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Abstract 
 

The neurotrophic hypothesis posits that changes in the expression and function of growth 

factors in the brain underlie the pathophysiology of Major Depressive Disorder (MDD). 

Previous work implicated the fibroblast growth factor (FGF) system, identifying FGF2 as 

an endogenous anxiolytic and antidepressant molecule whose expression is 

downregulated in the depressed brain. Notably, FGF9 showed a diagnosis-specific pattern 

of expression that was opposite to FGF2. Therefore, we investigated the hypotheses that 

FGF2 and FGF9 were critical to the regulation of affect and that their expression 

becomes disrupted in MDD. Because the literature supporting the role of FGF9 in affect 

regulation was small, we performed exploratory analyses and demonstrated that FGF9 

expression is consistently upregulated in the hippocampus (but not the anterior cingulate 

cortex or dorsolateral prefrontal cortex) of individuals diagnosed with MDD. We also 

showed that reducing endogenous expression of FGF9 in the dentate gyrus is sufficient to 

reduce anxiety-like behavior, and hippocampal FGF9 levels differ in an animal model of 

affective dysregulation. Because they showed opposite effects in MDD and animal 

models, we hypothesized that FGF2 and FGF9 might act as physiological antagonists to 

mediate affect. We examined more complex questions regarding FGF2. We used animal 

models to demonstrate that altered hippocampal FGF2 expression predisposes individuals 

for affective dysregulation. Because we hypothesized that relative levels of FGF2 and 

FGF9 might be important to MDD pathophysiology, we examined diagnosis-specific 

relationships in expression between FGF2, FGF9, and FGF receptors, and we found 



xiv 
 

regional patterns of alteration with MDD. In the anterior cingulate cortex, correlations 

between FGF family members were lost in MDD, while in the hippocampus, new 

relationships emerged. These changes were related to alterations in correlated gene 

expression of transcripts related to fundamental biology and circuit function, supporting 

the hypothesis that FGF2 and FGF9 may influence affect by acting as molecular 

organizers whose effects become dysregulated during MDD. Future studies will examine 

the role of FGF2 and FGF9 in MDD, with a particular emphasis on understanding how 

neural circuitry is altered at the cellular level.
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Chapter 1.    

Introduction 

Major Depressive Disorder: A debilitating illness with complicated and poorly-

understood etiology 

 Approximately one in five Americans will develop a mood or anxiety disorder at 

some point during their lifetimes (American Psychiatric Association, 2013). Associated 

with high mortality (American Psychiatric Association, 2013), major depressive disorder 

(MDD) has a lifetime prevalence of ~17% (and ~30% lifetime morbid risk), with ~7% of 

individuals experiencing the disorder during a 12-month period (Kessler et al., 2003; 

Kessler, Petukhova, Sampson, Zaslavsky, & Wittchen, 2012). The World Health 

Organization estimates that approximately 350 million people are affected by MDD, and 

it identifies MDD as the leading cause of disability worldwide, making MDD a disease 

with an incredibly detrimental economic effect. Given the debilitating nature, high 

prevalence, and financial burden of the disease, developing a thorough understanding of 

the underlying biology of MDD will be critical to reducing its impact. 

The symptomatology of MDD is highly complex, yet it forms the basis for 

diagnosis and treatment. Indeed, MDD diagnosis is based on the presence or absence and 

longevity of psychological and physical symptoms as opposed to biomarker-based 

objective measures that have been developed for some other illnesses and/or conditions 

(American Psychiatric Association, 2013). MDD is characterized by two core symptoms, 



2 
 

depressed mood and anhedonia, and at least one must be debilitating and persistently 

present for at least two weeks to diagnose a major depressive episode. In addition, a 

constellation of other psychological and physical symptoms co-occur, including feelings 

of worthlessness or inappropriate guilt, fatigue or loss of energy, psychomotor agitation 

or retardation, sleep disturbances including hypersomnia or insomnia, and significant 

weight loss or weight gain. In addition, MDD patients can experience suicidal thoughts or 

ideation, and many individuals attempt or commit suicide (American Psychiatric 

Association, 2013). Notably, MDD is a disease of extremes: all symptoms represent a 

substantial deviation from “normal” behavior, but both ends of the spectrum could be 

considered symptoms of MDD (e.g., hypersomnia vs. insomnia). As a result of this 

heterogeneity, two individuals with dramatically different constellations of symptoms can 

both be diagnosed with MDD. (e.g., Patient A may show signs of anhedonia, extreme 

fatigue, hypersomnia, psychomotor retardation, and weight gain, while Patient B could 

display depressed mood, psychomotor agitation, weight loss, insomnia, and have 

overwhelming feelings of guilt. While these patients experience very different symptoms, 

both could be diagnosed with MDD.) 

 While the etiology of MDD is not well understood, progress has been made by 

studying patients currently or recently experiencing the disease. Because many patients 

with MDD display different symptomatology, many clinicians and researchers classify 

subtypes of MDD (e.g., melancholic, psychotic, etc) in the hope that these classifications 

increase the odds of uncovering differential biological underpinnings associated with the 

subtypes. In addition, MDD frequently co-occurs with other medical conditions or mental 

disorders (American Psychiatric Association, 2013). An estimated 70% of individuals 



3 
 

diagnosed with MDD also carry at least one additional DSM diagnosis (Kessler et al., 

2003). Anxiety disorders in particular are common comorbid diagnoses (American 

Psychiatric Association, 2013; T. A. Brown, Campbell, Lehman, Grisham, & Mancill, 

2001; Grant et al., 2005; Hunt, Issakidis, & Andrews, 2002). Indeed, experiencing MDD 

may predispose individuals to developing clinical anxiety (especially panic disorders) or 

vice-versa (American Psychiatric Association, 2013). Furthermore, high reactivity to 

stress is a major vulnerability factor, and intensive stress frequently precipitates major 

depressive episodes (American Psychiatric Association, 2013). The complicated nature 

and high co-morbidity of MDD with other illnesses suggests that the underlying biology 

of MDD is complex and requires physiological systems that are critical to daily function.  

 There are a number of treatment avenues for MDD, including a variety of drugs 
and non-pharmacological therapeutic interventions ( 
Table 1.1). However, these approaches come with a number of limitations. Notably, there 

is high individual variability in many patients’ response to different drugs, and the most 

common approach in clinical practice to determining a course of drug treatment is 

through trial-and-error. In addition, most commonly prescribed antidepressant drugs 

require weeks before symptoms alleviate. Together, these factors can mean that patients 

seeking relief from MDD frequently go months before their symptoms begin to resolve. 

Furthermore, despite the availability of a number of different effective treatments, almost 

50% of patients never achieve full remission (Berton & Nestler, 2006). Even worse, 

almost one in three individuals are resistant to treatment and never helped by current 

approaches (Fava & Davidson, 1996), although recent studies indicate that the NMDA 

receptor antagonist ketamine (Berman et al., 2000; Zarate et al., 2006) and/or deep brain 
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stimulation to the subcallosal cingulate white matter (Holtzheimer & Mayberg, 2011; 

Ressler & Mayberg, 2007) may be effective for some of these individuals. 

 
Table 1.1. Currently available antidepressant treatments. Adapted by permission from 
Macmillan Publishers Ltd: Nature Reviews Neuroscience. Berton & Nestler (2006). New 
approaches to antidepressant drug discovery: Beyond monoamines, 7, 137-151, © 2006. 
 

 

The complexity in diagnosis and treatment is reflected in the heterogeneity of 

brain regions and circuits that are thought to underlie MDD pathophysiology. Many 
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regions and circuits likely interact in complex ways to give rise to cognitive, emotional, 

behavioral, and physiological states, and disruption of these functions can be connected 

to the symptoms of mood disorders (Drevets, Price, & Furey, 2008; Price & Drevets, 

2012). There are many such regions implicated, including limbic areas such as the 

hippocampus, medial prefrontal cortex, and amygdala (Godsil, Kiss, Spedding, & Jay, 

2013; Price & Drevets, 2012), thalamic regions (Tekin & Cummings, 2002), mesolimbic 

components including the ventral tegmental area, basal ganglia, and nucleus accumbens 

(Nestler & Carlezon, 2006; Drevets et al., 2008; Gunaydin & Kreitzer, 2016), 

hypothalamic areas (Plotsky, Owens, & Nemeroff, 1998; Swaab, Bao, & Lucassen, 2005; 

Drevets et al., 2008) and regions in the brainstem (Drevets et al., 2008; Ressler & 

Nemeroff, 2000; Bernard et al., 2011; Gold et al., 2015). These regions serve many 

functions and have been closely studied both in the context of their individual properties 

as microcircuits (e.g., the hippocampus) and as collective assemblies (e.g., the separation 

distress circuit; Panksepp, Nelson, & Bekkedal, 1997; Panksepp, Knutson, & Burgdorf, 

2002; Panksepp, 2003). There are competing – though not mutually exclusive – theories 

about the relative importance and functional contributions of these various regions and 

circuits, and some assemblies are more relevant to particular MDD symptoms than 

others. Though it is beyond the scope of this thesis to extensively review every region 

implicated in MDD and the functions that they subserve, we will briefly highlight the 

prefrontal cortices and the hippocampus, as they are particularly relevant to the data we 

will present in the following chapters. 

The hippocampus (HPC) and prefrontal cortices (PFC) are regions known to be 

particularly sensitive to disruption in MDD (Price & Drevets, 2012). Indeed, voxel-based 
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morphometry studies consistently show volumetric decreases in PFC and HPC (Bremner 

et al., 2000, 2002; MacQueen & Frodl, 2011; Sheline, Gado, & Kraemer, 2003). A recent 

meta-analysis highlighted the anterior cingulate cortex in particular as one of the most 

consistent sites for MDD-related primary volume loss (Bora, Fornito, Pantelis, & Yücel, 

2012), and another showed substantial volume loss in the same region across DSM Axis I 

psychiatric disorders, including anxiety (Goodkind et al., 2015). The same study also 

highlighted volume loss in the anterior HPC and amygdala as being particularly 

important for internalizing disorders, including MDD and anxiety (Goodkind et al., 

2015).  While the molecular mechanisms underlying this volume loss are not well 

understood, these structural changes are thought to be related to chronic stress and may 

arise from cellular atrophy (Duric & Duman, 2012). It is an active area of research to 

determine if this volume loss is predisposing to or concomitant with disease 

pathophysiology and if volume loss is a good biomarker for MDD. 

Historical perspective on MDD research and the search for novel targets  

Until relatively recently, the primary approach that many researchers took to understand 
MDD biology was to examine the mechanisms underlying the therapeutics that were 
effective in alleviating depressive symptoms. Much of this research focused on 
understanding the molecular targets and mechanisms of serendipitously-discovered 
drugs with known antidepressant properties, most of which target monoamine systems ( 

Table 1.1; Berton & Nestler, 2006; Nestler & Hyman, 2010). The emergent 

“monoamine hypothesis of MDD” posited that dysregulation of monoaminergic 

neurotransmitters, including serotonin and noradrenaline, and their associated neural 

circuitry gave rise to MDD symptomology. This research was highly informative and 

yielded critical insights into some aspects of MDD, as well as insight into the 

serotonergic and noradrenergic systems in the brain. However, decades of research on 

these topics failed to conclusively provide a holistic understanding of MDD 
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pathophysiology, as highlighted by the inability for the monoaminergic hypothesis to 

fully account for complexity and variation in symptoms, diagnosis, and treatment.  

Limitations in the monoaminergic hypothesis of MDD spurred researchers to 

search more broadly for molecular players capable of mediating the highly 

individualized, broad-scale dysregulation in the brain. Members of the Pritzker 

Neuropsychiatric Disorders Research Consortium, including our laboratory, approached 

this challenge strategically. Using a bank of postmortem human brain tissue donated by 

individuals without neuropsychiatric conditions as well as those diagnosed with MDD, 

bipolar disorder, or schizophrenia during life, they performed microarray studies to 

broadly profile transcriptional changes in different regions associated with psychiatric 

pathology in unbiased screens. Surprisingly, the fibroblast growth factor (FGF) family 

emerged among the top sets of genes whose expression was disrupted in MDD, and 

quantitative PCR assays validated the initial diagnosis-specific expression changes. 

Furthermore, additional evidence suggested that this dysregulation was partially 

ameliorated by a treatment history which included antidepressant drugs, suggesting that 

FGF dysregulation may be a component of the mechanism of action underlying some 

effective therapeutics (Evans et al., 2004). 

This discovery dovetailed with an emerging literature primarily in animal models 

which implicated neural plasticity, including dysregulation of other growth factors, in 

affective dysregulation. To account for the long time-course required for MDD symptom 

amelioration, some depression researchers had begun to examine physical changes in the 

cells of different brain regions related to affect, hypothesizing that the observed 

neuroplastic changes were necessary for antidepressant action (Duman, Heninger, & 
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Nestler, 1997; Nestler et al., 2002). This hypothesis was supported by studies showing 

that stress promoted atrophy of neurons in the hippocampus and other regions while 

antidepressant treatment had the opposite effect (Berton & Nestler, 2006; E. S. Brown, 

Rush, & McEwen, 1999; McEwen, 1999). Brain-derived neurotrophic factor (BDNF) 

arose as an appealing molecular target because its expression was downregulated after 

stress but upregulated after treatment with antidepressant drugs. Reinforcing the appeal of 

BDNF as a mediator of plasticity and affect, these transcriptional changes co-occurred 

with changes in cellular circuitry, including alterations in adult hippocampal 

neurogenesis, and altering endogenous expression of BDNF induced changes in affective 

behavior (reviewed in Duman & Monteggia, 2006). However, BDNF’s role in affective 

dysregulation was first examined as an a priori hypothesis; in contrast, the FGF family 

emerged from an unbiased screen of tissue from individuals diagnosed with MDD. 

The Neurotrophic Hypothesis of MDD 

 This research into BDNF, FGFs, and other growth factors has given rise to the 

neurotrophic hypothesis, which posits that changes in growth factors may be related to 

the circuit abnormalities and changes in mood and physiological function that arise in 

MDD (Duman & Monteggia, 2006; Turner, Watson, & Akil, 2012). Growth factors 

impact function of many different physiological systems at different scales; some of these 

functions could include: tuning or influencing molecular networks, modulating 

neurotransmission and/or neurotransmitter reuptake/recycling, and regulating circuit 

assembly and maintenance. Different growth factors have been shown to impact all of 

these functions, and a wide variety of growth factors have been directly implicated in 

affective dysregulation and MDD. Among these, BDNF is the best-studied, though 
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others, including glial derived neurotrophic factor (GDNF), vascular endothelial growth 

factor (VEGF), insulin-like growth factor (IGF), and the previously-noted FGFs have all 

been implicated in MDD (for reviews, see Banasr, Dwyer, & Duman, 2011; Duman & 

Monteggia, 2006; Duric & Duman, 2012; Krishnan & Nestler, 2008; McClung & Nestler, 

2007; Turner et al., 2012; Yu & Chen, 2011).  

As described above, work from our laboratory and others indicates that the FGF 

system is dysregulated in the depressed human brain across a number of regions (Bernard 

et al., 2011; Evans et al., 2004; Gaughran, Payne, Sedgwick, Cotter, & Berry, 2006). 

Therefore, we will briefly review the members of the FGF family and their fundamental 

biological functions which are relevant to MDD. 

FGF System Biology: Emphasis on FGF2 and FGF9 

 The FGF system is composed of 22 ligands and 4 receptors (Figure 1.1), though 

only 10 of the ligands and 3 of the receptors are expressed in the central nervous system 

(Guillemot & Zimmer, 2011; Reuss & von Bohlen und Halbach, 2003; Yazaki et al., 

1994). The FGF family ligands have been organized into seven sub-families according to 

genetic synteny, structural homology, and receptor binding affinity profiles (Beenken & 

Mohammadi, 2009; Guillemot & Zimmer, 2011; Itoh & Ornitz, 2008, 2011). The 

canonical FGF ligands are secreted extracellularly and have local, spatially-limited 

paracrine functions, requiring heparin-sulfate proteoglycans (HSPG) to bind to receptors 

(Beenken & Mohammadi, 2009; Guillemot & Zimmer, 2011; Itoh & Ornitz, 2011; 

Turner, Eren-Koçak, Inui, Watson, & Akil, 2015; Turner et al., 2012). This HSPG 

binding serves several purposes, including contributing to the specificity of the FGF-FGF 

receptor interaction, protecting FGF ligands from degradation, limiting the diffusion of 
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FGF ligands, and bridging FGF receptor subunits to promote autophosphorylation 

(Guillemot & Zimmer, 2011). 

LIGANDS RECEPTORS 
 Family Members Binding FGFRs Isoforms 

C
an

on
ic

al
 F

G
Fs

 

FGF4 
FGF3 1, 2 IIIb 
FGF4 1, 2, 3, 4 IIIc FGF6 1, 2, 4 

FGF5 
FGF1 1, 2, 3, 4 IIIb, IIIc FGF2 1, 2, 3, 4 
FGF5 1, 2 IIIc 

FGF8 
FGF8 1, 2, 3, 4 

IIIc FGF17 1, 2, 3, 4 
FGF18 2, 3, 4 

FGF9 
FGF9 1, 2, 3 IIIb, IIIc 
FGF16 2, 3  IIIc 
FGF20 1, 2, 3, 4 IIIb, IIIc 

FGF10 
FGF7 2, 4  

IIIb FGF10 1, 2 
FGF22 1, 2 

H
or

m
on

e 
FG

Fs
 

FGF15/19 

FGF15/19 1, 2, 3, 4 

IIIb, IIIc FGF21 1, 2, 3, 4 

FGF23 1, 2, 3, 4 

In
tr

ac
el

lu
la

r 
FG

Fs
 

FGF11 

FGF11 

  
FGF12 
FGF13 

FGF14 

 
Figure 1.1. Phylogeny of FGF ligands and specificity of their interactions with FGF 
receptors. Adapted from Neuron, 7/4, Guillemot & Zimmer, From Cradle to Grave: The 
Multiple Roles of Fibroblast Growth Factors in Neural Development, 574-588, © 2011, 
with permission from Elsevier. 
 
On the other hand, several subsets of FGF ligands act in other ways. FGFs ligands 11-14 

are not secreted and remain in the nucleus of the cell, where they do not interact with 

FGF receptors (Mason, 2007). Hormone-like FGF ligands 15/19, 21, and 23 have low 

affinity for FGF receptors and HSPGs: they have long-range endocrine functions and 

mediate metabolism (Guillemot & Zimmer, 2011; Itoh & Ornitz, 2011). Two canonical, 

paracrine, FGF ligands, FGF2 and FGF9, are of particular interest because they are 

among those molecules whose expression is dysregulated in the depressed postmortem 

human brain (Bernard et al., 2011; Evans et al., 2004; Gaughran et al., 2006), and they 

will be the focus of this dissertation. 
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 FGF2 and FGF9 have differential patterns of expression in the central nervous 

system. FGF2 is primarily expressed at relatively low levels in astrocytes across the 

nervous system, although hippocampal CA2 pyramidal neurons express high levels of 

FGF2, which is thought to remain in the nucleus of the cell (Gonzalez, Berry, Maher, 

Logan, & Baird, 1995). In contrast, FGF9 is primarily expressed by neurons in the cortex, 

hippocampus, thalamus, cerebellum, and spinal cord (Garcès, Nishimune, Philippe, 

Pettmann, & deLapeyrière, 2000; Lin et al., 2009; Nakamura et al., 1997; Tagashira, 

Ozaki, Ohta, & Itoh, 1995). FGF9 is also expressed by glia in the hindbrain and spinal 

cord (Nakamura et al., 1999). Both FGF2 and FGF9 interact with all the FGF receptors 

that are expressed in the central nervous system, but they show different patterns of 

binding affinity.  

The FGF receptors (FGFR) are receptor tyrosine kinases with a prototypical 

structure and variants that confer ligand specificity. FGFRs have an extracellular domain 

comprised of three immunoglobulin domains (IgI, IgII, and IgIII) and an acid box region 

between IgI and IgII, a transmembrane domain, and an intracellular domain consisting of 

a split tyrosine kinase domain that autophosphorylates to activate signaling cascades 

upon ligand binding (Figure 1.2).  

All FGFRs are alternatively spliced, and splicing of the IgIII domain by 

alternative use of exon 8 or exon 9 into two variants (IIIb and IIIc) determines ligand 

binding specificity (Beenken & Mohammadi, 2009; Guillemot & Zimmer, 2011; Itoh & 

Ornitz, 2011; Mason, 2007; Turner et al., 2015, 2012). FGF2 and FGF9 display different 

patterns of binding affinity for FGFR1, FGFR2, and FGFR3 in vitro. FGF2 binds most 

strongly to FGFR1 and least strongly to FGFR3, while FGF9 binds most strongly to 
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FGFR3 and least strongly to FGFR1. Both FGF2 and FGF9 have stronger affinities for 

the IIIc variants than the IIIb variants of the receptors (Ornitz et al., 1996; Zhang et al., 

2006). However, it is unknown whether these relationships are similar or how HSPGs 

might alter binding tendencies in vivo (Guillemot & Zimmer, 2011). 

 

 

Figure 1.2. A schematic of the fibroblast growth factor receptor structure. Adapted by 
permission from Macmillan Publishers Ltd: Nature Reviews Drug Discovery. Beenken & 
Mohammadi (2009). The FGF Family: biology, pathophysiology, and therapy, 8, 235-
253, © 2009. 
 

As with the FGF ligands, the three FGFRs that are expressed in the central 

nervous system have different patterns of postnatal expression. FGFR1 is primarily 

expressed in neurons (though some studies report additional expression in astrocytes) in 

the hippocampus, cortex, thalamus, and many subcortical regions (Bansal, Lakhina, 

Remedios, & Tole, 2003; Belluardo et al., 1997; Gonzalez et al., 1995; Matsuo et al., 

1994). FGFR2 is primarily expressed by glia across the brain, especially fiber-rich 

regions like the corpus callosum and internal capsule, though neuronal expression was 

also observed in the cerebellum (Bansal et al., 2003; Belluardo et al., 1997; Yazaki et al., 

1994). FGFR2 is also highly expressed in the choroid plexus (Yazaki et al., 1994). 

Similarly, FGFR3 is almost exclusively expressed diffusely in astrocytes and 

oligodendrocytes, with moderate expression levels in cerebellum and hindbrain regions 
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including the superior colliculus (Bansal et al., 2003; Belluardo et al., 1997; Oh et al., 

2003; Peters, Ornitz, Werner, & Williams, 1993; Pringle et al., 2003; Yazaki et al., 1994). 

 Ligand binding to FGFRs spurs autophosphorylation of the intracellular tyrosine 

kinase domains of the receptors, which activates three different signaling cascades in the 

brain to ultimately impact transcriptional activity, cytoskeletal targets, downstream 

intracellular function (including via transcriptional negative feedback on the pathways 

themselves), and FGF receptor activity. These cascades include: 1) the Ras pathway, 

which activates the Erk-MAPK pathway to mediate transcription, 2) the PI3K pathway, 

which activates Akt, and 3) the PLCγ pathway, which activates PKC to impact the 

cytoskeleton (Figure 1.3) (Beenken & Mohammadi, 2009; Duman & Monteggia, 2006; 

Guillemot & Zimmer, 2011; Itoh & Ornitz, 2011; Klint & Claesson-Welsh, 1999; Krejci, 

Prochazkova, Bryja, Kozubik, & Wilcox, 2009; Mason, 2007; Reuss & von Bohlen und 

Halbach, 2003; Wing, Chen, Chuang, Wu, & Tsai, 2005). Notably, some FGFs can 

themselves be transported across the plasma membrane and translocated to the nucleus 

where they interact with nuclear FGFRs, though the function that this underlies is not 

well understood (Mason, 2007).  
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Figure 1.3. Signaling through fibroblast growth factor receptors. Adapted by permission 
from Macmillan Publishers Ltd: Nature Reviews Neuroscience. Mason (2007). Initiation 
to End Point: The Multiple Roles of Fibroblast Growth Factors in Neural Development, 
8, 583-596, © 2007. 
 

FGF System Influence on Circuit Development, Maintenance, and Plasticity During 

Development and Adulthood: Focus on FGF2 and FGF9 

 FGFs interact with many other systems and are responsible for molecular and 

cellular changes across a wide variety of brain functions. It is beyond the scope of this 

chapter to exhaustively review the demonstrated functions for all FGFs (though many 
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others have covered these topics extensively: Beenken & Mohammadi, 2009; Guillemot 

& Zimmer, 2011; Itoh & Ornitz, 2011; Vaccarino, Schwartz, Raballo, Rhee, & Lyn-

Cook, 1999; Woodbury & Ikezu, 2013; Zechel, Werner, Unsicker, & Von Bohlen Und 

Halbach, 2010). Since the neurotrophic hypothesis posits that disrupted growth factors 

influence the cellular circuitry and dysregulate functions underlying MDD symptoms, we 

will focus on functions influencing circuit formation and maintenance, with a particular 

emphasis on FGF2 and FGF9. Previous research demonstrates that both FGF2 and FGF9 

are responsible for cellular and molecular changes in the brain, though much less research 

has focused on the functions of FGF9.  

Broadly speaking, FGF2 is expressed after neurulation and this expression is 

spatially and temporally regulated (Woodbury & Ikezu, 2013); it plays several roles 

important to circuit function in the nervous system, including: influencing cell 

proliferation and neurogenesis, promoting differentiation during development, mediating 

axonal growth, and regulating neurogenesis as well as maintenance and plasticity of 

specific circuits during adulthood (Zechel et al., 2010). The literature is rich in 

descriptions of FGF2-mediated effects in a number of disorders, including 

epilepsy/seizure, traumatic brain injury, and neurodegeneration (for reviews, see: 

Beenken & Mohammadi, 2009; Palmer, Markakis, Willhoite, Safar, & Gage, 1999; 

Paradiso, Zucchini, & Simonato, 2013; Turner et al., 2015; Woodbury & Ikezu, 2013; 

Yoshimura et al., 2001), though a full discussion of all these disorders is beyond the 

scope of this chapter.  

While much work remains to be done on FGF9, early indications suggest that it 

acts as a survival factor across a number of brain regions (Garcès et al., 2000; Huang, 
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Hong, & Chuang, 2009; Kanda et al., 1999; Pataky, Borisoff, Fernandes, Tetzlaff, & 

Steeves, 2000) and that it is critical for circuit formation in the cerebellum (Lin et al., 

2009; Meier et al., 2014). It was recently suggested that FGF9 signaling disrupts 

myelination in multiple sclerosis (Lindner et al., 2015), though its effects on other 

disorders of central nervous system are unknown. 

Functions of FGF2 During Development 

 Knockout studies provided early evidence that FGF2 was necessary for cellular 

proliferation and cytoarchitectonic organization in the central nervous system: 

constitutive FGF2 knockout mice display reduced neuronal, astrocytic, and progenitor 

density as well as disorganization in several cortical regions both after birth and during 

adulthood (Chen et al., 2008; Dono, 1998; Ortega, Ittmann, Tsang, Ehrlich, & Basilico, 

1998). Other studies demonstrated that FGF2 promoted proliferation in neurogenic zones, 

beginning during embryogenesis and persisting through adulthood (Wagner, Black, & 

DiCicco-Bloom, 1999; Zheng, Nowakowski, & Vaccarino, 2004), while administration 

of FGF2-neutralizing antibodies dramatically reduced neurogenesis (Tao, Black, & 

DiCicco-Bloom, 1997). Furthermore, FGF2 seems to be particularly important for 

developmental cellular proliferation in the cerebral cortex and hippocampus. In the 

anterior cingulate cortex, FGF2 knockout mice display a marked deficit in excitatory 

neurons (Korada, Zheng, Basilico, Schwartz, & Vaccarino, 2002). Additionally, in vitro 

culture studies indicate that FGF2 is mitogenic for hippocampal stem cells (Vicario-

Abejón, Johe, Hazel, Collazo, & McKay, 1995). Collectively, these studies indicate that 

one of FGF2’s primary roles in the brain is to mediate cellular proliferation. 
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 FGF2 also impacts fate determination, and studies suggest that a number of 

factors, including the timing of FGF2 manipulations (either by augmentation or 

reduction) and/or expression has differential effects on the identity of affected cell 

populations (Qian et al., 2000; Vaccarino et al., 1999). This is supported by evidence 

from a wide variety of studies showing a diversity of cellular fates that are influenced by 

FGF2, and indeed, FGF2 is commonly used in culture studies to induce differentiation. 

For example, FGF2 supports astroglia and oligodendrocyte fates in cortical cultures 

(Morrow, Song, & Ghosh, 2001; Qian et al., 2000; Qian, Davis, Goderie, & Temple, 

1997), as well as the development of immature dopamine neurons (Vescovi, Reynolds, 

Fraser, & Weiss, 1993). Furthermore, it seems that FGF2 has a particular impact in the 

cortex, where it supports glutamatergic excitatory neuronal development (Korada et al., 

2002; Vaccarino, Schwartz, Hartigan, & Leckman, 1995), and in the hippocampus, where 

culture studies indicate that it may have selective impact on CA3 (Shetty, 2004) and 

calbindin-expressing neurons (Vicario-Abejón et al., 1995). This FGF2-mediated 

diversity strongly supports FGF2 as an organizer capable of influencing cellular fate 

determination, which likely impacts regional microcircuit function. 

 FGF2 may directly influence circuit formation by playing an organizational role 

on regional morphology, both by directing proliferation and/or cytoarchitectonic 

organization and by influencing axon growth and branching. Supporting this idea, 

augmentation of FGF2 during embryogenesis induced cortical gyrification in rodents, 

strongly suggesting that the proliferative effects of FGF2 also played an organizational 

role on developing regional morphology (Rash, Tomasi, Lim, Suh, & Vaccarino, 2013). 

In parallel, FGF2 is well-known to play a role in developmental axonal growth and 
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branching: FGF2 increases the size of growth cones and promotes axon branching in both 

cortical (Szebenyi et al., 2001) and hippocampal cultures (Patel & McNamara, 1995). 

Furthermore, in hippocampal cultures, FGF2 promoted microcircuit formation 

(Nakagami, Saito, & Matsuki, 1997). This organizational capacity supports the 

interpretation that FGF2 plays a role in circuit assembly. 

Functions of FGF2 During Postnatal Development and Adulthood 

 FGF2 is known to modulate cellular proliferation and fate determination of adult 

progenitors in both neurogenic zones in the adult brain, and some have hypothesized that 

these effects may partially underlie the circuit dysregulation observed in MDD. Indeed, 

animals treated with systemic FGF2 showed increases in mitogenic activity in the 

subventricular zone and the dentate gyrus of the hippocampus both during the early 

postnatal period and into adulthood (Wagner et al., 1999). Additional studies have 

supported the action of FGF2 in the hippocampus in particular. Another group 

demonstrated that chronic intracerebroventricular infusions of FGF2 similarly stimulated 

adult neurogenesis and survival and increased growth and complexity of dendrites for 

newborn dentate granule cells (Rai, Hattiangady, & Shetty, 2007). Work from our 

laboratory supports these findings in a rodent model of selective vulnerability to affective 

disorders. In selectively bred animals vulnerable to higher levels of anxiety- and 

depression-like behavior, chronic FGF2 administration during adulthood increased 

survival of newborn cells (Perez, Clinton, Turner, Watson, & Akil, 2009). Similarly, a 

single administration of FGF2 on the day after birth increased cellular proliferation and 

survival during adolescence, though only the effects on survival persisted into adulthood. 

This results in FGF2-treated animals having denser, more neuron-rich dentate gyri, which 
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likely impacts hippocampal function (Turner, Clinton, Thompson, Watson, & Akil, 

2011). Collectively, these findings strongly support the idea that FGF2 is an important 

mediator of adult neurogenesis, and therefore its effects on neural circuitry extend 

beyond development to impact circuit function throughout life. 

 In addition to the well-characterized effects on neurogenesis, there two studies 

have indicated that FGF2 is important for the dynamic regulation and tuning of neural 

circuits, especially in the hippocampus. FGF2 treatment increases functional excitatory 

synapses in hippocampal cultures (Li, Suzuki, Suzuki, Mizukoshi, & Imamura, 2002), 

and intracerebroventricular FGF2 administration facilitates long-term potentiation in the 

hippocampus (Abe, Ishiyama, & Saito, 1992; Ishiyama, Saito, & Abe, 1991). While 

much work remains to be done to fully elucidate the mechanisms by which FGF2 

mediates these effects, these data support the interpretation that FGF2 mediates circuit 

maintenance and function throughout the lifespan. 

Notably, all these experiments examining FGF2’s impact on neural circuitry 

during adulthood have utilized administration paradigms. These exogenous 

administration effects likely induce or mimic endogenous mechanisms to influence 

functions like circuit tuning, which may provide the basis for environmental effects on 

FGF2 expression. Indeed, a number of studies have shown that manipulations with 

positive effects like environmental enrichment (Perez et al., 2009) and exercise (Gómez-

Pinilla, Dao, & So, 1997) induce FGF2 expression, while manipulations with negative 

effects like chronic social defeat reduce FGF2 expression (Turner, Calvo, Frost, Akil, & 

Watson, 2008). Taken with the effects previously described, this supports the idea that 
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FGF2 is poised to exert effects on neural circuits as a result of behavioral interventions, 

especially in neurogenic-sensitive microcircuits like the hippocampus.  

Functions of FGF9 During Development and Adulthood 

The role of FGF9 in the central nervous system has been studied much less than 

FGF2. Knocking out FGF9 systemically is neonatally lethal, due to a dramatic effect on 

lung development (Colvin, White, Pratt, & Ornitz, 2001), and as such, much of the work 

to understand FGF9 function has been conducted in vitro or using models of FGF9 

dysregulation which do not involve constitutive knockout.  

In the central nervous system, FGF9 may promote cellular survival and progenitor 

fate determination across a number of regions and cell types, supporting the hypothesis 

that it can also act to modulate circuit formation. Indeed, in vitro FGF9 promoted survival 

of cortical neurons, nigrostriatal and mesencephalic dopamine neurons (Chuang et al., 

2015; Huang et al., 2009), basal forebrain cholinergic neurons (Kanda et al., 2000), 

bulbospinal neurons (Pataky et al., 2000), and both medial thoracic and sacral 

motoneurons in the spinal cord (Garcès et al., 2000; Kanda et al., 1999). FGF9 also has 

been shown to have specific effects on glia in vitro. In cultured oligodendrocytes, FGF9 

treatment induced expression of the FGF receptors and spurred activity of the MAPK 

pathway (Cohen & Chandross, 2000), and this effect may be related to astroglia 

proliferation. Indeed, downregulation of FGF9 dramatically reduced the pool of 

proliferating astroglia (Falcone, Filippis, Granzotto, & Mallamaci, 2015). Another recent 

study suggests that it may promote cellular proliferation and survival but reduce astrocyte 

differentiation in adult subventricular neural progenitor cells (Lum, Turbic, Mitrovic, & 

Turnley, 2009), while other studies suggest that FGF9 itself may influence or control the 
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timing of astrogliogenesis in the cortex (Seuntjens et al., 2009). While there are many 

open questions regarding the role of FGF9 in cellular proliferation, fate determination, 

and cell survival, this initial evidence supports the hypothesis that the endogenous 

functions of FGF9 could influence neural circuitry. 

 Indeed, two recent studies demonstrate that FGF9 has critical effects on circuit 

formation in the cerebellum. Lin and colleagues (2009) used a neural tube-specific 

ablation of FGF9 expression to demonstrate that the loss of FGF9 had profound effects 

on cerebellar circuitry: FGF9-null mice were ataxic, and this impairment arose from 

malformed Bergmann glia scaffold formation as well as deficits in granule neuron 

migration and maturation of Purkinje cells. They went on to investigate these effects 

further in vitro, demonstrating that neuron-derived FGF9 activated the MAPK pathway 

through FGFR1 and FGFR2 to mediate effects on Bergmann glia scaffolding and 

neuronal migration (Lin et al., 2009). Another group extended these findings, showing 

that FGFR2 may be particularly important to circuit formation in the cerebellum and that 

FGF9 could act as a positioning cue (Meier et al., 2014). While it is unknown if FGF9 

has similar effects in regions like the hippocampus or cerebral cortex, these results 

provide impetus to better understand the region-specific roles that FGF9 plays in circuit 

formation. 

 There is much work to be done to elucidate the role of FGF9 during development 

and adulthood, both during health and in psychiatric disease. Relative to the relative 

wealth of data on FGF2’s influence on neural circuitry, there is a particular need to 

develop a better understanding of FGF9’s impacts on adult neurogenesis, circuit tuning 

and maintenance, and its response to behavioral manipulations. 
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Neurotrophic Factors Are Poised To Exert Effects on Affective Circuitry 

 Because of the patterns of expression, known interactions, and functions 

influencing cells and circuits, growth factors are poised to act as organizers to mediate 

effects on affective function and brain circuitry. In particular, the functions described 

above strongly indicate that FGF2 can exert effects on affective brain circuits, and while 

many fewer studies have implicated FGF9 in brain plasticity, those that have suggest that 

it could serve a similar function.  

Other mechanisms by which the FGF family could mediate affective neural 

circuitry, including by modulating neurotransmission and/or affecting molecular 

networks, have been less studied, but preliminary data are promising. In particular, recent 

studies indicate that the FGF system can interact with the serotonin system. The 

researchers present evidence that FGF receptors can heterodimerize with serotonin (5-

HT1A) receptors (Borroto-Escuela et al., 2015), and co-treatment with both FGF2 and 

the serotonin receptor agonist 8-OH-DPAT have very strong effects on behavioral 

despair (Borroto-Escuela et al., 2012). This indicates that the FGF family, including 

FGF2 and FGF9, has a point of direct convergence with the monoamine system and 

could directly influence neurotransmission to modulate affective behavior. It also 

reinforces the idea that the FGFs could play a major role in affective regulation through 

interaction with a system that is the target of known antidepressant drugs.  

However, many questions remain. For example, it is unknown if the FGFs can 

modulate other monoamines like norepinephrine or affect excitatory and/or inhibitory 

neurotransmitters. Furthermore, it is not well-understood how the molecular networks 

that modulate ligand binding or activate cascades downstream of FGF receptors are 
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altered with perturbations to the FGF system. It is similarly unknown how disruptions in 

FGF system molecules interact with or unbalance other molecular networks, including 

those regulating immune and/or circadian function, both of which show alterations in 

MDD. Because the need is great to develop novel approaches for new therapeutics that 

effectively treat MDD, more emphasis should be given to these topics to better 

understand the impact of growth factor systems on many different levels of analysis, 

including molecular networks, cells and cellular interactions, microcircuits, and plasticity 

of macrocircuits.  

FGF2 and FGF9 Are Dysregulated in MDD 

 As previous sections have described, the known patterns of expression and 

biological functions of FGF2 and FGF9 support the idea that they could act as organizers 

in the brain to mediate neural circuit function. In order to implicate their dysregulation in 

the pathophysiology underlying MDD, additional evidence would need to support their 

role in affective function and vulnerability to disruption in MDD. Ideally, this evidence 

would be multi-faceted and include demonstrations that: 1) FGF2 and FGF9 expression is 

altered in the postmortem depressed brain, especially in regions of selective vulnerability 

like the prefrontal cortices and hippocampus; 2) variability in endogenous expression or 

in genetic polymorphisms of FGF2 and FGF9 tracks with individual differences in 

vulnerability to affective disruption; 3) environmental manipulations, including stress, 

can alter FGF2 and FGF9 expression; 4) manipulation of endogenous expression of FGF2 

and FGF9 is sufficient to alter affective behavior; and 5) drugs with known 

antidepressant or anxiolytic qualities alter expression of FGF2 and FGF9. 
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Our laboratory and others have demonstrated that FGF2 is downregulated in the 

frontal cortices (Evans et al., 2004), hippocampus (Gaughran et al., 2006), and locus 

coeruleus (Bernard et al., 2011) in depressed individuals. This consistent change in 

expression across regions is striking and underscores the likely importance of FGF2 and 

the control of affect, but additional studies – including validation in animal models – 

were necessary to convincingly implicate FGF2 in affective dysregulation and MDD.  

Subsequent studies from individuals diagnosed with MDD and animal models 

support the idea that FGF2 expression varies across individuals and is associated with 

vulnerability to affective dysregulation. In humans, single-nucleotide polymorphisms in 

the FGF2 gene predict the response to selective serotonin reuptake inhibitor treatment 

over six weeks (Kato et al., 2009). Moreover, serum FGF2 levels were decreased in 

MDD patients (He et al., 2014), though this biomarker may be state-specific, as plasma 

FGF2 was not found to differ from controls if MDD patients were in remission 

(Takebayashi, Hashimoto, Hisaoka, Tsuchioka, & Kunugi, 2010). This association 

between FGF2 and vulnerable individuals has also been observed in animal models. In 

rats, FGF2 expression in the CA2 subfield of the hippocampus of outbred animals varied 

and significantly correlated with affective behavior on the elevated plus maze (Eren-

Koçak, Turner, Watson, & Akil, 2011). A selective breeding strategy developed by our 

laboratory has further emphasized the importance of the link between FGF2 expression 

and individual variation in vulnerability to affective dysregulation. We have generated 

two lines of rats selectively bred for their locomotor response to a novel environment, 

one measure of novelty-seeking and anxiety-like behavior (Stead et al., 2006), and these 

rats have been shown to vary along a number of different traits, including affective 
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behavior, response to antidepressant treatment, aggression, novelty-seeking, attribution of 

incentive salience, and propensity to developing dependence to drugs of abuse (Flagel, 

Waselus, Clinton, Watson, & Akil, 2014; Jama, Cecchi, Calvo, Watson, & Akil, 2008; 

Stead et al., 2006; Stedenfeld et al., 2011). Bred High Responders (bHRs) show high 

levels of locomotion in a novel environment and low levels of spontaneous anxiety- and 

depression-like behavior, while Bred Low Responders (bLRs) show low levels of 

locomotion in a novel environment and high levels of spontaneous anxiety- and 

depression-like behavior (Jama et al., 2008; Perez et al., 2009; Stead et al., 2006; 

Stedenfeld et al., 2011; Turner et al., 2011). Notably, bHR and bLR rats differ in their 

hippocampal FGF2 expression: bHRs have higher expression of FGF2 in the dentate 

gyrus and CA2 subfields relative to bLRs (Perez et al., 2009). Moreover, this difference 

in phenotype and basal expression has been linked to the regulatory epigenetic marker 

H3K9me3, providing a mechanistic avenue whereby environmental manipulations could 

impact FGF2 expression (Chaudhury et al., 2014). Furthermore, these phenotypes are 

sensitive to stress, environmental enrichment, and administration of both antidepressants 

and FGF2, supporting FGF2’s role in affect regulation (Jama et al., 2008; Perez et al., 

2009; Stedenfeld et al., 2011; Turner et al., 2011). Collectively, this series of studies 

demonstrates that FGF2 expression varies across individuals and is associated with 

differences in affective behavior and dysregulation. 

FGF2 has been shown to be responsive to stress, one environmental factor which 

is thought to be strongly associated with MDD. Acute restraint stress or corticosterone 

treatment elevated FGF2 levels in a number of regions including the prefrontal cortices 

and hippocampus (Molteni et al., 2001), and escapable foot-shock showed a similar 
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induction in the same regions (Bland et al., 2007). This FGF2 induction after acute 

manipulations is striking, and the researchers suggest that it may be related to 

neuroprotection. Supporting this interpretation, FGF2 infusions were sufficient to block 

the effects of chronic unpredictable stress in mice (Elsayed et al., 2012). However, 

chronic social defeat stress without a positive intervention, an animal model 

recapitulating some aspects of MDD, strongly decreased FGF2 expression in the 

hippocampus (Turner, Calvo, et al., 2008). Moreover, prenatal stress or corticosterone 

exposure, another factor known to increase vulnerability to MDD in humans, decreased 

FGF2 expression in the prefrontal cortex and hippocampus, and altered the brain’s 

responses to stressful experiences during adulthood (Fumagalli, Bedogni, Slotkin, 

Racagni, & Riva, 2005; Molteni et al., 2001). Collectively, these studies strongly support 

FGF2 as a molecule tuned to environmental stress, supporting its possible role in the 

pathophysiology underlying MDD. 

Administration of FGF2 is sufficient to alter anxiety- and depression-like 

behavior, further implicating this molecule in affective regulation. In outbred mice and 

rats, subchronic and chronic FGF2 administration had anxiolytic and antidepressant 

properties (Elsayed et al., 2012; Turner, Gula, Taylor, Watson, & Akil, 2008). In 

addition, chronic administration of FGF2 eliminated basal differences in spontaneous 

anxiety-like behavior between bHR and bLR animals, paralleling similar effects of 

environmental enrichment (Perez et al., 2009). Similarly, bHR and bLR animals who 

received a one-time administration of FGF2 on the day after birth showed no differences 

in anxiety- and depression-like behavior during adulthood (Turner et al., 2011). These 

changes were accompanied by alterations in hippocampal neurogenesis, with particular 
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effects on cell survival, supporting the notion that FGF2 can influence hippocampal 

microcircuitry during adulthood to modulate affective behavior (Perez et al., 2009; 

Turner et al., 2011). As a whole, these studies indicate that chronic administration of 

FGF2 reduces anxiety- and depression-like behavior in a rodent model, supporting the 

idea that perturbations in FGF2 levels can impact affect.  

Effects of knocking down FGF2 expression further support the role of this 

molecule in affective behavior. Eren-Koçak and colleagues demonstrated that using a 

lentivirus containing a short-hairpin RNA targeted against FGF2 could reduce expression 

in the dentate gyrus of the hippocampus. Furthermore, animals treated with the FGF2 

knockdown virus showed significantly more anxiety-like behavior on the elevated plus 

maze relative to controls, with no effect on depression-like behavior in the forced swim 

test (Eren-Koçak et al., 2011). These findings reinforce the observations in selectively-

bred animals suggesting that bLR’s high levels of anxiety and depressive-like behavior 

may be mediated through low levels of hippocampal FGF2. This observation further 

demonstrates that endogenous FGF2 expression is necessary for appropriate expression 

of affective behavior.   

Moreover, administration of antidepressant and anxiolytic drugs induced FGF2 

expression (Bachis, Mallei, Cruz, Wellstein, & Mocchetti, 2008; Gómez-Pinilla, Dao, 

Choi, & Ryba, 2000; Mallei, Shi, & Mocchetti, 2002), and recent studies have suggested 

that this induction is necessary for the effectiveness of the antidepressants imipramine 

and fluoxetine (Elsayed et al., 2012). Indeed, one possible mechanism underlying this 

observation is a convergence on the serotonergic system, which both antidepressant drugs 

target. Because an FGF receptor antagonist was sufficient to disrupt the behavioral 
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effects of antidepressants (Elsayed et al., 2012) and FGF receptors can heterodimerize 

with serotonin receptors (Borroto-Escuela et al., 2012, 2015), these studies provide 

evidence that there may be an interaction between the serotonin and FGF systems to 

mediate neurotransmission and affective behavior.  

 Collectively, these studies suggest that FGF2 is an endogenous anxiolytic and 

anti-depressant that plays both an organizational role during development and an ongoing 

role during adulthood to modulate emotional reactivity. In contrast, the same microarray 

datasets which highlight FGF2 reductions in MDD also show a concomitant increase in 

FGF9 expression across regions in the anterior cingulate, dorsolateral prefrontal cortex 

(Evans et al., 2004), and locus coeruleus (Bernard et al., 2011). However, very little is 

known about FGF9’s role in affective regulation in animal models, and as noted above, 

much additional evidence is needed to convincingly implicate FGF9 as a disrupted factor 

in psychiatric disease. However, given that FGF2 and FGF9 were observed to be 

dysregulated in opposite directions, this also raises the interesting possibility that they 

have opposing effects on affective regulation, though there is much work to be done to 

demonstrate this due to the paucity of research in animal models. 

As previous sections have discussed, FGF2 and FGF9 can impact both local 

microcircuitry between cells within the same region and regional macrocircuitry, 

especially by way of cellular proliferation, differentiation, and circuit formation. Taken 

together, these bodies of evidence support FGF2 and FGF9 as molecules capable of 

mediating the circuit dysregulation that forms the core of the neurotrophic hypothesis of 

MDD, though there are still many open questions that should be addressed to support this 

claim. Furthermore, in order to harness the possibility of targeting either FGF2 or FGF9 
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as possible candidates for therapeutic interventions, additional studies are needed to 

determine how FGF2 or FGF9 dysregulation impacts molecular networks, cellular 

functions, and circuity assembly and maintenance. Indeed, understanding the impact of 

FGF2 and FGF9 on different molecular networks will be of particular importance, since 

drugs that target FGF2 and FGF9 would also impact the function of these systems. 

Goals for the Dissertation 

 We hypothesize that both FGF2 and FGF9 play opposite roles in the brain to 

mediate affect. Because we have observed preliminary evidence that FGF2 and FGF9 are 

disrupted in opposite directions, we further hypothesize that FGF2 and FGF9 become 

coordinately dysregulated in MDD. The data presented in this dissertation will address 

these hypotheses: we will present three data chapters, including data derived from both 

postmortem human samples and animal studies, to address these questions.  

The first data chapter will address the hypothesis that FGF9 is related to affect 

and becomes dysregulated in MDD. Because the literature implicating FGF9 in affective 

dysregulation is still in its infancy, we will follow the path laid by researchers examining 

the role of FGF2 in MDD. Specifically, this chapter will re-examine previous findings 

that FGF9 expression is increased in prefrontal cortical regions of the depressed human 

brain, and it will describe MDD-related FGF9 expression changes in the hippocampus for 

the first time. Additionally, this chapter will also answer two questions that have not yet 

been addressed in relation to FGF9: 1) Is there evidence for individual variation in FGF9 

expression that relates to affective dysregulation? (Alternatively stated: can we detect 

basal differences in FGF9 expression between the selectively-bred bHR and bLR rat 
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lines?) 2) Does knocking down FGF9 expression in the hippocampus alter affective 

behavior, and if so, which cells mediate this behavior? 

The second data chapter will focus on the affective functions of FGF2 in the 

brain. While the literature describing its effects and dysregulation in MDD has been 

growing rapidly, much work remains to be done to reinforce FGF2’s role in affective 

dysregulation. We extend previous findings by posing several outstanding questions 

using our selectively bred bHR and bLR rat lines: 1) Are the differences in basal FGF2 

expression in the hippocampus replicable and stable across generations? 2) Are basal 

differences in hippocampal FGF2 expression necessary for the observed differences in 

spontaneous anxiety- and depression-like behavior between the lines? (Alternatively 

stated: does knocking down hippocampal FGF2 expression abolish basal differences in 

affective behavior?) Additionally, we revisit data derived from postmortem human 

samples to determine if the the previously-observed reductions in FGF2 expression 

across different brain regions in MDD can still be observed after controlling for a variety 

of confounding pre- and postmortem factors. 

Because we have consistently observed opposing effects of FGF2 and FGF9 in 

MDD and animal models of affective disorders, we sought to determine whether FGFs 

become dysregulated in isolation and/or if expression of members of the FGF family 

become coordinately dysregulated in MDD. To this end, we examined three questions: 1) 

Can we find evidence of opposing effects in the relationships in expression between 

FGF2, FGF9, and the FGF receptors? 2) Do relationships in expression between FGF2, 

FGF9 and their receptors change with diagnosis? 3) What molecular networks (and their 

accompanying functions) are associated with dysregulated FGF2 and FGF9 in MDD? 
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Chapter 2.   

Hippocampal Fibroblast Growth Factor 9 is Dysregulated in Depression 

and Modulates Negative Affect in Rodents1 

Introduction 

The neurotrophic hypothesis of major depressive disorder (MDD) posits that the 

neurobiological basis for mood disorders may be due to the dysregulation of growth 

factors and their effects on brain circuitry (Duman & Monteggia, 2006; Turner, Watson, 

& Akil, 2012). This hypothesis is supported by gene expression profiling experiments in 

postmortem human brains that implicate the fibroblast growth factor (FGF) family and 

other neurotrophins in MDD (Bernard et al., 2011; Evans et al., 2004; Gaughran, Payne, 

Sedgwick, Cotter, & Berry, 2006). Despite the evidence that multiple growth factors are 

involved in mood disorders, to date only a few, such as brain-derived neurotrophic factor 

(BDNF) and FGF2, have been studied in depth. 

Our laboratory and others have demonstrated that FGF2 is dysregulated in several 

different regions of the brain (Bernard et al., 2011; Evans et al., 2004; Gaughran et al., 

2006). Follow-up studies from our laboratory and others have focused on the FGF family 

                                                 
1 Note: Some data from this chapter has been published; specifically, Figures 2.4, 2.5, 
and 2.6, Tables 2.1 and 2.2, and Appendix 2.4 can be found in: Aurbach, E. L., Inui, E. 
G., Turner, C. A., Hagenauer, M. H., Prater, K. E., Li, J. Z., … Akil, H. (2015). 
Fibroblast growth factor 9 is a novel modulator of negative affect. Proceedings of the 
National Academy of Sciences, 112(38), 11953–11958. 
http://doi.org/10.1073/pnas.1510456112 
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and have demonstrated a key role of FGF2 in the control of emotional behavior. Rats 

exposed to chronic social defeat stress, an animal model recapitulating some aspects of 

MDD, showed decreased hippocampal FGF2 expression relative to unstressed controls 

(Turner, Calvo, Frost, Akil, & Watson, 2008), whereas subchronic and chronic 

administration of FGF2 had antidepressant properties (Elsayed et al., 2012; Turner, Gula, 

Taylor, Watson, & Akil, 2008). Moreover, administration of antidepressants and 

anxiolytics induced FGF2 expression (Bachis, Mallei, Cruz, Wellstein, & Mocchetti, 

2008; Gómez-Pinilla, Dao, Choi, & Ryba, 2000; Mallei, Shi, & Mocchetti, 2002), and 

recent studies suggested that this induction is necessary for the effectiveness of the 

antidepressants (Elsayed et al., 2012). In contrast, knocking down FGF2 in the dentate 

gyrus of the hippocampus increased anxiety-like behavior of outbred rats (Eren-Koçak, 

Turner, Watson, & Akil, 2011). Paralleling the human depression studies, hippocampal 

FGF2 was basally decreased in animals selectively bred for a low locomotor response to 

novelty (bred low responders, bLRs), who show high levels of spontaneous anxiety 

during adulthood. However, administering FGF2 either chronically during adulthood 

(Perez, Clinton, Turner, Watson, & Akil, 2009) or once during early development 

(Turner, Clinton, Thompson, Watson, & Akil, 2011) eliminated basal differences in 

behavior. Collectively, these studies suggest that FGF2 is an endogenous anxiolytic and 

anti-depressant molecule that plays both an organizational role during development and a 

role during adulthood to modulate emotional reactivity.  

Other members of the FGF family showed different patterns of dysregulation in 

postmortem tissue from individuals with MDD. Most notably, FGF9 had a pattern of 

dysregulation opposite to FGF2; FGF9 expression was increased in the frontal cortices 
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(Evans et al., 2004) and locus coeruleus (Bernard et al., 2011) in patients with MDD. 

This relationship is intriguing because additional evidence suggests that FGF2 and FGF9 

may be functionally opposed. For example, FGF2 expression was decreased and FGF9 

expression was increased in an in vitro cellular model of chronic stress (Salaria et al., 

2006).  

Despite the preliminary evidence that FGF9 is altered in MDD, little is known 

about the function of this molecule in the brain. FGF9 is primarily expressed by neurons 

in the cortex, hippocampus, thalamus, cerebellum, and spinal cord (Garcès, Nishimune, 

Philippe, Pettmann, & deLapeyrière, 2000; Lin et al., 2009; Nakamura et al., 1997; 

Tagashira, Ozaki, Ohta, & Itoh, 1995; Todo et al., 1998), though it is also expressed by 

glia in the hindbrain and spinal cord (Nakamura et al., 1999). FGF9 interacts with several 

of the FGF receptors (FGFR) (Goetz & Mohammadi, 2013), binding preferentially to 

FGFR3 (Ornitz et al., 1996). One study implicated FGF9 in multiple sclerosis, suggesting 

that increased FGF9 signaling disrupted myelination (Lindner et al., 2015), and data from 

our laboratory indicates that FGF9 expression increases after brain injury (Turner, Eren-

Koçak, Inui, Watson, & Akil, 2015). Many other reports suggest that FGF9 may promote 

cell survival. For example, FGF9 acts as a survival factor for nigrostriatal and 

mesencephalic dopamine neurons (Chuang et al., 2015; Huang, Hong, & Chuang, 2009), 

and FGF9 treatment can increase the survival and soma size of cultured basal forebrain 

cholinergic neurons (Kanda et al., 2000). FGF9 also weakly promoted proliferation and 

survival of cultured adult subventricular neural progenitor cells, inhibiting astrocyte 

differentiation (Lum, Turbic, Mitrovic, & Turnley, 2009). However, these effects may 

differ depending on the phase of development and brain region, because other reports 
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suggest that FGF9 may be particularly important for glia: FGF9 influences astrogenesis 

(Falcone, Filippis, Granzotto, & Mallamaci, 2015) and the generation, positioning, and 

patterning of cerebellar Bergmann glial cells (Lin et al., 2009; Meier et al., 2014). 

However, these are all studies of exogenous FGF9, which may be mimicking the actions 

of other FGFs.  Moreover, none of the studies to date have examined the role of FGF9 in 

the hippocampus or its role in the regulation of emotionality.  

In projects begun by previous members of our laboratory, we sought to elucidate 

the potential role of hippocampal FGF9 in the regulation of emotions and mood, given 

early observations that FGF9 expression was altered in the postmortem hippocampus of 

individuals with MDD. To this end, our laboratory showed that the effects of 

psychosocial stress, an animal model recapitulating some aspects of depression, 

significantly increased hippocampal FGF9 expression (Aurbach et al., 2015). Moreover, 

acute and chronic administration of FGF9 was sufficient to alter anxiety- and depression-

like behavior: acute FGF9 was anxiolytic and pro-depressant, while chronic FGF9 was 

anxiogenic and pro-depressant (Aurbach et al., 2015).  

Here, we carried out several analyses in both human and rodent to further 

examine the role of FGF9 in affective dysregulation. We examined FGF9 expression in 

postmortem human tissue across three brain regions to ascertain if FGF9 was 

dysregulated in major depression. Because the postmortem human data strongly 

implicated the hippocampus as a key site for FGF9 dysregulation, we studied the role of 

hippocampal FGF9 in both outbred and selectively bred rats. We examined FGF9 

expression in animals selectively bred for differing locomotor responses to novelty, an 

animal model of individual differences in affective dysregulation, to determine if FGF9 
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expression consistently varied with concomitant differences in emotional behavior. To 

determine if endogenous FGF9 was necessary for expression of affective-like behavior, 

we characterized the effects of FGF9 knockdown on anxiety-like and depression-like 

behavior and hippocampal gene expression in outbred rats. Together with the previous 

data from our laboratory, the combination of these various strands of evidence provides 

strong support for FGF9 as an endogenous molecule that promotes negative affect and 

may play a role in vulnerability to major depression.  

Materials and Methods 

Human Studies 

Subject Characteristics and Tissue Extraction. The human tissue samples used for 

all microarray experiments as well as the qRT-PCR validation were obtained from the 

Brain Donor Program at the University of California, Irvine with the consent of the next-

of-kin of the deceased (Appendix 2.1, Appendix 2.2, & Appendix 2.3).  

Dissection of Human DLPFC, ACC, and Hippocampus. For the first stage of 

dissection, a 1-cm coronal slab was placed on a block of dry ice. At the level of the genu 

of the corpus callosum, the middle frontal gyrus was identified by an expert in human 

neuroanatomy, and a fine jeweler’s blade in a coping saw handle was used to excise the 

gyrus for dorsolateral prefrontal cortex samples. In some cases, more than one slab was 

used to cover the full extent of the structure. In the same plane, the cingulate gyrus was 

identified by an expert in human neuroanatomy, and a fine jeweler’s blade in a coping 

saw handle was used to excise the gyrus for anterior cingulate cortex samples. In some 

cases, more than one slab was used to cover the full extent of the structure. In more 

caudal planes, the hippocampus was visually identified using the dentate gyrus by an 
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expert in human neuroanatomy, and a fine jeweler’s blade in a coping saw handle was 

used to dissect the hippocampus and surrounding temporal cortex. Both sides of the slab 

were carefully inspected. In some cases, more than one slab was used to cover the full 

extent of the structure.  For all structures, the block was wrapped in foil, placed on dry ice 

and then stored at -80°C until further processing (Jones et al., 1992). In the hippocampus, 

a second stage of finer dissection was then carried out. The temporal cortex was removed 

by visual inspection using the dentate gyrus and CA3 as landmarks. The dissected tissue 

was then processed for RNA extraction. Total RNA was extracted using procedures 

described previously (Evans et al., 2004; Li et al., 2004). Clinical information was 

obtained from medical examiners, coroners’ medical records and a family member. 

Patients were diagnosed by consensus based on criteria from DSM-IV. For further 

information regarding data collection procedures, please see Li and colleagues (Li et al., 

2013). Final Control and MDD sample sizes and demographics are in the appendices 

(DLPFC: Appendix 2.1, ACC: Appendix 2.2, HPC: Appendix 2.3).  

Gene Expression Profiling. In general, the labeling and hybridization of sample 

mRNA with oligonucleotide probes followed standard manufacturer protocols. Analyses 

used the full microarray datasets (all probe data from the MDD and Control subjects, as 

well as from small samples of subjects with bipolar disorder and schizophrenia) to 

maximize our ability to identify technical artifacts and confounds, although the reported 

results focus on MDD vs. Control comparisons for a subset of growth factor probes.  

Affymetrix Microarray. Microarray experiments were performed in eight separate 

experimental cohorts containing both patients and controls. The majority of RNA 

samples were analyzed in duplicate at two different laboratories using Affymetrix 
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Genechips (either U133A or U133Plus-v2). After extracting summarized probe signal 

data from scanned microarray image files, all downstream analyses were completed in 

the R statistical programming environment. We extracted the U133A subset of probes 

and applied RMA (Robust Multi-array Analysis) to summarize probe set expression 

levels using custom ENTREZ12.1 Chip Definition Files (CDF) which defined probe sets 

for 11,912 transcripts (as defined by ENTREZ in 03/2010) and 68 control probe sets. As 

is traditional, all probe signal values were log (base 2)-transformed to reduce 

heteroskedasticity and quantile-normalized to remove technical artifacts in the overall 

distribution of signal per sample. To ensure sample quality, we required an average 

sample to sample correlation coefficient (r) of 0.85-0.9, excluding 6 of 235 samples 

(2.6%) in the HPC, 30 of 367 samples (8.1%) in the DLPFC, and 6 of 283 samples 

(2.1%) in the ACC. Batch effects due to cohort, laboratory, and platform were removed 

by median-centering the data. Replicate samples were then averaged and any subjects 

that were missing information were removed from the dataset (n = 16 in DLPFC, n = 13 

in ACC, n=8 in HPC), leaving a final sample size of 156 subjects in the DLPFC, 140 

subjects in the ACC, and 129 subjects in the HPC. For further information regarding the 

Affymetrix data pre-processing procedures, please see Li and colleagues (Li et al., 2013). 

For all of the microarray experiments, as part of quality control, subjects were verified to 

have gene expression typical of their reported sex using data from genes XIST, EIF1AY, 

RPS4Y1, UTY, USP9Y, NLGN4Y, NCRNA00185, TTTY15, KDM5D, CYorf15B, and 

DDX3Y. 

Microarray Analysis: Determining Diagnosis-Related Gene Expression while 

Correcting for Confounding Variables. Although agonal factor, brain pH, PMI, and 
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gender did not differ significantly by diagnosis, we found that it was necessary to control 

for these variables because they strongly correlated with the top principal components of 

variation in the data sets (PC1-4). We also controlled for the average age at the time of 

death, which sometimes varied significantly with diagnosis. The degree of severity and 

duration of physiological stress at the time of death was estimated by calculating an 

Agonal Factor Score (AFS) for each subject (Tomita et al., 2004). Additionally, we 

measured the pH of cerebellar tissue as an indicator of the extent of oxygen deprivation 

experienced around the time of death (Li et al., 2004). We also calculated the interval 

between the estimated time of death and the freezing of the brain tissue (the postmortem 

interval or PMI) using coroner records. We ensured high quality data by choosing 

samples with relatively high pH and low agonal factor (DLPFC: Appendix 2.1, ACC: 

Appendix 2.2, HPC: Appendix 2.3), but still decided that it was prudent to control for 

these variables as well as age and gender by including them as terms in our linear model: 

Equation 1: (probe signal) ≈ β0 + β1(Brain pH)+ β2(Agonal Factor)+ 

β3(PMI)+ β4(Age)+ β5(Gender)+ β6(Diagnosis)  

We also ran our analyses on an uncleaned probe signal dataset and found similar, 

stronger relationships between FGF9 and other FGF family members.  In the manuscript, 

we have only reported the more conservative results from the data cleaned of confounds. 

qRT-PCR Validation. Microarray results represent relative levels of probe signal, 

so we validated hippocampal data using quantitative real-time PCR (qRT-PCR). After 

dissection, samples were stored at -80°C prior to RNA extraction. The starting blocks of 

hippocampal tissue weighed an average of 600 mg. Tissue was homogenized in TRIzol 

reagent and treated with chloroform. Samples were centrifuged to separate the suspended 
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RNA from other cellular materials, and the RNA was pelleted and washed with ethanol. 

All RNA pellets were resuspended in DEPC-treated water. The average concentration 

after extraction was of 0.7 µg/µl for an average of 420 µg of total RNA. 100 µg of the 

total RNA was purified using the RNeasy kit (Qiagen); RNA quality was assessed using 

the Agilent 2100 Bioanalyzer, and quantity was determined using a spectrophotometer 

(A260). All RNA concentrations were adjusted to 1 µg/µL with DEPC-treated water 

prior to first-strand DNA synthesis. Total RNA (1 μg) was reverse transcribed using the 

iScript cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA) in a total reaction 

volume of 20 μl. cDNA (1 µl) was used as the template for real-time PCR assays with a 

MyiQ real-time PCR system (Bio-Rad Laboratories). The quantitative PCR was 

conducted in duplicate using iQ SYBR Green Supermix, according to the manufacturer's 

instructions (Bio-Rad Laboratories). Sequences for the 5’ forward primer (start) were as 

follows: FGF9: GGGGAGCTGTATGGATCAGA (1201); FGFR3: 

CTTGTGCCTGGGGTGTTAGT (3133), Sequences for the 3’ reverse primer (start) were 

as follows: FGF9: GTGAATTTCTGGTGCCGTTT (1391); FGFR3: 

AAAGGCTCCCATCTTCAGGT (3240). Relative expression of the gene of interest was 

normalized to β-actin expression in each sample. The expression level of the gene of 

interest was evaluated using the 2−(ΔΔCt) method (Livak & Schmittgen, 2001). The PCR 

product quality was monitored using post-PCR melt-curve analysis at the end of the 

amplification cycles. 

Culture Studies 

FGF9 Knockdown in vitro. We generated three 19-mer short interfering RNA 

(siRNA) sequences targeted against the coding region of the rat FGF9 mRNA sequence 
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(accession number: NM_012952.1) using an RNA interference design site (Dharmacon, 

Chicago, IL). The target sites on the FGF9 mRNA and corresponding siRNA sequences 

were: FGF9 siRNA1 (414-433; AGGAAAGACCACAGCCGAT), FGF9 siRNA2 (415-

434; GGAAAGACCACAGCCGATT), and FGF9 siRNA3 (682-701; 

GGACCAGGACTAAACGGCA). Short-hairpin RNA (shRNA) sequences were 

generated by adding a nine-nucleotide loop sequence (UUCAAGAGA) and restriction 

enzyme sites; the shRNA constructs were then synthesized (Invitrogen, Carlsbad, CA) 

and subcloned into the pLentiLox3.7 lentiviral vector (https://www.addgene.org/11795/), 

which drives shRNA expression using a mouse U6 promoter and which contains an eGFP 

reporter tag under the control of a CMV promoter. All shRNA inserts were verified by 

sequencing. A scrambled, non-silencing shRNA (shNS) sequence was also used as a 

control construct (Eren-Koçak et al., 2011).  

COS7 cells were grown in Hyclone Dulbecco’s Modified Eagle Medium/High 

Glucose Media (Fisher Scientific) with 10% fetal bovine serum (Invitrogen) and 

gentamycin (10 µg/mL; Gibco). 24 hours after plating at 100,000 cells/well (6-well 

plates), cells were transfected with the psiCHECK2 vector (Promega) containing a clone 

of rat FGF9 (bp 37-869, of 1065 total length; encompasses entirety of the coding region; 

generated in-house) or FGF2 (Eren-Koçak et al., 2011) at 20 ng/µL and, in some 

conditions, either siRNA or shRNA constructs to knock down expression of FGF9, 

FGF2, or the control, non-silencing construct (shNS) at 7 ng/µL (Eren-Koçak et al., 

2011). Dharmafect Duo transfection reagent (Dharmacon) was used to facilitate the 

transfection. Twenty-four hours after transfection, cells were lysed using passive lysis 

buffer, and lysates were collected for analysis of knockdown efficacy. The psiCHECK2 
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vector housing the FGF9 clone enabled us to use a Dual Luciferase Assay (Promega) to 

assess knockdown efficacy in vitro. The FGF9 clone was inserted downstream of the 

Renilla luciferase reporter, allowing the creation of a fusion Renilla-FGF9 mRNA, while 

expression of the independent Firefly luciferase gene was used to normalize the 

chemoluminescence readout across wells. Lysates were exposed to chemolumiscent 

reagents in the Dual Luciferase Assay according to the manufacturer’s instructions, and 

the ratio of Renilla/Firefly chemoluminescence was used to assess efficacy of FGF9 

knockdown for each siRNA/shRNA candidate in vitro. Each experimental condition was 

normalized to the chemoluminescence of the baseline condition and expressed as a 

percentage (% knockdown = 100 * (chemoluminescence of FGF2/FGF9 clone + shRNA 

knockdown condition / chemoluminescence of FGF2/FGF9 clone-only baseline 

condition). Ultimately, shRNA3 was selected to be used in vivo because it was the most 

effective at reducing FGF9 expression in vitro (Figure 2.4) and showed the least toxic 

effects on cultured cells (<10% cell death, data not shown). The vector containing 

shRNA3 (hereafter referred to as shFGF9), as well as vector containing a scrambled, non-

silencing sequence (shNS; Eren-Koçak et al., 2011) were submitted to the University of 

Michigan Viral Vector core for lentivirus synthesis. The returned lentiviruses (100X; 

LVshFGF9 and LVshNS) were used in FGF9 knockdown experiments in vivo. 

Animal Studies 

Animals. We used both outbred and selectively-bred male rats in these studies. In 

studies utilizing outbred animals, adult male Sprague-Dawley rats (Charles River 

Laboratories, Wilmington, MA), weighing between 220-350g were delivered from the 

supplier and housed in pairs. All outbred animals were allowed to acclimate to the 
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housing environment for at least seven days before any experiments began. In studies 

using selectively bred Sprague-Dawley rats, bred high responder (bHR) and low 

responder (bLR) rats were bred, weaned, and tested for a locomotor response to novelty 

between postnatal days 50-60, and housed in pairs in-house as previously described 

(Stead et al., 2006; Turner et al., 2011). All animals were maintained on a 12/12 

light/dark schedule, with access to food and water ad libitum. Animals in the knockdown 

study were pair-housed until the surgery, singly housed for 3 days after surgery, then 

returned to pair-housing. All animals were treated in accordance with the National 

Institutes of Health Guidelines on Laboratory Animal Use and Care and in accordance 

with the guidelines set by the university committee on use and care of animals at the 

University of Michigan.  

bHR and bLR studies. In the basal gene expression studies, bHR and bLR rats 

from generation F41 were born, weaned, and reared, and tested for locomotor response to 

novelty before being euthanized between postnatal day 60-70. Brains were extracted, 

snap-frozen in 2-methylbutane, and stored at -80C until processing. In the early-life 

FGF2 studies, bHR and bLR rats from generation F26 were subcutaneously (axillary 

space) injected with 20ng/g FGF2 or vehicle (0.1M phosphate buffered saline with 0.1% 

bovine serum albumin, Sigma) on the day after birth. Animals were reared and weaned as 

usual until between postnatal day 54-60, when animals were euthanized, the brains 

removed and snap-frozen in 2-methylbutane, and stored at -80C until processing. 

FGF9 Knockdown in vivo. All animals underwent microinjection surgery (groups: 

LVshFGF9, LVshNS).  Under isoflurane anesthesia and using standard stereotaxic 

protocols, a 33-gauge microinjector was lowered bilaterally just above the dentate gyrus 
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of the hippocampus (coordinates from bregma: A/P -5.0, M/L ±3.5, D/V -3.6-3.8).  One 

µL of LVshNS or LVshFGF9 was infused over four minutes (Eren-Koçak et al., 2011), 

and two minutes were allowed for diffusion. We allowed 4 weeks for recovery, then 

animals were subjected to behavioral testing in the EPM and FST (Figure 2.6a). Twenty-

four hours after the last behavioral test, animals were euthanized. Brains were rapidly 

extracted and frozen in 2-methylbutane at -30°C and stored at -80°C until processing. 

Behavioral Testing.  

Locomotion testing. Locomotion testing was used to assess the locomotor 

response to a novel environment, one measure of novelty-seeking and anxiety-like 

behavior. Rats were placed in a 43 x 21.5 x 25.5cm acrylic cage. Two panels of 

photocells recording beam breaks determined both horizontal and vertical locomotor 

activity, and activity was monitored in five minute bins for one hour.  The horizontal and 

vertical components were added together for each animal and an average was found for 

each group (Stead et al., 2006). After each animal was tested, the apparatus was cleaned 

with 70% ethanol in water. All locomotor testing took place between 0800 and 1200 h. 

We interpreted low locomotor scores as indicating low levels of novelty-seeking and high 

spontaneous anxiety-like behavior. 

Forced swim test (FST). We used the FST to determine effects on depression-like 

behavior (Lucki, 1997; Porsolt, Bertin, Blavet, Deniel, & Jalfre, 1979; Porsolt, Bertin, & 

Jalfre, 1977, 1978). The test occurs over two days. On day one, animals undergo a 10-

minute pre-test swim. 24 hours later, animals undergo a five-minute test swim (Lucki, 

1997; Porsolt et al., 1979, 1977, 1978). Animals were placed in cylinders filled with 

water at a depth at which the rats’ tail could not touch the bottom and a temperature of 
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25-27°C. Water was changed between animals and all sessions were video recorded.  All 

FST swim sessions took place between 0900 h and 1300 h. The videotaped behaviors 

were scored by an observer blind to the experimental conditions using The Observer 

software (Noldus Information Technology, The Netherlands) (Lucki, 1997).  Swimming 

was scored when at least two paws were consistently moving in a horizontal direction.  

Climbing was defined by vertically-directed movement of at least two paws against the 

wall of the cylinder.  Immobility was defined as floating or the minimal movement 

necessary to keep the head above water level.  Percent total duration of swimming, 

climbing, and immobility episodes were determined and compared across groups. 

Animals who spent increased percent time immobile and decreased percent time 

swimming or climbing were interpreted to be exhibiting depression-like behavior. 

Elevated plus-maze (EPM).  We used the EPM to determine effects on anxiety-

like behavior (Eren-Koçak et al., 2011; Pellow, Chopin, File, & Briley, 1985; Perez et al., 

2009; Turner et al., 2011). The EPM apparatus consists of a plus-shaped platform 

elevated 70cm above the floor; two arms are enclosed in black plexiglass (the 

“anxiolytic” regions of the maze), while the other two arms are left open (the 

“anxiogenic” regions of the maze). At the intersection of the arms, there is a 12 x 12cm 

square platform allowing access to all four arms (Pellow et al., 1985; Pellow & File, 

1986). During the five-minute test period, the room is dimly lit (~40 lux), and behavior is 

monitored using a computerized video tracking system (Noldus Ethovision).  At the start 

of the five-minute test, the rat was placed in the center square platform.  The tracking 

system recorded the latency to enter the open arm, the amount of time spent in arms, and 

the time spent in the center square.  After every animal, the testing apparatus was wiped 
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down with 70% ethanol in water. We compared the amount of time spent in the open and 

closed arms of the maze across groups; animals that spent more time in the closed arms 

(and/or less time in the open arms) of the maze were considered to show elevated levels 

of spontaneous anxiety-like behavior. 

Tissue Analysis. 

mRNA in situ hybridization (ISH). All rats were euthanized by rapid decapitation; 

brains were removed, snap-frozen, and stored at -80°C. Ten-µm sections were taken 

every 100-200 µm (depending on the study) and mounted onto Superfrost Plus slides 

(Fisher, Waltham, MA). Slide-mounted tissue was fixed in 4% paraformadehyde solution 

for 60 minutes, washed three times with 2X SSC (1X SSC is 150 mM sodium chloride 

and 15 mM sodium citrate), and treated with 1M triethanolamine with 0.25% acetic 

anhydride. Slides were rinsed and dehydrated in graded ethanols before air-drying. All in 

situ probes were generated in-house; the rat mRNA sequences used for generating probes 

were complimentary to the following RefSeq database numbers: FGF2 (NM_019395, 

716-994), FGF9 (NM_012952, 661-880), FGFR1 (NM_024146, 320-977), and eGFP was 

sub-cloned from the pLentiLox3.7 vector. All cDNA segments were extracted (Qiaquick 

Gel Extraction kit, Qiagen, Valencia, CA), subcloned in Bluescript SK (Stratagene, La 

Jolla, CA) and confirmed by nucleotide sequencing. The probes were labeled in a 

reaction mixture of 0.5-1µg of linearized plasmid specific to the probe of interest, 1X 

transcription buffer (Epicentre Technologies, Madison, WI), 125µCi of 35S-labeled UTP, 

125µCi of 35-S labeled CTP, 150µM ATP and GTP, 12.5mM dithiothreitol, 1µl of 

RNAse inhibitor (4U/µl), and 1.5µl of T7 or T3 RNA polymerase (20U/µl). Labeled 

probes were purified on Micro Bio-Spin Chromatography Columns (BioRad, Berkeley, 
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CA) according to the manufacturer’s instructions. After air-drying, slides were treated 

with hybridization buffer containing the labeled probe (1-2 x 106 counts/75 μL buffer) 

50% formamide, 10% dextran sulfate, 3X SSC, 50 mM sodium phosphate buffer (pH = 

7.4), 1X Denhardt’s solution, 0.1 mg/ml yeast tRNA, and 10 mM dithiothreitol. All slides 

were cover-slipped and stored in humidified chambers at 55C during the 12-16 hour 

hybridization period. After hybridization, sections were washed three times in 2X SSC 

and incubated in an RNase solution (100 μg/mL RNase in Tris buffer with 0.5M NaCl, 

pH=8) at 37C. Sections were then sequentially washed in 2X, 1X, and 0.5X SSC before 

being incubated in 0.1X SSC at 65C for 1 hour. Sections were rinsed in distilled water 

and dehydrated through graded ethanols. Slides were exposed to Kodak BioMax MR 

Scientific Imaging Film (Sigma Aldrich), and exposure times were experimentally 

determined for optimal signal, as follows: FGF2 (7 days), FGF9 (14-21 days), FGFR1 (7 

days), and eGFP (7 days). 

Autoradiograph Quantification Procedures. mRNA expression signals from 

autoradiographic films were quantified using computer-assisted optical densitometry 

software ImageJ (National Institutes of Health, Bethesda, MD).  For all experiments 

except FGF9 knockdown, mean signal was determined by outlining a hippocampal 

subfield (CA1, CA2, CA3, and dentate gyrus) on each hemisphere, thresholding for 

background plus 3.5 times its standard deviation. Background values were subtracted and 

data from >6 sections were averaged to create a mean signal measurement for each 

animal and group averages and standard error of the mean were calculated.  

For quantification of sections from animals in the FGF9 knockdown study, we 

used a modified quantification approach to enable us to quantify expression of a gene 
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target (e.g., FGF9, FGF2, or FGFR1) only where we saw concurrent expression of eGFP. 

This approach also facilitated careful analysis of hippocampal anatomy impacted by viral 

infection on an animal-by-animal basis, which we then used to create inclusion/exclusion 

criteria for the behavioral analyses. We digitally overlaid a transparent copy of the eGFP 

autoradiogram (from an adjacent section) on the image of the probe of interest then 

outlined only the region with eGFP expression to take measurements for the probe of 

interest. Because there was variability in infection spread, we chose to disregard area in 

calculating the quantified measurements for these experiments; therefore, we present the 

data in terms of average optical density (mean signal-background). 

eGFP autoradiograms were separately analyzed for the specific animal-by-animal 

infection pattern, and these data were used to define strict inclusion criteria for behavioral 

analysis. Animals in the knockdown study were only included in the final behavioral 

analysis if they showed robust expression of eGFP (the marker for successful viral 

infection) in the dentate gyrus of both hemispheres in at least four adjacent sections 

(≥800 µm) without additional eGFP labeling of other hippocampal or extra-hippocampal 

structures. After exclusion, eight animals were included in the shNS control group, while 

ten animals were included in the shFGF9 group. 

Immunohistochemistry. A separate cohort of animals (n = 4 animals/group; shNS, 

shFGF9) underwent the same surgical procedures as those described in the behavioral 

knockdown study. Three weeks post-surgery, animals were transcardially perfused using 

4% PFA. Brains were removed and postfixed for 1 hour in fresh 4% PFA, then 

transferred to 30% sucrose solution for 24-48 hours. Brains were subsequently snap-

frozen in 2-methylbutane and stored at -80°C until sectioned. Tissue was sectioned at -
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15°C at 45 µm, and free-floating sections were stored in phosphate-buffered saline (PBS) 

+ 0.1% sodium azide at 4°C until processing. Free-floating sections were rinsed 3 times 

in PBS then blocked for 1 hour at room temperature on an orbital shaker (blocking 

solution: 0.3% Triton X 100 (Sigma-Aldrich, St. Louis, Missouri), 1% normal goat serum 

(Invitrogen), 1% bovine serum albumin (Fisher Scientific) in 0.1 mol/L phosphate 

buffer). After blocking, sections were incubated overnight at room temperature on the 

orbital shaker in the blocking solution with the following primary antibodies: eGFP 

(chicken anti-GFP, 1:2000; Abcam), NeuN (rabbit anti-NeuN, 1:300, Abcam), and GFAP 

(mouse anti-GFAP, 1:500; Millipore). After primary antibody incubation, sections were 

washed three times in PBS then transferred to blocking solution with the following three 

secondary antibodies with conjugated fluorophores (AlexaFluor488 goat anti-chicken 

IgG, 1:200; AlexaFluor568 goat anti-rabbit IgG, 1:200; AlexaFluor 647 goat anti-mouse, 

1:200; Life Technologies) to incubate for 2 hours at room temperature on the orbital 

shaker. After secondary incubation, sections were washed 4-5 times in PBS and mounted 

onto Superfrost Plus slides and coverslipped using ProLong Gold Antifade Reagent with 

DAPI (Fisher Scientific). Slides were imaged on an Olympus Fluoview FV1000 confocal 

microscope with a multi-line argon laser (457, 488, 515nm), 405nm diode laser, 543 and 

633nm HeNe lasers. Microscope control and image acquisition was achieved using 

Olympus FV10 software. 

Statistical Analyses. Analysis of human data is described above. All animal 

behavioral tests were analyzed by Student’s t-test or 2-way ANOVA. 
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Results 

Human Studies 

FGF9 expression was increased in the hippocampus of depressed individuals. 

Based on published data indicating that specific growth factor transcripts are altered in 

depressed brains (Bernard et al., 2011; Evans et al., 2004; Gaughran et al., 2006), we 

selectively examined their differential expression in major depression across three brain 

regions: the hippocampus (HPC), anterior cingulate cortex (ACC), and dorsolateral 

prefrontal cortex (DLPFC) using human microarray datasets. We examined diagnosis-

related gene expression using a linear model that controlled for a variety of confounding 

pre- and post-mortem variables. In the ACC and DLPFC, FGF9 expression in MDD was 

not significantly different from nonpsychiatric control subjects, though a visual trend for 

an increase in FGF9 expression was observed in both regions (Figure 2.1a, Figure 2.1b; 

ACC: p = 0.163; DLPFC: p = 0.354). In the hippocampus, we found that FGF9 

expression was consistently increased in subjects with MDD relative to controls across 

three microarray datasets and platforms (Figure 2.1c, Table 2.1). 
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Using quantitative RT-PCR we further found that hippocampal FGF9 expression was 
significantly increased by 32% in individuals with MDD relative to controls, with a 
Cohen’s d effect size of 0.57, a medium-sized effect (Table 2.1). We further examined 
expression of other growth factors and receptors in the hippocampal microarray data: 
FGFR1 and FGFR2 appeared to be downregulated in individuals with MDD, but these 
effects were borderline significant and platform-specific ( 
 
 
Table 2.2). Expression of BDNF, glial-derived neurotrophic factor (GDNF), FGF2, and 
FGFR3 did not differ in MDD subjects relative to controls ( 
 
 
Table 2.2). Thus, these analyses pointed to FGF9 as one of the most clearly and 

consistently altered growth factors in MDD: we always observed it to be upregulated in 

the depressed hippocampus. 

 
Table 2.1. FGF9 is increased in the hippocampus of individuals diagnosed with Major 
Depressive Disorder. Methods for Illumina data can be found in Aurbach et al. (2015) 
and overlaps in samples are described in Appendix 2.4. Affymetrix data is replicated 

Figure 2.1. FGF9 expression is non-significantly elevated in the (a) dorsolateral 
prefrontal cortex (DLPFC), (b) anterior cingulate cortex (ACC), and hippocampus 
(HPC) of individuals with Major Depressive Disorder. Hippocampus data is replicated 
in Table 2.1. Note: All data is median-centered, which means that expression data is 
plotted relative to the median of the full sample (i.e., 0 on the y-axis is the median of the 
full sample). All statistics assess control vs. psychiatric diagnosis alterations in FGF9 
expression while controlling for confounding pre- and postmortem variables. Sample 
sizes can be found in Appendix 2.1, Appendix 2.2, and Appendix 2.3. 
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from Figure 2.1. Note that preprocessing (in particular, log transformation) of 
microarray data prevented us from calculating the degree of expression change, though 
it is likely to be similar to that observed in qPCR data. Significant effects are in bold. 

Candidate 

Microarray:     
Affymetrix  
HG-U133A                     

Microarray:      
Illumina  
HT-12              

Microarray:      
Illumina  
Ref-8_v2            qPCR                 

qPCR:                  
Effect Size 
(Cohen's D) 

Control (n) 56 24 45 22   

MDD (n) 36 21 33 23   
 
FGF9  
(raw p-value) 

↑ (0.0029) ↑ (0.0295) ↑ (0.0027) ↑ 32% 
(0.0272) 

0.57 
(medium) 

      
 
 
 
Table 2.2. Other members of the FGF family, as well as BDNF and GDNF, are not 
significantly altered in the postmortem hippocampus from individuals diagnosed with 
Major Depressive Disorder. Note that FGF2 data is the same as the data presented in 
Chapter 3, Appendix 3.1. Methods for Illumina data can be found in Aurbach et al. 
(2015). Note that preprocessing (in particular, log transformation) of microarray data 
prevented us from calculating the degree of expression change, though it is likely to be 
similar to that observed in qPCR data. Significant effects are in bold. 
 

Candidate 

Microarray: 
Affymetrix  
HG-U133A                

Microarray: 
Illumina HT-12                

Microarray: 
Illumina  
Ref-8_v2                 qPCR 

qRT-PCR  
Effect Size 
(Cohen's D) 

Control (n) 56 24 45 22  

MDD (n) 36 21 33 23  

FGF2  
(raw p-value) 0.3427 0.5798 - - - 

FGFR1  
(raw p-value) ↓ 0.1199 0.0248 - - - 

FGFR2  
(raw p-value)  ↓ 0.0647 0.4882 - - - 

FGFR3  
(raw p-value)  0.6228 0.6428 0.2473 ↓ 13% 

(0.2400) 0.35 (small) 

BDNF  
(raw p-value) 0.6515 0.8990 0.8317 - - 

GDNF  
(raw p-value) 0.3720 0.9227 - - - 

      
 

Animal Studies  

bHR animals had significantly more FGF9 expression in subfields of the ventral 

hippocampus. We examined endogenous FGF9 mRNA expression in two lines of rats 
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selectively bred for locomotor response to novelty. bHR animals displayed significantly 

higher locomotion scores than bLRs (Figure 2.2a; t(10) = 42.43, p < 0.0001). Contrary to 

our hypothesis, low-anxiety bHR animals had significantly more FGF9 mRNA 

expression in the ventral dentate gyrus and ventral CA1 subfields of the hippocampus 

during adulthood, relative to high-anxiety bLR animals (Figure 2.2c; vDG: t(10) = 2.77, p 

= 0.02; vCA1: (10) = 2.32, p = 0.045). Though there were visual trends in the ventral 

CA3 subfield and in all subfields of the dorsal hippocampus, these trends did not reach 

statistical significance Figure 2.2b; dDG: t(10) = 1.81, p = 0.10; dCA1: t(10) = 1.72, p = 

0.12; dCA2: t(10) = 1.252, p = 0.24; dCA3: t(10) = 1.42, p = 0.19; Figure 2.2c; vCA3: 

t(10) = 1.802, p = 0.11). 
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Early-life injections eliminated basal differences in hippocampal FGF9 mRNA 

expression between bHR and bLR animals.  We examined FGF9 expression in bHR and 

bLR animals that received a one-time injection of either FGF2 or vehicle on the day after 

birth; we have previously shown that this early-life intervention is sufficient to ameliorate 

the spontaneous anxiety-like phenotype of bLR animals during adulthood. We observed 

no differences in hippocampal FGF9 expression in any group (Figure 2.3a: dDG: 

Phenotype F(1,28) = 0.04, p = 0.87, Drug F(1,28) = 0.45, p = 0.51, Interaction F(1,28) = 

2.81, p = 0.10; dCA1: Phenotype F(1,28) = 1.14, p = 0.29, Drug F(1,28) = 0.93, p = 0.35, 

Interaction F(1,28) = 0.84, p = 0.37; dCA2: Phenotype F(1,28) = 0.05, p = 0.83, Drug 

Figure 2.2. (a) bHR animals had significantly higher locomotion scores than bLRs. (b) 
Basal FGF9 expression did not differ in the dorsal hippocampus, but (c) bHRs had 
significantly higher FGF9 expression in the dentate gyrus and the CA1 subfields of the 
ventral hippocampus. n = 8-10 animals/group; * indicates p < 0.05. 
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F(1,28) = 1.30, p = 0.26, Interaction F(1,28) = 0.06, p = 0.81; dCA3: Phenotype F(1,28) 

=0.94 , p = 0.34, Drug F(1,28) = 1.88, p = 0.18, Interaction F(1,28) = 1.51, p = 0.23; 

Figure 2.3b: vDG: Phenotype F(1,28) = 0.02, p = 0.88, Drug F(1,28) = 0.04, p = 0.84, 

Interaction F(1,28) = 0.14, p = 0.71; vCA1: Phenotype F(1,28) = 0.42, p = 0.52, Drug 

F(1,28) = 0.02, p = 0.88, Interaction F(1,28) = 0.51, p = 0.48; vCA3: Phenotype F(1,28) = 

0.02, p = 0.88, Drug F(1,28) = 0.04, p = 0.83, Interaction F(1,28) = 0.14, p = 0.71), 

suggesting that the previous results did not replicate or that the early-life stress of 

injection and brief maternal separation was sufficient to eliminate any basal differences in 

FGF9 expression between bHR and bLR animals. 

 

 

Figure 2.3. Early-life FGF2 treatment eliminates basal differences in FGF9 expression 
between bHRs and bLRs in all subfields of the (a) dorsal and (b) ventral hippocampus. n 
= 6-8 animals/group. 
 

Both short interfering RNA (siRNA) and short hairpin RNA (shRNA) constructs 

targeted to the coding region of the primary FGF9 transcript reduce FGF9 expression in 

vitro.  To determine the preliminary effectiveness of a lentiviral-mediated RNA 
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interference strategy to reduce endogenous FGF9 expression, we performed knockdown 

experiments using transfected COS7 cells and monitored expression levels of FGF9 

basally and under different knockdown conditions using a dual luciferase assay. Three 

short interfering RNAs targeted to the coding region of the FGF9 transcript reduced 

FGF9 expression to one-third to one-half of basal levels (Figure 2.4a).  

 

Figure 2.4. FGF9 (a) siRNA and (b) shRNA constructs effectively and selectively knock 
down expression of FGF9 in vitro. shRNAs targeted against FGF9 (3 candidates: 
shFGF9-1, shFGF9-2, shFGF9-3), FGF2 (shFGF2), and a control, non-silencing 
construct (shNS). COS7 cells were transfected with a construct containing either FGF9 
or FGF2 and, in some cases, different si/shRNAs. 24 hours after transfection, cells were 
lysed; lysates were used in a dual luciferase assay to determine knockdown efficacy. All 
values are mean (2 replicate experiments). 
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These siRNA constructs were developed into shRNA constructs by adding a loop 

sequence and restriction enzyme sites; shRNAs were subcloned into a component vector 

of a 3rd generation lentiviral construct and tested in further transfection experiments. 

Similar to the siRNA constructs, shRNAs reduced FGF9 expression by approximately 

one-half of basal levels (Figure 2.4b). shRNA candidate 3 was chosen for use in vivo 

because it showed the greatest degree of knockdown (Figure 2.4b) and showed the least 

toxic effects on cultured cells (<10% cell death, data not shown). 

Animals administered LVshFGF9 had significantly less FGF9 expression in the 

dentate gyrus relative to animals administered LVshNS.  To determine whether 

endogenous FGF9 expression was necessary for the normal expression of affective 

behavior, we employed a lentiviral vector containing shRNA candidate 3 to knock down 

expression of FGF9. Four weeks after microinjecting the knockdown (LVshFGF9) or 

control (LVshNS) viruses bilaterally into the dentate gyrus, we assessed effects on 

behavior and euthanized all animals (Figure 2.6a). We confirmed the impact of the 

localized viral injection by examining eGFP expression with concurrent changes in FGF9 

expression in the dentate gyrus. Animals who received the LVshFGF9 knockdown virus 

showed significantly less FGF9 expression relative to LVshNS control animals (t(19) = 

3.53, p < 0.01; n = 8-10 animals per group), indicating that LVshFGF9 reduced FGF9 

expression by approximately 30% (Figure 2.5a-b). In contrast, we found no effect of 

FGF9 knockdown on FGF2 or FGFR1 expression (Figure 2.6b-e; FGF2: t(15) = 0.34, p = 

0.74; n = 8-10 animals per group; FGFR1: t(16) = 1.36, p = 0.19; n = 8-10 animals per 
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group). Therefore, the LVshFGF9 virus was both effective and selective in reducing 

FGF9 expression in vivo.  

The LVshFGF9 and LVshNS viruses primarily infected dentate granule neurons.  

To examine the cell types impacted by lentiviral infection, we performed triple-label 

immunohistochemistry, using antibodies against eGFP to mark transduced cells, NeuN to 

label neurons, and GFAP to identify astrocytes. We observed that the vast majority of co-

localization occurred between GFP and NeuN, with very few GFAP-labeled cells 

showing concurrent GFP expression (Figure 2.5c). The pattern of transduction and co-

localization did not differ between LVshNS and LVshFGF9 animals. Therefore, the virus 

preferentially transduced dentate granule neurons, suggesting that the behavioral effects 

of FGF9 knockdown are likely mediated through these cells. 

FGF9 knockdown decreased spontaneous anxiety-like behavior on the EPM.  We 

analyzed GFP expression, a marker for successful viral transduction: only animals who 

expressed GFP in the dentate gyrus bilaterally in at least four serial sections were 

included, leaving 8 animals per group. LVshFGF9 animals spent significantly less time in 

the closed arms of the EPM than did LVshNS control animals (Figure 2.5d; t(14) = 2.51, 

p = 0.025), suggesting an anxiolytic effect. Similarly, LVshFGF9 animals spent more 

time in the open arms than did LVshNS animals, though this trend did not reach 

statistical significance (Figure 2.5d; t(14) = 2.02, p = 0.063). The impact of FGF9 

knockdown was selective to anxiety-like behavior: we observed no differences between 

groups in the total distance travelled (Figure 2.6f; t(14) = 1.78, p = 0.10). There were no 

differences on the FST (Figure 2.5e; Climbing: t(14) = 1.91, p = 0.07; Swimming:  t(14) 

= 1.13, p = 0.28; Immobility: t(14) = 1.68, p = 0.011; n = 8 animals/group). 
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Figure 2.5. Lentiviral-mediated FGF9 knockdown reduced FGF9 mRNA expression in 
dentate granule neurons and decreased anxiety-like behavior. a) Representative 
pseudocolored autoradiograms from mRNA in situ hybridization against FGF9 for 
animals transduced with a control, non-silencing virus (LVshNS, left) and with the FGF9 
knockdown virus (LVshFGF9, right). Dentate gryus is enlarged. b) FGF9 expression is 
significantly reduced in the dentate gyrus of rats transduced with the LVshFGF9 virus 
relative to LVshNS controls. c) Triple-label immunohistochemistry demonstrating cell-
type specificity of viral transduction; eGFP = green, NeuN = red, GFAP = blue. The 
viruses seem to infect dentate granule neurons. Scale bar denotes 100 µm. d) Knocking 
down FGF9 expression in the dentate gyrus significantly decreased closed arm time, and 
there was a trend indicating increased open arm time in the EPM. e) FGF9 knockdown 
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did not impact behavior in the FST. All values are mean ± SEM. n = 8 animals/group for 
behavioral studies and mRNA expression studies; n = 4 animals/group for IHC studies. + 
indicates 0.5 < p < 0.1; * indicates p < 0.05, ** indicates p < 0.01. 

 

 

Figure 2.6. Knocking down FGF9 mRNA expression does not affect mRNA expression of 
FGF2 or FGFR1, and knocking down FGF9 selectively impacts anxiety-like behavior. a) 
Experimental schema for in vivo FGF9 knockdown experiments. b,c) Representative 
pseudocolored autoradiograms from mRNA in situ hybridization autoradiographs 
against FGF2 from shNS controls (left) and shFGF9 animals (right). Knocking down 
FGF9 expression had no effect on FGF2 gene expression in the hippocampal dentate 
gyrus compared to shNS controls. d,e) Representative pseudocolored autoradiograms 
from mRNA in situ hybridization autoradiographs against FGFR1 from shNS controls 
(left) and shFGF9 animals (right). Knocking down FGF9 expression had no effect on 
FGFR1 gene expression in the hippocampal dentate gyrus compared to shNS controls (n 
= 8 animals per group). f) FGF9 knockdown did not impact distance travelled on the 
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elevated plus maze, indicating that effects were selective for anxiety-like behavior (n = 8 
animals per group). All values are mean ± SEM. n = 8 animals/group. 
 

Discussion 

This series of studies links for the first time the dysregulation of hippocampal 

FGF9 to affective disorders. Using microarray data from several analyses with qRT-PCR 

validation, we showed that FGF9 expression is significantly increased in the postmortem 

hippocampus of individuals diagnosed with MDD relative to non-psychiatric controls. 

We saw similar trends in the anterior cingulate and dorsolateral prefrontal cortices, 

though these effects did not reach statistical significance, suggesting that the 

hippocampus may be particularly important for the affective functions of FGF9. To 

address the functional significance of these observations in human brain, we performed a 

complementary series of experiments in a rodent model to better characterize the role of 

FGF9 in affective processes. We examined FGF9 expression in a rodent model of 

affective dysregulation, showing that there were basal differences specific to the ventral 

hippocampus between two lines of rats selectively bred for a locomotor response to 

novelty. Previous studies in our laboratory indicate that chronic social defeat stress 

decreased social interaction and body weight in our animals and was associated with 

increased hippocampal FGF9 expression. Similarly, prior experiments show that chronic 

FGF9 administration increased both anxiety- and depression-like behavior. Here, we 

demonstrate the opposite effect: knocking down FGF9 expression in the dentate gyrus 

decreased anxiety-like behavior. These animal studies provide converging, 

complementary evidence for the role of FGF9 as an anxiogenic and pro-depressant agent 

in the rodent. Together with the evidence from the human postmortem analyses, this body 
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of work suggests that FGF9 is an endogenous factor that enhances vulnerability to 

negative affect. Thus, an agent that blocks the effects of FGF9 may be useful in treating 

human affective disorders.  

FGF9 expression is dysregulated in the post-mortem hippocampus from individuals 

diagnosed with MDD. 

 Using microarray and qRT-PCR, we observed a significant increase in 

hippocampal FGF9 expression in individuals with MDD. We did not observe a decrease 

in BDNF, GDNF, or FGF2 expression. However, other studies have reported MDD-

associated decreases in FGF2 in the hippocampus (Gaughran et al., 2006) and locus 

coeruleus (Bernard et al., 2011), and this may indicate that these transcripts work in 

functional opposition.  

 We saw similar trends for increased FGF9 in MDD in both the anterior cingulate 

and dorsolateral prefrontal cortex, though these effects did not reach statistical 

significance. A previous study from our laboratory showed that FGF9 expression was 

significantly increased in these frontal cortex regions (Evans et al., 2004). Though we 

saw similar directionality in effects, the discrepancy in the strength of the effect may be 

explained by statistical power (we included many more samples in this series of studies 

than in the previous analysis) and/or analytical approach (we used a linear model that 

controlled for more confounding factors than the previous approach using a multiple 

comparisons-corrected mixed-model multivariate ANOVA).  

Notably, these human studies are, by nature, correlational, and do not address 

whether these changes are a by-product of an underlying pathology associated with MDD 

or if they are part of the disease process. Moreover, many of the patients had a history of 
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antidepressant and other psychoactive drug treatment. Both clinical and toxicology data 

revealed a great deal of heterogeneity in drug exposure, making it difficult to analyze the 

impact of these drugs on FGF9 expression. Therefore, it will be important for future 

animal studies to ascertain whether psychoactive drugs can modify FGF9 expression. As 

noted above, such studies on FGF2 indicate that the dysregulation we observed in MDD 

is not secondary to these treatments but occurs in spite of them, as antidepressants induce 

FGF2 and mediate their actions in part through that induction (Elsayed et al., 2012). 

Whether antidepressants inhibit FGF9 expression remains to be determined.  

Hippocampal FGF9 expression influences affect in an animal model. 

We have previously demonstrated that hippocampal FGF2 expression is 

decreased in rats subjected to four days of social defeat stress relative to controls (Turner, 

Calvo, Frost, Akil, & Watson, 2008b). In contrast, our laboratory has previously 

demonstrated that ten days of social defeat stress upregulates hippocampal FGF9 

expression while decreasing body weight and social interactions, correlates of increased 

depression-like behavior (Aurbach et al., 2015). These results are congruent with our 

observations from human studies and indicate that hippocampal FGF9 may play an 

important role in stress responsiveness. Furthermore, these results are another example 

that reinforce the idea that FGF2 and FGF9 act as physiological antagonists to mediate 

vulnerability to affective dysregulation. 

We have also found that hippocampal FGF2 expression co-varies with anxiety- 

and depression-like behavior. For example, endogenous hippocampal FGF2 expression 

inversely correlated with spontaneous anxiety-like behavior on the EPM in outbred rats 

(Eren-Koçak et al., 2011). Moreover, we have previously observed differences in 
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hippocampal FGF2 expression in animals selectively bred for different locomotor 

responses to a novel environment. Bred low responders (bLRs) show a low locomotor 

response to a novel environment and exhibit high levels of spontaneous anxiety- and 

depression-like behavior, and bLRs have low levels of hippocampal FGF2. In contrast, 

bred high responders (bHRs) show a high locomotor response to a novel environment and 

exhibit low levels of spontaneous anxiety- and depression-like behavior, and bHRs have 

high levels of hippocampal FGF2 (Perez et al., 2009; Turner et al., 2011). We 

hypothesized that we would observe the opposite trend with FGF9 expression, predicting 

that bLRs would show higher hippocampal FGF9 expression than bHRs. Surprisingly, we 

observed that bHR animals had more FGF9 expression, but these effects were limited to 

the ventral hippocampus. This indicates that our interpretation of FGF9 as a purely 

anxiogenic and pro-depressant molecule may be too simplistic and/or that the behavioral 

effects of differential FGF9 expression could differ depending on region. Thus, these 

results indicate that FGF2 and FGF9 may have complicated region-specific effects, and 

further research is needed to examine this possibility. 

Our laboratory has previously demonstrated that a one-time injection of FGF2 on 

the day after birth is sufficient to eliminate differences in affective-like behavior during 

adulthood (Turner et al., 2011). We examined if this manipulation was sufficient to alter 

the differences in FGF9 expression we previously observed in the ventral hippocampus. 

Surprisingly, we did not observe the differences in basal FGF9 expression between bHR 

and bLR rats in animals administered vehicle during early life, though this may have 

been due to experimental design, since we did not include no-injection control groups. 

Indeed, we have previously observed that the stress of brief maternal separation, 
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handling, and injection is sufficient to eliminate other basal differences in bHR and bLR 

animals (data not shown), so we hypothesize that this early stress is sufficient to alter 

FGF9 expression during adulthood. Unfortunately, because we did not observe 

differences in hippocampal FGF9 expression in the vehicle animals, we cannot determine 

if FGF2 treatment affected hippocampal FGF9 expression during adulthood. 

Chronic administration of FGFs produced coordinate effects on anxiety- and 

depression-like behavior: FGF2 reduced anxiety- (Perez et al., 2009) and depression-like 

(Turner, Gula, et al., 2008) behavior. In contrast, our laboratory previously demonstrated 

that chronic FGF9 administration increases anxiety-like and depression-like behavior, 

demonstrating again that the two FGFs have opposing effects (Aurbach et al., 2015). 

Given that antidepressant and anxiolytic medications induce growth factor expression 

(Bachis et al., 2008; Gómez-Pinilla et al., 2000; Mallei et al., 2002), it may be that 

administering growth factors directly activates the same physiological mechanisms as 

classical anxiolytics and antidepressants. Indeed, work from others indicates FGF2 is 

necessary for the positive effect of antidepressants (Elsayed et al., 2012). However, one 

limitation of our FGF9 administration studies is the lack of anatomical specificity: that is, 

that administration into the lateral ventricle likely affects many brain regions in addition 

to the hippocampus. Other regions, including the prefrontal cortices, are also likely to be 

involved in the behavioral expression of these changes in negative affect, and future 

studies can better elucidate the function of FGF9 in these regions and determine if FGF2 

and FGF9 have region-specific effects. 

Altering endogenous gene expression using transgenic mice or viral-mediated 

knockdown demonstrates that hippocampal growth factor expression is necessary for 
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appropriate spontaneous regulation of affective behavior. We previously used a lentiviral 

vector to knock down FGF2 expression in the dentate gyrus of outbred rats, increasing 

anxiety-like behavior on the EPM (Eren-Koçak et al., 2011). In contrast, we demonstrate 

here that using a lentiviral vector to knock down FGF9 expression bilaterally in the 

dentate gyrus increases anxiety-like behavior. Interestingly, unlike the results of the 

administration experiments, our knockdown experiments have produced effects on 

anxiety-like, but not depression-like, behavior. These findings may result from several 

factors: a) magnitude: the extent of FGF9 knockdown (~30%) may not be sufficient to 

alter depression-like behavior; b) partial effect: FGF9 knockdown in the DG may 

increase vulnerability to depression-like behavior, but stress exposure may be required to 

uncover behavioral changes; and c) anatomical specificity: our injections were highly 

localized to the dentate gyrus and had limited spread. This region may be critical to the 

regulation of anxiety behavior, but may be less pivotal in the control of depression-like 

behavior. FGF9 may play somewhat different roles in different components of the 

negative affect circuitry, regulating anxiety in the DG but depression-like behavior in 

different brain regions, possibly including the prefrontal cortices and/or mesolimbic 

dopamine system. This is quite plausible as we have previously observed effects 

exclusive to anxiety-like behavior after knocking down FGF2 expression selectively in 

the dentate gyrus (Eren-Koçak et al., 2011). Future studies can examine these various 

possibilities.  

It should be noted that MDD and anxiety disorders are often co-morbid. Typically 

75% of MDD patients exhibit comorbid anxiety (Lamers et al., 2011).  Our records do in 

fact document the existence of co-morbid clinical anxiety in 58% of the MDD subjects, 
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and this is likely an underestimate due to the methods for psychological autopsy in our 

brain bank. Additional studies are needed to examine whether other factors known to 

influence gene expression in MDD, including comorbid anxiety or a history of 

antidepressant treatment, impact hippocampal FGF9 expression. Further, it will be of 

interest to study the role of FGF9 in other brain regions implicated in MDD, including the 

prefrontal cortices and mesolimbic dopamine circuit. It may also be fruitful to explore the 

impact of antidepressants on hippocampal FGF9 levels in postmortem human tissue, and 

animal studies involving antidepressant administration and other resilience-inducing 

manipulations, including environmental enrichment, can be used to clarify effects. 

Summary 

 We have demonstrated here that FGF9 is an anxiogenic growth factor in the 

hippocampus. FGF9 expression was upregulated in the post-mortem hippocampus of 

individuals with MDD, and we observed higher hippocampal FGF9 expression in bHR 

rats. Previous laboratory members reported that psychosocial stress, a model of 

depression in rodents, increased hippocampal FGF9 gene expression, and chronic FGF9 

administration increased anxiety- and depression-like behavior. In contrast, we show here 

that knocking down FGF9 expression in the dentate gyrus reduced anxiety-like behavior. 

These results suggest that high levels of hippocampal FGF9 may increase vulnerability to 

affective dysregulation and mood disorder, and the data contrast to a body of work 

indicating that high levels of hippocampal FGF2 may promote resilience. Therefore, we 

hypothesize that FGF2 and FGF9 act as physiological antagonists to mediate 

emotionality and vulnerability to mood disorders. Together, this body of work suggests 



78 
 

that blocking the actions of hippocampal FGF9 offers a novel therapeutic approach to the 

treatment of anxiety and depression. 
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Appendix 2.1. DLPFC Demographics. 

Diagnosis 
Age 

(median) 
Gender 

(% Female) 
Suicide 

(% Suicide) 
Agonal 

Factor (% 0) 
Brain pH 
(median) 

Post-Mortem 
Interval 

(median) 

Control 
(n=70) 

58 (SD: 13.9; 
range: 18-78) 23% 0% 73% 6.82 (SD: 0.29; 

range: 6.06-7.51) 
21.9 (SD: 21.9; 
range: 6.5-45.5) 

MD (n=40) 48.5 (SD: 16.3; 
range: 19-84) 20% 55% 85% 6.91(SD: 0.28; 

range: 6.3-7.21) 
27.8 (SD: 27.75; 
range: 9.5-37) 

BP (n=24) 54 (SD: 15.6; 
range: 23-73) 45.83% 38% 75% 6.82 (SD: 0.21; 

range: 6.41-7.2) 
26.8 (SD: 26.8; 
range: 9-54.8) 

Schiz 
(n=22) 

47.5 (SD: 10.2; 
range: 31-64) 32% 23% 77% 6.78 (SD: 0.29; 

range: 6.24-7.21) 
23 (SD: 23; 

range: 6.25-46) 

 

Appendix 2.2. ACG Demographics. 

Diagnosis 
Age 

(median) 
Gender 

(% Female) 
Suicide 

(% Suicide) 
Agonal 

Factor (% 0) 
Brain pH 
(median) 

Post-Mortem 
Interval 

(median) 

Control 
(n=62) 

57.5 (SD: 13.1; 
range: 18-78) 23% 0% 86% 6.88 (SD: 0.25; 

range: 6.15-7.25) 
22.4 (SD: 7.9; 

range: 7.3-45.5) 

MD (n=37) 48 (SD: 15.0; 
range: 19-80) 22% 57% 92% 6.95 (SD: 0.27; 

range: 6.3-7.39) 
27.5 (SD: 7.4; 
range: 9.5-37) 

BP (n=20) 57.5 (SD: 15.9; 
range: 23-73) 45% 40% 80% 6.87 (SD: 0.18; 

range: 6.55-7.2) 
27.3 (SD: 12.3; 
range: 9-54.8) 

Schiz 
(n=21) 

47 (SD: 10.5; 
range: 31-64) 33% 24% 81% 6.78 (SD: 0.28; 

range: 6.24-7.21) 
24 (SD: 11.8; 
range: 6.3-46) 

 

Appendix 2.3. HPC Demographics. 

Diagnosis 
Age 

(median) 
Gender 

(% Female) 
Suicide 

(% Suicide) 
Agonal 

Factor (% 0) 
Brain pH 
(median) 

Post-Mortem 
Interval 

(median) 

Control 
(n=56) 

58 (SD: 12; 
range: 30-77) 23% 0% 86% 6.9 (SD: -0.26; 

range: 6.3-7.5) 
21 (SD: 7; 

range: 7-40) 

MDD 
(n=36) 

48 (SD: 16; 
range: 19-84) 25% 58% 92% 7 (SD: 0.28; 

range: 6.3-7.4) 
28 (SD: 8; 

range: 10-37) 

BP (n=18) 51.5 (SD: 16.1; 
range: 23-73) 39% 44% 83% 6.87 (SD: 0.18; 

range: 6.44-7.12) 
26.25 (SD: 10.8; 
range: 9-54.8) 

Schiz 
(n=20) 

47.5 (SD: 9.7; 
range: 31-64) 35% 25% 75% 6.775 (SD: 0.29; 

range: 6.24-7.21) 
21 (SD: 10.6; 

range: 6.3-44.3) 
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Appendix 2.4. Overlap between the final MDD and control samples used in the four 
human postmortem experiments examining the hippocampus, following outlier removal 
and the removal of subjects with missing or incorrect information. Note that methods 
describing Illumina microarray data can be found in Aurbach et al. (2015). 

Subject Overlap in Replicate Human Studies 

 
Affymetrix 
HG-U133A 
Microarray:                

Illumina 
HT-12 
Microarray:                

Illumina 
Ref-8_v2 
Microarray:                

qRT-PCR:                         

Affymetrix 
HG-U133A 
Microarray:                

n=92 42%  
(39/92) 

80%  
(74/92) 

49%  
(45/92) 

Illumina 
HT-12 
Microarray:                

87%  
(39/45) n=45 87%  

(39/45) 
87%  
(39/45) 

Illumina 
Ref-8_v2 
Microarray:                

95%  
(74/78) 

50%  
(39/78) n=78 58%  

(45/78) 

qRT-PCR:                         100% 
(45/45) 

87%  
(39/45) 

100% 
(45/45) n=45 
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Chapter 3.   

Hippocampal Fibroblast Growth Factor 2 Expression Predisposes 

Individuals to Differences in Affect Regulation.2 

Introduction 

 Increasingly, many researchers accept that the pathophysiology of major 

depressive disorder (MDD) arises from malfunctioning brain circuits, with a number of 

brain regions implicated in this dysregulation. These regions are thought to interact in 

complex ways to underlie cognitive, emotional, behavioral, and physiological states, and 

disruption of these functions can be linked to the symptoms of mood disorders (Drevets, 

Price, & Furey, 2008; Price & Drevets, 2012). Some components of this circuitry, 

including limbic areas such as the hippocampus, medial prefrontal cortex, and amygdala 

(Godsil, Kiss, Spedding, & Jay, 2013; Price & Drevets, 2012), thalamic regions including 

the dorsomedial nucleus (Tekin & Cummings, 2002), mesolimbic components including 

the ventral tegmental area and basal ganglia, especially the nucleus accumbens (Nestler 
                                                 
2 Note that some of the work discussed in this chapter has been published: Figures 3.2b 
and 3.2c were published in Chaudhury, S., Aurbach, E. L., Sharma, V., Blandino, P., 
Turner, C. A., Watson, S. J., & Akil, H. (2014). FGF2 is a target and a trigger of 
epigenetic mechanisms associated with differences in emotionality: Partnership with 
H3K9me3. Proceedings of the National Academy of Sciences, 111(32), 11834–11839. 
http://doi.org/10.1073/pnas.1411618111; data from Appendix 3.1 was published in 
Aurbach, E. L., Inui, E. G., Turner, C. A., Hagenauer, M. H., Prater, K. E., Li, J. Z., … 
Akil, H. (2015). Fibroblast growth factor 9 is a novel modulator of negative affect. 
Proceedings of the National Academy of Sciences, 112(38), 11953–11958. 
http://doi.org/10.1073/pnas.1510456112. 
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& Carlezon, 2006; Drevets et al., 2008; Gunaydin & Kreitzer, 2016), and areas in the 

hypothalamus (Plotsky, Owens, & Nemeroff, 1998; Swaab, Bao, & Lucassen, 2005; 

Drevets et al., 2008) and brainstem (Drevets et al., 2008; Ressler & Nemeroff, 2000; 

Bernard et al., 2011; Gold et al., 2015) have been studied extensively in mood disorders. 

These regions underlie many functions, and many have been studied both in the context 

of their individual properties as microcircuits (e.g., the hippocampus) and as collective 

assemblies (e.g., the separation distress circuit; Panksepp, Nelson, & Bekkedal, 1997; 

Panksepp, Knutson, & Burgdorf, 2002; Panksepp, 2003) to better understand their 

dysregulation in mood disorders. Notably, there are competing – though not mutually 

exclusive – theories about the relative importance and involvement of different brain 

regions and circuits in MDD pathophysiology. Regions including the hippocampus and 

prefrontal cortices are thought to be primarily related to the cognitive components of 

MDD symptomology, while more primitive regions in the hypothalamus and brainstem 

are understood to underlie some physiological symptoms of MDD, including autonomic 

aberrations (Drevets et al., 2008).  

  The neurotrophic hypothesis of major depression has emerged to provide a 

unifying framework to understand this circuit dysregulation across regions, and it posits 

that changes in growth factors may be related to the circuit abnormalities that arise in 

major depression (Duman & Monteggia, 2006; Turner, Watson, & Akil, 2012). Among 

the best-characterized is fibroblast growth factor 2 (FGF2): our laboratory and others 

have consistently observed FGF2 to be downregulated in brain tissue derived from 

individuals diagnosed with MDD (Evans et al., 2004; Gaughran, Payne, Sedgwick, 

Cotter, & Berry, 2006; Bernard et al., 2011) and animal models of mood disorders 
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(Turner, Calvo, Frost, Akil, & Watson, 2008; Perez, Clinton, Turner, Watson, & Akil, 

2009).  While much progress has been made in the last 10 years, gaps remain in our 

understanding of FGF2’s function to mediate affective dysregulation. These questions 

should be addressed before investing resources into developing novel therapeutic agents 

that could target FGF2 to treat MDD. 

 Previous studies have shown that FGF2 expression is reduced in the postmortem 

brain tissue of individuals diagnosed with MDD during life; these changes have been 

observed in the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC) 

(Evans et al., 2004), hippocampus (Gaughran et al., 2006), and locus coeruleus (Bernard 

et al., 2011). However, these studies do not provide insight into whether reduced FGF2 

levels predispose individuals to developing MDD or if they arise from the disease 

process. 

Studies of FGF2 function in rodents have helped to clarify the role of FGF2 in 

affective regulation. For example, FGF2 has been repeatedly emphasized as a player in 

the rodent brain’s response to stress.  After an acute stressor or exposure to 

gluccocorticoids, FGF2 levels in adult animals are elevated, perhaps in a neuroprotective 

function to buffer the brain against exposure to deleterious effects of stress (Molteni et 

al., 2001).  However, social defeat stress decreased hippocampal expression of FGF2 

(Turner, Calvo, et al., 2008) indicating that prolonged social stress might downregulate 

FGF2, similar to the results seen in human postmortem brains. Manipulations known to 

combat the detrimental effects of stress, such as environmental enrichment (Perez et al., 

2009) or treatment with antidepressant or anxiolytic drugs (Gómez-Pinilla, Dao, Choi, & 



88 
 

Ryba, 2000; Mallei, Shi, & Mocchetti, 2002; Bachis, Mallei, Cruz, Wellstein, & 

Mocchetti, 2008), increased FGF2 expression across several brain regions. 

 Directly manipulating FGF2, either by injecting it or by knocking down its 

expression using RNA interference, had effects on depression-like and anxiety-like 

behavior.  Acute microinjections of FGF2 into the lateral ventricles decreased immobility 

time in the Porsolt forced swim test (FST), and chronic microinjections over seven days 

decreased latency to feed in the novelty suppressed feeding task (NSF), both indicating a 

decrease in depressive-like behavior (Turner, Gula, Taylor, Watson, & Akil, 2008).  

Similarly, using a lentiviral-mediated short-hairpin RNA targeted against FGF2, Eren-

Koçak and colleagues showed that knocking down FGF2 expression in the hippocampus 

increased time that rats spent in the closed arms of an elevated plus maze (EPM), an 

anxiogenic effect (Eren-Koçak, Turner, Watson, & Akil, 2011). These results further 

confirm the role of FGF2 in mediating anxiety- and depression-like behavior in rodents. 

While FGF2 is down-regulated in human brains, hippocampal FGF2 expression 

and regulation varies in animal models of individual vulnerability to affective 

dysregulation. Eren-Kocak et al. (2011) demonstrated that hippocampal FGF2 expression 

levels correlated with anxiety-like behavior on the elevated plus maze, indicating that the 

degree of endogenous FGF2 expression is associated with spontaneous affective-like 

behavior. Moreover, Perez and colleagues examined endogenous FGF2 expression in 

animals selectively bred for a low locomotor response to novelty (bred low responders, 

bLRs), that also have increased anxiety-like behavior.  Anxiety- and depression-

vulnerable bLRs showed lower FGF2 expression in the hippocampus compared to 

animals selectively bred for a high locomotor response to novelty (bred high responders, 
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bHRs; Perez et al., 2009), who have been previously characterized as showing less 

anxiety-like behavior than bLRs (Stead et al., 2006), though it is unknown if these 

differences in basal FGF2 expression in the hippocampus are stable across generations. 

Supporting the idea that FGF2 expression is critical during development, Turner 

and colleagues demonstrated that administering a single dose of FGF2 on the day after 

birth decreased bLR’s anxiety-like behavior during adulthood.  bLRs treated with early-

life FGF2 showed increases in the time spent in the open arms of the EPM, increases in 

time spent in the light side of the light-dark box, and increased locomotor scores in a 

novel environment, all indicators of reduced anxiety-like behavior (Turner, Clinton, 

Thompson, Watson, & Akil, 2011). In a related phenomenon, both Perez et al. (2009) and 

Turner et al. (2011) showed that FGF2 administration increased the proliferation of early 

postnatal cells in the subgranule zone and survival of both the early postnatal cells and 

adult-born dentate granule cells in the dentate gyrus of the hippocampus, which is also 

associated with successful antidepressant and anxiolytic treatments in animal models of 

mood and anxiety disorders. Furthermore, these alterations in phenotype and FGF2 

expression have been linked to the epigenetic marker H3K9me3, reinforcing the findings 

that both genetic background and environment can directly impact FGF2 expression 

(Chaudhury et al., 2014). Collectively, these results indicate that FGF2 acts as an 

anxiolytic and an antidepressant for animals that are genetically vulnerable to anxiety-

like and depression-like behavior, though it is unknown if altering endogenous expression 

of hippocampal FGF2 would impact affective vulnerability in high-anxiety animals.   

This section of the chapter examines the hypothesis that differential FGF2 

expression is necessary for selective vulnerability to affective dysregulation, continuing 
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to build the case that FGF2 is an important molecular target that becomes dysregulated 

in MDD. Therefore, we determined if variation in FGF2 levels predisposes individuals to 

affective dysregulation. We examined this question by asking two sub-questions, 

including: 1) Are the basal differences in hippocampal FGF2 expression between bHR 

and bLR rats stable across generations? And 2) is this difference in hippocampal FGF2 

expression necessary for the differences in spontaneous affective-like behavior between 

bHR and bLR rats?  

 Materials and Methods 

Animals. We used selectively-bred male rats in these studies. Bred high responder 

and low responder rats were bred, weaned, and tested for their locomotor response to 

novelty between postnatal days 50-60, and housed in pairs in-house as previously 

described (Perez et al., 2009; Stead et al., 2006; Turner et al., 2011). All animals were 

maintained on a 12/12 light/dark schedule, with access to food and water ad libitum. All 

animals were treated in accordance with the National Institutes of Health Guidelines on 

Laboratory Animal Use and Care and in accordance with the guidelines set by the 

university committee on use and care of animals at the University of Michigan.  

bHR and bLR studies. In the basal gene expression studies, bHR and bLR rats 

from generations F25 and F35 were tested for locomotor response to novelty before being 

euthanized between postnatal day 50-60. Brains were extracted, snap-frozen in 2-

methylbutane, and stored at -80C until processing. In the knockdown studies, bHR and 

bLR rats from generation F34 underwent microinjection surgery at postnatal day 60 

(groups: LVshFGF2, LVshNS; Eren-Koçak et al., 2011).  Under isoflurane anesthesia 

and using standard stereotaxic protocols, a 33-gauge microinjector was lowered 
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bilaterally just above the hippocampus (coordinates from bregma: A/P -5.0, M/L ±3.5, 

D/V -2.6).  One µL of LVshNS or LVshFGF2 was infused over four minutes, and two 

minutes were allowed for diffusion. We allowed 4 weeks for recovery, then animals were 

subjected to behavioral testing in the elevated plus maze and forced swim test. Twenty-

four hours after the last behavioral test, animals were euthanized. Brains were rapidly 

extracted and frozen in 2-methylbutane at -30°C and stored at -80°C until processing. 

Behavioral Testing.  

Locomotion testing. Locomotion testing was used to assess the locomotor 

response to a novel environment, one measure of novelty-seeking and anxiety-like 

behavior. Rats were placed in a 43 x 21.5 x 25.5cm acrylic cage. Two panels of 

photocells recording beam breaks determined both horizontal and vertical locomotor 

activity, and activity was monitored in five minute bins for one hour.  The horizontal and 

vertical components were added together for each animal and an average was found for 

each group (Stead et al., 2006). After each animal was tested, the apparatus was cleaned 

with 70% ethanol in water. All locomotor testing took place between 0800 and 1200 h. 

We interpreted low locomotor scores as indicating low levels of novelty-seeking and high 

spontaneous anxiety-like behavior. 

Forced swim test (FST). We used the FST to determine effects on depression-like 

behavior (Lucki, 1997; Porsolt, Bertin, & Jalfre, 1977; Porsolt, Bertin, & Jalfre, 1978; 

Porsolt, Bertin, Blavet, Deniel, & Jalfre, 1979). The test occurs over two days. On day 

one, animals undergo a 15 minute pre-test swim. 24 hours later, animals undergo a five 

minute test swim (Lucki, 1997; Porsolt et al., 1977; Porsolt et al., 1979, 1978). Animals 

were placed in cylinders filled with water at a temperature of 25-27°C. Water was 
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changed between animals and all sessions were video recorded.  All FST swim sessions 

took place between 0900 h and 1300 h. The videotaped behaviors were scored by an 

observer blind to the experimental conditions using The Observer software (Noldus 

Information Technology, The Netherlands).  Swimming was scored when at least two 

paws were consistently moving in a horizontal direction.  Climbing was defined by 

vertically-directed movement of at least two paws against the wall of the cylinder.  

Immobility was defined as floating or the minimal movement necessary to keep the head 

above water level.  Percent total duration of swimming, climbing, and immobility 

episodes were determined and compared across groups. Animals who spent increased 

percent time immobile and decreased percent time swimming or climbing were 

interpreted to be exhibiting enhanced depression-like behavior. 

Elevated plus-maze (EPM).  We used the EPM to determine effects on anxiety-

like behavior (Pellow, Chopin, File, & Briley, 1985; Pellow & File, 1986; Turner et al., 

2011; Eren-Koçak et al., 2011). The EPM apparatus consists of a plus-shaped platform 

elevated 70cm above the floor; two arms are enclosed in black plexiglass (the 

“anxiolytic” regions of the maze), while the other two arms are left open (the 

“anxiogenic” regions of the maze). At the intersection of the arms, there is a 12 x 12cm 

square platform allowing access to all four arms (Pellow et al., 1985; Pellow & File, 

1986). During the five minute test period, the room is dimly lit (~40 lux), and behavior is 

monitored using a computerized video tracking system (Noldus Ethovision).  At the start 

of the five minute test, the rat was placed in the center square platform.  The tracking 

system recorded the latency to enter the open arm, the amount of time spent in arms, and 

the time spent in the center square.  After every animal, the testing apparatus was wiped 
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down with 70% ethanol in water. We compared the amount of time spent in the open and 

closed arms of the maze across groups; animals that spent more time in the closed arms 

(and/or less time in the open arms) of the maze were considered to show elevated levels 

of spontaneous anxiety-like behavior. 

Tissue Analysis. 

mRNA in situ hybridization (ISH). All rats were euthanized by rapid decapitation; 

brains were removed, snap-frozen, and stored at -80°C. Ten-µm sections were taken 

every 100-200 µm (depending on the study) and mounted onto Superfrost Plus slides at -

20°C (Fisher, Waltham, MA). Slide-mounted tissue was fixed in 4% paraformadehyde 

solution for 60 minutes, washed three times with 2X SSC (1X SSC is 150 mM sodium 

chloride and 15 mM sodium citrate), and treated with 1M triethanolamine with 0.25% 

acetic anhydride. Slides were rinsed and dehydraded in graded ethanols before air-drying. 

All in situ probes were synthesized in-house; the rat FGF2 mRNA sequences used for 

generating probes were complimentary to NM_019395 (RefSeq database number), and 

eGFP was sub-cloned from the pLentiLox3.7 vector. All cDNA segments were extracted 

(Qiaquick Gel Extraction kit, Qiagen, Valencia, CA), subcloned in Bluescript SK 

(Stratagene, La Jolla, CA) and confirmed by nucleotide sequencing. The probes were 

labeled in a reaction mixture of 0.5-1µg of linearized plasmid specific to the probe of 

interest, 1X transcription buffer (Epicentre Technologies, Madison, WI), 125µCi of 35S-

labeled UTP, 125µCi of 35S labeled CTP, 150µM ATP and GTP, 12.5mM dithiothreitol, 

1µl of RNAse inhibitor (4U/µl), and 1.5µl of T7 or T3 RNA polymerase (20U/µl). 

Labeled probes were purified on Micro Bio-Spin Chromatography Columns (BioRad, 

Berkeley, CA) according to the manufacturer’s instructions. After air-drying, slides were 
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treated with hybridization buffer containing the labeled probe (1-2 x 106 counts/75 μL 

buffer) 50% formamide, 10% dextran sulfate, 3X SSC, 50 mM sodium phosphate buffer 

(pH = 7.4), 1X Denhardt’s solution, 0.1 mg/ml yeast tRNA, and 10 mM dithiothreitol. 

All slides were cover-slipped and stored in humidified chambers at 55°C during the 12-

16 hour hybridization period. After hybridization, sections were washed three times in 2X 

SSC and incubated in an RNase solution (100 μg/mL RNase in Tris buffer with 0.5M 

NaCl, pH=8) at 37C. Sections were then sequentially washed in 2X, 1X, and 0.5X SSC 

before being incubated in 0.1X SSC at 65C for 1 hour. Sections were rinsed in distilled 

water and dehydrated through graded ethanols. Slides were exposed to Kodak BioMax 

MR Scientific Imaging Film (Sigma Aldrich), and exposure times were experimentally 

determined for optimal signal, as follows: FGF2 (21 days), eGFP (7 days). 

Autoradiograph Quantification Procedures. mRNA expression signals from 

autoradiographic films were quantified using the computer-assisted optical densitometry 

software ImageJ (National Institutes of Health, Bethesda, MDD).   

For the basal bHR/bLR experiments, integrated optical densities were determined 

by outlining a hippocampal subfield (CA1, CA2, CA3, and dentate gyrus) on each 

hemisphere, correcting for background plus 3.5 times its standard deviation. Data from 

>6 sections were averaged to create a mean signal measurement for each animal and 

group averages and standard error of the mean were calculated. 

For quantification of sections from animals in the FGF2 knockdown study, we 

used a modified quantification approach to enable us to quantify expression of FGF2 only 

where we saw concurrent expression of eGFP. We digitally overlaid a transparent copy of 

the eGFP autoradiogram (from an adjacent section) on the image of the probe of interest 
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then outlined only the region with eGFP expression to take measurements for the probe 

of interest. Because there was variability in infection spread, we chose to disregard area 

in calculating the quantified measurements for these experiments; therefore, we present 

the data in terms of average optical density (mean signal-background). 

Statistical Analyses. All animal behavioral tests were analyzed by Student’s t-test 

or 2-way ANOVA followed by Fisher’s LSD posthoc tests. All gene expression data was 

analyzed on an individual region-to-region basis. 

Results 

 bHR animals have higher FGF2 expression in the hippocampus relative to bLR 

animals across generations. Previous studies have shown that bred high responder rats 

have increased levels of FGF2 expression in various subfields of the hippocampus; here, 

we examined if this result was stable across generations. In generation F25 (Figure 3.1a), 

bHRs had more FGF2 expression in the CA1 (t(17) = 2.57,  p = 0.019) and CA3 (t(17) = 

2.17, p = 0.044) subfields of the hippocampus, but not in the dentate gyrus (t(17) = 1.58, 

p = 0.131) or in CA2 (t(17) = 0.29, p = 0.774). Similarly, in generation F35 (Figure 3.1b), 

we observed higher FGF2 expression in CA1 (t(11) = 3.36, p = 0.006) and CA3 (t(11) = 

3.44, p = 0.005), with no differences in expression levels in the dentate gyrus (t(11) = 

0.17, 0.866) or in CA2 (t(11) = 0.58, p = 0.570). Collectively, these results reinforce the 

findings that bHR and bLR rats have differing basal levels of hippocampal FGF2, though 

we observed differential expression in subfields other than those previously reported 

(Perez et al. (2009) observed differences in the dentate gyrus and CA2 subfields). 
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Figure 3.1. FGF2 mRNA expression is consistently higher in the CA1 and CA3 subfields 
of the hippocampus of bHRs relative to bLRs across generations. There were no 
statistically significant differences between FGF2 expression in the dentate gyrus or CA2 
subfields. n = 8-10 animals/group. 
 

Knocking down hippocampal FGF2 reduces expression levels and eliminates 

differences in spontaneous anxiety- and depression-like behavior in bHR and bLR rats. 

Based on previous work demonstrating that knocking down FGF2 expression in the 

dentate gyrus of outbred rats increased their spontaneous anxiety-like behavior on the 

elevated plus maze, we examined if knocking down FGF2 expression in the hippocampus 

of bHR and bLR rats altered FGF2 expression levels and affective behavior. Analysis of 

autoradiograms against GFP, a marker for successful viral transduction, revealed that the 

viruses primarily affected the CA1 subfield of the hippocampus for both bHR and bLR 

rats. In that region, we observed a modest but significant reduction in FGF2 expression in 

all animals who received the LVshFGF2 virus compared to animals who received the 

nonsilencing control LVshNS virus (Figure 3.2a; t(51) = 2.13, p = 0.038), and this 

reduction did not differ between bHR and bLR animals (F(1,49) = 0.71, p = 0.79), 

suggesting that knockdown efficacy was similar for both strains of rats. This modest 

knockdown produced a significant effect on behavior: bLR animals who were 
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administered the nonsilencing LVshNS virus spent more time in the closed arms (t(10) = 

7.07, p < 0.001) and less time of the open arms (t(10) = 4.38, p = 0.001) of the elevated 

plus maze than bHR animals (Figure 3.2b), but these differences were eliminated for 

animals who received the LVshFGF2 virus (Figure 3.2c; closed arms: t(11) = 0.022, p = 

0.983; open arms: t(11) = 0.861, p = 0.408). We saw similar effects of viral knockdown 

on behavior in the forced swim test: after treatment with the nonsilencing LVshNS virus, 

and bHR and bLR animals displayed characteristic spontaneous depression-like behavior 

(Figure 3.2d) with bLRs spending more time immobile (t(10) = 3.209, p = 0.009) and less 

time swimming (t(10) = 3.556, p = 0.012). In contrast, after treatment with the 

LVshFGF2 virus, these basal differences were eliminated (Figure 3.2e; immobility: t(11) 

= 1.11, p = 0.29 ; swimming: t(11) = 0.658, p = 0.523). Collectively, these results 

demonstrate that even modest reductions in FGF2 expression in the CA1 subfield of the 

hippocampus are sufficient to eliminate basal differences in anxiety- and depression-like 

behavior between bHR and bLR rats. 
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Figure 3.2. Lentiviral-mediated knockdown of FGF2 expression in CA1 a) reduces FGF2 
expression and eliminates basal differences in spontaneous anxiety- (b, c) and 
depression-like (d,e) behavior between bHR and bLR rats. n = 6 animals/group; * 
indicates p < 0.05. 
  
 



99 
 

Discussion 

 Collectively, these data reinforce FGF2 as an anxiolytic and antidepressant 

molecule in hippocampal microcircuitry. In an animal model of individual differences 

and vulnerability to affective dysregulation, we observed an increase in hippocampal 

FGF2 expression that was stable across generations in animals selectively bred for a high 

locomotor response to novelty and who spontaneously exhibit low levels of anxiety- and 

depression-like behavior. Furthermore, we demonstrated that knocking down expression 

of FGF2 in the CA1 subfield of the hippocampus was sufficient to eliminate differences 

in spontaneous anxiety- and depression-like behavior between these selectively-bred lines 

of rats. Together, these studies indicate that FGF2 levels vary across individuals and are 

important to predispose these individuals to different patterns of affective behavior. 

These data support the hypothesis that FGF2 is an important player in the 

pathophysiology underlying MDD. 

Bred high responders have higher hippocampal FGF2 expression than bred low responder 

rats across generations, and knocking down FGF2 expression in CA1 eliminates 

behavioral differences between bHR and bLR animals. 

 Previous studies have shown that hippocampal FGF2 expression correlates with 

anxiety-like behavior on the elevated plus maze: in particular, CA2 expression positively 

correlated with open-arm time in outbred rats (Eren-Koçak et al., 2011). Furthermore, 

previous studies have also reported that bHR animals have higher levels of FGF2 

expression in the dentate gyrus and CA2 subfields of the hippocampus than do bLR 

animals (Perez et al., 2009; Turner et al., 2011). Because we were interested in examining 

if this variation in FGF2 expression was crucial to the individual differences in 
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behavioral phenotype, we sought to determine if this differential expression across bHR 

and bLR animals was stable across generations. We examined hippocampal FGF2 

expression in two generations of bHR and bLR rats, 10 generations apart, and found 

consistent increases in expression in the CA1 and CA3 subfields of the hippocampus of 

bHRs relative to bLRs. It is interesting to note that while the overall pattern was the same 

across studies, we observed differential FGF2 expression in subfields other than those 

previously described (Perez et al., 2009). There could be several reasons for these 

differences, including that there may be subtle alterations in the methods with which 

tissue was collected, processed, and quantified. However, given that we did observe 

consistent and stable differential FGF2 expression in the hippocampus across 

generations, we sought to determine if this distinctive pattern was necessary for the 

differences in spontaneous affective-like behavior that we have previously observed 

between bHRs and bLRs. 

Reducing endogenous gene expression using viral-mediated knockdown allows 

researchers to probe the region-specific necessity of particular transcripts for 

physiological and behavioral outputs. Our laboratory has previously used a lentiviral 

vector to knock down FGF2 expression in the dentate gyrus of outbred rats, 

demonstrating that this reduction of endogenous expression increased anxiety-like 

behavior on the EPM (Eren-Koçak et al., 2011). Here, we used viral vectors to knock 

down FGF2 expression in the CA1 subfield of the hippocampus of selectively-bred bHR 

and bLR animals. Control animals who received the non-silencing LVshNS virus 

exhibited behavior prototypical to the selectively-bred lines, with bHRs showing less 

anxiety- and depressive-like behavior than bLR rats. In contrast, animals who received 
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the LVshFGF2 knockdown virus did not display these phenotype-specific differences in 

either anxiety- or depression-like behavior, suggesting that even modest reductions in 

FGF2 expression are sufficient to eliminate behavioral differences between these 

selectively-bred rats by altering anxiety and depressive-like behavior. These results are 

paralleled with basal differences in the epigenetic marker H3K9me3 in animals treated 

with LVshNS that are eliminated in animals who received LVshFGF2 (Chaudhury et al., 

2014), a possible route for environmental manipulations to mediate similar effects.  

Interestingly, bHR rats who received the LVshFGF2 virus showed greater 

differences in affective-like behavior than did bLR rats, which could indicate that bHR 

animals, like the outbred rats previously reported (Eren-Koçak et al., 2011), could sustain 

decreases in hippocampal FGF2 levels, while bLR animals may already express 

hippocampal FGF2 at minimal levels necessary for basic regional function. These data 

are also interesting because the majority of findings that our laboratory has previously 

reported have indicated that bLR rats are more responsive to positive manipulations like 

early-life (Turner et al., 2011) or chronic FGF2 administration and/or environmental 

enrichment (Perez et al., 2009) than bHR rats. Therefore, this indicates that differential 

FGF2 expression in the hippocampus is important to the behavioral phenotypes for both 

bHR and bLR animals, indicating that the expression of this molecule is strongly related 

to individual variation in affective dysregulation. It is notable, however, that other 

regions and molecular systems are also likely to be critical for their behavioral 

differences. 
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Summary 

 We have shown that FGF2 may play an organizational capacity in the human and 

rodent brains to mediate affective regulation. We observed consistent basal differences in 

hippocampal FGF2 expression between rats selectively bred for a locomotor response to 

novelty, one measure of anxiety-like behavior. We demonstrated that knocking down 

expression of FGF2 in the CA1 subfield of the hippocampus was sufficient to eliminate 

prototypical differences in spontaneous anxiety- and depression-like behavior between 

these phenotypes, suggesting that this difference in FGF2 expression is important and 

necessary for the expression of these genetically-based individual differences in 

behavioral phenotypes. Collectively, these studies highlight FGF2 as a critical mediator 

of genetic predisposition to affective dysregulation and support the hypothesis that it is 

dysregulated in MDD. 
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Appendix 3.1: Reevaluating MDD-specific alterations in FGF2 expression in 

postmortem human tissue using a statistical approach that controls for confounding 

variables 

Introduction 

Previous studies have shown that FGF2 expression is reduced in the postmortem 

brain tissue of individuals diagnosed with MDD during life; these changes have been 

observed in the dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex (ACC) 

(Evans et al., 2004), hippocampus (Gaughran et al., 2006), and locus coeruleus (Bernard 

et al., 2011). While this consistency is striking, the majority of these findings are derived 

from microarray analyses that do not fully control for some confounding variables, 

including age, and gender, and factors impacting gene expression including pH and 

agonal factor (Li et al., 2004; Tomita et al., 2004). Here, we asked a single question: Are 

the effects of FGF2 dysregulation in postmortem human brain tissue still observable 

using a statistical approach that controls for a variety of confounding pre- and 

postmortem variables? 

Materials and Methods 

Subject Characteristics and Tissue Extraction. The human tissue samples used for 

all microarray experiments as well as the qRT-PCR validation were obtained from the 
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Brain Donor Program at the University of California, Irvine with the consent of the next-

of-kin of the deceased (Appendix 2.1, Appendix 2.2, & Appendix 2.3).  

Dissection of Human DLPFC, ACC, and Hippocampus. For the first stage of 

dissection, a 1-cm coronal slab was placed on a block of dry ice. At the level of the genu 

of the corpus callosum, the middle frontal gyrus was identified by an expert in human 

neuroanatomy, and a fine jeweler’s blade in a coping saw handle was used to excise the 

gyrus for dorsolateral prefrontal cortex samples. In some cases, more than one slab was 

used to cover the full extent of the structure. In the same plane, the cingulate gyrus was 

identified by an expert in human neuroanatomy, and a fine jeweler’s blade in a coping 

saw handle was used to excise the gyrus for anterior cingulate cortex samples. In some 

cases, more than one slab was used to cover the full extent of the structure. In more 

caudal planes, the hippocampus was visually identified using the dentate gyrus by an 

expert in human neuroanatomy, and a fine jeweler’s blade in a coping saw handle was 

used to dissect the hippocampus and surrounding temporal cortex. Both sides of the slab 

were carefully inspected. In some cases, more than one slab was used to cover the full 

extent of the structure.  For all structures, the block was wrapped in foil, placed on dry ice 

and then stored at -80°C until further processing (Jones et al., 1992). In the hippocampus, 

a second stage of finer dissection was then carried out. The temporal cortex was removed 

by visual inspection using the dentate gyrus and CA3 as landmarks. The dissected tissue 

was then processed for RNA extraction. Total RNA was extracted using procedures 

described previously (Evans et al., 2004; Li et al., 2004). Clinical information was 

obtained from medical examiners, coroners’ medical records and a family member. 

Patients were diagnosed by consensus based on criteria from DSM-IV. For further 
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information regarding data collection procedures, please see Li and colleagues (Li et al., 

2013). Final Control and MDD sample sizes and demographics are in the appendices 

(DLPFC: Appendix 2.1, ACG: Appendix 2.2, HPC: Appendix 2.3).  

Gene Expression Profiling. In general, the labeling and hybridization of sample 

mRNA with oligonucleotide probes followed standard manufacturer protocols. Analyses 

used the full microarray datasets (all probe data from the MDD and Control subjects, as 

well as from small samples of subjects with bipolar disorder and schizophrenia) to 

maximize our ability to identify technical artifacts and confounds, although the reported 

results focus on MDD vs. Control comparisons for a subset of growth factor probes.  

Affymetrix Microarray. Microarray experiments were performed in eight separate 

experimental cohorts containing both patients and controls. The majority of RNA 

samples were analyzed in duplicate at two different laboratories using Affymetrix 

Genechips (either U133A or U133Plus-v2). After extracting summarized probe signal 

data from scanned microarray image files, all downstream analyses were completed in 

the R statistical programming environment. We extracted the U133A subset of probes 

and applied RMA (Robust Multi-array Analysis) to summarize probe set expression 

levels using custom ENTREZ12.1 Chip Definition Files (CDF) which defined probe sets 

for 11,912 transcripts (as defined by ENTREZ in 03/2010) and 68 control probe sets. As 

is traditional, all probe signal values were log (base 2)-transformed to reduce 

heteroskedasticity and quantile-normalized to remove technical artifacts in the overall 

distribution of signal per sample. To ensure sample quality, we required an average 

sample to sample correlation coefficient (r) of 0.85-0.9, excluding 6 of 235 samples 

(2.6%) in the HPC, 30 of 367 samples (8.1%) in the DLPFC, and 6 of 283 samples 
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(2.1%) in the ACC. Batch effects due to cohort, laboratory, and platform were removed 

by median-centering the data. Replicate samples were then averaged and any subjects 

that were missing information were removed from the dataset (n = 16 in DLPFC, n = 13 

in ACC, n=8 in HPC), leaving a final sample size of 156 subjects in the DLPFC, 140 

subjects in the ACC, and 129 subjects in the HPC. For further information regarding the 

Affymetrix data pre-processing procedures, please see Li and colleagues (Li et al., 2013). 

For all of the microarray experiments, as part of quality control, subjects were verified to 

have gene expression typical of their reported sex using data from genes XIST, EIF1AY, 

RPS4Y1, UTY, USP9Y, NLGN4Y, NCRNA00185, TTTY15, KDM5D, CYorf15B, and 

DDX3Y. 

Microarray Analysis: Determining Diagnosis-Related Gene Expression while 

Correcting for Confounding Variables. Although agonal factor, brain pH, PMI, and 

gender did not differ significantly by diagnosis, we found that it was necessary to control 

for these variables because they strongly correlated with the top principal components of 

variation in the data sets (PC1-4). We also controlled for the average age at the time of 

death, which sometimes varied significantly with diagnosis. The degree of severity and 

duration of physiological stress at the time of death was estimated by calculating an 

Agonal Factor Score (AFS) for each subject (Tomita et al., 2004). Additionally, we 

measured the pH of cerebellar tissue as an indicator of the extent of oxygen deprivation 

experienced around the time of death (Li et al., 2004). We also calculated the interval 

between the estimated time of death and the freezing of the brain tissue (the postmortem 

interval or PMI) using coroner records. We ensured high quality data by choosing 

samples with relatively high pH and low agonal factor (DLPFC: Appendix 2.1, ACG: 
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Appendix 2.2, HPC: Appendix 2.3), but still decided that it was prudent to control for 

these variables as well as age and gender by including them as terms in our linear model: 

Equation 1: (probe signal) ≈ β0 + β1(Brain pH)+ β2(Agonal Factor)+ 

β3(PMI)+ β4(Age)+ β5(Gender)+ β6(Diagnosis) 

Results 

FGF2 expression trends towards a decrease in the anterior cingulate cortex of 

depressed individuals. Based on published data indicating that specific growth factor 

transcripts are altered in depressed brains (Bernard et al., 2011; Evans et al., 2004; 

Gaughran et al., 2006), we examined the relationship between FGF2 and major 

depression across three brain regions: the hippocampus, anterior cingulate cortex, and 

dorsolateral prefrontal cortex using human microarray datasets. We used linear regression 

to determine diagnosis-related gene expression while controlling for a variety of 

confounding pre- and post-mortem variables, including age, pH, gender, etc. In the 

hippocampus and DLPFC, FGF2 expression was not significantly different from 

nonpsychiatric control subjects, though we observed a visual trend for a decrease in 

FGF2 expression in the DLPFC (Appendix 3.1a; Appendix 3.1c; DLPFC: p = 0.172; 

HPC: p = 0.344). In the anterior cingulate cortex, there was a statistical trend for a 

decrease in FGF2 expression (Appendix 3.1b; p=0.077). Although we observed 

consistent trends for a reduction in FGF2 expression related to depression, we cannot 

conclude that we observed depression-related dysregulation of FGF2 in these brain 

regions because these trends did not reach statistical significance. 
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Appendix 3.1. FGF2 expression is consistently decreased in MDD relative to control 
across brain regions, though these trends do not reach statistical significance. a) 
dorsolateral prefrontal cortex, b) anterior cingulate cortex, c) hippocampus. All data is 
median-centered, which means that expression data is plotted relative to the median of 
the full sample (i.e., 0 on the y-axis is the median of the full sample). All statistics assess 
control vs. psychiatric diagnosis alterations in FGF2 expression while controlling for 
confounding pre- and postmortem variables. Sample sizes can be found in Appendix 2.1, 
Appendix 2.2, and Appendix 2.3. 
 

Discussion 

FGF2 expression is non-significantly decreased in the frontal cortices and hippocampus 

in MDD. 

Contrary to previous reports, we did not observe statistically significant 

differences in FGF2 expression in the dorsolateral prefrontal cortex or anterior cingulate 

cortex, though we did observe consistent visual and statistical trends for decreased FGF2 

expression (especially in the ACC), consistent with previous studies that used 

overlapping data and reported decreased FGF2 expression in postmortem brains of 

patients with MDD (Evans et al., 2004). Though we saw similar directionality, we 

hypothesize that there are several reasons that may underlie the lack of statistical 

significance: 1) statistical power (the sample sizes in our study were larger than in the 

previous report); 2) statistical approach (we used a linear model which controls for a 
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variety of confounding pre- and postmortem variables including age, gender, postmortem 

interval, agonal factor, and pH instead of mixed-model multivariate ANOVA with 

correction for multiple comparisons that conflates these important factors); and/or 3) 

treatment history (Evans et al. (2004) was able to much more accurately examine effects 

of a treatment history including antidepressant drugs than we were able to do with our 

larger dataset, which included missing and/or contradictory information related to 

antidepressant use). 

In previous studies, other groups have observed a decrease in hippocampal FGF2 

expression in depressed patients using mRNA in situ hybridization (Gaughran et al., 

2006). The reason behind the discrepancy in our results is not clear, but may be due to 

differences in technique (microarray versus mRNA in situ hybridization) or because 

tissue pH was higher in our study, and low pH can impact gene expression (Li et al., 

2004), reducing the expression of certain genes. Moreover, factors such as comorbid 

anxiety or a treatment history that includes antidepressant drugs would likely influence 

FGF2 expression and we could not fully account for these factors. 

Indeed, administration of compounds with antidepressant and anxiolytic 

properties is known to increase FGF2 expression in human (Evans et al., 2004) and 

rodent brains. For example, chronic, but not acute, administration of several 

antidepressant and anxiolytic compounds increases FGF2 expression in the rodent cortex 

and hippocampus (Gómez-Pinilla et al., 2000; Mallei et al., 2002; Bachis et al., 2008). 

Interestingly, this effect seems to be additive: co-administering two antidepressants 

increased FGF2 expression in the hippocampus, and the increase was higher than either 

treatment alone (Maragnoli, Fumagalli, Gennarelli, Racagni, & Riva, 2004). A recent 
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study indicates that this induction of FGF2 expression is necessary for the positive effects 

of antidepressant drugs (Elsayed et al., 2012), which strongly suggests that one reason we 

were not able to observe strong decreases in FGF2 expression across brain regions in our 

postmortem human data may be because we could not fully account for a history of 

antidepressant drug usage in our MDD sample. Moreover, heterogeneity in drug type, 

administration chronicity, whether the individual was taking antidepressants at the time 

of death, and if there were interactions with other compounds in an individual’s system, 

are all likely to have an impact on FGF2 expression. Due to the difficulties of full 

psychological autopsy, we could not adequately account for all these factors. 

Summary 

In postmortem human samples, we did not find strong evidence for FGF2 reductions in 

MDD, though we observed consistent visual trends for reduced expression across 

regions. The strongest effect was in the anterior cingulate cortex, where there was a 

statistical trend for a decrease in FGF2 expression in depressed samples. 
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Chapter 4.    

Fibroblast Growth Factors 2 and 9 May Act as Molecular Organizers in 

Anterior Cingulate Cortex and Hippocampus to Mediate Circuit 

Function in MDD3 

Introduction 

 A growing body of evidence strongly suggests that neurotrophic factors like 

FGF2 and FGF9 are dysregulated in Major Depressive Disorder (MDD; Aurbach et al., 

2015; Evans et al., 2004; Perez, Clinton, Turner, Watson, & Akil, 2009; Turner, Calvo, 

Frost, Akil, & Watson, 2008; Turner, Clinton, Thompson, Watson, & Akil, 2011). 

However, the precise roles that these molecules play, including the myriad ways that they 

may impact neurotransmission, brain circuit structure and function, and large molecular 

networks remains to be determined. Furthermore, given that a number of growth factors, 

including FGF2, FGF9, brain-derived neurotrophic factor, glial cell line derived 

neurotrophic factor, and vascular endothelial growth factor, and others have been 

implicated in MDD (Björkholm & Monteggia, 2016; Carvalho et al., 2015; Duclot & 

Kabbaj, 2015; Duman & Monteggia, 2006; Miller, 2011; Turner, Watson, & Akil, 2012; 

Warner-Schmidt & Duman, 2007), greater effort should be made to understand if and 

                                                 
3 Data from this chapter will be prepared for publication after completing additional validation studies. 
Appendix 4.2 was published in Aurbach, E. L., Inui, E. G., Turner, C. A., Hagenauer, M. H., Prater, K. E., 
Li, J. Z., … Akil, H. (2015). Fibroblast growth factor 9 is a novel modulator of negative affect. Proceedings 
of the National Academy of Sciences, 112(38), 11953–11958. http://doi.org/10.1073/pnas.1510456112 
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how these molecules interact with each other in the brain to mediate effects on 

emotionality. Indeed, building this deep understanding of the organizational and 

functional capacity of growth factors both inside and outside the adult central nervous 

system will be critical to avoid harmful side effects of pharmacological interventions and 

harness the potential to target growth factors with new antidepressant medications. 

 Previous literature and preceding chapters of this dissertation have highlighted 

FGF2 and FGF9 as particular targets of interest in the disrupted neural circuitry thought 

to underlie MDD. Indeed, previous studies demonstrated that FGF2 is disrupted in MDD 

in humans, and it acts as an endogenous anxiolytic and antidepressant substance in 

rodents (Bernard et al., 2011; Chaudhury et al., 2014; Evans et al., 2004; Gaughran, 

Payne, Sedgwick, Cotter, & Berry, 2006; Perez et al., 2009; Turner, Calvo, et al., 2008; 

Turner, Gula, Taylor, Watson, & Akil, 2008; Turner et al., 2012). While many fewer 

studies have examined FGF9’s role in affect, the available evidence is striking and 

suggests that FGF9 may work in functional opposition to FGF2 (Aurbach et al., 2015; 

Salaria et al., 2006).  

 A variety of different types of data support the hypothesis that FGF2 and FGF9 

act as physiological antagonists in the brain to mediate affect. Though some analyses, 

including the approach described in this thesis, have not all supported differential 

expression of FGF2 and FGF9 in MDD across all brain regions, we found some 

significant differences and report that FGF2 is decreased and FGF9 is increased in 

different regions of the depressed human brain (Aurbach et al., 2015; Bernard et al., 

2011; Evans et al., 2004; Gaughran et al., 2006). This opposite pattern of dysregulation 

can also be observed in rodent models of MDD. In rodents, chronic stress decreases 
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hippocampal FGF2 expression, while the same manipulation increases FGF9 expression 

(Aurbach et al., 2015; Turner, Calvo, et al., 2008). Chronic administration of FGF2 has 

anxiolytic and antidepressant properties, while chronic administration of FGF9 is 

anxiogenic and pro-depressant (Aurbach et al., 2015; Perez et al., 2009; Turner et al., 

2011; Turner, Gula, et al., 2008). In contrast, knocking down endogenous expression of 

FGF2 in the dentate gyrus of the hippocampus is anxiogenic, while knocking down FGF9 

in the same region is anxiolytic. These studies and others support the idea that FGF2 and 

FGF9 act in opposite ways to mediate effects on emotionality in certain brain regions. 

Although few studies have examined the effects of manipulating both FGF2 and 

FGF9 in the same samples, those that have support the hypothesis that FGF2 and FGF9 

have opposite effects in MDD. In addition to the microarray studies described above, 

Salaria and colleagues (2006) examined the effects of three weeks of cortisol exposure on 

fetal brain aggregates, an in vitro model of chronic stress. Using microarray and 

immunohistochemistry, they found that FGF2 expression decreased and FGF9 expression 

increased after three weeks of cortisol (Salaria et al., 2006), supporting the idea that these 

FGFs are dysregulated in opposite directions in this model of chronic stress.  

 If FGF2 and FGF9 are coordinately and/or oppositely dysregulated to mediate 

affect and vulnerability in MDD, there are several possibilities for how these effects may 

be borne out biologically. In the simplest case, FGF2 and FGF9 may directly converge on 

the same receptor system to exert opposite effects on subsequent signaling pathways, 

which could mediate different molecular and cellular responses to each FGF. We 

attempted to examine this possibility experimentally after acute administration of both 

FGF2 and FGF9 in vivo (data not shown), but limitations to our approach prevented us 



118 
 

from drawing conclusions. Alternatively, FGF2 and FGF9 may play important, but non-

overlapping, organizational roles in molecular networks and/or brain circuitry, and the 

appearance of opposite effects may arise because we have previously chosen to examine 

affective behavior, which is a final common pathway influenced by a number of brain 

circuits and molecular systems. Evidence supporting this interpretation might show 

different networks of molecules which are co-regulated with FGF2 and FGF9. Other 

approaches will not be examined in this chapter, but they could include probing other 

systems including brain circuit activation and/or molecular network co-regulation.  

 Because we have previously observed important – but sometimes inconsistent –

alterations in FGF2 and FGF9 expression in MDD, we chose to determine if FGF family 

members might be acting as an ensemble of genes to search for more consistent effects. 

Specifically, to examine the hypothesis that FGF2 and FGF9 played coordinate roles in 

the brain to mediate affective dysregulation, we explored if and how there were 

relationships in the patterns of expression between members of the FGF family 

(particularly FGF2, FGF9, and the FGF receptors), and we further examined whether 

these possible patterns might change as a function of MDD diagnosis. Therefore, we 

returned to the postmortem human datasets described in Chapters 2 and 3, which include 

data on the expression of thousands of different transcripts in controls and individuals 

diagnosed with psychiatric illnesses.  

To probe different molecular networks that may be co-regulated with FGF2 and 

FGF9, we examined patterns of expression between different FGF genes (data will be 

presented in later sections). We first sought to determine if we could observe 

relationships in expression between FGF2, FGF9, and the FGF receptors across all 
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samples, hypothesizing that if we did observe relationships, they might emerge in 

opposite directions. Indeed, we demonstrated that FGF2 showed positive relationships 

with the FGF receptors, while FGF9 showed negative relationships with FGF2 and with 

the FGF receptors. This opposite pattern in directionality in the relationship between 

expression of genes related to FGF2 and FGF9 was striking, but it did not help us to 

determine if and how these relationships might be altered with MDD. To that end, we 

examined how the relationships between FGF2, FGF9, and the FGF receptors altered 

with MDD diagnosis. We found that the relationship between a number of FGF gene 

pairs in the anterior cingulate cortex and the hippocampus was significantly altered with 

MDD diagnosis, so we decided to examine if and how these altered relationships 

impacted other genes and biological functions that they underlie. 

To determine how these altered relationships co-varied with the expression of 

other genes, we chose two candidate gene pairs, FGF2-FGF9 in the anterior cingulate 

cortex and FGF9-FGFR1 in the hippocampus, whose relationships were altered as a 

function of MDD diagnosis, as a proof of concept. To our surprise, we observed a very 

interesting pattern: when there was a diagnosis-specific relationship between the gene 

pair, the expression of hundreds of other genes also correlated with both FGFs in the pair 

(the “overlapping” pool). In contrast, when there was no diagnosis-specific relationship 

between the gene pair, very few genes correlated with both FGFs in the pair. To 

understand if this pattern was biologically meaningful, we performed several ontology 

analyses to parse gene function. Specifically, we took two approaches: we used Ingenuity 

Pathway Analysis® to determine the broad categories to which the genes in the 

“overlapping” pools aligned, and we subsequently used a more fine-grained approach, 
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Gene Set Enrichment Analysis, to identify individual pathways or gene sets that were 

enriched in samples displaying a diagnosis-specific relationship with both FGF genes. 

Because our analyses were intended to generate hypotheses that we could test in 

other samples and/or model systems, we partially validated the altered relationships 

discovered in human analyses between several FGF genes in the hippocampi of 

selectively bred high responder (bHR) and low responder (bLR) animals previously 

exposed to a chronic variable stress paradigm. However, we believe that this preliminary 

effort at cross-validation should be expanded to other datasets. 

 Materials and Methods 

Human Studies 

Subject Characteristics and Tissue Extraction. The human tissue samples used for 

all microarray experiments as well as the qRT-PCR validation were obtained from the 

Brain Donor Program at the University of California, Irvine with the consent of the next-

of-kin of the deceased (Appendix 2.1, Appendix 2.2, & Appendix 2.3).  

Dissection of Human Dorsolateral Prefrontal Cortex (DLPFC), Anterior 

Cingulate Cortex (ACC), and Hippocampus (HPC). For the first stage of dissection, a 1-

cm coronal slab was placed on a block of dry ice. At the level of the genu of the corpus 

callosum, the middle frontal gyrus was identified by an expert in human neuroanatomy, 

and a fine jeweler’s blade in a coping saw handle was used to excise the gyrus for 

dorsolateral prefrontal cortex samples. In some cases, more than one slab was used to 

cover the full extent of the structure. In the same plane, the cingulate gyrus was identified 

by an expert in human neuroanatomy, and a fine jeweler’s blade in a coping saw handle 

was used to excise the gyrus for anterior cingulate cortex samples. In some cases, more 
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than one slab was used to cover the full extent of the structure. In more caudal planes, the 

hippocampus was visually identified using the dentate gyrus by an expert in human 

neuroanatomy, and a fine jeweler’s blade in a coping saw handle was used to dissect the 

hippocampus and surrounding temporal cortex. Both sides of the slab were carefully 

inspected. In some cases, more than one slab was used to cover the full extent of the 

structure.  For all structures, the block was wrapped in foil, placed on dry ice and then 

stored at -80°C until further processing (Jones et al., 1992). In the hippocampus, a second 

stage of finer dissection was then carried out. The temporal cortex was removed by visual 

inspection using the dentate gyrus and CA3 as landmarks. The dissected tissue was then 

processed for RNA extraction. Total RNA was extracted using procedures described 

previously (Evans et al., 2004; Li et al., 2004). Clinical information was obtained from 

medical examiners, coroners’ medical records and a family member. Patients were 

diagnosed by consensus based on criteria from DSM-IV. For further information 

regarding data collection procedures, please see Li and colleagues (Li et al., 2013). Final 

Control and MDD sample sizes and demographics are in the appendices (DLPFC: 

Appendix 2.1, ACG: Appendix 2.2, HPC: Appendix 2.3).  

Gene Expression Profiling. In general, the labeling and hybridization of sample 

mRNA with oligonucleotide probes followed standard manufacturer protocols. Analyses 

used the full microarray datasets (all probe data from the MDD and Control subjects, as 

well as from small samples of subjects with bipolar disorder and schizophrenia) to 

maximize our ability to identify technical artifacts and confounds, although the reported 

results focus on MDD vs. Control comparisons for a subset of growth factor probes.  
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Affymetrix Microarray. Microarray experiments were performed in eight separate 

experimental cohorts containing both patients and controls. The majority of RNA 

samples were analyzed in duplicate at two different laboratories using Affymetrix 

Genechips (either U133A or U133Plus-v2). After extracting summarized probe signal 

data from scanned microarray image files, all downstream analyses were completed in 

the R statistical programming environment. We extracted the U133A subset of probes 

and applied RMA (Robust Multi-array Analysis) to summarize probe set expression 

levels using custom ENTREZ12.1 Chip Definition Files (CDF) which defined probe sets 

for 11,912 transcripts (as defined by ENTREZ in 03/2010) and 68 control probe sets. As 

is traditional, all probe signal values were log (base 2)-transformed to reduce 

heteroskedasticity and quantile-normalized to remove technical artifacts in the overall 

distribution of signal per sample. To ensure sample quality, we required an average 

sample to sample correlation coefficient (r) of 0.85-0.9, excluding 6 of 235 samples 

(2.6%) in the HPC, 30 of 367 samples (8.1%) in the DLPFC, and 6 of 283 samples 

(2.1%) in the ACC. Batch effects due to cohort, laboratory, and platform were removed 

by median-centering the data. Replicate samples were then averaged and any subjects 

that were missing information were removed from the dataset (n = 16 in DLPFC, n = 13 

in ACC, n=8 in HPC), leaving a final sample size of 156 subjects in the DLPFC, 140 

subjects in the ACC, and 129 subjects in the HPC. For further information regarding the 

Affymetrix data pre-processing procedures, please see Li and colleagues (Li et al., 2013). 

For all of the microarray experiments, as part of quality control, subjects were verified to 

have gene expression typical of their reported sex using data from genes XIST, EIF1AY, 
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RPS4Y1, UTY, USP9Y, NLGN4Y, NCRNA00185, TTTY15, KDM5D, CYorf15B, and 

DDX3Y. 

Microarray Analysis: Determining Diagnosis-Related Gene Expression while 

Correcting for Confounding Variables. Although agonal factor, brain pH, PMI, and 

gender did not differ significantly by diagnosis, we found that it was necessary to control 

for these variables because they strongly correlated with the top principal components of 

variation in the data sets (PC1-4). We also controlled for the average age at the time of 

death, which sometimes varied significantly with diagnosis. The degree of severity and 

duration of physiological stress at the time of death was estimated by calculating an 

Agonal Factor Score (AFS) for each subject (Tomita et al., 2004). Additionally, we 

measured the pH of cerebellar tissue as an indicator of the extent of oxygen deprivation 

experienced around the time of death (Li et al., 2004). We also calculated the interval 

between the estimated time of death and the freezing of the brain tissue (the postmortem 

interval or PMI) using coroner records. We ensured high quality data by choosing 

samples with relatively high pH and low agonal factor (DLPFC: Appendix 2.1, ACG: 

Appendix 2.2, HPC: Appendix 2.3), but still decided that it was prudent to control for 

these variables as well as age and gender by including them as terms in our linear model: 

Equation 1: (probe signal) ≈ β0 + β1(Brain pH)+ β2(Agonal Factor)+ 

β3(PMI)+ β4(Age)+ β5(Gender)+ β6(Diagnosis) 

We further explored the relationships between FGF2, FGF9, and each of the FGF 

receptors. To ensure that the relationships that we observed were not due to the major 

confounds present in the dataset, we reduced their influence using estimates of their 

effects provided by the model in Equation 1: 
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Equation 2: (cleaned probe signal) ≈ (probe signal) - β1(Brain pH-

6.88)+ β2(Agonal Factor)+ β3(PMI-23.5)+ β4(Age-52)+ β5(Gender) 

This means that the data were projected to the median brain pH of 6.88, PMI of 23.5 

hours, agonal factor of 0, age 52 years, and male gender. This allowed us to examine the 

relationship between the FGF-related genes in data resembling that from subjects with 

consistent pre- and postmortem factors. We examined the relationship between pairs of 

FGF genes across all samples using the linear model:  

Equation 3: (cleaned probe signal for FGF2/9/R1/R2/R3) ≈ β0 + β1 

(cleaned probe signal for FGF2/9/R1/R2/R3) 

Example: (cleaned probe signal for FGF2 in the ACG) ≈ β0 +  β1 

(cleaned probe signal for FGF9 in ACG) 

We were also interested in determining whether mood disorder diagnoses altered the 

relationships between FGF family members in different brain regions, and we examined 

this possibility using the linear model: 

 Equation 4: (cleaned probe signal for FGF2/9/R1/R2/R3) ≈ β0 + β1 

(cleaned probe signal for FGF2/9/R1/R2/R3)+ β2(Diagnosis)+ 

β3((Diagnosis)* (cleaned probe signal for FGF2/9/R1/R2/R3)) 

Example: (cleaned probe signal for FGF2 in the ACG) ≈ β0 + β1 

(cleaned probe signal for FGF9 in ACG)+ β2(Diagnosis)+ 

β3((Diagnosis)* (cleaned probe signal for FGF9 in ACG)) 

 Microarray analysis: Determining other diagnosis-specific correlates of FGF 

family members. Because we observed diagnosis-specific relationships between 

individual FGF family members that differed across regions, we chose two pairs of genes 

whose interaction varied with diagnosis in different ways for further examination, as a 
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proof-of-concept. We hypothesized if these diagnosis-specific alterations in the 

relationships between FGF family members were meaningful, we might see concurrent 

changes in the expression of other genes as they related to FGF expression. To this end, 

we examined the relationships between (1) FGF2 and FGF9 in the ACG, whose 

relationship is lost in MDD, and (2) FGF9 and FGFR1 in the HPC, which show no 

relationship in expression in controls but a relationship emerges in MDD. We sought to 

understand the relationships between these FGFs with all the other genes in the dataset to 

determine if there were gene subsets whose region- and diagnosis-specific expression 

varied with these FGFs of interest. Furthermore, we examined if there were diagnosis-

specific patterns in the numbers and sets genes that correlated with both FGFs in each 

pair. Therefore, within a diagnostic category (i.e., Control or MDD), we ran Pearson’s 

correlations between each FGF (i.e., FGF2 or FGF9 in ACG and FGF9 or FGFR1 in the 

HPC) and all the other genes in the dataset for the region of interest. Because we 

examined nearly 12,000 pairs for each FGF, we corrected for multiple comparisons using 

the Benjamini-Hochberg method with a false detection rate of 0.05 (i.e., accepting 5% of 

results as false positives). We examined the proportion of genes that uniquely correlated 

with either FGF in the pair (the “non-overlapping” pool), as well as the proportion of 

genes that correlated with both FGFs (the “overlapping” pool). We assessed the statistical 

significance of these effects using Fisher’s exact test and (the more conservative) 

McNemar’s test. 

 Analysis of microarray data: Analyzing the biological functions of all genes 

correlating with FGFs of interest. We sought to understand if there were biological 

functions lost or gained with observed diagnosis-specific relationships between FGFs 
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(i.e., FGF2 or FGF9 in ACG and FGF9 or FGFR1 in the HPC). We used QIAGEN’s 

Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, 

www.qiagen.com/ingenuity) to assess functional ontology, with a particular interest in 

the biological and physiological functions of the genes whose expression correlated with 

both FGFs (the “overlapping” pools of correlated genes, as opposed to those whose 

expression uniquely correlated with a single FGF; the “non-overlapping” pools of 

correlated genes). To that end, we calculated the mean expression level for each gene in 

the overlapping pool in both Control and MDD samples (after mathematically correcting 

for confounding factors, as described in Equation 2), and we used the results from the 

linear model described in Equation 1 to indicate diagnosis-specific effects. The 

proprietary IPA® software generated lists of top biological and physiological functions 

associated with the overlapping pool of each gene pair of interest.  

To better parse specific networks of genes in the overlapping pools, we used gene 

set enrichment analysis (GSEA; GSEA software and Molecular Signature Database, 

MSigDB: Subramanian et al., 2005; http://www.broad.mit.edu/gsea/). The GSEA 

approach is more fine-grained than some ontology algorithms and examines if gene sets 

(i.e., curated lists of genes corresponding to known pathways or biological functions) are 

selectively enriched in different experimental samples – in this case, diagnosis (groups: 

Control, MDD). This differs from previous analyses because GSEA assesses how gene 

sets are altered with diagnosis (as opposed to individual genes). As before, we selectively 

examined the overlapping pools for each gene pair of interest to determine which gene 

sets were enriched in the Controls in the ACG (whose functions may be lost or altered in 

MDD) and which gene sets were enriched in the MDD subjects in the HPC (whose 
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functions emerge in MDD). We extracted the signal information for each gene target 

(corrected for confounding factors, as described in Equation 2, and annotated using the 

custom approach described above) for each subject in the Control and MDD samples, and 

we set the algorithm to run 1000 permutations. We restricted the analyses to the curated 

lists of reactome pathways (within MSigDB, the C2 REACTOME sets), to reduce the 

number of overall comparisons (from ~10,000 to 674) and focus directly on curated gene 

sets with known, associated biological functions. We focused our analyses on the leading 

edge subset of genes for each set, corresponding to the genes most enriched within each 

set in the diagnosis group of interest, as is common using the approach (Subramanian et 

al., 2005). 

Animal Studies 

Animals. Bred high responder (bHR) and low responder (bLR) rats were bred, 

weaned, and tested for a locomotor response to novelty between postnatal days 50-60, 

and housed in pairs in-house as previously described (Stead et al., 2006; Turner et al., 

2011). All animals were maintained on a 12/12 light/dark schedule, with access to food 

and water ad libitum. All animals were treated in accordance with the National Institutes 

of Health Guidelines on Laboratory Animal Use and Care and in accordance with the 

guidelines set by the university committee on use and care of animals at the University of 

Michigan.  

bHR and bLR chronic variable stress studies. Other members of our laboratory 

performed a chronic variable stress experiment and analyzed tissue for gene expression 

changes. bHR and bLR animals were reared without disruption until postnatal day 80-83. 

Animals were divided into chronic variable stress and no-stress control groups (n = 10 
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per group). Animals undergoing chronic variable stress experienced one of several 

stressors (cage tilt, isolation, novel environment, or restraint) per day for 14 days. 

Affective behavior was evaluated (forced swim test, social interaction test, sucrose 

preference test, and elevated plus maze) over four days following cessation of the chronic 

variable stress paradigm. Thirty minutes after elevated plus maze testing on the last day, 

animals were euthanized. Brains were rapidly extracted and hemisected. One hemisphere 

was snap-frozen in 2-methylbutane at -30°C and stored at -80°C until processing. The 

other hemisphere was dissected: dorsal hippocampal tissues were collected, stored in 1.5 

mL Eppendorf tubes, frozen on dry ice, and stored at -80°C until processing. 

Tissue Analysis. 

 Analysis of hippocampal gene expression using qRT-PCR. After dissection, 

samples were stored at -80°C prior to RNA extraction. Dorsal hippocampal RNA was 

extracted and purified using the Direct-Zol RNA Mini-Prep Kit according to 

manufacturer’s instructions (Zymo Research, Irvine, CA), and concentrations were 

determined with a NanoDrop Spectophotometer (Thermo Scientific). Total RNA (200 

ng) was reverse transcribed using the iScript cDNA synthesis kit (Bio-Rad Laboratories, 

Hercules, CA). cDNA (1 µl, diluted 1:10) was used as the template for real-time PCR 

assays with a MyiQ real-time PCR system (Bio-Rad Laboratories). The quantitative PCR 

was conducted in duplicate using iQ SYBR Green Supermix, according to the 

manufacturer's instructions (Bio-Rad Laboratories). Sequences for the 3’ primer (start) 

were as follows: GAPDH: GTTTGTGATGGGTGTGAACC; FGF2: 

TATGAAGGAAGATGGACGGC; FGF9: TTTCACTTAGAAATCTTCCCCAAC; FGFR1: 

CAGAGACCAACTTTCAAGCAGTT; and FGFR3: GAACAGCGCCTATAGCATCC. 
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Sequences for the 5’ primer (start) were as follows: GAPDH: 

TCTTCTGAGTGGCAGTGATG; FGF2: TCGTTTCAGTGCCACATACC; FGF9: 

TCCTGTGTTAGTTTTTCTGATCCA; FGFR1: ATGGCTCATGAGAGAAGACAGAG; 

and FGFR3: TCCGTTCCACAAACTCACAC. (Note that these primers for FGFR1 and 

FGFR3 do not reference regions of the gene which determine splice variants, so these 

data do not address if there are differences in FGFR isoforms.) Relative expression of the 

gene of interest was normalized to GAPDH expression in each sample. The expression 

level of the gene of interest was evaluated using the 2−(ΔΔCt) method (Livak & Schmittgen, 

2001). The PCR product quality was monitored using post-PCR melt-curve analysis at 

the end of the amplification cycles. Because there was insufficient statistical power to 

include both bHRs and bLRs in a single linear model, we used the following model to 

examine the relationships between expression of FGF family members, stress, and their 

interaction within-phenotype. (Note that this approach is almost identical to that used in 

the human analyses above, but the stress manipulation replaces the diagnosis terms in the 

model.)  

Equation 5: [(Expression of FGF2/9/R1/ R3) ≈ β1 (Expression of 

FGF2/9/R1 /R3)+ β2(Stress) + β3((Stress)* (Expression of  FGF2/9/R1/ 

R3))] in either bHRs or bLRs 

Example: [(Expression of FGF2) ≈ β1 (expression of FGF9)+ 

β2(Stress)+ β3((Stress)* (Expression of FGF9))] in bLRs 

Results 

FGF2 expression positively correlates with expression of the FGF receptors in all 

samples across regions in the postmortem human brain. We explored possible 
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relationships between the expression of FGF2 and the FGF receptors (FGFRs) across all 

three brain regions (Figure 4.1). We found that FGF2 expression strongly correlated 

positively with FGFR2 and FGFR3 across diagnoses, but the relationship between FGF2 

and FGFR1 was less strong or nonexistent across brain regions: FGFR1 (DLPFC: R2 = 

0.007, p = 0.313; ACC: R2 = 0.064, p = 0.0026; HPC: R2 = 0.036, p = 0.030), FGFR2 

(DLPFC: R2 = 0.257, p = 1 x 10-10; ACC: R2 = 0.177, p = 1 x 10-10; HPC: R2 = 0.163, p = 

2 x 10-6), and FGFR3 (DLPFC: R2 = 0.273, p = 1 x 10-10; ACC: R2 = 0.264, p = 1 x 10-10; 

HPC: R2 = 0.14, p = 1.1 x 10-5). This indicates that FGF2 may be acting in a molecule- 

and region-specific manner, though notably, the relationships between FGF2 and the FGF 

receptors are all positive in direction. These data support the idea that the frontal cortices 

and hippocampus may be sensitive to FGF2 dysregulation, even if it is subtle. 

Opposite to FGF2, FGF9 expression negatively correlates with expression of 

FGF2 and the FGF receptors in all samples across regions in the postmortem human 

brain. We further explored whether the relationship between the expression of FGF9 and 

other candidate members of the FGF family across brain regions (Figure 4.2). We found 

that the expression of FGF9 was significantly negatively related to FGF2 (DLPFC: R2 = 

0.056, p =  0.0024; ACC: R2 = 0.126, p = 1.7 x 10-5; HPC: R2 = 0.15, p = 5 x 10-6) and to 

three FGF receptors: FGFR1 (DLPFC: R2 = 0.036, p = 0.017; ACC: R2 = 0.082, p = 

0.0009; HPC: R2 = 0.082, p = 0.0009), FGFR2 (DLPFC: R2 = 0.201, p = 1 x 10-10; ACC: 

R2 = 0.201, p = 1 x 10-10; HPC: R2 = 0.172, p = 5 x 10-6), and FGFR3 (DLPFC: R2 = 

0.141, p = 5 x 10-6; ACC: R2 = 0.193, p = 1 x 10-10; HPC: R2 = 0.193, p = 1 x 10-10) 

across all three brain regions. This suggests a general dysregulation in the FGF system in 

MDD, with FGF9 appearing to be one of the key players. The strength of the relationship 
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varied by region, with the hippocampus and anterior cingulate showing the strongest 

relationships, and by FGF family member, with FGF2, FGFR2, and FGFR3 consistently 

showing strong relationships with FGF9. This suggests that there may be region- and 

molecule-specific effects that are worthy of further investigation. Similar to FGF2, these 

data support the idea that the frontal cortices and hippocampus are sensitive to FGF9 

dysregulation, and that other members of the FGF family may be particularly sensitive to 

subtle dysregulation. Notably, the negative relationships between FGF9 and the FGF 

receptors stand in contrast to the positive relationships we observed with FGF2. 
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Figure 4.1. FGF2 gene expression correlates with gene expression of FGFR1, FGFR2, 
and FGFR3 across brain regions in the full sample, with one exception: the relationship 
between FGF2 and FGFR1 is not significant in the dorsolateral prefrontal cortex. MDD: 
major depressive disorder; BP: bipolar disorder; Schiz: Schizophrenia. Sample sizes can 
be found in Appendix 2.1, Appendix 2.2, and Appendix 2.3. 
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Figure 4.2. FGF9 gene expression negatively correlates with FGF2, FGFR1, FGFR2, 
and FGFR3 gene expression in the dorsolateral prefrontal cortex, anterior cingulate 
cortex, and hippocampus across the full sample. MDD: major depressive disorder; BP: 
bipolar disorder; Schiz: Schizophrenia.Sample sizes can be found in Appendix 2.1, 
Appendix 2.2, and Appendix 2.3. 
 

 FGF2 and FGF9 show diagnosis-specific correlations with each other and with 

specific FGF receptors, and these correlations vary by region. Given that we previously 

observed robust correlations between FGF2 (Figure 4.1), FGF9 (Figure 4.2), and the FGF 

receptors across diagnosis categories in DLPFC, ACC, and HPC, we sought to determine 

if some of these relationships were diagnosis-specific. (That is, we re-analyzed the data to 

determine if there were particular relationships between pairs of FGF genes that emerged, 

were lost, or changed direction in MDD tissue relative to nonpsychiatric control tissue). 

We examined diagnosis-specific relationships between pairs of FGF genes within each 

region (e.g., FGF2-FGF9 in the ACC) using a linear model. We found that several FGF 

gene pairs showed diagnosis-specific relationships (results are summarized in Table 4.1), 

and these relationships differed by region. The DLPFC showed no changes in any gene-

gene relationships as a result of diagnosis. In the ACC, relationships between FGF family 

member genes were generally lost in MDD and BP tissue relative to controls. In the HPC, 

relationships emerged in MDD and BP tissue relative to controls. We selected two such 

relationships, FGF2-FGF9 in the ACC (relationship lost in MDD, Figure 4.3) and FGF9-

FGFR1 in the HPC (relationship emerges in MDD, Figure 4.4) for further analysis as a 

proof-of-concept, to determine if these altered relationships were biologically 

meaningful.  
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Table 4.1. Relationships between FGF ligands and receptors are lost in the ACC and 
gained in the HPC in mood disorders. + indicates 0.1<p<0.05; * indicates p<0.05; ** 
indicates p<0.01. Gene pairs selected for further analysis are in bold. 

Region Gene Pair 
Diagnosis-Specific 

Interaction (p-value) Significance 
Nature of Relationship in MDD 

relative to Control tissue 

DLPFC 

FGF2-FGF9 0.6523  no change 

FGF2-FGFR1 0.723  no change 

FGF2-FGFR2 0.505  no change 

FGF2-FGFR3 0.198  no change 

FGF9-FGFR1 0.2141  no change 

FGF9-FGFR2 0.59726  no change 

FGF9-FGFR3 0.7359  no change 

ACC 

FGF2-FGF9 0.0397 * lost 
FGF2-FGFR1 0.3335  no change 

FGF2-FGFR2 0.0738 + lost 

FGF2-FGFR3 0.172  no change 

FGF9-FGFR1 0.0945 + lost 

FGF9-FGFR2 0.0447 * lost 

FGF9-FGFR3† 0.3719  no change 

HPC 

FGF2-FGF9 0.23998  no change 

FGF2-FGFR1 0.458  no change 

FGF2-FGFR2 0.27552  no change 

FGF2-FGFR3†† 0.1558  no change 
FGF9-FGFR1†† 0.00123 ** emerges 
FGF9-FGFR2 0.43099  no change 

FGF9-FGFR3 0.849458  no change 
† A significant relationship is lost in bipolar disorder (ACC, FGF9-FGFR3: p = 0.0224). 
††A significant relationship emerges in bipolar disorder (HPC, FGF2-FGFR3: p = 0.0379; HPC, FGF9-
FGFR1: p = 0.0384). 
 
 

Diagnosis-specific relationships between FGF family members are associated 

with larger pools of genes correlating with both members of the pair. Because we are 

interested in understanding the molecular networks impacted by FGF dysregulation, we 

examined the within-region relationships between specific FGFs (i.e., FGF2-FGF9 in the 

ACC and FGF9-FGFR1 in the HPC) and all other genes in the Affymetrix dataset. For 

the candidate gene pairs whose relationship changed with diagnosis (i.e., FGF2-FGF9 in 

the ACC and FGF9-FGFR1 in the HPC), we examined the proportion of genes 
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correlating with both members of the target pair (the “overlapping pool”) as well as the 

proportion of genes which uniquely correlated with one member of the target pair (the 

“non-overlapping pool”) for both control and MDD tissue. In both regions, we found that 

the overlapping pools were large when there was a correlation between the gene pair, but 

the overlapping pools were small when there was no correlation between the gene pair, 

suggesting that the pattern held for both of our proof-of-concept cases. Case 1: In the 

ACC, there is a significant correlation between FGF2 and FGF9 in control tissue, and 624 

genes correlate with both FGF2 and FGF9. In MDD tissue, the correlation between FGF2 

and FGF9 is lost, and only 20 genes correlate with both FGF2 and FGF9. The 

relationship between diagnosis and overlapping pool size (i.e., change in the number of 

transcripts correlating with both FGF2 and FGF9 in Control vs. MDD tissue) is highly 

significant (Figure 4.3; Fisher’s exact test: p < 0.0001; [more conservative] McNemar’s 

χ2 = 2991.5, p < 0.0001). Case 2: In contrast, there is no relationship between FGF9 and 

FGFR1 in control tissue in the HPC, and only 73 genes correlate with both FGF9 and 

FGFR1. In MDD, a relationship between FGF9 and FGFR1 emerges, and 678 genes 

correlate with both FGF9 and FGFR1. This relationship between diagnosis and 

overlapping pool size with this pair is also highly significant (Figure 4.4; Fisher’s exact 

test: p < 0.0001; [more conservative] McNemar’s χ2 = 1229.3, p < 0.0001). 



137 
 

 

Figure 4.3. Anterior cingulate cortex. In control tissue, there is a correlation between 
gene expression of FGF2 and FGF9, and many genes correlate with both FGF2 and 
FGF9. In MDD tissue, this relationship is lost, and very few genes correlate with both 
FGF2 and FGF9. Note: genes were required to survive correction for multiple 
comparisons in order to be included in this analysis. (a) Summary of all diagnostic 
categories with associated regression lines (bright red indicates cumulative regression 
line). (b) Plot from a) with only control data highlighted; grey line indicates cumulative 
regression line (red in a). (c) Plot from a) with only MDD data highlighted; grey line 
indicates cumulative regression line (red in a). (d) Total number of genes that correlate 
(and survive multiple comparisons correction) with either FGF2 or FGF9 in control or 
MDD tissue. (e) Overlapping pool size in control tissue. (f) Overlapping pool size in 
MDD tissue. Sample sizes can be found in Appendix 2.1, Appendix 2.2, and Appendix 2.3. 
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Figure 4.4. Hippocampus. In control tissue, there is no correlation between expression of 
FGF9 and FGFR1, and very few genes correlate with both FGF9 and FGFR1. In MDD 
tissue, a relationship between FGF9 and FGFR1 emerges, and many genes correlate 
with both FGF9 and FGFR1. Note: genes were required to survive correction for 
multiple comparisons in order to be included in this analysis. (a) Summary of all 
diagnostic categories with associated regression lines (bright red indicates cumulative 
regression line). (b) Plot from a) with only control data highlighted; grey line indicates 
cumulative regression line (red in a). (c) Plot from a) with only MDD data highlighted; 
grey line indicates cumulative regression line (red in a). (d) Total number of genes that 
correlate (and survive multiple comparisons correction) with either FGF9 or FGFR1 in 
control or MDD tissue. (e) Overlapping pool size in control tissue. (f) Overlapping pool 
size in MDD tissue. Sample sizes can be found in Appendix 2.1, Appendix 2.2, and 
Appendix 2.3. 
 

Gene ontology analysis suggests that genes related to circuit formation and 

maintenance are particularly associated with FGF dysregulation. In order to better 

understand the biological significance of the genes in the overlapping pools, we 
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examined genetic ontology of the overlapping pools for both regions and gene-pairs of 

interest using Ingenuity® Pathway Analysis (QIAGEN) to determine the top biological 

and physiological functions lost and gained with FGF dysregulation in MDD. In the 

ACC, the 624 genes that correlate with both FGF2 and FGF9 in control tissue (and are 

lost in MDD tissue) primarily corresponded to biological functions that were involved in 

cellular microcircuit formation and maintenance, including Cell Morphology and Cell 

Death and Survival, suggesting that these are among the functions likely altered in the 

ACC in MDD (Table 4.2). Similarly, in the HPC, few genes correlate with both FGF9 

and FGFR1 in control tissue, but the 678 genes that emerge in the overlapping pool for 

MDD tissue also have biological functions related to circuit formation and maintenance, 

including Cell Morphology, Cell-to-Cell Signaling and Interaction, and Cellular Function 

and Maintenance (Table 4.3). In both examples, the top physiological function relates to 

Nervous System Development and Function (Table 4.2 & Table 4.3). 

Table 4.2. Top associated functions with the 624 genes that correlate with both FGF2 
and FGF9 (the overlapping pool) in ACC control tissue. 

Biological Functions 
Function p-value range # molecules 
Cell Morphology 2.64 x 10-2- 6.08 x 10-6 78 

Molecular Transport 2.41 x 10-2 - 2.79 x 10-5 130 

Carbohydrate metabolism 2.86 x 10-2 - 1.23 x 10-4 63 

Post-Translational Modification 2.53 x 10-2 - 1.48 x 10-4 33 

Cell Death and Survival 2.72 x 10-2 - 2.06 x 10-4 226 

   
Physiological System & Development Functions 

Function p-value range # molecules 

Nervous System Development and Function 2.72 x 10-2 - 7.39 x 10-5 133 

Tissue Morphology 2.96 x 10-2 - 7.39 x 10-5 80 

Behavior 7.00 x 10-3 - 1.143 x 10-3 9 

Embryonic Development 2.92 x 10-2 - 1.95 x 10-3 91 

Organ Development 2.41 x 10-2 - 1.95 x 10-3 31 
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Table 4.3. Top associated functions with the 678 genes that correlate with both FGF9 
and FGFR1 (the overlapping pool) in HPC MDD tissue. 

Biological Functions 
Function p-value range # genes 
Cellular Assembly and Organization 4.90 x 10-2 - 1.56 x 10-5 194 

Cellular Function and Maintenance 4.99 x 10-2 - 1.56 x 10-5 185 

Cell-to-Cell Signaling and Interaction 4.99 x 10-2 - 1.90 x 10-5 101 

Cell Morphology 4.99 x 10-2 - 1.97 x 10-5 138 

Cellular Development 4.99 x 10-2 - 8.35 x 10-5 120 

   
Physiological System & Development Functions 

Function p-value range # genes 
Nervous System Development and Function 4.99 x 10-2 - 1.90 x 10-5 148 

Tissue Development 4.86 x 10-2 - 8.35 x 10-5 142 

Embryonic Development 4.29 x 10-2 - 5.21 x 10-4 77 

Organismal Development 4.99 x 10-2 - 5.81 x 10-4 68 

Cardiovascular System Development and Function 4.99 x 10-2 - 1.30 x10-3 60 

 

Gene Set Enrichment Analysis identifies NCAM1 Interactions among gene sets 

“lost” in the ACC and FGFR Activation and Transcription/mRNA Processing among 

gene sets “emerging” in the HPC in MDD. To better understand the broad results from 

IPA® with more detail, we used a GSEA algorithm (Subramanian et al., 2005) to examine 

the diagnosis-specific biological functions within each pool of overlapping genes. For 

both gene pairs whose relationship varies with diagnosis, several gene sets were 

nominally significant (Table 4.4 & Table 4.5), though none survived correction for 

multiple comparisons using a false detection rate of 0.25. In the ACC, none of the gene 

sets passed a 0.01 significance threshold, though 12 passed a 0.05 threshold; several of 

these are related to FGF signaling (e.g., NCAM1 Interaction) or have been implicated in 

psychiatric dysregulation (e.g., GABA-B Receptor Activation). Other gene sets enriched 

in this pool relate to fundamental biology, including Pyrimidine Metabolism and 

Catabolism and Chondroitin Sulfate Synthesis and Metabolism (Table 4.4). 
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Table 4.4. Significant gene sets enriched in the pool of genes correlating with both FGF2 
and FGF9 (the overlapping pool) in the ACC in Control samples. Lost functions can be 
grouped into categories, including GABA-B Receptor Activation, NCAM1 Interactions, 
Inhibition of Voltage-Gated Calcium Channels, Lipid and Pyrimidine 
Metabolism/Catabolism, and Chondroitin Sulfate Synthesis and Metabolism.  

MSigDB Reactome Gene Set 
|Normalized 

Enrichment Score| Nominal p-value 

GAB1 Signalosome 1.511 0.011 

GABA-B Receptor Activation 1.559 0.017 

TRAF6-Mediated Induction of TAK1 Complex 1.381 0.026 

Metabolism of Lipids and Lipoproteins 1.567 0.027 

Pyrimidine Catabolism 1.305 0.027 
Inhibition of Voltage-Gated CA2 Channels via GBeta 
Gamma Subunits 

1.440 0.027 

Pyrimidine Metabolism 1.483 0.037 

NCAM1 Interactions 1.432 0.043 

Inactivation of IRF3 IRF7 by TBK1 IKK Epsilon 1.293 0.045 

IKK Complex Recruitment Mediated by RIP1 1.293 0.045 

Chondroitin Sulfate Biosynthesis 1.391 0.049 

Chondroitin Sulfate Dermatan Sulfate Metabolism 1.391 0.049 
 

In the HPC, 5 gene sets passed a 0.01 significance threshold, and an additional 11 gene 

sets passed a 0.05 significance threshold. Among the gene sets enriched in MDD, we can 

extract several notable commonalities, including FGF receptor ligand binding and 

activation (including mutants), DNA replication, and transcription/mRNA processing, 

providing face validity to the approach. Additionally, fundamental biological functions 

including vitamin metabolism was significantly enriched in MDD among the genes 

whose expression correlates with both FGF9 and FGFR1 in the HPC (Table 4.5). 

Notably, Cell to Cell Communication was the top gene set enriched in MDD samples in 

this dataset that just missed the 0.05 cutoff (p = 0.0517). 
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Table 4.5. Significant gene sets enriched in the pool of genes correlating with both FGF9 
and FGFR1 (the overlapping pool) in the HPC in MDD samples. Emergent functions can 
be grouped into categories including FGF receptor activation (including activated 
mutants), transcription and mRNA processing, and vitamin metabolism.  

MSigDB Reactome Gene Set 
|Normalized 

Enrichment Score| Nominal p-value 

Activation of Rac 1.394 <0.001 

Metabolism of Vitamins and Cofactors 1.468 0.002 

mRNA Splicing - Minor Pathway 1.450 0.004 

Striated Muscle Contraction 1.453 0.008 

Muscle Contraction 1.453 0.008 

Vitamin B5 Pantothenate Metabolism 1.346 0.024 
SLBP-dependent Processing of Replication-Dependent 
Histone Pre-mRNAs 

1.325 0.032 

Processing of Capped Intronless Pre-mRNA 1.325 0.032 

Activation of the Pre-Replicative Complex 1.409 0.041 

Activation of ATR in Response to Replication Stress 1.409 0.041 

G2 M Checkpoints 1.409 0.041 

Activated Point Mutants of FGFR2 1.310 0.043 

Signaling by FGFR3 Mutants 1.310 0.043 

FGFR2c Ligand Binding and Activation 1.310 0.043 

FGFR4 Ligand Binding and Activation 1.310 0.043 

DSCAM Interactions 1.393 0.044 
 

Hippocampal gene expression of FGF2 correlates with FGF9 and FGF receptors in 

bLRs but not bHRs, and in some cases, stress alters these relationships. We sought 

additional evidence to reinforce the microarray results demonstrating that the relationship 

between FGF family members was altered with diagnosis. To that end, we examined 

expression of FGF2, FGF9, and two FGF receptors, FGFR1 and FGFR3, in the 

hippocampus of bHR and bLR rats after undergoing chronic variable stress during 

adulthood. We observed that FGF gene expression was unrelated in bHR animals (Gene-

Gene Relationship (p-value) column of Table 4.6). In contrast, we observed trends or 

significant relationships between several FGFs pairs in bLRs, including FGF2-FGF9, 

FGF2-FGFR1, FGF2-FGFR3, and FGF9-FGFR3 (Gene-Gene Relationship (p-value) 
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column of Table 4.6). In two cases, these expression relationships in bLRs were altered 

by stress: a relationship between FGF2 and FGFR3 changed direction after chronic 

variable stress (Figure 4.5; p = 0.043), while a relationship between FGF9 and FGFR3 

was lost after stress (Table 4.6; p = 0.028). (Note that the primers for FGFR1 and FGFR3 

did not encompass the coding region of the gene that determines ligand binding 

specificity through splice variants, so these data do not address if there are differences in 

expression for the IIIb and IIIc isoforms.) These results partially reinforce the findings in 

the postmortem human microarray studies. 

Table 4.6. In bLRs but not bHRs, hippocampal expression of different FGF family 
members correlates and, in some cases, is modulated by stress. qPCR data courtesy of 
Cigdem Aydin and Pamela Maras; analyses by Elyse L. Aurbach. Data in bold is plotted 
in Figure 4.5. + indicates 0.1>p>0.05; * indicates p < 0.05; ** indicates p < 0.01. 

Phenotype Gene Pair 

Gene-Gene 
Relationship 

(p-value) 

Stress 
Interaction  
(p-value) 

Nature of Relationship in 
Stress Relative to Control  

bHR 

FGF2-FGF9 0.544 0.578 no change 

FGF2-FGFR1 0.181 0.496 no change 

FGF2-FGFR3 0.343 0.483 no change 

FGF9-FGFR1 0.848 0.517 no change 

FGF9-FGFR3 0.740 0.390 no change 

bLR 

FGF2-FGF9 0.009** 0.577 no change 

FGF2-FGFR1 0.013* 0.335 no change 

FGF2-FGFR3 0.032* 0.043* changes direction 
FGF9-FGFR1 0.316 0.618 no change 

FGF9-FGFR3 0.092+ 0.028* lost 
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Figure 4.5. Stress changes the direction of the relationship between FGF2 and FGFR3 in 
(b) bLR animals (from a weak negative relationship to a strong positive one), while there 
is no relationship between expression of FGF2 and FGFR3 in (a) bHR animals. n = 8-10 
animals/group. 
 

Discussion 

 In this chapter, we sought to examine if and how FGF2 and FGF9 were 

coordinately dysregulated both with each other and with FGF receptors in MDD. In 

postmortem human samples, expression of FGF2 positively correlated with expression of 

all three FGF receptors across regions (except FGFR1 in the DLPFC), and FGF9 

expression negatively correlated with FGF2 expression as well as with all three FGF 

receptors across regions. This pattern supports the idea that these transcripts are 

oppositely dysregulated and further indicates that absolute levels of FGF2 and FGF9 may 

matter less than their interactions with family members.  

To understand if these relationships were altered in mood disorders, we examined 

if the relationships between FGF2, FGF9, and several FGF receptors changed with 
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diagnosis. We found that there were region- and diagnosis-specific alterations in the 

relationships between various FGF family members: we generally observed a loss of 

relationships between FGF family members in the anterior cingulate cortex in MDD, 

while new relationships emerged in the hippocampus in MDD or bipolar disorder. We 

selected one such pair of FGF genes from each region for further study as a proof-of-

concept, and we examined the genes whose expression correlated with both members of 

that gene pair using functional ontology and gene set enrichment analysis. In the ACC, a 

relationship between FGF2 and FGF9 is present in Control tissue but lost in MDD 

samples. This diagnosis-specific relationship co-occurs with a significant reduction in the 

number of genes correlating with both FGF2 and FGF9, and further analyses indicate that 

the functions of these genes relate to circuit maintenance. In the HPC, there is no 

relationship between FGF9 and FGFR1 in control tissue, but a significant relationship 

emerges in both MDD and bipolar samples. This change co-occurs with a significant 

increase in the number of genes correlating with both FGF9 and FGFR1 in MDD. 

Biological functions related to circuit formation and maintenance are again implicated: 

particular targets for further examination are related to FGFR activation, DNA 

replication, and transcription and mRNA processing.  

To reinforce the diagnosis-specific relationships between FGF family members, 

we examined relationships between hippocampal expression of FGF2, FGF9, FGFR1, 

and FGFR3 in an animal model which combines differential vulnerability to affective 

dysregulation with stress exposure. We observed no relationships between FGF family 

members and no effect of stress in resilient bHR animals. In contrast, vulnerable bLR 

animals showed significant relationships in expression for several pairs of FGFs, and in 
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some cases, these relationships were modulated by stress. These studies partially 

reinforce the findings in the postmortem human data, suggesting that the relationships 

between FGF family members may be particularly sensitive to disruption in an animal 

model of vulnerability to MDD. 

Collectively, these data highlight the idea that individual FGFs may not be 

working independently to mediate affective dysregulation. Indeed, this work indicates 

that the patterns in relationships between FGF ligands and receptors may be particularly 

vulnerable to disruption in MDD, and these disruptions may influence a number of other 

biological functions necessary for appropriate neural circuit maintenance and function. 

Therefore, these data collectively support the hypothesis that FGFs may act as molecular 

“organizers” to mediate affective dysregulation. (Here, we operationally define this 

organizational capacity as mediating broad influence over different functions, including 

gene expression, to impact molecular networks and cellular microcircuits.) 

FGF2 and FGF9 negatively correlate with each other and demonstrate opposite patterns 

of correlations with FGF receptors across samples and brain regions.  

We uncovered robust positive relationships between FGF2 and the three FGF 

receptors expressed in the brain, and the consistency of these relationships suggests that 

even subtle alterations in FGF2 expression may have dramatic effects on other members 

of its molecular family or vice versa. Surprisingly, the strongest relationships with FGF2 

were between FGFR2 and FGFR3, not FGFR1, which in vitro studies suggest is FGF2’s 

putative primary binding partner (Ornitz et al., 1996; Zhang et al., 2006; Goetz & 

Mohammadi, 2013). Ligand-receptor affinity relationships for the FGF family are not 

known in vivo, and similarly, it is not known whether receptor affinity or density is more 
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important for the observed effects on affect previously reported for individual FGFs. 

Because the alterations in FGF2 expression are concurrent with changes in expression of 

other FGF family members, we suggest that the relationship with expression of FGFR2 

and FGFR3 may be particularly important for FGF2 function across brain regions.  

In contrast, we uncovered a significant negative correlation between FGF9 

expression and FGF2 expression in postmortem tissue across all three brain regions, and 

this relationship supports the idea that these transcripts work in functional opposition. 

Furthermore, we observed that FGF9 negatively correlated with all three FGF receptors, 

with the strongest relationships with FGF9 again appearing between FGFR2 and FGFR3, 

which are FGF9’s putative preferential binding partners according to in vitro data (Ornitz 

et al., 1996; Zhang et al., 2006; Goetz & Mohammadi, 2013). These data again stand in 

contrast to the strong positive relationships that FGF2 shows with FGFR2 and FGFR3, 

and it provides additional evidence that these transcripts may work in functional 

opposition in the brain to mediate affect.  

The relationships in expression between FGF2, FGF9, and FGFRs underscore the 

biological significance of FGF family dysregulation in affective disorders: these 

relationships indicate that both FGF2 and FGF9 may be acting in a complex network of 

molecules, and these complex network interactions may have more relevance to MDD 

pathophysiology than examining absolute levels of either transcript in isolation. 

Furthermore, these relationships indicate that even subtle changes in FGF2 or FGF9 

expression levels may unbalance the expression of other FGF family members or vice 

versa. To better understand this possibility as it relates to MDD, we examined how the 
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expression relationships between individual FGF family members changed with MDD 

diagnosis. 

Relationships between some FGF family members change with diagnosis, and these 

changes co-occur with alterations in gene expression underlying circuit function. 

 We sought to understand if there were diagnosis-specific relationships between 

FGF family members, which would indicate that the relationships between FGFs were 

altered as a function of disease. We found that the general trends in relationship differed 

by region: in the ACC, relationships between FGF genes that were typically present in 

control tissue were lost, while in the HPC, new relationships between FGF family 

members emerged in MDD (and in some cases, bipolar disorder) tissue. To determine the 

biological impact of these alterations in FGF gene-gene relationships, we have initially 

focused on two gene pairs of interest as a proof-of-concept, FGF2 and FGF9 in the ACC 

(whose relationship is lost in MDD tissue) and FGF9 and FGFR1 in the HPC (whose 

relationship emerges in MDD tissue), and examined if other genes in the Affymetrix 

dataset correlated within-region with one or both members of the target gene pair. We 

found that between 600-700 genes correlated with both FGF genes when there was a 

diagnosis-specific relationship (i.e., 624 genes correlated with both FGF2 and FGF9 in 

control tissue, Figure 4.3e; 678 genes correlated with both FGF9 and FGFR1 in MDD 

tissue, Figure 4.4f), but very few genes correlated with both FGF genes when there was 

no relationship (e.g, only 20 genes correlated with both FGF2 and FGF9 in MDD tissue, 

Figure 4.3f; only 73 genes correlated with both FGF9 and FGFR1 in control tissue, 

Figure 4.4e).  
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Although the size of the overlapping pool (the number of genes whose expression 

correlates with both FGFs in the pair) and the relationship with diagnosis was highly 

significant, we noticed that the pools of genes uniquely correlating with FGF9 in the 

ACC and FGFR1 in the HPC were quite small (110 genes and 329 genes, respectively). 

We reasoned that a reduction in variability for each sample could influence the size of the 

correlating pool, so we calculated the range and standard deviation for each FGF gene (or 

GAPDH as a comparison, “control” gene, which did not vary with MDD diagnosis, p = 

0.504) within diagnosis groups. Additionally, we examined if the variance in FGF (or 

GAPDH) gene expression was statistically different between Control and MDD tissue 

(Appendix 4.1). We found that hippocampal FGFR1 displayed significantly different 

variances between Control and MDD samples, with the distribution of data clustered 

more tightly in the middle of the distribution in the MDD group. Similarly, variance of 

FGF9 expression between Control and MDD tissue in the anterior cingulate was trending 

towards significance, with a less expansive range of data in the MDD group relative to 

the Control samples. In contrast, FGF2 in the ACC, FGF9 in the HPC, and GAPDH in 

both regions showed equivalent variability for both Control and MDD samples 

(Appendix 4.1). It may be that this alteration in variability represents a meaningful 

biological change in the interplay of genes associated with FGF9 expression in the ACC 

and FGFR1 expression in the HPC. Alternatively, this result might reflect a mathematical 

artifact that could be driving the diagnosis-specific effects in the linear model, although 

further analysis of the variability of other genes in this dataset argues against this 

possibility.  Furthermore, it should be noted that these microarray data have been 

normalized during preprocessing and further altered by removing effects of confounding 
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factors including age, gender, tissue pH, agonal factor, and postmortem interval before 

tissue harvest. Given that all these mathematical transformations affect data variability, 

future analyses should assess the effects of these manipulations on the variability of these 

genes of interest by examining the gene-gene relationships in data at different stages of 

processing. 

 Because we concluded that changes in variability did not fully account for the 

changes in pool size, we sought to understand the biological significance of the large 

pools of overlapping genes in both regions by examining gene ontology as an initial pass 

and gene set enrichment analysis for finer-grained analysis. While these analyses are 

interesting and quite promising, we believe that the best approach with these analyses is 

to use them to generate hypotheses for further testing, especially since none of the 

ontology results survive correction for multiple comparisons. Moreover, both approaches 

will benefit strongly from cross-validation using similar datasets across platforms 

(including microarray, RNA-seq, etc.), quantitative PCR for specific gene targets, and 

additional experiments (including similar analyses using FGFs as “seeds” to examine 

patterns of gene expression) in animal models.  

In the anterior cingulate cortex, there was a diagnosis-specific relationship 

between FGF2 and FGF9, and 624 genes correlated with both FGF2 and FGF9 in control 

tissue. Among these genes, Ingenuity Pathway Analysis® (IPA) of the top biological and 

physiological functions suggested that cellular functions important to neural circuit 

maintenance, including Cell Morphology and Cell Death and Survival were impacted 

(Table 4.2). To better parse the biological significance of these effects and generate 

hypotheses for future study, we used gene set enrichment analysis to identify the top 
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groups of genes enriched in these samples. Among the significant gene sets in the large 

overlapping pool in control tissue were those genes whose functions were associated with 

NCAM1 Interactions, which provides face validity to the analysis because NCAMs are 

known to interact with FGF receptors (Jacobsen, Kiselyov, Bock, & Berezin, 2008; 

Kiselyov, Soroka, Berezin, & Bock, 2005; Sanchez-Heras, Howell, Williams, & Doherty, 

2006). Furthermore, genes enriched in NCAM1 set in control samples include GFRA2, or 

the glia cell line-derived growth factor family receptor alpha 2, and neurocan, or NCAN, 

which has been implicated as a risk factor in bipolar disorder and schizophrenia (Cichon 

et al., 2011; Mühleisen et al., 2012; Oruč, Kapur-Pojskić, Ramić, Pojskić, & Bajrović, 

2012). Other gene sets included those associated with neurotransmission, like GABA-B 

Receptor Activation and/or cellular responses to stimuli, including Inhibition of Voltage-

Gated Calcium Channels (Table 4.4). Collectively, these top gene sets support the idea 

that expression of many genes—including those associated with growth factors—

underlying fundamental aspects of neural circuit maintenance are associated with 

diagnosis-specific expression of FGFs. Furthermore, the loss of the relationship between 

FGFs and these gene sets in MDD may indicate that circuits in the anterior cingulate 

cortex are particularly impacted. Indeed, evidence from MDD patients supports this 

interpretation, as targeting the subgenual cingulate white matter with deep brain 

stimulation has been effective in alleviating symptoms among treatment-resistant patients 

(Holtzheimer & Mayberg, 2011; Ressler & Mayberg, 2007), though the FGF system has 

not been directly implicated in those studies. Furthermore, these analyses highlight 

additional relationships between the FGF family and other molecular systems, reinforcing 

the hypothesis that FGFs act as molecular organizers in the ACC to mediate affect. 
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In the hippocampus, there is no relationship between the expression of FGF9 and 

FGFR1 in control tissue, but a strong negative relationship emerges in MDD samples and 

is accompanied by a large pool of genes whose expression correlates with both FGF9 and 

FGFR1. As in the ACC, our ontology analyses using IPA® implicated the functions of 

these genes as strongly related to circuit development and maintenance – indeed, all five 

of the top biological functions, including Cellular Assembly and Organization, Cellular 

Function and Maintenance, Cell-to-Cell Signaling and Interaction, Cell Morphology, and 

Cellular Development, relate to neural circuits (Table 4.3). This suggests that there may 

be circuit-specific function loss, or alternatively, aberrant neural circuits may arise in the 

hippocampus as a function of MDD. Indeed, the gene set enrichment analyses support 

this interpretation and reinforce the importance of FGF signaling in this region. Genes 

associated with FGF receptor activation sets (including activation related to mutant 

versions of FGFRs) were among the most consistent significantly enriched gene sets in 

the overlapping pool of MDD samples, providing face validity to the results of the 

analysis. Other gene sets significantly enriched in the overlapping pool included those 

related to DNA replication and mRNA transcription and processing. These data are 

consistent with several different literatures implicating the hippocampus as a site of 

circuit alterations in MDD: MDD patients have decreased hippocampal volume (Bremner 

et al., 2000; MacQueen & Frodl, 2011; Sheline, Gado, & Kraemer, 2003), and indeed, the 

FGF family has been itself strongly implicated in hippocampal cell genesis both during 

development and adulthood (Perez et al., 2009; Turner et al., 2011; Zechel, Werner, 

Unsicker, & Von Bohlen Und Halbach, 2010). Of note, Cell to Cell Communication was 

trending towards enrichment in MDD samples, though the statistical significance of this 
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gene set barely missed the threshold (though notably, as a category, it had the largest 

proportion of enriched genes within the gene set compared to all the other gene sets in the 

overlapping pool). Cadherins (CDH7, CDH12, and CDH13), genes known to be critical 

for cell adhesion, circuit formation and synaptogenesis (Seong, Yuan, & Arikkath, 2015), 

were among the core genes enriched in this set, and the emergence of these molecules 

reinforces the interpretation that circuit function may be disrupted in MDD. As in the 

ACC, these data support the hypothesis that disruptions in FGF levels have widespread 

effects throughout the hippocampus, reinforcing the idea that FGFs act as molecular 

“organizers” in the brain to influence neural circuitry and mediate affect. 

While the implications of these results are quite interesting, these data are best 

interpreted as preliminary, and further work is needed to validate these findings. Indeed, 

both approaches should be replicated with additional large-scale expression datasets 

(e.g., microarray, RNA-seq) before pursuing additional research to understand the 

relationships between FGFs and individual genes or gene sets implicated by these 

analyses. In particular, the findings that individual pairs of FGFs alter their relationships 

in expression by diagnosis is provocative, but may be due in part to mathematical artifact, 

and should thus be replicated in other datasets before resources are invested in follow-up 

studies. Similarly, gene ontology analyses have been criticized for their lack of 

replicability, though some have suggested that gene set enrichment analyses provide 

better study-to-study replicability than either single-gene or ontology approaches 

(Subramanian et al., 2005). Indeed, the GSEA approach may also be applied more 

flexibly than a single-gene approach and may be of particular relevance to the current 

studies: one algorithm allows analysts to examine the gene sets correlated with a specific 
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gene of interest (Broad Institute), similar to the gene-by-gene correlative approach used 

here. Indeed, this approach may increase our statistical power, because it will utilize 

comparisons with the entire dataset instead of a limited pool, and this may address the 

concern that none of the GSEA results in our current studies survive correction for 

multiple comparisons. 

Expression of FGFs are related in bLR, but not bHR animals, and in some cases, stress 

modulates these relationships. 

 Because we are interested in replicating the diagnosis-specific results 

demonstrating that region-specific expression relationships between FGFs are gained and 

lost in MDD, we examined the relationships between FGF2, FGF9, FGFR1, and FGFR3 

derived from hippocampal samples of bHR and bLR animals exposed to stress. As 

discussed in other chapters, bHR animals show a high locomotor response to a novel 

environment and low levels of spontaneous anxiety- and depression-like behavior, while 

bLR animals exhibit a low locomotor response to a novel environment and high levels of 

spontaneous anxiety- and depression-like behavior (Stead et al., 2006; Stedenfeld et al., 

2011). Previous data indicates that hippocampal FGF2 is important to this phenotype and 

manipulations involving FGF2 alter affective behavior (Chaudhury et al., 2014; Perez et 

al., 2009; Turner et al., 2011), and stress is known to modulate both FGF2 and FGF9 

expression (Aurbach et al., 2015; Bland et al., 2007; Molteni et al., 2001; Turner, Calvo, 

et al., 2008). We hypothesized that we might see phenotype-specific relationships 

between expression of FGF ligands and receptors in the hippocampus, and that these 

relationships would be altered by stress. In accordance with our hypothesis, we observed 

that bLR animals, but not bHRs, showed significant relationships between expression of 
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different pairs of FGFs, including FGF2-FGF9, FGF2-FGFR1, FGF2-FGFR3, and FGF9-

FGFR3. Furthermore, the within-bLR relationships between both FGF2 and FGF9 with 

FGFR3 were altered by stress exposure. We observed similar diagnosis-specific 

interactions in the hippocampus between FGF2 and FGFR3 in particular, indicating that 

our animal data partially replicated the human findings. Similarly, a previous student in 

our laboratory examined the effects of chronic FGF9 administration on FGFR1 

expression in the hippocampus; she found that chronic FGF9 decreased FGFR1 

expression in the dentate gyrus (Appendix 4.2), further reinforcing our human results. 

While there are many limitations to animal models of psychiatric disorders (Nestler & 

Hyman, 2010), we are encouraged by these results and view the general pattern as 

reinforcing of our postmortem human data. We plan to pursue further avenues for 

replication in future analyses. 

Summary 

In this chapter, we examined the hypothesis that FGF2 and FGF9 act in concert to 

modulate molecular networks in different brain regions. We chose to return to 

postmortem human datasets to examine if there were relationships in expression between 

FGF2, FGF9, and FGF receptors, and further determine if these relationships altered with 

MDD diagnosis. We showed that FGF2 positively correlated with FGF receptors, while 

FGF9 negatively correlated with FGF2 and FGF receptors across regions, supporting the 

idea that FGF2 and FGF9 may play coordinate and opposite roles in MDD. We further 

determined that some relationships between FGF2, FGF9, and FGF receptor gene 

expression changed as a function of diagnosis, and these alterations were region-specific. 

Specifically, we generally observed that relationships in expression between FGF family 
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members were lost in the ACC in MDD, but in contrast, new relationships between FGFs 

emerged in the HPC in MDD or bipolar disorder. We further found that region- and 

diagnosis-specific effects co-occurred with alterations in other genes correlating with 

FGF expression. Upon further analysis of these correlated genes, we consistently found 

that molecules whose expression was associated with diagnosis-specific alterations of 

FGF relationships were related to cell morphology, survival, and communication, 

reinforcing the hypothesis that FGFs act upon cellular microcircuitry as well as a wide 

range of other systems to mediate the circuit dysregulation believed to underlie the 

symptoms of MDD. We partially validated these findings using an animal model of 

genetically-linked affective dysregulation and stress exposure, though we believe that 

further replication in other large datasets should be a major goal for follow-up analyses. 

Future studies should continue to examine convergence points both between 

members of the FGF family as well as relationships between FGFs with other molecular 

systems known to impact the biology associated with MDD. In particular, we believe that 

it will be valuable to determine if there is evidence for region- and diagnosis-specific 

alterations in the relationships in expression between different FGF family members, and 

if so, how this relates to other genes of interest. Moreover, it may be useful to apply 

machine learning algorithms to these data to determine if there are particular patterns of 

expression changes in ensembles of genes that can differentiate tissue derived from 

control and MDD subjects. This could provide a unique biological signature (that may 

differ by brain region) for MDD, and this could inform future studies. 
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Appendix 4.1. Statistics describing the region-, diagnosis-, and gene-specific variation in 
the corrected Affymetrix expression data for FGF2, FGF9, FGFR1, and a control 
comparison, GAPDH (which does not show MDD-related changes in expression). + 
indicates 0.1>p>0.05; * indicates p < 0.05. 

ACC 

  FGF2 FGF9 GAPDH 

 Control MDD Control MDD Control MDD 

Range (Corrected Expression) ‐0.54 ‐ 0.75 ‐0.61 ‐ 0.76 ‐0.58 ‐ 1.18 ‐0.22 ‐ 0.59 ‐0.35 ‐ 0.21 ‐0.24 ‐ 0.10 
Standard Deviation 0.263 0.345 0.351 0.233 0.084 0.082 
 

Levene's Test for Equal 
Variances (p-value) 

0.101 0.097+ 0.536 

       
HPC 

  FGF9 FGFR1 GAPDH 

 Control MDD Control MDD Control MDD 

Range (Corrected Expression) ‐1.04 ‐ 1.02 ‐0.44 ‐ 1.42 ‐0.439 ‐ 0.33 ‐0.44 ‐ 0.30 ‐0.33 ‐ 0.59 ‐0.34 ‐ 0.59 

Standard Deviation 0.419 0.464 0.132 0.174 0.212 0.184 
 

Levene's Test for Equal 
Variances (p-value) 

0.387 0.048* 0.193 
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Appendix 4.2. Chronic FGF9 administration (20 ng, i.c.v., for 14 days) reduces 
expression of FGFR1 in the dentate gyrus, reinforcing the hypothesis that FGFs act as 
molecular organizers to mediate affective dysregulation. * indicates p< 0.05. Data 
courtesy of Edny Gula Inui. 
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Chapter 5.   

Discussion 

The research in this dissertation addresses two broad hypotheses: 1) FGF2 and 

FGF9 play coordinate roles in the brain to mediate affect; 2) dysregulation of FGF2 and 

FGF9, either in isolation or relative to each other, may be important to the neural 

circuitry and pathophysiology underlying major depressive disorder (MDD). We sought 

many different types of evidence to test these hypotheses, including examining 

postmortem human brain tissue, an animal model of differential vulnerability to affective 

dysregulation, and various in-vivo manipulations of FGF2 and FGF9, to determine their 

impact on affect and molecular networks across brain regions.  

Both human and animal data support the hypotheses that FGF2 and FGF9 are 

critical to affect and are disrupted in MDD. 

 We set out to address a number of questions to test the hypotheses that FGF2 and 

FGF9 were implicated in affect and were dysregulated in MDD. In the introduction, we 

proposed that several lines of evidence would support FGF2 and/or FGF9 in these roles, 

including (but not limited to): 1) FGF2 and/or FGF9 would show selective or region-

specific alterations in postmortem brain tissue derived from individuals diagnosed with 

MDD; 2) FGF2 and/or FGF9’s expression would be sensitive to stress in animal models 

(though we did not perform additional experiments to add to this literature in this 

dissertation); 3) altering endogenous FGF2 and/or FGF9 levels would be sufficient to 



164 
 

alter affective-like behavior in animal models; and 4) endogenous FGF2 and/or FGF9 

expression would vary across individuals and be associated with differential vulnerability 

or resilience to developing affective pathology. The research presented in this thesis joins 

the work of other scholars to address these questions. 

 Hippocampal FGF9 mediates affect and is dysregulated in MDD. When we began 

this research, the literature supporting the role of FGF2 in affect regulation was already 

quite large. By comparison, very little was known about FGF9 and its role in the brain to 

mediate affective behavior. In this dissertation, we significantly added to preliminary data 

to implicate FGF9 as an endogenous mediator of negative affect for the first time. We 

demonstrated that FGF9 shows a notably opposite pattern to those effects that we have 

previously observed with FGF2. We presented three key pieces of data supporting FGF9 

in this role: 1) we showed that FGF9 expression was significantly upregulated in the 

postmortem hippocampus of individuals diagnosed with MDD during life; 2) we 

demonstrated that FGF9 levels in the ventral hippocampus were associated with 

differential vulnerability to affective dysregulation, and 3) we found that knocking down 

endogenous expression of FGF9 in hippocampal dentate granule neurons was sufficient 

to reduce anxiety-like behavior. These data joined studies previously performed in our 

laboratory showing that chronic stress exposure increased hippocampal FGF9 expression 

and that chronic administration of FGF9 increased anxiety- and depression-like behavior 

(Aurbach et al., 2015). Collectively, these data supported the hypothesis that FGF9 acts 

in the brain as a key mediator of negative affect, and furthermore, that its expression is 

dysregulated in MDD. Because our data are among the first to implicate FGF9 in 

affective dysregulation, a number of outstanding questions remain, including whether 
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antidepressant and anxiolytic medications alter FGF9 expression, similar to the manner in 

which they increase FGF2 expression (Bachis, Mallei, Cruz, Wellstein, & Mocchetti, 

2008; Gómez-Pinilla, Dao, Choi, & Ryba, 2000; Mallei, Shi, & Mocchetti, 2002). 

 Hippocampal FGF2 expression varies in an animal model of differential 

vulnerability to affective dysregulation and is required for differences in spontaneous 

anxiety- and depression-like behavior. Because the literature supporting FGF2’s role in 

affective dysregulation was much more advanced relative to the literature on FGF9, our 

research focused on several important and outstanding questions. Previous studies 

suggested that FGF2 levels vary across individuals and relate to differential vulnerability 

to affective dysregulation. FGF2 expression levels in the hippocampus correlated with 

affective-like behavior across outbred rats (Eren-Koçak, Turner, Watson, & Akil, 2011), 

and rats selectively bred for differing locomotor responses to a novel environment show 

accompanying differences in hippocampal FGF2 levels, with bred high responders 

(bHRs) showing higher FGF2 expression than bred low responders (bLRS) (Perez, 

Clinton, Turner, Watson, & Akil, 2009; Turner, Clinton, Thompson, Watson, & Akil, 

2011). Here, we demonstrated that the differences in FGF2 expression between the lines 

of selectively-bred rats are consistent and stable across generations. Furthermore, we 

demonstrated that knocking down hippocampal FGF2 was sufficient to eliminate basal 

behavioral differences between the selectively bred lines, suggesting that this differential 

FGF2 expression is necessary for previously observed differences in spontaneous 

anxiety- and depression-like behavior in these rats. Collectively, these studies strongly 

implicate hippocampal FGF2 as a key mediator of temperament and affective behavior. 
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The relationships between FGF2, FGF9, and the FGF receptors may be 

comparably important to the individual roles of FGF2 and FGF9 in MDD. Because we 

consistently observed opposite effects of FGF2 and FGF9 in animal models, we 

hypothesized that their relative expression and activity would be important to their 

individual roles in mediating affect. We found evidence that FGF2 and FGF9 expression 

correlated strongly with each other and with FGF receptors across the DLPFC, ACC, and 

HPC (though microarray data do not address splice variant specificity): interestingly, the 

relationships between the FGF ligands and FGFR1 was consistently the weakest, while 

the relationships between the ligands and FGFR2 and FGFR3 were quite robust, and this 

trend was consistent across regions. The relationships between FGF2 and the FGF 

receptors were particularly surprising in light of FGF binding affinities determined in 

vitro. Specifically, FGF2 binds most strongly to FGFR1 and least strongly to FGFR3, 

while FGF9 binds most strongly to FGFR3 and least strongly to FGFR1 (Ornitz et al., 

1996; Zhang et al., 2006), though it is unknown if these patterns change in vivo or are 

modulated by factors including the heparin sulfate proteoglycans, which can impact FGF 

binding in other systems (Guillemot & Zimmer, 2011; Mason, 2007). Notably, the 

relationships between FGF2, FGF9, and the FGF receptors were opposite in 

directionality. This finding reinforced the opposing effects that we previously observed in 

animal models and support the hypothesis that FGF2 and FGF9 may play coordinate 

roles across brain regions.  

To understand how these relationships were altered in mood disorders, we further 

examined these data and found a striking pattern of results that varied across brain 

regions. In the anterior cingulate cortex, correlations between FGF family members were 
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consistently lost in MDD samples, while in the hippocampus, new relationships that were 

not present in Control tissue emerged in mood disorders. We partially validated these 

findings in an animal model, reinforcing the hypothesis that the coordinate relationships 

of FGFs are important for affective dysregulation. As a proof-of-concept, we selected one 

pair of genes whose relationship was altered in MDD in both the anterior cingulate cortex 

and the hippocampus for further analysis. We found that many other genes co-correlated 

with FGFs as a function of diagnosis, and we determined that these genes were broadly 

related to fundamental biology and cellular microcircuitry. These data support the 

hypothesis that the FGF family may act as an ensemble to mediate gene expression, and 

expression of different FGFs relative to each other may be important for MDD 

pathophysiology. Furthermore, these data provide preliminary evidence that the FGFs 

may have broad organizing effects on other genes. 

 Collectively, these data support the hypothesis that FGF2 and FGF9 play 

opposite or coordinate roles in the brain to mediate affect. These data further support 

the hypothesis that FGF2 and FGF9 become dysregulated in MDD ( 

Table 5.1). 

This series of observations is striking in light of the history implicating the FGF 

family in MDD. The role of the FGFs was first discovered in the human brain over ten 

years ago, and subsequent studies in animal models have strongly reinforced the roles of 

FGF2 and FGF9 in affective dysregulation. The studies in this dissertation add to this 

literature by further examining the individual and coordinate roles of FGF2 and FGF9 in 

mediating affect and becoming dysregulated in MDD. We performed key studies to 

implicate hippocampal FGF9 in negative affect and MDD for the first time, and we 
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extended our understanding of FGF2’s role in the brain by showing that hippocampal 

FGF2 levels were necessary for behavioral differences in selectively bred lines of rats. 

Because we were interested in determining how members of the FGF family impacted 

each other, we returned to the postmortem human data to further explore relationships 

with FGFs and generate novel hypotheses. We showed that expression correlated 

between different FGF family members, and the patterns of these relationships were 

altered by MDD.  

 
Table 5.1. FGF2 and FGF9 show opposing or coordinating effects in postmortem human 
tissue and animal models. Citations which include data in this dissertation are in bold. 

Manipulation  
Effect of/on 

FGF2 
Effect of/on 

FGF9  Citation 
Human brain expression  

↓ ↑ 
Evans et al. (2004); Gaughran et 
al. (2006); Bernard et al. (2011); 
Aurbach et al. (2015)       MDD relative to control 

Individual variation in 
vulnerability to affective 
dysregulation 

Dorsal HPC 
(↑ in bHR) 

Ventral HPC 
(↑ in bHR) 

Perez et al. (2009); Chapter 2; 
Chapter 3 

Rat brain expression 
↓ ↑ Turner et al. (2008); Aurbach et 

al. (2015)      social defeat relative to  
     control  
Chronic Administration     

Turner et al. (2008); Perez et al. 
(2009); Aurbach et al. (2015)       anxiety-like behavior  ↓ ↑ 

     depression-like behavior  ↓ ↑ 
Effect of knockdown on 
anxiety-like behavior ↑ ↓ Eren-Kocak et al. (2011); 

Aurbach et al. (2015); 
Chaudhury et al. (2014)        in bHR/bLR animals  =  ?  

Effect of antidepressant drug 
administration  ↑ ? Mallei et al. (2002); Bachis et al. 

(2008)  

 

While these broad observations are quite valuable, we can gain a richer 

understanding of FGF2 and FGF9’s functions by reframing the data in a different light. 
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FGF2 and FGF9 dysregulation may be region-specific but still influence similar 

genes and biological functions across regions. 

 There are a number of published reports indicating that FGF2 expression is 

downregulated and FGF9 expression is upregulated across regions in brain samples 

deriving from individuals diagnosed with MDD during life (Bernard et al., 2011; Evans 

et al., 2004; Gaughran, Payne, Sedgwick, Cotter, & Berry, 2006). While we did not fully 

replicate those results in this dissertation, we consistently observed strong relationships 

between both FGF2 and FGF9 with each other and with FGF receptors across diagnostic 

categories in all three regions that we examined. This suggests that the relationships 

between FGF family members may play an important role in the brain, and these 

relationships may indicate that FGF2 and FGF9 can impact expression of other FGF 

family members. These data also provide preliminary evidence that FGF2 and FGF9 may 

be regulated in opposite directions consistently across regions, though these data do not 

speak to how these relationships might change with diagnosis. 

 However, research in this dissertation also suggests that there may be region-

specific effects related to FGF2 and FGF9 dysregulation in MDD. As previously 

discussed, we found region-specific effects of diagnosis where FGF2 or FGF9 were 

significantly dysregulated in different brain regions; these results partially reinforce or 

extend some previous findings, but they do not fully replicate other studies (Bernard et 

al., 2011; Evans et al., 2004; Gaughran et al., 2006). Because we have discussed possible 

reasons underlying these discrepancies in replication in previous chapters, we will now 

examine the idea that this regional specificity is meaningful and may reflect biological 

differences in the effects of growth factor dysregulation across brain regions and circuits. 
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 After controlling for a variety of confounding pre- and postmortem factors, we 

observed regional differences in diagnosis-specific FGF expression. Specifically, FGF2 

expression was weakly decreased in the ACC. In contrast, we observed strong, consistent 

evidence that FGF9 expression was selectively increased in the hippocampus. In parallel, 

we observed striking region-specific trends when the relationships between pairs of FGF 

genes with mood disorder diagnoses. In the ACC, we generally observed a loss of 

relationship between pairs of FGF genes in MDD, while in the HPC, relationships 

between FGF genes emerged in MDD and bipolar disorder. These region-specific effects 

support the idea that FGFs may play slightly different roles in the ACC and HPC. 

Other growth factors have shown region-specific differences in effects on 

behavior. Most notably, manipulations involving brain-derived neurotrophic factor 

(BDNF) have shown striking differences in directionality depending on region. In the 

hippocampus, BDNF has antidepressant properties and is important for the positive 

effects of antidepressants (Adachi, Barrot, Autry, Theobald, & Monteggia, 2008; 

Govindarajan et al., 2006; Monteggia et al., 2004; Shirayama, Chen, Nakagawa, Russell, 

& Duman, 2002). However, high levels of BDNF in the amygdala or ventral striatal 

regions are anxiogenic or pro-depressant and are associated with behavioral susceptibility 

to chronic social defeat stress (Berton et al., 2006; Eisch et al., 2003; Govindarajan et al., 

2006; Krishnan et al., 2007). Collectively, these data indicate that BDNF, one of the best 

studied growth factors in affective dysregulation, shows substantial variation in effects 

depending on region: high levels of BDNF are protective in the hippocampus but have 

negative effects in the amygdala or ventral striatum, though the cellular mechanisms by 

which these effects arise have not been well described. By extension, the preliminary 
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evidence suggesting that different FGFs may show region-specific effects could be 

meaningful and should be further examined. 

Unlike the BDNF literature, few experiments utilizing animal models have 

attempted to dissect the regional effects of FGF2 or FGF9. Many studies implicating 

FGFs in affective dysregulation in animal models have employed methods that do not 

give insight into region-specific anatomy, but instead administer FGF2 and FGF9 

peripherally or intracerebroventricularly, which allows the molecules to spread 

throughout the brain (Aurbach et al., 2015; Perez et al., 2009; Turner et al., 2011; Turner, 

Gula, Taylor, Watson, & Akil, 2008). There are several notable exceptions. Elsayed and 

colleagues (2012) demonstrated that chronic site-specific infusions of FGF2 into 

prelimbic cortex (but not the dorsal striatum) reduced depression-like behavior, and 

knockdown studies demonstrated that reduction of FGF2 and FGF9 expression in the 

dentate gyrus had opposite effects on anxiety-like behavior (Aurbach et al., 2015; Eren-

Koçak et al., 2011). While the knockdown studies are one example where both FGFs 

have opposing effects in the same region, the lack of studies differentiating regional 

effects remains a limitation to fully understanding the roles that FGF2 and FGF9 play in 

affective dysregulation, particularly in the prefrontal cortices. 

 The ACC and HPC have different roles in the pathophysiology underlying MDD, 

and both regions show volumetric reductions in individuals diagnosed with MDD. FGFs 

mediate biological functions, including cell survival, that may influence this volumetric 

loss (reviewed in Chapter 1). Since it is unlikely that FGF2 and FGF9’s molecular 

functions change across regions, the most likely explanation for the region-specific 

effects we observe is that there are other biological differences between the regions that 
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mediate their unique functions. Some of these differences include (but are not limited to): 

connected regional circuitry (including different regional inputs and outgoing 

projections), within-region cell-type balance, predominant neurotransmitter systems, and 

differentially balanced molecular networks. Data in this dissertation suggests that FGF2 

and FGF9 dysregulation might reflect or mediate within-region cell-type balance and/or 

alterations in molecular networks (which will be discussed in a later section). 

While there are regional exceptions, many FGFs are expressed in either neurons 

or in glia. In particular, FGF2, FGFR2, and FGFR3 are primarily glial, while FGF9 and 

FGFR1 are primarily neuronal (Bansal, Lakhina, Remedios, & Tole, 2003; Belluardo et 

al., 1997; Garcès, Nishimune, Philippe, Pettmann, & deLapeyrière, 2000; Gonzalez, 

Berry, Maher, Logan, & Baird, 1995; Tagashira, Ozaki, Ohta, & Itoh, 1995). Given that 

both FGF2 and FGF9 have been implicated in proliferation and survival of both neurons 

and glia (Cheng, Black, & DiCicco-Bloom, 2002; Chuang et al., 2015; Falcone, Filippis, 

Granzotto, & Mallamaci, 2015; Huang, Hong, & Chuang, 2009; Kanda et al., 2000; 

Korada, Zheng, Basilico, Schwartz, & Vaccarino, 2002; Lum, Turbic, Mitrovic, & 

Turnley, 2009; Vicario-Abejón, Johe, Hazel, Collazo, & McKay, 1995; Wagner, Black, 

& DiCicco-Bloom, 1999), alterations in FGF2 or FGF9 levels could indicate shifts in the 

numbers and types of cells within each region. In both the ACC and the HPC, these shifts 

might alter the glial-neuronal balance of the region to influence regional microcircuitry 

and potentially contribute to MDD symptoms. Our data supports this interpretation and 

contributes to the hypothesis that cell type balance is altered in MDD, though additional 

studies are needed to prove this conclusively. Moreover, our research does not address if 

FGF changes reflect or are driving these possible differences in cell type balance. 
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In the ACC, we observed a decrease in FGF2 expression and a loss of correlation 

in expression between FGF2 and FGF9 in MDD. In parallel, a number of studies indicate 

that there is a dramatic reduction in the number of glia in the ACC in MDD (Chana, 

Landau, Beasley, Everall, & Cotter, 2003; Cotter et al., 2002; Cotter, Pariante, & Everall, 

2001; Cotter, Landau, & Everall 2001; Öngür, Drevets, & Price, 1998). Because FGF2 is 

primarily expressed in glia, this reduction in glial cells might reflect the expression 

change in FGF2, though the causality of the effect is impossible to determine with these 

data (that is, we cannot determine if FGF2 reduction drives the loss of glial cells or vice 

versa). If this hypothesis is correct, these reductions in FGF2 expression and glial cell 

number might alter the glial-neuronal balance of the region, and potentially contribute to 

MDD symptoms. Indeed, work in animals supports this hypothesis: reducing the 

astrocytic population in prefrontal cortical regions induced depression-like behavior in an 

animal model (Banasr & Duman, 2008). However, this hypothesis is highly speculative, 

and studies examining the relationship between FGF2 expression, glial cell number, and 

alterations in MDD is necessary to lend clarity to these observations. In addition to these 

proposed histology studies, we may be able to examine this hypothesis by applying 

algorithms designed to estimate the proportion of different tissue types based on cell 

type-specific markers within a homogenous tissue set (Hagenauer et al., unpublished). 

Applying these approaches to our microarray data may also clarify our results. 

In contrast, we observed an increase in FGF9 expression in the HPC. Because 

FGF9 is primarily expressed in neurons, this increase might arise if there were more 

neurons in the sample (alternatively, the relative number of glial cells could be reduced, 

which would proportionally increase the number of neurons). Supporting this hypothesis, 
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one previous study showed that subfields of the hippocampus show increases in the 

number of neurons (the somas of these cells are more densely packed in MDD than in 

control tissue), and the previously observed volumetric decreases in the hippocampus of 

depressed patients was likely due to a reduction in volume of the neuropil (Stockmeier et 

al., 2004). Other studies indicate that adult hippocampal neurogenesis is reduced in MDD 

(for reviews, see: Malberg, Eisch, Nestler, & Duman, 2000; Schmidt & Duman, 2007; 

Warner-Schmidt & Duman, 2006). In our data, we observed that a relationship between 

FGF9 and FGFR1 emerges in the depressed HPC. Given that FGFR1 has been linked to 

hippocampal neurogenesis (Zhao et al., 2007), our results might also reflect alterations in 

hippocampal neurogenesis, and the emergent inverse correlation between FGF9 and 

FGFR1 in MDD samples could reflect a relationship with altered cell type balance. 

Specifically, the hippocampus shows overall increases in neurons (which might increase 

FGF9) but decreases in adult neurogenesis (which might decrease FGFR1) in MDD. 

However, this interpretation is also highly speculative and studies examining the 

relationship between cell type balance and FGF expression are needed.  

 Collectively, these data may indicate that FGFs can play both universal and 

region-specific roles simultaneously: molecular function may not differ across regions, 

but cell type balance and/or other mechanisms may be region-specific. These interactions 

could dramatically influence basic biology and circuit function in the brain, and these 

functions are impacted with FGF disruption in MDD. Therefore, our data support the 

interpretation that FGF2 and FGF9 can both widely influence gene expression within and 

across regions and may play individual, region-specific roles. 
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FGF2 and FGF9 could both act as predisposing factors for affective dysregulation 

and become increasingly dysregulated over time with repeated stress exposure.  

Because postmortem human data does not allow us to determine if FGF2 and 

FGF9 levels are predisposing to MDD or if they arise from the disease process, we both 

examined these questions in animal models of selective vulnerability to affective 

dysregulation and drew on the work of others. As reviewed in Chapter 1, FGF2 varies 

across individuals and is associated with MDD diagnosis and treatment response in 

humans.  

In the brain, hippocampal FGF2 levels similarly differ in an animal model of 

affective dysregulation. Bred high responders (bHRs) show high levels of locomotion in 

a novel environment and low levels of spontaneous anxiety- and depression-like 

behavior, while bred low responders (bLRs) show low levels of locomotion in a novel 

environment and high spontaneous anxiety- and depression-like behavior (Flagel, 

Waselus, Clinton, Watson, & Akil, 2014; Stead et al., 2006; Stedenfeld et al., 2011). 

Previous studies in our laboratory demonstrated that bHR rats in earlier generations 

showed higher hippocampal expression of FGF2 (Perez et al., 2009), and data in this 

dissertation reinforced those findings, showing that these differences in hippocampal 

FGF2 expression were stable across generations. Similarly, we observed that FGF9 levels 

are also selectively elevated in bHR animals relative to bLRs, indicating that the 

interpretation of FGF9 as purely anxiogenic and pro-depressant may be too simplistic. 

However, these findings were restricted to the ventral hippocampus (and specifically 

ventral dentate gyrus and CA1), which may indicate that regional specificity is important 

for the impact of FGFs on affective dysregulation. Collectively, these studies indicate that 
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hippocampal FGF2 and FGF9 levels are associated with genetic vulnerability to affective 

dysregulation, though additional studies were necessary to address whether these 

differences in expression were crucial for the baseline behavioral differences displayed 

between the selectively-bred lines.  

To address this limitation, we performed experiments to knock down endogenous 

expression of FGF2 and FGF9 in the hippocampus. In outbred rats, knocking down FGF2 

is anxiogenic, while knocking down FGF9 is anxiolytic (Aurbach et al., 2015; Eren-

Koçak et al., 2011), strongly suggesting that levels of both FGF2 and FGF9 in the 

hippocampus are critical for affective behavior. We performed a similar knockdown 

experiment in bHR and bLR animals, and showed that decreased hippocampal FGF2 

expression eliminated differences in spontaneous anxiety- and depression-like behavior 

between the lines (Chaudhury et al., 2014). This result strongly indicates that 

hippocampal expression of FGF2 is necessary to differentiate vulnerability to affective 

dysregulation, and a future study should examine if FGF9 is similarly critical for 

affective differences between bHR and bLR animals. 

 Reactivity to stress exposure is known to be a vulnerability factor for MDD, and 

stress is frequently associated with the initiation of a depressive episode in humans 

(American Psychiatric Association, 2013). As previously noted, hippocampal FGF2 and 

FGF9 levels are dramatically and oppositely impacted by stress. Hippocampal FGF2 

expression decreases after chronic stress exposure during development (Fumagalli, 

Bedogni, Slotkin, Racagni, & Riva, 2005; Molteni et al., 2001) and in adulthood (Turner, 

Calvo, Frost, Akil, & Watson, 2008), while hippocampal FGF9 expression increases 
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(Aurbach et al., 2015). These data support the idea that FGF2 and FGF9 dysregulation 

after stress could impact the progression of the disease.  

Together with data indicating that hippocampal FGF2 and FGF9 expression 

predisposes individuals to affective dysregulation differently, the interaction between 

stress and FGF expression raises the interesting possibility that FGF2 and FGF9 may 

both predispose individuals for affective dysregulation and become altered themselves 

before or during depressive episodes. Indeed, if FGF2 and FGF9 both act as 

predisposing factors and become dysregulated as a function of the disease process, their 

disrupted expression could contribute to the development of a negative feedback loop, at 

least in the hippocampus (Figure 5.1), and this loop could possibly become associated 

with cyclic or repeated depressive episodes in MDD.  

 

 

Figure 5.1. Proposed model: hippocampal FGF expression both predisposes individuals 
to be vulnerable to affective dysregulation and is responsive to stress. With repeated 
stressful encounters, FGF expression may become part of a negative feedback loop that 
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contributes to affective dysregulation. Future studies should examine if a similar loop 
exists in humans, and if and how it might be related to MDD. Brain templates adapted 
from Paxinos & Watson, 2006. 
 

Indeed, evidence from our laboratory implicates epigenetic regulation as a key 

mediator that links environmental experience with FGF2 gene expression, which could 

provide an avenue to explore how stressful experiences might mediate changes in FGF 

expression. Chaudhury and colleagues showed that the transcription-repressive epigenetic 

marker H3K9me3 is elevated in bLR animals, and that treatment with FGF2 during early 

life or selective FGF2 knockdown during adulthood eliminates these differences 

(Chaudhury et al., 2014). While this study did not examine the effects of stress exposure 

on H3K9me3 levels, these data provide a possible mechanistic avenue whereby FGF2 

levels may be altered by environment or prior experience. 

Since it is known that a history of repeated depressive episodes in MDD predicts 

the likelihood of relapse (Keller, Lavori, Lewis, & Klerman, 1983) and since repeated 

episodes also relate to decreased hippocampal volume (Sheline, Gado, & Kraemer, 2003; 

Sheline, Sanghavi, Mintun, & Gado, 1999; Sheline, Wang, Gado, Csernansky, & 

Vannier, 1996), future studies should examine whether FGF levels become progressively 

dysregulated in this kind of negative feedback loop, and the evidence from animal models 

should be related back to human patients. Several studies can address this hypothesis. For 

example, it should be determined whether H3K9me3 (or another epigenetic marker) 

levels relate to FGF expression, are altered after stress, and if these alterations persist or 

resolve over time. In conjunction, a crucial experiment would examine how FGF2 and 

FGF9 levels change over a prolonged time period after stress exposure. Possible data 

supporting the negative feedback loop hypothesis would indicate that FGF2 and/or FGF9 
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levels would never fully return to pre-stress levels or become progressively dysregulated 

over time, tracking with stress-related changes in epigenetic markers. These studies will 

begin to address whether FGFs participate in a negative feedback loop to impact affective 

dysregulation, though additional evidence would be needed to implicate a similar loop in 

human patients. 

FGF2 and FGF9 may act as molecular organizers to influence neural circuitry and 

mediate affective dysregulation  

 One emergent theme is that FGF2 and FGF9 could act as molecular organizers to 

mediate affective dysregulation. Here, we operationally define this organizational 

capacity as mediating broad influence over different functions, including gene 

expression, neurotransmission, cellular proliferation and survival, and cell morphology, 

to impact molecular networks and cellular microcircuits. Specifically, FGF2 and FGF9 

have been shown to act in this capacity and influence the circuits underlying MDD by 1) 

altering the physical circuitry by influencing cells or synapses, 2) modulating 

neurotransmission, and 3) impacting the expression of molecular networks that underlie 

critical biological functions, including those regulating circuit tuning and maintenance. 

FGFs have previously been implicated in the first two roles (reviewed in Chapter 1), 

though notably, studies examining these functions have primarily probed the biological 

capacities of these molecules, and relatively few have assessed the relationship between 

cellular circuitry and affect or if and/or how these functions come to be altered in MDD. 

Briefly, FGF2 has been strongly implicated in a number of functions underlying neural 

circuit development, tuning, and maintenance, including cellular proliferation, survival, 

and fate determination (Perez et al., 2009; Rai, Hattiangady, & Shetty, 2007; Turner et 
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al., 2011; Wagner et al., 1999), as well as synaptogenesis (Li, Suzuki, Suzuki, Mizukoshi, 

& Imamura, 2002). While many fewer studies have examined the roles of FGF9 in these 

capacities, those that have strongly implicate it as a survival factor (Chuang et al., 2015; 

Garcès et al., 2000; Huang et al., 2009; Kanda et al., 1999, 2000; Lum et al., 2009; 

Pataky, Borisoff, Fernandes, Tetzlaff, & Steeves, 2000), and several studies directly 

implicate it in circuit formation in the cerebellum (Lin et al., 2009; Meier et al., 2014). 

Similarly, several studies indicate that FGF receptors heterodimerize with serotonin 

receptors, providing a mechanistic hypothesis whereby FGF signaling can influence 

neurotransmission in a system that is a known target of antidepressant drugs (Borroto-

Escuela et al., 2012, 2015). However, the function of FGFs as organizers of molecular 

networks has been much less studied, and that is one area that this dissertation has 

contributed significantly to the field. 

 We showed that relationships between FGF2 and FGF9 and other FGF family 

members become altered in MDD, and these alterations are region-specific. In the ACC, 

we observed a general loss of interactions between FGF family members in postmortem 

human tissue, while in the HPC, we saw new relationships between FGF ligands and 

receptors emerge with mood disorder diagnoses. Reinforcing these data, we observed 

selective alterations between pairs of FGF genes in the hippocampus specifically in bLR 

animals, and moreover, some of these relationships were sensitive to stress. Upon further 

examining the postmortem human data using gene ontology approaches, we found 

preliminary evidence that there were wider gene networks associated with these 

diagnosis-specific interactions between FGFs. We may be able to apply additional 

analyses to determine if these patterns of alterations could serve as molecular 



181 
 

“signatures” to differentiate control and MDD tissue, which could generate novel 

hypotheses for future testing.  Moreover, this could indicate that the interplay between 

FGF genes may have an organizational effect to impact the interplay between many other 

genes across the genome. Furthermore, we determined that there were region-specific 

differences in the families of genes which were altered with diagnosis. Core biological 

functions were altered in association with the lost relationship between FGF2 and FGF9 

in MDD. In contrast, genes related to DNA replication, transcription and mRNA 

processing, and FGF receptor activation emerged in relation to FGF9 and FGFR1 in the 

HPC, similarly indicating that these core genes were selectively altered in MDD. The 

emergent data in the hippocampus are particularly interesting, and there are several 

possibilities regarding what these changes could indicate. These changes could signal that 

there is a selective alteration of circuits and/or circuit function in MDD, or these 

emergent relationships indicate that aberrant circuits could be forming in hippocampal 

microcircuitry. However, as discussed in Chapter 4, these conclusions are quite 

preliminary and would benefit greatly from additional studies that replicate or extend 

these results. Furthermore, while these relationships are very interesting, these data are by 

nature correlational, and additional studies are needed to provide causal evidence that 

FGF2 and FGF9 can act as molecular organizers.  

 Indeed, other data not shown in this dissertation provides preliminary evidence 

that FGF2 plays an organizational role with another molecular system across a brain 

circuit implicated in affective regulation, though additional work is needed to similarly 

implicate a causal role for FGF9 as a molecular organizer. We have unpublished data 

indicating that FGF2 influenced expression of genes in the endogenous opioid system in 
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the separation distress circuit, providing evidence that FGF2 influences patterning of both 

ligands and receptors in a separate molecular family to influence affective-like behavior 

in an animal model of affective dysregulation. These data join other work demonstrating 

that early life FGF2 also impacts the adult expression of other genes to influence cellular 

microcircuitry and affect: ntrk3 and bcl212 showed similar patterns in separate studies 

(Turner et al., 2011). While preliminary, these data lend credence to the correlational 

results in the human data and reinforce the need for future studies to further examine 

FGF2 and FGF9 as molecular organizers. 

 However, we do not currently have a holistic understanding about how alterations 

at the level of gene expression translate into the physiological changes that we have 

observed with changes in cell proliferation, survival, and circuit formation; this is one 

notable gap in understanding how FGFs influence brain circuitry. Some studies have 

implicated particular molecular pathways downstream of FGF receptors in this capacity, 

but few have connected the function of particular genes to changes in circuit 

dysregulation. Furthermore, while FGF2 has been the focus of a body of research, very 

few studies have examined the effects of FGF9 on other molecular systems related to 

affective dysregulation. Addressing this deficiency will help to differentiate the roles that 

different FGFs play in their molecular organizational capacities. Regardless of these 

gaps, the hypothesis that FGF2 and FGF9 may act as molecular organizers in a number 

of different capacities, including on the molecular, cellular, and microcircuit levels, 

generates a number of interesting hypotheses and should be studied further. 
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Future work should emphasize the potential roles of FGF2 and FGF9 in circuit-

mediating functions, including synaptogenesis and dendritic arborization. 

 Taking a wide view, we have discussed how FGF2 and possibly FGF9 could 

influence the underlying biology and maintenance functions of brain circuits associated 

with MDD. In particular, they influence circuits at three or more different physiological 

levels, including: 1) organization of molecular networks that may relate to affective 

dysregulation, 2) neurotransmission, and 3) cellular proliferation and survival (including 

possible effects on within-region cell type balance) to directly influence regional 

microcircuitry (Figure 5.2). 

 

 

Figure 5.2. FGFs may influence neural circuits underlying affective dysregulation by 
impacting cells, modulating neurotransmission, and impacting the expression of 
molecular networks. 
 

In addition, there may be other areas related to circuit maintenance and tuning in 

which FGF2 and FGF9 could play additional roles. Notably, the roles of FGF2 and FGF9 

in synaptogenesis are not well understood: only two studies have examined FGF2 in this 

capacity, and to our knowledge, none have examined FGF9. While there is much room 
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for expansion, the literature provides preliminary evidence that FGF2 is important for 

synaptogenesis and spine morphology: in culture, FGF2 treatment increases functional 

excitatory synapses on hippocampal neurons (Li et al., 2002), while FGF2 knockout mice 

displayed longer, thinner spines (but no differences in spine number) on CA3 pyramidal 

neurons than wildtype littermates (Zechel, Unsicker, & von Bohlen und Halbach, 2009). 

Similarly, other literature has highlighted BDNF as a modulator of dendritic arborization 

(Magariños et al., 2011), though neither FGF2 nor FGF9 have not been studied in this 

capacity. Future studies should examine the roles of both FGF2 and FGF9 in dendritic 

arborization and synapses, with a particular emphasis on how synaptogenesis, spine 

maintenance, and pruning may be related to FGF dysregulation in affective disorders.  

Collectively, these data situate FGF2, and possibly FGF9, as organizing factors 

with the potential capability to impact molecular interactions that mediate cell-type 

balance and microcircuitry. Specifically, this dissertation argues that FGF2 and FGF9 

have region-specific patterns of disruption in MDD, that their expression and function 

in particular regions of the brain might be both predisposing to and progressively 

dysregulated during affective dysfunction, and that the molecular organizing functions 

of these molecules is altered in MDD. Given their regional disruption in expression 

and their altered molecular relationships in MDD, future work should further examine 

these roles, as well as other major ways that FGFs can influence neural circuitry 

(including possible roles in synaptogenesis, spine maintenance, and dendritic 

arborization), to holistically describe how FGF dysregulation mediates effects on the 

brain in MDD. Indeed, this gap in knowledge – how FGFs and other growth factors 

enact changes on the cellular and microcircuit level – is one major limitation of the 
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neurotrophic hypothesis of depression. Furthermore, a better understanding of these 

functions may clarify how region-level disruptions, including volumetric decreases in the 

ACC and HPC, arise in MDD (Bora, Fornito, Pantelis, & Yücel, 2012; Bremner et al., 

2000, 2002; Goodkind et al., 2015; Sheline et al., 2003). 

Moving forward with the neurotrophic hypothesis of MDD 

 As previously discussed, the neurotrophic hypothesis of MDD posits that changes 

in the expression and function of growth factors may be related to the pathophysiology 

underlying MDD. Over the past several decades, a number of growth factors have been 

implicated in MDD. (Because it its beyond the scope of this chapter to fully review all 

the evidence for every growth factor implicated in MDD, the reader is directed to papers 

and reviews that summarize findings for these various factors, including BDNF 

(Björkholm & Monteggia, 2016; Duclot & Kabbaj, 2015; Duman & Duman, 2015, 

Duman & Monteggia, 2006), glial cell line derived neurotrophic factor, GDNF (Miller, 

2011; Uchida et al., 2011), nerve growth factor, NGF (Angelucci, A. Math, & Aloe, 

2004), vascular endothelial growth factor, VEGF (Carvalho et al., 2015; Clark-Raymond 

& Halaris, 2013; Warner-Schmidt & Duman, 2007), insulin-like growth factors, IGF 

(Anderson, Åberg, Nilsson, & Eriksson, 2002; Duman et al., 2009; Szczęsny et al., 2013), 

other FGFs (Evans et al., 2004; Turner, Watson, & Akil, 2012; Williams & Umemori, 

2014), and others) Like the FGF system, other growth factors can influence and organize 

functions at the level of molecular dynamics, neurotransmission, cellular function and 

subtype balance, or microcircuits. Because expression of many of these factors is 

selectively impacted in MDD, additional work needs to be done to differentiate the roles 

of different growth factors in various functions implicated in affective dysregulation. 
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 As has been noted in the stress literature, similar molecular or cellular changes 

may have very different consequences depending on the brain region and associated 

regional circuitry and function. For example, in the amygdala, stress increases dendritic 

arbor complexity (Johnson et al., 2009), while the same manipulation decreases dendritic 

arbor complexity in the hippocampus (Magariños, Deslandes, & McEwen, 1999). By 

extension, we hypothesize that altered growth factor expression may have differential 

impacts depending on brain region, and regional dissociation of growth factor functions 

on cellular effects may help to develop a better understanding between the molecular and 

cellular functions of these molecules. Because BDNF is known to have region-specific 

effects (Adachi et al., 2008; Berton et al., 2006; Eisch et al., 2003; Govindarajan et al., 

2006; Krishnan et al., 2007; Monteggia et al., 2004), it may be that other growth factors 

also play different roles depending on the region, and indeed, evidence from this thesis 

suggests that FGF2 and FGF9 may have region-specific effects. This region specificity 

may be one good avenue to dissociate the specific roles of different growth factors in 

molecular, cellular, and behavioral functions. 

 Some growth factors have shown similar effects on affective dysregulation 

within-region, raising the possibility that disruptions in one growth factor system may 

spur or induce adaptive or compensatory functions in another. This idea is supported by 

evidence suggesting that different growth factors can play very similar roles in the same 

brain region. For example, experiments examining the affective functions of hippocampal 

FGF2 and BDNF have yielded remarkably similar results. Early-life or chronic stress 

decreased hippocampal BDNF expression (Hill et al., 2014; Naert, Ixart, Maurice, Tapia-

Arancibia, & Givalois, 2011; Roceri, Hendriks, Racagni, Ellenbroek, & Riva, 2002), and 
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our laboratory has shown similar effects of chronic social defeat on hippocampal FGF2 

expression (Turner, Calvo, et al., 2008). Lentiviral-mediated knockdown of both FGF2 

(Chaudhury et al., 2014; Eren-Koçak et al., 2011) and BDNF (Taliaz, Stall, Dar, & 

Zangen, 2010) in the dentate gyrus had negative effects on affective behaviors in rats. 

Similarly, antidepressant treatment strongly induce both BDNF (Adachi et al., 2008; 

Garcia et al., 2008) and FGF2 (Bachis et al., 2008; Elsayed et al., 2012; Mallei et al., 

2002) expression and this induction is necessary for treatment efficacy. Because of the 

dramatic parallels between hippocampal BDNF and FGF2, we hypothesize that BDNF 

and FGF2 impact the same hippocampal microcircuits, and we hope that future research 

will examine how the manipulations involving one growth factor impact the other. 

 Similarly, because many growth factors have effects on the same cellular 

processes, future research will need to dissociate the effects of individual growth factors 

on neural circuit functions. Some scholars have already begun to assemble these 

comparisons in specific fields: for example, one review compares effects of different 

growth factors on cellular proliferation, differentiation, and survival in the adult 

hippocampus, finding that growth factors mediate different aspects of neurogenesis. 

Among other effects, BDNF generally influences cell survival, while IGF has more 

consistent effects on proliferation (Fournier & Duman, 2012). However, many fewer 

studies have begun to differentiate the roles of different growth factors in other areas, and 

effects of growth factor manipulations on synaptogenesis and dendritic arborization are 

areas for substantial expansion. Furthermore, to fully address the neurotrophic hypothesis 

of MDD, these various effects will need to be analyzed in the context of affective 
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dysregulation to determine how different growth factors contribute to the aberrant neural 

circuitry that may underlie MDD symptoms. 

 While it is theoretically possible that different growth factor systems work 

independently and, in many regions, in parallel, there are a number of reasons to believe 

that signaling or functions associated with many growth factors could converge at 

different points (Figure 5.3). At the molecular level, there is evidence that single 

molecules can bind multiple growth factors simultaneously (e.g., betaglycan can 

simultaneously bind FGF2 and transforming growth factor-beta; Andres, DeFalcis, Noda, 

& Massagué, 1992), while other molecules can singly bind to many classes of growth 

factors (e.g., fibronectin can bind >25 growth factors with relatively high affinity; 

Martino & Hubbell, 2010). Similarly, both growth factor ligands and receptors can 

heterodimerize to potentially modulate signaling or neurotransmission (e.g., BDNF, NT-

3, and NGF can form heterodimers, Arakawa et al., 1994; both BDNF and FGF receptors 

can interact with the serotonin system, Borroto-Escuela et al., 2012, 2015; Martinowich 

& Lu, 2007). Even if individual growth factors do not converge on the same receptors, 

there is evidence that intracellular signaling pathways might provide an additional avenue 

for convergence (e.g., FGF2, IGF and BDNF all converge on the Akt pathway, while 

only FGF2 and BDNF significantly activate Erk, Johnson-Farley, Patel, Kim, & Cowen, 

2007; both FGF2 and FGF9 activate mTOR to mediate autophagy, Chen, Xiong, Tong, & 

Mao, 2013; Wang et al., 2015). Interestingly, activation of growth factor ligands and 

receptors can even induce expression of other growth factors from different molecular 

families (e.g., serotonin activates FGFR2 to induce expression of GDNF, Tsuchioka, 

Takebayashi, Hisaoka, Maeda, & Nakata, 2008; and FGF2 induces GDNF expression, 
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Shin et al., 2009). In addition, many growth factors and their receptors have differential 

patterns of expression that are regionally restricted by cell type, and this cellular 

heterogeneity adds another layer of complexity to understanding how different growth 

factor systems interact.  

 

Figure 5.3. Schematic of previously demonstrated points of possible convergence for 
different growth factor systems.  
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To create a clear accounting of the unique, parallel, and compensatory roles of 

different growth factors in MDD, these distinctions will need to be separated and better 

described, requiring many studies to compare different growth factors head-to-head. 

Future studies can begin to systematically parse different functions and 

interactions for different growth factors implicated in MDD by taking a number of 

approaches. As a field, it will be helpful to revisit basic experiments, like stress exposure, 

antidepressant administration, and others to systematically compare the molecular, 

cellular, and behavioral effects associated with different growth factors. To their credit, 

some researchers have already begun this endeavor (Angelucci, Aloe, Jiménez-Vasquez, 

& Mathé, 2003; Bland et al., 2007; First et al., 2011; Fournier & Duman, 2012; 

Fumagalli et al., 2004; Johnson-Farley et al., 2007), but it should be expanded 

dramatically to include many more growth factors and manipulations. Similarly, a greater 

emphasis should be placed on parsing the region-specific roles, including examining the 

interactions between neurons and glia and effects on cell-type balance, that different 

growth factors may play in brain regions and circuits underlying affective dysregulation. 

Furthermore, greater emphasis should be placed on understanding how alterations to one 

growth factor system impact others, and a better grasp of the points of downstream 

molecular and cellular convergence will facilitate this insight. Together, these additional 

studies will bring additional clarity to the neurotrophic hypothesis of MDD, allowing a 

better understanding of the development and maintenance of the disorder and creating the 

potential to develop better future antidepressants. 
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Limitations and strengths of the dissertation 

 While this dissertation focuses on growth factors and how alterations in growth 

factor expression alters vulnerability to affective dysregulation, it does not provide data 

on a cellular or circuit level that address how these alterations may be borne out in 

physical changes in brain circuitry. Indeed, as discussed above, this is one major 

challenge to the neurotrophic hypothesis of MDD as a whole, and a greater emphasis 

should be placed on addressing this gap. While there is abundant literature linking 

different growth factors to MDD (or different growth factors to processes which affect 

neural circuitry, including cellular proliferation, synaptogenesis, etc.), only a subset of 

these studies have attempted to link these types of observations in the same model or in 

the same tissue. The studies which have made these links provide clues suggesting that 

this avenue may be one way to untangle overlapping effects of different growth factor 

systems in circuit function (Elsayed et al., 2012; Perez et al., 2009; Taliaz et al., 2010; 

Turner et al., 2011), though for practical reasons, many focus on one cellular process and 

therefore do not differentiate between different circuit-altering mechanisms. Therefore, 

future studies involving FGF2 and FGF9 should better integrate multiple analyses related 

to circuitry, with a particular focus on analyzing changes in synaptogenesis and/or 

dendritic arborization, which have been studied with much less frequency than cellular 

processes like proliferation and/or survival. 

 Despite this limitation, this dissertation has a number of strengths. Chief among 

them, we have consistently worked to integrate MDD data from postmortem human brain 

tissue with animal models of affective dysregulation to parse the roles of FGF2 and FGF9 

in different regions of the brain. Similarly, we have used a wide variety of techniques and 
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approaches, including “big data” approaches to analyze data derived from postmortem 

human tissue, animal behavior, administration paradigms, viral-mediated expression 

knockdown, and gene expression and protein activity assays, to draw our conclusions. 

This convergence on a set of conclusions using a wide variety of techniques increases the 

likelihood that our data are not due to random chance.  

Furthermore, these different approaches have also enabled us to generate some 

striking conclusions as well as promising avenues for future study. We showed for the 

first time that FGF9 is disrupted in the hippocampus of depressed subjects, that an animal 

model of differing affective vulnerability showed divergent levels of hippocampal FGF9, 

and that altering endogenous expression of FGF9 in the hippocampus was sufficient to 

alter affective behavior. We contributed to the literature by reinforcing the hypothesis 

that hippocampal FGF2 has remarkable abilities to confer vulnerability or resilience in 

affective-like behavior. Moreover, we explored the impact of FGF2 and FGF9 

dysregulation in MDD by probing how their expression was associated with different 

gene families and how these relationships changed with diagnosis, implicating circuit-

related functions and generating hypotheses that can be addressed in future studies. 

Future Directions 

 While the research in this dissertation generated some striking conclusions, we 

also formulated interesting hypotheses. We believe that there are many avenues for future 

studies to augment the data that we’ve showcased here to better describe the roles of 

FGF2 and FGF9 in MDD. Specifically, we see three main categories for future 

experiments that build on the findings of this body of work, including 1) further studying 

the role of FGF9 in affective dysregulation, 2) systematically differentiating FGF2, 
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FGF9, and other growth factors in various molecular, cellular, circuit, and behavioral 

processes (including additional studies to determine if FGF2 and FGF9 act as 

physiological antagonists to mediate opposite effects on affective behavior), and 3) 

further examining the molecular networks that FGF2, FGF9, and other growth factor 

systems impact to affect the interplay between genes.  

Given that the data described in Chapter 2 are among the first to implicate FGF9 

in MDD, it is evident that the literature examining the role of FGF9 in affective 

dysregulation is in its infancy. There are many studies yet to be completed, including a 

number of follow-up experiments to clarify our results. It will be interesting to determine 

if FGF9 knockdown eliminates behavioral differences between selectively bred bHR and 

bLR rats, and we are interested to know whether FGF9 knockdown in the dentate gyrus is 

protective against the deleterious effects of stress. Furthermore, we did not assess the 

effects of antidepressant drug administration on FGF9 expression, and we will be 

interested to determine whether there are differential region-specific effects of FGF9 

dysregulation. Given the striking parallels in our preliminary data to manipulations 

involving FGF2, it is reasonable to ask whether FGF2 and FGF9 act as physiological 

antagonists to mediate affective dysregulation, and additional studies on possible points 

of convergence (including intracellular signaling) will clarify this. 

While previous studies have shown that FGF2 and FGF9 impact cellular and 

circuit-level processes, there is much work to be done to elucidate the intersection 

between physical changes that the brain undergoes after chronic stress and MDD and the 

role of FGFs in these alterations. In particular, while FGF2 has been implicated in cell 

genesis and survival, no studies of FGF9 have been performed to evaluate its effects on 
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neurogenesis or gliogenesis. Similarly, very little is known about the roles of FGF2 or 

FGF9 in other cellular processes that impact circuit function, including synaptogenesis 

and dendritic arborization, especially with regards to possible effects of dysregulation in 

MDD. Therefore, we believe that an area of future emphasis should be determining how 

molecular alterations in FGF2 or FGF9 expression (or in the interactions between FGF2 

and FGF9 with other molecular networks) are borne out on a cellular and circuit level. 

Similarly, given the preliminary evidence that FGF2 and FGF9 may play 

organizational roles in the brain to mediate circuit function, we believe that our results 

implicating molecular network dysfunction should be further studied in other datasets. It 

will be interesting to see if the relationships that we observed in our postmortem human 

data replicate with other samples and other platforms, and any promising hypotheses 

should be systematically examined in animal models or other systems. 

Final Conclusions 

 We have provided evidence that FGF2 and FGF9 may work coordinately in the 

brain to mediate affective dysregulation in MDD. We showed that FGF2 expression is 

reduced in the anterior cingulate cortex and FGF9 expression is elevated in the 

hippocampus of individuals diagnosed with MDD during life. Additionally, we showed 

that the expression of FGF2 and FGF9 correlates across regions, and we similarly showed 

that expression of both ligands correlates with FGF receptors. We found evidence that 

there are region-specific disruptions in the relationships between FGF family members in 

MDD, and these disruptions in relationships co-occurred with expression changes of 

genes related to basic biological and circuit function. Collectively, these data indicate that 

FGF2 and FGF9 are important organizational mediators in the depressed brain, and that 
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their effects may be coordinate and/or oppositional. However, these studies of 

postmortem human tissue are correlational and do not address if these altered patterns of 

expression are predisposing factors or if they arise from the disease process. 

 We used several animal models to reinforce these findings and address this 

limitation. In outbred animals, we demonstrated that knocking down endogenous 

expression of FGF9 in the dentate gyrus altered affective behavior. We also showed that 

both FGF2 and FGF9 are expressed at different levels in selectively-bred animals who 

differ in locomotor responses to a novel environment, one model of affective 

dysregulation, and we further showed that this difference in FGF2 expression was critical 

to the behavioral phenotype. Together with previous data demonstrating that FGF2 and 

FGF9 levels in the hippocampus are sensitive to stress, we argue that FGF2 and FGF9 

could both act as predisposing factors for affective dysregulation and become 

increasingly dysregulated over time, contributing to a possible negative feedback cycle to 

influence the progression of the disease. We also partially validated preliminary findings 

from postmortem human data in an animal model of affective dysregulation, supporting 

the idea that FGF2 and FGF9 act as molecular organizers to mediate affect: specifically, 

we demonstrated that the relationships between FGF family members are phenotype-

specific and, in some cases, modulated by stress. Collectively, these data reinforce the 

postmortem human data and strongly implicate FGF2 and FGF9 as molecular organizers 

in the brain whose functions can mediate affective dysregulation. 

 Furthermore, the data in this dissertation both proposes and addresses novel 

hypotheses. Together with previous data from our laboratory, the results in Chapter 2 

suggesting that FGF9 is a novel modulator of negative affect are among the first data to 



196 
 

implicate this molecule in affective dysregulation and MDD. Moreover, to our 

knowledge, the data in Chapter 4 are among the first to examine diagnosis-specific 

changes in molecular networks associated with FGF2 and FGF9 expression, which have 

generated interesting preliminary data further implicating circuit dysregulation as a major 

underlying factor in MDD. We believe that these data are worthy of future study. 
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