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ABSTRACT 

 

With advances in computing, networking and sensing technology, our everyday objects have 

become more automated, connected, and intelligent. This dissertation aims to inform the 

design and implementation of future intelligent systems and devices. To do so, this dissertation 

presents three studies that investigated user interaction with and experience of intelligent 

systems. In particular, we look at intelligent technologies that employ sensing technology and 

machine learning algorithm to perceive and respond to user behavior, and that support energy 

savings in the home.  

We first investigated how people understand and use an intelligent thermostat in their everyday 

homes to identify problems and challenges that users encounter. Subsequently, we examined 

the opportunities and challenges for intelligent systems that aimed to save energy, by 

comparing how people’s interaction changed between conventional and smart thermostats as 

well as how interaction with smart thermostats changed over time. These two qualitative 

studies led us to the third study. In the final study, we evaluated a smart thermostat that offered 

a new approach to the management of thermostat schedule in a field deployment, exploring 

effective ways to define roles for intelligent systems and their users in achieving their mutual 

goals of energy savings.  

Based on findings from these studies, this dissertation argues that supporting user 

understanding and user control of intelligent systems for the home is critical allowing users to 

intervene effectively when the system does not work as desired. In addition, sustaining user 

engagement with the system over time is essential for the system to obtain necessary user input 

and feedback that help improve the system performance and achieve user goals.  



 xiii 

Informed by findings and insights from the studies, we identify design challenges and 

strategies in designing end-user interaction with intelligent technologies for the home: making 

system behaviors intuitive and intelligible; maintaining long-term, easy user engagement over 

time; and balancing interplay between user control and system autonomy to better achieve their 

mutual goals.  

 

  



 1 

CHAPTER 1.  
INTRODUCTION 

 

With advances in computing, everyday systems and devices in the home are becoming more 

connected, automated, and intelligent. This trend follows the trajectory of the “smart home” 

that has been forecasted and researched in the HCI and Ubicomp communities for the past two 

decades. This vision describes a home which seeks to adapt to its inhabitants and respond to 

their informational and comfort needs (Weiser & Brown, 1997), and there is increasing 

evidence that the vision is poised to become a reality.  

Many home appliance manufacturers are introducing new generations of digitally enhanced 

home appliances, which promise the benefit of reducing manual work, operating efficiently 

with little or no user intervention, and providing new types of information to the user that was 

not available previously. Examples of these devices include, but are not limited to, applications 

such as dishwashers that select energy efficient cycles depending on the load, robot vacuum 

cleaners that autonomously clean the house, as well as video recorders that are able to 

recommend movies.  

Managing home energy consumption represents a particularly rich domain for smart, domestic 

technologies, especially when 21% of the total energy consumed in the United States is used 

by home appliances (EIA, 2011). In particular, there are two good reasons to study home 

heating, ventilation, and cooling (HVAC) systems—one is that they are important from the 

energy perspective, and the other is that they are the first to gain traction as a mass-market 

smart home technology. In the United States, for example, residential HVAC systems account 
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for roughly 50% of all household energy consumption, which equates to about 9% of the 

nation’s total energy budget (EIA, 2011). Designing technologies for energy savings has been 

the focus of numerous research projects as well as commercial offerings. The advancement of 

thermostat control over the past 60 years illustrates this trend well.  

 

A simple manual thermostat is easy to set to maintain a temperature, and it will remain at that 

temperature unless someone changes the setting. However, it is more inconvenient for people 

to manually adjust the temperature throughout the day as they get up, leave and return home 

and go to bed. Often people forget to change the temperature setting and waste energy by 

running a heating or cooling system when they are not at home.  

A more advanced programmable thermostat automatically changes the temperature according 

to a schedule its user defines. This reduces the inconvenience of walking up to the thermostat 

or forgetting to change the temperature before going work. However, programming the 

thermostat is difficult for lay users in the home (Peffer, Pritoni, Meier, Aragon, & Perry, 2011), 

as the temperature schedule often does not match people’s changing schedules. Sometimes, it 

becomes more inconvenient and annoying to change or override the temperature schedule. 

Thus half of programmable thermostats run inefficiently or are no longer used (ibid.).  

 

Figure 1. Everyday technology for the home becomes more connected, automated, and 
intelligent. 
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To address the problem of residential HVAC systems not being operated efficiently by their 

users (Peffer et al., 2011), leading to unnecessarily wasted energy, a number of researchers 

have investigated ways to improve the operation of HVAC systems. Research into eco-

feedback (e.g., (Froehlich, Findlater, & Landay, 2010)) has focused on ways to provide 

information to people about their resource usage in order to motivate them to change their 

usage patterns. However, there is little evidence that obtaining information reliably causes 

people to take action or change behavior (Strengers, 2011).  

Another approach that has been investigated is predictive heating control, which uses sensing 

and machine learning to try to learn the occupancy patterns of a house’s residents in order to 

automatically adjust the temperature. Work in predictive control seeks to reduce or even 

eliminate the role of user choice in controlling HVAC systems by automating temperature 

adjustments based on occupancy predictions (e.g., (Gupta, Intille, & Larson, 2009; Koehler, 

Ziebart, Mankoff, & Dey, 2013; Scott et al., 2011)). Systems in this category have been built 

and tested in limited deployments. It remains to be seen what issues would arise in a more 

general deployment with people who vary more widely in terms of geographic mobility, 

schedule predictability, tolerance for error, and desire for control.  

Many manufacturers have been interested in adding new energy saving functions to energy 

consuming devices. Recently, a new generation of thermostats has become available. These 

aim to solve the problems of programmable thermostats by automatically creating and updating 

temperature schedules (to eliminate the trouble of programming to adapt to users’ changing 

schedules) and adjusts temperature based on occupancy in the home in order to save energy.  

In late 2011, the Nest thermostat was introduced to the market and received a great deal of 

media attention. It was considerably more advanced than other available thermostats, with 

novel features such as schedule learning, remote access, occupancy sensing, and eco-feedback. 
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The Nest features an attractive wall-mounted device, as well as smart phone and web-based 

control capabilities (Figure 2). In addition to providing access to the temperature schedule and 

real time control, its web and phone apps provide a feature called “Energy History,” which 

offers a detailed history of when and how long the heating and cooling system ran.  

 

The Nest includes a pair of intelligent features that utilize machine learning and motion 

sensing: Auto-Schedule and Auto-Away. The Auto-Schedule feature automatically generates a 

schedule based on temperature changes users make. The Nest takes about a week to generate 

its initial schedule and thereafter continually adapts the schedule according to users’ 

temperature adjustments. Users can manually revise the schedule via the wall-mounted device 

or through the web or mobile applications. Users can also turn off this feature and use the Nest 

as a regular programmable thermostat. The Nest has an embedded motion sensor on the wall-

mounted unit that detects the movement of occupants within a certain range. If the Nest does 

not sense movement for some time, it goes into “Auto-Away” mode, which automatically 

adjusts the temperature to a user-defined level to avoid heating or cooling an empty home.  

The Nest represents an intriguing phenomenon for study, as it is the first mass-market 

thermostat in the U.S. to feature motion sensing and machine learning. With the Nest’s ‘smart’ 

capabilities of recognizing human movement and learning human thermostat control behavior, 

   

 (a)           (b)        (c)         (d) 

Figure 2. Users can control the Nest via the wall-mounted display (a), a mobile app (b), or a 
web app (c) The mobile and web apps provide access to Energy History (d). 
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it promises to generate a personalized heating and cooling schedule that will promote comfort, 

energy savings, convenience, and more enjoyable interaction. We are starting to interact more 

with intelligent systems in our daily home environment, and this trend will almost certainly 

increase.  

THESIS PROBLEM  

These intelligent systems are often depicted as easy and simple to use and promise to bring 

convenience and comfort to the home by autonomously working on behalf of their users. 

However, questions remain regarding how well these intelligent systems will work in the 

everyday home environment and how users will interact with and experience these novel 

systems.  

These new capabilities bring great potential, but also great concern — are “smart” devices 

going to make our lives easier, more productive, or more enjoyable? Or are they going to bring 

a new set of frustrations, expectations, and responsibilities that will outweigh their possible 

benefits? 

As everyday intelligent systems continue to evolve and play a larger role in the management of 

daily tasks such as keeping oneself healthy and making home environments comfortable, more 

research is needed to examine the user experience of such technologies and emerging problems 

and issues users encounter in using and interacting with them over time. As such, the Nest 

Learning Thermostat provides an excellent opportunity to study the user experience of living 

with a ‘smart’ domestic appliance in the wild, particularly one that seeks to learn and adapt to 

consumers’ behavior, and help people to save energy.  

In this thesis work, we are interested in investigating various challenges and tensions that arise 

when users interact with intelligent systems in everyday home environments. Using the Nest 

Learning Thermostat as a lens, we aim to better understand the real-life, long-term user 
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experience of living with a smart thermostat in order to inform the design of intelligent systems 

for the home more broadly. In the following paragraphs, we highlight key challenges facing 

designers of everyday intelligent systems. These are informed by previous research on ‘smart 

homes,’ ‘adaptive systems,’ and ‘interactive intelligent systems’ that tried to address these and 

related issues.  

I) User Understanding and System Intelligibility  

First, it is difficult for users to understand how intelligent systems work, especially when these 

systems gather multiple sources of implicit data and utilize complex algorithms to act on that 

data (Eagle & Pentland, 2006; C. D. Kidd et al., 1999). As these intelligent systems and 

devices aim to learn more by gathering both explicit and implicit data about us (location, 

activities, behavior patterns, preferences and interests) and act on our behalf, they become so 

much more complex and unpredictable that it becomes difficult to understand what they are 

doing and are going to do (Edwards & Grinter, 2001). This lack of understanding often leads 

users to lose control and trust, and ultimately, disuse the system (Lim, Dey, & Avrahami, 

2009). Bellotti and Edwards (2001) emphasize the importance of “intelligibility” for adaptive 

systems, which allows users to know how the system learns about its users’ changing contexts 

and thus to understand why the system behaves in certain ways. However, most research on 

supporting intelligibility has investigated interactive machine leaning systems and employed 

one-off, lab-based studies.  

Many interactive machine leaning systems learn user preferences based on inputs and feedback 

users provide, but do not use sensors to observe and learn user behaviors, which are rather 

implicit and unconscious. Therefore, there is a need for more exploration to support 

intelligibility of intelligent systems that seek to learn and adapt to everyday user behaviors in 

the home.    
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II) System Limitations and User Control 

Another significant challenge for intelligent systems is to make accurate inferences about users’ 

status and nuanced contexts based on limited data the system gathers from sensors and other 

data sources (Suchman, 2006). Peoples’ everyday lives in the home are full of unpredictable 

and nuanced situations and events (changing routines, situations, preferences and expectations). 

There is a mix of diverse individuals with different characteristics (different levels of technical 

aptitude, varying preferences and motivations) living in heterogeneous homes. However, 

machines can only interpret limited types and ranges of sensory inputs to a fixed set of states 

and responses (Suchman, 2006). This might not be too problematic if the intelligent system 

works in a closed environment such as a lab or a purposefully built home like those used in 

early smart home research studies. However, dynamically changing, unpredictable and 

nuanced everyday situations make standard homes a more difficult domain for intelligent 

systems to function in. Indeed, even for other humans, it is not simple and straightforward to 

infer the reasoning behind other human’s actions and behaviors (Bellotti & Edwards, 2001).  

One strategy to mitigate these limitations of intelligent systems is to simply ask users about 

their intentions, preferences, plans, and goals. Human input is necessary to provide proper and 

necessary data to the system in order to improve its performance and prevent malfunctions 

(Kapoor, Lee, Tan, & Horvitz, 2010; Rogers, 2006). Supporting such communication requires 

that users understand system states and decisions, and know what types of feedback would be 

helpful, thus tying back to the work on intelligibility. It also requires effectively managing 

users’ attention so as not to exhaust their patience with the system. Mozer (2005) noted the 

paradox that more information from the user would improve the performance of the smart 

home, but a system which requests less information directly from users would be considered 

more successful. 
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III) Understanding Lived Experience in Everyday Home Environment 

Finally, when technologies enter the house, not only do they infiltrate the home environment, 

they also change daily domestic life (Dourish & Bell, 2011). For example, when washing 

machines became prevalent in the home, they changed the standard of cleanliness and 

paradoxically increased the domestic workload (Cowan, 1993). In order to design technology 

that fits into peoples’ daily lives at home, it is crucial for designers of devices to understand 

characteristics of daily activities, tasks, and unique physical and social aspects of a home 

environment (Crabtree, Rodden, Hemmings, & Benford, 2003). There has been little 

investigation of the quality of user experiences and interaction with intelligent systems in 

everyday life situations.  

Technical demonstrations of intelligent environments have illustrated the feasibility and 

desirability of adaptive systems for the home (e.g., (Cook et al., 2003; Intille, 2002; Kidd et al., 

1999; Mozer, 2005), but few projects have provided insight into the lived experience of 

occupants. Previous research on user experience of intelligent systems have been mostly 

conducted in laboratories (e.g., (Intille, 2002; Kidd et al., 1999)), or with prototypes in 

experimental settings (e.g., (Gupta et al., 2009; Scott et al., 2011)), and lasted for relatively 

short periods. The particular nature of the everyday sphere suggests that even established 

approaches to supporting user interaction with intelligent systems need to be reexamined, in 

situ, in everyday environments. In real daily life situations, human behavior is more 

unpredictable; preferences change over time; everyday routines are unstable and contingencies 

are too rare to form a pattern (Suchman, 2006). 

The goal for this dissertation is three-fold: First, we seek to better understand users’ lived 

experience with intelligent systems, particularly what challenges they face when interacting 

with and using the systems, and how the systems’ intelligent features influence users’ 

interaction with and use of the systems over time in everyday home environments. Second, by 
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observing the ways in which users interact with everyday intelligent technologies and 

identifying challenges and problems that arise over time, we aim to provide design guidelines 

and considerations for desirable goals and design properties for end-user interaction with 

everyday intelligent technologies. Finally, we focus on the design of intelligent systems to help 

people manage their home energy consumption more effectively. 

THESIS STATEMENTS 

The claim this thesis makes is summarized in the following statements:   

This dissertation argues that supporting user understanding and control of intelligent systems 

is necessary to promote user engagement and improve system performance for long-term use. 

THESIS APPROACHES 

This thesis consists of several studies informing and evaluating the design of intelligent 

systems to support energy savings in the home. We summarize the methods and approaches 

that we employed in this thesis work below. 

I) Identifying challenges in user understanding and interactions through lived experience 

In order to better understand the challenges of deploying intelligent systems in the home, we 

studied the experience of living with a commercially available intelligent thermostat, the Nest 

Learning Thermostat. The Nest utilizes sensing, machine learning, and networking technology, 

as well as eco-feedback features. It learns users’ behavior patterns, and then adapts and 

automates its operation to control home heating and cooling systems. We conducted interviews 

with 23 participants, ten of whom also participated in a three-week diary study. We collected 

empirical data eliciting challenges and problems users encountered when using intelligent 

systems for the home.  
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II) Describing changes in practices and user interaction over time 

Whereas our first study drew on early-stage usage experiences to inform the design of usable 

intelligent systems for the home, our goal in the second study was to observe changes in user 

interactions between conventional and intelligent thermostats, as well as changes in their 

interactions with intelligent thermostat over time. We compared user interactions and practices 

around thermostat control with conventional thermostats, intelligent thermostats other than the 

Nest, and the Nest, and also demonstrated how users’ interactions with intelligent thermostats 

changed over time through a longitudinal study. This study also aimed to identify challenges 

and opportunities in the design of eco-interaction technologies, by which we mean the study of 

interaction between humans and energy-consuming systems, with an eye towards minimizing 

energy use while preserving an acceptable level of user-perceived benefits. 

III) Evaluating a design approach to balance system autonomy and user control 

With findings from two previous qualitative studies that resulted in a set of design approaches 

to address challenges in user interaction with everyday intelligent technologies, the following 

step was to evaluate design strategies that we proposed. In our third study, we deployed a 

prototype for a smart thermostat that employed a mixed-initiative approach and evaluated how 

users respond to and interact with the system. In particular, we investigated the impacts of 

recommendations for thermostat scheduling and eco-feedforward features. 

THESIS CONTRIBUTIONS 

The following contributions arise from our studies of user interaction with intelligent systems 

in their everyday environments, and the design and field deployment of a prototype system: 

1) Empirical evidence that describes users’ lived experience of everyday intelligent 

technologies over time and demonstrates problems and challenges that users encountered in 

their daily environment.  
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I. Lack of support for intelligibility and user control in everyday intelligent technologies 

hinders users from understanding how the system interprets and adapts to users’ 

behavior and situations, and thus deters them from intervening to guide or correct the 

system’s behavior. (Chapter 3) 

II. Users’ engagement with the system helps to address system shortcomings and 

improve performance. However, maintaining users’ engagement over time is difficult 

when users have little motivation to go through the effort of understanding and 

assessing the system’s behavior. (Chapter 3, Chapter 4) 

III. Users’ reliance on intelligent systems and diminished interactions results in missed 

opportunities for energy savings. Sustaining user interaction and engagement with 

intelligent system is critical to achieve the goal of energy savings. (Chapter 4) 

2) We develop design recommendations for end-user interaction with everyday intelligent 

technologies. 

I) We propose three avenues for future development of everyday intelligent technologies 

to support user understanding and control of the system: Exception flagging, Incidental 

intelligibility, and Constrained engagement. (Chapter 3) 

II) We propose that employing mixed initiatives is a promising direction for balancing 

system autonomy and user control. We create a set of design implications for eco-

interaction, the design of features and human-system interactions with the goal of 

saving energy, which includes: Providing actionable recommendations, Providing  

eco-feedforward and Stimulating reflection and reassessment rather than control and 

convenience. (Chapter 4) 

III) To build user trust with recommendation-based eco-coaching systems, systems should 

support users to assess the quality and performance of recommendations over time: 
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Assessing the actual performance of recommendations after use with consideration of 

real-world factors and conditions, Providing hindsight evidence with post-hoc 

simulation of alternative recommendations, and Performing assessment for the 

schedule in use. (Chapter 5) 

3) We provide contributions to sustainable HCI. 

IV) We found that the combination of eco-feedback and machine learning-based 

personalization led to increased engagement with energy-saving features of the system 

in the short term, but that such engagement was not sustained over the long term. 

(Chapter 3 and Chapter 4) 

V) We found that the eco-coaching approach 1) made it easier for users to implement an 

effective thermostat schedule, 2) supported user agency in negotiating trade-offs 

between energy savings and comfort, 3) facilitated learning different scheduling 

strategies as well as weighing pros and cons of different options, and 4) challenged 

users' beliefs about how well they were doing. These outcomes, in turn, were 

successful in getting users to employ and experiment with more efficient setback 

strategies. (Chapter 5) 

THESIS OVERVIEW  

This thesis is divided into six chapters, as follows.  

Chapter 2 reviews and synthesizes background work and previous research that informs this 

thesis. We describe related work about users’ interaction and experience with intelligent 

systems as well as the design and implementation of technologies to support sustainability. We 

explain the research gap and how this dissertation work addresses the gap. 
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Chapter 3 presents a formative study that we conducted. In order to better understand the 

challenges of deploying intelligent systems in the home, we studied the experience of living 

with an advanced thermostat, the Nest. The Nest utilizes sensing, machine learning, and 

networking technology, as well as eco-feedback features. We identify challenges and 

opportunities for designing intelligent systems for the home.  

Chapter 4 focuses on findings regarding long-term user experiences with intelligent systems 

for energy savings. It compares user interaction with conventional manual and programmable 

thermostats with user interaction with an intelligent thermostat. Then, it presents a one-year 

follow-up study of intelligent thermostat users. The findings of this study generate design 

guidelines to inform the design of ThermoCoach, which we evaluate in the following chapter. 

Chapter 5 describes the results of the evaluation study of the ThermoCoach system. We first 

introduce the design approach of eco-coaching and detail the design features of ThermoCoach. 

Then, we describe how these influenced user thermostat scheduling and energy savings 

outcomes. We also describe design implications for future eco-coaching system design and 

implementation. 

Chapter 6 reflects on and draws conclusions about the implications of future design of 

intelligent systems for the home. We highlight the importance of supporting user control as a 

design principle, and discuss design implications of supporting user agency in energy 

conservation in the home. This chapter also identifies areas for future work.  
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CHAPTER 2. 
LITERATURE REVIEW 

 

In this literature review, we will examine background work informing this thesis, reviewing 

previous research on user interaction with intelligent technologies and identifying issues that 

users face as they use these novel intelligent systems. The larger goal of this literature review 

is to provide insights into understanding how users interact with intelligent systems, which 

learn and respond to users’ actions and behavior, and operate autonomously in their everyday 

home environment. First, we will provide an overview of the development of “smart home” 

technology; we will then review key challenges such technology presents to users. Finally, we 

will focus on applications of intelligent technology to reducing energy consumption, 

particularly in the area of home heating and cooling. 

PART 1: INTELLIGENT TECHNOLOGY FOR THE HOME 

Weiser (1991) described the vision of “ubiquitous computing.” He used it to describe the 

future in which computers become more invisible as they are integrated into our daily life and 

make daily tasks easier and our everyday environment more informative (Weiser, 1999).  To 

do so, ubiquitous computing focuses on designing “calm technologies” (Weiser & Brown, 

1997) that make the home environment smart by learning about its inhabitants and responding 

accordingly without disrupting their ongoing activities or daily routines.  

Visions of the smart home have played a central role in ubiquitous computing research since its 

inception (Weiser, 1999). Broadly speaking, a smart home can be described as one that adapts 

to its inhabitants (Brush et al., 2011) and responds to their varying informational and comfort 
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needs (Rogers, 2006). Different versions of smart home projects have been driven by both 

academia and industry, and their focuses vary. Different terms, such as “pervasive,” “invisible,” 

“calm,” “context awareness,” “ambient intelligence,” and “information appliances” illustrate 

diverse characteristics promulgated by different approaches (Abowd & Sterbenz, 2000; Rogers, 

2006).  

In the human-computer interaction (HCI) and ubiquitous computing (UbiComp) fields, various 

research studies have been motivated by Weiser’s vision. Smart home research has been 

pursued through a variety of large-scale initiatives, including Mozer’s adaptive house (2005), 

the Georgia Tech Aware Home (Kidd et al., 1999), and MIT’s House_n (Intille, 2002). These 

projects were valuable for demonstrating the potential of smart home technology, but their 

comprehensive approach to redesigning the home technical environment has meant that many 

of their envisioned applications and interactions remain impractical to implement. Edwards and 

Grinter note that a more likely scenario is the “accidentally smart home,” (2001) in which 

smart, connectable devices enter the home piecemeal over a long period of time, without 

conscious planning on the part of the inhabitants. In sync with this vision, a number of projects 

have looked at more specific application opportunities within the broad umbrella of the smart 

home, including adaptive heating and cooling systems (Gupta, Intille, & Larson, 2009; Peffer, 

Pritoni, Meier, Aragon, & Perry, 2011; Scott et al., 2011), health monitoring (Consolvo, 

Roessler, & Shelton, 2004; Kaushik, Intille, & Larson, 2008; Rowan & Mynatt, 2005), and 

reminder systems to help people manage their plans and schedules (Davidoff, Zimmerman, & 

Dey, 2010; McGee-Lennon, Wolters, & Brewster, 2011).  

With advances in computing, long envisioned by HCI and UbiComp researchers, the promise 

of a home that can learn its occupants’ needs, desires, and behaviors — and adapt itself 

appropriately — is being realized. Many home appliance manufacturers are introducing new 

generations of digitally enhanced home appliances, which promise to reduce manual work, 
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operate efficiently on behalf of users with little or no user intervention, and perform a variety 

of different roles in the home, including managing entertainment, health, security, and home 

automation.  

These new capabilities bring great potential, but also great concern — are “smart” devices 

going to make our lives easier, more productive, or more enjoyable? Or will they bring a new 

set of frustrations, expectations, and responsibilities that will outweigh their possible benefits? 

Such concerns underlie a number of challenges that face designers of intelligent systems in the 

home. Firstly, it is difficult for users to understand how adaptive systems work, especially 

when these systems gather multiple sources of implicit data and utilize complex algorithms to 

act on that data (Eagle & Pentland, 2006; Kidd et al., 1999). Secondly, it is difficult for the 

system to make accurate inferences about users’ status and nuanced context based on limited 

data the system gathers from sensors and other data sources (Bellotti & Edwards, 2001; Brush 

et al., 2011; Eagle & Pentland, 2006). Therefore, users’ input is often necessary to improve the 

performance of the system, but this requirement can be at odds with typical notions of the 

smart home based on visions of calm (Weiser & Brown, 1997) or invisible computing (Rogers, 

2006). Finally, more research is required to guide designers in creating systems that will be 

successfully adopted and integrated into home life (Davidoff, Lee, Zimmerman, & Dey, 2006; 

Sadri, 2011).  

In the following sections, we will cover how previous research has tried to address these and 

related issues and seek to identify still unresolved questions that require further exploration. 

Improving Intelligibility 

When a system is working properly, as expected by its users, knowing ‘how-to-use-it’ may 

suffice. However, when a system behaves in an unexpected and erroneous way, a user’s 

understanding of ‘how-it-works’ becomes more crucial if the user is to be able to identify 
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errors and fix problems (Fein, Olson, & Olson, 1993). When a user does not understand the 

system’s behavior—when he or she lacks an accurate mental model of the system—the result 

is often inefficient use, confusion, dissatisfaction, and abandonment of some features of the 

system (Lim & Dey, 2010). Supporting users’ understanding is especially important because 

there is evidence that novice users form mental models of system operation during the early 

stage of their interaction with the system, and that those mental models are unlikely to change 

based on subsequent interactions even if disconfirming evidence is encountered (Tullio, Dey, 

Chalecki, & Fogarty, 2007).  

The first challenge of supporting users to build a proper mental model of a system has been 

studied extensively under the topic of “intelligibility,” which covers user interface techniques 

that seek to help users understand the behavior of complex, often intelligent, systems. Bellotti 

and Edwards (2001) emphasize the importance of “intelligibility” for adaptive systems, which 

allows users to know how the system learns about its users’ changing contexts and thus to 

understand why the system behaves in certain ways. 

One approach to promoting intelligibility is enhancing the system’s interface with additional 

data to help promote users’ understanding of how the system works (McNee, Lam, Guetzlaff, 

Konstan, & Riedl, 2003). It has been shown that even simple explanations can help to increase 

users’ trust in a system and improve their overall satisfaction with using it (Herlocker, Konstan, 

& Riedl, 2000). For example, providing explanations can help users understand the strengths 

and weaknesses of the system, and lead them to use the system in a more accurate, efficient 

way (Herlocker, Konstan, & Riedl, 2000). This, in turn, can provide an overall boost to users’ 

satisfaction with intelligent systems. Explanations can be provided through special displays 

and/or interactions that users can engage in order to gain a better understanding of system 

states or behaviors. 
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One notable approach to provide explanations was developed by Ko and Myers (Ko & Myers, 

2004). They proposed “Why?” and “Why Not?” dialogs as a technique for end-user debugging. 

Subsequent research has investigated the application of this technique to machine learning-

based systems and found them to be effective there as well (Kulesza et al., 2009; Lim & Dey, 

2009; Stumpf et al., 2006, 2009). For example, Lim and Dey (2010; 2009) explored presenting 

multiple explanations for context-aware applications and found that explanations improve user 

understanding, trust, and control in different context-aware applications. Individual differences 

among users may suggest the need for multiple, perhaps personalized approaches to generating 

and presenting explanations (Kulesza et al., 2009; Lim & Dey, 2009; Stumpf et al., 2006; 

Tintarev & Masthoff, 2007).  

While many research studies have focused on providing interactive explanations for how the 

system works and why it behaves in certain ways, there are some drawbacks—lack of 

longitudinal studies and assumptions about motivation. Nearly all of the research on supporting 

intelligibility has employed one-off, lab-based studies. Evaluation in everyday situations, in 

particular longitudinal study is much needed in order to thoroughly understand the impact of 

the intelligibility of a system’s behavior, or lack thereof (Lim & Dey, 2009; Stumpf et al., 2009) 

with respect to supporting diverse users. Another drawback is that all of these approaches to 

intelligibility assume that the user has a conscious interest in understanding the system and is 

willing to invest time in doing so. However, in everyday settings, lay-users may not be 

motivated to learn about the technical specifications of a system, but are more likely to be 

interested in what it can do (Paepcke & Takayama, 2010). Therefore more work on lightweight 

approaches to intelligibility may be required. 

Eliciting user input  

The second significant challenge for adaptive systems is to elicit input from users in order to 

train and correct the systems’ inferences about the world and users’ status (Eagle & Pentland, 
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2006). As machines can only interpret limited types and ranges of sensory inputs to a fixed set 

of states and responses, it is difficult for them to make accurate inferences about users’ status 

and nuanced contexts (Suchman, 2006). Moreover, today’s sensing technology is often 

imprecise in detecting the data it is supposed to detect. This produces inaccurate or skewed 

data, leading to misinterpretations of a user’s activities (Youngblood & Cook, 2007). Finally, 

even when more reliable and accurate sensors become available, there are various human 

behavioral characteristics for which it is nearly impossible for systems to make inferences 

(Bellotti & Edwards, 2001). Indeed, even for other humans, it is not simple and straightforward 

to infer the reasoning behind other human’s actions and behaviors (Bellotti & Edwards, 2001).  

With complete accuracy out of the question, the question becomes, “How can we develop an 

adequate model of users and the real world for specific applications?” One strategy is to 

simply ask users about their intentions, preferences, plans, and goals. Keeping the human in 

the loop can improve system performance across the lifecycle (Kapoor et al., 2010; Rogers, 

2006). Supporting such communication requires that users understand system states and 

decisions, and know what types of feedback would be helpful, which ties back to the work on 

intelligibility. As mentioned earlier, supporting users’ understanding of intelligent systems 

helps users to provide more and improved feedback, and results in better performance of the 

system for users’ needs (Kulesza, Stumpf, Burnett, & Kwan, 2012). It also requires effectively 

managing users’ attention so as not to exhaust their patience with the system. Mozer noted the 

paradox that more information from the user would improve the performance of the smart 

home, while a system that requests less information directly from users would be considered 

more successful (Mozer, 2005).  

Promoting engagement between users and machine learning systems has been explored under 

the aegis of interactive machine learning (Kulesza et al., 2009; Kulesza, 2012; Kulesza, 

Burnett, Wong, & Stumpf, 2015; Stumpf et al., 2009). Based on studies of music 
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recommenders and email classification tools, Stumpf et al. (Stumpf et al., 2006; ) and Kulesza 

et al. (Kulesza et al., 2009) argued that machine learning systems should support users’ ability 

to fix their logic and system behavior when problems occur. They both stressed the need for 

two-way communication between end-users and machine learning systems, and demonstrated 

the benefits of allowing users to provide feedback on system performance (Kulesza et al., 2009; 

Stumpf et al., 2009). 

Many interactive machine leaning systems learn user preferences based on inputs and feedback 

users provide (i.e., you can indicate your preferences to a music recommender system such as 

Pandora1 by explicitly clicking a ‘like’ or ‘dislike’ button when you hear a song that you like 

or dislike). However, intelligent systems utilize sensors to observe and learn about everyday 

mundane behaviors in the home, they face different challenges. First, there is no specific 

interaction between the system and the user. Intelligent systems that passively observe user 

behavior using sensors often do not provide an interface like a music recommender. As Bellotti 

et al. (2002) addressed there are new design challenges for designing novel systems that use 

“sensing” user-interfaces. While traditional graphical user interface design have provided 

interaction techniques to support communications between the interactive systems and the 

users, more research is needed to gain insights into user interaction and engagement with 

intelligent technologies that seek to learn and adapt to everyday user behaviors, which are 

implicit and often unconscious behavior.  

Fitting into everyday environments  

Designing technology for the home requires understanding the characteristics of people’s daily 

activities and tasks in the home and the particular constraints and opportunities related to the 

                                                

1 http://www.pandora.com/ 
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physical and social environment of the home. Crabtree and Rodden (2004) have stressed the 

importance of understanding how domestic routines operate and impact technology use, while 

Friedewald, Da Costa, Punie, Alahuhta, and Heinonen (2005) have emphasized that technology 

must be designed to adapt to users’ changing situations while still remaining under users’ 

control Davidoff et al. (2006) noted the dynamicity of household routines, and presented 

design principles to better support flexibility for variable daily routines and the “conflicting 

goals” of multiple users in the home. 

However, there has been little investigation of the quality of user experience and interaction 

with intelligent systems in everyday life situations. Technical demonstrations of intelligent 

environments have illustrated the feasibility and desirability of adaptive systems for the home 

(e.g., (Cook et al., 2003; Intille, 2002; Kidd et al., 1999; Mozer, 2005), but few projects have 

provided insight into the lived experience of occupants. Previous research on user experience 

of intelligent systems has mostly been conducted in laboratories (e.g., (Intille, 2002; Kidd et al., 

1999)), or with prototypes in experimental settings (e.g., (Gupta et al., 2009; Scott et al., 2011), 

and has also lasted for relatively short periods. The particular nature of the everyday life sphere 

suggests that even established approaches to supporting user interaction with intelligent 

systems needs to be reexamined, in situ, in everyday environments. In real daily life satiations, 

human behavior is more unpredictable than it is in a lab; people’s preferences change over time; 

everyday routines are unstable and contingencies are too rare to form a pattern (Suchman, 

2006). 

Next, we proceed to the second section of the literature review. 

PART 2: INTELLIGENT TECHNOLOGY FOR SUSTAINABILITY 

A particular area of domestic technology use that has received attention within the Ubicomp 

and HCI communities is that of managing energy consumption. Given that 21% of the total 
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energy consumed in the United States is used by homes, such attention is clearly warranted. 

Increased interest in efficient energy consumption has prompted research investigating the use 

of home appliances as well as new designs to support energy savings in the home. For a more 

detailed description, Coskun et al. provide a comprehensive list of smart home projects that 

promote sustainable behaviors (Coskun, Zimmerman, & Erbug, 2015).  

One area where smart home devices promise to deliver great benefits is in the control of home 

heating, ventilation, and cooling (HVAC) systems. HVAC control is an important domain from 

the perspective of environmental sustainability. For example, residential HVAC systems 

account for roughly 50% of all household energy consumption in the United States, which 

equates to about 9% of the nation’s total energy budget.2 Moreover, it is known that residential 

HVAC systems are not operated efficiently by their users (Peffer et al., 2011), leading to 

unnecessarily wasted energy.  

Home Heating and Cooling Control 

Previous literature has shown that proper control of the thermostat in summer and winter can 

save energy without sacrificing thermal comfort (Al-Sanea & Zedan, 2008). One strategy for 

saving energy in heating and cooling is to use a “setback” temperature. A setback temperature 

is used to reduce the temperature at certain times, such as when no one is at home during the 

day or when people are sleeping during the night.  

However, commonly available thermostats do not provide adequate support for people to 

operate their HVAC system in the most energy efficient ways (Peffer et al., 2011). Thermostats 

that require manual control are frequently left on all the time, even when the house is empty. 

                                                

2 http://www.eia.gov/consumption/residential/data/2009/ 
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People with a manual thermostat often forget to adjust the temperature or keep it running at the 

same temperature all the time to maintain a comfortable temperature upon arriving at home.  

Programmable thermostats allow users to input schedules of temperature changes to reduce the 

likelihood that an empty house will be heated or cooled to an unnecessary level. Programmable 

thermostats automatically operate their HVAC systems and can help save energy by scheduling 

the thermostat settings according to daily pattern.  

While the ability to support setbacks is one of the supposed benefits of programmable 

thermostats, programmable thermostats are no longer considered energy-saving appliances due 

to the lack of proper use (Meier, Aragon, Peffer, Perry, & Pritoni, 2011). While 42% of 

households in the U.S. have programmable thermostats, only 56% of these are actually used on 

a regular basis (Peffer et al., 2011).  

Meier et al. (2010) investigated what problems and complaints people have regarding 

programmable thermostats and concluded that poor usability of programmable thermostats is 

the main barrier to efficient use of programmable thermostats. One common reason for this is 

that their programming interfaces are very difficult to use (Dey, Hamid, Beckmann, Li, & Hsu, 

2004; Meier, Aragon, et al., 2010). Common programmable thermostats only allow people to 

create rigid schedules for their heating and cooling that often cannot accommodate irregular or 

unexpected changes in their household routines (Meier, Aragon, et al., 2010). As a result, a 

large number of houses are heated or cooled while no one is home, resulting in wasted energy. 

Responding to these problems with commonly available manual and programmable thermostat 

control, a number of researchers have investigated ways to increase energy conservation in the 

home. Here we discuss two approaches. First, research into eco-feedback has focused on ways 

to provide information to people about their resource usage in order to motivate them to 
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change their usage patterns. Second, automation approach such as predictive control tries to 

reduce the workload for users by automating tasks that users otherwise need to do manually.  

Eco-feedback 

Eco-feedback systems have been proposed as a way to promote greater awareness of energy 

use, which could in turn, motivate people to save more energy (work in this area is extensive; 

Froehlich, Findlater, and Landay (2010) provides a survey). For example, eco-feedback 

displays real-time data to inform users about their energy consumption of various resources, 

such as electricity, gas or water, and thus seeks to motivate users to change their energy use 

behaviors. As people better understand how much they are consuming in real-time, or even 

detect problems that arise (e.g., leaking water pipe), they can act to reduce their energy waste. 

It has been shown that providing real time, dynamic feedback information regarding energy 

usage can lead to energy savings of 5-15%, but only if people are already motivated to reduce 

energy consumption (Darby, 2006). 

While eco-feedback has been shown to increase awareness of energy consumption when 

people are motivated, several studies have found that obtaining information did not actually 

trigger people to take action or change behavior (Pierce, Fan, Lomas, Marcu, & Paulos, 2010; 

Strengers, 2011). Pierce et al. (2010) and Strengers (2011) investigated everyday practices of 

people consuming energy and pointed out that obtaining information does not actually cause 

people to take action or change behaviors (Pierce, Schiano, & Paulos, 2010; Strengers, 2011). 

Pierce et al. (2010) claimed that people do not always make rational decisions; rather they 

habitually consume energy and pursue convenience.  

Considerable motivation and engagement on the part of consumers is required for eco-

feedback to lead to behavior change. Strengers (2014) warned against a common assumption 

that the eco-feedback approach holds, depicting the user as “a resource man” who makes 
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rational choices and acts accordingly when provided information. Even when people are aware 

and motivated, it can be still difficult for them to effectively control their systems. As 

mentioned earlier, poor usability was a significant barrier for the efficient use of programmable 

thermostats (Meier, Aragon, et al., 2010).  

Given the challenges of persuading people to change their behavior, Pierce et al. (2010) 

suggested designing interfaces to “nudge” people to save energy by default, thereby reducing 

the need for consumers to make conscious decisions or enact behavior changes. Hazas, Brush, 

and Scott (2012) take this argument further, proposing that technology-centered approaches, 

rather than user-centered approaches, offer the greatest promise for saving energy. 

Intelligent systems for thermostat control 

Managing home energy consumption represents a particularly rich domain for smart domestic 

technologies and has been the focus of numerous projects. Many smart home research looked 

at a more specific application space of adaptive heating and cooling systems within the broad 

umbrella of the smart home (Gupta et al., 2009; Peffer et al., 2011; Scott et al., 2011).  

A promising approach for helping people maintain an acceptable level of comfort while 

attaining greater energy efficiency is to automate the operation of the system to some degree. 

For example, work in predictive control seeks to reduce or even eliminate the role of user 

choice in controlling HVAC systems by automating temperature adjustments based on 

occupancy predictions. There has been an emerging wave of “intelligent” thermostats that seek 

to learn occupants’ preferences and adjust the temperature based on sensed conditions such as 

householders’ geographic location (Gupta et al., 2009) or home occupancy (Scott et al., 2011).  

By tracking occupancy patterns using GPS (Gupta et al., 2009; Koehler, Ziebart, Mankoff, & 

Dey, 2013) or RFID and motion sensing (Scott et al., 2011), it is possible to build reasonably 

accurate models that can predict occupancy and make sure a house is heated or cooled to a 
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desired temperature when people are home and to a less energy-intensive level otherwise. 

Gupta et al. (2009) used GPS data to predict the arrival time of a home’s residents to control 

the thermostat to reach the pre-defined temperature on the person’s arrival. Scott et al. (2011) 

gathered occupancy data through RFID and motion sensors, and used the data to predict 

occupancy patterns and operate the thermostat accordingly.  

These systems have shown promise. However, systems in this category have been built and 

tested in limited deployments. While these automation-based approaches promise to relieve the 

programming burden for users, there are reasons to believe that the benefits of a fully 

automated approach will not be realized in a meaningful and straightforward manner.  

It remains to be seen what issues would arise in a more general deployment with people who 

vary more widely in terms of geographic mobility, schedule predictability, tolerance for error, 

and desire for control. 100% accuracy will be unattainable, and it is not clear how much error 

consumers will tolerate. Removing control from users makes it more difficult for users to 

understand how the system works, detect errors, and fix problems. This is especially 

problematic when there are unexpected and nuanced changes occurring in someone’s daily life. 

These changes are not understood or managed well by an automated system.  

In recent years, interest has grown in applying smart technology in the area of reducing energy 

consumption. Many manufactures have also been interested in adding new energy-saving 

functions to energy consuming devices. This interest has resulted in the introduction of novel 

consumer devices like the Nest Learning Thermostat.3 

In late 2012, the Nest thermostat came out with advanced features, such as schedule learning, 

remote access, motion sensing and eco-feedback. It was introduced to the market and received 
                                                

3 https://nest.com/ 
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a great deal of media attention. The Nest gained the spotlight due to promises of convenience 

and energy savings. It is an interesting example of advancement in digital technology for the 

home since, prior to the Nest, there had been no major changes in the basic thermostatic 

controls in the previous sixty years (Peffer et al., 2011). 

While the Nest thermostat has been received positively by early adopters, and generally 

perceived to be a huge improvement in terms of usability, there remains a need to understand 

how users will interact with “smart” features. For example, the Nest thermostat tracks user 

behavior and uses the information to project future heating and cooling patterns. If a user 

makes the same kind of changes repeatedly – i.e. raises the temperature two days in a row – 

then the system starts adjusting the thermostat the same way going forward (i.e., by adding an 

entry to the daily schedule to make the same change at the same time on future days). If the 

user’s changes were prompted by an aberration or a one-time event, (for example, when there 

were guests staying over in the home) and are not intended as long-term changes, the 

automated adjustment would cause more inconvenience as it may not be as easy for users to 

manually undo the learned pattern to meet their thermal comfort level once the need for 

adjustment disappears – e.g. the guests leaving. More sophisticated learning is possible, but as 

systems become more complex, it becomes more difficult for people to understand how they 

work and to predict what they will do (Edwards & Grinter, 2001). 

The Nest provides an excellent opportunity to study the user experience of living with an 

intelligent system in the wild, particularly one that seeks to learn and adapt to consumers’ 

behavior in order to help people to save energy. Our interest in this literature review is to 

understand general issues related to the integration of intelligent systems into the home.  

In the following chapters, we describe our research studies that aim to better understand the 

lived experience of an intelligent device for managing home energy use. Before we turn our 
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attention towards the Nest, a novel mass-market thermostat that utilizes machine learning, 

sensing, and networking technology to control home heating and cooling systems, we revisit 

the challenges that we addressed in first sections of literature review.  

These challenges for designing intelligent systems for the home informed and guided our 

research questions and approaches in our studies that consist this dissertation work.  

With advancements in computing, users are starting to interact more with intelligent and 

autonomous systems in their daily home environments, and this trend will almost certainly 

increase. However, using and interacting with these intelligent systems is a challenge for 

novice users. The foregoing literature review highlighted key challenges. 

Users’ lack of understanding: It is difficult for the user to understand how adaptive systems 

work when these systems gather multiple types of implicit data and utilize algorithms to 

operate themselves (Edwards & Grinter, 2001). In turn, users do not know how to control the 

systems to make them work as desired. Previous research shows that it is crucial for users to 

develop sound mental models of their systems to reduce the mismatch between their 

expectations and a system’s actual capabilities. Sound mental models—or functional, how-to-

use, as well as structural, how-it-works, knowledge—help users develop trust in their systems, 

which in turn fosters continued use of those systems.  

Need for soliciting user input: It is difficult for a system to make accurate inferences about 

users’ status and nuanced contexts based on limited data the system gathers from sensors and 

other data sources (Edwards & Grinter, 2001). Therefore, previous research indicates that users’ 

input is necessary to provide proper and necessary data to the system in order to improve its 

performance and prevent malfunctions. 
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Messiness of home environment: Peoples’ everyday lives in the home are full of 

unpredictable and nuanced situations and events (changing routines, situations, preferences and 

expectations). There is a mix of diverse individuals with different characteristics (different 

levels of technical aptitude, varying preferences and interest) living in heterogeneous homes. 

Thus, it is necessary to better understand the unique characteristics of a home environment in 

order to design intelligent systems that fit into peoples’ daily lives.  

Designing for sustainability: An area where intelligent systems promise to deliver great 

benefits is in the control of HVAC systems. Research into eco-feedback has focused on ways 

to provide information to people about their resource usage in order to motivate them to 

change their usage patterns. However, there has been little evidence that obtaining information 

reliably causes people to take action or change behaviors (Strengers, 2011). Predictive heating 

control, which uses sensing and machine learning to try to learn the occupancy patterns of a 

house’s residents in order to automatically adjust the temperature. While these systems have 

shown promise in limited field trials, there remains a need to understand how such intelligent 

systems works in everyday home environments.  

Taken together, the challenges we discussed in this literature reviews demand more research to 

inform the design of intelligent systems in the home. 
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CHAPTER 3.  
LEARNING FROM A LEARNING THERMOSTAT:  

LESSONS FOR INTELLIGENT SYSTEMS FOR THE HOME 

 

INTRODUCTION 

With advances in computing, everyday systems and devices in the home are becoming more 

connected, automated, and intelligent. This trend follows the trajectory of the “smart home” 

that has been forecasted and researched in the HCI and Ubicomp communities for the past two 

decades. This vision describes a home which seeks to adapt to its inhabitants and respond to 

their informational and comfort needs (Weiser & Brown, 1997), and there is increasing 

evidence that the vision is poised to become a reality. Many home appliance manufacturers are 

introducing new generations of digitally enhanced home appliances, which promise to reduce 

manual work, operate efficiently on behalf of users with little or no user intervention, and 

provide new types of information which were not available previously.  

Managing home energy consumption represents a particularly rich domain for smart, domestic 

technologies, and has been the focus of numerous research projects (e.g., (Froehlich, Findlater, 

& Landay, 2010; Gupta, Intille, & Larson, 2009; Scott et al., 2011; Strengers, 2011)) as well as 

commercial offerings. In late 2011, the Nest thermostat was introduced to the market and 

received a great deal of media attention. The Nest represents an intriguing phenomenon for 

study, as it is the first mass-market thermostat in the U.S. to feature machine learning. The 

Nest’s learning promises to generate a personalized heating and cooling schedule that will 

promote comfort, energy savings, convenience, and more enjoyable interaction. Studying the 
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adoption and use of the Nest, then, provides an excellent opportunity to study the user 

experience of living with a ‘smart’ domestic appliance in the wild, particularly one that seeks 

to learn and adapt to consumers’ behavior. 

Previous research on the user experience of smart, adaptive home technology has mostly been 

conducted in laboratories (e.g., (Intille, 2002; Kidd et al., 1999)), or with prototypes in 

experimental settings (e.g., (Gupta et al., 2009; Scott et al., 2011)). As mainstream domestic 

technologies become smarter and more complex, more research is required to better understand 

the real use and adoption of such systems in the context of everyday life, where different 

individuals and families reside and behave. In order to better understand real-life, long-term 

experience with the use of such ‘smart’ digital technology in the home, we studied households 

that had installed a Nest. Using the Nest as a lens, we draw on our in-depth examination of 

users’ experience living with a smart thermostat to inform the design of intelligent systems for 

the home more broadly. 

Our study findings provide valuable insights into how people perceive, use, and interact with 

intelligent systems, and what challenges lie in making intelligent systems work in real homes. 

In particular, we saw that people were surprised and frustrated by the Nest’s inability to 

distinguish between routine behavior (that the Nest ought to remember) and temporary 

adjustments (that it ought to forget). More generally, users also struggled to understand what 

the Nest was attempting to learn about them and how it was using its acquired knowledge to 

control their home’s temperature. In addition to leading to user frustration, these difficulties 

led to confusion about whether the Nest was actually helping users save energy—a goal that 

had originally motivated many of them to acquire the device in the first place.  
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Based on our analysis of these observations, we derive three promising avenues for future 

research on intelligent home systems: exception flagging, incidental intelligibility, and 

constrained engagement. 

RELATED WORK 

Even as the full realization of the smart home vision remains elusive, a number of studies have 

sought to understand the opportunities and challenges of the smart home through examining 

interaction with existing home technologies and prototyping future environments.  

Programmable digital technologies such as VCRs, thermostats, and set-top boxes have been 

present in typical homes for many years, and their adoption and use have been studied 

fruitfully (e.g., (O’Brien, Rodden, Rouncefield, & Hughes, 1999; Rode, Toye, & Blackwell, 

2004)). More extensive forms of home automation have been pursued in small communities of 

users, however, these communities have been dominated by highly-engaged hobbyists and/or 

households wealthy enough to afford high-end professional installation and maintenance. 

While studies of home automation adopters have yielded insights into the technology’s barriers 

and benefits (e.g., (Brush et al., 2011; Mennicken & Huang, 2012; Takayama et al., 2012)), 

they have not provided insights into the mainstream user experience of adaptive home 

technologies that seek to learn about occupants’ behaviors and preferences and change their 

operation accordingly. 

Technical demonstrations of intelligent home environments have illustrated the feasibility and 

desirability of adaptive systems for the home (e.g., (Cook et al., 2003; Intille, 2002; Kidd et al., 

1999; Mozer, 2005)), but few such projects have provided insight into the lived experience of 

occupants. A notable exception is Mozer’s Adaptive House (2005), in which the researcher 

deployed adaptive systems in his own home across several months. An important conclusion 

from this study was that adaptive home systems needed to be designed to “educate” their 

occupants about their operation, so that they can act appropriately in the face of partial or 
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complete failures. This conclusion echoes Edwards and Grinter’s observation that a 

fundamental challenge for smart homes is to offer advanced functionalities, yet still be 

manageable for users (Edwards & Grinter, 2001). When considering adaptive home systems 

that utilize sensing and machine learning, issues of intelligibility and control become central to 

the concept of “manageability” (Bellotti & Edwards, 2001; Edwards & Grinter, 2001). It has 

been noted that the gap between users’ mental models and the actual system model can cause 

inefficient use, confusion, dissatisfaction, and abandonment of some features of the system 

(Tullio, Dey, Chalecki, & Fogarty, 2007). While extensive research has been done into how to 

design interfaces that render system behavior more intelligible (Bellotti & Edwards, 2001; Lim, 

Dey, & Avrahami, 2009; Stumpf et al., 2009), such research has yet to be pursued in the 

context of everyday domestic life. 

A particular area of domestic technology use that has received attention within the Ubicomp 

and HCI communities is that of managing energy consumption. Given that 22% of the total 

energy consumed in the U.S. is used by home (EIA, 2011), such attention is clearly warranted. 

For the design of systems to promote sustainable lifestyles, numerous research projects have 

investigated eco-feedback systems as a way to promote greater awareness of energy use (e.g., 

(Froehlich et al., 2010)), which will, in turn, motivate people to save more energy. Strengers et 

al. (Strengers, 2011), however, pointed out that obtaining information did not always cause 

people to take action or change their behaviors. Previous studies (Peffer, Pritoni, Meier, 

Aragon, & Perry, 2011) investigated how people use their thermostat and concluded that poor 

usability of programmable thermostats is a critical barrier for their efficient use. Automation-

based approaches have been proposed as a way to relieve the burden from users, implementing 

machine learning and sensing technology to automate system operation to some degree (Gupta 

et al., 2009; Scott et al., 2011). While these systems have shown promise in limited field trials, 
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there remains a need to understand how such ‘smart’ features will interact with users’ desire 

for control and predictability. 

To better understand the lived experience of an intelligent device for managing home energy 

use, we turned our attention towards the Nest, a novel mass-market thermostat that utilizes 

machine learning, sensing, and networking technology to control home heating and cooling 

systems.  

THE NEST THERMOSTAT 

The Nest was released in October 2011 and was offered for sale for an initial price of US$249; 

at this time, a standard programmable thermostat could be purchased in the U.S. for around 

$30-$40. At the time of its release, the Nest was considerably more advanced than other 

thermostats on the market, with novel features such as schedule learning, remote access, 

occupancy sensing, and eco-feedback. Here we describe the main features of the original (v1.0) 

Nest based on the description available on the Nest website 4.  

The Nest features an attractive wall-mounted device, as well as smart phone and web-based 

control capabilities (Figure 3). In addition to providing access to the schedule and real time 

control, the web and phone apps provide the Energy History, which is the detailed history of 

when and how long the heating and cooling system ran. Additionally, the Nest includes a pair 

of intelligent features that utilize machine learning, and motion sensing: Auto-Schedule and 

Auto-Away. 

                                                

4 https://nest.com/ 
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Auto-Schedule: The Auto-Schedule feature automatically generates a schedule based on 

temperature changes users make. While the manufacturers of the Nest do not provide details of 

the algorithm, it can be said that the Nest takes about a week to generate its initial schedule and 

thereafter continually adapts the schedule according to users’ temperature adjustments. Users 

can manually revise the schedule via the wall-mounted device or through the web or mobile 

applications. Users can also turn off this feature and use the Nest as a regular programmable 

thermostat. 

Auto-Away: The Nest has an embedded motion sensor on the wall-mounted unit that detects 

the movement of occupants within a certain range. If the Nest does not sense movement for 

about two hours, it goes into “Auto-Away” mode, which automatically adjusts the temperature 

to a user-defined level to avoid heating or cooling an empty home. Separately from the “Auto-

Away” function, users can manually set the Nest to “Away” mode.  

STUDY METHODS AND PARTICIPANTS 

We interviewed 23 participants from nineteen households between February and September, 

2012. All 19 households participated in interviews, and ten of them also participated in a diary 

study. All interviews were conducted by phone except one, which was conducted via video 

chat. Interviews lasted 45 minutes on average. During each interview, we asked participants 

 
  (a)             (b)        (c)              (d) 

 
Figure 3. Users can control the Nest via the wall-mounted display (a), a mobile app (b), or a 

web app (c) The mobile and web apps provide access to Energy History (d). 
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how they used their previous conventional thermostat compared to the Nest, as well as their 

overall experience and understanding of the Nest. While overall experiences and opinions were 

reported in the interviews, we learned more details about the individual situations, decision-

making processes, and changes in users’ perception and their understanding of the system over 

time from the diary study. For the diary study, we asked participants to report daily routines, 

changes made to the thermostat, and reactions to the Nest. We recruited participants using 

various methods, including email, Facebook, and Twitter messages, as well as contacting 

individuals who publicly posted about their experiences with the Nest. The resulting 

households were located in eight different states across the U.S. Demographic details are 

shown in Table 1. 



 37 

 

 

 

Table 1. Summary of Participants 
* P13 submitted additional diary entries after her diary study completed. ** P16 and P17 who 

participated in an interview study in February 2012 participated in a follow-up interview in August 2012. 
PT: Programmable Thermostat, H: Heating, C: Cooling 

House
hold 

Number of 
Interviews 
(Diary 
entries) 

State Parti-
cipant(s) 

Adults 
(Child
ren) 

Occupation Months of 
Nest usage 
by study 
end 

Number of Nest 
and other 
thermostats 

H1 2 (25) MI P1 3 Aerial Photographer 1 (C) 1 Nest 
H 2 3 (21) MI P2 2 (1) Interaction Designer 1 (H) 1 Nest 
H 3 3 (4) AZ P3 3 (3)  Software Developer 1 (C) 2 Nests + 1 PT 
H 4 3 (21) AZ P4 1 Software Developer 1 (C) 1 Nest 
H 5 3 (12) TX P5 2 (2) Software Developer 1.5 (C) 1 Nest + 1 PT 
H 6 3 (7) TX P6 3 Municipal Program 

Professional  
1.7 (C) 1 Nest + 1 PT 

H 7 4 (20) AZ P7, P20 2 Software Developer, 
Accountant  

1 (C) 1 Nest + 1 PT 

H 8 1  MI P8 2 Software Developer 1 (H) 1 Nest 
H 9 1  MA P9 2 Software Developer 1.5 (H) 1 Nest 
H 10 1  CO P10 2 (2) Professor 2 (H) 1 Nest 
H 11 1 CA P11 2 (2)  Sales Manager 2.5 (H) 1 Nest 
H 12 2 (19) MI P12 2 Web Designer 2.5 (C) 1 Nest 
H 13 3 (37) * MI P13, P21 2 (1) Interaction Designer, Cost 

Analyst 
4 (H and C) 1 Nest 

H 14 4 (21) TX P14, P22 2 Optometrist, Office Manager 6 (C) 2 Nests 
H 15 2  CA P15, P23 2 (2) Software Developer,  

Stay at home mom 
8 (C) 2 Nests 

H 16 2 **  CA P16 2 Software Designer 9 (H and C) 1 Nests + 2 PTs 
H 17 2 **  MN P17 2 Software Designer/Developer 9 (H and C) 1 Nest 
H 18 1  TX P18 2 Sales Manager 9 (H) 1 Nest 
H 19 1 DC P19 2 Marketing Consultant Abandoned 1 Nest 
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In each household we studied, we identified the individual who was primarily in charge of 

thermostat control. This “primary” participant was generally the person who had taken the 

initiative to acquire and install the Nest. In 15 households, we interviewed only the primary 

participant. In another four households, we additionally interviewed a “secondary” participant, 

i.e., a Nest user who was not primarily responsible for integrating the Nest into the home.  

Out of 19 primary participants, 18 were male and only one was female. Three of the secondary 

participants were female, and one was male. We endeavored to recruit a more balanced sample, 

but had difficulty finding women who had initiated the purchase of the Nest for their home, or 

who self-identified as the primary user in their household. In addition to being 

disproportionately male, our participants tended to be technically skilled and highly interested 

in new technology. The relatively high cost of the Nest meant that our participants were fairly 

affluent. While it would be valuable to study the voluntary adoption and use of an intelligent 

system like the Nest among a more diverse population, we were unable to recruit an 

appropriate sample given the timing and constraints of our study. 

As noted, ten households participated in a diary study in addition to interviews. In all cases, the 

primary participant completed the diary entries. Eight of these ten households had obtained 

their Nest fewer than three weeks before they started the diary study. The remaining two 

households had been using their Nest for two and six months, respectively. Participants were 

asked to report diary entries for three weeks, and were interviewed at the beginning, during, 

and the end of the study period.  
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Participants submitted diary entries using Catch 5, a free web-based application that allows 

users to share pictures, text, and voice notes. We asked participants to describe their comings 

and goings, changes made to the thermostat, and reactions to the Nest. We provided example 

diary entries but did not provide prompt questions. Once a week, we asked participants to 

upload screenshots of the Nest schedule and the Energy History from their web or smartphone 

app. Occasionally we left comments on diary entries to encourage participation and to clarify 

what they reported in their entries.  

Analysis 

All interviews were audio-recorded and transcribed. The Nest schedule and energy history 

screenshots were reviewed and compared with the diary entries to find explanations for 

changes that were observed. The interviews and diary data were coded and analyzed using an 

iterative process of generating, refining, and probing the themes that emerged. Codes were 

initially drawn from research questions and then supplemented with those that emerged from 

the interviews and diary entries.  

Our interest in this study was to understand general issues related to the integration of 

intelligent systems into the home. However, the Nest’s users do not experience the ‘intelligent’ 

aspects of the Nest separately from its other features, so we sought to understand our data at 

multiple levels. At the highest level, we tried to understand users’ overall experience with the 

Nest, including their judgments about its benefits compared to previous thermostats, changes 

to their household routines and thermal control patterns, and perceived improvements to their 

home’s energy efficiency. This level serves as a backdrop to our analysis of the phenomena 

                                                

5 Catch service was discontinued in 2013 and no longer available. http://techcrunch.com/2013/07/31/evernote-

competitor-catch-com-shuts-down-its-note-taking-apps-company-heading-in-different-direction/ 
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related to users’ interactions with the Nest’s intelligent features (principally the learning and 

sensing features)—including problems and successes encountered with these features, users’ 

mental models of their operation, and users’ subjective perception of the usefulness and 

desirability of these features.  

From this it should be clear that it is not the goal of our study to proclaim the Nest a “success” 

or a “failure.” Stated differently, this paper is not intended to serve as an evaluation of the Nest, 

per se. Indeed, it is worth noting that from a commercial standpoint, there is ample evidence 

that the Nest is a reasonably successful product. From a viewpoint that is concerned with 

sustainability, though, we might assess success based on whether a product maximizes energy 

savings, or whether through automation or encouraging more energy efficient behaviors. Our 

particular concern in this paper is to gain insights into how to successfully deploy intelligent 

systems in the home. From this vantage point, we might look to a product like the Nest to 

assess how well users are able to take advantage of the system’s advanced features, including 

its support for automatic scheduling and occupancy sensing. From these latter perspectives the 

Nest’s success is decidedly less clear, as we shall see. 

FINDINGS 

Preliminary findings from seven of the households in our study were previously presented at 

the HomeSys workshop (Yang & Newman, 2012). Here we present a more detailed analysis 

based on the full set of 19 households, with special attention paid to participants’ interaction 

with the Nest’s intelligent features. 

Based on our interviews and diary study, most of our participants were satisfied overall with 

the Nest, due in large part to the huge improvement over previous thermostats they had owned. 

So, first, as a way to set the context, we will describe the positive aspects of participants’ 

experience of the Nest, namely increased engagement and greater awareness of energy usage 
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patterns. We discuss the particular features that changed our participants’ interaction with the 

Nest as compared to conventional thermostats. Next, we will focus on the issues related to the 

Nest’s intelligent functions, such as automatic scheduling and occupancy sensing, followed by 

a discussion of practices that emerged for dealing with these functions’ shortcomings. Finally, 

we discuss the consequences of these shortcomings by considering whether the Nest led to 

energy savings. 

Improved design leads to greater engagement 

Participants found the Nest to be far more enjoyable to use than the thermostats that had been 

replaced. This perceived improvement derived largely from the elegant industrial and 

interactive design of the device and its remote control applications. Many participants liked the 

Nest lighting up as they passed by it, appreciated the intuitive graphical interface, and enjoyed 

being able to simply open their laptop or tap on their phone to control their thermostat.  

For example, P22 was reluctant to change the temperature setting of her previous thermostat 

because “it was really confusing to use.” Instead of raising the temperature when she was 

uncomfortable, she would wear a sweatshirt at home, even during the summer. However, with 

the Nest, she found it easy to adjust the temperature: “I love that it’s so easy to track …from 

your phone what the temperature is in our house. …That way we look online and we’re like, oh, 

we’re not going to be here for the next five hours, and the air conditioning is on. We can 

change it.” 

Most participants also found the Energy History useful. It allowed some participants to remain 

engaged and make informed decisions, like P14: “It kind of keeps me engaged on it. I think the 

engaging process of the machine is probably part of the reason why the energy savings come 

in because you pay more attention to it and you make sure it’s running properly.” 
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The learning system fails to understand user intent 

While the interactive features, graphical interface, remote control, and energy usage 

information were all received positively and contributed to increased user engagement, 

participants had a different experience with the ‘intelligent’ aspects of the Nest, such as 

schedule learning and occupancy sensing.  

When we first interviewed P16 in February 2012, he said that his Nest worked well and 

seemed to understand his desired comfort level. However, when we interviewed him again in 

August 2012, he was considering uninstalling the Nest. He found the learning was not 

successful and he was not satisfied with the changes the Nest had made to the schedule. 

Controlling the Nest was difficult for him, as the system continued to learn his temperature 

changes without recognizing the situations or intent behind his inputs: “I'm not really happy 

with it anymore. The problem is, it is too controlling and not enough adaptive to our 

immediate needs. …I had a pregnant daughter [visiting], and she doesn’t like hot weather, so 

we turned it down for her. Once you turn it down, then it learns that, and it says, “Okay, you're 

going to want to do this every day.” It just becomes a very complex thing to adapt. …It makes 

assumptions, and I don’t like the assumptions, and I can't train it to make different 

assumptions. I feel like I've lost control over it. …It only is able to see …the clock schedule, 

and we don’t live by the clock.”  

Participants who were actively managing the temperature according to changing situations 

tended to have more problems, as the Nest could not detect why the user was setting different 

temperatures. It therefore could make erroneous assumptions about their intent, ultimately 

making unwanted changes to the temperature schedule.  

While some participants felt that the Nest was overly eager, others felt it was not sufficiently 

sensitive to their input. P13 described his Nest as ‘arrogant,’ feeling that it would do whatever 



 43 

it thought was right, regardless of his attempts at control. He wanted the Nest to follow his 

directions: “There might be settings that we can decide to make it less arrogant? …If I set in 

the evening to 75, then I want it at 75 and definitely for this night, …I decided I want it 75. 

Don't turn it back to something else.” 

The system’s behavior is hard to understand 

The fact that the Nest often failed to recognize the reason behind temperature changes the user 

made was compounded by the fact that participants had trouble understanding how the Nest 

interpreted their input when creating a schedule and how the Nest sensed their movement or 

occupancy.  

For example, P7 thought, “Everything else [about the Nest] was straightforward but learning.” 

He was uncertain about how much data were necessary to input for the Nest to create a 

schedule. He wondered whether changing the temperature every hour would confuse the Nest 

and how long it would take for the Nest to learn a new pattern. He lived with two other people 

and was curious about the impact of multiple adjustments.  

As participants did not understand how the intelligent features work, such as Auto-Schedule 

and Auto-Away, they had difficulty to make the Nest work as they desired. P2 expressed his 

confusion about Nest in a diary entry: “It's unclear to me whether [the learning] is done or if it 

is continuing to learn patterns. …I'm also not sure of the time resolution of the Away 

calculation. …Does it resume the regular schedule as soon as someone's presence is detected, 

or can it predict this event in advance if the pattern of home/away is regular enough? The very 

minimal Nest instructions do not discuss these decision-making parameters, but basically ask 

for trust, (perhaps before trust is earned).” 
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In an interview, P2 said, “Without knowing very much more about the parameters, I don’t 

really expect it to do that effective of a job in matching the schedule I prefer. Doing the 

schedule manually seems to be the easier course.” 

Another intelligent feature most participants expected to help them save energy was Auto-

Away. Participants expected Auto-Away would save energy when they are not at home. 

However, many participants felt that Auto-Away was not working accurately. P4 wrote in his 

diary that Auto-Away turned on while he was at home: “2:10 PM: While working, it was 

getting increasingly warm. Didn't know what was going on. I checked on temp and noticed that 

it was at 80ish degrees. Set temp back down to 73 at the thermostat. Turned off Auto Away 

functionality.” 

After this entry, P4 walked past the Nest once every hour for the next six hours even though he 

had turned off Auto-Away. He wanted to make sure the Nest knew he was there and he was 

uncertain if turning it off would solve the problem. A week later, he regretted disabling Auto-

Away after he found the A/C was working all day when he was not home. Regardless, he kept 

Auto-Away turned off because he suspected that it would work inaccurately again if he turned 

it back on.  

Another participant, P16, who had the Nest stuck in “Away” mode, expressed his frustration: 

“I would like to see it work. It just wasn't working for us. …The Nest is doing its own [thing] 

and doesn’t tell you what it is doing. It just doesn't. So you really don't know. …It's very hard 

to do anything but what it wants to do quietly.” 

In P14’s case, he speculated that Auto-Away stopped turning on because he was telling the 

Nest that he was actually at home when it turned on Auto-Away: “[Auto-Away] was not 

turning on as much as I wanted it to. That was a problem that I was trying to address over the 

last couple months. …The Auto-Away …had turned on in the first couple weeks when we didn’t 
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want it to. ...It’s really easy you just go up and you press it and tell it that you’re still there. I 

think we may have done that too much. …[T]hat’s probably why the Auto-Away stops turning 

on.” 

Months later, he concluded that the location of the Nest was not ideal for detecting people’s 

movement.  

Participants were surprisingly reluctant to give up intelligent features and displayed a 

willingness to work around some of their shortcomings. However, efforts to ‘fix’ the situation 

or ‘take back’ control in most cases were either discouraged or undermined by the participants’ 

lack of understanding of how the learning actually took place. P17, whom we interviewed after 

nine months of Nest usage, found that the Nest stopped learning his temperature settings after 

he deleted all the unnecessary temporary changes the Nest remembered. He did not understand 

why and thought it was his fault: “I thought when I started using the Nest that it was going to 

do a better job of tracking my changes, …and just automatically updating the schedule. It was 

for a while and then it stopped. I haven't figured out why yet. Everything you see on that 

schedule now I entered manually, which I didn’t …have to do that. I don't know what happened. 

…It’s just stopped doing something that it should be doing and that's probably my fault 

…because it was working up until I deleted the settings.” 

Users found ways to work with the ‘intelligence’ 

Despite the limitations of the Nest’s learning, participants came up with strategies that could 

take advantage of certain intelligent features and make the Nest work better for them.  

Overall Experience with Learning 

More than half of the participants (P1, P3, P7, P11, P12, P14, P15, P18 and P23) reported the 

Nest remembered their temperature settings ‘well enough.’ Many of them kept a regular 

schedule or maintained consistent temperature settings. When these participants found the 
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learning was not successful or they did not like the adaptive changes the Nest had made to the 

schedule, they were willing to modify the schedule manually. They were content with the Nest 

since the improved graphical user interface and remote applications made it relatively easy for 

them to control it. Other participants (P2, P5, P8, P9, P13, P16, P17 and P21) found the 

learning did not work well and some were even annoyed by the adaptive changes the Nest had 

made to the schedule. In both cases, the learned schedule needed to be revised by participants, 

but as long as the Nest did not make drastic changes to the schedule they set manually, they 

still kept the learning function active. 

Correcting the schedule 

Several participants felt that the Nest merely memorized their adjustments. They were 

disappointed when the Nest appeared to simply remember their input rather than do something 

more ‘intelligent’ like generate a good average schedule. P9 found that the schedule the Nest 

generated (Figure 4) was “probably more crazy and detailed than it really need[ed] to be.” P8 

also revised the schedule so that the Nest would not be making small changes: “I just went 

through and sort of cleared it up so that it won't be making all those little changes all the time.” 

 

Three days after he installed his Nest, P2 found that an initial schedule had been learned. Three 

days after that, he determined that the learned schedule was unsatisfactory, so he modified it. 

He posted before and after screenshots in his diary, which are shown in Figure 5.  

 

Figure 4. P9’s Nest schedule showed frequent temperature changes on certain days. Time is 
plotted on the X-axis and weekdays are plotted on the Y-axis. The dots show the temperature 

setting at the particular day and time. 
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Teaching and guiding the learning 

Once several participants realized the Nest’s machine learning limitations, they changed the 

way they interacted with it. For example, P17 intentionally gave limited input for the Nest to 

memorize. He described how he managed the Nest schedule once he concluded that the Nest 

simply memorized his input: “For the first week we had it, I was adjusting it all the time, 

because it was fun to do. But then after about a week, I looked at the schedule that it had 

memorized and it was crazy, it was all over the map. So, I erased the whole schedule and we 

started again. And at that point, basically, not more than three times a day.” 

Monitoring 

With the Nest creating the initial schedule and updating it as the patterns changed, many 

participants said that they monitored the schedule the Nest was generating. Several participants 

actively checked to see if it was reasonable. They reviewed the Energy History to look for any 

abnormalities in how the heating and cooling system had been running. When participants 

  (Before) 

  (After) 

Figure 5. P2 posted screenshots of his schedule before and after he modified it. 
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noticed an improper or inefficient temperature setting, they made adjustments and deleted the 

undesirable temperature setting. 

The Nest did not clearly lead to energy savings 

Most participants expected the Nest to be helpful for energy savings. However, except for 

some participants who said that they were very conscious about energy savings, many 

participants were uncertain about whether the Nest saved energy. P11 said, “I will not say if it 

saved me any electricity at this point.” P9 was not sure if he saved money with the Nest, 

explaining his doubt: “In reality, it might be that I played with Nest so much, it cost me an 

extra 300 bucks.” As we described, Auto-Schedule and Auto-Away each displayed 

shortcomings and therefore may not have directly contributed to participants’ energy savings.  

Users pursue convenience and comfort 

The expected benefit of remote access is to enable users to control their thermostats when they 

are away from home. Interestingly, most participants used the remote control at home 

frequently, sometimes more often than the wall-mounted device. Participants said that having 

the remote control is convenient since it allowed them to check their thermostat more 

frequently and make changes without even getting up. For example, P9 used the remote control 

in his bed: “If I wake up and I'm freezing, I'll just grab the iPad next to the bed and crank up 

the heat. Then I haven't even gotten out of bed yet.”  

Learning may not generate an energy efficient schedule 

Participants initially expected that the Nest would be smart enough to figure out the ideal 

schedule for the heating and cooling system to achieve comfort and save energy. However, 

several participants (P2, P8, P9, P13, and P16) found the Nest simply memorized their input, 

but it did not generate an energy efficient schedule. P16’s Nest generated a higher heating 

temperature setting than he would have set, “It seems like it stays warmer longer than what we 
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would've done it if we left it purely manually.” P10 intentionally set up a schedule manually 

since he did not want the Nest learning an undesirable schedule based on his family members’ 

input. He believed that his family members set the temperature unnecessarily high or low, and 

often forget to adjust the temperature before going out.  

The Nest’s learning might have created a less-than-ideal schedule, since it learned participants’ 

patterns of temperature adjustment and many participants were likely to make adjustments for 

comfort rather than efficiency. Several participants (P2, P3, P5, P13 and P16) explicitly stated 

that they preferred comfort to energy savings, and thus did not change their behavior to save 

energy after getting a Nest. As mentioned earlier, many participants found it easy to change the 

temperature via remote control. With a conventional thermostat, they might well have stayed 

with a less comfortable schedule they had initially programmed due to the difficulty of 

changing it. If users make capricious changes and do not monitor how they affect the schedule, 

the Nest schedule may stay inefficient. 

Auto-Away failure led to wasted energy 

Another intelligent feature most participants expected to help them save energy was Auto-

Away. Participants expected Auto-Away would save energy when they were not at home. 

Several participants reported that they did not obtain much benefit from it since Auto-Away 

often either turned on when they were at home or did not turn on when they were not at home. 

From our diary study, we observed that four households out of ten had occasions when they 

wasted energy since Auto-Away did not turn on while they were away. For example, two 

months after P13 installed the Nest, she discovered that Auto-Away had not been working for 

several days. She wrote in her diary: “Auto away feature is broken!!! It no longer senses when 

we are not home. That was my favorite thing about the nest, so this is annoying. …It happened 

during the hottest week too. My A/C was on a LOT without needing it! Aargh…”  
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She felt that she could not rely on Auto-Away to function properly and created a schedule to 

prevent the Nest from cooling the house during the day. 

Users’ motivation is the key to savings  

Despite the intelligent features of the Nest that promised energy savings, such savings seemed 

to largely result from participants’ motivation and engagement with monitoring their Energy 

History and making necessary changes to save energy. Many participants who were actively 

monitoring their thermostat usage were confident that they saved more energy by making a 

conscious decision to change the schedule to a more energy efficient setting. For example, P12 

mentioned that one day he checked the Energy History and noticed that the air conditioner was 

running ten or more hours a day. He raised the temperature setting by one degree and saw the 

air conditioner ran only six or seven hours a day after the change. He was okay with being less 

comfortable because it was his “conscious decision.” However, we also observed that 

participants’ excitement and engagement faded over time. Once most participants settled down 

with the Nest schedule, they paid less attention to the schedule or the Energy History.  

To sum up, we found that participants were most satisfied with the Nest’s user interface and 

remote control; the intelligent features of the Nest, such as Auto-Schedule and Auto-Away 

were less successful. We also observed new practices of user control emerged to address the 

Nest’s limitations. It is notable that participants’ workarounds reflected their willingness to 

employ intelligent features despite their shortcomings; even so, users had trouble determining 

whether they were saving energy. 

DISCUSSION 

At a high level, the findings just reported will not be surprising to many readers who are 

conversant with the issues surrounding interactive intelligent systems. The fact that systems 

struggle to understand human context and intent, and that users cannot orient their actions with 
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system appropriately without an adequate understanding of how the system operates have been 

often discussed in the literature. Indeed Suchman (2006) classically identified a pair of key 

challenges for the design of interactive machines in general as being 1) the machine’s limited 

access to a user’s actions and circumstances of the user and 2) the user’s difficulty in 

recognizing the machine’s constraints. Clearly these challenges are magnified when discussing 

intelligent interactive systems, as the system seeks to learn patterns of user behaviors, 

preferences, and decision making, and users seek to understand and control complex and 

malleable system behavior.  

It would be tempting to conclude that our findings, then, are simply a reflection of poor design 

decisions by the Nest. In the versions of the Nest that we studied, the subsystem that learned 

user preferences was only capable of detecting one aspect of user behavior (control changes) 

and the system provided no convenient mechanisms for indicating which inputs ought to be 

remembered by the system and which ought to be forgotten. Additional relevant dimensions of 

user behavior such as occupancy, the presence of particular household members and guests, 

and household activity levels as well as contextual dimensions such as humidity, external 

temperature, and sun exposure—all of which could be relatively easily sensed and incorporated 

into a predictive model—were simply not included, and there was no mechanism for 

compensating for their absence.  

Additionally, the Nest made no attempt to explain or account for its behavior, leaving users 

little information with which to build an effective mental model. We argue, however, that the 

issues uncovered in our study reflect deeper challenges in designing intelligent systems for the 

home that cannot be addressed by collecting more data, building better models, or applying 

existing approaches to making system behavior intelligible. 
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Bridging the intention gap: Exception flagging 

Suchman’s challenges articulate a fundamental gap between what computing systems can 

sense and the user’s intentions. That is, no matter how many sensors we include or how 

elaborate our models become, there will be gaps in the system’s knowledge. Our data supports 

the view that some amount of human behavior is unpredictable, some preferences change, 

some routines are unstable, and some contingencies are too rare to form a pattern. Yet, 

intelligent systems can provide benefits by automating the aspects of life that are predictable, 

enduring, stable, and regular. A key design challenge, then is to elicit input from users to help 

the system differentiate the data that represents regular, stable preferences or behavior from 

input that does not. Existing approaches to correcting system inference focus on giving 

feedback on the system’s output (e.g., (Kulesza et al., 2009; Stumpf et al., 2009)) or on 

eliciting more and higher quality input from the user (e.g., (Dey, Rosenthal, & Veloso, n.d.)). 

However, neither of these approaches seem well suited to the type of system represented by the 

Nest. Such systems are characterized by mostly invisible output (system-initiated control 

changes will only be noticed after the fact in most cases, and in many cases may not be noticed 

at all), and user input is not solicited, but rather passively observed.  

The promise of the Nest that it will learn users’ preferences based on their behavior and build a 

suitable schedule is clearly appealing to end-users. It is unclear whether users would be able or 

willing to endure a special “training mode” of any duration, or whether they would be willing 

to inspect system outputs and provide feedback with any regularity. The nature of domestic life 

and the relative unimportance of thermostat control would suggest that neither approach would 

be appealing. An alternative approach would be to develop interactive techniques that require 

intentional user input only in the case of exceptions. Techniques for exception flagging would 

allow implicit user input to be collected and used for learning in the normal case, but allow 

users to identify, or flag, exceptional inputs (i.e., inputs that should not be learned), triggering 
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the system to ignore such inputs when building models and making predictions. While such a 

mechanism would be simple to implement technically, it would present challenges in terms of 

interaction design, as it is not clear that users would always be able to articulate at the time of 

execution when an action was exceptional. It might be easier to identify exceptions in 

retrospect, but it is not clear how or when it would be best to ask users to review previous 

inputs and label them appropriately. We believe the further research will be required to 

develop and test effective techniques for eliciting exception labels from users across different 

domains in the smart home. 

Bridging the understanding gap: Incidental intelligibility 

A different but related challenge is helping users to understand how the system is interpreting 

and acting upon the data it receives from users. This challenge (loosely captured by Suchman’s 

second challenge noted above) has been studied extensively under the topic of “intelligibility,” 

which covers user interface techniques that seek to help users understand the behavior of 

complex, often intelligent, systems. A major focus of intelligibility research has been on 

providing interactive explanations for how the system works and why it behaves in certain 

ways (e.g., (Kulesza et al., 2009; Lim et al., 2009; Stumpf et al., 2009)). Such approaches to 

intelligibility, however, assume that the user has a conscious interest in understanding the 

system, and is willing to invest time in doing so.  

Our observations of Nest users suggest that the desire to understand the system arises 

infrequently (only when something goes wrong), and that there is little motivation for 

exploring or developing one’s understanding of the system’s learning capabilities as an 

independent activity. While users may not see the value in understanding the system’s behavior, 

it would clearly be beneficial to the system’s operation—and ultimately to the user—if they 

did. It would also allow users to head off problems of misunderstanding before they become 

dire, thus reducing frustration at a later date. Thus finding ways to increase users’ 
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understanding of how the system learns and makes decisions is a valuable goal, even if the 

users might not place a high value on it.  

Moreover, as we saw in our study, users were able and willing to adapt their behavior based on 

even a partial understanding of how the Nest operated. Such co-adaptation has been observed 

among users of configurable systems (Mackay, 2000) and collaborative systems (Orlikowski, 

1992), and perhaps ought to be expected among users of intelligent systems as well. 

Supporting co-adaptation requires helping users gain a practical understanding of the system’s 

operation. To foster system understanding without requiring explicit interaction dedicated to 

the task, we suggest that intelligibility ought to be delivered opportunistically, in small pieces 

commensurate with the relatively small, occasional, incidental interactions that characterize 

users’ interactions with the Nest. Such incidental intelligibility—interaction elements that 

increase users’ understanding of the system’s intelligent behavior embedded in the tasks they 

consciously seek to accomplish—could build understanding that would help users orient their 

behavior over the long term while not asking users to attend to learning how the system “thinks” 

as a discrete task. 

Widening the interaction: Constrained engagement 

Both exception labeling and incidental intelligibility demand users attention, even if that 

demand is minimized as much as possible. Conventional thermostats, both manual and 

programmable, are designed largely with the goal of reducing demands on user attention to 

nearly zero, in accordance with both longstanding cultural trends in home automation and, 

coincidentally, with Weiser’s visions of disappearing and calm computing (Weiser & Brown, 

1996).  

As Rogers points out, however, a strong stance on making computing invisible runs counter to 

visions of “smart” technologies that learn about and understand their users (Rogers, 2006). 
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While Rogers goes on to suggest that UbiComp move away from its emphasis on smart 

systems and towards the design of engaging experiences, we suggest that home control systems 

like the Nest present a venue where intelligence and engagement ought to co-exist. Specifically, 

we note that the effective application of intelligence to problems like temperature control will 

require user engagement in the form of (at least) periodic, thoughtful input from the user along 

with consideration of and monitoring of system outputs. People know about the situations (e.g., 

Mary is pregnant and likes to be warm) and plans (e.g., we are having five guests over for 

dinner in an hour) that impact the behavior observed by the system and so it is important to not 

just provide mechanisms for input but to engage users to interact the system. 

Such engagement, however, must be dramatically constrained, given that the interaction 

between user and system is necessarily sparse and peripheral yet continuous and long-lived. 

Assuming that we are evolving towards a world in which users engage with dozens if not 

hundreds of intelligent services like the Nest, a challenge faces UbiComp researchers to come 

up with ways of designing technologies that engage but do not overwhelm—a goal that we 

refer to as constrained engagement.  

Here, actually, we feel that the Nest got it mostly right. Many participants enjoyed having 

more control over their thermostat. Indeed, we observed that new practices of user control 

emerged to address the Nest’s limitations. It is notable that participants’ workarounds reflected 

their willingness to employ intelligent features despite their shortcomings. Moreover, energy 

savings we observed with the Nest are did not come from automation such as auto-learning or 

auto-away, but resulted from participant’s engagement to save energy. The Energy History 

feature increased awareness about energy consumption, supported informed decisions, and 

motivated green behavior, mainly by making it easy and enjoyable to monitor system 

performance. Also, ease of use enabled users to put their thoughts into action. By providing a 

baseline of user engagement through attractive and thoughtful design, systems like the Nest 
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can more easily gain needed access to the user for confirming inputs, explaining outputs, and 

supporting the process of productive co-evolution. 

CONCLUSION 

In this paper, we present an account of the user experience of adopting an intelligent 

thermostat drawn from interviews and diary study of 23 participants regarding managing the 

temperature in the home and energy saving as a result. Our study results reveal challenges and 

opportunities of intelligent systems, particularly those that utilize machine learning and motion 

sensing. Based on our findings, we provide a set of design implications for intelligent systems 

for the home. 
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CHAPTER 4.  
MAKING SUSTAINABILITY SUSTAINABLE: CHALLENGES IN THE 

DESIGN OF ECO-INTERACTION TECHNOLOGIES 

 

INTRODUCTION 

The smart home is here. Long envisioned by HCI and Ubicomp researchers, the promise of a 

home that can learn its occupants’ needs, desires, and behaviors — and adapt itself 

appropriately — is being realized. Networked digital devices and services are being 

manufactured and marketed in ever-increasing numbers, performing a variety of different roles 

in the home including entertainment, health, security, and home automation. These new 

capabilities bring great potential, but also great concern — are “smart” devices going to make 

our lives easier, more productive, or more enjoyable? Or are they going to bring a new set of 

frustrations, expectations, and responsibilities that will outweigh their possible benefits? 

An area where smart home devices promise to deliver great benefits is in the control of home 

heating, ventilation, and cooling (HVAC) systems. HVAC control is an important domain from 

the perspective of environmental sustainability. In the United States, for example, residential 

HVAC systems account for roughly 50% of all household energy consumption, which equates 

to about 9% of the nation’s total energy budget 6. Moreover, residential HVAC systems are not 

                                                

6 http://www.eia.gov/consumption/residential/data/2009/ 
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operated efficiently by their users (Peffer et al., 2011), leading to unnecessarily wasted energy. 

A number of researchers have investigated ways to improve the operation of HVAC systems. 

Research into eco-feedback (e.g., (Froehlich, Findlater, & Landay, 2010; Pierce, Schiano, & 

Paulos, 2010; Strengers, 2011)) has focused on ways to provide information to people about 

their resource usage in order to motivate them to change their usage patterns. Another 

approach that has been investigated is predictive heating control (e.g., (Gupta, Intille, & Larson, 

2009; Koehler, Ziebart, Mankoff, & Dey, 2013; Scott et al., 2011)), which uses sensing and 

machine learning to try to learn the occupancy patterns of a house’s residents in order to 

automatically adjust the temperature. 

Both eco-feedback and predictive control can be seen as approaches to a broader problem we 

call eco-interaction, by which we mean the study of interaction between humans and energy-

consuming systems with an eye towards minimizing energy use while preserving an acceptable 

level of user-perceived benefits. Eco-interaction includes eco-feedback and predictive control, 

but also includes the design of control interfaces, infrastructures, and basic functionality 

required to facilitate user interaction. 

In this paper, we seek to inform the design of future eco-interaction systems by investigating 

users’ experiences with the Nest Learning Thermostat (hereafter “The Nest”), a commercially 

available smart home device. The Nest combines elements of eco-feedback and predictive 

control with networked remote control to allow users to create a custom heating and cooling 

schedule that matches their preferences and helps them save energy.  

The work in this paper builds on an earlier study (Yang & Newman, 2013) that looked at users’ 

initial experiences with the Nest, including problems encountered with the Nest’s learning and 

sensing capabilities, and users’ strategies for dealing with the Nest’s limitations. Here we look 
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at a different aspect of users’ experiences with the Nest, namely how the features of the Nest 

changed users’ interactions with HVAC systems in the home over both the short and long term.  

We do this by first examining how people interact with “conventional” thermostats — i.e., the 

ubiquitous manual and programmable thermostats that can be found in the vast majority of 

North American homes (Peffer et al., 2011). We then report users’ initial experiences upon 

acquiring a Nest by re-analyzing the data originally collected for (Yang & Newman, 2013) 

from the perspective of the Product Ecology Framework (Forlizzi, 2008). The Product Ecology 

Framework allows us to more easily see changes in consumers’ perception of and interaction 

with a novel product like the Nest, and to tease out different threads that impact the user 

experience. Finally, we report a new follow-up study that was conducted to learn about how 

their interaction with the Nest had changed after owning it for 12-21 months. 

Our study found that the Nest impacted users’ pattern of HVAC control, but only for a while. 

During the first few months after installing a Nest, many of the users we studied were more 

engaged, interacted with their thermostat more, and sought ways to save energy more actively 

than did users of conventional thermostats. After a period of time, however, the engagement 

with the Nest, along with the frequency of interaction, diminished and users’ interactions 

settled into patterns that resulted in missed opportunities for energy savings. Based on these 

findings, we identify a set of implications for the design of eco-interaction systems.  

BACKGROUND AND RELATED WORK 

Our work builds upon and informs existing approaches to promoting energy savings, 

principally eco-feedback and predictive control. As our particular focus in this work is on the 

changes in use of eco-interaction systems over time, we also draw upon prior studies of long-

term interaction.   
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Eco-Interaction 

The goal of eco-feedback is to promote greater awareness of energy use, which could in turn, 

motivate people to save more energy (work in this area is extensive; (Froehlich et al., 2010) 

provides a survey). However, there has been little evidence that obtaining information reliably 

causes people to take action or change behaviors (Strengers, 2011). Rather, considerable 

motivation and engagement on the part of consumers is required for eco-feedback to lead to 

behavior changes. Moreover, even when people are aware and motivated, it can be difficult to 

effectively control their systems. Previous studies showed that poor usability was a significant 

barrier for the efficient use of programmable thermostats (Peffer et al., 2011).  

Given the challenges of persuading people to change their behavior, Pierce et al. (Pierce et al., 

2010) suggested designing interfaces to “nudge” people to save energy by default, thereby 

reducing the need for consumers to make conscious decisions or enact behavior changes. 

Hazas et al. (Hazas, Brush, & Scott, 2012) take this argument further, proposing that 

technology-centered approaches, rather than user-centered approaches, offer the greatest 

promise for saving energy. Following this thread, work in predictive control seeks to reduce or 

even eliminate the role of user choice in controlling HVAC systems by automating temperature 

adjustments based on occupancy predictions. By tracking occupancy patterns using GPS 

(Gupta et al., 2009; Koehler et al., 2013) or RFID and motion sensing (Scott et al., 2011), it is 

possible to build reasonably accurate models that can predict occupancy and make sure the 

house is heated or cooled to a desired temperature when people are home and a less energy-

intensive level otherwise. Systems in this category have been built and tested in limited 

deployments. It remains to be seen what issues would arise in a more general deployment with 

people who vary more widely in terms of geographic mobility, schedule predictability, 

tolerance for error, and desire for control.  
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The Nest Learning Thermostat7 features an attractive wall-mounted device, as well as smart 

phone and web-based control capabilities (see Figure 6).  

 

In addition to providing access to a schedule and the ability to control the temperature in real 

time, the web and phone apps provide a detailed Energy History, an eco-feedback display 

showing when and how long the heating and cooling system ran and providing feedback about 

whether the day’s performance was energy efficient. A green leaf icon appears when users set 

the Nest to a temperature that is considered energy efficient by the Nest’s algorithms8. 

Additionally, the Nest includes Auto-Schedule and Auto-Away, intelligent features that utilize 

machine learning and motion sensing, respectively, to implement a form of predictive control. 

In contrast to the systems mentioned earlier that seek to predict occupancy, the Nest’s Auto-

Schedule feature generates a schedule based on temperature changes that were previously 

made. While the manufacturer of the Nest does not provide details of the algorithm, it claims 

                                                

7 The description of the Nest presented here is based on the version of the Nest our users had at the time of the 

study, as described at http://www.nest.com (Accessed: 2012-09-24.).  
8 https://nest.com/downloads/press/documents/efficiency-simulation-white-paper.pdf 

                     
           (a)                                        (b)            (c) 

 
Figure 6. Users can control the Nest via the wall-mounted display (a), a mobile app (b),  

or a web app (c).  © Nest Labs 
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the Nest generally takes about a week to compute an initial schedule and thereafter continually 

adapts the schedule based on users’ temperature adjustments. Users can also use the web-based 

control interface to manually revise the schedule created by Auto-Schedule, and Auto-

Schedule can also be turned off. The Nest has a motion sensor embedded in the wall-mounted 

unit that detects the movement of occupants within a certain range. If the Nest does not sense 

movement for some time, it goes into Auto-Away mode, which automatically adjusts the 

temperature to a user-defined setback level to avoid excessively heating or cooling an empty 

home.  

As a precursor to the work presented in this paper, Yang and Newman (2013) studied 

households that had installed a Nest, focusing on users’ initial impressions of the Nest and 

their experiences with the Nest’s “smart” features, namely Auto-Schedule and Auto-Away. 

Whereas (Yang & Newman, 2013) drew on early-stage usage experiences to inform the design 

of usable intelligent systems for the home, our goal here is to identify challenges and 

opportunities in the design of eco-interaction systems for long-term use. 

Understanding Product Use and Long-Term Interaction 

Numerous approaches exist for understanding how and why technological products are 

acquired, adopted, and used. Models such as the Technology Acceptance Model (Venkatesh & 

Davis, 2000) and Orlikowski’s duality of technology (Orlikowski, 1992) help explain how 

particular features of a product or system, along with contextual factors such as user 

expectations, social dynamics, and temporal trajectories impact how the product is integrated 

into the life of an individual or collectivity.  

In this work, we draw on the Product Ecology framework to look specifically at how the Nest 

changed users’ relationship to their HVAC system over both the short and long term. The 

Product Ecology is a theoretical framework that describes social product use (Forlizzi, 2008). 
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It is informed by social ecology theory, which is broadly concerned with the dynamic 

relationship between an individual and the physical and social environment. From the Product 

Ecology viewpoint, the product is the central unit of analysis. The functional, aesthetic, 

symbolic, emotional and social dimensions of a product, combined with other units of analysis, 

or factors in the ecology help to describe how people make functional, social, and symbolic 

relationships with products. These include the product; the surrounding products and other 

systems of products; the people who use it, and their attitudes, disposition, roles, and 

relationships; the physical structure, norms and routines of the place the product is used; and 

the social and cultural contexts of the people who use the product (Forlizzi, 2008). The Product 

Ecology has been used in the long-term study of adoption of semi-autonomous products in the 

home to understand how they change interactions in the household (e.g., (Forlizzi, 2007)). 

Other work has looked at long-term interaction with interactive products. Several papers, for 

example, have looked at the change in user satisfaction and perception over time (e.g., 

(Karapanos, 2013; Kujala, Roto, Väänänen-Vainio-Mattila, Karapanos, & Sinnelä, 2011)), but 

these did not focus on how users’ interaction patterns changed or what impact those changes 

had on outcomes enabled by the product, such as comfort or energy savings. Our work 

contributes to both the literature on Product Ecology and long-term interaction by investigating 

the changes in users’ relationship to and usage of a novel device over both the short and long 

term. 

METHODS  

We conducted two qualitative studies, one with manual and programmable thermostat users 

and another with the Nest thermostat users. Both studies consisted of a diary study augmented 

by semi-structured interviews. 
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Study 1: Conventional thermostat study  

We conducted a three-week diary study with 16 participants between September and December 

2011 in order to understand how people use their thermostat to manage their thermal comfort 

in their homes. We recruited participants using personal networks, mailing lists, and the 

snowball sampling method. Eight participants had manual thermostats, and the other eight had 

programmable thermostats. Our participants lived in six different states in United States. 

Participants made daily diary entries for three weeks and participated in two interviews. We 

employed a diary study to capture participants’ day-to-day heating and cooling control and to 

avoid limitations of interview data such as participants’ inaccurate memory of their actual 

behaviors and perceived comfort for each day. Each participant reported the arrivals, 

departures, and sleep times of their household members, how they felt about their comfort, and 

what changes they made to their thermostat and why. The initial interview focused on 

participants’ household routines, general thermostat control practices, and thermal comfort 

preferences. The exit interviews elicited additional details related to diary entries.  

Study 2: The Nest thermostat study 

To understand users’ experiences with the Nest, we drew from a re-analysis of data collected 

for a previous study (Yang & Newman, 2013) and a new set of 15 follow-up interviews 

conducted with members of the households that participated in the original study. For the 

initial study reported in (Yang & Newman, 2013), 23 participants from 19 households who had 

purchased a Nest were interviewed between February and September 2012. Ten of these also 

participated in a three-week diary study and two additional interviews, which took place during 

and after the diary entry period. Diary entries described participants’ comings and goings, 

changes made to the thermostat, and reactions to the Nest that they had, positive or negative. 

Participants also submitted periodic screenshots of the Nest’s Energy History and schedule.  
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Follow-up interviews were conducted between August and September, 2013. Fifteen 

participants from nine of the original households agreed to participate for the follow-up (two 

household members participated in the follow-up who did not participate in the initial phase). 

Participants sent us updated screenshots of their Nest schedule and the Energy History prior to 

the interview and we asked them about their long-term experience and use of the Nest.  

Data collection and analysis 

In total, we conducted 90 interviews and collected a total of 508 diary entries. All interviews 

were audio-recorded and transcribed. The conventional thermostat study data was coded and 

analyzed using an iterative process of generating, refining, and probing the themes that 

emerged. The data from the initial-phase and follow-up Nest usage studies were analyzed using 

the Product Ecology Framework (Forlizzi, 2008). We chose to employ the Product Ecology 

Framework in order to investigate how dimensions of the product influenced thermostat 

control activities that took place around the use of thermostat. Our interest in this study was 

two-fold: first, to better understand how product features influence users’ interaction with a 

thermostat and second, how users’ interaction with a semi-autonomous thermostat changes 

over time within the home. We were also interested in aspects of behavior that supported 

energy savings.  

In the following sections, we draw on the conventional thermostat study data to describe 

people’s current practices with regard to thermostat control as well as existing problems. Then, 

we discuss how the Nest changed the practices, interactions, and relationships associated with 

the thermostat, how it addressed existing problems, and what new issues it presented. Finally, 

we present the breakdowns that occurred with the Nest over time. In the Discussion, we reflect 

on these findings to extract a set of implications for the design of future eco-interaction 

systems.  
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In the findings below, we refer to participants by thermostat type and subject number, for 

example, PT1 is the first participant interviewed who had a programmable thermostat. MT is 

used for a manual thermostat. For the Nest study, we use same participant codes, P1-P23, that 

were used in (Yang & Newman, 2013), adding P24-P25 for additional follow-up study 

participants. We indicate whether source was an interview (I) or diary entry (D), and note the 

number of months the participant had been using the Nest at the time.  

COMMOM PROBLEMS WITH THERMOSTAT CONTROL 

In our study of conventional thermostat usage, we observed common problems in participants’ 

thermostat control patterns that echoed those described in previous work (Peffer et al., 2011). 

With manual thermostats, people often forget or find it inconvenient to manually adjust 

temperatures to increase energy savings. While programmable thermostats ought to make it 

easy to reduce energy consumption, people find it difficult to program their thermostats due to 

usability flaws (Peffer et al., 2011). Here, we look beyond the well-documented usability 

problems with existing thermostats to shed light on more fundamental reasons that efficient 

management of thermostats is challenging. Specifically, we show how practices surrounding 

thermostat control are tightly related to people’s comfort and convenience as well as frequent 

changes in routines and schedules in daily life.  

People do not use a setback temperature. 

Making effective use of a setback temperature—i.e., an energy-efficient temperature setting to 

be used when the house is unoccupied — is one of the most important steps people can make 

to reduce the energy used for heating or cooling their homes (Peffer et al., 2011). Many of our 

participants did not consistently use a setback temperature, and cited various reasons. Many 

participants wanted to avoid the long wait time until the house heated or cooled upon returning 

home, while others simply forgot or were unaware of the potential energy savings. 
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People do not use schedules. 

Interestingly, some participants did not even try to figure out how to program their devices. 

PT1 did not use a schedule even though it meant he had to frequently wait up to two hours for 

the house to cool down to his desired temperature. He said, “There’s a button called PRG, 

which I figure is probably for Program,… I was too lazy. I never really bothered to figure out 

how to use it.” Rigid scheduling options were another reason that participants avoided 

scheduling. Many programmable thermostats offer limited options for scheduling, allowing 

only a “weekday” and a “weekend” schedule, each with limited preset times when temperature 

changes can occur (e.g. morning, day, evening, and sleep time). This rigidity made it difficult 

to effectively set a schedule for more complex and nuanced daily routines. More importantly, 

inflexible scheduling options combined with a difficult scheduling process hinders participants 

from accommodating frequently changing schedules and temperature preferences. 

People fail to reassess existing control patterns. 

Some participants kept non-optimal temperatures that were “more comfortable” than they 

actually needed. Several participants programmed their thermostats for the season and stayed 

with the schedule throughout the season. PT2 referred to a programmable thermostat as “a 

little more maintenance-free” than a manual thermostat, as she only needed to adjust the 

schedule twice a year: “I kind of do an assessment, if you will, before winter starts and before 

summer starts to make sure my temperatures are kind of where I want them to be.” However, 

we believe that this “set-and-forget” approach will not be optimal for energy saving because 

both weather and people’s schedules change frequently during the season.  

In addition to failing to reassess their schedules, participants used temperature settings that 

were not optimal for either saving energy or achieving thermal comfort. This was revealed 

accidentally, for example, when MT1 at one point forgot to change the temperature back to 

70°F from 64°F as she usually did upon arriving home during the winter. She only realized her 



 68 

oversight when, two days in a row, her husband came home and said; “It’s kind of cold in here 

isn’t it?” She wrote in her diary: “I guess that people do adapt to the temperature and can 

tolerate a wide range (more than we initially recognize).” 

In the next section, we describe how our participants with the Nest used and interacted with it 

differently from those participants with manual or programmable thermostats. 

PRODUCT ECOLOGY ANALYSIS 

As described earlier, we used the Product Ecology framework to analyze how the Nest 

impacted people’s interactions with their heating and cooling systems as mediated by their 

thermostats and whether and how this, in turn, affected behavior, roles and relationships in the 

household. We coded for three factors in the product ecology of the thermostat, people, 

activities, and products, with special attention to the dimensions of the Nest as a product 

(functionality, aesthetics, symbolism, emotion, and social attribution).  

As a product, the Nest was well-received by most users, especially in terms of its symbolic, 

aesthetic, and functional aspects. Symbolically, the Nest was seen as a “cool,” “stylish” gadget 

that reflected its owners’ good taste and technical savvy. Most participants thought that the 

Nest was designed for anyone because it was easy to use. However, a few mentioned that it 

was designed for young, technically-savvy users because they felt they were not taking full 

advantage of all of the Nest’s features. It also held the promise of saving energy, which was a 

significant factor in many participants’ decision to purchase the Nest in the first place, and it 

reinforced self-images of the purchaser as an energy-conscious consumer. 

All participants mentioned energy savings as one of their motivations for getting a Nest, but 

ultimately, they were most motivated by the perception of Nest being a cool, beautifully-

designed product. Aesthetically, the Nest was seen as a huge improvement over the dull plastic 

thermostat it most frequently replaced, and it was praised for its appealing appearance. P9(I-
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1.5m) expressed that “just having something on the wall that’s not an ugly piece of plastic 

from [brand name] is also totally worth it.” The smart phone and Web interfaces were 

similarly seen as elegant and attractive, leading to an overall positive emotional experience for 

most of our participants. While some participants used anthropomorphic language when 

discussing the Nest (e.g., talking about what the Nest “knows” or “thinks”), social attribution 

did not seem to be a dominant dimension in users’ experience.  

The Nest’s novel functionality was, however, very prominent in participants’ minds. The 

Nest’s functional aspects, along with a heightened sense of engagement due in large part to the 

positive emotional response and changes in the relationships of household members vis-à-vis 

thermostat control, impacted the activities that users performed with and around the Nest.  

INITIAL EXPERIENCE WITH THE NEST 

Through our analysis, we noted several ecological changes that occurred among adopters of the 

Nest as compared to those using a traditional thermostat. Here we focus on two. We first 

provide insight into how key dimensions of the Nest (particularly functionality, aesthetics, and 

symbolism) led to greater engagement, which, in turn, led to increased awareness and 

interaction with the system. Second, we provide details about how changed interactions with 

the Nest impacted activities related to thermostat control and energy savings. 

Increased engagement and awareness 

Conventional manual or programmable thermostats were not seen as exciting to use. 

Conversely, several dimensions of the Nest combined to promote greater engagement, and 

more importantly, stimulated our participants’ interest in thermostat control and energy savings. 

The Nest’s novel features (functionality) such as the Energy History and its interactivity led 

participants to be more aware of their heating and cooling system. P15(I-8m)’s interaction with 

a thermostat control changed in the following way after getting a Nest: “I’m much more in tune 



 70 

with what my heating and cooling systems are doing. I’m much more aware of their presence 

and their function. I know it sounds kind of silly because it’s a heating and cooling system. But, 

before I just avoided. … I only dealt with it when I had to, but now I just like to see what it’s 

doing when I walk by.” 

The Energy History feature and appealing graphical interface motivated and facilitated to 

assess and improve their settings. P6(I-1.7m) had previously bought a programmable 

thermostat for about US$20 and never programmed it during the four years he had it. He stated 

that he “didn’t want to bother with it” because it was “old technology.” With the Nest, though, 

he explored the Nest’s different functions and was motivated to optimize its schedule: “I was 

sort of messing around with [the schedule] and then got excited about it. Then, suddenly I was 

adjusting all the temperature… It’s really fun… It’s almost a game like, ‘OK, let me see if I 

can make it a little bit warmer on this day and try to save a little energy there.’” 

Here, we find that the Nest’s symbolic, social, and functional aspects successfully engaged 

participants in performing tasks that were problematic for conventional thermostat users, 

namely using schedules and reassessing them for energy savings.  

Changing practices and interaction with the Nest 

Along with increased engagement and awareness, the Nest’s functional aspects also impacted 

thermostat control activities in key ways, as we now describe. 

Scheduling becomes an interactive and iterative task.  

The Nest participants’ scheduling activities became more interactive and iterative, as 

compared to the tedium of conventional thermostats. Once the Nest generated a schedule based 

on its learning of a participant’s input, many participants reviewed and revised their schedules, 

often repeatedly. Thus scheduling was not a one-time task but instead was ongoing, as the Nest 

automatically kept updating the participant’s schedule over time and the participants kept 
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reviewing the changes. P18(I-9m) described how he interacted with the Nest‘s schedule and 

why the scheduling could not be solely left up to the Nest: “Reading [the schedule] now, it 

says, ‘On Wednesday 4:30, sent from my Nest thermostat’ is when I put it at 75°F, but then it 

shows that Monday, Tuesday, Thursday, and Friday were set to 75°F because of the learning 

feature… I look at it occasionally to see why it’s set like that… If it has added something in 

there that I didn’t think… was something good, then I would change it back to something else.” 

For other participants as well, keeping an eye on the schedule became necessary once they 

realized that the Nest remembered temporary changes and added them to the schedule. During 

the diary study, P2(D-2m) “noticed a few aberrations in the schedule.” Once he found that the 

Nest quickly responded to temporary adjustments and made them part of a regular schedule, he 

monitored how the Nest was changing his schedule. P8(I-1m) said, “I look at it [the schedule] 

every now and then to see if it has added something crazy in there.”  

Temperature control becomes more fluid and adaptive.  

While participants found that conventional programmable thermostats offered limited options 

for scheduling, and thus, it was hard to accommodate temporary changes, many participants 

appreciated the fact that the Nest was flexible and adaptive. The Nest’s functional aspects, 

such as Auto-Away, remote control, and flexible options for scheduling enabled participants to 

accommodate frequently occurring changes in their schedules. P5(I-1.5m) felt that he gained 

more control with the Nest and pointed out that the Nest’s flexibility and adaptivity in 

scheduling actually allowed him to save more energy: “The previous one wasn’t very flexible 

so you were kind of at its mercy. You didn’t have a lot of control over your energy usage ... 

[N]ow, I can a lot more proactively manage [my energy usage]… [The Nest] is very flexible … 

[T]he best thing so far is being able to set the temperature from when out of the house, being 

able to set it Away. I like the Auto-Away and just the ability to manage it on a day-to-day hour-

to-hour basis is helpful.” 
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Establishing a setback temperature becomes easier. 

P5(D-1.5m) further described in his diary that having remote access led him to employ a 

setback temperature. He wrote, “Really what changes our behavior is setting it to Away or 

turning it off while we’re gone.” The Nest’s ability to adjust the temperature based on 

occupancy and to control the temperature remotely enabled the participants to employ more 

flexible, temporary, and immediate temperature setback strategies. With Auto-Away and 

remote control, it was okay to forget to change the temperature before leaving. P13(I-9m) 

described having the remote control as freedom and empowerment: “The freedom that the Nest 

gives you from having to… remember to turn it down. You’re empowered wherever you are to 

make those changes.” Adjusting the temperature was no longer on her husband’s vacation to-

do-list. In addition, they did not need to worry about wasting energy because they forgot to 

turn down the temperature. The couple P15(I-8m) and P23(I-8m) did not need to call their 

housekeeper to check whether she had adjusted the temperature after cleaning. Instead, they 

could check remotely and avoid wasting energy. 

Monitoring the Nest emerges as a new task. 

Supervising and monitoring the Nest emerged as a new task, as participants were intrigued by 

how it learned from their temperature adjustments and operated autonomously.  

In addition to monitoring changes to the schedule as described above, many participants 

monitored their energy histories to see how the Nest was performing. While traditional 

thermostats do not provide means for users to see how their heating and cooling systems have 

been working, the Nest’s Energy History allows users to track how the Nest has been operating 

on a daily or weekly basis. A few participants drew on the Energy History to reassess whether 

their behaviors and existing schedules were aligned with their comfort and energy-saving goals. 

For example, P12(I-2.5m) noticed that the A/C was running ten or more hours a day, based on 

the Nest’s Energy History. After he raised the temperature setting by just one degree, he found 



 73 

that the A/C ran only six hours or seven hours a day. By monitoring the Energy History, he 

found ways to save and experienced the impact of making minor changes to his schedule.  

SETTLING INTO A ROUTINE 

The changes in engagement and awareness described in the previous section did not, however, 

persist over the long term. Our follow-up study identified major changes in the use of the Nest 

that were apparent after a year. First, far less interaction with the product was cited. Over time, 

the device became mundane, and people rarely interacted with features like the Energy History 

and the schedule. Second, a decreased effort to improve energy performance was noted. While 

participants were initially interested in monitoring their energy use, they came to rely on the 

Nest’s automatic functions more over time. In essence, participants’ thermostat control practice 

changes — such as monitoring the Energy History and fine-tuning the schedule for energy 

efficiency — did not last over time. The effort and engagement required to maintain such 

behaviors was not sustainable.  

Less interaction with the Nest over time 

Our follow-up interviews revealed that by 12–21 months after installing the Nest, many 

participants did not remember when they last checked their schedules or energy histories. 

Many had stopped reviewing their energy histories, checking or adjusting their Nest schedules 

over six months or more prior. Only two participants explicitly said they kept paying attention 

to the Nest in order to save energy. Most participants in the follow-up study interacted with 

their Nest thermostats only to directly adjust the temperature. P1(I-13m) said, “We don’t 

interact with the Nest, really. ... We just use it as a regular thermostat.”  

Over time, the Nest schedule became static, and the system made few adjustments. 

Accordingly, some participants became less concerned about what the Nest was doing. P4(I, 

13m) said, “The Nest takes care of all the changes in temperature… It doesn’t require me to 
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babysit it.” P6(I-15m) did not check the schedule or the green leaf anymore to see if the 

temperature settings were energy efficient: “I haven't checked the schedule or the green leaf 

because mainly, I think, the Nest has learned pretty well what we like so I don't really think 

about the thermostat too much anymore. Maybe, it's almost working too well because I don't 

think about looking for the green leaf. On the occasion that I do go up and adjust the 

thermostat, like let's say it just gets too hot or too cold, then I do look for the green leaf on 

those occasions. But in general, I don't interact with the thermostat that much. I don't even 

think about checking it anymore. It kind of faded into the background for me.” 

As long as the Nest did not set the temperature abnormally, it did not call for our participants’ 

attention, and he or she did not need to actively get involved in controlling or interacting with 

it. 

Reduced effort in improving energy performance 

During the follow-up interview, participants were asked to take a look at their current 

schedules and energy histories. To five participants’ surprise, the Nest thermostats were not 

working as they had expected. For example, P4(I-13m) failed to reassess his default settings, 

resulting in wasted energy. He was away during the weekend, however, the Away temperature 

setting was set to 80°F, and the Nest was cooling the house during the weekend, as shown in 

Figure 7. P4’s Energy History shows the A/C was running during the weekend while he was 

not at home (bottom two rows). When he left home, he set the Nest to ‘Away’ mode, which 

was set to 80°F, a temperature lower than his normal daytime setback of 85°F (shown in the 

upper three rows). P4 was surprised to discover that his system was wasting energy while he 

was away. 
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When asked why he set the Away temperature to 80°F while he had an 85°F setback 

temperature, he answered, “Oh, I have no idea. I think [the] Away [temperature] was already 

set at 80°F [about a year ago when he installed the Nest]. I just didn’t change the 

setting. I just turned on the ‘Away.’” He continued, “I guess left to my own devices, it would 

have stayed at 80°F. It makes sense to turn it to 85°F. I really didn’t even pay attention to what 

it was at.” 

Reduced engagement with monitoring and over-reliance on the Nest functions caused surprises 

regarding its automation routines. P14(I-18m) trusted the Nest and rarely looked at his 

schedule or Energy History. He believed that the Nest was saving money due to its functions, 

such as Auto-Schedule and Auto-Away. However, during the follow-up interview, he found 

that the Nest was actually running during the weekend while he and his wife were away. He 

had checked the Nest on his phone and had seen that the Nest was in Away mode after leaving 

home on Friday. He thought the Nest would maintain the Away mode the entire weekend. To 

his surprise, the Nest somehow turned on and cooled the house, as shown in Figure 8.  

 
 

Figure 7. P4’s Energy History shows the A/C was running during the weekend while he 
was not at home (bottom two rows). When he left home, he set the Nest to ‘Away’ mode, 

which was set to 80°F, a temperature lower than his normal daytime setback of 85°F 
(shown in the upper three rows). P4 was surprised to discover that his system was wasting 

energy while he was away. 



 76 

 

One couple, P15 and P23(I-20m), thought the Nest was adjusting the temperature 

autonomously as it understood their needs. P23(I-20m) said, “It senses when we’re home and it 

knows what temperature we’d like it to be at various times of the day and so it adjusts it on its 

own.” However, her husband P15(I-20m) found that one of their two Nests did not have a 

schedule even when its learning function was active. He was “actually surprised” since “[he 

and his wife had not] noticed that it didn’t have a schedule.” 

Participants also felt that their schedules could be improved but usually lacked the motivation 

to do so. P24(I-14m) explained he could make two adjustments to save energy. First, he would 

create an additional setback temperature of 81°F at 1 p.m., which was earlier than the 81°F 

setting he already had at 3 p.m. “because I know it gets above the temperature in the day 

before then so there's no reason to keep it at 81°F until that late in the afternoon.” He would 

also raise the 81°F setting at 3 p.m. to 83°F to save more.  

Note that in all of these examples, had we not conducted follow-up interviews, participants 

would not have seen problems with the Nest. They all believed that their Nest thermostats were 

working as they had expected. These anecdotes call into question the desirability of having the 

Nest fade into the background even though this might be desirable from a customer satisfaction 

standpoint. The perceived promises of the Nest’s energy-saving features might have led 

participants to rely on the Nest and allowed them to be less active in controlling their heating 

and cooling systems. 

 
Figure 8. P14’s Energy History is showing that the cooling was on during the weekend when 

nobody was at home. 
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Changes in behavior were not sustained 

A number of factors could explain why people’s interest in interacting with the Nest faded over 

time and why changes in energy-saving behavior were not sustained. The first was simply that 

the novelty effect wore off, a phenomenon commonly seen with technology products (Hekkert, 

Snelders, & Wieringen, 2003). For example, P6(I-1.7m) was explicitly motivated to save 

energy, but it took less than two months for his excitement to wane: “When we first got it, it 

was really exciting. A new gadget, we’re trying to figure out what it can do. Now we’re sort of 

used to it … [T]he novelty … has kind of worn off.” 

Second, many participants began to rely on the Nest. As it turns out, they might have over-

estimated the Nest’s capabilities. P1(I-13m) and P25(I-13m) had not checked the schedule and 

the Energy History for about a year. Nevertheless, P1(I-13m) explained why he believed the 

Nest was doing its job: “I just have faith in it. I assume that it’s doing its job, but I don’t really 

know. I haven’t checked up on it.” When we asked what caused him to have such faith in it, he 

answered: “Well, because it’s a computerized thing, and it’s fancy and it lights up when you 

put your hand near it.” The Nest’s features, such as recognizing them when they passed by, 

might have played a role in the trust that the participants felt with the system. 

Third, participants often became forgetful in their interactions with the Nest. As long as the 

Nest did not drastically change a participant’s schedule and maintained the user-guided/revised 

schedule, most would not bother to reassess it in order to make it more efficient. This may 

have led to wasted energy and missed opportunities to save energy and money. For example, 

both P14(I-18m) and P24(I-14m), who mentioned finding ways to improve their schedules, 

forgot about the idea because they were doing something else at that time. P24(I-14m) gave 

more fundamental reasons, “I have to do so little adjusting to the Nest that I did not remember 

to doing with it ... We have not had unusual activity on other fronts, so I was not motivated to 

check on it and make the necessarily change.”  
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Finally, the motivation to save energy might not be strong enough to overcome the inertia of 

existing behavior. After learning that the Nest was working while she was not home, P22(I-

18m) mentioned that she might start “taking a more active role, at least checking [the Nest] 

before [she] leave[s] for the day,” and she even expressed a desire to learn how to check the 

Nest schedule and use other Nest features. However, she quickly admitted that she would not 

actually do this. 

DISCUSSION  

In our study of Nest usage, we observed that participants’ thermostat control practices changed 

immediately after the installation of a Nest. Many of our participants actively tried to save 

more energy when they first got the product. However, after time passed, their engagement 

with saving energy decreased. In many cases, participants showed a tendency to trust the Nest 

and neglect active monitoring or decision-making for energy savings as long as they did not 

notice any problematic issues.  

In our follow-up interviews, several participants (four out of nine households) were surprised 

that the Nest was not operating as they had originally believed. It is possible that participants 

might never have discovered incidents of energy loss and stayed with the current schedule 

when the ability to set a more optimal one existed. This highlights a central tension with the 

Nest—its success from a user experience standpoint (it performed well enough that people felt 

they did not need to pay it much attention) impeded its success from a sustainability standpoint 

(users’ trust and resulting inattention led to missed opportunities for energy savings).  

Designing eco-interactions 

As we saw in our findings, some degree of active involvement by participants happened early 

on but needed to happen iteratively over time to sustain or increase energy savings. A 

challenge for designers, then, is to preserve the benefits of system autonomy and automation 
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while facilitating interaction to promote and sustain users’ engagement for achieving desirable 

energy efficiency over time. In the remainder of this section, we reflect on the tensions 

elucidated by our study and propose a set of design implications for eco-interaction systems, 

emphasizing the design of mixed-initiative systems that invite participation and reflection with 

the goal of saving energy at home.  

Use mixed initiative to balance competing concerns. 

In discussing the potential energy savings that can be obtained using the Nest, Nest Labs notes 

that the Nest’s goal is not “solely energy savings,” and that the Nest “places a high priority on 

the user’s comfort” 9. This prioritization of user comfort and control is reflected in the fact that 

Auto-Schedule attempts to learn the pattern of users’ manual temperature changes rather than 

occupancy or some other implicit signal indicating intent behind users’ inputs. As noted, in 

Yang and Newman’s initial study of Nest usage (Yang & Newman, 2013), participants were 

not always sure that learning from their temperature adjustments would result in an optimal 

schedule for energy savings as, oftentimes, temperature adjustments were made to improve 

comfort. Even though many of our participants had a high-level goal of saving energy, the 

more immediate goal of achieving comfort would often win out. It follows that a “learning” 

thermostat that receives all of its initiative from users could end up optimizing for comfort 

rather than savings, resulting in undesirable outcomes over the long run. 

An alternative design might be to create a mixed-initiative system (Horvitz, 1999) wherein the 

system primarily pursues the goal of energy savings and the user is free to pursue their goal of 

immediate comfort within certain system-defined bounds. The general notion of a mixed-

initiative thermostat was proposed in (Keyson, de Hoogh, Freudenthal, & Vermeeren, 2000; 

                                                

9 https://nest.com/downloads/press/documents/efficiency-simulation-white-paper.pdf 



 80 

Koehler et al., 2013), and here we extend this notion to articulate a clear goal for the system: to 

maximize energy savings while respecting users’ expressed comfort preferences and desire for 

control. To balance these needs, it will be necessary for the system to push information, 

requests, and suggestions to the user rather than allow the user to initiate all interactions. As 

we saw, users’ initial engagement with the system, which included active monitoring of system 

performance and fine-tuning the Nest schedule, waned after a few months. Thus, over the long 

term, a thermostat with an agenda may need to be assertive in getting the user’s attention. The 

question remains: how can a smart device assert and pursue its goals without annoying or 

alienating the user?  

We propose that designing spontaneous, enjoyable interactions to prompt users to engage with 

the system sporadically over time might be a valuable direction to explore. Here we emphasize 

that sustaining user engagement while not requiring constant attention is an important goal. As 

an example of a possible opportunity, our participants enjoyed seeing the Nest light up as they 

passed by, briefly attracting their attention. Perhaps such moments could be leveraged to alert 

users to situations that require attention, or to remind them to re-engage and reassess existing 

settings. However, merely alerting users to problems or reminding them to reassess may not be 

enough, as the challenge of converting information into action remains. We address this 

challenge next. 

Bridge the gap between awareness and control 

Horvitz suggested that mixed initiative systems should ultimately leave the user in control 

(Horvitz, 1999). In particular, allowing direct invocation and termination of system services 

and employing socially appropriate behaviors (e.g., informing users of actions that will affect 

them), systems can maintain users’ trust while providing significant value. In the case of the 

Nest, we saw situations where users recognized an opportunity for savings but were unable to 

follow through and take the required action.  
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Designers should consider ways to generate concrete plans for increasing energy savings that 

leave users in control but are easy for users to implement. As an example, consider a 

recommendation for an improvement to the user’s schedule that appeared on the home screen 

of a thermostat control app or in an email. This recommendation could include an option that 

allows the user to implement the recommended change instantly. To help users decide whether 

such recommendations ought to be followed, systems could further provide eco-feedforward 

messages or visualizations to convey the projected impacts of the recommended changes. 

Providing actionable recommendations along with information about the projected benefits of 

those recommendations would enable systems to suggest courses of action that align with 

system goals while allowing users to stay in control. As a system does more prompting to 

assist with goal setting, it may also prompt a person’s curiosity and motivation. Designers 

should thus provide opportunities for deeper interaction and reflection alongside the simple 

courses of action presented for easy invocation. 

Reframe interactions around reflection and reassessment 

In addition to drawing users’ attention to potential energy saving opportunities, it would also 

be valuable to maintain lightweight engagement between users and the system on an ongoing 

basis. Smart devices like the Nest are not as ‘smart’ as users might expect. Limitations of 

current intelligent systems require users to monitor and remain involved in order to maintain 

and improve performance (Yang & Newman, 2013). When the Nest was actively creating a 

schedule early in the study, participants were more curious and engaged with the Nest. 

Participants willingly paid attention and felt their interaction with the Nest was necessary. It 

seems likely that by the end of the first few of months of interaction, participants had taught 

the Nest a reasonable set of temperature changes that reflected their household routines and 

preferences, yet saved energy where possible by using a scheduled setback temperature or 

Auto-Away.  
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The normal ebb and flow of the household, however, combined with changes in people’s needs, 

caused changes in ideal heating and cooling schedules. Our Nest participants often failed to 

negotiate making these changes, leaving the thermostat schedule as it was and reducing the 

potential to save energy. To overcome this, eco-interaction systems need to stimulate reflection 

and reassessment. Doing so requires rethinking the interaction design to emphasize reflection 

and reassessment rather than control and convenience. As an example, designers might 

consider designing ways to periodically perturb the user’s routine interactions with the system. 

Mechanisms could be designed for the system to periodically initiate the evaluation and 

reassessment of the schedule, perhaps by expiring schedules after a period of time or asking 

users to choose between an existing schedule and a more efficient one proposed by the system.  

People thought the Nest, with its clean aesthetic appearance and friendly UI, worked well 

enough. However, this was problematic because the Nest did not necessarily seek out optimal 

control patterns or adjust its control patterns to changing circumstances in the home. The 

resulting control patterns were often not as efficient as those that could be achieved by human 

intervention, yet users did not know when and how to enact changes to improve performance.  

For the successful adoption of eco-interaction systems like the Nest, and to achieve the goals 

of energy savings for early adopters and the general population, we need to design more 

cooperative, collaborative and coordinated interactions between semi-autonomous systems like 

the Nest and their users, and figure out how to sustain those interactions over time. We suggest 

that tighter feedback loops between eco-interaction systems and their users can help them to 

develop and maintain more sustainable practices while users achieve their desired benefits 

such as comfort and energy efficiency. Employing mixed-initiative designs, providing 

actionable recommendations, and stimulating reassessment may be starting points for 

designing more effective eco-interactions in the future.  
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CONCLUSION 

The availability of smart home devices offers great promise in multiple arenas, most 

significantly in reducing consumers’ energy usage through more efficient HVAC control. To 

inform the design of eco-interaction technologies—i.e., technologies that help people save 

energy while meeting comfort goals—we investigated how the Nest Learning Thermostat 

situates in the home and affects human behavior. We conclude that such systems can be better 

designed to better project their benefits, and to help users realize their goals in saving energy. 

We hope our research on eco-interaction will inspire the community to understand and 

improve upon products that work on behalf of people in everyday life. 
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CHAPTER 5.  
ASSESSING A RECOMMENDATION SYSTEM FOR  
ENERGY-EFFICIENT THERMOSTAT SCHEDULING 

 

INTRODUCTION 

Many believe that technology can play a key role in helping people consume less energy, but 

there are competing approaches to achieving this goal. Eco-feedback techniques inform people 

about their own energy usage in order to empower and motivate them to make better decisions 

and consume less energy (Froehlich, Findlater, & Landay, 2010). For example, some systems 

tell people how much they are consuming (Jiang, Dawson-Haggerty, Dutta, & Culler, 2009) 

and in some cases present a breakdown of how they are consuming it (Ranjan, Griffiths, & 

Whitehouse, 2014). However, information alone is not always enough. Some energy saving 

actions are too complex or time consuming for people to do them regularly.  

Therefore, automation techniques take action to save energy on behalf of the user. This 

approach has been explored extensively for things like lighting control (Mozer, 1998), 

thermostat control (Lu et al., 2010), and even vehicular route navigation (Ganti, Pham, Ahmadi, 

Nangia, & Abdelzaher, 2010). While automated systems have shown promise in limited field 

trials, recent studies found evidence that showed that autonomous systems did not work as 

successfully as expected in the real world (Shih, Han, Poole, Rosson, & Carroll, 2015; Yang & 

Newman, 2013).  

In this paper, we examine a different approach that we call “eco-coaching”: giving 

personalized suggestions for specific actions that would reduce wasted energy. Eco-coaching 
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systems assist users with energy savings, but leave users in control. We propose that eco-

coaching should go one step farther than eco-feedback: it should not only provide feedback on 

energy consumption in the past, but also leverage user behavior in order to identify waste and 

recommend actions to prevent energy waste. However, eco-coaching should stop one step short 

of automation: it should identify actions that can reduce waste but should not take them on 

behalf of the user. Using mixed-initiative (Horvitz, 1999), eco-coaching extends approaches to 

balance system autonomy and user control in thermostat scheduling (Koehler, Ziebart, 

Mankoff, & Dey, 2013; Lu et al., 2010; Pisharoty, Yang, Newman, & Whitehouse, 2015; Yang, 

Newman, & Forlizzi, 2014).  

In this paper, we build upon the previously published work by focusing on evaluating the 

features of eco-coaching that led to the success of ThermoCoach in saving energy.  

ThermoCoach (Pisharoty, Yang, Newman, & Whitehouse, 2015) was designed to provide eco-

coaching for thermostat control. It first monitors users’ behavior and energy use patterns over 

time and identifies areas for improvement to reduce energy waste. It then generates and emails 

personalized and actionable schedule recommendations to users and makes it easier for them to 

take action. To assist users in balancing their energy savings and comfort goals, it presents 

eco-feedforward messages to provide information about projected savings and comfort 

expectations for each recommendation. Finally, ThermoCoach allows users to customize the 

recommended schedules it provides. This is especially useful in cases where the system could 

not identify particular needs or situations, such as preferences for sleep temperature or the 

presence of pets. 

To evaluate the impacts on energy savings, a 12-week field deployment was conducted, 

comparing the energy saving outcomes of ThermoCoach with two other approaches: manual 

programming (i.e., Users program their thermostat schedule manually) and automatic 
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scheduling (i.e., Users use a smart thermostat to automatically program their thermostat 

schedule). As previously reported, results indicated that eco-coaching saved 4.7% more energy 

than manual programming and 12.4% more energy than automation (Pisharoty et al., 2015).  

The present paper is based on a new analysis of interview data collected as part of the field 

deployment study. In particular, we focus on reactions to and experience of eco-coaching from 

the user’s perspective, and examine how ThermoCoach’s eco-coaching features influenced 

users to save energy.  

We found that the eco-coaching approach 1) made it easier for users to implement an effective 

thermostat schedule, 2) supported user agency in negotiating trade-offs between energy savings 

and comfort, 3) facilitated learning different scheduling strategies as well as weighing pros and 

cons of different options, and 4) challenged users' beliefs about how well they were doing. 

These outcomes, in turn, were successful in getting users to employ and experiment with more 

efficient setback strategies.  

While our initial results are promising, we also find room for improvement, especially in 

supporting users to assess recommendations. In particular, evaluating the fit and performance 

of the recommendations is important for building user trust, thereby increasing acceptance and 

maximizing benefits of eco-coaching recommendations.  

BACKGROUND AND RELATED WORK 

We summarize key approaches in designing systems to promote energy conservation. First, 

eco-feedback aims to help users to be aware of their energy use and make informed decisions 

to save energy. Second, automation tries to reduce the workload for users by automating tasks 

that users need to do manually. Third, mixed initiative approaches seek to balance system 

capability and human control to address shortcomings of previous approaches.  
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Eco-feedback displays data to inform users of their consumption of various resources, such as 

electricity, gas or water, and thus seeks to motivate users to change their behavior. While eco-

feedback has been shown to increase awareness of resource consumption, several studies that 

investigated everyday practices of consumption (Pierce, Fan, Lomas, Marcu, & Paulos, 2010; 

Y. A. A. Strengers, 2011; Yang et al., 2014) found that obtaining information did not actually 

trigger people to take action or change behavior. Strengers warned against a common 

assumption that the eco-feedback approach holds, depicting the user as “a resource man” who 

makes rational choices and acts accordingly when provided information (Y. Strengers, 2014).  

Automation approaches seek to relieve user burdens by automating users’ tasks. For example, 

research on occupancy-based thermostat control (e.g., (Gupta, Intille, & Larson, 2009; Scott et 

al., 2011)) seeks to detect and/or predict when the home is unoccupied so that the thermostat 

can be set to an optimally efficient level, and return to the occupants’ preferred comfort level 

before they are likely to return. The Nest thermostat takes a different approach by learning 

users’ adjustments and automatically generating a schedule instead of modeling the occupancy 

pattern (“Nest | The Learning Thermostat | Home,” n.d.). With the advancement and availability of 

wearable and smart home sensing devices, Huang et al. (Huang, Yang, & Newman, 2015) 

investigated the possibility of developing new models of thermal comfort to generate a real-

time predictive comfort model (Feldmeier, Paradiso, & others, 2010) instead of or in addition 

to the occupancy pattern or temperature adjustment pattern.  

While these systems have shown promise in limited field trials, there remains a need to 

understand how such “smart” features will interact with users’ desire for control and 

predictability. Recently, several studies investigated users’ lived experience of smart systems 

and observed evidence that autonomous systems did not work as successfully as expected in 

the real world (Shih et al., 2015; Yang & Newman, 2013). These studies showed that systems 

often fell short of anticipating or responding to dynamically changing everyday life situations. 
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Some users became frustrated and even abandoned the smart devices when they did not 

understand how those devices worked or why they did not function as expected (Brush et al., 

2011, 2011; Lazar, Koehler, Tanenbaum, & Nguyen, 2015; Mennicken & Huang, 2012; Yang 

& Newman, 2013).  

In response to smart system shortcomings such as lack of understanding of nuanced and 

dynamically changing situations in the real world and users’ loss of control, several projects 

have proposed mixed-initiative approaches (Horvitz, 1999) to balance system autonomy and 

user control in thermostat scheduling (Koehler et al., 2013; Lu et al., 2010; Pisharoty et al., 

2015; Yang et al., 2014). More recently, several research projects have designed and evaluated 

agent-based systems that provide suggestions to conserve energy by utilizing dynamic pricing 

and renewable energy (Bourgeois, Van Der Linden, Kortuem, Price, & Rimmer, 2014; 

Costanza et al., 2014; Simm et al., 2015). The notion that systems could recommend energy 

saving actions has been proposed before, including in the home environment (Intille, 2002). 

These systems process a large amount of data such as weather forecasts, peak loads on the 

power grid, and renewable energy generation to figure out the best time to perform energy-

consuming activities. Then, these systems prompt users to use appliances such as laundry 

machines or dishwashers at times when the electricity pricing is cheaper or when they can use 

renewable energy.  

Costanza, et al. (Costanza et al., 2014) conducted a simulation study in which a washing 

machine agent allowed users to book a time to do their laundry to save cost. They found that 

some participants who had structured routines for doing laundry found it easier to fit the 

system into their existing practice. However, other participants found it challenging to plan for 

their laundry as they usually ran their washing machine as needed. Bourgeois, et al. (Bourgeois 

et al., 2014) employed a series of interventions such as energy feedback, proactive suggestions 

and direct user control to support users with photovoltaic solar energy generation to plan their 
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laundry on daily basis. Bourgeois et al. found that participants perceived proactive suggestions 

to be more useful than feedback messages, although they did not necessarily follow the 

suggestions. Simm, et al. (Simm et al., 2015) designed a system to forecast renewable energy 

generation for a local community. They found that participants were able to make use of the 

information and that some participants actively shifted times when they did laundry or 

dishwashing to maximize their use of green energy.  

In this paper, we study ThermoCoach (previously published in (Pisharoty et al., 2015)), which 

provides multiple personalized and actionable suggestions for thermostat scheduling. It differs 

from the aforementioned systems (Bourgeois et al., 2014; Costanza et al., 2014; Simm et al., 

2015) in that it provides personalized recommendations based on individual homes’ 

characteristics instead of making general suggestions based on power grid load or green energy 

generation. ThermoCoach represents an embodiment of the Smart Thermostat algorithm (Lu et 

al., 2010) which uses occupancy data to automatically calculate optimal thermostat schedules 

but allows users to choose between a set of schedule options.  

Next, we introduce the eco-coaching approach that guided the design of ThermoCoach 

(Pisharoty et al., 2015).  

ECO-COACHING DESIGN APPROACH 

Here, we define eco-coaching as giving personalized suggestions for specific actions that 

would reduce wasted energy. Below are specific eco-coaching features of ThermoCoach: 

Personalized recommendations: The system monitors occupancy patterns of a home over time 

using Bluetooth-based occupancy sensing and motion sensing within the home. It builds a 

model indicating the probability that the home is occupied at each time of the day. Then, it 

generates schedule options that fit the occupancy pattern of the house and reduce energy waste. 

The recommended schedules maintain the typical temperature settings preferred by each 
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household, but generates setback strategies by adding new setback temperatures for times 

when the house tends to be unoccupied. Three scheduling choices differ in the amount of time 

the system remains at the setback temperature level and therefore represent different tradeoffs 

between predicted comfort and energy savings. Further details about the recommendation 

algorithm can be found in (Lu et al., 2010) and (Pisharoty et al., 2015). 

Eco-feedforward: To assist users to make informed decisions about whether such 

recommendations ought to be followed, the system provides eco-feedforward messages to 

convey the projected impacts of the recommended changes (Yang et al., 2014) in terms of 

energy savings (i.e., 5%, 7% and 10%) and expected comfort level (i.e., Barely change, May 

decrease slightly and Will decrease). This supports users in exercising their agency to negotiate 

priorities between energy savings and comfort preferences. 

User control: Instead of letting the system automatically change the schedule, the system 

leaves users in control by asking them to review schedule options and make decisions about 

which recommendation to follow (if any) and how schedule options should be implemented. 

Users can adjust schedule options to complement what is not considered by the system and 

better accommodate their preferences. 

Easy invocation: Oftentimes users do not have the time or willingness to program their 

thermostats. The system sends a ‘push’ email containing different recommendations. Users can 

instantly initiate a new schedule by clicking a button in the email. 

METHODS 

A previous paper reported on an analysis of the sensor data, thermostat usage, and 

ThermoCoach interaction to determine whether ThermoCoach had an impact on energy 

savings (Pisharoty et al., 2015). That paper, however, did not investigate why ThermoCoach 

impacted users’ choices. For that, we turned to the interview data to study how different types 
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of mechanism affect participants’ energy saving and thermostat scheduling practices.  

Participants 

Over 27,000 flyers and door hangers were distributed through local newspapers and by 

manually placement on doorknobs to recruit participants. After screening and dropouts, 36 

households participated in the interview associated with this study. All homes were located 

within 30 miles of each other and were subject to similar weather conditions throughout the 

study. Table 2 below describes characteristics of those households.  

 

FIELD DEPLOYMENT STUDY 

A 12-week field study instrumented 40 homes with over 190 data collection endpoints, over 

250 motion sensors, over 135 Bluetooth low energy transmitter tags, and 40 Nest thermostats. 

Participants were divided into three groups to compare the energy saving impacts among three 

thermostat schedule approaches: manual programming, automation, and eco-coaching.  

Table 2. Key characteristics of the 36 households 

Housing type 32 homes own a single family house, 4 own/rent an apartment, condo or town house. 

Education 25 homes with Master’s or Ph.D., 11 homes with B.A/B.S or Associate’s degree. 

Number of occupants 
21 homes have adults with children under 18 years old. 13 homes have only adults. 2 

homes are single person homes. 

Pets 25 homes have pets (e.g., dogs, cats, fish, rabbits).  
Average summer 

energy bill  

24 homes: ranged between $100~$200; 4 homes: above $200; 4 homes: under $100; 4 

homes did not respond.  
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As shown in Table 3, all homes received Nest Energy Report emails (Figure 9), which 

included eco-feedback elements such as the number of hours the air conditioner ran and the 

number of days that the Nest detected the home was unoccupied and activated an energy-

saving mode called “Auto-Away.” Each group used a different thermostat schedule approach. 

Group P manually programmed their Nest thermostat. Group N used their Nest thermostat with 

automation features that automatically programed the schedule (Auto-Schedule) and adjusted 

the temperature when motion was not detected for a certain amount of time (Auto-Away). 

Group TC used their Nest thermostat and received ThermoCoach email that provided schedule 

recommendations (Figure 10). 

 

Table 3. The participant homes were divided into three groups. All groups received eco-
feedback emails (Figure 9). Group P could only manually program their thermostat.  Group 

N used Nest’s automation features. Group TC received eco-coaching recommendations 
(Figure 10). 

 
Group P Group N  Group TC 

Eco-feedback V V V 

Auto-Schedule, Auto-Away - V - 

Recommendations - - V 
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… 

 

Figure 9. The Nest monthly report email provides eco-feedback. It displays number of 
hours for the cooling or heating used in comparison of this past month to the previous 
one, what factors impacted more or fewer hours of cooling or heating were used in this 
past month compared to the previous one, a tip to help you save more energy, and the 

number of a home earned a green leaf by adjusting the temperature to save energy. 
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As a part of the field study, a series of interviews were conducted. Each participant home 

participated in three interviews during the study period (at the beginning, in the middle, and at 

the end of the study). During the interviews, researchers asked participants about how their 

scheduling practices changed during the study and how they used and reacted to the scheduling 

mechanism they were assigned. We analyzed 108 interviews with 36 homes that completed 

 

Figure 10. ThermoCoach emails 4 options to each user: their current schedule, a high comfort 
schedule, an energy saver schedule, and a super energy saver schedule. Users can Activate a 

schedule by clicking a button to set it automatically to be programmed into their thermostat. 
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their participation in the interview study. All interviews were conducted by phone and audio-

recorded. The interview data were transcribed, coded and analyzed using an iterative process 

of generating, refining, and probing the themes that emerged.  

FINDINGS 

Before we report findings from the interview study, we briefly summarize the findings from 

the quantitative comparison of the three approaches, which were previously published in 

(Pisharoty et al., 2015). 

• Group TC saved more energy than the other two groups. It received eco-coaching 

recommendations and was able to save 4.7% more energy than Group P, which 

manually programmed its schedule, and 12.4% more energy than Group N, which used 

the Nest automation.  

• Eight out of 12 homes in Group TC adopted a new schedule. Six of these eight homes 

had a schedule without setbacks prior to the intervention and activated a schedule with 

new setbacks afterwards. Two homes already had a schedule with setbacks, but 

activated a more energy efficient schedule.  

This indicated that Group TC homes adopted new and more efficient setback temperatures than 

homes in the other groups and thus saved more energy. In the following sections, we draw on 

interview data to describe Group TC participants’ experiences and reflections on 

ThermoCoach’s eco-coaching features. We refer to participants by pseudonym. Unless 

indicated otherwise, participants were from Group TC. 

Actionable recommendations allowed users to take action. 

Participants liked that the recommendations provided them actionable and concrete plans for 

future savings. Most participants reported that the recommendations allowed them to recognize 

opportunities to save energy and indicated what to do, making it easier to take action. Many, 
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like Amy, considered prospective, proactive plans useful: “The Nest monthly report reflects on 

the past month, which is nice. …The [ThermoCoach] recommendations are nice because 

they're thinking in the future, and they're looking at your patterns and saying, “Well, based on 

what you've got it set at now, these options would be totally doable. Three percent savings that 

you could consider, depending on how much you want to change it.”  

Personalized recommendations increased credibility and reduced uncertainty. 

Generating an effective schedule required reconstructing the daily ins and outs and the nuances 

of users’ comfort needs. When participants recognized that ThermoCoach recommendations 

were tailored to their particular household’s situations, they considered the recommendations 

credible and relevant to follow.  

When participants saw that the recommendations reflected their occupancy patterns and 

followed their temperature settings, they liked the recommendations since they were tailored to 

their specific home. Tom described ThermoCoach as somebody who works for him:  

“I loved it ‘cause somebody was thinking for me. Absolutely. …We could have done it, but …it 

was just really nice for somebody else to evaluate how we used the house, and then to make 

suggestions.” Participants appreciated recommendations because they not only reduced their 

workload, but also offered recommendations that were relevant and credible. This made 

participants more willing to adopt an option. They felt ThermoCoach was not asking them to 

follow a random schedule as it reflected their existing patterns and temperature preferences.  

Supporting user agency 

A core design principle of eco-coaching is leaving users in charge of making decisions about 

how to balance their energy savings and comfort needs while providing assistance to guide 

their decision making. Group TC participants described ways in which ThermoCoach 

supported user agency in their thermostat scheduling. 
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Having a choice provided sense of control in negotiating energy savings and comfort goals. 

Three schedule recommendations allowed participants to review and compare different options 

and make decisions about whether to opt-in and which option to choose. Several participants 

reported that having a choice between different schedule options gave them a sense of control. 

Jessica explained that she felt she was in charge: “You guys weren't just telling me, ‘Here's the 

best way for you to proceed. Do this!’ But really, putting the ownership on us felt like we were 

taking charge of it and taking charge of our own actions. So I liked that.” 

Multiple recommendations (High Comfort, Energy Saver and Super Energy Saver) allowed 

participants to negotiate their energy saving and comfort goals according to their motivations 

and priorities. Interestingly, changes in life situations affected participants’ motivations and 

priorities, and offering multiple recommendations allowed them to negotiate their goals 

according to the change. For example, Amy chose a ‘High Comfort’ option for her husband 

since he had to stay home for the summer due to an injury. Another participant, Susan, lost her 

job during the study and she tried to use less cooling to save money.  

Eco-feedforward supported decision-making by presenting quantified estimates of future 
savings. 

ThermoCoach provides eco-feedforward, which presents quantified energy savings estimates 

(5%, 10% and 15%) coupled with comfort levels (Barely change, May decrease slightly and 

Will decrease). Finding a sweet spot between energy savings and comfort is a key 

consideration in setting a thermostat schedule. Therefore, participants found this combination 

useful when deciding which option to choose. In particular, quantified measures made energy 

savings more tangible and practical when justifying their decisions. Jim explained how eco-

feedforward information helped him make decisions: “It does give you an indication, and it 

certainly helps to quantify. …It's a little bit harder to actually quantify the energy savings 

looking at the bill because you've got the other variable of your weather changes as well. But 
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just basing it off of sheerly comfort and knowing that …you should anticipate this type of 

savings. I think that's a very effective combination.”  

Admittedly, participants acknowledged that predicted energy savings were difficult to estimate 

due to many changing variables such as daily weather, physical conditions, and daily routines. 

Liz assumed that the estimation of energy savings was calculated based on the average 

temperature of her location. She further explained that while eco-feedforward information did 

not guarantee the energy reduction that was estimated, it was useful for deciding which 

schedule to choose: “As a consumer, as long as I knew that it was just an estimate and there 

was no guarantee that I was gonna save X amount of dollars, then I think that might have some 

weight or bearing on what option that I choose.” 

As suggested in (Yang et al., 2014), we observed in this study that eco-feedforward prompted 

participants’ motivation for setting a new goal. For example, Mike was influenced to change 

his thermostat schedule to save more energy. He found it was comfortable and stayed with a 

more energy efficient schedule: “Because, from the information provided for the choices that 

were made, with all things being equal, I would have expected to have less energy usage. And 

all things are never equal, obviously. But, what it did tell me is that … had I made those slight 

changes, I should still be fairly comfortable and I should also notice some savings. And again, 

the difficulty is, because all things aren't equal, ‘Did in fact that happen?’ Well it's hard to say. 

But at the same time, I haven't gone back and modified the settings that were set up with that 

option.” 

Customization allowed ways to accommodate preferences. 

ThermoCoach creates schedule options to maximize setbacks and provides schedule options 

that increased setbacks. While prompting users to adopt new, more efficient setbacks, we 

found that ThermoCoach also supported user control by allowing users to accommodate their 
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particular preferences and needs through editing the schedule. This was found to be effective in 

increasing the adoption of recommendations. For example, four homes modified schedule 

options to better fit to their individual home and still made their schedule more efficient than 

before. One had a fish tank and changed the setback temperature for the daytime. Two homes 

chose a ‘High Comfort’ option, which made minimal changes to their schedule, but delayed the 

cooling start time a little bit. As a result, the changed schedule was still more efficient than 

their previous schedule.  

Encouraging experiments with a setback strategy 

As mentioned earlier, our previously reported results indicated that more participants in Group 

TC employed higher (i.e., more efficient) setback temperatures than other groups. As part of 

the present analysis, we performed additional data analysis and found a notable difference 

between Group TC and other groups. There were 15 homes across all groups that initially had 

a schedule without any setback and kept one single temperature all times. Interestingly, all six 

such homes that received ThermoCoach recommendations adopted setbacks. On the other hand, 

none of the other nine homes changed their schedules. They were in Groups P and N, and 

therefore did not receive ThermoCoach recommendations.  

In this section, we explain how ThermoCoach was successful in encouraging participants to 

experiment with the schedule and adopt new higher setback temperatures.  

Comparison of schedule options facilitates learning of different scheduling strategies and 
weighing pros and cons. 

Placing participants’ existing schedules alongside different schedule recommendations 

initiated quick reflection and provided participants with learning opportunities. Many 

participants described recognizing similarities and differences between schedules easily as they 

looked through different schedule options. For example, they noticed how time and 

temperature settings varied among different options. This helped some participants to gain 
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insights into different ways to employ setback temperatures. For example, Amy had a night 

setting that she set to cool at 75°F throughout the night. When she found that recommended 

schedule options suggested raising the setting to 79°F in the middle of the night, she reflected 

on her existing schedule and contemplated an idea to create a new setback that she had not 

considered previously: “We probably wouldn't be able to feel a difference during that sleeping 

pattern to feel the four-degree difference. So, you could save energy without affecting comfort, 

essentially. That was good to know.” 

Offering a more comfortable option lowers the barrier to acceptance. 

Providing the ‘High Comfort’ option along with more aggressive plans helped to lower barriers 

to adopting a new setback that was higher than the existing schedule. Because the ‘High 

Comfort’ option did not make dramatic changes from participants’ existing schedule, having 

this option eased participants’ concerns or uncertainty during the process of adopting a new 

schedule. For example, some participants were not comfortable going for the more aggressive 

option at first. However, they were willing to try the “High Comfort” option since it was not 

“that big of a hard shift.” Also, participants who started with ‘High Comfort’ shared that such 

an option could help them gradually transition to a more aggressive option. For example, Jim 

described the process this way: “One might say, ‘Okay, let me start at the lowest energy-

savings.’ ‘Okay, well, that's fine.’ ‘Well, let me bump it up another level here to see how that 

works.’”  

Alternative options challenge users' beliefs and trigger users to experiment with a new 
schedule. 

When participants were presented with new schedule recommendations, existing beliefs that 

might have hindered them from increasing the energy efficiency of their schedule were often 

challenged. One of the notable benefits of recommendations is supporting participants in 

correcting their misconceptions and encouraging them to experiment with a new schedule. For 
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example, Jim as noted earlier opted for ‘High Comfort,’ had grown up being taught, “Leave 

the thermostat at one setting. That's the most efficient thing to do.” He kept the schedule 

mostly at 76°F as shown in Figure 11.  

 

When Jim first received ThermoCoach recommendations, he found that the idea of a setback 

increasing energy savings was contrary to what he had always been taught. However, he 

decided to see how it would work and chose the ‘High Comfort’ option, which was the most 

conservative approach amongst the three options. His changed schedule is shown in Figure 12. 

 

Figure 11. Jim’s previous schedule kept the temperature mostly at 76°F all times.  
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Jim also explained that ThermoCoach recommendations helped him overcome a certain 

reluctance to adjust the settings of his system: “This was a very interesting way to be able to 

experience that change or experience a result of altering those settings without fear of putting 

in a completely inappropriate setting, if you will. I thought that was a very beneficial way of 

doing it, whereas if I was going to try and just do this on my own, I may not have been as well 

versed in terms of knowing what it would do. […] It prompts people to think about changing 

settings when they, again, if you're like me, [are] more likely to leave it set.” 

Jim also added that, “I would be more likely to experiment with that again to see if I could 

boost my savings and keeping my comfort level comparable to where it is.” Like Jim, Tom 

found that ThermoCoach recommendations were good because “otherwise, you would just 

leave it at what you had because that was comfortable, not realizing that a slight change can 

result in a real saving without a real impact to your comfort level.” 

On the other hand, Steven kept the temperature at 75°F all day. When he looked the projected 

energy savings that the ThermoCoach recommendations proposed, he was still uncertain about 

 
 

Figure 12. Jim adopted the ‘High Comfort’ option, which included two new setbacks; one was 

8°F degrees higher and the other was 4°F higher than his normal temperature. 
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the idea of adding a setback. Therefore, he accepted the ‘Super Energy Saver’ option, but 

adjusted the setback temperatures to stay between 76°F and 78°F. He explained why he 

changed the setback temperatures: “Just kind of my limited knowledge. It seems like that takes 

more energy than just trying to keep a house at a steady state, but maybe I'm wrong about that.”  

Shortcomings of ThermoCoach 

As we reported, ThermoCoach recommendations provided various benefits and assisted 

participants with improving the energy efficiency of their thermostat schedule. In this section, 

we report shortcomings and limitations of ThermoCoach recommendations based on 

participants’ insights and reflections.  

Inability to assess the performance of recommendations lowers user trust in system and its 
recommendations. 

Participants expressed their desire to check how effective the recommendation they chose was 

in delivering energy savings. For example, Patrick implemented the ‘Super Energy Saver’ 

option to save 10%, the greatest savings among all schedule options. However, Patrick found 

that it was not straightforward to know whether he indeed achieved the 10% energy savings 

that he anticipated. He explained that he could not trust the recommendations if he was not 

able to verify the actual energy savings after using the schedule: “Because you can recommend, 

you can tell me I'm gonna get 10% savings if I choose option D. Or, a 1% savings if I choose 

option B. Or, no savings if I continue with option A. You can tell me that. But, I'm not gonna 

believe you until you actually give me some statistics that says, "For the entire month of June, 

you used 100 kilowatt hours. In the month July, you only used 87 kilowatt hours. Which 

represented actually a 13% savings, and we estimated it would be about a 10%." I need to be 

able to hear something as concrete as that before I have any confidence that I'm actually going 

to achieve something just because you tell me that I will.” 
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As mentioned earlier, participants acknowledged that it is difficult to estimate energy savings 

when there are various factors that are dynamically changing. Thus, they did not expect the 

actual outcomes to match the estimates exactly. However, participants expected the system to 

provide concrete evidence to allow them to assess the effectiveness of implementing the 

recommendations. Without such evidence, they might not have trust or confidence that they 

would achieve the desired savings by following the system’s recommendations.  

Inability to detect a mismatch between the schedule and actual use misses opportunities for 
savings. 

In addition to assessing the performance of the recommendation after it was implemented, it 

would also have been useful to assess how the recommendation was working while it was 

active. Liz accepted a recommended schedule and thought the schedule worked well for her 

home. She did not change the schedule after activation. However, during the final interview, 

she found that the schedule she activated had a setback temperature of 83°F, which was higher 

than she expected. After learning about this, Liz remembered the times when she noticed an 

83°F setting on the Nest thermostat and she simply kept turning it down. It did not occur to her 

that she might need to check the schedule. Liz suggested that ThermoCoach should provide a 

new recommendation if users kept making overrides without realizing that their schedule was 

not working for them: “ I think some follow-up email would probably be nice to tell me that 

you're not really abiding by this recommendation. …Then if the new email could perhaps say 

that, "You are consistently overriding the recommendations," and maybe suggest some new 

recommendations with maybe lower temperatures or an adjustment of the schedule somehow 

that still saves energy, but makes me more comfortable, like optimize the process. I think that 

would be helpful. I would probably respond really well to that also.”  

 

 



 105 

Failing to address preferences of decreases acceptance of recommendations.  

Five out of 13 homes did not opt-in to any option and four homes edited recommendations 

before they activated them. Here, we explain reasons that those participants did not adopt 

schedules ThermoCoach recommended.  

First, the setback temperatures recommended were too high for some. ThermoCoach suggested 

daytime setbacks that were 8 degrees higher than the regular temperature of each household. 

Some homes were already making efforts to save energy by having higher temperatures, such 

as 80°F, as setbacks or even as their regular temperature. Therefore, those homes thought an 

even greater setback temperature such as 88°F was too extreme. Second, many households had 

pets, but ThermoCoach did not take pets into consideration and when creating setbacks for 

times when there was no human occupancy. For example, Laura had rabbits and kept the 

temperature at 79°F during the day. When recommendations suggested a setback temperature 

of 87°F, she found that they were “so drastically” high. Third, participants prioritized comfort 

needs. Some homes mentioned that it was difficult for them to sleep if it was not cool when 

going to bed. Emma “vetoed” the recommendations since they suggested raising the nighttime 

temperature by four degrees. She explained that it would be uncomfortable for her family: “It 

was the one that said that we should raise our temperature at night, and we said, ‘No way.’ […] 

I'm already having hot flashes.” Finally, two participants said that they were simply too busy. 

One commented that it would be rare for her to find a half an hour to set a new thermostat 

schedule. Another did not remember receiving the ThermoCoach email. One home may have 

had a system or networking error. This home chose a Super Energy Saver schedule, but the 

activation did not work due to an unknown error. They did not realize that they were using 

their old schedule until the final interview.  

Two homes experienced discomfort after they accepted a recommendation. Nora found that her 

fish tank was looking unhappy. Her husband found that the setback temperature was too high 



 106 

for the fish tank and adjusted the schedule. In Patrick’s home, his wife felt it was quite warm 

when she returned home. Patrick lowered the setback temperature. Both homes fixed the 

problem by revising their schedule.  

In summary, we have just described the benefits and shortcomings of ThermoCoach 

recommendations as they aimed to assist participants in improving their thermostat scheduling 

while supporting participants’ agency. We found that ThermoCoach supported participants in 

employing new higher setbacks to increase energy savings and in managing the tension 

between energy savings and comfort goals. 

Next, we discuss the effectiveness and shortcomings of the design features of ThermoCoach. 

Then we propose design implications for eco-coaching systems to better assist users with 

planning, executing and assessing their thermostat scheduling effectively.  

DISCUSSION 

ThermoCoach follows the core principle of eco-coaching: assisting users to take actions to 

save energy while supporting their agency to take ownership and make informed decisions. 

ThermoCoach employs several concrete design features to perform eco-coaching for 

thermostat scheduling. Our findings show that ThermoCoach assisted participants with their 

thermostat scheduling process, particularly with reflecting on and assessing existing schedule 

and alternative options, making decisions about balancing energy savings and comfort needs, 

and experimenting to improve a setback strategy.  

In the following sections, we highlight challenges involved in designing recommendation-

based eco-coaching systems like ThermoCoach.  



 107 

Creating recommendations: Improving personalization 

In personalizing schedule options for each household, ThermoCoach focused on two key 

aspects that greatly varied in individual households – occupancy pattern and comfort 

preferences. To generate a model for occupancy patterns, ThermoCoach collected data using 

various sensors for X weeks. Participants particularly liked that ThermoCoach collected data 

over time and because of this they considered the schedule options to be credible. Inferring 

comfort preferences was important because people might ignore a recommendation if it simply 

asked them to raise the temperature setting to save energy without considering their comfort. 

Thus, the system used existing temperature settings in users’ schedules as a way to incorporate 

their comfort needs. These design choices were found to be effective in generating 

recommendations that fit the occupancy patterns and accommodated the comfort needs of 

individual households.  

In our design choices, we decided to leave users in control of revising schedule options to meet 

any additional situations and comfort needs, such as maintaining cooler air for pets and at 

nighttime. However, it could be more effective to consider certain variables for personalization. 

For the successful adoption of recommendations based eco-coaching systems like 

ThermoCoach, it is critical to allow users to complement the system’s lack of capability to 

understand or anticipate varied and changing needs and situations in individual homes. Doing 

so can also improve the performance of the system and increase satisfaction with the 

recommendations. Thus, we suggest that a system like ThermoCoach should ask users for 

information regarding, for example, pets and sleep preferences, to better understand their 

constraints and requirements for a thermostat schedule.  
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Having pets was a common factor to consider for scheduling. About 70% of participants in this 

study had pets. According to the 2015-2016 APPA National Pet Owners Survey, 65% of U.S. 

households own a pet 10. Therefore, considering pets when generating schedule 

recommendations would be useful. For households with younger children, comfort needs were 

also prioritized over energy savings. Interestingly, some households commented that they 

would have opted-in to more aggressive options for the winter schedule because the energy bill 

tended to be much higher in winter than summer for participants in our study. One participant 

lost her job during the study and wanted to use less cooling to save money. Generating options 

to address changes in energy saving motivations should be considered to increase the benefit of 

eco-coaching.  

Assessing recommendations: Multi-phase assessment 

The ThermoCoach system provides estimated energy savings as a way to prompt users to adopt 

a schedule recommendation. However, it does not report how much following the 

recommendations actually saved. One participant mentioned that he would not trust the system 

unless it provided concrete evidence to show if or to what extent the recommendations worked 

as the system had proposed.  

To build user trust with recommendation-based eco-coaching systems, systems should support 

users to assess the quality and performance of recommendations over time. We suggest that an 

eco-coaching system should provide not only projected energy savings estimation for the 

future, but also quick and easy assessment of how effective the recommendations were at 

delivering what they proposed to users after implementation. 

                                                

10 2015-2016 APPA National Pet Owners Survey. (2016). http://www.americanpetproducts.org/pubs_survey.asp 
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Assessing the actual performance of recommendations after use with consideration of real-
world factors and conditions 

While assessments would be useful, there is a challenge in evaluating the performance of 

recommendations—the actual energy saving outcomes—compared to the estimated savings. 

There are various factors that dynamically change in real environments that cannot be 

predicted in advance. For example, weather changes throughout the season and people’s daily 

schedule and activities vary; these in return affect how people heat/cool their house, and 

physiological and psychological factors affect their comfort preferences.  

Indeed, many participants in our study reported this was a common reason that they were not 

able to assess their energy efficiency since they could not simply compare their energy bills 

month-by-month or year-by-year.  Here, we note that several of our participants also 

mentioned that they understood that estimated savings were ‘estimated,’ and that actual 

savings would vary according to changing conditions and situations in the real environment, 

such as weather. What these participants wanted was information that helped them believe the 

system would bring the benefits it proposed as long as the conditions under which the 

estimates were made were maintained.  

Thus, it is important for an eco-coaching system to indicate to what extent the actual energy 

savings out- or under-performs the initial estimation. Then, the system should also explain 

what factors affect the differences between actual and estimated savings. Providing 

information regarding to what extent and in what aspects the actual conditions and users 

behaviors in the real environment were different from the predicted conditions and user 

behavior pattern would be useful. The most obvious factor would be weather. The system 

could show how the weather differed from previous months and how the difference impacted 

the heating or cooling needs of the house. It could also show how occupancy patterns were 

different than the patterns that were used to generate the initial recommendations. As we 
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mentioned earlier, one household had one member who had to stay home due to injury, greatly 

increasing the amount of time during which that house was occupied. 

Providing hindsight evidence with post-hoc simulation of alternative recommendations  

We suggested that assessment of the performance of the recommendations after use would be 

beneficial. However, there would still be a lack of evidence that the recommendation was 

particularly good because there would be no way to compare the recommendations to an 

alternative. Users do not know what might have been if they had implemented other schedule 

options. It would be useful for users to be able to evaluate not only the recommendations they 

chose, but also alternatives that they did not implement.  

We propose that eco-coaching systems should compare how alternatives might have worked 

compared to the recommendation they used. Eco-coaching systems could provide post-hoc 

simulations for the alterative options along with assessment of the chosen option to gauge the 

outcomes that might have been achieved. Understandably, users do not have all the necessary 

information to know which option would work mostly effectively for them at one time. 

However, it becomes much easier to gauge how different strategies would have worked 

afterwards.  

Providing post-hoc assessment of the alternatives could be effective in providing opportunities 

to understand how different strategies would have worked. In particular, it would make it 

easier for users to correct their existing misconceptions and thus make more informed 

decisions for future scheduling. For example, Steven, who did not choose a schedule option 

with a higher setback temperature, might have been convinced if he had seen how alternative 

options could have worked under the same circumstances. Assessment of alternatives using 

post-hoc simulation would provide additional evidence to reinforce the performance of a 

chosen recommendation because it is easier to evaluate performances that are comparable to 
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each other. More importantly, this would provide an additional learning opportunity for users 

to discover pros and cons of different options in accommodating various everyday situations.  

Hindsight is always 20/20. While projected estimation was useful for users in making 

decisions for their planning, reflecting on how their schedule worked as well as how 

alternatives might have worked could inform users about the impact their decisions had or 

might have had. Based on assessment of how effective alternatives might have been in 

bringing energy savings outcomes, users could also have opportunities to learn how different 

strategies would have worked for certain situations. We note that users would have reacted 

differently to alternatives if they were indeed were used; for example, users might have felt 

more uncomfortable and ended up overriding the temperature and consuming more energy. 

Simulations of alternatives would be still useful for users in reflecting on their decisions and 

possible outcomes.  

Performing assessment for the schedule in use 

So far, we have discussed the benefit of assessing recommendations after implementation. 

Lastly, we suggest that an eco-coaching system should conduct an ongoing assessment of the 

performance of the schedule that is in use. One of the functions that we described for an eco-

coaching system includes monitoring user behaviors and their energy use and identifying 

discrepancies between them. In addition to monitoring user behavior and energy use to 

generate recommendations, an eco-coaching system should perform quick, ongoing checks to 

assess how the schedule in use is working. For example, as in the case of Liz, if users are 

making many overrides after accepting a recommendation, an eco-coaching system can follow 

up and ask if the users want to stay with their choice or if the system should provide new 

recommendations based on their adjustments to the schedule. This would provide an 

opportunity to discover time or temperature settings that do not work for them. If participants 

happen to be not committed to their decisions (e.g., a schedule they chose based on their 
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motivations for energy savings), follow-up checks could reinforce their decisions. The system 

would also need to monitor how the schedule is working in terms of occupancy patterns. When 

users’ occupancy patterns change from those upon which the recommendations were based, the 

system should generate new recommendations to adjust to the modified needs for the home.  

If provided, tools enabling users to assess the quality and performance of recommendations, 

including the schedule they used as well as alternatives, would increase the credibility of 

recommendations over time. This, in turn, would allow users to trust the system and further 

experiment with their scheduling to increase energy savings. In addition, this process could 

support users in exercising their discretion (knowledge and insights into different situations 

that were not sensed or interpreted by the system) to better evaluate the quality and 

performance of different strategies based on their particular situations. Users would be able to 

build and strengthen their understanding and ability to utilize and apply various strategies for 

scheduling to accommodate their interests and priorities. 

CONCLUSION 

Eco-coaching assists users by providing recommendations tailored to their behavior patterns 

and preferences and making it easier to take actions, but also leaves users to make decisions 

about whether or how they should follow such recommendations. From the user perspective, 

participants identified several benefits of ThermoCoach. It made it easier for them to generate 

a schedule, provided opportunities to reflect on their thermostat schedule by comparing 

alternative options and weighing pros and cons, and helped them to make informed decisions 

for individual homes’ needs and situations. Further, it challenged their existing beliefs and 

encouraged experimenting with their scheduling.  
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CHAPTER 6.  
CONCLUSION 

 

In previous chapters, we have described a series of studies that investigated user interaction 

with and experience of intelligent domestic systems in the wild, particularly those that seek to 

learn about and adapt to users’ behavior. We focus on informing and evaluating the design of 

intelligent systems that help users manage their home energy consumption more effectively.  

In this section, we summarize three studies that we conducted and restate our contributions.  

This dissertation research aims to better understand user interaction and experience of 

intelligent systems in the home, provide design guidelines and recommendations for intelligent 

systems in the home, and finally examine specific interaction concepts for supporting energy 

savings. To do so, this dissertation examines the following research questions (RQs) through 

a series of studies:  

In the first study, in order to better understand the challenges of deploying an intelligent 

system in the home and to inform future design, we began with investigating the lived 

experience of an advanced thermostat, the Nest Learning Thermostat (Yang & Newman, 2013).  

RQ 1: How do people understand and interact with intelligent systems in the home? 

In the second study, we compared people's interactions with conventional thermostats with 

interactions their with the Nest, and observed how user relationships and experiences with an 

intelligent system changed over time (Yang, Newman, & Forlizzi, 2014).  
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RQ 2: How do the intelligent features impact users’ interaction with their thermostat? 

RQ 3: How does user interaction with an intelligent thermostat change over time, and 

how does it affect energy savings? 

The first and second studies together described users’ lived experience of intelligent 

technologies and demonstrated problems and challenges that users encountered with these 

technologies in their daily environments. Below, we state a set of contributions representing 

empirical findings based on the two studies. 

IV. Lack of support for intelligibility and user control in everyday intelligent technologies 

hinders users from understanding how the system interprets and adapts to users’ 

behavior and situations, and thus deters them from intervening to guide or correct the 

system’s behavior. (Chapter 3) 

V. Users’ engagement with the system helps to address system shortcomings and 

improve performance. However, maintaining users’ engagement over time is difficult 

when users have little motivation to go through the effort of understanding and 

assessing the system’s behavior. (Chapter 3, Chapter 4) 

VI. Users’ reliance on intelligent systems and diminished interactions results in missed 

opportunities for energy savings. Sustaining user interaction and engagement with 

intelligent system is critical to achieve the goal of energy savings. (Chapter 4) 

Based on these findings, we developed design guidelines for end-user interaction with 

intelligent technologies. The second set of contributions consists of design guidelines. 

I. Design guidelines for supporting user understanding and control. We propose 

three avenues for future development of everyday intelligent technologies to support 

user understanding and control of intelligent systems for the home (Chapter 3). 
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Exception flagging: Our data supports the view that some amount of human behavior 

is unpredictable, some preferences change, some routines are unstable, and some 

contingencies are too rare to form a pattern. A key design challenge is to elicit input 

from users to help the system differentiate the data that represents regular, stable 

preferences or behavior from input that does not. Rather than have people give 

explanations about every intent they have, we can have people just note when a 

change is not something they want the system to remember. Exception flagging can 

allow people to provide additional information to the system without over-burdening 

them.  

Incidental intelligibility: It is challenging to convey an understanding of how an 

intelligent system works given that users in the home are unlikely to pay a lot of 

attention to any individual system. One possibility might be to consider ways in 

which incidental intelligibility—interaction elements that increase users’ 

understanding of the system’s intelligent behavior that are embedded in the tasks 

users consciously seek to accomplish—could help users build understanding of a 

system behavior over the long term without asking their focused attention to learning 

how the system works as a discrete task.  

Constrained engagement: Users are not likely to devote a great deal of effort to 

interacting with intelligent systems in the home. However, systems require some 

amount of engagement from the users to perform optimally. As we are evolving 

towards a world in which users engage with dozens if not hundreds of intelligent 

systems like the Nest, UbiComp researchers face the challenge of designing 

technologies that engage but do not overwhelm—a goal that we refer to as 

constrained engagement. Such engagement must be dramatically constrained, given 
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that the interaction between user and system is necessarily sparse and peripheral, yet 

continuous and long-lived. 

II. Design guidelines for balancing system autonomy and user control.  Reflecting on 

the tensions between convenience and benefits of automation and user engagement 

necessary for energy savings, we propose a set of design implications that invite user 

participation and reflection with the goal of saving energy at home (Chapter 4). 

Providing actionable recommendations: Designers should consider ways to generate 

concrete plans for increasing energy savings that leave users in control but are easy 

for users to implement. As an example, consider a recommendation for an 

improvement to the user’s schedule that appears on the home screen of a thermostat 

control app or in an email. This recommendation could include an option that allows 

the user to implement the recommended change instantly. 

Providing eco-feedforward: To help users decide whether such recommendations 

ought to be followed, systems could further provide eco-feedforward messages or 

visualizations to convey the projected impacts of implementing the recommended 

changes. Providing actionable recommendations along with information about the 

projected benefits of those recommendations would enable systems to suggest courses 

of action that align with system goals while allowing users to stay in control. 

Stimulating reflection and reassessment: To sustain user engagement over time, eco-

interaction technologies need to maintain lightweight engagement between users and 

the system on an ongoing basis. For example, a system could allow the current 

schedule to expire after a period of time, or ask users to choose between their existing 

schedule and a more efficient one proposed by the system as one way to stimulate 

evaluation and reassessment of the schedule.  
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In our final study, we evaluated the effectiveness of the guideline for balancing system 

autonomy and user control. To do so, we first developed a design approach that we call eco-

coaching: giving personalized suggestions for specific actions that would reduce wasted 

energy. Then, we conducted a 12-week deployment study of the ThemoCoach system, which 

performs eco-coaching for thermostat scheduling to answer the following research questions: 

RQ 4: How does the eco-coaching design approaches work for balancing system 

autonomy and user control? 

RQ 5: How do schedule recommendations and eco-feedforward affect users’ thermostat 

control practices and energy savings? 

In the ThermoCoach study, we demonstrated and evaluated the design approach of eco-

coaching to balance system autonomy and user control. The principles of eco-coaching are to 

provide personalized suggestions for specific actions that would reduce wasted energy, while 

supporting user agency in accomplishing their energy saving goals. 

Here we provide contributions to sustainable HCI: insight into design challenges, a long-

term field study, and findings and design recommendations regarding interaction strategies to 

support energy savings in the home.  

I. Findings from a longitudinal study of eco-feedback technology. We found that the 

combination of eco-feedback and machine learning-based personalization led to 

increased engagement with energy-saving features of the system in the short term, but 

that such engagement was not sustained over the long term. (Chapter 3 and Chapter 4) 

II. Findings on effectiveness of the eco-coaching approach. We found that the eco-

coaching approach 1) made it easier for users to implement an effective thermostat 

schedule, 2) supported user agency in negotiating trade-offs between energy savings 
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and comfort, 3) facilitated learning different scheduling strategies as well as weighing 

pros and cons of different options, and 4) challenged users' beliefs about how well 

they were doing. These outcomes, in turn, were successful in getting users to employ 

and experiment with more efficient setback strategies. (Chapter 5) 

III. Design guidelines for supporting users’ assessment of system performance.  

To build user trust with recommendation-based eco-coaching systems, systems should 

support users to assess the quality and performance of recommendations over time. 

We suggest that an eco-coaching system should provide not only projected energy 

savings estimation for the future, but also quick and easy assessment of how effective 

the recommendations were at delivering what they proposed to users after 

implementation. (Chapter 5) 

Assessing the actual performance of recommendations after use with consideration 

of real-world factors and conditions: Users wanted information that can help them 

trust the system would bring the benefits it proposed. Thus, it is important for an eco-

coaching system to indicate to what extent the actual energy savings out- or under-

performs the initial estimation. Then, the system should also explain what factors 

affect the differences between actual and estimated savings.  

Providing hindsight evidence with post-hoc simulation of alternative 

recommendations: Eco-coaching systems should compare how alternatives might 

have worked compared to the recommendation they used. It would be useful for users 

to be able to evaluate not only the option they chose, but also alternatives that they 

did not implement. Post-hoc simulations for the alterative options can help users to 

gauge the outcomes that might have been achieved. 
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Performing assessment for the schedule in use: Eco-coaching systems should 

conduct an ongoing assessment of the performance of the schedule that is in use. 

When users’ occupancy patterns change from those upon which the recommendations 

were based, the system should generate new recommendations to adjust to the 

modified needs for the home. 

In this final chapter, we have provided a detailed list of contributions from previous chapters. 

This dissertation made contributions to the interdisciplinary fields of human-computer 

interaction (HCI) and ubiquitous computing (UbiComp).  

LIMITATIONS AND CAVEATS  

Here we clarify the scope of this thesis and thus the direction taken by the design implications 

for intelligent technologies for the home.  

The scope of studies on providing design implications for sustainability  

First, it is important to clarify the scope of this dissertation research on sustainability and thus 

the direction taken by the design implications, especially with regards to situating our 

recommendations within the larger space of technology to support energy savings in the home.  

In this dissertation, we are not challenging the notion that people have relatively stable 

expectations for thermal comfort and that they expect indoor temperatures to be mechanically 

maintained at a level concordant with those expectations. More specifically, we are not 

engaging critiques of the cultural construction of thermal comfort (e.g., (Chappells & Shove, 

2004)) or models of adaptive thermal comfort (e.g., (Clear, Morley, Hazas, Friday, & Bates, 

2013) that suggest that people can or should attain comfort through other means than 

mechanical heating and cooling.  
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While we find such alternative views compelling and highly deserving of consideration, we are 

focused here on investigating the bounds of energy efficiency that can be obtained within the 

commonly understood constraints of thermostat-controlled temperature regulation for 

obtaining personal comfort. From this perspective, we believe that finding a balance between 

automation and user engagement will be key to optimizing energy efficiency in the face of 

consumer expectations of comfort. We also believe that finding such a balance is a challenge 

that the field of HCI is particularly well suited to address. Even within the frame of improving 

thermostat control to achieve better energy efficiency in the face of a presumably stable 

comfort requirement, our study has limitations.  

Limitations by the nature of the technology  

The goal of this dissertation has been to illuminate the principles for designing intelligent 

systems for the home. This dissertation has demonstrated how users’ understanding and control 

of intelligent systems are critical to the desired system performance. It also showed how users 

could successfully cooperate with systems to achieve their desired goals such as increasing 

energy savings in the home. However, studies in this dissertation have only studied a particular 

area where intelligent systems can support domestic life, namely energy savings. While we 

have argued that the commercial deployment of an intelligent thermostat, the Nest, and field 

deployment of the ThermoCoach have provided valuable opportunities for studying this issue, 

our studies are limited by the nature of the technology studied. 

Different domestic technologies will vary in terms of complexity, distribution of labor, and 

relative importance to household members. It would be difficult to argue, for example, that 

findings from our studies could be blindly applied to adaptive systems that control lighting, 

security, or entertainment. While we think that some of our insights will apply (exception 

flagging is likely to be important for many machine learning-based systems, constrained 
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engagement could be a reasonable goal for mostly-disinterested stakeholders), further study 

will be needed to determine how and when to apply these principles. 

Supporting user understanding, control and engagement is important for improving the system 

performance and increasing the benefit of the system. However, there would be different ways 

or levels of importance for different systems. For example, different systems require different 

levels of explicit user control. There might be less need for monitoring the system performance 

for sprinkler systems than for home security systems. The risk of inaccurate performance of 

home security system (i.e. not detecting when a burglar was entering the home) is greater than 

water sprinkler system (i.e. watering the plant the ground is moist after the rain). The system 

with higher risk would need to better support for user understanding of the system (e.g., easy 

understanding of how the sensors work) and assessment of system performance than with 

systems with lower risk.  

In addition, different level of user engagement might be expected. People would feel more 

need for and be willing to check the performance of home security system and ensure the 

system alarms when somebody invades the home. On the other hand, it might not be the same 

when people think about water sprinkler system. The benefit of having water sprinkler system 

lies largely on the convenience of the systems automatically water the yard. Thus, assessing 

the system performance of water sprinkler might not be necessary to be frequent or even not 

necessary until people notice the plants are withering. As long as there is not a signal for issues 

with system performance, people might not even need to be engaged in the case like water 

sprinkler system beyond periodic assessment of water usage (e.g., to detect possible water 

leaks). However, with home security systems, it is more difficult for people to notice if the 

security system is working properly or not, there is not an obvious signal like withering plants. 

Because it would be too late or no use to improve or assess the system performance after an 

incident such as home invasion happened, trust-and-verify approach would not be acceptable 
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for a system like home security systems. Therefore, supporting user engagement should be 

designed with considerations for different factors such user expectations and tolerance for 

system error, user motivations for engaging with the system (e.g., monitoring the system 

performance), and consequences of system failure. Different systems will need to have 

different ways of engaging users to support user understanding, control as well as to balance 

system autonomy and user agency and control.    

The characteristics of our participants   

As smart devices like the Nest achieve wider adoption, studies of different stakeholders within 

the home will be increasingly needed. As noted, our participants were disproportionately tech-

savvy, affluent, and male. Though we focused on the 'primary' users of the Nest in our 

interviews and diary studies, we became aware of different levels of engagement among 

different house members, echoing patterns found in other studies of home automation (Brush et 

al., 2011; Mennicken & Huang, 2012). Primary users tended to be more engaged, meaning that 

they were willing to learn and employ advanced features of the Nest. Other house occupants 

often did not share the same interest, and in many cases used the Nest as they did their 

previous (conventional) thermostats. Other studies have identified the importance of gender 

roles with respect to technology configuration and use (Rode et al., 2004), as well as that of 

computer expertise and identity (Poole, Chetty, Morgan, Grinter, & Edwards, 2009). Further 

studies should strive to understand different perspectives within the home with respect to 

adaptive technologies, so as to provide a more balanced understanding of how such systems 

ought to be designed. 

Our studies were restricted to the continental United States, and looked at a restricted set of 

people over a constrained period of time. The Nest users we studied were relatively affluent 

and technologically savvy compared to a more general population. All homes participated in 
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the ThermoCoach study were located within 30 miles of each other in Virginia, United States 

and were subject to similar weather conditions throughout the study.  

Participants in our three studies were relatively highly educated, likely to have their own house, 

and were mostly married. Our conventional thermostat study participants were a bit more 

varied in these regards, but still not representative of the vast diversity of living situations, 

housing types, and individual differences found in US residences—to say nothing of 

differences across the globe. In addition, less motivated and educated users might be less 

inclined than our participants to monitor and improve the system operation, and so might 

benefit from a higher degree of automation and an even more constrained level of engagement. 

Finding the optimal level of engagement for different populations or even individuals remains 

a significant challenge. 

In summary, understanding the issues with improving user control of intelligent systems in 

general, and with HVAC systems more specifically remains a significant challenge, and we 

look forward to further studies that will deepen and fill out the findings of the present work. 

CONCLUDING REMARKS 

The larger goal of this dissertation is to guide future efforts for designing effective interaction 

between users and intelligent systems for the home. This dissertation enhances our 

understanding of daily user interaction with and experience of intelligent systems, identifies 

challenges in deploying intelligent systems in the home, and provides design approaches to 

bridge the gap between system capability and user control.  

This dissertation examines the various challenges and tensions that can arise in end-user 

interactions with everyday intelligent technologies as these systems seek to track and adapt to 

dynamic, nuanced day-to-day user behaviors, activities and situations. Based on findings from 
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field-based studies, this dissertation provides design considerations for desirable goals and 

design properties for end-user interaction with intelligent technologies for the home.  

The intellectual merit of this dissertation derives from a series of field studies and user-

centered design approach to investigate issues of designing intelligent systems in the home.  

Our field studies with its accompanying diary study and interviews provide a valuable 

opportunity for us to observe how users understand, interact with and use intelligent systems in 

their everyday environments. To our knowledge, this is the first study that looks at user 

interactions with and lived experience of an intelligent system in the home, in particular one 

that monitors and “learns” user behavior and adapts its behavior accordingly: the Nest 

Learning Thermostat. There has been a lot of work in ubiquitous computing over the years 

looking at sensor-based intelligent systems in the home.  

In very many cases, the evaluations of these systems have been conducted in laboratory-type 

settings, such as the AwareHome (Abowd, Bobick, Essa, Mynatt, & Rogers, 2002), House_n 

(Intille, 2002), or—when they are done in real homes such as the Adaptive Home (Mozer, 

1998)—are installed for a short period of time, studied, and then removed. Therefore this 

dissertation provides valuable understanding of challenges to deploying an intelligent system 

in an everyday home environment, as it reflects end-users’ interaction with and lived 

experience of this type of technology over a long period of time.  

Our comparative study, in which we compared an intelligent system to conventional systems, 

sheds light on how end-users interact with and respond to the interactions and functions that 

are unique to the intelligent system, and how this impacts users’ experience of controlling 

heating and cooling systems. It looks at how an alternative domestic heating and cooling 

system control (the Nest) evokes new types of interactions that differ from interactions with 

traditional thermostats. Alternative control interfaces for energy consuming appliances such as 



 125 

heating and cooling systems are of increasing interest in HCI. Thus the findings from this study 

provide valuable insights for people working on designing controls for domestic appliance 

interfaces.  

Our longitudinal study examines how interactions with intelligent systems change over time 

and what impact these interactions bring to energy savings outcomes. This study provides a 

much-needed long-term field study to observe how end-users adopt and use the intelligent 

system after the novelty has worn off: how the intelligent system is integrated into daily life 

over time, and how it affects daily practices of managing heating and cooling and thus its 

impacts on energy savings. We get beyond the novelty effects, and start to see how users adapt 

to the technology as they live with it, and indeed how they and the technology co-adapt 

together. Additionally, our study of users’ interactions with the Nest over time provides insight 

into challenges for the design of systems to help users save energy. While there is an 

overabundance of eco-feedback technology systems that are being developed and evaluated, 

most of these are prototypes, tested in labs, and only evaluated with regard to their short-term 

impact. As such, this paper makes an important contribution to the community by providing a 

long-term field study of an actually deployed system. 

Finally, this dissertation illuminates an important and notable interaction or interplay 

between human and machine. We argue that thoughtful, continuous involvement from users for 

control is critical to the success of both intelligent systems for the home and interventions that 

promote sustainable choices.  

The findings from this dissertation have been valuable for demonstrating how users’ 

understanding and control of intelligent systems are critical to the desired system performance. 

We argue for the importance of research into making systems intelligible, so that people can 

better adapt their communication with the system to achieve the desired effects, as well as 
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recover from errors. We also assert that designing more cooperative, collaborative and 

coordinated interactions between intelligent systems and their users and figuring out how to 

sustain those interactions over time is critical to the success of both digital home technology 

and interventions that promote sustainable choices.  

As such, this dissertation contributes to the Human-Computer Interaction and UbiComp 

research fields by enhancing our understanding of how to design intelligent systems for the 

home, and we believe that the result of this dissertation research will generalize beyond HVAC 

systems to other adaptive, intelligent home systems.  

Beyond contributing to the Human-Computer Interaction and UbiComp research fields, the 

broader impacts of our work stem from our ability to contribute solutions to the challenging 

problem of fostering energy-efficient operation of home heating and cooling equipment.  
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