which illustrated below in which R is a

random number from [0 : 1].

Collision 1 : 0 < R ≤ P1 =
ν1

νtot

Collision n : Pn−1 < R ≤ Pn

∑n νi
νtot

(5.25)
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The range of probabilities used will never reach a value of one due to the fact that

some of the total collision frequency is due to the arbitrary null collision frequency

added to simplify the selection of particles. Random numbers that fall outside of

the range of probabilities undergo a null collision, implying no collision occurs at all.

The null collision frequency provides a means for reducing the number of particles

analyzed by including a fictitious collision. By over-predicting the number of particles

that undergo collisions this method simultaneously reduces the overall number of

particles analyzed and captures the probabilities of all other possible collisions.

The cross-section data used in this code was incorporated in tabulated form based

on literature and collected from the LXCat database. [124, 125, 126]

5.3.1 Electron-Neutral Collisions

The types of electron-neutral collisions considered include elastic, inelastic, and

ionization. Detailed discussion of these types of collisions can be found in the work

of Vahedi et al. [117] The following sections provide a very brief summary of the

equations used in this model.

5.3.1.1 Elastic

Elastic electron-neutral collisions are the first type of collision considered. For

these collisions the neutral background is assumed to be stationary to simplify the

calculations. This assumption is possible because the electron velocity is much greater

than that of the neutral background.

Kinetic energy is conserved in elastic collisions, although the energy of the neutrals

is not tracked. The scattering angle (χ) for the electron is determined by integrating

over a differential cross-section model leading to the expression below for the distribu-

tion of the scattering angles in terms of the incident energy in eV (Ei) and a random

number (R) between 0 and 1.

89



χ = cos−1

(
1 + Ei − 2(1 + Ei)R

Ei

)
(5.26)

The azimuthal angle (φ) is chosen randomly between 0 and 2π. Using these angles

the scattered velocity can be found using the following equation:[118]

vscat,i = vinc,i cos(χ)+
vinc × k̂
|v| sin(θ)

+|v| sin(χ) sin(φ)+
vinc × (vinc × k̂)

|v|2 sin(θ)
|v| sin(χ) cos(φ)

(5.27)

In this equation θ is the angle between the unit vector k̂ and the incident velocity.

This scattered velocity must be scaled to account for the energy which is exchanged

with the neutral background (the energy lost by the electron, ∆E) and is found by

the expression below.

∆E =
2me

mn

(1− cos(χ))Ei (5.28)

This change in energy is used to scale the scattered velocities by the factor α below:

α =

√
1− ∆E

Ei
(5.29)

The energy loss per collisions is typically very small because it scales as me/mn.

These collisions are important to creating isotropic distributions for the electrons at

low energies (< 100 eV ) and result in primarily small angle collisions at high energies

(> 100 eV ).

5.3.1.2 Excitation

Excitation collisions do not conserve the kinetic energy of the colliding particles.

Energy is lost to the internal modes of the electron and then emitted as radiation.
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There are a number of different inelastic energy modes to consider and for these sim-

ulations only a single inelastic mode (the highest cross-section) was considered. The

final energy of the electron undergoing an excitation collision is found by subtracting

the excitation energy (Eex) from the incident energy. The velocity scaling factor is

determined using Equation 5.29 with ∆E = Eex. The scatting angle is obtained from

Equation 5.26 using the final energy of the particle and a random number. The az-

imuthal angle is again chosen randomly. The scattering velocity (Equation 5.27) and

final scaled velocity can then be calculated using the same methods used in elastic

collisions. These excitation collision only occur for electron energies greater than Eex.

5.3.1.3 Ionization

In ionization collisions a high energy electron creates an additional ion-electron

pair by colliding with a background neutral. For simplicity the newly created ion is

assumed to have the same energy as the neutral background. The initial energy of

the incident electron is then divided between the energy needed for ionization (Eion),

the final energy of the incident electron, and the energy of the newly ejected electron

Eej. The energy of the ejected particle is found using Equation 5.30.

Eej = B tan

(
R tan−1

(
Ein − Eion

2B

))
(5.30)

In this equation B is an experimentally determined parameter which for argon is

BAr = 10 eV and for xenon is BXe = 8.7 eV .[118, 127] The energy of the scattered

particle can now be determined, or equivalently the change in energy of the incident

particle is found to be ∆E = Eion + Eej. The energy of the scattered and ejected

particles are used in Equation 5.26 to determine the scattering angle of each. An

azimuthal angle is then chosen randomly for each. The scattering velocity (Equation

5.27) and final scaled velocity are calculated using these scattering angles. The initial

velocity of the incident particle is the velocity transformed for both electrons. The
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energy change undergone relative to the incident electron is used to scale the final

velocities using Equation 5.29. Ionization collisions only occur for incident electrons

with energies greater than Eion.

5.3.2 Ion-Neutral Collisions

Both elastic and charge-exchange (or backscattering) collisions are considered

for ion-neutral collisions. The primary difference between ion-neutral and electron-

neutral collisions is that the neutral species dynamics must be taken into account and

the background can no longer be assumed as stationary. The heavy mass of the ions

means that they will move at lower velocities, which could be on the order of the

background neutral velocity.

5.3.2.1 Elastic

Elastic collisions conserve the kinetic energy during a collision. The first step in

the elastic collision is to create a neutral particle based on the neutral background

temperature with which the incoming ion can collide. The colliding ion is then trans-

ferred from the lab frame to a frame in which the neutral is stationary. The collisions

are treated as hard sphere collisions between particles of the same mass which results

in the following scattered energy .

Escat = Eicos2(χ) (5.31)

The angle χ is the scattering angle in the laboratory frame. This angle is found

by assuming a uniform, isotropic scattering in the center of mass frame to give the

following equation in which R is a random number from [0 : 1].

χ = cos−1(
√

1−R) (5.32)
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The azimuthal angle used in scattering is determined by another random number

between [0 : 2π]. The scattering of the ion is performed in the stationary neutral

frame and the resulting velocities are then transferred back to the laboratory frame.

5.3.2.2 Charge-Exchange

In charge-exchange (or backscattering) collisions the high energy ion gives its

charge to the the slow neutral particles. In effect, a new slow ion is produced along

with a hot neutral while destroying the original ion and neutral. This type of collision

is the simplest to handle because the velocity of the colliding ion is just replaced with

a velocity representative of the neutral background temperature.

5.4 Collision Algorithm Verification

The verification of the null-collisional algorithm is presented in this section. Veri-

fication is shown for collisions with a neutral argon background density, but the code

is implemented so that an arbitrary gas can be used as long as cross-sections and

collision data are available. The code has been tested with xenon as well, but is not

presented here.

Verification of the collision algorithms was done in two steps.[118] First the scat-

tering algorithm was tested to make sure particles are scattered correctly and then the

collision selecting algorithm was tested to show that algorithm produces the correct

collision frequencies.

5.4.1 Electron-Neutral Collisions

Analytical velocity distributions can be derived for a beam of particles undergoing

an isotropic collision process. Each particle undergoes a collision at every timestep.

The velocity distribution in the streaming and perpendicular directions can be deter-

mined analytically after each collision occurs as shown by Sydorenko.[118] Figure 5.16
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(a) Initial velocity distribution. (b) Velocity distribution after 1
collision.

(c) Figure C: Velocity distribu-
tion after 6 collisions.

Figure 5.16: Evolution of velocity distribution for electrons due to collisions.

shows the analytical and simulation velocity distribution functions. The simulations

agree well with the analytically predicted distributions and after six collisions the

velocity distribution of the electrons has become isotropic.

The ability of the algorithm to produce the correct collision frequency was also

tested. This simulation was performed by injecting a beam of particles with a known

energy into a the neutral background and counting the number of each type of col-

lision. The number of collisions was used along with the total time to calculate the

collision frequency. Figure 5.17 shows the result of these test simulations and demon-

strates the reproduction of the correct analytical collision frequencies. A neutral

background density of nn = 1018 #
m3 was used in these simulations.

5.4.2 Ion-Neutral Collisions

An analytical solution was not derived for the response of a beam of ions colliding

with the neutral background, but a simple test case was still studied to insure that
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Figure 5.17: Collision frequencies for electron-neutral collisions based on simulations
and calculations.

these types of collision produce the correct behavior over time. This solution is more

complex because the ion mass is essentially the same as the background neutral mass,

which no longer allows for simplifying assumptions to be made in the analysis. Figures

5.18 and 5.19 show how an initial beam of ions approaches the ion velocity and speed

distribution function of the background neutrals. After fifty collisions the beam has

lost all of its energy to the neutral background and has equilibrated to the distribution

of the background.

Verification of null collision frequency algorithm was also performed by injecting

beams of ions with varying energies into a neutral background. The ion-neutral

collision frequency was then calculated in a manner similar to that done for the

electron-neutral frequencies where the number of collisions are counted over a known

simulation time. Figure 5.20 shows the result of these test cases in which the correct

collision frequencies are captured for the ion-neutral elastic and charge exchange

collisions. A neutral background with a density nn = 1018 #
m3 and a temperature of

Tn = 10 K was used for these simulations.
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(a) Initial velocity distribution. (b) Velocity distribution after 1
collision.

(c) Velocity distribution after 5
collisions.

(d) Velocity distribution after 50
collisions.

Figure 5.18: Ion velocity distribution variation due to collisions.

(a) Initial speed distribution. (b) Speed distribution after 1
collision.

(c) Speed distribution after 5
collisions.

(d) Speed distribution after 50
collisions.

Figure 5.19: Ion speed/energy distribution variation due to collisions.
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Figure 5.20: Ion-neutral collision frequencies based on simulations and calculations.

5.5 Radio-frequency Plasma Simulation

The most rigorous verification of the 1D algorithms was performed by simulating

one-dimensional voltage-driven and current-driven radio-frequency plasma discharges.

Results for these simulations are compared with the XPDP1 (X-Windows Plasma

Device Planar Planar 1D) one dimensional PIC code [115] as well as with other

simulations and experiments.[128, 127] XPDP1 is an object-oriented plasma device

code with planar electrodes. The code includes external circuit components, Monte

Carlo collisions with neutrals, and a number of more advanced numerical schemes

such as implicit particle movers, smoothing, and second order particle loading. For

comparisons with XPDP1 the cross-section data used was obtained from the code

instead of using the cross-sections from the LxCat database in order to better compare

results.

5.5.1 Voltage-Driven Discharge

The parameters chosen for the voltage-driven discharge are summarized in Table

5.1 and are taken from a test case for XPDP1. The domain is initially seeded with

density of 1015 #/m3 ions and electrons at T = 1 eV . The left boundary of the

domain was a sinusoidally varying applied voltage while the right boundary was a
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grounded electrode. Identical simulations were performed with the Q1D code and

XPDP1 to further verify the correct implementation of the 1D algorithms. Some

algorithms (e.g. time centered loading, etc.) and the implementation of algorithms

(e.g. tabular cross-section data, etc.) used in each code are different, but simulation

parameters are chosen to be the same. Note that no two dimensional effects are

included, the code is just referred to as Q1D for ease of comparison.

Table 5.1: Parameters for RF voltage driven plasma simulation.

Parameter Value
Length 5 cm

Grid Points 301
Time Step 3.8× 10−11 s

Voltage Amplitude 500 V
Heating Frequency 13.56 MHz

Macroparticle Weight 1× 108 Particles/Macroparticle
Neutral Pressure 50 mTorr

Neutral Temperature 300 K
Gas Argon

The results from both codes are shown in the Figures 5.21(a) - 5.21(d) below. All

results are compared at t = 2.88072×10−4 seconds. Good qualitative and quantitative

agreement is shown for the argon density in Figure 5.21(a). A difference is seen in

the maximum density with XPDP1 predicting a value around nAr,max = 1.2 × 1016

#/m3 and the Q1D code predicting a value of around nAr,max = 1.15 × 1016 #/m3.

This difference can be attributed to a number of nuanced differences between the

implemented numerical methods (e.g. cross-sections in tabular versus functional form,

different particle loading schemes, etc.) in the codes. The electron density, Figure

5.21(b), shows similar agreement. More noise is seen in the electrons due to their

propensity to respond rapidly to any changes in the plasma. The potential shown in

Figure 5.21(c) is nearly identical between the two codes.

Finally, the electron kinetic energy is shown in Figure 5.21(d). Electron tem-

perature is an inherently fluctuating parameter in these PIC simulations due to the
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(a) Argon number density variation (b) Electron number density variation

(c) Potential (d) Electron Temperature

Figure 5.21: Voltage driven discharge results comparing XPDP1 and Q1D results.

rapid response of the electrons to the changing applied field. The two codes produce

very similar electron energy profiles in the domain, but some differences are seen. In

particular the Q1D code predicts slightly higher temperatures. This may again be

attributed to the different algorithms incorporated in the two codes. XPDP1 is a

much more mature code and incorporates more sophisticated schemes than some of

those currently implemented in the Q1D code.

The RMS errors between the simulations is shown in Table 5.2. Errors are found

by treating the XPDP1 results as the predicted value and are normalized by the

maximum value. The density errors are below 4% while the errors in the potential

are less than a percent. Errors in the electron temperature are higher, mostly due to
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the fluctuating nature of the data.

Table 5.2: Root mean square errors for voltage-driven discharge simulations.

Parameter Error
Argon Density 3.09 %

Electron Density 3.92 %
Potential 0.48 %

Electron Temperature 15.4 %

5.5.2 Current-driven RF Discharge

The simulation parameters for the current-driven discharge are chosen to match

those of Vahedi et al. [129] These simulations were designed to model an experiment

by Godyak[128] for which the chosen parameters are summarized in the table below.

Table 5.3: Parameters for RF current-driven plasma simulation.

Parameter Value
Length 2 cm

Grid Points 401
Time Step 3.8× 10−11 s

Heating Current 25.6 A/m2

Heating Frequency 13.56 MHz
Macroparticle Weight 1× 109 Particles/Macroparticle

Neutral Pressure 100 mTorr
Neutral Temperature 300 K

Gas Argon

The domain is initially seeded with density of 1015 #/m3 ions and electrons at

T = 1 eV . The left boundary imposes a sinusoidally varying applied current while

the right boundary is grounded. The resulting densities produced by XPDP1 and the

newly developed Q1D code are shown in Figures 5.22(a) and 5.22(b). All results are

compared at t = 1.14 × 10−4 seconds. Both the electron densities, Figure 5.22(b),

and the ion densities, Figure 5.22(a) show very similar densities. The slight differ-

ences in densities can easily be attributed to slightly different numerical schemes or
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(a) Argon number density variation (b) Electron number density variation

(c) Potential variation (d) Electron kinetic energy variation

Figure 5.22: Current-driven discharge results comparing XPDP1 and Q1D simula-
tions.

implementations. The potential and electron kinetic energy found in both codes also

shows good agreement.

The RMS errors are shown in Table 5.4. Errors are found by treating the XPDP1

results as the predicted value and are normalized by the maximum value in the

domain. The density errors are below 5% while the errors in the potential are less

than a percent. Errors in the electron temperature are higher, mostly due to the

fluctuating nature of the data.

The velocity distribution of the Q1D simulations was analyzed to compare with

the results of Vahedi et al.[127] The resulting axial velocity distribution is shown in

Figure 5.23 along with Maxwellian distributions for comparison.The y-axis is on a log
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Table 5.4: Root mean square errors for current-driven discharge simulations.
Parameter Error

Argon Density 4.23 %
Electron Density 4.71 %

Potential 0.85 %
Electron Temperature 8.76 %

Figure 5.23: Electron axial velocity distribution function.

scale and the velocity is put in energy units (eV). On this type of plot a Maxwellian

distribution is a straight line with a slope equal to 1/T . The data from simulations

shows two lines, one for each side of the velocity distribution function. Both sides are

positive because this is plotted on an energy scale for ease of comparison with the

Maxwellian distribution.

The velocity distribution of Figure 5.23 shows that the distribution has two char-

acteristic temperatures. Low energy particles have the characteristics of a plasma at

0.75 eV while the high energy particles have the characteristics of a plasma at 3 eV .

Finally simulations were performed using the cross-section data which will be used

in the bulk of the thesis instead of used in the XPDP1 code. This data was obtained

from the LXCat database.[124, 125, 126] Results of these simulations are shown in

Figure 5.24. These LxCat cross-section results show an overall higher density with a

maximum around 1.5× 1015 #/m3. The velocity distribution results are also shown
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(a) Argon number density variation (b) Electron number density variation

Figure 5.24: Simulation results with LxCat cross-section data (Q1D New) compared
to results using cross-section data from in XPDP1 (Q1D).

in Figure 5.25. Two temperatures are seen again, with a hot group of electrons at

3 eV and a cold group of electrons at around 0.6 eV .

These simulations results compare favorably with the previous simulation results

of Vahedi et al as well as the experiment they compared against.[129, 127] The simu-

lation results of Vahedi predicted a maximum density of nmax = 8× 1015 #/m3, hot

electrons at 3 eV, and cold electrons at .5 eV. The experiment results measured a

maximum density of nmax = 1.5 × 1016 #/m3, hot electrons at 3 eV , and cold elec-

trons at .4 eV . Therefore, the code developed herein was able to very closely match

the maximum number density when the LxCat cross-sections were implemented. It

also showed the two temperature characteristics for the electrons, with slightly higher

temperatures for the cold electrons than those in Vahedi’s simulations and in the

experiments.

5.6 Coulomb Collision Algorithms

The effects of Coulomb collisions were also modeled using a grid-based collision

model. [119] Inter-species forces on the particle are found using properties deter-

mined from moments of the distribution function and reproduce the fluid transport
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Figure 5.25: Electron axial velocity distribution using LxCat database cross-section
data.

equations. Intra-species collisions are modeled based on the Langevin equation and

incorporate scattering similar to that in Monte-Carlo collisions.[119] Each method is

discussed below.

5.6.1 Inter-species Collisions

Inter-species collisions occur between particles of different species α and β. Mo-

mentum transfer (ναβ) and energy equilibration (νEαβ) collision frequencies are defined

as part of these equations and are shown below.

ναβ =
8
√
πq2

αq
2
βnβlnΛαβ

m2
αβ∆v3(4πε0)2

(√
π

2
erf

(
∆v

vth

)
− ∆v

vth,αβ
exp

(
− ∆v2

v2
th,αβ

))
(5.33)

νEαβ =
16
√
πq2

αq
2
βnβlnΛαβ

mαmβv3
th,αβ(4πε0)2

(
− exp

(
− ∆v2

v2
th,αβ

))
(5.34)

These equations include the Coulomb logarithm (ln Λαβ), the reduced thermal

velocity (vvth,αβ =
√

2(kbTα/mα + kbTβ/mβ)), the magnitude of the mean velocity
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difference (∆v = |uα − uβ|), the reduced mass (mαβ = mαmβ/(mα + mβ)), and

the permittivity of free space (ε0). The mean velocity uα is found by averaging the

velocity of all the particles 〈vα〉. The Coulomb logarithm is a factor which scales the

collision frequency when including the effects of multiple small angle collisions and

typically ranges from 5 to 15. These equations give rates similar to those found both

in the Naval Research Lab Plasma Formulary[130] and the work of Decoster [119] and

Rambo [131].

These collision frequencies were used in the following expression for the force each

particle feels due to inter-species Coulomb collisions.

Fαβ = ναβmαβ(uβ − uα)− ναβ
m2
αβ

mα

(uα − uβ)2

〈v2〉α − 〈vα〉
2 (uα − vα)

+νEαβ
(kbTα − kbTβ)∑α (〈v2〉α − 〈vα〉

2)(uα − vα)

(5.35)

This form for the force was chosen because it satisfies both momentum and energy

conservation between the species and reduces to the fluid transport equations when

averaged. The form of Equation 5.35 is slightly different from that presented in Jones

et al [119]. The third term includes a sum in the denominator for the equations to

simplify to the correct fluid equations and produce the correct relaxation behavior.

5.6.2 Intra-species Collisions

Intra-species collisions occur between particles of the same species and must be

treated differently. These collisions are modeled using the Langevin equation with

the form:

Fαα = −mανα(vα − uα) +mαA (5.36)

In this equation A is a random vector and να is a friction coefficient. The friction
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coefficient is chosen to be the same as that derived by Spitzer[37]. The collision

frequency is shown below for singly charged ions:

ν =
ne4 ln Λ

12
√
mε20(kbπT )3/2

(5.37)

The form of Equation 5.36 conserves momentum as long as a statistically signifi-

cant number of particles is used so that 〈A〉 = 0. The random vector A is chosen so

that the energy is conserved and so that the distribution approaches a Maxwellian.

These requirements are achieved by randomly selecting the components of A from

the Maxwellian distribution shown below:

fA =

(
1

2πv2
th,A

)3/2

exp

(
−A ·A

2v2
th,A

)
(5.38)

The typical thermal velocity of a Maxwellian distribution (vth =
√
kT/m) is

replaced by vth,A of the form below:

vth,A =

√
3να∆tkbTα

mα

(5.39)

This choice of the distribution and thermal velocity results in the Langevin equa-

tion modeling the relaxation to a Maxwellian distribution while conserving both mo-

mentum and energy. The vector A is chosen by sampling from this Maxwellian dis-

tribution using the methods outlined in the previous section using the newly defined

thermal velocity.

5.6.3 Implementation

The Coulomb collision forces are incorporated by using a first order, Euler dis-

cretization in time. This method is chosen due to the simplicity of implementation,

requiring only information from the current time step such as the rest of the code. The

macroscopic quantities needed for these calculations (e.g. 〈v〉 , 〈v2〉,etc) are weighted
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to the grid and are used to determine the forces on the particles. For the Coulomb

collision algorithm all weighting is done with a the nearest cell scheme to insure

momentum is conserved within the Coulomb collision algorithm and no self-force is

present. The nearest cell weighting is used for simplicity because linear weighting be-

comes complex when using all the continuum properties required by Equations 5.35

and 5.36. Note that the weighting in the Coulomb algorithm may be different than

that used by the rest of the code but is consistent within itself. Future work should

incorporate a linear weighting of the properties needed to calculate these forces.

As suggested by Jones et al [119], when both collision types are implemented

the intra-species collisions are performed first, after which the inter-species collisions

are performed. This is intended to alleviate the drifting of the temperature of the

distribution which may occur over time for large collision frequencies. The macro-

scopic properties are re-weighted after the intra-species collisions and then used in

the inter-species collisions.

5.7 Coulomb Collision Verification

5.7.1 Intra-Species Collisions

Intra-species collisions are verified by investigating the relaxation of a non-Maxwellian

distribution to a Maxwellian distribution. [118, 132] A distribution is seeded randomly

with a maximum energy in each direction to 2 eV . This distribution is then allowed

to relax to equilibrium. At equilibrium the random distribution should relax to a

Maxwellian distribution with T = 1.33 eV because the initial random distribution

has a mean energy 〈mv2〉 = 1.33 eV. The relaxation results will be compared with

a different scheme developed by Manheimer which incorporates a different Coulomb

collision algorithm also based on the Langevin equation but which does not explicitly

assume isotropic scattering as is done in the grid-based model.[132] The difference be-
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(a) Velocity distribution at t=10
ns.

(b) Velocity distribution at t=70
ns.

(c) Velocity distribution at t=200
ns.

Figure 5.26: Velocity distribution relaxation comparison with Manheimer.

tween these schemes is particularly important for resolving the high energy tail. The

method implemented here over predicts the cooling in the tail, while Manheimer’s

technique better treats the cooling of the high energy particles.

The results of the velocity distribution relaxation are shown in Figure 5.7.1 and is

compared with the results of Manheimer [132]. Results show good agreement and the

distribution relaxes to the correct distribution. The grid-based collision algorithm

relaxes faster than that of Manheimer and some difference is seen at 70 ns. This

differences is due to the over prediction of cooling of high energy particles in the

implemented scheme.

Figure 5.27 also shows the particles in velocity space. The initial block distribution

relaxes to the circular Maxwellian distribution over time.
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(a) Initial velocity space. (b) Final velocity space.

Figure 5.27: Velocity phase space variation for Coulomb intra-species collisions.

5.7.2 Inter-Species Collisions

Two test cases were tested to verify the implementation of the inter-species Coulomb

collisions. The test cases were taken from Rambo et al [131] in which the relaxation

processes in a plasma were modeled with both multi-fluid and kinetic simulations.

5.7.2.1 Temperature equilibration

The first test case involves the relaxation to equilibrium of two groups of particles

with different temperatures. The parameters for the simulation are summarized in

Table 5.5. The particles are fully stripped Carbon ions. The first group of particles

is at a low density and high temperature, while the second is at a higher density and

a lower temperature.

The temperature equilibration of the warm group of particles using the grid-based

collision algorithm implemented in the code is compared to the multi-fluid simulation

results of Rambo et al in Figure 5.28. The grid-based collision algorithm reproduces

the multi-fluid results and excellent agreement is shown. Rambo also compares results

with a Monte-Carlo collision algorithm which shows similar relaxation behavior. The

RMS error normalized by the maximum temperature for this simulation is 0.38 %.
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Table 5.5: Parameters for temperature equilibrium test.

Group 1
Species Carbon
Charge 9.6× 10−19 C
Mass 2.0× 10−26 kg

Density 1019 #/cm3

Temperature 1 keV
Group 2
Species Carbon
Charge 9.6× 10−19 C
Mass 2.0× 10−26 kg

Density 1020 #/cm3

Temperature 250 eV

5.7.2.2 Beam Slowing

The next test case simulates a beam slowing down due to Coulomb collisions with

a background of stationary plasma. The particles are again fully stripped Carbon

ions. The directed energy of the beam is much greater than the temperature of the

beam and the temperature of the background. The beam is also at a lower density

than the stationary background.

Table 5.6: Parameters for beam relaxation test.

Group 1
Species Carbon
Charge 9.6× 10−19 C
Mass 2.0× 10−26 kg

Density 1019 #/cm3

Temperature 500 eV
Beam Velocity 6.55× 105 m/s

Group 2
Species Carbon
Charge 9.6× 10−19 C
Mass 2.0× 10−26 kg

Density 1020 #/cm3

Temperature 500 eV
Beam Velocity 0 m/s
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Figure 5.28: Temperature relaxation due to inter-species collisions.

The slowing down of the beam is shown in Figure 5.29(a) and is compared with

the multi-fluid results of Rambo. Results are also shown for the simulation including

the intra-species collisions, which does not change the beam relaxation much in the

times shown. Again the simulations results agree well with the multi-fluid results,

which Rambo showed agrees well with fully kinetic collisions.

The effects of beam slowing down on the beam temperature is shown in Figure

5.29(b). The temperature initially increases to around 6 eV and then relaxes to a

temperature above 2 eV. The simulation considering only the inter-species collision

agrees well with the multi-fluid simulation results. Inclusion of the intraspecies col-

lisions changes the relaxation behavior slightly as expected due to the additional

collisions distributing energy internal to each species and driving these distributions

to a Maxwellian in all directions. The normalized RMS error for the velocity and

temperature are 0.25 % and 1 % respectively, showing good agreement.
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(a) Beam velocity.

(b) Beam temperatures.

Figure 5.29: Relaxation of beam due to inter-species collisions.
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5.7.3 Discussion

These simulation results agreed well with the multi-fluid results of Rambo. The

work of Rambo illustrated that the multi-fluid relaxation results also show good agree-

ment with fully kinetic Monte-Carlo collision models. However, there are limitations

to the implemented model. This method relaxes faster than the kinetic simulations,

particularly for the high energy particles in the tail of the Maxwellian. The inter-

species collision also does not consider some multi-dimensional effects. Specifically,

in the beam slowing case all of the beam energy goes into the random kinetic energy

in the same direction of the beam. This leads to the correct overall temperature, but

there is no mechanism to equilibrate the temperature between the directions using

only the interspecies collisions. This is the reason intraspecies were also included, to

capture some of this redistribution of energy among the different directions.

Overall this method was implemented due to compromise between the ease of

implementation, speed, and accuracy. Fully kinetic, Monte-Carlo methods are more

robust, but are more expensive computationally and are not compatible with the

currently implemented parallel schemes.[131, 133] Other grid based methods are more

robust, but again are more expensive computationally and not compatible with the

currently implemented parallel schemes. [132]

5.8 Parallelization

A simple parallelization scheme was implemented in the code to allow for simu-

lations to be run on multiple processors and decrease the simulation run time. This

section outlines this simple parallelization scheme and shows some characteristics of

the code’s parallel efficiency. The code is parallelized using Message Passing Interface

(MPI). This was chosen over other options such as OpenMP and GPU parallelization

so the code is not limited to shared memory machines. MPI parallelized codes can
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be run on an arbitrary number of processors each with its own memory.

5.8.1 Implementation

At the most fundamental level, parallelization is achieved by distributing the par-

ticles between the processors. Particles are arbitrarily divided between the processors.

Processors are not assigned to a particular set of cells and particles are not passed be-

tween cells. This was done in hope of alleviating some of the communication overhead

with sharing this data and checking the position of the particle data. Load balancing

is insured by redistributing the particles between the processors at a designated time

step.

Particle velocity pushes, position pushes, neutral collisions, and Coulomb colli-

sions are performed independently on each processor with each particle. Individual

particle pushes are independent of the other particles except through properties on

the grid, enabling this type of parallelization. The independence of particles from

one another is also reliant on the choice of a grid-based Coulomb collision algorithm

instead of an algorithm which pairs collision partners in a cell. Continuum proper-

ties are weighted to the grid by each processor and then combined by summing or

averaging the continuum properties from each processor to find the total continuum

properties. The total continuum properties are shared between all the processors to

be used when updating the properties on each processor.

The parallel efficiency (Speed up/Ideal Speed up) was tested using the radio-

frequency source test problem. The macroparticle weight was changed to vary the

numbers of particles which were used in the simulation since this method is based

on dividing the particles between processors. The results of this study are shown in

Figure 5.30. The efficiency increases as the number of particles is increased. Even-

tually each of the curves reaches a maximum speedup where the benefits of adding

additional processors is outweighed by the communication costs between processors.
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Figure 5.30: Parallel efficiency variation with increasing number of particles.

The codes shows greater than ideal scaling (∝ Nprocessors) as the number of proces-

sors is initially increased for the simulations with a large number of processors. This

super-scaling is likely due to the fact that a greater fraction of the particle data (if

not all of it) is able to fit in the cache of the processor.

Figure 5.31 shows the time per iteration as it varies with the number of particles

per processor. All of the test cases have nearly the same time taken per iteration

for the same number of particles per processor. This is an indicator of good scaling

with increasing number of particles. Each of the test cases begins to diverge from

the overall curve with larger numbers of particles diverging at higher particles per

processor. This diverging occurs when the communication costs begin to become

significant. Furthermore, communication costs are greater as the number of processors

are increased and the number of particles per processor is increased. The fraction of

communication cost increases with decreasing particles per processors.

Another important parameter to be considered in the parallel scaling is how the

number of grid cells affects the speed up. Increasing the number of grid points in-

creases the size of the arrays passed when MPI communication is used to sum the

weighted continuum properties. For very large grids, it was found that MPI commu-
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Figure 5.31: Time per iteration variation with number of particles per processor.

nication can account for almost 10% of the computational cost adversely affecting the

speed up. For example, if the MPI communication cost is 10%, the maximum speed

up for an ideal simulation is around ten times. A thorough study of the effects of the

grid was not performed, but these effects were seen during simulations and profiling

of the code.
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CHAPTER VI

Quasi-One-Dimensional Model Implementation

and Verification

The previous section outlined the development, testing, and verification of the one-

dimensional PIC code which served as the framework to implement the new quasi-1D

(Q1D) effects discussed in Chapter IV. In this chapter the numerical implementation,

testing, and verification of the quasi-1D effects are presented.

6.1 Quasi-1D Algorithms

6.1.1 Area Variation

The area variation algorithm incorporates the effects of the magnetic field expan-

sion and compression on the plasma. The cross sectional area throughout the domain

is calculated by imposing an applied magnetic field on the domain and setting an inlet

area for the flux tube (Ai=0) at the start of the domain (i = 0) where the magnetic

field strength is Bi=0. The cross sectional area throughout the rest of the domain is

calculated according to Equation 6.1.

Ai =
Bi=0

Bi

Ai=0 (6.1)

The cross-sectional area at each point was used along with the cell width to
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calculate a cell volume (∆Vi = Ai∆xi) to calculate the number density at each grid

point. Conventional PIC methods typically assume a constant cross-section which is

often set to Ai = 1.

An alternate approach to this method would be to change the macro-particle size

(M) depending on the particle position on the grid. The macro-particles can be

thought of as charge sheets with units #/m2. The local weight of the particle is then

found according to the following Equation 6.2. This weight is used when the particle

properties are weighted to the grid points.

Mi =
Bi=0

Bi

Mi=0 (6.2)

The area variation method was selected and used throughout this work. This was

chosen due to the fact that the cross sectional area is more like a grid value than

a particle value. The varying particle weight is also a viable solution, but was not

tested.

6.1.2 Magnetic Field Force

The new magnetic field forces were implemented in a means similar to the Boris

method [120] which was discussed in the previous chapter. An initial half push was

performed with the electric field. This is followed by including the magnetic field force

described in Equations 4.8 and 4.9. A last half-push is then applied by the electric

field. The methods to incorporate the new magnetic field push are described below.

The magnetic field force has been included using two numerical methods. The

first of these involves an implicit push of Equations 4.8 and 4.9. The equations for

this implicit push are shown below:

v+
‖ = v−‖ −

∆t

8B

dB

ds

(
v+
⊥ + v−⊥

)2
(6.3)
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v+
⊥ = v−⊥ +

∆t

8B

dB

ds

(
v+
⊥ + v−⊥

) (
v+
‖ + v−‖

)
(6.4)

The v+ values are found by using a predictor-corrector method until the solution

converges. This method demonstrated good results, but a more simple and less

expensive method was investigated.

Analytical expressions can be derived for the differential Equations 4.8 and 4.9.

The first of these expressions is shown below (with no assumptions about the physics),

which is a direct result of energy conservation and the fact that the magnetic field

does no work:

(vn‖ )
2 + (vn⊥)2 = (vn+1

‖ )2 + (vn+1
⊥ )2 = C (6.5)

in which C is a constant. This leads to a simple expression relating both velocities

to one another. If it is further assumed that the quantity ζ = 1
2B

dB
ds

is constant of

the time step (∆t). The following expression is then found for the parallel velocity at

time step n+ 1.

vn+1
‖ =

√
C tanh

[
tanh−1

(
vn‖√
C

)
− ζ
√
C∆t

]
(6.6)

This expression contains the variables ζ and C which were just defined and gives

a result for the parallel velocity in time if ζ is constant. The corresponding perpen-

dicular velocity can be found with Equation 6.5. These expressions are used to find

the velocities during the magnetic field velocity push over which ζ is assumed to be

constant. The quantity ζ changes once the particle position changes and is weighted

from the nearby grid points. This is the reason for the use of ∆t in Equation 6.6

and not t since this equation is only valid over a small time step in which ζ ≈ con-

stant. The analytical solution enforces energy conservation and is implicit through

its analytical nature.
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The predictor-corrector and analytical methods were compared with one another

with both showing accurate results for the verification test cases which will be outlined

below. However, the analytical methods showed superior computational performance

and was selected and implemented in the simulation results shown.

6.1.3 Implementation in a 1D3V Code

An important note should be made about the implementation of this method,

which relies on perpendicular and parallel velocities, into a fully 1D3V code which

incorporates three velocities in Cartesian space. First, a 1D3V code is essential to

the problem because it is necessary to resolve three velocity dimensions when self-

consistently modeling a plasma source which includes both neutral and Coulomb

collisions. The collision processes are inherently three velocity processes.

The quasi-1D effects are incorporated by assigning one of these velocities to be

the parallel direction (ẑ) while the other velocities (x̂, ŷ) are combined to be the per-

pendicular direction (v⊥ =
√
v2
x + v2

y). The three dimensional nature of the problem

is preserved for use in the collision algorithms while also incorporating the quasi-1D

effects associated with modeling a magnetic flux tube of particles. Changes in the

perpendicular velocity are scaled equally to both the perpendicular directions.

6.2 Two Particle Motion

The two-particle verification test case solves for the motion of two like-charged

particles. This test verifies the two-dimensional effects due to the cross-section vari-

ation and the magnetic field force on the particle mover.

6.2.1 Theory

Two like-charged particles will repel one another until both exit the domain.[118]

The one-dimensional domain treats the plasma as a sheet of particles symmetric in
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the perpendicular, x̂ and ŷ, directions. An expression can be derived for the electric

field outside of the charge sheets by using Gauss’ law and assuming contributions

perpendicular to the flux tube are negligible (Ez >> E⊥).

Ez =
Q

2Aε0
n̂ (6.7)

In this equation A is the cross sectional area of the charge sheet, Q is the charge, and

n̂ is the direction normal to the charge sheet. For the two particle system this leads

to an electric field that cancels out in the region between the particles and sums in

the rest of the domain. Each particle sheet feels the electric field of the other, leading

to each of the particles feeling the forces shown in Equation 6.8.

F±z = ± Q2

2Aε0
(6.8)

In this equation and those following, the plus sign in the exponent refers to quantities

for the particle on the right side of the domain while the minus sign refers to the

quantities for the particle on the left side of the domain. When the cross-sectional

area is constant the particles exert a constant force on one another, giving a simple

expression for the motion of the particles.

z± = ± Q2

2mAε0
t2 + v±0 t+ z±0 (6.9)

in which v±0 is the initial velocity and z±0 is the initial position.

Variation of the cross-sectional area results in a force that is no longer constant as

is illustrated by Figure 6.1. As the particle sheets approach one another the magnetic

field magnitude increases and the flux-tube shrinks. The number of particles each

sheet represents is constant, implying that the density is now greater due to the

decrease in cross-section. This leads to a larger force between the particles. The

cross-section varies with the magnetic field as shown in Equation 6.1. This leads to
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Figure 6.1: Illustration of cross-sectional area variation effects for a moving sheet of
charticles.

the electric field outside each charge sheet varying as below:

Ez =
QB

2B0A0ε0
n̂ (6.10)

Resulting in the force varying as:

F±z =
Q2B∓

2B0A0ε0
(6.11)

Note that in this equation the plus/minus is flipped on the right hand side because

the force each particle experiences is due to the other charge sheet.

This problem has a simple analytical solution when choosing a magnetic field

which varies as B = B∗+α±z and using particles which are initially equidistant from

z = 0 traveling toward each other with the same velocity. The magnetic field is a

piecewise function for which α− is the slope for z < 0 and α+ is the slope for z > 0.

The general solution is shown below:

z± =

(
v±0
γ

)
sin(γt)±

(
B0

α

)
cos(γt) + z±0 −

B0

α
(6.12)

In this equation γ =
√
βα with β = Q2/(2mε0B0A0).
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An analytical solution can also be found for the case with the magnetic field force

incorporated since the magnetic field imposed is linear and the magnetic moment is

approximately constant. The total axial force in this case is shown below.

F±z =

(
Q2B∓

2B0A0ε0

)
− µ∇B± =

(
Q2B±

2B0A0ε0

)
−
mv2
⊥0

2B0

∇B± (6.13)

The perpendicular velocity is a free parameter in this equation and is set according

to the Equation 6.14.

v⊥ =

√
Q2B∗

ε0A0mα
(6.14)

Using the above perpendicular velocity and a piece-wise linear magnetic field leads

to a cancellation of the constant part of the force in Equation 6.13 and a simple

analytical solution shown below.

z± =

(
v±0
γ

)
sin(γt)±

(
B0 +B∗

α

)
cos(γt) + z±0 −

B0 +B∗

α
(6.15)

These analytical solutions can be significantly simplified by using particles with

Q = m = 1 while setting ε0 = 1 and A0 = 1. Further selecting initial conditions where

the two particles start at z±0 = ±1 with velocities in opposite directions v±0 = ∓
√

3/2

leads to the following solutions for the constant area case:

z± = ±1

4
t2 ∓

√
3

2
t± 1 (6.16)

v± = ±1

2
t∓
√

3

2
(6.17)

The varying area solution:
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z± = ∓
√

3B0

2α
sin

(√
α

2B0

t

)
∓ B0

α
cos

(√
α

2B0

t

)
±
(

1 +
B0

α

)
(6.18)

z± = ∓
√

3

2
cos

(√
α

2B0

t

)
±
√
B0

2α
sin

(√
α

2B0

t

)
(6.19)

The varying area solution with the magnetic field force:

z± = ∓
√

3B0

2α
sin

(√
α

2B0

t

)
∓ B0

α
cos

(√
α

2B0

t

)
±
(

1 +
B0

α

)
(6.20)

v± = ∓
√

3

2
cos

(√
α

2B0

t

)
±
√
B0

2α
sin

(√
α

2B0

t

)
(6.21)

In these equations the + solution is for the particle traveling through z > 0 while

the - solution is for the particle traveling through z < 0.

6.2.2 Results

The analytical solution and the simulation results for the position and velocity of

the particles is shown in Figure 6.2. The constant area (C), area variation (AV), and

area variation with magnetic field force (AVB) test cases are all shown. The constant

area shows a linear change in the velocity as expected due to the constant force while

the varying area shows a non-linear change in the velocity. The magnetic field force

included adds an additional strong repelling force which rapidly repels the particle.

The non-linear effects of the area variation are not shown as much due to the strong

magnetic field force.

The root-mean-square (RMS) error between the computed and analytical solu-

tion are summarized in Table 6.1. The error in each of these cases is small (less

124



(a) Particle position in time. (b) Particle velocity in time.

(c) Particle velocity and posi-
tion.

Figure 6.2: Two-particle motion simulation results compared to analytic solutions.
Constant area (CA), Area Varying (AV), and Area Varying with magnetic
field force (AVB) results are shown.

than a percent) verifying that the method agrees well with the analytically predicted

behavior.

The results of these simulations show that the two-dimensional effects are correctly

incorporated in the code, reproducing simple analytical solutions for two-particle mo-

tion. The particle mover, interpolation, Poisson solver, and the algorithms incorpo-

rated to capture two dimensional effects are all verified.

Table 6.1: RMS error for quasi-one-dimensional verification simulations.

Position Velocity
Simulation Position Velocity Normalized Normalized

Constant Area 2.6× 10−3 1.3× 10−3 0.23% 0.14%
Varying Area 1.0× 10−3 1.8× 10−3 0.091% 0.20%

Varying Area and Magnetic Force 3.9× 10−3 1.2× 10−2 0.12% 1.1%

125



6.3 Magnetic Mirror

Additional simulations were performed to further verify the magnetic field force

incorporation. The theory and simulations in this section do not solve Poisson’s

equation and the only two-dimensional effect considered is that of magnetic field

force.

6.3.1 Theory

Magnetic mirrors are devices where particles are generated in a magnetic field

well with increasing magnetic field strength in all directions. As magnetized particles

move from the weak to the strong magnetic field region they are acted on by a

force which repels them back into the weak field region. This repelling force can

result in the particles being reflected back into the well under certain conditions. The

theory applied in this section considers two identical magnetic mirrors adjacent to one

another with a weak magnetic field region between them. This creates a magnetic

bottle (or magnetic mirror machine) which can trap particles in the weak field region

between the two mirrors.

An analytic solution exists describing the velocity space of particles which are

trapped for a given minimum and maximum magnetic field:

v2
⊥,0

v2
‖,0 + v2

⊥,0
>

1

R
(6.22)

In this equation R = Bmax

Bmin
is the mirror ratio of the magnetic confinement device.

Particles satisfying the above condition are trapped by the magnetic field, while those

that do not are in the loss cone. The loss cone is a cone shape in velocity space which

contains particles that are not trapped by the magnetic mirror device. This cone

is defined by an angle θloss = sin−1(
√

1/R) which is relative to the field parallel

direction.
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Equation 6.22 can be rewritten in the following form:

v⊥,0 = v‖,0
√
R− 1 (6.23)

The number or fraction of particles trapped in the mirror can be found by integrating

the velocity distribution of the particles present in the mirror using the conditions

which define the loss cone. A detailed discussion of this is found in Appendix B. For

an isotropic distribution without an applied electric field the equation for the trapped

fraction, Γ, is shown below.

Γ =

√
1− 1

R
(6.24)

A solution can also be derived if a constant electric field is imposed on the particles.

The resulting relation for the trapped particles is shown below:

v⊥ >

√
v2
‖ −

2q
m

∆φ

R− 1
(6.25)

in which ∆φ is the potential drop the particles experience. Imposing an electric

field leads to a non-trivial solution for the fraction of trapped particles due to the

non-linear nature of Equation 6.25. The solution strongly depends on the velocity

distribution chosen, even if it is isotropic. The fraction of trapped particles can still

be found by integrating this distribution over the trapped particle velocity space, but

either a simple velocity distribution must be chosen or it must be done numerically

to obtain an analytical solution.

The trapped particles in the magnetic mirror will oscillate back and forth in the

device due to the magnetic field forces. An analytic expression can be derived for the

oscillation frequency of these trapped particles using Equations 4.8 and 4.9, assuming

a constant magnetic moment, and knowing the magnetic field profile. The form

of this frequency is affected by the magnetic field profile which was chosen to be
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Bz = A1z
2 + C1. The resulting frequency when no electric field is imposed is shown

below:

ωtrap =

√
2µ

m
A1 =

√
v2
⊥,0A1

B0

(6.26)

An analytical solution can also be found for the case when a potential of the

form φ = A2z
2 + C2 is imposed. The frequency for this case is shown below. If

the potential applied is confining, the oscillation frequency is increased due to the

addition of another restoring force.

ωtrap =

√
2

m
(µA1 + qA2) =

√
v2
⊥,0A1

B0

+
2q

m
A2 (6.27)

The solution for the motion of each particle in both these cases differs only by the

initial perpendicular velocity of these particles if all particles are created at the same

location at the minimum of the magnetic field strength (as is done for the simulations

in the next section). The trapped frequency of the particles implies that particles

with the same magnetic moment (µ) oscillate with the same frequency. This solution

can be used to predict when a group of particles with the same magnetic moment

(initial perpendicular velocity) will cross the center of the domain where the particles

were seeded.

6.3.2 Results

The magnetic field force effects were verified with the simulation of particles in a

magnetic mirror. Poisson’s equation was not solved in these simulation to focus on

the effects of the magnetic field force only. Therefore, these simulations study the

uncoupled single particle motion of a distribution of particles. Particles were seeded

at the center of the magnetic mirror where the magnetic field is a minimum. The

domain extends from z = ([−0.5, 0.5] and particles that reach the edge of the domain
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Table 6.2: Magnetic mirror simulation parameters.

Simulation Particles Charge Mass Temperature A1 C1 A2 C2

Case 1 104 −1 1 10−4 4 1 0 0
Case 2 (Confining) 104 −1 1 10−4 4 1 4× 10−4 0

Case 3 (Non-confining) 104 −1 1 10−4 4 1 −4× 10−4 0

Table 6.3: Number of trapped particles for magnetic mirror simulations.

Simulation Analytical Error
Case 1 7121 7071 0.7%
Case 2 2613 2601 0.5%
Case 3 9291 9302 0.1%

are removed. A grid with 100 cells is used along with a time step of 0.5 seconds.

The simulation parameters used are summarized in Table 6.2. The magnetic field

is applied according to the equation B = A1z
2 + C1 and the potential according to

φ = A2z
2 + C2.

For the parameters chosen the magnetic mirror ratio (R = Bmax/Bmin) is 2.0.

Particles are initially seeded according to a Maxwellian velocity distribution using

the temperatures shown in Table 6.2 and with a Boltzmann constant (kb) of 1.

Figure 6.3 shows the initial and final velocity space of a magnetic mirror as well

as the analytic loss cone for the cases tested. The results from this simulation show

clearly that the magnetic dipole force effects are captured and produces accurate

results.

For these simulation 104 particles were used. The analytical and simulation num-

ber of trapped particles is shown in Table 6.3. While these errors might seem un-

usually low for a PIC simulation, this is the error only from the particle pusher since

there is no solving Poisson’s equation and no weighting the charge to the grid. These

errors are not statistically averaged over a number of simulations and only represent

a single simulation. Contributions for error may come from the particle mover or the

seeding algorithms.
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(a) Case 1: Initial distribution (b) Case 1: Final distribution

(c) Case 2: Initial distribution (d) Case 2: Final distribution

(e) Case 3: Initial distribution (f) Case 3: Final distribution

Figure 6.3: Velocity phase space distributions for magnetic mirror simulations illus-
trating the capture of the analytical loss cone behavior.

A more dynamic test of the method is to compare with the analytical oscillations

derived in the previous section. The best diagnostic for examining these oscillations

is the particle v⊥ − z space. Particles with the same initial magnetic moment will

cross the z = 0 line in v⊥ − z space at the same time resulting in a high density at

that perpendicular velocity and collapse to a single point in v⊥− z space. Figures 6.4

shows the v⊥ − z space for the particles at a given time along with the analytically

predicted time when a group of particles with the same magnetic moment will return

to the center of the domain for the first time. The results agree well with the theory.

The oscillation frequency is seen to decrease for the non-confining case (Case 2) and

increase for the confining case (Case 3).
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(a) Case 1, t=60 (b) Case 1, t=100

(c) Case 2, t=60 (d) Case 2, t=100

(e) Case 3, t=60 (f) Case 3: t=100

Figure 6.4: Magnetic mirror oscillations illustrating the prediction of particles cross-
ing the center of the domain.
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6.4 Maxwellian Source in Diverging Magnetic Field

The Q1D method was also verified by comparing with two-dimensional full PIC

simulations which include solving Poisson’s equation and the particle motion. Two-

dimensional simulations were performed using XOOPIC (X11-based Object Oriented

PIC). [113] XOOPIC is a fully two-dimensional (Cartesian and cylindrical) PIC code

with electrostatic and electromagnetic field solvers. The code was initially developed

at the University of California Plasma Theory and Simulation Group. XOOPIC has

applications for solving a wide variety of plasma problems and includes features such

as Monte-Carlo collisions, device boundary conditions, implicit particle movers to

name a few. For the simulations presented herein only the electrostatic, cylindrically

symmetric solver was used.

The first of the fully two-dimensional test cases was adapted from the source-

collector sheath problem of Schwager [123] studied in the previous chapter. This

problem was made two-dimensional by including a guiding, diverging magnetic field

which directs the flow of a Maxwellian source of particles into a collector boundary.

A schematic of the two-dimensional grid used is showed in Figure 6.5. Particles are

injected at the Maxwellian source boundary and then flow through the domain toward

the collecting, dielectric boundary. A conducting boundary is necessary at the left

boundary adjacent to the inlet in order for potential solutions to be found. The

XOOPIC grid was comprised of 200 cells in the axial direction and 75 cells in the

radial direction. The length of the domain is 0.2 meters and the height 0.075 meters.

The Maxwellian source region extends for 15 cells radially at the left boundary from

r=[0,0.015] m. The Q1D grid is 200 cells and the initial inlet area is set equal to the

equivalent inlet area of the XOOPIC grid. The timestep used in both simulations is

∆t = 10−10 seconds.

The magnetic field topology used for these simulations is shown in Figure 6.6 and

6.7 for the 2D and Q1D simulations respectively. The magnetic field is created by a
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Figure 6.5: Grid for XOOPIC simulations of Maxwellian source in a diverging mag-
netic field.

Figure 6.6: Magnetic field strength contours and streamlines for XOOPIC simulations
of Maxwellian source in a diverging magnetic field.

series of 8 current loops each with a current of 1000 A and a radius of 0.075 m. The

current loops were positioned at the following axial locations: -0.04 m, -0.02 m, 0.02

m, 0.04 m, 0.36 m, 0.38 m, 0.42 m, and 0.44 m.

The properties of the Maxwellian source (nion, ne, Ti, Te, etc) were varied to test

and compare a variety of conditions and determine the regimes in which the Q1D

model is valid. The magnitude of magnetic field strength was also varied and the

entire domain shrunk. A table of all the tested conditions is give in Appendix C.

There will be two cases in particular which are highlighted. The source parameters
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Figure 6.7: Magnetic field for Q1D simulations of Maxwellian source in a diverging
magnetic field.

for these cases are: ni = ne = 1015 #/m3 and Te = 5 eV . The ions have the same

mass as hydrogen and the only difference between these cases is the ion temperature

which is Ti = 300 K and Ti = 5 eV . They will be referred to as the cold ion (CI) and

hot ion (HI) cases from here on.

This section is divided into multiple sub-sections discussing different facets of

this problem. First, the effects of the Q1D model compared to a 1D model will be

presented. Then the XOOPIC results will be presented. The Q1D and XOOPIC

results will then be compared. Finally a discussion of the difference between the

models will be presented.

6.4.1 Quasi-one-dimensional effects

The effects of the Q1D model was first compared with purely one-dimensional

simulations. Simulation were performed with the one dimensional code (1D), a code

with only area variation effects and no magnetic field force (NBF), a code with no

magnetic field force on the ions (IDM), and then full Q1D simulations (Full). The case

with no magnetic field force on the ions would be equivalent to a simulation where

the ions are demagnetized do not feel the magnetic field force, but are still bound to
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(a) Electron density (b) Ion density

(c) Ion mean velocity

Figure 6.8: Results for the cold ion case illustrating the effects of the Q1D solver.

the magnetic field lines through the electrons. The results of these simulations are

shown in Figure 6.8 for the CI case and in Figure 6.9 for the HI case.

Figure 6.8 shows the electron density, ion density, and mean ion velocity. The

electron and ion density profiles show very different results between the 1D and Q1D

simulations. After the source sheath the 1D simulations maintains a constant density

until the collector sheath. The Q1D simulations all show a decreasing density as the

plasma expands, as expected. This density decrease is captured by the inclusion of

the area variation which is in NBF, IDM, and the Full simulation.

The ion velocity results shows distinct differences between the 1D and Q1D simu-

lations as well. The 1D case shows acceleration occurring due to the sheaths, but no
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acceleration between them. Inclusion of area effects in NBF does not show additional

acceleration. The difference in ion velocity compared to the 1D case occurs due to the

slightly longer sheath which forms due to the lower density (increase in λD). Inclusion

of the magnetic field forces on the electrons in the IDM and Full simulations show

additional ion acceleration after the source sheath. This acceleration occurs even in

the IDM case where the magnetic field force directly on the ions is ignored.

The magnetic field forces on the ions is unimportant in this case because the ions

are cold. The energy in the ions which can be directed along the axis is small compared

to the electron energy. The highly energetic electrons are rapidly accelerated by the

diverging magnetic field. The resulting charge imbalance sets up an electric field

which draws the ions out with the electrons. This ambipolar force is much greater

than the magnetic field force on the cold ions.

Figure 6.9 contains the results for the HI test case. Similar trends are seen for the

electron and ion densities where the inclusion of the area variation captures most of

the effects with the density decrease. However, a difference is also seen between the

NBF, IDM, and Full simulations. This difference was also present in the CI test cases

but was not as prevalent. The reason for this difference is best described from the

standpoint of the mean ion velocity. It is clear that each one of the simulations has

a different results for the velocity. The NBF source just shows a slightly extended

sheath. The IDM case captures additional acceleration, but does include the effects

of the ion forces. Finally the Full simulation captures the full acceleration of the ions

due to the magnetic field forces. The reason for the density differences stems from

these velocity differences and the need for mass flux to be conserved. As the velocities

are increased, the density must decrease, which now shows up in the densities for the

different methods. This did not show up in the CI case because the velocities for

the NBF and the IDM cases were the same. Inclusion of the ion magnetic field force

in this case is important because now the amount of energy in the ions themselves
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(a) Electron density (b) Ion density

(c) Ion mean velocity

Figure 6.9: Results for hot ion case illustrating the effects of the Q1D solver.
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which can be directed along the axis is the same as the electron energy. In this case

the ambipolar force between the electrons and the magnetic field force on the ions

are both essential for capturing the ion acceleration.

6.4.2 Comparison between Q1D and XOOPIC Results

The results from the XOOPIC simulations of the CI and HI cases are shown in

Figure 6.10. The electron density, ion density, and potential are shown on contour

plots of the domain. These results show how the parameters vary radially over the

plasma cross section. The CI case shows that both the electrons and ions are well

confined by the magnetic field lines. The HI case still shows a bulk of the ions trapped

by the magnetic field, but also shows a more divergent density profile. The divergent

profile occurs due to the higher energy of the ions making them more difficult to

confine by the magnetic field. The potential also show an interesting structure. Sharp

decreases in the potential are seen at the inlet boundary, but a continued potential

drop is seen as the plasma expands.

The results from the Q1D and XOOPIC simulations for the CI case are compared

in Figure 6.11 In these Figures an additional XOOPIC simulation was performed with

a stronger magnetic field (XOOPIC (S)) to check that the Q1D results approach the

XOOPIC results in the strong magnetic field limit. Note that additional Q1D simula-

tions did not have to be performed because these simulations are independent of the

magnetic field strength, they depend only on the magnetic field topology. XOOPIC

simulation results are averaged radially over the plasma cross-section (defined by the

location of the electrons) so that they can be compared with the Q1D simulations

The results from Figure 6.11 show that in general the Q1D and the XOOPIC

results agree well with one another qualitatively. The ion density and velocity plots

also show that increasing the magnetic field strength in the XOOPIC simulations

causes the Q1D results to agree more closely with the XOOPIC simulations. Both
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(a) CI: Electron density contours (#/m3) (b) HI: Electron density contours (#/m3)

(c) CI: Ion density contours (#/m3) (d) HI: Ion density contours (#/m3)

(e) CI: Potential contours (V ) (f) HI: Potential contours (V )

Figure 6.10: XOOPIC simulation results for Maxwellian source in a diverging mag-
netic field.
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(a) Electron density (b) Ion density

(c) Ion mean velocity

Figure 6.11: Comparison of CI results for Maxwellian source in a diverging magnetic
field.
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codes shows a rapid decrease in density due to the sheath, followed by further decrease

due to the magnetic field guided expansion. The ion velocity results agree well also,

showing an initial acceleration due to the source sheath, followed by an continued

ambipolar acceleration. The major differences in the ion velocity are caused by the

two codes treating the source sheath differently. After the source sheath region the two

code results begin to approach another more closely. This difference is most likely

due to the 2D structures in the sheath region which are evident in the XOOPIC

contour plots. The stronger magnetic field simulations with XOOPIC also shows

closer agreement with the Q1D simulations, as expected.

The results from the Q1D and XOOPIC simulations for the HI case are compared

in Figure 6.12. Here no strong magnetic test case was simulated. The Q1D ion and

electron density profiles again show good agreement with the XOOPIC results in

Figure 6.12. The Q1D code captures the initial density decrease due to the sheath

as well as the continued expansion along the magnetic field. The ion velocity also

shows good agreement capturing the sheath acceleration as well as the continued

acceleration of the ions due to the combined ambipolar effects and the magnetic field

forces.

This sub-section showed that there is good qualitative agreement between the

Q1D and XOOPIC results. The ion and electron densities demonstrate very similar

behavior between the two simulations. The ions velocity results show the ability of

the Q1D code to capture the 2D effects associated with the magnetic field forces as

well as the ambipolar acceleration without having to perform a fully-2D simulation

which is more computationally expensive.

The capturing of 2D effects by the Q1D model is an important result because

while XOOPIC was able to simulate the problems presented in this section, scaling

up to the higher densities and the larger domains required to simulate magnetic nozzle

devices becomes extremely cost prohibitive. The Q1D method alleviates these costs by
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(a) Electron density (b) Ion density

(c) Ion mean velocity

Figure 6.12: Comparison of HI results for Maxwellian source in a diverging magnetic
field.
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significantly reducing the number of cells (no resolving the radial dimension) thereby

also reducing the total number of particles needed. The number of particles is reduced

because each cell requires a minimum number of particles to avoid random noise and

produce statistically significant results. For the simulations in this section the total

number of particles required in the Q1D simulations is reduced by a factor of 75 to

reproduce the XOOPIC simulations with similar statistical noise. The Q1D method is

enabling for modeling higher density plasmas by simplifying the problem and reducing

computational costs. Quantitative comparisons and a rigorous discussion of errors is

presented in Section 7.6.1.

6.5 Particle Source in Converging-Diverging Magnetic Field

An additional two dimensional test case was performed in XOOPIC to compare

with the Q1D method. This simulation was performed by seeding particles according

to a Maxwellian source in the center of a domain with a converging-diverging magnetic

field. The grid used for the XOOPIC simulations is shown in Figure 6.13. For the

test cases presented in this section, the domain is 0.1 meters in the axial direction

and 0.05 meters in the radial direction. The axial direction used 100 cells while

the radial direction used 50 cells. Particles are seeded at the center of the domain

according to a Maxwellian particle source which extends from z = [0.049, 0.051] and

r = [0.0, 0.02]. Symmetry boundary conditions are applied on the cylindrical axis,

equipotential conductor boundaries at the left and right boundary, and exit port

boundary conditions at the radial boundary.

The magnetic field topology used in the XOOPIC simulations is shown in Figure

6.14. The magnetic fields are produced by four current loops each with a current of

I = 103 A and radius of 0.025 m. The positions of the current loops are: -0.03 m,

0.03 m, 0.07 m, 0.13 m. The equivalent magnetic field in the Q1D model is shown in

Figure 6.15.
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Figure 6.13: Grid for XOOPIC simulations of a particle source in a converging-
diverging magnetic field.

Figure 6.14: Contours of magnetic field strength (T ) and magnetic field lines for
XOOPIC simulations of a particle source in a converging-diverging mag-
netic field.
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Figure 6.15: Magnetic field for Q1D simulations of a particle source in a converging-
diverging magnetic field.

A number of different simulations were performed with this setup by varying the

characteristics of the plasma source. A summary of all the parameters tested can

be found in Appendix D. The parameters varied include the flux rate of particles,

the mass of the ions, and the temperatures of both species. This enables control

of parameters which can test the validity of this Q1D model, such as the ion and

electron Larmor radii. Two cases in particular will be highlighted here. These cases

have a source rate of 1020 #/(m3s) and electron temperatures of Te = 5 eV . The

only parameter varied is the ion temperature which is Ti = 300 K for the cold ion

case (CI) and Ti = 5 eV for the hot ion case (HI).

6.5.1 XOOPIC Results

The XOOPIC results for the CI simulation are shown in Figure 6.16. The electron

and ion density contours are shown. The electrons are well confined by the magnetic

field while the ions show some losses occurring near the center of the domain. Ions

with large radial velocities can be lost because the magnetic forces are not enough

to confine them in the radial direction. These losses are especially prevalent at the

center of the domain, where the magnetic field is monotonically decreasing in the
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(a) Electron Density Contours (#/m3) (b) Ion Density Contours (#/m3)

Figure 6.16: XOOPIC results for particle source simulation with cold ions.

(a) Electron density contours (#/m3). (b) Electron density contours (#/m3) for
stronger magnetic field.

(c) Ion density contours (#/m3) (d) Ion density contours (#/m3) for
stronger magnetic field.

Figure 6.17: XOOPIC results for particle source simulation with hot ions.

radial direction. Ions with large radial velocities will have large Larmor radii and will

move into regions of lower magnetic field (decreases radially).

The HI results are shown in Figure 6.17. Two simulations were performed here,

one with the default magnetic field and one with a magnetic field that was ten times

stronger. The electrons are well confined in both, however the weaker field simulations

has slightly lower densities and shows more variation in the radial direction. The ions

densities show very different results with the strong field simulation showing much

more confinement of the plasma. The weaker field simulation still shows a majority

of the ions are confined, but a significant portion of ions are no longer confined to the

field lines.
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These XOOPIC simulations will be compared with the Q1D simulations by taking

radial averages of the XOOPIC data. The average is taken of the region where the

plasma is present, which has been defined as the cells in which electrons are present.

6.5.2 Comparison between Q1D and XOOPIC simulations

The comparison of the Q1D results with those of the plasma cross-section averaged

XOOPIC results for the CI case is shown in Figure 6.18. The results for the electron

and ion densities show good agreement near the center of the domain. The results

start to differ more after the converging section. Part of the reason for this difference

may come from the lack of particles in the region for the XOOPIC simulations. The

XOOPIC result clearly shows some noise which occurs because some of the cells

have few, if any particles in them. An inherent difficulty with the 2D simulation

compared to the Q1D simulation is highlighted here: 2D simulations need many

more particles to eliminate noise and this is particularly challenging for a simulation

where the density varies by three orders of magnitude. More particles leads to cascade

of greater simulation costs and limits the 2D solver to studying low density plasmas.

The results for the mean ion velocity show good agreement. The ions are slightly

accelerated in the converging section, and then are rapidly accelerated in the diverging

section. The results obtained with the XOOPIC and the Q1D codes show the same

behavior and the ion velocities are very near one another.

Results from the HI case are shown in Figure 6.19. In these simulations the Q1D

and XOOPIC simulation results for the ion and electron density show a much more

significant difference for the default magnetic field strength simulations. Increasing

the magnetic field strength causes the simulations to agree much more closely with

one another. Differences are still seen in the expansion region where few particles

are present in the XOOPIC simulations. The ion velocity results however still show

good agreement between the Q1D and XOOPIC results even for the default magnetic
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(a) Electron density (b) Ion density

(c) Ion mean velocity

Figure 6.18: Comparison Q1D and XOOPIC cold ion results.
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(a) Electron density (b) Ion density

(c) Ion mean velocity

Figure 6.19: Comparison Q1D and XOOPIC hot ion results.

field strength case. The HI case also shows greater ion acceleration compared to the

CI case. The ions accelerate more rapidly in the expansion region and have a higher

final velocity.

Overall these simulations have demonstrated that the Q1D code qualitatively

captures the two dimensional effects in a fully two-dimensional simulations. A quan-

titative comparison is made in the next section to determine in which regimes the

Q1D simulations reproduce the 1D simulation results.
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6.6 Discussion of Diverging Magnetic Field and Source Sim-

ulations

In this section a quantitative comparison of the errors between the XOOPIC and

Q1D simulations is made for both the diverging magnetic field and the converging-

diverging particle source test problems. All the test cases studied are outlined in

Appendix C and Appendix D. The simulation parameters were varied so that the

limits of accuracy for the Q1D model could be tested. The Q1D method was derived

by assuming the particles were magnetized, this is tested here by varying the magnetic

field strength and particle energies. As the magnetic field strength is decreased the

Q1D assumptions should fail. Increasing the particle energies also increases the inertia

of the particles making it less likely for the particles to remain magnetized at a given

magnetic field strength. Therefore it is expected that as the energy is increased the

Q1D assumptions should begin to fail and the error should increase.

The error shown in this section is found by finding the root mean square error

between the Q1D and XOOPIC simulation results for the ion density, electron density,

and ion velocity. This error is normalized to the maximum value to give a percent

error to be compared across the different simulations.

Scaling of the error with characteristic parameters was performed to see which

parameters serve as the best metric to evaluate the validity and/or accuracy of the

Q1D model for a problem. The parameters include the ion Larmor raduis, electron

Larmor radius, and plasma beta, to name a few. The parameters which showed the

best scaling were an inertial Larmor radius (rL,inertial) and the hybrid Larmor radius

(rl,H) defined in Equations 6.28 and 6.29.

rL,inertial = rL,e + rL,i
vi
ve

(6.28)
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rL,H =
√
rL,erL,i (6.29)

Both these Larmor radii are derived by treating the ions and electrons as a two-

particle system and comparing the inertia of this system with the confining force of

the magnetic field. They are both derived in the magnetic nozzle theory section in

Equations 3.20 and 3.22.

6.6.1 Source in a Diverging Magnetic Field

The results for the diverging magnetic field simulations are shown in Figure 6.20.

Error scaling for the ion density, electron density, and mean ion velocity are shown

with respect to the inertial and hybrid Larmor radii which were normalized by the

gradient magnetic field length scale (LB = |B|/|∇B|). The x-axis of the charts is on

a logarithmic scale so the broad range of parameters can be seen. The density errors

are shown for all the test cases. Velocity errors are only shown for test cases which

had the same ratio of electron to ion temperatures, which is the driving parameter

for the sheath characteristics. Comparing velocity errors across simulations with

different temperature ratios was inconclusive due to the overwhelming importance

of the sheath on the velocity. Differences in how the codes captured these sheaths

overwhelmed any other velocity errors.

Over all simulations the source parameters were selected so that the ratio of the

Debye length to the domain length was the same. This is necessary so that the

source sheath remains small compared to the domain. This is achieved by keeping

the ratio of the source density and the electron temperature the same. Simulations

were also performed with a domain one tenth the size to test that the non-dimensional

properties hold at a different length scale. To keep this simulation consistent with the

larger simulations the ratio of Debye length to the system dimension had to be kept

the same. For a domain 1/10th the size the Maxwellian source density was increased
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(a) Density Errors for Inertial Larmor Ra-
dius

(b) Density Errors for Hybrid Larmor Ra-
dius

(c) Velocity errors for Inertial Larmor ra-
dius

(d) Velocity for Hybrid Larmor Radius vari-
ation

Figure 6.20: Scaling of errors for Maxwellian source in a diverging magnetic field.

by a factor of 100 to keep the simulations consistent.

The scaling of the error with the Larmor radii shows a trend of increasing error

as both the inertial and hybrid are increased. The error in the ion density stays

approximately below 10% for inertial Larmor radii less than 10−2 and below 20%

for inertial Larmor radii less than 10−1. Similarly, the electron density error stays

approximately below 5% for inertial Larmor radii less than 10−2 and below 10% for

inertial Larmor radii less than 10−1. The electron error is generally less because they

are more well confined than the ions, both show the same trends with the inertial

radius. The ion velocity also shows a general trend of increasing error with the
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(a) Density errors with inertial Larmor
radius

(b) Density errors with hybrid Larmor ra-
dius

Figure 6.21: Scaling of errors for particle source in a converging-diverging magnetic
field simulations.

inertial Larmor radius. These errors remain fairly low because the source sheath is

the dominating feature affecting the ion velocity and this does not change significantly

between simulations by design. Changing the magnetic field also does not significantly

alter the sheath structure near the inlet.

The error in the ion density stays approximately below 10% for hybrid Larmor

radii less than 3 × 10−2 Similarly, the electron density error stays approximately

below 5% for inertial Larmor radii less than 3 × 10−2. Similar trends of increasing

ion velocity error are seen in the case of the hybrid radius with the error increasing

as the hybrid Larmor radius increases.

6.6.2 Particle Source in a Converging-Diverging Field

Results from the error analysis for the particle source in a converging-diverging

magnetic field is shown in Figure 6.21. The density errors are shown scaling with the

inertial and hybrid Larmor radii.

Figure 6.21 shows a trend of increasing error as both the inertial and hybrid

Larmor radius is increased. The inertial radius scaling shows that an error of less

than 10% is achieved for rLinertial ≤ 2 × 10−3 and an error of less than 20% for

153



rLinertial ≤ 10−2. Hybrid Larmor radius scaling shows a error of less than 10% for

rLH
≤ 7×10−3 and an error less than 20% for rLH

≤ 2×10−2. After the error reaches

20% the errors begin to rapidly increase.

In these simulations the ion and electron densities scale with one another, contrary

to the source in the diverging field where the ions showed a larger error. The reason for

this may be that there is no sheath present in these simulations which immediately

puts a lot of energy into the ions. The high ion energies imply that they have a

lot of inertia, which makes them more difficult to confine. For the plasma source

simulations there is no sheath, resulting in the ions maintaining a low energy until

they are accelerated due to the ambipolar and magnetic field forces.

6.6.3 Discussion

The error analysis comparing with XOOPIC results yields two important results:

1. The Q1D model reproduces two-dimensional results in the correct regimes.

2. The error between the Q1D model and the 2D results scales with intuitive pa-

rameters based on the non-dimensional Larmor radii of the constituent species.

These results are significant because they show that the Q1D model works as an

approximation for the 2D plasma physics within the right regimes and that it consis-

tently scales with physically relevant parameters.

Some important points must be made however. The length scales used in this

analysis were non-dimensionalized by the gradient magnetic field length scale, which

is the most physically relevant for determining if quasi-1D assumptions hold for a

collisionless, boundary-less plasma. However, in other problems more relevant length

scales may be the system dimensions or mean free path. The assumption of magneti-

zation may no longer be valid if particles are colliding frequently with other particles

or the device boundaries. For example, ion Larmor radii can readily be larger than
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the device boundaries, while electrons may undergo frequent collisions. These regimes

however does not preclude the use of the Q1D model. Instead different variants of

the solver (e.g. with and without magnetic field forces on ions) can be compared with

experimental results to determine the best suited variant of the model.

The motivation for the development of the Q1D model is to enable the simulation

of two-dimensional effects in a magnetic field guided plasma expansion without the

inherent computational costs of a fully two-dimensional system. For particle simu-

lations cost is tied directly to the number of particles required in a simulation. PIC

code computational costs typical scale as Nlog(N) where N is the number of par-

ticles used. The required number of particles is set by the number of cells in the

simulation and is chosen such that the noise is reduced and a statistically significant

number of particles is used. Two-dimensional simulations have more cells because

they resolve an additional dimension and therefore require more particles. For in-

stance, the two-dimensional simulations in this chapter typically have 50 to 75 cells

in the radial direction, which implies that 50 to 75 times as many particles should

be used resulting in a cost increase. This cost increase factor can be quantified as

(IRN log(IRN)/N log(N)) where IR is the number of cells in the radial direction.

This can be simplified to just IR in the case of simulations with a large number of

particles.

The Q1D method removes the IR factor cost increase. The additional operations

in the Q1D method due to the magnetic field forces and area variation only slightly

change the overall computational cost compared to a one dimensional simulation. In

fact, the overall cost should be comparable to a one-dimensional code which includes

the Boris magnetic field push because the Q1D algorithms have effectively replaced

this step.

A direct comparison of compute times was not made because the only fair compar-

ison would be between identical codes. The code developed for this work is currently
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not nearly as efficient as the much more mature XPDP1 and XOOPIC codes. Cur-

sory comparisons were made, which show the Q1D method implemented in the code

developed for this work being approximately an order of magnitude faster for some of

the serial, 2D XOOPIC simulations performed in this chapter. The code developed

herein however does have the additional advantage of being fully parallelized with

MPI instead of only using shared memory machines. This is particularly important

for large simulations.
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CHAPTER VII

Test Problem

7.1 Introduction

Previous kinetic studies of magnetic nozzles have focused on simulations with

one-dimensional PIC codes.[51, 54] Kinetic simulation of magnetic nozzles is difficult

because it is an inherently multi-dimensional problem. Simulation with higher dimen-

sions becomes prohibitively expensive for the already computationally taxing problem

of simulating a plasma kinetically. The one-dimensional simulations of Meige [51] and

Baalrud[54] investigated the conditions which lead to the formation of a double layer

in a configuration similar to the HDLT. [3] The expansion process was mimicked by

including a loss frequency for removing particles from the simulation over a portion

of the domain. Formation of double layers was found to be dependent on this loss

frequency, with double layers appearing for sufficiently high loss frequencies. The de-

pendence on loss frequency implies that double layers form when the plasma rapidly

expands. These simulations also showed the formation of an accelerated ion beam

due to this potential structure. Meige and Baalrud both acknowledge the limitations

of this model and suggest future work which includes the effects of the magnetic field

to better capture of the plume expansion. The work presented herein further inves-

tigates this problem by modeling the two dimensional effects of the magnetic nozzle

on the plasma. This work addresses the need for a more robust simulation which
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includes two-dimensional effects without prohibitively increasing the computational

cost. This chapter presents results from the magnetic nozzle test problem simulations

while the next chapter will delve in more detail into the physics.

7.2 Simulation Parameters

Simulation parameters for the magnetic nozzle test problem are chosen to compare

with previous one-dimensional simulations by Meige[51] and Baalrud[54] in regimes of

operation similar to the HDLT.[3] The goal of these simulations is to further study this

problem by including the two-dimensional effects without assuming a loss frequency

for the particles. The simulation domain consists of a heating region from x =

[0.0, 0.05] m which is followed by an expansion region from x = [0.05, 0.1] m. The left

boundary is a floating collector while the right boundary is grounded. The simulation

parameters are shown in Table 7.1.

Table 7.1: Parameters for magnetic nozzle test problem simulations.

Parameter Value
Length 10 cm

Grid Cells 250
Time Step 5× 10−11 s
Total Time 25 µs

Heating Current 100 A/m2

Heating Frequency 10 MHz
Macroparticle Weight 2× 108 Particles/Macroparticle

Neutral Pressure 1.23 mTorr
Neutral Temperature 293 K

Gas Argon
Magnetic Field (B0) 300 G

The effects of the cross-sectional area variation and the magnetic field forces on

the simulation results were investigated individually and collectively. The effects of

ion magnetization were also investigated by including or neglecting the magnetic field

forces on the ions. The magnetic field is constant in the heating region and then
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Figure 7.1: Magnetic field topologies used in test problem simulations.

decreases in the expansion region. The magnetic field profile along the axis is chosen

to take a form similar to that for the magnetic field along the centerline of a current

loop. [54] Equation 7.1 shows this relation.

Bz =
B0(

1 + (z−0.05)2

C2

)3/2
(7.1)

The constant C in this equation is varied to change how rapidly the magnetic field

diverges. Figure 7.1 shows the magnetic field topologies tested in these simulations.

The one dimensional simulation includes no magnetic field expansion (B(z) = B0)

while B3 is the strongest expansion. The C values for Cases B1,B2, and B3 are 0.04,

0.02, and 0.01 respectively.

The influence of the two-dimensional effects was first investigated by adding two-

dimensional effects to the Meige and Baalrud simulations. The parameter space was

then further investigated by varying the profile of the magnetic field topology, the

background neutral density profile, the gas used, and the length of the heating region.
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7.3 Quasi-One-Dimensional Effects

Four different types of simulations were performed adding various of the Q1D

effects. The first simulation was purely one dimensional (1D) and includes no 2D

effects. The second simulation type (AR) investigated the effects of varying the cross-

sectional area. The third simulation is the full quasi-1D simulation (Q1D) including

both the area variation and magnetic field forces. The final simulation type (NoIon)

includes the effects of the cross-sectional area variation and only includes magnetic

field forces on the electrons corresponding to a condition in which the ions are not

magnetized but still follow the field lines. The results shown for all simulations were

averaged over the last heating cycle. The results of these different simulation types is

shown in Figure 7.2 and will be discussed in detail. The electron density, ion density,

potential, and ion axial velocity are shown.

One-Dimensional Simulation (1D)

The 1D simulation corresponds to the case where the magnetic field is constant,

resulting in no two-dimensional effects in the quasi-1D model. Simulation parameters

for this case are similar to the case presented by Meige for a discharge with zero loss

frequency and a background neutral pressure of Pneut = 1 mTorr.[51] The simulation

results of this paper and those of Meige show similar behavior, although they are not

identical due to the slightly different neutral pressure used, differences in collision

cross-section data, and the difference in the heating scheme. In our simulations the

ion current is also included in calculating the plasma conduction current (Jcond).

These results show the formation of a sheath at the left floating boundary as well

as a sheath at the right grounded boundary. The density is nearly uniform through

the rest of the domain. A source sheath is not seen at the edge of the heating region

because charged particles are created not only in the heating region, but throughout

the domain due to electron-neutral ionization collisions of heated electrons from the
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(a) Electron density (b) Ion density

(c) Potential (d) Mean ion velocity

Figure 7.2: Illustration of quasi-1D effects in magnetic nozzle simulations.

heating region. The mean free path for ionization collisions is long enough so that

ionization is not confined to areas close to the heating region. This is an important

phenomenon which effectively stretches the source region beyond where heating occurs

and eliminates the source sheath. The creation of particles outside the heating region

inhibits the formation of the potential structures which may occur due to the rapid

thermal expansion of electrons from a finite source.

The electron temperature in these simulations is found to be around 4.3 eV and

increases near the edges of the domain. The temperature in the ŷ-direction is slightly

higher than the other directions due to the heating in this direction.

Area Ratio Effects (AR)
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This simulation type only included the effects of the cross-sectional area variation

on the jet expansion. These simulations capture the decreases in density that occur

due to the plasma expanding along the magnetic field lines. Both the electron (a) and

the argon ion (b) densities decrease as the plasma expands. The plasma potential (c)

is not significantly affected by the expansion region. A slight decrease in the overall

potential is seen and no rapid potential drops similar to a double layer are present

at the beginning of the expansion. An extended sheath region is seen at the right

boundary which is due to the decrease in density and the resulting increase in Debye

length. The ion mean velocities also do not change significantly showing only a slight

acceleration due to the extended sheath region.

These results indicate that the effects of the density decrease resulting from

the plasma expansion do not by themselves result in the formation of sharp, ion-

accelerating potential structures in the Q1D formulation. A reason for the lack of

acceleration is that the variation of density alone does not have a mechanism which

would drive the plasma to establish these structures. As illustrated in Case 1, no

source sheath is established at the edge of the heating region because the collisions of

the electrons with the background neutrals throughout the domain generates plasma

outside the heating region. These collisions effectively stretch the source region be-

yond where the plasma is heated into the expansion region. The decrease of the

electron and ion densities in the expansion region does not affect this source stretch-

ing behavior because the collisionality of the ions and electrons with the background

neutrals is not a function of the ion or electron densities. The collision frequency of

the particles is given by ν = nneutσvrel in which nneut is the background density, σ is

the collision cross-section, and vrel is the relative velocity of the particles. The neu-

tral density is constant in the domain and neither the collision cross-section nor the

relative velocity are a function of the plasma density. Simulations presented later in

this section investigate varying the neutral background pressure and neutral density,
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which affect the region over which plasma is generated.

Full Quasi-1D Simulation (Q1D)

Test cases with both the area variation and the magnetic field force were simulated.

Electron (a) and ion (b) densities show the characteristics a drop in density due to a

combination of the cross-sectional area variation and magnetic field force acceleration.

The potential (c) undergoes a rapid drop as the plasma expands and a lengthened

sheath is seen at the right boundary due to the decreased plasma density and increased

Debye length. The mean ion velocity (d) rapidly increases as the plasma expands.

The acceleration of the ions does not continue through the entire potential drop due

to a balance between the accelerating potential and the collisions with the neutral

background.

The effects of the magnetic field force on the plasma lead to the formation of

a potential structure which accelerates the ions. The magnetic field force rapidly

accelerates the electrons outwards ahead of the ions. The magnetized ions are also

accelerated by the magnetic field forces, but the magnitude of this force is much less

for the cold ions. This is due to the fact that the magnetic field forces are a function

of the perpendicular velocity (v⊥) which is much smaller for the ions. Therefore, the

ions lag behind the electrons, leading to the formation of the potential structure that

also accelerates the ions. This hypothesis is further investigated in the final set of

simulations which remove the magnetic force effects on the ions while still including

the magnetic field forces on the electrons.

Full Simulation with Demagnetized Ions (NoIon)

Finally simulations were performed with the effects of the magnetic field forces

on the ions neglected while including the cross-sectional area variation effects and

the electron magnetic field forces. This simulates conditions in which the ions would

be demagnetized, but still, on average, follow the magnetic field lines. The results
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of these simulations is shown in Figure 7.2. These plots show that the results are

very similar to the results of the full simulation which includes the ion magnetic

field forces. This suggests that the effects of the magnetic field forces on the ions

is negligible for these conditions with cold ions in comparison to the other forces.

Therefore, these simulation results validate the arguments that the ion acceleration

is not caused directly by the magnetic field forces on the ions. The ion acceleration

is instead caused by potential structure which establishes as a result of the magnetic

field forces on the electrons.

Electron Temperature and Velocity Distribution

The electron temperatures in the simulations show interesting behavior as Q1D

effects are included. Temperatures are calculated using the formula shown below and

represent the mean random energy of the particles.

Ti =
m

kb

∑j=N
0 (vi,j − ui)2

N
(7.2)

In this equation N is the number of particles, the i index the direction, j the particle

index, and u the mean velocity.

Figure 7.3 shows how the electron temperature in the domain varies as Q1D

effects are included. The temperature remains nearly constant in the domain (except

near the sheaths) for the 1D and AR simulations. Once the magnetic field forces

are incorporated sharp peaks in the temperature appear at the edges of the heating

region.

Further insight is gained by examining the electron distribution function for the

full Q1D simulations. Plots of the electron velocity distribution for the axial direction

at t = 5×10−5 seconds are shown in Figure 7.4 and are not averaged over an RF cycle.

The distribution functions are plotted on an a log scale with respect to the kinetic

energy in that direction. On this type of plot a Maxwellian distribution will appear
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Figure 7.3: Temperatures in the quasi-one-dimensional simulations with inclusion of
Q1D effects.

as a straight line with a slope equal to the inverse of a Maxwellian temperature. The

simulation results also have two lines, one for each side of the velocity distribution

function. Use of the energy leads to a positive value for both and makes comparison

with the Maxwellian distribution easy.

Figure 7.4 shows the electron axial velocity distributions at three locations as

well as the slopes for some Maxwellian distributions. Velocity distributions are not

averaged over an RF cycle. The distribution at (a) in the heating region shows

characteristics of a bi-Maxwellian. Low energy particles have the characteristics of

Maxwellian distribution at Te = 2 eV while the high energy particles have the char-

acteristics of a distribution at Te = 5 eV . This multi temperature plasma in a source

is not uncharacteristic of RF discharges as was shown in earlier simulations of voltage

and current driven discharges. At the center of the domain (b) the distribution is

primarily characteristic of a T = 5 eV Maxwellian. Here the distribution has settled

to a single temperature before the electrons begin the expansion. In the expansion re-

gion (c) the distribution changes significantly, appearing to be non-Maxwellian. The
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(a) Center of heating region(z = 2.5 cm) (b) Center of domain(z = 5 cm)

(c) Center of expansion region(z = 7.5
cm)

Figure 7.4: Axial velocity distribution function variation in space. Simulation results
have two lines, one for each side of the distribution.

distribution may be slightly bi-Maxwellian, in this case with the low energy particles

appearing to be characteristic of a distribution at T = 5 eV and the high energy par-

ticles as a T = 1.5 eV Maxwellian. This reversal of Maxwellian compared to heating

region may be a reflection of the effects of the potential structure on the distribution

function. This decrease in temperature occurs as the plasma expands and electron

energy is passed to the ions.

The results in this section illustrate the needs for a kinetic description of this prob-

lem through the appearance of bi-Maxwellian distributions or even non-Maxwellian

distributions. Distributions in the other directions are not shown for this particu-

lar case because the behavior is approximately the same. The electron distribution
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functions are slightly different in the heating direction since these are not averaged

results, but the behavior remains the same due to the collisions.

Discussion

Previous simulations have investigated ion accelerating potential structures by

using one-dimensional PIC codes and a loss frequency in the expansion region of

the domain. [51, 54] Those simulations showed similar results to those found in

this thesis, but with a very different model to examine the expansion region. The

loss frequency method was implemented in a way similar to a collision frequency

and removed particles from the domain to mimic the density decrease as the plasma

expands. These simulations showed that a sharp drop in potential similar to a double

layer occurs when the loss frequency of particles is large enough. This double layer

then accelerates the ions.

Based on those results, it was hypothesized that including the effects of the density

variation (cross-section variation) in the plasma expansion using the quasi-1D model

of this thesis would produce similar results. However, the results of the previous

section suggest that the density variation due to the expansion does not result in

the formation of any ion accelerating potential structures and that instead these

structures form due to the magnetic field forces which act on the electrons. The

magnetic field forces accelerate both the electrons and ions along the field line. The

high energy electrons are more greatly affected by the accelerating magnetic field

forces which are a function of v2
⊥. The ions have much lower perpendicular velocity

which results in a much weaker accelerating force. Rapid acceleration of the electrons

relative to the ions leads to the formation of a potential structure that accelerates

the ions to keep up with the electrons. Ion acceleration is governed by the potential

structure established by the magnetic field force driven electron acceleration. This

mechanism is further confirmed by the simulations which remove the effects of the
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magnetic field force on the ions which still show acceleration of the ions due to the

formation of a potential structure.

These results suggest that the effects of the density on the expansion alone are

not sufficient to establish these potential structures, which may seem contrary to the

previous results in literature. As pointed out by Baalrud, the loss frequency method

has an inherent bias for removing slow particles from the domain more frequently.

[54] Slow particles are in the domain longer, so there is a higher probability that they

are removed for an isotropic loss frequency. Preferential removal of slow particles in

the domain then leads to a higher than expected ratio of high energy particles to low

energy particles. Furthermore, the ions are much slower than the electrons, implying

that on average the slow ions are more likely to be removed than the fast electrons

leading to a higher density of electrons than expected. The higher ratio of energetic,

negatively charged particles may result in the formation of a potential structure which

accelerates the slow, positively charged ions. A possible way to test this theory would

be to add a weighting factor to the loss frequency.

7.4 Varying Heating Region Length

The heating profile used in the simulation was varied to illustrate the effects on the

plasma properties, particularly the electron temperature. In the original simulations

the heating region stretched from x = 0 to x = 0.05. An additional simulation was

performed with a shorter heating region which from x = 0.015 to x = 0.035. The

results from the shorter region are labeled with a J in the plots comparing with the

full Q1D simulations shown in Figure 7.5.

Results from Figure 7.5 show that there are differences in the results due to the

heating region length, although the qualitative behavior stays the same. The ion

density, potential, and ion axial velocity all show the same structure in the two

simulations. The longer region has a higher potential in the heating region and
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(a) Ion density (b) Potential

(c) Mean ion velocity

Figure 7.5: Illustration of effects of varying heating region length. Normal heating
region (Q1D), short heating region (Q1D J).

slightly lower ion densities in the expansion region. The short heating region shows

a more rounded potential structure and as a result the ions begin being accelerated

earlier in the heating region. The earlier acceleration leads to a maximum in the

velocity at a position closer to the beginning of the expansion region. This gives

more time for the ion-neutral collisions to remove energy from the mean velocity

resulting in a lower dip and lower final velocity for the shortened heating region case.

7.4.1 Effects on Electron Temperature and Electron Distribution

The differences in these results can be further highlighted by the temperature

profiles in each shown in Figure 7.6. Here clear differences are seen between the two
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simulations which drive the difference in the other parameters. The long heating

region in the original simulations results in a temperature profile with sharp peaks

at the edges of the domain while the short heating region results in a nearly flat

temperature profile in the heating region. The interesting point here is not that the

peaks form when the heating region is long, but instead that a trough forms in the

middle of the heating region instead of a uniform temperature profile. This is an

important distinction because the maximum temperature of both simulations match

and is close to the maximum of the 1D simulations. The formation of a trough occurs

when there is a sharp potential structure coinciding with the edge of the heating

region. A possible explanation for this is that the potential structure combined with

the sheath at the other edge of the domain act as a potential well which will more

readily confine the lower temperature electrons in the heating zone. This confinement

is less pronounced if there is a region between the heating region and the potential

structures over which the electrons experience collisions or other dynamical processes.

Figure 7.6: Temperatures in the quasi-one-dimensional simulations with different
lengths for the heating region. Normal length heating region (Q1D),
shortened heating region (Q1D,J).
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The resulting electron velocity distributions in the axial direction are shown in

Figure 7.7 for three positions. As shown in (a) and (b), the shorter heating region

results in a single temperature plasma in the heating region. This agrees with the re-

sults shown in Figure 7.6 where the temperature is constant until the beginning of the

expansion region. This is different from the longer heating region which also showed

a large population of lower temperature gas. The expansion region shows similar

behavior for the longer and shorter heating region simulations where the distribution

is no longer Maxwellian and does not have a characteristic Maxwellian temperature

or temperatures. Maxwellian distributions are shown in (c) give a general idea of the

slopes.

(a) Center of heating region(z = 2.5 cm) (b) Center of domain(z = 5 cm)

(c) Center of expansion region(z = 7.5
cm)

Figure 7.7: Axial velocity distribution variation in space for shorter heating region
(Q1D,J).
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7.4.2 Discussion

Varying the heating region length shows pronounced effects on the electron tem-

perature in the heating region while the other plasma properties stay approximately

the same aside from variations driven by changes in the electron temperature. Short-

ening the heating region produces the same amount of plasma despite the fact that

the total current into the plasma is decreased. This implies that the shorter heating

region is more efficient at coupling the energy from the driving current to the plasma.

The optimal length for the heating region will be a function of the current magnitude

(which is related to the energy input into the plasma) and the neutral background

density which both affect the average ionization mean free path, which is the relevant

length scale.

7.5 Varying Neutral Density Profile

The background neutral density was varied to examine the effects on the simu-

lation results. This is intended to simulate the case in which there is a initially a

high neutral density which decreases rapidly as ions are created and the neutral gas

expands into the vacuum chamber.

The results from simulations with varying the neutral density are shows in Fig-

ure 7.8. In these simulations the neutral density outside the heating region (x =

[0.05, 0.1] m)is abruptly reduced to n = 1× 1017 #/m3. Simulation results are shown

for both the 1D and Q1D simulations as well as the simulations with decreased neutral

densities(1D,DD and Q1D,DD).

In the 1D simulations the decrease in neutral density leads to the formation of

a source sheath and corresponding drop in density. This occurs due to the abrupt

change in regions where plasma is created and the plasma balancing the fluxes of par-

ticles. The potential drop is around 3.5 V which is greater than the minimum electron
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(a) Electron density (b) Ion density

(c) Potential (d) Mean ion velocity

Figure 7.8: Results for simulations with decreased neutral background density in
plume.

temperature in the heating region (Te,min ≈ 3.1 eV) and less than the temperature at

the edge of the heating region (Te,max ≈ 4.25 eV).

Incorporation of the decreasing neutral density into the Q1D simulations shows

similar results to the previous simulations. The major difference is that ion charge-

exchange and elastic collisions become less likely in the ion beam, resulting in a

continued acceleration of the ion particles and no slowing due to collisions. The

ion and electron densities do not show major changes, they are slightly lower in the

expansion region due to the continued acceleration of the ions. The potential structure

stays approximately the same, except for an increase in the overall potential due to

a change in the sheath at the right boundary.
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7.5.1 Effects on Temperature and Electron Distribution for 1D Simula-

tion

The decreased neutral density (DD) outside of the heating region had profound

effects on the temperature profile. These temperature profiles are shown in Figure 7.9.

The parallel temperature is along the field line while the perpendicular temperature is

the average of the perpendicular directions. The perpendicular temperature is higher

due to the heating that occurs in this direction.

Figure 7.9: Temperatures in the one-dimensional simulations with lower neutral den-
sity in the expansion region.

The decreased neutral density outside the heating region leads to the formation

of a temperature profile similar to that seen when the magnetic field effects are incor-

porated in the Q1D simulation. A minimum for both the parallel and perpendicular

temperature appears in the heating region. At the edge of the heating region and in

the remainder of the decreased density region the temperatures remain approximately

constant. This decreased temperature profile occurs due to the interaction between

the heating region and the source sheath due to the decreased density outside this

region.
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Further insight is again gained by looking at the electron velocity distribution

functions. The velocity distribution in the axial direction is shown in Figure 7.10.

The distribution in the heating region (a) shows the same two temperature behavior

seen in some of the Q1D simulations, explaining the temperature drop seen. At the

edge of the heating region the distribution is mostly Maxwellian with a temperature

near Te = 5 eV It appears that there may be a depleted tail as well, but this is hard

to quantify because there are far fewer particles in the tail. Depletion in the tail may

occur due to the higher energy particles being able to traverse the wall sheaths and

then be lost to the wall.[54] The profile in the expansion region remains the same as

that at the edge of the expansion region, implying that the temperature is largely

unaffected by the presence of the source sheath.

The distribution in the x-direction (not the heating direction and not the axial

direction) is shown in Figure 7.11. The distribution in the heating region shows the

same two temperature behavior. At the edge of the heating region and beyond the

temperature remains constant at nearly Te = 5 eV . These velocity distributions also

do not show a depleted tail because there are mechanisms for losses in the perpen-

dicular direction.

The behavior of the distribution function and the temperature show that even

in the case of the one-dimensional simulation effects such as a rapid decrease in

density can lead to the formation of electron distributions with bi-Maxwellian shapes.

The interaction of the heating region with a potential structure at the edge of the

heating domain also produces this two-temperature behavior and results in a lower

temperature in the center of the heating region.
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(a) Center of heating region(z = 2.5 cm) (b) Center of domain(z = 5 cm)

(c) Center of expansion region(z = 7.5
cm)

Figure 7.10: Axial velocity distribution variation in space for 1D simulations with
neutral density decrease in plume.

7.5.2 Effects on Temperature and Electron Distribution for Q1D Simu-

lation

Temperature profiles for the Q1D simulations with a decreased neutral density in

the expansion region are shown in Figure 7.12. The plots illustrate the anisotropy

in the temperature when there is not a sufficiently high density of neutral gas in

the expansion region for collisions to create an isotropic distribution. The parallel

temperature in the expansion begins by slightly varying and then starts to decrease

near more rapidly near the extended sheath region and the perpendicular temperature

decreases as the magnetic field forces remove energy from this mode. This same
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(a) Center of heating region(z = 2.5 cm) (b) Center of domain(z = 5 cm)

(c) Center of expansion region(z = 7.5
cm)

Figure 7.11: Transverse (x̂) velocity distribution variation in space for 1D simulation
with decreased neutral density in plume.

physical process occurs in the simulations with a high background density in the

expansion, except that the inclusion of electron-neutral collisions results in the parallel

and perpendicular energy approaching equilibrium with one another.

The electron velocity distribution in the z-direction (axial) is shown at three lo-

cations in Figure 7.13. In the heating region (a) characteristics are seen of a two-

temperature distribution as seen in previous simulations. At the edge of the heating

region (b) the distribution is primarily Maxwellian with a temperature of Te = 5 eV .

In the plume (c) the distribution remains near Te = 5 eV , implying that in the

z-direction the bulk of the distribution does not change significantly.

The variation of the x velocity distribution in space is shown in Figure 7.14. This
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Figure 7.12: Temperatures in the quasi-one-dimensional simulations with lower neu-
tral density in expansion region.

direction is perpendicular to the axial direction and not in the heating direction.

Again a two temperature Maxwellian is seen in the heating region (a) while at the

edge of the heating region a single Maxwellian is seen with a temperature of Te = 5 eV .

Similar to the results for the 1D case, there appears to be no depletion of the high

energy tails in the perpendicular directions. In the plume the velocity distribution

in the transverse direction is significantly different from the axial direction. The

temperatures have dropped significantly and it can no longer be approximated with a

single Maxwellian distribution. The distribution shows characteristics of a Maxwellian

at Te = 0.5 eV for the low energy particles and a Maxwellian at Te = 2 eV for the

high energy particles.

These simulations again illustrate that the electron dynamics drive the ion acceler-

ation and that the perpendicular electron energy is transferred elsewhere to the ions.

Furthermore, the importance of kinetic effects are illustrated by both the anisotropic

temperatures and the multiple temperature Maxwellians which can be seen in the

expansion.
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(a) Center of heating region(z = 2.5 cm) (b) Center of domain(z = 5 cm)

(c) Center of expansion region(z = 7.5
cm)

Figure 7.13: Variation of axial velocity distribution in space for Q1D simulations with
reduced neutral density in plume.

7.5.3 Ion Beam Formation

Figure 7.15 shows the ion axial velocity distribution functions for the high and

low plume neutral density simulations. The ion velocity distribution shows the devel-

opment of a sharp peak corresponding to the accelerated beam of ions created as the

plasma expands. Charge-exchange collisions create the broad velocity distribution at

lower energies. The ions are not accelerated indefinitely due to the collisions with the

neutral background. The average velocity reached occurs as a balance between the

accelerating potential and the ion-neutral collisions. The charge exchange mean free

path for the beam ions is approximately 0.06-0.08 m, which is less than the length of
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(a) Center of heating region(z = 2.5 cm) (b) Center of domain(z = 5 cm)

(c) Center of expansion region(z = 7.5
cm)

Figure 7.14: Variation of transverse (x̂) velocity distribution in space for Q1D simu-
lations with reduced neutral density in plume.

the domain and explains the formation of the low energy peak. Removal of neutrals

in the plume removes the low energy particles created due to collisions and shows a

sharper beam.

Further development of the beams is shown in the velocity phase space contours for

both cases in Figure 7.16. These plots show spatially the evolution of the distribution

function. The case with a low background density clearly shows no low velocity ions

in the expansion. The high background density case shows these low energy ions

being created and then partially accelerated by the remainder of the potential drop.

Some of the intermediate velocities are a result of the acceleration of ions which are

created in the expansion region and do not experience the entire potential drop.
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(a) Constant neutral density (b) Low neutral density in plume

Figure 7.15: Ion axial velocity distribution showing development of beam.

(a) Constant neutral background den-
sity. density

(b) Decreased neutral background den-
sity in expansion region.

Figure 7.16: Ion axial velocity phase space.

The simulation data for the ion energy distribution function can readily be com-

pared with experimental results from diagnostics such as a retarding potential ana-

lyzer. Appendix E discusses retarding potential analyzers and the implementation

of this diagnostic in the CubeSat Ambipolar Thruster. Future work at PEPL will

compare simulation results with RPA results.
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7.6 Magnetic Field Topology Simulations

The effects of varying the magnetic field divergence were tested in the Q1D simula-

tions. The results of these simulations are shown in Figure 7.6. The ion and electron

densities decrease more rapidly as the magnetic field expands more rapidly, as ex-

pected. This is due to the fact that the flux tubes are larger for the lower magnetic

field strengths. The magnitude of this potential (c) drop increased as the magnetic

field divergence increased. The increased potential drop resulted in the mean ion

velocity (d) showing more significant ion acceleration in the rapidly diverging mag-

netic field test cases. This increased acceleration is due to the larger gradients of the

magnetic field resulting in stronger forces on the electrons. An important point must

be made here that although the larger gradients result in faster acceleration, these

larger gradients can also result in a violation of the assumption that the magnetic

field does not vary rapidly over an electron orbit.

As mentioned in the magnetic nozzle theory section, the acceleration due to the

dipole force can also be represented by a potential Φb = µB. If the magnetic moment

is constant this implies that the particles will undergo more total acceleration the

lower the magnetic field strength, as shown in the simulations. If collisions are ignored,

the ion velocities should be the same at the same final magnetic field strength.

Future simulations should study the inclusion of magnetic mirrors at the edges of

the heating regime. These mirrors could lead to very interesting physics due to them

acting as a filter for the types of electrons which are allowed to escape the heating

region. The effects of these magnetic field maxima could have interesting implications

on the formation of potential structures. These structures could result in production

of the different particle groups (trapped and free electrons and ions) typically seen

in double layer formation.[134, 75, 64, 74] If inclusion of these structures results in a

more dramatic potential drop, this could be a good indication of how to drive double-

layer formation. There may also be a significant effect on the electron temperatures
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(a) Electron density (b) Ion density

(c) Potential (d) Mean ion velocity

Figure 7.17: Effects of magnetic field topology on Q1D simulation results. B1 is
most rapidly decreasing magnetic field while B3 is the slowest varying
magnetic field.

and the positioning of the heating zone relative to the magnetic field structure could

be very important.

7.7 Xenon Simulations

Simulations were also performed using xenon as the working gas. Xenon has

a higher mass and lower ionization potential compared to argon. As such, it was

expected that for the same source parameters the xenon velocities should be lower

since it requires more energy to accelerate the heavy particles. However, the xenon

densities should be higher because it requires less energy to ionize. The results of

183



these simulations is shown in Figure 7.18. Xenon ion densities are higher than the

argon densities in all the simulations due to the lower ionization potential of xenon.

The maximum potential in the heating region is also lower which results in a smaller

potential drop. The lower potential drop combined with the higher mass of the ions

leads to a much lower ion velocity overall for xenon.

(a) Ion density (b) Potential

(c) Mean ion velocity (d) Electron density

Figure 7.18: Q1D and 1D simulations comparing Xenon and Argon results.

The electron temperatures are also affected by the choice of neutral gas. The xenon

simulations have consistently lower temperatures except near the sheaths. This is not

a surprise because the equilibrium temperatures are highly dependent on the colli-

sional behavior. Since xenon has a lower ionization potential the electrons will require

less energy to begin to have ionization collisions. This lower threshold leads to more

collisions, higher ion densities, and more energy loss from the electrons to the ion-
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ization resulting in an overall lower electron temperature. The electron temperature

peaks seen in the xenon simulations are not nearly as dramatic as those seen in the

argon simulations which may be a result of the more gentle potential structure.
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CHAPTER VIII

Analysis of Test Problem Physics

8.1 Introduction

This chapter will present further analysis of the results from the magnetic nozzle

test problem. Data from the test problem simulations will be compared with kinetic

theory, fluid theory, and thermodynamic relations. Simple techniques will also be

used to illustrate ways to estimate thruster performance from simulation results.

First some theory will be presented which will be used in this analysis. The theory

will then be applied to the test problem results. Finally, thruster considerations are

presented.

8.2 Plasmadynamics in Strong Magnetic Fields

In this section the dynamics of a plasma in a strong magnetic field will be dis-

cussed. [135] The treatment of the plasmadynamics presented in this section has

been used to study a range of problems from gyration dominated space plasmas to

magnetic nozzle plasma expansions. [48, 94, 64, 77, 135, 136, 137] The continuum

equations of motion for plasmas can be significantly simplified in strong magnetic

fields by assuming that the gyro-motion of the particles is a dominant feature in the

dynamics and binds particles to a magnetic field line.[37, 68, 137, 138, 37, 135, 136]
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This section summarizes these simplified equations and discusses their origin.

8.2.1 Kinetic Theory

Continuum equations are derived from the Vlasov equation with collisions shown

below:

∂fσ
∂t

+ c · ∇fσ +
q

m
(E + v ×B) · ∇cfσ =

(
∂f

∂t

)
col

(8.1)

In this equation f is the velocity distribution function, c is the velocity space, and the

right hand side represents changes due to collisions. Moments (1, c, c2, ..) of this equa-

tion are taken over all velocity space to obtain the continuum conservation equations

for properties such as the density (n =
˝

fdc) and the mean velocity u =
˝

cfdc.

All the equations shown in this section are derived from this kinetic perspective,

implying that in the correct limit the quasi-1D kinetic model should reproduce the

continuum equations. The continuum conservation equations are summarized below.

8.2.2 Continuity

Generally the conservation of mass equation can be written in the following form

for each species (σ):

∂nσ
∂t

+∇ · (nσuσ) =
∂nσ
∂t

∣∣∣
σ

(8.2)

In this equation n is the number density, u is the continuum mean velocity, and

the right hand side represents the density change due to a source such as ionization

collisions.

This equation can be integrated and simplified using Gauss’ law to the following

form:
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˚
∂nσ
∂t

dV +

˛
(nσuσ) · dA =

˚
∂nσ
∂t

∣∣∣
σ
dV (8.3)

For plasma flow along a magnetic field this equation can be significantly simplified

by assuming the plasma is constrained to a magnetic flux-tube. It is further assumed

that the flow is symmetric in directions perpendicular to the magnetic field, eliminat-

ing changes to mass density due to flux perpendicular to the magnetic field line. This

results in the following form in which A is the cross-sectional area of the flux-tube

and s is the length along the field line.

˚
∂nσ
∂t

dAds+

˛
nσus,σdA =

˚
∂nσ
∂t

∣∣∣
σ
dAds (8.4)

If it is further assumed that properties are constant over the cross section, the

following form arises:

ˆ
∂nσ
∂t

Ads+ nσus,σA
∣∣∣s2
s1

=

ˆ
∂nσ
∂t

∣∣∣
σ
Ads (8.5)

The cross sectional area can also be replaced by the magnetic field strength know-

ing that BA = constant leading to:

ˆ
∂nσ
∂t

1

B
ds+

nσus,σ
B

∣∣∣s2
s1

=

ˆ
∂nσ
∂t

∣∣∣
σ

1

B
ds (8.6)

At steady state this equation implies that the mass flux in and out of a flux tube

must be balanced by the source term. Furthermore, when there is no source term

and the problem is at steady state the mass flux through a source tube is constant:

nσus,σ
B

= constant (8.7)
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8.2.3 Momentum

The momentum equation can be written as:

nσmσ
Duσ
Dt

= nσqσ(E + uσ ×B)−∇ · Πσ +Rσ (8.8)

In this equation D
Dt

= ∂
∂t

+ u · ∇ is the substantiative derivative, Πσ is the pressure

tensor, and Rσ is the collision tensor. The pressure tensor is defined below based on

is the perturbation or random velocity (c′).

Πσ = mσ

ˆ
c′c′fσdc

′ (8.9)

Typically it is assumed that the velocity distribution is Maxwellian and isotropic

in all directions. This simplifies the pressure tensor by removing the off diagonal

terms and simplifying the diagonal terms of the pressure tensor to the following form:

p = nkT . For magnetized flow along a magnetic field line the pressure tensor may

not be isotropic in all directions because the plasma can have different temperatures

in the parallel and perpendicular magnetic field directions. This results in a pressure

tensor of the following form: [135, 136]

Πjk = p⊥δij + (p‖ − p⊥)B̂jB̂k (8.10)

Substitution of this equation into the momentum equation leads to the following

form for the direction along the magnetic field:

nσmσ

Du‖σ
Dt

= nσqσ(E‖)−∇‖p‖ +

(
p‖ − p⊥
B

)
∇‖B +Rσ (8.11)

The above expression looks like the typical one-dimensional momentum equation

except with an extra term on the right hand side. The additional pressure term arises

from permitting the flow to have anisotropic pressures relative to the magnetic field.
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This pressure force accounts for the magnetic mirror force in a continuum description.

[68]

8.2.4 Energy Equation

Energy conservation is a more complex problem because it involves an additional

moment of the distribution function. However a number of simplifications can be

made to these equations. The simplest of these assumptions is that the gas is isother-

mal which implies that Tσ = constant, this is the case for a gas with infinite thermal

conductivity. A more complex assumption is that of adiabaticity, or no heat flow in

the plasma. This leads to following expression:

d

dt

(
pσ
nγσ

)
= 0 (8.12)

In this equation γ is the ratio of the specific heats which is defined as γ = N+2
N

where N is the number of degrees of freedom in the plasma. A more general descrip-

tion is using a polytropic equation, in which γ is an arbitrary quantity.

For a collisionless plasma bound to a magnetic field line with the anisotropic

pressure tensor defined in the previous section this adiabatic law changes to what is

known as the double adiabatic law.[136, 135, 137] In the parallel direction the new

adiabatic constraint becomes the following:

p‖B
2

ρ3
= constant (8.13)

And in the perpendicular direction becomes:

p⊥
ρB

= constant (8.14)

If none of these assumptions can be made the full energy equation must be con-

sidered which is shown below:
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∂

∂t

(
Npσ

2
+
mσnσu

2
σ

2

)
+∇·

(
Qσ +

2 +N

2
pσuσ +

mσnσu
2
σ

2
uσ

)
−qσnσuσ·E = −

(
∂W

∂t

)
Eσα

(8.15)

In the above equation N represents the dimension of random velocity. The velocity

has been decomposed into mean u and random c′ velocity according to c = u + c′.

The heat flux Q used in this equation is defined below.

Qσ =

ˆ
mσc’2

2
c’fσdc

′ (8.16)

The expression for the heat flux is typically closed by making an assumption about

the physics.

8.3 Mass Flow in Simulations

The mass flow and its relation to the continuity equation gives interesting insight

into the test problem. Mass flow rates were calculated with Equation 8.7 using RF

cycle averaged data after the test problem had reached steady state for the Q1D

test problem simulations. These simulations are independent of the cross section size

(depend only on ratio of cross-sections), and for the simulation used the inlet cross

section (which the rest of the areas are based on) was arbitrarily chosen to have an

area of 1 m2. Therefore, the flow rates presented herein are for a heating region

with a cross-section of 1 m2 and can be scaled to the desired cross-section. The only

parameters which would have to scale with this in an actual simulation are the current

density and macroparticle weight.

The resulting particle flow rates are shown in Figure 8.1 for the standard Q1D test

problem and the problem with decreased neutral background density in the expansion

region (DD). Both these simulations show a very interesting result of a constant slope
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Figure 8.1: Flow rate calculations for simulation with constant background neutral
density (Q1D) and decreased neutral density in the plume (Q1D,DD).

for the change of the mass flow rate in the heating region. The constant slope implies

that nvA|21 =
´

∂n
∂t
|sAdx = constant. Therefore the source rate in the heating region

is constant since in the heating region the area is a constant value. The resulting

source rate is ∂n
∂t
|s ≈ 1019 #

m3s
.

In the expansion region the ion flow rate is constant for the case with reduced

background density (Q1D DD), as expected, because there are few if any ionization

collisions producing new particles. The case with constant background density (Q1D)

shows a slight increase in the flow rate as the expansion begins due to energetic

particles from the heating region moving outside the heating region and colliding

with the high density neutral population. This soon levels off because there is no

additional energy driving further collisions.

Analysis of the mass flow rate in the shortened heating region (Q1D,J) was also

performed. The resulting flow rate compared to the longer heating region is shown

in Figure 8.2. The shortened heating region shows a greater flow rate which agrees

with the macroscopic properties shown in the previous chapter where the densities

in the heating region were essentially the same, but the mean ion velocities were
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Figure 8.2: Mass flow rate calculations comparing normal length heating region
(Q1D) and short heating region (Q1D,J)

higher. The implications of these results is peculiar because for this to occur a higher

volumetric source rate is required for the shorter heating region even though the

current density stays the same. This implies that the heating is more efficient for the

shorter heating region. More efficient heating is also confirmed in the temperature

plots of the previous chapter where higher temperatures are seen in the center of

the heating region when the heating region is shorter. The shorter heating region

had a constant, high temperature and showed no drastic decrease in temperature

as was seen in the cases with a longer heating region. The presence of the higher

temperature electrons may lead to more ionization. The increases in efficiency may

also be attributed to isolating the heating region from the potential drops which occur

at the wall sheath and at the beginning of the plasma expansion.

8.4 Ion Acceleration in Simulations

A simple analysis of the ion acceleration can be performed to determine what

mechanism is accelerating the ions. The section illustrating the effects of the Q1D

model already showed that inclusion of the magnetic field forces on the electrons is the
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(a) Standard Q1D simulation. (b) Decreased neutral density Q1D simu-
lation.

Figure 8.3: Potential, ion energy, and summed total energy.

catalyst for generating a potential drop and ion acceleration in these low temperature

plasmas. Here it will be shown that in fact the potential structure is the main

mechanism accelerating the ions. Other mechanisms which could accelerate the ions

include the direct acceleration due to the magnetic field forces. These magnetic field

forces however are small for the cold ions. Figure 8.3 shows plots of the potential,

ion energy, and sum of these values for the standard Q1D simulation as well as the

decreased density Q1D simulations. The sum of the ion energy and potential should

be constant in the case of a flow that is purely accelerated by the potential due to

energy conservation.

The constant neutral background density simulations show generally that the ions

are accelerated as the potential drops, but the ion energy and field energy do not

follow each other directly as is shown in the decreasing total energy, implying there is

another mechanism affecting the ion energies. The simulation with a decreased neutral

density in the expansion region however shows a very strong correlation between the

ion energy and the potential. The total energy stays nearly constant, implying that

from the energy conservation standpoint the ions are just falling down the potential

structure with other mechanisms only marginally affecting the ion dynamics. The
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reason the constant neutral density simulation does not show this direct correlation

is due to the energy losses that occur from charge exchange collisions with the high

density neutral background.

The analysis in this section confirms that the main mechanism accelerating the

ions in these low ion temperature and high electron temperature plasmas is the po-

tential structure that is established in the plume as a results of the electron dynamics.

8.5 Electron Dynamics

8.5.1 Electron Random Energy

Evaluation of the electron dynamics was performed using simulations with a short-

ened heating region and a domain that is twice as long as the typical domain. This is

done to better evaluate the electron dynamics in the expansion region and alleviate

the effects of the heating region and wall sheaths on the expansion. Simulations with

a constant neutral background density and a decreased neutral background density

(DD) were performed.

The simplest assumption about the electron dynamics is to treat the electrons

as isothermal. In these simulations it was found that this is not the case as shown

in Figure 8.4. Non-isothermal electrons implies that the simple Boltzmann relation

can not be used. For simulations with a constant neutral background density the

temperature is nearly isotropic due to the electron neutral collisions redistributing

the electron random energy as the plasma expands. The perpendicular temperature

is slightly higher due to the heating in that direction. For the simulations with a

decreased background neutral density it is found that the electron temperature is not

isotropic. The perpendicular electron temperature decreases rapidly, followed by a

slight increase in the far field as collisions begin to redistribute the electron energy.

Non-equilibrium effects are clearly important in simulations with a low background
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Figure 8.4: Electron temperature variation.

neutral density.

8.5.2 Electron Momentum Equation

In the study of plasmas, assumptions are often made about the electron dynamics

to simplify the description of the plasma. These assumptions include ignoring the

electron inertia or assuming that the electron motion is fast, resulting in the electrons

essentially being in equilibrium. Either of these assumptions results in the left hand

side of Equation 8.11 being ignored. The right hand side can then be solved for the

electric field and serves as an Ohm’s law for the plasma. The resulting equation is

shown below.

E‖ = −
∇‖p‖
nee

+

(
p‖−p⊥
B

)
∇‖B

nee
+
Rσ

nee
(8.17)

Ignoring the collisional term, Equation 8.17 gives a simple expression for calculat-

ing the electric field required for electron equilibrium based on the electron density,

electron temperatures, and magnetic field topology. This expression was evaluated us-

ing the continuum properties from the simulation results and compared to the electric

field outputs. The results are shown in Figure 8.5.

The first figure (a) shows the analytically calculated electric field as well as the
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(a) Standard Q1D simulation and de-
creased plume neutral density simulation
(Q1D DD) results

(b) Comparison between isotropic and
non-isotropic (pressure) calculation for
electric field.

Figure 8.5: Electric field calculated from Ohm’s law.

electric field from the simulations for two test cases: the constant neutral density

(Q1D) and a decreased background neutral density in the plume (Q1D DD). Both of

these results show excellent agreement between the analytical and simulation electric

field. The second figure (b) shows a comparison between the electric field calculated

from assuming an anisotropic and isotropic (ISO) pressure for the test case with a

decreased neutral background density. It is clear from this comparison that the effect

of the anisotropic pressure is important in the problem with few collisions in the

expansion region. For the standard problem with no density decrease the effects of

this term become negligible because the pressure is nearly isotropic due to collisions.

This section reveals a very important result. The electron dynamics can be sig-

nificantly simplified. In the case of a flow with few collisions in the expansion region

anisotropic pressure effects must be included. This conclusion agrees with earlier

experimental results. [139]

An important point to stress about the analysis in this section is that the tem-

peratures and pressures used in this analysis were not found by assuming Maxwellian

distributions, they were found by using the kinetic description where the pressure

represents the flux due to random motion while the temperature represents the mean
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Figure 8.6: Evaluation of adiabatic and polytropic equations.

random kinetic energy.

8.5.3 Electron Energy Equation

The energy equation can be analyzed by studying the electron thermodynamics.

Thermodynamics assumes that the plasma is in equilibrium locally, which in the

previous chapter was shown may not be a good assumption for the electrons in the

magnetic nozzle expansion region. This is evidenced in the non-Maxwellian and

potentially bi-Maxwellian velocity distributions seen for the electrons in the expansion

region. This section however will attempt to use existing theories which assume

equilibrium for the electrons in order to get simple relationships for the electron

temperature as the plasma expands. This is essential to closing the equations needed

so solve for the ion motion.

The electron thermodynamics was evaluated by first investigating if the adiabatic

or polytropic conditions were satisfied. This was investigated by examining the rela-

tionship between the density and temperature of the electrons as shown in Figure 8.6.

Results are plotted for the constant and decreased neutral density simulations. The

axes are plotted on a logarithmic scale. If the polytropic relationship from Equation

8.12 is satisfied, regions of a constant slope equal to γ− 1 should appear on this plot.

198



For the case of a constant neutral background density, the polytropic equation with

γ = 1.26 shows good agreement for the bulk of the expansion. This exponent implies

a non-adiabatic plasma expansion. The reason the adiabatic condition may not hold

in these simulations is because of the presence of heat flux in the axial direction for

both parallel and perpendicular kinetic energy. The heat flux was evaluated in the

simulations and non-negligible values were found.

The results for cases with a decreased background neutral density (DD) show

complex behavior. A constant slope for the entire domain can not be found, although

there are interesting regions where the slope appears to be nearly constant. Regions

with similar slopes are seen for the parallel and perpendicular temperatures.

An additional simulation was performed with a more slowly decreasing magnetic

field (B3 from the previous chapter) to investigate whether the polytropic coefficient

found in the constant neutral background density simulation depends explicitly on

the magnetic field profile. Interestingly, it was found that the polytropic coefficient

had approximately the same value (γ = 1.26).

Evaluation of the double adiabatic conditions were also performed. These condi-

tions were not found to be satisfied in either of the simulation test cases. The reason

for this is because of the presence of both collisions and heat flux in the axial direction

in the plume. Equivalent polytropic laws should be considered to replace the double

adiabatic laws and may have more success.

8.5.4 Electron Velocity and Energy Distribution Functions

The electron velocity and energy distribution functions were determined to evalu-

ate the non-equilibrium nature of the plasma. The axial variation of the distribution

functions for the constant neutral background density simulations are shown in Fig-

ure 8.7. For these simulations the axial and transverse velocity distribution functions

show very similar behavior due to the presence of a high neutral background density
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(a) Axial velocity distribution functions. (b) Transverse (x̂) velocity distribution
functions.

(c) Energy distribution function.

Figure 8.7: Variation of electron distribution function spatially for constant neutral
background density.

with which the electrons collide, leading to an isotropic distribution. At the edge of

the heating region (5 cm) the distribution is nearly Maxwellian (linear with a single

slope) with temperature around 5 eV in both directions. As the plasma expands the

energy of the electrons is reduced and the distribution becomes more non-Maxwellian

implying that single slope can not be used to characterize the velocity distribution.

The energy distribution shows similar behavior. The electron energy is reduced as

the plasma expands and the electrons are slowed down by the potential drop.

The distribution functions for the simulations with a reduced neutral background

density in the expansion are shown in Figure 8.8. The axial velocity velocity distri-
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bution (a) is nearly Maxwellian with a temperature of 5 eV at the edge of the heating

region (5 cm). As the plasma expands the low energy particles remain characteristic

of a 5 eV distribution while the high energy particles are lost. The distribution in the

transverse direction shows a much different structure. The distribution at the edge of

the heating region is characteristic of a 5 eV Maxwellian. The distribution changes

drastically as the plasma expands. A large population of particles is seen at very low

energies (sharp peak at low energy), this is followed by a distribution that is appears

nearly Maxwellian with a temperature of 1.75 eV. The distribution remains nearly

constant between 10 cm and 15 cm. The energy distribution function shows that the

energy is reduced overall as the plasma expands and falls down the potential drop.

8.6 Predictions of Thruster Performance Parameters

The results from this study can be used to estimate some basic thruster perfor-

mance parameters such as specific impulse and thrust using the test problem as an

example.

8.6.1 Specific Impulse

Specific impulse (Isp) can be estimated by looking at the maximum velocity the

ions achieve before they reach the edge of the boundary sheath. The resulting veloci-

ties for the standard test problem and the test problem with reduced neutral density

in the plume are vex = 6.25 km/s and vex = 8.12 km/s respectively. These corre-

spond to specific impulses of 640 seconds and 830 seconds respectively. The reduced

specific impulse for the high background density case is explained by losses due to

collisions with the neutrals highlighting a potential loss mechanism for these devices.

These specific impulses are reasonable considering the current predictions for devices

which use this type of electron-driven ion acceleration. [30, 28, 22, 140]
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(a) Axial velocity distribution (b) Transverse (x̂) velocity distirbution

(c) Energy distribution

Figure 8.8: Variation of electron distribution function for decreased neutral back-
ground density in the expansion region.
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8.6.2 Thrust

The mass flow rate was calculated in this chapter and was shown to be constant

in the expansion region. This mass flow rate can be used along with the exhaust

velocity of the section above to determine a prediction for thrust (T = ṁvex). As

outlined in the mass flow rate section, the numbers given were for a heating section

with an area of 1 m2. These simulation results are independent of cross-section area

and can be scaled to the area of a desired device.

For a hypothetical device with a plasma cross section of 10 cm2 the flow rate in

Figure 8.1 scales to 2.5 × 1017 particles/s or a mass flow rate of 0.0165 mg/s. This

results in a thrust of 0.103 mN and 0.134 mN which are reasonable numbers for a

device with such low densities in the heating region. Many current devices strive for

densities a few orders of magnitude above those reported in the test problem.

An important point to make in this section is that the thrust in this device is

generated by the magnetic force on the electrons which drives the ion acceleration.

Forces on the magnetic dipole moments of the electrons are balanced by forces on the

magnets of the devices.

8.6.3 Validity of Predictions

The predictions of specific impulse and thrust in this section are very much a

simplification of the effects in an actual thruster. The long range forces due to the

magnetic field make this a more complex issue to tackle because ion acceleration

occurs until the particles are no longer affected by the magnetic field. In the case of

Q1D simulations the particles are always affected by the field so the maximum, or

asymptote of the velocity makes the most sense to use as a parameter. Predictions of

specific impulse are further complicated by the losses which occur due to collisions in

the plume. When these collisions occur the specific impulse can be defined by either

the beam velocity or the mean velocity. Efficiency losses due to plume divergence are
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also not taken into account. Therefore, these estimates can serve as an upper bound

for the predicted performance.
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CHAPTER IX

Device Simulations

9.1 Introduction

In this section simulations are compared with a current helicon thruster, the

HDLT.[3] Basic operating parameters for this device are summarized in Table 9.1

below.[30]

Table 9.1: Characteristic parameters for helicon double layer thruster.

Parameter Value
Source Tube Length ≈ 28 cm

Antenna Length ≈ 18 cm
Maximum Magnetic field ≈ 138 Gauss

Maximum Density ≈ 2× 1017 #/m3

Electron Temperature 5.5 eV
Heating Frequency 13.56 MHz

Background Neutral Pressure 53.3 mPa
Gas Argon

Simulations were performed to strive to recreate these parameters and the physics

seen in the HDLT plume. Some simplifications to the problem were made to ease the

computation. The simulation setup is outlined in the next section, followed by the

results, and then a discussion.
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9.2 Simulation Setup

The simulation was performed over a 0.6 m long domain with grounded boundary

conditions. The heating region is 12 cm long (slightly shorter than the antenna

length) and is applied from z = [0.065, 0.185] m. The heating region was shortened

compared to the antenna to eliminate some interaction of the heating region with

the wall sheath and the expansion region. The magnetic field is constant from z =

[0.0, 0.25] m after which it begins to decrease with a profile similar to that in the

experiments. The domain is initially seeded with a population of ions and electrons

(ninit = 8× 1015 #/m3) in the constant magnetic field strength region to enable the

discharge to start. The simulation parameters are summarized in the Table 9.2 below.

Table 9.2: Parameters for helicon double layer thruster simulation.

Parameter Value
Domain Length 0.6 m
Number of Cells 9, 000

Heating region length 12 cm
Heating Current 800 A/m2

Heating Frequency 13.56 MHz
Time Step 2.5× 10−11 seconds
Total Time 8× 10−5 seconds

Background Neutral Pressure 40.4 mPa
Gas Argon

Particle Weight 109 Particles/macro-particle

The magnetic field used in the simulation is shown in Figure 9.1. The simulation

magnetic field in the expansion region is applied using a current loop and the magnetic

field is assumed to be constant in the heating region for simplicity.
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Figure 9.1: Magnetic field in simulation and experiment. Normalized by maximum
magnetic field.

9.3 Results

9.3.1 Continuum Properties

HDLT simulation results are presented in this section. The results for the electron

number density are shown in Figure 9.2. The simulation results are still a factor of

five below the experimental results. Higher densities can be achieved by increasing

the current in the heating region. The additional increase in density however comes

at a much higher computational cost. The simulation results presented herein ran

for 48 hours on 200 processors (9600 CPU-hours). The additional cost for scaling to

the appropriate densities can be estimated by considering that at least twice as many

grid points, half the time step, and five times as many particles will be required,

resulting in at least a factor of 10 increase in computational cost. It is important

to stress that the computational costs are the limiting factor not the methodology,

future simulations with additional simulation resources can scale up to the densities

required for the full thruster simulations.

Normalized density profiles are also shown in Figure 9.2 to compare the profiles.

The normalized densities show excellent agreement until about 0.4 m after which the

simulation results continue to decrease while the experimental results level off. The
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(a) Electron number density in simulation
and experiment on a lograithmic plot.

(b) Normalized electron number density in
simulations and experiment on a logarith-
mic plot.

(c) Normalized electron number density in
simulations and experiment.

Figure 9.2: Comparison of electron density profiles with experiments.
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Figure 9.3: Potential in simulations and experiments.

leveling off of the density in the experiment might be attributed to plasma beginning

to interact with the chamber walls or the violation of the magnetization assumptions

(caused by detachment) made in the Q1D model .

The simulation results for the potential are shown in Figure 9.3. The simulation

potential maximum is made to coincide with the experimental maximum. This is

necessary because the potential is referenced from different values in the simulation

and experiment. Simulation results do not show a sharp potential structure similar to

a double layer which was seen in the experiment and instead show a gradual decrease

in the potential more characteristic of an ambipolar field. The total potential drop

however is very similar at 0.6 m. This difference may be attributed to the different

magnetic field profiles used. Incorporation of a magnetic mirror in the heating region

could have a profound effect on the potential structure.

The mean ion velocity and temperature profiles obtained in the simulation are

shown in Figure 9.4. These profiles are similar to those seen in the test problems

of the previous sections and the ion velocity shows a gradual increase over the long

potential drop. The maximum mean ion velocity from the simulations was found to

be around 5 km/s. The maximum electron temperature in the simulations was found

to be around 5 eV which decreases as the plasma expands. The maximum simulation
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(a) Mean ion velocity (b) Electron temperature

Figure 9.4: Mean ion velocity and electron temperature in simulations.

temperature is similar to the experimental result of 5.2 eV.[30] However, West et al.

suggest that the electron temperature is constant throughout the domain, which is

contrary to the simulations results. No explicit temperature profiles are shown in the

experimental results.

9.3.2 Thermodynamic Considerations

The polytropic relation was evaluated in the HDLT expansion region to see if

similar results are found to those seen for the magnetic nozzle test problem with a

constant neutral background density. The variation of the electron temperature with

the electron number density is shown in Figure 9.5. A linear region is seen on the

log-log plot which agrees with a polytropic coefficient of γ = 1.17. This polytropic

coefficient is very similar to that found by Little [48] but is different from that found

in the magnetic nozzle test problem (γ = 1.26).

9.3.3 Velocity and Energy Distribution Functions

The ion and electron velocity and energy distributions were evaluated for further

insight into the problem. The results for the ion velocity distribution function at 42

cm are compared to those of the experiment in Figure 9.6. The simulation distribution

210



Figure 9.5: Variation of electron temperature with electron number density and com-
parison with polytropic law.

Figure 9.6: Ion axial velocity distribution in simulations and experiments.

function is shown with energy units and is offset by the plasma potential measured

in the experiments to compare results.

The ion velocity distribution results show similar trends. The peaks of the beam

are near the same value and a large low energy peak of charge exchange particles is

seen. The simulation results are sharper and the charge exchange peak smaller. This

may indicate that larger neutral densities should be used in part of the simulation

domain to broaden the peaks and increase the fraction of low energy particles. The

maximum beam velocity was around 10 km/s (at 54 cm) in the simulations. The

maximum mean ion velocity and the maximum beam velocity are consistent with the

results found in the experiment.
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(a) Axial velocity distribution. (b) Transverse (x̂) velocity distribution.

(c) Energy distribution.

Figure 9.7: Comparison of electron velocity and energy probability distribution.

The spatial variation of the electron energy and velocity distribution functions are

shown in Figure 9.7. For reference, the point z = 30 cm is just outside the constant

magnetic field region. The axial and transverse velocity distributions show similar be-

havior due to the effects of collisions with the high density neutral background. These

collisions cause the distribution to be nearly isotropic and redistribute the electron

energy as the plasma expands. The velocity distributions also show characteristics of

non-Maxwellian distributions as the plasma expands. The energy distribution shows

the decrease in the electron energy as the plasma expands and falls down the poten-

tial structure. These results are similar to those seen in HDLT experiments which

measure the electron energy distribution functions. [141, 142]
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9.4 Discussion

Results from the HDLT device simulations are encouraging and show promise

of yielding useful insight into the physics. Computational costs are currently limit-

ing further study to higher densities. Simulations presented in this chapter ran for

approximately 48 hours on 200 processors (9600 CPU-hours). Tweaking of the pa-

rameters used in the simulation are also under way to better match the experiments.

Some parameters, such as the neutral density profile in the simulation are unknown

and can have profound effects on the simulation results.s
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CHAPTER X

Conclusion

10.1 Summary of Work

This work has made contributions to the study of magnetic nozzle physics and

more generally the study of magnetic field guided plasma expansions in a number of

ways. A thorough study of the operating regimes of current magnetic nozzle thrusters

was performed as well as a review of the important physical processes in these devices.

The physics for the thrust generation process in magnetic nozzles was outlined and

summarized.

A novel quasi-one-dimensional technique for the simulation of magnetic field guided

plasma expansions was developed in order to study these important processes in a

magnetic nozzle. Two-dimensional effects due to the magnetic field were incorporated

in a conventional PIC scheme. This technique was added to a new, parallel PIC code

with Monte-Carlo collisions to self-consistently model a magnetic nozzle device from

the source region to the expansion.

The Q1D formulation was verified with a newly developed set of test cases which

include simple problems to compare with theory (two particle motion and magnetic

mirrors) and direct comparison with fully two-dimensional simulations. These test

problems will be valuable for verifying future implementations of the model. Fur-

thermore, the Q1D method showed that it is capable of consistently capturing two-
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dimensional physics making it a powerful tool for future kinetic simulation of mag-

netized plasmas without incurring the costs of fully two dimensional simulations.

A test problem of an RF discharge with a magnetic nozzle was also studied. The

Q1D model results were compared to purely one dimensional results to illustrate

the importance of the two-dimensional effects. Studies on the effects of varying the

heating region, magnetic field topology, gas species, and background neutral density

were performed to determine the effects on ion acceleration and electron dynamics.

Results from these simulations give valuable insight on magnetic nozzle plasmady-

namics in the Q1D limit. Simple analyses were performed to make rough estimates of

thruster performance parameters in the magnetic nozzle test problem. Insights into

magnetic nozzle physics for low-density, low temperature plasmas were gained. Ion

acceleration was shown to be caused by induced electric fields. The induced electric

fields form in response to the magnetic field forces which accelerate the hot electrons

away from the magnetic nozzle throat. These induced electric fields were found to be

consistent with theory which takes into account anisotropies in the electron pressure

tensor. When few collisions are present in the plume the electron temperature was

shown to be highly anisotropic. A decreasing perpendicular temperature occurs due

to the magnetic field forces re-directing the perpendicular electron energy into the

parallel direction as the electrons expand. The thermal energy lost by the electrons is

ultimately gained by the ions through the potential structure which is formed. These

simulation results illustrated the need for kinetic simulations of these devices. The

presence of bi-Maxwellian or non-Maxwellian distributions as well as anisotropic tem-

peratures were seen in the magnetic nozzle expansions with low background neutral

densities. Simulations with high background densities had isotropic temperatures, but

still showed bi-Maxwellian or non-Maxwellian distributions. Non-equilibrium effects

were clearly shown to be important.

Simulations were performed of the HDLT device which show encouraging results
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for using this code to study full devices in the future. These simulations were limited

to lower densities than those in the actual device (by factor of 5) due to computa-

tional costs. Results from these simulations were consist with many of the data from

experiments.

10.2 Future Work

Continuing work on these methods and the study of magnetic nozzle physics is

summarized in this section. The areas which will be highlighted are method improve-

ments, additional test problems, and future device simulations.

10.2.1 Model Improvements

A number of improvements can be made to the methods used in this thesis. The

first recommendation would be to investigate additional RF heating mechanisms.

While the mechanism used in this method worked well it is not adapted well to an

axisymmetric problem. Additional effects of heating mechanism on the simulation

results can also be investigated, such as including an oscillating field in both of the

perpendicular directions, not just one. The scheme presently implemented averages

the currents over the whole heating region. Additional tests can be performed with

currents that are evaluated cell by cell instead to better capture local heating.

Further improvements to the code in general include the use of implicit schemes

for the the particle movers. This would enable significantly larger time steps and cells

to be used which would reduce the computational cost.[111] The challenge with this

is incorporating the Q1D method in the currently existing implicit schemes. Non-

uniform mesh algorithms can also be implemented to take advantage of the decreased

densities in the plume by increasing the grid size as the Debye length increases.

The code can also be improved by time centering of the velocities of loaded par-

ticles. An algorithm for loading and injection of general distributions should also be
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implemented using acceptance-rejection sampling.

Generally the code should be optimized further to improve performance using

profiling software and eliminating some of the inefficiencies in the code. There is

significant room for improvement in this area.

10.2.2 Additional Test Problems

Simple test problems further investing the physical implications of this model

should be performed. One of the first tests which should be performed is an RF source

including magnetic mirrors at the edge of the heating region. This can have significant

implications on the device performance as some particles are trapped in the heating

region. The mirrors also limit the flux of some particles, which will have implications

on the potential structures which form. These simulations were attempted in this

work, but satisfactory results were not obtained. The heating region was a particular

problem here because it was not adapted well to the cylindrical geometry.

Coulomb collisions were also incorporated in this model, but for many of the sim-

ulations investigated they were not important. Future work at higher densities should

investigate the effects of Coulomb collisions further. Different Coulomb collision al-

gorithms should also be considered.[132, 133] The algorithm chosen for the code used

in this work was selected because it depended on the grid and did not require par-

ticles to be paired in cells. This decision was made based on the synergy with the

parallelization scheme.

10.2.3 Device Simulations

Further device simulations should be investigated to validate the model. Simu-

lations of the HDLT were ambitious due to the size of the device (≈ 1 m) and the

large disparity in densities in the problem. This made this problem extremely com-

putationally intensive and did not allow for as much iteration as necessary. Smaller
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device simulations such as the CubeSat Ambipolar Thruster or the PHDLT may serve

as a better platform to validate this model. [22, 28] Simulations of gyration domi-

nated plasma in astrophysics could also serve as an application for this model and

allow for validation. There may also be data from the semi-conductor industry of low

temperature plasmas guided by magnetic field which can be used for validation.
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APPENDIX A

Magnetic Nozzle Parameters

A.1 Magnetic Nozzle Relevant Parameters

The non-dimensional numbers for the important physical mechanisms in magnetic

nozzles are highlighted in the Table A.1 below. The regimes in which they are im-

portant are highlighted by the given inequality. The parameters should be placed on

the left hand side of the inequalities of the table. It is important to note that many

of the non-dimensional numbers are based on arbitrary characteristic lengths of the

system which is why some of the ratios do not have a numerical value associated

with them and should be used qualitatively instead. For example, increasing Rm will

decrease the effects of resistive diffusion on detachment. All conditions presented are

necessary, but not sufficient conditions for these mechanisms to be relevant.

A.2 Magnetic Nozzle Experiments

Table A.2 below shows a compilation of experiments which have studied magnetic

nozzles. This table is not an exhaustive list, but outlines the general parameter

regimes in which some typical magnetic nozzle experiments operate. The parameters
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Ion Acceleration Mechanisms and Currents
Dipole Magnetic Pressure Thermal Velocity Ion Collision Electron Collision Ion Fluid Electron Fluid

Reynolds Ratio Ratio Hall Parameter Hall Parameter Hall Parameter Hall Parameter

rL|∇B|/|B| Rm = UL/η βp = nkBT
B2/2µ0

vth,e
vthi

=
√

Temi

Time
Ωcol,i = ωci

νi
Ωcol,e = ωce

νe
Ωf,i = ωci

ωf
Ωf,e = ωce

ωf

Magnetization ≤ 1 - - - ≥ 1 ≥ 1 ≥ 1 ≥ 1
Directing Thermal Energy - � 1 ≤ 1 & & 10−3 - - - - -

Hall Effect - - - - ≤ 1 ≥ 1 ≤ 1 ≥ 1
Thermoelectric - - - ≥ 1 - - - -

Detachment Mechanisms
Demagnetization Magnetic Recombination & Fluid Alfvén Mach Lundquist Hybrid rL Hybrid rL

Reynolds Frequency Ratio and Kinetic β Number Mass Magnetization

rL|∇B/B| Rm = UL/η νei/ωf M2
A = U2

V 2
A
, βf = ρu2/2

(B2/2µ0)
S = VAL

η
= BL

η
√
µ0ρ

G−1/2|∇B/B| rL,h|∇B/B|
Resistive Diffusion - . 1 - - - - -

Recombination - - ≥ 1 - - - -
Adiabaticity ≥ 1 - - - - - -

Inertial - - - - - ≥ 1 ≥ 1
Induced Field - & 1 - ≥ 1 - - -

Current Closure - - - - - - -
Magnetic Reconnection - . - - . - -

Table A.1: Top: Relevant regimes for energy conversion mechanisms. Bottom: Rele-
vant regimes for detachment mechanisms.

shown are calculated using equations from the Naval Research Lab formulary[130]

and the work of Braginskii.[143] Intermediate field strength length scales are found

by
√
rLλmfp where λmfp is the mean free path. The values shown are found from

a single measurement point nearest the nozzle throat on the centerline with some of

the quantities approximated. The parameters can vary by an order of magnitude or

more through the rest of the plume. Brief comments about each experiment are given

in the following below:

1. Super-sonic plasma wind tunnel: Experiment by Andersen which first

demonstrated the generation of a supersonic flow with a converging-diverging

magnetic nozzle.[18]

2. Variable Specific Impulse Magnetoplasma Rocket: The VASIMR ex-

periment heats ions by Ion Cyclotron Resonance Heating (ICRH) which then

enter a magnetic nozzle. Energy conversion by the conservation of the adi-

abatic invariant and ambipolar acceleration has been shown for Helicon only

mode. [25, 32, 66, 33, 144] Evidence of detachment has been observed and the

responsible mechanism is currently being determined. [61]

3. CubeSat Ambipolar Thruster: CAT is an electrodeless thruster which in-

corporates a magnetic nozzle being developed at PEPL. [22] This device is in

221



the early stages of testing, but shows great promise for being the first flown

magnetic nozzle thruster.

4. Helicon Double Layer Thruster: The Helicon Double Layer Thruster (HDLT)

produces plasma by a helicon source which expands into a magnetic nozzle con-

figuration. [3, 26, 30] Energy is transfered to the ions by the formation of a

current-free double layer. Detachment is predicted due to ion demagnetization.

5. Permanent Magnet Helicon Double Layer Thruster: The Permanent

Magnet Helicon Double Layer Thruster (PM-HDLT) generates plasma through

a helicon source and the expansion is controlled by a permanent magnetic mag-

netic nozzle.[27, 28, 141, 84] Energy is transfered to the ions through the ther-

moelectric effect. This experiment separately measures the total force on the

propulsion device and the force on the permanent magnets thereby quantifying

the thrust due to electromagnetic effects.

6. Kuriki Arc Heater: The Kuriki Arc Heater (KAH) experiment studies the

flow of an arc heated plasma in a converging-diverging magnetic nozzle.[19]

The plasma is shown to be significantly accelerated by both thermoelectric field

forces and thermal energy directionalization. An energy equation is suggested

that couples ion and electron energies through the electric potential. Detach-

ment is not significantly addressed.

7. York Θ-Pinch: The York Θ-Pinch experiment studies the flow of a Θ-pinch

plasma with a magnetic nozzle configuration.[41] A converging-diverging con-

figuration was studied which generates supersonic velocities and demonstrates

choking. Measurements of electron temperature, flow velocity, and electron

density are made. Plasma confinement is achieved by the magnetic pressure

and non-isentropic expansion of the plasma is shown. Classical transport phe-

nomenon were shown to be correct, with the exception of the electron thermal
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conduction.

8. Magnetoplasmadynamic Arcjet: The MagnetoPlasmaDynamic Arcjet (MPDA)

experiment studies the flow MPD exhaust under the influence of a magnetic

nozzle.[21, 80] Results suggest energy conversion governed by isentropic expan-

sion processes and not conservation of the magnetic moment. Plasma flow ve-

locity and Mach number increase downstream as the ion temperature decreases.

9. Detachment Demonstration Experiment: The Detachment Demonstra-

tion EXperiment (DDEX) studied plasma produced by a pulsed plasma washer

gun under the influence of a magnetic nozzle.[96, 97, 98] Detachment is demon-

strated, suggesting super-Alfvénic detachment as the driving mechanism. Super-

Alfvénic flow, βf > 1, is shown at the detachment location, but field line stretch-

ing is not measured.

10. High Power Helicon: The High Power Helicon (HPH) is an experiment per-

formed by Winglee et al.[31] in which a plasma produced by a helicon source

flows through a magnetic nozzle. This experiment showed both collimation

of the plasma plume by a magnetic nozzle and self-collimation due to super-

Alfvénic flow. The acceleration of the plasma in the nozzle is attributed to

directionalizing of thermal energy.

11. Princeton Experiment: This experiment investigated the conditions neces-

sary for plasma confinement in a magnetic nozzle and thoroughly characterized

of the plasma plume. [145, 49, 48] Electron cooling is seen in the plume which

follows a polytropic law. The plasma is found to become unconfined in the far

field when a ion confining plasma potential is no longer present. This loss of

confinement was found to coincide with electron demagnetization.

12. Additional Experiments: For the sake of brevity not all magnetic nozzle
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experiments have not been included. Discussion of additional experiments that

have been important to the development of this field have been done in previous

reviews. [60] Among these experiments are the HYPER-I experiment [102], the

Magnetic Nozzle Experiment (MNX) [69], and an ECR thruster.[146]

Experiments
VASIMR KAH Θ-pinch MPDA DDEX HPH HDLT PM-HDLT

Inputs
Gas Argon Argon Deuterium Helium Helium Argon Argon Argon
# Density (#/cm3) 1E+13 5E+13 3E+16 1E+14 4E+12 1E+13 1E+11 2E+12
Ti (eV) 1E+02 1E-01 2E+01 1E+01 1E+00 3E+00 2E-01 1E-01
Te (eV) 6E+00 6E-01 2E+01 5E+00 1E+00 1E+01 6E+00 6E+00
Flow Velocity (m/s) 4E+04 1E+03 5E+04 3E+04 2E+04 5E+03 1E+04 1E+04
Characteristic Length (m) 6E-01 3E-02 4E-03 3E-02 2E-01 7E-02 2E-01 7E-02
B (Gauss) 6E+02 1E+03 2E+04 1E+03 7E+02 3E+02 1E+02 2E+02
Plasma Parameters
Debye Length (m) 6E-06 8E-07 2E-07 2E-06 5E-06 7E-06 6E-05 1E-05
Particles in Debye Sphere 2E+03 3E+01 2E+02 5E+02 4E+02 4E+03 2E+04 4E+03
Velocities
Ion Thermal (m/s) 2E+04 6E+02 3E+04 2E+04 6E+03 3E+03 7E+02 5E+02
Electron Thermal (m/s) 1E+06 3E+05 2E+06 9E+05 5E+05 1E+06 1E+06 1E+06
Alfvén (m/s) 6E+04 5E+04 2E+05 1E+05 4E+05 3E+04 2E+05 6E+04
Ion Sound (m/s) 5E+03 2E+03 4E+04 1E+04 8E+03 6E+03 5E+03 5E+03
Characteristic Frequencies and Times
Ion Cyclotron (1/s) 1E+05 2E+05 1E+08 2E+06 2E+06 7E+04 3E+04 5E+04
Electron Cyclotron (1/s) 1E+10 2E+10 4E+11 2E+10 1E+10 5E+09 2E+09 4E+09
Ion Collision (1/s) 1E+03 3E+07 1E+08 8E+05 4E+05 1E+05 6E+04 2E+06
Electron Collision (1/s) 2E+07 2E+09 8E+09 2E+08 6E+07 1E+07 3E+05 4E+06
Residence Time (s) 2E-05 3E-05 8E-08 1E-06 1E-05 1E-05 2E-05 7E-06
Characteristic Lengths
Ion Mean Free Path (m) 1E+01 2E-05 3E-04 2E-02 1E-02 3E-02 1E-02 3E-04
Electron Mean Free Path (m) 5E-02 2E-04 2E-04 4E-03 9E-03 1E-01 3E+00 3E-01
Ion rL (m) 1E-01 2E-03 3E-04 6E-03 3E-03 4E-02 2E-02 1E-02
Electron rL (m) 1E-04 2E-05 5E-06 5E-05 4E-05 3E-04 4E-04 3E-04
Ion Intermediate (Braginskii) (m) 1E+00 2E-04 3E-04 1E-02 7E-03 3E-02 2E-02 2E-03
Electron Intermediate (Braginskii) (m) 2E-03 5E-05 3E-05 5E-04 6E-04 6E-03 4E-02 8E-03
Non-Dimensional Numbers
Reynolds Number 1E-01 3E+03 3E+01 2E+00 4E+01 5E+00 2E+02 5E+03
Magnetic Reynolds Number 7E+02 5E-02 5E+01 2E+01 1E+01 2E+01 4E+01 2E+01
Alfvén Mach 6E-01 2E-02 2E-01 2E-01 4E-02 2E-01 7E-02 2E-01
Mach 7E+00 6E-01 1E+00 2E+00 2E+00 8E-01 2E+00 2E+00
Kinetic β 8E-01 1E-01 5E-01 5E-01 2E-01 4E-01 3E-01 4E-01
Pressure β 1E-01 3E-04 4E-02 4E-02 4E-04 2E-02 4E-05 2E-04
Hall, Collision, and Residence Frequency Ratios
Ion Hall 1E+02 8E-03 1E+00 3E+00 4E+00 6E-01 5E-01 3E-02
Electron Hall 5E+02 9E+00 5E+01 7E+01 2E+02 5E+02 8E+03 9E+02
Ion Cyclotron/Residence 2E+00 7E+00 9E+00 3E+00 2E+01 1E+00 5E-01 3E-01
Electron Cyclotron/Residence 2E+05 5E+05 3E+04 2E+04 2E+05 7E+04 4E+04 2E+04
Ion Residence/Collision 5E+01 1E-03 1E-01 1E+00 2E-01 6E-01 1E+00 8E-02
Electron Residence/Collision 3E-03 2E-05 2E-03 3E-03 1E-03 7E-03 2E-01 4E-02
Knudsen Numbers
Ion Weak Field 2E+01 7E-04 6E-02 7E-01 7E-02 4E-01 7E-02 4E-03
Electron Weak Field 8E-02 5E-03 6E-02 1E-01 5E-02 2E+00 2E+01 4E+00
Ion Intermediate (Braginskii). 2E+00 7E-03 6E-02 4E-01 4E-02 5E-01 1E-01 3E-02
Electron Intermediate (Braginskii). 4E-03 2E-03 8E-03 2E-02 3E-03 8E-02 2E-01 1E-01
Ion Strong Field 2E-01 8E-02 7E-02 2E-01 2E-02 6E-01 1E-01 2E-01
Electron Strong Field 2E-04 6E-04 1E-03 2E-03 2E-04 4E-03 3E-03 4E-03
Transport Properties

Dynamic Viscosity ( kg
(ms)

) 1E-01 4E-08 7E-04 2E-04 2E-06 5E-05 5E-08 1E-08

Electrical Conductivity ( S
m

) 3E+04 1E+03 2E+05 2E+04 3E+03 5E+04 2E+04 2E+04
Thermal Conductivity ( W

mK
) 1E+00 2E+01 6E+02 1E+01 6E-02 4E+00 3E-03 3E-01

Table A.2: Magnetic nozzle experiments
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APPENDIX B

Trapped Particles in a Magnetic Bottle

B.1 Fraction of Trapped Particles

In this Appendix the process for calculating the fraction of trapped particles in

the magnetic mirror simulations is presented. Particles are seeded in the domain

according to an isotropic Maxwellian distribution:

f =
(κ
π

)3/2

exp
(
−κv2

)
(B.1)

Particles trapped by only the effects due to the magnetic field forces are subject

to the simple condition that shown below in which R = Bmax

Bmin
:

v2
⊥,0

v2
‖,0 + v2

⊥,0
>

1

R
(B.2)

This can be used to create a loss cone in velocity space with the angle α =

sin−1(
√

1/R). An image of this loss cone (blue) is shown in Figure B.1.

The number of lost particles is found by integrating the Maxwellian distribution

over this loss cone. If the initial velocity distribution is isotropic and the loss cone

is the simple conical shape, the fraction of particles lost is equal to the fraction of
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Figure B.1: Illustration of cross-section variation effects.

the total volume in the loss cone. This analysis gives the following relation for the

trapped particle fraction:

Γ =

√
1− 1

R
(B.3)

This analysis becomes significantly more complex if an electric field is applied and

no simple analytical solution exists. For a non-confining electric field the loss volume

Figure B.2: Loss volumes for non-confining electric field.
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grows and more particles are lost. Figure B.2 shows the new expanded loss volume.

This loss volume is no longer a simple cone shape, which enabled a simple volume

comparison to be made to find the fraction of trapped and/or lost particles. Finding

the fraction of particles lost requires explicit integration of the distribution function

over the loss volume in velocity space. This is simplified by dividing the loss volume

into two volumes shown in Figure B.2. Volume 1 consists of the cone below the angle

α while Volume 2 is from α to the blue line which defines the new loss volume. The

fraction of lost particles is found by integrating the distribution below:

V olume 1 + V olume 2 =

ˆ π/2

0

ˆ vmax

0

4π
(κ
π

)3/2

v2 exp(−κv2) sin(φ)dvdφ (B.4)

First the expression is integrated with respect to velocity to an arbitrary value vmax:

ˆ v

0

4π
(κ
π

)3/2

u2 exp(−κu2) sin(φ)du =

(√
π erf(

√
κv)

4κ3/2
− v exp(−κv2)

2κ

) ∣∣∣vmax

0
(B.5)

The above expression is substituted into the full integral to yield the following ex-

pression for Volume 1:

V olume 1 =

ˆ α

0

(√
π erf(

√
κv)

4κ3/2
− v exp(−κv2)

2κ

) ∣∣∣∞
0

sin(φ)4π
(κ
π

)
|3/2dφ (B.6)

= 1− cos(α) (B.7)

Integration over Volume 1 leads to just the traditional loss cone up to the angle α.

The remainder of the loss cone is in Volume 2. This volume is bounded by α and

the expression below for vmax:
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Figure B.3: Loss volumes for confining electric field.

vmax =

√
Φ

1−R sin2 φ
(B.8)

This is all substituted into the full expression to yield the expression below:

V olume 2 =

ˆ π/2

α

(√
π erf(

√
κv)

4κ3/2
− v exp(−κv2)

2κ

) ∣∣∣∞
0

sin(φ)4π
(κ
π

)
|3/2dφ

=

ˆ π/2

α

[
erf

(√
κΦ

1−R sin2 φ

)
− 2

√
κΦ

π(1−R sin2(φ))
exp

(
−κΦ

1−R sin2(φ)

)]
dφ

(B.9)

The above expression is then evaluated numerically and added to the fraction for

Volume 1 to get the total combined fraction of lost particles.

A similar process is used to calculate the fraction of particles trapped for a con-

fining field. The loss volume is shrunk in this case. The new volumes are shown in

Figure B.3.

For this problem it is easier to calculate the fraction of particles trapped and then

use this to find the fraction of lost particles. First the volume is integrated from the

usual loss cone to π/2 to get the fraction of particles trapped in Volume 1:
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V olume 1 =

ˆ φ/2

α

(√
π erf(

√
κv)

4κ3/2
− v exp(−κv2)

2κ

) ∣∣∣∞
0

sin(φ)4π
(κ
π

)
|3/2dφ (B.10)

= cos(α) (B.11)

The particles trapped in Volume 2 is then found by numerically integrating the ex-

pression below:

V olume 2 =

ˆ α

0

(√
π erf(

√
κv)

4κ3/2
− v exp(−κv2)

2κ

) ∣∣∣∞
0

sin(φ)4π
(κ
π

)
|3/2dφ

(B.12)

=

ˆ π/2

α

[
erf

(√
κΦ

1−Rsin2φ

)
− 2

√
κΦ

π(1−R sin2(φ))
exp

(
−κΦ

1−R sin2(φ)

)]
dφ

(B.13)

The resulting factions are then added to get the total fraction of trapped particles.
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APPENDIX C

Maxwellian Source and Collector in a Diverging

Magnetic Field Simulation Parameters

C.1 Table of Simulation Parameters

Below is a summary of the parameters used in the verification simulations of

a Maxwellian plasma source guided by a diverging magnetic field into a collecting

boundary. The inputs to the solver are summarized in Table C.1 while parameters

used to compare the simulations (such as Larmor radii) are shown in Table C.1. The

first column summarizes the simulation by showing the parameters which were altered

compared to the default case. For instance, Xe,10B,Te=50eV refers to a case with

Xenon as the gas, ten times the applied field strength, and electrons at a temperature

of 50 eV. Larmor radii with the subscript a are calculated using the ion acoustic speed

as the input perpendicular velocity to consider the affects of the ion inertia which may

be gained by the presence of a sheath. Source densities are chosen so that the total

flux of electrons is constant for all simulations (at a given domain size). This is done

to insure that the source sheath structure is consistent with respect to the electrons

and the Debye length in the domain is similar across simulations. Simulations of a

domain which is ten times smaller (Mini) are performed to check scaling to a different
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Bmax Bmin ∇B L∇B mi n Ti Te
Default 2.7E-02 3.2E-03 1.5E-02 1.3E-01 1.7E-27 1.0E+15 3.0E+02 5.8E+04

10B 2.7E-01 3.2E-02 1.5E-01 1.3E-01 1.7E-27 1.0E+15 3.0E+02 5.8E+04
100B 2.7E+00 3.2E-01 1.5E+00 1.3E-01 1.7E-27 1.0E+15 3.0E+02 5.8E+04
0.1B 2.7E-03 3.2E-04 1.5E-03 1.3E-01 1.7E-27 1.0E+15 3.0E+02 5.8E+04
0.01B 2.7E-04 3.2E-05 1.5E-04 1.3E-01 1.7E-27 1.0E+15 3.0E+02 5.8E+04
0.2B 5.4E-03 6.5E-04 3.0E-03 1.3E-01 1.7E-27 1.0E+15 3.0E+02 5.8E+04
He 2.7E-02 3.2E-03 1.5E-02 1.3E-01 6.6E-27 1.0E+15 3.0E+02 5.8E+04
Ar 2.7E-02 3.2E-03 1.5E-02 1.3E-01 6.6E-26 1.0E+15 3.0E+02 5.8E+04

Ar,10B 2.7E-01 3.2E-02 1.5E-01 1.3E-01 6.6E-26 1.0E+15 3.0E+02 5.8E+04
Xe 2.7E-02 3.2E-03 1.5E-02 1.3E-01 2.2E-25 1.0E+15 3.0E+02 5.8E+04

Xe,10B 2.7E-01 3.2E-02 1.5E-01 1.3E-01 2.2E-25 1.0E+15 3.0E+02 5.8E+04
Te=1eV 2.7E-02 3.2E-03 1.5E-02 1.3E-01 1.7E-27 1.0E+15 3.0E+02 1.2E+04
Te=10eV 2.7E-02 3.2E-03 1.5E-02 1.3E-01 1.7E-27 2.0E+14 3.0E+02 1.2E+05

Te=10eV,Ti=10eV 2.7E-02 3.2E-03 1.5E-02 1.3E-01 1.7E-27 2.0E+15 1.2E+05 1.2E+05
Te=20eV 2.7E-02 3.2E-03 1.5E-02 1.3E-01 1.7E-27 4.0E+15 3.0E+02 2.3E+05
Te=50eV 2.7E-02 3.2E-03 1.5E-02 1.3E-01 1.7E-27 1.0E+16 3.0E+02 5.8E+05

Te=50eV,10B 2.7E-01 3.2E-02 1.5E-01 1.3E-01 1.7E-27 1.0E+16 3.0E+02 5.8E+05
Te=50eV,0.1B 2.7E-03 3.2E-04 1.5E-03 1.3E-01 1.7E-27 1.0E+16 3.0E+02 5.8E+05

Te=50eV,Ti=0.25eV 2.7E-02 3.2E-03 1.5E-02 1.3E-01 1.7E-27 1.0E+16 2.9E+03 5.8E+05
Te=50eV,Ti=0.25eV,0.2B 5.4E-03 6.5E-04 3.0E-03 1.3E-01 1.7E-27 1.0E+16 2.9E+03 5.8E+05
Ar,Te=50eV,Ti=0.25eV 2.7E-02 3.2E-03 1.5E-02 1.3E-01 6.6E-26 1.0E+16 2.9E+03 5.8E+05

Ar,Te=50eV,Ti=0.25eV,0.2B 5.4E-03 6.5E-04 3.0E-03 1.3E-01 6.6E-26 1.0E+16 2.9E+03 5.8E+05
Ar,Ti=5 2.7E-02 3.2E-03 1.5E-02 1.2E-01 1.3E-01 1.0E+16 5.8E+04 5.8E+04

Ti=0.25eV 2.7E-02 3.2E-03 1.5E-02 1.3E-01 1.7E-27 1.0E+15 2.9E+03 5.8E+04
Ti=0.25eV,10B 2.7E-01 3.2E-02 1.5E-01 1.3E-01 1.7E-27 1.0E+15 2.9E+03 5.8E+04

Ti=1eV 2.7E-02 3.2E-03 1.5E-02 1.3E-01 1.7E-27 1.0E+15 1.2E+04 5.8E+04
Ti=1eV,10B 2.7E-01 3.2E-02 1.5E-01 1.3E-01 1.7E-27 1.0E+15 1.2E+04 5.8E+04
Ti=1eV,100B 2.7E+00 3.2E-01 1.5E+00 1.3E-01 1.7E-27 1.0E+15 1.2E+04 5.8E+04

Ti=5eV 2.7E-02 3.2E-03 1.5E-02 1.3E-01 1.7E-27 1.0E+15 5.8E+04 5.8E+04
Mini 2.7E-02 3.2E-03 1.5E-02 1.3E-02 1.7E-27 1.0E+17 3.0E+02 5.8E+04

Mini,10B 2.7E-01 3.2E-02 1.5E-01 1.3E-02 1.7E-27 1.0E+17 3.0E+02 5.8E+04
Mini,100B 2.7E+00 3.2E-01 1.5E+00 1.3E-02 1.7E-27 1.0E+17 3.0E+02 5.8E+04
Mini,0.1B 2.7E-03 3.2E-04 1.5E-03 1.3E-02 1.7E-27 1.0E+17 3.0E+02 5.8E+04
Mini,2B 5.4E-02 6.5E-03 3.0E-02 1.3E-02 1.7E-27 1.0E+17 3.0E+02 5.8E+04

Table C.1: Plasma source with diverging magnetic field simulation parameters.

physical length. For the smaller domain simulations the source densities were chosen

to insure the Debye length remained the same fraction of the domain length.
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rL,i rL,e rL,a
√
rL,irL,e rL,inertial rL,i + rL,e

√
rL,arL,e rL,inertial,a rL,a + rL,e

Default 8.6E-03 2.8E-03 1.2E-01 4.9E-03 2.8E-03 1.1E-02 1.8E-02 5.6E-03 1.2E-01
10B 8.6E-04 2.8E-04 1.2E-02 4.9E-04 2.8E-04 1.1E-03 1.8E-03 5.6E-04 1.2E-02
100B 8.6E-05 2.8E-05 1.2E-03 4.9E-05 2.8E-05 1.1E-04 1.8E-04 5.6E-05 1.2E-03
0.1B 8.6E-02 2.8E-02 1.2E+00 4.9E-02 2.8E-02 1.1E-01 1.8E-01 5.6E-02 1.2E+00
0.01B 8.6E-01 2.8E-01 1.2E+01 4.9E-01 2.8E-01 1.1E+00 1.8E+00 5.6E-01 1.2E+01
0.2B 4.3E-02 1.4E-02 6.0E-01 2.4E-02 1.4E-02 5.7E-02 9.1E-02 2.8E-02 6.1E-01
He 1.7E-02 2.8E-03 2.4E-01 6.9E-03 2.8E-03 2.0E-02 2.6E-02 5.6E-03 2.4E-01
Ar 5.4E-02 2.8E-03 7.5E-01 1.2E-02 2.8E-03 5.7E-02 4.6E-02 5.6E-03 7.5E-01

Ar,10B 5.4E-03 2.8E-04 7.5E-02 1.2E-03 2.8E-04 5.7E-03 4.6E-03 5.6E-04 7.5E-02
Xe 9.8E-02 2.8E-03 1.4E+00 1.7E-02 2.8E-03 1.0E-01 6.2E-02 5.6E-03 1.4E+00

Xe,10B 9.8E-03 2.8E-04 1.4E-01 1.7E-03 2.8E-04 1.0E-02 6.2E-03 5.6E-04 1.4E-01
Te=1eV 8.6E-03 1.2E-03 5.4E-02 3.3E-03 1.3E-03 9.8E-03 8.2E-03 2.5E-03 5.5E-02
Te=10eV 8.6E-03 3.9E-03 1.7E-01 5.8E-03 4.0E-03 1.3E-02 2.6E-02 7.9E-03 1.7E-01

Te=10eV,Ti=10eV 1.7E-01 3.9E-03 2.4E-01 2.6E-02 7.9E-03 1.7E-01 3.1E-02 1.2E-02 2.4E-01
Te=20eV 8.6E-03 5.6E-03 2.4E-01 6.9E-03 5.6E-03 1.4E-02 3.6E-02 1.1E-02 2.4E-01
Te=50eV 8.6E-03 8.8E-03 3.8E-01 8.7E-03 8.8E-03 1.7E-02 5.8E-02 1.8E-02 3.9E-01

Te=50eV,10B 8.6E-04 8.8E-04 3.8E-02 8.7E-04 8.8E-04 1.7E-03 5.8E-03 1.8E-03 3.9E-02
Te=50eV,0.1B 8.6E-02 8.8E-02 3.8E+00 8.7E-02 8.8E-02 1.7E-01 5.8E-01 1.8E-01 3.9E+00

Te=50eV,Ti=0.25eV 2.7E-02 8.8E-03 3.8E-01 1.5E-02 8.9E-03 3.5E-02 5.8E-02 1.8E-02 3.9E-01
Te=50eV,Ti=0.25eV,0.2B 1.3E-01 4.4E-02 1.9E+00 7.7E-02 4.4E-02 1.8E-01 2.9E-01 8.8E-02 1.9E+00
Ar,Te=50eV,Ti=0.25eV 1.7E-01 8.8E-03 2.4E+00 3.8E-02 8.9E-03 1.8E-01 1.4E-01 1.8E-02 2.4E+00

Ar,Te=50eV,Ti=0.25eV,0.2B 8.4E-01 4.4E-02 1.2E+01 1.9E-01 4.4E-02 8.8E-01 7.2E-01 8.8E-02 1.2E+01
Ar, Ti=5 7.5E-01 2.8E-03 1.1E+00 4.6E-02 5.6E-03 7.5E-01 5.4E-02 8.4E-03 1.1E+00

Ti=0.25eV 2.7E-02 2.8E-03 1.2E-01 8.6E-03 2.9E-03 2.9E-02 1.8E-02 5.7E-03 1.3E-01
Ti=0.25eV,10B 2.7E-03 2.8E-04 1.2E-02 8.6E-04 2.9E-04 2.9E-03 1.8E-03 5.7E-04 1.3E-02

Ti=1eV 5.3E-02 2.8E-03 1.3E-01 1.2E-02 3.3E-03 5.6E-02 1.9E-02 6.1E-03 1.3E-01
Ti=1eV,10B 5.3E-03 2.8E-04 1.3E-02 1.2E-03 3.3E-04 5.6E-03 1.9E-03 6.1E-04 1.3E-02
Ti=1eV,100B 5.3E-04 2.8E-05 1.3E-03 1.2E-04 3.3E-05 5.6E-04 1.9E-04 6.1E-05 1.3E-03

Ti=5eV 1.2E-01 2.8E-03 1.7E-01 1.8E-02 5.6E-03 1.2E-01 2.2E-02 8.4E-03 1.7E-01
Mini 8.6E-02 2.8E-02 1.2E+00 4.9E-02 2.8E-02 1.1E-01 1.8E-01 5.6E-02 1.2E+00

Mini,10B 8.6E-03 2.8E-03 1.2E-01 4.9E-03 2.8E-03 1.1E-02 1.8E-02 5.6E-03 1.2E-01
Mini,100B 8.6E-04 2.8E-04 1.2E-02 4.9E-04 2.8E-04 1.1E-03 1.8E-03 5.6E-04 1.2E-02
Mini,0.1B 8.6E-01 2.8E-01 1.2E+01 4.9E-01 2.8E-01 1.1E+00 1.8E+00 5.6E-01 1.2E+01
Mini,2B 4.3E-02 1.4E-02 6.0E-01 2.4E-02 1.4E-02 5.7E-02 9.1E-02 2.8E-02 6.1E-01

Table C.2: Plasma source with diverging magnetic field non-dimensional numbers.
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APPENDIX D

Plasma Source in a Converging Diverging

Magnetic Field Simulation Parameters

D.1 Table of Simulation Parameters

Below is a summary of the parameters used in the verification simulations of a

plasma source located in a converging diverging magnetic field. The inputs to the

solver are summarized in Table D.1 while parameters used to compare the simulations

(such as Larmor radii) are shown in Table D.1. The first column of these tables

summarized how each simulation is different from the default simulation. For instance,

Xe,10B,Te=50eV refers to a case with Xenon as the gas, ten times the applied field

strength, and electrons at a temperature of 50 eV. Larmor radii with the subscript

a are calculated using the ion acoustic speed as the input perpendicular velocity to

consider the affects of the ion inertia which may be gained by the presence of a sheath.
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Bmax Bmin ∇B L∇B mi Ti Te
Default 2.5E-02 1.4E-02 1.1E-01 1.8E-01 1.7E-27 3.0E+02 5.8E+04

10B 2.5E-01 1.4E-01 1.1E+00 1.8E-01 1.7E-27 3.0E+02 5.8E+04
0.1B 2.5E-03 1.4E-03 1.1E-02 1.8E-01 1.7E-27 3.0E+02 5.8E+04
0.2B 5.1E-03 2.9E-03 2.2E-02 1.8E-01 1.7E-27 3.0E+02 5.8E+04
0.01B 2.5E-04 1.4E-04 1.1E-03 1.8E-01 1.7E-27 3.0E+02 5.8E+04

Te=20eV 2.5E-02 1.4E-02 1.1E-01 1.8E-01 1.7E-27 3.0E+02 2.3E+05
Te=50eV 2.5E-02 1.4E-02 1.1E-01 1.8E-01 1.7E-27 3.0E+02 5.8E+05

Te=50eV,10B 2.5E-01 1.4E-01 1.1E+00 1.8E-01 1.7E-27 3.0E+02 5.8E+05
Te=50eV,0.1B 2.5E-03 1.4E-03 1.1E-02 1.8E-01 1.7E-27 3.0E+02 5.8E+05

Ti=1eV 2.5E-02 1.4E-02 1.1E-01 1.8E-01 1.7E-27 1.2E+04 5.8E+04
Ti=5eV 2.5E-02 1.4E-02 1.1E-01 1.8E-01 1.7E-27 5.8E+04 5.8E+04

Ti=5eV,10B 2.5E-01 1.4E-01 1.1E+00 1.8E-01 1.7E-27 5.8E+04 5.8E+04
Ti=10eV,Te=10eV 2.5E-02 1.4E-02 1.1E-01 1.8E-01 1.7E-27 1.2E+05 1.2E+05

Ti=10eV,Te=10eV,10B 2.5E-01 1.4E-01 1.1E+00 1.8E-01 1.7E-27 1.2E+05 1.2E+05
He,Ti=0.1eV 2.5E-02 1.4E-02 1.1E-01 1.8E-01 6.6E-27 1.2E+03 5.8E+04

He,Ti=0.1eV,10B 2.5E-01 1.4E-01 1.1E+00 1.8E-01 6.6E-27 1.2E+03 5.8E+04
He,Ti=0.1eV,0.1B 2.5E-03 1.4E-03 1.1E-02 1.8E-01 6.6E-27 1.2E+03 5.8E+04

He,Ti=1eV 2.5E-02 1.4E-02 1.1E-01 1.8E-01 6.6E-27 1.2E+04 5.8E+04
He,Ti=1eV,10B 2.5E-01 1.4E-01 1.1E+00 1.8E-01 6.6E-27 1.2E+04 5.8E+04

Ar,Ti=1eV 2.5E-02 1.4E-02 1.1E-01 1.8E-01 6.6E-26 1.2E+04 5.8E+04
Ar,Ti=1eV,10B 2.5E-01 1.4E-01 1.1E+00 1.8E-01 6.6E-26 1.2E+04 5.8E+04
Ar,Ti=1eV,0.1B 2.5E-03 1.4E-03 1.1E-02 1.8E-01 6.6E-26 1.2E+04 5.8E+04

Ar,Ti=5eV 2.5E-02 1.4E-02 1.1E-01 1.8E-01 6.6E-26 5.8E+04 5.8E+04
Mini 2.5E-02 1.4E-02 1.1E+00 1.8E-02 1.7E-27 3.0E+02 5.8E+04

Mini,10B 2.5E-01 1.4E-01 1.1E+01 1.8E-02 1.7E-27 3.0E+02 5.8E+04
Mini,100B 2.5E+00 1.4E+00 1.1E+02 1.8E-02 1.7E-27 3.0E+02 5.8E+04
Mini,2B 5.1E-02 2.9E-02 2.2E+00 1.8E-02 1.7E-27 3.0E+02 5.8E+04

Table D.1: Source with converging-diverging magnetic field simulation parameters.

rL,i rL,e rL,a
√
rL,irL,e rL,inertial rL,i + rL,e

√
rL,arL,e rL,inertial,a rL,a + rL,e

Default 4.5E-03 1.5E-03 6.3E-02 2.6E-03 1.5E-03 6.0E-03 9.7E-03 3.0E-03 6.5E-02
10B 4.5E-04 1.5E-04 6.3E-03 2.6E-04 1.5E-04 6.0E-04 9.7E-04 3.0E-04 6.5E-03
0.1B 4.5E-02 1.5E-02 6.3E-01 2.6E-02 1.5E-02 6.0E-02 9.7E-02 3.0E-02 6.5E-01
0.2B 2.3E-02 7.4E-03 3.2E-01 1.3E-02 7.4E-03 3.0E-02 4.8E-02 1.5E-02 3.2E-01
0.01B 4.5E-01 1.5E-01 6.3E+00 2.6E-01 1.5E-01 6.0E-01 9.7E-01 3.0E-01 6.5E+00

Te=20eV 4.5E-03 3.0E-03 1.3E-01 3.7E-03 3.0E-03 7.5E-03 1.9E-02 5.9E-03 1.3E-01
Te=50eV 4.5E-03 4.7E-03 2.0E-01 4.6E-03 4.7E-03 9.2E-03 3.1E-02 9.3E-03 2.0E-01

Te=50eV,10B 4.5E-04 4.7E-04 2.0E-02 4.6E-04 4.7E-04 9.2E-04 3.1E-03 9.3E-04 2.0E-02
Te=50eV,0.1B 4.5E-02 4.7E-02 2.0E+00 4.6E-02 4.7E-02 9.2E-02 3.1E-01 9.3E-02 2.0E+00

Ti=1eV 2.8E-02 1.5E-03 6.9E-02 6.5E-03 1.8E-03 3.0E-02 1.0E-02 3.2E-03 7.1E-02
Ti=5eV 6.3E-02 1.5E-03 8.9E-02 9.7E-03 3.0E-03 6.5E-02 1.1E-02 4.4E-03 9.1E-02

Ti=5eV,10B 6.3E-03 1.5E-04 8.9E-03 9.7E-04 3.0E-04 6.5E-03 1.1E-03 4.4E-04 9.1E-03
Ti=10eV,Te=10eV 8.9E-02 2.1E-03 1.3E-01 1.4E-02 4.2E-03 9.1E-02 1.6E-02 6.3E-03 1.3E-01

Ti=10eV,Te=10eV,10B 8.9E-03 2.1E-04 1.3E-02 1.4E-03 4.2E-04 9.1E-03 1.6E-03 6.3E-04 1.3E-02
He,Ti=0.1eV 1.8E-02 1.5E-03 1.3E-01 5.1E-03 1.5E-03 1.9E-02 1.4E-02 3.0E-03 1.3E-01

He,Ti=0.1eV,10B 1.8E-03 1.5E-04 1.3E-02 5.1E-04 1.5E-04 1.9E-03 1.4E-03 3.0E-04 1.3E-02
He,Ti=0.1eV,0.1B 1.8E-01 1.5E-02 1.3E+00 5.1E-02 1.5E-02 1.9E-01 1.4E-01 3.0E-02 1.3E+00

He,Ti=1eV 5.6E-02 1.5E-03 1.4E-01 9.1E-03 1.8E-03 5.8E-02 1.4E-02 3.2E-03 1.4E-01
He,Ti=1eV,10B 5.6E-03 1.5E-04 1.4E-02 9.1E-04 1.8E-04 5.8E-03 1.4E-03 3.2E-04 1.4E-02

Ar,Ti=1eV 1.8E-01 1.5E-03 4.4E-01 1.6E-02 1.8E-03 1.8E-01 2.5E-02 3.2E-03 4.4E-01
Ar,Ti=1eV,10B 1.8E-02 1.5E-04 4.4E-02 1.6E-03 1.8E-04 1.8E-02 2.5E-03 3.2E-04 4.4E-02
Ar,Ti=1eV,0.1B 1.8E+00 1.5E-02 4.4E+00 1.6E-01 1.8E-02 1.8E+00 2.5E-01 3.2E-02 4.4E+00

Ar,Ti=5eV 4.0E-01 1.5E-03 5.6E-01 2.4E-02 3.0E-03 4.0E-01 2.9E-02 4.4E-03 5.6E-01
Mini 4.5E-02 1.5E-02 6.3E-01 2.6E-02 1.5E-02 6.0E-02 9.7E-02 3.0E-02 6.5E-01

Mini,10B 4.5E-03 1.5E-03 6.3E-02 2.6E-03 1.5E-03 6.0E-03 9.7E-03 3.0E-03 6.5E-02
Mini,100B 4.5E-04 1.5E-04 6.3E-03 2.6E-04 1.5E-04 6.0E-04 9.7E-04 3.0E-04 6.5E-03
Mini,2B 2.3E-02 7.4E-03 3.2E-01 1.3E-02 7.4E-03 3.0E-02 4.8E-02 1.5E-02 3.2E-01

Table D.2: Source with converging-diverging magnetic field non-dimensional param-
eters.
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APPENDIX E

Retarding Potential Analyzer for Ion Energy

Analysis

E.1 Introduction

The University of Michigan Plasmadynamics and Electric Propulsion Laboratory

is currently developing the CubeSat Ambipolar Thruster which utilizes a magnetic

nozzle. Work was performed to support the efforts of the experimentalists working

on CAT, particularly the setup of a a retarding potential analyzer (RPA) critical to

studying the CAT plume ion energetics.

E.2 Retarding Potential Analyzer Basics

Retarding Potential Analyzers (RPA) are diagnostics used to measure ion energy

distribution functions in a plasma. [116] Ion temperature and drift velocity can then

be determined from the ion energy distribution function. The probe consists of a

series of grids which act as a filter only allowing ions above a threshold energy to

be measured at a collecting electrode. The measured collector current and applied
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Figure E.1: Schematic of four grid RPA. Typical potential profile is shown.

filter voltage are used to determine ion energy distributions. RPA’s are a valuable

diagnostic for determining thruster performance and ion energy distribution functions.

A schematic of a typical RPA is shown in Figure E.1. The number of grids in

an RPA depends on the specific design, but a typical arrangement includes the grids

shown. These grids are separated from one another by insulators (e.g. MACOR/glass-

mica), typically in the form of a washer. An insulator (e.g. phenolic) sleeve holds the

assembly which is then placed inside a metallic body (e.g. stainless steel). The grids

are made of a conducting material (e.g. stainless steel, molybdenum) as well as the

collector (e.g. copper, tungsten coated stainless steel). Typical assemblies are held

together by compression, but the design is not limited to this approach.

The first grid is electrically floating to minimize the perturbation of the plasma by

the probe and attenuate the amount of plasma flowing into the RPA, an important

consideration which will be discussed later. The second grid is biased negatively to

repel all electrons from the plasma. The third grid potential is swept over a range of

voltages and is used to filter ions. The fourth grid is biased negatively to suppress

any electrons which are generated inside the RPA due to secondary electron emission.
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Figure E.2: Example RPA current-voltage trace.

Finally the collector is biased negatively (not as negatively as suppression grid) to

insure good current collection. An example of the voltage profile in a four grid RPA is

shown in Figure E.1. Additional grids may be added to the RPA, an example of this

is adding additional grids on the plasma side of the floating grid in order to further

attenuate the plasma.

An example of a good current(collector)-voltage(ion retarding) trace for an RPA

is shown in Figure E.2. The current should start with zero slope and then begin to

decrease at values near the plasma potential and/or beam energy. All voltages are

referenced to ground, which results in all the ion current being collected initially as

the ions are accelerated from the plasma potential to ground (if the plasma potential

is positive). Since all voltages are applied referenced to ground, the beam energy is

found by subtracting the plasma potential (measured by an emissive or Langmuir

probe) from the beam energy.

The current-voltage trace can be used to determine the ion energy distribution

function. The current collected by the probe (I) is found by the following expression

based on the flux of particles into the probe. [116, 147]
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I = qA

ˆ ∞
√
|2eVi,rep/m|

f(v)vdv (E.1)

The derivative of this expression with respect to the ion repulsion voltage (Vi,rep)

then gives the following relation between the current and the distribution function in

which v =
√

2eVi,rep/m.

dI

dVi,rep
∝ −f(v) (E.2)

Therefore, the ion energy distribution function is found by simply taking the

derivative of the current-voltage trace.

E.2.1 Design Considerations

The important design considerations for an RPA include the grid spacing, grid

orifice size, grid transparency, and materials used.

E.2.1.1 Grid Spacing

An RPA works by rejecting all the electrons and only allowing ions to pass through

the grids resulting in a non-neutral gas in the diagnostic. If the density of the plasma

is too high, space-charge limitations become important because the voltages applied

by the grids can be shielded by the high density of ions. When this occurs the grids

do not effectively filter the ions. A simple analysis by Hutchison suggests that the

grid spacing is constrained by the following equation: [116]

∆xgrid < 1.02λD

(
e∆V

Te(eV )

)3/4

(E.3)

The spacing (∆xgrid) is limited by the smallest voltage difference applied between

the grids (assuming the same spacing between all grids). Physically, when the voltage

is small it is easier for the space charge to shield out the applied voltage. The smallest
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voltage difference typically occurs between the electron repelling grid and the ion

retarding grid when the ion retarding voltage is zero and no ions are filtered out. The

lowest voltage between the electron and ion repelling grids is typically a few times

the electron temperature, resulting in the general rule of thumb that ∆xgrid ≤ 4λD.

Since the Debye length scales with 1/
√
n, the grid gap size can become prohibitively

small for very high density plasmas.

The Debye length used in these calculations is typically the Debye length of the

ambient plasma. However, a more accurate approach is to use the density of the

plasma which is attenuated by the grids (only a fraction of the plasma flux makes it

through the grid). Adding additional attenuating grids with low transparency will

lead to a lower density of plasma in the RPA, relaxing the restrictions on the grid

spacing. This, however, adds additional uncertainties by adding more surfaces with

which the plasma interacts.

E.2.1.2 Orifice Size

The size of the orifice or the mesh used for the grids is an important parameter

because it determines whether or not plasma can enter into RPA. The effect of the

grids are only felt on a distance of ≈ λD due to charge shielding, therefore, plasma

will typically start to enter the RPA unaffected by the grids if the orifice size is larger

than the Debye length. The design criteria for the orifice size requires that the orifice

size be < 2λD. [147]

The effects of lensing on the particles passing through the grids is also an important

consideration. Lensing occurs when the electric field on either side of a grids is

different. [147] The electric field must be continuous through the orifice, resulting in

curved equipotential lines. These curved lines results in non-axial electric field which

can divert particles from the axial direction causing them to collide with other grids

resulting in a loss of flux. This effect is considered negligible if the grids are close to
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one another. The primary effect of lensing is flux losses.

Lastly, the inlet of the RPA must also be the smallest aperture of the system

in order to avoid transverse momentum in the device. [147] A discussion on the

resolution of these devices is given by Bohm et al. [147]

E.2.1.3 Grid Transparency

The transparency of the grids is an important parameter for determining the

amount of current seen by the collector. The required transparency is determined by

the device used to measure current at the collector and the plasma properties. The

maximum amount of current arriving at the collector can be estimated by assuming

the ions flux into the RPA inlet with the Bohm velocity. This flux is then attenuated

by the transparency (ηa). This results in the following expression for the approximate

collected current.

Icol = ηaeAinletn

√
kTe
mi

(E.4)

The overall diagnostic transparency as well as the device used to collect correct must

be designed so that desired current resolution is achieved for the device.

E.2.1.4 Materials

There are a few general considerations that must be taken into account for the

materials used in the RPA. Low outgassing materials should be used for the insulator

to prevent the build up of neutrals in the RPA. Large neutral densities in the RPA

can results in collisions which remove energy from the ions, leading to errors in the

measurement. An important resource for this can be found from NASA. [148] Exam-

ples of good materials for the insulators and or washers/insulators are MACOR and

glass-mica.

Generally the conductors used for the grids and collector should be materials
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with low secondary electron emission and low sputtering yields for the energies con-

sidered in the plasma. Both of these parameters are important because they affect

the amount of charge in the system, but is particularly important for the collector

where they change the current collected. Although the material choice is dependent

on the operating conditions, generally materials such as stainless steel, nickel, and

molybdenum are used.

E.2.2 Operational Considerations

E.2.2.1 Grid Voltages

The choice of the magnitude of the grid voltages has an important effect on the

performance of the RPA. The electron repelling grid is typically set to a few times

the electron temperature to repel all the electrons.

The ion grid is swept over the desired range of voltages were the ion energies will

be filtered. Typically this starts at zero for the grid and extends to some multiple of

the maximum ion energy. A negative voltage may also be used as the starting point

to verify that the slope of the current is zero initially as required.

The secondary electron suppression grid voltage should be set as the lowest voltage

in the RPA. This insures that any secondary electrons created by the other grids in

the RPA will be accelerated out toward the plasma while secondaries created by the

collector will be accelerated back to the collector (resulting in no net current due to

secondaries). [147] If this is not the lowest voltage in the system electrons can get

trapped between the secondary electron suppression grid and the electron repelling

grid. These electrons can then collide with neutrals and create additional ions.

Lastly, the collector voltage should be few volts greater (still negative) than the

suppression grid voltage. This insures accurate current collection and forces sec-

ondaries which are emitted from the collector back to the collector by applying a

negative voltage between the collector and the secondary electron suppression grid.
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All voltages are applied with respect to the facility ground which means that ion

energies measured are with respect to the ground as well. The plasma potential must

be known as well to find the ion kinetic energy in the plasma.

E.2.2.2 Effects of Magnetic Fields

A strong magnetic field may have an effect on the RPA measurements which

becomes an issue if the magnetic field is not aligned with the axis of the RPA. A

transverse field may result in sheath effects at the inlet which results in the ions having

a fractional energy gain due to the pre-sheath. [116] If the transverse magnetic field

is strong enough for a significant fraction of ions to be magnetized, it can significantly

affect the measurements by limiting the flow of the lower energy, magnetized ions.

Generally in a transverse magnetic field, the ion Larmor radius should be much greater

than the dimensions of the RPA to avoid these effects

E.2.2.3 Effects of Neutral Collisions

The presence of neutrals can be detrimental to the measurements of the RPA. If

a significant number of neutrals are inside the RPA ion scattering will decrease the

energy of the ions and also limit the flux of ions. This results in the ions no longer

being representative of the plasma from which they originated. The RPA dimensions

should be much smaller than the ion-neutral mean free path.

Neutrals in the device can also result in additional ionization if electrons are

generated in the device due to secondary electron emission or imperfect repulsion

from the electron repelling grid. Again this new plasma is not representative of the

plasma which is being measured outside the RPA and will result in measurement

errors. This effect can be mitigated by insuring the the secondary electron repulsion

grid is the lowest voltage in the system as discussed previously. A rigorous analysis

can be performed by consulting the Paschen curve and considering maximum electric

242



Figure E.3: Micro RPA in vacuum chamber. RPA is on the left, CAT is on the right.

field (∆V/∆x) in the system.

E.2.2.4 Diagnosing errors

Bohm et. al give a great outline for diagnosing errors in RPA traces which should

be referenced for help. [147] Some of these errors include non-zero currents as the

ion repelling voltage increases and initial increases in current near zero volts. These

effects can occur for incorrectly chosen grid voltages or large neutral densities.

E.3 RPA Setup

The RPA used for these measurements is known as the micro RPA (MRPA). The

MRPA is a four grid RPA which was designed to measure ion energies in another

helicon source at PEPL.[149] An image of this RPA in the vacuum chamber is shown

in Figure E.3.

The MRPA had a 19-mm diameter stainless steel casing and a macor sleeve which

is inserted in the casing. The grids were placed in the macor sleeve and are separated

by macor washers which are approximately 0.5 mm thick. The grids were made out

of stainless steel which was photochemically etched. The collector is a nickel plate.
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The assembly of grids, washer, and collector were pressure fit inside the macor sleeve

by a spring.

The voltages to the grids were applied with respect to ground using laboratory

power supplies. The electron repelling and electron suppression grids were applied

with Instek GPR-30H-10D power supplies. The ion retarding and collector biases

were Keithley 2410 and 2400 sources respectively. Currents were collected using a

Keithley 6485 picoammeter.

E.4 Validation

The RPA was tested with a Commonwealth ion source to validate its accuracy and

has since been used to diagnose the CAT plume at a variety of operating conditions.

[140]

E.4.1 Ion Source Setup

The ion source used for validation was a 3 cm diameter Commonwealth Ion Source.

A schematic of the electrical connections used is shown in Figure E.4. The ion source

requires five power supplies: the internal cathode, discharge, beam, acceleration grid,

and neutralizer cathode supplies. The power supplies used are summarized in Table

E.1. The neutralizer cathode was made by coiling thoriated tungsten. The exact

internal cathode material was unknown, but was likely also a type of tungsten wire.

The DC power supplies were used for the cathodes in this setup, but typically AC

power supplies are used to allow the beam to be visible.

E.4.2 Results

The ion source settings used for the validation are summarized in the Table E.2.

These values were read from the dials on the power supply so they may not be as

accurate as desired and were not independently measured as they should be.
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Figure E.4: Schematic of ion source electrical setup for RPA testing.

Table E.1: Summary of ion source power supplies.

Internal Cathode Sorenson DCS 33-33
Discharge Sorensen DCS 600-1.7

Beam Sorensen DCS 600-1.7E
Acceleration Grid Sorensen DCS 600-1.7E

Neutralizer Cathode Sorensen DCS 40-25

Table E.2: Ion source power supplies settings for RPA testing.

8 SCCM 12 SCCM
Voltage (V) Current (A) Voltage (V) Current (A)

Internal Cathode 4.9 4.6 5.0 4.6
Discharge 51 0.017 55 0.018

Beam 300 0.004 300 0.004
Acceleration Grid 20 0.002 20 0.004

Neutralizer Cathode 29.1 4.4 29.3 4.4
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Figure E.5 below shows the ion energy distributions measured using the RPA

positioned 50 cm downstream from the Commonwealth ion source. The ion source

was run with argon. As shown in Table E.2, the beam voltage was set to 300 V, which

is clearly seen in the 8 SCCM operating condition for the ion source, validating this

diagnostic. The high flow-rate case had high background pressures, which resulted

in the lower energy plasma potential peak as well as the overall noise of the data.

The energy of this peak was confirmed to be the plasma potential by an independent

emissive probe measurement. A plasma potential peak is expected in conditions

where there are sufficient neutral collisions which both spread out the beam and also

result in the formation of low-energy charge exchange ions with energies equal to the

local plasma potential. The background pressures for 8 SCCM and 12 SCCM were

1.78 × −5 and 2.69 × 10−5 Torr respectively when testing started at each flow rate

setting. The pressures while running at 12 SCCM may have been higher because

the pressures began creeping up during the 12 SCCM test and eventually saturated

the cryo-pumps. The pressure for 12 SCCM may have been nearer to 4.67 × 10−4

Torr. The charge exchange mean free path for the two pressures 2.69×10−5 Torr and

4.67×10−4 Torr are around 5.9 m and 0.34 m (less than the distance from the source

to the RPA) respectively. The appearance of the plasma potential peak would suggest

that there is a high presence of neutrals and that at the time of the measurement the

background density was at the higher.

E.5 Results and Future Work

This diagnostic has been extensively used for studying the CubeSat Ambipolar

Thruster plasma plume. [140] An example of some of these plots is show in Figure

E.6. In this figure measurements are shown of two CAT operating conditions. In the

diffuse mode no beam is seen and only a plasma potential peak is measured. In the

“blue” mode a beam as well as a plasma potential peak is measured. This diagnostic
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Figure E.5: Ion energy distributions measured for ion source with a beam voltage of
300 V.

confirmed the presence of ion acceleration in the CAT plume through the formation

of a high energy beam. Plasma potential peaks were also independently verified with

emissive probe measurements.

This diagnostic has been and will be extensively used in the future to diagnose

the ion energetics and operating conditions. It will be used to spatially map the ion

acceleration characteristics in the plume. [140] This data will be compared with

the simulation results of the Q1D code to determine the physics behind the ion

acceleration and also validate the outputs of the code. Development of an even

smaller nano RPA was initiated to enable measurements closer to the thruster without

perturbing the plasma. This will be completed in the future.
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(a) Measurement in diffuse mode with no
beam.

(b) Measurement in blue mode with beam.

Figure E.6: Ion energy measurements in the CAT plume demonstrating beam forma-
tion.
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