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ABSTRACT 

 So far, investigations into the neural basis of affect have revealed discrete, anatomically 

localized sites called hedonic “hotspots” in nucleus accumbens (NAc) and ventral pallidum (VP) 

that are able to modulate the hedonic impact of a reward. Here, I further examined the 

localization and neurochemical specificity of the hotspots, as well as explored new potential sites 

of interest to more clearly establish a hedonic circuit. In Chapter 2, I focused on the NAc hotspot, 

testing the effects of mu, delta, or kappa opioid receptor stimulation on hedonic and motivated 

behaviors. I found that while all three opioid receptor subtypes could reliably enhance hedonic 

‘liking’ in the hotspot, they all had unique effects on motivated food intake. In Chapter 3, I 

extended the neurochemical investigation to include orexin and acetylcholine systems within 

NAc. I found that like the opioids, orexin stimulations only enhanced hedonic impact in the 

rostral hotspot, but enhanced food intake throughout shell. By contrast, blockade of acetylcholine 

muscarinic receptors caused a broad shift toward ‘disgust’, reducing appetitive behaviors and 

enhancing aversive ones. In Chapter 4, I sought to determine whether any cortical sites were 

capable of modulating hedonic impact or motivation, especially orbitofrontal cortex (OFC) and 

insula. I found that both of these areas contained localized hedonic hotspots that were sensitive to 

mu or orexin stimulations. The OFC hotspot was localized to the rostral 2/3 of OFC, and the 

insula hotspot was localized to the far caudal 1/3. I also found a single large hedonic coldspot 

that started in caudolateral OFC and extended into anterior and mid insula.  Lastly, in Chapter 4, 

I found that selectively stimulation of lateral hypothalamic inputs into the VP hotspot could 
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enhance hedonic ‘liking’ reactions to sucrose, as well as intake of palatable M&Ms. By contrast, 

local VP stimulation only increased hedonic ‘liking’ reactions, and local LH stimulation only 

increased food intake. Collectively, these experiments expand the neurochemical repertoire of 

the hotspots, as well as expand the hedonic circuit to include cortical and hypothalamic 

mechanisms for generating affect, carrying important implications for the treatment of affective 

disorders like depression or bipolar.
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CHAPTER 1 

GENERAL INTRODUCTION 

Affect, or the experience of positive and negative valence, contributes to and guides 

motivated and learned behaviors. Though often working in tandem with motivation and learning, 

affect remains a unique and independent process that is not reducible to either process (T. E. 

Robinson & Berridge, 1993, 2008). Affect is also not an embedded feature of a sensory stimulus, 

but must be generated and subsequently integrated into the sensory properties of a stimulus. 

Evidence for affect’s independence stems from studies that demonstrate its resilience after the 

loss or absence of motivation or learning (K. C. Berridge, Venier, & Robinson, 1989; Galaverna 

et al., 1993; Kaczmarek & Kiefer, 2000; M. J. Robinson & Berridge, 2013), as well as affect’s 

ability to flexibly transform for a stimulus in response to learning or motivation (e.g., shifting a 

stimulus’s valence from positive to negative for the same sensory stimulus) (Parker, 

Kwiatkowska, Burton, & Mechoulam, 2004; Spector, Breslin, & Grill, 1988).  

If affect is a unique psychological component of reward, then it follows that unique 

neural circuits likely mediate its production. Below, I will assert that the affective taste reactivity 

test effectively measures the affective component of tastes (good versus bad), independent of the 

taste quality itself (e.g., sweet, bitter) and independent of the neural mechanisms that generate 

the motivation to consume palatable stimuli. This behavioral measure of affect can be combined 

with various brain manipulations, including electrical stimulation, drug microinjection, or
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optogenetic/pharmacosynthetic simulations to identify and localize the neural mechanisms 

mediating affect. Broadly, I am interested in answering the question: how does any stimulus, 

whether it be an internal emotional state or external cue/reward/punisher, become valenced at 

all? Toward that end, and for the purposes of this dissertation, I will seek to more specifically 

answer the following questions: 1) where in the brain does the generation of a valenced signal 

occur? And 2) what neurochemical/neuroanatomical systems are involved in generating that 

valenced signal? 

Identifying Neural Substrates of ‘Wanting’ and ‘Liking’ 

        To begin evaluating the neural mechanisms of affect, we can turn to several influential 

studies from the 1950’s and 60’s. These studies largely focused on food intake because it is a 

measureable and objective behavioral phenotype. Food intake provides a means to test a number 

of neuropsychological questions, including how different brain areas may be involved in 

palatability (affective value of food) or motivation (instant transformations or amplifications of 

food intake behaviors). During this era of experimentation, electrolytic lesions or electrical 

stimulation techniques were used to address two fundamental questions: 1) what brain areas are 

necessary for normal motivated food intake, such that damage to that area would cause a 

reduction in eating behavior and food reward, and 2) what brain areas, when stimulated, are 

sufficient to cause increases in food intake? These, and many of the studies detailed below, will 

focus on experiments using food/taste rewards. As will be discussed in “Taste reactivity as a 

measure of hedonic impact” below, food stimuli provide a useful mechanism for teasing apart 

the neural mechanisms of motivation and affect. 

In 1951, Anand and Brobeck first showed that lesions of the lateral hypothalamic area 

(LH) would cause intense aphagia and adipsia; animals would completely fail to eat or drink, and 
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would starve to death if not fed intragastrically (Anand & Brobeck, 1951). These findings were 

extended in the following decade by Teitelbaum and Epstein, and by many other researchers 

(Boyle & Keesey, 1975; Oltmans & Harvey, 1976; Schallert, Whishaw, & Flannigan, 1977; 

Teitelbaum & Epstein, 1962). Meanwhile, studies using electrical stimulation showed that 

activation of LH caused increases in food or water intake (Coons & Cruce, 1968; Delgado & 

Anand, 1953; Mogenson & Stevenson, 1967). These findings contributed to LH becoming 

known as a “feeding center” (Anand & Brobeck, 1951; Stellar, 1954). 

In 1962, Teitelbaum and Epstein provided the first evidence that LH was also involved in 

applying the affective feature of palatable food (Teitelbaum & Epstein, 1962). Specifically, they 

found that lesions of LH caused rats to react with intense aversive reactions, such as disgust-type 

gapes, to palatable, sweetened milk. These results also occurred in tandem with consistently 

observed aphagia. In their own words: 

[The rat] actively resists having milk placed in its mouth by a medicine dropper, and it 

does not swallow the milk once it is there, but rather allows it to dribble out the side of the 

mouth. Ordinarily a normal rat does not show such behavior…This suggests that mouth contact 

with food and water is highly aversive to a rat with lateral lesions during this stage (Teitelbaum 

and Epstein, 1962, pp. 75-76). 

Their finding of aversive gapes after LH lesions, in addition to aphagia, extended the role of LH 

to now include palatability, or the affective component of food reward. 

Partially based on these findings, some investigators proposed that LH electrode 

stimulation might enhance a hedonic taste signal to effectively make food taste better via direct 

LH projections to brainstem gustatory nuclei (Hoebel, 1988). Hedonic enhancement was 

suggested as a psychological mechanism for producing increases in food intake, and might also 
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contribute to electrode self-stimulation effects. For example, Hoebel suggested that “…lateral 

hypothalamic stimulation is like palatable food in inducing both appetite and reward” (Hoebel, 

1988, pp. 583-584). Regarding rewarding effects of LH stimulation, he further speculated: 

“Where is reinforcement? …One component of reinforcement could be in LH cells that enhance 

sweet taste input in the NST (nucleus of the solitary tract) … What is reinforcement?  To this 

question we can now answer that one aspect of reinforcement could be taste-induced stimulation 

of LH cells which enhance the taste” (Hoebel, 1988, p. 594). 

In other words, LH stimulation was posited to enhance sweet taste signals as part of the 

mechanism of LH stimulation-induced reward.  

Taste Reactivity as a Measure of Hedonic Impact 

To ascertain whether or not LH stimulation did in fact enhance a taste signal, a more 

direct measure of taste hedonic impact was needed, such as the affective taste reactivity test. 

Below I will outline the development of the taste reactivity test, which measures the affective 

orofacial reactions that are elicited by different taste stimuli in animals and human infants. I will 

go on to explain how this test reliably and specifically tracks the hedonic component of a food 

reward (rather than the motivational incentive value), and contrast this behavioral measure to 

other popular (albeit less definitive) measures of hedonic impact or hedonic ‘liking’. 

The taste reactivity test and its component affective facial expressions were first 

described for human infants in the early 1970’s by Jacob Steiner (Steiner, 1973). The test was 

soon adapted for rats using an intra-oral cannula administration of taste solutions by Harvey Grill 

and Ralph Norgren (Grill & Norgren, 1978a), and has been shown to be applicable to a number 

of mammalian species, including chimpanzees, orangutans, horses, mice, rats, and humans (K. C. 

Berridge, 2000; Jankunis & Whishaw, 2013; Kiefer, Hill, & Kaczmarek, 1998; Steiner, Glaser, 
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Hawilo, & Berridge, 2001). Affective orofacial reactions include three classes of responses: 1) 

positive hedonic or ‘liking’ reactions (e.g. tongue protrusions, paw licking) typically elicited by 

sucrose; 2) negative aversive or ‘disgust’ reactions (e.g. gapes, chin rubs, face washing) typically 

elicited by bitter quinine; and 3) neutral reactions (e.g. passive drip, mouth movements) that are 

elicited by water and many other tastes that are relatively neutral, as well as by palatable (mouth 

movements) or unpalatable tastes (dripping) (Steiner et al., 2001). 

Importantly, these orofacial reactions are not merely sensory reflexes to a sweet versus 

bitter sensation, but reflect the hedonic impact of that taste sensation. One line of evidence for 

this comes from the observation that quite different taste sensations can elicit the same pattern of 

hedonic reactions, suggesting they have similar palatability (Steiner et al., 2001). For example, 

sucrose and dilute sodium chloride elicit similar positive patterns of ‘liking’ reactions, despite 

being dissimilar sensations, and both are preferred over water by rats in intake tests (Flynn & 

Grill, 1988; Grill & Norgren, 1978a). Conversely, bitter tasting quinine or highly concentrated 

sodium chloride both elicit similar aversive ‘disgust’ reaction patterns, and both are avoided 

compared to water (K. C. Berridge, Flynn, Schulkin, & Grill, 1984; Seeley, Galaverna, Schulkin, 

Epstein, & Grill, 1993). Another line of evidence supporting a hedonic rather than a 

sensorimotor interpretation comes from observations that a single taste sensation can evoke quite 

different orofacial reactions under different conditions relevant to its palatability. For example, 

orofacial ‘liking’ reactions to sucrose are increased by physiological hunger and suppressed by 

satiety states (termed alliesthesia), and orofacial reactions to concentrated NaCl (or to associated 

gustatory labels of sourness or bitterness paired as conditioned stimuli with NaCl as UCS) are 

changed from negative ‘disgust’ to positive ‘liking’ by hormonal induction of salt appetite (K. C. 

Berridge & Schulkin, 1989; Clark & Bernstein, 2006; Seeley et al., 1993). Learned shifts in 



6 
 

palatability will similarly change reaction patterns to a particular taste that has been used as a 

conditioned stimulus, based on Pavlovian associations formed between tastes, or associations 

between a taste and its ensuing physiological consequence (e.g., visceral illness; caloric satiety; 

salt appetite). A dramatic example is Pavlovian conditioned taste aversion, in which sucrose or a 

similar sweet taste is associatively paired with nausea induced by a LiCl injection (Garcia, 

McGowan, Ervin, & Koelling, 1968). The learned aversion changes orofacial reactivity to the 

paired sweet taste from positive ‘liking’ to negative ‘disgust’, guided by forebrain circuitry (K. 

Berridge, Grill, & Norgren, 1981; Grill & Norgren, 1978b; Schafe, Seeley, & Bernstein, 1995; 

Spector et al., 1988). In short, affective orofacial reactions reflect the hedonic impact of a taste 

stimulus, and so are determined not only by the taste itself, but also by relevant physiological 

states and Pavlovian associations that influence its palatability. Finally, these affective reactions 

can also be dramatically changed by specific brain manipulations (e.g., lesions or stimulations), 

which help to reveal brain mechanisms of hedonic impact, as discussed below. 

Importantly, I note that affective taste reactivity patterns still faithfully track hedonic 

impact, even in situations when other behavioral measures of palatability, such as voluntary food 

intake, or consummatory behavioral measures such as lick-pattern microstructure (i.e., 

lickometers), diverge from hedonic impact (K. C. Berridge, 2000). This divergence may occur 

because all appetitive tests and most other consummatory tests of palatability require the animal 

to engage in spontaneous appetitive approach toward the food stimulus and voluntarily ingest it. 

Relying upon voluntary intake or appetitive behavior and choice makes the test depend 

additionally on brain mechanisms of incentive motivation, in addition to hedonic impact. This is 

problematic, as incentive motivation and hedonic impact can sometimes change independently. 

By comparison, in the taste reactivity measure, a taste is delivered directly into the mouth to 
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elicit orofacial reactions without any need for appetitive behavior or even voluntary ingestion. 

Several examples of divergence of lickometer/intake/choice measures versus taste reactivity 

come from manipulations of mesolimbic dopamine systems, which change incentive motivation 

and consequently free intake and lickometer measures, but may not truly change hedonic impact 

as reflected in affective orofacial reactions to tastes (G. P. Smith, 1995). Such dopamine 

manipulations include neurotoxin 6-OHDA lesions of mesolimbic dopamine systems and 

pharmacological blockade of dopamine receptors. These manipulations suppress food intake, or 

even cause complete aphagia in the case of 6-OHDA lesions (similar to electrolytic LH lesions), 

and reduce lickometer measures of sucrose motivation/palatability (e.g., shorter lick bursts) (K. 

C. Berridge et al., 1989; Higgs & Cooper, 2000; Oltmans & Harvey, 1976; E. T. Rolls et al., 

1974; Schneider, Davis, Watson, & Smith, 1990; G. P. Smith, 1995; Zis & Fibiger, 1975). 

However, the same dopamine-suppressing manipulations do not alter hedonic impact, as 

reflected in taste ‘liking’ patterns of taste reactivity (K. C. Berridge et al., 1989; Pecina, 

Berridge, & Parker, 1997; Pecina, Cagniard, Berridge, Aldridge, & Zhuang, 2003; Wyvell & 

Berridge, 2000). 

Other brain manipulations can further dissociate hedonic impact from other 

consummatory behaviors that do not depend on voluntary ingestion of an external food, such as 

intra-oral intake, or the passive swallowing of a taste substance already in the mouth. For 

example, lesions of central nucleus of the amygdala suppress the expression of salt appetite in 

consummatory intra-oral intake as well as in appetitive approach and voluntary intake tests, but 

do not suppress the increase in ‘liking’ for intense NaCl taste that is reflected in affective taste 

reactivity patterns (Galaverna et al., 1993; Seeley et al., 1993). Under normal conditions, rats 

respond negatively with ‘disgust’ reactions (e.g., gapes) to a hypertonic 3% NaCl solution and 
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avoid consumption. However, in a salt depleted state, rats approach, consume, and even show 

‘liking’ reactions to the same salty taste (K. C. Berridge et al., 1984; Krieckhaus & Wolf, 1968; 

Schulkin, Arnell, & Stellar, 1985). After central amygdala lesions, rats no longer seek or ingest 

the salty solution, and no longer increase their passive intra-oral intake when the salty solution is 

infused into the mouth (Galaverna et al., 1993; Seeley et al., 1993). Yet, when rats with central 

amygdala lesions are tested in taste reactivity, they still show an affective change in orofacial 

reactions from ‘disgust’ to ‘liking’ patterns, even as the solution drips out of their mouths. This 

dissociation indicates that the hedonic alliesthesia shift remains intact, but no longer controls any 

appetitive or consummatory aspect of ingestion (Galaverna et al., 1993; Seeley et al., 1993). 

Altogether, these studies indicate that taste reactivity specifically reflects hedonic impact, and 

under some conditions, captures hedonic shifts even more reliably than appetitive or other 

consummatory measures. 

Regarding the neural substrates of taste reactivity behaviors, the basic orofacial reactions 

can be generated by brainstem circuitry alone (Grill & Norgren, 1978b). However, it is important 

to note that many hedonic modulations by psychological or physiological factors require 

forebrain control, suggesting that these orofacial reactions are more than simple reflexes (Grill, 

2006; Grill & Kaplan, 2001; Grill & Norgren, 1978a; Kaplan, Roitman, & Grill, 2000). For 

example, decerebrate rats that have received transections at the level of the midbrain are still able 

to generate orofacial movements to sweet or bitter tastes, but no longer show sensitivity to 

hunger alliesthesia and are unable to learn a conditioned taste aversion (Grill & Norgren, 1978b; 

Kaplan et al., 2000; Schafe et al., 1995). Finally, and most important, discrete forebrain 

manipulations sites in nucleus accumbens, ventral pallidum, and neocortex (e.g., drug 

microinjections, excitotoxic lesions or other manipulations) can powerfully enhance positive 
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‘liking’ reactions to sweetness, whereas other manipulations at some of the same forebrain sites 

abolish ‘liking’ reactions (described further below). Thus, although the basic circuitry needed to 

generate oromotor facial patterns is contained within the brainstem, the forebrain imposes 

hierarchical control over affective aspects of these reaction patterns. 

Lateral Hypothalamus and Hedonic Impact? 

Returning to the question of whether or not LH stimulation did in fact enhance the 

hedonic impact of tastes as a neuropsychological mechanism to increase eating posed above, 

Berridge and Valenstein (1991) electrically stimulated LH and measured its effect on affective 

orofacial responses elicited by sucrose and quinine using the taste reactivity test, as well as 

measuring stimulation-evoked eating behavior. Using this measure of taste hedonic impact, 

Berridge and Valenstein (1991) found that electrical stimulation of LH completely failed to 

enhance positive hedonic reactions to sucrose, despite making the rats eat over four times as 

much food. If anything, ‘disgust’ reactions to sweetness were increased during LH stimulation, 

providing evidence against the hedonic hypothesis for LH stimulated eating. 

However, if LH is not able to generate a hedonic signal, why did LH lesions cause rats to 

respond aversively to the taste of milk, as described by Teitelbaum and Epstein? The answer 

actually appears to be that LH lesions per se do not produce aversion. Rather, damage to a 

nearby structure, the ventral pallidum, is primarily responsible for the positive to negative shift in 

affective reactions. Careful mapping of lesion-induced effects on eating behavior is crucial for 

understanding the underlying neural circuitry (Khan, 2013). Several subsequent mapping studies 

following Teitelbaum and Epstein’s findings indicated that LH damage was not the cause of the 

‘disgust’ reactions. First, it is important to note the electrolytic lesions produced by Teitelbaum 

and Epstein (1962) were large by contemporary standards, damaging structures outside the LH, 
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as well as the LH itself. Those lesions extended as far rostral as to include ventral pallidum, and 

as far caudal as to include premammillary nucleus, thereby damaging ventral pallidum, lateral 

preoptic area, subthalamic nucleus, and portions of the sublenticular extended amygdala. 

Morgane (1961) independently showed that large electrolytic lesions of ventral globus pallidus 

produced aphagia comparable to LH lesions, and while his study did not report whether aversive 

reactions to taste were induced by the globus pallidus lesions, it can be noted that the globus 

pallidus in brain atlases at the time extended ventrally into what is now recognized as ventral 

pallidum. Further localization of function came from an anatomically-detailed study by Schallert 

and Whishaw (1978) which separated LH into anterior and posterior regions, and demonstrated 

that ‘disgust’ induction was not simply due to damage of LH as a whole. Schallert and Whishaw 

showed that only in the anterior half of LH were electrolytic lesions capable of causing the 

‘disgust’ reactions to sucrose, as well as aphagia. By contrast, posterior LH lesions only induced 

passive aphagia without inducing any active aversion or disgust to palatable foods. In our view, 

inspection of the histology figures of Schallert and Whishaw suggests that their anterior LH 

lesions also extended rostrally into the ventral pallidum (VP) and the lateral preoptic area (LPO) 

(pg. 736, Figure 7). 

To more thoroughly localize the site of ‘disgust’ release, Cromwell and Berridge (1993) 

made smaller excitotoxic lesions, comparing lesion sites in VP, rostral LH, LPO, and nearby 

regions of striatum, globus pallidus, extended amygdala, or substantia innominata. Cromwell 

mapped consequent changes in motivated food intake and hedonic taste reactivity on to the sites 

of damage, and found only lesions that damaged VP produced the change in affective responses 

from ‘liking’ to ‘disgust’. That is, even anterior LH/LPO lesions did not produce greater numbers 

of ‘disgust’ reactions to the taste of sucrose if VP was spared, even though aphagia was produced 
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by all lesion sites in LH, LPO and VP. Later studies found that transient inhibition of VP neurons 

via hyperpolarizing muscimol microinjections was enough to cause aversive ‘disgust’ reactions 

to sucrose, even without destroying neurons (Ho & Berridge, 2014; Shimura, Imaoka, & 

Yamamoto, 2006). 

Recently, to more accurately map the site in VP responsible for production of disgust, 

Chao-Yi Ho compared the effects of small excitotoxic lesions to localized pharmacological 

inactivation in LH, VP, and extended amygdala (Ho & Berridge, 2014). Ho and Berridge found 

that the posterior half of ventral pallidum was the primary site for inducing ‘disgust’, both by 

temporary muscimol inactivations and by excitotoxic lesions. Posterior VP sites of 

lesions/inactivations were more effective at inducing ‘disgust’ reactions than anterior VP sites, or 

than any sites outside VP, such as in LH, LPO or extended amygdala. Ho and Berridge’s 

findings suggest that the posterior subregion of VP is especially important for normal hedonic 

impact, because posterior VP is the only site in the brain known so far in which lesions or 

inactivations replace positive hedonic reactions to sweetness with aversive ‘disgust’ reactions. 

Ventral Pallidum Hedonic Hotspot 

Given the apparent importance of VP for generating normal hedonic impact, a related 

question is: does any region of VP induce increases or boost the hedonic impact of a taste? In a 

first demonstration that VP contains a “hedonic hotspot”, namely, a site capable of increasing the 

number of positive ‘liking’ reactions elicited by sweetness, Smith and Berridge (2005) 

performed a microinjection mapping study of VP using the mu opioid receptor agonist DAMGO. 

Smith found that mu opioid receptor stimulation specifically at sites in the caudal half of VP 

caused robust increases in the number of hedonic ‘liking’ reactions elicited by sucrose taste, as 

well as increases in food intake. This site was roughly 0.8mm3 in volume, and localized to the 
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posterior half of VP (and the same site as described above where neuronal damage/inhibition 

causes ‘disgust’). By contrast, the same opioid stimulation in the rostral half of VP suppressed 

‘liking’ reactions to sucrose (i.e., a hedonic coldspot), and suppressed food intake. Lastly, and in 

contrast to the hedonic effects of mu opioid receptor stimulation, microinjections of the GABA 

antagonist bicuculline stimulated food intake throughout the entire VP, but never altered taste 

reactivity orofacial patterns at any VP site (K. S. Smith & Berridge, 2005). 

Ventral Pallidum Orexin Hotspot 

Ho and Berridge recently confirmed that the posterior VP contained an opioid-mediated 

hedonic hotspot, and additionally found that orexin stimulation in the same caudal VP site, via 

microinjections of orexin-A, similarly increased hedonic ‘liking’ reactions to sucrose taste (Ho & 

Berridge, 2013). Orexin (also known as hypocretin) is a peptide implicated in hunger and arousal 

that is only produced in hypothalamus (Baldo, Daniel, Berridge, & Kelley, 2003; Peyron et al., 

1998; Swanson, Sanchez-Watts, & Watts, 2005). A hypothalamic subregion localized to the 

perifornical and mid-tuberal region of lateral hypothalamus contains orexin neurons that appear 

especially important for food and drug reward (Aston-Jones et al., 2010; Harris, Wimmer, & 

Aston-Jones, 2005). Orexin neurons also extend medially to dorsomedial hypothalamus and 

other hypothalamic subregions, where orexin influences arousal, sleep/wake cycles and attention 

(Adamantidis, Carter, & de Lecea, 2010; Espana, Baldo, Kelley, & Berridge, 2001). LH orexin 

neurons project to numerous sites throughout the brain, reaching targets as far caudal as the 

brainstem parabrachial nucleus of the pons, and as far rostral as orbitofrontal cortex (Baldo et al., 

2003; Peyron et al., 1998). Importantly, orexin neurons in LH also appear to project to VP, and 

immunoreactivity for orexin receptors has been found in caudal VP (Marcus et al., 2001), 

suggesting connectivity and receptor mechanisms for functional hedonic effects of orexin in VP. 
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Ho and Berridge compared the effects of orexin microinjections at sites distributed in VP 

and in anterior LH, and found that orexin only increased hedonic ‘liking’ reactions within caudal 

VP (Ho & Berridge, 2013). In that posterior VP hotspot, orexin stimulation selectively increased 

positive ‘liking’ reactions to sucrose, without altering negative ‘disgust’ reactions elicited by 

quinine. Orexin microinjections in nearby lateral hypothalamus or extended amygdala failed to 

alter orofacial responses to either sucrose or quinine. These results collectively show that the 

hotspot of posterior VP can use either orexin or opioid signals to similarly increase the positive 

hedonic impact of a sweet taste. 

Anatomical Basis for the VP hotspot 

The larger anatomical zone in which VP is located has been traditionally called the 

substantia innominata (SI), or unnamed substance. This was due to its lack of distinguishing 

features (as far as was then known), and the confusing nature of what constituted its borders. The 

term substantia innominata, however, was later criticized as too vague (Heimer, Harlan, Alheid, 

Garcia, & de Olmos, 1997). The VP boundaries reveal themselves when tissue is stained for 

enkephalin or substance P; VP produces more enkephalin and substance P than other nearby SI 

regions, and has distinct afferent and efferent patterns from that of the dorsally positioned globus 

pallidus (Groenewegen & Russchen, 1984; Haber & Nauta, 1983), marking it as a relatively 

distinct structure within SI. 

In addition to being anatomically distinct zone, caudal VP has several unique 

characteristics that differ from other VP subregions that may contribute to its hedonic function. 

For example, Kupchik and Kalivas (2013) showed that the electrophysiological signature of the 

neurons in VP change, depending on where they recorded along a rostrocaudal axis. Neurons in 

anterior VP included a mix of “Type I” and “Type II” neurons, whereas posterior VP was 
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characterized solely by Type I neurons. Type I neurons are tonically active and easily excited, 

while Type II neurons have low basal firing rates, and require more stimulation to elicit an action 

potential. In addition to this, Type II neurons morphologically resemble the accumbens medium 

spiny neurons, whereas Type I neurons that predominate in posterior VP are relatively aspiny 

and are somewhat larger than Type II. Although it is still unclear how Type I and II neurons 

differ functionally, it is interesting to note that the change in neuron type follows the rostrocaudal 

functional difference between caudal VP hotspot and rostral VP coldspot sites. 

Nucleus Accumbens Hedonic Hotspot 

        Similar to the VP, the NAc also contains an opioid-mediated hedonic hotspot where 

opioid stimulation can increase ‘liking’ reactions to sucrose taste. The NAc hotspot is 

approximately one cubic millimeter in volume, and is located in the rostrodorsal quadrant of 

medial shell (Castro & Berridge, 2014b; Pecina & Berridge, 2005). This NAc opioid hotspot was 

discovered using a similar microinjection and functional mapping technique that was used for the 

VP hotspot. Microinjections of the mu agonist DAMGO were compared at many sites 

throughout the medial shell of NAc. Results showed that only stimulation within the rostrodorsal 

quadrant of NAc medial shell caused a three-fold increase of ‘liking’ reactions to sucrose (Pecina 

& Berridge, 2005). By contrast, mu receptor stimulation in a similarly-sized hedonic coldspot 

located in the caudal half of NAc medial shell actually reduced hedonic reactions to sucrose. At 

all other locations in medial shell, DAMGO microinjections induced no hedonic change in taste 

reactivity to sucrose. However, DAMGO microinjections at all sites in NAc medial shell 

produced increases in food intake two- to eight-times higher than baseline intake, even at caudal 

sites (Pecina & Berridge, 2005). This pattern demonstrated an anatomical distinction between 

NAc mu opioid stimulation of ‘liking’ (i.e., specific to the rostral hotspot) versus NAc mu 
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stimulation of ‘wanting’ for food (i.e., anywhere in NAc medial shell). The stimulation of 

‘wanting’ also confirmed previous reports that DAMGO microinjections in NAc increased food 

intake at virtually all sites in the NAc, including both shell and core (Bakshi & Kelley, 1993; 

Zhang & Kelley, 2000). Thus, opioid neurocircuitry for enhancing motivated ‘wanting’ to 

consume food rewards is more widely distributed in NAc than opioid circuitry for enhancing 

hedonic ‘liking’ in the same structure. Indeed, opioid mechanisms for ‘wanting’ without ‘liking’ 

extend to several other structures, including regions of amygdala, neostriatum, and prefrontal 

cortex (DiFeliceantonio, Mabrouk, Kennedy, & Berridge, 2012; Mahler & Berridge, 2009; 

Mena, Sadeghian, & Baldo, 2011; Zhang & Kelley, 2000). 

Anatomical Basis for the NAc Hotspot 

        What anatomical basis might help explain the functional existence of a functionally 

unique hotspot for opioid amplification of sensory pleasure, and why is it uniquely able to 

enhance hedonic impact to tastes, compared to other regions of NAc shell? 

        Two independent groups of neuroanatomists have evaluated the anatomical connectivity 

patterns of the NAc rostrodorsal quadrant of medial shell, and found that this hotspot region 

differs from other subregions of medial shell (e.g., caudal shell). Using a double injection of 

anterograde and retrograde tracers, Thompson and Swanson (2010) revealed that the rostrodorsal 

quadrant appears to belong to a different striato-pallido-hypothalamo-thalamo-cortical closed 

circuit loop from other subregions of medial shell. In other words, if one follows the projections 

from the rostrodorsal quadrant of medial shell along a point to point axis, one will end up back in 

the hotspot. This loop travels from the NAc hotspot to particular subregions of pallidum or 

hypothalamus, up to paraventricular nucleus of the thalamus, next passing through the 

infralimbic region of prefrontal cortex, and finally projecting back again to rostrodorsal medial 
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shell. The subregions of each of these structures are distinct from the subregions visited by other 

parallel loops that pass through more posterior regions of medial shell. Exactly how many 

parallel loops pass through medial shell of NAc remains to be elucidated, but it seems clear now 

that there are at least two (visiting rostral vs caudal shell) and possibly additional loops that more 

finely dissect NAc shell into further subregions, each belonging to its own loop (Thompson & 

Swanson, 2010). 

Similarly, Zahm and colleagues (Zahm, Parsley, Schwartz, & Cheng, 2013) recently 

found a related pattern of distinct connectivity that distinguishes the rostral hotspot from more 

caudal subregions of NAc medial shell. Those authors suggest that the rostral hotspot projects to 

particular regions of lateral preoptic area and lateral hypothalamus, and receives inputs from 

infralimbic cortex (analogous to Brodmann’s area 25) and other nearby regions of prefrontal 

cortex such as prelimbic and orbitofrontal cortex. They also suggest that the projection patterns 

of NAc rostral shell are similar to those of lateral septum, compared to the caudal shell, and that 

the rostral zone of medial shell is a unique transition region between NAc and lateral septum. In 

contrast, they suggest the caudal zone is a different transition region blending features of NAc 

and extended amygdala. While the Zahm et al. and the Thompson and Swanson studies differ on 

some points, the overall anatomical scheme presented by the two studies seems to agree that the 

circuitry belonging to the rostrodorsal hotspot quadrant of NAc medial shell is fundamentally 

different compared to the connectivity patterns of the rest of the medial shell, and these 

anatomical differences may in part contribute to the hotspot’s unique abilities to amplify hedonic 

impact of taste sensations. 

        In addition to differences in projection patterns, there may also be other local 

neurobiological features of neurons in NAc medial shell that are relevant to hedonic 
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contributions compared to other NAc components such as core. Meredith et al. (2008) suggest 

that the local characteristics of neurons in NAc medial shell are different from other regions of 

NAc and striatum. For example, the projecting medium spiny neurons (MSNs) within medial 

shell are less spiny and smaller compared to NAc core or dorsal striatum. Furthermore, the 

distinction between different MSNs belonging to a D1/dynorphin/direct pathway versus a 

D2/enkephalin/indirect pathway (a hallmark of dorsal striatum), is somewhat diluted in NAc 

medial shell, where at least 17% of MSNs harbor both D1 and D2 receptors (Bertran-Gonzalez et 

al., 2008; Humphries & Prescott, 2010). Intriguingly, volume ratios of patch/matrix 

compartments in dorsal striatum (as delineated by mu opioid or calbindin binding) may also be 

flipped, or at the very least are not as cleanly split, in nucleus accumbens (Jongen-Relo, 

Groenewegen, & Voorn, 1993; Meredith, Pattiselanno, Groenewegen, & Haber, 1996). Although 

the roles of these neurobiological features is still unclear, some of these unique anatomical or 

cellular features of NAc medial shell might be relevant to its ability to generate hedonic 

functions that are fundamentally different from other regions of striatum. 

A Functional Circuit for Hedonic Processing 

        The existence of multiple hedonic hotspots allows for the possibility that the hotspots 

interact and work together within a coordinated hedonic circuit. A functional circuit would not 

necessarily imply that the hotspots are all directly connected anatomically, since intermediary 

stops could be equally effective in creating a functional circuit. To determine whether at least a 

functional interaction existed, Smith and Berridge unbalanced the circuit by infusing DAMGO 

into one hotspot (e.g. NAc), while simultaneously infusing naloxone, an opioid antagonist, into 

another hotspot (e.g. VP) (K. S. Smith & Berridge, 2007). The guiding hypothesis was that if the 

simultaneous opioid neurotransmission is required in both hotspots, essentially creating 
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unanimous opioid votes for enhancement of ‘liking’ in both sites, then blocking endogenous 

opioid signals in one hotspot should prevent exogenous opioid stimulation by DAMGO 

microinjection in the other from causing any hedonic enhancement. The results supported this 

hypothesis: opioid blockade in either the VP or NAc hotspot prevented DAMGO enhancement 

of positive ‘liking’ reactions in the other hotspot. Further supporting the functional relationship 

between the NAc and VP hotspots, it was also found that DAMGO activation in one hotspot 

enhanced Fos activity both locally and in the other hotspot, demonstrating their functional 

interactions could be detected via neural markers of genomic transcription. It should be noted 

that although naloxone in VP prevented DAMGO-enhanced ‘liking’ in the NAc hotspot, 

enhancements of eating by NAc DAMGO were still robustly generated, suggesting again that 

there are independent controls for hedonic ‘liking’ versus motivated ‘wanting’ of the same food 

reward. 

        In a further electrophysiological demonstration of NAc-VP hotspot interactions, Smith et 

al. (2011) recorded taste reactivity responses and extracellular neuronal firing patterns in the VP 

hotspot during an intraoral infusion of sucrose. They found that neurons in the VP hotspot 

appeared to encode impact of sucrose in neuronal firing, correlating with behavioral ‘liking’ 

reactions. This hedonic pattern manifested itself by steadily increasing the neural firing rate in a 

slow-onset but sustained burst of action potentials, becoming evident during the first 1.5 sec after 

the sweet taste was introduced, and sustaining this elevation in firing for the duration of the 10 

sec sucrose infusion. DAMGO microinjection into the NAc hotspot elevated both behavioral 

orofacial reactions to sucrose as well as the hedonically correlated neural signal associated with 

the sweet taste. In behavioral contrast, amphetamine microinjections that potentiated dopamine 

transmission in the NAc hotspot only increased food intake and a more transient VP neural 
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signal burst that encoded cue-triggered ‘wanting’, and correlated with amount of food eaten, but 

had no effect on behavioral taste reactivity ‘liking’ patterns or on the hedonic-encoding VP 

neural response to sucrose. Altogether, these results show that the VP and NAc hotspots interact 

to form a larger functional circuit that mediates the hedonic reaction to a palatable taste.  

Summary of the Present Experiments 

        Presented within this dissertation are a series of experiments that seek to extend our 

understanding of the neural mechanisms of hedonic ‘liking’ and aversive ‘disgust’. Specifically, 

I manipulated the known hotspots in nucleus accumbens and ventral pallidum via drug 

microinjection or optogenetic stimulation, and pharmacologically mapped two novel hotspots in 

the orbitofrontal cortex and insula. I found that opioid or orexin stimulation appear to generate 

overlapping anatomical zones in NAc, OFC and insula within which the hedonic impact of 

palatable sucrose can be amplified, independent of these neurochemical stimulations’ ability to 

generate intense ‘wanting’ for food. I also found that optogenetic stimulation of the VP hotspot 

or LH inputs to the VP hotspot could likewise enhance hedonic ‘liking’ reactions to sucrose, 

further implicating the LH-orexin system in reward and affect. 

Chapter 2: Opioid Hedonic Hotspot in Nucleus Accumbens Shell: Mu, Delta, and Kappa Maps 

for Enhancement of Sweetness ‘Liking’ and ‘Wanting’. 

        Previous work in our lab has pinpointed the rostrodorsomedial shell of NAc as a site for 

mu opioid stimulated enhancement of sucrose ‘liking’. By contrast, these same microinjections 

increased food intake at any site in NAc, even at caudal sites that concurrently appeared to 

decrease affective ‘liking’ to sucrose. Here, I replicate these initial findings, and extend my 

investigation to include delta and kappa opioid receptor subtypes. I found that stimulation of any 

of the three receptors was sufficient to enhance hedonic ‘liking’ for sucrose, so long as the sites 
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were within the previously mapped rostral hotspot. By contrast, stimulations in caudal NAc 

actually suppressed ‘liking’ reactions. The positive effects observed in rostral shell were 

corroborated by a conditioned place preference paradigm in a separate group of rats. Unlike the 

consistent effects observed after opioid receptor stimulation during taste reactivity, the three 

opioid subtypes differed on their effects on food intake. Mu stimulation increased food intake at 

all sites, delta stimulation only enhanced food intake in the rostral hotspot, and kappa stimulation 

never consistently enhanced intake at any rostrocaudal site. Altogether, these results confirm the 

existence of the rostral hotspot, and posit a role for delta and kappa receptors in reward function. 

Chapter 3: Orexin in Rostral Hotspot of Nucleus Accumbens Enhances Sucrose ‘Liking’ and 

Intake but Scopolamine in Caudal Shell Shifts ‘Liking’ Toward ‘Disgust’ and ‘Fear’. 

        Recently our lab found that orexin stimulation in the caudal VP hotspot could amplify 

‘liking’ similarly to opioid enhancement. I sought to extend these findings by similarly mapping 

the hedonic and motivated effects of orexin stimulation in NAc medial shell. I found that orexin 

generated a nearly identical profile to mu opioid stimulation, in that rostral stimulations 

enhanced hedonic impact, and simulations throughout medial shell enhanced food intake of 

palatable M&Ms. In the same rats, I also examined the effects of acetylcholine muscarinic 

blockade. Previous work by other labs has shown that muscarinic blockade via scopolamine 

robustly reduces food intake (even after a concurrent injection of the mu agonist DAMGO) and 

generates intense taste and place avoidances, suggesting that basal acetylcholine may be 

important for reward function. I found that muscarinic blockade decreased hedonic sucrose 

‘liking’, increased bitter quinine ‘disgust’, enhanced fearful-defensive treading, and decreased 

food intake. Collectively, these results indicate that both orexin and acetylcholine neurochemical 

systems are capable of modulating hedonic and motivated behaviors in NAc medial shell. 
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Chapter 4: Cortical Maps of Hedonic Impact and Motivation: Distinct Roles for Orbitofrontal 

cortex and Insula 

        So far, only subcortical mechanisms mediating hedonic impact have been explored. To 

determine what role cortex plays in ‘liking’ and motivation, I stimulated mu opioid or orexin 

receptors throughout OFC and insula and measured consequent changes in taste reactivity or 

food intake behaviors. I found that rostromedial OFC and caudal insula each contain a localized 

hedonic hotspot, and that a hedonic coldspot spanned the transition zone between caudolateral 

OFC and rostral insula, continuing unbroken until the caudal insula hotspot. The maps generated 

by the two drugs were nearly identical, suggesting common sites of action. By contrast, food 

intake was limited to rostral OFC, with the effects becoming weaker in caudolateral OFC. Insula 

did not consistently increase food intake at any rostrocaudal site. 

Chapter 5: Ventral Pallidum Hotspot for Sweetness ‘Liking’ is Modulated by Lateral 

Hypothalamus Circuitry for ‘Wanting’ to Eat. 

        Collectively, there is now evidence for at least four hedonic hotspots, and each of these 

hotspots can also be activated by orexin. Because orexin is only produced within a localized zone 

in lateral hypothalamus, it is likely that LH orexin-containing neurons functionally project to the 

hotspots and directly activate or inhibit their processing online. To test this hypothesis, I injected 

a viral vector carrying channelrhodopsin protein into either lateral hypothalamus or the ventral 

pallidum hotspot, and implanted fibers in LH (LH-LH) or VP (VP-VP; LH-VP). Animals were 

then tested on taste reactivity and food intake while directly stimulating LH (LH-LH), the VP 

hotspot (VP-VP), or lateral hypothalamic projections that terminate in the VP hotspot (LH-VP). I 

found that direct stimulation of the VP hotspot exclusively amplified hedonic ‘liking’ reactions 

to sucrose by 300% without altering orofacial reactions to quinine, whereas direct stimulation of 
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LH solely amplified motivated food ‘wanting’ by increasing intake of palatable M&M candies 

by 150%. Interestingly, stimulation of LH terminals in the VP hotspot increased both hedonic 

reactions to sucrose and food intake. These findings suggest that although LH itself may not 

contain a hedonic hotspot, it is able to specially recruit and activate the VP hotspot. 
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CHAPTER 2 

OPIOID HEDONIC HOTSPOT IN NUCLEUS ACCUMBENS SHELL: MU, DELTA, 

AND KAPPA MAPS FOR ENHANCEMENT OF SWEETNESS ‘LIKING’ AND 

‘WANTING’ 

Introduction 

The medial shell of nucleus accumbens (NAc) contributes to the hedonic impact of sensory 

pleasures (e.g., ‘liking’ reactions to sweetness), as well as incentive motivation to consume 

foods, drugs and other rewards (e.g., ‘wanting’) (Grueter, Rothwell, & Malenka, 2012; 

Michaelides et al., 2013; Resendez et al., 2013; Zhang, Balmadrid, & Kelley, 2003). Disorders 

such as drug addiction, binge eating or depression may involve mesocorticolimbic dysfunction of 

‘liking’ or ’wanting’ processes (Berner, Bocarsly, Hoebel, & Avena, 2011; K. C. Berridge, Ho, 

Richard, & DiFeliceantonio, 2010; Ito, Robbins, & Everitt, 2004; Koob, 2000; Nathan & 

Bullmore, 2009). 

An anatomically-localized “hedonic hotspot” has been found within the rostrodorsal 

quadrant of NAc medial shell: a roughly cubic-millimeter sized subregion where mu opioid 

stimulation via microinjection of DAMGO can double the hedonic impact of sweet tastes (Pecina 

& Berridge, 2005; K. S. Smith & Berridge, 2005, 2007; K. S. Smith et al., 2011).  By contrast, 

the same mu opioid stimulation in other subregions of medial shell fails to enhance ‘liking’ 
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reactions to sucrose (Pecina and Berridge, 2005).  As part of a larger functional circuit,the NAc 

hotspot interacts with a second anatomical hotspot in the ventral pallidum to amplify ‘liking’ 

reactions tosweetness (K. S. Smith & Berridge, 2007; K. S. Smith et al., 2011).  

Separable from hedonic impact, mu opioid stimulation also increases the motivation to eat 

(‘wanting’) both in the shell hotspot and at many additional sites distributed throughout the entire 

NAc, and in several limbic or striatal structures beyond (with or without also enhancing ‘liking’) 

(DiFeliceantonio et al., 2012; Gosnell, Levine, & Morley, 1986; Katsuura & Taha, 2010; Mahler 

& Berridge, 2012; Mena et al., 2011; Pecina & Berridge, 2005, 2013; Ragnauth, Moroz, & 

Bodnar, 2000; K. S. Smith et al., 2011; Woolley, Lee, & Fields, 2006; Zhang & Kelley, 2000; 

Zheng et al., 2010).  

In contrast to mu stimulation, delta or kappa stimulation in NAc has mixed or negative 

effects on food intake.  For delta stimulation, several studies reported increases in consumption 

(Bakshi & Kelley, 1993; Majeed, Przewlocka, Wedzony, & Przewlocki, 1986; Ragnauth, 

Znamensky, Moroz, & Bodnar, 2000; Zhang & Kelley, 1997), whereas other studies reported no 

change (Katsuura & Taha, 2010). For kappa stimulation in NAc, most studies report no change 

in intake (Bakshi & Kelley, 1993; Zhang & Kelley, 1997) (although a few early systemic 

administration studies reported increased intake (Cooper, Jackson, & Kirkham, 1985; Jackson & 

Cooper, 1985)), and dynorphin/kappa stimulation at most sites in the brain is generally 

associated with aversive effects (Bals-Kubik, Ableitner, Herz, & Shippenberg, 1993; Knoll & 

Carlezon, 2010; Land et al., 2008; Wee & Koob, 2010). 

Here we aimed to better identify and map mu, delta or kappa stimulation effects in NAc 

medial shell, and to compare potential localizations of function for sensory pleasure versus 

motivation to eat, as well as the inducement of a conditioned place preference.   
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Materials & Methods  

Subjects  

Male Sprague Dawley rats, weighing 300-450g at surgery (total, n = 84; behavioral taste 

reactivity and intake groups, n = 21;  behavioral conditioned place preference test groups, n = 39; 

dedicated Fos plume radius groups, n = 24) were housed in pairs at ~21°C on a reverse 12 h 

light/dark cycle. All rats had ad libitum access to both food and water in their home cage. All 

experimental procedures were approved by the University Committee on the Use and Care of 

Animals at the University of Michigan.  

Surgery  

Rats were anesthetized with ketamine hydrochloride (80mg/kg, i.p.) and xylazine (5mg/kg, 

i.p.), pretreated with atropine (0.05 mg/kg, i.p.) to prevent respiratory distress, and placed in a 

stereotaxic apparatus (David Kopf Instruments), with the incisor bar set at 5.0mm above intra-

aural zero to avoid cannula penetration of lateral ventricles. Rats received bilateral NAc 

implantation of permanent microinjection guide cannulae (14mm, 23-gauge, stainless steel) 

individually aimed at sites staggered throughout the rostro-caudal extent of medial shell. Sites 

were located between +3.1 and +2.7mm anterior from bregma (AP), bilateral ±0.9mm 

mediolateral (ML), and between -5.7 and -6.2mm dorsoventral (DV). Site coordinates were 

staggered across individuals so that targets for the group as a whole filled the entire dorsal two-

thirds of NAc medial shell, but for a given rat coordinates were bilaterally symmetrical and as 

nearly identical as possible in placement on both sides. Microinjection guide cannulae were 

anchored to the skull using surgical screws and dental acrylic, and stainless-steel obturators (28 

gauge) were inserted to avoid occlusion except for during behavioral tests. 

For rats in the taste reactivity testing group, bilateral oral cannulae were additionally 
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implanted in the same surgery to permit oral infusions of sucrose solutions [polyethylene (PE)-

100 tubing]. Oral cannulae entered the mouth in the upper cheek pouch lateral to the first 

maxillary molar, ascended beneath the zygomatic arch, and exited the skin at the dorsal head cap 

(Grill & Norgren, 1978a). Oral cannulae did not disrupt normal eating. After surgery, each rat 

received subcutaneous injections of chloramphenicol sodium succinate (60mg/kg) to prevent 

infection and carprofen (5mg/kg) for pain relief. Rats received carprofen again 24 h later and 

were allowed to recover for one week before any behavioral testing occurred. 

Drugs and NAc microinjections 

 Rats were gently cradled by hand in the experimenter’s lap during NAc microinjections. 

PE-20 polyethylene tubing was connected to stainless-steel microinjection cannulae (16mm, 29 

gauge) extending 2mm beyond the guide cannulae to reach NAc targets. On test days, drug or 

vehicle solutions were brought to room temperature (~21ºC), and inspected to confirm the 

absence of precipitation prior to microinjection. Drugs were prepared at the beginning of each 

test series, and then either frozen (ACSF, DAMGO, DPDPE) or kept refrigerated (U50488H) 

across consecutive test days. All drugs were dissolved in a vehicle of artificial cerebrospinal 

fluid (ACSF) and microinjected over a 1min period at a volume of 0.2µl per side at a speed of 

0.2µl/min by syringe pump. Injectors were left in place for 1min following microinjection to 

allow drug diffusion, after which obturators were replaced, and rats were immediately placed in 

the testing chamber. Microinjection solutions contained one of the following: 1) DAMGO, a 

selective mu receptor agonist at a dose of 0.05µg/0.2µl per side; 2) DPDPE, a selective delta 

receptor agonist at a dose of 3.1µg/0.2µl per side; 3) U50488H, a selective kappa receptor 

agonist at a dose of 0.186µg/0.2µl per side, or 4) ACSF vehicle alone in a volume of 0.2µl per 

side (vehicle control condition).  Order of drugs and vehicle were counterbalanced across rats.  
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Rats received only one drug or vehicle microinjection per day. Drug doses were chosen based on 

previous studies by Zhang and Kelley (1993) and by Smith and Berridge (2011).  

Taste reactivity testing  

The taste reactivity test (Grill & Norgren, 1978a; Steiner, 1973; Steiner et al., 2001) was 

used to measure affective orofacial reactions of rats to a 1 ml volume of sucrose solution infused 

into the mouth via oral cannula. Tests occurred during 1min infusions administered at times 

when peak pharmacological effects could be expected (25min for vehicle, DAMGO, U50488H, 

or 15min for DPDPE) after drug microinjection (Bakshi & Kelley, 1993). To infuse sucrose 

solution into the mouth, a syringe containing sucrose in a syringe pump (1.0%; 0.029M; 1ml per 

test) was attached via hollow tubing (PE-50 connected to a PE-10 delivery nozzle) to a rat’s oral 

cannula. A 1ml volume of sucrose was infused evenly over a period of 1min duration. Orofacial 

taste reactivity responses were video recorded via close-up lens and an angled mirror placed 

underneath the transparent floor for subsequent slow-motion video analysis.  

Taste reactivity video scoring  

Hedonic, aversive, and neutral taste reactivity patters were scored off-line in slow motion 

(1/30 s frame-by-frame to 1/10th actual speed). Hedonic responses were classified as rhythmic 

midline tongue protrusions, lateral tongue protrusions, and paw licks (K. C. Berridge, 2000). 

Aversive responses were classified as gapes, head shakes, face washes, forelimb flails, and chin 

rubs. Neutral responses were classified as passive dripping of solution out of the mouth, ordinary 

grooming, and rhythmic mouth movements. A time-bin scoring procedure was used to ensure 

that taste reactivity components of different relative frequencies still contribute equally to final 

affective hedonic/aversive totals, and that frequent components such as rhythmic tongue 

protrusions do not swamp rare but equally informative components, such as lateral tongue 
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protrusions (K. C. Berridge, 2000). Specifically, rhythmic mouth movements, passive dripping, 

and paw licking reactions, which occur in long bouts, were scored in 5 s time bins (e.g., 5 s 

continuous paw licking behavior equals one bout occurrence). Rhythmic midline tongue 

protrusions and chin rubs, which occur in shorter bouts, were scored in 2 s time bins. Lateral 

tongue protrusions, gapes, forelimb flails, and head shakes, which typically occur as discrete 

events, were scored as single occurrences each time they occurred (e.g., one gape equals one 

occurrence). Individual totals were calculated for hedonic and aversive categories. A hedonic 

reaction total was quantified as the sum of scores for lateral tongue protrusion, rhythmic tongue 

protrusion, and paw lick scores. An aversive reaction total was quantified as the sum of gape, 

head shake, face wash, forelimb flail, and chin rub scores.  

Food intake testing 

Spontaneous eating behavior was video-recorded and voluntary food consumption measured 

in a 1hr free intake test that began 1min after the taste reactivity test on each microinjection day. 

Rats were habituated to the food intake testing chamber for 3 daily 1hr sessions prior to the first 

microinjection day. Each food intake chamber (23 x 20 x 45 cm) contained 1 cm depth of 

corncob bedding, and piles of two foods: palatable chocolates (M&Ms, ~20 g) and standard 

chow pellets (Purina, ~20 g); a water bottle was also always available. Amounts of M&Ms and 

chow were weighed before each test and again after the test to calculate amount eaten (chamber 

was inspected for spillage, and incorporated into amount remaining).  All behavior in the 

chamber was also video recorded during the 60min test, and scored later offline for video 

analysis by a researcher blind to the drug microinjection condition. Videos were scored for 

eating behavior (duration in seconds), water drinking behavior (in seconds), grooming behavior 

(in seconds), and for number of bouts of food sniffs, food carrying (grasping and transport of 
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food by 2 or more steps), cage crosses, and rears (each counted separately). 

Conditioned place preference test 

Conditioned place preference/avoidance was trained and tested using a three-compartment 

apparatus (Bardo & Bevins, 2000; Reynolds & Berridge, 2002; Tzschentke, 1998). Two large 

side chambers (28 × 21 × 21 cm) surrounded a smaller central compartment (12 × 21 × 21 cm).  

To allow distinctive sensory cues, one side compartment had an overhead light, black-colored 

walls, a wire grid floor (~1 cm spacing), and scent of soap, whereas the other side compartment 

had no extra lighting, white walls, a wire mesh floor (~ 2mm spacing), and scent of 70% ethanol.  

To first assess any pre-existing preference, rats were pre-tested by being placed in the center 

compartment and allowed to freely explore all three chambers for 30 m while behavior was 

video recorded. Preference was calculated by the ratio of cumulative time spent in each side 

compartment. Whichever compartment an individual rat spent more time in was designated its 

originally-preferred compartment. Opioid agonist microinjections were paired against each rat’s 

original preference (biased procedure), so that DAMGO (0.05mg/0.2µl per side), U50488H 

(0.186mg/0.2µl per side) or DPDPE (3.1mg/0.2µl per side) microinjections were paired with a 

rat’s unpreferred compartment, and vehicle microinjections were paired with the originally-

preferred compartment (Guo, Garcia, Taylor, Zadina, & Harlan, 2008; Tzschentke, 1998; Wang 

et al., 2012). Each rat received only one type of opioid agonist, which was paired twice with the 

same chamber (and vehicle paired twice with the other chamber) in counter-balanced order. 

Between-group comparisons were made to compare strength of conditioned preferences across 

the three types of opioid agonist.  

On the preference test day (6th day), rats did not receive any microinjection, and instead 

were placed directly into the central compartment and allowed to freely explore the entire 
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apparatus for 30min. Animal behavior during test sessions was videotaped and subsequently 

scored for cumulative time (seconds) spent in each compartment location. A rat was scored as 

being inside a particular compartment whenever its head and both forelimbs were within the 

boundary.  

Histology and Fos-like protein immunohistochemistry 

Following behavioral testing, rats were deeply anesthetized with an over-dose of sodium 

pentobarbital. Rats in which Fos plumes were measured were perfused and brains treated as 

described previously (Reynolds & Berridge, 2008; Richard & Berridge, 2011b). Fos plumes 

surrounding microinjection tips were assessed in rats that had been behaviorally tested in taste 

reactivity and food intake (n = 10), and additionally in a separate dedicated Fos group (n = 14) 

that was included in order to detect the maximal spread of neuronal impact after a single drug 

microinjection (Richard & Berridge, 2011b). In the behavioral group, Fos was assessed after a 

final (sixth) drug or vehicle microinjection. A dedicated group was also used for Fos because 

previous results suggested that repetition of up to six serial microinjections during behavioral 

tests can lead to gradual plume shrinkage by the 7th microinjection, possibly due to gliosis or 

necrosis around the microinjection tip (Richard & Berridge, 2011b). If used alone, shrunken 

plumes could give rise to overly-precise estimates of localization of function in brain maps (due 

to underestimation of the spread of drug impact). In the dedicated group, which could be 

expected to have maximum drug spread, a single drug or vehicle microinjection in NAc medial 

shell was administered under conditions identical to the first day of testing for behavioral rats.  

Rats were then anesthetized and transcardially perfused 90min after their final or sole bilateral 

microinjection of vehicle (n = 4), DAMGO (n = 6), U50488H (n = 6), or 80 minutes after their 

final or sole bilateral microinjection of DPDPE (n = 6). Rats with no surgery were also included 
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in a “normal” group (n=2) to assess counts in naïve brains. Brain slices were processed for Fos-

like immunoreactivity using normal donkey serum, goat anti-c-fos (Santa Cruz Biotechnology), 

and donkey anti-goat Alexa Fluor 488 (Invitrogen). Sections were mounted, air-dried, and 

coverslipped with Prolong Gold antifade reagent (Invitrogen). Zones where the local expression 

of fluorescent Fos was elevated in neurons surrounding microinjection sites (“Fos plumes”) were 

assessed via microscope as described previously (Reynolds & Berridge, 2008). Behaviorally-

tested rats had brains removed and fixed in 10% paraformaldehyde for 1-2 d and in 25% sucrose 

solution (0.1M NaPB) for 3 d for assessment of microinjection site locations. Brains were sliced 

at 60µm on a freezing microtome, mounted, air-dried, and stained with cresyl violet for 

verification of microinjection sites. Bilateral microinjection sites for each rat were placed on 

coronal slices from a rat brain atlas (Paxinos & Watson, 2007), which were used to extrapolate 

the position of each site on a sagittal map of medial shell.  

Mapping behavioral effects of NAc shell microinjections in the sagittal plane allows for the 

presentation of all sites on the same map of the entire rostrocaudal and dorsoventral extents of 

NAc medial shell. Functional effects on hedonic and motivated behaviors were mapped using 

color coding to express the intensity changes in affective and motivated behaviors for individual 

behaviorally tested rats. Map symbols were sized to match the maximal diameter of Fos plumes 

measure as described below. For statistical comparison of rostral versus caudal behavioral 

effects, NAc sites were classified as being in rostral half of shell if located more anterior than 

+1.5mm ahead of bregma (between +1.5 to +2.4), and as in caudal half of shell if located 

posterior to  +1.5 (i.e., between +0.4 to +1.5 bregma).  

Regions for statistical analysis 

Anatomical regions of interest in medial shell were defined a priori for statistical 
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comparisons.  For each behavioral effect, first, rostral versus caudal halves of medial shell were 

contrasted. This was followed by a finer-grained contrast of dorsal versus ventral quadrants 

within each half, in order to separately compare all 4 quadrants (e.g., rostrodorsal, rostroventral, 

caudodorsal, caudoventral quadrants). Nonparametric comparisons were made using Friedman’s 

two-way ANOVA or Kruskal-Wallis ANOVA, followed by appropriate Wilcoxon or Mann-

Whitney U tests to make paired comparisons.   

Results 

Overview 

Overall, each of the three opioid agonists produced enhancements of 200% to 400% for 

positive orofacial reactions elicited by the hedonic impact of sucrose taste infusions when 

microinjections were made at NAc sites within the rostrodorsal hotspot of medial shell. But none 

of the opioid agonists enhanced hedonic reactions at any other medial shell sites that were 

outside the hotspot (e.g., anywhere in caudal shell) (Figures 2.2 & 2.4).  When microinjection 

sites were located within the rostrodorsal quadrant of medial shell, the number of positive 

hedonic orofacial reactions elicited by the taste of sucrose was doubled to quadrupled by 

microinjections of mu, delta, or even kappa opioid agonists (DAMGO, DPDPE, or U50488H) 

compared to within-subject control levels measured after vehicle microinjections in the same rats 

(Friedman’s Two-Way ANOVA, X2 = 12.573, p = 0.006). No change was statistically detectable 

for sites in the ventral half of the rostral shell (i.e., rostroventral quadrant) (Friedman’s Two-Way 

ANOVA, X2 = 5.57, p = 0.134). In contrast, when microinjection sites were located more 

posteriorly in the caudal half of NAc medial shell, each of the three agonists suppressed hedonic 

reactions to sucrose, cutting levels to roughly one-half of vehicle control levels. The hedonic 

suppression sites in posterior medial shell were anatomically clustered together sufficiently to 
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reveal a caudal ‘hedonic coldspot’ for reducing positive hedonic impact (Friedman’s Two-Way 

ANOVA, X2 = 10.675, p = 0.014).   

Conditioned place preference results confirmed that rostrodorsal hotspot sites induced 

positive reward effects for both mu and kappa agonists (Kruskal-Wallis Test, X2 = 16.599, p = 

0.0001), and a similar trend towards a positive rostrodorsal cluster for the delta agonist (Figure 

2.3). Sites in the caudal half of medial shell tended to produce a trend towards place avoidance 

for kappa stimulation, and no consistent place preference effects for mu or delta stimulation.  

Finally, opioid stimulations had varied effects on food intake depending on agonist and 

location, described below (X2 = 11.796, p = 0.008).  

Fos plume measures: anatomical spread of local drug impact 

Measurements of Fos plume sizes indicated first, that repetition of several serial 

microinjections for behavioral induced shrinkage in the diameter of final Fos plume produced by 

a drug in the same rat (i.e., a rat’s 6th drug microinjection) compared to a 1st microinjection 

diameter for that drug in naïve rats.  For all three opioid agonists, the spread of impact shrunk by 

15% to 75% in rats that had been previously behaviorally-tested, compared to the diameter of 

plumes induced by the same drug in the dedicated Fos groups, which received only a single 

microinjection (Figure 2.1; DAMGO mu = 33% shrinkage, F(1,585) = 8.251, p = 0.004; DPDPE 

delta = 75% shrinkage,  F(1,781) = 120.437, p = 0.0004; U50488H = 15%, F(1,821) = 7.877, p = 

0.005).  Shrinkage induced by serial repetition confirmed our supposition that a dedicated Fos 

group provides more accurate measures of the maximum spread of drug impact, induced by each 

opioid agonist at the doses and volumes used here, than measuring final-microinjection plumes 

in a previously-tested behavioral group.  For this reason, all plume sizes described below and 

used for mapping symbols come from the dedicated Fos groups that were histologically assessed 
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after receiving a single microinjection of their drug or vehicle, and which had the maximum Fos 

plume diameters. 

The functional spread of each opioid agonist microinjection had a radius between 0.15 – 

0.2mm, and a total local volume between 0.014– 0.034mm3, as assessed by Fos plumes (Figure 

2.1). Fos expression was elevated by opioid agonist microinjections within those zones compared 

to expression levels after vehicle microinjections, or compared to similar sites in normal control 

brains. Microinjections of the mu agonist DAMGO generated Fos plumes with a total radius of 

0.15mm (0.014mm3 volume), defined as an elevation >150% over normal tissue in the number of 

neurons expressing Fos protein at points surrounding the microinjector tip (F(4,2776) = 28.193, p = 

0.0001).  These contained a smaller central plume with a radius of 0.08mm (0.002mm3 volume), 

defined as >150% elevation over vehicle microinjection levels at corresponding points.  Vehicle 

microinjections and cannula implants evoke modest Fos elevations on their own, and therefore a 

higher drug-induce elevation is required to exceed 150% of vehicle-control levels than is 

required to exceed 150% of normal-control levels measured in unoperated tissue.  For that 

reason, the inner intense zone of >150% vehicle elevation in Fos is smaller than the outer zone of 

>150% elevation over normal spontaneous levels of Fos expression.   Delta agonist DPDPE 

microinjections produced >150% normal radius of 0.20mm (0.034mm3 volume), and again a 

slightly smaller radius of 0.15mm compared to vehicle control levels. Kappa agonist U50488H 

microinjections produced a radius of 0.15mm (0.014mm3 volume) >150% elevation over normal 

tissue, and a slightly smaller radius of 0.13mm compared to control vehicle plumes. The 

averaged diameters of Fos plumes measured for each agonist were used to set its symbol size for 

maximal impact spread in functional maps (Figures 2.2-2.4).  These measurements were also 

used therefore to calculate the volume of rostrodorsal hedonic hotspot and caudal hedonic 
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coldspot derived from the functional maps. All other information in function maps shows 

behavioral effects of drug microinjections on taste reactivity and food intake at depicted sites 

(symbol colors depict effect intensities; symbol placements depict site locations; bar graphs 

depict behavioral intensities at AP or DV stereotactic levels). 

Rostrodorsal localization of hedonic enhancement in medial shell  

At sites in the rostrodorsal quadrant of medial shell, the number of positive hedonic 

reactions elicited by the taste of sucrose was more than doubled by DAMGO, DPDPE or 

U50488H microinjections (Figure 2.2) (Friedman’s Two-Way ANOVA, X2 = 12.573,  p = 0.006; 

described separately below).  Hedonic enhancements produced within the rostrodorsal quadrant 

were always greater than produced by the same drugs in any of the other three quadrants of 

medial shell (X2 = 24.723, p = 0.0001), which all failed to produce any increase over vehicle 

levels in the number of positive reactions elicited by sucrose (X2 = 5.57, p = 0.134).   

Mu localization in rostral hotspot: Mu receptor stimulation by DAMGO microinjections at 

sites within the rostrodorsal quadrant nearly quadrupled the number of hedonic reactions elicited 

by sucrose taste (median = 400%, Z = -3.059, p = 0.002). That localized mu enhancement was 

significantly greater compared to the other three quadrants of medial shell (Z = -3.114, p = 

0.001).  

Delta localization in rostral hotspot 

Delta stimulation by DPDPE microinjections in the rostrodorsal quadrant nearly tripled 

hedonic reactions elicited by the taste of sucrose compared to vehicle levels in the same rats 

(median = 292%; Z = -2.346, p = 0.019). Again, the rostrodorsal delta enhancement was 

significantly higher compared to the other three quadrants of medial shell (Z = -2.926, p = 

0.002).  
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Kappa localization in rostral hotspot 

Perhaps most surprisingly, even kappa stimulation by U50488H microinjections inside the 

rostrodorsal quadrant more than doubled positive hedonic reactions to sucrose (median = 225%, 

Z = -2.703, p = 0.007). Kappa enhancement in the rostrodorsal quadrant was significantly higher 

compared to the other three quadrants (Z = -2.744, p = 0.004).  Although this is the first report to 

our knowledge that kappa opioid stimulation can enhance sensory pleasure impact in any brain 

region, we emphasize that kappa hedonic enhancement was observed only for sites within the 

rostrodorsal hotspot.  

Thus, within the rostrodorsal quadrant, all three opioid agonists produced increases that 

were valence-specific to positive hedonic orofacial reactions to sucrose (e.g., rhythmic and 

lateral tongue protrusions, and paw licks). The number of aversive reactions (e.g., gapes) 

remained near zero and never was altered, even by opioid agonist microinjections in the 

rostrodorsal quadrant (Friedman’s Two-Way ANOVA, X2 = 5.567, p = 0.135). Finally, although 

the magnitude of hedonic enhancement nominally varied from two-fold for kappa to three-fold 

for delta and up to four-fold for mu within the rostrodorsal hotspot, those magnitudes of increase 

did not differ statistically from each other across agonists (Friedman’s Two-Way ANOVA, X2 = 

3.455, p = 0.178), suggesting that within the hotspot boundaries all three types of opioid 

stimulation produce hedonic enhancements of comparable intensity.    

Defining anatomical boundaries for opioid hedonic enhancement and suppression  

To more precisely map its anatomical boundaries, we operationally defined the hotspot as a 

spatial region containing contiguous plume-diameter sites which produced hedonic reaction 

elevations of at least 150% (compared to vehicle-control levels in the same rat). Defined that 

way, the rostrodorsal hotspot extended dorsally to the top of NAc shell, and was anatomically 
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bounded by lateral septum and the lateral ventricles. Ventrally, the hotspot extended just past the 

dorsoventral midpoint in medial shell, and touched the islands of Calleja.  Medially, the hotspot 

extended to the medial edge of shell, and laterally extended to the edge of the NAc core. Relative 

to stereotaxic placements, the entire rostrocaudal extent of the hotspot ran approximately from 

+2.20mm anterior to bregma (none of our sites hit further rostral portions of NAc) posteriorly to 

+1.5mm bregma, or almost to the AP midpoint of the medial shell. The ventral boundary of the 

hotspot in our map was not as clear as we would have wished because our microinjection sites 

the most ventral strip of the medial shell.  Sparseness of ventral sites make it more difficult to 

have full confidence in the exact placement of the ventral boundary for the hedonic hotspot. 

However, there appeared to be a trend in the rostral bar graphs of Figure 2.2 suggesting a decline 

in the intensity of DAMGO hedonic enhancement as hotspot sites moved ventrally in shell, 

potentially matching the ventral boundary originally outlined for the mu hotspot (Pecina & 

Berridge, 2005). The centers of microinjection sites within the hotspot ranged within 

approximately 1.1mm DV X 0.5mm ML X 0.8mm AP (dorsoventral (DV): -6.2 to -7.3mm; 

mediolateral (ML): ±0.4 to ±0.9mm; anteroposterior (AP): +2.4 to +1.6mm). Given that 

DAMGO produced Fos plumes with  radii extending to 0.15mm at its maximum extent (defined 

as >150% elevation over normal unoperated NAc tissue), that implies that the range of Fos 

elevation produced by those microinjection sites would extend along a  DV axis of 1.4mm, ML 

of 0.8mm, and AP of 1.1mm.   

Regarding cubic volume, the coordinates above were used to calculate a total volume of 

~1.2mm3 for the mu hotspot where >150% enhancements in hedonic reactions were produced. 

Using a smaller Fos plume based on Fos elevation >150% over Fos levels produced by vehicle 

microinjections (for the same points surrounding the microinjection tip) as a more conservative 
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estimate of DAMGO spread of impact, the mu hotspot volume would decline slightly to 

~0.8mm3.  These values of 1.2mm3 and 0.8mm3 essentially bracket the original 1.0mm3 estimate 

of the volume of the NAc mu hotspot (Pecina & Berridge, 2005).  For DPDPE enhancements, 

the delta hotspot volume was estimated between 1.2mm3 and 1.62mm3. For U50488H 

enhancements, the kappa hotspot volume was estimated between 1.2mm3 and 1.1mm3. 

Altogether, these values indicate that the entire opioid NAc hedonic hotspot has a total volume of 

approximately 1mm3 or slightly larger. By comparison, the volume of the entire medial shell is 

about 3mm3, and the volume of the entire NAc is about 10mm3 (shell and core combined).  

Posterior ‘coldspot’ for hedonic suppression 

In contrast to rostral enhancements above, a suppressive ‘coldspot’ was observed for all 

three opioid agonists in the caudal half of medial shell.  In the posterior half of medial shell 

microinjections of DAMGO, DPDPE or U50488H generally reduced positive hedonic reactions 

to sucrose taste to about one-half of vehicle control levels (Friedman’s Two-Way ANOVA, X2 = 

10.675, p = 0.014). A rostral versus caudal comparison for hedonic effects in medial shell shows 

that mu, delta, or kappa stimulation all had opposite effects in anterior vs posterior halves (X2 = 

37.899, p = 0.0001).   

However, the magnitude of suppression produced at caudal sites differed somewhat across 

the three drugs (X2 = 6.867, p = 0.032).   

Delta caudal coldspot 

DPDPE in the caudal half of medial shell suppressed positive reactions to only 40% of 

control vehicle levels (Z = -2.380, p = 0.017). This posterior suppression was again opposite 

from anterior enhancements caused by DPDPE microinjections (Z = -3.514, p = 0.0001).  

Kappa caudal coldspot 
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Kappa stimulation suppressed hedonic reactions to sucrose in caudomedial shell by about 

50% compared to vehicle controls (Z = -2.035, p = 0.042). This kappa suppressive hedonic effect 

seems compatible with previous reports on kappa function in reward. For example, Land et al. 

(2008) reported that kappa receptor activation in NAc and basolateral amygdala encodes the 

dysphoric component of a stressful event. Similarly, Wee and Koob (2010) suggested that kappa 

activation may be responsible for the aversive or dysphoric component of drug withdrawal. Our 

results suggest that kappa suppression of positive hedonic impact may be localized in medial 

shell to primarily the caudal half, similarly to the localization of hedonic suppression effects for 

mu and delta stimulation found here.  

Mu caudal coldspot 

In the caudal half of medial shell, mu stimulation only non-significantly suppressed ‘liking’ 

reactions elicited by sucrose to 66% of control levels (Z = -1.863, p = 0.063).  Still, this trend 

toward posterior suppression was significantly different from the anterior enhancements caused 

by microinjections of the same DAMGO drug in the rostrodorsal shell (Z = -3.626, p = 0.0001). 

Anatomical borders and volume of caudal suppressive coldspot 

The caudal coldspot penetrated both the dorsal and ventral quadrants of the caudal half of 

medial shell. Like the hotspot, the dorsal border appeared to touch the lateral septum and the 

lateral ventricles. The medial border changes based on the anteroposterior plane, beginning with 

the island of Calleja (AP +1.56) at the rostral edge of the caudal coldspot, then lateral septum 

(AP +0.96), and finally rostral ventral pallidum at the most caudal edge of the coldspot (AP 

+0.72). The ventral border appeared to extend to rostral ventral pallidum (raising the possibility 

that the NAc coldspot may be continuous with another opioid hedonic coldspot previously 

mapped within the rostral half of the ventral pallidum itself) (K. S. Smith & Berridge, 2005). The 
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lateral border touched predominantly the NAc core at most points, but posteriorly transitions to 

bed nucleus of the stria terminalis at is most caudal points. 

Mapping the coldspot borders with the same technique as for the hotspot, the caudal hedonic 

coldspot (sites producing 30% or greater suppression of hedonic reactions) extended from AP 

+1.5 to +0.8mm, ML ±0.4 to ±0.9mm, and DV -6.3 to -7.9mm (caudal medial shell shrinks in the 

dorsoventral plane as it becomes posterior).  For the mu coldspot, the trapezoidal volume was 

approximately ~1.3mm3 to ~0.9mm3. For the delta hedonic coldspot, the corresponding volume 

was between ~1.8mm3 and ~1.3mm3. For the kappa coldspot, the volume of was between 

~1.3mm3 and ~1.2mm3.  Altogether, these overlapping results suggest that the anatomically 

localized hedonic coldspot in caudal accumbens slightly exceeds one cubic millimeter in volume, 

and is therefore comparable in size to the rostrodorsal hedonic hotspot.   

Food intake and eating behavior 

In 1-hr  free intake tests conducted immediately after taste reactivity tests with sweet M&M 

chocolates and ordinary chow available, opioid stimulations significantly altered the total amount 

eaten in ways that depended on the particular agonist and precise site (Figure 2.3) (Friedman’s 

Two-Way ANOVA, X2 = 11.796, p = 0.008). In all cases, consumption was almost exclusively 

of palatable M&Ms.   

The three agonists produced very different NAc anatomical patterns within medial shell of 

effects on food intake. For mu stimulation, DAMGO microinjections at all sites throughout the 

entire medial shell homogeneously enhanced the consumption of food by nearly 140% above 

vehicle (Z = -3.250, p = 0.001). Consumption of palatable chocolate M&Ms rose from ~6.5g 

after vehicle microinjection to 8.0g after DAMGO (Z = -2.698, p = 0.007). The mu increase in 

consumption was comparable in magnitude at all sites throughout the entire medial shell, and did 
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not differ between rostral and caudal halves (Z = -0.362, p = 0.750). This broad anatomical 

distribution for mu-stimulated sites of hyperphagia is consistent with earlier reports that 

DAMGO throughout entire NAc, as well as in other structures, including central amygdala and 

parts of neostriatum, can increase consumption of palatable food (DiFeliceantonio et al., 2012; 

Mena et al., 2011; Pecina & Berridge, 2005; Ragnauth, Moroz, et al., 2000; Zhang & Kelley, 

2000).  

For delta stimulation of intake, DPDPE microinjections also enhanced eating in medial 

shell, specifically enhancing consumption of palatable M&M chocolates (Z = -2.129, p = 0.033). 

However, an anatomical analysis revealed that sites for the observed delta increase in eating 

were not broadly distributed across medial shell, but rather were confined within the rostrodorsal 

hotspot (Z = -2.866, p = 0.004, median = 125% compared to vehicle). By comparison, in the 

posterior half of medial shell, delta stimulation had no detectable effect on intake (total eaten: Z 

= -0.070, p = 0.944), and the elevation of eating behavior in the rostrodorsal hotspot quadrant 

was larger than produced in the other three quadrants (Z = -2.034, p = 0.044). Thus, delta 

stimulation enhanced eating, but only within the rostrodorsal hotspot. 

By contrast, kappa receptor stimulation did not produce a clear enhancement of intake at any 

anatomical site in medial shell (Z = -1.064, p = 0.287, median = 110%), although there was a 

nonsignificant trend toward >150% increase in several sites concentrated in the rostrodorsal 

hotspot (Z = -1.824, p = 0.68). An inspection of kappa stimulation in rostral hotspot versus 

caudal coldspot effects on eating showed no difference between anterior vs posterior halves of 

medial shell (Z = -0.926, p = 0.384). However, we did observe a strikingly large individual 

variance in kappa stimulated eating, which was nearly three times as large as vehicle variance 

and twice as large as any other opioid agonist type (vehicle variance, 8.799; DAMGO variance, 
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12.7; DPDPE, 10.882; U50488H, 23.473). That is, some rats intensely increased their 

consumption after U50488H microinjection (more than 10g above vehicle), but other rats were 

either not affected at all or even ate ~ 30% less compared to after vehicle (~1.5g less). The lack 

of a consistent kappa change in intake seems consistent with previous reports of no overall 

change in food consumption after kappa stimulation in NAc medial shell (Bakshi & Kelley, 

1993; Zhang & Kelley, 1997).    

Conditioned place preference 

Conditioned place preference (CPP) results indicated that the rostral NAc hotspot more 

effectively supported establishment of a positive conditioned place preference for all three types 

of opioid stimulation than other regions of medial shell (Friedman Two-Way ANOVA, X2 = 

9.80, p = 0.002). Within the rostral half of medial shell, microinjection sites in the dorsal two-

thirds induced a conditioned place preference of 216% for mu stimulation (Z = -2.201, p = 0.28), 

a 168% preference for kappa stimulation (Z = -2.197, p = 0.028), and a 139% trend towards 

preference for delta stimulation, although the last did not reach statistical significance.  However, 

the strength of delta conditioned preference was not statistically lower than either mu or kappa 

preference (Z = -1.387, p = 0.183), consistent with the possibility of a delta preference. (Z = 

1.69, p = 0.091). Inside the rostrodorsal hotspot, mu and kappa stimulations produced 

comparable magnitudes of positive place preference of ~170% to ~215% , and did not differ 

from each other (Z = -1.359, p = 0.181). 

Anatomical comparison of sites across medial shell indicated that only inside the 

rostrodorsal hotspot did kappa or mu microinjections produce positive place preferences, 

whereas the same drug microinjections in other regions of medial shell outside the hotspot failed 

to produce any significant preference (e.g., no preference induced in the entire caudal half of 
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medial shell) (Figure 2.4) (U5088H, Z= -2.714, p = 0.005; DAMGO, Z = -2.429, p = 0.014).  

That is, even for mu stimulation, DAMGO microinjections in the posterior half of medial shell 

failed to establish a significant preference (Z = -0.507, p = 0.612). These results appear similar to 

a previous report of failure to produce a conditioned place preference by DAMGO 

microinjections into NAc core, lateral hypothalamus, or medial prefrontal cortex (Bals-Kubik et 

al., 1993). However, as a caveat, our data were inadequate to draw a strong conclusion about mu 

stimulation in the most ventral one-third of medial shell, leaving some uncertainty for mu 

stimulation in that subregion. For kappa sites outside the hotspot, we found a trend toward 

establishing negative place avoidance of 33% (Z = -1.782, p = 0.075). A conditioned place 

avoidance for most of shell would be similar to reports that kappa stimulation in the adjacent 

core of NAc produced a conditioned place avoidance (Bals-Kubik et al., 1993).   

Discussion 

Our results confirm that the rostrodorsal quadrant of medial shell in NAc contains a 

specialized opioid hedonic hotspot, roughly 1mm3 in volume, where mu stimulation generates 200-

400% enhancements of ‘liking’ reactions to sweetness. We report that delta and kappa stimulations 

also amplify hedonic impact similarly within the hotspot. The functional uniqueness of the hotspot 

in rostrodorsal shell contrasts to lack of capacity to generate comparable hedonic enhancement 

observed for at least all sites in the remaining two-thirds of medial shell mapped here (caudal and 

rostroventral), and potentially in the remaining 90% of entire NAc (shell and core combined). Our 

results also mapped a separate suppressive coldspot in the caudal half of shell, approximately 

~1.3mm3 in volume, where each opioid stimulation oppositely reduced sucrose positive ‘liking’ 

reactions to approximately one-half normal levels. Confirming a unique reward-related role for the 

rostrodorsal quadrant, we further showed that mu or kappa stimulations produced positive 
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conditioned place preference at sites specifically within the hotspot (and a positive trend for delta), 

but not at outside sites in other subregions. Finally, we identified several anatomical differences 

between NAc opioid controls of ‘liking’ versus ‘wanting’ to eat. These results highlight NAc 

anatomical heterogeneity and localization of opioid reward-related functions within medial shell.  

Neurobiological sources for endogenous opioid ligands in NAc include dynorphin (kappa 

ligand) released from medium spiny neurons (MSNs) that express D1 receptors, and enkephalin 

(delta and mu ligand) from D2-expressing MSNs (Ghazarossian, Chavkin, & Goldstein, 1980; 

Raynor et al., 1994). Dynorphin and enkephalin are also released by input projections from other 

structures, including ventral pallidum and lateral hypothalamus (Baldo et al., 2003; Groenewegen, 

Wright, Beijer, & Voorn, 1999; Haber, Groenewegen, Grove, & Nauta, 1985; Peyron et al., 1998). 

In addition, beta-endorphin (potent mu ligand) may reach NAc medial shell via projections from 

the arcuate nucleus of hypothalamus (Khachaturian, Lewis, Haber, Akil, & Watson, 1984; Raynor 

et al., 1994).  

Post-synaptic receptors for mu, delta and kappa in NAc are reported on dendrites of most 

MSNs (Gracy, Svingos, & Pickel, 1997; Svingos, Chavkin, Colago, & Pickel, 2001; Svingos, 

Clarke, & Pickel, 1999; Svingos, Colago, & Pickel, 1999). Mu receptors likely predominate on D1 

MSNs (e.g., direct path), but can also occur on D2 MSNs (indirect path) as well as on acetylcholine 

interneurons (Svingos, Colago, & Pickel, 2001; Svingos, Moriwaki, Wang, Uhl, & Pickel, 1996). 

In contrast, delta and kappa receptors may predominate on D2 MSNs (Svingos, Clarke, & Pickel, 

1998; Svingos, Colago, et al., 1999; Svingos et al., 1996), and also exist on pre-synaptic terminals 

of glutamate and dopamine projections into NAc (Hjelmstad & Fields, 2001; Svingos, Clarke, et 

al., 1999; Svingos, Colago, et al., 1999). All three opioid receptors are G protein-coupled receptors 

that can recruit ERK 1/2 inside neurons in a Ras-dependent manner via the Gβγ subunit, though 
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through different intracellular pathways (Belcheva et al., 1998). For example, mu activation 

recruits ERK via PKCƐ, whereas kappa stimulation recruits PLC3 (Belcheva et al., 2005). These 

neurobiological distributions may be relevant to the functional pattern of effects described here. 

Potential neurobiological basis for the rostrodorsal hotspot 

Several distinctive neurobiological features exist for the hotspot’s rostrodorsal quadrant of 

medial shell that may be relevant to its unique hedonic function (Figure 2.4) (Thompson & 

Swanson, 2010; Zahm et al., 2013). For example, Thompson and Swanson (2010) anatomically 

traced a unique closed-loop cortico-limbic-thalamo-cortical circuit through the NAc hotspot in the 

rostrodorsal quadrant of medial shell, potentially in parallel to other segregated loops involving 

different shell subregions. They reported that the rostrodorsal quadrant received corticolimbic 

inputs from one particular subregion of prefrontal infralimbic cortex (homologous to Brodmann’s 

area 25 in humans), and sent unique output projections to distinct subregions of lateral 

hypothalamus and ventral pallidum. From there, pallido-thalamic and hypothalamo-thalamic 

projections were relayed via thalamus to the original infralimbic subregion, thereby completing a 

segregated corticolimbic – thalamocortical loop (Thompson & Swanson, 2010). 

Separately, Zahm and colleagues (2013) reported additional distinguishing features of the 

rostral subregion containing the medial shell hotspot, suggesting that the rostral shell constitutes a 

distinct anatomical NAc-septal transition zone related to lateral septum. By contrast, they 

suggested that the caudal half of medial shell constitutes a different transition zone related to 

structures of extended amygdala. Further neurochemical and cellular specializations may 

additionally distinguish the rostrodorsal quadrant or rostral half from other subregions of medial 

shell (Britt & McGehee, 2008; Hanlon, Baldo, Sadeghian, & Kelley, 2004; Park, Aragona, Kile, 
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Carelli, & Wightman, 2010). Such features may eventually help explain the rostrodorsal hotspot’s 

unique opioid ability to robustly generate hedonic enhancements.  

Comparison to neuroimaging measures 

Human neuroimaging studies also implicate NAc circuitry and opioid activation in both 

reward and pain modulation (Leknes, Lee, Berna, Andersson, & Tracey, 2011; Wanigasekera et 

al., 2012; Zubieta et al., 2005; Zubieta & Stohler, 2009). However, it is difficult to compare such 

neuroimaging results to our localization of a NAc hedonic hotspot until future refinements in 

anatomical resolution permit better contrast of the rostrodorsal quadrant to other subregions of 

medial shell. Even then, a potentially important difference may remain: our opioid hotspot 

localization applies particularly to opioid causation (i.e. magnification of sucrose ‘liking’), 

whereas neuroimaging (and even anatomically precise electrophysiological and neurochemical 

measures of neural activation) assess regional coding that occurs in correlation with hedonic 

events.  It remains for now an open question whether the same localization rules will apply to 

opioid causation and to coding of the same hedonic functions (especially since some coding sites 

may reflect hedonic-guided causation of other learning, cognition, etc. functions distinct from 

‘liking’) (K. C. Berridge & Kringelbach, 2013).   

Paradoxical kappa hedonic enhancement in rostral hotspot 

 Perhaps our most surprising finding was that kappa stimulation produced any positive 

enhancements at all for ‘liking’ and conditioned place preference – even though only at sites 

limited to the rostrodorsal hotspot. No other NAc study to our knowledge has previously reported 

positive reward effects for kappa stimulation. Instead kappa stimulation is commonly viewed to 

cause mostly negative effects, such as conditioned place avoidance, at least at sites in NAc core, 

ventral tegmentum or prefrontal cortex (Bals-Kubik et al., 1993; Bals-Kubik, Herz, & 
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Shippenberg, 1989; Kim, Pollak, Hjelmstad, & Fields, 2004; McLaughlin, Land, Li, Pintar, & 

Chavkin, 2006; Mucha & Herz, 1985). In accordance with such negative-valence dominance, we 

found kappa stimulation produced place avoidance effects at most sites in NAc medial shell: the 

entire caudal half of shell (which also produced suppression of ‘liking’ reactions to sucrose), as 

well as rostral sites that were ventral to the hotspot, or that were so far anterior as to be outside the 

NAc hotspot. We suggest that anatomical heterogeneity gates the valence of kappa effects in NAc, 

inducing positive reward within the rostrodorsal shell hotspot but mostly negative effects 

elsewhere.  

Controlling motivation for food: ‘wanting’  

Opioid enhancements of ‘wanting’ to eat more food, expressed as increases in eating 

behavior and consumption, differed somewhat from ‘liking’ enhancements. Delta stimulation of 

intake (>140%) by DPDPE microinjection was anatomically limited to the rostrodorsal hotspot.  

At all other sites in medial shell, delta stimulation failed to stimulate intake at all. It seems 

plausible that previous positive reports of delta stimulation inducing eating increases in NAc 

may have predominantly targeted the rostrodorsal zone of shell (Majeed et al., 1986; Ragnauth, 

Moroz, et al., 2000; Richard, Castro, Difeliceantonio, Robinson, & Berridge, 2013; Zhang & 

Kelley, 1997).   

By comparison, mu and kappa stimulations produced strong anatomical dissociations 

between ‘wanting’ versus ‘liking’ effects. For mu stimulation of eating (>140%), ‘wanting’ 

substrates anatomically extended additionally beyond the hotspot and throughout the entire 

medial shell (remaining strong even in caudal shell). This is consistent with previous reports that 

DAMGO stimulates eating at many NAc shell and core sites, as well as at sites of neostriatum, 

amygdala, etc. (DiFeliceantonio et al., 2012; Echo, Lamonte, Ackerman, & Bodnar, 2002; 
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Gosnell & Majchrzak, 1989; Mahler & Berridge, 2009; Majeed et al., 1986; Pecina & Berridge, 

2005; Zhang & Kelley, 1997, 2000). It is also consistent with anatomically widespread mu 

enhancements for other aspects of ‘wanting’, as for example reflected in measures of learned 

seeking for rewards (Hanlon et al., 2004; Pecina & Berridge, 2013; Zhang et al., 2003).  

Finally, kappa stimulation failed to consistently increase in food intake at any shell sites. 

Kappa stimulation doubled intake in some individuals but reduced intake by half in other 

individuals, producing variability with no discernible anatomical pattern. Our failure to find 

kappa-induced increases in intake seems consistent with previous reports of no change. 

Clinical applications  

Deficits of positive hedonic impact (anhedonia or dysphoria) may be involved in major 

depression or in bipolar disorder (Der-Avakian & Markou, 2012; Treadway & Zald, 2011), 

whereas excessive motivational ‘wanting’ to consume rewards characterizes compulsive 

consumption disorders, such as binge eating and addiction (Avena, Rada, & Hoebel, 2008a; 

Rubin, 2012; Shin, Pistell, Phifer, & Berthoud, 2010; Spijker, de Graaf, Ten Have, Nolen, & 

Speckens, 2010).  Opioid reward circuitry in NAc is implicated in both types of dysfunction 

(Bruchas, Land, & Chavkin, 2010; Giuliano, Robbins, Nathan, Bullmore, & Everitt, 2012; 

Katsuura & Taha, 2014; Kupchik et al., 2014), suggesting that aberrant localizable mechanisms 

within NAc shell may be relevant to understanding such disorders.  Better understanding of NAc 

heterogeneity, and localization of opioid functions in generating intense ‘liking’ and ‘wanting’, 

may prove useful in unraveling such psychopathologies, and eventually aid in creating more 

effective treatments. 
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Figure 2.1. Fos plume maps for drug microinjections. Local Fos plumes reflect impact spread 
of a microinjected drug. Photomicrographs (top) show Fos expression in NAc shell of a normal 
(unoperated) control brain, a control brain that received a vehicle microinjection, and a brain that 
received a microinjection of U50488 (kappa κ). Each photo also depicts a sample bar showing 
Fos-expressing neuron counts at points along a radial axis emanating from center of 
microinjection (or equivalent bar for normal control brain). Numbers reflect the number of 
neurons in a box that expressed Fos. For microinjections, the average count for the 
corresponding box in the entire vehicle-microinjection group (n = 4) or U50488H (n = 6) group 
is also shown below. Such counts were used to compute elevations of drug-induced Fos 
compared with normal brains or vehicle brains for the corresponding location. The kappa plume 
shows the outer limits of where U50488H stimulated Fos expression >150% above vehicle 
microinjection levels (orange dashed line), and slightly larger region where Fos was stimulated 
>150% at least above normal control levels (yellow dashed line). Equivalent plumes are shown 
in photomicrographs at bottom for microinjections of DAMGO (n = 6; mu (µ) agonist) and of 
DPDPE (n = 6; delta (δ) agonist). The center row show illustrates the magnitude of shrinkage 
due to serial repetition, from maximal plumes measured after first-time microinjections in the 
dedicated Fos groups (shown in photomicrographs) to the sixth microinjection in rats that were 
tested 5 times behaviorally before a final Fos microinjection. Fos-positive labeled cells were 
individually counted in 50x50µm squares along radial arms extending from the center of the 
microinjection site at 10x magnification. Such shrinkage implies that dedicated Fos groups may 
provide more accurate measures of maximal plume diameter than groups previously tested for 
behavioral effects. 
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Figure 2.2. Causation maps for localization of “liking” versus “wanting” enhancements. 
Sagittal maps of NAc medial shell show changes that each type of opioid agonist microinjection 
induced in hedonic reactions to sucrose taste (left column) and in food intake (right column) 
within the same individual rat (compared with taste reactions and food intake after vehicle 
microinjection; n = 21). Rows show mu (DAMGO; A), delta (DPDPE; B), or kappa (U50488H; 
C) effects. Behavioral changes are displayed as percentage changes from vehicle control levels, 
and both bilateral microinjection sites are plotted on the single sagittal map. Bars show mean 
intensity of behavioral changes produced at each stereotaxic level (anterior–posterior and dorsal–
ventral levels). Colors also show intensity of behavioral changes (percentage change from 
within-subject vehicle control levels) induced at each site. Enhancements of “liking” in the left 
column are depicted in yellow, orange, and red, whereas suppression of “liking” reactions is 
depicted by blue. In the right column, eating enhancement is displayed by green, and suppression 
of eating by blue. In both columns, gray indicates no change from vehicle control level. The size 
of sagittal map symbols is scaled to measured Fos plume diameters for each drug. The dashed 
circle in rostral accumbens shows the anatomical outline of the mu hotspot originally described 
by Pecina and Berridge (2005) for comparison to present data, and the caudal dashed circle 
represents their original mu coldspot. 
 
 
 
 



53 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



54 
 

Figure 2.3. Causation maps for conditioned place preference. Sagittal maps and overall 
effects for establishment of conditioned place preference or avoidance is shown for mu (n = 13), 
delta (n = 13), and kappa (n = 13) agonist microinjections. Bars extending above the axis 
represent an overall conditioned place preference for a NAc region; bars below the axis represent 
a conditioned place avoidance. Regions are the rostrodorsal hotspot (left bar of each pair) versus 
the entire remaining three-quarters of medial shell outside the hotspot (rostroventral 1/3 of 
medial shell plus entire caudal half; right bar of each pair). Sagittal maps are similar to Figure 
2.2. Red and orange indicates establishment of a positive place preference, and blue indicates a 
negative place avoidance. The dotted outline in the rostrodorsal portion of large slices indicate 
the original mu hotspot as originally defined by Pecina and Berridge (2005). 
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Figure 2.4. Summary maps for NAc opioid hotspots and coldspots in medial shell and 
relevant anatomical circuitry. A, Sagittal summary maps of NAc medial shell for mu, delta, or 
kappa hedonic enhancements (rostral hotspots) and suppressions (caudal coldspots) of sucrose 
“liking” observed here. Hotspot outlines are defined anatomically by contiguous groups of 
microinjection sites (sized to match Fos plumes) that caused >250% enhancements of positive 
orofacial hedonic reactions elicited by sucrose taste, and coldspot boundaries are defined by 
contiguous sites that caused suppressions to below one-half of control vehicle levels for sucrose 
“liking” reactions. The mu panel also shows for comparison the original hotspot and coldspot 
boundaries (Pecina and Berridge, 2005). The shared substrate map below is a subtraction map 
showing sites that produced equivalent hotspot enhancements for all three opioid stimulations, or 
equivalent coldspot suppressions for all three agonist microinjections. B, Anatomical circuitry 
features relevant to the hotspot of rostrodorsal medial shell, as described in text (based on 
Thompson and Swanson (2010) and on Zahm et al., (2013); TS symbol in orange boxes depicts 
unique features of rostrocaudal quadrant of medial shell described by Thompson and Swanson; Z 
symbol in purple hexagons depicts features of rostral half of medial shell described by Zahm et 
al.). Hedonic hotspots are shown in yellow, GABAergic projections in red, glutamatergic 
projections in green, and dopaminergic projections in blue. Modified from (Richard et al., 2013). 
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CHAPTER 3: 

OREXIN IN ROSTRAL HOTSPOT OF NUCLEUS ACCUMBENS ENHANCES 

SUCROSE ‘LIKING’ AND INTAKE BUT SCOPOLAMINE IN CAUDAL SHELL 

SHIFTS ‘LIKING’ TOWARD ‘DISGUST’ AND ‘FEAR’ 

Introduction  

Pleasure ‘liking’, or hedonic impact, is a fundamental aspect of sensory reward, and 

pathological dysfunction of hedonic brain circuitry may contribute to addiction, mood disorders, 

eating disorders and obesity. To better understand and map the neural mechanisms underlying 

hedonic impact, several affective neuroscience studies have used the taste reactivity test to measure 

orofacial ‘liking’ reactions to sweet tastes (K. C. Berridge & Kringelbach, 2015). These affective 

facial expressions to taste are homologous in human infants, non-human primates, and even rodents 

(K. C. Berridge, 2000; Steiner et al., 2001), and hedonic brain mechanisms can be mapped by their 

ability to cause changes in such ‘liking’ reactions. 

One example of this hedonic localization involves the nucleus accumbens (NAc), which 

contains a roughly cubic millimeter sized “hedonic hotspot” in the rostral half of medial shell in rats. 

In that rostral hotspot of NAc shell opioid agonist microinjections can double or triple the number of 

positive hedonic orofacial reactions (i.e., ‘liking’ reactions) elicited by the taste of sucrose (Castro & 

Berridge, 2014b; Pecina & Berridge, 2005). Conversely, in caudal shell, agonist microinjections 
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reveal a “hedonic coldspot”, where opioid stimulation suppresses sucrose hedonic impact (Castro & 

Berridge, 2014b; Pecina & Berridge, 2005). By contrast to the localized hotspot for sweetness 

‘liking’, mu opioid stimulations increase motivation to eat much more widely and homogeneously 

throughout the entire NAc shell (and in related structures), measured as increases in cue-triggered 

‘wanting’ to obtain food rewards (e.g., in instrumental breakpoint and Pavlovian-Instrumental-

Transfer tests), as well as in food consumption (Castro & Berridge, 2014b; Covelo, Patel, Luviano, 

Stratford, & Wirtshafter, 2014; Maldonado-Irizarry, Swanson, & Kelley, 1995; Pecina & Berridge, 

2005, 2013; K. S. Smith & Berridge, 2005; K. S. Smith et al., 2011; Zhang & Kelley, 2000).  

Other neurotransmitter systems in NAc also modulate food consumption,  motivation, 

and hedonic impact of food rewards including, endocannabinoids and amino acids (Maldonado-

Irizarry et al., 1995; Shinohara, Inui, Yamamoto, & Shimura, 2009; Soria-Gomez et al., 2007), 

some of which might interact with opioid signals in NAc shell (Faure, Richard, & Berridge, 

2010; Mahler, Smith, & Berridge, 2007). Here we extended our analyses to orexin and 

acetylcholine systems in NAc, which modulate intake and food-motivated behaviors (Pratt & 

Kelley, 2004; Pratt, Spencer, & Kelley, 2007; Thorpe & Kotz, 2005).   

Orexin-A (hypocretin) is a hypothalamic peptide implicated in reward (Barson, Ho, & 

Leibowitz, 2015; Berthoud & Munzberg, 2011; Harris et al., 2005; Sharf et al., 2010), as well as 

in arousal (Espana, Valentino, & Berridge, 2003; A. Rolls et al., 2011; Sutcliffe & de Lecea, 

2002). Orexin can also amplify hedonic ‘liking’ reactions to sucrose taste, comparably to mu 

opioid stimulation, if microinjected into another opioid hedonic hotspot located in posterior 

ventral pallidum (Ho & Berridge, 2013; K. S. Smith & Berridge, 2005). Anatomically, 

hypothalamic orexin neurons send projections throughout the brain, including to NAc shell (but 

not core) (Baldo et al., 2003; Peyron et al., 1998). This projection pattern raises the question of 



59 
 

whether orexin might also enhance hedonic reactions within the NAc opioid hotspot, similarly to 

the ventral pallidum hotspot. Orexin-induced increases in food intake can be prevented by opioid 

blockade (2004) , and orexin in NAc can modulate phasic dopamine release, which may be 

related to incentive motivation to eat (Patyal, Woo, & Borgland, 2012; Thorpe & Kotz, 2005).  

Acetylcholine (ACh) in NAc has also been implicated in food reward (Perry, Baldo, 

Andrzejewski, & Kelley, 2009; Perry, Pratt, & Baldo, 2014; Pratt et al., 2007), and this role has 

been suggested to involve interactions with NAc opioid and dopamine systems (Perry et al., 

2014; Pratt & Kelley, 2005; Stouffer et al., 2015). Although early studies suggested that ACh 

might primarily suppress intake via satiety or aversion, since ACh levels rise gradually during 

food intake and after exposure to aversive tastes (Avena, Rada, & Hoebel, 2008b; Mark, Rada, 

Pothos, & Hoebel, 1992; Mark, Weinberg, Rada, & Hoebel, 1995), more recent studies have 

implicated endogenous ACh in NAc and striatum in the appetitive motivation for food rewards 

(Perry et al., 2009; Perry et al., 2014; Pratt et al., 2007). For example, blockade of endogenous 

ACh in NAc by microinjections of the muscarinic antagonist scopolamine suppresses food 

intake, and establishes learned taste or place avoidances. Further, the ability of mu opioid agonist 

microinjections in NAc to stimulate food intake is also blocked by simultaneous blockade of 

ACh muscarinic receptors (Perry et al., 2014), which alters striatal preproenkephalin mRNA 

levels (Pratt & Kelley, 2005), suggesting the possibility of an ACh-opioid interaction in NAc in 

food reward. Therefore it is of interest to examine the roles of endogenous ACh in NAc on the 

hedonic impact of palatable foods as well as on the motivation to eat.   

Here we compared orexin-A microinjections and scopolamine microinjections at 

various sites in NAc medial shell for their effects on 1) intake of a palatable sweet food 

(chocolate candies), 2) positive ‘liking’ taste reactions elicited by oral infusions of sucrose 
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solution, and 3) negative ‘disgust’ reactions elicited by infusions of bitter quinine solution. Our 

results suggest the existence of a localized hedonic hotspot for orexin enhancement of hedonic 

impact in rostral NAc shell (similar to opioid enhancement). The results also suggest a more 

widespread anatomical substrate, distributed throughout entire NAc shell, for orexin stimulation 

of food intake. A similar distributed NAc network is suggested for endogenous ACh 

contributions to positive hedonic impact and to food intake, with an additional motivational role 

for the caudal half of NAc, where ACh blockade additionally releases a fear-related anti-predator 

reaction of defensive treading. 

Methods & Materials 

Subjects 

Sprague Dawley rats (~3 months old) or male rats weighing at surgery (3-4 months old) 

(total n = 25 [female = 14, weight 250-300g; male = 11, weight 350-450g]  were housed in same-

sex pairs at ~21°C on a reverse 12h light/dark cycle and used in the microinjection-behavior 

tests. An additional, separate group of 4 rats were used solely for histological analysis of Fos 

plume diameters (to assess diameters of a ‘first drug microinjection’).  All rats had ad libitum 

access to food and water in their home cage. All experimental procedures were followed and 

approved by the University of Michigan Committee on the Use and Care of Animals. 

Surgery 

Rats were implanted with oral and cranial cannulas as described previously (Castro & 

Berridge, 2014b). Briefly, bilateral oral cannulas entered the mouth in the upper cheek pouch 

lateral to the first maxillary molar, ascended beneath the zygomatic arch, and then exited through 

the skin at the dorsal head cap (Grill & Norgren, 1978a). In the same surgery, permanent 

microinjection guide cannulas were bilaterally implanted. Bilateral coordinates were identical for 
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a given rat, but sites were staggered across rats to fill the entire NAc medial shell for the group as 

a whole. Rostral shell placements (n=15) averaged around +3.1 anteroposterior (AP) from 

Bregma, bilateral ±0.9mm mediolateral (ML), and -5.7mm dorsoventral (DV). Caudal 

placements (n=10) averaged between +2.6 to +2.8mm AP, ±0.9mm ML, and -5.7mm to -6.0mm 

DV. After surgery, each rat received subcutaneous injections of carprofen (5mg/kg) for pain 

relief, as well as topical antibiotic around the perimeter of the head cap. Rats received another 

dose of carprofen 24 h later, and reapplication of topical antibiotic, and were allowed to recover 

for one week before behavioral testing began. 

Drug Microinjections 

Rats were hand-held in the lap of the experimenter during NAc microinjections. 

Polyethylene PE-20 tubing was connected to a stainless steel microinjection cannula injector, 

which had a tip (16mm, 29 gauge) extending 2mm beyond the ventral end of guide cannulas to 

reach the NAc target site. On test days, solutions were brought to room temperature (~21ºC) 

prior to bilateral microinjection. Drugs were dissolved in a vehicle of artificial cerebrospinal 

fluid (ACSF). Microinjection solutions contained one of the following (drug order was counter-

balanced across rats used for behavioral tests): 1) Orexin-A, a hypothalamic neuropeptide 

(500pmol/0.2 µl; also known as hypocretin-1); 2) Scopolamine, a muscarinic antagonist 

(10µg/0.5µl); or 3) ACSF vehicle alone in a volume of 0.2µl per side (vehicle control condition). 

Drug doses and volumes were chosen based on most behaviorally effective dose/volume from 

Thorpe and Kotz (2005) for orexin, and from Pratt et al. (2007) for scopolamine. Drugs were 

prepared fresh at the beginning of each test group, and then either frozen (ACSF, Orexin) or 

refrigerated (Scopolamine) in solution for testing later that week. Each 0.2µl microinjection was 

delivered during a 1min period at a speed of 0.2µl/min by syringe pump. After bilateral 
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microinjections, injectors were left in place for 1 minute to allow for drug diffusion, after which 

obturators were replaced and rats were immediately placed in the taste reactivity testing 

chamber. Each rat received bilateral microinjections of only one drug or vehicle solution per test 

day.  

Taste Reactivity Testing 

Before testing, rats were each extensively handled to familiarize them with 

experimenters. They were then habituated to the test chamber for 25minutes for 4 consecutive 

days, and received a mock injection of vehicle ACSF on the final day of habituation.  

The taste reactivity test (Grill & Norgren, 1978a; Steiner, 1973; Steiner et al., 2001) was 

used to measure a rat’s affective orofacial reactions to either a sucrose solution (1.0%, 0.029M) 

or a quinine solution (3x10-3M). A 1ml volume of each solution was infused over a 1min period 

via syringe pump through plastic tubing connected to the rat’s oral cannula (PE-50 connected to 

a PE-10 delivery nozzle). On each test day, the sucrose solution was infused 25min after a NAc 

microinjection of vehicle, orexin, or scopolamine. After a 5min delay, a 1min infusion of quinine 

followed for a second taste reactivity test.  This order was used because if quinine were first, the 

bitterness disgust could easily carry over and suppress positive reactions to subsequent sucrose.  

However, sweet tastes do not appear to disrupt negative ‘disgust’ reactions to subsequent 

bitterness in our experience, and so a sucrose-quinine order of testing was used (Pecina & 

Berridge, 2005). Orofacial taste reactivity responses to both solutions were video recorded via 

close-up lens for subsequent slow-motion video-analysis as described previously (Castro & 

Berridge, 2014b).  

Males and females were run in separate same-sex cohorts on different days to prevent any 

lingering opposite-sex odors from affecting behavior. Test chambers were cleaned with soap and 
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water at the end of each test day. Male and female Fos groups were also run separately for 

microinjections and perfusions to prevent any pheromone modulation of neuronal gene 

expression. 

Food intake testing 

A 1 hr free intake test was administered immediately following the taste reactivity test on 

each test day. Rats previously had been habituated to the food intake chamber during the 4 

habituation days. Each intake chamber (23 x 20 x 45 cm) contained a large pile of palatable 

chocolate (M&Ms), and an ad lib water spout, and the floor was covered with 1 cm depth of 

corncob bedding. The amount of M&M candies (~20g) was weighed before and after testing to 

calculate amount of food intake, and water consumption was measured. All behavior was video 

recorded and later scored for eating behavior (duration in seconds), water drinking behavior (in 

seconds), grooming behavior (in seconds), treading (in seconds) and for number of bouts of food 

sniffs, food carrying or burying, cage crosses, and rears.  

Histology and Fos-like protein immunohistochemistry 

After the last day of behavioral testing, rats were deeply anesthetized with an overdose of 

sodium pentobarbital. Rats were decapitated and the brains were extracted and fixed in 10% 

paraformaldehyde solution for 1-2 days followed by a 25% sucrose solution in 0.1M NaPB for 2-

3 days before slicing. 60 µm slices through the NAc were taken from each rat on a cryostat, 

mounted, dried, and stained with cresyl violet. Microinjection center was determined for each 

bilateral injection site and slides were compared with the stereotaxic atlas (Paxinos & Watson, 

2007) to determine placement in the NAc.  

Fos immunohistochemistry and plume analysis was performed on 4 naïve rats so that 

plume diameters would be maximal, and not shrunken due to gliosis/necrosis from any previous 



64 
 

microinjection. Fos analysis was also performed on 10 rats from the microinjection-behavior test 

groups for comparison (as previously described in Castro and Berridge (2014b)). In brief, rats 

received a microinjection of vehicle, orexin, or scopolamine 90 minutes before being euthanized 

and perfused. Brains were extracted, left in 4% paraformaldehyde for 24 hours, and switched to a 

25% sucrose solution the following day. 40 µm slices through the NAc were taken on a cryostat 

and processed for Fos-like immunoreactivity using normal donkey serum, goat anti-c-fos (Santa 

Cruz Biotechnology), and donkey anti-goat AlexaFluor 488 (Invitrogen). Sections were 

mounted, air-dried, and coverslipped with Prolong Gold antifade reagent (Invitrogen). 

The mapping of site effects for localization of function was constructed in a sagittal plane 

to allow representation of the entire rostrocaudal and dorsoventral extent of NAc medial shell. 

Symbols were color-coded to express the intensity of taste reactivity or food intake behaviors 

relative to vehicle. Symbols were sized to match the mean maximal diameter of measured Fos 

plumes. For statistical contrasts, sites between +2.4mm to +1.5mm anterior to Bregma were 

classified as in rostral half of medial shell (i.e., rostral to +1.5), and sites between +0.4mm to 

+1.5mm were classified as caudal placements (i.e., caudal to +1.5).  

Statistical analysis 

 Statistical analyses were performed using non-parametric tests for within-subject 

(Friedman, Wilcoxon) and between-subject comparisons, and effect sizes and confidence 

intervals were included when appropriate. 

Results  

Fos plumes 

Without drug, vehicle microinjections by themselves mildly increased local Fos by 125% 

over levels found in normal NAc tissue of intact brains, within a 0.38mm radius of the injector 
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tip (volume = 0.23mm3). Orexin microinjections produced more intense local inner plumes of 

Fos elevation, which were >200% over those vehicle levels as well as over normal tissue levels 

(radius = 0.14mm for >200% over vehicle levels; volume = 0.011mm3). This inner orexin-

induced plume was surrounded by a larger plume of moderate >125% Fos elevation over vehicle 

levels (radius = 0.24mm; volume = 0.058mm3), and that outer plume radius was similar to the 

orexin radius of 200% elevation over normal tissue levels (radius = 0.26mm; volume = 

0.074mm3). Thus the total diameter of a Fos plume induced by orexin was approximately 

0.5mm, which was assigned to be the size of orexin site symbols in functional maps.   

Scopolamine microinjections produced a less intense inner excitatory Fos plume of >125% 

elevation over vehicle with a (radius = 0.20mm; volume = 0.034mm3), surrounded by a larger 

inhibitory anti-plume where Fos expression was actually decreased by 25% below vehicle levels 

(radius = 0.23mm; volume = 0.051mm3). This total diameter of 0.46mm was assigned to 

scopolamine symbols in functional maps.  The scopolamine-induced inhibitory surround could 

reflect either lateral interactions between medium spiny neurons, or opposing drug effects at 

different drug concentrations as the drug diffuses away from the microinjection center. 

Collectively, these data indicate that even vehicle microinjections produce a local plateau of mild 

elevation in Fos immunoreactivity, while scopolamine adds a 125% greater inner peak plus an 

inhibitory outer surround, and orexin produces an even greater 200% inner peak with a broader 

base of 125% local elevation. 

No sex differences in drug effects 

 Females and males were first compared for behavioral sex differences in taste reactivity 

or food intake measures after vehicle or drug microinjections. At baseline, female rats emitted 

more taste-elicited orofacial reactions than males after vehicle microinjections (vehicle, X2 = 
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6.945, p = 0.008; sucrose: positive reactions, Z = 2.635, p = 0.008; sucrose: negative reactions, Z 

= 2.70, p = 0.007; quinine: negative reactions: Z = 2.097, p = 0.035). These results are consistent 

with earlier reports that females generally display higher orofacial reactivity to taste palatability 

than males (Clarke & Ossenkopp, 1998; Flynn, Schulkin, & Havens, 1993). Despite these 

baseline differences, males and females did not differ for orexin/scopolamine drug effects, 

expressed as percent change from vehicle baselines in taste reactivity (orexin, X2 = 2.865, p = 

0.091; scopolamine, X2 = 1.277, p = 0.258), suggesting that the drugs similarly altered 

palatability in females and males. Since males and females did not differ in drug effects on 

hedonic impact, their data was pooled together for subsequent analyses of drug effects expressed 

as percent change from vehicle baselines.  For food intake, no sex differences were observed in 

vehicle baseline, or in orexin or scopolamine conditions (vehicle, Z = 0.408, p = 0.689; orexin, Z 

= 4.633, p = 0.110; scopolamine, Z = 0.245, p = 0.810).  Female and male data for food intake 

were therefore similarly pooled in subsequent analyses. All main effects described below applied 

to both sexes, unless noted. 

Orexin in rostral shell enhances hedonic reactions to sucrose 

 Orexin-A microinjections altered orofacial reactions to sucrose, but only at particular 

rostrocaudal locations in NAc shell (Kruskal-Wallis, rostral vs caudal sites, X2 = 5.867, p = 

0.015) (Figure 3.1). At sites located in the rostral half of medial shell of NAc (i.e., overlapping 

with the previously identified opioid hotspot), orexin microinjection caused a 200% to 400% 

increase in the number of positive hedonic reactions elicited by sucrose taste, compared to 

vehicle control trials for the same rats (Friedman’s ANOVA, X2 = 17.868, p = 0.000132; 

Wilcoxon, Z = -2.559, p = 0.010; Rostral NAc, X2 = 21.571, p = 0.000021; Z = -3.413, p = 

0.001; r = 0.88; 96.5% CI [3, 6]). By contrast, orexin stimulation in caudal NAc shell produced 
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no change in hedonic reactions to sucrose (X2 = 6.914, p = 0.032; Z = -1.193, p = 0.233). Thus, 

hedonic enhancements appeared to be restricted to a subregion in the rostral half of medial shell. 

Within the rostral half of medial shell, the magnitude of enhancement of sucrose hedonic 

impact did not differ between dorsal and ventral portions of the rostral zone (Entire shell: X2 = 

0.153, p = 0.395; rostral, X2 = 1.233, p = 0.267) (Figure 3.2). However, our ventral sites in this 

study did not extend into the most ventral 25% (~0.5mm) portion of rostral shell, making it 

difficult to know if the orexin hotspot filled the entire rostral half of medial shell or merely the 

dorsal two-thirds of the rostral half. The latter would be most similar to the original map of 

opioid hotspot (Pecina & Berridge, 2005). Microinjections of orexin in rostral shell did not alter 

aversive reactions to either sucrose (which always remained near zero (Z = -0.813, p = 0.416)) or 

to quinine (Z = -1.630, p = 0.103). Similarly, orexin microinjections even at rostral sites failed to 

alter positive hedonic reactions to quinine (which always remained near zero; Z = -1.414, p = 

0.157).  

  Using the 0.5mm diameter outer Fos plume measurements to estimate extent of drug 

impact spread from effective sites, the rostral boundary of the orexin hedonic hotspot extended to 

where the corpus callosum joins hemispheres (AP +2.52). It is difficult to know if the boundary 

extends any more anteriorly because we did not have any sites further rostral than +2.28mm to 

Bregma. The caudal boundary was well mapped by posterior silent sites, which revealed the 

orexin hotspot extended caudally to the edge of the paralamboid septal nucleus (AP+1.44), 

beyond which orexin sites no longer had hedonic effects. The medial boundary reached 

approximately the lateral septum dorsally, the rostral ventral pallidum caudally, and the islands 

of Calleja at some mid AP sites ventrally (ML +0.51). The lateral boundary was always the 

border between NAc shell and core (ML +1.44). The hotspot extended dorsally to the lateral 
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septum and lateral ventricle (DV -6.06), and ventrally at least to the bottom 1/4th of medial shell 

(DV -8.34).  

We calculated the volume of the orexin enhancement hotspot to be approximately 

~1.34mm3 using the inner 200% Fos plumes volumes. This volume is similar to the opioid 

hotspot previously reported in the same rostrodorsal region of medial shell (Castro & Berridge, 

2014b; Pecina & Berridge, 2005), though slightly larger (112% compared to opioid hotspot). 

This similarity suggests that orexin and opioid signals share nearly the same anatomical hotspot 

within medial shell for hedonic enhancement of sucrose ‘liking’ reactions. 

Orexin enhances food intake throughout entire shell 

Orexin microinjection at virtually all sites throughout the entire medial shell of NAc 

increased palatable food intake by ~150% (chocolate M&M candies) compared to vehicle trials 

in the same rats (X2 = 30.333, p = 0.0000001; Z = -2.001, p = 0.045; r = 0.28; 95.7% CI [2.8, 

4.9]). Sites in the caudal half of shell were as effective as sites in the rostral half at supporting 

increases in eating (caudal mean = 7.41, S.E. = 1.09; rostral mean = 6.69, S.E. = 0.93; X2 = 

0.077, p = 0.781). Similarly, there was no difference between dorsal versus ventral sites in 

medial shell for orexin-induced increases in intake (X2 = 0.013, p = 0.909). Thus, orexin 

increased eating equally throughout virtually the entire medial shell (Figure 3.4), consistent with 

previous reports by Thorpe and Kotz (2005). Widespread distribution of sites throughout NAc 

for orexin-induced increase in intake is also similar to mu opioid stimulation of eating 

throughout the entire NAc shell (despite the localization of hedonic hotspots for both in rostral 

shell, and not caudal shell) (Castro & Berridge, 2014b; Zhang & Kelley, 2000).  

Scopolamine at all sites suppresses sucrose hedonic impact and elevates quinine ‘disgust’ 
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Microinjections of the muscarinic acetylcholine antagonist scopolamine in medial shell 

suppressed positive hedonic orofacial reactions elicited by the taste of sucrose by ~30% below 

vehicle control levels in the same rats (Figure 3.2) (X2 = 17.868, p = 0.000132; Z = -2.585, p = 

0.010; r = 0.37; 95.7% CI [-3, 0]). Essentially all sites throughout medial shell generated similar 

suppressions of ‘liking’ reactions to sucrose, with no difference in magnitude between rostral 

versus caudal sites (X2 = 0.946, p = 0.397), or dorsal versus ventral sites (X2 = 2.432, p = 0.119). 

However, despite suppressing hedonic reactions to sucrose, scopolamine microinjections never 

actually induced aversive gapes or other ‘disgust’ reactions to sucrose (X2 = 4.617, p = 0.099; Z 

= -1.451, p = 0.147). 

By contrast, aversive ‘disgust’ reactions to bitter quinine, which were already robust on 

control trials after vehicle microinjections, were nearly doubled in number after scopolamine 

microinjections at essentially all sites throughout medial shell (X2 = 21.273, p = 0.000024; Z = -

3.311, p = 0.001; r = 0.47; 95.7% CI [8, 23]). The elevation of quinine ‘disgust’ reactions was 

equally robust at sites, whether in rostral halves or caudal halves of medial shell (X2 = 1.294, p = 

0.255). Positive hedonic reactions to quinine, which were already nearly zero after vehicle 

microinjections, remained near zero and unchanged after scopolamine microinjections (X2 = 2.8, 

p = 0.247). 

Scopolamine suppresses food intake 

Scopolamine microinjections throughout medial shell similarly caused a 50% suppression 

of intake of palatable M&M chocolate candies (X2 = 30.333, p = 0.0000001; Z = 3.760, p = 

0.00017; r = 0.53; 95.7% CI [-2.9, -2.5]). This intake suppression did not differ between rostral 

and caudal sites (Figure 3.3) (X2 = 1.632, p = 0.201), again consistent with previous reports of 

intake suppression at various NAc sites by Pratt and Kelley (2005). ACh blockade also decreased 
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time spent drinking water (X2 = 12.194, p = 0.002; Z = 2.898, p = 0.004) and time spent rearing 

(X2 = 11.810, p = 0.003; Z = 3.00, p = 0.003). 

Scopolamine increases fearful/defensive treading 

 Scopolamine microinjections, especially in the caudal half of medial shell, also caused a 

5-fold increase in emission of defensive treading compared to vehicle days (X2 = 12.194, p = 

0.002; Z = 2.898, p = 0.004; r = 0.41; 95.7% CI [0, 20]) (Figure 3.4). Defensive treading was 

elicited more intensely at microinjection sites in the caudal half of shell than in the rostral half of 

shell (X2 = 4.963, p = 0.026; Rostral: Z = 1.718, p = 0.086; Caudal: Z = 2.293, p = 0.022). 

Defensive treading or burying is a natural anti-predator response of rodents, which is used to 

throw debris forward toward a localized threat, sometimes actually burying the object (i.e. 

rattlesnake or shock prod) (Coss & Owings, 1978; Reynolds & Berridge, 2001, 2008; Treit, 

Pinel, & Fibiger, 1981). Defensive treading was not emitted randomly within the chamber 

(indicating it was not simply a motor reaction), but rather was directionally focused toward the 

four corners of the transparent plastic chambers, which may have reflected light in a slightly 

glittering fashion.   

Potential independence of changes in taste reactivity, food intake, and defensive treading 

Food intake and ‘liking’ reaction enhancement by orexin microinjections in the NAc 

rostral shell hotspot were not highly correlated (Spearman’s R; ρ = -0.148, p = 0.598, R2 = 

0.0219). That appeared to be because orexin microinjections produced roughly 250% increases 

in sucrose-elicited ‘liking’ reactions, regardless of whether the intake increase was small (110-

149% of vehicle levels) or large (>150%). Although scopolamine microinjections in NAc shell 

tended to suppress sucrose ‘liking’ reactions, increase bitterness ‘disgust’ reactions, suppress 

food intake, and in caudal shell increase defensive treading, there was not a close statistical 
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association among these effects. Similarly, the degree of scopolamine suppression of food intake 

was not correlated to the degree of suppression of hedonic reactions to sucrose or enhancement 

of quinine aversion (sucrose suppression: ρ = -0.027, p = 0.90, R2 = 0.05; quinine enhancement: 

ρ = 0.224, p = 0.293, R2 = 0.014). Finally, the increase in fearful/defensive treading caused by 

scopolamine microinjections was also statistically independent of the increase in ‘disgust’ 

reactions to quinine caused by those same microinjections  (ρ = 0.137, p = 0.0.672, R2 = 0.019).  

However, since taste reactivity and intake/treading behaviors were tested at different times after 

microinjections, their temporal separation might have promoted a degree of uncoupling. For sites 

outside the hotspot, orexin-induced increases in intake were not accompanied by any hedonic 

enhancement, making the stimulation of eating even more independent.   

The hedonic suppression caused by scopolamine microinjections also was not tightly 

correlated to the elevation of quinine ‘disgust’ reactions (ρ = -0.174, p = 0.417, R2 = 0.03). This 

result appears to be because scopolamine microinjections roughly doubled the number of quinine 

‘disgust’ reactions regardless of whether it only slightly reduced sucrose ‘liking’ reactions (25% 

reduction; i.e., 75% of vehicle levels) or produced a greater hedonic suppression. 

Discussion  

Overview 

Microinjections of orexin-A in the rostral half of NAc medial shell caused a 300% 

increase in the number of positive orofacial ‘liking’ reactions elicited by sucrose taste, whereas 

sites in the caudal half of shell failed to increase sucrose ‘liking’, revealing an anatomical orexin 

hotspot for hedonic enhancement. This hedonic hotspot was anatomically similar to the opioid 

hotspot in rostral shell previously mapped for mu, delta and kappa opioid stimulations (and 

overlapped with an endocannabinoid hedonic hotspot in dorsal shell previously mapped for 
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anandamide enhancements (Castro & Berridge, 2014b; Mahler et al., 2007). However, unlike 

opioid stimulation in NAc, orexin stimulation never suppressed ‘liking’ reactions at posterior 

sites in the caudal half of medial shell, which were merely hedonically silent. By contrast, the 

motivation to eat, expressed as higher food consumption, was increased by orexin at all sites 

throughout the entire medial shell. Widespread anatomical NAc stimulation of intake is also 

similar to mu opioid stimulation, which increases eating at all sites throughout shell and core, as 

well as in dorsal and ventrolateral regions of neostriatum, in central nucleus of amygdala, and in 

medial prefrontal cortex (Castro & Berridge, 2014b; DiFeliceantonio et al., 2012; Mahler & 

Berridge, 2009; Mena et al., 2011; Pecina & Berridge, 2005; Ragnauth, Moroz, et al., 2000; 

Richard et al., 2013; Thorpe & Kotz, 2005; Zhang & Kelley, 2000). 

Regarding ACh in hedonic impact and motivation, scopolamine blockade of NAc 

acetylcholine muscarinic receptors typically suppressed both sucrose ‘liking’ reactions to below 

50% normal levels and reduced palatable food intake to 50-70% of normal levels at most sites 

throughout medial shell. Scopolamine microinjections throughout nearly the entire NAc medial 

shell also doubled the number of ‘disgust’ reactions elicited by bitter quinine. However, 

scopolamine’s induction of negative affect was never strong enough to actually create ‘disgust’ 

reactions to the sweet taste of sucrose (unlike GABA stimulations in caudal shell, which can 

reverse sucrose reactions from ‘liking’ to ‘disgust’ (Faure et al., 2010; Ho & Berridge, 2014; 

Reynolds & Berridge, 2002)).  Finally, ACh blockade by scopolamine specifically in the caudal 

half of medial shell additionally elicited fear-related defensive treading behavior, which was 

directed towards locations in the chamber that may have been perceived as more threatening than 

others (e.g., light-reflecting corners). These results suggest that endogenous muscarinic ACh 

signals, when present, help maintain the overall positive hedonic impact of the taste of food, as 
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well as amplifying the motivation to eat, and in the caudal shell also potentially exerting an 

anxiolytic action. 

Orexin rostral hotspot  

Why the rostral half of NAc medial shell contains an anatomical hotspot for orexin and 

opioid hedonic enhancements needs further explanation, but it is known that rostral shell has 

several unique anatomical features that differentiate it from caudal shell, and which could be 

relevant. For example, the NAc rostrodorsal quadrant of medial shell has distinct inputs from a 

region in infralimbic cortex and outputs to ventral pallidum and hypothalamus that are different 

from other medial shell quadrants (Thompson and Swanson, 2010), resulting in a closed-circuit 

corticolimbic-thalamocortical loop that runs parallel to loops passing through other regions of 

NAc shell. In addition, the rostral half of shell also has septal-like anatomical features that 

distinguish it from the extended amygdala-like features of caudal shell (Thompson & Swanson, 

2010; Zahm et al., 2013). Neurons in rostrodorsal medial shell also have distinct morphological 

features, such as fewer spiny dendrites and smaller medium spiny neuronal (MSN) cell bodies 

than other areas of NAc (Meredith et al., 2008; Zahm et al., 2013).   

Neurochemically, the cellular mechanism for orexin enhancement of sucrose ‘liking’ also 

remains unclear. Orexin is typically thought to have excitatory depolarization effects on neurons 

(Korotkova, Sergeeva, Eriksson, Haas, & Brown, 2003; Marcus et al., 2001; Sakurai, Amemiya, 

Ishii, Matsuzaki, Chemelli, Tanaka, Williams, Richarson, et al., 1998; Trivedi, Yu, MacNeil, 

Van der Ploeg, & Guan, 1998; van den Pol et al., 2002; Zhu et al., 2003). However, neurons in 

NAc may exclusively contain orexin-2 receptors (OXr2) (Ch'ng & Lawrence, 2015; Trivedi et 

al., 1998), which can be coupled to either Gi or Gq subunits, and may inhibit neurons via the 

augmentation of inhibitory GABA signals (Martin, Fabre, Siggins, & de Lecea, 2002; Zhu et al., 
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2003). If so, neuronal inhibition by orexin could be more similar to GABAergic 

hyperpolarization or Gi coupled opioid or endocannabinoid signaling. Future work could clarify 

the role of NAc neuronal inhibition versus excitation for hedonic enhancement. 

Scopolamine causes a shift towards negative affect and motivation 

 The ability of scopolamine microinjections throughout medial shell to suppress hedonic 

reactions to sucrose, increase aversive ‘disgust’ reactions to bitter quinine, and suppress intake of 

palatable food is consistent with the hypothesis by Kelley and colleagues (Kelley, Baldo, & 

Pratt, 2005) that endogenous ACh signals in NAc shell promote food intake (potentially by 

enhancing palatability). Their ACh-appetite hypothesis arose from the original demonstrations 

that scopolamine microinjections into NAc suppressed food intake, and that NAc scopolamine 

microinjections also could serve as an unconditioned stimulus to induce conditioned avoidance 

of either a paired taste or a paired place  (Pratt & Kelley, 2004; Pratt et al., 2007). ACh also 

appears to interact with  mu opioid signals in NAc shell, as indicated by reports that NAc 

scopolamine reduces preproenkephalin mRNA levels, and  blocks the ability of  mu opioid 

agonist microinjection in NAc to stimulate eating (Perry et al., 2014; Pratt & Kelley, 2005). A 

role for NAc ACh in incentive motivation and reward also seems consistent with reports that 

spontaneous firing in NAc neurons (including ACh interneurons) is evoked by reward events 

(Morris, Arkadir, Nevet, Vaadia, & Bergman, 2004), interactions between insulin and ACh 

interneurons can directly modulate dopamine release in response to food rewards (Stouffer et al., 

2015), and that optogenetic inhibition of ACh interneurons in NAc prevents the establishment of 

a cocaine conditioned place preference (Witten et al., 2010).    

Conclusion  
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 These results reveal an anatomically localized hedonic hotspot in NAc rostral half of 

medial shell for orexin enhancement of sweetness ‘liking’, but more distributed orexin 

mechanisms in NAc shell for stimulating motivation or ‘wanting’ to eat palatable food. They 

also support a positive role for endogenous NAc acetylcholine signals in both hedonic impact 

and appetitive motivation. Collectively, these data help elucidate how orexin and ACh 

neurochemical signals in NAc contribute to sensory hedonic impact and the motivation to eat.  
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Figure 3.1. Orexin and scopolamine drug microinjection Fos plumes. Local Fos expression 
surrounding vehicle, orexin or scopolamine microinjections (top left). Photomicrographs show 
Fos expression after vehicle (top right), orexin (middle left) or scopolomaine (middle right) 
microinjections in NAc shell for individual rats, compared to levels in normal NAc tissue.   
Plumes 200% elevated over normal tissue levels are outlined with a dashed red line, whereas 
200% elevations over slightly higher vehicle microinjection levels are outlined by red solid lines 
(blue solid lines = 25% decrease below vehicle-induced levels). Mean plume radius shown for  
vehicle (bottom left), orexin (bottom middle) and scopolamine (bottom right) microinjections  
relative to normal control brains (dashed lines) or vehicle brains (filled lines). 
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Figure 3.2. Orexin and scopolmaine oppositely modulate hedonic reactions to sucrose. 
Sagittal causation maps for localization of function in NAc medial shell, showing changes in 
orofacial hedonic (‘liking’) reactions elicited by sucrose taste after microinjections of either 
orexin  or scopolamine (bottom; both compared to vehicle microinjection tests in the same rat). 
Each  symbol placement indicates a microinjection site, the symbol size reflects the size of  Fos 
plumes produced by that drug, and symbol color reflects the behavioral effects of the drug 
microinjection, shown as percentage change from vehicle control levels (enhancements: yellow-
orange-red; suppressions: blue). Bars above and to the left of sagittal maps show mean absolute 
change in number of orofacial reactions induced by drug microinjection at that anterior–posterior 
or dorsal–ventral level. Total numbers of hedonic reactions are depicted in the bars graphs to the 
right of the sagittal maps, showing means with SEMs as bars (median as pink line), and  
individual data points as scatter-plot circles. 
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Figure 3.3. Scopolamine increases aversive ‘disgust’ reactions to bitter quinine. Sagittal 
maps showing changes in aversive (‘disgust’) orofacial reactions to bitter quinine taste after 
microinjections of orexin or scopolamine (bottom).  Maps and symbols as in Figure 3.2, but with 
increases in ‘disgust’ reactions reflected by shades of purple. 
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Figure 3.4. Orexin and scopolamine oppositely affect food intake. Sagittal causation maps for 
changes in food intake (palatable chocolate M&M candies) and treading after either orexin (top) 
or scopolamine (bottom) microinjections. Intake effects are displayed as percentage changes 
from vehicle levels (enhancements: green; suppressions: blue) and treading effects are displayed 
as percentage changes from vehicle levels (enhancements: red; suppressions: blue). Maps and 
symbols otherwise as in Figure 3.2. The bottom right panel displays the amount of time spent 
treading at each corner of the chamber. Location of experimenter and video camera designate the 
front of the chamber.  
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CHAPTER 4: 

CAUSAL MECHANISMS OF HEDONIC IMPACT AND MOTIVATION IN 

ORBITOFRONTAL CORTEX AND INSULA 

Introduction  

Positive hedonic reactions to pleasant events are needed for normal well-being, and 

pathological hedonic dysfunction contributes to depression, mood disorders, addiction binge 

eating, and related disorders. Affective neuroscience studies have identified brain mechanisms 

underlying hedonic reactions (K. C. Berridge & Kringelbach, 2015; Castro & Berridge, 2014a), 

but the role of cortex remains unclear. 

On the one hand, human neuroimaging studies report that orbitofrontal cortex (OFC) and 

insula cortex encode the pleasantness of foods (Kringelbach & Rolls, 2004). For example, human 

fMRI studies have found increased BOLD signals in response to palatable food tastes/odors and 

decreased activity as participants reach satiety (Kringelbach, O'Doherty, Rolls, & Andrews, 

2003; E. T. Rolls, Kringelbach, & de Araujo, 2003; Small, Zatorre, Dagher, Evans, & Jones-

Gotman, 2001). These results suggest the possibility that limbic cortex activations may code the 

hedonic impact of a sensory pleasure. On the other hand, lesions of orbitofrontal cortex in 

humans do not reliably suppress positive hedonic or emotional reactions to pleasant stimuli 

(Beer, Heerey, Keltner, Scabini, & Knight, 2003; Bramham, Morris, Hornak, Bullock, & Polkey, 

2009; Szczepanski & Knight, 2014), and even complete prefrontal lobotomy transection or 



85 
 

massive encephalitic lesions that damage medial orbitofrontal cortex, as well as insula and  

anterior cingulate cortex, can leave affective reactions and emotional exclamations remarkably 

intact despite causing cognitive impairments (Feinstein et al., 2010; Philippi et al., 2012). 

Similarly, in animal studies, neither cortical lesions nor complete decortication strongly suppress 

appetitive preference and seeking behavior or consummatory responses to palatable foods (Bales, 

Schier, Blonde, & Spector, 2015; Schier, Hashimoto, Bales, Blonde, & Spector, 2014; Wirsig & 

Grill, 1982). Thus cortical damage does not produce loss of positive hedonic reactions. 

However, causal gains of hedonic function can be produced in some brain structures, 

even when lesions do not produce much loss of hedonic function (K. C. Berridge & Valenstein, 

1991; Ho & Berridge, 2014). In subcortical structures, several “hedonic hotspots” have been 

identified, where neurochemical stimulations cause increases in positive ‘liking’ reactions 

elicited by sweetness. These subcortical hotspots are located in nucleus accumbens (NAc), 

ventral pallidum (VP), and in the brainstem parabrachial region of the pons in rats (Castro & 

Berridge, 2014a; Pecina, Smith, & Berridge, 2006; Soderpalm & Berridge, 2000). For example, 

microinjections of either a mu opioid agonist (DAMGO) or orexin-A into the rostrodorsal 

hotspot of medial shell in nucleus accumbens, or into the caudal hotspot of ventral pallidum, can 

double or triple the number of affective orofacial ‘liking’ reactions elicited by the taste of 

sucrose (Castro, Terry, & Berridge, 2016; Ho & Berridge, 2013; Pecina & Berridge, 2005; K. S. 

Smith & Berridge, 2005). However, only in the ventral pallidum do lesions induce loss of 

‘liking’ reactions, and replace them with ‘disgust’ reactions to sweetness (Cromwell & Berridge, 

1993; Ho & Berridge, 2014). 

Recently, evidence for cortical causation of motivation has been reported. For example, 

optogenetic stimulation of ‘sweet coding’ site in insula gustatory cortex has been shown to 
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induce conditioned preference, whereas stimulation of a ‘bitter coding’ site induces conditioned 

avoidance and more directly causes mice to emit gapes when drinking water (Peng et al., 2015). 

Further, local mu opioid stimulation by DAMGO microinjections in OFC and medial PFC 

(infralimbic and prelimbic cortex) in rats causes increased food intake (Mena et al., 2011).    

Opioid-induced stimulation of eating is a feature shared with hedonic hotspots of nucleus 

accumbens and ventral pallidum (Castro & Berridge, 2014b; K. S. Smith & Berridge, 2005). 

Although opioid-stimulation of eating also extends to many brain sites that lack hedonic 

enhancement capability (DiFeliceantonio et al., 2012; Mahler & Berridge, 2009; Noel & Wise, 

1995; Zhang & Kelley, 2000), possession of that feature by limbic cortical regions raises the 

possibility that cortex might also contain an opioid hedonic hotspot(s) capable of hedonic 

enhancements. We aimed to assess that possibility here by making microinjections of the mu 

opioid agonist DAMGO at sites throughout the OFC and insula, and assessing hedonic effects on 

affective taste reactivity to sucrose or quinine. Further, since orexin-A stimulation in hedonic 

hotspots of nucleus accumbens and ventral pallidum is known to enhance ‘liking’ reactions to 

sweetness, we also aimed to compare hedonic effects of orexin-A microinjections in the same 

cortex regions. 

Materials & Methods 

Animals 

 116 Sprauge-Dawely rats (250-400g; male: n = 59, female: n = 47; behaviorally tested n 

= 95; cortical Fos plumes n = 21) were housed in a reverse 12h light/dark cycle at 21°C constant 

temperature. Chow and water were provided ad libitum. All procedures were approved by the 

University Committee on the Use and Care of Animals at the University of Michigan. 

Taste reactivity and cannulation surgery 



87 
 

Rats were anesthetized with a ketamine hydrochloride (80 mg/kg, i.p.) and xylazine 

(5mg/kg, i.p.) mixture, and then pretreated with atropine (0.05 mg/kg, i.p.) to prevent respiratory 

distress. Rats were then implanted with bilateral oral cannulae to permit oral infusions of sucrose 

and quinine solutions [polyethylene (Pecina & Berridge)-100 tubing]. Oral cannulae entered the 

mouth in the upper cheek pouch lateral to the first maxillary molar, ascended beneath the 

zygomatic arch, and then exited through the skin at the dorsal head cap (Grill & Norgren, 

1978a). Rats were then placed in a stereotaxic apparatus (David Kopf Instruments), with the 

incisor bar set at -3.3mm below intraoral zero for flat skull measurements. Rats received bilateral 

NAc implantation of permanent microinjection guide cannulae (OFC: 12.5mm, 23-gauge, 

stainless steel; Insula: 14mm, 23-gauge, stainless steel). OFC placements (n = 19) ranged from 

+5.64mm to +2.76mm (AP) from bregma, ±0.2mm to ±3.4mm mediolateral, and -4.0mm to -

6.8mm dorsoventral (DV). Insular cortex placements (n = 29) ranged from +4.2mm to -2.64mm 

(AP) from bregma, ±3.5mm to ±6.6mm mediolateral, and -5.6mm to -7.8mm dorsoventral (DV). 

Placements were scattered to fill in the majority of OFC or IC, but all placements were intended 

to be bilaterally symmetrical within each animal. Microinjection guide cannulae were anchored 

to the skull using surgical screws and dental acrylic, and stainless-steel obturators (28 gauge) 

were inserted to avoid any clogging, except for on behavioral testing days. After surgery, each 

rat received subcutaneous injections of carprofen (5mg/kg) for pain relief. Rats received another 

dose of carprofen 24 h later and were allowed to recover for one week before beginning 

behavioral testing. 

Drug Microinjections 

Rats were handled in the lap of the experimenter during NAc microinjections. PE-20 

polyethylene tubing was connected to stainless steel microinjection cannula (OFC: 12.5mm, 29 
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gauge; IC: 14mm, 29 gauge) extending 1mm (OFC) or 2mm (IC) beyond the guide cannulae to 

reach the NAc target site. On test days, solutions were brought to room temperature (~21ºC) 

prior to microinjection. Microinjection solutions contained one of the following: 1) DAMGO, a 

selective mu receptor agonist at a dose of 0.05µg/0.2µl per side; 2) Orexin-A, an excitatory 

neuropeptide hormone (500pmol/0.2 µl per side); 3) ACSF vehicle alone in a volume of 0.2µl 

per side (vehicle control condition). Drugs were prepared at the beginning of each test group, and 

frozen in between test days. Drugs were dissolved in a vehicle of artificial cerebrospinal fluid 

(ACSF) and microinjected over a 1min period at a volume of 0.2µl per side at a speed of 

0.2µl/min by syringe pump. After each microinjection, injectors were left in place for 1 minute 

to allow for drug diffusion, after which obturators were replaced. Rats were then immediately 

placed in the taste reactivity testing chamber. Each rat received only one drug or vehicle 

microinjection per test day.  

Taste Reactivity Testing 

Before testing, rats were each handled and habituated to the testing conditions for 25 

minutes for 4 consecutive days, and they received a mock injection of vehicle, artificial cerebral 

spinal fluid (ACSF) on the final day of habituation. The taste reactivity test (Grill & Norgren, 

1978a; Steiner, 1973; Steiner et al., 2001) is used to measure rat’s affective orofacial reactions to 

either a 1ml volume sucrose solution or a 1ml volume quinine solution (sucrose: 1.0%, .029M; 

quinine: 3x10-3M, 1ml per test), which is infused via hollow tubing (PE-50 connected to a PE-10 

delivery nozzle) connected to the rat’s oral cannula and then attached to a syringe pump. At the 

peak pharmacological activation of microinjected drugs (25min for all three; vehicle, orexin, and 

scopolamine) testing occurred, where sucrose was infused evenly for 1min followed by a 1min 

infusion of quinine. Orofacial taste reactivity responses to both solutions were video recorded via 
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close-up lens and an angled mirror placed underneath the transparent floor for subsequent slow-

motion video analysis. 

Taste reactivity video scoring 

Each rat’s hedonic, aversive, and neutral taste reactivity responses were scored after 

testing in slow motion (1/30 s frame-by-frame to 1/10th actual speed) using Observer software. 

Hedonic responses were classified as lateral tongue protrusions, rhythmic midline tongue 

protrusions, and paw licks (K. C. Berridge, 2000). Aversive reactions were classified as head 

shakes, gapes, forelimb flails, face washes, and chin rubs. Neutral responses were classified as 

ordinary grooming, passive dripping of solution out of the mouth, and rhythmic mouth 

movements. A time-bin scoring system was used to quantify positive and aversive reactions and 

to ensure that each component contributed equally to the overall calculations of taste reactivity 

responses (K. C. Berridge, 2000). Rhythmic mouth movements, paw licking, and passive 

dripping reactions were scored in 5 s time bins, while rhythmic midline tongue protrusions and 

chin rubs were scored in 2 s time bins. More discrete events, such as lateral tongue protrusions, 

gapes, forelimb flails, and head shakes, were scored individually every time they occurred. Total 

hedonic and aversive responses were then calculated. The sum of lateral tongue protrusions, 

rhythmic tongue protrusions, and paw lick scores represented total hedonic reactions. The sum of 

gapes, head shakes, face washes, forelimb flails, and chin rub scores represented total aversive 

reactions.  

Food intake testing 

For 1-hr immediately following the taste reactivity test on each day of microinjections 

rats were given free access to food and drink and subsequently video-recorded. Rats were 

habituated to the food intake conditions during the 4 habituation days. Each food intake chamber 
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(23 x 20 x 45 cm) was filled with 1 cm high of corncob bedding, a large pile of palatable 

chocolate (M&Ms, ~20g), and a water bottle. The amount of M&M candies was weighed before 

and after testing to calculate amount of food intake. Video was recorded and later scored for 

calculation of eating behavior (duration in seconds), water drinking behavior (in seconds), 

grooming behavior (in seconds), and for number of bouts of food sniffs, food carrying, cage 

crosses, and rears.  

Histology and Fos-like protein immunohistochemistry 

After the last day of behavioral testing, rats were deeply anesthetized with an overdose of 

sodium pentobarbital. Rats were decapitated and the brains were extracted and fixed in 10% 

paraformaldehyde solution for 1-2 days followed by a 25% sucrose solution in 0.1M NaPB for 2-

3 days before slicing. 60 µm slices through the NAc were taken from each rat on a cryostat, 

mounted, dried, and stained with cresyl violet. Microinjection center was determined for each 

bilateral injection site and slides were compared with the stereotaxic atlas (Paxinos & Watson, 

2007) to determine placement in the NAc.  

To map the spread and impact of microinjections on local tissues, Fos 

immunohistochemistry was performed on a new set of rats (n = 21). Previous studies have shown 

that multiple microinjections and reduce the size of the Fos plume, thereby underestimating the 

functional spread of the drug. Rats were anesthetized and transcardially perfused 90 minutes 

after their last microinjection of vehicle, orexin, or DAMGO. Brains were sliced and processed 

for Fos-like immunoreactivity using normal donkey serum, goat anti-c-fos (Santa Cruz 

Biotechnology), and donkey anti-goat Alexa Fluor 594 (Invitrogen). Injection sites were 

scattered across OFC and IC to develop a single representative “cortical plume.” Sections were 

mounted, air-dried, and coverslipped with Prolong Gold antifade reagent (Invitrogen). Zones that 
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showed elevated expression of fluorescent Fos in the neurons surrounding microinjection sites 

were then assessed via microscope (Castro & Berridge, 2014a; Reynolds & Berridge, 2008).  

The mapping of microinjection tips was done on two different sagittal planes to allow for 

the presentation of the rostrocaudal, dorsoventral and mediolateral components of OFC and IC. 

Color-coding was used to express the percent change of hedonic and aversive behaviors, as well 

as food intake, after drug microinjections compared to vehicle test days. Symbols were sized to 

match the maximal expansion of Fos plumes. The distinction between rostral and caudal 

placements in OFC was determined by placements around +3.72mm anterior to bregma, where 

sites falling between +5.16mm to +3.72mm were classified as rostral placements, and sites 

falling between +3.72mm to +2.52mm were classified as caudal placements. In IC, distinction 

between rostral and caudal placements was determined by placements around +0.0mm anterior 

to bregma, where sites falling between +3.72mm to +0.00mm were classified as rostral 

placements, and sites falling between +0.0mm to -3.0mm were classified as caudal placements. 

Sites falling outside of OFC or IC were also mapped and color coded on the same maps. 

Results 

 DAMGO and orexin microinjections produced excitatory plumes surrounding the 

microinjection tip relative to vehicle microinjections (F(2, 2885) = 3.66, p = 0.026; DAMGO: p = 

0.29; orexin: p = 0.010). DAMGO produced a large outer plume within which Fos was elevated 

by 125% compared to vehicle injections (radius = 0.51mm; volume = 0.056mm3). DAMGO 

injections also produced a more intense inner plume where Fos was elevated by 150% above 

vehicle levels within a radius of 0.25mm (volume = 0.065mm3). Like DAMGO, orexin 

microinjections produced a large, mild outer plume where Fos was increased by 125% (radius = 

0.55mm; volume = 0.7mm3). A smaller, more intense inner plume with a radius of 0.16mm 
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showed 200% elevations (volume = 0.017mm3). Both statistically and observationally, DAMGO 

and orexin plumes did not differ (p = 0.573), suggesting similarly sized effects of drug 

microinjections on local tissue. The plumes derived from DAMGO and orexin microinjections 

were assigned to be the size of drug site symbols in the functional maps. 

No sex differences in drug effects 

Females and males were first compared for behavioral sex differences in taste reactivity 

or food intake measures after vehicle or drug microinjections. Overall, there were no detectable 

differences between males and females on baseline reactions to sucrose (X2 = -1.066, p = 0.286). 

There were also no differences in hedonic reactions between males and females after DAMGO 

or orexin microinjections (DAMGO: X2 = -1.297, p = 0.195; Orexin: X2 = -0.083, p = 0.934). 

Males and females also did not differ in the amount eaten at baseline (X2 = 0.324, p = 0.973) or 

after DAMGO or orexin-A microinjections (DAMGO: X2 = 0.243, p = 0.622; Orexin: X2 = 

0.506, p = 0.477). 

To verify that there were no sex differences within brain regions, we also tested OFC or 

IC sites separately. We found that there were no baseline differences in hedonic reactions to 

sucrose (X2 = 1.939, p = 0.164) but that males and females differed in baseline intake (X2 = -

2.064, p = 0.039) in OFC. We found a similar pattern after DAMGO (sucrose ‘liking’: X2 = 

0.913, p = 0.339; food intake: X2 = -1.704, p = 0.088) or orexin microinjections (sucrose ‘liking’: 

X2 = 0.078, p = 0.780; food intake: X2 = -2.22, p = 0.026) microinjection. The difference in 

intake appears to be caused by females eating less at baseline compared to males (female mean 

intake = 4.45g, male mean intake = 7.71g). However, while this difference was maintained after 

DAMGO or orexin microinjection, the magnitude of the drug effect did not differ between males 

and females (change in food intake after DAMGO: X2 = 0.002, p = 0.968; change in food intake 
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after orexin: X2 = 0.077, p = 0.781), indicating that males and females are similarly affected by 

the drug. 

No sex differences were found for baseline hedonic reactions to sucrose (X2 = 0.480, p = 

0.489) or food intake (X2 = 0.129, p = 0.720) in insula, or after DAMGO (sucrose ‘liking’: X2 = 

0.142, p = 0.707; food intake: X2 = 0.353, p = 0.553) or orexin (sucrose ‘liking’: X2 = 0.0001, p = 

0.984; food intake: X2 = 0.078, p = 0.780) microinjection. Collectively, these results indicate that 

females and males may have differences in baseline food intake (at least in OFC), but that they 

are similarly affected by the drug microinjections. Therefore, data for both taste reactivity and 

food intake was pooled in subsequent analyses. All main effects described below applied to both 

sexes, unless noted. 

OFC and insula each contain a “hedonic hotspot” 

DAMGO or orexin microinjections in OFC altered affective taste reactivity elicited by 

infusions of sucrose into the mouth, but oppositely at different locations within OFC 

(rostromedial versus caudolateral OFC: X2 = 15.589, p = 0.000079). A hedonic hotspot was 

revealed in the rostral and medial subregions of OFC, where either mu opioid or orexin 

stimulation doubled or even tripled the number of positive orofacial ‘liking’ reactions to sucrose 

(compared to control vehicle microinjection levels measured in the same rats) (X2 = 14.370, p = 

0.001; DAMGO: Z = -3.016, p = 0.003, r = -0.81, CI [2,12]; orexin: -2.835, p = 0.005, r = -0.76, 

CI [1,16] (Figure 4.2 and 4.3). By contrast, bitter quinine evoked robust numbers of negative 

‘disgust’ reactions, and were left unchanged by either DAMGO or orexin microinjections within 

the OFC hotspot (quinine ‘liking’: X2 = 0.875, p = 0.646; quinine ‘disgust’: X2 = 2.178, p = 

0.337). Thus opioid or orexin stimulation within the rostral OFC hotspot enhanced the positive 

hedonic impact of sweetness, but did not detectably alter the negative impact of bitterness. 
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The anatomical borders of the OFC hedonic hotspot were essentially identical for both 

DAMGO and orexin microinjections. This rostromedial hedonic hotspot in OFC began anteriorly 

and medially in orbital cortex extending medially along the midline of the brain into the medial 

orbital area at the front of the cingulate lobe (i.e., homologous to area 14, and immediately 

ventral to rostral prelimbic area/area 32v (Paxinos & Watson, 2007). The hotspot also extended 

laterally into ventral (area 13) and lateral (area12/47) orbital areas; in other words, the hotspot 

stretched throughout the entire ventral surface of rostral OFC. Our sites did not probe the 

dorsolateral orbital region of OFC, leaving undefined the hotspot’s anterior dorsolateral edge. 

Traveling caudally, the dorsal edge of the hotspot comprised of prelimbic cortex medially and 

claustrum laterally, with the midline providing the medial border. Far rostral agranular insula 

provided the lateral border adjacent to lateral orbital area (more below). Along the A-P axis, the 

OFC hotspot extended from the OFC rostral pole through posterior portions of medial orbital 

area and the rostral half of ventral and lateral orbital areas (ending approximately at +3.5mm 

anterior to bregma A-P; ± 3.0mm lateral to midline M-L). The entire volume of this OFC 

hedonic hotspot was approximately 9.43mm3, based on dimensions of 2.14mm A-P, 1.82mm D-

V (based on average medial and lateral dorsoventral borders), and 2.42mm M-L (based on 

average dorsal and ventral mediolateral borders). M-L and D-V dimensions were calculated by 

averaging the dimensional borders at individual coronal sections located 0.5mm apart along the 

A-P axis of the hotspot. This sampling method accounted for the unusually shaped OFC at 

various points along the A-P, thereby reducing overestimations of the total volume. This method 

was applied to the coldspot and insula hotspot describe below. The OFC hotspot did not 

penetrate into the posterior one-third of ventral and lateral orbital region, which instead marked 

the rostromedial border of a suppressive hedonic coldspot, described below.  
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Suppressive coldspot: posterior OFC and Insula. 

In the suppressive coldspot that filled posterolateral OFC and most of the insula, both 

DAMGO or orexin microinjections reduced the number of positive hedonic orofacial reactions 

elicited by sucrose to roughly one-half normal levels  (33% - 50% suppression; X2 = 15.02, p < 

0.001; DAMGO: Z = -3.366, p = 0.001, r = 0.65, CI [-9, -2]; orexin: Z = -2.879, p = 0.004, r = 

0.55, CI [-9, 0]) (Figure 4.2 and 4.3). Like the hotspot, the coldspot’s affective modulation was 

specific to positive hedonic valence of sweetness, and did not alter the low number of negative 

‘disgust’ reactions to sucrose (X2 = 2.239, p < 0.326;  DAMGO: Z = -0.086, p = 0.931; orexin: Z 

= -0.716, p = 0.474). Similarly, the robust levels of ‘disgust’ reactions elicited by bitter quinine 

were not altered by coldspot microinjections of either DAMGO or orexin (X2 = 3.314, p = 

0.191).  Likewise, ‘disgust’ reactions to sweetness were never induced by DAMGO or orexin 

microinjections anywhere in the 4mm strip of OFC/insula coldspot (X2 = 2.1967, p = 0.338), 

which merely reduced positive ‘liking’ reactions in a univalent fashion.   

In a short A-P plane in posterior OFC (e.g., +3.72mm in front of bregma), the hedonic 

coldspot (lateral) and hedonic hotspot (medial) overlapped together (Figures 4.2 & 4.3). But 

apart from that plane, the suppressive OFC/insula coldspot was mostly posterior to the OFC 

hotspot, and the coldspot continued approximately 4mm caudally, through the whole anterior 

insula and even posterior insula (caudal to the middle cerebral artery). Throughout the extent 

from anterior insula to mid-posterior insula, coldspot sites were equally distributed across the 

agranular zone that is positioned ventromedially in the brain, the dysgranular zone lying 

immediately dorsal and lateral to it, and the granular zone that is most dorsolateral within insula. 

The hedonic coldspot therefore filled most of the insula: both anterior insula, which often has 

been assigned ‘emotional’ functions (Craig, 2011; Wager et al., 2013), and posterior insula that 
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has been traditionally assigned sensory functions, including all the gustatory insula region and 

mid-caudal portions of visceral cortex (~0.5mm from Bregma), just caudal to primary gustatory 

cortex. 

The medial boundary of the rostral coldspot was ventral claustrum, infralimbic cortex 

(area 25) and dorsal peduncular cortex, and of the caudal coldspot also the dorsal endopiriform 

nucleus. The dorsal boundary for OFC portion of coldspot was claustrum (above OFC), and for 

the insula coldspot was frontal cortex (area 3), primary somatosensory cortex (e.g., jaw region), 

and posteriorly secondary somatosensory cortex. The ventral boundary was piriform cortex. The 

suppressive coldspot extended posteriorly past Bregma until reaching the caudal portions of 

visceral insula (~ -0.5mm behind Bregma). The volume of the entire coldspot of OFC/Insula was 

approximately 20.04mm3, based on dimensions of 4.8mm A-P, 2.13mm D-V, and 1.96mm M-L. 

Posterior to the coldspot was a contiguous second cortical hotspot, which filled the remainder of 

posterior insula as described below. 

Another hedonic hotspot in far posterior insula 

The insula hedonic hotspot began anteriorly at approximately the same A-P level of the 

brain in coronal section as where the fornix diverges from a medial mass into bilateral columns, 

where the anterior edge of the third ventricle is located, and where the anterior commissure fades 

out posteriorly. Hotspot sites were uniformly distributed across ventral agranular, (mid) 

dysgranular and (dorsal) granular regions of far posterior (parietal) insula. This far posterior 

region of insula has been suggested to receive visceral and respiratory sensory inputs, on the 

basis of an electrophysiological mapping study (Cechetto & Saper, 1987), as well as 

somatosensory information (Shi & Cassell, 1998a). 
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Within the posterior insula hotspot, microinjections of either DAMGO or orexin again 

doubled to tripled the number of hedonic reactions elicited by sucrose (X2 = 14.372, p < 0.001; 

DAMGO: Z = -2.937, p = 0.003, r = 0.63, CI [1, 11]; Z = -2.809, p = 0.005, r = 0.60, CI [1, 22]). 

These effects were selective to positive hedonic ‘liking’ reactions, and did not alter the robust 

‘disgust’ gapes and related negative reactions elicited by quinine (X2 = 4.769, p = 0.092). 

Anatomical comparisons confirmed that opioid/orexin stimulation produced significantly 

opposite effects in the rostral to mid posterior coldspot versus the far posterior hotspot in insula 

(X2 = 34.320, p < 0.0001). 

 Anatomically, the insula hotspot extended posteriorly about 1.5mm, until ending at the 

border between insula and perirhinal/ectorhinal cortex. The rostral border is located just rostral to 

the A-P level that includes the caudal edge of ventral anteromedial thalamic nucleus (-2.0mm 

from Bregma) and of claustrum, and the rostral edge of dorsolateral amygdala. Medially, the 

insula hotspot extended to the claustrum through most of its length, and to the external capsule at 

caudal sites. Dorsally, the insula hotspot extended to the secondary somatosensory cortex, and 

ventrally to the piriform cortex. The total volume of the caudal insula hotspot was 4.83mm3, 

based on dimensions 1.8mm A-P, 1.7mm D-V and 1.58mm M-L.  

These results indicate that both OFC and IC contain hedonic hotspots where mu opioid or 

orexin stimulation can amplify the positive hedonic impact of sucrose taste.  Further, those two 

hotspots are positioned like bookends, containing between them a continuous long ‘coldspot’ 

strip where the same neurochemical stimulations oppositely suppress the positive hedonic impact 

of sweetness. The functional hotspots also appear to be the same anatomical hotspots for 

DAMGO and orexin stimulations, as the degree of hedonic enhancement is highly correlated 

between these two drugs at individual microinjection sites. In other words, sites that produce 
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enhancements in hedonic ‘liking’ sucrose after DAMGO microinjections are also likely to be the 

same sites that enhance ‘liking’ after orexin stimulation (r = 0.583, p  = 0.002.). 

OFC and IC differently affect food intake 

To compare the pharmacological manipulations of affective taste reactivity to the 

motivation to consume a sweet food, we also measured food intake of palatable M&M chocolate 

candies in 1-hr intake tests conducted immediately after each taste reactivity session. We found 

that throughout the entire OFC, comprising both the hedonic hotspot and coldspot regions, 

DAMGO microinjections increased food intake by about 130% over vehicle control days in the 

same rats over (X2 = 6.632, p = 0.036; DAMGO, Z = -2.334, p = 0.020, r = 0.54, CI [-0.7, 4.3]). 

Within the OFC rostromedial hotspot, DAMGO increased intake by 169%, but did not 

significantly increase food intake within the posterolateral coldspot. Similarly, we found that 

chocolate intake was increased by 150% after orexin microinjections in the OFC hotspot, but that 

effects appeared to diminish as sites entered caudolateral OFC (Entire OFC: orexin, Z = -2.175, p 

= 0.030, r = 0.50, CI [0.7, 2.7]; hotspot: 150%) (Figure 4.5). Though somewhat in conflict with 

work by Mena et al. (2011) who showed that DAMGO stimulations could enhance food intake in 

caudolateral sites of OFC, it is likely that the difference can be explained by differences in dose. 

Mena et al. found that only doses that were 20 times more potent than the dose used in this study 

enhanced food intake. Therefore, we conclude that while the entire OFC can enhance food 

intake, sites in the rostral hotspot may be especially sensitive to mu-stimulated eating.  

Unlike OFC, neither orexin nor DAMGO microinjections reliably stimulated intake when 

stimulated sites moved further lateral into insula (X2 = 2.78, p = 0.249). Although few individual 

rats (15% of rats) with insula sites did show >150% increases in intake after either DAMGO or 

orexin microinjection, most insula sites produced no change (65%), and the remaining sites 
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(20%) showed modest increases (~115%). Thus overall, insula sites for orexin or DAMGO 

produced no change in intake, not even in the hedonic hotspot site of far posterior insula (X2 = 

2.516, p = 0.284). As a caveat, our food intake tests were always conducted serially after taste 

reactivity tests on the same day. Our serial procedure was chosen because we were primarily 

interested in hedonic impact mechanisms; serial testing on the same day allowed us to 

additionally sample intake effects as a secondary aim without either exceeding 4 microinjections 

per rat or doubling the total number of rats in the study. However, serial testing arguably made 

our intake test less sensitive than if intake were measured separately (e.g., in different rats or on a 

different day) immediately after a microinjection (Bakshi & Kelley, 1993; Mena et al., 2011) 

because serial testing imposed a 30min delay before food intake could begin, and interposed oral 

infusions of sucrose followed by quinine. We cannot rule out the possibility that this delay and 

intervening stimuli disrupted weaker intake stimulation effects that might otherwise have been 

detected within insula. 

Thus regarding intake, we conclude that OFC sites support robust stimulation of eating 

behavior and consumption by DAMGO and orexin, both in OFC hedonic hotspot and OFC 

hedonic coldspot. By contrast, insula sites for DAMGO and orexin do not share the same robust 

intake stimulating capacity. Whether weaker intake stimulation sites might be found in future in 

insula, especially in the hedonic hotspot of far posterior insula, is a question that would require 

future studies to answer. 

Surrounding cortical sites 

 Unlike the OFC and insula, microinjection sites into prelimbic, anterior cingulate, 

olfactory, piriform, primary/secondary sensory, or primary/secondary motor cortex did not 

demonstrate any anatomically dissociable pattern of hedonic capability. Stimulation of medial 
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PFC as a whole (cingulate, prelimbic, infralimbic) via DAMGO or orexin did appear to alter 

hedonic reactions to sucrose (X2 = 0.559, p = 0.756), nor did more anatomically driven analysis 

(cingulate: X2 = 0.667, p = 0.717; prelimbic: X2 = 0.744, p = 0.689; infralimbic: X2 = 2.923, p = 

0.232). Interestingly, prelimbic stimulation via orexin (but not DAMGO) consistently decreased 

‘disgust’ reactions to quinine (X2 = 9.33, p = 0.009; DAMGO: Z = -0.312, p = 0.755; orexin Z = 

-2.319, p = 0.020) without altering aversive reactions to sucrose (X2 = 3.00, p = 0.223). Other 

than this, mu opioid or orexin stimulation in mPFC never consistently altered hedonic reactions, 

with roughly 55% of sites being totally silent and the other 45% randomly enhancing (>150%) or 

suppressing (<50%)  reactions. Like mPFC, neither olfactory nor piriform cortex showed any 

ability modulate hedonic reactions to sucrose (olfactory: X2 = 1.733, p = 0.42; piriform: X2 = 

1.067, p = 0.587). While a few individual sites show increases/decreases, there is no localizable 

pattern that we could detect, and, like mPFC, ~55% of the tested sites were completely silent. 

Lastly, neither motor nor sensory cortices showed any consistent effects on affective reactions to 

sucrose (X2 = 0.364, p = 0.834). 

 For food intake, we did not observe increased food intake after DAMGO or orexin 

stimulation in mPFC (X2 = 0.187, p = 0.911). These results were somewhat surprising, as Mena 

et al. (2011) has previously reported that DAMGO stimulation in mPFC can robustly enhance 

food intake. However, as noted above, our dose of DAMGO was 20-fold lower than the most 

effective dose reported in Mena et al. (2011). These results suggest that mu stimulated eating in 

OFC may be easier to elicit than mPFC, or perhaps that more pure tests of food intake may yield 

more sensitive results (whereas our animals were tested after taste reactivity testing). Like 

mPFC, we do not see an increase in food intake after drug microinjection into olfactory cortex 

(X2 = 2.80, p = 0.247) or into other frontal cortices including primary and secondary 
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somatosensory and motor cortex (X2 = 1.652, p = 0.438). By contrast, we do appear to see a 

general increase in consumption in piriform cortex after DAMGO stimulation (Overall: X2 = 

6.222, p = 0.045; DAMGO: Z = -1.886, p = 0.059; Z = 0.471, p = 0.637). This is the first report 

that we know of that extends DAMGO stimulated food intake to also include piriform cortex. 

Interestingly, our sites appear to overlap with sites in piriform cortex where NPY, somatostatin 

or GABA stimulation reduces amino acid consumption in amino acid deprived rats, further 

implicating piriform cortex in food reward (Cummings, Truong, & Gietzen, 1998; Truong, 

Magrum, & Gietzen, 2002). This diffuse pattern of stimulated eating (relative to the anatomically 

confined hotspots) is consistent with mu receptor stimulation in subcortical structures like NAc, 

central amygdala, and dorsal striatum. Unlike DAMGO, orexin stimulated eating seemed 

somewhat more constricted, and did not appear to extend into piriform cortex. 

 Altogether, our results show that while anatomically discrete sites in OFC and insula are 

involved in affective generation, the mechanisms underlying motivated ‘wanting’ for food 

rewards is more broadly distributed throughout cortex.  

Discussion 

Code versus cause 

In the results presented above, we examined the causal role of cortex in affect and 

motivation, focusing on brain sites that have extensive correlative evidence suggesting their 

involvement. One candidate area was OFC. Human and nonhuman studies (either through fMRI 

or electrophysiology) have found OFC to respond to and potentially track the valence of various 

sensory stimuli. In particular, increased BOLD activity has been shown to correlate with self-

reported pleasantness ratings of tastes/odors/flavors. In a study by Rolls et al. (2003), it was 

shown that odor pleasantness ratings correlated with medial OFC activity, whereas odor 
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unpleasantness was associated with increased BOLD activity in lateral OFC. A similar 

localization was found with chocolate (milk) consumption, where initial positive ratings were 

correlated with increased BOLD activity in medial OFC (Kringelbach et al., 2003; Small et al., 

2001). Like the human imaging studies, there are also a few non-human studies showing that 

OFC may code reward value. For example, neuronal activity in macaque OFC has been shown to 

code both rewarding and aversive outcomes, perhaps implicating OFC in monitoring incentive 

value of stimuli (Hosokawa, Kato, Inoue, & Mikami, 2007; Roesch & Olson, 2004; Tremblay & 

Schultz, 1999). OFC has also been shown to selectively monitor reward amount, whereas other 

regions, like the nearby dorsolateral PFC, appears to direct executive/motor output (Wallis & 

Miller, 2003).  

BOLD activity in insula has also been associated with both positive and negative 

emotional/affective valence, especially at rostral sites. In the chocolate study by Small et al. 

(2001) mentioned above, decreased ratings of chocolate pleasantness as participants reached 

satiety were correlated with decreased activity in rostral insula, perhaps suggesting that rostral 

insula was sensitive to initial reward value or appraisal. By contrast, rostral insula has also been 

shown to have increased BOLD responses to disgusting images (Calder et al., 2007; Mataix-Cols 

et al., 2008), unpleasant visuo-tactile sensations (e.g., slimy substance with an image of a snail) 

(Lamm, Silani, & Singer, 2015), and intense, aversive shocks (Wager et al., 2004). Although less 

is known about mid/caudal insula, Simmons et al. (Simmons et al., 2013) found that lower 

peripheral glucose levels predicted greater increased BOLD activity after participants viewed 

pictures of food relative to non-food images. The enhanced signal could reflect the affective 

changes that occur during hunger alliesthesia. Caudal insula has also been associated with 
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pleasant touch, with greater BOLD responses correlating with the pleasantness of the tactile 

stimulation (Segerdahl, Mezue, Okell, Farrar, & Tracey, 2015). 

Although fewer in number, there are several notable studies showing gain of function, or 

causal, roles for cortex in affect and motivation. In 1972, Routtenberg and Sloan showed that 

medial OFC and some rostral sites in IC supported electrical self-stimulation in rats (Routtenberg 

& Sloan, 1972). More recently, Mena et al. (2011) demonstrated that opioid stimulation in 

medial PFC or ventrolateral OFC was sufficient to drive spontaneous eating. In rostral insula, 

electrical stimulation can induce ecstatic auras (“…intense feeling of bliss, enhanced well-being, 

and heightened self-awareness…”) in patients suffering from seizures seeded in the same area 

(Picard & Craig, 2009). Electrical stimulation in monkeys also produces positive emotional 

behaviors (though this time clustered in mid-caudal insula), increasing affiliative behaviors 

(Caruana, Jezzini, Sbriscia-Fioretti, Rizzolatti, & Gallese, 2011). By contrast, electrical 

stimulation studies in cat and monkey have shown that stimulation of rostral insula can elicit 

‘disgust’ reactions, with cats displaying ‘disgust’-like licking (“…as if to remove an irritant…”) 

(Hess, Akert, & Mc, 1952), and monkeys actively spitting out normally preferred food or 

throwing away food in their hands (Caruana et al., 2011). 

Here we show that OFC and insula each contain a hedonic hotspot that possesses the 

functional capacity to amplify the hedonic impact of sweetness. These hotspots are defined as 

anatomically distinct sites in which mu opioid or orexin-A stimulation cause 200%-300% 

increases in orofacial ‘liking’ reactions elicited by sucrose. OFC possessed a far anterior hotspot 

at the rostral tip of the cortex (caudal and dorsal to olfactory bulb/nerve). ‘Liking’ reaction 

enhancements were observed in all three OFC subregions, so long as they were in the rostral 4/5 

of OFC, filling nearly 80% of the entire structure. Insula also contained a hedonic hotspot that 
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was roughly 5mm3, located in the caudal 1/3 of the structure. These two hotspots are positioned 

like bookends, encasing a long suppressive hedonic coldspot where opioid or orexin stimulation 

oppositely suppressed ‘liking’ reactions to sucrose by 30%-50%. The coldspot stretched between 

the hotspots as a continuous 20mm3 strip along the ventrolateral surface of the brain, running 

from posterolateral OFC to posterior insula. The position, shape and size of these hedonic 

hotspots and coldspots in cortex were virtually identical across mu opioid and orexin maps of 

cortical hedonic causation. 

Cross-species homologues 

How do our functionally and anatomically localized hotspots in the rat map onto 

human/primate cortex? Humans have three types of prefrontal tissue: rostral granular cortex 

(areas 10, 11), middle granular cortex (14, 13), and caudal agranular cortex (14, 13, 12/47) 

cortex. By contrast, rat OFC is exclusively agranular, making it unlikely that there are any sites 

homologous to human areas 10, 11, and some sites in areas 14 and 13. However, most anatomists 

agree that rostral OFC in rats is most similar to caudal OFC zones of human/primate cortex 

(which includes areas 14c and 13a) (Wallis, 2012). Extending out of caudolateral OFC appears to 

be a transition zone leading to rostral insula (Price, 2007). This portion of rostral insula is 

agranular and receives strong inputs from amygdala, and is likely comparable to Brodmann areas 

Iam, Iapm, and Iai. Although not widely considered insula in rats until the mid-1990’s  (Paxinos 

and Watson, 1998), the caudal most portions of rat insula do share features of connectivity 

similar to human insula, with direct efferents to amygdala and afferents from visceral S2 cortex 

(Shi & Cassell, 1998a, 1998b). Early parcellation of insula based on cytoarchitectonic features 

identified all three basic subregions of insula rodents, with the major difference between rodent 

and human brains attributable to a greater number of subregions in humans (Nieuwenhuys, 2012; 
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Rose, 1928). The other notable difference between rodent and primate insula is the orientation of 

the three subregions. In humans, there appears to be a rostrocaudal gradient created from three 

concentric belts of tissue, with rostroventral insula comprised of agranular tissue, followed by a 

large middle dysgranular zone, and culminating in a caudodorsal granular zone. By contrast, 

rodent insula is more or less organized as a flattened band along of the brain with the three 

subregions oriented dorsoventrally (ventral agranular, middle dysgranular, dorsal granular). In 

other words, human insula appears to reorient itself by 90 degrees (relative to rodent insula), as 

well as curl the tissue to account for the Sylvian fissure, abutting the surrounding operculum. 

These architectural deviations suggest two potential ways for our rat insula cold/hotspot to be 

overlaid onto human insula: 1) If the hot/coldspot is perfectly conserved in humans, it is possible 

that there may be horizontal columns of hot or cold sites along the rostrocaudal axis (since our 

hot and coldspot infiltrated all three subregions of insula), or 2) it is possible that individual hot 

and cold sites exist at comparable rostrocaudal locations within each subregion, e.g., a hotspot in 

the caudal half of each subregion and a coldspot in the rostral half of each subregion. Both 

hypotheses could account for the functional discrepancies described above for rostral or caudal 

localizations of function, though future work will be necessary before any strong claim can be 

made. 

Since rodents and humans appear to share more or less common cortical anatomy (except 

perhaps far rostral portions of human OFC), it is worth considering whether the functional 

boundaries defined by our microinjection maps already adhere to previously defined functional 

zones in cortex. One example of a functionally defined zone in insula is primary gustatory cortex 

(GC). In rats, GC extends rostral to and somewhat caudal from the middle cerebral artery, 

occupying a ~2mm long strip of rostral agranular insula (Kosar, Grill, & Norgren, 1986). Human 
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and nonhuman primate imaging studies likewise show rostral insula/frontal operculum as 

containing primary gustatory cortex (Small, 2006). Further elaborating GC localization, Peng et 

al. (2015) have proposed distinct zones for sweet and bitter coding, and Shier et al. (2014) have 

mapped a special site in far caudal GC and visceral cortex important for the expression of 

conditioned taste avoidances. Does our OFC/insula coldspot map onto any of these functionally 

defined regions? Based on our microinjection map, the coldspot extends beyond traditional GC, 

both rostrally and caudally, infiltrating OFC at rostral sites and extending throughout caudal 

visceral cortex. Our coldspot also infiltrates all three subregions of insula (granular, dysgranular, 

and agranular), whereas GC and the specialized taste modality zones are localized to agranular 

insula. Further, the Shier site noted above sits on the border between the coldspot and IC hotspot, 

leaving unresolved its contribution to our affective maps. Altogether, it does not appear that the 

functionally defined hotspots and coldspot in our study can be explained through previously 

delineated zones of taste or visceral processing, indicating novel sites for affective generation 

within cortex, in addition to whatever other roles OFC and insula may have. 

Necessity versus sufficiency 

Though we have shown localized causal sites within cortex for affective generation, 

previous work suggests that cortex may not be necessary at all for affective processing. One 

extreme example involves Patient R, who is missing substantial portions of medial OFC and only 

has 10% of his insula remaining after a traumatic brain injury (with the remaining insula likely 

not functional) (Philippi et al., 2012). Despite these massive lesions, R does not appear to lack 

the ability to feel and/or express various emotions. For example, he 
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“…does not demonstrate significant impairments in recognizing other emotions…such as 

fear or disgust…He readily displays signs of positive emotion including happiness, amusement, 

interest, and excitement.” (Feinstein et al., 2010). 

Another example of selective lesions (this time in ventromedial PFC, including OFC) not 

disrupting the generation of affect looks at skin conductance responses during the Iowa 

Gambling Task. Here, participants with ventromedial lesions failed to show anticipatory skin 

responses before selecting a card (controls show robust responses after learning the task), but 

both controls and VM patients showed skin responses to the result of the card, suggesting that 

while VM lesions may affect prospective inference of a reward or punishment, the somatic 

reaction to the result itself remains intact (Bechara, Tranel, Damasio, & Damasio, 1996) 

(although see Dunn et al. (2006)). Lastly, damage to areas like OFC have been shown to disrupt 

social behavior regulation and anticipatory responses to startle cues, but again the emotions 

themselves are still intact and producible (Beer et al., 2003; Beer, Knight, & D'Esposito, 2006; 

Roberts et al., 2004). 

Although not definitive, work from the late 1980’s in rats also suggests that PFC is not 

necessary for the experience of ‘liking’, as decortication of PFC and insula, a technique that 

selectively aspirates and causes the degradation of cortical tissue, failed to disrupt responding for 

hypertonic sodium chloride during salt replete or depleted states (Wirsig & Grill, 1982). 

However, whether or not the cortical hotspots are necessary for the experience of hedonic 

‘liking’ does not rule out their sufficiency to provide gains of function. For example, lesions to 

the nucleus accumbens hotspot does not disrupt normal sucrose ‘liking’, even though 

microinjections of opioid, orexin, GABA, or endocannabinoid agonist drugs robustly amplifies 

hedonic ‘liking’ (Castro & Berridge, 2014b; Faure et al., 2010; Mahler et al., 2007). While it is 
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possible to enhance negative ‘disgust’ in NAc via GABA stimulations, glutamate metabotropic 

blockade or acetylcholine muscarinic blockade (Castro et al., 2016; Faure et al., 2010; Richard & 

Berridge, 2011a), the inability for lesions to also enhance ‘disgust’ suggests that active 

neurochemical modulation within NAc is necessary for ‘disgust’ enhancement. It may be that the 

cortical hotspots found here are similar to the NAc hotspot, such that they are not necessary for 

raw generation of ‘liking’. Future studies may localize other neurochemical systems capable of 

modulating ‘disgust’ in cortex.  

In sum, we show that sites in OFC and insula are causally capable of modulating the 

hedonic impact of a sweet taste in localized hotspots after mu opioid or orexin stimulation. 

Additionally, an anatomically distinct hedonic coldspot suppresses ‘liking’ throughout rostral 

and mid insula, and infiltrates caudolateral portions of OFC. By contrast, robust food intake was 

only generated in OFC, with weak and/or inconsistent stimulated eating elicited by insula 

microinjections. These results provide the first evidence that cortex can provide gains of function 

for affective processing, potentially indicating hierarchical cortical control over hedonic impact. 

Future work will hopefully explore this hypothesis, examining cortical-subcortical interactions, 

which may have important implications for affective processing. 
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Figure 4.1. Cortical Fos plumes. A Representative slices showing where microinjections were 
targeted throughout OFC (green) and insula (pink). B Representative image of a drug 
microinjection in OFC hotspot. Radial arm was overlaid onto microinjection site and the number 
of Fos positive cells within each square was counted to sample changes in Fos expression at 
increasing distances from microinjection site. C Average Fos plumes generated by DAMGO 
(left) or orexin (right) microinjections relative to vehicle microinjections throughout cortex 
(yellow = 125% increase, orange = 150% increase, red = 200% increase).  
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Figure 4.2. OFC and insula contain mu opioid hedonic hotspots. Sagittal causation maps for 
localization of function throughout the cortex showing changes in orofacial hedonic reactions 
elicted by sucrose taste after microinjections of the mu opioid receptor agonist DAMGO. Each 
symbol placement indicates a microinjection site, the symbol size reflects the size of the Fos 
plumes produced by DAMGO, and symbol color reflects the behavioral effects of the 
microinjection, shown as percentage change from vehicle control levels (enhancements: yellow-
orange-red; suppressions: blue). The sagittal map on the right provides a view of the lateral 
surface of the brain, and the left map provides a view of the medial surface. OFC and insula are 
thickly outlined in black. Primary gustatory cortex is bracketed in purple  (Kosar et al., 1986) 
and potential chemotopic locations for sweet and bitter taste modalities are also marked in purple 

 (Peng et al., 2015). Primary visceral cortex is bracketed in pink  (Cechetto & Saper, 1987). 
The middle cerebral artery runs along the lateral surface of the brain and is colored dark red.  
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Figure 4.3. OFC and insula contain orexin hedonic hotspots. Sagittal causation maps for 
localization of function throughout the cortex showing changes in orofacial hedonic reactions 
elicted by sucrose taste after microinjections of the orexin receptor agonist orexin-A. Each 
symbol placement indicates a microinjection site, the symbol size reflects the size of the Fos 
plumes produced by orexin, and symbol color reflects the behavioral effects of the 
microinjection, shown as percentage change from vehicle control levels (enhancements: yellow-
orange-red; suppressions: blue). The sagittal map on the right provides a view of the lateral 
surface of the brain, and the left map provides a view of the medial surface. OFC and insula are 
thickly outlined in black. Primary gustatory cortex is bracketed in purple  (Kosar et al., 1986) 
and potential chemotopic locations for sweet and bitter taste modalities are also marked in purple 

 (Peng et al., 2015). Primary visceral cortex is bracketed in pink  (Cechetto & Saper, 1987). 
The middle cerebral artery runs along the lateral surface of the brain and is colored dark red.  
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Figure 4.4. Mu opioid stimulation increases food intake in OFC and piriform cortex. 
Sagittal causation maps for localization of function throughout the cortex showing changes in 
food intake of palatable M&M candies after microinjections of DAMGO. Each symbol 
placement indicates a microinjection site, the symbol size reflects the size of the Fos plumes 
produced by DAMGO, and symbol color reflects the behavioral effects of the microinjection, 
shown as percentage change from vehicle control levels (enhancements: green; suppressions: 
blue). The sagittal map on the right provides a view of the lateral surface of the brain, and the left 
map provides a view of the medial surface. OFC and insula are thickly outlined in black. Primary 
gustatory cortex is bracketed in purple  (Kosar et al., 1986) and potential chemotopic locations 
for sweet and bitter taste modalities are also marked in purple  (Peng et al., 2015). Primary 
visceral cortex is bracketed in pink  (Cechetto & Saper, 1987). The middle cerebral artery runs 
along the lateral surface of the brain and is colored dark red.
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Figure 4.5. Orexin stimulation increases food intake in OFC. Sagittal causation maps for 
localization of function throughout the cortex showing changes in food intake of palatable M&M 
candies after microinjections of orexin-A. Each symbol placement indicates a microinjection 
site, the symbol size reflects the size of the Fos plumes produced by orexin, and symbol color 
reflects the behavioral effects of the microinjection, shown as percentage change from vehicle 
control levels (enhancements: green; suppressions: blue). The sagittal map on the right provides 
a view of the lateral surface of the brain, and the left map provides a view of the medial surface. 
OFC and insula are thickly outlined in black. Primary gustatory cortex is bracketed in purple  
(Kosar et al., 1986) and potential chemotopic locations for sweet and bitter taste modalities are 
also marked in purple  (Peng et al., 2015). Primary visceral cortex is bracketed in pink  
(Cechetto & Saper, 1987). The middle cerebral artery runs along the lateral surface of the brain 
and is colored dark red. 
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CHAPTER 5: 

VENTRAL PALLIDUM HOTSPOT FOR SWEETNESS ‘LIKING’ IS MODULATED BY 

LATERAL HYPOTHALAMUS CIRCUITRY FOR ‘WANTING’ TO EAT 

Introduction 

Rewards evoke both hedonic impact (‘liking’) and incentive motivation (‘wanting’), and 

dysfunction of either component can produce consequences that range from depression to 

addiction and eating disorders. Within mesocorticolimbic reward circuitry, the ventral pallidum 

(VP) is an especially crucial node (Mickiewicz, Dallimore, & Napier, 2009; Root, Melendez, 

Zaborszky, & Napier, 2015). VP neurochemical stimulation can produce gains in hedonic impact 

and/or motivation to enhance ‘liking’ and intake of food or drug rewards. Conversely, VP lesions 

or impairment can produce loss of hedonic/motivation functions, eliminating ‘liking’ and making 

normally palatable sweet tastes evoke ‘disgust’ reactions, and simultaneously produce aphagia 

(Cromwell & Berridge, 1993; Ho & Berridge, 2014; Mahler et al., 2014; K. S. Smith & Berridge, 

2005; Tang, McFarland, Cagle, & Kalivas, 2005). Of particular interest for both gain and loss of 

hedonic functions is the posterior half of VP, which contains a cubic-millimeter ‘hedonic 

hotspot’ (Castro & Berridge, 2014a; Groenewegen, Berendse, & Haber, 1993; Kupchik & 

Kalivas, 2013). 

Hypothalamic regulatory circuitry, especially involving the lateral hypothalamus (LH), 

can modulate mesocorticolimbic circuitry through homeostatic signals, thus allowing hunger and 
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satiety states to alter motivated and hedonic aspects of food rewards (Berthoud & Munzberg, 

2011). One example of this involves orexin, also known as hypocretin, which is produced in LH 

and DMH, and is an important neurochemical signal in arousal and sleep/wake cycles (A. Rolls 

et al., 2011; Sakurai, 2014). Orexin additionally has roles in appetite, reward and addiction, 

especially in a mid-tuberal subregion of LH (Harris & Aston-Jones, 2006; Harris et al., 2005; 

Sakurai, Amemiya, Ishii, Matsuzaki, Chemelli, Tanaka, Williams, Richardson, et al., 1998). LH 

orexin neurons project directly to posterior VP, and microinjection of orexin into VP amplifies 

‘liking’ reactions to sucrose taste (Baldo et al., 2003; Ho & Berridge, 2013; Peyron et al., 1998; 

Swanson et al., 2005), providing a potential route for homeostatic hunger signals to enhance 

‘liking’ and ‘wanting’ for palatable foods.  

Here, we compared the effects of optogenetic stimulation of 1) intrinsic VP neurons, 2) 

intrinsic LH neurons or 3) LH-VP projections on the hedonic impact of sweetness and the 

motivation to eat. First, bilateral microinjections were made of an adeno-associated viral vector 

serotype 5 (AAV5) coding channelrhodopsin (ChR2) and enhanced yellow fluorescent protein 

(eYFP), guided by either a neuron-specific promoter or general cellular promoter; other rats 

received a control virus with only eYFP but not ChR2. Microinjection sites were either in the 

posterior VP or in the mid-tuberal orexin field of LH. Optic fibers simultaneously were 

bilaterally implanted in either posterior VP or LH. In the same surgery, all rats were also 

implanted with bilateral oral cannulas for later taste reactivity testing. After a 5 week recovery, 

rats were tested in two behavioral tests: 1) affective taste reactivity test, measuring orofacial 

expressions elicited by infusions of sucrose or quinine solutions directly into the mouth, and 2) 

voluntary intake test, measuring consumption of a palatable sweet food (M&M chocolate 

candies). 
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Methods & Materials 
 
Animals 

Sixty-two (LH-LH n = 20; LH-VP n = 11; VP-VP n = 20; Control LH-LH/LH-VP n = 4, 

Control VP-VP n = 4; Fos n = 16) male Sprague-Dawley rats were housed at ~21°C on a reverse 

12 h light/dark cycle. All rats had ad libitum access to both food and water. All experimental 

procedures were approved by the University of Committee on the Use and Care of Animals at 

the University of Michigan. 

Surgery 

Rats were anesthetized with intraperitoneal injections of ketamine hydrochloride 

(80mg/km and xylazine (5mg/kg), treated with atropine (0.05 mg/kg) to prevent respiratory 

distress, and placed in a stereotaxic apparatus (David Kopf Instruments), with the incisor bar set 

at -3.3 for flat skull measurements. For optogenetic virus infection in VP, rats received bilateral 

microinfusions (AAV5-CAG-ChR2-eYFP, n = 6; AAV5-hSyn-ChR2-eYFP, n = 14) into the 

hotspot of posterior VP (AP, -0.8; ML, ±3.0; DV, -8.1). Animals receiving the control virus 

(AAV5-hSyn-eYFP, n = 4) were also aimed at the posterior VP hotspot. In the same surgery, 

each rat also received bilateral implants of 220µm optic fibers above the same VP sites, 

positioned 0.3mm relative to virus infusion location (AP, -0.8; ML, ±3.0; DV, -7.8). 

For optogenetic virus infection in LH, rats received bilateral microinfusions (AAV5-

CAG-ChR2-eYFP, n = 9; AAV5-hSyn-ChR2-eYFP, n = 9; AAV5-CAMKIIα-ChR2-eYFP, n = 

2) into the mid-tuberal portion of LH (AP, -2.9; ML, ±1.8; DV, -8.4). Animals receiving the 

control virus (AAV5-hSyn-eYFP, n = 4) were also aimed at the mid-tuberal LH. In the same 

surgery, each rat also received bilateral implants optic fibers above the same LH sites, positioned 

0.3mm relative to virus infusion location (AP, -2.9; ML, ±1.8; DV, -8.1). For the LH-VP 



122 
 

condition, these same rats also received bilateral fiber implants into the posterior VP hotspot 

(AP, -0.8; ML, ±3.0; DV, -7.8).Virus microinjections were infused 1.0µl/side at a rate of 0.1µl/1 

m for 10min, followed by a 10min wait period to allow for virus diffusion. Microinjectors were 

slowly removed from the infusion site after virus diffusion. Headcaps were secured to skull by 

skull screws and acrylic cement. Optic fibers had 230µm diameter cores and were inserted into 

9mm long zirconia ferrules. Fibers were tested before and after experimentation to ensure fiber 

integrity. 

For subsequent taste reactivity testing, all rats were also implanted in the same surgery 

with bilateral oral cannulae [polyethylene-100 tubing] to permit oral infusions of sucrose or 

quinine solutions. Oral cannulae entered the mouth in the upper cheek pouch lateral to the first 

maxillary molar, traveling beneath the zygomatic arch, and exited the skin at the dorsal headcap. 

Oral cannulae did not disrupt normal eating. After surgery, each rat received subcutaneous 

injections of chloramphenicol sodium succinate (60mg/kg) to prevent infection and carprofen 

(5mg/kg) for pain relief. Rats received carprofen again 24hr later and were allowed to recover for 

at least 5 weeks to allow optimal virus expression. 

Optogenetic taste reactivity and food intake tests 

Animals in behavioral experiments were given three days of habituation in the testing 

chamber where there was access to M&M candies and water. This was followed by two test 

days, one in which animals received laser stimulation, and second on which no photostimulation 

occurred. These tests days were counterbalanced across animals. Laser stimulation was 

administered at 1-3mW for at 25Hz (15msec ON/25msec OFF pulses). During taste reactivity 

tests and intake tests, laser was delivered in a 5-sec bin once every twenty sec (5sec On/15sec 

Off). 
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Taste reactivity testing  

The taste reactivity test was used to measure affective orofacial reactions of rats to a 1ml 

volume of sucrose solution infused into the mouth via oral cannula. Tests occurred during 1min 

infusions administered during laser activation of either LH or the VP hotspot. To infuse sucrose 

solution into the mouth, a syringe containing sucrose or quinine in a syringe pump (Sucrose: 

1.0%, 0.029M, 1ml per test; Quinine: 3x10-4M, 1ml per test) was attached via hollow tubing (PE-

50 connected to a PE-10 delivery nozzle) to a rat’s oral cannula. A 1ml volume of solution was 

infused evenly over a period of 1min duration. Orofacial taste reactivity responses were video 

recorded via close-up lens and an angled mirror placed underneath the transparent floor for 

subsequent slow-motion video analysis.  

 Taste reactivity video scoring  

Hedonic, aversive, and neutral taste reactivity patters were scored off-line in slow motion 

(1/30 s frame-by-frame to 1/10th actual speed). Hedonic responses were classified as rhythmic 

midline tongue protrusions, lateral tongue protrusions, and paw licks. Aversive responses were 

classified as gapes, head shakes, face washes, forelimb flails, and chin rubs. Neutral responses 

were classified as passive dripping of solution out of the mouth, ordinary grooming, and 

rhythmic mouth movements. A time-bin scoring procedure was used to ensure that taste 

reactivity components of different relative frequencies still contribute equally to final affective 

hedonic/aversive totals, and that frequent components such as rhythmic tongue protrusions do 

not swamp rare but equally informative components, such as lateral tongue protrusions. 

Specifically, rhythmic mouth movements, passive dripping, and paw licking reactions, which 

occur in long bouts, were scored in 5sec time bins (e.g., 5sec continuous paw licking behavior 

equals one bout occurrence). Rhythmic midline tongue protrusions and chin rubs, which occur in 
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shorter bouts, were scored in 2s time bins. Lateral tongue protrusions, gapes, forelimb flails, and 

head shakes, which typically occur as discrete events, were scored as single occurrences each 

time they occurred (e.g., one gape equals one occurrence). Individual totals were calculated for 

hedonic versus aversive categories. A hedonic reaction total was quantified as the sum of scores 

for lateral tongue protrusion, rhythmic tongue protrusion, and paw lick scores. An aversive 

reaction total was quantified as the sum of gape, head shake, face wash, forelimb flail, and chin 

rub scores.  

Food intake testing 

Spontaneous eating behavior was video-recorded and food consumption measured in a 

1hr free intake test that began 1min after the taste reactivity test on each test day. Each food 

intake chamber (12 x 18 x 12 cm) had a pile of pre-weighed amount of palatable chocolates 

(M&Ms, ~25g) or standard laboratory chow on separate test days, and ad libitum water was also 

available. Rats had already been habituated to the food intake testing chamber for 3 daily 1hr 

sessions prior to the first test day. Amount remaining of M&Ms or chow were weighed again at 

the end of the test to calculate amount eaten (after chamber inspected for spillage). All behavior 

in the chamber was also video recorded during the 60min test, and scored later offline for video 

analysis by a researcher blind to the drug microinjection condition. Videos were scored for 

eating behavior (duration in seconds), water drinking behavior (in seconds), grooming behavior 

(in seconds), and for number of bouts of food sniffs, food carrying (grasping and transport of 

food by 2 or more steps), cage crosses, and rears (each counted separately). 

Conditioned taste aversion 

A subset of animals (n = 7) received 3 pairings of a 2 minute intraoral infusion of either 

saccharin or glucose, and an injection of lithium chloride immediately afterwards. 48hr after the 
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final pairing, animals underwent taste reactivity testing with the conditioned flavor either with 

laser stimulation of the VP hotspot or not. 24hr later, they had the opposite condition to test 

whether laser stimulation could enhance the palatability of a conditioned taste aversion, or 

whether ‘disgusting’ stimuli would be unavailable to laser enhancements like quinine. 

Laser self-stimulation 

Med-Associates chambers were fitted with a metal grid floor as well as two empty liquid 

sippers on the back wall of the chamber. Contact with the sippers was recorded over a thirty 

minute session. When animals (n = 15) contacted one of the two sippers (assignment 

counterbalanced between animals), they received a 1sec 25Hz pulse of laser illumination. 

Animals were given free access to two empty sippers in the operant chamber for 30m for 3 days. 

Licking one sipper resulted in a 1sec laser pulse (25Hz, 15ms on/25ms off), whereas contact with 

the other sipper yielded no laser. After three days, animals that contacted the laser sipper >100 

times were tested in a reversal task where the sipper producing laser stimulation was switched 

with the other sipper. 

Histology 

All rats were perfused and brains treated as described previously (M. J. Robinson, 

Warlow, & Berridge, 2014). Fos counts were assessed in a dedicated Fos group that were not 

behaviorally tested (n =16). Fos was assessed after a 60 minute stimulation session using the 

same 5s ON, 15s OFF pattern (25Hz, 1-3sW) used for food intake testing. Brain slices were 

processed for Fos-like immunoreactivity using normal donkey serum, goat anti-c-fos (Santa Cruz 

Biotechnology), and donkey anti-goat Alexa Fluor 594 (Invitrogen). Sections were mounted, air-

dried, and coverslipped with Prolong Gold antifade reagent (Invitrogen). Zones where the 

expression of fluorescent Fos was elevated in neurons in targeted regions of interest were 



126 
 

assessed via microscope as described previously (Richard & Berridge, 2013). 

Fos plume analysis 

 Fos plumes surrounding fiber optic tips were assessed in a separate dedicated Fos group 

(n = 16) that was included to detect the maximal spread of neuronal impact after laser 

photoexcitation. In the dedicated group, which could be expected to have maximum laser spread, 

a single laser or no laser photostimulation session LH was administered under conditions similar 

to the first day of food intake testing for behavioral rats. Rats were then anesthetized and 

transcardially perfused after high laser power stimulation of ChR2 infected neurons (7-10mW, n 

= 5, low laser power stimulation of ChR2 infected neurons (1-3mW, n = 5) or high laser power 

stimulation of control virus infected neurons (7-10mW, n = 4). Rats with no surgery were also 

included in a “normal” group (n = 2) to assess counts in naive brains. Brain slices were processed 

for Fos-like immunoreactivity using normal donkey serum, goat anti-c-fos (Santa Cruz 

Biotechnology), and donkey anti-goat AlexaFluor 594 (Invitrogen). Sections were mounted, air-

dried, and coverslipped with Prolong Gold antifade reagent (Invitrogen).  

Zones where the local expression of fluorescent Fos was elevated in neurons surrounding 

optic fiber tips (“Fos plumes”) were assessed via microscope. Individual Fos plumes were 

constructed for each laser stimulated brain by comparing them to “normal” brains. These plumes 

were defined by whether an elevation in Fos occurred within 0.5mm of the fiber optic tip along 

individual arms, and if so, whether a subsequent square with increase Fos occurred within 

0.15mm of the last Fos enhanced square within that arm. These rules were applied to avoid over-

estimating the size of the plume. Once each individual plume had been constructed for a given 

conditioning (e.g., high power ChR2), the average furthest distance of Fos enhancement was 

calculated for each arm, allowing for an analysis of the shape of the plume.  
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Mapping behavioral effects of VP or LH sagittal, horizontal and coronal planes allows for the 

presentation of all sites on the same map of the entire rostrocaudal, mediolateral, and 

dorsoventral extent of VP and LH. Functional effects on hedonic and motivated behaviors were 

mapped using color-coding to express the intensity changes in affective and motivated behaviors 

for individual behaviorally tested rats. Map symbols were sized to match the Fos plume sizes 

described below.  

Results 

Hedonic reactions to sweet or bitter tastes 

Taste reactivity results showed that low intensity (1-3mW) ChR2 photostimulation of 

intrinsic VP neurons caused the sweet taste of sucrose to elicit a 200%-400% increase in the 

number of positive hedonic orofacial (‘liking’) reactions, such as lateral tongue protrusions or 

paw licks, compared to the within-subject control number of reactions elicited by sucrose 

without laser (Figure 5.2, 5.3 and 5.7) (No laser: mean = 3.4, SEM = 0.9; Laser: mean = 8.4, 

SEM = 1.4; VP: F(1,8) = 27.441, p = 0.001; d = 1.484). The VP ChR2 stimulation effect was 

selective to the positive hedonic impact of sucrose taste, and did not raise the near-zero number 

of negative (‘disgust’) reactions (e.g., gapes or chin rubs) (VP: F(1, 8) = 0.908, p = 0.369), nor 

impair the ability of bitter quinine taste to elicit high numbers of negative reactions (VP: F(1, 8) = 

1.0, p = 0.347). VP photostimulation of inactive-virus control rats produced no change in 

positive or negative hedonic reactions (No laser: mean = 6.0, SEM = 2.4; Laser: mean = 3.8, 

SEM = 1.9; F (1, 3) = 2.670, p = 0.201), indicating that ChR2 photoreceptor excitation was crucial 

to the VP enhancement of positive hedonic impact. For posterior VP virus microinjections, virus 

immunofluorescence extended medially to substantia innominata or sublenticular extended 

amygdala, laterally to the interstitial nucleus of the posterior limb of the anterior commissure, 
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dorsally toward globus pallidus and ventrally to the magnocellular preoptic nucleus. On average, 

each virus microinjection appeared to fill a volume of 0.5mm3, or ~37% of posterior VP. 

For rats that received ChR2 virus and optic fiber implants both in the LH, 

photostimulation of intrinsic LH neurons failed to alter positive hedonic reactions elicited by 

sucrose taste (Figure 5.2, 5.3, and 5.9) (No laser: mean = 7.9, SEM = 1.3; Laser: mean = 6.8, 

SEM = 1.9; LH-LH/LH-VP: F(2,16) = 188.481, p = 0.015; LH-LH: p = 0.723). Similarly, LH 

neuronal photostimulation failed to alter aversive reactions to quinine (LH-LH/LH-VP: F(2, 16) = 

0.873, p = 0.437; LH-LH: p =0.664). Like VP, photostimulation within LH affected a smaller 

volume of space than the portion of tissue infected with virus. Virus expression for LH 

microinjection conditions was consistently located in the mid-rostral tuberal region of LH, lateral 

to fornix but medial to internal capsule. Virus was densest in mid and dorsal portions of LH, with 

no expression in the ventral-most part of LH. Using laser induced Fos plumes, we can estimate 

the volume of space affected laser illumination (M. J. Robinson et al., 2014). Within LH, each 

laser plume was ~0.013mm3 and was shaped like an elongated cone, within which Fos was 

elevated by ~200% compared to normal tissue. The plume extended ventrally away from the 

fiber tip (total dorsoventral height = 0.25mm; mediolateral width diameter = 0.32mm; radius = 

0.16mm). These data indicate that laser photostimulation only affected ~3% of the region 

infected with ChR2 virus, only ~0.3% of the entire LH (Figure 5.1). 

By contrast, photostimulation of ChR2 in the LH-VP projection condition, roughly 

doubled the number of positive hedonic reactions elicited by sucrose taste (Figure 5.4 and 5.8) 

(No Laser: mean = 7.9, SEM = 1.3; Laser: mean = 14.2, SEM = 3.4; p = 0.018; effect size = 

0.994).  Positive hedonic enhancement by laser excitation of LH-VP projections again occurred 



129 
 

without altering negative aversive reactions to quinine (LH-VP: p = 0.471) or sucrose (LH/LH-

VP: F(2, 16) = 0.598, p = 0.562; p = 0.766).  

Ruling out VP modulation of sensory signal as mechanism of hedonic enhancement  

Given that the VP and LH receive ascending gustatory inputs from the parabrachial 

nucleus of the pons (i.e., second gustatory relay site in hindbrain of rats) (Norgren & Leonard, 

1973; Pfaffmann, Norgren, & Grill, 1977), it seemed possible that  VP photostimulation might 

have distorted the sensory gustatory signal (e.g., making the sensation of sucrose more sweet) 

rather than directly modulating hedonic impact. To probe this possibility, we assessed if VP 

ChR2 excitation distorted gustatory perception in a way that would disrupt recognition of a 

previously learned sweet taste. This was approached using a taste aversion procedure that 

induced learned disgust to one CS+ taste (either 0.007M saccharin or 0.3M glucose, randomly 

assigned) which had been paired with illness (1.5 M LiCl, 1.33 ml/kg, i.p.). After conditioning, 

rats were tested on subsequent days with additional infusions of CS+ taste, but this time with 

either VP photostimulation or no laser (2 tests, randomized order).  

Taste aversion results showed that LiCl pairings abolished positive orofacial reactions to 

the CS+, indicating a loss of hedonic impact for the sweet CS+ taste (Figure 5.5) (F(2,12) = 

52.081, p = 0.000001; Pre- versus Post-Conditioning with No Laser: p = 0.001; d = 3.044). VP 

photostimulation did not disrupt recognition of the CS+ taste needed to express the learned 

aversion or alter taste reactivity elicited by the CS+ (Pre- versus Post-Conditioning with Laser: p 

= 0.001; effect size = 2.24; Laser versus No Laser: p = 0.733). These results suggest that a 

conditioned aversion is impervious to laser hedonic enhancements because the CS+ has become 

affectively ‘disgusting’ like quinine. If laser stimulation was altering the taste quality, then there 
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should have been a restoration of hedonic reactions since the perceived taste would no longer be 

the CS+. 

LH stimulation of food intake 

Intrinsic LH photostimulation increased consumption of sweet M&Ms chocolates by 

~130-200% compared to the no laser control condition in the same rats (Figure 5.6) (No Laser: 

mean = 9.1g, SEM = 1.2; Laser: mean = 12.7g, SEM = 1.2; F(2,16) = 38.766, p = 0.0001; d = 

0.849). Although there was an average increase of 130% across all stimulated animals, a closer 

inspection shows that some animals started at a lower baseline thereby allowing for a larger 

percent increase. LH stimulation of inactive virus control rats did not alter intake (F(1, 3) = 1.452, 

p = 0.315). Similarly, stimulation of LH projections to the VP hotspot increased consumption by 

~130% (Figure 5.4) (No Laser: mean = 9.1g, SEM = 1.2; Laser: mean = 12.1g, SEM = 1.4; p = 

0.0001; d = 0.828), but there was no change for inactive virus control rats. 

In contrast to intrinsic and projection stimulation of LH infected neurons, direct 

illumination of VP did not increase food intake detectably, even in VP rats that had shown ChR2 

enhancement of sucrose hedonic impact on the same day (Figure 5.6) (No Laser: mean = 11.5g, 

SEM = 0.8; Laser: mean = 10.8g, SEM = 0.9; VP: F(1,8) = 0.705, p = 0.426; eYFP-control: F(1,3) 

= 5.717, p = 0.097). To verify that the lack of VP stimulated eating was not due to exposure to 

quinine before food intake testing, a separate group of rats that did not receive oral cannulas 

were run on a pure food intake test. Like the oral cannulated animals, these rats did not eat chow 

or M&Ms when VP was directly photostimulated (M&Ms No Laser: mean = 5.9g, SEM = 0.78; 

Laser: mean = 7.5g, SEM = 1.09; VP: F(1,4) = 0.174, p = 0.698; Chow No Laser: mean = 0.11g, 

SEM = 0.27; Laser: mean = 0.30g, SEM = 0.14) even though a comparable LH group still 

showed robust eating for both chow (No Laser: mean = 0.03g, SEM = 0.02; Laser: mean = 
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5.74g, SEM = 1.79; F(1,6) = 10.375, p = 0.018) and M&Ms (No Laser: mean = 3.2g, SEM = 0.64; 

Laser: mean = 10.1g, SEM = 2.27; F(1,6) = 9.456, p = 0.022) after laser stimulation. 

Self-stimulation 

 Although direct VP photostimulation did not increase food intake specifically, it is 

possible that VP stimulation may contribute to appetitive motivations more generally. Therefore, 

to determine whether caudal VP is capable of modulating motivated behaviors other than food 

intake, rats were placed in a chamber in which they could earn short pulses of laser 

photostimulation by contacting an empty sipper. Animals also had access to an inactive spout 

that never delivered laser photostimulation.  

 We found that laser photostimulation of VP did not support self-stimulation. Of the 7 

animals tested, none contacted the laser spout >100 times (Laser spout mean = 21.1, SEM = 9.6; 

non-laser spout mean = 14.2, SEM = 5.9). These results are consistent with the inability for laser 

to stimulate motivated behaviors, including food intake as described above.  

By contrast, we found that LH stimulation generated robust self-stimulation in about half 

of animals tested (Laser spout mean = 624.67, SEM = 487.53; non-laser spout mean = 27.78, 

SEM = 4.64) but not in the other half (Laser spout mean = 22.92, SEM = 11.36; non-laser spout 

mean = 11.92, SEM = 4.02). Animals that did self-stimulate were tested on a reversal task, where 

contacts with the previously unrewarded spout now delivered laser pulses and contact with the 

spout that previously administered laser was no longer rewarded. Animals that self-stimulated on 

the first spout tracked the laser and self-stimulated at the new laser spout (Laser spout mean = 

1580.44, SEM = 862.18; non-laser spout mean = 18.56, SEM = 0.99). These results support the 

food intake results, namely that LH stimulation can enhance motivated and reward-related 

behaviors. 
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Discussion 

Here we showed that optogenetic stimulation of posterior VP, but not mid-tuberal LH, 

selectively doubled the number of positive ‘liking’ reactions elicited by the taste of sucrose. VP 

enhancement of ‘liking’ is consistent with previous reports of a hedonic hotspot able to amplify 

and encode sensory pleasure located in the caudal half of VP (Castro & Berridge, 2014a; Richard 

et al., 2013; K. S. Smith & Berridge, 2005; K. S. Smith et al., 2011). A role for VP in sweetness 

hedonic enhancement is also consistent with our observation that ChR2 stimulation of LH-to-VP 

projections similarly increased ‘liking’ reactions. However, since many neurotransmitter systems 

project from LH to VP (Bittencourt et al., 1992; Elias et al., 2001; Koylu, Couceyro, Lambert, & 

Kuhar, 1998), it is not clear which neurochemical system is mediating the projection stimulated 

enhancements of ‘liking’ and wanting’. One potential causal mechanism involves the orexin 

neuron population in LH, which colocalizes with glutamate and dynorphin. Previous work has 

shown that direct orexin receptor stimulation in the VP and NAc hotspots can amplify ‘liking’ 

reactions to sucrose, and GABA blockade (which should increase tonic neural activity of VP) 

increases food intake (Castro et al., 2016; Covelo et al., 2014; Ho & Berridge, 2013; K. S. Smith 

& Berridge, 2005). Together, orexin/glutamate signals may be acting to enhance food hedonic 

impact. By contrast, the anatomically nearby but distinct MCH-containing neuronal population 

(Swanson et al., 2005) has been shown to colocalize with both GABA (shown to abolish ‘liking’ 

and food intake in caudal VP) and CART (shown to reduce food intake) (Broberger, 1999; Elias 

et al., 2001; Ho & Berridge, 2014; Kristensen et al., 1998). As far as is known, VP does not 

appear to contain MCH receptors (Saito, Cheng, Leslie, & Civelli, 2001), making the 

MCH/CART/GABA projection an unlikely mediator of the effects described above.  
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Unlike direct VP stimulation, LH stimulation increased consumption of food by ~130% 

(i.e., ‘wanting’ to eat more food). LH induction of ‘wanting-without-liking’ is consistent with 

previous reports that electrode-induced deep brain stimulation of LH neurons, which elicits 

eating, similarly failed to enhance ‘liking’ reactions to tastes (K. C. Berridge & Valenstein, 

1991). However, our results are also slightly puzzling given that LH-to-VP projection 

illumination did enhance ‘liking’ reactions as well as ‘wanting’ to eat. One possible explanation 

might be that LH neuronal stimulation activated projections that synapse in many other targets 

besides VP, with some of those additional targets cancelling the hedonic enhancement effect that 

could otherwise be induced via projections to posterior VP. It is also interesting that LH-to-VP 

stimulation increased food intake, even though direct VP stimulation did not. These results may 

be related to back-propagation, such that LH terminal stimulation activated LH cell bodies, 

thereby making this stimulation more similar to direct LH stimulation. Another possibility is that 

stimulating LH terminals caused the release of neurotransmitters (e.g., orexin, glutamate, 

dynorphin) which provided information not given by direct optogenetic stimulation of VP. This 

would further develop a functional role for LH-VP circuitry, suggesting that LH is able to focus 

motivation as well as amplify food palatability at the same neuroanatomical site. Future studies 

on VP and may yield more effective stimulation parameters that generate food intake directly. 

In sum, direct stimulation of posterior VP neurons, as well as indirect activation via LH 

terminal illumination, amplified the hedonic impact of a sweet solution. By contrast, direct 

illumination of LH neurons or LH-to-VP terminals enhanced intake of palatable M&Ms and 

chow. Altogether, these data support a functional, but regionally specific, role for LH and VP in 

motivated and hedonic behaviors. 
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Figure 5.1. Functional spread of laser photostimulation. (A) Representative image of a ChR2 
infected animal in LH with an overlaid grid (purple; each square 50µm x 50µm). The blue-
outlined image shows overlap between Chr2 infected neurons (green) and Fos-positive neurons 
(Meredith et al.), whereas the gray outlined image displays no overlap. (B) Representative Fos 
plume for an individual animal. Orange indicates a 200% increase in Fos compared to tissue with 
no virus or photostimulation. Blue outlined squares display Fos-positive cells whereas the gray 
outlined box displays a Fos-negative square. (C) Average Fos plumes for High (7-10mW), Low 
(1-3mW), and control virus (7-10mW) conditions. Extrapolated plume shapes displayed below 
plumes. 
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Figure 5.2. Summary of laser stimulated effects on hedonic impact and food intake. (A) Bar 
graphs in the top panel show percentage change in hedonic reactions after laser stimulation 
relative to a no laser baseline. Purple bars indicate virus and fibers implanted into VP, brown 
bars indicate virus and fibers in LH, and blue bars indicate virus in LH and fibers in VP. Pink 
lines indicate the median percent change for each group. Lower left and right panels shows raw 
hedonic scores for each condition with channelrhodopsin animals on the left, and control virus 
animals on the right. (B) Bar graphs in the top panel show percentage change in food intake after 
laser stimulation relative to a no laser baseline. Purple bars indicate virus and fibers implanted 
into VP, brown bars indicate virus and fibers in LH, and blue bars indicate virus in LH and fibers 
in VP. Pink lines indicate the median percent change for each group. Lower left and right panels 
shows raw food intake for each condition with channelrhodopsin animals on the left, and control 
virus animals on the right.  
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Figure 5.3. Functional maps of laser effects on hedonic impact in VP or LH. (A) Horizontal, 
(B) sagittal or (C) coronal placement maps showing spread of VP or LH virus infusions, with the 
behavioral effects of ChR2 illumination painted onto individual animals. Maps display several 
levels of the atlas onto one frame to more completely visualize the placements. Yellow to red 
indicates an increase in hedonic reactions, whereas light to dark blue indicates a suppression. 
EA, extended amygdala; LPO, lateral preoptic area; LH, lateral hypothalamus; VP, ventral 
pallidum. 
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Figure 5.4. Functional maps of laser effects on taste reactivity and food intake in LH-VP 
projections. Sagittal placement maps showing spread of LH virus infusions and the fiber site in 
VP, with the behavioral effects of ChR2 illumination painted onto individual animals. Maps 
display several levels of the atlas onto one frame to more completely visualize the placements. 
(A) Percent changes in hedonic reactions to sucrose, with yellow to red indicating an increase in 
hedonic reactions, and light to dark blue indicates a suppression. (B) Percent changes in food 
intake for palatable M&Ms, with light to dark green indicates an increase in food intake, and 
light to dark blue indicates a suppression. EA, extended amygdala; LPO, lateral preoptic area; 
LH, lateral hypothalamus; VP, ventral pallidum. 
 

 

 

 

 



142 
 

 

 

 

 

 

 

 

 

 



143 
 

Figure 5.5. Laser stimulation is unable to reverse a conditioned taste aversion. The number 
of positive hedonic orofacial reactions to different taste stimuli are plotted before and after 
conditioned taste aversion pairings. Red circles indicate palatable sweet solutions (saccharin or 
glucose) and purple circles indicate bitter quinine. Open circles show baseline reactions without 
laser stimulation and blue filled circles show the number of positive reactions after laser 
stimulation 
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Figure 5.6. Functional maps of laser effects on food intake in VP or LH. (A) Bar graphs 
showing that LH-LH ChR2, but not VP-VP ChR2 or control eYFP, illumination enhances food 
intake of M&M candies. (B) Horizontal, (C) sagittal or (D) coronal placement maps showing 
spread of VP or LH virus infusions, with the behavioral effects of ChR2 illumination painted 
onto individual animals. Maps display several levels of the atlas onto one frame to more 
completely visualize the placements. Light to dark green indicates an increase in food intake, 
whereas light to dark blue indicates a suppression. EA, extended amygdala; LPO, lateral preoptic 
area; LH, lateral hypothalamus; VP, ventral pallidum. 
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Figure 5.7. Distribution of orofacial reactions after VP stimulation. Individual positive 
‘liking’ (TP: tongue protrusions; PL: paw licking; LTP: lateral tongue protrusions) and negative 
‘disgust’ (G: gape; HS: head shake; FF: forelimb flail; CR: chin rub; FW: face wash) reactions to 
sucrose (top) or quinine (bottom). Laser stimulation broadly increased ‘liking’ reactions to 
sucrose, without altering aversive reactions to sucrose or orofacial reactions to quinine (black: no 
laser baseline; blue: laser stimulation). 
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Figure 5.8. Distribution of orofacial reactions after LH-VP stimulation. Individual positive 
‘liking’ (TP: tongue protrusions; PL: paw licking; LTP: lateral tongue protrusions) and negative 
‘disgust’ (G: gape; HS: head shake; FF: forelimb flail; CR: chin rub; FW: face wash) reactions to 
sucrose (top) or quinine (bottom). Laser stimulation broadly increased ‘liking’ reactions to 
sucrose, without altering aversive reactions to sucrose or orofacial reactions to quinine (black: no 
laser baseline; blue: laser stimulation). 
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Figure 5.9. Distribution of orofacial reactions after LH stimulation. Individual positive 
‘liking’ (TP: tongue protrusions; PL: paw licking; LTP: lateral tongue protrusions) and negative 
‘disgust’ (G: gape; HS: head shake; FF: forelimb flail; CR: chin rub; FW: face wash) reactions to 
sucrose (top) or quinine (bottom). Laser stimulation never increased positive or negative 
reactions to sucrose or quinine (black: no laser baseline; blue: laser stimulation). 
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CHAPTER 6: 

DISCUSSION 

The studies presented in this dissertation explored the neuroanatomical substrates of 

hedonic ‘liking’ in subcortical and cortical nuclei, focusing on mu opioid and orexin 

neurochemical systems. 

A unique site for hedonic enhancement in nucleus accumbens medial shell 

One of the first hedonic hotspots was discovered in the rostrodorsomedial shell of NAc 

by mapping anatomical sites of hedonic ‘liking’ enhancement after mu opioid receptor 

stimulation (Pecina & Berridge, 2005). In chapter 2, I sought to evaluate the veracity of this 

surprising localization of hedonic enhancement, and to extend our knowledge of opioid function 

in NAc shell by also stimulating delta or kappa opioid receptors via drug microinjections. Work 

on food intake had indicated that delta receptors may be able to elicit motivated ‘wanting’ for 

food, but its inconsistency in the literature made it difficult to hypothesize its role (if any) in 

hedonic function. In some reports, it was shown that delta stimulation was sufficient to drive 

motivated intake, but in others it seemed to have no effect (Bakshi & Kelley, 1993; Katsuura & 

Taha, 2010). Kappa opioid receptors have long been associated with aversion and stress 

(especially in NAc), potentially indicating that instead of contributing to hedonic ‘liking’, they 
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may be involved in aversive ‘disgust’ (Bals-Kubik et al., 1993; Bals-Kubik et al., 1989; Land et 

al., 2008). 

To determine how these three opioid receptor subtypes were involved in affective and 

motivated behaviors, I performed microinjections of receptor selective agonists (mu: DAMGO, 

delta: DPDPE, kappa: U50488H) throughout medial shell and tested subsequent behaviors on 

taste reactivity responses to sucrose, followed by an hour long food intake session. I found that 

stimulation of any of the three receptor subtypes was sufficient to enhance hedonic reactions by 

~300%, but only if the injections were in the rostral half of NAc medial shell. Microinjection 

sites located at caudal levels oppositely suppressed hedonic reactions by ~33% in what we call a 

hedonic coldspot.  

In contrast to the anatomically homogeneous results on hedonic reactions across drug 

conditions, drug effects on food intake differed greatly between receptor subtypes. Mu 

stimulation increased food intake throughout the entire rostrocaudal axis of NAc, even at 

coldspot sites in caudal shell. Delta stimulation also increased food intake, but only within the 

boundaries of the rostral hotspot. Kappa stimulation never consistently enhanced food intake at 

any localized site in NAc shell, which is consistent with previous studies (Bakshi & Kelley, 

1993).  

To further establish that rostromedial shell was uniquely capable of positively enhancing 

the affective qualities of a stimulus, I tested a separate group of animals in a conditioned place 

preference paradigm, in which stimulation of the hotspot was associated with a unique context. I 

found that animals developed a place preference for the drug-paired context, even animals that 

received kappa receptor stimulations. The CPP did not occur in sites surrounding the hotspot, 

and in fact the sites surrounding the hotspot that received kappa stimulation seemed to induce 
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what might be a place avoidance. These results are consistent with what Bals-Kubik et al. found 

in the mid 90’s; that is, mu receptor stimulation in the nearby core did not generate a place 

preference, and kappa stimulation produced a place avoidance (Bals-Kubik et al., 1993).  

In considering the results of kappa stimulation on food intake and conditioned place 

preference, it is puzzling that one behavioral task, but not the other, was sensitive to hotspot 

stimulations. One potentially relevant difference between the two tasks is the presence of the 

drug itself; kappa stimulation was occurring during the food intake task, and animals in the CPP 

paradigm were tested in a drug free state. Kappa receptors are predominantly found on dopamine 

and glutamatergic terminals (Svingos, Chavkin, et al., 2001; Svingos, Colago, et al., 1999), 

potentially allowing kappa stimulations to inhibit those inputs. By contrast, mu receptors are 

typically found on MSNs or local interneurons (Svingos, Colago, et al., 2001; Svingos et al., 

1996), indicating that kappa stimulations may have the unique ability to modulate incoming 

glutamate or dopamine signals. I propose that the interaction of reduced glutamate and dopamine 

transmission would generate competing effects on motivated food intake, but leave hedonic 

functions unaltered. In 1995, Maldonado-Irizarry et al. (1995) reported that blockade of 

glutamate receptors in NAc medial shell generated an intense desire to eat. This effect has since 

been replicated (Reynolds & Berridge, 2003), and has been extended to show that the stimulated 

food intake requires local dopamine signals (although dopamine itself may not be necessary for 

general food intake) (Baldo, Sadeghian, Basso, & Kelley, 2002; Faure, Reynolds, Richard, & 

Berridge, 2008; Richard & Berridge, 2011b). However, while glutamate and dopamine signals 

are important for modulating motivated food intake, neither neurochemical system appears to be 

sufficient or necessary to enhance hedonic ‘liking’ reactions to sucrose in NAc shell (Faure et al., 

2010; Wyvell & Berridge, 2000). Thus, the competing effects of blocking glutamate (which 
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should increase food intake) and dopamine transmission (which should prevent glutamate 

blockade induced eating) might account for the inconsistent ability for kappa stimulation to 

increase motivated food intake, as well as explain why the stimulations could still consistently 

alter hedonic orofacial reactions. However, this inconsistent disruption would only manifest 

during testing periods in which active kappa receptor stimulation occurred; animals tested in a 

drug free state would not be susceptible to the same neurochemical disruptions. In sum, kappa 

stimulation may disrupt the expression of motivation, but not the experience of pleasure ‘liking’, 

which may help explain why rats still showed a conditioned place preference (since they would 

have experienced the rewarding effects of kappa stimulation during conditioning, and would then 

be able to express that positive conditioning during the drug-free test day).  

Orexin and acetylcholine systems modulate ‘liking’ and ‘wanting’ in NAc 

 In Chapter 3, I explored the potential roles of both incoming orexin signals and local 

acetylcholine signals in hedonic and motivated behaviors in NAc medial shell. I found that 

orexin stimulation in rostromedial NAc shell enhanced hedonic reactions to sucrose in a hotspot 

that nearly identically overlapped with the opioid hotspot described in Chapter 2. However, one 

difference between the two neurochemical systems was that orexin did not generate a hedonic 

coldspot in caudal shell. Orexin also did not modulate orofacial reactions to quinine, neither 

suppressing quinine ‘disgust’ nor increasing its palatability, even in the hotspot. For food intake, 

orexin, like mu stimulation, increased eating throughout NAc shell. Taken together, these results 

suggest that orexin may primarily be involved in enhancing already positively valenced stimuli, 

at least within NAc.  

The reason for orexin’s exclusivity for modulating positively valenced stimuli remain 

unresolved, but it is worth noting the similarities between the effects of orexin stimulation and 
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endocannabinoid stimulation in NAc on hedonic and motivated behaviors. In both cases, 

simulations only enhanced sucrose ‘liking’, without altering aversive reactions to sucrose or 

‘disgust’ reactions to quinine (Mahler et al., 2007). In addition, stimulation of both systems was 

shown to increase food intake at all tested sites. Beyond taste reactivity and food intake, it has 

been shown that orexin and endocannabinoid systems can work synergistically to modify 

motivated behaviors, such as the formation of a conditioned place preference (Yazdi, 

Jahangirvand, Pirasteh, Moradi, & Haghparast, 2015). If these two neurochemical systems are 

working together to generate the same type of psychological signal, then it might be useful to 

consider where these receptors can be found within NAc, as this could indicate potential 

mechanisms of interaction. Endocannabinoid receptors are exclusively expressed on fast-spiking 

interneurons in NAc, and it is thought that they may exert their actions via a feed-forward 

inhibition signal onto MSNs (Winters et al., 2012). Further, the interneurons that contain the 

highest density of CB1 receptors are found at rostral sites of NAc; in other words the greatest 

number of CB1 receptors overlaps with our functionally defined hotspot. It is unknown whether 

such a concentration of OX-2 receptors in NAc also exists, but exploring the distribution and 

localization of OX-2 receptors may prove worthwhile for understanding its relationship to CB1 

signaling and ultimately hedonic signaling. 

In contrast to the effects of orexin, general muscarinic blockade via scopolamine 

promoted a broad shift toward aversive ‘disgust’. Scopolamine microinjections decreased 

positive ‘liking’ reactions to sucrose at all sites tested in NAc medial shell (although it should be 

noted that it did not enhance aversive ‘disgust’ reactions to sucrose), and it similarly suppressed 

food intake of palatable M&Ms. These same microinjections also doubled the number of 

negative ‘disgust’ reactions to quinine, and generated fearful/defensive treading toward the light 
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refracting corners of the food intake chamber. Like the suppression of appetitive behaviors, these 

‘disgust’ and ‘fearful’ responses were not anatomically localized. For the first time in the studies 

I have reported, I did not observe a localized effect of drug microinjections on affective taste 

reactions. These results might be related to how endogenous acetylcholine signals are 

transmitted, as well as the type of neurons that generate those signals. Within NAc, large 

acetylcholine interneurons account for only 1-2% of the total population of neurons, but their 

dendritic arborizations can infiltrate up to nearly a millimeter of tissue (Zhou, Wilson, & Dani, 

2002). Since these neurons likely play a role in coordinating activity across NAc, it is not 

surprising that blocking ACh signaling anywhere in NAc would result in wide-spreading effects 

(i.e., why rostral muscarinic blockade still enhanced aversive ‘disgust’).  

In relation to how acetylcholine signals themselves might be guiding the shift towards 

aversion, I suggest that the paradoxical pharmacological effects of scopolamine is important for 

explaining the simultaneous reduction of some behaviors (i.e., hedonic ‘liking’ and food intake) 

while increasing others (i.e., aversive ‘disgust’ and treading). Work by Pratt and Blackstone 

(2009) showed that the decreased food intake caused by scopolamine microinjections is unlikely 

to be mediated by the blockade of the M2 autoreceptors (which should increase ACh 

transmission). Instead, increased autoreceptor activity was shown to mimic the effects of 

scopolamine, suggesting that scopolamine’s effects on food intake are likely due to blockade of 

post-synaptic muscarinic receptors. Direct inhibition of local ACh interneurons has also been 

shown to block cocaine CPP, which similarly suggests that decreased local ACh results in 

decreases reward-related behaviors (Witten et al., 2010). However, microdialysis assays have 

shown that scopolamine reliably and intensely increases local acetylcholine (Pfister, Boix, 

Huston, & Schwarting, 1994). If decreased appetitive motivation is mediated by post-synaptic 
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muscarinic blockade, then what effects might ambient increased acetylcholine (via autoreceptor 

blockade) have on behavior? Zhou et al. (2002) have shown that tonic acetylcholine acts on the 

nicotinic receptors found on incoming dopamine terminals, which results in increased dopamine 

release. Thus, if scopolamine is already generating a shift toward an aversive psychological state 

(via post-synaptic muscarinic blockade), then it follows that increased dopamine release in NAc, 

which would increase the incentive value of surrounding sensory stimuli, might selectively 

increase the salience of aversive stimuli. In the experiment described in this dissertation, this 

manifested as increased treading towards the brightly lit corners of the food intake chamber. 

Altogether, the simultaneous blockade of muscarinic signaling, coupled with increased nicotinic 

signaling, could result in the general shift toward aversive ‘disgust’ that I observed in this study. 

In sum, the results from Chapters 2 and 3 suggest that the rostral NAc hotspot is a unique 

anatomical site capable of positively modulating hedonic impact. While the particular 

mechanism mediating each neurochemical enhancement of sucrose ‘liking’ remains unknown, it 

is likely that there is some synergistic interactions between them. Future work evaluating these 

local interactions, as well as a more thorough understanding of receptor location, will help to 

answer some of these lingering questions. 

Orbitofrontal cortex and insula each contain a hedonic hotspot 

In Chapter 4, I used the same microinjection mapping technique from Chapters 2 and 3 to 

functionally map the entire orbitofrontal and insular cortices, as well as nearby structures 

including medial PFC and piriform cortex. I found that both OFC and insula contain a mu/orexin 

hotspot, with the OFC hotspot localized to the rostral 2/3rd of OFC, and the insula hotspot 

restricted to its caudal 1/3rd. By contrast, one single, long coldspot was bookended by the two 

hotspots, stretching from rostral insula/caudolateral OFC and extending throughout mid-insula. 
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Like in NAc, the hedonic maps did not overlap with the maps showing changes in food intake. 

Food intake was increased at all sites in OFC, even in the caudolateral coldspot, but did not 

extend into insula. Mu opioid stimulation in piriform cortex was also sufficient to enhance food 

intake, even though the same sites did not alter hedonic reactions to sucrose. Whether insula is 

simply not capable of generating intense motivation, or whether purer tests of food intake would 

reveal ‘wanting’ enhancements remains unknown. 

One surprising phenomenon that was uncovered in this experiment was the existence of 

one single cortical coldspot. Previous studies in NAc and VP have revealed discrete coldspots 

localized to the same structure as their corresponding hotspot, but the cortical coldspot bridged 

the transition zone between OFC and insula, functionally ignoring the anatomical boundaries. 

While initially surprising, I suggest that we may have actually misinterpreted the subcortical 

coldspots as individual functional zones; in other words, the NAc and VP coldspot may be one 

continuous strip comparable to the strip found in OFC and insula. Anatomically, opioid 

stimulation suppresses hedonic impact in NAc from where medial septal nucleus and ventral 

limb of the diagonal band bridge the hemispheres (~1.5mm anterior to bregma) to sites just 

caudal to the middle cerebral artery (~0.80mm anterior to bregma). Dorsoventrally, the coldspot 

fills the entire NAc (or at least at all sites tested; ~-6.25 to -7.75mm below bregma). The ventral 

pallidum coldspot begins at ~1.0mm anterior to bregma, and continues until roughly the genu of 

the anterior commissure (~0.0mm). Dorsoventrally, the VP coldspot extends the entire VP, from 

-7.75mm to almost -9.0mm below bregma. If both coldspots are plotted on the same map, it 

becomes clear that no true functional boundary exists to separate the two coldspots. In reality, 

what can observed is a ventral shift of the coldspot as NAc ends and VP begins, the same trend 

observed with the cortical coldspot. Further, unpublished work by Eric Jackson in our lab 
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showed that DAMGO microinjections into the bed nucleus of the stria terminals (BNST) 

suppressed hedonic reactions to sucrose. BNST is located directly caudal to NAc and dorsal to 

VP. If these results can be substantiated, it would seem that the subcortical coldspot is much 

bigger than previously thought, and may begin in NAc, but continues into BNST where it drops 

ventrally into VP. While there is not enough information to speculate how viewing the cortical 

and subcortical hedonic systems as having one large coldspot bookended by two hotspots is 

functionally relevant for affective processing, reshaping how we define the hot and coldspots 

may alter how we interpret potentially relevant inputs/outputs to these areas, as well as reveal 

new commonalities between these functionally defined zones that may not be obvious through 

investigations of discrete brain areas.  

Optogenetic stimulation of LH inputs to the VP hotspot causally enhances ‘liking’ and ‘wanting’ 

With the addition of the OFC and insula hotspots, it is becoming increasingly clear that 

affective processing is comprised of a set of distributed affective nodes. Work by Kyle Smith has 

already indicated that this may be the case, as functional interactions between NAc and VP have 

been shown. For example, mu opioid receptor stimulated enhancements of ‘liking’ in NAc or VP 

can be blocked by simultaneous blockade of opioid receptors in the other hotspot (K. S. Smith & 

Berridge, 2007). Further, increased neural firing in VP (which correlates with coding of hedonic 

value), can be boosted above normal levels by NAc opioid stimulations (K. S. Smith et al., 

2011). If the hotspots do indeed work together to generate hedonic signals, then the hedonic 

signals generated at each hotspot must be somehow relayed across the brain.  

One candidate system to relay their activity includes orexin, which is exclusively 

produced in hypothalamus, and has been shown to causally enhance hedonic ‘liking’ in all four 

hotspots (Baldo et al., 2003; Peyron et al., 1998). In particular, orexin neurons found in lateral 
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hypothalamus have been especially implicated in reward, whereas dorsomedial hypothalamic 

orexin neurons are associated with arousal (Adamantidis et al., 2010; Harris et al., 2005). 

Anatomically, LH orexin neurons are in a good position to modulate the hotspots as it shares 

reciprocal connections with all of them. Therefore, if LH neurons are involved in recruiting the 

hotspots, it follows that by stimulating direct lateral hypothalamic/orexinergic inputs into a 

hotspot, I should be able to replicate the effects observed with direct orexin microinjections. 

In Chapter 5, I sought to determine if selective stimulation of lateral hypothalamic inputs 

in the VP hotspot could modulate hedonic ‘liking’ for sucrose or food ‘wanting’. I found that 

selective stimulation did enhance both hedonic and motivated behaviors, without altering 

aversive ‘disgust’ behaviors to quinine. Further, I tested whether direct stimulations of either the 

VP hotspot or LH cell bodies specially contributed to the enhanced behaviors. VP stimulation 

was found to selectively enhance hedonic reactions to sucrose without altering food intake, 

whereas LH stimulation only increased motivated food intake without altering hedonic reactions. 

Collectively, these data suggest that an anatomically functional circuit between LH and VP exists 

whereby LH can tap into the hedonic VP hotspot to boost hedonic impact. 

While the results of this study support a functional connection between LH and VP, it is 

somewhat perplexing that direct VP stimulation did not enhance food intake, but stimulation of 

the LH-VP projection did. Pharmacologically, disinhibition via GABA blockade can produce 

intense hyperphagia at all sites in VP (Covelo et al., 2014; K. S. Smith & Berridge, 2005), 

suggesting that increased excitation may be related to increased motivation. However, general 

disinhibition in VP likely alters the neurochemical profile of local microcircuits, altering the 

composition of ambient and incoming levels of neurotransmitters as well as how neurons 

ultimately fire. Direct optogenetic stimulation supersedes that neurochemical shift; by eliciting 
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action potentials directly, the surrounding changes in neurochemical microcircuitry may become 

irrelevant, or at the very least ignored. This artificial excitation may then be sufficient to enhance 

hedonic impact (likely through downstream recruitment of the other hotspots), but may not 

convey potentially relevant neurochemical signals required to enhance motivated food intake 

(e.g., orexin-A, dynorphin). Alternatively, the eating may have been a byproduct of back 

propagation, in which terminal stimulation produced an action potential back toward the cell 

bodies in LH. Increased LH activity through local circuits is likely to enhance food intake as this 

is more similar to direct LH stimulated eating. Future studies combining local pharmacologic 

blockade in VP with optogenetic terminal stimulation will be useful for assessing these types of 

interactions. 

Although direct stimulation of VP or LH each resulted in no overall change in eating or 

hedonic impact, respectively, the manner in which they were ineffective was strikingly different. 

In VP, laser stimulation seemed to not affect behavior at all; animals ate exactly the same 

amount of M&Ms across test days. By contrast, LH stimulation sometimes had no effect, 

sometimes increased hedonic reactions, and at other times actually suppressed hedonic reactions. 

Based on the positive effects of projection stimulation in VP, coupled with orexin’s hedonically 

suppressive role in the cortical coldspot, I hypothesize that this is indirect evidence for LH 

involvement with the other hotspots and coldspots to modulate hedonic impact. It is possible that 

laser stimulation in some rats may have somewhat preferentially projected to targets like the 

cortical or NAc coldspot in animals that showed a decrease in hedonic reactions, which would 

not prevent or contest those same regions’ abilities to simultaneously enhance food intake. In the 

same vein, LH sites that increased hedonic reactions likely projected to one of the hotspots to 

recruit their hedonic abilities (as I saw with selective stimulation of LH-VP). While future work 
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will be needed to establish whether LH to hotspot/coldspot projections are functionally relevant 

as I observed with VP, it can at least be said that LH does appear to have the ability to recruit the 

VP hotspot to selectively augment hedonic impact. 

A role for lateral hypothalamus in affective processing 

The results of the optogenetic experiment indicate that although LH itself may not be a 

site of hedonic generation, it has the ability to recruit the hotspots to enhance the hedonic impact 

of a taste stimulus. Based on the orexin microinjection results in NAc, OFC, and insula, it would 

be of interest to test whether stimulation of LH terminals in these sites would likewise enhance 

hedonic impact. If LH does not house a hotspot (as far as we can tell), then the question 

becomes: what purpose does the LH orexin system serve in the hedonic circuit? 

One potential explanation could be that its role in affect is merely one of several roles 

that LH subsumes in its generation of behavior. LH has long been associated with many types of 

motivated behaviors, being important for food and drug seeking (Anand & Brobeck, 1951; 

Jennings, Rizzi, Stamatakis, Ung, & Stuber, 2013; Richardson & Aston-Jones, 2012), affiliative 

and aggressive behaviors (Haller, 2013; Woodworth, 1971), and approach/avoidance elicited by 

reward/punishment cues (Cole, Hobin, & Petrovich, 2015; Harris et al., 2005; Petrovich, 

Holland, & Gallagher, 2005). As discussed in Chapter 1, motivation and affect can be teased 

apart as distinct psychological mechanisms, but in reality these two components often work 

together to generate behavior. LH may act as a site that integrates affect and motivation, directly 

modulating the hedonic impact of a stimulus (via its projections to the hotspots) that then 

redirects and guides the attribution of incentive salience and subsequent motivated behavior (via 

its projections to striatum, VTA, cortex, etc.). Although a relatively new hypothesis, there does 

seem to be evidence for LH, and even LH orexin neurons themselves, being involved in affective 
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coding. In one study, LH neural activity appears to track the palatability of sweet versus bitter 

tastes, independently of any sensory stimulus/quality coding that may be occurring (Li, Yoshida, 

Monk, & Katz, 2013). A more recent study has shown that orexin neurons may even track the 

positive or negative valence of a reward cue, potentially supporting the idea that LH may 

integrate affective and motivated signals (Hassani, Krause, Mainville, Cordova, & Jones, 2016).  

In addition to being sufficient to modulate hedonic impact, LH (or at the very least the 

forebrain in general) may in fact be necessary for transformations of hedonic value, especially 

for the expression of sensory alliesthesia. With its diffuse connections with mesocorticolimbic 

motivated systems, and its particular connections with the known hedonic hotspots, it is well 

positioned to modulate affective responses (experience of alliesthesia) as well as act on those 

changes to best suit the individual (motivated response). Early decerebrate studies, in which rats 

received transections at the level of the midbrain (effectively cutting off forebrain control of 

brainstem reflex systems) showed that decerebrate rats do not demonstrate the ability to adapt to 

learned or homeostatic pressures that alter taste palatability. Explicitly, decerebrate rats are 

unable to learn conditioned taste aversions and do not display hunger alliesthesia (Grill & 

Norgren, 1978b). These studies provided the first clue that forebrain sites are required for 

flexible affective responses, even if the motor effector systems are contained within the 

brainstem. Future studies evaluating the role of LH-hotspot projections during various types of 

homeostatic challenges (e.g., salt depletion, hunger) would interesting and useful for determining 

whether it is playing an active role in this process. 

Titrating affect: A specific role for LH in the VP hotspot 

The ventral pallidum was the first hotspot to be mapped in 2005 using gain of function 

anatomical maps, but the localization of caudal VP as a site important for generating hedonic 
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impact had been established more than 10 years earlier through discrete lesions (Cromwell & 

Berridge, 1993; K. S. Smith & Berridge, 2005). The early lesion studies that led to the discovery 

of the VP hotspot were striking not only because its destruction led to the disappearance of 

hedonic ‘liking’ for palatable food, but because they flipped positive affective responses into 

aversive ‘disgust’ reactions. However, the manifested ‘disgust’ was transient, such that reactions 

to sucrose returned to normal even before the aphagia symptoms disappeared. If the VP hotspot 

was truly necessary for the generation of positive affect, then positive reactions to sucrose should 

never have been restored after lesions. But because hedonic reactions do return, this suggests that 

VP lesions (or inactivations) may actually cause an affective imbalance that initially allows 

negative affect to obscure or trump positive affect. This imbalance can be conceptualized as an 

overwhelming release of ‘disgust’, rather than a true loss of hedonic ‘liking’, which implies that 

not only is VP an important site for generating hedonic impact, but that it serves a second, 

equally important role of tempering the expression of ‘disgust’. 

What neural mechanisms might underlie this second role for VP in ‘disgust’ regulation? 

To begin answering this question, we can examine the results of a pilot study I conducted that are 

related to the results presented in Chapter 5. In that chapter, I showed that stimulation of LH 

terminals in the VP hotspot could selectively enhance sucrose ‘liking’ without altering quinine 

‘disgust’. However, while that study did provide evidence for LH sufficiency, it did not address 

whether this LH projection was necessary for affective processing. In an effort to address that, I 

performed a pilot study in which I optogenetically inhibited the LH-VP hotspot pathway during 

sucrose or quinine infusions and measured subsequent orofacial reactions. While I did not see a 

decrease in hedonic reactions to sucrose, I did observe a marked increase in aversive ‘disgust’ 

reactions to quinine. Although somewhat surprising, these results at least partially replicated the 
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effects of direct VP hotspot lesions, suggesting that perhaps the ‘disgust’ release observed in 

lesion studies might in part be related to a disruption of communication between LH and VP. 

More broadly, changes in LH activity in the VP might be important for titrating, or dialing up or 

down the degree of positive and negative affective valence that is ultimately experienced. In 

other words, when LH-VP hotspot activity is high, preferential augmentation of positively 

valenced stimuli occurs. In contrast, when LH-VP hotspot activity is low, preferential 

augmentation of negatively valenced stimuli occurs. If such an interaction is important for 

mediating how much of an affective gloss will be generated, then it would be interesting to test 

whether LH-VP coldspot stimulations or inhibitions might cause the opposite response: 

increased activity could result in decreased ‘liking’, whereas decreased activity might result in 

decreased ‘disgust’ reactions. This hypothesis could account for why selective disruption of LH-

VP hotspot did not alter sucrose hedonic impact; although decreased LH-VP hotspot activity was 

sufficient to begin increase aversive ‘disgust’, the lack of a concurrent increase in LH-VP 

coldspot activity allowed normal hedonic impact to be preserved (thus preventing a full affective 

flip). While still speculative, the opposing effects of LH-VP hotspot stimulations versus 

inhibitions indicate that the LH-VP pathway may be especially important for titrating the 

expression of positive or aversive signals in VP.  

Functional extrapolation for multiple hotspots 

 While the results of this dissertation provide evidence for four discretely localized 

hedonic hotspots (and potentially 2 large coldspots), it is somewhat perplexing to have so many 

hedonically vocal sites. Based on work by Kyle Smith, it seems unlikely that the four hotspots 

are redundant fail safes for generating hedonic impact, as interactions between the hotspots are 

necessary for hedonic amplifications (at least in the subcortical hotspots) (K. S. Smith & 
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Berridge, 2007). Future work will need to ascertain whether such interactions are necessary 

between the cortical hotspots, between the cortical and subcortical hotspots, and between the two 

coldspots. If interactions are required, then it seems likely that each hotspot is probably 

contributing some sort of unique signal important for the holistic experience of affect. What 

special contribution each hotspots makes remains unknown, but it may be useful to examine 

what sort of information is relayed through these hedonic areas, as unique connectivity may 

reveal potential functional roles.  

 One example of functional extrapolation has already been explored with the VP hotspot, 

namely, that activity in this area via LH may be important for determining the degree of affective 

valence that is assigned to a stimulus. Another case for functional extrapolation can be explored 

with the insula. As I discussed in Chapter 4, the insula has been shown to house both primary 

gustatory and visceral cortex. But in addition to these sensory modalities, insula has been shown 

to receive inputs from auditory, olfactory, vestibular, and visual cortex, as well as 

pain/temperature/somatosensory related information via SI, SII and thalamus (Cechetto & Saper, 

1987; Kimura, Imbe, & Donishi, 2010; Nieuwenhuys, 2012; Shi & Cassell, 1998a, 1998b). 

Unlike the other known hedonic zones, insula appears to be specially innervated by all sensory 

modalities. Access to the pure sensory information puts insula in an excellent position to paste 

hedonic value directly onto sensory stimuli. While the afferents for each sensory modality are 

not represented across all insular sites (e.g., gustatory cortex lies completely within the coldspot), 

the extremely dense projections within insula still allow neurons in the functionally defined hot 

and coldspot to have access to the localized sensory information. While this is still speculative, 

having an affective zone designated to pasting hedonic value onto sensory stimuli (i.e., insula), in 

combination with an affective zone designated to assigning affective valence (i.e., VP), helps to 
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provide a logic for the existence of multiple hedonic zones. Future studies that deliberately 

disrupt particular inputs will hopefully reveal distinct roles for each hedonic area. 

Where is ‘disgust’?  

Another remaining mystery is whether or not a similarly distributed ‘disgust’ hotspot 

circuit exists. While individual studies have localized potential sites of interest (e.g., caudal 

accumbens), no comprehensive system has been identified. Although speculative, I believe one 

potential iteration of a ‘disgust’ circuit could be the reverse of the hotspot circuit. In other words, 

from ‘disgust’s’ point of view, each hotspot may be an aversive coldspot, and each hedonic 

coldspot may be an aversive hotspot. Evidence for a “reversed” ‘disgust’ circuit mainly stems 

from work in NAc. Within caudal NAc, GABA stimulations have been shown to robustly 

increase aversive reactions to both quinine and sucrose (Ho & Berridge, 2014). The scopolamine 

results described in Chapter 3 also suggest that caudal shell may be especially important for 

eliciting negatively valenced behaviors, since the treading observed was most robust at caudal 

sites. 

One reason for the paucity of findings concerning sites that increase ‘disgust’ may be 

related to the neurochemical systems that have been tested. As the list of neurochemicals that can 

enhance ‘liking’ in the hotspots continues to grow, it is likely that our work so far has been 

biased toward testing neurochemicals that are already associated with reward (i.e., opioids, 

orexin, endocannabinoids). I hypothesize that a separate suite of neurochemicals such as 

melanocortin or CART, which are already associated with aversion (Aja, Robinson, Mills, 

Ladenheim, & Moran, 2002; Chaki, Kawashima, Suzuki, Shimazaki, & Okuyama, 2003; Lim, 

Huang, Grueter, Rothwell, & Malenka, 2012; Zheng et al., 2010), may be better candidate 

systems for exploring the neuroanatomical localization of aversive ‘disgust’. Alternatively, 
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future studies could examine unique anatomical features to help choose novel neurochemical 

systems to test. For example, caudal shell of NAc receives a dense innervation of norepinephrine 

that is absent at rostral sites (BNST and VP also receives substantial inputs) (Baldo et al., 2003; 

Foote, Bloom, & Aston-Jones, 1983; Swanson & Hartman, 1975). Though surprisingly little 

research has explored the local role of norepinephrine on motivated behaviors, recent work has 

shown that glucocorticoid enhanced memories of a conditioned taste avoidance requires local 

norepinephrine, as does cannabinoid induced conditioned place avoidance (Carvalho & Van 

Bockstaele, 2011; Wichmann, Fornari, & Roozendaal, 2012). The unique projection pattern of 

norepinephrine, as well as some hints that it may be important for aversion, suggests that this 

may be a useful neurochemical system to employ in the search for the neural sites of ‘disgust’ 

generation. 

Conclusion  

In conclusion, the studies described in this dissertation introduced two novel affective 

cortical sites, and integrated LH into a broader hedonic circuit, providing a scaffold for how to 

interpret the hedonic system as a dispersed neural process. It also examined the role of three 

distinct neurotransmitter systems throughout a distributed hedonic network. Collectively, these 

results demonstrate the need for a more comprehensive investigation into the neural mechanisms 

of affect which may ultimately lead to a better understanding of normative affective processing 

in the brain. 
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