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the bottom graph it is clear that after adding asymmetries the neutral
stability of kinetic energy is turned into asymptotic stability. . . . . 111
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ABSTRACT

Symmetry Method for Limit Cycle Walking of Legged Robots

by

Hamed Razavi

Chairs: Anthony Bloch and Jessy Grizzle

Dynamic steady-state walking or running gaits for legged robots correspond to peri-

odic orbits in the dynamic model. The common method for obtaining such periodic

orbits is conducting a numerical search for fixed points of a Poincaré map. However,

as the number of degrees of freedom of the robot grows, such numerical search be-

comes computationally expensive because in each search trial the dynamic equations

need to be integrated. Moreover, the numerical search for periodic orbits is in general

sensitive to model errors, and it remains to be seen if the periodic orbit which is the

outcome of the search in the domain of the dynamic model corresponds to a periodic

gait in the actual robot.

To overcome these issues, we have presented the Symmetry Method for Limit Cycle

Walking, which relaxes the need to search for periodic orbits, and at the same time,

the limit cycles obtained with this method are robust to model errors.

Mathematically, we describe the symmetry method in the context of so-called

Symmetric Hybrid Systems, whose properties are discussed. In particular, it is shown

that a symmetric hybrid system can have an infinite number of periodic orbits that

can be identified easily. In addition, it is shown how control strategies need to be

xiv



selected so that the resulting reduced order system still possesses the properties of a

symmetric hybrid system.

The method of symmetry for limit cycle walking is successfully tested on a 12

Degrees of Freedom (DOF) 3D model of the humanoid robot Romeo.
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CHAPTER I

Introduction

1.1 Why Legged Robots?

Aside from the fact that legged robots are fun and interesting to study, there are

three reasons why research on legged robots is necessary.

First, there is a need for vehicles that can travel on uneven terrains where wheeled

vehicles cannot operate. Wheeled vehicles can only perform well on prepared surfaces

such as roads and rails. Unlike the wheeled vehicles which need a continuos path for

travel, legged robots have the choice of choosing their footholds to optimize their

traction and stability (Raibert , 1986a). Stairs or ladders are examples where legged

robots outperform wheeled vehicles.

Second, a study of legged robots and control strategies, which can lead to stable

walking, directly applies to the research on exoskeletons and rehabilitation robotics

(see (Gregg et al., 2014) as an example).

Finally, building legged robots and analyzing their gaits and their energy aspects

can help one understand the biological aspects of the locomotion of animals (Ijspeert ,

2014).
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1.2 From Static Walking to Dynamic Walking

One of the main challenges in the path toward having legged robots as reliable as

the wheeled vehicles is the issue of stability in legged locomotion. Unlike a car which

is hardly unstable, a bipedal robot, without control, is hardly stable; in particular,

during the walking, in a period of time a bipedal robot has only one foot as the

support. With this in mind, the first research approaches on legged robots were

focused on maximizing the support polygon1 to make stability of the legged robot as

simple as that of a car or a table standing still. The control strategy was simply to

ensure that the projection of the Center of Mass (COM) on the ground lies on the

support polygon. In order for this criterion to lead to stability, the legs and body

move slowly enough such that if the legs stop moving at any point, the robot does

not fall. This is why these robots are referred to as static crawlers, and the stability

which is achieved by this strategy is called static stability. One of the first successful

examples of a static crawler is Robert McGhee’s hexapod (McGhee, 1985) as shown

in Fig. 1.2.

A step taken toward getting more dynamic locomotion was the notion of Zero

Moment Point (ZMP). The ZMP is a point on the ground where the resultant of

the ground-reaction forces acts (Goswami , 1999). A walking gait is said to be ZMP

stable if the ZMP stays within the area of the support polygon (not on the edge).

Since the ZMP stays within the support polygon, for bipedal robots, ZMP criterion

only allows flat-footed walking. Today, most of the research on legged locomotion is

based on the ZMP criterion. Unlike static stability, ZMP criterion allows dynamic

walking, in the sense that there are successful walking gaits that are ZMP stable but

not statically stable. Despite the fact that ZMP allows dynamic locomotion, there

are a number of downsides to this method. First, there are many gaits in humans,

1Support polygon is the convex hull formed by all of the contact points with the ground (West-
ervelt et al., 2007), for example, with three point feet on the ground the support polygon is a
triangle.
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Figure 1.1: Robert McGhee’s hexapod, Ohio State University, 1977.

animals and some legged robots that are dynamically stable but not ZMP stable. For

instance, Raibert’s hopper (Raibert , 1986b) or the bipedal robot MABEL (Grizzle

et al., 2009; Sreenath et al., 2011) are both point-feet robots that have achieved many

stable walking and/or running gaits, which because of the point-feet, none of them

are ZMP stable. Another issue with the ZMP method is that the ZMP stable gaits are

not the most energy optimal walking gaits as all the actuators including the stance

leg ankle are engaged during the walking gait; in fact, all ZMP stable bipedal robots

are fully actuated robots. Finally, the ZMP stable gaits don’t allow the full extent of

agility that a legged robot can reach. As an example, the dynamically stable bipedal

robot MABEL has reached a peak speed of 3.06 m/s (Sreenath et al., 2013), while

the ZMP stable bipedal robots have a far lower pick speed.

In contrast to static and ZMP walking, which respectively require the projection

of the COM and the ZMP to lie on the support polygon all the time, the highly

dynamic walking or running gaits only require an average stable behavior; the legged

robot places its leg(s) fast enough to prevent the robot from falling. That is, the robot

is falling and catching itself so that on average the COM is not diverting much from

3



Figure 1.2: The Bipedal Robot MABEL, University of Michigan, 2009. MABEL has
reached a pick speed of 3.06 m/s (Sreenath et al., 2013).

a reasonable trajectory. As a means of illustration, look at Fig. 1.3 which shows a

simple inverted pendulum with a point support (point O in Fig. 1.3). With an initial

velocity and under gravity the point mass travels from point −x0 to x0. Even though

the mass spends almost all of the time away from the support point (i.e., x 6= 0), on

average it stays on the point O. In other words, if x(t) is the position of the point

and the whole motion from −x0 to x0 takes T seconds, then

x̄ =
1

T

T∫

0

x(t) dt = 0.

If there is a control strategy that can keep this average close to zero or converging to

zero in the subsequent steps, then the walking is considered as being dynamically sta-

ble; however, from the static stability or ZMP criterion this motion is not considered

as being stable because the support polygon is a single point.

Compared to static or ZMP criterion, even though the dynamic stability has the

least requirement for a gait to be considered as being stable, mathematical modeling
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Figure 1.3: Simple Inverted Pendulum Biped With Massless Legs.

of a criterion for average stable behavior that can realize a control strategy is not

easy. However, a notion which can capture the agility that dynamic stability criterion

provides and at the same time is mathematically easier to model and test is the notion

of limit cycle legged locomotion.

In limit cycle legged locomotion, a walking or running gait is modeled as a periodic

orbit of the associated dynamical system, and the walking is considered as being stable

if the associated periodic orbit is stable.

The problem of stable limit cycle walking is the main focus of this thesis. The

two main challenges in this problem are (i) how to obtain periodic walking gaits for

a given legged robot, and (ii) how to ensure their stability.

Periodic locomotion is primarily studied by a Poincaré map analysis. The common

method for obtaining stable periodic gaits of a legged robot is to search for fixed

points of the Poincaré map (a.k.a. stride function) such that the eigenvalues of the

linearization of the Poincaré map are within the unit circle (McGeer , 1990; Grizzle

et al., 2001; Wisse et al., 2005; Geng et al., 2006; Gregg and Righetti , 2013; Dingwell

and Kang , 2007).

To reduce the computational costs of the numerical search, Grizzle et al. (Grizzle

5



et al., 2001) have used the notion of virtual constraints and Hybrid Zero dynamics

(HZD) to conduct the search on a lower dimensional system. Virtual constraints

are relations between the generalized coordinates of the system that are enforced by

controllers. By using a class of Bézier polynomials for virtual constraints, Grizzle et

al. (Grizzle et al., 2008) have demonstrated the possibility of gait design together

with optimization on energy, torque limit, etc.

Search methods, however, have two main drawbacks: namely, high computational

costs and the robustness issue. The high computational cost is due to the fact that

in each trial the equations of motion need to be integrated to check if the solution

returns back to the starting point, and the robustness issue is due to the fact that

the search for fixed points of the Poincaré map is performed based on a model of

the legged robot, and it remains to be seen whether with model errors, which always

more or less exist, the fixed point still corresponds to a periodic orbit of the actual

system. Moreover, since the stability is based on the eigenvalues of the Jacobian of

the Poincaré map, the periodic orbit is only locally stable. With local stability it is

challenging to have the actual robot start walking or running from rest.

The main contribution of this thesis is to introduce the method of Symmetry

for Limit Cycle Walking for legged robots which relaxes the need for searching for

periodic orbits; at the same time, since this method relies only on general symmetry

principles that all legged robots possess, naturally, robustness issue will be resolved.

In the next section we present a brief overview of this method.

1.3 Symmetry Method for Stable Periodic Walking

The simplest example that can capture some important properties of legged robots

is a Linear Inverted Pendulum (LIP) as depicted in Fig. 1.4. As will be discussed
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later, the equation of motion of a 2D LIP can be written as

ẍ = ω2x (1.1)

for ω ∈ R, where x is the position of the point mass projected to the ground in the

inertial frame attached to the support point (point O in Fig. 1.4). Consider a solution

of this system starting from x(t0) = −x0 and ẋ(t0) = ẋ0 > 0. Multiplying the two

sides of (1.1) by ẋ yields

ẍẋ = ω2xẋ.

Suppose that x(t0 + T ) = x0 for some T > 0. Integrating this equation from t0 to

t0 + T results in

t0+T∫

t0

ẍẋdt =

t0+T∫

t0

ω2xẋ dt, (1.2)

from which we conclude that

1

2
(ẋ2(t0 + T )− ẋ2(t0)) =

x0∫

−x0

ω2xdx, (1.3)

where ẋdt on the ride-hand-side of (1.2) is replaced with dx. Since
∫ x0
−x0 ω2xdx = 0,

from (1.3) we conclude that ẋ(t0 + T ) = ẋ(t0); that is, the velocity at the end of step

is equal to that of the beginning of step. Since the LIP moves on a plane of constant

height z0, there will be no impact loss when the swing leg hits the ground2 and the

velocity of the point mass at the beginning of next step will be ẋ(t0); as a result, if

at the beginning of each step x = −x0, the motion is periodic.

Indeed, in (1.3) if x on the right-hand-side is replaced with any other odd function,

2This will be discussed in details in Chap III.
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Figure 1.4: 2D Linear Inverted Pendulum. The point mass moves on a line of constant
height.

f(x), the solution is periodic. Thus, all that really matters for periodicity of solutions

of an equation in the form ẍ = ω2f(x) with a trivial impact map (i.e., similar to that

of LIP) is the oddness of the function f(x). Similar symmetries exist in the equations

of motion of more complex models of legged robots. For instance, the kinetic and

potential energies of the 2D Double Inverted Pendulum (DIP) depicted in Fig. 1.5

are invariant under the map G which sends (θ1, θ2, θ̇1, θ̇2) to (−θ1,−θ2, θ̇1, θ̇2). As a

result, in the equations of motion of the 2D DIP, which can be written as

θ̈1 = f(θ1, θ2, θ̇1, θ̇2),

θ̈2 = g(θ1, θ2, θ̇1, θ̇2),

we have f(−θ1,−θ2, θ̇1, θ̇2) = −f(θ1, θ2, θ̇1, θ̇2) and g(−θ1,−θ2, θ̇1, θ̇2) =

−g(θ1, θ2, θ̇1, θ̇2).

Similarly, the Spring Loaded Inverted Pendulum (SLIP) and the 5-DOF biped as

explained in Fig. 1.6 and Fig. 1.7 are symmetric under the specified transformations.

In the following chapters, we discuss the symmetry method in details and show

how these existing symmetries can be exploited to generate stable limit cycle walking

8



✓1

✓2

�✓1

�✓2

Figure 1.3: The kinetic and potential energy of the Double Inverted Pendulum (DIP)
is invariant under the map (✓1, ✓2, ✓̇1, ✓̇2) 7! (�✓1,�✓2, ✓̇1, ✓̇2). The fixed
points of this map, as shown in the middle figure, occurs at ✓1 = 0 and
✓2 = 0, with arbitrary ✓̇⇤1 and ✓̇⇤2.

are detected. Then virtual constraints are chosen such that the symmetry is preserved

while the dimension of the system is reduced (i.e., the resulting HZD is symmetric) by

enforcing the virtual constraints using controllers. Such virtual constraints are called

Symmetric Virtual Constraints (SVC). It is then shown that the resulting HZD

is a Symmetric Hybrid System (SHS) Razavi et al. (2016), and consequently, has

an infinite number of symmetric periodic orbits, which can be identified easily (i.e.,

without any searches). The SVCs also allow gait design (with possible optimization

on energy, torque limit, etc.). Moreover, it will be shown that with SVCs the resulting

SHS automatically has a family of symmetric periodic gaits (rather than one single

periodic orbit).

The rest of this thesis is organized as follows. In Chapter ?? we discuss Symmetric

Vector Fields and Symmetric Hybrid Systems. It will be shown that a Symmetric

Hybrid System can possess an infinite number of symmetric periodic orbits. In Chap-

ter ?? examples of legged robots which are SHSs are given. Chapter ?? discusses in

details the third step in Fig. 1.4; the notion of SVCs and symmetric HZD is intro-

duced. It will be shown how SVCs can realize feedback control laws which reduce

the dimension of the system while preserving the symmetry so that the resulting

8

Figure 1.5: The kinetic and potential energy of the Double Inverted Pendulum (DIP)
is invariant under the map (θ1, θ2, θ̇1, θ̇2) 7→ (−θ1,−θ2, θ̇1, θ̇2). The fixed
points of this map, as shown in the middle figure, occurs at θ1 = 0 and
θ2 = 0, with arbitrary θ̇∗1 and θ̇∗2.

(x, z)

x

(0, z⇤)

z

(�x, z)

✓p

x

z

xhf

zhf

�✓p

1

Figure 1.6: The kinetic energy and potential energy of the SLIP are invariant un-
der the map (x, z, ẋ, ż) 7→ (−x, z, ẋ,−ż), where z is the length of the
spring. The fixed points of the map G, which correspond to the config-
uration in the middle figure the middle SLIP model in the figure above,
are (0, z∗, ẋ∗, 0) for arbitrary z∗ and ẋ∗.
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Figure 1.7: If (x, z, θp, xhf , zhf ) denotes the generalized coordinates, where (x, z) is
the position of the hip, θp is the pitch angle and (xhf , zhf ) is the swing leg
end position relative to hip. Assuming that the legs are identical and the
mass distribution is uniform, the Lagrangian is invariant under the map
G which maps (x, z, θp, xhf , zhf ) 7→ (−x, z,−θp,−xhf , zhf ).

gaits for legged robots.

Fig 1.8 shows an overview of the symmetry method for limit cycle walking. Based

on this method, given a legged robot, first the natural symmetries of the legged robot

are detected. Then virtual constraints are chosen such that the symmetry is preserved

while the dimension of the system is reduced (i.e., the resulting HZD is symmetric) by

enforcing the virtual constraints using controllers. Such virtual constraints are called

Symmetric Virtual Constraints (SVCs). It is then shown that the resulting HZD

is a Symmetric Hybrid System (SHS) (Razavi et al., 2016), and consequently, has

an infinite number of symmetric periodic orbits, which can be identified easily (i.e.,

without any searches). The SVCs also allow gait design (with possible optimization

on energy, torque limit, etc.). The last two steps of the symmetry method for limit

cycle walking include introducing asymmetries and augmenting foot placement for

achieving asymptotically stable limit cycles with relatively large basins of attractions.

The rest of this thesis is organized as follows. In Chapter II, we discuss Symmetric

Vector Fields and SHSs. It will be shown that a Symmetric Hybrid System can possess
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Figure 1.8: High-level control algorithm of the symmetry method for stable limit cycle
walking.

an infinite number of symmetric periodic orbits. In Chapter III, examples of legged

robots which are SHSs are given. Chapter V discusses in detail the second step in

Fig. 1.8; the notion of SVCs and symmetric HZD is introduced in this chapter. It will

be shown how SVCs can realize feedback control laws which reduce the dimension of

the system while preserving the symmetry so that the resulting system can have an

infinite number of symmetric periodic orbits. As a tool for gait design, the notion

of a Symmetric Bézier Polynomial (SBP) is introduced. SBPs can be easily utilized

to produce SVCs. Chapter VI discusses the stability of symmetric periodic orbits

and presents two methods for stabilization of symmetric periodic orbits: introducing

asymmetry and foot placement. The notion of Perturbed SBPs (PSBPs) is introduced

as a means of systematic introduction of asymmetry as well as augmentation of foot

placement algorithms to a symmetric system. Chapter VII includes an example of a

12-DOF 3D biped, Romeo, on which the symmetry method for limit cycle walking is

successfully tested in simulations. Chapter VIII includes the conclusions.
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CHAPTER II

Symmetric Vector Fields and Symmetric Hybrid

Systems

2.1 Symmetric Vector Fields

The notion of symmetry, which was pointed out in Section 1.3, can be math-

ematically described by the notion of a Symmetric Vector Field (SVF) as defined

below.

Definition II.1. Suppose that X is a smooth vector field on the manifold X , and

let G : X → X be a smooth map which is an involution, that is, G ◦ G = id, where

id is the identity map on X . If

X ◦G = −dG ·X, (2.1)

then X is said to be symmetric under G or simply G-symmetric, and G is said to be

a symmetry map for X.

Such symmetry of a vector field, which has been referred to as time reversal

symmetry in (Altendorfer et al., 2004), is closely related to the notion of equivariant

vector fields (Buono et al., 2008).
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Figure 2.1: Graphical illustration of the SVF in Example II.2.

Example II.2. Consider the vector field

X(x1, x2) =




x2 sin(x2) + x2x
2
1

x21 sin(x1) + 2x1x2


 ,

defined on R2. Define G : R2 → R2 by G(x1, x2) = (−x1, x2). Since X ◦ G(x1, x2) =

X(−x1, x2) = (x2 sin(x2) + x2x
2
1;−x21 sin(x1)− 2x1x2), and

−dG ·X(x1, x2) =




1 0

0 −1







x2 sin(x2) + x2x
2
1

x21 sin(x1) + 2x1x2




=




x2 sin(x2) + x2x
2
1

−x21 sin(x1)− 2x1x2


 ,

we conclude that X ◦ G = −dG · X; hence, X is G-symmetric. Fig. ?? presents a

graphical illustration of the symmetry X ◦G = −dG ·X.

The following proposition shows that the symmetry of an SVF leads to the exis-

tence of a set of solutions which are invariant under G.

Proposition II.3. Let X be an SVF defined on a manifold X , and let G : X → X

be a symmetry map for X with a fixed point x∗, that is, G(x∗) = x∗. Then every

solution x(t) of X (a.k.a. integral curve of X) for which x(0) = x∗ and is defined

13



on a symmetric interval of the form I = (−a, a) ⊂ R for some a > 0 satisfies the

following identity:

G(x(t)) = x(−t), ∀t ∈ I.

Moreover, the maximal solution xM(t) for which xM(0) = x∗ is defined on the maximal

interval Ix∗ = (−aM , aM) for some aM > 0.

Proof. Let x(t) be a solution of X satisfying the conditions of the proposition. Define

x̂(t) = G(x(−t)) for t ∈ I. We have x̂(0) = G(x(0)) = G(x∗) = x∗. Therefore, x̂(t)

and x(t) satisfy the same initial conditions. Next, we show that x̂(t) is an integral

curve of X. By definition of x̂(t), ˙̂x(t) = −dG · ẋ(−t). Thus, since x(t) is a solution

of X, ˙̂x(t) = −dG ·X(x(−t)). From (2.1), ˙̂x(t) = X(G(x(−t)), and by definition of

x̂(t), ˙̂x(t) = X(x̂(t)), which proves that x̂(t) is a solution of X. By uniqueness of

the solution of the initial value problem, x̂(t) = x(t), that is, G(x(−t)) = x(t) for all

t ∈ I; equivalently, G(x(t)) = x(−t) for all t ∈ I.

In the appendix we show that xM(t) is defined on a maximal interval of the form

Ix∗ = (−aM , aM).

Definition II.4. A solution x(t) of a G-symmetric vector field is said to be a sym-

metric solution if it is defined on an interval I = (−a, a) for some a > 0 and

G(x(t)) = x(−t) for all t ∈ I.

Based on Proposition II.3, the maximal solution xM(t) of X, for which xM(0) = x∗

such that G(x∗) = x∗, is a symmetric solution of X. Since the maximal solution of an

initial value problem (with sufficient smoothness conditions) is unique, we conclude

that there is a one-to-one correspondence between the number of maximal symmetric

solutions and the number of fixed points of G.

Corollary II.5. There is a one-to-one correspondence between the set of maximal

symmetric solutions of a G-symmetric vector field and the set of fixed points of G.
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Figure 2.2: A symmetric solution of the SVF in Example II.6 passing through the
fixed point x∗ = (0, 0.5) of the symmetry map.

Example II.6. In Example II.2, G(x1, x2) = (−x1, x2). Thus, the fixed points of

G are in the form x∗ = (0, x∗2) for x∗2 ∈ R. Based on Proposition II.3, the solutions

passing through x∗ are invariant under G. That is, if x(t) = (x1(t), x2(t)) is a solution

for which x1(0) = 0 and x2(0) = x∗2, then G(x1(t), x2(t)) = (x1(−t), x2(−t)); as a

result, by definition of G,

(−x1(t), x2(t)) = (x1(−t), x2(−t)).

So, x1(t) is an odd function and x2(t) is an even function. Fig. 2.2 shows such a

symmetric solution passing through (0, 0.5).

2.2 Symmetric Hybrid Systems

In this section, we first define a hybrid system, and then a Symmetric Hybrid

System will be defined.
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In contrast to a simple dynamical system which is described by a set of ordinary

differential equations, hybrid systems include discrete phases and continuous phases as

well as the rules which determine the transitions between the continuous and discrete

phases. Here, however, as described in the following definition, we only discuss hybrid

systems with one continuous phase and one discrete phase.

Definition II.7. (Hybrid System) Let X be a smooth vector field defined on a

manifold X and let S be an embedded submanifold of X with co-dimension one.

Moreover, assume that ∆ : S → X is a smooth map such that ∆(S) ∩ S = ∅. A

hybrid system Σ = (X,∆,X ,S) is defined as

Σ =





ẋ = X(x), x− /∈ S,

x+ = ∆(x−), x− ∈ S,
(2.2)

and by definition, x(t) is a solution of the hybrid system Σ if ẋ(t) = X(x(t)) when

x(t) /∈ S, and if x(tI) ∈ S, then the solution is re-initialized to x+ = ∆(x−), where

x− = limx→t−I x(t). We assume that the solution is left continuous at tI , that is,

x(tI) = x−. Fig 2.3 shows how a solution of a hybrid system is re-initialized after

impact with S.

In the above definition S is called the switching surface, and ∆ is said to be the

transition map or impact map. For a bipedal robot which is modeled as a hybrid

system, switching occurs when the swing leg hits the ground.

It should be noted that in a general hybrid system complicated phenomena such

as Zeno solutions can occur, however, we adopt the notion of hybrid systems as in

(Westervelt et al., 2007), where such behaviors are excluded.

Below, we define the so-called feasible solution of a hybrid system which will be

helpful in the definition of an SHS which follows.

Definition II.8. A solution x(t) of a hybrid system Σ = (X,∆,X ,S) with x(0) = x0
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Figure 2.3: A solution of a hybrid system starting from x0 ∈ X .

is said to be a feasible solution if there exists t0 < 0 such that xM(t0) ∈ ∆(S), where

xM is the maximal solution starting from x0.

Definition II.9. (Symmetric Hybrid System) A hybrid system Σ = (X,∆,X ,S)

is said to be a Symmetric Hybrid System (SHS) if there exists a smooth map G : X →

X such that

1. X is G-symmetric, that is,

X ◦G = −dG ·X.

2. If xs(t) is a feasible symmetric solution of X which crosses the switching surface

at tI , then

∆(xs(tI)) = G(xs(tI)).

In the above definition, Σ is said to be an SHS under the symmetry map G, or

simply a G-SHS. Moreover, xs(t) is said to be a symmetric solution of Σ.

A special case where the second condition is easily checked is presented in the

following proposition.
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Proposition II.10. Let Σ = (X,∆,X ,S) be a hybrid system such that X is G-

symmetric for a smooth map G : X → X . If ∆ = G on S, then Σ is a G-SHS.

Proof. Clearly, the first condition of Definition II.9 is satisfied. Since ∆(x) = G(x)

for all x ∈ S, the second condition of Definition II.9 always hold true as well. Conse-

quently, Σ is a G-SHS.

Example II.11. The hybrid system Σ = (X,∆,X ,S) with X as in Example II.2,

that is,

X(x1, x2) =




x2 sin(x2) + x2x
2
1

x21 sin(x1) + 2x1x2


 ,

X = R2, S = {(x1, x2) ∈ R2|x1 = x0} for some x0 > 0, and ∆(x−1 , x
−
2 ) = (−x0, x−2 )

is an SHS under the map G(x1, x2) = (−x1, x2) because first, as shown in Example

II.2, X is symmetric under G and second, by definition of ∆, we have ∆(x−1 , x
−
2 ) =

(−x0, x−2 ) = G(x0, x
−
2 ), that is ∆ = G on S.

Example II.12. (2D LIP Biped) As shown in (Razavi et al., 2016), the 2D LIP

biped, shown in Fig. 1.4, taking constant swing foot end to hip strides of length x0

(thus, the the point mass position after impact is always x0) is a hybrid system with

the following equations.

ẍ = ω2x,

S = {(x, ẋ)|x = x0 > 0},

∆(x−, ẋ−) = (−x0, ẋ−).

In the state-space representation of this system with x1 = x and x2 = ẋ, the vec-

tor field X(x1, x2) = (x2, ω
2x1) is symmetric under the map G(x1, x2) = (−x1, x2).

Moreover, for all ẋ− ∈ R we have G(x0, ẋ
−) = (−x0, ẋ−) = ∆(x0, ẋ

−), thus, ∆ = G
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on S. Consequently, by Proposition II.10, the 2D LIP model is a G-SHS.

Symmetric solutions of an SHS are of particular interest because as shown in the

following proposition, under a simple condition, they are always periodic.

Proposition II.13. If xs(t) is a feasible symmetric solution of a G-SHS, that crosses

the switching surface, then xs(t) is a periodic solution of Σ. Moreover, if xs(0) is a

fixed point of G, and

tI = inf{t > 0|xs(t) ∈ S}, (2.3)

then the period of xs(t) is T = 2tI .

Proof. Assume that xs(0) is a fixed point of G. Suppose that xs(t) crosses the

switching surface at tI , and tI is defined as in (2.3). Since xs(t) is symmetric,

xs(−t) = G(xs(t)). Thus, for t = tI , xs(−tI) = G(xs(tI)). On the other hand,

by the second condition in Definition II.9, xs(t
+
I ) = G(xs(tI)). Therefore, from the

last two equalities, we conclude that xs(t
+
I ) = xs(−tI); that is, after impact with the

switching surface, xs(t) is re-initialized back to xs(−tI), hence is periodic with period

T = 2tI .

A symmetric solution of an SHS which is a periodic orbit is called a symmetric

periodic orbit. Fig. 2.4 shows a symmetric periodic orbit of the SHS in Example II.11.

Remark II.14. Obtaining periodic orbits of a hybrid systems normally relies on ex-

tensive numerical search for fixed points of a Poincaré map (McGeer , 1990; Grizzle

et al., 2001; Wisse et al., 2005; Geng et al., 2006; Gregg and Righetti , 2013; Dingwell

and Kang , 2007). However, according to Proposition II.13, if the system is an SHS,

under a simple condition, it can automatically have many symmetric periodic orbits

which can be identified easily (i.e., without any searches) by fixed points of the sym-
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Figure 2.4: A symmetric periodic orbit of the SHS in Example II.11. Once the sym-
metric solution crosses the switching surface S at x−, the impact map ∆
sends it back to G(x−).

metry map. In the following chapters, this property of SHSs shall be used to generate

periodic walking gaits for bipedal robots.

In the following example, we show that the 2D SLIP is an SHS.

Example II.15. (2D Spring Loaded Inverted Pendulum (SLIP)) Consider the

2D SLIP model as depicted in Fig. 2.5. Let z denote the length of the spring, and

let θ denote the angle of the leg with respect to the center-line. Suppose that V (θ, z)

denotes the potential and K(θ, z) the kinetic energy of the system. If k is the spring

constant, and l0 is the no-load length of the spring, then

V = mgz cos(θ) + 1
2
k(z − l0)2,

K = 1
2
m(ż2 + z2θ̇2).
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Figure 2.5: 2D SLIP.

The Euler-Lagrange equations of motion result in

θ̈ = −2
ż

z
θ̇ − g

z
sin(θ), (2.4)

z̈ = zθ̇2 + ω2(l0 − z)− g cos(θ), (2.5)

where ω2 = k/m.

To derive the equation of the transition map, we note that the flight phase starts

when the spring length reaches its no-load length (i.e., z = l0); therefore, the switching

surface is defined as

S = {(θ, z, θ̇, ż)|z = l0}.

The flight phase consists of a projectile motion (where the only external force is

gravity) at the end of which, when z = l0, the next stance phase starts. We assume

that at the beginning of each step the leg is at an angle1 −θ0. Therefore,

θ+ = −θ0, z+ = l0. (2.6)

Hence, the transition occurs when the height of the mass is l0 cos(θ0). Writing the

1This can be done by sweeping the swing leg to angle θ0 during the flight phase.
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equations of motion of a projectile yields:

ẋ+ = ẋ−,

ẏ+ = −((ẏ−)2 − 2g(y− − y0))1/2,
(2.7)

where, x = z sin(θ), y = z cos(θ) and y0 = l0 cos(θ0). Equation (2.7) implicitly defines

the transition map of the SLIP. Equations (2.4) to (2.7) define the equations of motion

of the SLIP, excluding the flight phase.

Writing (2.4) and (2.5) in the form ẋ = X(x), it is easy to check that the corre-

sponding vector field is symmetric under the map G(θ, z, θ̇, ż) = (−θ, z, θ̇,−ż). The

fixed points of G are of the form χ∗ = (0, z∗, θ̇∗, 0). Let φ(t, χ∗) = (θ(t), z(t), θ̇(t), ż(t))

be the solution for which φ(0, χ∗) = χ∗. Based on Proposition II.3, φ(t, χ∗) is invariant

under G, in the sense that G(φ(t, χ∗)) = φ(−t, χ∗). Thus, (−θ(t), z(t), θ̇(t),−ż(t)) =

(θ(−t), z(−t), θ̇(−t), ż(−t)); equivalently, θ(t) is an odd function, and z(t) is an even

function of t:

θ(−t) = −θ(t), z(−t) = z(t).

By numerical simulations, it can be shown that there are infinitely many symmetric

solutions φ(t, χ∗) which cross the switching surface for different values of χ∗. Let χ(t)

denote one of those solutions and assume that χ(t) crosses S at χ− = (θ0, l0, θ̇
−, ż−).

To prove that the 2D SLIP is an SHS, by Proposition II.10, it suffices to show that

∆(χ−) = G(χ−). By definition of y and y0 given right after (2.7), at χ− we have

y− = y0, therefore, from (2.7), ẋ+ = ẋ− and ẏ+ = −ẏ−. On the other hand, from

definitions of x and y,

ż = ẋ sin(θ) + ẏ cos(θ),

zθ̇ = ẋ cos(θ)− ẏ sin(θ).
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Therefore, since ẋ+ = ẋ− and ẏ+ = −ẏ−,

ż+ = ẋ− sin(−θ0)− ẏ− cos(−θ0),

= −(ẋ− sin(θ0) + ẏ− cos(θ0)),

= −ż−.

Similarly, with θ = θ0 and z = l0 one can show that θ̇+ = θ̇−. As a result,

∆(θ0, l0, θ̇
−, ż−) = (−θ0, l0, θ̇−,−ż−) which is equal to G(θ0, l0, θ̇

−, ż−). Therefore,

by Definition II.9, the 2D SLIP is a G-SHS with G(θ, z, θ̇, ż) = (−θ, z, θ̇,−ż). More-

over, by Proposition II.13, χ(t) is a periodic solution.

In Chapter III, we present more examples of legged robots which are SHSs.
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CHAPTER III

Symmetric Lagrangian Systems and Symmetric

Legged Robots

3.1 Symmetric Lagrangian Systems

For Lagrangian systems, as stated in the following proposition, the notion of

symmetry can directly be defined by looking at the Lagrangian L.

Proposition III.1. Let L be the Lagrangian defined on the tangent bundle of the

configuration space Q, and let F : Q → Q be a smooth map which is an involution.

Define G : T Q → T Q by

G(q, q̇) = (F (q),−dF (q) · q̇).

If L is invariant under G, that is,

L ◦G(q, q̇) = L(q, q̇),

and if x∗ = (q∗, q̇∗) is a fixed point of G, then for the solution x(t) = (q(t), q̇(t)) defined

on I = (−a, a) for a > 0, with x(0) = x∗, we have G(x(t)) = x(−t). Equivalently,

F (q(t)) = q(−t). (3.1)
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Finally, if X is the vector field defining the state-space representation of the La-

grangian system, then X is symmetric under G.

Proof. Suppose that x(t) = (q(t), q̇(t)) is the solution of the Lagrangian system for

which x(0) = x∗, where x∗ is a fixed point of G. Define x̂(t) = G(x(−t)). At

t = 0, x̂(0) = G(x(0)) = G(x∗) = x∗. Therefore, x̂(t) and x(t) satisfy the same

initial conditions. To prove that x̂(t) = x(t) for all t ∈ I, we show that x̂(t)

satisfies the Euler-Lagrange equations of motion. To this end, from the Hamil-

ton’s principle (Bloch et al., 2003), it suffices to show that δ
∫ ti
−ti L(x̂(t))dt = 0.

However, by definition of x̂(t), δ
∫ t
−t L(x̂(t))dt = δ

∫ t
−t L(G(x(−t)))dt. Invariance

of L under G yields L(G(x(−t)) = L(x(−t)). Thus for any ti ∈ (−a, a) we have

δ
∫ ti
−ti L(x̂(t))dt = δ

∫ ti
−ti L(x(−t))dt = δ

∫ ti
−ti L(x(t))dt = 0, where the second equality

is obtained by simple substitution of t → −t, and the last equality follows from the

fact that x(t) is a solution to the Lagrangian system. Therefore, x̂(t) satisfies the

Euler-Lagrange equations as x(t) does, and since x̂(t) and x(t) both satisfy the same

initial conditions, by uniqueness of the solution of the initial value problem, we have

x̂(t) = x(t); thus, G(x(−t)) = x(t), as desired.

It should be noted that in the above proposition G is not a coordinate transfor-

mation because G is defined as (F,−dF ) not (F, dF ).

Example III.2. (2D Double Inverted Pendulum (2D DIP) Consider the double

inverted pendulum depicted in Fig. 1.5. In the coordinates (θ1, θ2), its kinetic and

potential energies are

K =
1

2
m1(l

2
1θ̇

2
1) +

1

2
m2(l

2
1θ̇

2
1 + l22θ̇

2
2 + 2l1l2θ̇1θ̇2),

V = m1l1 cos(θ1) +m2(l1 cos(θ1) + l2 cos(θ2)).

Let F (θ1, θ2) = (−θ1,−θ2). Thus, as defined in Proposition III.1, G(θ1, θ2, θ̇1, θ̇2) =

(−θ1,−θ2, θ̇1, θ̇2). It immediately follows that the Lagrangian L = K − V is invari-
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ant under G. By Proposition II.3, since x∗ = (0, 0, θ̇∗1, θ̇
∗
2) for θ̇∗1, θ̇

∗
2 ∈ R are fixed

points of G, the solutions x(t) = (θ1(t), θ2(t), θ̇1(t), θ̇2(t)) for which x(0) = x∗ sat-

isfy the equation F (θ1(t), θ2(t)) = (−θ1(t),−θ2(t)); equivalently, θ1(−t) = −θ1(t) and

θ2(−t) = −θ2(t).

Example III.3. (2D SLIP) Next we revisit the 2D SLIP which was introduced

in Example II.15. This time by just looking at its Lagrangian we determine the

symmetry map. From Example II.15,

V = mgz cos(θ) + 1
2
k(z − l0)2,

K = 1
2
m(ż2 + z2θ̇2).

Looking at K and V , it is clear that the Lagrangian L = K − V is invariant

under the map F (θ, z) = (−θ, z). According to Proposition III.1, G(θ, z, θ̇, ż) =

(−θ, z, θ̇,−ż), which is the same symmetry map which was obtained in Example II.15

by looking at the equations of motion.

3.2 Symmetric Legged Robots

The equations of motion of legged robots, under some conditions, may be described

as hybrid systems. For instance, if the double support phase, where both legs are

simultaneously on the ground, can be approximated as being instantaneous (e.g.,

in a point-foot biped), the equations of motion can be written as a hybrid system

as in Definition II.7. Based on the discussion in Chapter II, if the hybrid system

describing the legged robot turns out to be an SHS, then one not only can guarantee

the existence of symmetric periodic orbits, but also can find such orbits easily (i.e.,

without any numerical searches). In this section, we present examples of legged robots

whose governing equations can be considered as SVFs.
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Model DOF Symmetry Map, F

3D LIP 2 (x, y) 7→ (−x, y)
3D IP 2 (x, y) 7→ (−x, y)
2D SLIP 2 (x, l) 7→ (−x, l)
3D SLIP 3 (x, y, z) 7→ (−x, y, z)
3D LIPF 4 (x, y, θx, θy) 7→ (−x, y,−θx, θy)
3D CGB 4 (x, y, xhf , yhf ) 7→ (−x, y,−xhf , yhf )

Table 3.1: Symmetry maps of the simple models. The map G which is defined on
T Q, i.e., on the tangent bundle of the configuration space, is defined as
G = (F,−dF ).

Definition III.4. A legged robot with configuration space Q is said to be F -

symmetric for F : Q → Q if its equations of motion in the continuous phase can

be described by a G-symmetric vector field, where G = (F,−dF ); alternatively, the

legged robot is symmetric if its Lagrangian is invariant under G.

3.2.1 Simple Models

Many researchers have studied simple low-dimensional models of legged robots. In

particular, it is common to use such simple models to generate trajectories for more

complex legged robots (e.g., see (Kajita et al., 2001)). Among these low-dimensional

models, we can mention Inverted Pendulum (IP), LIP, Inverted Pendulum with Fly-

wheel (IPF), SLIP, and Compass-Gait Biped (CGB). Below, we show that the gov-

erning equations of motion of all these models are represented by SVFs. Table 3.1

shows a summary of the existing symmetries in these simple models, which will be

explained with more details in the following subsections.

3.2.1.1 Linear Inverted Pendulum

A 3D LIP is a 3D Inverted Pendulum (IP), where its point mass is constrained

to move in a plane of constant height. Fig. 3.1 shows the schematic of a 3D LIP. A

telescopic leg with an actuator constrains the motion of the point mass M to a plane
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z = z0.

Notation: The world coordinate frame is denoted by W . We assume that the

coordinate frame I is parallel to W , but its origin is located at the support point (see

Fig. 3.1).

(a) 3D LIP

(b) 3D LIP Biped: Before Impact

(c) 3D LIP Biped: After Impact

Figure 3.1: 3D LIP models

LetH denote the total angular momentum of the point mass M about the support

point. Since the support point is stationary, the time derivative of H is equal to the
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moment of external forces about the support point. Therefore, because in the LIP

(as in the IP) the only external force applied to mass M is the gravitational force, we

have

dH

dt
= Mr × g,

where g is the vector of gravity and r is the position vector of M in I. At the same

time,

H = Mr × ṙ.

Combining the last two equations results in

d

dt
(r × ṙ) = r × g.

Assuming a Cartesian coordinate system in I with z pointing in the opposite direc-

tion of the gravitational field, we have g = (0, 0,−g), where g is the gravitational

acceleration. Therefore, denoting the coordinates of the position vector r by (x, y, z),

from the equation above

zẍ− xz̈ = gx, yz̈ − zÿ = −gy, xÿ − yẍ = 0. (3.2)

From this system, after applying the kinematic constraints, the equations of motion

of the IP and LIP can be derived. In the IP x2 + y2 + z2 is constant, while in the

LIP, z is assumed to be constant. Here, we derive the equations of motion of the 3D

LIP. If we set z = z0 > 0 in the equations above, we obtain

ẍ = ω2x, ÿ = ω2y, (3.3)
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where ω2 = g/z0. Equation (3.3) describes the equations of motion of the 3D LIP.

Note that the third equation in (3.2) follows from (3.3).

Although for the purpose of the current paper the actuator force, f , required

for reinforcing the constraint z = z0, need not be calculated, it is worth deriving a

formula to describe this force. The actuator force (see Fig. 3.1) is always in the

direction of r; therefore, f = kr for some k. In our Cartesian coordinate system,

f = k · (x, y, z). However, since z = z0, we have z̈ = 0. Therefore, if fz denotes the

z component of f , from Newton’s equations of motion, fz −Mg = 0. Thus, because

fz = kz and z = z0, k = Mg
z0

. As a result,

f = (Mg
x

z0
,Mg

y

z0
,Mg).

Note that here we assumed that the actuator can always provide the exact force

above. Hence, assuming that initially z = z0 and ż = 0, the equation z = z0 holds

throughout the motion. However, if the 3D LIP is used as a pattern generator for

walking, then a controller is required to enforce the constraint z = z0 (Kajita et al.,

2001).

The 3D LIP discussed above is a monoped, which, without assuming a flight phase,

is incapable of providing legged locomotion. Therefore, to produce walking, the 3D

LIP requires a swing leg to be able to switch the legs while walking. As shown in Fig.

3.1(b), this 3D LIP biped is, in fact, the exact same as that of the 3D LIP except

for the massless swing leg that allows to switch legs one after another, enabling it

to walk. It should be noted that, since the swing leg is massless, similar to the 3D

LIP, the 3D LIP biped has two degrees of freedom. Below we discuss the equations

of motion of the 3D LIP biped.

No matter which leg is the stance leg, the equations of motion in the coordinate
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system attached to the support point remain the same:

ẍ = ω2x, ÿ = ω2y. (3.4)

Since the roles of the legs will be swapped at the end of each step, we need to define

a transition map.

Transition Map: To derive an expression for the transition map (also called the

impact map), we make two assumptions:

1. The legs are swapped instantaneously, with the result that only one leg is the

stance leg at a time.

2. During the switching of the legs, mass M remains in the plane z = z0 and ż = 0.

By assumption (1) above, the force generated at the swing leg end at the time

of impact is an impulsive force. Since this force is the only impulsive force present,

the total angular momentum of the system about the swing leg end right before the

impact and right after it is the same. Therefore,

H−o = H+
o , (3.5)

where Ho denotes the total angular momentum of mass M at the time of impact

about the swing leg end, denoted by o. By definition of angular momentum,

H−o = Mr−FM × ṙ−, H+
o = M(r+ × ṙ+),

where rFM = r − rF , and rF is the position vector of the swing leg end in the

coordinate frame I whose origin is at the stance leg’s point of contact (see Fig. 3.1

(b) and (c)). Therefore, by equation (3.5)

r+ × ṙ+ = r−FM × ṙ−.
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Clearly, r+ = r−FM , where r+ is represented in the coordinate frame attached to the

support point after the transition. So, from the equation above

r−FM × (ṙ+ − ṙ−) = 0.

Therefore, from this equation, denoting r = (x, y, z) and rF = (xF , yF , zF ),

y−FM(ż+ − ż−)− z−FM(ẏ+ − ẏ−) = 0,

z−FM(ẋ+ − ẋ−)− x−FM(ż+ − ż−) = 0,

x−FM(ẏ+ − ẏ−)− y−FM(ẋ+ − ẋ−) = 0.

By assumption (2), z+ = z− = z0 and ż+ = ż− = 0. In addition, because we assume

walking takes place on flat ground, z−F = 0. Substituting these equalities into the

equations above gives us

z−0 (ẏ+ − ẏ−) = 0, −z0(ẋ+ − ẋ−) = 0.

From these equations, since z0 6= 0, ẋ+ = ẋ−, and ẏ+ = ẏ−. In sum, we obtain the

following transition map:

x+ = x−FM , y+ = y−FM , ẋ
+ = ẋ−, ẏ+ = ẏ−.

Next, we need to define when the transition should occur.

Transition Surface: We define a transition surface assuming the following:

1. At the time of impact, zF = 0.

2. At the time of impact, the swing leg length is equal to the stance leg length.

By assumptions (1) and (2) above,

(x−FM)2 + (y−FM)2 + (z0)
2 = (x−)2 + (y−)2 + (z0)

2.
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Canceling z20 ,

(x−FM)2 + (y−FM)2 = (x−)2 + (y−)2.

Therefore, under assumptions (1) and (2) above, switching occurs when (x, y, ẋ, ẏ)

belongs to the following surface:

S =
{

(x, y, ẋ, ẏ)|x2 + y2 = (x−FM)2 + (y−FM)2
}
.

Based on the discussion above, the equations of motion of the 3D LIP consist of a

continuous phase and a discrete phase. In the continuous phase, the equations of

motion are

ẍ = ω2x, ÿ = ω2y,

and the discrete phase starts when (x, y) ∈ S, where

S =
{

(x, y)|x2 + y2 = (x−FM)2 + (y−FM)2
}
,

and finally the transition map is

x+ = x−FM , y+ = y−FM , ẋ
+ = ẋ−, ẏ+ = ẏ−.

The coordinate frame used in the equations above is I, which is attached to the

support point. For later reference, we introduce an alternating coordinate system

where we assume that the Cartesian coordinate system associated with I is right-

handed when the right leg is the stance leg and left-handed when the left leg is the

stance leg. In this left-handed coordinate system, we assume that the y-axis is in the

opposite direction of the y-axis of the coordinate system associated with the world
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frame. In this alternating coordinate system, the equations of the continuous phase

remain unchanged but the transition map becomes:

x+ = x−FM , y+ = −y−FM , ẋ+ = ẋ−, ẏ+ = −ẏ−. (3.6)

Remark III.5. As we shall see later, the importance of this coordinate system is

that it enables us to study a certain class of 2-periodic motions as being 1-periodic.

From now on, we assume the alternating coordinate system.

The following definition is helpful when we study stability in Chapter VI.

Defintion III.6. Let x0 > 0 and y0 > 0. The 3D LIP is said to be (x0, y0)-invariant

if

x−FM = −x0 and y−FM = −y0

at the end of each step.

From the above definition, the equations of motion of the 3D LIP in the continuous

phase, and by (3.6), we conclude that the equations of motion of the (x0, y0)-invariant

3D LIP are

ẍ = ω2x,

ÿ = ω2y,

(x+, y+) = (−x0, y0),

(ẋ+, ẏ+) = (ẋ−,−ẏ−),

S = {(x, y, ẋ, ẏ)|x2 + y2 = x20 + y20},

(3.7)

and the impact occurs when (x, y, ẋ, ẏ) ∈ S. From (3.7), it is clear that the (x0, y0)-

invariant 3D LIP biped is a G-SHS with G(x, y, ẋ, ẏ) = (−x, y, ẋ,−ẏ).

Although here we assumed that the swing leg is massless and hence did not assume
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Figure 3.2: A symmetric vs. an asymmetric solution of the 3D LIP. The orange
dashed line is part of the circle representing the switching surface S =
{(x, y, ẋ, ẏ)|x2 +y2 = x20 +y20} projected to x−y plane. In this simulation
x0 = 0.3 and y0 = 0.35.

any dynamics for the swing leg, for an actual robot, as we will discuss later, to reach an

(x0, y0)-invariant gait, the swing leg controllers must drive (xFM , yFM) to (−x0,−y0)

before the impact occurs.

Fig. 3.3 shows a few symmetric periodic solutions of a 3D LIP biped.

3.2.1.2 Inverted Pendulum

In this example, we develop the equations of motion of the 3D IP biped with

massless legs similar to the 3D LIP biped discussed in Section 3.2.1.1. Let W and I

be coordinate frames defined in Section 3.2.1.1. In the Cartesian coordinate system

associated with I, the point mass position is denoted by (x, y, z). The equations of

motion of the point mass are given in equation (3.2), that is,

zẍ− xz̈ = gx, yz̈ − zÿ = −gy, xÿ − yẍ = 0. (3.8)

Let L denote the length of the 3D IP leg (see Fig. 3.4). We have x2 + y2 + z2 = L2,
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Figure 3.3: Multiple symmetric periodic solutions of the 3D LIP biped, where ẋ∗ is
the time derivative of the solution at t = 0.

Figure 3.4: 3D Inverted Pendulum Biped with Massless Legs

which after being differentiated results in

xẍ+ yÿ + zz̈ + 2K = 0,

where K = (1/2)(ẋ2 + ẏ2 + ż2). Finding z̈ from the equation above and substituting

it back into the system of equations (3.8), we obtain

z2ẍ = −x(xẍ+ yÿ + 2K) + gxz,

z2ÿ = −y(yÿ + xẍ+ 2K) + gyz.
(3.9)
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From the last equation in system (3.8), xÿ = yẍ. Using this equality, equation (3.9)

reduces to

ẍ = gx
z

L2
− 2K

L2
x,

ÿ = gy
z

L2
− 2K

L2
y.

This system can be written in the form d
dt

(x, y, ẋ, ẏ) = X(x, y, ẋ, ẏ), where X =

(ẋ, ẏ, f(x, y), g(x, y)) in which

f(x, y, ẋ, ẏ) = gx
z

L2
− 2K

L2
x, g(x, y, ẋ, ẏ) = gy

z

L2
− 2K

L2
y.

It is easy to check that the vector field X is symmetric under the map G : (x, y, ẋ, ẏ) 7→

(−x, y, ẋ,−ẏ). Similar to the 3D LIP biped introduced in Section 3.2.1.1, we can study

the 3D IP biped. To this end, we can find the impact map from the conservation

of angular momentum about the impact point. Although, the real impact map will

not give rise to an SHS, by defining a hypothetical impact map, we can make the

3D IP an SHS. For example, if ∆ = (∆q,∆q̇) with ∆q(x
−, y−) = (−x0, y0) for some

x0, y0 > 0 and ∆q̇ defined as

∆q̇(x
−, y−, ẋ−, ẏ−) = (ẋ−,−ẏ−), (3.10)

with the switching surface

S = {(x, y, ẋ, ẏ)|x2 + y2 = x20 + y20},

then (f, g,∆,Q,S) becomes a G-SHS with G : (x, y, ẋ, ẏ) 7→ (−x, y, ẋ,−ẏ).
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3.2.1.3 Linear Inverted Pendulum with Flywheel

A LIPF is a LIP where the point mass is replaced with a flywheel that can rotate

in the x and y directions with a torque τx in the x direction and τy in the y direction.

As noted in (Koolen et al., 2012), the equations of motion of the 3D LIPF are as

follows:

ẍ = ω2x− τx
Mz0

,

ÿ = ω2y − τy
Mz0

,

θ̈x = τx/Jxx,

θ̈y = τy/Jyy,

where Jxx and Jyy are the moments of inertia of the flywheel in the x and y directions,

respectively. Letting q = (x, y, θx, θy), q̇ = (ẋ, ẏ, θ̇x, θ̇y), u = [τx; τy], and X(q, q̇, u) =

[ω2x;ω2y; 0; 0]+[−τx/(Mz0);−τy/(Mz0); 0; 0], the equations of motion of the 3D LIPF

in the continuous phase can be written as d
dt

(q, q̇) = X(q, q̇, u). It is easy to check

that X(q, q̇, 0) is symmetric under the map G = (F,−dF ) where F (x, y, θx, θy) =

(−x, y,−θx, θy). As we will see in Proposition IV.2, by choosing proper control law

the resulting reduced-order system can still be symmetric.

3.2.1.4 Spring-Loaded Inverted Pendulum

In Example II.15, we showed that the 2D SLIP is an SHS. Here, we examine

the symmetry of the 3D SLIP. We use the coordinates (x, y, z), where (x, y, z) is the

position of the point mass in the inertial frame attached to the support point, to

derive the equations of motion of the 3D SLIP. With this choice of coordinates the
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kinetic and potential energies of the 3D SLIP can be written as follows.

V = mgz + 1
2
k(
√
x2 + y2 + z2 − l0)2,

K = 1
2
m(ẋ2 + ẏ2 + ż2).

If F (x, y, z) = (−x, y, z), then from the two equations above it is easy to verify

that the Lagrangian L = K − V is invariant under the map G = (F,−dF ). From

Proposition II.3, this symmetry guarantees the existence of an infinite number of

symmetric solutions (x(t), y(t), z(t)), where x(t) is an odd function, and y(t) and z(t)

are even functions.

3.2.1.5 3D Compass-Gait Biped

A 3D CGB is an IP biped (see Fig. 3.4) where legs have mass; thus, it has 4

degrees of freedom. We assume that the leg length is L, the point mass at the hip

has a mass of M , and each leg has a mass of m. Let (x, y, z) denote the position of

M in the coordinate system I (attached to the support point, as in Fig. 3.4) and let

(xhf , yhf , zhf ) denote the position of the swing foot end relative to the mass M . Since

the legs’ lengths are constant and equal to L,

z =
√
L2 − x2 − y2, zhf =

√
L2 − x2hf − y2hf , (3.11)

Therefore, the map G : (x, y, xhf , yhf ) 7→ (−x, y,−xhf , yhf ), keeps z and zhf un-

changed. This quick observation makes the verification of the symmetry of the La-

grangian easier. Let rM denote the position of M , rmst the position of the mass m

39



of the stance leg, and rmsw the position of the point mass m in the swing leg. Then,

rM = (x, y, z),

rmst =
1

2
(x, y, z),

rmsw = (x− xhf
2
, y − yhf

2
, z − zhf

2
).

Since K = (1/2)(M |ṙM |2 + m|ṙmst|2 + m|ṙmsw |2), and by definition of the potential

energy, we have

K = (
M

2
+
m

4
)(ẋ2 + ẏ2 + ż2) +

m

2
((ẋ− ẋhf

2
)2 + (ẏ − ẏhf

2
)2, (ż − żhf

2
)2),

V = g(Mz +
1

2
mz +

1

2
m(z − zhf

2
)).

From the equations for K, V and (3.11), it is easy to check that L = K − V is

invariant under the map G : (x, y, xhf , yhf ) 7→ (−x, y,−xhf , yhf ).

3.2.2 More Complex Legged Robots

The symmetry in legged robots is not limited to simple models; indeed, there exist

many models of complex legged robots that are symmetric.

Even though real robots are never exactly symmetric but they can be regarded

as being “almost” symmetric. Sources of asymmetry in real robots could come from

uneven mass distributions, friction, knees and feet. However, these sources of asym-

metry with respect to the overall symmetry of the biped are “small”. This fact allows

us to apply the symmetry method to actual legged robots despite of the existing

asymmetries. Moreover, as it will be discussed in Chapter VI, indeed, introducing

asymmetries to an SHS is essential for obtaining stable limit cycles.

Consider a 3D biped robot1 with point-feet as depicted in Fig. 3.5 for which the

following assumptions hold:

1This 3D biped model is inspired by the bipedal robot MARLO (Buss et al., 2014).
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Figure 3.5: Sagittal (left) and frontal (right) view of a symmetric 3D biped.

H1. The torso and legs have uniform mass distributions.

H2. The robot has left-right symmetry, i.e., in the frontal plane the left side is a

mirror image of the right side.

H3. The robot has telescopic or symmetric parallelogram legs (see Fig. 3.5).

H4. There is no friction in the actuators.

H5. Each leg has three degrees of freedom which are fully actuated. More precisely,

each leg has three actuators by which one can control the leg length and the leg roll

and pitch angles relative to the torso.

We note that, in Chapter VI, when we study asymptotic stability and mechanisms

of stability of symmetric periodic orbits, we will see that these assumptions need to

only hold approximately. For instance, in Chapter VII, we present a model of a

humanoid robot without a telescopic leg or symmetric parallelogram leg and with

feet, but we successfully apply the symmetry method to generate limit cycle walking

gaits for this robot.

A 3D biped for which assumptions H1-H5 hold has 9-DOF and 6 actuators, hence

3 degrees of underactuation. Before presenting the symmetry map for this biped, we
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briefly discuss a few possible coordinate systems that might be used to describe the

robot. If (θy, θr, θp) are the yaw, roll and pitch Euler angles describing the orienta-

tion of the torso with respect to the world frame2, (x, y, z) is the hip position and

(xhf , yhf , zhf ) is the position of the swing leg end in the body frame, which is parallel

to the world frame and attached to the hip, then q = (θy, θr, θp, x, y, z, xhf , yhf , zhf ) is

a generalized coordinate for the biped. More generally, instead of z and zhf we could

use ζ and ξ, respectively, where ζ and ξ could be selected to be any of the following:

ζ = z, ζ = qstk , ζ = lst,

ξ = zhf , ξ = zf , ξ = qswk , ξ = lsw,

with zf denoting the height of the swing leg end, and qstk (qswk ) and lst (lsw) denoting

the stance (swing) leg knee angle and stance (swing) leg length, respectively.

Proposition III.7. A 3D biped for which assumptions H1-H5 hold is symmetric

under the map F : (θy, θr, θp, x, y, ζ, xhf , yhf , ξ) 7→ (−θy, θr,−θp,−x, y, ζ,−xhf , yhf , ξ).

Proof. The proof is done by first calculating the kinetic and potential energies as a

function of q = (q1, q2, . . . , q9), where q is any generalized coordinate for the config-

uration space Q. In general, it is more straightforward to use joint angles and the

orientation of torso as the generalized coordinate for developing the dynamic model.

The proof is completed by representing F in the coordinate system q and verifying

the invariance of the kinetic and potential energies under F .

In the case that the yaw angle θy is constrained to zero3, the following corollary

applies.

Corollary III.8. Consider a 3D biped for which assumptions H1-H5 hold, but the

yaw angle θy is constrained to 0. Then the biped has 8-DOF and 2 degrees of under-

2By convention yaw, roll and pitch denote the rotations about the z, x and y axes, respectively.
3For instance, this can be done by using a specific foot design (Da et al., 2016) that does not

allow yaw rotation.
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1 1

Figure 3.6: Sagittal (left) and frontal (right) view of a 3D biped with non-symmetric
legs.

actuation. Moreover, it is symmetric under the map F : (θr, θp, x, y, ζ, xhf , yhf , ξ) 7→

(θr,−θp,−x, y, ζ,−xhf , yhf , ξ).

Remark III.9. Consider the 3D biped depicted in Fig. 3.6. If the legs have mass,

this biped is no longer a symmetric biped due to the small asymmetries introduced

by using non-parallelogram legs with knees. However, the same symmetry map F as

that of the Proposition III.7 can be used for obtaining stable limit cycle walking gaits

based on the symmetry method.
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CHAPTER IV

Symmetric Zero Dynamics and Symmetric Hybrid

Zero Dynamics

Even though an SHS can have an infinite number of symmetric periodic solutions,

generally, for these solutions to be stable we need to use control. However, the control

laws, if not chosen carefully, can destroy the natural symmetry of the system. In this

chapter, we show that with an appropriate choice of control laws, the resulting zero

dynamics or hybrid zero dynamics is still symmetric and hence has the properties of

the SVFs or SHSs while having lower dimensions compared to the original system.

4.1 Symmetric Zero Dynamics

We first define the notion of zero dynamics briefly1.

Definition IV.1. Let X(x, u) = f(x) + g(x)u be a smooth vector field with linear

control input on a manifold X , where u ∈ U ⊂ Rm. An embedded submanifold Z of

X is said to be a zero dynamics submanifold of X associated with X if there exists

a smooth feedback control u∗ : Z → Rm such that X(z, u∗(z)) ∈ TzZ for all z ∈ Z2.

Moreover, ż = X(z, u∗(z)) is said to be the zero dynamics on Z.

1For a detailed discussion of zero dynamics see (Isidori , 1995).
2TzZ is the tangent space to Z at z ∈ Z.
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The following proposition presents conditions for the zero dynamics to be an SVF.

Proposition IV.2. Consider the following n-dimensional control system on X × U

ẋ = X(x, u),

such that X(x, u) = f(x) + g(x)u, and u ∈ U ⊂ Rm is a control input with m <

n. Assume that there exists a unique control law u(x) that enforces an (n − m)-

dimensional zero dynamics submanifold of X denoted by Z (thus X(z, u(z)) is tangent

to Z for all z ∈ Z). If there exists a smooth map G : X → X and an isomorphism

H : U → U such that

1. X(x, 0) is a G-symmetric vector field,

2. (g ◦G(x))H(u) = −(dG · g(x))u for all x ∈ X and all u ∈ U ,

3. Z is invariant under G,

then letting XZ and GZ denote restrictions of X(x, u(x)) and G to Z, respectively,

XZ is GZ-symmetric; that is,

XZ ◦GZ(z) = −dGZ ·XZ(z). (4.1)

In addition, if x∗ ∈ Z is a fixed point of G, then the solution x(t) : I → X, for

which x(0) = x∗, lies on Z, and G(x(t)) = x(−t) for all t ∈ I. Moreover, u(G(z)) =

H(u(z)) for all z ∈ Z.

As we shall see later, this proposition is very useful in choosing virtual constraints

for periodic walking of legged robots.

Proof. For z ∈ Z,

X(z, u(z)) = f(z) + g(z)u(z) ∈ TzZ, (4.2)
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where TzZ is the tangent space of Z at z. Since by the third condition Z is invariant

under G, G(z) ∈ Z. Thus, by definition of u(z),

X(G(z), u(G(z))) = f(G(z)) + g(G(z))u(G(z)) ∈ TG(z)Z. (4.3)

Moreover, by invariance of Z under G, from (4.2),

−dG · f(z)− (dG · g(z))u(z) ∈ TG(z)Z. (4.4)

By condition 1, −dG · f(z) = f(G(z)) and by condition 2, −(dG · g(z))u(z) =

g(G(z))H(u(z)); thus, (4.4) reads as

f(G(z)) + g(G(z))H(u(z)) ∈ TG(z)Z. (4.5)

Comparing (4.5) and (4.3), by uniqueness of u(z),

u(G(z)) = H(u(z)). (4.6)

Substituting (4.6) in (4.3) results in

X(G(z), u(G(z))) = f(G(z)) + g(G(z))H(u(z)).

From this equation, and by condition 1 and 2,

X(G(z), u(G(z))) = −dG · f(z)− dG · g(z)u(z)

= −dG · (f(z) + g(z)u(z))

= −dG(z) ·X(z, u(z)),

which proves (4.1).
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In addition, if x∗ ∈ Z is a fixed point of G, then because X(z, u(z)) is tangent to

Z for all z ∈ Z, the solution x(t), for which x(0) = x∗, lies on Z. Since x∗ is a fixed

point of G, from Proposition II.3, G(x(t)) = x(−t).

Given a G-symmetric vector field, the key condition in the above proposition is

the choice of the zero dynamics submanifold Z. As condition 3 states, in order for

the zero dynamics to remain symmetric, Z needs to be invariant under the symmetry

map G.

Example IV.3. Consider the following control system defined on R2,

ẋ1 = x2 sin(x2) + x2x
2
1,

ẋ2 = x21 sin(x1) + 2x1x2 + u(x1, x2).

This system can be written as ẋ = X(x, u) such that X(x, 0) is the vector field

in Example II.2 which was shown to be symmetric under the map G : (x1, x2) 7→

(−x1, x2). We can write the above system in the form ẋ = f(x) + g(x)u, with

f(x) = X(x, 0) and g(x) = [0; 1]. It can be easily checked that g ◦ G = dG · g, from

which it immediately follows that (g ◦ G)H(u) = −(dG · g)u for H(u) = −u. Thus

far, we showed that conditions 1 and 2 of Proposition IV.2 hold. To satisfy the third

condition, we define the zero dynamics submanifold to be Z = {(x1, x2)|x2 = h(x1)}

such that h is an even function of x1. This choice of h renders Z invariant under G.

The zero dynamics then will be

ẋ1 = h(x1) sin(h(x1)) + h(x1)x
2
1,
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which satisfies (4.1). Moreover, on Z

u(x1) =
∂h(x1)

∂x1
(h(x1) sin(h(x1)) + h(x1)x

2
1)

−x21 sin(x1)− 2x1h(x1).

By Proposition IV.2, we expect u(G(z)) = H(u(z)) for all z ∈ Z, which by definition

of G and H, is equivalent to the equation u(−z) = −u(z). This equality, however,

is clearly satisfied by u(x1) defined above. Finally, since x∗ = (0, h(0)) is the fixed

point of G on Z, by Proposition IV.2, for the solution x(t) = (x1(t), x2(t)) with

x(0) = x∗, we have x(t) ∈ Z, and G(x(t)) = x(−t); that is, x2(t) = h(x1(t)), and

x1(−t) = −x1(t).

Example IV.4. Consider the following second order hybrid system defined on R3:

ẍ = sin(x) + xẋu1 + x2yu2,

ÿ = cos(x)ẏ2 + xẏu1 + xyu2,

z̈ = z + zu1 + xu2.

(4.7)

Writing this system as X(ζ, u) = f(ζ) + g(ζ)u with ζ = (x, y, z, ẋ, ẏ, ż) yields

g(ζ) =




0 0

0 0

0 0

xẋ x2y

xẏ xy

z x




, f(ζ) =




ẋ

ẏ

ż

sin(x)

cos(x)ẏ2

z




. (4.8)

Define H(u = [u1;u2]) = [−u1, u2] and G : (x, y, z, ẋ, ẏ, ż) 7→ (−x, y, z, ẋ,−ẏ,−ż).

From definition of f(ζ), it immediately follows that G is the symmetry map for the

above system if u1 = u2 = 0; therefore, condition 1 of Proposition IV.2 is satisfied.
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To check condition 2, we note that

(g ◦G(ζ))H(u) =




0

0

0

xẋu1 + x2yu2

−xẏu1 − xyu2
−zu1 − xu2




. (4.9)

On the other hand,

(dG(ζ) · g(ζ))u =




0

0

0

−xẋu1 − x2yu2
xẏu1 + xyu2

zu1 + xu2




. (4.10)

Comparing (4.9) and (4.10) yields (g ◦ G(ζ))H(u) = −(dG(ζ) · g(ζ))u. Thus,

condition 2 of Proposition IV.2 is satisfied. For condition 3 to hold, we define the

zero dynamics submanifold as

Z = {(x, y, z, ẋ, ẏ, ż)|y = h1(x), z = h2(x), ẏ =
∂h1(x)

∂x
ẋ, ż =

∂h2(x)

∂x
ẋ},

where h1 and h2 are smooth even functions. Since h1 and h2 are even, Z is invariant

under G; thus, condition 3 of Proposition IV.2 is satisfied. As a result, the zero

dynamics defines a symmetric vector field under GZ : (x, ẋ) 7→ (−x, ẋ), and any

solution ζ(t) starting from (0, ẋ∗) on Z with ẋ∗ ∈ R is a symmetric solution which

lies on Z. Moreover, on Z, u(GZ(x, ẋ)) = H(u(x, ẋ)), which by definition of G and
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H, results in u1(−x, ẋ) = −u1(x, ẋ) and u2(−x, ẋ) = u2(x, ẋ).

In the case of a Lagrangian system with control input, compared to Proposition

IV.2, Proposition IV.6 below is easier to use.

Lemma IV.5. Consider a Lagrangian system defined on a configuration manifold Q

with mass matrix A(q) and kinetic energy K(q, q̇) = (1/2)q̇TA(q)q̇. If K(q, q̇) is in-

variant under a smooth involution G : T Q → T Q, where G(q, q̇) = (F (q),−dF (q) · q̇)

for F : Q → Q, then

(dF (q))TA(F (q))dF (q) = A(q). (4.11)

Proof. Since

K(q, q̇) = (1/2)q̇TA(q)q̇, (4.12)

by definition of G,

K(G(q, q̇)) = 1
2
(−dF (q)q̇)TA(F (q))(−dF (q)q̇),

= 1
2
q̇T (dF (q))TA(F (q))(dF (q)q̇.

(4.13)

Therefore, since by assumption K(q, q̇) = K(G(q, q̇)) for all (q, q̇) ∈ T Q, from (4.12)

and (4.13) we conclude that (4.11) holds true.

The following proposition provides a key tool in the following chapters for obtain-

ing periodic orbits for legged robots.

Proposition IV.6. (Symmetric Zero Dynamics for Lagrangian Systems)

Consider an n-dimensional Lagrangian system defined on the configuration space Q

with the following equations of motion:

A(q)q̈ + S(q, q̇) = B(q)u, (4.14)
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where u ∈ U ⊂ Rm such that m < n. Suppose that there exists a smooth involution

F : Q → Q and an isomorphism H : U → U such that

1. Kinetic and potential energies are invariant under G(q, q̇) = (F (q),−dF (q) · q̇),

2. δW ′(q, δq, u) = δW (q, δq, u) for all q ∈ Q, u ∈ U , and any virtual displace-

ment δq, where δW ′ = δW (F (q), δF (q), H(u)), and δW (q, δq, u) = (B(q)u)T δq

is the virtual work done by u for a virtual displacement δq. Equivalently,

(dF (q))TB(F (q))H(u) = B(q)u for all q ∈ Q and all u ∈ U .

With these assumptions, if (4.14) is written in the form ẋ = X(x, u) = f(x) + g(x)u

with x = (q, q̇), then X(x, 0) and g(x) satisfy conditions 1 and 2 of Proposition IV.2

for the symmetry map G(q, q̇) = (F (q),−dF (q) · q̇). Moreover, if Z is an (n −m)-

dimensional zero dynamics submanifold enforced by a unique control law u(x) such

that

3. Z is invariant under G = (F,−dF ),

then writing (4.14) in the form ẋ = X(x, u) and letting XZ and GZ denote restrictions

of X(x, u(x)) and G to Z, respectively, XZ is GZ-symmetric; that is,

XZ ◦GZ(z) = −dGZ ·XZ(z). (4.15)

In addition, if x∗ ∈ Z is a fixed point of G, then the solution (qs(t), q̇s(t)) = xs(t) :

I → T Q, for which xs(0) = x∗, lies on Z, and F (qs(t)) = qs(−t) for all t ∈ I =

(−a, a), where a > 0. Moreover, then u(G(z)) = H(u(z)) for all z ∈ Z. Finally, the

work done by u on a symmetric solution qs(t) is zero; that is,

W (qs) =

a∫

−a

(g(xs(t))u(xs(t)))
T q̇s(t)dt = 0. (4.16)
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Proof. Writing (4.14) in the form ẋ = X(x, u) = f(x) + g(x)u, yields

g(q, q̇) =




0

A−1(q)B(q)


 . (4.17)

Condition 1 of Proposition IV.2 holds because the Lagrangian is symmetric with sym-

metry map F , so as noted in Proposition III.1, the vector field X(x, 0) is symmetric

with symmetry map G. Next, we show that condition 2 of Proposition IV.2 holds.

From the definition of G, dG is in the form

dG(q, q̇) =




dF (q) 0

? −dF (q)


 . (4.18)

On the other hand, from (4.17),

g(G(q, q̇))H(u) =




0

A−1(F (q))B(F (q))H(u)


 . (4.19)

By Lemma IV.5, (dF (q))TA(F (q))dF (q) = A(q); thus, A−1(F (q)) =

(dF (q))A−1(q)(dF (q))T . Substituting this into (4.19) yields

g(G(q, q̇))H(u) =




0

(dF (q))A−1(q)(dF (q))TB(F (q))H(u)


 .

By condition 2, the equation above simplifies to

g(G(q, q̇))H(u) =




0

(dF (q))A−1(q)(B(q)u)


 ,

which by (4.18) and (4.17) is equal to dG(q, q̇) · g(q, q̇)u; this proves that condition 2
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of Proposition IV.2 holds. The rest of the proof follows from Proposition IV.2, and

we only need to show that work of the actuators on a symmetric solution qs(t) is zero.

The work W (qs) on a symmetric solution is

W (qs) =
∫ a
−a(B(qs(t))u(xs(t)))

T q̇s(t)dt =
∫ 0

−a(B(qs(t))u(xs(t)))
T q̇s(t)dt

+
∫ a
0

(B(qs(t))u(xs(t)))
T q̇s(t)dt.

(4.20)

Change of variables t 7→ −t in the first integral yields

0∫

−a

(B(qs(t))u(xs(t)))
T q̇s(t)d = −

0∫

a

(h(qs(−t))u(x(−t)))T q̇s(−t)dt

=

a∫

0

(h(qs(−t))u(x(−t)))T q̇s(−t)dt

= −
a∫

0

(B(F (qs(t)))u(G(xs(t)))
T d

dt
(F (qs(t)))dt,

where the second equality follows from xs(−t) = G(xs(t)) and F (qs(t)) = qs(−t)

because xs(t) = (qs(t), q̇s(t)) is a symmetric solution. Since u(G(x)) = H(u(x)),

0∫

−a

(B(qs(t))u(xs(t)))
T q̇s(t)dt = −

a∫

0

(B(F (qs(t)))H(u(xs(t))))
T d

dt
(F (qs(t)))dt,

From the second condition, B(F (q))H(u) = (dF (q))−T · B(q)u. Thus, since

d
dt

(F (qs(t))) = dF (qs(t))q̇s(t), we have

0∫

−a

(B(qs(t))u(xs(t)))
T q̇s(t)dt = −

a∫

0

(dF (qs(t))
−TB(qs(t))u(xs(t)))

TdF (qs(t))q̇s(t)dt,
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Simplifying the right-hand side yields

0∫

−a

(B(qs(t))u(xs(t)))
T q̇s(t)dt = −

a∫

0

(B(qs(t))u(xs(t))
T q̇s(t)dt.

Substituting this back into (4.20) proves (4.16).

Example IV.7. (2D DIP Zero Dynamics) Consider the 2D DIP in Example III.2.

If u is an actuator that controls the angle between the two links, the equations of

motion are

(m1 +m2)l
2
1θ̈1 +m2l1l2θ̈2 − (m1 +m2)l1 sin(θ1) = −u,

m2l
2
2θ̈2 +m2l1l2θ̈1 −m2l2 sin(θ2) = u.

(4.21)

We show that conditions 1, 2 and 3 of Proposition IV.6 hold. Recall that in Example

III.2 we showed that the 2D DIP kinetic and potential energies are invariant under

the map F (θ1, θ2) = (−θ1,−θ2). Thus, condition 1 of Proposition IV.6 is satisfied

for G = (F,−dF ). For condition 2, we note that the virtual work done by u for

a virtual displacement δq = (δθ1, δθ2) is δW = −uδθ1 + uδθ2. Now we calculate

δW ′ = δW (F (q), δF (q), H(u)) for q = (θ1, θ2) and H(u) = −u. Since δF (θ1, θ2) =

−(δθ1, δθ2), δW
′ = u(−δθ1)− u(−δθ2); so, δW ′ = δW , and as a result, condition 2 of

Proposition IV.6 is satisfied for H(u) = −u.

For condition 3 of Proposition IV.6 to hold, define the zero dynamics manifold as

Z = {(θ1, θ2, θ̇1, θ̇2)|θ2 = h(θ1), θ̇2 =
∂h

∂θ1
θ̇1},

where h is an odd function of θ1. Note that Z is invariant under G = (F,−dF ), which

maps (θ1, θ2, θ̇1, θ̇2) to (−θ1,−θ2, θ̇1, θ̇2). The restriction of G to Z is GZ(θ1, θ̇1) =

(−θ1, θ̇1), whose fixed points are of the form (0, θ̇∗1). Therefore, by Proposition IV.6,

any symmetric solution (θ1(t), θ2(t)) starting from a fixed point of G on Z lies on Z
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and is invariant under G. That is, θ2(t) = h(θ1(t)) and θ1(−t) = −θ1(t). Moreover,

by Proposition IV.6, the torque u(θ1, θ̇1) on Z, satisfies the following equality:

u(GZ(θ1, θ̇1)) = H(u(θ1, θ̇1)),

which by definition of H and G, equivalently reads as

u(−θ1, θ̇1) = −u(θ1, θ̇1).

That is, u on Z is an odd function of θ1. Finally, as predicted by Proposition IV.6,

the work done by u on a symmetric solution, xs(t), on Z is zero because u(xs(t)) is

an odd function of t, while (θ̇1(t), θ̇2(t)) is even; thus,

a∫

−a

−u(xs(t))θ̇1(t) + u(xs(t))θ̇2(t) = 0

for any a in the domain of xs(t).

Remark IV.8. In many cases of second order hybrid systems with a coordinate

system (q, q̇), such as Example IV.7, the symmetry map G simply reverses the

signs of a number of qis. In these cases, q can be written as q = (φ, ψ) and

G : (φ, ψ, φ̇, ψ̇) 7→ (−φ, ψ, φ̇,−ψ̇). In such case, the first two conditions of Propo-

sition IV.6 can be easily checked; it suffices to check that equations of motion are

invariant under the map (φ, ψ, φ̇, ψ̇, φ̈, ψ̈) 7→ (−φ, ψ, φ̇,−ψ̇,−φ̈, ψ̈) with appropriate

mapping of uis. For instance, it immediately follows that (4.21) is invariant under

the map (θ1, θ2, θ̇1, θ̇2, θ̈1, θ̈2) 7→ (−θ1,−θ2, θ̇1, θ̇2,−θ̈1,−θ̈2) and u 7→ −u. Similarly,

it is easy to check that (4.7) is invariant under the map (x, y, z, ẋ, ẏ, ż, ẍ, ÿ, z̈) 7→

(−x, y, z, ẋ,−ẏ,−ż,−ẍ, ÿ, z̈) and (u1, u2) 7→ (−u1, u2).
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4.2 Symmetric Hybrid Zero Dynamics

First, we briefly discuss the notion of a hybrid system with control and Hybrid

Zero Dynamics (HZD)3.

Definition IV.9. (Hybrid System with Control Input) Let X(x, u) be a smooth

vector field defined on an n-dimensional manifold X , where u is a control input in

U ⊂ Rm such that m ≤ n. Suppose that S is an embedded submanifold of X with

co-dimension one. Moreover, assume that ∆ : S → X is a smooth map such that

∆(S) ∩ S = ∅. A hybrid system with control, denoted by Σ = (X,∆,X ,S,U), is

defined as





ẋ = X(x, u), x− /∈ S,

x+ = ∆(x−), x− ∈ S,
(4.22)

where X(x, u) is in the form of f(x) + g(x)u. Since X has a dimension n, Σ is said

to be an n-dimensional hybrid system with control input.

Definition IV.10. (Hybrid Zero Dynamics) Consider the n-dimensional hybrid

system with control Σ = (X,∆,X ,S,U), and let Z be a zero dynamics submanifold

associated with X enforced by the control law u(x). Then Z is said to be hybrid

invariant if ∆(Z ∩ S) ⊂ Z. Moreover, ΣZ = (XZ ,∆Z ,Z,S ∩ Z), with the dynamic

equations





ż = XZ(z, u(z)), z− /∈ S ∩ Z,

z+ = ∆Z(z−), z− ∈ S ∩ Z,

where XZ and ∆Z are the restrictions of X and ∆ to Z, is the hybrid zero dynamics

on Z associated with Σ.

3For a detailed discussion of HZD see (Westervelt et al., 2007).
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The following proposition presents the conditions that a given hybrid system needs

to fulfill in order to become a reduced dimension SHS, also called Symmetric HZD.

Proposition IV.11. (Symmetric Hybrid Zero Dynamics) Let Σ =

(X,∆,X ,S,U) be an n-dimensional hybrid system with m-dimensional linear control

input, where m < n; that is, X can be written in the form X(x, u) = f(x) + g(x)u.

Assume that there exists a unique control law u(x) that enforces Z as an (n − m)-

dimensional HZD submanifold of X . If there exists a smooth map G : X → X and

an isomorphism H : U → U such that

1. X(x, 0) is a G-symmetric vector field,

2. (g ◦G(x))H(u) = −(dG · g)u for all x ∈ X and all u ∈ U ,

3. Z is invariant under G,

then by Proposition IV.2, XZ = f(z) + g(z)u(z) is GZ-symmetric and any symmetric

solution, xs(t), starting from a fixed point of G on Z, stays on Z. If for any such

xs(t) which is a feasible4 solution that crosses the switching surface S ∩ Z at, say

t = tI , we have

4. ∆(xs(tI)) = G(xs(tI)),

then ΣZ = (XZ ,∆Z ,Z,S ∩ Z) is a GZ-SHS, and xs(t) is a periodic orbit on Z. In

addition, u ◦G(z) = H(u(z)) on Z.

Proof. The proof quickly follows from Proposition IV.2 and definition of an SHS.

Note that condition 4 only needs to hold for solutions xs(t) that lie on Z, are

feasible, and cross the switching surface (not all symmetric solutions that cross the

switching surface). The following corollary concerns the case where condition 4 is

satisfied for all symmetric solutions that cross the switching surface.

4See Definition II.8.

57



Corollary IV.12. In Proposition IV.11, if Σ = (X(x, u(x)),∆,X ,S) is an n-

dimensional G-SHS for a symmetry map G, then ΣZ is an (n − m)-dimensional

GZ-SHS.

In the following example, given a 3-DOF biped, the zero dynamics submanifold is

defined such that the conditions of Proposition IV.11 are satisfied; as a consequence,

without any numerical searches, we obtain periodic orbits of the system which corre-

spond to periodic walking of the biped. In Section 5.4, Proposition IV.11 is applied

to a 5-DOF 2D Biped to obtain symmetric periodic orbits.

Example IV.13. (3-DOF Biped Symmetric HZD) Consider the 2D biped in

Fig. 4.1, which is a simple 2D model of the bipedal robot MARLO (Buss et al.,

2014). Assuming that the legs are massless, this biped has 3 DOF. Suppose that the

torso has a mass of m and a moment of inertia I about the center of mass (COM), and

let l be the distance from the hip joint to the COM. Let (x, z) denote the hip position

and let θp denote the pitch angle of the torso. The actuators include a motor at the

hip which applies a torque uθ to control the angle between the thigh and torso and an

actuator which controls the knee angle. Without loss of generality (for non-zero knee

angles), we can replace the torque at the knee by a force fl along the line connecting

the support point to the hip. This line may be referred to as a virtual leg. Then, fl

controls the length of this virtual leg. The kinetic energy and potential energies of

the biped are

K =
1

2
(I +ml2)θ̇2p +

1

2
m(ẋ2 + ż2 + 2lẋθ̇p cos(θp)−

2lżθ̇p sin(θp)),

V = mg(z + l cos(θp)).

To simplify the equations of motion, we non-dimensionalize the equations of motion

by replacing x/l with x, z/l with z, fl/ml with fl, and uθ/ml
2 with uθ. With these
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Figure 4.1: A simple 2D model of the bipedal robot MARLO (Buss et al., 2014).

assignments, the equations of motion of this biped are:

ẍ+ θ̈p cos(θp)− θ̇p sin(θp) = F1,

z̈ − θ̈p sin(θp)− θ̇2p cos(θp) + g
l

= F2,

( I
ml2

+ 1)θ̈p + cos(θp)ẍ− sin(θp)z̈−

ẋθ̇p sin(θp)− żθ̇p cos(θp)− g
l

sin(θp) = −uθ,

(4.23)

where

F1 =
flx√
x2 + z2

+
uθz

x2 + z2
, F2 =

flz√
x2 + z2

− uθx

x2 + z2
.

Suppose that the biped is taking constant swing leg end to hip strides, that is, if

q = (x, z, θp) and q̇ = (ẋ, ż, θ̇p), then the switching surface is S = {(q, q̇)|x = x0}, and

x+ = −x0 for some x0 > 0. With this assumption, the impact map is ∆ = (∆q,∆q̇),
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where

∆q(x
−, z−, θ−p ) = (−x0, z−, θ−p ),

∆q̇(q
−, q̇−) = q̇+,

and q̇+ can be found by conservation of angular momentum about the swing leg end

and swing knee joint before and after impact (McGeer , 1990). Our goal is to choose

the virtual constraints that define the zero dynamics such that the zero dynamics is

hybrid invariant and an SHS with symmetric periodic orbits. From the equations of

kinetic and potential energies, the Lagrangian is invariant under the map

F (x, z, θp) = (−x, z,−θp), (4.24)

which proves condition 1 of Proposition IV.6. As explained in Remark IV.8, con-

dition 1 and 2 of Proposition IV.6 can be immediately checked by verifying the

invariance of the equations of motion under the map (x, z, θp, ẋ, ż, θ̇p, ẍ, z̈, θ̈p) 7→

(−x, z,−θp, ẋ,−ż, θ̇p,−ẍ, z̈,−θ̈p) and (fl, uθ) 7→ (fl,−uθ). Alternatively, we could

directly verify condition 2 of Proposition IV.6 in which case

δW = (
flx√
x2 + z2

+
uθz

x2 + z2
)δx+ (

flz√
x2 + z2

− uθx

x2 + z2
)δz − uθδθp.

With H(fl, uθ) = (fl,−uθ), and by definition of δW ′ in Proposition IV.6,

δW ′ = (
(fl)(−x)√
x2 + z2

+
−uθz
x2 + z2

)(−δx) + (
flz√
x2 + z2

− (−uθ)(−x)

x2 + z2
δz − (−uθ)δ(−θp).

Clearly δW ′ = δW , which proves condition 2 of Proposition IV.6.

So far we showed that conditions 1 and 2 of Proposition IV.6 hold, thus by Proposi-

tion IV.6, conditions 1 and 2 of Proposition IV.11 hold. To satisfy the third condition
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of Proposition IV.11, define the submanifold Z as follows:

Z = {(q, q̇)|z = h1(x), θp = h2(x), ż =
∂h1
∂x

ẋ, θ̇p =
∂h2
∂x

ẋ}.

where h1 and h2 are are even and odd smooth functions, respectively. Since h1 is

even and h2 is odd, Z is invariant under the symmetry map G = (F,−dF ). However,

more conditions on h1 and h2 need to be imposed to ensure Z is hybrid invariant

and condition 4 holds. Here, we present two sets of (h1, h2) that render Z hybrid

invariant while satisfying condition 4. In the next chapter general conditions on

virtual constraints in order for them to render Z hybrid invariant and at the same

time to preserve the symmetry of the system shall be discussed.

Example A: If h1(x) = z0 and h2(x) = 0, then Z is invariant under G =

(F,−dF ). In this case, the fixed points of G lying on Z are (q∗, q̇∗), where

q∗ = (0, z0, 0), q̇∗ = (ẋ∗, 0, 0), (4.25)

and the zero dynamics equation is simply that of the 2D LIP:

ẍ =
g/l

1 + z0
x,

with ẋ+ = ẋ− and x+ = −x0; therefore, condition 4 of Proposition IV.11 is also

satisfied because GZ(x, ẋ) = (−x, ẋ) and ∆(x−, ẋ−) = G(x0, ẋ
−). Consequently, the

HZD is a GZ-SHS and has an infinite number of symmetric periodic orbits (Razavi

et al., 2016) as predicted by Proposition IV.11 as well.

Example B: Another set of holonomic constraints that can render Z invariant

under G is defined by h1(x) = z0 − a cos((π/x0)x) and h2(x) = 0, for which the HZD
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is

ẍ =
(g/l)x+ ax( π

x0
)2 cos(( π

x0
)x)ẋ2

1 + z0 − a cos(( π
x0

)x)− ax π
x0

sin(( π
x0

)x)
, (4.26)

with ẋ+ = ẋ− and x+ = −x0. Letting x1 = x and x2 = ẋ, one can write (4.26) in the

state-space form:



ẋ1

ẋ2


 =




x2
(g/l)x1+ax1(

π
x0

)2 cos(( π
x0

)x1)x22

1+z0−a cos(( πx0 )x1)−ax
π
x0

sin(( π
x0

)x1)


 .

Denoting the right-hand side of the equation above by X(x1, x2), it is easy to see that

X is GZ-symmetric, where GZ(x, ẋ) := (−x, ẋ) is the restriction of G = (F,−dF ) to

Z with F defined in (4.24). By Proposition IV.11, since (x+, ẋ+) = GZ(x0, x
−), this

HZD is a GZ-SHS. Fig. 4.2 shows a symmetric periodic orbit of this SHS together

with z as a function of x. Fig. 4.3 shows multiple periodic solutions lying on the HZD.

Indeed, the HZD has an infinite number of periodic solutions because the symmetry

map GZ has an infinite number of fixed points in the form (0, ẋ∗).

The two sets of virtual constraints defined above preserve the symmetry of the

system on its HZD. More general virtual constraints which can preserve the symmetry

of the system will be discussed in the next chapter.
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Figure 4.2: A symmetric periodic solutions of the 3-DOF biped on the HZD defined
by h1(x) = z0 − a cos((π/x0)x) and h2(x) = 0. Note that ẋ and z are
both even functions of x.
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Figure 4.3: Multiple symmetric periodic solutions of the 3-DOF biped on the HZD
defined by h1(x) = z0 − a cos((π/x0)x) and h2(x) = 0. There are an
infinite number of symmetric periodic solutions on this HZD which can
be identified by fixed points of the symmetry map GZ , which are in the
form (0, ẋ∗).
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CHAPTER V

Symmetric Virtual Constraints and Symmetric

Periodic Orbits

In Proposition IV.2 of Chapter IV, we saw that for a vector field with linear control

input X(x, u) = f(x)+g(x)u that satisfies certain symmetry conditions (conditions 1

and 2) under a map G if the zero dynamics submanifold Z is G-invariant, the resulting

zero dynamics is a lower dimensional SVF and hence, has symmetric solutions as many

as fixed points of the restriction of G to Z. Moreover, based on Proposition II.13, in

case of a hybrid system, these solutions can become symmetric periodic orbits. To

build such G-invariant zero dynamics submaniolds, in this chapter, we introduce the

notion of Symmetric Virtual Constraints (SVCs). SVCs directly result in realizing

feedback controllers that render Z invariant under G; hence, in the case of a hybrid

system existence of symmetric periodic orbits can be guaranteed without any need

for searching for periodic orbits. The results of this chapter will be used in Chapter

VII to obtain limit cycle walking gaits for a 12-DOF 3D Biped.

5.1 Symmetric Virtual Constraints

First, we briefly discuss the notion of virtual constraints. In a Lagrangian system

with control input, a functional relation between the generalized coordinates in the
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form

y = h(q, q̇),

for a smooth real-valued function h, which is asymptotically zeroed by a feedback

control law is said to be a virtual constraint. If h is only a function of configuration

variables q, then the virtual constraint is a holonomic constraint, and if h is a non-

integrable function of q̇, then the virtual constraint is said to be nonholonomic (Bloch

et al., 2003). While the notion of symmetry for virtual constraints, which will be

discussed in the following sections, is applicable to both holonomic and nonholonomic

virtual constraints, we only will discuss holonomic constraints. Nonholonomic virtual

constraints for dynamic walking of bipedal robots have been discussed in (Griffin and

Grizzle, 2015).

In the following subsections, we first discuss the notion of SVCs for achieving

a symmetric zero dynamics and then will discuss SVCs for symmetric hybrid zero

dynamics.

5.1.1 Symmetric Virtual Constraints for Symmetric Zero Dynamics

Defintion V.1. (SVCs for Symmetric Zero Dynamics) Let X be a G-symmetric

vector field with linear control input on a manifold X , that is, X(x, u) = f(x)+g(x)u,

where X satisfies conditions 1 and 2 of Proposition IV.2 for a symmetry map G on

X . A set of virtual constraints y = h(x) for h : X → Rk is said to be symmetric if

h ◦G = h, and h has a constant rank k such that

Z = {x ∈ X |h(x) = 0}

is a zero dynamics submanifold of X for X with dimension m = n−k. In this case, the

virtual constraints defined by y = h(x) are said to be Symmetric Virtual Constraints
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for X.

In this definition, Z is G-invariant because h◦G = h. The zero dynamics submani-

folds defined in Example IV.3, IV.4 and IV.7 are examples ofG-invariant submanifolds

defined by SVCs.

In case of a Lagrangian system on an n-dimensional configuration manifold Q,

if the Lagrangian L is symmetric under a map F : Q → Q, h : Q → Rk and its

Jacobian dh has a rank k, and h ◦ F = h, then

Z = {(q, q̇) ∈ X |h(q) = 0,
∂h(q)

∂q
q̇ = 0}

has a dimension 2(n−k) and is G-invariant, where G = (F,−dF ). Hence, h together

with its derivative are SVCs for this Lagrangian system. Such SVCs are used in

Example IV.7 to define the zero dynamics submanifold Z.

5.1.2 Symmetric Virtual Constraints for Symmetric Hybrid Zero Dynam-

ics

Based on Proposition IV.11, in the case of a hybrid system, in order for the HZD

to become an SHS, the zero dynamics submanifold Z needs to be invariant under the

symmetry map as well as the transition map, and moreover, as noted in condition 4 of

Proposition IV.11, if a symmetric solution x(t) on Z crosses the switching surface at

a point x(tI), then the transition map needs to map this solution to G(x(tI)), where

G is the symmetry map. In order for Z to satisfy these conditions, compared to the

Definition V.1, the SVCs need to satisfy more conditions as described in the following

definition.

Defintion V.2. (SVCs for Symmetric Hybrid Zero Dynamics) Let Σ =

(X,∆,X ,S,U) be a hybrid system with linear control input on a manifold X , where

X satisfies conditions 1 and 2 of Proposition IV.11 for a symmetry map G on X . A
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set of virtual constraints y = h(x) for h : X → Rk is said to be symmetric for the

hybrid system Σ if

1. h ◦G = h and h has a constant rank k,

2. h(∆(z)) = 0 for all z ∈ Z ∩ S (i.e., Z is invariant under the impact map),

3. If xs(t) is a feasible symmetric solution of X lying on Z which crosses S at t = tI ,

then ∆(xs(tI)) = G(xs(tI)).

In this case, the virtual constraints defined by y = h(x) are said to be Symmetric

Virtual Constraints for the hybrid system Σ.

According to the above definition and Proposition IV.11, the HZD generated by

SVCs is a GZ-SHS; hence, it can possess as many symmetric periodic solutions as the

number of fixed points of GZ . Example IV.13 shows two sets of SVCs which lead to

symmetric HZDs.

5.2 SVCs for a 5-DOF Biped

Consider the planar biped with point feet as depicted in Fig. 5.1. Assuming that

the legs have mass, this biped has five DOFs and four actuators (two in each leg to

control the leg length and the angle between the leg and torso), hence, has one degree

of underactuation. We denote the control input vector by u = [u1;u2;u3;u4], where

u1 controls the knee angle q1, u2 controls the angle between the stance leg and torso

q2, u3 controls the angle between the torso and swing leg thigh q3, and finally, u4

controls the swing knee angle q4. We assume that when all these angles are zero the

configuration of the biped is as in Fig. 5.2.

Proposition V.3. If the equations of motion of the 5-DOF bipedal robot in Fig. 5.1

are written in the form

A(q)q̈ + S(q, q̇) = B(q)u,
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Figure 5.1: 5-DOF 2D Symmetric Biped.

1

Figure 5.2: 5-DOF 2D Symmetric Biped Zero Pose.
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for q = (q1, q2, θp, q3, q4), and F (q1, q2, θp, q3, q4) = (q1,−q2,−θp,−q3, q4), then condi-

tions 1 and 2 of Proposition IV.6 are satisfied; that is,

1. Kinetic and potential energies are invariant under G(q, q̇) = (F (q),−dF (q) · q̇),

2. δW ′(q, δq, u) = δW (q, δq, u), or equivalently B(F (q))H(u) = (dF (q))TB(q)u,

where H(u = [u1;u2;u3;u4]) = [u1;−u2;−u3;u4].

Proof. The first condition of Proposition IV.6 follows simply by writing the kinetic

and potential energies and verifying their invariance under the map G. To show the

second condition, we look at the virtual work δW done by actuators for a virtual

displacement δq = (δq1, δq2, δθp, δq3, δq4). By definition,

δW = u1δq1 + u2δq2 + u3δq3 + u4δq4.

Let δW ′ be as in Proposition IV.6. From the definition of F and H,

δW ′ = u1δq1 + (−u2)δ(−q2) + (−u3)δ(−q3) + u4δq4

= u1δq1 + u2δq2 + u3δq3 + u4δq4.

From this equation and definition of δW , we have δW ′ = δW .

Even though for simplicity we used the joint angles together with torso pitch angle

as the generalized coordinates in the proposition above, since the symmetry properties

are all coordinate-independent, we can use any other generalized coordinates if they

are more convenient for design of virtual constraints. For instance, to present the

SVCs, we use the generalized coordinate q = (x, z, θp, xhf , zf ), where (x, z) is the

position of the hip, θp is the torso pitch angle as shown in Fig 5.1, zf is the height of

the swing leg, and (xhf , zhf ) is the position of the swing leg foot relative to the hip;

that is, if (xf , zf ) is the coordinate of the swing leg end in the inertial frame attached
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to the support point (i.e., stance leg end point), then (xhf , zhf ) = (xf − x, zf − z).

The symmetry map F sends (x, z, θp, xhf , zf ) to (−x, z,−θp,−xhf , zf ).

By Proposition V.3, the 5-DOF 2D biped satisfies the first two conditions of

Proposition IV.6. For the third condition of Proposition IV.6 to hold, as explained

in the following proposition, based on the symmetry map in Proposition V.3, SVCs

are chosen such that the HZD of the 5-DOF biped is invariant under G. Moreover,

condition 4 of Proposition IV.6 should hold so that the HZD becomes an SHS, which

can have infinitely many symmetric periodic orbits. We note that naturally, it is

assumed that the transition occurs when the swing leg hits the ground. That is, the

switching surface is assumed to be S = {(q, q̇)|zf (q) = 0}.

Proposition V.4. (SVCs for the 5-DOF Biped) In the 5-DOF biped, define the

zero dynamics submanifold Z by the virtual constraints z = h1(x), θp = h2(x), xhf =

h3(x), zf = h4(x) and their derivatives. These virtual constraints are SVCs if

h1(−x) = h(x),
dh1
dx
|x=x0 = 0,

h2(−x),= −h2(x), h2(x0) = 0,

h3(−x) = −h3(x), h3(x0) = x0,
dh3
dx
|x=x0 = −1,

h4(−x) = h(x), h4(x0) = 0,
dh4
dx
|x=x0 = 0,

h4(x) > 0, if x ∈ (−x0, x0),

for some x0 > 0. Thus, Z is hybrid invariant, and the resulting HZD is a GZ-

SHS with GZ(x, ẋ) = (−x, ẋ), where G is defined in Proposition V.3. Consequently,

the continuous phase of equations on the HZD can be written as ẍ = f(x, ẋ), where

f(−x, ẋ) = −f(x, ẋ). Moreover, the impact map restricted to S ∩Z and its switching

surface are

(x+, ẋ+) = (−x0, ẋ−), S ∩ Z = {(x, ẋ)|x = x0}, (5.1)
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Proof. By the choice of virtual constraints right before the impact the velocity of the

COM of the biped is parallel to the ground, and the swing leg end hits the ground

with zero velocity at a position x0 relative to the hip. As a result, there is no impact

loss and the impact map is as in (5.1). With this impact map, and by the odd-even

symmetries of the virtual constraints, it is easy to check that ∆(S ∩ Z) ⊂ Z. Thus,

Z is hybrid invariant.

By Proposition V.3 and Proposition IV.11, to show that the HZD is an SHS it

suffices to show that (i) Z is invariant under G (ii) Condition 4 of Proposition IV.11

holds. However, invariance of Z under G immediately follows by odd-even symmetries

of the virtual constraints and definition of the symmetry map F . Also, condition 4 of

Proposition IV.6 holds true because ∆(x−, ẋ−) = ∆(x0, ẋ
−) = (−x0, ẋ−) = G(x0, ẋ

−);

thus, ∆ = G on S ∩ Z.

Note that as long as the virtual constraints satisfy conditions of Definition V.2, it

is guaranteed that the HZD is an SHS and hence, can have many symmetric periodic

orbits without any need for numerical search.

Remark V.5. While the outputs in Proposition V.4 were chosen to be functions of

x, with appropriate change of variables one can use any other variable which is an odd

function of x and monotonically increasing or decreasing. For example, if θ = hθ(x),

where hθ is an odd function and monotonic, then the outputs h1 through h5 can

be written as functions of θ, and they must satisfy the same odd-even conditions as

that of x. The other conditions of Proposition V.4, such as the ones involving the

derivatives of his, need to be modified by appropriate use of chain rule.

Example V.6. Based on Proposition V.4 the following holonomic constraints to-
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gether with their derivatives are SVCs for the 5-DOF biped:

z = z0 − a1 cos(
πx

x0
),

θp = b1 sin(
πx

x0
),

xhf = x+
2x0
π

sin(
πx

x0
),

zf = a2(x
4
0 − 2x20x

2 + x4)

It should be noted that the conditions on virtual constraints in Proposition V.4

can all be satisfied by just using polynomials, and in particular, by the so-called

Symmetric Bézier polynomials, which will be discussed in Section 5.4.

5.3 SVCs for an 8-DOF 3D biped

To show how SVCs can lead to periodic gait design in 3D legged locomotion, here

we discuss an 8-DOF 3D biped as depicted in Fig. 5.3. As discussed in Section 3.2.2

this biped has 6 actuators, 3 in each leg to control the knee angle, the hip pitch angle

and the hip roll angle.

This biped is assumed to have uniform mass distribution and left-right symmetry,

hence it satisfies the assumptions H1-H5 in Section 3.2.2. Consequently, it is a sym-

metric legged robot. We assume that the yaw angle θy is constrained to be zero1. By

Proposition III.7 and Corollary III.8, F defined by

(θr, θp, x, y, ζ, xhf , yhf , ξ) 7→ (θr,−θp,−x, y, ζ,−xhf , yhf , ξ)

is a symmetry map for this biped, where ζ could be any of the following

a. ζ = z, where z is the height of the hip (i.e., the z-coordinate of the hip in the

inertial frame attached to the support point)

1This can be achieved, for instance, by using a foot that prevents rotation in the yaw direction.
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Figure 5.3: Sagittal (left) and Frontal (right) View of a Symmetric 3D Biped.

b. ζ = lst, where lst is the length of the stance leg2,

c. ζ = qstk , where qstk is the stance knee angle,

and ξ could be any of the following,

d. ξ = zhf , where zhf is zf − z with zf being the height of the swing leg end,

e. ξ = lsw, where lsw is the length of the swing leg,

f. ξ = qswk , where qswk is the swing leg knee angle,

g. ξ = zf , where zf is the height of the swing leg end.

Any combinations of {a, b, c} and {d, e, f, g} can be selected for (ζ, ξ). For exam-

ple, (ad) is the case where ζ is selected to be z and ξ is selected to be zhf . For future

reference, let q = (θr, θp, x, y, ζ, xhf , yhf , ξ), and denote the configuration space of this

biped by Q.

Now, based on this symmetry map, we define SVCs so that the resulting zero

dynamics is an SHS with symmetric periodic orbits. Since the biped has only 6

2By length of the leg we mean length of the line connecting the right (left) foot to the right (left)
hip joint. This line is referred to as the virtual leg.
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actuators, we choose 6 virtual constraints as follows

θr = h1(x), θp = h2(x), ζ = h3(x),

xhf = h4(x), yhf = h5(x), ξ = h6(x).
(5.2)

The constraints are chosen as functions of x, which we call the phase variable,

however, the phase variable can be chosen to be any odd function of x which is

monotonically increasing or decreasing. Clearly, since there are 8 DOFs and 6 vir-

tual constraints the zero dynamics is 2-dimensional (4-dimensional in the state-space

representation).

We impose appropriate conditions on h = (θr−h1; θp−h2; · · · ; ξ−h6) so that the

conditions of Definition V.2 are satisfied; thus, h = 0 defines SVCs for a symmetric

HZD. The zero dynamics manifold corresponding to these virtual constraints is

Z = {(q, q̇)|h(q) = 0,
∂h

∂q
q̇ = 0}.

With virtual constraints (5.2), (x, y, ẋ, ẏ) can be thought of as a coordinate system

on Z. In order for Z to be invariant under the symmetry map F , we need to have

h ◦ F = h. To this end, it suffices that the following conditions are being satisfied.

1. h1(−x) = h1(x),

2. h2(−x) = −h2(x),

3. h3(−x) = h3(x),

4. h4(−x) = −h4(x),

5. h5(−x) = h5(x),

6. h6(−x) = h6(x),

In the following, we impose more conditions on his to ensure that the zero dynam-

ics is hybrid invariant and an SHS with symmetric periodic orbits. To this end, we

study two cases, named Case A and Case B. In Case A, the height of the hip z and
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swing leg height zf are the chosen for ζ and ξ, and a number of conditions are im-

posed on the virtual constraints so that the upper body moves parallel to the ground

to minimize the impact losses so that the impact map is closer to a trivial impact

map where there is no energy losses due to impact. In Case B, the stance leg length

and swing leg length are chosen for ζ and ξ. In either case, a trivial impact map is

assumed so that the zero dynamics become hybrid invariant and the HZD becomes

an SHS. In Chapter VI, where asymmetries such as impact losses are included, we

will see that the choice of a trivial impact map for a preliminary analysis will not

cause any issues in obtaining asymptotically stable limit cycles at the end.

5.3.1 SVCs for the 8-DOF 3D Biped: Case A

By selecting ζ = z = h3(x) and ξ = zf = h6(x), we impose the following condi-

tions. For some x0 > 0,

7a. h1(x0) = 0,

8a. h2(x0) = 0,

9a. (dh3/dx)(x0) = 0,

10a. h4(x0) = x0, (dh4/dx)(x0) = 0,

11a. h5(x0) = y0, (dh5/dx)(x0) = 0,

12a. h6(x0) = 0, and h6(x) > 0 if x 6= ±x0.

Conditions 7a-9a guarantee that the upper body is moving parallel to the ground

right before the impact to minimize the impact losses, conditions 10a to 12a ensure

that the swing leg end is at the position (x0, y0) with respect to the hip. However,

because the swing leg end hits the ground with nonzero velocity there exist small

impact losses that we ignore. Finally, condition 12a guarantees that impact does not

occur until x = x0. Therefore, by conditions 7a-12a and the assumption of no-loss

76



impact, the impact surface and impact map on the zero dynamics are

S ∩ Z = {(q, q̇)|x = x0},

(x+, y+) = (−x0, y0),

(ẋ+, ẏ+) = (ẋ−,−ẏ−),

We note that the reason that sign of ẏ is changed after impact is that for simplicity

even after impact when the stance leg becomes the swing leg and vice versa, with

appropriate swapping of coordinates, we assume that the right leg remains the stance

leg. So ẏ > 0 means that the hip is moving away from the support point (this occurs

before impact) and ẏ < 0 means that the hip is moving toward the support point

(this occurs at the beginning of the step). Therefore, since there is no impact loss,

ẏ+ = −ẏ−.

Next, we verify condition 3 of Definition V.2. By definition of the symmetry map

and the virtual constraints, it immediately follows that the symmetry map on Z is

GZ(x, y, ẋ−, ẏ−) = (−x, y, ẋ−,−ẏ−).

From this equation and the transition map on the HZD, ∆Z(x0, y0, ẋ
−, ẏ−) =

GZ(x0, y0, ẋ
−, ẏ−), which means that ∆Z = GZ on S ∩ Z. Therefore, by Proposi-

tion II.10, we conclude that Condition 3 of Definition V.2 is also satisfied. Thus h

satisfying conditions 1-12 defines SVCs for the 8-DOF 3D biped.

Remark V.7. The SVCs satisfying conditions 7a-12a have a disadvantage; namely,

the impact occurs when x = x0 with no dependence on y. As we will discuss the

notion of synchronization in Section 6.2 (and as discussed in Corollary 3), such impact

surface will not lead to self-synchronization of periodic orbits. In Case B, assuming

a trivial impact map, the SVCs are chosen such that this issue is resolved.
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5.3.2 SVCs for the 8-DOF 3D Biped: Case B

With ζ = lst = h3(x) and ξ = lsw = h6(x), we impose the following conditions.

For some x0, l0 > 0,

7b. h1(x0) = 0,

8b. h2(x0) = 0,

9b. h3(x0) = l0 and (dh3/dx)(x0) = 0,

10b. h4(x0) = x0 and (dh4/dx)(x0) = 0,

11b. h5(x0) = y0 and (dh5/dx)(x0) = 0,

12b. h6(x0) = l0, (dh6/dx)(x0) = 0, and for ground clearance, h6 is chosen such that

zf > 0 when h6(x) 6= l0,

13b. h(x) = h(x0) for x ≥ x0.

With these constraints, the swing leg length h6 starts from l0 then retracts (for

ground clearance) until it extends to l0 again. Then, it remains at l0 until impact

occurs.

From 9b, 12b, and 13b, at impact, where zf = 0, stance leg length and swing leg

length are l0, so x2 + y2 + z2 = l20 and x2hf + y2hf + z2hf = l20. Therefore, from these

equations, noting that zhf = zf − z, at impact zhf = −z. Thus, at impact,

x2 + y2 = x2hf + y2hf .

Also, by 10b, 11b and 13b, at impact, xhf = x0 and yhf = y0; thus, from the equation

above, the impact surface on the zero dynamics is

S ∩ Z = {(q, q̇)|x2 + y2 = x20 + y20}.

However, with assumptions 7b-13b the real impact map is no longer lossless; thus,

with the real impact map the zero dynamics is not an SHS. To be able to still exploit
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the properties of SHSs, we assume that there is no loss at the impact, and ẋ+ = ẋ−

and ẏ+ = −ẏ−. We refer to this impact map as the trivial impact map. With 7b-13b,

and the assumption of lossless impact map, the transition map is

S ∩ Z = {(q, q̇)|x2 + y2 = x20 + y20},

(x+, y+) = (−x0, y0),

(ẋ+, ẏ+) = (ẋ−,−ẏ−).

The assumption of the trivial map will be removed when we study stability of sym-

metric periodic orbits and their stabilization by introducing asymmetries in Chapter

VI. Similar to Case A, with the above transition map, from the odd-even symme-

tries of the SVCs, the zero dynamics together with the trivial impact map becomes

a GZ-SHS with

GZ(x, y, ẋ−, ẏ−) = (−x, y, ẋ−,−ẏ−).

Compared to Case A, the impact surface S ∩ Z depends on y as well as x. As

we will see in Section 6.2, this impact surface can lead to self-synchronization of the

periodic orbits and in general is easier to stabilize compared to Case A.

5.4 Symmetric Bézier Polynomials

In this section, first we briefly discuss the Bézier Polynomials in general and their

application in generating virtual constraints. Then, we will discuss the notion of

Symmetric Bézier Polynomials for generating SVCs.

As noted in (Westervelt et al., 2007), a one-dimensional Bézier polynomial of
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Figure 6.1. An example Bézier degree five (M = 5) polynomial curve. Note
that (i) the curve is contained within the convex hull of the 6 coefficients (as
viewed as points in R2, {(0;α0), (1/5;α1), . . . , (1;α5)}), (ii) the curve begins
at (0;α0) and ends at (1;α5), and (iii) the curve is tangent to the line segments
connecting (0;α0) and (1/5;α1), and (4/5;α4) and (1;α5) at the start and end
points, respectively.

For later use, note that

∂bi(s)

∂s
=

M−1∑

k=0

(αi
k+1 − αi

k)
M !

k!(M − k − 1)!
sk(1 − s)M−k−1. (6.8)

Some particularly useful features of Bézier polynomials are (see [189, p. 291])

1. the image of the Bézier polynomial is contained in the convex hull of
the M + 1 coefficients (as viewed as points in R2, {(0;αi

0), (1/M ;αi
1),

(2/M ;αi
2), . . . , (1;αi

M )});

2. bi(0) = αi
0 and bi(1) = αi

M ; and

3. (∂bi(s)/∂s)|s=0 = M(αi
1 − αi

0) and (∂bi(s)/∂s)|s=1 = M(αi
M − αi

M−1).

The first feature implies that the polynomial does not exhibit large oscillations
with small parameter variations, which is useful for numerical calculations.
The second two features are exactly those used to achieve ∆(S ∩Z) ⊂ Z. See
Fig. 6.1 for an example Bézier polynomial curve.

A given function θ(q) of the generalized coordinates will not, in general,
take values in the unit interval over a phase of single support. Therefore,
to appropriately compose a Bézier polynomial with θ(q), it is necessary to
normalize θ by

s(q) :=
θ(q) − θ+

θ− − θ+
, (6.9)

Figure 5.4: (figure and caption from (Westervelt et al., 2007)) An example of a Bézier
degree five (M = 5) polynomial curve. Note that (i) the curve is contained
within the convex hull of the 6 coefficients (as viewed as points in R2,
{(0, α0), (1/5, α1), ..., (1, α5)}), (ii) the curve begins at (0;α0) and ends
at (1, α5), and (iii) the curve is tangent to the line segments connecting
(0, α0) and (1/5, α1), and (4/5, α4) and (1, α5) at the start and end points,
respectively.

degree M is a polynomial, b : [0, 1]→ R, defined by M + 1 coefficients, αk, per

b(s) =
M∑

k=0

αk
M !

k!(M − k)!
sk(1− s)M−k.

Bézier polynomials have very useful properties some of which are listed below

(Westervelt et al., 2007):

1. The graph of the Bézier polynomial is contained in the convex hull of the M+1

coefficients (as viewed in R2, {(0, α0), (1/M,α1), · · · (1, αM)}).

2. b(0) = α0 and b(1) = αM .

3. The line segment that connects (0, α0) to (1/M,α1), and the line segment that

connects ((M − 1)/M,αM−1) to (1, αM) are tangent to the polynomial at s = 0 and

s = 1, respectively. That is, b′(0) = M(α1 − α0), b
′(1) = M(αM − αM−1) (see Fig.

5.4).

For later use, if b(s) is a Bézier polynomial defined on [0, 1], we define the shifted

Bézier polynomial on the interval [−1/2, 1/2] by b̂(s) = b(s+ 1/2); thus,
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b̂(s) =
M∑

k=0

αk
M !

k!(M − k)!
(s+ 1/2)k(1/2− s)M−k.

Hereafter, we only shall work with shifted Bézier polynomials; thus, we denote a

shifted Bézier polynomial simply by b(s) instead of b̂(s).

A Symmetric Bézier Polynomial (SBP) is a Bézier polynomial defined on

[−1/2, 1/2] that is either an odd or an even function. A Bézier polynomial of de-

gree M with coefficients αk is even if

αk = αM−k,

and is odd if

αk = −αM−k,

for k = 0, 1, . . . ,M . Fig. 5.5 shows examples of SBPs.

In the following, we present a numerical examples to show how SBPs can be used

to generate symmetric periodic orbits of legged robots.

Example V.8. (SBPs to Generate Symmetric Periodic Walking for the

Symmetric 5-DOF 2D Biped)

In section 5.2, a symmetric 5-DOF 2D biped was introduced and in Proposition

V.4 the conditions on SVCs for this biped were given so that the resulting HZD

becomes an SHS. Hence, it has symmetric periodic orbits that can be identified easily

(i.e., without any searches). In this section, we present a numerical example to show

how SBPs can be used to obtain symmetric periodic orbits for the 5-DOF 2D biped.

The numerical values of the masses and dimensions of the biped match those of

MARLO (Buss et al., 2014).
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Figure 5.5: Examples of SBPs.
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According to Proposition V.4, we need z = h1(x) to be an even function for

which dh1/dx = 0 when x = x0. Since in SBPs, s ∈ [−1/2, 1/2], given x, we define

s = x/(2x0) which will be in [−1/2, 1/2] as x varies in [−x0, x0]. With this definition

of s, conditions of Proposition V.4 as a function of s are as follows:

1. z = h1(s), h1(−s) = h1(s), (dh1/ds)|s=1/2 = 0,

2. θp = h2(s), h2(−s) = −h2(s), h2(1/2) = 0,

3. xhf = h3(s), h3(−s) = −h3(s), h3(1/2) = x0, (dh3/ds)|s=1/2 = −2x0,

4. zf = h4(s), h4(−s) = h4(s), h4(1/2) = 0, (dh4/ds)|s=1/2 = 0,

5. h4(s) > 0 if s ∈ (−1/2, 1/2).

We show how an SBP can be used for h1 such that h1 satisfies condition 1. SBPs

for other his can be determined similarly. Based on the discussion in Section 5.4, for

h1, we can use an even SBP of degree M1 = 5 with coefficients:

α1 = [α1, α1, α3, α1, α1].

Note that since α1(1) = α1(2) and α1(3) = α1(4) by the third property of Bézier

Polynomials in Section 5.4, we necessarily have dh1/ds = 0 at s = 1/2 , which based

on the discussion in Section 5.4 guarantees that h1 is an even function and dh1/ds = 0

at s = 1/2.

Fig. 5.6 shows a few numerical examples of SBPs for his that satisfy conditions

1-5. Fig. 5.7 shows three different symmetric periodic solutions (out of infinitely

many of them) on the HZD of the 5-DOF biped for a given set of SVCs. In these

simulations, the torque limits of the MARLO are respected.
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Figure 5.7: Multiple symmetric periodic orbits of the 5-DOF biped for a set of SVCs.
The impact map sends the end point of these symmetric solutions to the
starting points making them periodic orbits.
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CHAPTER VI

Stability of Symmetric Periodic Orbits and the

Notion of Synchronization

In Chapter II the notion of SHS was introduced, and it was shown that an SHS can

have as many symmetric periodic orbits as the fixed points of the symmetry map. In

this chapter, we study the stability of such periodic orbits. In particular, it is shown

that symmetric periodic orbits at best are neutrally stable. However, we show that

by appropriate introduction of asymmetries to an SHS, neutrally stable symmetric

periodic orbits turn into a stable limit cycle. In the case of legged robots, these

asymmetries are either so-called energy injecting or energy dissipating asymmetries.

Many numerical examples are presented to show how adding such asymmetries can

lead to stable limit cycle walking of legged robots. Moreover, we present a simple

foot placement algorithm which can render unstable or neutrally stable symmetric

periodic orbits of an SHS stable.

6.1 Stability Analysis of Symmetric Periodic Orbits

For stability analysis of the periodic orbits of a hybrid system we use the method

of Poincaré sections1.

1For a detailed discussion on the method of Poincaré sections for stability analysis of the periodic
orbits of a hybrid system see (Westervelt et al., 2007).
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Let Σ = (X,∆,X ,S) be a G-SHS for a symmetry map G : X → X . Let x∗ be a

fixed point of G. By Proposition II.3, the solution xs(t) of Σ that starts from x∗, is

symmetric, that is,

G(xs(t)) = xs(−t).

Moreover, by Proposition II.13, if xs(t) crosses the switching surface at tI > 0, where

tI = inf{t > 0|xs(t) ∈ S},

then xs(t) is a symmetric periodic solution of Σ with period T = 2tI .

Let P denote the Poincaré map corresponding to xs(t) defined on a hyperplane2

including x∗. Since xs(t) is periodic and xs(0) = x∗, P (x∗) = x∗. The Poincaré

criterion states that xs(t) is asymptotically stable if the discrete system xn+1 = P (xn)

is asymptotically stable at x∗; equivalently, if the eigenvalues of the Jacobian of P ,

denoted by dP , lie within the unit circle, then xs(t) is asymptotically stable.

Let G : X → X be a symmetry map for an SHS Σ = (X,∆,X ,S). A fixed point

x∗ of G is said to be feasible if the solution starting from x∗ is feasible (see Definition

II.8). Denote the set of feasible fixed points of a G by SG, that is,

SG = {x ∈ X |G(x) = x, and x is feasible}.

For the rest of this chapter, we assume that SG is an embedded submanifold of

X with a constant dimension. For instance, in Example II.11, where X = R2 and

G(x1, x2) = (−x1, x2), SG = {(0, x2)|x2 ∈ R}, which is a one-dimensional submanifold

of R2.

Lemma VI.1. If xs(t) is a symmetric solution of a G-SHS Σ starting from x∗ and

2An embedded submanifold with co-dimension one.
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crossing the switching surface at tI > 0, where tI = inf{t > 0|xs(t) ∈ S}, then

ẋs(0) 6= 0. Moreover, there exists a hypersurface Sx∗ at x∗ to which xs(t) is transversal

and Tx∗SG ⊂ Tx∗Sx∗.

Proof. The proof is given in the appendix.

Proposition VI.2. Suppose that the periodic solution xs(t) of the G-SHS Σ crosses

the switching surface transversally3. Assuming that dim(SG) < dim(X ), the Jacobian

of the Poincaré map P associated with xs(t) has unit eigenvalues at least as many as

dim(SG). Moreover, the Jacobian of P , denoted by dP can be written in the form

dP =




1 0 0 · · · 0 dP1,k+1 · · · dP1,n

0 1 0 · · · 0 dP2,k+1 · · · dP2,n

0 0 1 · · · 0 dP3,k+1 · · · dP3,n

...
...

... · · · ...
... · · · ...

0 0 0 · · · 1 dPn,k+1 · · · dPn,n




, (6.1)

where k = dim(SG).

Proof. First, note that since SG is an embedded submanifold of X , there exists a

coordinate system (ξ, η) of X defined on an open neigborhood O of x∗ such that

ξ = (ξ1, ξ2, . . . , ξk) is a coordinate system of SG, where k = dim(SG). By Lemma

VI.1, there exists a hypersurface Sx∗ at x∗ which is transverse to xs(t) at t = 0,

and Tx∗SG ⊂ Tx∗Sx∗ . Since xs(t) crosses the switching surface S transversally, there

exists an open neigborhood N ⊂ X of x∗ such that every solution xs(t) starting

from N crosses S. Hence, the Poincaré map of xs(t) is well-defined. For simplicity,

without loss of generality, we assume that Sx∗ ⊂ N ⊂ O. Let P be the Poincaré

map defined on Sx∗ . We show that the Jacobian of P at x∗, denoted by dP (x∗), has

at least as many unit eigenvalues as k = dim(SG). Let P = [P1;P2; . . . ;Pn] in the

3That is if xI = xs(tI) ∈ S, then ẋs(tI) /∈ TxI
S. In other words, xs(t) does not “bounce off” the

surface S.
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coordinate system (ξ, η), where n = dimX . By definition of the coordinate system

(ξ, η), since x∗ ∈ SG, x∗ can be written in the form x∗ = (ξ∗1 , . . . , ξ
∗
k, 0, . . . , 0). Because

(ξ, 0) ∈ SG ∩ O, every solution starting from (ξ, 0) crosses the switching surface and

by Proposition II.13 is a periodic orbit. Therefore, we conclude that P (ξ, 0) = ξ.

Thus, if dPij(x
∗) is the ijth component of the matrix dP (x∗), then

dP11(x
∗) = lim

ε=0

P1(ξ
∗
1 + ε, ξ∗2 , . . . , ξ

∗
k, 0, . . . , 0)− P1(x

∗)

ε

= lim
ε=0

(ξ∗1 + ε)− ξ∗1
ε

= 1.

Also,

dP21(x
∗) = lim

ε=0

P2(ξ
∗
1 + ε, ξ∗2 , . . . , ξ

∗
k, 0, . . . , 0)− P2(x

∗)

ε

= lim
ε=0

ξ∗2 − ξ∗2
ε

= 0.

Similarly, dPij = δij for i = 1, . . . , n and j = 1, . . . , k, where δij = 1 if i = j and

δij = 0 if i 6= j. This proves that dP is in the form (6.1); and, hence, has at least k

unit eigenvalues.

Intuitively, the above proposition states that there are many directions (as many

as dim(SG)) in which one can move infinitesimally from one symmetric solution to

another one. Consequently, the symmetric periodic orbits are not isolated.

In general, in a hybrid system Σ = (X,∆,X ,S), ∆ which maps S to ∆(S) might

have a smaller rank than dim(S) = n− 1 in which case the following proposition will

be helpful.

Proposition VI.3. Suppose that xs(t) is a periodic solution of the n-dimensional

hybrid system Σ = (X,∆,X ,S), and let P be a Poincaré map corresponding to xs(t).
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If ∆ has a constant rank r, then dP has at least n− r − 1 zero eigenvalues.

Proof. Let P be a Poincaré map defined at the switching surface, that is, P : S → S.

Let φ(t, x) be the flow map and TI : X → R ∪ {∞} be the time-to-impact function

defined as follows (Grizzle et al., 2001):

TI(x0) =





inf{t ≥ 0|φ(t, x0) ∈ S} if ∃ t such that φ(t, x0) ∈ S,

∞.

Define the function H : ∆(S) → S by H(x) = φ(TI(x), x). With this definition

P (x) = H(∆(x)), hence, dP = dH ·d∆. Consequently, rank(dP ) ≤ rank(∆) = r. As

a result, since dim(S) = n − 1 (note that S by definition has co-dimension one) dP

has at least (n− 1)− r zero eigenvalues.

Example VI.4. In the 3D LIP biped, as noted in (3.7), ∆(x, y, ẋ, ẏ) =

(−x0, y0, ẋ−, ẏ−). Therefore, noting that x0 and y0 are constant, rank(∆) = 2. On

the other hand, n = 4 (note that 3D LIP has two degrees of freedom and is a second

order system). Consequently, dP has at least one zero eigenvalue.

Example VI.5. (Stability Analysis of the 3D LIP Symmetric Periodic Or-

bits) In Chapter III, it was shown that the 3D LIP biped is an SHS with the following

equations:

ẍ = ω2x,

ÿ = ω2y,

(x+, y+) = (−x0, y0),

(ẋ+, ẏ+) = (ẋ−,−ẏ−),

S = {(x, y, ẋ, ẏ)|x2 + y2 = x20 + y20},

which is a 4-dimensional G-SHS with G : (x, y, ẋ, ẏ) 7→ (−x, y, ẋ,−ẏ). The fixed

points of this symmetry map are in the form (0, y∗, ẋ∗, 0) for any y∗ ∈ R and ẋ∗ ∈ R;
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thus, the space of fixed points of G is 2-dimensional. However, not all of these fixed

points are feasible; in fact, only the ones starting from x = −x0, y = y0 are feasible,

which makes the space of feasible fixed points of G, SG, one-dimensional4. Therefore,

by Proposition VI.2 the Jacobian of Poincré map, dP , of a symmetric periodic orbit

of this SHS is in the form:

dP =




1 ? ?

0 ? ?

0 ? ?



.

On the other hand, as noted in Example VI.4, dP has at least one zero eigenvalue.

Thus, with a proper choice of coordinates, dP can be written in the form

dP =




1 ? 0

0 ? 0

0 ? 0



.

Therefore, eigenvalues of dP are {1, λ, 0} for some λ ∈ R. If Pr is the restriction of

the Poincaré map to ∆(S), which has a dimension 2, then

dPr =




1 ?

0 λ


 .

Therefore, if |λ| < 1 the symmetric periodic orbit is neutrally (marginally) stable. In

the next section, we will show that for the 3D LIP, λ represents how well the motion

in the x-direction will be coordinated with the motion in the y-direction.

4This will be shown in Section 6.2.
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6.2 Synchronization

The symmetric HZD of many examples of 3D legged robots are second order

hybrid systems of dimension two which can be described by the (x, y) position of the

hip of COM (see Section VI.5 and all 3D examples in Chapter III). The general form

of such symmetric HZD is

ẍ = f(x, y, ẋ, ẏ),

ÿ = g(x, y, ẋ, ẏ),

such that

f(−x, y, ẋ,−ẏ) = −f(x, y, ẋ, ẏ),

g(−x, y, ẋ,−ẏ) = g(x, y, ẋ, ẏ),

with the impact surface S = {(x, y, ẋ, ẏ)|x2 + y2 = x20 + y20} for some x0, y0 > 0 and

∆(x−, y−, ẋ−, ẏ−) = (−x0, y0, ẋ−,−ẏ−).

Writing this HZD in the from ζ̇ = X(ζ), it is easy to check that this hybrid system

is a G-SHS with G : (x, y, ẋ, ẏ) 7→ (−x, y, ẋ,−ẏ). Since (x+, y+) is fixed to (−x0, y0),

in the following, this G-SHS is referred to as (x0, y0)-invariant (to imply invariance of

(x+, y+)).

Below, we discuss the 3D LIP as an example of such G-SHS through which we

introduce the notion of self-synchronization.

Example VI.6. (3D LIP Self-Synchronization) The equations of motion of the

3D LIP biped in the continuous phase of motion are

ẍ = ω2x, ÿ = ω2y, (6.2)

92



where the symmetry map is G(x, y, ẋ, ẏ) = (−x, y, ẋ,−ẏ). With the initial conditions

x(0) = −x0, y(0) = y0, ẋ(0) = ẋ0, ẏ(0) = ẏ0, (6.3)

the solution of system (6.2) is

x(t) = −x0 cosh(ωt) +
ẋ0
ω

sinh(ωt), (6.4)

y(t) = y0 cosh(ωt) +
ẏ0
ω

sinh(ωt). (6.5)

We want to find (ẋ0, ẏ0) such that the solution that starts from (−x0, y0) is symmetric

(a.k.a. synchronized). Such a solution passes through one of the fixed points of G,

which are in the from (x∗, y∗, ẋ∗, ẏ∗) = (0, y∗, ẋ∗, 0). That is, when x(t) = 0, we

should have ẏ(t) = 0. Therefore, if we set the derivative of the derivative of the

second equation above to zero, we find the time, ty, that it takes for ẏ to become

zero:

tanh(ωty) = − ẏ0
y0ω

. (6.6)

Similarly, from equation (6.4), the time tx at which x = 0 is found from the following

equation:

tanh(ωtx) =
x0ω

ẋ0
. (6.7)

In order for the solution to be synchronized tx must be equal to ty. Therefore, from

equations (6.6) and (6.7), this solution is synchronized if and only if

ẋ0ẏ0 + ω2x0y0 = 0.
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Thus, if we define L : T(−x0,y0)Q → R by

L(ẋ0, ẏ0) = ẋ0ẏ0 + ω2x0y0, (6.8)

the solution starting from (−x0, y0) with initial velocity (ẋ0, ẏ0) is synchronized if

L(ẋ0, ẏ0) = 0.

Function L defined in equation (6.8) is called the synchronization measure of the

(x0, y0)-invariant 3D LIP. In fact, L(ẋ0, ẏ0) = 0 defines a one-dimensional submani-

fold, K, of T(−x0,y0)Q; any solution starting from this submanifold is synchronized and

leads to periodic motion.

By Proposition 1 in the appendix, for a general 2-dimensional (x0, y0)-invariant

second order SHS, under some conditions, there exists a function L : T(−x0,y0)Q → R

with rank 1 such that if L(ẋ0, ẏ0) = 0, then the solution starting from (−x0, y0)

with initial velocity (ẏ0, ẏ0) is synchronized. Function L is called the synchronization

measure of the (x0, y0)-invariant SHS. If

K = {(q, q̇) ∈ T(−x0,y0)Q|L(q̇) = 0},

then K is a one-dimensional submanifold of T(−x0,y0)Q and is called the synchroniza-

tion submanifold of the SHS at (−x0, y0). Any solution starting from the synchro-

nization manifold is synchronized. Since K is an embedded submanifold of T(−x0,y0)Q,

we can define a local coordinate system (K,L) such that (K, 0) is a local coordinate

system on K. Hereafter, we assume that such a coordinate system exists.

Corresponding to a 2-dimensional (x0, y0)-invariant second order SHS, there exists

an 2-dimensional restricted Poincaré map P : T(−x0,y0)Q → T(−x0,y0)Q that maps

(ẋ, ẏ) at the beginning of a step to its value at the beginning of the next step. In the

coordinate system (K,L), P is denoted by (PK , PL).

If L = 0, the solution is symmetric; therefore, in the coordinate system (K,L), P
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has fixed points of the form (K∗, 0) for some K∗ ∈ R. In the following proposition, a

general form for the Jacobian of P at (K∗, 0) is derived.

Proposition VI.7. Let P : T(−x0,y0)Q → T(−x0,y0)Q denote the restricted Poincaré

map corresponding to an (x0, y0)−invariant SHS. Let (K∗, 0) be a fixed point of P .

In the coordinate system (K,L) of T(−x0,y0)Q, we have

DP (K∗, 0) =




1 ∂PK/∂L(K∗, 0)

0 ∂PL/∂L(K∗, 0)


 . (6.9)

Proof. By definition of Jacobian,

DP2,1(K∗, 0) = ∂PL
∂K

(K∗, 0)

= limδK0→0
PL(K∗+δK0,0)−PL(K∗,0)

δK0
.

However, for small enough δK0, when L = 0 the solution is periodic; therefore,

PL(K∗ + δK0, 0) = 0, PL(K∗, 0) = 0.

From the above equation for DP1,1(K∗, 0), we have

DP2,1(K∗, 0) = 0,

as desired. Similarly,

PK(K∗ + δK0, 0) = K∗ + δK0, PK(K∗, 0) = K∗.
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Therefore,

DP1,1(K∗, 0) = ∂PK
∂K

(K∗, 0)

= limδK0→0
PK(K∗+δK0,0)−PK(0,K∗)

δK0

= limδK0→0
K∗+δK0−K∗

δK0

= 1.

Thus, the first column of the matrix DP (K∗, 0) is [1, 0]T as desired.

Equation (6.9), as expected, is consistent with Proposition VI.2 and shows that

the Jacobian of the restricted Poincaré map P at (K∗, 0) necessarily has an eigenvalue

of 1.

In (6.9), letting λ = ∂PL/∂L(K∗, 0),

DP (K∗, 0) =




1 ?

0 λ


 . (6.10)

Thus, the eigenvalues of DP (K∗, 0) are {λ, 1} with λ = ∂PL/∂L(K∗, 0). In general,

even for 2-dimensional SHSs, we cannot find a closed-form formula for λ. However,

in the 3D LIP, as the following proposition states, we can find a closed-form formula

for λ (see (Razavi et al., 2015)).

Proposition VI.8. Suppose that a symmetric periodic orbit of an (x0, y0)-invariant

3D LIP biped model has velocities ẋ = ẋ0 > 0 and ẏ = ẏ0 < 0 when x = −x0. Suppose

that K0 is the kinetic energy of the periodic orbit at x = −x0 and K0 − ω2x0y0 > 0.

Then

λ = −1 +
2ω2(y20 − x20)

ω2(y20 − x20) + 2
√
K2

0 − ω4x20y
2
0

. (6.11)

According to equation (6.11) for the 3D LIP, |λ| < 1 if y0 > x0.
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Figure 6.1: Self-synchronization of the 3D LIP for x0 = 0.2 and y0 = 0.22. The
numbers on the graph refer to the step number.

Proposition 2 in the appendix generalizes this proposition to a class of switching

surfaces. In particular, it is shown that by modifying the switching surface, |λ| can

become smaller than 1 for values of x0 and y0, where y0 is not necessarily greater than

x0.

Definition VI.9. A periodic orbit of a 2-dimensional second order (x0, y0)-invariant

SHS, with DP in the form (6.11), is said to be self-synchronized at K∗ if |λ| < 1.

Fig. 6.2 shows a simulation of the 3D LIP, demonstrating its self-synchronization

property under an (x0, y0)-invariant gait, where x0 = 0.2 and y0 = 0.22. In this

simulation, the initial velocities (ẋ0, ẏ0) are such that L(ẋ0, ẏ0) 6= 0, but eventually L

converges to zero, and the solution approaches a symmetric periodic orbit.

Remark VI.10. In the case of a planar robot, if the zero dynamics is a one-

dimensional second order system, with obvious modification of the proof of Proposi-

tion VI.7, it immediately follows that DP (K∗) = 1. That is, the only eigenvalue of

the Jacobian of the Poincaré map associated with the symmetric periodic orbit is 1.
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Figure 6.2: Multiple symmetric periodic solutions of the 3D LIP biped, where ẋ∗

is the time derivative of the solution at the mid-step. The top curve
corresponds to a higher kinetic energy.

Remark VI.11. (Synchronization and Kinetic Energy) For the 3D LIP it was

shown that the eigenvalues of the Poincaré map at the fixed points (K∗, 0) are {λ, 1},

and if |λ| < 1, then the symmetric periodic orbits are self-synchronized. This means

that the period of oscillations in the x direction eventually matches that in the y

direction, and the 3D LIP biped follows a periodic orbit. The other eigenvalue, which

is 1, corresponds to neutral stability in kinetic energy. That is, if a small perturbation

is applied to the 3D LIP, it will still become synchronized but will eventually follow

a periodic orbit with a different level of kinetic energy. For instance, Fig. 6.2 shows

three periodic orbits of a 3D LIP with three different levels of kinetic energy. In

Section 6.3, we illustrate how judiciously chosen asymmetries, such as loss of energy at

impact in combination with energy gain over a step, can move the eigenvalues within

the unit circle. With this approach, the stability problem in 3D legged locomotion is

viewed as synchronization plus the convergence of the kinetic energy. Of course, in

2D legged locomotion, synchronization is not an issue.
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6.3 Mechanisms of Stability

Based on the stability analysis in Section 6.1 and 6.2, a symmetric periodic orbit

of an SHS is at best neutrally (marginally) stable. In this section, we discuss two

methods for stabilization of symmetric periodic orbits of an SHS: (i) introducing

asymmetries and (ii) foot placement.

Asymmetries include energy injecting asymmetries and energy dissipating asym-

metries. As it will be discussed in Section 6.3.1, appropriate choice of such asymme-

tries will cause the neutrally stable symmetric periodic orbits of the SHS to converge

to a single stable limit cycle. While introduction of energy injecting and energy dissi-

pating asymmetries can asymptotically stabilize neutrally stable symmetric periodic

orbits (i.e., the symmetric periodic orbits which are self-synchronized), for unstable

symmetric periodic orbits, and in general, to increase the basin of attraction of the

symmetric periodic orbits, foot placement is essential. In Section 6.3.2, we show that

a simple foot placement strategy can render a symmetric periodic orbit asymptot-

ically stable. In Chapter VII, symmetry method with introduction of asymmetries

and foot placement is successfully tested on a 12-DOF 3D model of a humanoid.

6.3.1 Introducing Asymmetries

By introducing small asymmetries to an SHS, the system is no longer symmetric,

but is close to an SHS. That is why according to the following definition we refer to

such a system as a perturbed SHS.

Definition VI.12. Let Σε = (Xε, Q,∆ε,S) be a class of second order hybrid systems

systems indexed by ε ∈ O ⊂ Rk such that Σs := Σ0 is an SHS, and O is an open

set containing ε = 0. Then Σε is said to be a Perturbed Symmetric Hybrid System

(PSHS) with perturbation ε.

We assume that Σε is smooth, that is, Xε(x) = X(ε, x) and ∆ε(x) = ∆(ε, x) for
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some smooth functions X and ∆.

Below we present three examples to show how adding asymmetries, which accord-

ing to the above definition are quantified by ε, can turn infinitely many periodic orbits

of an SHS into an isolated stable limit cycle. If the asymmetries are appropriately

introduced, for each set of asymmetries there is a stable limit cycle. Therefore, we

end up having a family of stable limit cycles, which can be classified based on the

amount of asymmetry. Moreover, by changing the asymmetries (for instance, the

average pitch angle) during walking, the legged system can move from one periodic

orbit to another. The effect of introducing asymmetries to symmetric walking gaits

for a spring-leg biped is also studied in (Merker et al., 2011) and (Merker et al., 2015),

and it is shown that an appropriate choice of asymmetries can result in stability.

6.3.1.1 Planar Examples

We first discuss planar examples in which clearly, synchronization is not relevant.

Indeed, in 2D legged locomotion at a fixed point K∗ as noted in Remark VI.10,

DP (K∗) = 1; thus, the only eigenvalue of the Jacobian of the Poincaré map asso-

ciated with a symmetric periodic orbit is 1. Consequently, the symmetric periodic

orbits are neutrally stable. In the following examples, we show that with appropriate

introduction of asymmetries, all symmetric periodic orbits turn into one single stable

limit cycle.

Example VI.13. (2D LIP with External Force and Impact Loss) For the first

example, we discuss a 2D LIP biped. As discussed in Example II.12, the 2D LIP

biped is an SHS. In a 2D LIP, the synchronization measure L is always 0 simply

because the problem is planar (thus, synchronization is not an issue). The equations

of motion of an x0-invariant 2D LIP are

ẍ = ω2x,
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where ω2 = g/M with M being the point mass, and

x+ = −x0, ẋ+ = ẋ−,

with the switching surface

S = {(x, ẋ)|x = x0},

for some x0 > 0. The symmetry map for this SHS is G : (x, ẋ) 7→ (−x, ẋ). By

Proposition II.13, this SHS possesses infinitely many symmetric periodic orbits cor-

responding to fixed points of G which are in the form (0, ẋ∗). Thus, for these periodic

orbits, according to Proposition VI.7, the derivative of the Poincaré map is 1. We now

add energy injecting and energy dissipating asymmetries and investigate the stability

of the periodic orbits. The energy injecting asymmetry we add is a positive external

force applied to mass M , and the energy dissipating asymmetry added is the kinetic

energy loss at impact. We model such asymmetries as follows. In the continuous

phase,

ẍ = ω2x+
c1
M
F0(x), (6.12)

for a constant c1 > 0 and a smooth function F0(x) > 0, and in the discrete phase,

x+ = −x0, ẋ+ = c2ẋ ,̄ (6.13)

for a constant 0 < c2 < 1 with the switching surface

S = {(x, ẋ)|x = x0}.

Then the above hybrid system is an x0-invariant PSHS with ε = (c1, 1 − c2). Since
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the problem is planar, to study stability, all we need to check is whether the kinetic

energy is stable, that is, if after adding the above asymmetries, the eigenvalue 1 moves

within the unit circle. If we multiply both sides of equation (6.12) by ẋ and integrate

with respect to time from t = 0, where x = −x0, to t = T , where x = x0, we obtain

T∫

0

ẍẋdt = ω2

T∫

0

xẋdt+

T∫

0

c1
M
F0(x)ẋdt.

From this equation,

T∫

0

ẍẋdt = ω2

x0∫

−x0

xdx+

x0∫

−x0

c1
M
F0(x)dx.

Simplifying this equation results in

1

2
((ẋ−)2 − (ẋ+)2) = 0 +

c1
M
W0, (6.14)

where

W0 =

x0∫

−x0

F0(x)dx,

and c1W0 is the work done by the external force c1F0(x) in one step. Since by

assumption F0(x) > 0, we have W0 > 0. Moreover, from equation (6.14), we have

K−0 −K+
0 = c1W0, (6.15)

where K+
0 is the kinetic energy at the beginning of the step and K−0 is the kinetic

energy at the end of the step. From equation (6.13), if K+
1 is the kinetic energy at
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the beginning of the next step, we have

K+
1 = c22K

−
0 .

Combining this equation with equation (6.15),

K+
1 = c22K

+
0 + c22c1W0. (6.16)

This equation is, in fact, the equation for the Poincaré map in terms of kinetic energy.

If we set K+
1 = K+

0 , for c = (c1, c2) we find the unique fixed point Kc
∗ of the Poincaré

map of the PSHS:

Kc
∗ =

c22c1W0

1− c22
. (6.17)

From equation (6.16), the eigenvalue of the linearized Poincaré map is λ = c22, which

is clearly in the unit circle, since 0 < c2 < 1.

In the above example, before adding asymmetries, the Poincaré map has infinitely

many fixed points that are neutrally stable; whereas after adding appropriate asym-

metries, the system has one single asymptotically stable limit cycle. In fact, based

on equation (6.17), each value of c1 and c2 results in a different limit cycle. That is,

we obtain a family of stable limit cycles that can be indexed by (c1, c2).

We note that a general criterion for stability of hybrid systems with one degree

of underactuation is given in (Chevallereau et al., 2003), which for this example will

yield the same results as above.

It is immediate to generalize the above example to the following proposition.

Proposition VI.14. Consider the PSHS

ẍ = fs(x) + c1F (x),
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where F (x) is a smooth function, fs(x) is a smooth odd function, and c1 > 0, with

the impact map

x+ = −x0, ẋ+ = c2ẋ
−,

and the switching surface

S = {(x, ẋ)|x = x0},

where 0 < c2 < 1. Let W0 =
∫ x0
−x0 F (x)dx and define K = (1/2)ẋ2. If W0 > 0, then

the system has an asymptotically stable periodic orbit such that

K∗ =
c22c1W0

1− c22

is a fixed point of the Poincaré map and

λ = c22

is its derivative at K∗.

Example VI.15. (2D Inverted Pendulum on Slope) Another example in 2D

that illustrates the introduction of asymmetries to an SHS is the IP biped on a slope,

as described in Fig. 6.3. If we assume that the slope is zero and the impact map

is trivial, that is, θ̇+ = θ̇−, the system is a G-SHS with G : (θ, θ̇) 7→ (−θ, θ̇) and

has infinitely many periodic orbits with neutrally stable kinetic energy. With slope

α > 0, which is acting as a perturbation to this SHS, the equation of motion in the

continuous phase is

θ̈ = ω2 cos(α) sin(θ) + ω2 sin(α) cos(θ),
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where ω2 = g/l. Using the conservation of angular momentum at impact, the impact

map is found to be

θ̇+ = cos(2θ0)θ̇
−,

where −θ0 is the initial value of θ in each step. The step length will then be

d = 2l sin(θ0). Using the terminology of Proposition VI.14, fs(θ) = ω2 cos(α) sin(θ),

F (θ) = cos(θ), c1 = ω2 sin(α) and c2 = cos(2θ0). Therefore, the PSHS is described

by the following equations:

θ̈ = fs(θ) + c1F (θ), (6.18)

where fs is an odd function of θ, and

θ+ = −θ0, θ̇+ = c2θ̇
−. (6.19)

Define

W0 =
∫ θ0
−θ0 fa(θ)dθ

= ω2 sin(α)
∫ θ0
−θ0 cos(θ)dθ

= 2ω2 sin(α) sin(θ0).

(6.20)

From Proposition VI.14, the fixed point of the Poincaré map in terms of K = (1/2)θ̇2

is

K∗ =
2ω2 cos2(2θ0) sin(θ0) sin(α)

1− cos2(2θ0)
,

and the derivative of the Poincaré map at this point is λ = cos2(2θ0), which has an

absolute value of less than one for 0 < θ0 < π/4; hence, the periodic orbit is stable.

105



We note that in contrast to the passive compass gait models such as (Garcia

et al., 1998) and (Goswami et al., 1997), we assume that the initial configuration of

the biped at the beginning of each step is fixed. This condition in an actual biped

can be achieved by swing leg control.

O

θ

Figure 6.3: Simple Planar Biped on Slope. The time that center of mass spends
before the support point (i.e., the deceleration period) is less than the
time it spends after the support point (i.e., acceleration period)

6.3.1.2 A 3D Example

Example VI.16. (3D LIP with External Force) Consider the (x0, y0)-invariant

3D LIP biped with a constant positive external force F0 > 0 in the x-direction. The

equations of motion are

ẍ = ω2x+ F0, ÿ = ω2y, (6.21)

with the impact map

x+ = −x0, y+ = y0, ẋ
+ = c1ẋ

−, ẏ+ = −c2ẏ−, (6.22)
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for 0 < c1 < 1 and 0 < c2 < 1. Also, the switching surface is assumed to be

S = {(x, y, ẋ, ẏ)|x2 + y2 = x20 + y20}.

for x0 > 0 and y0 > 0. Clearly, this is a PSHS with ε = (F0, 1 − c1, 1 − c2); that

is, if ε = 0, the system becomes an SHS. To study the existence and stability of the

periodic orbits of this PSHS, we find the fixed points of the restricted Poincaré map

P : T(−x0,y0)Q → T(−x0,y0)Q and the eigenvalues of its Jacobian. One can check that

the above system has the following integrals:

ẋ2 − ω2x2 − 2F0x = C1,

ẏ2 − ω2y2 = C2,

ẋẏ − ω2xy − F0y = C3.

Let (−x0, y0, ẋ0, ẏ0) be the state at the beginning of the current step and

(x1, y1, ẋ
−
1 , ẏ

−
1 ) be the state at the end of the step. By the equations above,

ẋ20 − ω2x20 + 2F0x0 = (ẋ−1 )2 − ω2x21 − 2F0x1,

ẏ20 − ω2y20 = (ẏ−1 )2 − ω2y21,

ẋ0ẏ0 + ω2x0y0 − F0y0 = ẋ−1 ẏ
−
1 − ω2x1y1 − F0y1.

Based on the definition of the impact map, we have ẋ+1 = c1ẋ
−
1 and ẏ+1 = −c2ẏ−1 . If

we substitute these into the equations above, then

ẋ20 − ω2x20 + 2F0x0 = d1(ẋ
+
1 )2 − ω2x21 − 2F0x1,

ẏ20 − ω2y20 = d2(ẏ
+
1 )2 − ω2y21,

ẋ0ẏ0 + ω2x0y0 − F0y0 = d3ẋ
+
1 ẏ

+
1 − ω2x1y1 − F0y1,
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where d1 = 1
c21
, d2 = 1

c22
and d3 = −1

c1c2
. Also, according to the definition of the switching

surface,

x21 + y21 = x20 + y20.

The last four equations implicitly define the restricted Poincaré map (ẋ0, ẏ0) 7→

(ẋ+1 , ẏ
+
1 ). Setting ẋ∗ = ẋ0 = ẋ+1 and ẏ∗ = ẏ0 = ẏ+1 in these equations, we can

find the fixed point, (ẋ∗, ẏ∗), of the Poincaré map. Let x∗1 and y∗1 be the val-

ues of the x1 and y1 on this periodic orbit. If we linearize the equations above

around (ẋ∗, ẏ∗), we can find the Jacobian of the restricted Poincaré map. Let

(−x0, y0, ẋ∗ + δẋ0, ẏ∗ + δẏ0) be the perturbed initial state and let x1 = x∗1 + δx1,

y1 = y∗1 + δy1 and (ẋ+1 , ẏ
+
1 ) = (ẋ∗ + δẋ1, ẏ∗ + δẏ1). From the equations above,

2ẋ∗δẋ0 = 2d1ẋ∗δẋ1 − (2ω2x∗1 + 2F0)δx1,

2ẏ∗δẏ0 = 2d2ẏ∗δẏ1 − 2ω2y∗1δy1,

ẏ∗δẋ0 + ẋ∗δẏ0 = d3(ẏ∗δẋ1 + ẋ∗δẏ1),

−ω2y∗1δx1 − (ω2x∗1 + F0)δy1,

0 = x∗1δx1 + y∗1δy1.

These equations implicitly define the Jacobian of the Poincaré map. For simplicity,

we write them in matrix form. Define

A =




2ẋ∗ 0

0 2ẏ∗

ẏ∗ ẋ∗

0 0



,
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and

B =




2d1ẋ∗ 0 −(2ω2x∗1 + 2F0) 0

0 2d2ẏ∗ 0 −2ω2y∗1

d3ẏ∗ d3ẋ∗ −ω2y∗1 −(ω2x∗1 + F0)

0 0 x∗1 y∗1



.

Then

A



δẋ0

δẏ0


 = B




δẋ1

δẏ1

δx1

δy1



.

From this equation,




δẋ1

δẏ1

δx1

δy1




= B−1A



δẋ0

δẏ0


 .

The first two rows of the equation above define the linearized Poincaré map at (ẋ∗, ẏ∗);

thus, if C = B−1A, then

DP (ẋ∗, ẏ∗) =




C1,1 C1,2

C2,1 C2,2


 .
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These results are used below to numerically study the (x0, y0)-invariant PSHS de-

scribed in equations (6.21) and (6.22) with

x0 = 0.3, y0 = 0.4, ω2 = 9.

The fixed points are found in the (K,L) coordinates, where L is the synchronization

measure of the 3D LIP, that is, L = ẋẏ + ω2x0y0 and K = (1/2)(ẋ2 + ẏ2). The fixed

points of the restricted Poincaré map are denoted by (K∗, L∗). We know that for

the associated SHS, that is, when the perturbation is zero, L∗ = 0; however, for the

PSHS, as it can be seen in Table 6.2, L∗ is nonzero, but as long as asymmetries (i.e.,

F0, 1− c1 and 1− c2) are small, L∗ remains small.

Fig. 6.4 illustrates how the eigenvalues change with the addition of asymmetries.

The bottom graph shows how asymmetries turn the neutrally stable periodic orbits

into asymptotically stable limit cycles. Again, we end up with a family of limit cycles,

which can be indexed by (F0, c1, c2).

Case F0 c1 c2

1 0.5 0.95 0.92
2 1 0.90 0.90
3 2 0.90 0.85

Table 6.1: Different Numerical Cases of the PSHS with ε = (F0, 1− c1, 1− c2).

Case L∗ K∗ λ1 λ1s λ2 λ2s

1 0.078 2.680 0.905 1 -0.705 -0.772
2 0.117 2.522 0.810 1 -0.680 -0.757
3 0.145 5.037 0.811 1 -0.750 -0.880

Table 6.2: The cases are defined in Table 6.1. λs denotes the eigenvalue of the corre-
sponding SHS evaluated at K∗ = 0.5((ẋ∗)2 + (ẏ∗)2). As seen in the table,
the eigenvalue 1 of the SHS becomes smaller than 1 once the asymmetries
are added.
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Figure 6.4: Synchronization and Kinetic Energy (K.E.) Eigenvalues of the PSHS vs.
SHS when F0 = 1 and c1 = c2 = c is changing from 0.99 to 0.85. In these
graphs, for each value of c there exists a fixed point (ẋ∗, ẏ∗) for the PSHS.
At this fixed point, the eigenvalues of the corresponding SHS is found
from equation (6.11) with K0 = (1/2)(ẋ2∗ + ẏ2∗). From the bottom graph
it is clear that after adding asymmetries the neutral stability of kinetic
energy is turned into asymptotic stability.
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6.3.2 Foot Placement

In the previous section, we showed that by introducing appropriate asymmetries,

the symmetric periodic orbits of an SHS can turn into asymptotically stable limit

cycles.

In this section, we show that it is possible to turn the symmetric periodic orbits

of a symmetric legged robot into asymptotically stable limit cycles by merely using

an event-based foot placement algorithm.

First, we discuss a simple foot placement algorithm for the 2D LIP, and then we

present a foot placement algorithm for the 3D LIP. In Chapter VII, we verify the

effectiveness of this algorithm on a 12-DOF 3D biped.

6.3.2.1 A Foot Placement Algorithm for the 2D LIP Biped

Recall the equations of motion of the x0-invariant 2D LIP:

ẍ = ω2x,

x+ = −x0,

ẋ+ = ẋ−,

S = {(x, ẋ)|x = x0},

(6.23)

where x0 > 0. To implement the foot placement algorithm, we modify the 3D LIP

equations as follows

ẍ = ω2x,

x+ = −(x0 + δ),

ẋ+ = ẋ−,

S = {(x, ẋ)|x = x0},

(6.24)
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where δ is to be determined. Suppose that xs(t) is a symmetric solution of the 2D

LIP that we wish to stabilize with foot placement. Suppose that ẋ∗m is the value of

ẋ(t) at the mid-step (i.e., when x = 0). Let

δ = c(ẋm − ẋ∗m), (6.25)

for some c > 0, where ẋm is ẋ calculated at mid-step. With this definition, when

ẋm = x∗m the solution is periodic (in fact, it is exactly xs(t)). Substituting δ from

equation (6.25) to the second equation of (6.24) results in the following event-based

foot placement algorithm

x+n+1 = −x0 + c(ẋmn − ẋ∗), (6.26)

where ẋmn is the velocity at the mid-step of step n and x+n+1 is the initial position at

the beginning of step n + 1. In an actual robot, (6.26) can be achieved by swing leg

foot placement. From (6.26) and the definition of orbital energy (see (Kajita et al.,

2001; Razavi et al., 2015)),

ẋ2mn+1
= ẋ2mn − ω2((x0 + δn)2 − x20), (6.27)

where δn = c(ẋmn − ẋ∗). Equation (6.27) can be written in the form ẋmn+1 = g(ẋmn)

with

g(ẋmn) = (ẋ2mn − ω2((x0 + δn)2 − x20))
1
2 . (6.28)

It is easy to check that ẋ∗m is a fixed point of this function; moreover,

dg

dẋm
(ẋ∗m) = 1− cω2x0

ẋ∗
. (6.29)
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Clearly, for small enough c > 0,

∣∣∣∣
dg

dẋm
(ẋ∗m)

∣∣∣∣ < 1, (6.30)

which guarantees that the fixed point ẋ∗m is asymptotically stable.

The above foot placement algorithm can be explained in terms of energy as well;

with the above choice of δ, the input energy per unit mass to the system at each step

is

Ein =

x0∫

−x0−δ

ω2x dx

=
1

2
ω2(x20 − (x0 + δ)2). (6.31)

If the perturbation is in form of an injection of energy, then by (6.25), δ > 0, hence,

from (6.31), Ein < 0, and if the perturbation is in form of a reduction of energy, then

by (6.25), δ < 0, hence, from (6.31), Ein > 0.

Remark VI.17. Note that even though we did not include any impact losses in this

example, the stability mechanisms of foot placement is in principle similar to that

of the introducing asymmetries with impact losses as in Example VI.13. Based on

this principle, if there is an injection of energy to the system due to a perturbation,

then to cancel this perturbation the input energy to the system by actuators or from

the impact has to be negative (i.e., either by negative work of actuators or impact

losses), and if there is a reduction of energy due to a perturbation, then the input

energy to the system has to be positive either by more positive work of actuators or

less negative energy loss due to impact.

Since in practice there always will be impact and friction losses, a practical mech-

anism for stabilization of symmetric periodic orbits of a legged robot would be a

combination of passivity-based method (i.e., introducing energy-injecting and energy-
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dissipating asymmetries) and foot placement algorithm.

6.3.2.2 A Foot Placement Algorithm for the 3D LIP

The equations of motion of the 3D LIP with foot placement can be written as

follows:

ẍ = ω2x,

ÿ = ω2y,

(x+, y+) = (−(x0 + δx), y0 + δy),

(ẋ+, ẏ+) = (ẋ−,−ẏ−),

S = {(x, y, ẋ, ẏ)|x2 + y2 = x20 + y20},

where δx and δy are set at the mid-step (i.e., when x = 0) as follows:

δx = cx(ẋm − ẋ∗m),

δy = max{0, cyẏm},

where, ẋm and ẏm are the velocities in the x and y directions, respectively, and ẋ∗m > 0

is the target velocity in the x-direction. Based on the equation of δy, y
+ is always

greater than or equal to y0; in other words, in the lateral plane, the swing foot is only

allowed to be placed farther than y0.

By (6.10) and Proposition VI.8 the symmetric periodic orbits of the 3D LIP are

at best neutrally stable (if y0 > x0). Below, we present a numerical example to show

that with the above foot placement algorithm, symmetric periodic orbits of the 3D

LIP turn into asymptotically stable limit cycles.

Fig. 6.5 and 6.6 show the results of the numerical simulations for x0 = 0.15 and

y0 = 0.09. Since y0 < x0, by (6.11), |λ| > 1, thus, the symmetric orbits of the 3D LIP

with these x0 and y0 are not stable. However, as it can be seen in Fig. 6.5 with the
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Figure 6.5: ẋ and ẏ at mid-step vs. step Number for x0 = 0.15 and y0 = 0.09.
Convergence of ẋ and of ẏCOM at the mid-step confirms stability of kinetic
energy, and synchronization, respectively.

above foot placement algorithm an asymptotically stable limit cycle is achieved. Fig.

6.6 shows the resulting trajectory of y vs. x which as expected is an even function.

6.4 Perturbed Symmetric Bézier Polynomials

In Example V.8, we showed that by using appropriate SBPs the HZD of the 5-DOF

2D biped becomes an SHS with one degree of freedom which has an infinite number of

symmetric periodic orbits (Fig. 5.7 shows a few of them). By Proposition VI.2, these

periodic orbits are all neutrally stable (the only eigenvalue of the Jacobain Poincaré

map on the HZD is one). In this section, we show that by slight modification of the

SBPs we can obtain asymptotically stable limit cycles. By this modification of SBPs

both introduction of asymmetries and foot placement can be achieved systematically.

Suppose that y = h(x) defines a set of SVCs for a hybrid system. A set of

perturbed SVCs is defined as y = h(x) + hp(ε, x) such that hp is a smooth function
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Figure 6.6: y vs. x on the limit cycle for x0 = 0.15 and y0 = 0.08 without foot
placement. yCOM is an almost symmetric (even) function of x as expected.

and limε→0 hp(ε, x) = 0

Similarly, if αk for k = 0, 1, . . . ,M are the coefficients of an SBP of degree M . A

Perturbed Symmetric Bézier Polynomial (PSBP) is an SBP with coefficients αk + εk

with small εk ∈ R. Figs. 6.7 and 6.8 show two examples of PSBPs vs. SBPs for the

5-DOF 2D biped.

Example VI.18. (PSBPs for the 5-DOF Biped and Limit Cycle Walking)

Fig. 5.7 in Chapter V shows a few of the symmetric periodic orbits obtained by using

SBPs. In order to obtain a limit cycle walking gait, we modify a few of the SBPs as

depicted in Fig. 6.7 and Fig. 6.8. Based on the PSBP in Fig. 6.7, the COM of the

biped will have a non-zero component in the z-direction which causes impact loss.

On the other hand, as depicted in Fig. 6.8, by modifying h2, the biped is leaning

forward during each step; as a result, the robot’s COM spends more time in front

of the support point (thus, generating energy input to cancel the impact loss). Fig.

6.9 shows the asymptotic stability of the resulting limit cycle. By modifying h1 or
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(1, 1, 1.2, 1, 1) and for the PSBP αps = (1, 1, 1.2, 1.03, 1). That is,
αps = αs + ε1, where ε1 = (0, 0, 0, 0.03, 0). With this skewed output,
right before the impact the biped’s COM velocity is pointing toward the
ground and hence, causes impact loss.
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Figure 6.8: An SBP vs. a PSBP for θp = h2(s). For the SBP, αs = (0, 5, 0,−5, 0) (in
degrees) and for the PSBP αps = (2, 7, 2, 3, 2). That is, αps = αs + ε2,
where ε2 = (2, 2, 2, 2, 2). With this skewed output, the pitch angle of the
torso is on average greater than zero; which results in a positive average
position of the COM.
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range of initial velocities the solutions asymptotically approach a limit
cycle.

h2 differently different limit cycle walking gaits (for instance, with different average

speeds) can be achieved easily. This can lead to a library of stable gaits which are

functions of ε1 and ε2. For instance, Fig. 6.10 shows the steady-state velocity (right

after impact) vs. the amount of the modification of θp, εp. As expected, by increasing

the average pitch angle (i.e., the more the torso is leaned forward) the steady-state

speed increases.

In the next chapter, the PSBPs are used for a 12-DOF 3D biped to achieve stable

limit cycle walking gaits.
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grees to 6.5 degrees.
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CHAPTER VII

Symmetry Method Applied to the Bipedal Robot

Romeo

Romeo is a humanoid robot built by Aldebaran Robotics c© with the ultimate goal

of serving as a personal assistant. In this chapter, first, we briefly explain the model

of the robot, and then we apply the symmetry method to develop stable walking gaits

for this robot.

7.1 Romeo’s Model

Fig. 7.1 shows the humanoid robot Romeo. Romeo weighs about 42 kg and its

height is 1.2 m. When standing upright, the COM height is 0.67 m. Excluding

the eyes, fingers, and passive toes this robot has 31 joints each with one DOF. By

convention, rotation about the z-axis is called yaw, rotation about x-axis is called

roll and rotation about y-axis is called pitch. In our study, we assume that the upper

body is fixed (by setting all upper body angles to fixed values). This simplified model

has 12 DOF; 6 DOF in each leg. Figs. 7.2 through 7.4 describe the joints and their

limits for this 12-DOF model.

The joint and link information such as link masses and axes of rotations of joints

are provided in a so-called Unified Robot Description Format (URDF) file. After
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Figure 7.1: Romeo (from www.projetromeo.com)
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Figure 7.2: Left Leg Pitch Angles (from www.projectromeo.com). Overall there are
three pitch degrees of freedom in each leg. (Note that we are not including
the unactuated toe pitch joint)
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Figure 7.3: Left Leg Roll Angles (from www.projectromeo.com). Overall there are
two roll degrees of freedom in each leg

Figure 7.4: Left Leg Yaw (from www.projectromeo.com). Overall there is one yaw
degree of freedom in each leg.
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Coordinate Description Actuator

q1 right leg ankle roll angle u1
q2 right leg ankle pitch angle u2
q3 right leg knee angle u3
q4 right leg hip pitch angle u4
q5 right leg hip roll angle u5
q6 right leg hip yaw angle u6
q7 left leg hip yaw angle u7
q8 left leg hip roll angle u8
q9 left leg hip pitch angle u9
q10 left leg knee angle u10
q11 left leg ankle pitch angle u11
q12 left leg ankle roll angle u12

Table 7.1: Romeo’s 12-DOF model coordinates.

simplification of this file, in MATLAB, a structure for the robot is generated which

includes all the relevant information of the URDF. From this structure, the Modified

Denviat-Hartenberg (MDH) parameters1 are calculated based on the convention of

(Khalil and Dombre, 1999). Fig. 7.5 shows the MDH coordinate systems.

Having the MDH parameters, the equations of motion are derived using

Symoro+2.

Assuming that the right foot is flat and on the ground, the simplified model of

Romeo has 12 DOFs. The generalized coordinates for this 12-DOF model can be

considered to be q = (q1, q2, . . . , q12), where q1, . . . , q12 are defined in Table 7.1.

Romeo has 12 actuators in the two legs each directly controlling its corresponding

angle listed in Table 7.1. However, we assume that the stance leg ankle is always

passive, that is, u1 = u2 = 0. As a result, the 12-DOF model that we study has only

10 actuators, hence, has two degrees of underactuation.

1MDH parameters define the relative location of the coordinate systems attached to each joint.
It is assumed that the for the revolute joints the z axis of the joint coordinate system is the axis of
rotation of the joint. For a detailed discussion on MDH parameters see (Khalil and Dombre, 1999).

2Symoro stands for Symbolic Modeling of Robots. Symoro+, which is developed by the robot
modeling team of IRCCyN, France, generates computationally optimal forward and inverse kine-
matics and dynamics given the MDH parameters of the robot (Khalil et al., 1989)
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foot tip. By convention the z axis is the axis of rotation of each joint.

126



7.2 Generating Stable Walking Gaits for Romeo

Due to the asymmetries introduced by the knees and feet, Romeo is not a sym-

metric biped, however, similar to all other bipedal robots it is almost symmetric. So,

to generate stable walking gaits, we start with using PSBPs to design the outputs

that need to be driven to zero.

The steps to generate stable walking gaits based on the symmetry method are

according to Fig. 1.8. First, we detect the symmetry map of Romeo, ignoring the

asymmetries for the moment. Then, we define SBPs to achieve an almost symmetric

HZD. Again, ignoring the asymmetries the resulting HZD is an SHS, hence, possesses

an infinite number of symmetric solutions that can become symmetric periodic orbits.

The last step is to modify the SBPs to get appropriate PSBPs to obtain asymptotically

stable limit cycles. Achieving stable limit cycles is verified by simulations.

7.2.1 The Symmetry Map for Romeo and SVCs

As mentioned above, and explained in more details in Section 3.2.2, due to the

knees and feet, Romeo is not completely symmetric. However, the asymmetries in-

troduced by knees and feet are small enough that we can use the same theory as if

the robot was symmetric.

Let q = (q1, q2, . . . , q12), where qis are defined in Table

7.1. Let G be the map defined on the configuration space

of the robot which sends (q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12) to

(q1,−q2, q3,−q4, q5,−q6,−q7,−q8, q9,−q10,−q11, q12). Thus, if qi is denoting a

roll angle it is kept unchanged under the map G, otherwise, its sign is reversed. If

the legs were acting as a parallelogram as in the robot in Fig. 3.5 and there were no

feet, G would be the symmetry map of Romeo. However, we still consider this map

as an approximate symmetry map for Romeo3.

3Many bipedal robots have the same structure as that of Romeo, and we believe that the same
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Based on the symmetry method, at this point, the SVCs should be determined.

Assume that the right leg is the stance leg, and let xH denote the position of the right

leg hip. Let −x0 < xH < x0. Define the phase variable s as follows:

s =
xH
2x0

.

Then s varies between -0.5 and 0.5.

Since the 12-DOF model has only 10 actuators, we define 10 virtual constraints.

We choose to control the following outputs.

1. Stance knee angle: qstk = h1(s)

2. Torso pitch angle in the inertial frame : θp = h2(s)

3. Torso roll angle in the inertial frame: θr = h3(s)

4. Torso yaw angle in the inertial frame : θy = h4(s)

5. Swing leg yaw angle: θswy = h5(s)

6. Swing foot heel x coordinate with respect to the swing leg hip: xhf = h6(s)

7. Swing foot heel y coordinate with respect to the swing leg hip: yhf = h7(s)

8 . Swing leg knee: qswk = h8(s)

9. Swing leg foot pitch angle in the inertial frame θswfp = h9(s)

10. Swing leg foot roll angle in the inertial frame θswfr = h10(s)

The symmetry map G which in above was defined in the coordinates

(q1, q2, . . . , q12) in the coordinates (qstk , θp, θr, θy, θ
sw
y , xhf , yhf , q

sw
k , θswfp , θswfr ) sends

(qstk , θp, θr, θy, θ
sw
y , xhf , yhf , q

sw
k , θswfp , θswfr ) to (qstk ,−θp, θr,−θy,−θswy ,−xhf , yhf , qswk ,−θswfp , θswfr ).

Thus, in order for these virtual constraints (1-10) to be symmetric, based on the

symmetry map, the following conditions need to be satisfied:

C1. h1 is an even function.

symmetry map, G, defined above, is a good approximation of the inherent symmetries of these
bipeds.
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C2. h2 is an odd function.

C3. h3 is an even function.

C4. h4 is an odd function.

C5. h5 is an odd function.

C6. h6 is an odd function.

C7. h7 is an even function.

C8. h8 is an even function.

C9. h9 is an odd function.

C10. h10 is an even function.

We assume that the stance leg foot is always flat on the ground (i.e., always is

parallel the x−y plane of the inertial frame.). Consequently, right before the impact,

θswfp and θswfr need to be zero. Thus, a simple choice for h9 and h10 is h9 = h10 = 0.

Also, since we want the robot to walk on a straight line, we pick h4 = h5 = 0 (i.e.,

all the yaw angles are driven to zero). Finally, we select θr = h3 = 0. In the next

section, we use SBPs to define virtual constraints for the five remaining outputs qstk ,

θp, xhf , yhf and qswk .

Remark VII.1. It is very common that instead of the knee angles the hip height

and swing foot height are selected as outputs to be controlled. However, selecting

the swing foot height as an output needs careful attention because having zf as a

function of the phase variable s, where s = xH/x0, means that the impact is only

a function of the variable xH , that is, on the zero dynamics the impact surface is

xH = x0 and has no dependence on yH . As shown in Corollary 3 in the appendix,

for the 3D LIP, the transition surface xH = x0 leads to unstable symmetric periodic

gaits. That is, if impact occurs anytime xH is equal to x0, the symmetric periodic

orbits are not self-synchronized. Therefore, if zf is chosen as an output, using a foot

placement algorithm is necessary to obtain asymptotically stable limit cycle walking.
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7.2.2 SBPs for Romeo

We use SBPs of order 6 to define h1, h2, h6, h7 and h8. According to conditions

C1-C10 and the discussion of the SBPs in Section 5.4, the coefficients of these SBPs,

which are respectively denoted by α1, α2, α6, α7, α8, are in the form

α1 = [α1,0, α1,1, α1,2, α1,2, α1,1, α1,0],

α2 = [α2,0, α2,1, α2,2,−α2,2,−α2,1,−α2,0],

α6 = [α6,0, α6,1, α6,2,−α6,2,−α6,1,−α6,0],

α7 = [α7,0, α7,1, α7,2, α7,2, α7,1, α7,0],

α8 = [α8,0, α8,1, α8,2, α8,2, α8,1, α8,0].

(7.1)

In order to achieve an (x0, y0)-invariant SHS (see Section 6.2), the following conditions

need to be satisfied

α72 = x0, α82 = y0.

7.2.3 PSBPs for Romeo

As discussed before in Section 6.4, in order to compensate the impact and friction

losses, the SBPs must be modified slightly. Similar to the 5-DOF example in Section

6.4 the torso is inclined forward by a small angle θdp > 0; thus,

α2 = [α2,0, α2,1, α2,2,−α2,2,−α2,1,−α2,0] + ε2,

where ε2 = [θdp, θ
d
p, θ

d
p, θ

d
p, θ

d
p, θ

d
p]. Another way we introduce asymmetry to the outputs

is through the stance and swing knees such that at the end of each step the stance

leg length is greater than the swing leg length (see Fig. 7.6). Similar to θdp, this

asymmetry is an energy injecting asymmetry. To introduce such asymmetry in the
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knees we set4

α1 = [α1,0, α1,1, α1,2, α1,2, α1,1, α1,0] + ε1,

for ε1 = (−εknee, 0, 0, 0, 0, εknee) for εknee > 0. Also, for the swing leg knee,

α8 = [α8,0, α8,1, α8,2, α8,2, α8,1, α8,0]− ε1.

Moreover, since at the end of each step the swing leg and stance leg are swapped,

the knee angle of the swing leg at the end of each step needs to be equal to the knee

angle of the stance leg at the beginning of the next step. Thus, we require

α80 = −α10.

7.2.4 Simulation Results

In this section, we present a numerical example of the PSBPs for the 12-DOF

model of Romeo and verify the existence of asymptotically stable limit cycles. In the

example we study here x0 = 15 cm and y0 = 8 cm. The PSBPs for knees, torso

pitch, xhf and yhf , which satisfy the conditions presented in the previous section, are

selected as in Table 7.2. The graphs of the SBPs and PSBPs for the numerical values

given in Table 7.2 are depicted in Fig. 7.7 through 7.9.

Given the outputs, h = (h1, . . . , h10), and the desired PSBPs, hd, the virtual

constraints can be written as y = h(s)−hd(s). The next step is to find the controllers

that drive y to zero. To this end, rather than using nonlinear controllers, for simple

implementation of the controllers on the actual robot, we use simple Proportional-

4Note that by our convention of the coordinate systems and positive direction of rotation about
the x, y and z axis based on the right-hand rule, the more negative is the stance knee angle the
more bent is the stance leg knee, and the more positive the swing leg knee is the more bent is the
swing leg knee.
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Figure 7.6: Energy injecting asymmetry introduced by the difference in stance and
swing leg knee angles. At the beginning of the step the stance leg is bent,
and as a result, the COM is closer to the stance point. Consequently, the
COM spends more time in front of the stance point, thus, generating a
net positive acceleration.

Output PSBP

qstk α1 = [ -0.6 -0.6 -0.5 -0.5 -0.4 -0.4 ]
θp α2 = [ 0.025 0.025 0.025 0.025 0.025 0.025 ]
θr α3 = [ 0 0 0 0 0 0 ]
θy α4 = [ 0 0 0 0 0 0 ]
θswy α5 = [ 0 0 0 0 0 0 ]
xhf α6 = [ -x0 −x0 -x0 − 0.1 x0 + 0.1 x0 x0 ]
yhf α7 = [ y0 y0 y0 y0 y0 y0 ]
qswk α8 = [ 0.4 0.6 1 1 0.6 0.6 ]
θswfp α9 = [ 0 0 0 0 0 0 ]
θswfr α10 = [ 0 0 0 0 0 0 ]

Table 7.2: PSBPs for Romeo.
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Figure 7.7: SBP vs PSBP for the stance leg knee and swing leg knees. With Bézier
polynomials for the knee angles, the stance (swing) leg knee is more (less)
bent at the beginning of the step compared to the end of the step.
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Figure 7.8: SBP and PSBP for xhf and yhf . Note that SBP and PSBP are the same
in this case.
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Figure 7.9: SBP vs PSBP for the pitch angle. The pitch angle in the PSBP case is
greater than zero to generate energy injecting asymmetry.

Derivative (PD) controllers as discussed below.

To decompose the role of actuators, for each output we use one specific and inde-

pendent actuator. For example, for the torso pitch angle, h2, we only use the actuator

u4 (see Table 7.1). In sum, we get the following relationship between the actuator

angles (as described in Table 7.1) and the desired constraint:

y = Aeact, (7.2)

ẏ = Aėact, (7.3)

where eact and ėact are the error and derivative of the error in the actuated angles5

q3, . . . , q12, where

A1,1 = 1, A2,2 = 1, A3,3 = 1, A4,4 = 1, A5,5 = 1,

A6,7 = −1, A7,6 = 1, A8,8 = 1, A9,9 = 1, A10,10 = 1.

5Note that q1 and q2 are assumed not to be actuated.
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and other components of A are all zero. From (7.2) and (7.3),

eact = A−1y,

ėact = A−1ẏ.

A simple PD control is used to drive these errors to zero:

u = −Kpeact −Kdėact,

where u = [u3;u4; . . . ;u12], and Kp, Kd > 0.

The top plot in Fig. 7.10 shows ẋCOM , the velocity of the COM in the x direction

of the inertial frame, at the beginning of each step vs. step number, and the bottom

plot shows ẏCOM at xCOM = 0 vs. step number. Convergence of ẏCOM in this figure

confirms the self-synchronization of the limit cycle. Fig. 7.11 shows the resulting

ẏCOM vs. xCOM on the limit cycle. In these simulations, the robot is given a small

initial velocity (as low as 0.1 m/s), and then it automatically approaches a limit cycle

which is far from the initial state of the robot. The convergence to a limit cycle with

such simple initial conditions suggests that the basin of attraction of the emerged

limit cycle is relatively large.

From Fig. 7.11, the average position of the COM in the x direction is greater

than zero; the energy injecting asymmetry that causes this positive average position

mostly comes from the difference in the stance leg knee and swing leg knee angles as

explained in Fig. 7.6.

Fig. 7.12 shows a few snapshots of the simulation together with the path of the

COM.

We note that in all of the simulations, torque limits and friction limits on ground

reaction forces (with a friction coefficient of µ = 0.6) have been satisfied.
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Figure 7.10: ẋCOM and ẏCOM at the Middle of Each Step vs. Step Number for x0 =
0.15 and y0 = 0.08 without foot placement. The initial velocity in the x
direction, as seen in the top plot, is as low as 0.1 m/s. The convergence
of ẏCOM at the mid-step confirms the self-synchronization.

xCOM

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

y C
O

M

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2
yCOM vs. xCOM on the Limit Cycle

Figure 7.11: yCOM vs. xCOM on the limit cycle for . yCOM is an almost symmetric
(even) function of xCOM as expected.

136



0.5
1

1.5
2

2.5 −0.5

0

0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 7.12: A few Snapshots of the Animation. The blue line is the path of COM.

7.2.5 Augmenting Foot placement

In the last section, stable limit cycle walking was achieved by symmetry method

without any foot placement algorithm. In this section, we present a simple foot

placement algorithm that can improve the stability of the walking. Moreover, by

numerical simulations we observed that with the specific PSBPs that we used, in

order for the gait to be stable without foot placement for x0 = 0.15 m, y0 has to be

greater than or equal to 0.08m. Here, with a foot placement algorithm we obtain

asymptotically stable limit cycle walking gaits with x0 = 0.15 m and y0 as low as 0.

Therefore, some of the gaits which were unstable without foot placement, can become

stable with foot placement.

The foot placement algorithm used is similar to that of the 3D LIP in Section

6.3.2.1. Let x0nom and y0nom be the nominal values of xhf and yhf at the end of each
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step, respectively. At the middle of step, that is, when6 xH = 0, we implement the

following event-based control for the foot placement:

x0 = x0nom + kx(ẋCOM − ẋd),

y0 = max{y0nom , y0nom + kyẏCOM},

for kx, ky > 0 and a desired forward velocity ẋd > 0. The foot placement in the lateral

direction is done as if the desired velocity in the y direction in the middle of the step is

0. The reason that we set ẏd = 0 is that for pure symmetric walking gaits ẏ = 0 when

x = 0 (for instance, recall the 3D LIP symmetric orbits in Fig. 3.3). Moreover, based

on the foot placement algorithm above, y0 is always greater than or equal to y0nom .

The Bezier polynomials for xhf and yhf are updated based on the value of x0 and y0 in

each step. In particular, based on Table 7.2, α6 = [−x0,−x0,−x0−0.1, x0+0.1, x0, x0]

and α7 = [y0, y0, y0, y0, y0, y0].

Figs. 7.13 through 7.14 show the simulation results for x0nom = 0.15, y0nom = 0,

kx = 0.1 and ky = 0.25. An asymptotically stable periodic walking gait is successfully

achieved. We note that for many other nominal values for x0 and y0 or different kx

and ky values asymptotically stable limit periodic walking was achieved as well.

Remark VII.2. We note that all the asymptotically stable walking gaits here were

achieved without any search for fixed points of the Poincaré map. Simply, in the

simulations the biped is set at an initial pose and then is given a very small initial

velocity7. It automatically converges to an almost symmetric asymptotically stable

periodic orbit. The fact that the robot can start walking with such simple initial

conditions also shows the robustness of the symmetry method for limit cycle walking.

6One could define xCOM = 0 or xH = 0 as the mid-step, the results of the foot-placement
algorithm are almost the same in either case because xH is very close to xCOM .

7We note that the convergence to the limit cycle is not very sensitive to the value of the initial
velocity.
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Figure 7.13: ẋCOM and ẏCOM at the middle of each step vs. step number for x0nom =
0.15 and y0nom = 0 with foot placement. The initial ẋCOM is as low as 0.1
m/s. Without foot-placement, with these nominal values, the periodic
gait is not self-sychronized. However, with foot-placement ẏCOM at the
mid-step converges to a small value which confirms that synchronization
is achieved with foot-placement.
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CHAPTER VIII

Conclusions

8.1 Summary

Even though the ZMP method has been a common way of generating walking gaits

for legged robots, the achieved performance is far from being human/animal-like. In

particular, the current ZMP walking gaits have not been capable of demonstrating

the full extent of agility that a legged robot can achieve. In contrast to ZMP walking,

limit cycle walking is capable of demonstrating agility in dynamic legged locomotion.

However, given a legged robot, obtaining limit cycle walking is not always straight-

forward. The common method for obtaining stable periodic orbits of a legged robot

is to conduct a numerical search for the fixed points of a Poincaré map associated

with a hybrid system that models the legged robot. However, this method is compu-

tationally expensive as in each search trial the differential equations representing the

robot need to be integrated. Moreover, the resulting walking gait may not be robust

enough because the numerical search is conducted based on a model of the robot, and

it remains to be seen if with model errors the periodic orbit remains a periodic orbit

of the actual robot.

To overcome these issues, we have presented the Symmetry Method for Limit

Cycle Walking which allows for obtaining stable limit cycles without the need for a

numerical search for periodic orbits. Moreover, since the method only relies on basic
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Figure 8.1: High-level control algorithm of the symmetry method for stable limit cycle
walking.

symmetry properties that almost all legged robots have, it is by nature robust to

model errors.

As shown in Fig. 8.1, the symmetry method for stable limit cycle walking of

legged robots consists of four steps: First, given the legged robot, the symmetries

are identified; this is done by determining the symmetry map of the robot. We

have shown that because of the existing symmetries the system can have as many

symmetric periodic orbits as the fixed points of the symmetry map. It should be

noted that, even though the robot might not be completely symmetric (e.g., due

to the feet, friction or uneven mass distribution), since asymmetries are generally

small compared to the overall symmetry of the legged robot, the symmetry map

is determined as if the asymmetries did not exist. Moreover, in the third step of

the symmetry method for limit cycle walking, such asymmetries turn out to help

achieving asymptotic stability of the resulting limit cycles. Second, based on the

symmetry map, the virtual constraints are designed so that when control laws enforce

the virtual constraints the resulting reduced order system remains symmetric and
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hence, has symmetric periodic orbits which can be identified without any numerical

search. The class of such virtual constraints which are called Symmetric Virtual

Constraints (SVCs) is large enough that allow optimization (e.g., on torque limits)

while respecting the symmetry of the system.

The third step is the introduction of asymmetries which include energy injecting

(e.g., extension of the stance leg after mid-step) and energy dissipating asymmetries

(e.g., impact loss or friction). We have shown that such asymmetries can stabilize

the neutrally stable symmetric periodic orbits of the legged robot, but for unstable

symmetric periodic orbits, augmenting foot placement, which is the last step in the

symmetry method, is necessary. We have presented a simple foot placement strategy

that renders the unstable symmetric periodic orbits stable and makes the basin of

attraction of the already-stable periodic orbits larger.

The symmetry method for limit cycle walking is successfully tested on a 12-DOF

3D model of the humanoid robot Romeo.

8.2 Future Work

Experimental Validation: Even though the symmetry method for limit cycle

walking has been successfully tested on different models of bipedal robots such as

Romeo (see Chapter VII) and MARLO, it has not been tested in experiments. We

hope that the symmetry method will be tested and experimentally validated on the

humanoid robot Romeo in the near future.

Theoretical Work on Stabilization: While two methods for stabilization of

the symmetric periodic orbits of an SHS were given and verified in a few examples,

more theoretical work on these methods is needed. In this regard, for instance, future

work can involve developing conditions under which introducing asymmetries can

lead to asymptotic stability of the limit cycle merging out of the symmetric periodic

orbits.
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Other Types of Legged Robots: As future work, one can apply the symmetry

method to other models of legged robots such has quadrupeds.

Optimization: SVCs provide the flexibility of gait design and optimization (e.g.,

on torque limits). While we have studied the problem of stable periodic walking, it

is interesting to demonstrate how optimization and symmetry method can be paired

together.

Other Modes of Locomotion: Models of legged locomotion considered here

all assume instantaneous impact. A future direction could be generalization of the

theory of symmetry to more general modes of locomotion, for instance, when a double

support phase is involved.
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APPENDIX

Rest of Proof of Proposition II.3: We show that the maximal solution xM(t)

of X for which xM(0) = x∗, is defined on a symmetric interval of the form Ix∗ =

(−aM , aM).

Suppose that xM is defined on an interval of the form (−α, β). If β = α we are

done by setting aM = β. Assume that β > α. The case of α > β will be similar. By

Proposition II.3,

G(xM(−t)) = xM(t), ∀t ∈ (−α, α).

Suppose that xα(t) is a solution of X with the initial condition xα(−α) = G(xM(α)).

There exists ε > 0 such that xα(t) is defined on (−α − ε, α + ε). Define x̂M(t) on

(−α− ε, β) as follows:

x̂M(t) =





xM(t), t ∈ (−α, β)

xα(t), t = (−α− ε,−α]

We show that x̂M(t) is a solution of X. To this end, since xM(t) and xα(t) are both
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solutions of X, it suffices to show the continuity of xM(t) at t = −α.

lim
t→−α+

x̂M(t) = lim
t→−α+

xM(t),

= lim
t→−α+

G(xM(−t)),

= lim
t→α−

G(xM(t)),

= G(xM(α)),

= xα(−α).

This proves the continuity of x̂M(t). Therefore, x̂M(t) is a solution of X defined on

the interval (−α − ε, β), however, this is a contradiction to the maximality of xM .

Therefore, we conclude that β ≤ α. However, similarly it can be shown that β < α

leads to a contradiction. Consequently, β = α; hence, defining aM = α, the maximal

solution xM(t) is necessarily defined the maximal interval (−aM , aM).

Proof of Lemma VI.1: Since ẋ(0) = X(xs(0)), if ẋs(0) = 0, then X(xs(0)) = 0;

thus X(x∗) = 0. As a result, xs(t) = x∗ is the unique solution of X passing through

x∗. However, since xs(t) crosses the switching surface S at tI 6= 0, we conclude that

ẋs(0) 6= 0. Moreover, since dim(SG) < dim(X ), there exists a hypersurface Sx∗ at x∗

such that Tx∗SG ⊂ Tx∗Sx∗ . If dim(SG) < dim(X )− 1, then noting ẋs(0) 6= 0, clearly

Sx∗ can be chosen to be transversal to ẋs(0). If dim(SG) = dim(X )− 1, then we pick

Sx∗ = O ⊂ SG, where O is an open subset of SG including x∗. Since O is an open

subset of SG, we have Tx∗Sx∗ = Tx∗SG. We show that ẋs(0) is transversal to Tx∗SG,

and hence Tx∗Sx∗ . If ẋs(0) is not transversal to Tx∗SG, then ẋs(0) ∈ Tx∗SG. However,

by symmetry of xs(t),

ẋs(0) = −dG · ẋs(0).
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By definition of SG, since ẋs(0) ∈ Tx∗SG, we conclude that dG · ẋs(0) = xs(0); thus,

by the above equation, ẋs(0) = −ẋs(0), which yields ẋs(0) = 0. However, this is

a contradiction because we already showed that ẋs(0) 6= 0. Consequently, ẋs(0) is

transversal to Tx∗SG.

Proposition 1. Suppose that the SHS has a synchronized solution (X(t), Y (t)) with

initial conditions (X(0), Y (0)) = (−x0, y0) and (Ẋ(0), Ẏ (0)) = (Ẋ0, Ẏ0). Suppose

that t = tm is the time for which X(tm) = 0 and Ẏ (tm) = 0 such that Ẋ(tm) 6= 0 .

Let χ(ẋ0, ẏ0, t) be the flow map of the (x0, y0)-invariant SHS. Therefore, χ(ẋ0, ẏ0, 0) =

(−x0, y0, ẋ0, ẏ0) for every (ẋ0, ẏ0) ∈ T(−x0,y0)Q. Let χ = (x, y, ẋ, ẏ). Since (X(t), Y (t))

is synchronized,

x(Ẋ0, Ẏ0, tm) = 0, ẏ(Ẋ0, Ẏ0, tm) = 0.

If the Jacobian of (x, ẏ) with respect to (ẋ0, ẏ0) is invertible at (Ẋ0, Ẏ0, tm), then there

exists a smooth function L : T(−x0,y0)Q → Rm+n−1 such that if L(ẋ0, ẏ0) = 0, the

solution starting from (−x0, y0) with initial velocity (ẋ0, ẏ0) is synchronized.

Proof. Based on the definition of a synchronized solution, we are interested in the

values of (ẋ0, ẏ0, t) for which

x(ẋ0, ẏ0, t) = 0, ẏ(ẋ0, ẏ0, t) = 0.

Since (Ẋ0, Ẏ0, tm) is a solution to this system, we have

x(Ẋ0, Ẏ0, tm) = 0, ẏ(Ẋ0, Ẏ0, tm) = 0.

Because the Jacobian of (x, ẏ) with respect to (ẋ0, ẏ0) is invertible at (Ẋ0, Ẏ0, tm), by

implicit function theorem there exists a smooth function F defined in a neighborhood
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of tm such that in this neighborhood

x(F (t), t) = 0, ẏ(F (t), t) = 0. (.1)

The function t 7→ F (t) defines a smooth curve in the manifold T(−x0,y0)Q, where

F (tm) = (Ẋ0, Ẏ0). Differentiating the two equations in (.1) with respect to t at

t = tm, since Ẋ(tm) 6= 0, we can show that Ḟ (tm) 6= 0. Therefore, the parametrization

t 7→ F (t) is a regular parametrization in a neighborhood of tm, and, hence, the image

of t 7→ F (t) defines an embedded 1-dimensional submanifold K of T(−x0,y0)Q (Lee,

2003). Thus, there exists a smooth function L : T(−x0,y0)Q → Rm+n−1 with rank

m+ n− 1 such that

K = {(ẋ0, ẏ0) ∈ T(−x0,y0)Q|L(ẋ0, ẏ0) = 0}.

Consequently, if L(ẋ0, ẏ0) = 0, the solution starting from (−x0, y0) with initial velocity

(ẋ0, ẏ0) is synchronized.

Proposition 2. Let Q denote the configuration space of the (x0, y0)-invariant 3D

LIP biped. Assume that the switching surface is

S = {(x, y, ẋ, ẏ)|h(x, y) = h(x0, y0)},

where h : Q→ R is a smooth function and ∂h/∂y(x0, y0) 6= 0. Let (ẋ∗, ẏ∗) be a fixed

point of the restricted Poincaré map P : T(−x0,y0)Q → T(−x0,y0)Q. The eigenvalues of

P at (ẋ∗, ẏ∗) are {λ, 1} with

λ = −1 +
2ω2(y20 − Cx20)
CE∗x − E∗y

, (.2)
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where

C =
y0
x0

(
∂h

∂y
(x0, y0)

)−1
∂h

∂x
(x0, y0),

and

E∗x = ẋ2∗ − ω2x20, E
∗
y = ẏ2∗ − ω2y20

are the orbital energies in the x and y directions.

Proof. Let L : T(−x0,y0)Q → R be the synchronization measure of the 3D LIP. By

Proposition VI.7, λ = ∂L1/∂L0(0, K
∗), where K∗ = (1/2)((ẋ∗)2 + (ẏ∗)2). Assume

that (−x0, y0, ẋ∗ + δẋ0, ẏ∗ + δẏ0) is the initial state of a solution of the system at the

beginning of the step, and let (−x0, y0, ẋ∗+δẋ1, ẏ∗+δẏ1) be its state at the beginning

of the next step. Define L0 = L(ẋ∗ + δẋ0, ẏ∗ + δẏ0) and L1 = L(ẋ∗ + δẋ1, ẏ∗ + δẏ1).

We have

λ = lim
L0→0

L1

L0

.

Denote the state of the system right before the transition by (x0 + δx1, y0 + δy1, ẋ∗+

δẋ1,−(ẏ∗+ δẏ1)). Since L = ẋẏ−ω2xy is a conserved quantity for the 3D LIP in the

continuous phase of motion, we have

L0 = −(ẋ∗ + δẋ1)(ẏ∗ + δẏ1)− ω2(x0 + δx1)(y0 + δy1).

Moreover, since the system is (x0, y0)-invariant,

L1 = (ẋ∗ + δẋ1)(ẏ∗ + δẏ1) + ω2x0y0.
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Adding this equation to the previous one,

L1 + L0 = −ω2(x0δy1 + y0δx1). (.3)

By definition of the switching surface, h(x0 + δx1, y0 + δy1) = h(x0, y0), from which,

∂h

∂x
(x0, y0)δx1 = −∂h

∂y
(x0, y0)δy1. (.4)

By definition of C, δy1 = −C x0
y0
δx1. Substituting this into equation (.3) results in

L1 + L0 = −ω2(−Cx
2
0

y0
+ y0)δx1.

Therefore, from the equation above,

lim
L0→0

L1

L0

= −1− ω2(−Cx
2
0

y0
+ y0) lim

L0→0

δx1
L0

. (.5)

Thus, to find the limit on the left-hand side we need only find the limit on the right-

hand side. Since in the continuous phase of motion the orbital energies, ẋ2 − ω2x2

and y2 − ω2y2, are conserved quantities, we have

(ẋ∗ + δẋ0)
2 − ω2x0 = (ẋ∗ + δẋ1)

2 − ω2(x0 + δx1),

(ẏ∗ + δẏ0)
2 − ω2y0 = (ẏ∗ + δẏ1)

2 − ω2(y0 + δy1).

From these two equations and definition of C,

ẋ∗(δẋ1 − δẋ0) = ω2δx1, ẏ∗(δẏ1 − δẏ0) = −Cω2x0
y0
δx1. (.6)

Since L = ẋẏ − ω2xy is a conserved quantity in the continuous phase of the motion,

we can write L0 in terms of the states at the beginning of step, that is, (−x0, y0, ẋ∗+
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δẋ0, ẏ∗+ ẏ0) or at end of the step, that is, (x0 +δx1, y0 +δy1, ẋ∗+δẋ1, ẏ∗+ ẏ1). Hence,

L0 = (ẋ∗ + δẋ0)(ẏ∗ + δẏ0) + ω2x0y0,

L0 = −(ẋ∗ + δẋ1)(ẏ∗ + δẏ1)− ω2(x0 + δx1)(y0 + δy1).

From (.6) and the two equations above,

2L0

δx1
= −ω2x0y0(−Cẋ2∗ + ẏ2∗) + (ẋ∗ẏ∗)(−Cx20 + y20)

y0ẋ∗ẏ∗
.

Substituting this into equation (.5), we have

lim
L0→0

L1

L0

= −1 +
1

ω2

· 2(−Cx20 + y20)(ẋ∗ẏ∗)

x0y0(−Cẋ2∗ + ẏ2∗) + (ẋ∗ẏ∗)(−Cx20 + y20)
.

The limit on the left-hand side is λ. Since L(ẋ∗, ẏ∗) = 0, we have ẋ∗ẏ∗ = −ω2x0y0.

Therefore, if we replace ẋ∗ẏ∗ with −ω2x0y0 in the equation above, we obtain

λ = −1 +
1

ω2

· 2(−Cx20 + y20)(−ω2x0y0)

x0y0(−Cẋ2∗ + ẏ2∗) + (−ω2x0y0)(−Cx20 + y20)
.

After simplification

λ = −1 +
2ω2(y20 − Cx20)

Cẋ2∗ − ẏ2∗ + ω2(y20 − Cx20)
.

By definition of E∗x and E∗y this equation is equivalent to equation (.2).

Corollary 3. In Proposition 2, if h(x, y) = x2 + a2y2 then

λ = −1 +
2ω2(a2y20 − x20)
E∗x − a2E∗y

.
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In particular, if a = 1, then

λ = −1 +
2ω2(y20 − x20)
E∗x − E∗y

,

and, if a = 0, that is, if impact occurs when x = x0 (so, with no dependence on y),

then

λ = −1− 2ω2x20
E∗x

< −1.

Thus, when the impact surface is S = {(x, y, ẋ, ẏ)|x = x0}, we have |λ| > 1.
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