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Abstract 

Cytokines are protein biomarkers secreted by immune cells that serve as 

mediators in the immune system. The functional phenotypes of immune cells are 

important in recognizing immune functions and often determined by the dynamic 

cytokine secretion behaviors of immune cells. As a result, many researchers have 

attempted to quantify cytokines to develop a new approach to immune diagnosis and 

therapy. The lack of rapid, sensitive, multiplexed time-course cytokine monitoring 

techniques poses significant challenges to these research efforts.  To fill this 

technological gap, this thesis has developed label-free biosensing platforms for rapid and 

sensitive cytokine detection. 

In the first part of this thesis, an MoS2-based field-effect transistor (FET) 

biosensor was developed to detect cytokines. This work advanced critical device physics 

by leveraging the excellent electronic/structural properties of TMDCs in biosensing 

applications as well as the research capability in analyzing biomolecular interactions with 

a fM-level sensitivity.  

In the second part, we demonstrated a nanoparticle based localized surface 

plasmon resonance (LSPR) biosensing device integrated with microfluidic technology. 

The quantitative characterization of cytokine secretion behaviors from T-cells that are 
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altered by an immunosuppressive drug was studied at high temporal resolution. The 

biosensors achieved precise measurements with low operating sample volume (~1 µL), 

short assay time (~ 30 min), heightened sensitivity (~20-30 pg/mL), and negligible sensor 

crosstalk. Data obtained from the multi-cytokine secretion profiles provided a 

comprehensive picture of the time-varying cellular functional state during pharmacologic 

immunosuppression.  

In the last part, integrated LSPR biosensor within a microfluidic system was 

developed for cell-based immune functional analysis. By placing cells near the sensing 

elements, we achieved in-situ measurement of the cytokine secretion behavior of immune 

cells. This platform has potential to facilitate real-time continuous measurement of the 

concentration of cell-secreted cytokines.  The extended function of this platform may 

further allow us to measure cytokine secretion rate of cells to extract both the magnitude 

and time constant of the cellular response to an immunological environmental change.  

Compared to previous labeling techniques for cytokine detection, the label-free 

FET and LSPR cytokine detection techniques are able to provide rapid, highly sensitive 

biosensing platforms, suitable for capturing the dynamic nature of immune response. 

Furthermore, the multiplexed detection capability integrated in a microfluidic system 

enables us to understand the cytokine-regulated functional characteristics of immune 

system. These platforms hold significant promise for point-of-care applications in clinical 

settings.  
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          Chapter 1    

Introduction 

 

 

1.1   Introduction and Research Background 

The immune system is a complex mechanism for the human host from pathogens, 

such as viruses and bacteria. The organs, tissues, cells and cell secreted protein 

biomarkers in the immune system work together to protect the body from external 

environments. Immune cells dynamically change their immuno-functional phenotypes, 

and such a change reflects the immune condition of the host.  Some of the immunological 

functionality changes of immune cells are manifested by alterations of the cells’ cytokine 

secretion behaviors. 

Cytokines are small cell-secreted biomarkers, working as mediators and 

modulators in the immune system and work in the complex network to regulate the 

differentiation, growth, and inflammatory response of cells. Many researchers have been 

fascinated by the multifaceted roles of cytokines to tightly regulate and balance the 

immune system, and attempted to quantify cytokine molecules for screening infectious 

diseases or drug treatment and development (Figure 1.1). So far, many researchers 
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exploited the quantification of cytokine biomarkers to understand the immune condition 

of the patients for various immune related diseases. In some immune related diseases, the 

shifting between pro-inflammation and anti-inflammation statuses is often extremely 

dynamic and rapid while involving a complex cytokine communication network. In such 

cases, a rapid immunoassay that affords comprehensive characterization and quantitative 

analysis of multiple cytokine species secreted from immune cells is the key to precisely 

determine the variations and the dynamic characteristics of immune system. 

 

Figure 1.1: Concept of protein secretion response of immune cell to extracellular toxic 
stimulation. 

Current gold standard methods for quantifying cytokines are enzyme-linked 

immunosorbent assay (ELISA) and bead-based immunoassay. In these techniques, target 

biomolecules are tagged with labels and the signal from the labels represent the quantity 

of target biomolecules in the sample. These labeling methods involve several sample 

preparation processes including multiple washing steps, and therefore they require long 

assay time between sampling to detection. Researchers were motivated to develop 

various cytokine biosensors, overcoming the bottlenecks of the conventional 

immunoassay techniques, to address clinical needs for disease diagnosis and immune 

system analysis by quantification of cytokines motivate. To capture the dynamic variation, 

the cytokine quantifying biosensors should be rapid, sensitive enough to detect subtle 
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variations in the cytokine secretion behavior, and able to provide information of a wide 

variety of cytokines for a comprehensive understanding of immune functional changes.  

Label-free biosensing is a promising approach to measure immune cell-secreted 

cytokines while meeting the aforementioned requirements; they are less laborious assay 

by eliminating labels for the sensing, they quantify biomarker analytes in a physiological 

sample solution in a non-destructive manner, and thye offer a rapid and highly sensitive 

detection platform. Moreover, label-free biosensors have high potential for real-time 

monitoring of immune condition change which may provide a clear picture to understand 

time-varying cytokine-mediated immune responses. A previous study reviewed [1] 

various types of label-free cytokine biosensing platforms developed based on the signal 

producing mechanisms, including mechanical, electrical, optical, and plasmonic sensors. 

In the review, they pointed out the significance of the sensitivity (around 10 pg/mL) and 

speed (sample-to-answer time < 30 min) in cytokine detection biosensors for effective 

immune functional analysis (Figure 1. 2). Of note, not all label-free biosensors meet the 

requirements to reach such sensitivity and speed. Among those mentioned biosensors, 

electrochemical and localized surface plasmon resonance (LSPR) plasmonic detection 

schemes have the greatest promise for meeting the criteria to achieve high sensitivity and 

speed for cytokine assay. Thus in this thesis work, we focused on developing FET 

biosensors which is one of the electrochemical sensor and LSPR biosensor for analyzing 

cytokine assays, providing a rapid, highly sensitive platforms which has high potential to 

help researchers clearly understand immune function response. 

An additional application of label-free biosensor for quantifying cytokine is a 

process called cytokine secretion assay. This process provides the means to quantify 
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cytokine molecules secreted by immune cells under endotoxin exposure and allows for 

characterizing immune cells’ functional responses to infection, external stimulation, and 

drug modulation. Cytokine-mediated cellular functional responses are often extremely 

dynamic and rapid while involving various types of cytokines. Thus, the cytokine 

secretion assay is a good candidate to study with rapid, highly sensitive label-free 

biosensing techniques which we are dealing in this thesis work. However, general FET 

biosensors do not provide suitable platform for cytokine secretion assay, since they are 

susceptible to background noise when using complex physiological fluid sample. In 

cytokine secretion assay, various types of cell secreted cytokines are included in the 

fluidic sample and this hinders FET sensors to precisely detect target cytokines. 

Accordingly, only LSPR biosensing technique will be developed for cytokine secretion 

assay in this dissertation. 

LSPR biosensors face challenges to comprehensively analyze complex, dynamic 

immune system by quantifying cytokines. In some cases, low sensitivity hinders 

capability to detect cytokines in the sample, or single cytokine measurement does not 

provide a full picture to understand the complex immune system involving multiplex 

cytokines. We suggest a potential solution to overcome such challenges by integrating a 

microfluidic system with LSPR biosensing techniques. By implementing a microfluidic 

system, we plan to offer platforms of sensor surface nanofabrication and provide 

sensitive nanoparticle based LSPR biosensors as well as provide reliable high-affinity 

multiple receptors for sensing. Besides, integrating biosensors in a microfluidic platform 

enables facilitating cell-based immune functional analysis by simultaneously measuring 

cytokine secretion behavior of immune cells in real-time, by placing cells near the 
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sensing elements. This real-time continuous measurement of concentration of cell 

secreted cytokines will allow quantification of the secretion rate, magnitude, and the time 

constant of cellular response to the immune condition change. By extracting cytokine 

secretion rate in the early stage of cytokine secretion and associate this secretion rate to 

analyze immune cellular response, we can eliminate the long incubation time to analyze 

the cellular response since we can estimate the end time of the incubation process. 

To expand on this key idea, the following sections illustrate some additional 

background on cytokine, label-free biosensors, and especially the main topic of this 

research, FET, and LSPR-based label-free biosensing technique. More background of 

integrating microfluidic system for biosensing applications will be followed. 

 

 

Figure 1.2: Regime map of label-free biosensors showing sensitivity vs. assay time. FET and 
LSPR biosensors have potential to provide us of sensitivity and assay time approaching to the 
desirable levels [1]. 
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1.1.1   Cytokines 

Cytokines are cell-secreted or membrane bound small bioactive proteins in the 

immune system. They are mediators and modulators playing key roles in various 

physiological processes, such as cell growth, cell differentiation, cell-to-cell 

communication, and regulating the host’s inflammatory behavior [2] and response to 

immunomodulatory agents [3, 4]. The cytokine signaling processes in immune cells are 

initiated by the binding of specific cytokine molecules to the cell receptors, which 

subsequently cause the activation of intracellular kinases, DNA transcription factors, and 

gene expression [5]. These processes occur dynamically and reflect changes to the 

immune system condition change, which induces the dynamic nature of cytokine 

secretion in the immune system (Figure 1.3.a). 

The multifaceted roles of cytokine working in the immune system to retain the 

balance of immunity prompted clinical interest to quantify these biomarkers for the 

application of screening infectious diseases or drug treatment and development [6].  

Moreover, previous studies proposed that quantification of cytokine provides a more 

accurate way to diagnose bacterial infections than current diagnostic methods such as 

relying on symptoms, initial clinical markers, and laboratory markers [7, 8].   The 

quantification of cytokine biomarkers for understanding immune related diseases has 

been exploited for cancer [9-11], heart diseases [12], Alzheimer’s [13], rheumatoid 

arthritis [14], and Crohn’s disease [15].  

Cytokines are pleiotropic, which means that they bind multiple targets and induce 

physiological phenomena, and this characteristic is referred as cytokine redundancy [16]. 

Also, cytokines are reciprocal, interacting with each other in a complex way (Figure 1.3.b) 
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[17]. As a result, understanding the network of cytokines in regulating the immune 

system provides clinically and immunologically useful information [18] related to 

inflammatory diseases, immune modulation, and also drug discovery. Owing to the 

complexity and tightly regulated nature of the cytokine network, previous studies pointed 

out the importance of scrutinizing multiple cytokines to understand physiological 

variation of immune system [19, 20]. Thus, in this thesis, cytokines are studied for 

understanding various immune-related cellular functional responses as well as screening 

immune system related diseases. 

 

Figure 1. 3: a) Dynamic immune cellular response under pathogen attacks into immune system. 
http://jama.jamanetwork.com/article.aspx?articleid=2279715. b) A complex cytokine 
communicating network. www.qiagen.com, www.SABiosciences.com 

 

1.1.2   Label-free Biosensors  

In recent years, many researchers have been interested in label-free biosensing for 

its technical and practical advantages to overcome the shortcomings of other analysis 

techniques. The advantages of utilizing label-free biosensor are addressed in this section. 
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The elimination of labeling agents, such as fluorophores, isotopes, enzymes, and 

nanoparticles provides researchers more consistent results of quantifying cytokines by 

avoiding inconsistent labeling on target biomolecules, plus saving cost and time for assay. 

Label-free biosensor approaches are also suitable for binding kinetics of biomolecules 

since they do not require labeling process, while labeling approaches are not. Labels such 

as fluorophores or dyes are easily photobleached, and their signal decays over time. Thus, 

labeling approaches are not desirable for real-time signal acquisition or studying the 

binding kinetics. The label-free processes can determine the near end point of the 

incubation process (the time point when majority of target biomolecules settle down on 

the sensor surface) when we track real-time sensor response curve and find the time that 

the response curve reached plateau. With a sensor response curve over time obtained by a 

label-free technique, we do not need to wait for the long incubation to quantify target 

molecules. The initial slope of the response curve, i.e., the initial rate of binding, be 

correlated to the quantity of the analyte [21]. In this case, we are able to rapidly acquire 

analyte information by eliminate a long incubation process from the entire assay and 

rapidly acquire analyte information. 

When it comes to cytokine-based immune monitoring, label-free detection 

techniques provide more significant advantage. Immune cells face alteration in their 

functional feature such as cytokine secretion in response to infection or external 

stimulation, and often cause the immune system to experience dynamic transition from 

pro-inflammatory phase to an anti-inflammatory phase or vice versa. A simple 

quantification of cytokines in the blood stream, lymphy nodes, or tissue alone may not be 

enough to monitor such rapid change of the immune status during the course of immune 
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response development. In this case, building a predictive model to understand immunity 

requires more comprehensive monitoring of complex and dynamic cytokine-mediated 

functional behavior of immune cells. Real-time measurement of cellular functional 

variation reflected by cytokine secretion provides a means to probe such behaviors. In 

some conventional techniques using labeling, provided qualitative information of cells by 

scanning variation of functional features of cells under immune condition change.  

However, precise determination of the cellular behavior requires the measurement of a 

quantitative parameter, such as the cytokine secretion rate. The rate provides critical 

information including magnitude and time constant of cellular time-varying response [22]. 

Only label-free quantification of cell-secreted cytokines will provide such information for 

researchers in a practical manner.  

There exist various types of label-free biosensing platforms developed based on 

the signal producing mechanisms, including mechanical, electrical, optical, and 

plasmonic sensors.  In this thesis, field-effect transistor based biosensor and localized 

surface plasmonic resonance based biosensor are mainly discussed because of their 

various superior features including high sensitivity and rapid assay time (Figure 1.3), 

which offer significant technological merits for characterizing time-varying cellular 

functional responses.  

 

1.1.3   Field-effect Transistor Biosensors 

Recent progress in nanomaterial synthesis and nanofabrication methods has 

enabled researchers to develop nanoscale biosensors. The recent field-effect transistor 

biosensors are highly dependent on nanofabrication methodologies, which recently grew 

drastically.  
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The principle of field-effect transistor (FET) biosensing methods is based on 

electrical signal change associated with target analyte binding on the sensor surface. The 

sensor surface is first prepared by immobilizing target analyte paired receptors. When 

target molecules are bound to the receptor, the channel (electrical channel connecting 

source and drain) surface potential changes and as a result the channel conductance varies. 

By measuring the conductance change from the transistor channel, the concentration of 

analyte in the solution can be quantified. 

In general FET-based biosensing applications, a semiconductor material is 

connected to both source and drain electrodes. The third electrode, called gate electrode, 

which is capacitively coupled with a dielectric layer on the semiconductor channel, 

electrostatically modulates the current flow through the channel between sources and 

drain electrodes. For biomolecule sensing, the dielectric layer is functionalized with 

captured molecules, which is specific to the target molecule. When charged target 

molecules are conjugated on the captured molecules, the gate (electrostatic) effect occurs 

and gets transduced into readable signal such as change of FET drain-to-source current or 

channel conductance [23]. Semiconducting or conducting materials such as silicon 

nanowires (SNWs), carbon nanotubes (CNT), graphene, and layered two-dimensional 

materials have been fabricated into FET devices for biosensing applications. Early studies 

focused on using 1-D nanostructures such as SNWs and CNTs. However, the poor 

scalability and larger area manufacturability limit the use of these materials for FET 

biosensors. 2-D materials, such as graphene and Molybdenum disulfide (MoS2), provide 

more advantages for biosensing [24-35]. With their large surface-to-volume ratio and 

electronic properties, 2-D FET biosensors are highly sensitive to biomolecular surface 
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binding [36-40]. Also, they exhibit low detection limits due to low electronic noise, 

which is attributed to the low density of scattering center. With high sensitivity, a FET 

biosensor is suitable for accurate cytokine secretion assay for cellular functional analysis. 

And without labeling processes, FET biosensors could offer platforms for rapid 

biomolecule quantification, real-time response recording, and molecule binding kinetic 

studies. In summary, 2-D material based FET biosensors are especially promising 

candidates for cellular functional analysis since they provide high sensitivity and short 

sample-to-answer time, and are suitable for miniaturization and integration in a system 

which has potential for multiplexed signal detection for cytokine secretion assay. 

 

1.1.4   Localized surface plasmon resonance (LSPR) Biosensors 

Over the last decade, plasmonic sensing techniques have been widely studied for 

biosensing applications. The principle of plasmonic sensing depends on the excitation of 

electromagnetic (EM) radiation on the noble metal (e.g. gold) surrounded by dielectric 

medium. When a several-hundred THz electromagnetic field (i.e. visible light) hits a 

noble metal surface, collective oscillations of free electrons near the metal surface called 

surface plasmons (SPs) are induced. When the oscillation resonates with a particular 

wavelength of incident electromagnetic field, the characteristic resonance mode of SPs 

arises. SPs generate an evanescent field between the metal and dielectric region and they 

exponentially decay into a dielectric region, which makes this resonance effect extremely 

sensitive to the local refractive index (RI) change near the metal surface. The RI change, 

induced from both surrounded medium change and biomolecule adsorption on the metal 

surface, induces the resonant condition of SPs. Tracing this change in real-time, SP based 
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biosensing techniques are suitable for label-free quantitative analysis of target 

biomolecules in the sample, antibody-antigen interactions, and protein binding 

kinetics[41].  

The SP-based sensing techniques are developed in two setups: (1) surface 

plasmon resonance (SPR) and (2) localized surface plasmon resonance (LSPR).  In SPR, 

propagating SPs are excited on a thin metallic film coupled with bulk optical elements, 

such as a prism (Figure 1.4.a). This optical setting is called the Kretschmann 

configuration. So far, the SPR setup has been the most conventional plasmonic 

biosensing technique. However, the Kretschmann configuration used in the SPR 

technique makes it hard to miniaturize and integrate the system with other functional 

systems, since it requires bulky optical elements. Furthermore, the SPR biosensors suffer 

from background noise coming from fluctuation of bulk refractive index. This is due to 

the long penetration length (a few hundreds of nm) of SPR evanescent field, which is 

much larger than the typical size of target molecule. As a result, the target molecule 

bound on the SPR sensor surface could be buried into detection noise level, which further 

leads to another limitation, such as lack of sensitivity. The detection limit of SPR 

detection is known to be around pM-nM range. Thus the poor detection limit of SPR 

technique hinders use for clinical sample detection, which generally requires fM-pM 

level detection limit for small target analytes (e.g. cytokines). 

Recent advances in nanomaterials and nanofabrication guide the development of 

LSPR-based biosensing technologies.  LSPR biosensors are promising candidates for 

rapid, real-time, label-free detection for biomolecule detection.  In LSPR, metal 

nanoparticles/nanostructures in sub-wavelength size are excited by an external light 
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source to generate surface plasmons (Figure 1.4.b). The highly localized EM field in 

LSPR generates confined evanescence fields near the metal sensing surface. This feature 

enables LSPR sensors to be more sensitive to the surface binding of target molecules. For 

conventional LSPR biosensing, the nanoparticles are functionalized and coated with 

capture molecules and the target analytes are captured on the sensing nanoparticles via 

the capture molecules. Thus, target analytes bound to the nanoparticle surface occupy a 

large volume fraction of the evanescent field of LSPR and yield high sensitivity, which 

permits the detection a low concentration of small molecules. Furthermore, unlike SPR 

sensors, the evanescent field of LSPR can be directly excited by light illumination with 

free space optics, which eliminates bulky optical components. Owing to the confinement 

of the sensing region near the nanoparticle and ease of signal acquisition, LSPR 

biosensing has potential for miniaturization, integration, and multiplexing while 

maintaining high sensitivity. 
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Figure 1.4: Schematic representation of a) Kretschmann configuration of SPR generated on the 
metal film and b) LSPR occurred around single nanoparticle. This figure also illustrates the decay 
length (dd) of SPR and LSPR. The color gradient in the figure presents the field intensity 
distribution (enhanced field at the surface (red) and decreases field (blue) towards dielectric 
medium) [42]. 

 

1.1.5   Microfluidic System 

Many researchers have demonstrated integrated microfluidic systems offering 

several advantages for biosensing applications. Microfluidic systems can enhance the 

reaction speed of reagents with a confined volume and provide conditions suitable for 

detecting low concentrations of small molecules [43]. The confined environment can 

easily generate strong convection flow with a small flow rate. This convection will 

enhance analyte transport to the sensing area and increase the chance for the analyte 

molecules to meet with target receptors on the sensor. Furthermore, the short sample-to-

sensor distance in the microfluidic environment reduces the binding assay time.  Since 

the target detection molecules are placed near the sensing surface, the diffusion time of 

target molecule to the sensing surface is reduced. Microfluidic platforms are able to 

couple with several other practical functions such as sample and reagent loading, analyte 

signal detection, multiplex analyte detection. Moreover, by integrating multi-functional 

microfluidic system for biosensing, we can design high throughput platform for analyte 

signal sensing. 

 

1.2   Motivation for Research  

The first motivation of this research is to provide label-free biosensing platforms 

for rapid, sensitive cytokine quantification biosensors and more effectively evaluate 

dynamic response of immune system. The central challenge of traditional techniques for 
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rapid sensing is mainly coming from using labels for quantifying cytokine biomarkers. 

As briefly mentioned before, labeling techniques require several sample preparation 

processes, multiple washing steps, and a long assay time which is laborious, expensive, 

and time consuming. These features hinder rapid sensing for cytokine quantification. To 

probe dynamics and subtle variation of the immune system, the platform should provide 

rapidness and enough sensitivity to capture the change of cytokine concentration in the 

sample. Furthermore, to characterize the time-varying immune response upon immunity 

change, real-time sensing technique has potential to provide a clear picture about the 

dynamics of immune condition variation.  

The second motivation for this research is to demonstrate microfluidic system 

integration to eliminate the challenges of current label-free LSPR biosensing techniques 

for cytokine secretion assay. Some of label-free LSPR biosensors face limitations such as 

lack of multiplexed detection capability, limited measurement throughput. To 

comprehensively study cytokine secretion assay, the challenges should be solved. A 

microfluidic system is a potential solution which enables multiplex target measurement 

and high throughput measurement. Furthermore, the microfluidic system has potential to 

provide such a platform to study cell secretion monitoring in real-time by implementing 

cells in the device which enables us to study cellular functional change and enable us to 

extract additional factors such as secretion rate and time constant for analyzing immune 

system. 

These motivations lead us to develop label-free biosensors integrated in a 

microfluidic system. To accomplish this goal, we developed two-dimensional 
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nanomaterial-based FET biosensors and nanoparticle-based LSPR biosensors and further 

incorporated the biosensors with our own designed microfluidic device. 

 

1.3  Thesis Objectives 

This thesis research has three main goals that are driven by the motivations above 

and that address the shortcomings of current technology. The first goal is to develop a 

label-free field-effect transistor biosensor to detect cytokines in a physiological medium. 

In general, FET biosensors have great potential to offer a rapid, high sensitive platform, 

which can meet the primary need to characterize the dynamic response of immune system 

from cytokine levels in blood or serum. Atomically layered transition metal 

dichalcogenides (TMDCs) are prepared for constructing transistor biosensors integrated 

in a microfluidic sample loading channel for cytokine detection. Due to the high 

sensitivity of the atomically layered TMDCs materials to the surface binding of target 

molecules, we expected this platform to be suitable for biomolecule sensing application. 

Furthermore, by recording the real-time analyte binding kinetics using the sensor, we are 

able to determine a signal readout duration time which can differentiate samples 

according to the concentrations of cytokines in the sample. However, general FET 

biosensors do not provide a suitable platform for cell-secrete cytokine detection, since 

they are susceptible to background noise when using complex physiological fluid sample. 

In detection of cytokines secreted from cells, various types of cell-secreted cytokines are 

included in the fluidic sample and this hinders FET sensors to precisely detect target 

cytokines. Accordingly, only LSPR biosensing technique will be developed for cell-

secreted cytokine detection in this dissertation. The second goal of this thesis is to 
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develop a multiplexed time-course measurement of cell-secreted cytokines using LSPR 

plasmonic biosensors. Using a microfluidic nanoparticle patterning method, we fabricate 

a high-sensitivity LSPR cytokine biosensor device. With the device, real-time monitoring 

of cytokine binding curve is performed to calculate how fast we can get cytokine 

quantification data out of the developed platform. The time-course profiles of four 

different cytokines obtained by the platform will give us abundant information to analyze 

cellular functional response in a rapid, sensitive, and multiplexed manner. The last goal is 

to show the multi-functionalities of the integrated microfluidic platform for human blood 

analysis together with label-free LSPR-biosensors. Our microfluidic device allows cell 

separation, incubation and cytokine detection in a single platform. This platform is aimed 

to synergistically take both advantages from label-free LSPR biosensing and microfluidic 

environment.  

 

1.4  Thesis Outline 

Based on the research objectives in the above section, the thesis comprises five 

subsequent chapters. The outline is as follows: 

Chapter II - Review of Related Studies: This chapter reviews other previous 

research related to this thesis work. First, generally existing label-free biosensing 

techniques will be briefly discussed and then more specific label-free detection 

techniques of our focus will be reviewed. The review is divided into two topics: (1) label-

free biosensors – especially (i) field-effect transistor based biosensors and (ii) plasmonic 

biosensors – and (2) integrated microfluidic systems with biosensors. Here, the 
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advantages and limitations of current label-free biosensors will be critically reviewed, 

and the potential of integrated microfluidic biosensor systems will be described.  

Chapter III - Label-free FET-based Cytokine Detection Device: In this chapter, an 

MoS2-based transistor biosensor capable of detecting cytokine is demonstrated. First, the 

nanofabrication processes of atomically layered TMDCs for biosensing platform will be 

discussed. The sensor performance for cytokine quantification is validated using different 

concentrations of purified cytokine samples, and the binding kinetic measurement will be 

extracted by the association/dissociation rate of antibody-antigen. The impact of this 

work, leveraging the electronic/structural properties of TMDCs for biosensors, and ability 

in analyzing biomolecule interaction with ultra-sensitivity, will be discussed.   

Chapter IV - Label-free LSPR-based Multiplex Time-course Cytokine Detection: 

In this chapter, T-cell behavior under immunomodulation and their cytokine secretion 

will be discussed. Then T-cell stimulation, drug administration, and sample collecting 

process will be explained. A new fabrication method using charged gold nanorods for 

manufacturing LSPR microarray device will be discussed. Then four different cytokine 

time-course profiles secreted from T-cells will be analyzed to study the subtle variation 

of cellular function under immunomodulation. After new cytokine secretion patterns are 

revealed from the developed fine time-course cytokine profile detection platform, we will 

discuss future potential applications of the platform. 

Chapter V - Integrated Microfluidics LSPR-based Cell secreted Cytokine 

Detection: In this chapter, designing and fabricating the multi-functional PDMS device 

will be demonstrated. To utilize human blood sample for the measurement, the 

preparation and bead-conjugation processes before loading into PDMS device will be 
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explained. The integrated device structure will be explained and LSPR biosensing 

physics will be introduced. Then the device performance will be validated by using 

purified cytokine samples. Furthermore, real-time anlyte binding curve will be studied 

and cytokine quantification using real human blood cells will be demonstrated. In here, 

the synergistic collaboration of a microfluidic system and a LSPR detection platform will 

be illustrated by the result. 

Chapter VI - Conclusions and Future Works: The final chapter summarizes the 

impact of the present research and discusses potential research directions. The future 

work of FET-based biosensor includes multiplexed measurement of cytokines from the 

samples which requires patterning the array of sensing materials, or developing an 

integrated microfluidic system for real-time cell secreted cytokine measurement. For 

LSPR-based biosensor, the future work includes designing a microfluidic platform 

directly capturing cells in close proximity to integrated nanoparticle-based LSPR 

biosensors and measuring the dynamic cellular cytokine secretion profiles in real time.  
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          Chapter 2    

Literature Review 

 

 

This chapter provides a review of previous studies related to this thesis work. The 

review gives insight into the motivations and applications of our research as well as 

analysis of competing technologies. This thesis work aims to develop cytokine biosensor 

technologies taking advantage of label-free technologies and integrated microfluidic 

systems. The review is composed of two main sections related to this goal: (1) label-free 

biosensors including (i) field-effect transistor biosensors, (ii) plasmonic biosensors, and 

(2) integrated microfluidic systems for biosensors. Each section details why this review is 

relevant and discusses multiple previous work that studied the topic. The review will 

summarize the achievements and limitations of existing work and describe how to 

address these problems in this thesis work. 

 

2.1  Label-free Biosensors 

The conventional label-free biosensing techniques follow three processes for 

biomolecule sensing: (1) preparing a sensing element on a surface, (2) binding target 
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biomolecules on the sensing element, and (3) collecting the signal information via a 

sensing signal transducing mechanism. Based on the signal transducing methods, we can 

categorize label-free biosensors as mechanical, electrochemical, optical, or plasmonic 

biosensors. As mentioned in the previous chapter, in this thesis work, FET-based 

biosensor and plasmonic biosensors are chosen, and thus we are focusing on reviewing 

these sensors. 

 

2.1.1  Field-effect Transistor Biosensors 

Recently, many studies have focused on developing a field-effect transistor for 

biosensing applications. After developing nanomaterials and nanofabrication techniques, 

semiconducting/conducting materials have been widely used for various biosensors such 

as for pH sensors, glucose sensors, cancer biomarker detecting sensors, and sensors for 

cytokine biomarker detection. The general working mechanism of field-effect transistor 

(FET) biosensing methods is based on electrical signal change associated with slightly 

charged target analyte binding on the sensor surface. First the sensor surface is prepared 

by immobilizing target analyte paired receptors. When target molecules are bound to the 

receptor, the channel (electrical channel connecting source and drain) surface potential 

changes and as a result the channel conductance varies. By measuring the conductance 

change from the transistor channel, the concentration of analyte in the solution can be 

quantified. 

Created from nanowires (NWs) and carbon nanotubes (CNTs), FET biosensors 

provided sensitive platforms for biomarker detection; they are widely utilized for 

diagnosing biomarkers from nM to fM range in serum [44-49] nM proteins in cell growth 

system [50, 51], and affinities/kinetics of protein interactions with fM-level sensitivity 
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[52]. The fM level limit-of-detection (LOD) attained by nanoscale FET biosensors is due 

primary to the dimension (nanoscale) and good electrical properties which enable highly 

sensitive label-free biosensors for biomolecule quantification. Furthermore, their 

suitability for biofunctionalization provides good selectivity and biomolecule detection 

[53]. Such biosensors with consistent transistor responses would provide reliable lab-on-

a-chip platforms for various biomolecule monitoring studies including quantification of 

target analyte and characterization of analyte-receptor binding kinetics. Pui et al [54] 

established very fast (20s) and ultrasensitive (LOD around 0.1 pg/mL) cytokine detecting 

biosensors using silicon nanowires. In their study, the biosensor simultaneously 

monitored the time-course dynamic secretion of TNF-a and IL-8 in complex biological 

fluids (cell culture medium of macrophage cell, or blood sample of rats) under LPS 

stimulation. The dynamic secretion of two cytokine was characterized in a cell culture 

medium and in 1000 times diluted animal serum using the platform (Figure 2.1). The 

cytokine levels kept increasing in cell culture medium whereas the cytokine secretion in 

animal serum initially increased and decreased after reaching a peak (Figure 2.1.c). These 

different secretion profiles collected by the developed platform clearly show the complex 

nature of the immune response of living organisms. However, the drawback of this study 

is using a common top-down approach to fabricate the sensor element, which requires 

expensive manufacturing processes. FET-biosensors have great potential to be used as 

point-of-care devices. However, the high cost is a significant drawback for the disposable 

use of these devices in point-of-care biological assay.  
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Figure 2.1: a) Schematic illustration of SiNW platform which can simultaneously detect TNF-
a and IL-6 cytokine. b) Time vs. nanowire conductance variation curve by introducing various 
protein concentration ranging from 0.1 pg/mL to 5 ng/mL. c) Time-course cytokine secretion 
detection from macrophage culture medium and blood serum from rats [54].  
 

Likewise in a previous study introduced above [54] , serious fabrication 

constraints exist for 1D nanostructure based FET biosensors [44, 48, 54]. Generally, to 

achieve highly sensitive FET biosensors to monitoring biomarkers, small-size NWs and 

CNTs are needed. To achieve an ultralow detection limit, the critical dimensions of the 

sensing channel should be comparable to those of charged molecules to maximize the 

gating effect [47, 55, 56]. Usually CNTs and NWs are produced by bottom-up synthesis 

methods such as chemical vapor deposition (CVD). Currently, the lack of a proper top-

down fabrication method to produce an ordered array of nanostructures hinders the 

construction of high throughput biosensing platforms using NWs. Top-down techniques 

are able to fabricate high-quality SiNWs [52]. However, the fabrication of such a high 

quality Si NW array requires an expensive semiconductor-on-insulator (SOI) substrate 

and exquisite nanolithography tools resulting in high processing costs. 
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Two-dimensional (2D) atomically layered materials such as graphene, topological 

insulators (TIs), and TMDCs, are potential materials for FET biosensors due to their 

attractive electronic/optoelectronic properties, large abundance, and compatibility with 

planar nanofabrication processes [24-35]. Owing to their atomically thin layered structure, 

the electrical properties in 2D materials are highly sensitive to the external stimuli. Such 

feature enables the 2D FET biosensors to be more suitable for ultrasensitive biosensing 

applications [36-40]. Huang et al. have demonstrated graphene oxide-based FET sensors 

capable of detecting IL-6 cytokine biomarker [57]. In this study, atmospheric-pressure 

ethanol Chemical Vapor Deposition treated graphene oxide (ECVDGO) was utilized for 

biosensing substrate while overcoming the limitation of general graphene-based 

biosensors (Figure 2.2). With the treated GO, they decreased the electrical resistivity 

from 1.99x106 Ω/square to 4.68x103 Ω/square, and resistivity variation from 1.60x106 to 

7.72x102 Ω/square. They also demonstrated the sensor performance using Interleukin-6 

cytokine with a detection range from 4.7 to 300 pg/mL. This study pointed out the 

potential of GO with high manufacturability for FET biosensors of sensitive and label-

free detection of biomolecules. 

 

Figure 2.2: Graphene Oxide used as filed-effect transistor biosensor for sensitive and label-free 
detection of IL-6 cytokine biomarker [57]. 
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Graphene-based FET biosensors have good potential as well. However, zero-

bandgap graphene has some drawbacks such as a low ON/OFF current ratio and 

increased leakage current which leads to reduced sensitivity. In contrast to graphene, 

semiconducting TMDCs (e.g. MoS2) have sizable bandgaps and exhibit high ON/OFF 

current ratios up to 108. When this feature is combined with their atomically layered 

structures, they can provide sensing platforms with much higher sensitivity than graphene 

[23, 58, 59]. Recently, Wang et al. and Sakar et al. demonstrated how few-layer-MoS2 

flakes can be utilized for FET biosensors [23, 60]. Wang et al. established 400fM level 

LOD MoS2 FET biosensors for detecting a cancer-related biomarker called prostate 

specific antigen (PSA) and showed the real-time detection of the biomarker (Figure 2.3) 

[60].  Sakar et al. also provided FET biosensing platforms to detect biomolecules (biotin-

streptavidin) as well as pH sensing platforms that utilize few-layered MoS2 (Figure 2.4) 

[23]. The developed biosensors offer 100 fM level LOD for the streptavidin detection and 

pH detection capability that is 74 times as sensitive as graphene based FET biosensors 

(Figure 2.4.c). They emphasized the potential of MoS2 based FET biosensors for future 

point-of-care devices since they are label-free, highly sensitive, and scalable sensors with 

low production costs and low power assumptions. Their study clearly summarized the 

advantages of utilizing MoS2 for FET biosensors in comparison to other 1-D and 3-D 

materials as well as graphene. Using MoS2 for the FET-based biosensor provides various 

advantageous features such as high sensitive, low-cost mass production, planar patterning 

capability, and device scalability (Table 2.1). Thus, in this thesis work, MoS2 FET 

biosensors for the rapid, highly sensitive cytokine biomarker detection will be explored. 
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Figure 2.3: Label-free MoS2 nanosheet-based field-effect biosensor for cancer marker protein 
detection in real time with high sensitivity and selectivity [60]. 
 

 

Figure 2.4: a) Schematic of MoS2-based FET biosensor. The dielectric layer covering MoS2 
channel is functionalized with receptor molecules. When a charged target biomolecule is captured 
on the receptor molecule, it will induce gating effect and change the device current. b) The high 
sensitive MoS2 biosensor device significantly increase in current when 100 fM streptavidin 
solution at pH 3 was added on to the sensor with biotin coated. c) Comparison of sensitivity of 
graphene and MoS2–based FET biosensor of pH sensing. MoS2 -based FET biosensor is 74 times 
higher compare to graphene biosensor [23]. 
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Table 2.1: Comparison of MoS2 material with other competing materials for FET-based 
biosensing. The characteristic such as sensitivity; device fabrication and large-scale integrability; 
device scalability; and flexibility and transparency were compared [23]. 
 
 
2.1.2  Plasmonic Biosensors 

Over the last decade, plasmonic biosensors were extensively studied for various 

applications. As mentioned in the previous chapter, the principle of the plasmonic 

biosensors depends on the interaction of electromagnetic (EM) radiation on a noble metal 

in contact with surrounding dielectric medium.  Coherent oscillations of free electrons 

near the metal surface called surface plasmons (SPs) resonate with incident excitation 

light frequency. SPs own the evanescence field at the boundary area between the metal 

and dielectric region and this field exponentially decays into a dielectric region. The 

resonance mode of SPs is sensitive to the local refractive index change and this change is 

induced by the adsorption of biomolecules in the metal-dielectric interface results in the 

alteration of the resonant condition of SPs. SP-based biosensing is found in two settings: 
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(1) the surface plasmon resonance (SPR) setting, where SPs occur at the interface 

between a thin metal substrate and a dielectric medium; and (2) the localized surface 

plasmon resonance (LSPR) setting, where SPs are excited at the surface of 

subwavelength sized nanoparticle/nanostructure by an external light source (Figure 1.4). 

The most widely used plasmonic biosensing technique for biological and 

chemical analyte detection is label-free SPR biosensing. Especially for the biomolecule 

sensing (e.g. biomolecule quantification), SPR biosensors can overcome the 

shortcomings of labeling-based conventional techniques, such as long sample preparation 

time, complex processes, and large sample volume requirements, by eliminating tedious 

labeling processes. However, SPR detection suffers from several fundamental limitations 

while working as a biomolecule detection sensor due to its Kretschmann arrangement 

involving a bulky prism, and yielding a longer surface plasmon decay length (dd) than the 

LSPR technique. This SPR arrangement hinders sensor miniaturization and integration 

with other functional systems, such as point-of-care devices. Moreover, the longer 

surface plasmon decay length (dd) in SPR (Figure 1.4.a) is typically on the order of half 

of the resonance wavelength (few hundreds of nm). This feature enables SPR biosensors 

to provide higher sensitivity to a bulk refractive index (RI) change, and is susceptible to 

background noise coming from bulk refractive index fluctuation. The sensitivity of SPR 

biosensors usually lies between 10-7 and 10-6 in refractive index unit (RIU)[61, 62] which 

represents the range of pM-nM detection limit for the target analyte detection. However, 

in clinical studies the small molecule such as cytokine molecule concentration falls 

around range of pM-fM [63]. Thus, to overcome the sensitivity limitation, some of SPR 
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sensing platforms involved using secondary antibodies or compounds to amplify the 

sensing signal. 

Chou et al. demonstrated an SPR biosensor combined with a secondary antibody 

as a signal enhancer for detecting IL-6 in cell culture medium and achieved a detection 

limit around 1.3 ng/mL [64]. Several studies further use nanoparticles to enhance the SPR 

signal. Martinez-Perdigueroa et al. and Law et al. developed a nanoparticle-based SPR 

biosensor by integrating gold nanoparticles and immunoassay technologies into SPR 

system to detect cytokines (Figure 2.5) [65, 66]. In both studies, an evanescent field that 

was extended from the gold film to the gold nanoparticles induced plasmonic coupling, 

drastically enhancing the detection sensitivity. Approaches mentioned above introduce a 

secondary element to enhance the SPR signal and provide better detection limit for the 

sensing. However, all these methods implemented additional assay steps, complicate 

overall procedures, and diminish the merits of label-free sensing by tagging labels to the 

target molecule.        

Battaglia et al. explored alternative SPR excitation methods using fiber-optics to 

improve the sensing performance for SPR detection [67]. In the study, IL-1, IL-6 and 

TNF-a in PBS solution was detected with fiber-optics and achieved sensitivity around 1 

ng/mL, but failed to meet the sensitivity level of clinical requirements such as few pg/mL. 

Furthermore, improvements of the sensing capability of SPR biosensors were explored by 

improving the characteristics of the metal thin film layer (Figure 2.5.c) or by altering the 

dielectric surrounding [68]. 
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Figure 2.5: a,b) SPR sensing introducing gold nanoparticles to enhance the SPR signal to increase 
sensitivity [65, 66]. c) Modified characteristics of metal thin film layer to improve SPR sensing 
capability [68]. 
 

Recent advances in nanomaterials and nanofabrication processes open up the 

potential of LSPR plasmonic biosensing techniques for fast, real-time, label-free 

detection of biological species. The evanescence field surrounding LSPR sensors is 

directly excited by EM illumination by free space optics. As a result, in LSPR, the bulky 

optics is not required and the system can be miniaturized and integrated with other 

systems. Furthermore, the EM field is highly confined to a local area near a metal 

nanostructure surface; biomolecules attached onto the nanostructure surface occupy a 

large fraction of the evanescence field volume. This leads to a significant change of the 

LSPR signal from the sensing substrate and result into high sensitivity that allows 

capability to detect small molecules.  

Huang et al. demonstrated LSPR biosensors detecting TNF-a molecules using a 

silver nanoparticle [69]. This biosensing technique offered an ultrasensitive platform 
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which enables measuring single molecule level detection. But this sensing mechanism 

requires long analysis time for analyte binding to reach equilibrium, which hinders use of 

rapid immune diagnosis application. For more rapid sensing of cytokine molecules, 

Chiang et al. and Huang et al. measured IL-1b and TNF-a by providing few tens of 

pg/mL detection sensitivity within less than 10 min [70, 71]. However, in these platforms 

the fiber probe should be dipped into a large volume of sample for signal measurement, 

which leads to practical limitations in its clinical applications. 

 

Figure 2.6: a) A single silver nanoparticle-based nanoplasmonic biosensor for immunoassay 
detection [69]. b) Fiber-optics based rapid, sensitive LSPR biosensing platform [70]. 
 

Recently, Chen et al. developed a nanoparticle patterned microarray type of LSPR 

biosensing device detecting multiple cytokine species using few serum cytokine samples 

in a single device at the same time [63]. In this study, instead of using a single 

nanoparticle, the patterned array of nanoparticles was used as sensing element and 

functionalized with six different probe antibodies for sensing. This platform allows high 

throughput analysis of cytokine biomarker in 1 𝜇𝐿 serum sample to a detection limit 

around 10 pg/mL within 40 min. To summarize, the LSPR biosensing technique has high 

potential for small molecule detection owing to the small size scale and simple setup for 

a) b)
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signal acquisition, which will be desirable for sensor miniaturization, integration, and 

multiplexed detection. 

 

2.2  Integrated Microfluidic System for Biosensors  

Modern advances in microfabrication technologies have enabled a number of 

studies to integrate biosensors in a microfluidic platform with on-chip fluidic channels, 

chambers, and valves. The microfluidic integration of biosensors fully incorporates the 

advantages coming from both biosensing techniques and microfluidic systems, then 

offers advanced platforms performing various functions. Here, some of label-free 

biosensors integrated in a microfluidic system will be reviewed.  

Stern et al. developed label-free FET biosensors integrated in a microfluidic 

system to mitigate the limitation of FET biosensors using complex physiological fluidic 

samples for sensing [72]. By eliminating the use of labels in assays, some of label-free 

biosensing methods, including FET biosensing platforms, faced obstacles such as being 

susceptible to false positive signals induced from non-specific bindings of untargeted 

molecules. In this study, authors designed silicon nanoribbon structured FET biosensors 

integrated in a microfluidic chip to eliminate interferences of other background molecules 

with cancer biomarkers in whole blood. In the platform (Figure 2.7.a), the researchers 

incorporated a mechanism that first captured biomarkers from blood samples and 

subsequently released captured molecules by photocleaving crosslinkers after washing 

the sample. The released biomarkers were transferred into an area with sensors in the 

microfluidic system, and purified biomarkers were detected using the FET biosensors. A 

similar microfluidic analyte purification approach could be employed for label-free 

cytokine FET-based biosensors to attain desirable selectivity and sensitivity.	
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Figure 2.7: Integration of label-free biosensors with microfluidic system which enables on-chip 
sample preparation and multiplexed cytokine detection. a) Processes of selectively purified target 
proteins from whole blood sample using microfluidic device. The captured target biomolecule is 
separated from sample and photocleaved from crosslinker and transferred into sensing area [72]. 
b) Multiplexed cytokine detection using silicon micro-ring resonator arrays integrated in the 
microfluidic system [21]. c) Multiplexed cytokine detection using LSPR biosensor-array 
integrated in the microfluidic system [63]. 
 
 

Labe-free biosensors integrated with microfluidic platforms could provide another 

important advantage: multiplexing power in cytokine measurement. Recent studies [21, 

63] developed integrated label-free biosensors in a microfluidic system by designing  

biosensor arrays in the device, and enabled researchers to perform simultaneous detection 

of multiple different cytokines from the sample (Figure 2.7.b, c). In these cases, the 

whole system incorporates microfluidic channel arrays with integrated optical biosensor 

arrays and enables high throughput, duplicated, and multiplexed measurement of 

cytokines in the sample solution. The ability to detect the analytes in parallel provides the 

means to simultaneously monitor the time-course variation of the amount of different 
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cytokine species in human samples to study the complex dynamics of the immune system 

of the host. Furthermore, the high throughput, duplicated measurement from a single 

sample will offer large sets of data and enable us to obtain a high level of statistical data 

while reducing false-positive readout signals. 

The integrated microfluidic system with label-free biosensing could be utilized for 

cytokine secretion assay. Cytokine secretion assay provides an approach to study the 

immune response during the immunity change such as the anti-inflammatory phase 

arising after systemic inflammation. Instead of quantifying cytokine levels in the blood 

stream, lymph nodes, or collected samples, this assay directly characterizes immunity-

related cellular functional phenotypes. The cytokine secretion assay involves immune cell 

isolation, stimulation, and cell culturing, followed by cell-secreted cytokine detection. 

The  quantification of cytokines for cytokine secretion assay via conventional methods, 

such as enzyme-linked immunosorbent spot (ELISpot), is highly laborious, time-

consuming, and prohibits rapid immune status monitoring. Thus, measuring cytokines in 

cell culture medium using label-free biosensors integrated with microfluidic system 

provides great potential to simplify and accelerate the assay procedure.  

Stybayeva et al. demonstrated cell secretion assay using a label-free SPR 

detection platform incorporating a PDMS based fluidic system (Figure 2.8.a).  The 

platform enabled CD4+T cell separation, stimulation, and incubation and measured 

CD4+ T cell secreted inflammatory cytokine IFN-g [73]. The authors used this platform 

to perform in situ cell secreted cytokine measurements and envision that this might be a 

potential future device for label-free, sensitive cytokine detection by a desired cell subset. 

Although the concept of this study has high potential for cytokine secretion assay, the 
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transferring of cell-secreted samples into SPR detecting platform requires additional 

process. 

 

Figure 2.8: Schematic of SPR biosensors integrated with PDMS fluidic system. A glass slides 
coated with anti-CD4 antibody spots are enclosed inside a flow chamber and exposed to RBC-
depleted human blood. Selected CD4 T-cells are activated in situ to secrete cytokines and 
detected with SPR chip [73]. 
 

It has been suggested that biosensor integrated microfluidic systems could 

overcome the practical limitations of conventional assay techniques and the approach [73] 

as introduced above. Specifically, biosensing can be performed with on-chip isolation 

and confinement of cells under microfluidic environments. Revzin’s group is a leader in 

this field and has presented several studies showing these merits. The group developed an 

integrated apatamer-based amperometric biosensing platform by closely placing immune 

cells trapped in a microfluidic chamber (Figure 2.9.a). This study demonstrated 

continuous monitoring of cell secreted IFN-g or TNF-a [74, 75] and simultaneously 

detected multiplexed cytokines [76].  Another study demonstrated by the same group 

developed a microfluidic device using a vacuum actuated PDMS valve structure that 

provides CD 4 T-cell incubation and label-free detection of cell secreted cytokine 

detection simultaneously (Figure 2.9.b) [77]. By opening the PDMS valve structure, cell-



36 

secreted cytokines were diffused into the detection chamber.  Aptamer-immobilized 

electrodes in the detection chamber quantified the target cytokine. The same group 

further designed a similar device platform and demonstrated continuous monitoring of 

both IFN-g and TNF-a secreted from T-cells [76]. A more recent study showed 

intercellular communication of immune cells (Figure 2.9.c) [78]. Two serially connected 

microfluidic chambers were prepared and each chamber offered an enclosed 

microenvironment. The upstream chamber contained mitogen-activated monocytes, while 

downstream chamber kept inactive monocytes. Once TNF-a secreted from the upstream 

cells reached an adequate level, a PDMS valve was opened and the TNF-a molecules 

were diffused into the other chamber. The study observed the activation of the initially 

inactive monocytes by TNF-a. 

Offering a confined volume of cells in an enclosed microenvironment is 

particularly beneficial for label-free biosensors facing limited sensitivity. The small 

volume of the enclosed microenvironment easily results in enhanced concentration of 

cell-secreted cytokine. As a result, this feature enables compensating the limited 

sensitivity of the biosensors. Continuous monitoring of cell-secreted cytokine 

measurement by label-free biosensors integrated in a microfluidic system enables us to 

obtain the cytokine secretion rate of the confined cells. Furthermore, extracting the 

secretion rate from the initial slope of the cytokine production curve could provide a way 

to rapidly characterize the cellular response while eliminating the long incubation time. 

To summarize, by integrating a microfluidic system with a label-free biosensing 

technique, the platforms could provide more practical or technical advantages for 

cytokine detection as well as cytokine secretion assay.  
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Figure 2.9: a) Aptamer-based cell-secreted cytokine detection platform from Revzin’s group [76]. 
b) Cell secretion signals measured from aptamer-modified electrodes are a function of diffusion 
and surface binding of the detected molecules.	
  The device was used to measure IFN-g secretion. 
Using this approach, we recorded continuous cell-secreted cytokine concentration and 
experimentally determined secretion rates at different time intervals during a cell secretion 
experiment [77].  c) Schematic figure of device platform for monitoring cellular crosstalk using 
reconfigurable microfluidic devices and time dependent TNF-a secretion was monitored [78]. 
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          Chapter 3    
 
 
 
 
MoS2 Based FET Biosensors for Cytokine Biomarker Detection 

3.1   Introduction to the Study 

Researchers developed nanowires (NWs) and carbon nanotubes (CNTs) based 

field-effect transistor (FET) biosensors for detecting cancer biomarkers in a range from 

nM to fM in serum [44-49], proteins in cell growth system was detected of nM level in 

vitro [50, 51], and affinities/kinetics of protein interactions was quantified with fM-level 

sensitivities [52]. The fM-level limit-of-detection (LOD) offered by nanoscale FET 

biosensors for detecting biomarkers would enable label-free, single-molecule-level 

detection of trace-level amount of biomarkers. The arrays of such biosensors with 

consistent transistor responses could be used as reliable lab-on-a-chip platforms for 

precisely determining the kinetics of various biomolecule interactions. However, serious 

limitations imposed on nanofabrication prohibit the reliable manufacturing of the 

affordable biosensor chips utilizing one dimensional (1D) nanostructures [44, 48]. In 

particular, high-quality, small-size NWs and CNTs are required to make biosensors for 
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concentration monitoring (or single-molecule-level LOD for trace-level amount detection) 

with fM-level LOD [79]. In particular, for trace-level amount detection, the critical 

dimensions of the sensing channels need to be comparable to the impact dimensions of 

charged molecules to maximize the gating effect coming from the charged molecules and 

achieve very low LOD [47, 55, 56]. CNTs and many NWs are typically produced by 

bottom-up synthesis methods (e.g., chemical vapor deposition (CVD)). Currently, proper 

top-down planar nanofabrication processes are limited to produce ordered arrays of such 

nanostructures, which makes it very challenging to provide parallel high-throughput 

assay biosensors made from these nanostructures. High-quality Si NW biosensor arrays 

are able to be fabricated by top-down lithographic techniques [52]. However, the 

fabrication process of such Si NW arrays usually requires expensive semiconductor-on-

insulator (SOI) substrates and exquisite nanolithographic tools, which can result in a high 

processing cost. Furthermore, due to the high cost, using SiNW biosensor arrays are not 

very suitable for manufacturing affordable (even disposable) assay chips for practical 

clinical biosensing applications.  

Recently, emerging two-dimensional (2D) atomically layered materials, including 

graphene, topological insulators (TIs), and TMDCs, attracted a great deal of interest 

because of their attractive electronic/ optoelectronic properties, large abundance, and 

compatibility to planar nanofabrication processes [24-35]. Due to their atomically thin 

layered structures, their transport properties are highly sensitive to the external stimuli, 

which enable new ultrasensitive 2D FETs suitable for biosensing applications [36-40]. 

The transistor-based on MoS2 and other atomically layered semiconductors are expected 

to show much more sensitive electrical responses in antigen-antibody binding events in 
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comparison with the conventional transistors made of bulk semiconductors (e.g., Si and 

III-V compounds). Moreover, all 2D layers have an extremely low density of dangling 

bonds on their surfaces, which result in high-quality FET channels with low densities of 

scattering centers (and hence low Flicker noise level), and enable highly sensitive, low-

noise-level to detect biomolecules [37, 80-83]. Novoselov et al. have established 

graphene-based FET sensors capable of detecting individual gas molecules absorbed on 

the graphene channels [84, 85]. 

In contrast to graphene with zero-bandgap, semiconducting TMDCs (e.g., MoS2) 

have sizable bandgaps. Therefore, TMDC-based FETs show high On/Off current ratios 

up to 108. This feature, in combination with their atomically thin structures, potentially 

enables higher detection sensitivities for gas, chemical, and biological sensing 

applications in comparison with graphene FETs [23, 58, 59]. Wang et al. and Sarkar et al. 

recently demonstrated that FET biosensors made into microscale with few-layer-MoS2 

flakes show 100– 400 fM LODs for detecting cancer-related biomarkers [23, 60]. These 

previous works strongly imply that such TMDC-based FET biosensors may not require 

sensing channels of nanoscale width to achieve fM-level LODs for concentration 

monitoring, and the fabrication of such biosensors would not need delicate 

nanolithographic tools. In addition, several recent nano-manufacturing-related works 

suggest that monolayer/few-layer TMDC structures and other relevant atomically layered 

materials have significant potential to be produced over large areas on low-cost substrates 

(e.g., glass, plastic, or rubber) by utilizing cost-efficient processes such as CVD followed 

with roll-to-roll transfer[86], addressable deposition[87], and microscale stamping[88-90]. 
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Therefore, it is very promising to develop cost-efficient manufacturing of multiplexing 

assays based on TMDC transistor arrays in the future.  

Toward such predicted bio-assay capability, additional device-oriented research is 

needed for quantitatively calibrating the sensor responses from multiple sets of TMDC 

FET biosensors. The calibrated response signals, which are consistent with each other, 

can synergistically enable precise quantification of biomarker concentrations (or amounts) 

as well as the affinities/kinetics of biomolecule interactions. Although individual MoS2 

FET biosensors have been fabricated and exhibited very high detection sensitivity[23, 60], 

the exploitation of multiple devices for quantifying the biomolecule interactions has not 

been attempted.  

In this work, we fabricated multiple sets of MoS2-based transistor biosensors and 

validated that these devices can be synergistically utilized to measure the concentrations 

of analyte in the solutions as well as the affinity and kinetic properties of the analyte-

receptor pair. TNF-α, a biomolecule under study, is a pro-inflammatory cytokine and a 

key biomarker associated with host defense and immunosurveillance [91-94]. 

Researchers pointed out that TNF-α secreted from immune cells after stimulated with 

lipopolysaccharide (LPS) – an endotoxin causing septic shock due to severely 

pronounced immune response of the human body – reflects a functioning innate immune 

response[95, 96]. All our biosensors exhibited a TNF-α detection limit as low as 60fM 

despite the small molecular size of the cytokine biomarker (~17kDa) that renders its 

label-free detection at high sensitivity significantly challenging. Such a low detection 

limit was obtained in both linear and subthreshold regimes of the transfer characteristics 

of MoS2 transistors. In both transport regimes, the electrically measured sensor responses 
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were calibrated into signal quantities which is independent of the transistor performance. 

All sets of transistor biosensors showed consistent relationships between calibrated 

sensor responses and TNF-α concentrations. They produced a standard curve, from which 

the equilibrium constant of the antibody-(TNF-α) pair was extracted to be KD=369±48fM. 

Based on this calibrated sensor, the time-dependent association-dissociation kinetics of 

the (TNF-α)-antibody pair was further scrutinized and the association/dissociation rates 

of the (TNF-α)-antibody pair were calculated to be (5.03±0.16)×108 M−1s−1 and 

(1.97±0.08)×10−4 s−1, respectively.  

 

3.2   Materials and Methods 

3.2.1   Fabrication and Characterization of MoS2 transistor biosensor 

The MoS2 transistors were fabricated using a previously reported microprinting 

method.[57] Few-layer-MoS2 channel thicknesses were specifically prepared to be 15–20 

nm. Such a MoS2 thickness range has been validated to be in the optimal field-effect 

mobility values for MoS2 transistors [97, 98]. The transistor channel lengths (L) were ~5 

µm and the widths (W) ranged from 5 to 8 µm. Ti (5nm)/Au (50nm) paired electrode was 

served as drain (D) and source (S) contacts, which were facbricated using 

photolithography followed with metal deposition and lift-off. For the back gate (G), p+-

Si substrates were prepared and thermally grown SiO2 layers (300 nm thick) were used as 

the back-gate dielectrics. This 300 nm thick SiO2 layers enable us to quickly identify 

MoS2 flakes with suitable thicknesses (i.e., 15–20nm) via a simple color coding method 

[99].  All electrical measurement processes were performed using an HP-4145B 

semiconductor parameter analyzer.  
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Figure 3.1: Protocol to functionalize a MoS2 transistor sensor with anti-human TNF-a antibody 
receptors for detecting TNF-a biomarkers: (1) Immerse the HfO2-coated MoS2  transistor sensor 
into 5% APTES solution and incubate for 1 hour. (2) The HfO2 surface silanized with APTES 
reacts with a 5% solution of glutaraldhyde (GA) in PBS for 2 hours, forming chemical linker for 
antibody binding. (3) Then the HfO2 surface is incubated with an anti-human TNF- a antibody 
solution for 1 hour. (4) The as-functionalized sensor is incubated with solutions containing TNF-
 a with incremental concentrations (2 hours for each concentration) to study the sensor responses 
at the equilibrium state and the affinity of the (TNF- a) -antibody pair, or the device is subjected 
to a TNF- a flow in a microfluidic channel for quantifying the time-dependent 
association/dissociation kinetics of the (TNF- a) -antibody pair. 

 

3.2.2   Bio-functionalization of MoS2 transistor biosensor 

Figure 3.1 elucidates the protocol for functionalizing the HfO2 effective layer of a 

MoS2 transistor sensor with anti-human TNF-α antibody receptors to detect TNF-α 

molecules. First, pre-fabricated transistor biosensor is immersed in 5% (3-Aminopropyl) 

triethoxysilane (APTES, Sigma-Aldrich Co. LLC.) in ethanol for 1hour to salinize the 

HfO2 effective layer with an APTES monolayer. After the incubation, the sensor is 

rinsed with phosphate buffered saline (PBS) and blown dry by nitrogen gas. The device is 

subsequently immersed in 5% gluteraldehyde (GA, Sigma-Aldrich Co. LLC.) in PBS for 

2 hours followed by rinsing with PBS and brown dry by nitrogen gas. Afterwards, 10 𝜇𝐿 

of anti-human TNF-α antibody ( eBioscience, Inc.) of 50 𝜇𝑔/𝑚𝐿  concentration in 
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deionized (DI) water is dropped on the sensor and incubated for 1 hour. To study the 

equilibrium-state sensor responses, the as-functionalized sensor is incubated with TNF-α 

solutions with various concentrations (i.e., n=60fM, 300fM, 600fM, 3pM, and 6pM; the 

incubation time for each of the concentrations: ~2 hours). The incubation is performed 

using the setup shown in Fig. 3.2 (d). After each incubation process, the transfer 

characteristics of the transistor sensor are examined.  

 

3.2.3   Quantification of the time-dependent association/dissociation kinetics of the 

(TNF-α)-antibody pair 

An as-functionalized MoS2 transistor biosensor is covered with a 

polydimethylsiloxane (PDMS) layer containing a microfluidic channel (10 mm in length, 

200 µm in width, 50 µm in height), as illustrated in Fig. 3.2 (e). A motorized syringe 

infusion pump is used to drive the analyte flows into and out of the microfluidic channel 

through an inlet/outlet tubing (tube diameter: 0.75mm). At the beginning of the 

measurement of a real-time sensor response curve associated with (TNF-α)-antibody 

binding, DI water is injected into the sensor with a flow rate of 5 µL/min. At the same 

time, the MoS2 transistor is biased under a given VG and VDS. After the IDS value gets 

stabilized, the analyte solution with a specific concentration of TNF-α is injected into the 

sensor.  
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3.3   Results and Discussion 

3.3.1   Developed MoS2 Transistor Biosensor 

The fabrication processes of transistor biosensor with a few-layer MoS2 sensing 

channel are illustrated in Figure 3.2. First, a pristine few-layer MoS2 flake is printed onto 

a p+-doped Si substrate coated with 300 nm thick SiO2 (Fig. 3.2 (a)). This printing 

process is the same as the method previously demonstrated by Nam et al.[90] The 

thickness of the MoS2 flake selected for making a biosensor is specifically controlled to 

be 15–20 nm, aiming to achieve relatively high field-effect mobility values (µ = 20 to 30 

cm2/Vs) [97, 98]. After the MoS2 printing, metallic drain/source (D/S) contacts (5 nm 

Ti/50 nm Au) are fabricated using photolithography followed with metal deposition, lift-

off. Then a back-gated MoS2 transistor is subsequently formed (Fig. 3.2 (b)). To make a 

capacitive coupling between the microfluidic reservoir (or channel) and the MoS2 

transistor channel, a 30 nm thick HfO2 layer is deposited on the top of the MoS2 channel 

via atomic layer deposition (ALD) (Fig. 3.2 (c)). Also this HfO2 layer serves as an 

effective layer for biofunctionalization. Additionally, 100 nm thick SiOx is sputtered on 

D/S contacts to minimize the current leakage between D/S contacts and microfluidic 

components (Fig. 3.2 (c)). Before the TNF-α sensing, anti-human TNF-α antibody is 

functionalized on the HfO2 effective layer. The detailed antibody functionalization 

procedure is illustrated in Fig. 3. 1. A large open liquid reservoir made from 

polydimethylsiloxane (PDMS) is integrated on top of the MoS2 transistor (Fig. 1(d)) to 

measure the MoS2 transistor sensor responses from different TNF-α concentrations under 

the thermodynamic equilibrium condition and determine the affinity of the (TNF-α ) –

antibody pair. This setup is simple and enables the rapid loading of various analyte 
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solutions. To measure the association-dissociation kinetics of (TNF-α )–antibody pair, a 

microfluidic channel is integrated on top of the transistor sensor, and a motorized syringe 

pump is used for driving the TNF-α solution flow through the microfluidic channel (Fig. 

3.2 (e)). Such a setup enables stable laminar flows of analyte solutions and minimize the 

noise induced by the liquid loading processes, which is required for precisely analyzing 

the real-time kinetic processes of antibody-(TNF-α ) binding. Also Figures 3.2 (d) and (e) 

show the circuit setups for measuring the transistor sensor responses. In addition, Fig. 3.2 

(f) illustrates the cross-sectional view of a MoS2 transistor sensor for the TNF-α sensing. 

Other device fabrication and characterization details were already described in the 

previous section 3.2. 

 

Figure 3.2: Flow chart for fabricating MoS2 transistor biosensors: (a) printing of a few-layer 
MoS2 flake onto a p+-Si/SiO2 substrate; (b) fabrication of Ti/Au D/S contacts; (c) ALD growth 
of the HfO2 effective layer on top of the MoS2 channel and coating of D/S contacts with thick 
SiOx layers; (d) integration of a PDMS liquid reservoir on top of a MoS2 transistor biosensor for 
measuring sensor responses from different TNF-α concentrations under thermodynamic 
equilibrium condition and determining the affinity of the (TNF-α)-antibody pair; (e) integration 
of a microfluidic inlet/outlet tubing kit driven by a motorized syringe pump on top of a biosensor 
for quantifying the association-dissociation kinetics of the (TNF-α)-antibody pair. 
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Figure 3.3 (a) shows the optical micrograph (OM) of an exemplary MoS2 

transistor with channel length (L) and width (W) of 5 and 6 µm, respectively. Figure 2 (b) 

displays the photograph of an as-fabricated MoS2 transistor biosensor integrated with a 

PDMS liquid reservoir. The reservoir is ~4 mm deep and is ~1 mm in diameter, which is 

punched into a PDMS block with length, width, thickness of 2, 1, and 0.4 cm, 

respectively. Figure 3.3 (c) shows the photograph of a biosensor integrated with a 

microfluidic channel coupled with an inlet/outlet tubing kit. Other details about the 

dimensions of PDMS fluidic components are illustrated in the previous section 3.2. 

 

Figure 3.3: Optical micrographs or photographs of (a) an exemplary MoS2 transistor with channel 
length (L) of 5 and width (W) of 6 µm, respectively; (b) an as-fabricated MoS2 transistor 
biosensor integrated with a cylindrical liquid reservoir, which is punched into a PDMS block and 
is ~4 mm deep and is ~1 mm in diameter; (c) a biosensor integrated with a microfluidic channel 
connected with an inlet/outlet tubing kit, which is driven by a motorized syringe infusion pump. 

 

First we detected the sensor responses from different TNF-α concentration under 

the thermodynamic equilibrium condition. The biosensor setup shown in Fig. 3.3 (b) is 

used for this measurement. For each transistor biosensor, the static transfer features (i.e., 
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drain-source current (IDS) – back gate voltage (VG) curves acquired under a fixed drain-

source voltage (VDS)) are measured at each stage, following the sequence of (1) bare 

transistor, (2) antibody functionalization, and introduction of TNF-α solutions with 

concentrations of (3) 60 fM, (4) 300 fM, (5) 600 fM, (6) 3 pM, and (7) 6 pM. To exclude 

the effect of the IDS-VG hysteresis, all IDS-VG curves are collected by sweeping VG from -

100 V to 100 V with a sweep rate of 10 V/s. Other details about different stages and 

transistor characterizations are described in the previous section 3.2. 

 

3.3.2   Sensor Responses Measured in the Linear Transport Regimes of MoS2 

Transistor Biosensors 

Figure 3.4 exhibits the sensor responses measured in the linear transport regimes 

of MoS2 transistor sensors. Specifically, Fig. 3.4 (a) shows the transfer characteristics of 

an exemplary sensor measured at various detection stages, and the IDS data are plotted in 

the linear scale. The transfer characteristics of this sensor show a strong dependence on 

TNF-α concentrations, and the TNF-α detection limit is estimated to be ~60 fM. We 

choose a fixed value for VG within the linear regimes of all IDS-VG curves (e.g., VG = 98 V, 

as denoted by the dashed vertical line in Fig. 3. 4 (a)). The IDS values measured under this 

VG change according to different detection states and such IDS data could be utilized as a 

sensor response signal. However, such a response signal is highly rely on the transistor 

performance parameters (e.g., transconductance (gm) and threshold voltage (VT)). 

Therefore, in the analysis of a given detection state, the IDS signals attained by different 

MoS2 transistors may exhibit a poor device-to-device consistency due to the non-

uniformity of MoS2 transistors. Although such an issue could be eliminated through 
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optimizing the material deposition and device fabrication processes. It is highly desirable 

to calibrate sensor response quantity independent to the device performance. 

 

Figure 3.4: Sensor responses collected in the linear transport regimes of MoS2 transistor 
biosensors. (a) Transfer characteristics of an exemplary MoS2 transistor sensor detected at various 
biodetection stages, following the sequence of (1) bare transistor, (2) antibody functionalization, 
and inputs of TNF-α solutions with concentrations of (3) 60 fM, (4) 300 fM, (5) 600 fM, (6) 3 pM, 
and (7) 6 pM. (b) A set of calibrated linear-regime responses (S) measured from five different 
MoS2 transistor sensors with respect to TNF-α concentration from 60 fM to 6 pM (n). These S-n 
relationships well fitted with Langmuir isotherms and the dissociation constant (KD) of the (TNF-
α)- antibody pair is extracted to be 369+48 fM.   
 

The linear regime of an IDS-VG characteristic curve collected from a microscale 

MoS2 transistor sensor in a specific biodetection state expressed as Equation (3.1). In our 

experiments, it is detected that for a given transistor sensor, the gm values extracted from 

different IDS-VG curves that correspond to different biodetection states are very close and 

can be approximated as a constant for this sensor. For example, the gm value of the sensor 

illustrated in Fig. 3. 4 (a) is extracted to be ~177 nS at VDS = 1 V. Based on this 

observation and Equation (3.1) and the implication from previous works achieved by 

Duan et al. and Ishikaw et al.[52, 100], a calibrated sensor response quantity (S) is 

derived and expressed in Equation (3.2). The IDS(anti) is the IDS value measured in the 

“antibody functionalization” state of a sensor biased under a set of fixed VDS and VG, and 

IDS-IDS(anti) indicates the IDS variation induced by introducing TNF-α molecules. An IDS 
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variation normalized by the gm of this sensor results in a sensor response quantity directly 

related to the change in the VT of the sensor (i.e., ΔVT). Although ΔVT is assumed to be 

completely induced by the charge brought to the HfO2 effective layer on the top of the 

transistor channel through (TNF-α)-antibody binding events, ΔVT is not exactly the 

binding-event-induced potential change (ΔΦ) of the effective layer. This is because in 

this work, ΔVT is the change in the VT measured from the back gate. However, ΔVT and 

ΔΦ have relation of ΔVT= (CHfO2/CSiO2)ΔΦ, where CSiO2 and CHfO2 are the capacitances of 

the SiO2 back gate dielectric and the HfO2 effective layer, respectively. More detailed 

discussion about this can be found from the dual-gate transistor model illustrated in 

Figure 3.5. Based on this model, ΔVT is evaluated by ∆𝑉> = 𝑞𝑑ABCD𝜎>FG 𝑘ABCD𝜀3, where 

q is the effective charge carried by a TNF-α molecule; dSiO2 and kSiO2 are the thickness 

and dielectric constant of the SiO2 back-gate dielectric layer, respectively; ε0 is the 

vacuum permittivity; and 𝜎>FG  is the area density of TNF-α molecules bound to the 

receptor antibody-functionalized effective layer. Therefore, a calibrated response quantity 

(S) is proportional to the antibody receptor occupancy at the equilibrium state and it is 

also independent of the MoS2 transistor performance. These two conditions are critical 

for the subsequent Langmuir isotherm analysis.       
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Figure 3. 4 (b) plots the calibrated responses obatined from the linear transport 

regimes of five different sensors with respect to TNF-α concentration (n). The detailed 

transfer characteristics of these five devices measured at various biodetection stages are 
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displayed in Figure 3. 6. Although Figure 3. 6 displays that the transfer characteristics of 

these five sensors exhibit significant difference in VT, IDS, and gm, Fig. 3. 4 (b) shows that 

the calibrated responses from these sensors are consistent with each other and can serve 

as a standard curve (i.e., a generic S-n curve) for TNF-α detection. This standard curve 

can be well matched with Langmuir isotherms (Equation (3.3)) and the equilibrium (or 

dissociation) constant (KD) of the (TNF-α)-antibody pair is extracted to be 369+48 fM; 

the maximum sensor response (Smax) is extracted to be 10.7+0.4 V. 

DKn
nSS
+

= max     (3.3) 

 

 

Figure 3.5: The schematic of dual-gate thin-film transistor biosensor model: The binding of TNF-
α molecules with the receptor-antibody-functionalized HfO2 effective layer cause a potential 

change (ΔΦ) on this effective layer. ΔΦ can be calculated using 
2HfO

TNF

C
qN

= , where q is the 

charge brought to the HfO2 effective layer through a single (TNF-α)-antibody binding event; NTNF 
is the total number of TNF-α molecules bound to the HfO2 effective layer; CHfO2 is the total 
capacitance of the HfO2 effective layer. The ΔΦ leads a change in the conductive charge 
(ΔQ=CHfO2ΔΦ) in the MoS2 channel. This ΔQ can cause a change of the threshold voltage (ΔVT) 
measured from the back gate (note: not measured from the top gate), and ΔVT can be evaluated by 

ΔVT=ΔQ/CSiO2=(CHfO2/CSiO2)ΔΦ=
2SiO

TNF

C
qN

, where CSiO2 represents the capacitance of the back-gate 

dielectric layer. Furthermore, NTNF can be obtained using NTNF = σTNF A, where σTNF is the areal 
density of bound TNF-α molecules on the effective layer and A is the total sensor area. CSiO2 can 
be calculated using CSiO2 = kSiO2ε0A/dSiO2, where dSiO2 and kSiO2 are the thickness and dielectric 
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constant of the SiO2 back-gate dielectric layer, respectively; ε0 is the vacuum permittivity. 

Therefore, 
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Figure 3.6: Linear-regime sensor responses at the equilibrium state. The transfer characteristics of 
five different MoS2 transistor sensors measured at various detection stages: (1) bare 
transistor(black), (2) antibody functionalization(blue), and inputs of TNF-α solutions with 
concentrations of (3) 60 fM (red), (4) 300 fM (green), (5) 600 fM (purple), (6) 3 pM (orange), and 
(7) 6 pM (magenta). The calibrated linear-regime sensor responses from these five devices are 
plotted in Figure 3.4. b with respect to TNF-α concentration. 
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3.3.3   Sensor Responses Measured in the Subthreshold Regimes of MoS2 Transistor 

Biosensors 

Alternatively, sensor responses can also be defined from the subthreshold regimes 

of MoS2 transistor sensors. In the subthreshold regime of a transistor sensor, the 

sensitivity of IDS according to the electrical potential variation (or charge) at the effective 

layer is much higher than that in the linear transport regime of this sensor. Hence, the 

responses from the subthreshold regimes of transistor sensors are expected to result in the 

higher detection sensitivity in comparison with those from the linear regimes. Figure 3.7 

(a) displays the transfer characteristics of another exemplary MoS2 transistor sensor, 

which were measured at various detection stages. The IDS data are illustrated in the 

logarithm scale, and the subthreshold regimes are emphasized. We choose a fixed VG 

within the subthreshold regimes of all IDS-VG curves (e.g., VG = 29 V denoted by the 

vertical dashed line in Figure 3.7 (a)). The IDS values measured under this VG clearly 

change according to different biodetection states and show a strong dependence on TNF-

α concentration. Here, the TNF-α detection limit is estimated as low as 60 fM. Similarly, 

IDS data obtained in the subthreshold regimes of transistor sensors cannot be directly used 

as standard sensor responses. A calibrated subthreshold-regime response quantity 

independent of the transistor performance is required. 
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Figure 3.7: Sensor responses collected in the subthreshold regimes of MoS2 transistor biosensors. 
(a) Transfer characteristics of an exemplary MoS2 transistor sensor measured at various 
biodetection stages, following the order of (1) bare transistor, (2) antibody functionalization, and 
inputs of TNF-α solutions with concentrations of (3) 60 fM, (4) 300 fM, (5) 600 fM, (6) 3 pM, 
and (7) 6 pM (Here IDS data are shown in the logarithm scale, and the subthreshold regimes are 
emphasized); (b) a set of calibrated subthreshold-regime responses (S) collected from five 
different MoS2 transistor sensors with respect to TNF-α concentration (n). These S-n relationships 
well fitted with Langmuir isotherms and the dissociation constant (KD) of the (TNF-α)-antibody 
pair is extracted to be 424+70 fM. 

 

In the subthreshold regime of a microscale MoS2 transistor sensor, the IDS-VG 

relationship detected from a specific biodetection state can be expressed by Equation 

(3.4). The IT is the IDS value measured at VG=VT under a given VDS; SS is the subthreshold 

swing. As observed in our experiments, although the functionalization of a transistor 

sensor with receptor antibodies (i.e., the transition from “bare transistor” to “antibody 

functionalization” states) can result in an observable reduction of the SS of this sensor. 

The SS value does not significantly change among the subsequent biodetection states, 

including the inputs of incremental concentrations of TNF-α sample. Thus, for a given as-

functionalized transistor sensor, SS can be approximated as a constant. Based on this 

observation, a calibrated subthreshold-regime sensor response quantity (S) is derived 

from Equation (3.4) and articulated in Equation (3.5). In the equations, IDS(anti) is the 

drain-source current measured in the “antibody functionalization” state of a sensor biased 
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under a set of fixed VDS and VG; and IDS is the drain-source current measured from a 

subsequent biodetection state (i.e., a specific TNF-α concentration). Similar to the 

calibrated linear-regime response quantity articulated in Equation (3.2), this subthreshold 

counterpart is also directly related to ΔVT, independent of the transistor performance, and 

proportional to σTNF.  
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Figure 3.7 (b) shows the calibrated subthreshold-regime responses (S) measured 

from five different sensors with respect to TNF-α concentration (n). The detailed transfer 

characteristics of these five devices measured at various biodetection stages are shown in 

Figure 3.8. As displayed in Figure 3.8, the transfer characteristics of these five sensors 

exhibit significant difference in VT, IDS, and SS parameters. However, as plotted in Fig. 

3.7 (b), the calibrated S-n curves measured from these devices are consistent with each 

other and well fitted with Langmuir isotherms (Equation (3.3)). Here, the equilibrium 

constant (KD) of the (TNF-α)-antibody pair is extracted to be 424+70 fM, which is 

consistent with the KD value extracted from the linear-regime sensor responses (i.e., 

369+48 fM). The Smax value is fitted to be 15.3+0.6 V, which is about 40% larger than 

that extracted from the linear-regime responses (i.e., 10.7+0.4 V). This observable 

discrepancy was not fully understood. However, this could be temporarily attributed to 

the different back-gate VG levels required for biasing sensors in subthreshold and linear 

regimes, which could result in different magnitudes of electric field penetrating through 



56 

few-layer MoS2 channels as well as HfO2 effective layers and leaking into the analyte 

solution. This could lead to different degrees of the modification of electrical-double-

layers around sensors and therefore different degrees of the screening of the charges 

brought through analyte-receptor binding pairs.  
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Figure 3.8: Sensor responses at the equilibrium state at subthreshold-regime. The transfer 
characteristics of five different MoS2 transistor sensors detected at various biodetection stages, 
following the order of (1) bare transistor, (2) antibody functionalization, and inputs of TNF-α 
solutions with concentrations of (3) 60 fM, (4) 300 fM, (5) 600 fM, (6) 3 pM, and (7) 6 pM. The 
calibrated subthreshold-regime sensor responses from these five devices are shown in Fig. 3.7 (b) 
with respect to TNF-α concentration. 

 

 

3.3.4   Sensitivity Data acquired from both Linear and Subthreshold Regimes 

 
Although the IDS signals collected from both linear and subthreshold regimes can 

be mathematically normalized to consistent device-independent response quantities using 

Equations (3.2) and (3.5). The physical limit-of-detection of a transistor biosensor is 

indeed determined by the sensitivity of IDS to the variation of analyte concentration (dn) 

and the noise level of electrically measured IDS signals. This IDS sensitivity is 

quantitatively defined as the relative change in IDS per change in n (i.e., 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

.+,-
+,-

𝑑𝑛). Figure 3.9 illustrates and compares the sensitivity data obtained from (a) the 

linear-regime IDS signals measured from the five sensors shown in Fig.3.6 and (b) the 

subthreshold-regime IDS signals from the five sensors shown in Fig. 3.8. All differential 

sensitivity values are collected at TNF-α concentration of n = 60 fM. This provides 

critical information about the sensitivity required for obtaining fM-level detection limits. 

Figure 3.9 displays that the subthreshold-regime IDS sensitivities (0.52+0.3 %/fM) are 

statistically higher than the linear-regime IDS sensitivities (0.14+0.02 %/fM). Therefore, 

subthreshold-regime sensor responses are more desired in achieving high detection 

sensitivity. However, we should aware that the ultimate detection limit of a transistor 

sensor is also restricted by the signal-to-noise ratios of electrically measured IDS signals. 

Furthermore, to detect low-abundance molecules, the non-specific adsorption of target 
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molecules could also strongly affect the detection limit. The further study of these aspects 

is beyond the scope of this work but will be addressed in the future research.      

 

Figure 3.9: Sensitivity data obtained from (a) the linear-regime IDS signals measured from the five 
sensors shown in Fig. 3.6 and (b) the subthreshold-regime IDS signals measured from the five 
sensors shown in Fig. 3.8. All differential sensitivities were calculated at TNF-α concentration of 
n = 60 fM (i.e., 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = *

+,-

.+,-
./

|/123	
  56). 
 

 

Figure 3.10: A negative control test of the specificity test of MoS2 transistor biosensors: The 
transfer characteristics of a control sensor measured at stages of (1) bare transistor, (2) antibody 
functionalization (functionalized with anti-human TNF-α receptor antibodies), and inputs of IL-6 
solutions with concentrations of (3) 600 fM and (4) 6 pM. 
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3.3.5   Developed Biosensor Specify test to the target molecule 

To calculate the detection specificity of our MoS2 transistor sensors, a sensor 

functionalized with anti-human TNF-α antibody is used for detecting interleukin-6 (IL-6) 

cytokine. Figure 3.10 displays the transfer characteristics of this sensor measured at 

various stages, including (1) bare transistor, (2) antibody functionalization, and inputs of 

IL-6 solutions with concentrations of (3) 600 fM and (4) 6 pM. Figure 3.10 shows that 

the presence of IL-6 that is not specific to TNF-α antibody did not induce prominent 

change in the transfer characteristics. Such experimentally observed weak sensor 

responses to IL-6 indicate a negligible nonspecific adsorption of IL-6 molecules on the 

sensor surface. This may represents an effectively blocking of the densely-packed self-

assembled monolayers of APTES on HfO2 effective layers. 

 

3.3.6   Time-dependent Association/Dissociation Kinetics of the (TNF-α)-Antibody 

Pair  

The biosensor setup illustrated in Fig. 3.3 (c) is used for measuring the time-

dependent association/dissociation kinetics of the (TNF-α)-antibody pair. The details 

about microfluidic liquid handling and data recording are described in the section 3.2. 

Figure 3.11 (a) shows real-time sensor responses of (TNF-α)-antibody binding measured 

under different TNF-α concentrations (i.e., n = 60 fM, 600 fM, 3 pM, and 6 pM). Each of 

the time-dependent response curves was collected from a different MoS2 transistor sensor 

and all sensor responses were normalized using ( ))(log antiDSDS IISSS ×=  (i.e., 

Equation (3.5) to calibrate subthreshold-regime responses). Figure 3.12 illustrates the 

detailed transfer characteristics of these transistor sensors measured before the input of 
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TNF-α samples, from which the required SS parameters were obtained. Additionally, the 

operation points (i.e., the fixed VG and VDS values, under which a real-time response 

curve was measured) are also labelled in Fig. 3.12. In Figure 3.11 (a), the red arrow 

indicates the onset time, at which the solutions with specific TNF-α concentrations were 

filled into the particular biosensor. The real-time response curves in Fig. 3.11 (a) show 

that the association rate of the (TNF-α)-antibody pair rises with increasing TNF-α 

concentration. The rise segment of each real-time response curve well fitted with the 

first-order absorption equation (i.e., Equation (3.6)) [37]. In the equation (3.6), Seq is the 

sensor response at the final equilibrium state; kon and koff are association and dissociation 

rates, respectively; konn+koff  relates to the rising slope of the linear regime of the 

response curve. Table 3.1 lists the fitting results of Seq and (konn+koff) values for n = 60 

fM, 600 fM, 3 pM, and 6 pM. These Seq values extracted from the real-time binding 

responses are consistent with the sensor responses directly calculated at the equilibrium 

state, after a long (~2 hour) incubation process (e.g., the equilibrium-state response data 

shown in Fig. 3.7 (b)). In particular, Fig. 3.11 (b) displays the extracted Seq data as a 

function of TNF-α concentration, which also fitted with Langmuir isotherm. Here, the 

equilibrium constant (KD) is extracted to be 326+37 fM and the maximum response (Smax) 

is calculated to be 15.6+0.2 V. Both are consistent with those extracted from the 

equilibrium-state subthreshold-regime responses shown in Fig. 3.7 (b). 

)1( )( tknk
eq

offoneSS +=   (3.6) 
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Table 3.1: The fitting results of the real-time sensor response curves shown in Fig. 3.9 (a) those 
were fitted with Equation (3.6). The table lists the extracted Seq and (konn+koff) parameters for n = 
60 fM, 600 fM, 3 pM, and 6 pM.  

 

Figure 3.11: Time-dependent association kinetics of the (TNF-α)-antibody pair: (a) real-time 
sensor responses of (TNF-α)-antibody binding measured under different TNF-α concentrations (n 
= 60 fM, 600 fM, 3 pM, and 6 pM). Each of the response curves was collected from a different 
MoS2 transistor sensor and all responses were normalized using Equation (3.5). The rise parts of 
the binding response curves are fitted with Equation (3.6). (b) The equilibrium-state responses 
(Seq) extracted from this fitted plat was illustrated as a function of TNF-α concentration, which 
can be further fitted with Langmuir isotherm. The equilibrium constant (KD) is calculated to be 
326+37 fM. (c) The extracted (konn+koff) data plotted as a function of TNF-α concentration (n). 
The linear fitting of this (konn+koff)-versus-n graph results in rate constants of kon = (5.03+0.16) 
x108 M-1s-1 and koff = (1.97+0.08) x10-4 s-1.  
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To evaluate kon and koff parameters, the extracted (konn+koff) data are illustrated as 

a function of TNF-α concentration (n) (see Fig. 3.11 (c)). The linear fitting concludes in 

rate constants of kon = (5.03+0.16) x108 M-1s-1 and koff = (3.44+0.15) x10-4 s-1. It was 

observed that this fit is not sensitive to the dissociation rate (koff) because of its small 

numerical value. To attain a better quantification of koff, we directly measured the real-

time dissociation kinetics of the (TNF-α)-antibody pair. Specifically, two as-

functionalized MoS2 transistor biosensors were incubated (more than 2 hours) in 

solutions with TNF-α concentration of 600 fM and 3pM, respectively. The incubation 

time was selected so than antibody-(TNF-α) association/dissociation processes reach to 

the equilibrium state. Afterwards, these fully incubated sensors were rinsed with pure 

buffer solution and the calibrated sensor responses were recorded as a function of the 

lapsed time, as shown in Fig. 3.13. The Figure 3.13 illustrates that the sensor responses 

decreased with time, which was attributed to the unbinding events. The response curve 

measured from the device incubated with TNF-α concentration of 600 fM well fitted with 

a monoexponential decay function (i.e., the desorption equation expressed in Equation 

(3.7)). In the equation (3.7), Sr represents the sensor response corresponding to the areal 

density of bound molecule residues after the desorption process. This fit results in koff = 

(1.97+0.08) x 10-4 s-1, from which the affinity equilibrium constant KD is also estimated 

to be KD=koff/kon= 392 fM. This KD value is also consistent with those extracted from the 

equilibrium-state sensor responses (i.e., KD values extracted in Fig. 3.4 and 3.7). From 

this fit, Sr is calculted to be 3.0+0.2 V and Seq is 9.2+0.4 V. This denotes that ~33% of 

bound TNF-α molecules are expected to remain absorbed on the sensor even after a long 

rinsing process.  
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Figure 3.12: Transfer characteristics of four different MoS2 transistor biosensors measured before 
introducing TNF-α samples, from which the subthreshold-swing (SS) parameters were obtained 
for normalizing the real-time subthreshold-regime sensor responses (Equation (3.5)). These 
sensors were utilized to quantify the real-time kinetics of (TNF-α)-antibody binding under 
different TNF-α concentrations (n) of (a) 60 fM, (b) 600 fM, (c) 3 pM, and (d) 6 pM. The 
operation points (OP, i.e., the fixed VG and VDS values, under which a real-time response curve 
was measured) are marked by the red arrows. 
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Figure 3.13: Time-dependent dissociation kinetics of the (TNF-α)-antibody pair measured from 
two MoS2 transistor sensors that were incubated in solutions with TNF-α concentration of n = 600 
fM and 3 pM for about 2 hours and subsequently rinsed with the pure buffer solution. 

 

The response curve measured from the device incubated with 3 pM concentration 

of TNF can be hardly fitted with monoexponential Equation (3.7). We notice that it can 

be fitted with a bi-exponential decay equation (Equation (3.8)). As a result, Seq = 

13.6+1.0 V, S2 = 4.5+0.2 V, Sr = 2.9+0.3 V, k2 = (2.0+0.16) x 10-3 s-1, and koff = 

(1.79+0.13) x 10-4 s-1 as obtained. As reported by several previous works [37, 101, 102], 

the bi-exponential behavior of sensor response is probably due to the multivalent antigen-

antibody binding, which may become more prominent with increasing the analyte 

concentration. This elucidation is reasonable because the antibody used in this work is 

polyclonal. To fully study the association/dissociation kinetics of multivalent binding 

processes, a more complicated model for describing (TNF-α)-antibody binding is needed.    

Finally, it should be noted that for our current MoS2 transistor sensors, the 

calibrated sensor responses do not explicitly rely on HfO2 layer thickness (tHfO2). All 
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sensors discussed above have 30 nm thickness HfO2 effective layers. To further 

experimentally prove that the sensor responses of our sensors do not strongly depend on 

HfO2 layer thickness (tHfO2), we fabricated additional sensors with tHfO2 = 60 nm. Figure 

3.14 (a) displays the transfer characteristics of an exemplary sensor with tHfO2 = 60 nm, 

which were measured from a set of incremental TNF-α concentrations. From such 

transfer characteristics, we extracted calibrated subthreshold-regime responses (S) at VG 

= − 25 V (VT ~ − 10 V) and plotted them as a function of TNF-α concentration (n) (see 

the red stars shown in Fig. 3.14 (b)). This S-n relationship is consistent with those 

measured from the sensors with tHfO2 = 30 nm. This result proves that the calibrated 

sensor response values do not strongly rely on the HfO2 effective layer thickness. 

 

Figure 3.14: Sensor responses collected in the subthreshold regime of a MoS2 transistor biosensor 
with a 60 nm thick HfO2 effective layer (i.e., tHFO2 = 60nm). (a) Transfer characteristics of the 
MoS2 transistor sensor with tHfO2 = 60 nm, which were detected from a set of incremental TNF-a 
concentrations (i.e, n = 0, 60 fM, 300 fM, 600 fM, 3 pM, and 6 pM) (b) The calibrated 
subthreshold-regime responses (S) measured from this sensor (labeled as red starts) with respect 
to TNF-a concentration (n). This S-n relationship calculated from this sensor with tHfO2=60 nm is 
consistent with those measured from the sensors with tHfO2 = 30 nm. This result proves that the 
calibrated sensor response values do not strongly rely on the HfO2 effective layer thickness. 
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          Chapter 4    
 
 
 

Multiplexed Nanoplasmonic Temporal Profiling of T-Cell Response 
under Immunomodulatory Agent Exposure 

4.1   Introduction to the Study 

T cells are major cell types in the recognition and effector mechanisms of the 

adaptive immune system.[103] A presence of antigenic stimulant triggers multiple 

cytokine-mediated intracellular signaling pathways that drive the proliferation, 

differentiation, and cytotoxicity activation of T cells. These T-cell responses are critical 

in regulating the protection of the body from pathogenic invasions and cancer 

development.[104, 105] However, undesirable pro-inflammatory or tissue-damaging 

cytotoxic responses of T cells can cause immune-related disorders, such as allergies,[106] 

autoimmune diseases,[107] transplant rejection,[108] and graft versus host disease 

(GVHD).[109] Certain immunosuppressive therapeutic agents “turn off” T-cell function 

by blocking cytokine-mediated pro-inflammatory intracellular signaling pathways by 

prohibiting cytokine gene expression of the cells.[110] However, excessive 

immunosuppression can be harmful, promoting opportunistic infections and immune 
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tolerance to cancer development.[111] It is highly challenging to precisely maintain a 

healthy immune reaction by immunosuppressive modulation therapy because of the 

highly dynamic nature of T-cell immune responses.  

Profiling the cytokine secretion behaviors of T cells provides a means to 

accurately monitor the cellular functional states of the adaptive immune system. High-

precision monitoring of the transient (and presumably subtle) variations of a cellular 

functional state requires continuous measurements of T-cell secretion profiles for 

multiple cytokine species. However, an attempt to achieve such cytokine secretion 

profiling using conventional processes, which involve cell culture, cell culture medium 

supernatant collection, and repeated sandwich immunoassays for analyte measurement, is 

time-consuming, wasteful, and expensive due to the need for a large amount of workload, 

samples, consumables, and assay agents. In previous study, Liu et al. [76, 112] 

demonstrated continuous cell-based cytokine secretion assays using label-free aptamer-

based electrode biosensors integrated with microfluidic cell isolation structures. Their 

label-free biosensing approach is perhaps more accurate and convenient than 

conventional cell secretion assays by placing cells near the sensing area, which could 

minimize the time delay due to analyte diffusion in the measurement and eliminate the 

need for sample storage and transfer.  However, it may still fall short of capturing subtle 

variations and whole information of cellular immune functions owing to its suboptimal 

limit of detection (1-10 ng/mL) and device design prohibiting simultaneous analysis of 

more than two analytes. 

Our recent study[63] has demonstrated a multiplexed immunoassay that allows 

rapid, high-sensitivity, high-throughput, sample-sparing detection of several different 
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cytokines in human serum using nanoplasmonic biosensor microarrays. This assay 

involves localized-surface plasmon resonance (LSPR) imaging of biosensors integrated 

in a microfluidic platform as a key detection principle.[113],[114] The LSPR biosensor 

structure incorporates arrayed gold nanorod (AuNR) particle patterns conjugated with 

antibodies, in a confined microfluidic channel and provides the advantage of biosensor 

integration.[115] Measurements of LSPR image-intensity shifts resulting from analyte 

binding to the AuNR particle sensor surfaces allow for label-free, nanoplasmonic optical 

measurements of target biomolecules.[1] According to our previous study,[63] this 

immunoassay exhibits highly advantageous features, such as a short sampling-to-answer 

time (~ 30 min), which is the time required for the whole process involving analyate 

sample loading, incubation, and washing, a large dynamic range (~10 -10,000 pg/mL), a 

low operating sample volume (~ 1 µL), and multiplexed analysis capability. 

Herein, we implemented our nanoplasmonic multiplexed immunoassay technique 

and quantitatively characterized dynamic functional response of antigen-stimulated Jurkat 

cells (human leukemic T-cell line) expose to an immunosuppressive agent. Our 

multivariate functional measurements of Jurkat cells revealed dynamic secretion 

signatures of the T-cell immune response as a result of immunosuppressive agent 

treatments. Similarly, the cellular functional monitoring capability demonstrated in this 

work could be extended to continuous secretion assay by means of sensor integration in a 

microfluidic system. This may facilitate the future development of a nanoplasmonic 

multiplexed assay-based diagnostic tool useful for personalized immune regulation 

treatment.  
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4.2   Methods and Materials  

4.2.1   Microfluidic Channel Fabrication 

Molds for constructing the PDMS microfluidic structures were fabricated on a 

silicon wafer using photolithography-based micromachining techniques followed by deep 

reactive ion-etching (Pegasus 4, SPTS Technologie Ltd, Allentown, PA, USA). The 

silicon molds were silanized with (tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-trichlorosilane 

vapor (United Chemical Technologies) for 1 hr under vacuum to facilitate subsequent 

release of PDMS from the molds. A PDMS precursor (Sylgard-184, Dow Corning) was 

prepared by mixing a PDMS curing agent with the PDMS base (wt:wt=1:10), poured 

onto the silicon molds and cured overnight in a 60°C oven. Two separate fully cured 

PDMS structures with microfluidic channels were fabricated using different molds: one 

for patterning the arrayed AuNRs biosensor stripes on a glass substrate and the other for 

forming the analyte detection layer of the LSPR biosensor microarray chip. 

 

4.2.2   LSPR Nanoplasmonic Biosensor Microarray Fabrication 

A piranha-cleaned glass substrate was first oxygen-plasma treated at 20 W for 120 

s. Then, a colloidal solution suspending positively charged CTAB-coated AuNRs 

(Nanoseedz, Hong Kong) were flown into PDMS microfluidic patterning channels 

covered by the plasma treated glass substrate.  The surface of the glass substrate was 

negatively charged. The AuNRs were immobilized onto the glass substrate by means of 

electrostatic interactions and formed bar-shaped parallel sensor array patters. 

Subsequently, 1mM of 10-carboxy-1-decanethiol (C10) (Dojindo, Japan) was dissolved 

in 10% ethanol, loaded into the microfluidic patterning channels, and incubated overnight 
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to functionalize the AuNR surfaces with C10, which replaced CTAB through a ligand 

exchange process. 0.4 M EDC (1-ethyl-3-[3-dimethylaminopropyl] carbodiimide 

hydrochloride, Thermo Scientific) and 0.1 M NHS (N-hydroxysuccinimide, Thermo 

Scientific) were mixed at a 1:1 volume ratio in 0.1 M MES (1-ethyl-3-[3-

dimethylaminopropyl] carbodiimide hydrochloride, Thermo Scientific) solution. 10 µL of 

the EDC/NHS/MES solution was loaded to the same microfluidic channels and incubated 

for 20 min to activate the ligand. This was followed by antibody coating of the AuNR 

sensor patters that involved loading of probe antibodies (anti-human IL-2, IFN-γ, TNF-α, 

IL-10, ebioscience, USA) in deionized water at a concentration of 50 µg/mL into 

individual patterning channels. Subsequently, 1% BSA in deionized water solution was 

loaded through the channels and incubated for 20 min for sensor surface passivation to 

eliminate nonspecific binding of biomolecules. At the end of every incubation step above, 

the sensor surfaces were thoroughly washed using deionized water, and any excessive 

solution and unbound molecules were removed. 

 

4.2.3   Jurkat Cell Culture Reagents 

Jurkat cells (CRL-2901, ATCC) were cultured in RPMI (RPMI-1640, ATCC) 

growth medium supplemented with 10% fetal bovine serum (30-2020, ATCC). Cells 

were incubated at 37°C with 5% CO2 and 100% humidity in a CO2 Cell Culture 

Incubator (Thermo Scientific). The culture medium was replaced every 2-3 days. The 

cells were collected by centrifugation at a speed of 1200g for 5 min and suspended in 

culture medium for the assays in this study. 
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4.2.4   Cell Secretion Assay Protocol 

A cell culture medium of 2 mL suspending Jurkat cells at a concentration of 

2.5x106 cells/mL was loaded to one of the wells of a 6-well plate (Figure 4.1 a). A 

mixture of phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich) at 100ng/mL and 

Ionomycine (Sigma-Aldrich) at 1000ng/mL dissolved in deionized water was added into 

the prepared cells to activate them to secrete cytokines. Subsequently, these cells were 

incubated for 2 hours. A supernatant of 10µL was collected from the cell culture medium 

in the cell pool of the 6-well plate (Figure 4.1.a). This supernatant volume is less than 1% 

of the total cell culture medium volume, which allowed us to minimize the concentration 

changes resulting from collecting the supernatants. 6µL out of the 10µL supernatant 

collected was directly loaded into the LSPR biosensor microarray chip for cytokine 

quantification. After a 120-min incubation process, the immunosuppressant, tacrolimus 

(Sigma-Aldrich), was added into the cell pool at a concentration of 0, 0.1, 1, or 10ng/mL 

and incubated for 60 min. The supernatant sample was repeatedly collected from each 

cell pool every 60 min after the PMA/Ionomycin stimulation and every 10 min after the 

TAC administration. To fully expose the cells to the stimulant and TAC and to collect a 

sample from a uniformly mixed cell culture medium, the 6-well plate was manually 

shaken every time before collecting the supernatant. A syringe infusion pump was used to 

load the sample to the chip at an infusion rate of 2 µL/min for 3 min. Each sample loaded 

to the chip was incubated for 30 min and washed with PBS. The 30-min incubation time 

was determined from real-time binding measurements for the four different analyte types 

of various concentrations. We found that the analyte-binding event typically reached an 

equilibrium state within 30 min after the sample loading (Figure 4.2).  
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Figure 4.1: (a) Assay process involving Jurkat T-cell stimulation and tacrolimus administration. 
Prepared Jurkat T cells were activated by PMA and Ionomycine and incubated for 2 hrs in a 6-
well plate. This was followed by TAC administration and incubated for one hour for cytokine 
secretion pathway alteration. During the first two-hour incubation period, cell-culture supernatant 
samples were collected every 60 min, and samples were collected every 10 min after dosing TAC 
to the cells. (b) T-cell intracellular cytokine secretion pathway and cellular-level effect of TAC. 
(c) Multiplexed cytokine detection using LSPR nanoplasmonic biosensor microarray chip. 
Collected samples were directly loaded into the chip through the top sample-loading PDMS 
channels. The bottom glass substrate, coated with patterned antibody-functionalized AuNR 
particles, was covered with sample loading channels. d) Dark-field image of four parallel AuNR 
array patterns and SEM image of individual AuNR biosensors immobilized on glass. Non-
uniform nanoparticles surfaces show their antibody-coated surfaces. (e) Principle of LSPR dark-
field intensity imaging of LSPR nanoplasmonic biosensor microarrays. The surface binding of a 
targeted antigen at the sensing surface causes the sensor image intensity to increase as a result of 
both the spectral redshift and intrinsic intensity enhancement of the AuNR scattering light. 
Measuring the intensity change enables us to quantify the amount of the analyte in the sample. 
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Figure 4.2: Real-time binding curves obtained from LSPR nanoplasmonic biosensor assay for 
four different cytokines (Red line – 2500 pg/mL of  IFN-γ, Blue line – 1000 pg/mL of IL-2, 
Green line – 500 pg/mL of TNF-α, and orange line – 100 pg/mL of IL-10 ). A mixture of purified 
IL-2, INF-g, TNF-a, and IL-10 at the different concentrations was loaded into the device and 
incubated for 30 min.  

 

4.2.5   Cell Viability Test 

Cells stimulated and incubated with TAC were collected and stained with 10% of 

trypan blue (302643, Sigma-Aldrich) v/v in PRMI solution and immediately examined 

under a microscope for cell viability test. It was observed under the transmission mode of 

the microscope that dead cells were stained with dye and colored blue while healthy cells 

remained uncolored. 

 

4.2.6   LSPR Microarray Chip-to-chip Variance Characterization 

Signal consistency was validated across different LSPR microarray chip devices. 

To this end, cytokine samples of known concentrations were loaded to two out of ten 

sample-detection microfluidic channels of each chip and measured their signal intensities. 

The coefficient of variance (CV, defined as the ratio of standard deviation to the mean 
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signal intensity value) of the signals was calculated to be 8.49 % across 15 chips after 

loading the background buffer PBS. This small chip-to-chip sensor performance variance 

(CV<10%) reveals the reproducibility and stability of our LSPR microarray assay, which 

minimizes errors that would result from using different chips for cell secretion 

measurements. 

 

Figure 4.3: Schematic of the dark-field microscopy setup for LSPR biosensor microarray imaging. 
In the dark-field LSPR imaging process, light-source illumination from the top is first introduced 
to the dark-field condenser lens. The illumination light hits the sensor surfaces of the underneath 
chip with its central light beam blocked. This only allows the scattered light from the sensor 
image to be collected by the objective lens and subsequently filtered by the optical bandpass filter. 
In our study, the chip device was tightly mounted on a motorized stage and placed in the 
microscopy system for the entire measurement. The sample was both loaded to the device and 
washed using a syringe pump.  
 

4.2.7   LSPR Dark-field Imaging Protocol 

The fabricated and prepared LSPR biosensor microarray chip was mounted on a 

motorized stage (ProScan, Prior Scientific) to position the on-chip sensing spot at ease 

and to automate the signal scanning (Figure 4.3). A dark-field condenser (NA=1.45, 
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MBL12000, Nikon) was closely placed to the backside of the glass substrate (the 

opposite side of the AuNR-deposited sensor side) using lens oil. The light scattered from 

the AuNR nanoplasmonic biosensor arrays was collected using a 10x objective lens under 

the chip and then filtered by a band-pass filter (674-686nm, Semrock). This light signal 

was collected by an electron-multiplying CCD (EMCCD, Photometrics) camera and 

analyzed using NIS-Elecment BR analysis software. Further analysis was performed 

using our customized Matlab code. 

 

4.3   Results and Discussion 

4.3.1   Jurkat Cell Secretion Assay Sample Preparation 

Jurkat cells, a commonly used human leukemia cell line for characterizing T-cell 

receptor signaling pathways15, were assayed in a 6-well culture plate (Figure 4.1.a). 

Briefly, Jurkat cells were activated by treatments with phorbol 12-myristate 13-acetate 

(PMA) and Ionomycine (see Methods section) to induce T-cell receptor (TCR)-

independent stimulation responses.[116] A supernatant of 10 µL from each culture well 

was collected every 60 min and then loaded into the nanoplasmonic microarray chip for 

multiplexed cytokine measurements during the 2-hr incubation period after adding PMA 

and Ionomycine.  

After the 2-hr incubation period, four different concentrations (0, 0.1, 1, 10 

ng/mL) of tacrolimus (TAC) were added into each cell culture pool (Figure 4.1.a). TAC 

is a potent immunosuppressive drug widely used to prevent T-cell induced allograft 

rejection.[117, 118] Figure 4.1.b illustrates the signaling mechanism of T cells and how 

TAC acts on the mechanism. When antigen-presenting cells co-interact with the TCR and 
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CD28-receptor of T cells, the co-stimulation triggers activation of calcineurin, which 

promotes dephosphorylation of NFAT and its translocation into the nucleus. In the 

nucleus, NFAT binds AP-1 proteins cooperatively to promote transcription of several 

cytokines.[119] The introduction of TAC to activated T cells inhibits the activation of 

calcineurin through interacting with FK506 binding proteins, which results in the 

suppressed cytokine secretion of the cells. Tracking the levels of cytokines secreted by T 

cells therefore provides a functional understanding of how TAC can effectively alter 

intracellular signaling events and the resulting T-cell functional response. 

In this study, we designed experiments to monitor cellular functional changes of 

Jurkat cells previously stimulated with PMA and Ionomycine every 10 min after their 

exposure to TAC. A previous study by Khalaf et al.[120] showed that the secretion of 

cytokines from T cells significantly increases at 2 hrs after PMA and Ionomycine 

stimulation through heightened AP-1 activity. Based on this information we waited for 2 

hrs after stimulation with PMA and Ionomycine to ensure that the Jurkat cells were fully 

activated before the dosing of TAC and the subsequent monitoring of the Jurkat cells’ 

immune responses. 

 

4.3.2   LSPR Nanoplasmonic Biosensor Microarray Chip 

The LSPR nanoplasmonic biosensor microarray chip used in this study consists of 

two layers: a bottom glass layer and a top polydimethylsiloxane (PDMS) layer (Figure 

4.1.c). The bottom glass layer contains four meandering strips of antibody-coated 

AuNRs, which were deposited by a one-step microfluidic patterning method.[63]	
   The top 

PDMS layer has ten parallel microfluidic channels placed orthogonally with respect to 
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the AuNR strips on the bottom glass layer. This device design yielded 120 sensing spots 

in total on a single chip. Each individual channel could hold a sample volume of 350 nL 

(200 µm ×  35 mm ×  50 µm). Inlet and outlet wells of 0.75 mm in diameter were 

constructed in the top PDMS layer for sample loading and washing. Three identical 

segments of four collocating AuNR parallel strips in each microfluidic channel permitted 

three measurement repeats for each sample, which allowed us to obtain statistically 

meaningful readouts (Figure 4.4). We successfully functionalized each of the four AuNR 

strips with an anti-cytokine antibody targeting against interleukin-2 (IL-2), interferon-

gamma (IFN-γ), tumor-necrosis-factor alpha (TNF-α), or interleukin-10 (IL-10), using 

the standard EDC/NHS chemistry (see details in Method section; Figure 4.1.d, left panel).  

It is known that T cells normally secret these four cytokines upon activation. We further 

utilized scanning electron microscopy (Figure 4.1.d, right panel) to verify that individual, 

antibody-conjugated AuNRs were uniformly distributed on the glass substrate with an 

inter-particle distance > 100 nm. This sufficiently long inter-particle distance was critical 

for avoiding plasmonic coupling between adjacent particles that could diminish analyte 

detection sensitivity.[63] Simultaneous detection of these four cytokines could provide 

predictive information and mechanistic insights for unraveling the complex and adaptive 

nature of T-cell immune response under stimulation and immunemodulation.[4, 121, 122]  

The nanoplasmonic biosensor microarray chip was mounted on a dark-field 

imaging microscopy stage for signal detection. When target analytes bound to the 

antibody-functionalized AuNRs, the local refractive index change induced a redshift of 

the scattering spectrum of the nanoparticles, which was translated into an intensity 

increase of the sensor-pattern image (Figure 4.1.e). The whole AuNR biosensor 
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microarray image was then captured in real time using an electron multiplying charge 

coupled device (EMCCD) and analyzed by a customized Matlab code. 

 

Figure 4.4. a) Photo image of LSPR nanoplasmonic biosensor microarray chip constructed with 
120 sensing spots for cytokine detection. The device consists of a PDMS-based sample-
loading/detection channel layer and a glass substrate with four meandering parallel sensor stripe 
patterns of gold nanorods (AuNRs). The surfaces of the AuNRs were conjugated with antibodies 
targeting four different types of cytokines (L-2, INF-g, TNF-a, and IL-10). b) Top view of the 
device. Ten sample loading microfluidic channels were covered by the glass substrate with its 
AuNR sensor patterns orthogonal to the microfluidic channels.  c) Magnified view of AuNR 
biosensor patterns, which have three repeats of four parallel arrays, each functionalized with 
antibodies targeting one of the four cytokines above. This arrangement allowed for triplicate 
measurements across the four cytokines with each sample, which minimized measurement error. 

 

4.3.3   Cytokines Standard Curve Acquisition and Validation with ELISA 

Prior to multiplexed analyte detection, we first performed parallel calibration for 

the LSPR biosensors on the microfluidic chip. Standard curves acquired for each 

cytokine allowed us to determine the dynamic range and limit of detection (LOD) of the 

sensors. To this end, we spiked a PBS solution with purified IL-2, IFN-γ, TNF-α, and IL-
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10 of known concentrations (from 100 pg/mL to 2500 pg/mL) and quantified scattering 

intensity changes due to the target analyte binding to the AuNR biosensor microarrays. 

Here, the concentration range of our interest is smaller than the dynamic range of the 

biosensors reported in our previous study12 Figure 4.5.a shows three sets of AuNR 

biosensor images with their intensities increasing with analyte concentrations. We 

recorded intensity values of LSPR sensing spots before (𝐼3) and after (𝐼3 + ∆𝐼) sample 

incubation and plotted standard curves showing the fractional intensity shift M+
+N

 as a 

functions of cytokine concentrations (Figure 4.5.b). We further determined the limit of 

detection (LOD) for each cytokine, given by OP
QRSTUV

, where σ was the standard deviation of 

the background noise signal amplitude and 𝑘WXYZ[  was the regression slope of each 

calibration curve. The LOD for the four cytokines were 31.23 pg/mL, 26.08 pg/mL, 

35.40 pg/mL, and 21.43 pg/mL for IL-2, IFN-γ, TNF-α, and IL-10, respectively.  

 

Figure 4.5: (a) Mapping of intensity variations at LSPR microarray sensing spots for four 
different types of cytokines at different concentrations. (b) Standard curves of purified IL-2, IFN-
γ, TNF-α, and IL-10 obtained from LSPR nanoplasmonic biosensor microarray chip. These 
curves were obtained from the intensity images in (a). Our device allows for triplicate 
measurements for each sample analysis with three sets of four parallel LSPR sensor stripe 
patterns integrated within the same detection microfluidic channel, which minimizes 
measurement error. 
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We further compared readouts from the LSPR nanoplasmonic biosensor 

microarray chip with those of the “gold standard” ELISA (HumanCytoSetTM, Invitrogen) 

(Figure 4.6). PBS solutions spiked with unknown concentrations of cytokines as well as 

cell culture supernatant samples containing cytokines secreted from T cells were prepared 

before being assayed using the LSPR nanoplasmonic biosensor assay and ELISA. An 

excellent correlation (R2 = 0.931) between measurements from the LSPR nanoplasmonic 

biosensor assay and ELISA was obtained for samples across a wide dynamic range. Thus, 

the accuracy of the LSPR nanoplasmonic biosensor assay for cytokine secretion assays 

was validated with superior performance as compared to ELISA (Figure 4.6). 

Figure 4.6: Correlation of LSPR biosensor assay data vs. ELISA data obtained from identical 
samples.  
 

Furthermore, the LSPR nanoplasmonic biosensor assay provides several 

advantages over the conventional ELISA immunoassay (Table 4.1). First, the total assay 

time required for the LSPR measurement after the sample loading is 30 min, which is 8 

times shorter than that of ELISA (4 hrs). The LSPR assay is label-free and able to 
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eliminate many process steps that involve tagging with secondary antibodies carrying 

labels and washing unbound agents. Second, the LSPR biosensor microarray chip only 

requires a small sample volume of ~1 𝜇𝐿  for the measurement.  This enables us to 

perform multi-time-point measurements through repeated sampling of small-volume cell-

culture supernatants without significantly altering the analyte concentration in the 

original sample.  Moreover, our LSPR biosensors have a large dynamic range (10-10000 

pg/mL), which is suitable for multiplexed analysis of analytes coexisting in a single 

sample with large concentration variations.  

The multiplexed LSPR nanoplasmonic biosensor assay requires less sample 

volume compare to ELISA. We calculated the volume required for the LSPR 

nanoplasmonic biosensor assay and ELISA. In LSPR nanoplasmonic biosensor assay, we 

obtained 12 data points with 10 𝜇𝐿 of cell culture medium from triplicate measurements 

of the four target cytokines. To obtain the same amount of data with the standard 

singleplexed ELISA technique, the total volume of 50	
  𝜇𝐿 ×12 = 600 𝜇𝐿 would be needed. 

Additionally, Multiplexed LSPR nanoplasmonic biosensor is expected to be more 

cost effective than ELISA. Leng et al.[123] estimated the cost of commercial kit (R&D 

systems)-based ELISA measurement to be $16.53/analyte. Our LSPR assay costs 

$1.06/analyte in a multiplexed setting, where multiple analyte species are detected in 

parallel within the same chip device. This cost is estimated as follows: 

Each LSPR biosensor microarray chip requires10 𝜇𝐿 of gold-nanoparticles (stock price; 

10 mL for $200), thus the AuNR material cost is $0.2/chip. The glass substrate costs 

$43.7/72 = $0.6/chip. We use 2𝜇𝐿 of each antiboby out of 1 mL stock solution ($229), 

which is diluted 10 times for agent loading with ease. The total cost for the four 
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antibodies is $229×4	
  × D
*333

 =$ 1.832/chip. We estimate the labor charge for the entire 2-

hour process, which includes device preparation, sample loading, sample detection, and 

data collection, to be $20/hr ×  2 hour =$40/chip. Thus, the total cost of our LSPR 

biosensor assay involving 8 different samples, each having 4 target analytes, is only 

$1.06/chip for analysis of each analyte.   

 

Table 4.1 Comparison of LSPR biosensor assay and ELISA. 

 

4.3.4   Dynamic Cytokine Secretion Profile Measurement 

Some researchers have studied the dynamics of T-cell cytokine secretion[124] or 

demonstrated highly multiplexed single-cell cytokine secretion measurement[125] aiming 

to understand the T-cell functional response. Access to a technique allowing multiplexed 

measurements of dynamic cytokine secretions is critically important for fully assessing 

antigen-specific T-cell functional response.[104] Given the intrinsic complexity of the 

cytokine network, T-cell functional response assessed by a single detection parameter is 

unlikely to reflect the whole picture of cytokine-mediated cellular functions.[17] In 

addition, cytokine production from antigen-specific T-cell response can be highly 
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transient [17] and dynamic[126]. The standard method of gauging immunosuppression 

relies only on serially measured drug levels in serum with no functional assessment of T-

cell responses. Therefore, knowledge from multiplexed time-course measurements of 

cytokine secretion should be extremely valuable.  

 

Figure 4.7: Temporal cytokine secretion profiles of Jurkat T cells for (a) IL-2, (b) IFN-γ, (c) 
TNF-α, and (d) IL-10 during two serial incubation periods: (1) two hours after PMA and 
Ionomycin stimulation and (2) one hour after TAC administration. The label of “Con” represents 
data from TAC-free control measurement in the second incubation period with the 
PMA/Inomycin stimulated cells. The labels of “T0.1,” “T1,” and “T10” represent data from the 
second incubation period after dosing TAC at the concentrations of 0.1, 1, and 10 ng/mL, 
respectively. The schematics in (e) and (d) show AP-1-mediated T-cell secretion pathways of IL-
2 and IL-10, respectively. 
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To obtain temporal T-cell cytokine secretion profile, we collected a series of 

small-volume supernatant samples from Jurkat cell culture medium at different time 

points and sequentially loaded each of them into a separate microchannel of the LSPR 

nanoplasmonic biosensor microarray chip. Secretion curves for IL-2, IFN-γ, TNF-α, and 

IL-10 clearly demonstrated activated and immune suppressed states of Jurkat cells that 

were sensitive to different concentrations of TAC (Figure 4.7.a-d). Variations across the 

secretion profiles of the four target cytokines likely reflected their different functional 

roles and secretion mechanisms mediated by different intracellular signaling pathways as 

discussed below. The high temporal resolution of the LSPR nanoplasmonic biosensor 

microarray chip for cytokine secretion measurements allowed us to capture transient 

states of immune suppressed T cells that occurred within the first 10 min after TAC 

administration. 

It is well known that T cells activated by antigen stimulation secrete cytokines, 

such as IL-2 and IFN-𝛾, via an NFAT-mediated regulatory pathway (Figure 4.1.b).[119, 

127] The presence of TAC blocks NFAT dephosphorylation due to intracellular 

calcineurin inhibition, which hinders the transcription and secretion of NFAT-dependent 

cytokines by T cells.[128] Our results show that IL-2 and IFN-𝛾 secretions from Jurkat 

cells were suppressed under the high TAC-dose levels (Figure 4.7. a, b). Moreover, IL-2 

concentration reached a plateau around 50 min after TAC administration at 

concentrations of 1 and 10 ng/mL (Figure 4.7.a). The plateau of cytokine secretion profile 

indicates complete IL-2 secretion inhibition for Jurkat cells. 

Activated Jurkat cells with no TAC dosing (Figure 4.7. a, control) showed a sharp 

elevation of IL-2 secretion at 2 hrs after PMA and Ionomysin stimulation. This abrupt 
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secretion elevation likely could be attributed to the onset of AP-1 protein activation 

accompanying NFAT in the T-cell nucleus, forming stable DNA binding sites to initiate 

transcriptional processes for cytokine secretion (Figure 4.7.e).[119] Previous research has 

revealed that AP-1 activation in T cells upon exposure to PMA is a delayed process that 

arises around 2 hrs after stimulation.21,[129] AP-1 activation leads to an elevated 

inflammatory response with heightened cellular secretion of pro-inflammatory cytokines, 

including IL-2, IL-6, CXCL8, TNF-a, as well as the anti-inflammatory cytokine, IL-

10.[120] This is consistent with our control data for IL-2, TNF-a, and IL-10. 

Furthermore, there are research reports suggesting that AP-1 activity does not affect IFN-

𝛾 expression, which is again similar to our observation of no leap of IFN-𝛾 secretion 

from Jurkat cells.[130]  

TAC also inhibits the transcription of NF- 𝜅B in the T-cell nucleus and regulates 

secretion of pro-inflammatory cytokines.[118] TNF-α, is a NF- 𝜅 B dependent 

cytokine[118, 129] and a good indicator of the inflammation suppression effect of TAC 

on the immune system. Figure 4.7.c shows that TNF-α secretion under the doses of TAC 

(T0.1, T1, T10) exhibited different profiles than the control. There were notable 

deviations in TNF-α secretion from control at 20 min after dosing 0.1 and 1 ng/mL of 

TAC, whereas TNF-α secretion suppression already started within 10 min of treatment 

with the 10 ng/mL TAC.  

IL-10 is known to counter-regulate and inhibit T-cell activation and proliferation 

by suppressing the expression of pro-inflammatory cytokines, such as IL-2, IL-5 and 

IFN-γ.[131-133] Interestingly, after its immediate secretion shutdown upon TAC 

treatments, IL-10 secretion gradually recovered after 10, 20, and 30 min exposure with 
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TAC doses of 0.1, 1, and 10 ng/mL, respectively. This unique secretion pattern of IL-10 

might be attributed to a feedback reaction of IL-10 production to pro-inflammatory 

cytokines that were already secreted by Jurkat cells.[120, 134] The presence of pro-

inflammatory cytokines in the cell culture at significant concentrations likely continued 

to promote production of IL-10 even after the TAC-induced secretion suppression took 

place. 

We further verified that cell death was not responsible for deceased levels of 

cytokine secretions. To this end, we performed viability tests on Jurkat cells treated with 

stimulants and TAC (Figure 4.8 and Table 4.2). Across all four conditions (Con, TAC 

0.1, 1, 10 ng/mL), only 3.05 – 4.25% of Jurkat cells lost viability, suggesting a negligible 

effect of cell death on our assays. 

 

Figure 4.8: Cell viability test using trypan blue solution. The images were taken using a 
hemocytometer after adding the trypan blue solution to the Jurkat T-cells after all the assay 
experiments under the conditions in a)-d).  
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Table 4.2: Cell viability test result using trypan blue solution. The Jurkat T-cells after all the 
assay experiments under the conditions shown in Figure 4.8. a)-d). All cases resulted in cell 
viability over 95%, which indicates that the cytokine secretion suppression was not primarily due 
to cell death. 
 

4.3.5   Transient Variations of Cytokine Secretion Rate 

We extracted the cytokine secretion rate (pg/min) from the slope of the line 

connecting the two subsequent data points in each 10-min interval of the secretion curves 

in Figure 3 and plotted secretion rate variations over time for all the four target cytokines 

(Figure 4.9). The temporal variation of the cytokine secretion rate provides information 

useful for understanding the interplay between proinflammatory cytokines and T-cell 

functional response after TAC administration. As expected, the transient evolutions of the 

rapidly changing cytokine-release behavior of the Jurkat T cells exhibit both drug dose- 

and time-dependent characteristics.  

The data show an immediate reduction of the IL-2 secretion rate after the peak 

value at 10 and 30 min after dosing TAC of 1 and 10 ng/mL, respectively (Figure 4.9.a). 

In contrast, the 0.1 ng/mL dose did not completely cease the IL-2 cytokine secretion 

throughout the 60-min observation period, as indicated by the monotonically increasing 

secretion-rate curve. A similar reduction of the secretion rate was observed for IFN-𝛾 as 

well upon TAC administration. The values of the IFN-𝛾 secretion rate converged to a 
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small value near the end of the assay regardless of the TAC concentrations (Figure 4.9.b), 

which were derived from the near-end plateaus of all the original IFN-𝛾 secretion-profile 

curves (Figure 4.7.b).  The TNF-α secretion rate experienced gradual variations over 60 

min for the three different TAC-dose levels. The rate eventually reached a near-zero 

value for all the TAC-dose levels while the control experiment resulted in a nearly 

monotonically increasing curve. The TAC dose of 10ng/mL was especially inhibitive and 

immediately ceased the TNF-a secretion, and the secretion rate became nearly zero 

within the first 10 min. Such information may have important implications for the dose 

effect of TAC on various immune functions. 

 

Figure 4.9: Time-course cytokine secret rate variations of Jurkat T cells for (a) IL-2, (b) IFN-γ, 
(c) TNF-α, and (d) IL-10 during the one-hour incubation period after TAC administration. At the 
time point at t = 120 min is the point at which the TAC administration takes place. The labels of 
“Con,” “T0.1,” “T1,” and “T10” represent the same conditions as in Fig. 4.7.   
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The data for IL-10 show an intriguing secretion characteristic with a distinct re-

heightened secretion rate during the 60-min period (Figure 4.9.d). The initially depressed 

secretion rate of IL-10 might be a result of the combined contributions from both the drug 

exposure and the lowered pro-inflammatory cytokine expression in that time frame. The 

subsequent increase in the IL-10 secretion rate likely reflects a delayed anti-inflammatory 

feedback response of the cells to the peaked secretion of IL-2 and IFN-𝛾 found in the 

early stage of the post-TAC administration period. Such IL-10 secretion dynamics could 

be explained by the IL-10-mediated autocrine regulation of T-cell functions.[135] 

To summarize, we demonstrated the use of LSPR nanoplasmonic biosensor 

microarrays for obtaining temporal cytokine secretion profiles of Jurkat cells under 

immunosuppressive modulation. The multiplexed time-course cytokine secretion data 

obtained from this work enabled us to characterize dynamic features of the functional 

response of Jurkat cells after their exposure to an immunosuppressant, tacrolimus. The T-

cell functional response is governed by an orchestration of dynamic secretions of multiple 

cytokine species. Thus, the multi-analyte (IL-2, IFN-γ, TNF-α, and IL-10), multi-time-

point detection provided a unique opportunity to obtain a broad picture of cellular 

functional states rapidly modulated by immunosuppressive agents. Variations in the 

degree and timing of the TAC-induced secretion suppression across these cytokines 

under a given drug administration condition offer important and clinically relevant 

insight to more precisely modulate immune responses beyond the historically standard 

practice of monitoring serum drug levels.  
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Chapter 5 
 
 

Integrated Nanoplasmonic Sensing for Cellular Functional 
Immunoanalysis using Human Blood 

5.1   Introduction to the Study 

Localized surface plasmon resonance (LSPR) is a plasmonic phenomenon that 

arises around nanoscale structures or nanoparticles of noble metal when light is 

illuminated onto a nanoscale featured sensing surface. When the incident light frequency 

matches the natural frequency of electron oscillation of the conductive metal 

nanoparticles, the interactions between the incident light and the nanostructured surface 

modify the energy of the internal vibronic states of the particles and trigger the LSPR. As 

a result of the high sensitivity of the plasmon resonance to changes in the local refractive 

index, LSPR detection techniques have been implemented into various label-free 

quantitative analyses of antigen-antibody interactions, analyte surface density, and 

protein surface binding kinetics [69, 136, 137]. Moreover, the resonance wavelength and 

intensity can be readily modified by the temporal or irreversible absorption of analyte as 

small as protein, nuclei acids and cytokine [138]. As a result, LSPR-based biosensing has 
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attracted much attention from researchers in biomedical sciences and offers great 

potential in clinical diagnosis. 

Cytokines, immunomodulating protein biomarkers secreted from immune cells, 

are indicators of the functional status of the human immune system. They play critical 

roles in regulating cell signaling, cell differentiation, and inflammatory response in the 

immune system.[139, 140] For example, the cytokine secretion from immune cells in 

response to pathogenic invasions is an indicator of infection that shows a time-course 

change of the diseased condition of human host.[141] However, such immune reactions 

are often extremely dynamic and occur quickly. Thus, rapid immunoassay that affords 

comprehensive characterization and quantitative analysis of cytokines secreted from 

immune cells is the key for precisely determining the subtle variations and the dynamic 

characteristics of cellular immune functions in the host.[142, 143] 

Conventional enzyme-linked immunosorbent assay (ELISA) is a widely used 

method for quantification of cytokines. Benefiting from its cost-effective mass use, 

simple parallel array-type operation, and relatively high sensitivity, ELISA has become 

the most common tool for clinical diagnosis of pathogenic attacks on patients. However, 

the need for secondary antibodies binding to the target analytes results in a long sample 

preparation time and high complexity in sample labeling. Moreover, the fluorescent-

based detection scheme requires a large amount of sample volume to achieve a sufficient 

signal-to-noise ratio for detection. Recent advances in the label-free surface plasmon 

resonance (SPR) detection technique overcome the aforementioned shortcomings of 

ELISA by eliminating the tedious labeling process. However, the SPR detection 

technique still requires bulky instruments based on the Kretschmann arrangement 
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incorporating a prism coated with a thin metal layer and free space optics, while yielding 

a longer surface plasmon decay length dd than the LSPR technique.  These features make 

the bedside application of the SPR technique challenging.  Specifically, the need for 

bulky optical components in the SPR technique hinders the detection platform to be 

miniaturized and integrated with other systems such as point-of-care microfluidic 

devices. While the longer surface plasmon decay length dd yields a higher sensitivity to a 

bulk refractive index change, it is less responsive to changes closer to the surface as 

compared to LSPR, which is essential for detecting antigen-antibody binding that occurs 

near the sensing surface [144]. The LSPR technique takes the advantage of simple and 

cost-effective optics, which is highly desirable for microfluidic integration. More 

important, the LSPR technique yields precise and quick responses to the local refractive 

index changes resulting from the surface adsorption of target molecules. As such, it has 

been proven to be an effective label-free detection method for antibody-antigen binding 

as compared to the aforementioned biosensing techniques [145-148]. 

The detection limit of the LSPR technique for molecular sensing is on the order of 

a few pM.  It should be noted that however, both the detection limit and the sensitivity of 

the LSPR technique are highly dependent on the sensing platform and the size of the 

target molecule [149, 150].  In particular, cytokines are small molecules with a molecular 

weight < 30 kDa. The small size of cytokines greatly hinders the LSPR-based detection 

in clinical applications and disseminations. There have already been several approaches 

based on sandwich-type immunoassays with secondary antibodies or secondary particles 

to improve the detection limit of LSPR technique for natural biomolecules [147, 151]. 

However, these approaches lose the original advantage of label-free LSPR biosensing 
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that enables rapid, dynamic biomolecular detection.  To the best of our knowledge, 

quantitative analysis of immune cell-secreted cytokine molecules from human blood has 

never been demonstrated with a LSPR platform. The implementation of LSPR biosensing 

for human blood samples faces more challenges due to the presence of other complex 

blood components in addition to the immune cells and the analytes under study.  

In this study, we developed a LSPR-based optofluidic immunoassay technique 

that could precisely determine the concentrations of small cytokine molecules secreted 

from immune cells in human blood with an ultra-small sample volume and a much 

shortened assay time. Specifically, we successfully demonstrated a LSPR sensing 

platform device that could seamlessly allow isolating and trapping target immune cells 

from human lysed blood, cell incubation and stimulation, and detecting cell-secreted 

cytokines such as TNF-a on a single chip. Our technique employed an approach of 

spatially confining analytes within a small microfluidic chamber with a volume of a few 

µL. This approach effectively increased the concentration of cytokines secreted from the 

trapped immune cells to a detectable range while compensating the limitations of the 

conventional LSPR technique for small-molecule detection. The enrichment of cytokines 

in such a small chamber volume further facilitated the analyte-antibody interactions and 

reduced the time required for achieving the equilibrium binding state [152]. As a result, 

the microfluidic LSPR immunoassay platform reported here achieved quantitative 

detection of cytokine secretion from a desired subset of immune cells down to a cell 

population as few as 1,000 cells, which drastically reduced the sample volume by 

approximately 100 times and shortened the total assay time by 3 times as compared to the 

conventional cytokine secretion assays.  
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5.2   Materials and Methods 

5.2.1   Microfluidic Device Fabrication 

The integrated optofluidic LSPR device consists of three different layers. The 

middle layer for cell separation and incubation chamber was fabricated using 

micromachined technique by photolithography and followed a deep reactive ion-etching 

(DRIE) (Deep Silicon Etcher, Surface Technology Systems, Allenton, PA). The silicon 

mold was silanized with (tridecafluoro-1,1,2,2,-tetrahydrooctyl)-1-trichlorosilane vapor, 

United Chemical Technologies) for 1 hour in vacuum to facilitate subsequent release of 

PDMS structures from the mold. The PDMS prepolymer (Sylgard-184, Dow Corning) 

was prepared by thoroughly mixing the PDMS curing agent with the PDMS base 

monomer (wt : wt = 1 : 10) and poured onto the silicon mold and cured overnight at 60°C 

oven.[153] Fully cured PDMS structure was peeled off and treated with O2 plasma for 

PDMS-PDMS bonding with prepared supporting PDMS layer. The supporting PDMS 

layer is a 5 mm thick layer with no special features, except those for supporting fluidic 

interconnects for the device inlet/outlet and for sustaining the water cap between the light 

probe and the PDMS channel. 

 

5.2.2   LSPR Sensor Chip Preparation 

The LSPR signal detection sensor chip, ZEONORTM 8 spot array-SAM surface, 

was purchased from Lamdagen (Menlo Park, CA). The LSPR sensor surface was 

activated with 20 	
  𝜇𝐿	
   of mixed 0.4M EDC (1-ethyl-3-[3-

dimethylaminopropyl]carbodiimide hydrochloride, Thermo Scientific ) and 0.1M NHS 

(N-hydroxysuccinimide, Thermo Scientific) at a 1:1 volume ratio in 0.1M MES(1-ethyl-
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3-[3-dimethylaminopropyl]carbodiimide hydrochloride, Thermo Scientific ) solution for 

20 mins.  After the surface activation, the primary TNF-a antibody  (DY210, R&D 

Systems) was diluted to 100 𝜇𝑔/𝑚𝐿 -1 in 1x PBS and 20𝜇𝐿, injected to the detection 

surface, and incubated for 60 min. To eliminate the non-specific binding on the detection 

surface, 20	
  𝜇𝐿 of 1% BSA (Albumin, from bovine serum, SIGMA) in 1x PBS and 1x 

casein (5x Casein block solution, Surmodics BioFX) blocking buffer were flown into the 

detection chamber and incubated for 20 min. During all the process, the solutions were 

loaded using a syringe pump (LEGATO210, Kd Scientific)) at 5	
  𝜇𝐿	
  𝑚𝑖𝑛-1. And between 

every step, the detection surface was thoroughly washed to remove any excessive 

solutions or molecules using 40𝜇𝐿 of 1x PBS at 5𝜇𝐿	
  𝑚𝑖𝑛-1  

 

5.2.3   THP-1 Cell Culture and Reagents 

THP-1 cells (TIB-202, ATCC) were cultured in RPMI (RPMI-1640, ATCC) 

growth medium supplemented with 0.05mM 2-Mercaptoethanol (21985-023, Life 

technologies) and 10% Fetal Bovine Serum (30-2020, ATCC). Cells were cultured at 

37°C with 5% CO2 and 100% humidity, and the cell culture medium was replaced every 

2-3 days. The cells were collected by centrifugation at a speed of 1200g and resuspended 

in RPMI for subsequent experiments.   

 

5.2.4   Cell Quantification and Viability in the Device 

The prepared THP-1 cells were stained by 1µM Calcein AM (C3100MP, 

Invitrogen) and incubated for 30min before fluorescence microscopy imaging for cell 

quantification and viability test. A 130W mercury lamp (Intensilight C-HGFIE, Nikon) 
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was used for fluorescent illumination. Calcein AM was visualized with a FITC filter set 

(excitation; 498 nm, emission; 530 nm, Nikon).  We employed two methods to quantify 

the cell population loaded in the device. First, we calculated the total number of cells 

introduced to the inlet by multiplying the original cell concentration with the total volume 

injected into the device. Hence, the population of isolated cells by the micro-pillars was 

estimated by subtracting the number of cells collected at the outlet.  We also quantify the 

cell population by measuring the fluorescent intensity of the stained cells, which is 

proportional to the concentration of the fluorophore labeling the cells. We made control 

chambers, each with the same area and volume as the incubation chamber of the device, 

and loaded Calcein AM-stained cells with their population varied. We obtained the 

standard curve showing the fluorescent intensity at each chamber as a function of the cell 

population.  The fluorescent intensity integrated over the whole image of the cells in the 

chamber was then fit back to the standard curve to quantify the population of the cells 

loaded in the device.  

 

5.2.5   Blood Sample Preparation and CD45 Cell Captured with Polystyrene micro-

beads 

One milliliter of whole blood sample was incubated with 10 mL of RBC Lysis 

Buffer (00-4333-57, eBioscience) at a 1:10 volume ratio for 12-15 min. After the lysis, 

20-30 mL of 1x PBS was added into the mixture and centrifuged at 400 g for 10 min. We 

aspirated all the plasma and red blood cells and resuspended the remained cells into 

RPMI medium. To prepare the polystyrene beads, 100 𝜇𝐿 of biotinelated polystyrene 

beads (CP01N, Bangs Laboratory, Inc.) were washed with 1 mL of D.I. water for three 



97 

times and centrifuged at 1200 g for 15 min in between. After the thorough washing, the 

beads were resuspended into 2 mL of washing buffer (0.1M PBS (10X PBS), pH 7.4) and 

gently mixed with 80 𝜇𝐿 of CD45 antibody (MHCD4515, Life technologies) for 30 min 

at room temperature. After the incubation, the CD45 conjugated beads were washed three 

times as described above and made ready for the use of capturing CD45 surface marker 

cells. 

 

5.2.6   LSPR Detection Setup and the Spectrum Data Analysis 

The LSPR sensor chip was illuminated by the light source (HL-2000 tungsten 

halogen light, Ocean optics) which generates a continuous spectra of light from 400~700 

nm. The incident light propagating along the illumination fiber embedded at the center of 

the light probe (R400-7-UV-VIS, Ocean optics) was introduced perpendicular to the 

sensing surface. The reflected light signal from the detection surface was collected by the 

detection fibers of the light probe, which connected with a spectrometer (HR-4000, 

Ocean optics) (Figure 5.1). The absorbance spectrum of the detection surface was 

obtained using commercial signal processing software (Spectra Suits, Ocean Optics) that 

subtracts the measured intensity of the reflected light from the originally known intensity 

of the incident light at each wavelength over the spectral band of 400 to 700 nm. All the 

collected data were analyzed by a MATLAB code to obtain the regression curve and find 

the peak wavelength from the absorbance spectrum curve. [154] 
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Figure 5.1: LSPR detection setup (a: real optics setup image and b: schematic optics setup) used 
for obtaining the absorbance spectrum of the LSPR detection surface of the optofluidic platform. 
The setup includes a light source, a light probe, a spectrometer, and a signal-processing computer. 
The light probe has a core illumination fiber connected to the light source and a bundle of 
embedded optical fibers. The light source provides a full spectrum of light that excites the gold 
nanostructured LSPR detection surface. The bundled optical fibers collect the light reflected from 
the detection surface. The collected reflected light signal transfers into the spectrometer and by 
pass through the grating, mirror and CCD detector, the light spectrum is converted into electrical 
signal for analyzing. 
 

5.3   Results and Discussion 

5.3.1   LSPR Detection and Device Design  

As briefly mentioned above, LSPR arises when the frequency of the collective 

oscillation of electrons near the surface of a conductive metal nanoparticle matches the 

excitation light frequency. At the resonance wavelength, the light field induces a dipolar 
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response of the conducting electrons as shown in Figure 5.2.a. Binding of a biomolecule 

onto the surface of a noble metal (in this study, the metal is gold) nanoparticle causes a 

change in the near-field refractive index around the nanoparticle. As a result, the 

absorbance of light changes, and this change results in a shift of the absorbance spectrum 

peak (Figure 5.2.a). Such a LSPR spectrum wavelength peak shift can be described using 

the equation 5.1 [155]. 

∆𝜆abc = 𝑚∆𝑛[1 − exp	
  (−2𝑑 𝑙.)]      (5.1) 

Here 𝑚  is the bulk refractive-index response of the nanoparticles, ∆𝑛  is the 

change in refractive index induced by the absorbate, 𝑑 is the effective thickness of the 

adsorbed layer, and 𝑙. is the characteristic electromagnetic field decay length.[155] The 

refractive index of the depositing monolayer of biomolecules is approximately 1.45, 

[156] which is higher than the refractive index of water medium. Thus, if there occurs a 

biomolecule binding event on the nanoparticle surface, ∆𝑛 and 𝑑 will increase, resulting 

in a red shift of the resonance peak wavelength. 

Our optofluidic device was composed of two polydimethylsiloxane (PDMS) 

layers serving as a supporting layer and a microfluidic layer, respectively, and one LSPR 

sensing layer with a circular detection pattern of gold nanoparticles deposited at its 

center, which is shown as the yellow spot on the black bottom layer in Figure 5.2.b and 

the AFM image. The gold nanoparticle detection surface was illuminated under a full 

spectrum of 400-700 nm light from the core of the light probe placed above the device. 

The reflected light from the sensing surface was collected by a bundle of optical detection 

fiber in the light probe (Fig. 5.2.b, Fig. 5.1). The gold nanoparticles deposited on the 

sensing surface were functioned with 10-Carboxy-1-decanethiol (C10) and activated 
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following the general 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) activation 

protocol [154]. The activated carboxylic group on the gold nanoparticles could then form 

esters with the amine groups on the primal antibody (Figure 5.2.c).  

 

Figure 5.2: (a) Principle of nanoplasmoic biosensing based on LSPR at gold nanoparticle 
surfaces.  (b) Schematic of integrated LSPR optofluidic platform device. The bottom layer is a 
gold nanoparticle-deposited (or gold nanostructured) surface for LSPR detection. The magnified 
image (lower left) is an AFM image of the gold nanostructured LSPR detection surface. The 
middle layer includes a microfluidic chamber and channels. The chamber has integrated micro-
pillar arrays (shown in the middle right schematic) to trap bead-bound target cells. The top layer 
provides structural support for light probe alignment and for cell/reagent injection and ejection. 
The cross-sectional schematic (upper right) shows the arrangement of the device and the light 
probe consisting of an illumination core and a bundle of detection optical fibers. (c) The gold 
nanostructured detection surface is functionalized with a chemical ligand (C10). The C10 ligand 
has a carboxylic group that binds with the amine group of the probe antibody molecule. (d) 
Concept of multi-functional LSPR optofluidic operation. Each illustration shows the soft 
lithographically patterned polydimethylsiloxane (PDMS) microstructures on the flipped side of 
the middle layer and the sensing surface of the bottom layer.  

 

The microfluidic chamber layer, mainly providing the function of trapping and 

incubating cells, was shown in the middle in Figure 5.2.b. A unique circular structure 
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composed of three arrays of micropillars with the pillar diameter of 30 µm diameter and 

the pillar edge-to-edge gap distance of 5 µm was incorporated around the sensing surface 

to isolate and enrich the target immune cells before the cells were stimulated and 

incubated for cytokine secretion and detection (Figure 5.2.c, micro-pillar array). The 

diameter of the center region of the microfluidic chamber was set to be 3.2 mm, with a 

height of 50 𝜇𝑚 . This chamber was connected to the inlet and outlet (0.75 mm in 

diameter) by channels of 200	
  𝜇𝑚 and 50 𝜇𝑚 in width and height, respectively. The total 

channel volume was calculated to be approximately 3	
  𝜇𝐿. Such a small chamber size 

enabled rapid accumulation and diffusion of cell-secreted cytokines, and therefore 

acutely reducing the volume and incubation time required for the target analyte binding 

to the LSPR sensing surface. The top supporting PDMS layer provided structural support 

for injecting the sample with a syringe pump and sustaining a water cap filling the gap 

between the light probe and the detection surface (Figure 5.2.b panel in the up right). The 

water cap served to minimize the refractive index mismatch at the interfaces, to increase 

the signal-to-noise ratio by suppressing background noise arising from thermal gradients 

and air fluctuations [157], and to prevent direct contact between the probe and the 

sensing surface.  

Figure 5.2.d illustrates the processes of the label-free LSPR optofluidic cellular 

functional immunoanalysis technique developed for human blood samples. Our technique 

integrated cell isolation and enrichment, cell stimulation and incubation, and detection of 

cytokines secreted from isolated immune cells on a single chip. The general assay steps 

using the device are described as follows: The target cells were first attached to 15 µm-

diameter polystyrene beads conjugated with antibodies specifically binding to the cells’ 
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surface marker proteins. The bead-bound cells were then introduced into the device from 

the inlet, trapped by the micro-pillar arrays owing to the mechanical rigidity of the beads, 

and incubated in the microfluidic chamber. After stimulated by endotoxin solution for 2 

hours, the cells produced cytokines (e.g. TNF-a), which readily diffused into the 

detection surface through the gaps between the micro-pillars and captured by the primary 

antibodies covalently immobilized on the nanostructured gold surface (Figure 5.2.d). 

Binding of the cytokines on the nanostructured gold surface altered the LSPR absorbance 

spectrum of the detection spot. We measured the spectrum peak shift using a custom-built 

LSPR detection setup shown in Figure 5.1. The illumination fiber in the light probe was 

connected to the broad-spectrum light source and used to excite the detection surface to 

induce the LSPR effect. The reflected light was then collected by the detection fibers also 

embedded in the light probe, and the light signal was collected by the spectrometer and 

converted to electrical signals for further analysis.  

 

5.3.2   On-chip Cell Trapping Performance 

On-chip cell trapping with our LSPR device was demonstrated first for a human 

acute monocytic leukemia cell line (THP-1) and then for CD45+ immune cells isolated 

directly from lysed human blood as shown in Figure 5.3. THP-1 cells are commonly used 

as a model for mimicking the function and regulation of monocytes and macrophages and 

for immunocytochemical analysis of protein-protein interaction. CD45+ immune cells 

represent a group of immune cells that express CD45 surface marker, a type I 

transmembrane protein assisting in T-cell activation. The polystyrene microbeads were 

initially conjugated with antibodies that specifically interact with cell surface biomarkers: 
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CD14 for THP-1 cells and CD45 for CD45+ immune cells in lysed blood sample, 

respectively. The prepared microbeads were diluted to a concentration of 1.4×102 mL-1 

in PBS and then mixed with THP-1 cells at a 1:1 ratio in the cell culture medium (RPMI) 

for one hour to form immune cell-bead conjugated pairs.  This process was repeated for 

CD45+ cells after a whole blood sample was red blood cell (RBC)-lysed as shown in 

Figure 5.3.a (also see Materials and Methods). The fluorescence microscopy image in the 

top panel of Figure 5.3.b verifies that the immune cell-bead conjugation scheme worked 

in lysed blood. Here, the image shows that bead-bound CD45+ cells, freestanding 

immune cells, which could be either other immune cell subpopulations or unbound 

CD45+ cells, and residual RBCs were co-existing in the lysed blood sample.  

We subsequently loaded the lysed blood sample into the device using a syringe 

infusion pump at a constant flow rate of 5 	
  𝜇𝐿	
  𝑚𝑖𝑛p* . The unbound cells and other 

components in the original blood escaped through the pillars and washed out through 

outlet (middle panel in Figure 5.3.b, 5.4) while the cells attached to the microbeads were 

efficiently captured by the micro-pillar arrays (the bottom panel in Figure 5.3.b). Here, 

the microbeads exhibited the capability of both isolating the target immune cells from the 

blood and ensuring high-fidelity cell trapping with the micro-pillar arrays. Mammalian 

cells are typically soft and elastic due to the lack of the rigid cellular wall possessed by 

plant cells. As a result, they can be easily deformed under external pressure and squeezed 

to escape through the gap between the micro-pillar arrays. In contrast, the microbeads 

behave as solid carriers and prevent the undesired escape of the target cells attached to 

them. As proved by the fluorescent intensity measurement of the cell population in the 

device (Figure 5.3.c, 5.4.b), the microbead attachment of cells enabled the trapping rate 
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to reach nearly 95% while unbound cells were trapped only at a rate of around 50% 

(Figure 5.3.d). The image in Figure 5.3.b shows that the cell-to-bead conjugation ratio is 

not necessarily 1:1 for all the pairs. However, this does not affect the accuracy of our 

method to quantify the trapping rate (see Materials and Methods).   

  
Figure 5.3: (a) Process of conjugating target immune cells with primary antibody-coated 
microbeads for their subsequent extraction from lysed human blood. Here, the human whole 
blood was first red blood cell (RBC)-lysed with the buffer to remove some fraction of the entire 
RBCs. The primary antibody-coated microbeads were then mixed with the lysed blood. Cells 
expressing a particular surface marker protein species were specifically bound to the microbeads.  
This process formed cell-bead conjugate pairs. (b) Process of isolating and trapping target white 
blood cells using micro-pillar arrays. The lysed blood sample containing the cell-bead conjugate 
pairs and residual RBCs was loaded into the device. The upper optical microscopy image shows 
bead-bound cells in the lysed blood sample. The lower scanning electron microscopy (SEM) 
image shows cell-carrying microbeads trapped by the micro-pillar arrays. (c) Fluorescence image 
showing the whole microfluidic chamber structure with trapped calceinAM-stained THP-1 cells.  
(d) Cell trapping rates for freestanding THP-1 cells and bead-bound cells. The cell-bead 
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conjugation scheme increased the trapping rate up to 95% from 50-60%, which was achieved 
without the conjugation process. 
 

 

Figure 5.4: (a) Photo image of the real LSPR optofluidic device with lysed blood loaded from the 
inlet. Unfiltered blood cells and other blood contents are ejected from the outlet. The cells trapped 
in the device were bounded to the microbeads, and stimulated and incubated for on-chip 
immunofunctional assay. (b) Fluorescence image of freestanding calceinAM-stained cells loaded 
to the device without microbead conjugation. Approximately, the half of the loaded cells were 
squeezed out, escaped through the micro-pillar arrays, and moved out to the detection surface 
region of the device. 

 

5.3.3   Dynamic Detection of Biomolecular Surface Binding   

We selected purified natural TNF-a as the analyte cytokine species in our assay 

and characterized the device’s performance for dynamic analysis of biomolecular surface 

binding events. The gold nanostructured detection surface of the device was first 

functionalized with anti-human TNF-a, which served as the capture antibody of the 

surface. The remaining uncovered detection surface was coated with blocking buffer 

containing 1% BSA and casein molecules to prevent non-specific adsorption of TNF-a 

molecules. The TNF-a solution was then introduced to the device and incubated for 1 

hour to allow the analytes fully engage with the primary antibodies. For each step 

described above, we thoroughly washed the LSPR detection surface with PBS solution to 

stabilize it against solvent annealing and avoid non-specific binding of the introduced 
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molecules to it. The LSPR peak wavelength throughout the entire process was 

continuously monitored (Figure 5.5). Exposure of the activated carboxy-terminal 

conjugated gold nanostructured surface to the anti-human TNF-a induced a red shift of 

2.5-3.0 nm as a result of covalent ester group formation. Addition of the blocking buffer 

resulted in a weaker red shift (1nm) mainly due to the smaller sizes of the BSA (MW. 

~66.5 k Da.) and casein (MW. ~28-32 kDa.) than that of the antibody (MW. ~150 kDa.).  

 

Figure 5.5: (a) Real-time LSPR signal shift during LSPR biosensor surface preparation and 
analyte detection processes. The green region shows the time-course absorbance spectrum peak 
shift of the LSPR detection surface during the primary antibody immobilization process with an 
incubation time of 60min.  The purple region shows the LSPR peak shift during the surface 
blocking process by BSA and cacein molecules.  The orange region shows the LSPR peak shift 
during the process of loading purified TNF-a to the detection surface with an incubation time of 
60min. At the end of each process, the entire detection surface was washed with PBS buffer to 
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eliminate the non-specific binding of reagent and analyte molecules. (b) Normalized LSPR 
absorbance spectra corresponding to the processes in (a).   
 

Introducing 5.85 nM of TNF-a yielded a further red shift because of the specific 

interactions between TNF-a and the antibody. The subsequent blue shift was possibly 

due to the removal of physically adsorbed TNF-a during rinsing. We further examined 

the selectivity of our sensing surface towards TNF-a by introducing unpaired analyte, 

elafin, and a mixture of elafin and TNF-a analyte into the device (Fig. 5.5.a, 5.6). The 

LSPR peak wavelength red shifted only when TNF-a molecules were present in the 

solution (Figure 5.5.a orange region, Figure 5.6.a blue region), while no shift was 

observed with the other type of analyte, elafin, introduced (Figure 5.6.b purple region) to 

the detection surface.  The total time required for the LSPR detection surface preparation 

prior to the assay was 2.5 hours, which is much less than that of the conventional ELISA 

methods, which typically take an overnight process for detection surface preparation 

(Figure 5.5.a). 

 

Figure 5.6: (a) Real-time LSPR spectrum peak shift upon loading a mixture of 250ng/mL of TNF-
α and 250ng/mL of elafin to the detection surface of the device. The detection surface was 
prepared with Anti-human TNF-α serving as the probe antibody, followed by a blocking process 
with 1% BSA and cacein. The blue region represents a 1h-incubation process of the mixture 
sample.  The effective spectrum peak red-shifted by ~0.3 nm after washing the detection surface. 
(b) Real-time LSPR spectrum peak shift upon loading 250ng/mL of purified elafin to the same 
detection surface as in a. The purple region represents a 1h-incubation process of the elafin 
sample.  Loading only elafin cytokines resulted in unnoticeable LSPR spectrum peak shifts.  
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5.3.4   TNF-a Standard Curve and Validation with ELISA  

Prior to our LSPR cellular functional assays using real blood samples, we first 

obtained the analyte standard curve using purified TNF-a (DY210, R&D systems) 

solution of known concentrations ranging from 100 – 500 ng/mL.  With the increasing 

concentration of TNF-a, the LSPR peak wavelength shifted linearly from 0.1076 nm to 

0.6779 nm (Figure 5.7.a). This TNF- a standard curve provided the correlation between 

the analyte concentration and the LSPR spectrum peak shift. Additionally, we compared 

our LSPR immunoassay results together with those obtained from the conventional 

ELISA method (DY210, R&D systems) using a commercial plate reader (Synergy H1, 

BioTek) for three unknown concentrations of natural TNF-a samples (Figure 5.7.b). 

Each spectrum shift obtained from the LSPR detection was converted to a TNF-a 

concentration value using the standard curve in Figure 5.7.a. Similarly, the conversion of 

the ELISA signal was performed using a calibration curve collected during the 

experiment. Figure 5.7.b showed an excellent linear correlation (R2=0.9937) between the 

results from the LSPR immunoassay and the ELISA analysis for the TNF-a samples.  

 

Figure 5.7: a) Purified TNF-alpha standard curve. b) TNF-α concentration obtained by the 
conventional ELISA technique versus TNF-α concentration detected using the integrated LSPR 
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optofluidic platform for the same TNF-α sample of three unknown concentrations. A high 
correlation (R2 = 0.99378) was obtained between the data from the two different methods, which 
validates the performance of our device for LSPR biosensing. 
 
 
 
5.3.5   Integrated Optofluidic LSPR Cellular Functional Analysis  

After cross-validation of the biosensing performance of the LSPR platform with 

the ELISA technique, THP-1 cells suspended in buffer solution were loaded into the 

LSPR device for on-chip cell separation, incubation, stimulation, and detection of cell-

secreted TNF-a. Figure 5.8.a,b show results obtained from LSPR signal shifts due to 

binding of TNF-a secreted by LPS-stimulated cells with their population and the LPS 

concentration varied. The amount of TNF-a increased monotonically with the LPS 

concentration and the population of THP-1 cells incubated in the device. Incubation and 

stimulation of 20,000 THP-1 cells at a LPS concentration ranging from 5 to 25 ng/mL 

resulted in LSPR spectrum shifts of 0.1901, 0.3445, and 0.7004 nm, each corresponding 

to TNF-a secretion at a concentration of 163.36, 296.13, and 602.05 ng/mL, respectively. 

At a LPS concentration of 25 ng/mL, the LSPR signal shifted by 0.1761 nm (151.37 

ng/mL), 0.3085 nm (265.14 ng/mL), 0.4412 nm (379.20 ng/mL), and 0.7235 nm (621.93 

ng/mL) with 1,000, 5,000, 10,000, and 20,000 THP-1 cells, respectively. (values inside 

the parentheses corresponded to concentrations of TNF-a obtained from the standard 

curve.) Under the same incubation and stimulation conditions, our optofluidic platform 

device allowed us to observe the TNF-a secretion from cells as few as 1,000, which is a 

100 times less than that required in the conventional cellular immunophenotyping assay. 

The minimum cell population for detection, which is determined by measuring the LSPR 

spectrum shift equivalent to 3 times the standard deviation of the background noise from 
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a blank device (without loaded cells), was about 533 cells. Typically, there exist on 

average 7,000 leucocytes in 1 µL of human blood.  It follows that our LSPR optofluidic 

platform yields a detection limit that permits the assay with a human blood volume as 

small as 100 pL. 

 

Figure5.8: (a) TNF-α concentration versus population of trapped cells upon LPS stimulation at 
25ng/mL. The minimum detectable cell population achieved by the LSPR optofluidic platform 
device is estimated to be 533 cells from curve extrapolation and background noise measurement. 
(b) TNF-α concentration versus LPS concentration upon stimulating cells of a fixed population of 
20,000. (c) Quantity of TNF-α molecules secreted per cell versus quantity of LPS molecules 
available for stimulation per cell.   (d) Quantity of TNF-α molecules secretion per cell for normal 
THP-1 cells, CD45 cells, and LPS-deactivated cells loaded to and stimulated in the device at 
varying LPS concentration. The p-values calculated using the paired Student’s t-test indicate 
significant differences (P<0.05 (*) ) in the TNF- α -secretion behaviors of the functional and 
deactivated cells. All the plots were obtained from LSPR spectrum peak shifts of the detection 
surface of the optofluidic platform device.  
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It should be noted that a strong correlation (R2=0.9793) was found between TNF-

a secretion per cell and available LPS molecules per cell as shown in Figure 5.8.c. A 

similar trend was also observed in our previous study that TNF-a secreted from each 

THP-1 cell was proportional to the number of LPS molecules available for each cell.[158]  

We further prepared cell cohorts consisting of normal THP-1, immunologically 

deactivated THP-1, and CD45+ cells isolated from human blood, and measured the level 

of TNF-a secretion for these cohorts when stimulated at a given LPS concentration 

between 5 and 25 ng/mL. Previous research [159] reveals that immunologically 

“deactivated” peripheral blood monocytes may be functionally connected to 

immunoparalysis, which is associated with adverse outcomes of the severe reaction of a 

host to infection, such as sepsis. When a patient is in the state of immunoparalysis, the 

immune cells in the host body secrete an attenuated amount of cytokines. To examine 

whether our integrated LSPR platform could differentiate the normal and deactivated 

conditions, we deactivated THP-1 cells by treating them with 10 ng/mL of LPS in the 

RPMI medium overnight before LSPR biosensing assays. The cells were washed with 

cell growth media before loaded into the device to remove the remaining LPS. This 

pretreatment of THP-1 cells with LPS increases the cells' endotoxin tolerance during the 

second LPS stimulation so that the cells become less sensitive to the stimulation.[160] As 

such, these deactivated THP-1 cells mimic the conditions resulting from the state of 

immunoparalysis. As shown in Figure 5.8.d, after normal or deactivated THP-1 cells, 

both at a fixed population of 20,000, were introduced into the device and stimulated with 

varying LPS concentrations for 2 hours, TNF-a molecules secreted by the deactivated 

cells was 2 - 6 times less than those from the normal THP-1 cells. Thus, our integrated 
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LSPR optofluidic platform enabled quantitative differentiation of the two distinct THP-1 

cell cohorts.  

5.3.6   LSPR Optofluidic Human Blood Assay  

CD45+ cells used in our immunofunctional assay were peripheral blood 

mononucleated cells (PBMCs) isolated from lysed human blood samples by using CD45 

antibody-coated microbeads. These cells are a mixture of immune cells consisting of 

lymphocytes, monocytes, and macrophages. When exposed to LPS, not all of these cells 

would respond to the stimulation. It follows that TNF-a secretion levels from THP-1 

cells and CD45+ cells will be different under the same LPS stimulation with the same 

cell number. As can be seen from Figure 5.8.d, the level of TNF-a secreted from THP-1 

cells was 1.1 - 1.4 times higher than that from CD45 cells isolated from human blood 

samples. Moreover, TNF-a secretion levels from CD45+ cells obtained from a healthy 

donor was significantly higher than that from deactivated THP-1 cells mimicking the 

immunoparalysis state. Our results in Figure 5.8.d demonstrate the promise of our LSPR 

optofluidic platform for future rapid monitoring and prognostic determination of 

infectious diseases based on on-chip human blood cellular immunofunctional analysis.  
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Chapter 6 

 

Conclusions and Future Work 

 

6.1   Summary of Thesis 

This thesis work successfully developed a field-effect transistor platform and 

LSPR plasmonic platforms with significant advantages for cytokine biomarker detection. 

In our first study using MoS2 based field-effect transistors, we achieved rapid, ultra-high 

sensitivity biosensor for measuring cytokine biomarkers and their surface binding 

kinetics. In our second study, we demonstrated temporal profiling of the T-cell functional 

response under immunomodulatory agent exposure using the microarray-type LSPR 

nanoplasmonic optofluidic device. In this work, we successfully characterized the 

cytokine secretion behavior of T cells for multiple analytes with a rapid, high-sensitivity, 

and high-throughput platform. In our third study, we developed an integrated LSPR 

plasmonic biosensor with microfluidic system for cell secretion assay. This work 

demonstrated an optofluidic device allowing for on-chip cell separation, stimulation, 
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incubation and in situ measurement of cell-secreted cytokines for human blood samples. 

A summary of all the presented accomplishments is given in the following sections. 

 

6.1.1   MoS2-based Field-effect Transistor Biosensor for Cytokine Biomarker 

Detection 

In this study, we demonstrated important device physics and metrics for 

calibrating the responses of MoS2 transistor biosensors and validated that multiple 

sensors can be used to enable quantification of low-abundance biomarker molecules as 

well as the affinities and kinetics of antibody-antigen mediated binding events. In 

particular, our biosensors showed a TNF-α detection limit at least as low as 60 fM. This 

low detection limit can be obtained in both linear and subthreshold regimes of MoS2 

transistors. We further observed that the sensors worked in the subthreshold regime 

presented higher current sensitivities in comparison with those in the linear regime. The 

high subthreshold-regime sensitivities pose significant potential to further lowering down 

the TNF-α detection limit. In both transport regimes, the detected current signals can be 

normalized into response quantities independent of the transistor performance, which can 

efficiently reduce the effect of sensor-to-sensor difference on detecting biomolecules. 

Based on this calibration method, all sets of our biosensors generated consistent sensor 

responses with respect to TNF-α concentration and therefore a standard curve for TNF-α 

quantification was obtained. From this standard curve, the equilibrium constant of the 

(TNF-α)-antibody pair was calculated to be KD=369±48 fM for linear-regime responses 

(or KD = 424 ± 70 fM for subthreshold-regime responses). Furthermore, the real-time 

association/dissociation processes of the (TNF-α)-antibody pair were also measured using 
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multiple sensors. The association/dissociation rates were calculated to be kon = (5.03 ± 

0.16) × 108 M−1s− 1 and koff  = (1.97±0.08)×10−4 s−1, respectively. This work pose an 

important foundation for leveraging the excellent electronic properties of emerging 

atomically layered semiconductors in bio-assay applications, as well as advanced 

research capability in analyzing biomolecule interactions with fM-level detection 

sensitivities. Of note, such capability would enable selection of antibodies with a high 

binding constant with respect to a specific target biomarker molecule, thereby providing a 

means to further improve the selectivity and reliability of immunoassay. 

 

6.1.2   Multiplexed Nanoplasmonic Biosensor for Temporal Profiling of Cytokines 

In this study, we demonstrated the use of LSPR nanoplasmonic biosensor 

microarrays for obtaining temporal cytokine secretion profiles of T cells under 

immunosuppressive modulation. Our cytokine secretion assay was rapid, sensitive, and 

easy to implement for multiplexed, multi-time-point detection. The multiplexed time-

course cytokine secretion data obtained from this work enabled us to characterize 

dynamic features of the functional response of Jurkat T cells after their exposure to an 

immunosuppressant. The rapid reaction of T cells to the agent clearly reflected its effect 

in quickly altering cytokine-mediated pro-inflammatory intracellular signaling pathways. 

To the best of our knowledge, this study is the first to quantitatively characterize dynamic 

cytokine secretion behaviors under immunosuppressive modulation.   

The T-cell functional response is governed by an orchestration of dynamic 

secretions of multiple cytokine species. Thus, of particular importance in the current 

study is the demonstrated ability of our method to probe the temporal secretion profiles of 
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four target cytokines (IL-2, IFN-γ, TNF-α, and IL-10) from T cells. The multi-analyte, 

multi-time-point detection provided a unique opportunity to obtain a broad picture of 

cellular functional states rapidly modulated by immunosuppressive agents. Variations in 

the degree and timing of the TAC-induced secretion suppression across these cytokines 

under a given drug administration condition offer important and clinically relevant 

insight to more precisely modulate immune responses beyond the historically standard 

practice of monitoring serum drug levels. For example, by monitoring both IL-2 and IFN-

g secretion profiles under various TAC doses, we may be able to quickly (< 60 min) 

estimate a minimum amount of TAC required to inhibit the IL-2-mediated inflammatory 

response of T cells while maintaining a sufficient level of IFN-g mediated anti-viral 

responses.  This could prevent overdosing of the immunosuppressant, which could induce 

adverse effects and cause diseases with over-suppressed innate immunity. In addition, our 

study suggests that comparing the secretion profile of IL-10 to those of IL-2 and IFN-g  

may provide critical information about the T cell’s real-time feedback control of pro-

inflammatory cytokine secretion via autocrine/paracrine secretion signaling pathways.  

The cellular functional monitoring capability demonstrated by the LSPR 

nanoplasmonic biosensor microarrays may serve as a technological platform to provide 

precise and personalized real-time immune regulation treatments. With this capability, 

one may precisely assess temporal variations of the functional behaviors of T cells for a 

given immunosuppressive agent delivery condition. We envision that our nanoplasmonic 

biosensing platform will be used as a drug efficacy-screening tool for future personalized 

medicine while providing detailed information of the immunomodulatory effect of a 

given agent on the functional behaviors of immune cells. 
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6.1.3   Integrated Nanoplasmonic Biosensor for Cytokine Secretion Assay 

We have developed a novel optofluidic biosensing technique for cellular 

functional immunoanalysis based on nanoplasmonic LSPR detection. The multifunctional 

device used in our assay can achieve cell isolation and enrichment, incubation and 

stimulation, and detection of cell-secreted cytokines on a single chip platform. Our 

technique successfully demonstrated two noteworthy features. Firstly, the developed 

technique enabled on-chip trapping of microbead-bound cells with at efficiency over 95% 

by its micro-pillar arrays. Using the develop LSPR platform device, we successfully 

demonstrated direct isolation of PBMCs from human blood samples and their 

immunofunctional analysis. Our technique allowed blood-sample assays by selectively 

trapping bead-bound CD45+ PBMCs inside a microfluidic chamber while filtering out 

other undesired blood components. Coupled with the microbead/micropillar-based cell 

trapping and isolation, our integrated LSPR optofluidic platform provided a novel 

approach for achieving cellular functional immunoanalysis while eliminating laborious 

blood sample preparation. To the best of our knowledge, this study is the first to 

demonstrate human blood cellular immunophenotyping with the label-free LSPR 

nanoplasmonic detection technique. Secondly, our LSPR device is capable of leveraging 

the LSPR detection for rapid quantification of small-sized, physiologically-relevant 

cytokines. Our on-chip assay technique incorporated the scheme of confining cells and 

analyte molecules within a small (3 𝜇𝐿 ) microfluidic chamber, which effectively 

maintained a high level of concentration even if the absolute number of TNF-a molecules 

presented to the detection surface was small. This spatial confinement scheme 

simultaneously achieved assay volume reduction and signal amplification to overcome 
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the limited sensitivity of LSPR biosensing for cytokine detection. Additionally, the short 

diffusion path of analytes within the microfluidic chamber allowed the system to rapidly 

reach the equilibrium state. This reduced the assay time for reagent incubation and LSPR 

sensing surface preparation, thus decreasing the total assay time. The whole assay process 

of our technique took only 4 - 5 hours whereas the conventional ELISA method could 

take nearly 2 days for the same cytokine secretion assay with immune cells.  

The limited ability to detect the surface binding of small-sized analytes and the 

difficulty of handling the complex sample components have prohibited researchers from 

implementing the LSPR technique for cytokine secretion assays with human blood 

samples. Our study has successfully overcome these obstacles by the synergistic 

integration of microfluidic sample handling and separation and integrated LSPR 

biosensing. Our technique may open the door for a wider use of LSPR biosensing in 

clinical diagnosis of inflammatory diseases with a simple setup similar to the one used in 

this study. It could also provide multiplex cytokine detection or a foundation for dynamic 

in-situ monitoring of the cytokine secretion function of immune cells to obtain new 

insight into cellular immunology in the future.  

 

6.2   Future Research and Applications 

Continued work on label-free biosensing platforms for cytokine detection will 

have a prominent impact on several research applications. The future work of field-effect 

transistor biosensing technique could explore the development of a multiplexed cytokine 

detection platform. This platform will have great potential to offer rapid, sensitive and 

high throughput biosensors for point-of-care diagnosis. The future work of plasmonic 
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biosensing will implement a cell culture platform incorporating a sensitive nanoparticle-

based plasmonic biosensors integrated in a microfluidic system. This microfluidic 

biosensor integration approach will allow us to simultaneously measure multiple 

cytokines secreted from immune cells and obtain the parameters signifying the time-

varying immune cell response, such as secretion rate, secretion timing and secretion time 

constant, in addition to the cytokine quantity.   

 

6.2.1   Multiplexed Cytokine Biomarker Detection with FET Biosensors 

We envision that the rapidness and high sensitivity of  the label-free FET based 

biosensing platform will facilitate effective characterization of the dynamic nature of the 

immune functional response of a host. However, the current platform targets a single 

cytokine species for each sample. As mentioned in the thesis, multiple cytokines play 

critical roles to regulate the immune system while involving complex cytokine 

communication networks. To provide a comprehensive understanding of the cytokine-

mediated immune response, only measuring a single type of cytokine is unlikely to be 

sufficient. Detecting multiple cytokines would provide more accurate information about 

patient’s immune conditions. For example, some T-cells are polyfunctional, which is that 

they secrete multiple types of cytokines (e.g. tumor necrosis factor-a (TNF-a), 

interferon-g (IFN-g), interleukin-6 (IL-6), IL-10, etc.) according to external stimulation. 

These cytokines are known to positively or negatively secrete from T cells under certain 

disease condition [161]. Thus, scrutinizing multiple types of cytokine will provide more 

comprehensive and accurate information about immune condition. 
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To develop a multiplexed FET biosensing platform for cytokine measurement, we 

propose to apply a new patterning technique to fabricate sensor arrays functionalized with 

multiple probe antibodies on a single substrate. Recently, Nam et al. demonstrated MoS2 

nanofabrication technique to transfer prepatterned bulk MoS2 material on a silicon 

substrate and fabricated an array of few-layer MoS2 FET biosensors (Figure 6.1) [90]. 

We propose to employ this technique to construct few layer MoS2 flake arrays on a 

silicon substrate, Subsequently, a PDMS microfluidic channel device will be utilized for 

selectively functioning different FET biosensor array regions with several types of probe 

antibodies. We will replace the first PDMS fluidic device with another PDMS layer with 

microfluidic channels and orthogonally cover the sensing array spots with the new PDMS 

layer. Assay samples loaded to the device will be able to meet with several different types 

of probe antibodies, which will allow for multiplexed cytokine measurement from a 

single sample.  

 

Figure 6.1: (a) Direct transfer printing of prepatterned few-layer MoS2 flakes onto the substrate. 
(b) SEM images of a bulk MoS2 stamp prestructured periodic pillars [90]. 

 

It is known that FET biosensors are susceptible to background noise when using 

complex physiological fluidic samples. Thus, we propose to use diluted human serum 

samples to diagnose the immune response of the host based on the multiplexed cytokine 
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measurement. The developed device providing rapid, sensitive, and multiplex cytokine 

analysis capability will have great potential for a fast, accurate diagnosing tool of 

scanning immune related diseases under a point-of-care setting. 

 

6.2.2   In situ Cell Secreted Cytokine Measurement with Integrated Plasmonic 

Biosensors 

As mentioned in the beginning of this thesis, immune cell responses are most 

often characterized by their cytokine secretion behaviors. Characterizing cytokine 

secretion patterns of immune cells in the bloodstream, lymph nodes, or tissue provides 

the means to monitor immune responses in humans. Multiplexed detection of different 

cytokines has been proven powerful for obtaining a more complete picture of immunity 

[162]. Comprehensive, near real-time monitoring of immune cell secreted cytokine 

patterns is critical for developing fundamental knowledge of the impact of therapeutic 

treatments in conditions such as allergy, asthma, autoimmunity, acquired and primary 

immunodeficiency, transplantation, and infection.  In the future, immunomodulatory 

therapies (including immunosuppression) may be tailored to an individual’s immune 

status based on a panel of their immune cells’ functions. As pro- and anti-inflammatory 

processes occur simultaneously along different time lines for different subpopulations of 

immune cells, this capability includes identifying unresponsive, or so-called 

“immunoparalyzed” cells in the relevant clinical context [163].  Thus, different 

subpopulations of immune cells may concurrently exhibit pro- and anti-inflammatory 

processes.  This observation may be particularly relevant in the setting of acute 

inflammatory diseases such as sepsis [164] and Crohn’s disease [165], in which both 

“pro-" and “anti-inflammatory phenotypes” have been occurred. Thus, it is important to 
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develop an immunoassay platform that can measure the functional status of different 

subpopulations of immune cells in near real-time (Figure 6.2).   

 

Figure 6.2: Functional immunophenotyping of immune cells. a) Cytokine secretion assay process 
[142], and b) multi-parametric data obtained from stimulated immune cells. 

 

Integrated label-free plasmonic biosensors in a microfluidic system could be a 

solution to enable us to study immune cellular response in near real-time. The proposed 

platform could provide features such as rapidness, high sensitivity, multiplexity, and 

sensor proximity to cells by combining concepts presented by the two previous plasmonic 

based biosensing techniques (Chapter 4,5). Nanoparticle based LSPR biosensor will be 

fabricated by following the protocols from the previous work (Chapter 4) and several 

types of probe antibodies will be coated on the sensing elements. The prepared sensing 

substrate will be covered with a PDMS microfluidic device with micro-pillar arrays for 

cell separation (Chapter 5). Captured cells will be incubated and stimulated in the device 

by cell stimulant (e.g. LPS, PMA, and Ionomycine) or drug to modulate cells to secret 

cytokines. The sensing elements placed near the cell incubation area, will simultaneously 
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detect cytokines secreted from the cells and the quantification result is used for scanning 

the cellular immune response.    

This proposed platform will enable quantitative analysis of multiple cytokine 

species secreted from various immune cell subpopulations. This platform should allow us 

to quantitatively observe variations in the cellular immune functions over the course of 

diseases and/or during immunomodulatory therapy.  Such an innovative platform will not 

only guide accurate patient stratification but also transform clinical practice by guiding 

precise immunotherapy beyond population-derived drug levels.   
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Appendices 

A.   Fabrication of MoS2 based FET biosensor 

 

A.1.   Thermal-grown 300nm Silicon Oxide Wafer Cleaning 

1.   RCA clean; DI water : NH4OH : H2O2 = 5 : 1 : 1, 75 °C, 10 min 

A.2.   Fabrication of MoS2 Stamp 

1.   Prepare a piece of pristine bulk MoS2 on a copper tape 

2.   Spin-coat a photoresist layer (SPR 220 3.0) on the MoS2 piece (CEE 100CB 

photoresist spinner: 3000 rpm, 40 s, Bake: 115 °C, 60 s)  

3.   Pattern the photoresist layer spin-coated on top of the MoS2 surface by 

photolithography (MA-BA-6 Mask-Bond Aligner: 7 s) 

4.   Develop exposed layer (MF-319: 60 s) 

5.   Deposit 100 nm Ti masks (Enerjet Evaporator) followed with lift-off in acetone 

6.   Perform SF6-based reactive ion etching (RIE) to transfer the Ti mask pattern onto 

underlying MoS2 (Plasmatherm 790: SF6 10s, 20mTorr, 20sccm, 200W, 2 min) 

7.   Remove Ti masks in hydrofluoric (HF) acid followed with DI water rinse 

A.3.   Print out few-layer-MoS2 flakes onto the SiO2 substrate 

A.4.   Fabrication of metal electrodes 

1.   Spin-coat a photoresist layer (SPR 220 3.0) on the SiO2 substrate with MoS2 

flakes (CEE 100CB photoresist spinner: 3000 rpm, 40 s, Bake: 115 °C, 60 s)  
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2.   Align a mask for electrodes and pattern the photoresist layer spin-coated on top of 

the MoS2 surface by photolithography (MA-BA-6 Mask-Bond Aligner: 7 s) 

3.   Develop exposed layer (MF-319: 60 s) 

4.   Deposit 10/50 nm Ti/Au layers (Enerjet Evaporator) followed with lift-off in 

acetone 

A.5.   Deposrt HfO2 layer 

Deposit 30 nm HfO2 layer using atomic layer deposition (ALD) for 

functionalization of biomolecules (Oxford OpAL ALD: 275 °C water-based 

recipe) 

A.6.   Deposit SiOx layer  

Deposit 100nm SiOx layer using an ion-beam sputter for passivation of electrodes 

(Kurt J. Lesker Lab 18-1) 
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B.   Fabrication of Microfluidic Channel Device 

 

B.1.   Fabrication of Microfluidic Channel Mold 

1.   Photoresist Patterning 

1)   Spin coat 3 µm SPR220 photoresist and softbake at 115°C for 90s, manually 

or using ACS 200 cluster tool. 

2)   Expose the photoresist using MA/BA-6 Mask Aligner (Exposure intensity ~20 

J/s) for 6 s. 

3)   Developed the exposed photoresist using AZ 300 developer for 40 s, manually 

or using ACS 200 cluster tool. 

2.   Plasma Etching 

Etch silicon using deep reactive ion-etching (DRIE; Deep Silicon Etcher, STS; 

Recipe-LNF Pegasus Recipe 1; Etch rate ~ 5 µm/min). 

3.   Silicon Surface Silanization 

1)   O2 Plasma active the silicon mold surface  in March Asher (O2, 80W, 250mT, 

45s) 

2)   Place silicon mold in a vauum desiccator and load 100 µL of Silane 

(tridecafluoro-1 ,1, 2, 2-tetrahydrooctyl)-1-trichlorosilane (United Chemical 

Technologies) for 1 hr under vacuum. 

 

B.2.   Fabrication of PDMS Channel  

1.   PDMS Precursor Preparation 

1)   Mix the Sylgard 184 base and curing agent in weight ratio of 10:1. 
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2)   Degas in vacuum desiccator for 30- 60 min. 

2.   PDMS Soft Lithography 

1)   Place the silanized silicon mold in petri dish. 

2)   Pour PDMS over the mold (Thickness 4-9 mm). 

3)   Degas in the desiccator for 30-60 min. 

4)   Cure PDMS in the oven (60 °C 4 hr- overnight). 

5)   Cool down the baked PDMS in ambient. 

6)   Peel off PDMS from silicon wafer. 

3.   Inlet/Outlet Fabrication 

Punch holes through PDMS using Biopsy punch, ∅ 0.75- 1mm. 
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C.   Fabrication of Nanoparticle based LSPR Microarray Device 

 

C.1.   Pyrex Glass Slide Clean 

1)   Piranha Clean (H2SO4 : H2O2 = 3 : 1) for 10 min. 

2)   DI water rinse and dry with N2 gas or air. 

C.2.   Nanorod Patterning on the Glass Slide 

1)   Prepare nanorod collide solution (Nanoseedz, Hongkong) and dilute 8 times 

with DI water. 

2)   Prepare Piranha cleaned glass and O2 plasma treat the glass surface and 

PDMS microfluidic channel with 20 W for 120 s right before patterning. 

3)   Assemble the glass slide surface with PDMS microfluidic channel and load 

nanorod solution using syringe infusion pump through inlet and incubate the 

solution 2 hr- overnight to form the nanoparticle patterns. 

C.3.   Functioning the Nanoparticles for Sensing 

1)   Wash the incubated surface with loading DI water through microfluidic 

channel. 

2)   1mM of 10-carboxy-1-decanethiol (C10) (Dojindo, Japan) was dissolved in 

10% ethanol, loaded into the microfluidic patterning channels, and incubated 

overnight to functionalize the AuNR surfaces with C10. 

3)   Wash the incubated surface with loading DI water through microfluidic 

channel. 

4)   0.4 M EDC (1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride, 

Thermo Scientific) and 0.1 M NHS (N-hydroxysuccinimide, Thermo 
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Scientific) were mixed at a 1:1 volume ratio in 0.1 M MES (1-ethyl-3-[3-

dimethylaminopropyl] carbodiimide hydrochloride, Thermo Scientific) 

solution. 10 µL of the EDC/NHS/MES solution was loaded to the same 

microfluidic channels and incubated for 20 min to activate the ligand. 

5)   Wash the incubated surface with loading DI water through microfluidic 

channel. 

6)   Load selected probe antibodies at a concentration of 50 µg/mL (diluted in 

deionized water) into individual patterning channel and incubated for 45 - 60 

min. 
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D.  Microbead and Human Blood Cell Conjugation 

 

D.1.   Lysing the Blood Sample 

1)   Prepare 1 mL of blood sample and add 10 mL lysed buffer. Well mix the 

medium and incubate for 12 min. 

2)   Add 20-30 mL pf PBS and centrifuge cells 10 min, 300-400G. 

3)   Aspirate all the red blood cells and suspend the cells in 1 mL of RPMI cell 

culture medium. 

D.2.   Mirospheres 130preparation 

1)   Prepare microspheres and wash the particles (1-3 times) with 10× volume of 

DI water (e.g. 100 µL of beads + 1mL of DI water). 

2)   Centrifuge  (1200G for 15min) and resuspend the final pellet in wash buffer to 

make the microsphere concentration of 0.05% solids (0.5mg/mL) (e.g. 

Aspirate DI water and add 2mL of 10X PBS). Final washing buffer should be 

0.1M PBS (10X PBS) of pH 7.4. 

3)   Add biotinylated IgG (CD45 antibody) into 2) solution that has been dissolved 

in the same buffer. (e.g. Prepare 1mL of beads + 40uL of Antibody) 

4)   Incubate 30min in room temperature with gentle mix. 

5)   Wash the particles 3 times with 10X volume of DI water. (e.g. 1080uL 

solution + 10mL of DI water) 

6)   Resuspend antibody-coated beads in 0.1M PBS of pH 7.4 (10X PBS), to 

desired storage concentration. 
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D.3.   Microbead and Cell Conjugation 

1)   Mix the prepared microsphere beads with lysed cells (The number of bead : 

cell =1:1 is recommended).  

2)   Incubate mixed particles for 30min in the room temperature with gentle mix. 
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