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CHAPTER 1 

Introduction 

 

Some elements and ideas described in this chapter were published as Lau et al. (2015) 

in Frontiers in Genetics as “Condensin-mediated chromosome organization and gene 

regulation.” I wrote the manuscript and created all illustrations. 

 

Sex determination and dosage compensation 

 Whether an animal becomes a male, a female, or a hermaphrodite has been 

studied for hundreds of years. In 335 B.C.E., Aristotle proposed that sex was 

determined by the amount of heat generated from the male partner, the more heat the 

greater chance of a male offspring [1]. Until the twentieth century, environmental factors 

such as temperature and nutrition were believed to be important in determining sex. 

These theories of sex determination remained until the discovery of sex chromosomes, 

in the early 1900s [2]. Studies analyzing male and female insect chromosomes 

uncovered that the female sex has XX sex chromosomes and the male sex has XY or 

XO chromosomes [3,4]. Aristotle’s theory was partially correct; in the case of some 

reptiles the temperature after fertilization determines the sex of the embryo [5]. 

However, analysis of additional species over the years has revealed that for most 

animals sex is determined by chromosomal differences. 
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Many species utilize a chromosome-based mechanism of sex determination. 

Males and females/hermaphrodites have chromosomal differences illustrated in the XX-

XY, XX-XO, ZZ-ZW, or haploidploidy systems. Mammals, worms, and some insects are 

governed by the XX-XY or XX-XO system, in which the males are heterogametic 

(XY/XO) and females are homogametic (XX) [6,7]. Birds have ZZ-ZW chromosomes, 

and in this case females are heterogametic (ZW) and males are homogametic (ZZ) 

[6,7]. In other insects, such as bees and ants, the haploidploidy system is utilized. In this 

system males come from unfertilized eggs and are haploid, while the females come 

from fertilized eggs and are diploid [8]. These chromosome-based mechanisms rely on 

either a sex chromosome-linked gene or a chromosome counting mechanism to 

determine sex. In mammals, it is the presence or absence of the Y chromosome, 

specifically the Y-linked SRY gene, which triggers male development [9]. In birds two 

doses of the Z-linked gene DMRT1 is required for male development, however 

incomplete knockdown of DMRT1 does not abrogate male sexual development [10]. In 

other species there are chromosome-counting mechanisms whereby the cell can sense 

chromosome copy number based on one or more sex chromosome signal elements 

[11,12]. Additionally, some species use the ratio of the number of X chromosomes to the 

number of sets of autosomes to determine sex [12]. However, regardless of the exact 

mechanism, all chromosome-based mechanisms entail a difference in sex chromosome 

number between the males and females/hermaphrodites.  

The chromosomal differences if left uncorrected puts one sex at a selective 

disadvantage. In addition to the in difference in sex chromosome number, there is an 
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imbalance between X-linked genes expression and autosomal expression within the 

heterogametic sex. This imbalance creates a natural aneuploidy and chromosomal 

aneuploidies are often not tolerated [13]. Therefore Ohno hypothesized that sex 

chromosome gene expression between the sexes must be balanced, as well as X to 

autosomal expression within a sex [14]. The mechanism that has evolved to correct this 

sex-linked gene expression imbalance is known as dosage compensation. Dosage 

compensation mechanisms are diverse between species. These strategies have been 

widely studied in the fruit fly Drosophila melanogaster, mammals, and the worm 

Caenorhabditis elegans (Figure 1.1). In fly dosage compensation, the single male X 

gets unregulated two fold. This process balances the X and autosomal expression 

within males and X-linked gene expression between the sexes [15,16]. Although highly 

debated, evidence suggests that in mammals and C. elegans upregulation of the X 

occurs in both males and females/hermaphrodites [17-22]. This upregulation balances X 

and autosomal expression in males however causes X hyperactivation in 

females/hermaphrodites. To prevent this X overexpression in females/hermaphrodites, 

one X is inactivated in mammalian females [23-25], while both X chromosomes in 

hermaphrodite C. elegans are downregulated two-fold [26,27]. In the next sections, I will 

briefly describe the dosage compensation strategies in D. melanogaster, mammals, and 

C. elegans.  

X upregulation in Drosophila melanogaster 

Drosophila dosage compensation is achieved by the male specific lethal (MSL) 

complex [28,29]. The MSL complex binds to the male X chromosome, concentrates 
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MOF acetyltransferase activity, and leads to increased H4K16ac on the hyperactive X 

(Figure 1.2) [28-30]. The MSL complex is composed of the proteins MSL1 (male-specific 

lethal 1), MSL2 (male-specific 2), MSL3 (male-specific 3), MLE (maleless), MOF (males 

absent on the first) and the non-coding RNAs roX1 (RNA on the X 1) and roX2 (RNA on 

the X 2) [31]. This complex binds and transcriptionally hyperactivates the single male X 

chromosome by two-fold [15,16]. The targeting of the MSL complex to the X 

chromosome starts with MSL1, a scaffolding protein, and MSL2, a RING finger protein, 

which bind to GA rich high-affinity sites known as chromatin entry sites (CES) [32-36]. 

MSL1 and MSL2 provide the scaffold for direct binding and recruitment of the remaining 

members of the MSL complex. The PEHE and C-terminal domains of the MSL1/MSL2 

scaffold associate with the chromodomain protein MSL3 and histone acetyltransferase 

MOF [37,38]. The RNA helicase MLE associates with the other MSL subunits by binding 

and incorporating the non-coding roX RNAs [39]. Additionally, the two roX loci act as 

chromatin entry sites [40]. Once bound to the CES sites the complex spreads along the 

X chromosome, through the actions of both MOF and MSL3 [33,41].  

 A key MSL member that hyperacetylates the male X chromosome is the MYST 

family histone acetyltransferase MOF [42]. MOF specifically acetylates H4K16, which is 

enriched on the male X [42]. MOF is not only required to acetylate histone 4 lysine 16, 

its activity is also required for the interaction and recruitment of MSL1 and MSL3 [38]. In 

Drosophila, immunofluorescence and genome-wide mapping has shown that the 

distribution of H4K16ac is similar to the binding patterns of the MSL, associating 

preferentially with the X chromosome in males [43,44]. The binding profiles of H4K16ac 
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and MSL are unique, unlike many other factors that bind primarily at promoters to 

regulate gene expression; H4K16ac and MSL are enriched over active genes on the 

male X chromosome and accumulate towards the 3’ end of coding regions [44-47]. 

These genes are in a transcriptionally active state and blocking transcription can 

severely reduce MSL binding to its target genes, suggesting that transcription triggers 

MSL activity on the X chromosome [48]. In addition to 3’ end binding, MOF is detected 

at many promoters on the X, whereas on autosomes and in females MOF binds 

primarily at promoters and is depleted at the 3’ end. A similar but broader binding 

pattern is observed with H4K16ac [46]. Therefore, in addition to its dosage 

compensation activity, MOF is thought to act as a genome-wide regulator of gene 

expression, while over members of the MSL complex only function in dosage 

compensation activity. 

The fly MSL complex affects the three-dimensional structure of the male X 

chromosome. Biophysical studies support the idea that the acetylation of H4K16 

loosens the nucleosome interactions, which leads to a more open nucleosome fiber, 

allowing for more accessible DNA [49,50]. Additionally the MSL complex has been 

shown to reduce the levels of negative supercoiling [51]. Both these activities cause 

chromatin decondensation on the male X chromosome, and facilitate transcription.  

X chromosome hyperactivation and inactivation in mammals 

 In mammals, dosage compensation is thought to occur in two steps. It has been 

proposed that one mechanism upregulates expression 2-fold on the X chromosomes of 

both sexes to compensate for autosomal expression [14], and another mechanism 
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equalizes X-linked gene expression between the sexes by silencing one X in 

mammalian females [52]. Although evidence for X upregulation in mammals is relatively 

recent, the mechanism is well supported by microarray analysis and expression 

analysis of individual genes [17,18,20,22,53,54]. Microarray analysis in mammalian 

tissues shows that in both sexes X-linked gene expression is not at half the average 

autosomal expression, but rather expressed at approximately the same levels as 

autosomal genes [20,54]. Additionally, when considering the effects of the skewed gene 

content and regulation of the X chromosome, by excluding silent genes on the X 

chromosome, RNA-seq data supports the upregulation of expressed genes in mammals 

[18]. X upregulation is also evident when examining allele-specific ChIP-seq for RNA 

polymerase II (Pol II) and active chromatin marks along with RNA-seq data. There is 

enrichment of the active chromatin marks on the X chromosome and the relationship 

between active chromatin states and transcription is non-linear, implying that small 

changes in chromatin states can produce large changes in transcription or vise versa. 

This relationship is not X-specific suggesting that the chromatin processes required for 

X upregulation are used genome wide [22]. Similar to fly X upregulation, recent data has 

indicated that MOF-mediated H4K16ac may enhance transcription initiation in 

mammalian X upregulation. The depletion of MOF or MSL in mouse ES cells causes a 

decrease in expression of a group of X-linked genes and induces the long non-coding 

RNA Xist (X inactivation specific transcript). However instead of being distributed 

predominantly at the 3’ end of X-linked genes, MOF and H4K16ac are enriched at the 5’ 
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end [17]. This data supports a conserved role for the MSL complex to upregulate X-

linked gene expression.  

 To prevent X hyperactivation in mammalian females and to balance transcription 

from the single X in males, one of the two X chromosome is inactivated [52]. The 

process of X chromosome inactivation (XCI) is more fully understood than the X 

upregulation mechanism. Similar to fly dosage compensation, X inactivation involves the 

initiation and spreading of inactivation along one X chromosome. X inactivation is 

initiated at a single site, the X inactivation center (XIC) [55]. X inactivation is achieved by 

the long non-coding RNA Xist (X inactivation specific transcript), which is expressed 

from the XIC [56,57]. In mice, the non-coding RNA Tsix, also located within the XIC, 

overlaps with Xist but is transcribed in the antisense direction. Tsix directly competes 

with Xist to repress Xist accumulation on the active X (Xa) [58]. After differentiation, Xist 

RNA is expressed from both X chromosomes but accumulates more on one X. 

Eventually Xist is expressed only from one X known as the inactive X chromosome (Xi), 

and coats this chromosome in cis [57,59,60]. This spreading of the X is followed by the 

exclusion of RNA Pol II and the recruitment of the Polycomb Repressor Complex 2 

(PRC2) and PRC1 and mutations in PRC2 causes the derepression of X-linked genes 

[61-63]. PRC2 activity results in an accumulation H3K27me3 on the Xi, while PRC1 

monoubiquitylates H2A on the Xi [64,65]. In addition to H3K27me3 and H2AUb1, the Xi 

possesses high levels of H4K20me1 and other repressive chromatin marks, while 

lacking acetylated forms of histone H4 [66,67]. Later on, the histone variant marcoH2A 
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is enriched [68] and DNA methylation is distributed on promoters of X-linked genes for 

long-term maintenance of the silent state (Figure 1.3) [69-71]. 

 The heterochromatin marks on the Xi are thought to alter chromatin structure 

thereby impeding transcription. Fluorescence in situ hybridization (FISH) studies have 

revealed that silenced loci colocalize with H3K27me3 and are found within an internal, 

densely packed region of the Xi, lacking transcription factors, whereas genes that 

escape inactivation are found on the periphery of the Xi [61]. Studies have also shown 

that the Xa and Xi chromosomes have distinct shape and surface structure, with the Xi 

having a larger surface area to volume ratio [72,73]. Xist coating is not defined by 

specific sequences; instead by its proximity to the Xist transcription locus, suggesting 

that Xist spreads to new sites through its ability to modify the three-dimensional 

conformation of the X chromosome [74]. Lastly, in interphase the Xi is usually found 

close to the nuclear periphery, which suggests the X inactivation results in the formation 

of a repressive nuclear compartment which may contribute to stable gene silencing [61].  

Up and downregulation of C. elegans X chromosomes 

As in mammals, dosage compensation in C. elegans is believed to involve two 

mechanisms, an upregulation and a downregulation step [18,19,27]. In contrast to 

mammals, worms do not inactivate one X in hermaphrodites but instead downregulate 

both X chromosomes by two-fold [27]. The mechanism of X upregulation is currently 

unknown, but recently experimental evidence has emerged to support this hypothesis. 

Gene expression analysis has shown that the average gene expression level from a 

single male X is comparable to the average autosomal gene expression levels [18,19]. 
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However, a recent study on different Caenorhabditis species found evidence both for 

and against the X upregulation hypothesis. When excluding genes repressed by X 

chromosome germline silencing, a process unrelated to dosage compensation, X and 

autosomal gene expression levels were equivalent in both males and 

females/hermaphrodites. However, when analyzing one-to-one orthologs located on the 

X and the autosome of the different species, the autosomal ortholog was more highly 

expressed compared to the X ortholog, arguing against X upregulation [75]. Global run 

on analysis (GRO-seq) of active transcription in wild type C. elegans hermaphrodites 

has also provided supporting evidence for X upregulation. In wild type hermaphrodite 

embryos, the average X-linked genes have engaged RNA polymerase II levels 

comparable to autosomal genes, implying that hermaphrodites are subjected to both 

upregulation and downregulation. In hermaphrodites lacking the downregulation 

mechanism, the X chromosomes have higher levels of engaged RNA Pol II compared to 

autosomes, suggesting that in the absence of X chromosome downregulation, the X 

chromosomes are indeed highly expressed [76]. A recent study proposed that the single 

male X chromosome interacts with nuclear pore proteins to achieve upregulation, 

however gene expression analysis was not performed [77]. Overall, evidence suggests 

that in the absence of the DCC on average, X-linked genes in C. elegans are expressed 

at a higher level than autosomal genes. In Chapter 4, I will provide further evidence and 

a possible mechanism for X upregulation in C. elegans.  

 The mechanism of X chromosome downregulation is better understood. To 

downregulate transcription by two, a complex of proteins, known as the dosage 
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compensation complex (DCC), binds along both hermaphrodite X chromosomes (Figure 

1.4A) [27]. The DCC proteins were first discovered in genetic screens searching for sex-

specific mutations [78-84], while additional proteins were found by biochemical 

interactions with the known DCC proteins [85,86]. The DCC contains two sub 

complexes, a five-subunit condensin complex, condensin IDC, and an additional 

subcomplex containing at least another five associated proteins, made primarily of sex 

determination and dosage compensation (SDC) genes (Figure 1.4B) [26]. Condensin 

complexes function in mitosis and meiosis to segregate and compact chromosome [87]. 

Although similar to canonical condensins, condensin IDC differs both in chromosome-

specificity and cell cycle specificity [85,88]. Due to the close homology of condensin IDC 

and the canonical condensins it has been hypothesized that DCC activity results in 

interphase X chromosome compaction. My work in Chapter 2 provides the first 

experimental evidence supporting this long standing hypothesis, that condensin IDC is 

compacting X chromosomes and performs dosage compensation through functions 

shared wih the mitotic and meiotic condensins.  

 Similar to flies and mammals, the loading and spreading of the DCC is thought to 

occur by a two-step process. The additional subcomplex, specifically SDC-2, DPY-30, 

and SDC-3, is responsible for DCC binding specifically to the X chromosomes [89-91]. 

All DCC proteins are maternally loaded into the oocyte, except for SDC-2, which is 

expressed only in the hermaphrodite zygote [90,92,93]. SDC-2 is the first DCC protein 

to be expressed and bind the X; this initiates the assembly of all other DCC proteins, 

around the 30-cell stage [90]. In addition to SDC-2, SDC-3 and DPY-30 are required for 
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normal DCC binding on X [94,95]. Much like MSL binding to chromatin entry sites, the 

C. elegans DCC binds to primary binding sites, termed recruitment element on X (rex) 

sites which are partially defined by a 12 bp DNA sequence motif known as motif 

enriched on X (MEX). Then the DCC spreads in cis across the X chromosome to sites 

unable to recruit the DCC outside their native chromosome state; these sites are known 

as dependent on X (dox) sites (Figure 1.4C) [91,96]. However, not all rex sites contain 

the MEX motif and there are occurrences of the MEX motif on the X chromosome that 

are not bound by the DCC [96,97]. Thus, rex sites alone do not fully explain DCC 

targeting, and more recent studies have shown that changes in chromatin also 

contribute to DCC binding. It has been found that in order to restrict DCC binding to the 

X chromosome the histone variant HTZ-1 (H2A.Z) is required. In htz-1 mutants, the 

DCC no longer localizes to only the X and spreads to autosomes [98]. In addition the 

sumoylation of SDC-3, and DPY-27 and DPY-28 (condensin IDC subunits) are required 

for the stable interactions between the X targeting proteins and other DCC proteins and 

therefore overall DCC binding [99]. In Chapter 5, I discuss the respective contribution 

histone acetyltransferases have on DCC recruitment to the X chromosome.  

 How the DCC downregulates gene expression is not fully understood. However 

DCC mediated changes in chromatin structure can provide some insight. The dosage 

compensated X chromosome is enriched for H4K20me1 [100,101] and is depleted for 

H4K16ac compared to autosomes [101]. In addition to requiring the DCC, the 

enrichment of H4K20me1 requires the activities of the histone methyltransferases SET-

1 and SET-4 [100,101], while the depletion of H4K16ac requires the histone 
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deacetylase SIR-2.1 as well as SET-1 and SET-4 [101]. This indicates that H4K20me1 

levels influence H4K16ac levels in the context of dosage compensation. These results 

suggest that similar to flies and mammals, changes in chromatin structure play a large 

role in C. elegans dosage compensation.  

Condensin-mediated chromosome organization and gene regulation 

It has been long hypothesized that DCC activity results in interphase X 

chromosome compaction. My work is consistent with this long standing hypothesis 

suggesting that dosage compensated X chromosomes maintain some characteristics 

associated with condensed mitotic chromosomes. To provide a foundation for 

understanding how condensins function, I will focus on our current understanding of 

condensins’ biological functions and molecular mechanisms that enable them to achieve 

both mitotic chromosome compaction which leads to gene repression. 

Condensin complexes 

Condensin complexes are highly conserved five subunit complexes essential for 

chromosome compaction and segregation in mitosis and meiosis [87]. While yeast has 

one complex, higher eukaryotes have two, condensins I and II. They consist of a pair of 

SMC2 and SMC4 subunits belonging to the SMC (structural maintenance of 

chromosomes) family of chromosomal ATPases and three unique CAP (chromosome-

associated polypeptide) proteins. Condensin I contains CAP-D2, CAP-G, and CAP-H, 

while condensin II contains CAP-D3, CAP-G2, and CAP-H2 [102-104]. Uniquely, C. 

elegans has three condensin complexes, condensins I, II and an additional complex, 

condensin IDC, which contributes exclusively to dosage compensation 
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[85,86,93,105,106] (Figure 1.5). Interestingly, condensin IDC differs from condensin I 

complex by only one subunit: DPY-27 replaces SMC-4 [85,88]. Unlike condensins I and 

II, which compact and segregate all mitotic and meiotic chromosomes, condensin IDC is 

X-specific resulting in gene repression in hermaphrodites. Due to the similarity of 

condensin I and IDC, similar mechanisms have long been hypothesized to mediate 

chromosome compaction and dosage compensation [105]. 

Mitotic and meiotic defects in condensin mutants or knockdowns 

 In higher eukaryotes condensins I and II have different spatial and temporal 

localization patterns. Condensin I is cytoplasmic in interphase and accesses 

chromosomes only after nuclear envelope breakdown (NEBD) in prometaphase, while 

condensin II is predominantly nuclear and binds chromosomes as soon as 

condensation begins in prophase [103,107-110]. This suggests that chromosome 

condensation may occur in two-steps, first with condensin II in prophase and then with 

condensin I after NEBD. An exception is mouse embryonic stem cells, where condensin 

I is nuclear during interphase [111]. Furthermore, the global and regional localization of 

condensins I and II on mitotic chromosomes are different. In monocentric organisms, 

condensins I and II have non-overlapping distributions within the axis of each sister-

chromatid arm, with condensin II enriched at the centromeres [102-104]. Similar 

differences were also found in C. elegans, a holocentric organism, in which microtubule 

attachment sites are scattered throughout the entire length of chromosomes. In C. 

elegans, condensin I associates with mitotic chromosomes in a diffuse discontinuous 

pattern, while condensin II is enriched at centromeres [85,107]. Differences in spatial 
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and temporal dynamics of condensins I and II are also present during meiosis 

([85,107,112] Recent studies explored the genome-wide distribution of condensin 

complexes at high resolution. These studies have uncovered both unique and similar 

binding sites of condensins I and II [113-115].  

 Although the two mitotic condensins are structurally similar, this difference in 

localization suggests that they may play distinct roles in chromosome organization. 

Consistent with this idea, the depletion of condensin I or II alone results in distinct 

chromosomal defects, while the depletion of both condensins leads to more severe 

defects [102-104]. Condensin I facilitates lateral compaction of mitotic chromosomes, 

whereas condensin II primarily contributes to axial compaction [102,104,110,116]. The 

roles the two condensins play in mitosis varies among different eukaryotic species. For 

example, in Xenopus laevis, S. pombe and S. cerevisiae, condensin is required for 

mitotic chromosome condensation and mechanical stability [108,109,117-119]. 

Condensins also play critical roles in meiotic chromosome compaction and segregation 

[112,120]. During C. elegans meiosis, depletion of condensin I or II leads to an 

expansion of chromosome axis [88]. A study using Xenopus laevis egg extracts showed 

that a critical determinant of chromatid shape is the relative ratio of condensins I and II 

[110]. In other organisms, such as mammals and worms, condensin II plays a primary 

role in prophase condensation [85,102,121]. Interestingly, when both condensins are 

depleted in Drosophila, worms, mammals, and chicken DT40 cells, the primary defect 

appears to be anaphase chromatin bridging, rather than chromosome condensation 

[87]. This suggests that other factors may contribute to mitotic chromosome 
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condensation in addition to condensin. Because condensin is depleted throughout the 

cell cycle in these experiments, is it is difficult to differentiate between mitotic and 

interphase functions of condensins. The effects of the activities of condensin in mitosis 

may persist in interphase and vice versa. 

Interphase defects in condensin mutants or knockdowns 

Emerging evidence suggests that condensin complexes also contribute to a 

variety of interphase functions. It is believed that condensin II, rather than condensin I, 

plays a primary role in interphase, since condensin II is nuclear throughout the cell 

cycle, while condensin I is cytoplasmic in interphase [102,103,107,108,110]. In 

Drosophila ovarian nurse cells, condensin II disassembles polytene chromosomes into 

unpaired homologous chromosomes. This unpairing activity leads to interphase 

chromosome compaction [122-124]. In Drosophila cell lines, condensin-mediated 

interphase condensation is normally limited by the SCFSlimb ubiquitin ligase. The 

condensin II subunit CAP-H2 is a Slimb target for ubiquitin-mediated degradation. 

Degradation of CAP-H2 inactivates condensin II, thereby preventing interphase 

chromatin reorganization. Inhibition of SCFSlimb leads to CAP-H2 stabilization, resulting 

in chromosome unpairing and nuclear structural abnormalities [125]. This suggests that 

in interphase, condensin II activity is suppressed in order to prevent chromosome 

condensation and changes in nuclear organization. In addition, condensin II also 

regulates chromosome territory formation in multiple cell types. This conclusion is based 

on the finding that CAP-H2 promotes axial compaction and proper compartmentalization 

of the interphase nucleus into chromosome territories in both nurse cells and salivary 
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glands [126]. These findings suggest that the interphase function of condensin II is 

similar to its role in axial compaction of mitotic chromosomes.  

Condensin subunits also play a role in regulation of cell-type specific gene 

expression. In mice, chromosome compaction by condensin II is required for T-cell 

development and maintenance of the quiescent state. Mutations in the condensin II 

subunit kleisin-β (CAP-H2) lead to open chromatin configuration and upregulation of 

normally silenced genes. After T-cell activation, chromatin decondenses and 

transcription is upregulated [127]. Similarly, murine CAP-G2 represses transcription 

during erythroid cell differentiation. During erythroid cell maturation nuclei gradually 

condense, mediated by condensin [128]. Condensin is also required for higher-order 

chromatin compaction and viability in ES cells. [111].  

Yeast condensin has also been shown to play a role in interphase chromatin 

organization and RNA polymerase III-transcribed gene clustering. In budding and fission 

yeast, the three-dimensional organization of the genome is facilitated in part by 

condensin-mediated localization of RNA-polymerase III genes within the nucleus [129]. 

In budding yeast, tRNA genes are clustered at the nucleolus in a condensin-dependent 

manner. Mutations in yeast condensin subunits cause tRNA gene positioning defects 

and partially inhibit tRNA gene-mediated silencing [130], illustrating another connection 

between condensin-mediated genome organization and gene expression. 

In the above examples, condensin either affected the entire genome, or a subset 

of genes scattered on different chromosomes. By contrast, my work has showed that in 

C. elegans, condensin IDC causes chromosome-specific changes. Consistent with a role 
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in chromosome condensation, C. elegans condensin IDC mediates compaction of 

dosage compensated X chromosomes in interphase. Condensin IDC-bound X 

chromosomes are more compact than expected by DNA content, whereas mutations or 

depletions of condensin IDC result in decompaction of X chromosome territories (These 

data will be discussed thoroughly in Chapter 2 [131]). These results are consistent with 

the model that reduction of X-linked gene expression occurs as a result of condensin 

IDC-mediated changes in chromatin structure. However whether this condensation is a 

cause or consequence of transcriptional repression is unknown.  

Condensin and chromatin mediated chromosome compaction 

 In addition to condensin-mediated condensation, histone modifications also 

influence chromatin compaction during mitosis and the structure of C. elegans dosage 

compensated X chromosomes. The similarity of chromatin modifications between 

mitotic chromosome and dosage compensated X chromosomes of C. elegans is 

consistent with X chromosome repression being mediated by mechanisms similar to 

mitotic chromosome condensation. On both mitotic chromosomes and interphase 

dosage compensated X chromosomes monomethylation of H4K20 is increased 

whereas acetylation of H4K16 is decreased (Figure 1.6) [100,101,132-134]. During cell 

cycle progression the levels of both the H4K20 methyltransferase, PR-SET-7, and 

H4K20me1 increase in G2, remain high in mitosis, and decrease in G1 [132,133]. 

Additionally, the depletion of PR-SET-7 leads to cell cycle defects, and mitotic and 

interphase chromosome decondensation [132], illustrating the importance of H4K20me1 

in mitosis and chromosome compaction. By contrast, H4K16ac levels increase during S 
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phase and decrease during mitosis [133,134]. This data is consistent with findings that 

H4K20me1 antagonizes H4K16ac [89]. In yeast, H4K16ac deacetylation in mitosis is 

achieved by Hst2 (Sir2 homolog), which is recruited by histone H3 phosphorylated on 

serine 10 [134]. Deacetylation of H4K16ac leads to stronger interactions between H2A 

and H4 on neighboring nucleosomes, leading higher degree of condensation [134,135]. 

In mitosis, this cascade of histone modifications is proposed to drive chromatin 

hypercondensation, independently from condensin [134]. However it has been shown 

that mitotic condensin II subunits CAP-D3 and CAP-G2 are capable of binding 

H4K20me1, suggesting H4K20me1 may play a role in condensin II loading [136]. 

 C. elegans interphase dosage compensated X chromosomes show similar 

changes in histone modifications: H4K20me1 is increased, whereas H4K16ac is 

decreased on X. The enrichment of H4K20me1 is regulated not only by the DCC but 

also the H4K20 monomethylase, SET-1 (PR-SET7 homolog), and the H4K20 di- and 

trimethylase, SET-4 (SUV4-20 homolog) [100,101]. The DCC also regulates SIR-2.1 

(Sir2 homolog), which mediates the depletion of H4K16ac on X chromosomes [101]. My 

work shows that this cascade of histone modifications drives X chromatin condensation 

in a DCC- (therefore condensin-) dependent manner (This will be discussed thoroughly 

in Chapter 2 [131]). By contrast, in mitosis, these histone modifications are proposed to 

act independently of condensin [134]. These observations suggest that interphase 

dosage compensated X chromosomes maintain some characteristics associated with 

condensed mitotic chromosome. 
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Molecular mechanisms of condensin activity 

  The mechanisms by which condensin generates and maintains chromosome 

condensation in interphase and mitosis are highly debated and poorly understood. The 

biochemical mechanisms discussed below have been proposed to contribute to 

chromosome condensation. However, whether these activities contribute to condensin’s 

interphase or mitotic functions, or both, is unknown. 

The two SMC proteins of condensin are able to hydrolyze ATP and this activity is 

believed to be essential for regulating higher-order chromatin structure [87,137]. The 

SMC proteins also have the ability to reanneal complementary ssDNAs into dsDNAs 

[138], perhaps as a preparatory step for the formation of mitotic chromosomes (Figure 

1.7). The best-characterized mechanism of mitotic condensin, detected in many 

eukaryotic species is the ability to introduce ATP-dependent positive supercoils into 

DNA in vitro [121,137,139-141]. Using closed circular DNA and in the presence of 

topoisomerase I, mitotic condensin I is able to supercoil the DNA with its DNA-

stimulated ATPase activity [137]. This activity requires the entire five-unit complex. The 

SMC proteins alone do not have ATPase activity and cannot bind chromatin in vitro 

[140]. Positive supercoiling is proposed to facilitate topoisomerase II-mediated 

decatenation of the sister chromatids and lead to the formation of chiral loops. Higher 

order assemblies by condensin-condensin interactions can then compact the chromatin 

fiber (Figure 1.7) [142,143].  

Phosphorylation of condensin’s CAP subunits by the kinase CDK1 (cyclin-

dependent kinase 1) is required to supercoil DNA and initiate mitotic chromosome 
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condensation in vitro [144,145]. By contrast, the supercoiling activity is not detected 

when the interphase form of condensin is incubated with circular DNA in the presence of 

ATP and topoisomerase I [144]. In fact, phosphorylation of condensin I at different sites, 

by a different kinase, CK2 (casein kinase 2), suppresses supercoiling activity during 

interphase [145]. This suggests that condensin I-mediated DNA supercoiling may not be 

involved in chromosome compaction during interphase. However it is not known 

whether condensin II-mediated supercoiling or additional molecular mechanisms drive 

interphase chromatin organization. 

 Alternatively, or in addition to supercoiling, condensin is proposed to entrap the 

chromatin fibers in a ring-like structure [146]. This hypothesis is based on condensin’s 

resemblance to cohesin, both containing a pair of SMC proteins, forming a V-shape, 

and additional non-SMC proteins, proposed to close the ring (Figure 1.7). Cohesin is 

believed to hold pairs of the sister chromatids together by entrapping DNA from each 

chromatid within its ring-like structure [147]. A recent study on yeast minichromosomes 

provided evidence that condensin forms similar topological links by encircling DNA. 

Linearization of the minichromosome DNA or opening the condensin ring eliminated the 

association between the DNA and condensin [146]. While cohesion is believed to hold 

sister chromatids together, condensin is proposed to entrap different sections of the 

same DNA molecule, to facilitate condensation.  

Condensin’s ability to shape chromosomes is further illustrated by its localization 

to topologically associating domain (TAD) boundaries in interphase chromosomes. A 

TAD is a contiguous chromosomal region with high frequency of interactions between 
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sequences within the TAD, but few interactions with sequences outside the TAD. In 

interphase Drosophila, mouse and human ES cells, condensin II has been found to 

localize at high occupancy architectural protein binding sites (APBSs) located at the 

borders of TADs [115]. Localization of condensin II at TAD boundaries, together with its 

ability to entrap DNA, suggests a possible mechanisms for regulating interphase 

chromatin organization. Recent evidence in C. elegans has shown that the dosage 

compensated X chromosomes have many TAD boundaries that coincide with condensin 

IDC high affinity binding sites. These TADS are lost in condensin IDC mutants, suggesting 

that condensin IDC packages the X chromosomes into TADs and regulates interphase 

chromatin organization [148]. Unlike interphase chromatin, which is partitioned into 

small sub-megabase TADs and large multi-megabase compartments [149], mitotic 

chromosomes do not exhibit chromosome compartments and TADs [150]. Instead it is 

believed that chromatin is linearly compacted into consecutive loops, potentially by SMC 

complexes, and then homogeneous axial compression leads to the formation of dense 

mitotic chromosomes [150]. Thus, there may be unique and overlapping mechanisms 

involved in condensin-mediated chromosome compaction in interphase and mitosis. 

How does condensin regulate gene expression? 

Which of these biochemical activities, if any, contribute to C. elegans dosage 

compensation is unknown. Mutations in the ATPase domains of DPY-27 and MIX-1 lead 

to dosage compensation defects [86,105], suggesting that the ATPase activity is 

required for dosage compensation. Whether condensin IDC is able to reanneal single 

stranded DNA, supercoil DNA, or entrap chromatin fibers has not been investigated. It is 
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known that the condensin IDC can reshape the X chromosome by forming TAD 

boundaries, but whether and how TAD formation contributes to gene expression 

regulation, is not known. In fact no correlation is found between TAD structure and gene 

expression. Genes at TAD boundaries are not expressed at different levels than genes 

within TADs [148]. Additionally, condensin IDC binding to a gene is not necessary, nor 

sufficient, for transcriptional regulation. Although condensin IDC binding correlates with 

RNA Pol II occupancy it does not predict dosage compensation status [76,96]. These 

results support the model that the DCC is not regulating expression on a gene-by-gene 

basis, but acting chromosome-wide to repress gene expression. Future studies of 

condensin’s biochemical activities will reveal how condensin is able to achieve both 

mitotic chromosome compaction and gene repression. 

Chromatin structure and gene expression 

While condensin’s effect on gene expression is not well understood, we know 

much more about how chromatin structure regulates gene expression. For a better 

understanding of how chromatin structure can regulate gene expression, I will first 

describe the key component of chromatin, the nucleosome, and how the nucleosome 

can be modified to alter chromatin structure. I will then focus my attention on one 

specific modification, histone acetylation, which is an essential part of gene regulation. 

Finally I will describe the unique roles of H4K16 acetylation and the MYST family HATs 

that acetylate this histone mark. 
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The nucleosome and histone modifications 

Regulation of gene expression is essential to ensure normal cellular and 

biological functions. In eukaryotes, the modifications of chromatin structure provide 

unique transcription regulatory mechanisms. The compaction and organization of 

genomic DNA into chromatin not only packages DNA into higher-order structures, but 

also regulates key processes such as transcription, replication and DNA repair [151]. 

The nucleosome is composed of 147 bp of DNA wrapped around a protein core of basic 

histone proteins. The core is an octamer that is composed of two of each histone H2A, 

H2B, H3, and H4 [152]. The core histones H3, H2A and H2B can be replaced by histone 

variants that may differ from the core histones either by the variation of a few amino 

acids or by an additional protein domain [153]. Additionally, the eight histones have 

highly basic N-and/or C-terminal domains that protrude from the nucleosome core and 

can be posttranscriptionally modified by acetylation, methylation, phosphorylation, and 

ubiquitination [154,155]. These modifications are known to regulate chromatin as well as 

recruit proteins and complexes with specific enzymatic activities to rearrange 

nucleosomes.  

 The structure of the nucleosome affects higher-order folding of the chromatin 

fiber. Chromatin can form two structural states, an active state (euchromatin), in which 

the genomic regions are decondensed allowing factors to bind to DNA, and a repressive 

state (heterochromatin), in which the chromatin is densely packed [156]. High-resolution 

structure analysis of the nucleosome have shown that histone H4 tails are highly basic 

and are thought to bind to the acidic patch in the H2A-H2B dimer of the neighboring 
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nucleosome. The model suggests that continuous acetylation of H4 lysines, K5, K8, 

K12, and K16, would reduce the affinity of the bond formed by the H4 tail to the 

neighboring nucleosome [157]. Therefore modifying the H4 tail may have greater affects 

on the interactions between nucleosomes rather than the interactions with other 

histones with in the same nucleosome. 

Role of histone acetylation 

 Histone acetylation is an essential part of gene regulation. It is the process 

through which an acetyl group from acetyl-coenzyme A is transferred to the ε-amino 

group of a lysine residue within the N-terminal tail protruding from the histone core 

[158]. This reaction is catalyzed by histone acetyltransferases (HATs). HATs 

categorized into three major families, the GNAT family, the MYST family, and the 

CBP/p300 family [159]. The reverse reaction in which an acetyl group is removed from a 

lysine residue is histone deacetylation. Histone deacetylation is achieved by histone 

deacetylases (HDACs), which fall into four classes (classes I, II, III, and IV) [160]. 

Histone acetylation has been closely correlated with increases in transcriptional 

activation, and changes in transcriptional activity [161,162]. Histones modified by acetyl 

groups add negative charges to the positive charges of lysine residues, thus, disrupting 

the electrostatic interaction existing between the positively charged histones and the 

negatively charged DNA [163,164]. As a consequence, histone acetylation contributes 

to the transformation from a densely packed heterochromatin state into a relaxed 

euchromatin state, allowing transcriptional machinery to come into contact with the 

DNA. In addition to gene transcription, histone acetylation provides a platform for protein 
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binding. Many HATs and chromatin-remodeling complexes have bromodomains, which 

allow them to interact with and bind to the acetylated histone tails [165]. Histone H4 

acetylation, specifically H4K16ac, is important for transcription and the dosage 

compensation strategies in many species, therefore I will be describing the unique roles 

of H4K16 acetylation and the MYST family HATs that are known to acetylate this 

histone mark. 

H4K16 acetylation 

 The H4 histone tail has been identified as an important factor for chromatin 

formation and stability. An in vitro chromatin formation study demonstrated that the 

histone H4 tail, specifically amino acids 14-19 is essential for chromatin-fiber 

compaction [166]. Histone H4 can be acetylated on lysines 5,8,12, and 16. H4K16ac is 

the only known modification in the 14-19 amino acid region, suggesting that it affects the 

higher order structure of chromatin. H4K16ac is a highly abundant modification in 

several organisms [167]. In yeast, over 80% of histone H4 molecules have an acetyl 

group on K16 [168]. Site-specific antibody studies have shown that this mark is usually 

present in the monoacetylated form [169,170]. In humans, mice, and yeast the order of 

the H4 tail acetylation is the same, from the N-terminus to the C-terminus, starting with 

the acetylation of K16, then K12, K8 and finally K5 [171,172]. This illustrates a 

conservation of the H4 acetylation mechanism.  

A study using sedimentation assays to evaluate the degree of nucleosome array 

folding showed that H4K16ac is in fact the central switch for controlling higher order 

chromatin structure. This in vitro study showed that the acetylation of H4K16 alone 
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inhibited the formation of higher order 30-nm chromatin fibers and weakened the 

interactions between chromatin and non-histone proteins [135]. Nucleosome stacking is 

mediated by electrostatic interactions that are regulated by ion-ion associations and 

histone-tail bridging [173]. As stated earlier histone-tail bridging is formed when the 

highly charged region of the H4 tail, which includes K16, interacts with the acidic patch 

on the H2A-H2B dimer of an adjacent nucleosome [157,174]. H4K16ac alters these 

interactions thereby disrupting nucleosome array folding and stacking [173]. Substituting 

K16 with glutamine mimics acetylated lysine however does not cause decompaction of 

a nucleosome array, suggesting that K16 alone is critical for decompaction [175]. 

In addition to affecting nucleosome interactions, H4K16ac affects interactions of 

the nucleosome with chromatin associated proteins. Nucleosome and chromatin folding 

can be regulated by ATP dependent remodeling machinery; these remodeling 

complexes alter histone-DNA interactions within the nucleosome by utilizing the energy 

from ATP hydrolysis [176]. The ATPase ISWI is the catalytic core of several of these 

remodeling complexes and facilitates nucleosome sliding in cis along DNA [177]. The N-

terminal tail of histone H4, specifically amino acids 17-19, is critical for ISWI binding and 

nucleosome remodeling by ISWI [178-180]. ISWI is unable to recognize its binding site 

when H4K12 or K16 are acetylated, therefore interfering with ISWI’s function of 

compacting chromatin and sliding nucleosomes along DNA [135,179,180]. 

MYST Family Histone Acetyltransferases 

H4K16ac is regulated by the catalytic activities of a MYST family HAT and a 

class III HDAC (Sir2 family) [181]. My work has identified a MYST family histone 
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acetyltransferase as an important player in X chromosome regulation in C. elegans, as 

described in Chapter 4. HATs have been classified into several families based on their 

structural homologies, the largest family of HATs being the MYST (MOZ, Ybf2/Sas3, 

Sas2, Tip60) family. MYST proteins are defined by their catalytic MYST domain, which 

contains an acetyl-coenzyme A binding domain and a C2HC-type zinc finger [182]. In 

mammals there are five MYST family HATs: MOZ, MORF, HBO1, MOF and Tip60. They 

are divided into three subgroups based on additional shared protein domains, MOZ and 

MORF, MOF and Tip60, and HBOI alone (Figure 1.8) [183,184]. MOZ and MORF are 

closely related, large multidomain proteins. MOZ and MORF have two PHD-type zinc 

fingers, a highly conserved MYST domain, an acidic region, and unique C-terminal ends 

consisting of a serine-rich and a methionine rich domain [183]. Although the binding 

characteristics of the PHD-type zinc fingers of MOZ and MORF have not been studied, 

PHD-type zinc fingers are found in several proteins that regulate chromatin structure 

and bind trimethylated H3K4 [185-187]. MOF and Tip60 are characterized by a 

conserved chromodomain and the MYST domain [183,184,188]. Many proteins involved 

in gene silencing possess a chromodomain. These domains are known to help direct 

the localization of different repressive chromatin complexes to specific histone 

methylation marks [189,190]. HBO1 is in a subgroup alone and does not have closely 

related homologues with the same domain structure. It has a MYST domain, a central 

C2HC zinc finger domain and an amino-terminal serine-rich domain [183]. MYST 

proteins are highly conserved and have a diverse variety of functions affecting several 

cellular processes, such as gene regulation, DNA replication, repair, and recombination, 
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cell division/differentiation and development [183]. I will focus on the unique protein 

complexes and the diverse biological functions of two specific MYST family HATs, MOF 

(Males absent on the first) and Tip60 (HIV Tat interacting protein of 60 kDa). Although 

MOF and Tip60 are closely related MYST histone acetyltransferases, the two proteins 

have different biological functions. 

MOF containing complexes 

In most species the major H4K16 histone acetyltransferase is MOF/KAT8/Sas2 

[31,167,191,192]. MOF resides in multiprotein complexes. In flies, MOF is one of the 

key components of the dosage compensation complex, the male specific lethal (MSL) 

complex [28,29]. As discussed earlier the fly MSL complex is composed of five proteins, 

MSL1, MSL2, MSL3, MLE, and MOF, and two non-coding RNAs, roX1 and roX2 [31]. In 

addition to the MSL complex, MOF is also a component of several other complexes. 

Human MOF interacts with a histone methyltransferase, MLL1, in distinct complex, 

which methylates and acetylates histones [193]. The histone acetyltransferase activity 

of MOF and histone methyltransferase activity of MLL1 are required for transcriptional 

activation in vitro [193]. Other studies identified a number of unique MOF-associated 

proteins different from the subunits in the MSL complex and designated this complex as 

the NSL complex, found in both flies and human cells [194]. Both the MSL and the NSL 

complex can acetylate H4K16, however in addition to H4K16ac, the NSL complex can 

acetylate H4K5 and H4K8 [195]. Biochemical purifications have reveled that most of 

these MOF interacting proteins are conserved between Drosophila and mammals 

[31,193,194]. Lastly, in yeast the MOF homolog, Sas2, is the catalytic subunit of a yeast 
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HAT complex known as the SAS complex. The SAS complex is a small trimeric complex 

composed only Sas2, Sas4 and Sas5. It is required for most of the H4K16ac in vivo and 

exclusively acetylates H4K16ac in vitro [196].  

MOF containing complexes have a diverse range of functions affecting several 

biological processes. In yeast the MOF homolog, Sas2, is the positive regulator of 

H4K16ac and maintains an open chromatin structure [191,192]. In mice, MOF activity 

also regulates H4K16ac, MOF mutants arrest in development at the blastocyst stage 

and lack H4K16ac, while the acetylation of other histone lysine residues are normal 

[197,198]. Mammalian MOF has a similar role to Sas2 and is required for the prevention 

of global chromatin condensation. MOF mutant embryos exhibit abnormal chromatin 

morphology prior to undergoing death by apoptosis [197]. MOF is also required for 

H4K16ac in human cells in vitro [167]. In addition to chromatin structure and 

morphology, MOF plays a role in gene regulation. The hyperacetylation and 

hypoacetylation of H4K16 regulated by Sas2 and Sir2 respectively at the euchromatin/ 

heterochromatin boundary maintains the regions between transcriptionally active and 

silent telomeric chromatin [100,166]. The MOF-NSL complex appears to be a global 

transcriptional regulator, it has been found to bind to a group of active promoters and 

regulate housekeeping genes in Drosophila [199-201]. In the presence of the MSL 

complex proteins MOF has a more specialized role in dosage compensation in flies and 

mammals. MOF functions to hyperacetylate H4K16 on the male X, thereby upregulating 

X-linked gene expression by two fold in male flies [28]. Recent microarray and RNA-seq 

analysis have provided evidence that mammals undergo X upregulation in both sexes to 
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balance X and autosomal expression [18,20,21,54]. Therefore in addition to its global 

functions, MOF-mediated H4K16ac is proposed to contribute to X upregulation in 

mammals [17]. In Chapter 4, I will show roles for H4K16ac in chromosome 

decondensation, gene regulation, and dosage compensation, however the C. elegans 

H4K16ac HAT, MYS-1, appears to be Tip60, rather than MOF (Figure 1.9). 

Tip60 complex 

 Tip60 is a well-characterized MYST HAT and was first isolated in a screen for 

proteins interacting with the HIV tat gene product [202]. Tip60 is homologous to the 

yeast Esa1, the catalytic subunit of the nucleosome acetyltransferase of H4 (NuA4) 

complex [203] and the Piccolo NuA4 (picNuA4) subcomplex [204]. NuA4 is a large HAT 

complex, containing 12 subunits [205,206], while picNuA4 contains three subunits 

(Esa1, Yng2 and Epl1) and is responsible for the HAT activity of NuA4 [204]. NuA4 and 

picNuA4 are responsible for site specific and global acetylation of histone H4 and 

histone H2A, respectively [204]. Esa1 activity mediates site specific (targeted) and 

global (non-targeted) effects on acetylation [207,208]. In vitro and in vivo NuA4 can 

stimulate transcription when targeted to chromatin regions for H4 hyperacetylation by 

transcriptional activators [209]. Esa1 is generally recruited to ribosomal gene promoters 

and the loss of Esa1 function results in gene-specific decreases in transcription 

[207,210]. However it’s global affects on acetylation is not required for transcription, as 

transcription is only modestly affected for a few genes [207,211]. In yeast the NuA4 

complex shares subunits with the SWR1 complex [212]. The SWR1 complex uses ATP 

hydrolysis to replace canonical H2A-H2B with H2A.Z-H2B [213,214] In vivo the 
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acetylation of chromatin by NuA4 simulates SWR1 activity [215]. In higher eukaryotes 

NuA4 and SWR1 act together and is homologous to the TIP60/p400 complex, which 

has both histone aceyltransferase and histone exchange activities. 

Tip60 can acetylate core histones H2A (K5), H4 (K5, K8, K12 and K16) in vitro 

[216-218]. The complex can also acetylate H3, but only on free histones [216]. In 

Drosophila, Tip60 can acetylate modified histone variant, such as phospho-H2Av [219]. 

Tip60 can also acetylate non-histone substrates, including the tumor suppressors 

Retinoblastoma (Rb) and Protein 53 (p53), and the oncogene c-Myc [220]. By 

acetylating these histone and non-histone proteins Tip60 performs a vast variety of 

biological processes. 

Tip60 activity can play a role in transcriptional activation, as well as repress gene 

transcription. Tip60 is a key regulator in cell cycle progression and DNA damage 

response. It is known to acetylate and stabilize the transcription factor and oncogene c-

Myc, which plays a direct role in G1/S progression by regulating genes required for 

growth, DNA replication or apoptosis. Additionally, Tip60 can be recruited to Myc-

dependent promoters by c-Myc to contribute to histone acetylation [221,222]. Protein 53 

(p53) is a transcription regulator that regulates G1/S arrest in response to DNA damage 

in human cells. Tip60 can act as a p53 coactivator and thus is responsible for either cell 

cycle arrest or apoptosis upon p53 activation, as well as p53-driven transcription 

[223,224]. Another way Tip60 regulates cell cycle progression is through E2F 

transcription. E2F proteins can activate or repress transcription. The activating E2F 

factors bind to promoters of their target genes and are required for the hyperacetylation 
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of target chromatin. In human cells ectopically expressed E2F1 recruits the Tip60 

complex to target gene promoters, which leads to the H4 acetylation [225]. Tip60 

mutations and deletions lead to different types of abnormalities in species. Tip60 mutant 

mouse embryos die before implantation, while the depletion of Tip60 in Drosophila leads 

to lethality before the pupa stage [226,227]. In C. elegans the depletion of the Tip60 

homolog, MYS-1, results in premature cell cycle exit and differentiation, as well as 

eventual developmental arrest and lethality [228]. Interestingly in mouse ES cells, Tip60 

is required for pluripotency. The depletion of Tip60 results in the upregulation of genes 

involved in differentiation and embryonic development and the downregulation of cell 

cycle regulators. However more genes are upregulated than downregulated, suggesting 

a role in transcriptional repression [229]. Overall, Tip60 is a protein that plays a role in 

several biological processes, by affecting the functions of different targets using its 

acetyltransferase activity as well as its protein-protein interactions.  
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Figure 1.1 Different dosage compensation strategies. To equalize X-linked expression and 
balance X to autosomal expression between and within the sexes, flies upregulate the single 
male X, while evidence has shown that mammals and worms upregulate the X chromosomes in 
both sexes. In mammals one X is then inactivated in females and in worms both X 
chromosomes are downregulated in hermaphrodites.  
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Figure 1.2 Dosage compensation in Drosophila. The MSL complex binds on distinct 
chromatin entry sites on the male X chromosome. The complex leads to hyperacetylation of the 
surrounding chromatin at H4K16, which is followed by the spreading of the complex along the X 
chromosome at additional sites. This leads to a two-fold enrichment of the male X chromosome. 
This figure is from Akhtar (2003). 
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Figure 1.3 Stepwise model of mammalian X inactivation. Undifferentiated cells possess two 
active X chromosome and when the cells enter differentiation Xist expression triggers XCI. Xist 
RNA spreads along the Xi and recruits PRC1 and PRC2, which establishes H2Aub1 and 
H3K27me3. Genes begin to silence and more changes in histone modifications follow. Lastly, 
DNA methylation of gene promoters on the Xi ensures stable silencing. This figure is from Wutz 
(2011). 
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Figure 1.4 The dosage compensation complex (DCC) localizes to both X chromosomes 
in the hermaphrodite. (A) The DCC (green, IF) localizes to the X chromosomes (red, FISH) in 
hermaphrodite nuclei. (B) The DCC consists of a five subunit condensin complex, as well as at 
least five additional subunits. (C) The DCC is initially required to the X chromosome at a number 
of recruitment sites on the X (rex). After recruitment to the rex sites, the DCC spreads onto the X 
chromosome.  
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Figure 1.5 Three condensin complexes. C. elegans condensin subunits and their human 
homologs. Condensins I and II share the same pair of MIX-1 and SMC-4 subunits and have 
three unique CAP proteins. Condensin I contains DPY-28, CAPG-1, and DPY-26, while 
condensin II contains HCP-6, CAPG-2, and KLE-2. In addition, C. elegans has a condensin I-
like complex (condensin IDC) that functions in dosage compensation. Condensin IDC differs from 
the canonical condensin I by only one subunit: DPY-27 replaces SMC-4. 
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Figure 1.6 Condensin and chromatin mediated chromosome compaction. Similar 
distributions of histone modifications and condensin in condensed mitotic chromosomes and 
interphase dosage compensated X chromosomes. Compaction is accompanied by enrichment 
of H4K20me1 and depletion of H4K16ac in both mitotic chromosome condensation and 
interphase dosage compensated X chromosomes.  
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Figure 1.7 Molecular mechanisms of condensin activity. The proposed mechanisms by 
which condensin generates and maintains chromosome condensation in interphase and mitosis. 
Condensin’s SMC proteins can reanneal complementary ssDNAs into dsDNAs, in preparation 
for subsequent coiling steps. Condensin can also introduce ATP-dependent positive supercoils 
into DNA in vitro. Alternatively, or in addition, condensin is proposed to entrap the chromatin 
fibers in its ring-like structure. 
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Figure 1.8 Schematic diagram comparing MYST family proteins and their protein 
domains. MYST family HATs aligned according to their conserved MYST HAT domain (dark 
blue). Based on their shared protein domains MYST proteins fall into three subfamilies. 
Domains are colored as indicated in the legend of the graph. The MYST proteins have a 
conserved acetyl-coenzyme A binding domain (dark gray) and a C2HC-type zinc finger (yellow). 
MOZ and MORF share two PHD fingers, a conserved N-terminal domain, and conserved C-
terminal serine- and methionine-rich domains. MOF and Tip60 share a chromodomain. HBO1 
contains an N-terminal serine-rich domain and an additional zinc finger domain. This schematic 
is an adaption from figures from Thomas et al., (2007) and Voss et al., (2009).  
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Figure 1.9 Phylogenetic tree of proteins closely related to MYS-1. The C. elegans H4K16ac 
HAT is MYS-1. MYS-1 is most homologous to human Tip60, rather than Drosophila MOF. 
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CHAPTER 2 

The C. elegans dosage compensation complex mediates interphase X 

chromosome compaction 

 

This chapter was published as Lau AC, Nabeshima K, Csankovszki G (2014) in 

Epigenetics & Chromatin as “The C. elegans dosage compensation complex mediates 

interphase X chromosome compaction.” I conducted the experiments and image 

analysis for data shown in all figures. 

 

ABSTRACT 

Dosage compensation is a specialized gene regulatory mechanism which 

equalizes X-linked gene expression between sexes. In Caenorhabditis elegans, dosage 

compensation is achieved by the activity of the dosage compensation complex (DCC). 

The DCC localizes to both X chromosomes in hermaphrodites to downregulate gene 

expression by half. The DCC contains a subcomplex (condensin IDC) similar to the 

evolutionarily conserved condensin complexes which play fundamental roles in 

chromosome dynamics during mitosis and meiosis. Therefore, mechanisms related to 

mitotic chromosome condensation have been long hypothesized to mediate dosage 

compensation. However experimental evidence was lacking.
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Using 3D FISH microscopy to measure the volumes of X and chromosome I 

territories and to measure distances between individual loci, we show that 

hermaphrodite worms deficient in DCC proteins have enlarged interphase X 

chromosomes when compared to wild type. By contrast, chromosome I is unaffected. 

Interestingly, hermaphrodite worms depleted of condensin I or II show no phenotype. 

Therefore X chromosome compaction is specific to condensin IDC. In addition, we show 

that SET-1, SET-4, and SIR-2.1, histone modifiers whose activity is regulated by the 

DCC, need to be present for the compaction of the X chromosome territory. 

These results support the idea that condensin IDC, and the histone modifications 

regulated by the DCC, mediate interphase X chromosome compaction. Our results link 

condensin-mediated chromosome compaction, an activity connected to mitotic 

chromosome condensation, to chromosome-wide repression of gene expression in 

interphase. 

INTRODUCTION 

In many species, such as humans, mice, flies, and worms, sex is determined by 

a chromosome-based method which entails a difference in sex chromosome number 

between heterogametic males (XY or XO) and homogametic females (XX). If left 

uncorrected this difference puts one sex at a disadvantage. Therefore, species have 

evolved a specialized gene regulatory mechanism to correct this imbalance, known as 

dosage compensation. Dosage compensation balances X and autosomal expression 

and equalizes gene expression between the sexes [1]. 
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The molecular mechanisms of dosage compensation varies among species. 

Mammals, flies, and worms achieve dosage compensation using three distinct 

strategies. In the fly, Drosophila melanogaster, the male X is upregulated by two-fold, a 

mechanism that balances gene expression between the X and autosomes and 

equalizes male to female X-linked gene expression [2,3]. In mammals and the 

nematode C. elegans, it is hypothesized that an unknown mechanism upregulates X 

chromosome expression in both sexes [4-8]. Although X upregulation balances X and 

autosomal expression in males it also causes X overexpression in 

females/hermaphrodites. As a result, to prevent hyperexpression of the X 

chromosomes, mammalian XX females inactivate one X [9-11], while XX hermaphrodite 

C. elegans worms downregulate both X chromosomes two-fold [12,13]. Although 

dosage compensation mechanisms vary among species, all lead to the balance 

between X and autosomal expression and equalize gene expression between the 

sexes. 

In C. elegans, dosage compensation is achieved by the dosage compensation 

complex (DCC) which binds to both X chromosomes to downregulate X-linked gene 

expression in hermaphrodites. Condensin IDC, a subcomplex within the DCC, contains 

two SMC (structural maintenance of chromosome) proteins (DPY-27 and MIX-1) and 

three CAP (chromosome-associated polypeptide) proteins (DPY-26, DPY-28, and 

CAPG-1). In addition, the DCC contains five associated proteins (SDC-1, SDC-2, SDC-

3, DPY-30, and DPY-21) [14-21]. Interestingly, condensin IDC differs from the mitotic 

condensin I complex by only one subunit: DPY-27 replaces SMC-4 [15,21]. Condensins 
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are evolutionarily conserved complexes, which promote chromosome compaction, 

organization, and segregation during mitosis and meiosis [22]. Although condensin IDC 

is homologous to condensin, the DCC appears to have no mitotic function, and it 

instead functions in the repression of gene expression. Because condensin complexes 

organize and compact chromosomes in preparation for mitosis, it has been long 

hypothesized that DCC activity also results in changes in X chromosome compaction 

[14]. However the direct experimental evidence supporting this hypothesis is lacking. 

Condensins (I and II) are conserved protein complexes that organize chromatin 

structure and whose functions are best studied in mitosis and meiosis. Although 

structurally similar, the mitotic functions of condensins I and II differ. Condensin I 

laterally compacts mitotic chromosomes, whereas condensin II mediates axial 

compaction and rigidity [23-26]. During C. elegans meiosis, the depletion of condensin I 

or condensin II leads to an expansion of chromosome axial length [21]. In Xenopus 

laevis eggs, S. pombe and S. cerevisiae, condensin is required for mitotic chromosome 

condensation [27-30], while in other organisms, such as mammals and worms, 

condensin II is required for prophase condensation [15,24,31]. However, in many 

systems, including Drosophila, worms, mammals, and chicken DT40 cells, depletion of 

condensins I and II leads primarily to defects in anaphase chromosome segregation, 

such as lagging chromosomes and chromosome bridges, rather than defects in 

chromosome condensation [22]. Overall, in many organisms, mitotic chromosomes still 

compact when condensin is disrupted suggesting that condensin is not solely 

responsible for chromosome condensation. 
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Condensin activities are well studied in mitosis and meiosis, but the interphase 

functions of condensins are less understood. In higher eukaryotes condensin I is 

cytoplasmic in interphase and loads onto chromosomes after nuclear envelope 

breakdown, whereas condensin II is nuclear throughout the cell cycle [24,26,32-34]. 

Therefore, it is condensin II, rather than condensin I, that is thought to play an important 

role in the interphase nucleus in these organisms. In Drosophila, condensin II activity 

disrupts somatic homolog pairing and leads to interphase chromosome compaction [35-

38]. In addition to compaction, condensin II is required for the proper formation of 

chromosome territories [39]. Evidence of condensin II-mediated interphase 

chromosome compaction has also been demonstrated during the development of 

quiescent naïve T-cells [40] and in mouse embryonic stem cells [41]. In both budding 

and fission yeast, condensin-dependent RNA polymerase III-transcribed gene clustering 

at or near the nucleolus contributes to the three-dimensional organization of the genome 

[42,43]. Although there is accumulating evidence demonstrating that condensin II, or the 

single yeast condensin, participates in interphase chromatin organization, whether the 

condensin I-like complex, condensin IDC, organizes the interphase X chromosome in a 

similar manner is unclear. 

Emerging evidence has uncovered that histone tail modifications also influence 

mitotic chromosome condensation. During cell cycle progression the acetylation of 

histone H4 lysine 16 (H4K16ac) increases during S phase and decreases during mitosis 

[44,45]. By contrast, histone H4 lysine 20 monomethylation (H4K20me1) levels are 

higher in mitosis [44,46]. Expression of the H4K20 methyltransferase, PR-SET7, is 
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coincident with the increase of H4K20me1 during mitosis [44,46]. The negative 

correlation between these two modifications during the cell cycle is consistent with 

previous findings that H4K20me1 antagonizes H4K16ac [47]. In yeast, the 

phosphorylation of histone H3 serine 10 recruits the Sir2 homolog Hst2 to promote 

deacetylation of H4K16ac. Together, this cascade of histone modifications was 

proposed to drive chromatin hypercondensation during mitosis, independently from 

condensin [45]. 

Interestingly, similar changes in histone modifications are observed on 

interphase dosage compensated X chromosomes in C. elegans. The DCC regulates 

SET-1 (PR-SET7 homolog) and SET-4 (SUV4-20 homolog), which together mediate the 

enrichment of H4K20me1 on the X chromosomes [48,49]. The DCC also regulates SIR-

2.1 (Sir2 homolog), which mediates the depletion of H4K16ac on the X chromosomes 

[49]. These observations suggest that interphase dosage compensated X chromosomes 

possess some characteristics associated with condensed mitotic chromosome. 

In this study, we present experimental evidence linking condensin-mediated 

chromosome compaction to chromosome-wide repression of gene expression during 

dosage compensation. We show that hermaphrodite worms deficient in DCC function, 

as well as male worms, exhibit enlarged X chromosomes when compared to wild type 

hermaphrodites. This result supports the idea that condensin IDC mediates interphase X 

chromosome compaction. In addition, we show that DCC-regulated histone modifiers 

contribute to X chromosome compaction. Together these results give us more insight 
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into the functional link between mitotic chromosome condensation and epigenetic 

control of gene expression. 

RESULTS 

Dosage compensation mediates changes in X chromosome volumes 

To look for changes in chromosome packaging in dosage compensation we 

utilized chromosome-paint 3D fluorescent in situ hybridization (FISH) to measure the 

volumes of chromosome X and I territories in wild type and DCC-depleted 

hermaphrodite and male nuclei. These chromosome-paints were generated from yeast 

artificial chromosome (YAC) DNA and cover approximately 90% of the X chromosome 

and 86% of chromosome I [50]. We analyzed intestinal nuclei, which are 32-ploid, 

making visualization and quantification easier [51]. Chromosome territories were defined 

by selecting intensity threshold based masks of both the chromosome paint signals and 

the whole nucleus. These defined mask selections allowed us to calculate the volume of 

the specific chromosome and the whole nucleus. We then quantified the volume of 

chromosome territories by calculating the percentage of nuclear volume occupied by the 

X or chromosome I paint in a single nucleus (see Materials and Methods) (Figure 2.1A). 

Normalization to total nuclear volumes was necessary to minimize the inherent sample-

to-sample variation due to the harsh conditions of FISH. Based on DNA content and 

assuming equal packaging of all chromosomes, the expected percentages for the X and 

chromosome I are shown on Figure 2.1B [52]. If DCC activity results in chromosome 

compaction we expect to see a larger X chromosome territory in DCC-depleted nuclei 

compared to the wild type hermaphrodites. In addition, because males have one non-
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dosage compensated X, we would expect the single male X territory to be about half as 

large as the two non-dosage compensated Xs in DCC-depleted hermaphrodites, but 

larger than half of the two dosage compensated Xs in wild type hermaphrodites. 

We observed that the X chromosome territories in hermaphrodite nuclei depleted 

of the DCC subunit DPY-27 occupied a significantly larger percentage than in wild type 

hermaphrodite nuclei (Figure 2.1C and D). In wild type hermaphrodites the X 

chromosome territories were compact with a mean percent nuclear volume of 10.31 ± 

1.98%. Depletion of the condensin IDC-specific protein, DPY-27 [14], by feeding RNAi, 

led to enlarged X chromosomes compared to wild type, occupying 17.28 ± 3.16% of the 

nucleus (P = 8.49E-22). Interestingly, the volume of the X chromosomes in DPY-27-

depleted hermaphrodite nuclei closely correlates with the X chromosome DNA content 

relative to the total genome size of C. elegans, 18%, see Figure 2.1B. The smaller 

percent nuclear volume in wild type hermaphrodites suggests that condensin IDC activity 

results in X chromosomes that are more compact than genomic average. 

We predicted that the percent nuclear volume of a single male X would be close 

to half of the volume of the two DPY-27-depleted hermaphrodite X chromosomes, about 

9%, and close to the percent predicted by DNA content, about 10%, see Figure 2.1B. 

Surprisingly, we found that the single X chromosome territory in males was larger, 

occupying the mean percentage of 15.73 ± 2.63. It is possible that the DPY-27-depleted 

X chromosome territory is not fully decondensed because a small amount of DPY-27 

remains after feeding RNAi. An alternate possibility is that chromosome decondensation 

might contribute to X upregulation in males. X upregulation has been hypothesized to 
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occur in both sexes in mammals and worms to balance the single male X to autosomes; 

however the mechanism in worms is unknown (see Discussion). We also analyzed 

males depleted of DPY-27 and found that the X chromosome remained unchanged 

compared to control males. Together these results support the idea that condensin IDC 

mediates X chromosome compaction in hermaphrodites and suggest that chromosome 

decondensation may be involved in X upregulation in males. 

We next asked whether the observed enlargement of chromosome territories was 

specific to the dosage compensated X chromosomes by analyzing the autosomal 

territory of chromosome I. The percentage occupied by chromosome I was consistent in 

wild type hermaphrodites (14.26 ± 2.57), males (14.24 ± 2.90), and dpy-27(RNAi) 

hermaphrodite worms (14.46 ± 2.50) (Figure 2.1E and F). Like the X chromosomes in 

DPY-27-depleted nuclei, the volume occupied by chromosome I closely correlates with 

the DNA content of chromosome I relative to the total genome size (Figure 2.1B). These 

data indicate that the chromosome territory enlargement in DPY-27-depleted nuclei is 

not occurring genome-wide but is unique to the dosage compensated X chromosomes. 

Next, we wanted to test whether the loss of DCC subunits other than DPY-27 has 

similar effects on X chromosome volume. We performed the same analysis as 

described above in worms depleted of, or carrying mutations in the genes encoding, 

either DPY-30 or DPY-21. We chose these specific genes because dosage 

compensation function and DCC localization is disrupted when DPY-30 is depleted 

[53,54], whereas in DPY-21 depleted worms dosage compensation function is disrupted 

but the DCC still localizes to the X chromosome [20]. Similar to dpy-27(RNAi) worms, 
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dpy-30(RNAi) and dpy-21(RNAi) worms as well as dpy-30(y228) and dpy-21(e428) 

mutants had larger X chromosomes compared to control worms fed bacteria carrying an 

empty vector or wild type worms (Figure 2.2A-C and Figure 2.8). The mean percentages 

occupied by the X chromosomes in the DCC-depleted animals were 70% larger than the 

control. In addition, the size of chromosome I territory was unchanged, occupying a 

mean percentage of 14.5 in all backgrounds (Figure 2.2D and E, and Figure 2.8). Taken 

together, these results indicate that wild type and control intestinal nuclei have compact 

X chromosome territories and this organizational pattern is dependent upon dosage 

compensation. 

Consistent with dosage compensation’s role in reducing gene expression, our 

data show that relative size of X chromosomes is also reduced. We next wanted to 

determine if the two X chromosomes behave similarly and are compacted to similar 

extents. We performed this analysis in the 32-ploid intestinal nuclei. We measured 

individual chromosome volumes, arbitrarily designating the larger territory X1 and the 

smaller territory X2. Fifty-two percent of vector control worms, and 33% of dpy-27(RNAi) 

worms had two clear X chromosome territories. We observed that both chromosome 

territories X1 and X2 in hermaphrodite nuclei depleted of DPY-27 occupied a significantly 

larger percentage than in vector control nuclei (Figure 2.8). The caveat of this 

experiment is that the chromosomes are not individually marked and the X1 territory in 

one genotype does not necessarily corresponds to X1 in the other. However, together 

with the observation that both X chromosomes associate with the dosage compensation 

complex, we favor the interpretation that both Xs are affected to similar degrees. 
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Diploid DCC-depleted nuclei also have enlarged X chromosomes 

Because intestinal nuclei are 32-ploid, the possibility remained that the enlarged 

X territories were a result of the dispersing of the multiple copies of the X chromosomes 

and not a result of perturbed compaction of individual chromosomes. To test this 

possibility, we examined the X chromosomes in the diploid tail tip hypodermal cells, hyp 

8-11 [55]. We found similar results to that of intestinal nuclei in the diploid cells (Figure 

2.3A and B). The X chromosome territories in vector control RNAi diploid cells were 

tightly compact occupying 9.94 ± 2.20%, whereas the X chromosome territories in dpy-

30, dpy-21, and dpy-27 RNAi diploid cells were decondensed occupying 16.27 ± 2.62% 

(P = 6.70E-19), 16.09 ± 2.22% (P = 3.02E-20), and 16.17 ± 2.59% (P = 1.15E-18), 

respectively. Additionally, the percent volume occupied by chromosome I in diploid cells 

was not statistically different amongst the control and DCC-depleted animals, averaging 

13.2% in all cases (Figure 2.3C and D). This suggests that the decondensed X 

chromatin structure in DCC-depleted worms is not solely a result of the dispersing of the 

multiple copies of the X chromosome in the 32-ploid intestinal nuclei, but it is a result of 

defective compaction. We did not look at separate X chromosome territories in diploid 

cells because due to their small size only a small percentage of nuclei had clearly 

distinguishable X chromosome territories. Only 35% of both vector and dpy-27(RNAi) 

diploid nuclei clearly exhibited two separate X chromosome territories. 

X chromatin compaction is evident at all genomic distances examined 

To further investigate the genomic scale at which condensin operates we 

performed 3D FISH with pairs of X chromosome YAC probes separated by genomic 
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distances ranging from 0.5 Mb to 7.2 Mb (Figure 2.4A and B). Such analysis has been 

previously used to demonstrate a role for polycomb repressive complexes in 

compacting chromatin in mouse embryonic stem cells, and a role for condensin II to 

promote compaction of chromosome territories in Drosophila [39,56]. Since this analysis 

is not possible in polyploidy intestinal nuclei we analyzed the pairs of probes in wild type 

and dpy-21(e428) mutant diploid tail tip cells. Eighty-three percent of wild type diploid 

cells and 79% of dpy-21(e428) diploid cells had two clear spots for each probe, while 

others had either no spots due to high background or had one spot (presumably due to 

the overlap of two closely spaced spots). Nuclei with 0 or one spot were excluded from 

our analysis. No nuclei had three or four spots. These observations indicate that these 

cells have an unreplicated diploid DNA content. At all four genomic distances we 

detected a significant increase in distances in dpy-21(e428) mutants compared to wild 

type (Figure 2.4C). This more dispersed distribution of the two loci found in dpy-

21(e428) correlates with the larger X chromosome territories found in the dosage 

compensation mutants. These data suggest that dosage compensation can be linked to 

levels of higher-order X chromatin compaction, both at the level of whole chromosomes 

and at a genomic scale as small as 0.5 Mb and as large as 7.2 Mb. 

X chromosome compaction is not regulated by condensin I or condensin II 

Previous studies have found that condensin II promotes the formation of 

interphase chromosome territories in Drosophila [35,39]. Therefore, we next wanted to 

investigate whether the X chromosome compaction was specific to condensin IDC or if 

condensin I or II are also contributing to this phenotype. To test this, we depleted SMC-
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4, CAPG-2, or HCP-6. SMC-4 is a subunit of both condensins I and II, while CAPG-2 

and HCP-6 are subunits specific to condensin II [15,21,31,57,58]. We performed a 

shorter, one generation RNAi feeding of SMC-4, CAPG-2, HCP-6, DPY-27, and empty 

vector, due to the lethality of SMC-4, CAPG-2, or HCP-6 depletion over two generations. 

One generation RNAi feeding depleted condensin subunits to below level of detection 

by western blotting (Figure 2.9). In addition the presence of chromatin bridges between 

many nuclei, a hallmark of chromosome segregation defects, in SMC-4, CAPG-2, and 

HCP-6-depleted worms, indicated successful depletion. Depleting SMC-4, CAPG-2, or 

HCP-6 did not change the level of compaction compared to control vector RNAi worms 

(Figure 2.5A and Figure 2.9). The mean volume occupied by the X chromosomes was 

consistently around 10.1%. However, even with the shorter one generation RNAi 

depletion, dpy-27(RNAi) X chromosome territories were large at 17.29 ± 2.45%. 

Similarly, there was no change in the volume of chromosome I when either SMC-4, 

CAPG-2, or HCP-6 were depleted compared to control animals (Figure 2.5B and Figure 

2.9). Additionally, the same analysis was performed on the diploid tail tip hypodermal 

cells and similar results were found (Figure 2.10). Similar conclusions were reached 

when using 3D FISH with pairs of X chromosome YAC probes separated by the 

genomic distance of 1.2 Mb, the distance that showed the most significant difference 

between dpy-21(e428) mutants and wild type. 83% of smc-4(RNAi) diploid nuclei and 

85% of hcp-6(RNAi) diploid nuclei had two clear spots for each probe, while no nuclei 

had three or four spots. At the genomic distance of 1.2 MB we did not detect a 

significant change in distances in smc-4(RNAi) or hcp-6(RNAi) worms compared to 
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vector control worms (Figure 2.5C). Therefore, we conclude that condensin IDC, and not 

condensin I or condensin II, is primarily responsible for dosage compensation mediated 

X chromosome compaction. However we cannot rule out the possibility that condensin I 

or II are affecting interphase chromosome territories in C. elegans at levels undetectable 

by 3D FISH. 

Changes in DCC-mediated histone modifiers effect X chromosome structure 

We, and others, previously showed that DCC activity leads to the enrichment of 

H4K20me1 on the X chromosome by the methyltransferases SET-1 and SET-4 [48,49]. 

This activity then leads to the depletion of H4K16ac levels on X, via the deacetylase 

SIR-2.1 [49]. In order to determine whether these chromatin modifications contribute to 

compaction of the X, we examined set-1(tm1821), set-4(n4600), and sir-2.1(ok434) 

mutant worms. Mutations in set-1, set-4, or sir-2.1 led to the loss of X chromosome 

compaction seen in wild type worms (Figure 2.6A and Figure 2.11). However, 

chromosome I showed no significant change in volume in these histone modifier 

mutants (Figure 2.6B and Figure 2.11). Interestingly, the DCC localizes normally to the 

X in set-1(tm1821), set-4(n4600), and sir-2.1(ok434) worms [48,49]. Therefore, DCC 

alone is not sufficient for the compaction of the X chromosome territory. We conclude 

that X chromosome compaction by the DCC requires the presence of these chromatin 

modifiers. 

DISCUSSION 

In this study, we sought to determine whether the condensin-like DCC compacts 

chromosomes for gene expression. We established that in wild type hermaphrodites, 
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the interphase X chromosomes are more compact than predicted based on DNA 

content. This compaction is dependent on the presence of the DCC as well as the DCC-

regulated histone modifiers SET-1, SET-4, and SIR-2.1 (Figure 2.7). Together, our 

results suggest that mechanisms related to mitotic chromosome condensation mediate 

dosage compensation. 

Previous gene expression studies in DCC mutants showed that X expression 

increases while autosomal expression decreases compared to wild type [59]. Assuming 

that these gene expression changes are reflected in chromosome volume changes, we 

would predict that an increase in the volume of the X is accompanied by a decrease in 

the volume of autosomes. If the X is occupying an extra 7% of the nucleus, the five pairs 

of autosomes together will occupy 7% less, approximately 1.4% less for each 

autosome. We did not detect any decrease in chromosome I volume, but our method 

may not be sensitive enough to detect such a small change. 

Condensins and cell cycle regulation 

Condensins are conserved complexes that play fundamental roles in 

chromosome dynamics throughout the cell cycle [22]. Similar to conserved condensin II 

activities, C. elegans condensin II is required for prophase chromosome condensation 

and anaphase segregation [31,58]. However, condensin I’s role in C. elegans is less 

understood. It is believed that condensin I plays a less critical role in mitosis and 

development than condensin II, because condensin I depletions lead to less severe 

phenotypes [15]. Condensin’s role in mitosis and meiosis has been widely studied, 

however recent evidence revealed that the condensin complexes also contribute to a 
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variety of interphase chromosome functions. A prominent example is the C. elegans 

condensin I-like complex, condensin IDC, which does not function in mitosis or meiosis, 

but instead regulates chromosome- and sex-specific gene expression [12]. Interestingly, 

condensin IDC differs from the condensin I complex by only one subunit. It is assumed 

that during evolution, the condensin I subunit SMC-4 duplicated and diverged giving rise 

to DPY-27. This resulted in the formation of condensin IDC with the specialized function 

of dosage compensation. It is believed that the mechanism of dosage compensation is 

closely linked to condensin’s role in regulating chromosome architecture. 

In this study, we report that condensin IDC is responsible for compacting 

interphase X chromosome territory, both at the level of whole chromosome territories, 

and by measuring 3D-distances between probe pairs separated by various genomic 

distances. Evidence of condensin-mediated interphase chromosome compaction has 

also been found in Drosophila and mice [35,39-41]. Condensin activity is required to 

unpair polytene chromosomes and disperse heterochromatin in Drosophila [39]. In mice, 

the condensin-mediated condensation is required for proper T-cell development and 

maintenance of the quiescent state [40]. Condensin has also been found to be required 

for chromatin compaction and viability in ES cell [41]. In these systems, condensin 

mediates chromosome changes genome-wide. By contrast, in C. elegans, condensin 

IDC causes chromosome specific changes. It is also interesting to note that in flies and 

mice condensin II plays a role in interphase chromosome [35,39-41], while our data do 

not support a role for condensin II, only condensin IDC. These differences between our 

findings and previous data may reflect a difference between the species or the type of 
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cells examined. Indeed, cell-type specific differences in condensin usage have been 

observed before, at least in the context of mitotic chromosome condensation [25]. 

It should be noted that our studies were performed on postmitotic cells. Whether 

there are differences in how condensin IDC affects X chromosome compaction in G1, S, 

or G2 phase of cycling cells is unknown. However, a chromatin mark associated with 

dosage compensation, enrichment of H4K20me1, appears several cell cycles after the 

DCC assembles on the X chromosomes [48,60], suggesting that full compaction may 

require passage through mitosis. 

Molecular mechanisms of condensin 

Although some of the biological functions of condensins have been uncovered, 

our understanding of condensin’s molecular mechanisms remains poor. Condensins 

contain two SMC (structural maintenance of chromosomes) proteins and three CAP 

(chromosome-associated polypeptide) proteins. The two SMC proteins are ATPases, 

and their ability to hydrolyze ATP is essential for condensin function [22]. One of the 

better-studied biochemical activities of condensin, found in many eukaryotic species, is 

its ability to supercoil DNA in vitro. This supercoiling requires its ATPase activity, as well 

as all five subunits [31,61-64]. The introduction of positive supercoiling is proposed to 

lead to the formation of chiral loops [22,65] and facilitate decatenation of sister 

chromatids by topoisomerase II [66]. This would further compact the chromatin fibers to 

form higher order assemblies. In addition to supercoiling, the SMC proteins of 

condensins have been found to play a role in reannealing complementary ssDNAs into 

dsDNAs [67]. Condensins’ reannealing activity might help ‘fix’ ssDNA to prepare it for 
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the formation of mitotic chromosomes. Condensin is also believed to entrap the 

chromatin fiber by encircling two distinct segments of the chromatin fiber [68]. Together 

these ATP-dependent biochemical activities are thought to result in condensed mitotic 

chromosomes. In C. elegans specific point mutations of the ATP-binding motifs of DPY-

27 and MIX-1 disrupt dosage compensation [14,16]. These results suggest another link 

between condensin’s function in mitosis and dosage compensation. 

Condensin and chromatin regulated chromosome compaction 

In addition to condensin-mediated mitotic chromosome condensation, histone 

modifications have also been found to contribute to chromatin hypercondensation during 

mitosis [44-46]. Interestingly, similar histone modifications are present on interphase 

dosage compensated X chromosomes in C. elegans. The monomethylation of H4K20 is 

increased, whereas acetylation of H4K16 is decreased, both on mitotic chromosomes 

and on interphase dosage compensated X chromosomes [44-46,48,49]. This is 

consistent with the hypothesis that mechanisms related to mitotic chromosome 

condensation mediate dosage compensation. In mitosis, H4K16 deacetylation leads to a 

stronger interaction between H2A and H4 on adjacent nucleosomes, thus leading to the 

formation of higher order chromosomes packaging [45,69]. Our results suggest that 

DCC-mediated X chromosome compaction requires both the enrichment of H4K20me1 

and the depletion of H4K16ac on the X chromosomes similar to the events occurring in 

mitosis. However, we cannot rule out the possibility that additional factors also 

contribute to the compaction of the X chromosome. In mitosis, it is believed that this 

cascade of histone modifications is acting independently of condensin to compact 
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chromosomes [45]. By contrast, X-enrichment of H4K20me1 and depletion of H4K16ac 

during dosage compensation is DCC- (therefore condensin-) dependent [49]. It will be 

interesting to determine the exact mechanistic contributions of these modifications both 

to mitotic chromosome condensation and dosage compensation. 

Upregulation of the X chromosome 

X upregulation balances the single male X to autosomes. In flies, X upregulation 

is male specific, but in mammals and worms it is hypothesized that upregulation occurs 

in both sexes. Male-specific upregulation of the X chromosome in Drosophila is 

mediated by the MSL (male-specific lethal) complex [70,71]. The MSL complex binds to 

the male X chromosome, concentrates MOF acetyltransferase activity, and leads to 

increased H4K16ac on the hyperactive X [72,73]. The MSL complex has been shown to 

mediate two chromatin alterations. First, the presence of the complex reduces the level 

of negative supercoiling [74]. Second, the acetylation of H4K16 alone weakens 

nucleosome packing in a chromatin fiber and causes chromatin decondensation on the 

male X chromosome [75]. Microarray and RNA-seq analysis have provided some 

evidence for X upregulation in mammals and worms [4-8]. In mammals it is believed that 

H4K16ac and enhanced transcription initiation contribute to X upregulation [4]. 

However, the mechanism in worms is unknown, but it may involve changes in chromatin 

structure. Our data show that in C. elegans the single male X chromosome territory is 

larger than expected. This result suggests that chromosome decondensation might 

contribute to the X upregulation mechanism. It will be of great interest to explore what is 

mediating chromosome decondensation in C. elegans males. Previous studies have 
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indicated that in the absence of DCC activity, H4K16ac is enriched on hermaphrodite X 

chromosomes, suggesting that this mark may be involved in the X upregulation process. 

However, males show no enrichment of H4K16ac by immunofluorescence microscopy 

[49]. In addition, there is no enrichment of H4K16ac on the X chromosomes in early 

hermaphrodite, male, or DCC-mutant embryos [60]. Therefore, further investigation is 

required to determine the mechanisms causing chromosome decondensation and X 

upregulation in males. 

Conclusions 

It has been long hypothesized that DCC activity results in interphase X 

chromosome compaction. However, the experimental evidence was lacking. Our results 

are consistent with this long standing hypothesis suggesting that dosage compensated 

X chromosomes maintain some characteristics associated with condensed mitotic 

chromosome. Our studies of C. elegans condensin IDC-mediated compaction may shed 

further light on the mechanisms of chromatin organization and gene repression by 

condensin in other organisms. Future studies will examine the factors that directly 

contribute to X upregulation and possibly chromosome decondensation in males. 

MATERIALS AND METHODS 

Strains 

All strains were maintained on NG agar plates with E. coli (OP50) as a food 

source, using standard methods [76]. Strains include: N2 Bristol strain (wild type); 

TY4403 him-8(e1489) IV; TY1936 dpy-30(y228) V/nT1 (unc-? (n754) let-?); TY3936 

dpy-21(e428); SS1075 set-1(tm1821) III/ hT2g; MT14911 set-4(n4600) II; VC199 sir-
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2.1(ok434) IV. Males were obtained from him-8(e1489) hermaphrodites. Mutations in 

him-8 cause X chromosome nondisjunction in meiosis and result in 38% of progeny 

being XO males. 

RNA interference 

E. coli HT115 bacteria expressing double stranded RNA for dpy-30, dpy-21, dpy-

27, smc-4, capg-2, hcp-6, or vector control (polylinker), were used for feeding RNAi 

using the Ahringer laboratory RNAi feeding library [77]. One generation feeding RNAi 

(WT on smc-4 RNAi, WT on capg-2 RNAi, WT on hcp-6 RNAi) was performed as 

follows: L1-stage larvae were placed on plates seeded with RNAi bacteria and grown to 

adulthood. Two generation feeding RNAi (all other analysis) was performed as follows; 

P0 adults from one generation feeding RNAi were transferred to new RNAi plates to 

produce progeny for 24 h. These progeny (F1 generation) were grown to adulthood and 

examined. 

Fluorescent in situ hybridization (FISH) 

FISH probe templates were generated by degenerate oligonucleotide primed 

PCR to amplify purified yeast artificial chromosome (YAC) DNA [50,78]. The labeled 

chromosome-paint probes were prepared as described previously [78]. To perform 

FISH, adult animals (24 h post-L4) with or without previous RNAi treatment were 

dissected and fixed in 2% PFA, 1× sperm salts, on a slide for 5 min at room 

temperature. The slide was covered with a coverslip and placed on a dry ice block for 

10 min. The coverslip was quickly removed from the slide, and the slides were washed 

three times in PBST for 10 min each, dehydrated through an ethanol series (70%, 80%, 
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95%, 100% ethanol, 2 min each) and air dried. A total of 10 uL of probe was added to 

the slide. The samples were covered with a coverslip, placed on a 95°C heat block for 3 

min, and slowly cooled to 37°C for an overnight incubation. The following washing 

regime was used at 37°C: three 5-min washes in 2× SSC with 50% formamide, then 

three 5-min washes in 2× SSC, and one 10-min wash in 1× SSC. Samples were 

incubated in PBST for 10 minutes with DAPI. Slides were mounted with Vectashield 

(Vector Laboratories) [78]. 

Microscopy and image analysis 

Images were captured with a Hamamatsu Orca-Erga close-coupled-device 

(CCD) camera mounted on an Olympus BX61 motorized Z-drive microscope using a 

60× APO oil immersion objective. 3D image stacks were collected for each nucleus at 

0.2 micrometer Z-spacing. Projection images were generated from these optical 

sections. 

For volume measurements, masks were set using the ‘mask → segment’ 

function. The mask is established by a user-defined intensity threshold value applied 

over an image in order to distinguish real signal from background signal and 

autofluorescence. The same standard of background signal exclusion was applied to all 

nuclei, based upon the levels of background signal and autofluorescence observed. 

This was done for each channel of an image. The total volume of the ‘whole nucleus’ 

mask was calculated from DAPI signal. DAPI signal was set as the primary mask and 

the three dimensional pixels (voxels) were measured through Slidebook (morphometry 

→ volume). The volume of the X chromosome or chromosome I mask was calculated 
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from the paint signals. Chromosome-paint signals were set as the secondary mask and 

for each object in the primary mask. The number of overlapping voxels in the secondary 

mask was calculated by Slidebook (cross mask → mask overlaps). The percentage of 

nuclear volume occupied by either the X chromosome or chromosome I was obtained 

by dividing the volume of the specific chromosome over the volume of the whole 

nucleus. This percentage was calculated for each nucleus within an experimental set. 

The percentages where then averaged over all nuclei within an experimental set to 

calculate the final mean percentage of nuclear volume occupied by the X chromosome 

or chromosome I value shown on each graph. Descriptive statistics (standard deviation 

and sample size) were also calculated. Sample sizes are listed in each figure. Error bars 

shown are means +/- 1 standard deviation of the mean. Percent volume differences 

were evaluated by unpaired (two sample) Student’s T-test. 

To calculate the distance between two probes in three dimension, the xyz 

coordinate of the centroid of each YAC probe signals were determined and measured 

using Slidebook. The distance between the two probes was the distance between two 

separate spots closest to one another. The distances where then analyzed over all 

nuclei within an experimental set to calculate the final median and interquartile range of 

the data shown in boxplots. Descriptive statistics (minimum, maximum, and sample 

size) were also calculated. Sample sizes are listed in each figure. Whiskers shown 

indicate distribution from minimum to maximum. Probe distance differences were 

evaluated by unpaired (two sample) Student’s T-test. 
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Figure 2.1 The absence of the DCC leads to enlarged X territories. (A) Chromosome-paint 
3D FISH measures the volumes of chromosome X and I territories. Representation of how the 
percentage of nuclear volume occupied by the X or chromosome I paint were quantified in a 
single nucleus. (B) C. elegans has five pairs of autosomes and one pair of sex chromosomes. 
Hermaphrodites have 12 chromosomes with a total genome sequence of 194 Mb. The X 
chromosomes occupy 18% and chromosome I occupies 14% of the total hermaphrodite 
genome size. Males have 11 chromosomes with a total genome sequence of 177 Mb. The 
single X chromosome occupies 10% and chromosome I occupies 16% of the total male genome 
size. (C-D) Adult hermaphrodite and male intestinal nuclei stained with X-paint FISH (red) to 
label X chromosome territories and DAPI (blue) to label DNA. (C) Representative stained nuclei 
of wild type hermaphrodites, male him-8(e1489), hermaphrodite and male him-8(e1489) dpy-27 
RNAi treated animals. Scale bars equal 5 μm. (D) Quantification of the percentage of nuclear 
volume occupied by X in wild type hermaphrodites (n = 40), male him-8(e1489) (n = 40), 
hermaphrodite dpy-27(RNAi) (n = 60), and male him-8(e1489) dpy-27(RNAi) (n = 22). Error bars 
indicate standard deviation. Asterisks indicate level of statistical significance by t-test analysis 
(one asterisk, P <0.05; two asterisks, P <0.01; three asterisks, P <0.001). (E, F) Adult 
hermaphrodite and male intestinal nuclei stained with chromosome I paint FISH (red) to label 
chromosome I territories and DAPI (blue) to label DNA. (E) Representative stained nuclei of wild 
type hermaphrodites, male him-8(e1489) and hermaphrodite dpy-27 RNAi treated animals. 
Scale bars equal 5 μm. (F) Quantification of the percentage of nuclear volume occupied by 
chromosome I in wild type hermaphrodites (n = 40), male him-8(e1489) (n = 40) and 
hermaphrodite dpy-27(RNAi) (n = 40). Error bars indicate standard deviation. 
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Figure 2.2 DCC depletion and mutations disrupt X chromosome compaction. (A, B) Adult 
RNAi treated hermaphrodite intestinal nuclei stained with X-paint FISH (red) to label X 
chromosome territories and DAPI (blue) to label DNA. (A) Representative stained nuclei after 
vector RNAi treatment, dpy-30(RNAi), dpy-21(RNAi), and dpy-27(RNAi). Scale bars equal 5 μm. 
(B) Quantification of the percentage of nuclear volume occupied by X in vector RNAi (n = 60), 
dpy-30(RNAi) (n = 60), dpy-21(RNAi) (n = 60), and dpy-27(RNAi) (n = 60). Error bars indicate 
standard deviation. Asterisks indicate level of statistical significance by t-test analysis (three 
asterisks, P <0.001). (C) Quantification of the percentage of nuclear volume occupied by X in 
wild type (n = 36), dpy-30(y228) (n = 24), and dpy-21(e428) (n = 21). Error bars indicate 
standard deviation. Asterisks indicate level of statistical significance by t-test analysis (three 
asterisks, P <0.001). (D, E) Depletion or mutations of DCC leads to no difference in 
chromosome I size. (D) Quantification of the percentage of nuclear volume occupied by 
chromosome I in vector RNAi (n = 40), dpy-30(RNAi) (n = 40), dpy-21(RNAi) (n = 40), and dpy-
27(RNAi) (n = 40). Error bars indicate standard deviation. (E) Quantification of the percentage of 
nuclear volume occupied by chromosome I in wild type (n = 25), dpy-30(y228) (n = 25), and 
dpy-21(e428) (n = 25). Error bars indicate standard deviation. 
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Figure 2.3 The decondensed X chromatin structure in DCC-depleted worms is a result of 
defective compaction. (A, B) Adult RNAi treated hermaphrodite diploid nuclei stained with X-
paint FISH (red) to label X chromosome territories and DAPI (blue) to label DNA. (A) 
Representative stained nuclei after vector RNAi treatment, dpy-30(RNAi), dpy-21(RNAi), and 
dpy-27(RNAi). Scale bars equal 5 μm. (B) Quantification of the percentage of nuclear volume 
occupied by X in vector RNAi (n = 40), dpy-30(RNAi) (n = 40), dpy-21(RNAi) (n = 40), and dpy-
27(RNAi) (n = 40). Error bars indicate standard deviation. Asterisks indicate level of statistical 
significance by t-test analysis (three asterisks, P <0.001). (C, D) Adult hermaphrodite diploid 
nuclei stained with chromosome I paint FISH (red) to label chromosome I territories and DAPI 
(blue) to label DNA after DCC depletion. (C) Representative stained nuclei after vector RNAi 
treatment, dpy-30(RNAi), dpy-21(RNAi), and dpy-27(RNAi). Scale bars equal 5 μm. (D) 
Quantification of the percentage of nuclear volume occupied by chromosome I in vector RNAi (n 
= 40), dpy-30(RNAi) (n = 40), dpy-21(RNAi) (n= 40), and dpy-27(RNAi) (n = 40). Error bars 
indicate standard deviation. 
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Figure 2.4 X chromatin compaction is evident at all genomic distances examined.  
(A) FISH probe pairs across the X chromosome. The position of YAC probes (red and white 
boxes) used in FISH is indicated. (B) 2D projections of 3D stacked images. Representative 
stained diploid nuclei of adult hermaphrodite wild type and dpy-21(e428) worms. Nuclei stained 
with probes pairs across the X chromosome (red and white) and counterstained with DAPI 
(blue) to label DNA. Scale bars equal 1 μm. (C) Boxplots indicating the distribution of 3D loci 
distances for wild type (n = 20) and dpy-21(e428) (n = 20) diploid nuclei. Boxes show the 
median and interquartile range of the data. Asterisks indicate level of statistical significance by t-
test analysis (one asterisk, P <0.05; two asterisks, P <0.01; three asterisks, P <0.001). 
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Figure 2.5 X chromosome compaction is not disrupted in condensin I or II depleted 
animals. (A) Quantification of the percentage of nuclear volume occupied by X in vector RNAi (n 
= 40), smc-4(RNAi) (n = 28), capg-2(RNAi) (n = 40), hcp-6(RNAi) (n = 40), and dpy-27(RNAi) (n 
= 34). Error bars indicate standard deviation. Asterisks indicate level of statistical significance by 
t-test analysis (three asterisks, P <0.001). (B) Quantification of the percentage of nuclear 
volume occupied by chromosome I in vector RNAi (n = 40), smc-4(RNAi) (n = 29), capg-2(RNAi) 
(n = 40), hcp-6(RNAi) (n = 40), and dpy-27(RNAi) (n = 32). Error bars indicate standard 
deviation. (C) FISH probe pairs across the X chromosome. The position of YAC probes (red and 
white boxes) used in FISH is indicated. 2D projections of 3D stacked images. Representative 
stained diploid nuclei of vector RNAi, smc-4(RNAi) and hcp-6(RNAi) worms. Nuclei stained with 
probes pairs across the X chromosome (red and white) and counterstained with DAPI (blue) to 
label DNA. Scale bars equal 1 μm. Boxplots indicating the distribution of 3D loci distances for 
vector RNAi (n = 20) and smc-4(RNAi) (n = 20) and hcp-6(RNAi) (n = 20) diploid nuclei. Boxes 
show the median and interquartile range of the data. 
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Figure 2.6 Depletion of the DCC-meditated histone modifiers leads to the loss of X 
chromosome compaction. (A) Quantification of the percentage of nuclear volume occupied by 
X in wild type (n = 40), set-1(tm1821) (n = 40), set-4(n4600) (n = 40) and sir-2.1(ok434) (n = 
40). Error bars indicate standard deviation. Asterisks indicate level of statistical significance by t-
test analysis (three asterisks, P <0.001). (B) Quantification of the percentage of nuclear volume 
occupied by chromosome I in wild type (n = 40), set-1(tm1821) (n = 20), set-4(n4600) (n = 40), 
and sir-2.1(ok434) (n = 40). Error bars indicate standard deviation. 
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Figure 2.7 X chromosome compaction is dependent on the DCC and the DCC-mediated 
histone modifications. A graphical cartoon illustrates DCC and DCC-mediated histone 
modifications effects on hermaphrodite X chromosome structure. The DCC binds to both 
hermaphrodite X chromosomes and by regulating SET-1 and SET-4, mediates an enrichment of 
H4K20me on the X chromosome, which, in turn, through SIR-2.1 activity, depletes H4K16ac. 
These activities compact the X chromosome territories and downregulate X-linked gene 
expression by half. 
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Figure 2.8 DCC depletion and mutants result in changes in the volume of the X 
chromosome. (A) Adult mutant hermaphrodite intestinal nuclei stained with X-paint FISH (red) 
to label X chromosome territories and DAPI (blue) to label DNA. Representative stained nuclei 
of wild type, dpy-30(y228), and dpy-21(e428). Scale bars equal 5 μm. (B) Adult RNAi treated 
hermaphrodite intestinal nuclei stained with chromosome I paint FISH (red) to label 
chromosome I territories and DAPI (blue) to label DNA after DCC depletion. Representative 
stained nuclei after vector RNAi treatment, dpy-30(RNAi), dpy-21(RNAi), and dpy-27(RNAi). 
Scale bars equal 5 μm. (C) Adult mutant hermaphrodite intestinal nuclei stained with 
chromosome I paint FISH (red) to label chromosome I territories and DAPI (blue) to label DNA. 
Representative stained nuclei wild type, dpy-30(y228), and dpy-21(e428). Scale bars equal 5 
μm. (D) Quantification of the percentage of nuclear volume occupied by individual X 
chromosome territories (larger territory arbitrarily designated as X1 and the smaller territory as 
X2) in control X1 (n = 31), control X2 (n = 31), dpy-27(RNAi) X1 (n = 20), and dpy-27(RNAi) X2 (n 
= 20). Error bars indicate standard deviation. Asterisks indicate level of statistical significance by 
t-test analysis (three asterisks, P <0.001). 
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Figure 2.9 No changes in X or chromosome I size in condensin I or II depleted animals. 
(A) Western blot analysis of the depletion in adults after one-generation RNAi feeding (smc-4, 
hcp-6, dpy-27). Each subunit was successfully depleted. Tubulin is shown as a loading control. 
(B) Adult RNAi treated hermaphrodite intestinal nuclei stained with X-paint FISH (red) to label X 
chromosome territories and DAPI (blue) to label DNA. Representative stained nuclei after vector 
RNAi treatment, smc-4(RNAi), capg-2(RNAi), hcp-6(RNAi), and dpy-27(RNAi). Scale bars equal 
5 μm. (C) Adult RNAi treated hermaphrodite intestinal nuclei stained with chromosome I paint 
FISH (red) to label chromosome I territories and DAPI (blue) to label DNA. Representative 
stained nuclei after vector RNAi treatment, smc-4(RNAi), capg-2(RNAi), hcp-6(RNAi), and dpy-
27(RNAi). Scale bars equal 5 μm. 
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Figure 2.10 Diploid condensin I and II depleted nuclei show no change in chromosome 
volume. (A, B) Adult RNAi treated hermaphrodite diploid nuclei stained with X-paint FISH (red) 
to label X chromosome territories and DAPI (blue) to label DNA. (A) Representative stained 
nuclei after vector RNAi treatment, smc-4(RNAi), capg-2(RNAi), hcp-6(RNAi), and dpy-
27(RNAi). Scale bars equal 5 μm. (B) Quantification of the percentage of nuclear volume 
occupied by X in vector RNAi (n = 40), smc-4(RNAi) (n = 25), capg-2(RNAi) (n = 40), hcp-
6(RNAi) (n = 40), and dpy-27(RNAi) (n = 24). Error bars indicate standard deviation. Asterisks 
indicate level of statistical significance by t-test analysis (three asterisks, P <0.001). (C, D) Adult 
RNAi treated hermaphrodite diploid nuclei stained with chromosome I paint FISH (red) to label 
chromosome I territories and DAPI (blue) to label DNA. (C) Representative stained nuclei after 
vector RNAi treatment, smc-4(RNAi), capg-2(RNAi), hcp-6(RNAi), and dpy-27(RNAi). Scale 
bars equal 5 μm. (D) Quantification of the percentage of nuclear volume occupied by 
chromosome I in vector RNAi (n = 30), smc-4(RNAi) (n = 25), capg-2(RNAi) (n = 40), hcp-
6(RNAi) (n = 40), and dpy-27(RNAi) (n = 24). Error bars indicate standard deviation. 
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Figure 2.11 Changes in DCC mediated histone modifiers lead to disrupted X 
chromosomes but not chromosome I. (A) Adult mutant hermaphrodite intestinal nuclei 
stained with X paint FISH (red) to label X chromosome territories and DAPI (blue) to label DNA. 
Representative stained nuclei of wild type, set-1(tm1821), set-4(n4600), and sir-2.1(ok434). 
Scale bars equal 5 μm. (B) Adult mutant hermaphrodite intestinal nuclei stained with 
chromosome I paint FISH (red) to label chromosome I territories and DAPI (blue) to label DNA. 
Representative stained nuclei of wild type, set-1(tm1821), set-4(n4600), and sir-2.1(ok434). 
Scale bars equal 5 μm. 
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CHAPTER 3 

Anchoring of heterochromatin to the nuclear lamina helps stabilize dosage 

compensation-mediated gene repression 

 

This chapter has been submitted and pending revisions as Snyder M1, Lau AC1, 

Brouhard EA, Davis M, et al. (2016) in PLoS Genetics as “Anchoring of heterochromatin 

to the nuclear lamina helps stabilize dosage compensation-mediated gene repression” 

(1equal contribution). I conducted the image analysis for data shown in Figure 3.2, the 

RNA-sequencing analysis for data shown in Figure 3.9, 3.10, 3.16, and 3,17, the 

illustration for Figure 3.11, and assisted with worm counts in the RNAi screen for Figure 

3.12. All other figures are the work of M. Snyder, E. Brouhard, M. Davis, J. Jiang, M. 

Sifuentes, and G. Csankovszki. 

 

ABSTRACT 

Higher order chromosome structure and nuclear architecture can have profound 

effects on regulation of gene expression. We analyzed how compartmentalizing the 

genome by tethering heterochromatic regions to the nuclear lamina can affect gene 

expression during C. elegans dosage compensation. In this organism, the dosage 

compensation complex (DCC) binds both X chromosomes of hermaphrodites to repress 

gene expression two-fold, thus balancing gene expression between XX hermaphrodites 
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and XO males. X chromosome structure is disrupted by mutations in DCC subunits. 

Using X chromosome paint fluorescence microscopy, we found that X chromosome 

structure and subnuclear localization are also disrupted when the mechanisms that 

anchor heterochromatin to the nuclear lamina are defective. Strikingly, the 

heterochromatic left end of the X chromosome is less affected than the gene-rich middle 

region, which lacks heterochromatic anchors. These changes in X chromosome 

structure and subnuclear localization are accompanied by small, but significant levels of 

derepression of X-linked genes as measured by RNA-seq, without any observable 

defects in DCC localization and DCC-mediated changes in histone modifications. Our 

results suggest a model where heterochromatin tethers on the left arm of the 

chromosome nucleate formation of a compact structure, which, by the action of the 

DCC, is propagated to the rest of the chromosome, contributing to gene repression.  

AUTHOR SUMMARY 

DNA isolated from the nucleus of a single human cell, if stretched out, would be 3 

meters long. This amount of DNA must be packaged into a nucleus, which is orders of 

magnitude smaller. DNA of active genes tends to be loosely packed and localized 

internally within the nucleus, while DNA of inactive genes tends to be tightly packed and 

localized near the nuclear periphery. We studied the effects of DNA compaction and 

nuclear localization on gene expression levels using regulation of the X chromosomes in 

the nematode Caenorhabditis elegans as a model. In this organism, hermaphrodites 

have two X chromosome, and males have only one. Genes on the two X chromosomes 

in hermaphrodites are expressed at half the level compared to the male X, such that the 
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two Xs together express as much gene products as the single X in males. We found that 

silent regions at the left end of hermaphrodite X chromosomes are tethered to the 

nuclear periphery, and these tethers are used to build a compact chromosome 

structure. If this process is defective, gene expression levels are elevated, but less than 

two-fold. These results indicate that chromosome compaction and nuclear localization 

contribute to influencing gene expression levels, but other mechanisms must also 

contribute.  

INTRODUCTION 

 Expression of genes must be tightly regulated both spatially and temporarily to 

ensure normal development. While our understanding of gene regulation at the level of 

transcription factor binding and modulation of chromatin structure is supported by an 

abundance of data, the contribution of the spatial organization of the nucleus to 

regulation of gene expression is not well understood. Regulation of sex chromosome-

linked gene expression in the process of dosage compensation provides an excellent 

model to dissect the influence of different gene regulatory mechanisms on 

chromosome-wide modulation of gene activity. In the nematode C. elegans, dosage 

compensation downregulates expression of genes on the otherwise highly expressed X 

chromosomes of hermaphrodites, such that transcript levels from the two hermaphrodite 

X chromosomes are brought down to match transcript levels from the single X in males 

[1,2]. A complex of proteins called the dosage compensation complex (DCC) binds the 

length of both hermaphrodite X chromosomes to regulate transcription. The DCC 

contains a subcomplex, condensin IDC, which is homologous to condensin complexes in 
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all eukaryotes responsible for compaction and segregation of chromosomes in mitosis 

and meiosis [3-5].  

 Although a number of studies in recent years uncovered molecular mechanisms 

of DCC action, how these alterations in X chromosome structure repress gene 

expression remains unknown. Consistent with a similarity to mitotic condensins, DCC 

binding leads to compaction of hermaphrodite X chromosomes in interphase [6,7]. The 

DCC also remodels the X chromosomes into topologically associating domains (TADs) 

with more regular spacing and stronger boundaries than those found on autosomes [8]. 

At the level of chromatin organization, posttranslational modifications of histones are 

also altered in a DCC-dependent manner: monomethylation of histone H4 lysine 20 

(H4K20me1) becomes enriched, and acetylation of histone H4 lysine 16 (H4K16ac) 

becomes depleted on dosage compensated Xs as compared to autosomes [9,10]. 

Analysis of gene expression in H4K20 histone methyltransferase (HMT) mutants 

revealed that changes in H4K20me1 levels contribute to DCC-mediated repression, but 

are not fully responsible for the observed two-fold repression [11]. The relative 

contributions of chromosome condensation and partitioning of the chromosome into 

TADs are unclear. To date, no correlation has been found between genes being 

subjected to DCC-mediated repression and regions of the chromosome bound by the 

DCC [12,13], DCC induced changes in TADs [8] or posttranslational histone 

modifications [10]. These observations led to the suggestion that the DCC regulates 

gene expression not on a gene-by-gene basis, but rather chromosome-wide.  
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 A model of DCC-mediated chromosome-wide repression mechanism is 

consistent with the idea of the formation of a repressive nuclear compartment. 

Organization of chromosomes within the nucleus is not random, but rather active and 

inactive portions of the genome are clustered together and separated into spatially 

distinct compartments [14-16]. One prominent feature of nuclear organization is 

positioning heterochromatic regions at the nuclear periphery or near the nucleolus [17-

19]. An open question is to what extent this level of organization influences gene 

activity, rather than being a consequence of it. In this study we investigated the role of 

nuclear organization, particularly the tethering of heterochromatic regions to the nuclear 

lamina, in regulating genes on dosage compensated X chromosomes in C. elegans.  

 Genome-nuclear lamina interactions change dynamically during cellular 

differentiation and development and are known to influence gene activity. In C. elegans, 

tissue specific promoters are localized randomly in nuclei of undifferentiated cells, 

reflecting the pluripotent state of these cells. As cells commit to specific fates and 

differentiate, active promoters move toward the nuclear interior, while repressed 

promoters move toward the nuclear periphery [20]. Disruption of nuclear lamina 

anchoring by depletion of lamin (LMN-1) or lamin-interacting proteins leads to 

derepression of otherwise silent transgenes, demonstrating the relevance of the 

anchoring process to gene repression, at least in the context of transgenes [21]. 

Anchoring of these heterochromatic transgenic arrays to the nuclear lamina requires 

trimethylation of histone H3 lysine 9 (H3K9me3) by the HMTs MET-2 and SET-25, as 

well as the chromodomain protein CEC-4 [22,23]. The relevance of this process to the 
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regulation of endogenous gene expression is less clear. Gene expression does not 

change dramatically in the absence of H3K9me3 or CEC-4, but repression induced by 

heterochromatic anchoring does help restrict alternate cell fates in development [22,23]. 

These observations indicate that likely multiple mechanisms contribute to repression of 

genes not expressed in a given cell type, and the contribution of lamina anchoring to 

gene regulation may only become apparent in sensitized backgrounds. Similar results 

were obtained in other organisms. For example, in differentiating mouse embryonic 

stem cells, genome-nuclear lamina interactions are remodeled such that some, but not 

all, genes move away from the nuclear lamina when activated [24].  

 Consistent with a generally repressive environment, regions of the genome 

associated with the nuclear lamina (lamina associated domains, or LADs) are depleted 

of active chromatin marks and are enriched for repressive marks such as H3K9 and 

H3K27 methylation in a variety of organisms [24-27]. These silencing marks, and the 

enzymes that place them, are required for peripheral localization of heterochromatic 

transgenes and some developmentally regulated endogenous sequences [23,28-30]. 

Artificial tethering of genes to the nuclear lamina leads to repression of some, but not 

all, genes [31-34]. These observations are consistent with the idea that the vicinity of the 

nuclear lamina is a repressive environment, yet it is not incompatible with transcription. 

Therefore, subnuclear compartmentalization may not be a primary driver of gene 

expression levels, but rather serve as a mechanism to stabilize existing transcriptional 

programs [22].  
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 Here we show that anchoring of heterochromatic regions to the nuclear lamina 

contributes to shaping the higher order structure and nuclear localization of dosage 

compensated X chromosomes. These X-chromosome-specific phenotypes were 

observed in multiple tissues, and thus appear to be inherent to the chromosome and not 

any cell-type specific differentiation program. We show that heterochromatin integrity 

and its nuclear lamina anchors are required for spatial organization of the nucleus and 

dosage compensation mediated condensation of the X chromosome. In mutant strains 

that lack these anchors, despite normal DCC localization to the X chromosome, we 

observe a small, but significant level of X derepression, consistent with the idea that 

anchoring contributes to stabilizing gene repression. Remarkably, tethering of 

heterochromatic regions of the X chromosome to the nuclear lamina affects the entire 

chromosome, not only the tethered domain. We propose a model in which the tethered 

domain nucleates formation of a compact structure, which facilitates the action of the 

DCC to compact the entire X chromosome. 

RESULTS 

 In order to identify chromatin modifying genes that influence dosage 

compensation, we previously performed a targeted RNAi screen to analyze genes 

implicated in chromatin regulation, including histone variants, as well as genes 

containing chromo, bromo, or set domains [35]. The assay is based on rescue of males 

that inappropriately turn on dosage compensation. The DCC assembles on the X 

chromosome of xol-1(y9) sex-1(y263) males, leading to insufficient expression of genes 

from the single X chromosome and thus lethality. RNAi-mediated disruption of dosage 
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compensation can rescue a proportion of these males. Control vector RNAi leads to 

background level of rescue (about 1.5%), while RNAi of a component of the DCC 

rescues over 25% of males. We previously described the screen in detail, as well as the 

role of one of the hits from the screen, the histone H2A variant HTZ-1 [35]. In this study 

we characterize the remaining genes identified in this screen that led to low but 

reproducible levels of male rescue. These genes include the histone methyltransferases 

met-2, set-32, set-20, set-6, set-25, and the chromodomain protein cec-4 (Figure 3.1). 

All of these histone methyltransferases are known (met-2, set-25, [23]) or predicted (set-

6, set-20, set-32 [36]) to modify histone H3K9. H3K9 methylation and the 

chromodomain protein CEC-4 were previously shown to work together in regulating 

nuclear organization and anchoring heterochromatic transgenic arrays to the nuclear 

lamina [21,22,37]. We therefore included in our analysis LEM-2 (hMAN1), a non-

essential component of the nuclear lamina. RNAi of the single C. elegans lamin gene 

LMN-1 leads to embryonic lethality [38], precluding this type of analysis. However, 

RNAi-depletion of LEM-2 led to male rescue comparable to, or higher than, the rescue 

caused by depletion of the HMTs or CEC-4 (Figure 3.1). Chi square test of the data 

indicated that all genes rescued significantly more males than vector RNAi (Figure 

3.1B). To ensure that the rescue is reproducible, we also performed the rescue assay 

with a subset of the identified genes in four independent biological replicates and 

analyzed the results using Student's t-test (Figure 3.12). With the exception of set-6 and 

set-20, all genes identified in the screen rescued significantly more males than vector 

RNAi.  



 

 109 

X chromosome decondensation in mutants  

The finding of H3K9 methyltransferases, CEC-4, and LEM-2, in this screen 

suggested that nuclear organization, and specifically anchoring of chromosomal regions 

to the nuclear lamina (Figure 3.1C), might affect dosage compensation. To investigate X 

chromosome morphology and its location in the nucleus in the absence of these 

proteins, we performed X chromosome paint fluorescence in situ hybridization (FISH) in 

the various mutant backgrounds. First we investigated the 32-ploid nuclei of the 

intestine, because their large size facilitates visualization of chromosome territories. In 

wild type (N2) hermaphrodite worms, the X chromosome territories are kept compact by 

the action of the DCC [39] and the territory is found near the nuclear lamina (Figure 

3.2A). Visual inspection of the X chromosome territories in met-2(n4256), set-6(ok2195), 

set-20(ok2022), set-25(n5021), set-32(ok1457), cec-4(ok1324), and lem-2(ok1807) 

hermaphrodites, revealed that the nuclear territory occupied by the X chromosomes 

became larger. As a control, we also analyzed the X chromosomes in met-1(n4337), 

hpl-1(tm1624) and hpl-2(tm1489) mutants. MET-1 is an unrelated HMT, while HPL-1 

and HPL-2 are homologs of the highly conserved heterochromatin protein and 

H3K9me3 binding protein HP-1 [40] (Figure 3.2A). To quantify X chromosome 

condensation, we measured the volumes of X chromosome territories, as in [39]. Briefly, 

we generated intensity threshold-based 3D masks for the X chromosome (X paint 

signal) and for the nucleus (DAPI signal). We then calculated the volume of the X 

chromosome and of the nucleus, and determined the portion of the nucleus occupied by 

the X chromosome. Normalization to total nuclear volume was necessary due to the 
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large variability in nuclear size after the harsh treatments involved in FISH. 

Quantification of the volume of the X chromosome territory showed that in the H3K9 

HMT mutants, as well as in cec-4 and lem-2 mutants, the X chromosome occupied a 

much larger portion of the nucleus than in control wild type, or met-1, hpl-1 or hpl-2 

mutant hermaphrodites. Lack of X chromosome condensation defects in hpl-1 and hpl-2 

mutants are consistent with a previous study that reported no defects in nuclear lamina 

anchoring of heterochromatic transgenic arrays in hpl-1 or hpl-2 mutants [22]. In nuclei 

of wild type worms the X chromosome occupied about 10% of the nuclear volume, 

compared to an average of up to 20% percent in mutants (p<0.001, Student's t-test, for 

all comparisons between a mutant and wild type) (Figure 3.2B). In fact, the degree of 

decondensation in set-25(n5021) mutants is even larger than in DCC mutant or RNAi-

depleted hermaphrodites (dpy-21(e428) and dpy-27(RNAi) [39] (p=0.0251 for 

comparison with dpy-21, and p=0.00442 for comparison with dpy-27; other differences 

were not statistically significant) (Figure 3.2). We conclude that the X chromosome is 

decondensed to a significant degree in worms carrying mutations in DCC subunits, as 

well as in H3K9 HMT, cec-4 and lem-2 mutants. 

SET-25 and MET-2 are the only well characterized HMTs among the ones we 

identified. MET-2 introduces H3K9 mono- and dimethylation, while SET-25 introduces 

H3K9 trimethylation. Complete lack of H3K9 methylation, and loss of anchoring of 

heterochromatic arrays, are only observed in the met-2 set-25 double mutants and not 

in set-25 or met-2 single mutants [23]. We therefore analyzed X chromosome structure 

in the met-2(n4256) set-25(n5021) double mutant strain and found that the X 
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chromosome morphology is comparable to single mutants without an obvious additive 

effect (p=0.56 for met-2 compared to met-2 set-25; p=0.11 for set-25 compared to met-2 

set-25) (Figure 3.2A and B). For the rest of this study we concentrated on lem-2, set-25 

or met-2 set-25, and cec-4 mutants, and we will refer to them collectively as “tethering 

mutants”. 

 One possible explanation for X decondensation phenotype is that the tethering 

defects diminish the ability of the DCC to condense the X chromosome. For example, 

the DCC may use these heterochromatic tethers as nucleation sites for a more compact 

chromosomal organization. An alternative possibility is that lack of tethering leads to 

chromosome decondensation independent of the DCC. We tested whether 

simultaneous disruptions of tethering and the DCC lead to increased levels of 

decondensation by measuring X chromosome volumes in set-25 and lem-2 mutants that 

were depleted of DPY-27 using RNAi (Figure 3.2B). X chromosomes of nuclei in dpy-

27(RNAi) treated lem-2 mutants were significantly different from wild type, but 

statistically indistinguishable from either lem-2 mutants (p=0.77, Student's t-test) or dpy-

27(RNAi) (p=0.26). Similarly, X chromosomes of nuclei in dpy-27(RNAi) treated set-25 

mutants were significantly different from wild type, but statistically indistinguishable from 

set-25 mutants (p=0.052) and dpy-27(RNAi) (p=0.39). Therefore, at this resolution, we 

cannot detect any additional defects when tethering mutations are combined with DCC 

depletion, consistent with the hypothesis that the DCC and tethering genes work 

together, and are both required, to condense the X chromosomes.  
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 To determine whether the phenotype is specific to the 32-ploid intestinal nuclei, 

we also examined diploid tail tip hypodermal cells hyp 8-11. Results were comparable to 

intestinal cells. In wild type cells, the X chromosome occupies about 10% of the 

nucleus, while it occupies a much larger portion of the nucleus in anchoring mutants 

(p<0.001 for all mutant comparisons to wild type) (Figure 3.13). 

The dosage compensated X chromosome relocates to a more central position in 

tethering mutants 

 Previous studies showed that tethering mutants have a defect in anchoring 

heterochromatic transgenic arrays to the nuclear lamina [21-23]. Similarly, visual 

inspection of our images suggested that tethering mutants have a defect in subnuclear 

positioning of the X chromosome resulting in the X occupying a more central position 

(Figure 3.2). To quantify this defect, we performed an analysis similar to the three-zone 

assay used in [20]. We selected nuclei that we were spherical or ellipsoid shaped. From 

the Z-stacks generated during imaging, we selected the optical section toward the 

middle of the nucleus with the largest and brightest X-paint signal. This optical section 

was divided into three-zones of equal area, and the portion of the X signal located in 

each zone was quantified (Figure 3.3A). The percentage of nuclei in each genotype that 

can be quantified using this assay is shown in Figure 3.14. Representative irregularly 

shaped nuclei are also shown to illustrate that the X chromosome appeared qualitatively 

similar to X chromosome in round or ellipsoid shaped nuclei: compact and peripherally 

located in N2 hermaphrodites, and larger and more centrally located in tethering 

mutants. The three-zone assay showed that in wild type (N2) nuclei only about 20% of 
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the X chromosome signal was located in the central zone, while in tethering mutants 

over 40% of the X signal was located in this zone, suggesting that the X chromosome 

relocates to a more central position within the nucleus (Figure 3.3B). Comparisons of 

the portions of the X chromosome located in the central zone revealed statistically 

significant differences in all tethering mutants. As for volume measurement, the three-

zone assay again failed to reveal additional defects in met-2 set-25 double mutants 

compared to set-25 single mutants. We then compared this effect to mutating or 

depleting a subunit of the DCC by RNAi. The three-zone assay showed less significant 

relocation of the X toward the center in dpy-27 RNAi-treated hermaphrodites compared 

to tethering mutants. In dpy-21 mutants, although the portion of the X in the central zone 

increased from 24% to 34%, the difference did not reach statistical significance (Figure 

3.3B). One possible reason for the less significant relocation in dosage compensation 

mutants is the fact that dpy-27(RNAi) or a mutation in dpy-21 does not completely 

disrupt dosage compensation function. Complete lack of DCC activity would be lethal to 

hermaphrodites, precluding this type of analysis (see analysis of the male X below).  

 H3K9me3 is generally found in heterochromatic regions of the genome. In C. 

elegans, several megabase regions at both ends of autosomes and the left end of the X 

chromosome are enriched for this mark [41]. These H3K9me3-enriched domains also 

coincide with nuclear lamina-associated domains, as assessed by ChIP [26] or DamID 

[23]. Together these results suggest a model in which both arms of autosomes and the 

left of arm of the X chromosome are tethered to the nuclear lamina [23,26,42-44] 
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(Figure 3.4A). Peripheral localization of heterochromatic chromosomal regions may be 

mediated by CEC-4, as is the case for heterochromatic transgenes [22]. 

 To examine whether heterochromatic segments of the X chromosomes are 

affected differently than other chromosomal regions, we prepared probes to 

approximately 3-4 Mb regions of the chromosome. The X-left probe covers a region 

enriched for H3K9me3 and LEM-2, the X-mid probe covers a gene-rich portion of the 

chromosome with very little H3K9me3 and LEM-2, and the X-right probe covers a region 

with intermediate levels of H3K9me3 and LEM-2 (Figure 3.4A and B). We then 

assessed the level of decondensation of each of these regions by measuring the 

proportion of the nuclear volume occupied by this region of the X chromosome (Figure 

3.4C). Surprisingly, the left end of the X chromosome was least affected and remained 

condensed both in tethering mutants and in DCC-depleted hermaphrodites. We only 

observed a mild level of decondensation in set-25 mutants. By contrast, the gene-rich 

middle portion of the chromosome was most affected and was significantly 

decondensed in all tethering mutants. The right end of the chromosome, which contains 

some LEM-2 and H3K9me3 peaks, but fewer than the left end, exhibited an 

intermediate phenotype.  

 The gene-rich middle portion of the X chromosome was not only decondensed 

but also appeared to exhibit the greatest degree of central relocation. To quantify this 

effect, we again performed the three-zone assay and found that indeed the mid-X region 

was most affected (Figure 3.4D). While on average only 17% of the X-mid probe was 

located in the central zone in wild type nuclei, up to 50% of the same region was found 
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in this zone in tethering mutants. Relocation to a central position was less obvious for 

the left end of the chromosome and was not detectable for the right end. These results 

were at first unexpected. However, they are consistent with previous observations that 

have hinted at the existence of redundant tethering mechanisms in differentiated cells. 

The tethering mechanism mediated by heterochromatin is only essential for anchoring 

of heterochromatic arrays in embryonic cells, and the arrays remain anchored in 

differentiated tissues even in the absence of SET-25 and MET-2 [23]. Similarly, CEC-4 

is required for anchoring in embryos, but other, yet unknown, mechanisms can 

compensate for the lack of CEC-4 protein in differentiated cells [22]. We note that all of 

our analysis was performed in terminally differentiated postmitotic cells of adult animals. 

Our results suggest that regions of the left end of the X chromosome are anchored to 

the nuclear periphery by an additional mechanism that is independent of SET-25, CEC-

4, and LEM-2, and loss of H3K9me3-lamina mediated anchoring mechanism is not 

sufficient to significantly relocate this region. The lack of heterochromatic anchoring 

mechanism affects the middle of the chromosome disproportionately, even though this 

region is depleted of H3K9me3 and LEM-2 interactions. One possible interpretation of 

this result is that the few H3K9me3 sites and LEM-2-bound regions present in the 

middle of chromosome represent the only anchoring mechanism present in this region. 

In the absence of these tethers, the mid-X region is free to relocate more centrally, while 

redundant anchors maintain tethering to a greater degree at the two chromosome ends. 

The other interpretation, which is not mutually exclusive, is that heterochromatic 

anchors at the left end of the chromosome are used to nucleate a compact structure, 
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which is required to be able to pull the rest of the X chromosome toward the periphery 

and compact it efficiently (see Discussion).  

Defects in DCC function had a somewhat different effect. The mid-X region was 

more decondensed after dpy-27(RNAi) than the right end, and the left end was 

unaffected, similar to the decondensation defects seen in tethering mutants. Less 

significant decompaction of the left end may be related to the somewhat lower levels of 

DCC binding in this region [41,45]. Alternatively, nuclear lamina tethers at the left end 

may be sufficient to compact this region even in the absence of the DCC. Although the 

portion of the mid-X region in the central domain increased in dpy-27 RNAi, the 

difference did not reach statistical significance, suggesting again insufficient disruption 

of dosage compensation (Figure 3.4C and D).  

Chromosomal phenotypes are dosage compensation dependent 

 To examine these X chromosomal phenotypes in the complete absence of DCC 

activity, we analyzed the X chromosome in males and in XO animals that develop as 

hermaphrodites due to a mutation in the her-1 gene required for male development [46] 

(Figure 3.5). The XO hermaphrodites also carry a null mutation in the dosage 

compensation gene sdc-2 to ensure that all XX progeny die due to dosage 

compensation defects and only XO animals survive [47]. The DCC is XX hermaphrodite-

specific and does not bind to the male X or the X chromosome in XO hermaphrodites, 

therefore these backgrounds allow us to examine X chromosome structure in the 

complete absence of the DCC, but in the presence of heterochromatic anchors. In wild 

type males and in XO hermaphrodites, the single X occupied an large proportion of the 
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nucleus, about 16%, as we previously observed, which is significantly different from the 

10% seen in wild types hermaphrodites [39] (Figure 3.5A and B). It is also different from 

what was seen in a different study analyzing nuclei of young embryos, possibly due to 

the differences in stage of development and differentiation status [7]. Note that the level 

of decondensation we observe is greater than what we see in tethering mutants, since 

16% of the nucleus is occupied by a single X chromosome, compared to the two Xs in 

tethering mutant hermaphrodites. However, in set-25 mutant males, the X did not 

decondense further compared to normal males (Figure 3.5A and B). In addition, the 

three-zone assay revealed that the X chromosome is located significantly more centrally 

in XO hermaphrodites and males, compared to wild type hermaphrodites (Figure 3.5C). 

Irregularly shaped nuclei that cannot be quantified using this assay also appeared to 

have large centrally located X chromosomes (Figure 3.14) While in set-25 mutant males 

a slightly higher proportion of the X chromosome was located in the central zone, this 

difference was not statistically significant (Figure 3.5C). These results indicate that the 

activity of the DCC is required to condense and peripherally relocate the X 

chromosome, and that the lack of both DCC function and heterochromatic tethers (in 

set-25 males) does not lead to additional defects. 

 We next analyzed the left, middle and right regions of the X chromosome in XO 

animals (Figure 3.5A, D, and E). All regions of the X chromosome were decondensed in 

XO animals, compared to hermaphrodites, but mutations in set-25 did not lead to any 

further decondensation (Figure 3.5D). Furthermore, the mid-X region was more centrally 

located in XO animals than in hermaphrodites, but again mutations in set-25 did not 
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lead to additional central relocation. While we cannot exclude the possibility that the X 

chromosome is affected in tethering mutant males, we conclude that hermaphrodite X 

chromosomes are more severely affected by these mutations than male X 

chromosomes.  

Chromosomal phenotypes are X specific 

To determine whether the chromosomal phenotypes are specific to the X 

chromosome, we analyzed the structure and localization of a similarly sized autosome, 

chromosome I (Figure 3.6A). Chromosome I occupies about 15% of the nucleus in wild 

type hermaphrodites, closely correlated with its genome content, indicating lack of 

condensation beyond genomic average [39]. As we found previously for dosage 

compensation mutants [39], the volume of chromosome I appeared unaffected in 

tethering mutants (Figure 3.6B). In addition, the three-zone assay revealed that a 

significant portion of chromosome I signal is located in the central zone in wild type 

hermaphrodites (39%) (Figure 3.6C). This value is significantly different from the value 

obtained for the X chromosome in wild type hermaphrodites (23%, Figure 3.3, p=0.035, 

Student's t-test), and more similar to the X chromosome in tethering mutants (ranging 

from 43% to 55%, Figure 3.3). In addition, mutations in tethering mutants did not lead to 

any further central relocation of chromosome I compared to the same chromosome in 

wild type hermaphrodites (Figure 3.6C). These results suggest that the X chromosome 

is more sensitive to the loss of heterochromatic tethers than the autosomes.  

 To confirm these results, we further examined different domains of chromosome I 

(Figure 3.6D). Chromosome I has two anchored heterochromatic domains, one at each 
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end (left and right), while the middle region lacks significant interactions with the nuclear 

lamina [23,26,41]. Our FISH analysis is consistent with these earlier observations. The 

left and right domains of the chromosome were located near the nuclear periphery, 

while the middle region was more centrally located. Neither volume measurements 

(Figure 3.6E), nor the three-zone analysis (Figure 3.6F) showed any significant 

differences between wild type (N2) and set-25 mutant hermaphrodites. A significantly 

greater portion of the chromosome I middle domain was located in the central zone 

(36%) in wild type hermaphrodites compared to the X chromosome (17%, Figure 3.4, 

p=0.018, Student's t-test), and this value was more comparable to the centrally located 

portion of the mid-X region in tethering mutants (ranging from 37% to 51%, Figure 3.4). 

These results indicate that in wild type hermaphrodites, the two ends of chromosome I 

are peripherally located, while the middle domain is more centrally located. 

Furthermore, we conclude that this organization does not change significantly in the 

absence of heterochromatic tethers, and that the observed chromosomal phenotypes 

are specific to the dosage compensated X chromosome.  

The distribution of H3K9me3 within the nucleus 

 Previous ChIP-chip analysis showed that H3K9me3 is enriched at both ends of 

autosomes and at the left end of the X chromosome, although peaks can be found 

elsewhere on the X as well [41]. To determine how this signal is distributed in the 

nucleus, we performed immunofluorescence microscopy (IF) with H3K9me3 specific 

antibodies in wild type cells and in tethering mutants (Figure 3.7). Antibodies specific to 

DCC subunit CAPG-1 were used as staining control and to mark the territories of the X 
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chromosomes. Figure 3.15 shows specificity of this newly developed antibody to CAPG-

1. In wild type cells, the H3K9me3 signal was distributed all over the nucleus, with no 

obvious enrichment at the nuclear periphery, except for the presence of some 

peripherally located bright foci. Both the overall staining and the bright foci are 

H3K9me3-specific, as they were absent in set-25 mutants. Sites of exceptionally high 

levels of H3K9me3 signal were not observed by ChIP [41]. Therefore, we interpret these 

bright foci as three-dimensional clustering of multiple H3K9me3 enriched loci. The X 

chromosome territory almost always contained, or was directly juxtaposed to one of 

these bright foci (Figure 3.7, top row). In rare cases, the X was not associated with the 

brightest foci, but foci of lesser intensity were still visible in the X territory (Figure 3.7, 

second row). H3K9me3 staining was comparable to wild type in cec-4 and lem-2 

mutants, suggesting that the defects in tethering in these mutants are not related to lack 

of H3K9me3.  

 Notably, H3K9me3 was not absent in met-2 mutants. In fact, met-2 mutants were 

indistinguishable from wild type. This is in contrast to what was previously observed in 

met-2 mutant embryos, where H3K9me3 levels were greatly reduced [23]. However, it is 

similar to what was observed in the germline, where met-2 was reported to be 

dispensable for H3K9me3 [48], and similar to what we reported previously in intestinal 

nuclei of met-2 mutants [49]. These results suggest tissue specific differences in the use 

of HMTs to deposit H3K9me3. Despite near-normal levels and distribution of H3K9me3 

in met-2 mutants, the X chromosomes were decondensed, suggesting that met-2 

contributes to the regulation of X chromosome structure in ways other than H3K9me3.  
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We also note that set-32 mutants contained two types of nuclei. Some nuclei 

were indistinguishable from wild type (Figure 3.7, row 5) and some had reduced levels 

of H3K9me3 (Figure 3.7, row 6). The two set-32 mutant nuclei depicted on Figure 3.7 

come from the same worm, illustrating cell-to-cell variation within a single animal in this 

genetic background. These observations suggest that in contrast to what is seen in 

embryos [23], in differentiated cells, enzymes other than SET-25 contribute to the 

deposition of H3K9me3.  

The DCC remains X-bound and the X chromosomes maintain enrichment for 

H4K20me1 

 A possible explanation for the dosage compensation defects in tethering mutants 

(Figure 3.1) is disruption of DCC localization. To test this possibility we stained worms 

with X-paint FISH probe followed by immunofluorescence using antibodies specific to 

the DCC subunit DPY-27. Despite changes in X chromosome morphology, we observed 

normal localization of the DCC to X chromosomes (Figure 3.8A). While we cannot 

exclude minor changes in DCC distribution along the X chromosome, we conclude that 

the DCC does associate with the X chromosomes in tethering mutants.  

 An alternative explanation for defects in dosage compensation in these mutants 

is that DCC function is disrupted. Previously characterized molecular functions of the 

DCC include condensation of the X chromosome [7,39], altering chromosome topology 

[8], and leading to a different distribution of posttranslational histone modifications, 

particularly H4K20me1 and H4K16ac [9,10]. To test whether mutations in tethering 

genes affect the ability of the DCC to lead to enrichment of H4K20me1 on the X, we co-
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stained worms with antibodies specific to the DCC (to mark the location of the X) and 

antibodies specific to H4K20me1. Results showed that this chromatin mark continues to 

be enriched on the X chromosomes (Figure 3.8B). Therefore, at least some aspects of 

DCC function remain intact in tethering mutants. Although wild type level of enrichment 

of H4K20me1 on the X appears to be required for X chromosome condensation [39], 

our results indicate that it is not sufficient. 

Derepression of X-linked genes in tethering mutants 

 To test how loss of heterochromatic anchoring affects gene expression, we 

performed mRNA-seq analysis (Figure 3.7). We performed this analysis in L1 stage 

larval hermaphrodites. By this stage, somatic cells are differentiated, dosage 

compensation-mediated chromatin marks are fully established [9,50], and gene 

expression differences resulting from DCC function are easily detectable using RNA-seq 

[11]. Based on the low level of male rescue observed upon RNAi-depletion of tethering 

genes (Figure 3.1), we did not expect major disruptions of regulation of X-linked genes. 

Therefore, to compare gene expression changes in tethering mutants to gene 

expression changes resulting from moderate changes in DCC function, we generated a 

data set using L1 hermaphrodite worms in which the DCC subunit DPY-27 was partially 

depleted by RNAi. Note that even though DPY-27 levels were significantly reduced in 

these worms (Figure 3.15C), there was very little lethality associated with the RNAi 

treatment, indicating that DCC function was only partially disrupted.  

 Under these mild dpy-27(RNAi) conditions, we observed a small increase in 

average X-linked gene expression compared to gene expression changes on 
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autosomes. These results are qualitatively similar to previously reported analysis of 

dosage compensation mediated gene expression changes [8,11,12], but the magnitude 

of change is smaller, indicating that this data is an appropriate representation of gene 

expression changes when DCC function is partially disrupted. The median log2 ratio of 

expression between dpy-27(RNAi) worms and control vector RNAi treated worms was 

significantly higher for expressed genes on the X (0.062) compared to expressed genes 

on the autosomes (-0.059) (Figure 3.9A, one-sided Wilcoxon rank-sum test p = 3.09 x 

10-78), consistent with a small degree of X depression. When the X chromosome was 

compared to each autosome individually, again we observed a small, but statistically 

greater level of derepression on the X than any of the autosomes (Figure 3.9A, right). 

Strains carrying mutations in cec-4(ok3124) or met-2(n4256) set-25(n5021) showed 

similar X chromosome derepression compared to dpy-27(RNAi). The median log2 ratio 

of expression between cec-4(ok3124)/control or met-2(n4256) set-25(n5021)/control 

was significantly higher on the X (0.095 and 0.057 respectively) compared to autosomes 

(-0.042 and -0.057 respectively) (Figure 3.9B and C, one sided Wilcoxon rank-sum test 

p = 8.07 x 10-42 and p = 8.48 x 10-18). Comparing the X to each autosome individually 

again revealed that in both backgrounds the X chromosome is more derepressed than 

any autosome (Figure 3.9B and C). These results suggest that lack of CEC-4, or MET-2 

and SET-25, function leads to similar gene expression changes as a partial depletion of 

the DCC. 

 To examine whether the observed differences in gene expression might reflect 

random variations between average gene expression levels on chromosomes, we 
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examined the average gene expression change on each autosome compared to the rest 

of the genome (Figure 3.16). Small gene expression change differences were in fact 

observed between any autosome and the rest of the genome, and many of these 

differences were statistically significant (two-sided Wilcoxon rank sum test). However, 

for chromosomes I, II, III, and IV, the autosome was downregulated, not upregulated, 

compared to the rest of the genome (Figure 3.16). Chromosome V, the autosome with 

the most significant gene derepression when analyzed individually (Figure 3.9), was the 

only autosome that appeared upregulated compared to genomic average (Figure 3.16). 

However, the X chromosome is more derepressed than chromosome V (Figure 3.9). 

These analyses indicate that the greatest degree of derepression is seen on the X 

chromosome. Furthermore, the trends were the same in dpy-27(RNAi) and in cec-4 and 

met-2 set-25 mutants, again indicating that gene expression changes in tethering 

mutants are comparable to gene expression changes in partial DCC depletion 

conditions.  

 To complement our analysis of average gene expression, we also looked at 

genes whose expression changed significantly using DESeq2 analysis (Figure 3.17A). 

Consistent with previous gene expression studies [22], expression of very few genes 

changed significantly in cec-4 mutants. However, the same was true for dpy-27(RNAi). 

In both cases, a slightly higher percentage of X-linked genes were upregulated than the 

percentage of upregulated autosomal genes, and a slightly higher percentage of X-

linked genes were upregulated than downregulated. There were more significantly 
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derepressed genes in met-2 set25 mutants, particularly on autosomes, consistent with a 

more significant silencing role for these genes [22].  

 To further determine whether there is a correlation between the degree of gene 

expression change in the tethering mutants and the degree of gene expression change 

in worms with a partial defect in DCC function, we plotted the log2 ratio of expression of 

the tethering mutants and control worms against the log2 ratio of expression of dpy-

27(RNAi) and control vector worms (Figure 3.10A and B). With a log2 cutoff of 0.1 fold 

(10%) for upregulation, the largest percentage of X-linked genes fell in the quadrant of 

derepression in both dpy-27(RNAi) and tethering mutants (32-34% versus 3-19% on 

other quadrants), which was not true for autosomal genes. The regression analysis 

showed a moderate positive correlation between tethering mutants and dpy-27(RNAi) 

log2 ratios for both X and autosomal genes (R-squared values ranged from 0.36 and 

0.49, Pearson correlation values between 0.6 and 0.7) (Figure 3.10D). Additionally, X-

linked genes had slightly higher R-squared and Pearson correlation values compared to 

autosomal linked genes. Correlations of gene expression changes on the X indicate that 

the genes whose expression is most affected by depletion of the DCC are also the 

genes whose expression is most affected in tethering mutants. Correlations on 

autosomes may be explained by the observation that defects in DCC activity are 

proposed to affect not only X-linked gene expression, but indirectly also contribute to 

modulating autosomal gene expression [12]. There is a population of genes on 

autosomes whose expression is repressed by MET-2 and SET-25 independent of DCC-

mediated changes (Figure 3.10B, red circle), consistent with a role for these genes in 
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general gene silencing [22]. A similar degree of correlation was observed when 

comparing cec-4 to met-2 set-25 (Figure 3.10C), and again the correlation was higher 

for X-linked genes than autosomal genes. A group of genes repressed by MET-2 and 

SET-25 but not affected by CEC-4 was again evident in this analysis (Figure 3.10C, red 

circle), as in a previous study [22].  

To determine whether gene expression changes correlate with chromosomal 

changes, we compared log2 ratios of genes located at X chromosome left, middle, and 

right regions. Regions were designated based on LEM-2 ChIP-chip signals domains 

[26]. The region 0 Mb - 4 Mb was designated "left", 4 Mb - 15.75 Mb was designated 

"middle", and 15.75 Mb - 17 Mb was designated "right". Since the middle region of the X 

chromosome is subject to the greatest level of decondensation and relocation in 

tethering and DCC mutants (Figure 3.4), we hypothesized that genes in the middle of 

the X would be more derepressed compared to the right and left arms. However, when 

examining the distribution of log2 ratios in dpy-27(RNAi)/control, cec-4(ok3124)/control, 

and met-2(n4256) set-25(n5021)/control, the X chromosome regions did not show 

significant differences by two-sided Wilcoxon rank-sum test (Figure 3.17B, median log2 

ratio between 0.047 and 0.099 and p-values ranged from 0.09 and 0.90). While 

surprising, these observations are consistent with the model that DCC induced changes 

in X chromosome structure modulate gene expression chromosome-wide rather than 

locally [8,11-13]. 
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DISCUSSION 

 In a screen to identify genes with roles in regulating expression of X-linked genes 

subject to dosage compensation, we identified a group of genes with previously known 

roles in anchoring heterochromatic domains to the nuclear lamina. These genes include 

H3K9 HMTs, the chromodomain protein CEC-4 which binds H3K9 methylated 

chromatin, and the nuclear lamina protein LEM-2. Although H3K9me and nuclear lamina 

interactions are enriched at the left of the X chromosome, we find that these mutations 

disproportionately affect compaction and subnuclear localization of the gene-rich middle 

portion of the X chromosome. We propose the following model: (1) heterochromatic 

anchors at the left end of the X nucleate a compact chromatin structure, and (2) the 

activity of the DCC ensures that this structural organization encompasses the entire 

chromosome (Figure 3.11). Compartmentalization of the nucleus in this way may restrict 

availability of transcriptional activators for the X chromosomes, thus creating a 

repressive compartment to modulate X-linked gene expression.  

Correlation between compaction, subnuclear localization and gene expression  

 Chromatin compaction and subnuclear localization are believed to be 

coordinated with gene expression levels to a certain degree [14-16]. We analyzed 

chromatin condensation, subnuclear localization, and gene expression changes in DCC-

depleted animals and in tethering mutants. We observed elevated levels of X-linked 

gene expression (Figure 3.9), decreased compaction (Figure 3.2 and Figure 3.4), and 

relocation to a more central position (Figures 3.3-3.5), in both DCC mutants and 

tethering mutants, providing support for the hypothesis that these processes are 
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coordinated. However, the correlation is not perfect. The degree of gene expression 

change did not correlate well with the degree of decondensation and/or subnuclear 

relocation. At the whole chromosome level, the X chromosomes in tethering mutants 

decondensed to a degree comparable to DCC mutants (Figure 3.2). Similarly, the 

degree of relocation was greater in tethering mutants than in partial loss-of-function 

DCC mutant, and comparable to the XO animals that completely lack DCC function 

(Figure 3.3 and Figure 3.5). However, gene expression changes in tethering mutants 

are much less significant than in DCC mutants (Figure 3.9). Similar conclusions were 

reached when we analyzed different regions of the X chromosome: relocation and 

decondensation was most significant in the middle of the X chromosome in both DCC 

mutants and tethering mutants (Figure 3.4), but gene expression changes were 

comparable in all regions of the chromosome (Figure 3.17). A higher resolution study 

may reveal a stronger correlation, but at the level of whole chromosomes, or large 

chromosomal domains, the correlation between gene expression change, chromosome 

decondensation and subnuclear localization is limited. A recent study showed that 

chromatin decondensation, even in the absence of transcriptional activation, is sufficient 

to drive nuclear reorganization [51]. Similarly, in cec-4 mutants, decondensation of 

transgenic arrays is coupled to their relocation within the nucleus, but it is accompanied 

by only minimal changes in gene expression [22]. This is reminiscent of our results, 

where chromatin decondensation and relocation in general correlate, but the degree of 

condensation does not reflect the degree of gene expression change.  
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 We believe these results reflect the fact that repression by the DCC involves 

multiple mechanisms, and disruption of condensation and subnuclear localization is not 

sufficient to cause major changes in gene expression. Other DCC-mediated changes, 

for example enrichment of H4K20me1 on the X chromosome, are intact in tethering 

mutants (Figure 3.8), and are sufficient to maintain repression. However, it should be 

emphasized that loss of tethers (and/or the accompanying change in X chromosome 

packaging and nuclear organization) does result in gene expression changes that are 

biologically significant. While the gene expression change is modest (Figure 3.9), it is 

sufficient to rescue a significant proportion of males in our genetic assay (Figure 3.1 and 

Figure 3.12). Thus, chromatin condensation, subnuclear localization, and tethering to 

the nuclear periphery, may not be the primary determinants of gene expression change, 

or may act redundantly with other, yet unidentified, factors, but they do contribute to 

stabilizing gene expression programs in development [22] and during dosage 

compensation (this study).  

 Our results also reveal parallels with recent genome-wide chromosome 

conformation capture (Hi-C) analysis [8]. Dosage compensated X chromosomes are 

packaged into a structure with regularly spaced boundaries between topologically 

associated domains (TADs). In the absence of the DCC, boundaries become less well 

defined and TAD organization weakens, except at the left end of the X, which is the 

domain that is tethered to the nuclear lamina [8]. This parallels our observations that in 

DCC mutants the left end of the X chromosome remains less affected than the rest of 

the chromosome. Condensin has been implicated previously in chromosome territory 
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organization [39,52,53]. In condensin mutant fission yeast, disruption of condensin-

dependent intrachromosomal interactions disturb chromosome territory organization 

[54]. Changes in condensin-mediated interactions and chromosome territory formation 

are also coordinated during different stages of the cell cycle [54]. It is likely that the 

observed changes in TAD formation [8] and chromosome compaction and subnuclear 

localization (Figures 3.2-3.5, [39]) in the absence of the condensin-like DCC similarly 

reflect the same underlying changes in chromosome structure analyzed at different 

resolutions and using different methods. 

 If TAD formation, chromatin condensation, and subnuclear localization indeed 

correlate, our results would predict that TADs at the left of the X chromosome would 

also be less disrupted in tethering mutants than along the rest of the X chromosome. 

These results and predictions would suggest that nuclear lamina anchors (both the 

anchors mediated by H3K9me3 and the yet uncharacterized anchors) are able to 

impose this level of organization (TAD formation) on the tethered portion of the 

chromosome. The DCC, in the presence of heterochromatic anchors, propagates this 

structure to the rest of the X chromosome (Figure 3.11). Autosomes in general lack 

regularly spaced TADs, except at the tethered ends of chromosome arms [8]. This 

observation is consistent with our observations of peripherally located chromosome I 

arms (Figure 3.6), and our suggestion that nuclear lamina anchors are sufficient to form 

regularly spaced TADs. However, since the DCC does not bind autosomes, TAD 

formation is not propagated to the rest of the chromosome.  
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Tethering to the nuclear lamina affects subnuclear localization, chromatin 

compaction and expression levels of endogenous genes chromosome-wide 

 Previous studies described the roles of lamin and lamin-associated proteins, 

MET-2, SET-25, and CEC-4 in anchoring heterochromatic transgene arrays to the 

nuclear lamina accompanied by various effects on silencing [21-23]. The loss of the sole 

lamin protein in C. elegans, LMN-1, or the combination of LEM-2 and emerin (emr-1) 

RNAi leads to transgenic array derepression and relocation [21]. MET-2 and SET-25 are 

redundantly required for both anchoring and transgene silencing, while CEC-4 is 

required for anchoring without an effect on silencing [22,23]. This same set of genes 

was identified in our study as influencing subnuclear localization, compaction, and gene 

expression of the X chromosome. There are some differences between how these 

genes affect silent transgene arrays compared to the X chromosome.  

 While MET-2 and SET-25 act redundantly on arrays, for the X chromosome their 

functions are not redundant. The effects on X compaction and subnuclear localization 

were indistinguishable in met-2 or set-25 single mutants, or met-2 set-25 double 

mutants (Figure 3.2 and Figure 3.3). It was proposed that for transgenic array anchoring 

the residual amounts of H3K9me3 in met-2 mutants and the normal levels H3K9me2 in 

set-25 mutants are sufficient [23]. This is consistent with the observation that CEC-4 is 

able to bind all methylated forms of H3K9 [22]. These marks may be sufficient in the 

context of repetitive transgene arrays that accumulate a significantly higher density of 

H3K9 methylation than endogenous genomic regions, but may be insufficient for normal 

nuclear lamina association of the X chromosome.  
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 CEC-4 activity is required for anchoring of transgenes to the nuclear lamina 

without an effect on silencing [22]. When examining effects on transcription of 

endogenous genes, minimal changes were observed in cec-4 mutants, while a large 

number of genes were upregulated greater than four-fold in met-2 set-25 [22]. This 

difference between cec-4 and met-2 set-25 is also apparent in our data sets (Figure 

3.10). There is a group of genes repressed by MET-2 and SET-25, in a manner 

independent of DCC function. However, a similarly regulated group of genes was not 

apparent in cec-4 mutants (Figure 3.10), consistent with CEC-4 having a less significant 

effect on gene silencing [22]. By contrast, the influence of CEC-4 on X-linked gene 

activity is comparable to the influence of MET-2 and SET-25 (Figure 3.10B and C). One 

possible interpretation of this result is that the changes in X-linked gene expression 

levels reflect the consequences of the similar chromosome-wide structural changes in 

the various mutants rather than direct repression by CEC-4 or H3K9 methylation.  

 Previous studies showed that mutations in tethering genes mainly affect the 

autosomes, leading to the loss of lamina association of chromosome arms, as assayed 

by LMN-1-DamID or LEM-2 ChIP. Changes on the X chromosome are less significant 

using these assays [22,23]. By contrast, our data argues that this loss of nuclear lamina 

interactions disproportionately leads to changes in compaction and subnuclear 

localization of the X chromosome (Figure 3.2 and Figure 3.3) compared to autosomes 

(Figure 3.6). It should be noted that the DamID and ChIP studies were performed in 

embryos, while our analysis was performed in fully differentiated cells of adults--a point 

in development where multiple, perhaps partially redundant, anchors may be present 
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[22,23]. It is also possible that the X chromosomes, which have fewer lamina 

interactions than the autosomes [26], are more sensitive to the loss of anchors. 

However, we favor the interpretation that heterochromatic tethers and the DCC 

cooperate to build the specialized structure of dosage compensated X chromosomes 

(Figure 3.11). While H3K9me3-mediated anchors are not required for maintaining 

anchoring of the left end of the X, these anchors may be required for the DCC to be able 

to propagate chromosome packaging to the rest of the chromosome. Since the DCC 

does not bind autosomes, their conformation is not sensitive to loss of this interaction 

between the anchors and the DCC. Although low resolution, our FISH analysis supports 

this hypothesis. The X chromosomes appear compact and in a well-defined peripheral 

territory only when tethered and DCC-bound. In both DCC and tethering mutants, the X 

paint signal becomes more diffuse with less well-defined borders (Figure 3.2, [39]). 

Chromosome I paint signals in wild type worms are more comparable to X paint signals 

in DCC mutants or tethering mutants than to X paint signals in wild type (Figure 3.6). 

Furthermore, the ends of chromosome I are anchored to the nuclear periphery, and 

remain anchored in tethering mutants, while the middle domain is more centrally located 

even in wild type worms, reminiscent of the organization of X chromosome in tethering 

mutants and in males (Figure 3.6, [39]). Overall, these observations suggest that the 

DCC and heterochromatic anchors work together to compact and peripherally relocate 

the middle domain of the X chromosomes not directly tethered to the nuclear periphery.  

 It is interesting to note that we observe significant chromosome decondensation 

despite normal DCC binding to the chromosome (Figure 3.8). Current models of DCC 
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binding to the X include a recruitment step to rex sites [12,55,56], which have very high 

levels of DCC binding [12,57], and tend to define TAD boundaries [8]. From these rex 

sites to DCC spreads to dox sites enriched at promoter regions [12,57]. From our low-

resolution immunofluorescence analysis, DCC binding seems unaffected in tethering 

mutants. Yet, despite near normal levels of DCC, the X chromosome is not compacted, 

indicating that DCC function appears to be compromised.  

Changes in nuclear organization during cellular differentiation and development 

 The mechanisms of anchoring appear to be different in embryonic cells 

compared to differentiated cells. Repetitive heterochromatic arrays require H3K9 

methylation and CEC-4 for peripheral localization in embryonic cells but not in 

differentiated cells, suggesting that differentiated cells have other mechanisms in place 

for tethering genomic regions to the nuclear envelope [22,23]. Whether heterochromatin 

and CEC-4 mediated anchors continue to function in differentiated cells remained 

unclear [22], yet our results are consistent with this possibility. The left end of the X 

chromosome remains in the vicinity of the nuclear lamina in the absence of H3K9me3, 

LEM-2, or CEC-4 in fully differentiated cells, suggesting the existence of additional 

anchors (Figure 3.4). However, X chromosome morphology does change in the 

absence of these proteins, indicating that tethers mediated by them continue to 

influence chromosome structure in differentiated cells.  

 Our results are reminiscent of the findings in differentiating mouse cells [58]. In 

early development, lamin B receptor (Lbr) is the predominant mediator of interactions 

with the nuclear lamina. Later in development, lamin-A/C-dependent tethers appear, 
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sometimes accompanied by the loss of Lbr-mediated mechanisms. Loss of peripheral 

localization of heterochromatin is only observed when both types of tethers are absent 

[58]. It will be interesting to uncover the nature of the additional anchors in differentiated 

C. elegans tissues and how these anchors affect X chromosome morphology and 

dosage compensation. However, it is possible that the additional anchors will be cell-

type specific, consistent with the observation in mammalian cells where various tissue-

specific transmembrane proteins are used to anchor genomic regions to the nuclear 

lamina [59]. Tissue-specific differences between anchoring mechanisms are also 

consistent with observations that point mutations in lamin can exhibit tissue-specific 

defects in humans [60] as in C. elegans [21]. 

Summary 

 In a screen for genes that promote dosage compensation in C. elegans, we 

identified a group of genes implicated in anchoring heterochromatin to the nuclear 

lamina. When these genes are not functional, the X chromosome decondenses and 

moves away from the nuclear periphery. Decondensation and subnuclear relocation 

mostly affects the gene-rich middle portion of the X chromosome, while the tethered left 

end is less affected. We propose that the DCC uses these heterochromatic anchors to 

condense and position the X chromosome near the nuclear periphery. Moving the X 

chromosome into this peripheral compartment contributes to lowering X-linked gene 

expression levels. Establishment of this nuclear compartment as a way to regulate the X 

chromosome is consistent with previous observations [8, 12, 13] and our results (this 
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study), which found no correlation between DCC binding, DCC induced chromosomal 

changes, and repression of gene expression.  

MATERIALS AND METHODS 

C. elegans strains 

Strains were maintained as described [61]. Strains include: N2 Bristol strain (wild 

type); MT16973 met-1(n4337) I; VC967 set-32(ok1457) I; VC1317 lem-2(ok1807) II; 

MT13293 met-2(n4256) III; PFR40 hpl-2(tm1489) III; MT17463 set-25(n5021) III; 

EKM104 set-25(n5021) III; him-8(mn253) IV; EKM99 met-2(n4256) set-25(n5021) III; 

RB2301 cec-4(ok3124) IV; TY4403 him-8(e1489) IV; xol-1(y9) sex-1(y263) X; TY1072 

her-1(e1520) V; sdc-2(y74) X; EKM71 dpy-21(e428) V; RB1640 set-20(ok2022) X; 

VC2683 set-6(ok2195) X; PFR60 hpl-1(tm1624) X. Males were obtained from strains 

that carry a mutation in him-8, a gene required for the segregation of the X chromosome 

in meiosis, mutations in which lead to high incidence of males, but do not affect the 

soma. All strains were fed OP50 and grown at 15°C to avoid temperature sensitive 

sterility associated with some mutations in some the strains. 

RNA Interference (RNAi) 

E. coli HT115 bacteria cells carrying plasmids that express double stranded RNAi 

corresponding to the gene of interest, were grown from a single colony for 8-10 hours at 

37°C and 125 mL were plated onto NGM plates supplemented with IPTG (02% w/v) and 

Ampicillin (1ug/ml) and allowed to dry overnight. For imaging experiments, worms were 

grown on RNAi plates for two generations at 15°C as follows: L1 worms were placed on 

a plate and allowed feed until they reached L4 stage whereby 2-3 L4 worms were 
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moved to a new plate and allowed to lay eggs for 24 hours. F1 worms were grown to 24 

hours post L4 for fixation. The male rescue RNAi screen was described in detail in [35]. 

Briefly, him-8(e1489)IV; xol-1(y9) sex-1(y263 )X worms were treated with RNAi as 

before. For results shown on Figure 3.1, L4 worms from the P0 generation were allowed 

to lay eggs for 24hr at 20°C, the parents were removed, and embryos were counted. For 

results shown on Figure 3.12, P0 worms were fed RNAi food for an additional day, until 

they reached young adult stage before egg collection began. Worms were grown at 

20°C and males were counted and removed for 2-4 days after eggs were laid. Male 

rescue was calculated by dividing the number of observed males by the number of 

expected males. The him-8(e1489)IV strain consistently yields 38% male progeny so 

the expected number of males was assumed to be 38% of the embryos laid. Male 

rescue was calculated as: (Observed number of males)/(0.38 x number of eggs laid). 

Antibodies 

The following antibodies were used: rabbit anti-H3K9me3 (Active Motif #39766), 

rabbit anti-H4K20me1 (Abcam ab9051), rabbit anti-DPY-27 [4], rabbit anti-beta tubulin 

(Novus NB600-936). Anti-CAPG-1 antibodies were raised in goat using the same 

epitope as in [4]. Secondary anti-rabbit and anti-goat antibodies were purchased from 

Jackson Immunoresearch.  

Immunofluorescence 

Immunofluorescence experiments were performed as described [4]. Young adult 

worms were dissected in 1X sperm salts (50 mM Pipes pH 7, 25 mM KCl, 1 mM 

MgSO4, 45 mM NaCl and 2 mM CaCl2, supplemented with 1 mM levamisole), fixed in 
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2% paraformaldehyde in 1X sperm salts for 5 minutes and frozen on dry-ice for 10 

minutes. For anti-H4K20me1 and anti-CAPG-1 staining, worms were in 1% PFA. After 

fixation, slides were frozen on a dry ice block for 20-30 minutes, washed three times in 

PBS with 0.1% Triton X-100 (PBST) before incubation with diluted primary antibodies in 

a humid chamber, overnight at room temperature. Slides were then washed three times 

with PBST, incubated for 4 hours with diluted secondary antibody at room temperature, 

washed again twice for 10 minutes each with PBST, and once for 10 minutes with PBST 

plus DAPI. Slides were mounted with Vectashield (Vector Labs). Antibodies were used 

at the following concentrations: CAPG-1, 1:1000; DPY-27, 1:100; H4K20me1, 1:200; 

H3K9me3, 1:500.  

Fluorescence In Situ Hybridization (FISH) 

Slides were prepared as for immunofluorescence through the PBST washes 

following fixation. Slides were then dehydrated with sequential 2 minute washes in 70%, 

80%, 95% and 100% ethanol before being allowed to air dry for 5 minutes at room 

temperature. Full X-paint probe and chromosome I paint probe preparation was 

described in detail in [39, 62]. The X-left probe contained DNA amplified from the 

following YACs: Y35H6, Y47C4, Y51E2, Y02A12, Y105G12, Y97B8, Y76F7, Y40,H5, 

Y43D5, Y18F11, Y89H11 (covers the region from 0.1Mb to 4.2 Mb of the chromosome). 

The X-mid probe contained DNA amplified from the following YACs: Y18C11, Y50C2, 

Y70G9, Y44D2, Y102D2, Y97D4, Y97D9 (covers the region from 7.4Mb to 11.0 Mb). 

The X-right probe contained DNA amplified from the following YACs: Y31A8, Y52C11, 

Y42D5, Y53A6, Y7A5, Y46E1, Y50B3, Y25B5, Y43F3, Y52F1, Y68A3 (covers the 
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region from 14.0 Mb to 17.6 Mb of the chromosome). The Chromosome I left probe was 

made from the following YACs: Y73F10, Y50C1, Y65B4, Y18H1, Y73A3, Y34D9, 

Y48G8, Y52D1, Y71G12, Y102E12, Y71F9, Y115A10, Y44E3, Y74A12, Y74A11, 

Y39E12, Y40G6, Y110A7 (covers the region from the 0.2 - 4.6 Mb of the chromosome); 

chromosome I middle probe was made from the following YACs: Y70C6, Y46D1, 

Y54B12, Y101C10, Y39A9, Y53F1, Y97F9, Y97D1, Y97E2, Y43C3, Y43E2, Y49G9, 

Y102E5, Y106G6 (covering the region from 4.6 Mb - 10.1 Mb); the chromosome I right 

probe was made form the following YACs: Y71B8, Y19G12, Y37F4, Y95D11, Y53A2, 

Y47H9, Y47H10, Y45E10, Y91F4, Y50A7, Y43D10, Y40B1, Y63D3, Y112D2, Y54E5 

(covering the region fro 10.1 - 15.07 Mb). 10 microliters of probe was added to each 

slide, covered with a coverslip and placed on a 95°C heat block for 5 minutes. The heat 

block was then cooled to 37°C slowly and the slides were moved to a 37°C incubator in 

a humid chamber and incubated overnight. Slides were washed as follows: 3 washes of 

2X SSC/50% formamide for 5 minutes each; 3 washes of 2X SSC for 5 minutes each; 1 

wash of 1X SSC for 10 minutes. All washes were performed in a 39°C water bath. 

Finally, the slides were washed once with PBST containing DAPI for 10 minutes at room 

temperature before mounting with Vectashield.  

Quantification 

Volume Quantification: Chromosome volumes were quantified as in [6]. Briefly, 

using the Mask: Segment function of Slidebook, a user-defined threshold is determined 

that separates signal from background and auto-fluorescence. The same level of 

background was used for all nuclei based on observed background. Masks were 
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calculated for each channel with DAPI being the primary mask and the X paint being the 

secondary mask. Nuclear volume was calculated by taking the number of voxels 

(volumetric pixels) for the DAPI channel to determine total DNA content (morphology: 

volume (voxels)). The overlapping voxels between the X and the DAPI was determined 

by using a cross mask of the DAPI and X paint signals (cross mask: mask overlaps) in 

Slidebook. The percent nuclear volume occupied by the X was determined by dividing 

the number of X voxels by the total number of DAPI voxels. 

Three-zone assay quantification: Concentric ovals of equal area were drawn over 

one focal plane from the center of the Z stack that contained the largest amount of X 

FISH signal. Masks were made from each of these zones using the Advanced 

operations > Convert regions to mask objects function in Slidebook. A single plane from 

the X chromosome mask set for volume quantification was used here. The amount of X 

signal in each of the zones was calculated using the cross mask: mask overlap function 

in Slidebook where the zone mask was the primary mask and the X mask was the 

secondary mask. The total voxels for all three zones were summed and the voxels in 

each zone were divided by the total to determine what percentage of the X signal was 

located in each zone.  

mRNA-seq 

Worms were synchronized by bleaching gravid adults to isolate embryos and 

allowing worms to hatch overnight. Newly hatched L1 larval worms were plated and 

grown for 3 hours on NGM plates with OP50. To the worm pellet, ten volumes of Trizol 

were added and RNA was extracted and precipitated using the manufacturer's 
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instructions. Total RNA was cleaned using the Qiagen RNeasy kit. Non-stranded 

mRNA-seq libraries were prepared using TruSeq RNA Library Preparation Kit. Single-

end 50-bp sequencing was performed using Illumina HiSeq-2000. Reads were trimmed 

for quality using the TrimGalore program from Babraham Bioinformatics 

(http://www.bioinformatics.babraham.ac.uk/projects/ trim_galore/) and aligned to the C. 

elegans genome version WS235 with Tophat v 2.0.13. Default parameters allow up to 

20 hits for each read. Gene expression was quantified using Cufflinks v2.2.1 with use of 

“rescue method” for multi-reads and supplying gene annotation for WS235. Gene count 

estimation was performed using HTSeq-count tool v0.6.0 in the default “union” mode. 

Differential expression analysis was performed using DESeq2 v1.6.3 in R version 3.2.3. 

All analyses were performed which genes that had average expression level above 1 

RPKM (fragments per kilobase per million, as calculated by Cufflinks).  

Western blot 

From the worm suspension collected for RNA-seq experiments, 50 mL of L1s 

were used for protein analysis. For CAPG-1 antibody validation, 50 mL of mixed stage 

worms were used. Equal volume of sample buffer was added (0.1 M Tris pH 6.8, 7.5 M 

urea, 2% SDS, 100mM b-ME, 0.05% bromophenol blue), the suspension was heated to 

65°C for 10 minutes, sonicated for 30-seconds twice, heated to 65°C for 5 minutes, 

95°C for 5 minutes, then kept at 37°C until loading onto SDS-PAGE gel. Proteins were 

transferred to nitrocellulose and probed with the appropriate antibodies. 
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Figure 3.1 RNAi screen to identify genes that promote dosage compensation. (A) Male 
rescue assay. RNAi-mediated depletion of the indicated genes in the him-8 xol-1 sex-1 
background led to rescue of the indicated percentage of males. Depleting DCC components 
DPY-21 and DPY-27 rescues a larger percentage of males than depletion of the other genes 
identified in this screen Asterisks indicate statistical significance based on Chi square test 
analysis of results, with expected rescue being equivalent to vector RNAi. * = p<0.05, ** = 
p<0.01, *** = p<0.001. (B) Raw data and expected table used in Chi square analysis. (C) 
Proposed mechanism of anchoring heterochromatic regions to the nuclear lamina. HMTs 
methylate H3K9. The chromodomain protein CEC-4 binds to this chromatin mark. Bound 
genomic regions are enriched for interaction with the nuclear lamina protein LEM-2. 
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Figure 3.2 X chromosome decondensation in mutants. (A) X chromosome paint FISH (red) 
in representative images of intestinal nuclei (DAPI, blue) of hermaphrodite adult worms in each 
genotype. The X chromosomes are compact and peripherally localized in wild type (N2), hpl-1, 
hpl-2 and met-1 mutant hermaphrodites, but are decondensed and more centrally located in the 
other mutants. Scale bar, 5 mm. (B) Quantification of X chromosome volumes normalized to 
nuclear size (n=20 nuclei). Error bars indicate standard deviation. n.s. = p>0.05 not significant, 
*** = p<0.001 by Student's t-test (N2 compared to appropriate mutant). 



 

 145 

 
 
Figure 3.3 The X chromosome relocates centrally in the nucleus. (A) A diagram of the 
three-zone assay. An optical section from the middle of the nucleus was divided into three 
concentric rings of equal area. The proportion of the X chromosome paint signal in each zone 
(peripheral-intermediate-central) was quantified. (B) Results of quantification of the three-zone 
assay using whole X paint FISH probes in hermaphrodite intestinal nuclei (n=10). In tethering 
mutants, a larger portion of the X chromosome is located in the central zone compared to wild 
type hermaphrodites. Relocation to a central region is less significant in DCC mutants or DCC-
depleted hermaphrodites. Asterisks indicate statistical analysis (Student's t-test) of the centrally 
located portion of the X chromosome (shown in blue). n.s. = p>0.05, * = p<0.05, ** = p<0.01, *** 
= p<0.001. See Table 3.1 for statistical data.  
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Figure 3.4 The middle region of the X chromosome is most affected in the absence of 
heterochromatic tethers. (A) Autosomes are anchored to the nuclear lamina at both 
chromosome arms (anchors shown in green), while the X chromosome only has a significant 
anchored domain at the left end. Probes used in FISH analysis are indicated in red. Each probe 
covered an approximately 3-4 Mb genomic region. (B) Representative images of X-left, X-mid, 
X-right FISH analysis in each genotype. The mid-X region appears most decondensed and most 
centrally located in mutants. Scale bar, 5 mm. (C) Quantification of volumes occupied by the 
indicated FISH probes, normalized to nuclear size (n=12 nuclei). Error bars indicate standard 
deviation. The greatest degree of decondensation in mutants is observed for the mid-X probe. 
(D) Three zone assay for each probe (n=12 nuclei). The greatest degree of central relocation is 
observed for the mid-X probe. Asterisks indicate statistical analysis of mutant to wild type 
comparisons of volumes in (C) and centrally located portion of the X in (D) using Student's t-test. 
n.s. = p>0.05, * = p<0.05, ** = p<0.01, *** = p<0.001. See Table 3.1 for statistical data. 
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Figure 3.5 The X chromosome is decondensed and centrally located in the absence of 
dosage compensation in XO animals. (A) Chromosome paint FISH (red) in intestinal nuclei 
(DAPI, blue) of male adult worms, XO hermaphrodites and set-25 mutant males using whole X 
paint probe, and probes to the left, middle, and right domains of the X chromosome. The X 
chromosome, and the middle region of the X chromosome, appear large and diffuse and are 
located more toward the nuclear interior. set-25 mutations do not have additional effects on X 
chromosome morphology in males. Scale bar, 5 mm. (B) Quantification of volumes occupied by 
the X paint probe (n=20 nuclei). The N2 hermaphrodite data point (wt herm) is repeated from 
Figure 3.2B and is marked by $ sign. (C) Three-zone assay for the whole chromosome X paint 
probe (n=10). Wt herm$ data point is repeated from Figure 3.3B. (D) Quantification of volumes 
occupied by the X-left, X-mid, and X-right probes normalized to nuclear size (n=20). Wt herm$ 
data points are repeated from Figure 3.4C. (E) Three zone assay for the mid-X probe (n=10). wt 
herm$ data point is repeated from Figure 3.4D. Error bars in (B) and (D) indicate standard 
deviation. Asterisks indicate statistical analysis compared to wild type hermaphrodites for 
volumes in (B) and (D) and centrally located portion of the X or mid-X (C) and (E), using 
Student's t-test. wt male and set-25 male comparisons are also shown as indicated. n.s. = 
p>0.05, * = p<0.05, ** =p<0.01, *** = p<0.001. See Table 3.1 for statistical data. 
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Figure 3.6 Chromosome I structure and organization is not affected in tethering mutants. 
(A) Chromosome I paint FISH (red) in representative images of intestinal nuclei (DAPI, blue) of 
hermaphrodite adult worms. Chromosome I appears comparably sized in each background. 
Scale bar, 5 mm. (B) Quantification of chromosome I volumes normalized to nuclear size (n=12 
nuclei). Error bars indicate standard deviation. (C) Three-zone assay for whole Chr I paint (n=10 
nuclei). The chromosome did not relocate to a more central position in any of the mutants (D) 
FISH analysis of the left, middle and right regions of Chr I in wild type (N2) and set-25(n5021) 
mutant hermaphrodites. Diagram (left) indicates locations of probes, representative images are 
shown on the right. The left and right ends of the chromosome are peripherally located, but the 
middle appears more centrally located in both backgrounds. (E) Quantification of volumes 
occupied by Chr I domains (n=20 nuclei). Error bars indicate standard deviation (F) Three-zone 
assay for the left, middle and right domains of Chr I (n=10 nuclei). The middle domain is more 
centrally located than the left and right arms in both genotypes. Student's t-test did not reveal 
any statistically significant differences for volume measurements in (B) and (E), or for the portion 
of chromosome located in the central zone in (C) and (F), mutant compared to wild type. n.s. = p 
> 0.05. See Table 3.2 for statistical data. 
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Figure 3.7 Analysis of H3K9me3 levels. Immunofluorescence analysis with antibodies 
specific to H3K9me3 (green), combined with antibodies specific to DCC subunit CAPG-1 (red) 
to mark the location of the X chromosomes. To illustrate the spatial proximity of the bright 
H3K9me3 foci to the X territory, single focal planes are shown. Maximum intensity projections of 
whole nuclei are shown for reference (right, MIP). The H3K9me3 signal is distributed diffusely in 
the nucleus with some peripherally localized bright foci. H3K9me3 signal intensity is only 
affected in set-25 and set-32 mutants. Scale bar, 5 μm. 
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Figure 3.8 DCC localization and H4K20me1 enrichment in tethering mutants.  
(A) Combined X paint fluorescence in situ hybridization (red) and immunofluorescence with 
antibodies specific to DCC component DPY-27 (green). The DCC remains localized on the 
decondensed X chromosomes of tethering mutants. (B) Immunofluorescence images with 
antibodies specific to H4K20me1 (green) and DCC component CAPG-1 (red) to mark the 
location of the X chromosome. H4K20me1 remains enriched on DCC-bound X chromosomes. 
Scale bar, 5 μm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 154 

 
 



 

 155 

Figure 3.9 RNA-seq analysis of gene expression changes in tethering mutants.  
(A-C) Boxplots show the distribution of log2 expression ratios on the X and autosome between 
dpy-27(RNAi) and control RNAi, cec-4(ok3124) mutant and control, and met-2(n4256) set-
25(n5021) mutant and control. The X chromosome was significantly derepressed compared to 
autosomes (each autosome individually, or as a group) in dpy-27(RNAi) (A), cec-4(ok3124) 
mutants (B), and met-2(n4256) set-25(n5021) mutants (C). Increased expression from the X 
was tested between the X and all autosomes (left), or the X and individual autosomes (right) by 
one-sided Wilcoxon rank-sum test (** = p < 0.01, *** = p < 0.001).  
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Figure 3.10 Comparison of gene expression changes in tethering mutants and partial 
DCC depletions. The magnitude of log2 expression ratios of X-linked (dark) and autosomal 
linked genes (light) between cec-4(ok3124) mutant and control plotted against dpy-27(RNAi) 
and control RNAi (A), met-2(n4256) set-25(n5021) mutant and control plotted against dpy-
27(RNAi) and control RNAi (B), and met-2(n4256) set-25(n5021) mutant and control plotted 
against cec-4(ok3124) mutant and control (C). Red circles indicate a group of genes that are 
repressed by MET-2 and SET-25 independent of dosage compensation or cec-4 function. 
Percent of X-linked (dark numbers) and autosomal genes (light numbers) with greater than 10% 
(log2 of 0.1) change in expression are indicated in each quadrant. (D) The R-squared of each 
regression and the Pearson correlation values are shown for X-linked (X) and autosomal genes 
(A) for each comparison. 
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Figure 3.11 Model showing the effects of tethering and DCC function on X chromosome 
compaction and nuclear localization. In differentiated cells, multiple anchoring mechanisms 
tether the left end of the X chromosome to the nuclear lamina (black and blue anchors). In wild 
type cells, the DCC organizes the X chromatin into topologically associating domains (TADs) 
and uses heterochromatin anchors to compact the X chromosome and bring it to the nuclear 
periphery. In the absence of the DCC, the left end of the X remains peripheral and compact due 
to the action of the tethering proteins, and its TAD structure is maintained. The rest of the X 
chromosome loses its TAD organization, decondenses and moves more internally. When 
heterochromatic tethers (black anchors) are lost, redundant tethers (blue) keep the left end of 
the X near the nuclear lamina. Without the heterochromatic anchors, the DCC is unable to 
compact the rest of the chromosome and bring it near the periphery. Therefore, the rest of the X 
chromosome decondenses and relocates away from the nuclear lamina. 
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Figure 3.12 Additional male rescue analysis. A limited number of genes were analyzed in 
each experiment (A, B, and C), but using four independent biological replicates. Note that RNAi 
feeding of parents was extended by 24 hours compared to the experiment shown on Figure 3.1. 
This led to higher levels of male rescue overall, but the trend remained the same. OP50 is the 
normal bacterial food source, without any plasmid to produce RNA. With the exception of set-6 
and set-20, RNAi of all genes rescued significantly more males than control vector RNAi. It is 
important to point out that the few males rescued on vector RNAi plates were small and sickly, 
while the males rescued using RNAi of the other genes appeared more normal size and had 
better mobility. Error bars indicate standard deviation based on four replicates. Asterisks 
indicate statistical significance using Student t-test, n.s. = p>0.05, * = p<0.05, ** = p<0.01, *** = 
p<0.001. Numbers of embryos counted and p-values (compared to vector RNAi) are shown in 
the table below each graph. 
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Figure 3.13 Chromosome volume measurements in hypodermal nuclei of 
hermaphrodites. (A) X chromosome paint FISH (red) in diploid tail tip hypodermal nuclei 
(DAPI, blue) of hermaphrodite adult worms. The X chromosomes are compact and peripherally 
localized in wild type (N2), but are decondensed and more centrally located in mutants. Scale 
bar, 1 mm. (B) Quantification of X chromosome volumes normalized to nuclear size (n=17-26 
nuclei). Error bars indicate standard deviation. *** = p<0.001 by Student's t-test (N2 compared to 
appropriate mutant). 
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Figure 3.14 X paint FISH images in irregularly-shaped nuclei. (A) Representative irregularly 
shaped nuclei in the various backgrounds. The X is compact and peripherally located in N2 
hermaphrodites and is decondensed and more centrally located in tethering mutants and in 
males. (B) Table indicating the percent of nuclei in each background that were suitable for 
analysis using the three-zone assay. 
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Figure 3.15 Antibody validation and RNAi-depletion control. 
(A) Immunofluorescence analysis of the newly developed CAPG-1 antibody in nuclei of control 
vector RNAi-treated worms shows two territories corresponding to the X chromosomes. In capg-
1(RNAi) nuclei, the signal is below level of detection, similar to what has been observed 
previously with other antibodies to DCC components. (B) On a western blot, the antibody 
recognizes a protein of the predicted size (131 kD) in control vector RNAi treated worms, but not 
in CAPG-1 RNAi treated worms. Tubulin was used as loading control. (C) Western blot analysis 
of three control and three dpy-27(RNAi) samples, indicating levels of DPY-27 depletion. Tubulin 
is shown as a loading control. 
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Figure 3.16 Additional comparison gene expression changes on individual 
chromosomes. (A-C) Boxplots show the distribution of log2 expression ratios on each 
autosomes (I, II, III, IV, and V) and the rest of the genome (labeled G) between dpy-27(RNAi) 
and control (A), cec-4(ok3124) mutant and control (B), and met-2(n4256) set-25(n5021) mutant 
and control. The only autosome that showed derepression compared to the rest of the genome 
is chromosome V. Differences in gene expression changes between the given chromosome and 
the rest of the genome were tested by two-sided Wilcoxon rank-sum test (n.s. = p>0.05, * = p < 
0.05, ** = p<0.01, *** = p < 0.001). 
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Figure 3.17 Additional analysis of gene expression changes. (A) Numbers and percentages 
of genes with significantly changed levels of gene expression (DESeq2, padj<0.1 and 
padj<0.05) on the X chromosome and the autosomes in each background. (B) Boxplots show 
the distribution of log2 expression ratios on X chromosome regions between dpy-27 and control 
RNAi, cec-4(ok3124) mutant and control, and met-2(n4256) set-25(n5021) mutant and control. 
Expression differences between X regions were tested by two-sided Wilcoxon rank-sum test. No 
significant differences were found. 
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Table 3.1 Statistical analysis of X chromosome FISH data using the three-zone assay. n 
indicates number of nuclei analyzed. Average % of paint signal in each ring and standard 
deviations are shown. Results of statistical analysis using Student's test on the portion of the 
signal in the central ring are below each data set. 
 

whole	X	paint
N2 set-25 met-2	set-25 cec-4 lem-2 dpy-21 dpy-27(RNAi)XO	herm wt	male set-25	male

n 10 10 10 10 10 10 10 10 10 10
peripheral	% 0.2460166 0.18108734 0.17100431 0.12483749 0.14885454 0.23171619 0.15055586 0.14006767 0.10578356 0.08473489
st	dev 0.12317077 0.08394753 0.09806461 0.07869138 0.08338365 0.17584326 0.10072818 0.06415232 0.07645738 0.07217885
intermed	% 0.51555485 0.38185777 0.37545447 0.33605121 0.33670623 0.42227491 0.42842662 0.49212446 0.36320889 0.26202141
st	dev 0.11855283 0.05666637 0.08394526 0.08337165 0.06486988 0.12696711 0.09175781 0.09170447 0.08244027 0.12066364
central	%	 0.23842855 0.43705489 0.45354122 0.5391113 0.51443923 0.3460089 0.42101753 0.36780787 0.53100755 0.6532437
st	dev 0.09564744 0.10651531 0.13278119 0.11776565 0.11001907 0.22261633 0.1343343 0.126949 0.13926637 0.17946691

t-test	of	central	ring	compared	to	N2	hermaphrodite
0.00085208 0.00070257 9.5192E-06 2.3491E-05 0.18809096 0.00320924 0.02177761 5.6208E-05 3.7175E-06

t-test	of	central	ring	compared	to	set-25	hermaphrodite t-test	compared	to	wt	male
0.76784616 0.09960997

left	X	probe
N2 set-25 lem-2 cec-4 dpy-27(RNAi)

n 12 12 12 12 12
peripheral	% 0.24059006 0.19880636 0.08421264 0.16131613 0.16444175
st	dev 0.12888683 0.16120025 0.08460705 0.13741298 0.17310133
intermed	% 0.60562542 0.50227208 0.6161937 0.53208363 0.54276048
st	dev 0.06694305 0.12348118 0.15840007 0.18913377 0.18914569
central	%	 0.15378454 0.29892157 0.29959368 0.30660023 0.29279777
st	dev 0.13005938 0.14996516 0.20293387 0.25018588 0.24752464

t-test	of	central	ring	compared	to	N2	hermaphrodite
0.01895785 0.04995183 0.07821709 0.10355896

Middle	X	probe
N2 set-25 lem-2 cec-4 dpy-27(RNAi)XO	herm wt	male set-25	male

n 12 12 12 12 12 10 10 10
peripheral	% 0.219341 0.13426402 0.18524328 0.23265349 0.31545998 0.17023531 0.12021431 0.09025599
st	dev 0.17906491 0.10996228 0.12817088 0.08833383 0.2030099 0.12669977 0.07361085 0.08042172
intermed	% 0.61054607 0.35300007 0.37657471 0.39334755 0.41918957 0.40027687 0.28490383 0.30690104
st	dev 0.16494192 0.08933676 0.14280516 0.08937391 0.09451049 0.18146025 0.17001368 0.16435189
central	%	 0.17011293 0.51273591 0.43818202 0.37399896 0.26535045 0.42948782 0.59488186 0.60284297
st	dev 0.14102809 0.17738852 0.24039562 0.13893657 0.22160637 0.25248608 0.21750042 0.21740858

t-test	of	central	ring	compared	to	N2	hermaphrodite
4.3012E-05 0.0040592 0.00221382 0.23182446 0.00718188 9.0914E-05 7.4828E-05

t-test	with	wt	male
0.93565866

Right	X	probe
N2 set-25 lem-2 cec-4 dpy-27(RNAi)

n 12 12 12 12 12
peripheral	% 0.25088158 0.3116153 0.25253889 0.27816668 0.11216881
st	dev 0.14277669 0.20004045 0.15345298 0.16198887 0.10510497
intermed	% 0.54939892 0.48653712 0.61143382 0.55403456 0.58685975
st	dev 0.09645279 0.14703048 0.0966098 0.15558981 0.20696769
central	%	 0.19971952 0.20184757 0.13602729 0.16779875 0.3009714
st	dev 0.16839145 0.18234042 0.12730597 0.24469094 0.2564932

t-test	of	central	ring	compared	to	N2	hermaphrodite
0.97657508 0.30811983 0.71370518 0.26718607

S1	Table.	Statistical	analysis	of	X	chromosome	FISH	with	the	three	zone	assay.
n	indicates	number	of	nuclei	analyzed.	Average	%	of	paint	signal	in	each	ring	and	standard	deviations	are	shown.
Results	of	statistical	analysis	using	Student's	test	on	the	portion	of	the	signal	in	the	central	ring	are	below	each	data	set.
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Table 3.2 Statistical analysis of chromosome I FISH data using the three-zone assay. n 
indicates number of nuclei analyzed. Average % of paint signal in each ring and standard 
deviations are shown. Results of statistical analysis using Student's test on the portion of the 
signal in the central ring are below each data set. 

Whole	chr	I	paint
N2 met-2 set-25 cec-4 lem-2

n 10 10 10 10 10
peripheral	% 0.27498174 0.28393391 0.32433095 0.27035885 0.33438014
st	dev 0.15508742 0.1178846 0.15313704 0.12927037 0.08154668
intermed	% 0.32962194 0.40729479 0.42261037 0.38715812 0.37789169
st	dev 0.06548054 0.07281563 0.07054663 0.06638567 0.04499781
central	%	 0.39539632 0.3087713 0.25305867 0.34248303 0.28772817
st	dev 0.19366442 0.12723365 0.16203304 0.17888866 0.09688504

t-test	of	central	ring	compared	to	N2	hermaphrodite
0.25490246 0.09205845 0.53367557 0.13946616

t-test	of	central	ring	compared	to	X	chromosome	paint	central	ring
0.03985768

Left	chr	I	paint
N2	 set-25

n 10 10
peripheral	% 0.46685393 0.42616007
st	dev 0.17003909 0.15502068
intermed	% 0.3625494 0.4885656
st	dev 0.10119311 0.1273334
central	%	 0.17059667 0.08527433
st	dev 0.10999698 0.08684983

t-test	of	central	ring	compared	to		N2
0.07102638

Middle	chr	I	paint
N2	 set-25

n 10 10
peripheral	% 0.12857949 0.13774714
st	dev 0.12385027 0.0527957
intermed	% 0.51425098 0.46450183
st	dev 0.14121135 0.13704882
central	%	 0.35716953 0.39775103
st	dev 0.19140075 0.1152638

t-test	of	central	ring	compared	to	N2
0.57436305

t-test	of	central	ring	compared	to	X-mid	central	ring	in	N2
0.01802029

Right	chr	I	paint
N2	 set-25

n 10 10
peripheral	% 0.48173491 0.46238507
st	dev 0.14179603 0.22371649
intermed	% 0.4352292 0.40681055
st	dev 0.08409888 0.12059219
central	%	 0.08303589 0.13080437
st	dev 0.0771285 0.17828623

t-test	of	central	ring	compared	to	N2
0.45154159

S2	Table.	Statistical	analysis	of		chromosome	I	FISH	with	the	three	zone	assay.
n	indicates	number	of	nuclei	analyzed.	Average	%	of	paint	signal	in	each	ring	and	standard	deviations	are	shown.
Results	of	statistical	analysis	using	Student's	test	on	the	portion	of	the	signal	in	the	central	ring	are	below	each	data	set.
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CHAPTER 4 

An H4K16 histone acetyltransferase mediates decondensation of the X 

chromosome in C. elegans males 

 

This chapter will be submitted soon with authors Lau AC, Zhu KP, Brouhard EA, and 

Csankovszki G as “An H4K16 histone acetyltransferase mediates decondensation of 

the X chromosome in C. elegans males.” I conducted the experiments and analysis for 

all data shown aside from Figure 4.10. 

 

ABSTRACT 

In C. elegans, in order to equalize gene expression between the sexes and 

balance X and autosomal expression two steps are believed to be required. First, an 

unknown mechanism is hypothesized to upregulate the X chromosome in both sexes. 

This mechanism balances the X to autosomal expression in males, but creates X 

overexpression in hermaphrodites. Therefore, to restore the balance, hermaphrodites 

downregulate gene expression two-fold on both X chromosomes. While many studies 

have focused on X chromosome downregulation, the mechanism of X upregulation is 

not known. To gain more insight into X upregulation, we studied the effects of chromatin 

condensation and histone acetylation on gene expression levels in male C. elegans. We 

have uncovered that the H4K16 histone acetyltransferase MYS-1/Tip60 mediates 
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dramatic decondensation of the male X chromosome as measured by FISH. However, 

RNA-seq analysis revealed that MYS-1 contributes only slightly to upregulation of gene 

expression on the X chromosome. We find in vivo evidence decoupling H4K16 histone 

acetyltransferase mediated chromosome-wide decondensation from gene expression 

regulation. The X chromosome is more sensitive to MYS-1-mediated decondensation 

than the autosomes, despite similar levels of H4K16ac on all chromosomes, as 

measured by ChIP-seq. However, the distribution of H4K16ac is slightly different on the 

X compared to autosomes, and we find more peaks in intergenic regions, which may 

contribute to chromatin decondensation without affecting gene expression. These 

results indicate that H4K16ac and chromosome decondensation influence regulation of 

the male X chromosome, however other mechanisms must also play a role to achieve 

high levels of gene expression. 

AUTHOR SUMMARY 

Dosage compensation is a mechanism that occurs in organisms where females 

have two X chromosomes and males only have one. By altering gene expression levels 

on the X chromosomes, dosage compensation balances gene expression between the 

sexes. Disrupting dosage compensation leads to lethality in the affected sex. In the 

nematode C. elegans, dosage compensation is thought to be a two-step process. First, 

an unknown mechanism is hypothesized to upregulate X expression in both sexes, then 

a second, and better understood, mechanism downregulates gene expression by half 

on hermaphrodite X chromosomes. Chromosome condensation levels are generally 

believed to correlate with gene expression levels, with highly expressed chromosomal 
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regions being more decondensed than silent chromosomal regions. Here we analyze 

the role of chromosome condensation in X upregulation in males. Specifically, we show 

the chromatin modification involved in decondensing and upregulating the male X 

chromosomes in flies, also decondenses the X chromosome in male nematodes, but its 

influence on gene regulation is more modest. Therefore, we present evidence 

decoupling chromosome-wide decondensation from gene expression regulation. These 

data may shed further light on the relationship between chromosome condensation 

levels and gene expression regulation.  

INTRODUCTION 

In many organisms, sex is determined by a XY-based system, where females are 

homogametic (XX) and males are heterogametic (XY). The resulting difference in sex 

chromosome number is corrected by modulating gene expression levels chromosome-

wide in a process called dosage compensation. According to Ohno’s hypothesis, 

dosage compensation has to balances both X and autosomal (A) expression levels 

within one sex as well as gene expression between the sexes [1]. Dosage 

compensation strategies differ among species. Drosophila males upregulate their single 

X chromosome by a factor of two, leading to both an X:A gene expression balance in 

males and an equalization of X linked gene expression between the sexes [2,3]. 

Although controversial, some experimental evidence indicates that X upregulation also 

occurs in mammals and C. elegans; but in both sexes [4-9]. This upregulation balances 

X:A expression in males, however causes X overexpression in mammalian females and 

C. elegans hermaphrodites. To avoid X hyperexpression, mammalian females silence 
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one X chromosome by X inactivation [10-12], while hermaphrodite C. elegans worms 

repress both X chromosomes two-fold [13-15]. In C. elegans hermaphrodites, the 

dosage compensation complex (DCC) localizes to both X chromosomes to achieve the 

two-fold downregulation of X-linked gene expression. DCC localization leads to X 

chromosome compaction [16], as well as enrichment of H4K20me1 and the depletion of 

H4K16ac on the X chromosomes [17,18]. 

Although Ohno hypothesized the existence of an X-upregulation mechanism in 

1967 [1], it was not until recently that evidence has emerged to support the idea in both 

mammals and C. elegans. Microarray analysis in mammalian tissues and C. elegans 

show that in both sexes X-linked genes are expressed at nearly the same levels as 

autosomal genes, rather than at half the average autosomal level supporting the idea of 

X-upregulation in both males and females/hermaphrodites [6,7,19]. Initial analysis of 

RNA-seq data did not find evidence for X-upregulation, showing that the average X-

linked gene expression was roughly half that of the autosomal average [20]. However, 

more recent studies argued that the upregulation of X-linked genes is supported by 

RNA-seq data in mammals, C. elegans and Drosophila when considering the effects of 

the skewed gene content and regulation of the X chromosome [5,8]. RNA-seq in 

different nematode species found evidence both for and against X-upregulation. When 

excluding germline-repressed genes, all chromosomes showed equivalent levels of 

gene expression in both males and females/hermaphrodites, supporting the X-

upregulation hypothesis. However, when comparing the expression of one-to-one 

orthologs located on the X in one species and the autosome in another, the autosomal 
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ortholog was more highly expressed, arguing against X-upregulation [21]. Furthermore, 

global run on sequencing analysis (GRO-seq) of active transcription in wild type C. 

elegans hermaphrodites showed that on average, X-linked genes have engaged RNA 

polymerase II levels comparable to autosomal genes. This implies that the DCC 

downregulates transcription on the X chromosomes to the level of the autosomes and 

not to half the level of autosomes. In hermaphrodites lacking dosage compensation, the 

X chromosomes have higher levels of engaged RNA Pol II compared to autosomes. 

Suggesting that in the absence of X chromosome downregulation, the X chromosomes 

are indeed highly expressed [22]. A recent study proposed that in C. elegans males, the 

single X chromosome interacts with nuclear pore proteins to achieve upregulation, 

though gene expression analysis was not performed [23]. Overall, evidence suggests 

that, in the absence of the DCC, on average, X-linked genes in C. elegans are 

expressed at a higher level than autosomal genes. However, whether this high level of 

gene expression is achieved by a chromosomal wide regulatory mechanism, or on a 

gene-by-gene basis, remains unknown.  

In Drosophila, X-upregulation is male specific and is achieved by the male 

specific lethal (MSL) complex. The MSL complex binds to the male X chromosome, 

which leads to increased levels of H4K16ac by the MYST family histone 

acetyltransferase (HAT) MOF, as well as enhanced transcription [24,25]. H4K16ac 

decondenses the male X chromosome by weakening nucleosome packing in the 

chromatin fiber [26]. We recently showed that the male X chromosome is significantly 

decondensed in male C. elegans as well. Since X-repression in hermaphrodites is 
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accompanied by chromosome condensation [16], we hypothesized that X 

decondensation may accompany upregulation in males, as in flies. In this paper we 

report that the H4K16ac HAT, MYS-1, is also a key factor in regulating the architecture 

of the C. elegans male X chromosome. In contrast to the MYST protein 

MOF/KAT8/Sas2, the global H4K16 histone acetyltransferase in most organisms [27-

30], we find that in C. elegans H4K16ac is mediated by the activity of a different MYST 

family histone acetyltransferase, the homolog of Tip60, MYS-1. Interestingly, while the 

lack of MYS-1 activity dramatically changes the compaction of the X chromosomes, 

these structural changes appear to be partially independent of transcription. In animals 

depleted of MYS-1, gene expression changes are biased toward the X chromosome, 

but are relatively modest. We propose that MYS-1/Tip60 mediated H4K16ac is a key 

factor in C. elegans male X decondensation and that it possible to decouple 

chromosome-wide decondensation from changes in transcription. 

RESULTS 

MYS-1 activity mediates X chromosome decondensation in males 

We previously reported that the male X chromosome territory is significantly more 

decondensed in comparison to hermaphrodite Xs [16]. We used a 3D chromosome 

painting technique: fluorescence in situ hybridization (FISH), to visualize and measure 

the volumes of chromosome X and I territories, as described previously [16]. In 

hermaphrodites, X chromosome DNA takes up 18% of the genome, yet X chromosome 

territories are compact and occupy only 10% of the nuclear volume due to DCC-

mediated compaction. By contrast, in males the single X represents 10% of the 
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genome, whereas it occupied a significantly larger percentage than the combined 

percent occupancy by both X chromosomes in hermaphrodite nuclei (Figure 4.1A and 

B, [16,31]). On the other hand, chromosome I volumes for both hermaphrodites and 

males are closely correlated to the DNA content of chromosome I (14-16%) (Figure 

4.1D and E, [16]). These results indicate that the X chromosome in males is more 

decondensed than in hermaphrodites or what would be predicted based on DNA 

content. 

 To search for factors that might lead to decondensation of the male X 

chromosome, we tested the role of histone acetyltransferases (HATs). Acetylation of 

histones correlates with chromatin decondensation [32], and H4K16ac is known to be 

involved in X chromosome upregulation and decondensation in male Drosophila [24-26]. 

Therefore, we performed the same 3D chromosome FISH technique in male worms 

carrying mutations in or depleted of different histone acetyltransferases (HATs), MYS-1, 

MYS-2, MYS-4, and CBP-1. MYS-2 is the closest homolog of MOF [33], the fly HAT 

responsible for H4K16ac on the male X. MYS-1 and MYS-4 are other MYST family 

histone acetyltransferases [33], and CBP-1 is an unrelated HAT, the homolog of 

mammalian CBP/p300 [34]. The X chromosome territory in males carrying mutations in, 

or depleted for MYS-1 by RNAi, occupied a significantly smaller percentage than in 

control males or males depleted of the other HATs (Figure 4.1A-C). In control male 

worms, X chromosome territories were decondensed with a mean percent nuclear 

volume of 15.74±2.01%, while in mys-1(n4075) mutant males the X chromosome 

occupied 9.87±1.97%  of the nucleus (p = 5.76E-13), close to the value predicted based 
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on DNA content [16,31] (Figure 4.1A and B). Similar results were seen in male worms 

depleted of MYS-1, with the X chromosome occupying 9.71±2.68% of the nucleus 

compared to the 14.85±2.79% in control males fed bacteria carrying an empty vector (p 

= 6.01E-14). The depletion of other HATs, MYS-2, MYS-4 and CBP-1, showed no 

significant change in X chromosome territories compared to control males, occupying 

14.33±3.39%, 14.41±2.93%, and 14.64±3.01% respectively (Figure 4.1C and Figure 

4.9). Additionally, chromosome I remained unaffected in mys-1(n4075) mutants and in 

males depleted MYS-1, MYS-2, MYS-4, and CBP-1, with a mean volume of consistently 

around 14% in all backgrounds (Figure 4.1D-F and Figure 4.9). These results suggest 

that MYS-1 activity is required for X chromosome decondensation in males and that this 

activity disproportionately affects the X chromosome compared to autosomes.  

Putative worm Tip60/NuA4 complex members mediate male X chromosome 

decondensation. 

  MYS-1 is the C. elegans homolog of MYST family HAT Tip60, but also more 

distantly related to another MYST HAT, MOF, the HAT subunit of MSL and NSL 

complexes [33]. To determine whether MYS-1 acts in the context of a Tip60/NuA4-like 

complex, MOF-MSL-like complex, or MOF-NSL-like complex, we examined other 

putative members of these complexes. We found that only the depletion of Tip60/NuA4-

like complex homologs altered X chromosome territories. Similar to mys-1(RNAi) males, 

males depleted of MRG-1 (homolog of MRG15) or SSL-1 (homolog of Domino) showed 

loss of X chromosome decompaction, with X chromosome territories occupying 

11.08±2.86% (p = 3.28E-10), 10.40±2.67% (p = 2.17E-13), and 11.12±2.86% (p = 
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5.07E-10) respectively (Figure 4.1C and Figure 4.9). Similarly, in ssl-1(n4077) mutant 

males, the X chromosome territory occupied a mean percent nuclear volume of 

9.83±2.38% (p = 6.72E-12) (Figure 4.1B). However, when depleting RHA-1 (homolog of 

MOF-MSL subunit MLE) (14.42±2.83%), or WRD-5.1 (homolog of WDS) (14.68±2.59%) 

and C16A11.4 (homolog of MBD-R2) (14.66±2.64%), we do not see a loss of 

decondensation compared to control males (14.85±2.79%) (Figure 4.1C and Figure 

4.9). Chromosome I was unaffected in all backgrounds (Figure 4.1D-F and Figure 4.9). 

These results suggest that members of a putative Tip60/NuA4-like complex may work 

together to decondense the X chromosome in males. 

 The Tip60 complex in other organisms plays many roles, including cell cycle 

regulation and DNA repair [35]. Consistent with that, mys-1 and ssl-1 mutant males and 

hermaphrodites are sickly, and while maternal contribution of wild type protein and/or 

RNAi allows the hermaphrodites to survive to the adulthood, they do not produce viable 

progeny. In the case of mys-1 and ssl-1 mutant males, the maternal contribution of wild 

type protein and/or RNAi only allows them to survive to late larval/young adult stage and 

appear more sickly compared to hermaphrodites. This is consistent with MYS-1 playing 

general roles in both sexes but also having an additional function in males. 

Distance measurements confirm Tip60 mediated decondensation of the male X 

 To confirm the X decondesation phenotype using a different assay, we performed 

3D FISH with pairs of X chromosome YAC probes separated by a genomic distance of 

1.2 Mb (Figure 4.2A), the genomic distance where we previously found the most 

significant differences in control and DCC mutant hermaphrodites [16]. We analyzed this 
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pair of probes in control male and mys-1(RNAi) male hypodermal nuclei, hyp7 cells. 

These hypodermal cells are tetraploid, therefore we expected to see two spots for each 

X-linked probe [36]. We detected a significant decrease in loci distance in mys-1(RNAi) 

males compared to control males, with the median distance of 1.06 µm between loci in 

the control males and a median distance of 0.67 µm in mys-1(RNAi) males (p = 1.51E-

4) (Figure 4.2B and C). This less dispersed distribution of the two loci found in mys-

1(RNAi) males correlates with the compact X chromosomes found in the males mutated 

or depleted of the putative worm Tip60/NuA4 complex members.  

MYS-1 acetylates H4K16 

 Tip60 is known to acetylate H2AK5 and H4K5, K8, K12, and K16 in vitro [37-39]. 

To determine what histone marks depend on MYS-1 activity in vivo in C. elegans, we 

performed a combination of immunofluorescence microscopy (IF) and western blot 

analysis with antibodies specific for different histone marks in wild type and mys-

1(RNAi) or mys-1(n4075) mutant worms. First, we tested H4K16ac because of its 

known role in X upregulation and decondensation in flies [24-26]. Indeed, mutations or 

depletion of MYS-1 led to greatly reduced levels of H4K16ac by IF and western blot 

analysis. Whereas other acetylation marks on H2A, H3, or H4 showed no reduction. We 

also found that mutations in mys-2, the closest homolog of the Drosophila H4K16ac 

HAT MOF, led to no reduction in H4K16ac compared to wild type (Figure 4.10). These 

results suggest that MYS-1 is the major H4K16 HAT in C. elegans. Interestingly, 

H3K14ac and H3K56ac levels increase in MYS-1 mutants compared to wild type, 

perhaps as part of a compensatory mechanism for the loss of H4K16ac. Overall, these 
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data suggest that similar to Drosophila, H4K16ac may be a key mediator in C. elegans 

X chromosome decondensation. 

The X chromosome of XO hermaphrodites phenocopies the male X 

To test whether it is the male (XO) karyotype or the male physiology that drives X 

decondensation, we examined a mutant strain, her-1(e1520); sdc-2(y74). This strain is 

karyotypically male (XO), but is transformed into a hermaphrodite by a genetic mutation 

in the male sex determination pathway [40]. Similar to males, MYS-1 mediated X 

chromosome decondensation is evident in XO hermaphrodites. X chromosome 

territories were decondensed in her-1(e1520); sdc-2(y74) mutants occupying a mean 

percent of 15.42±2.49%, while X chromosome decondensation was lost in her-

1(e1520); sdc-2(y74) mutants depleted of MYS-1, with X chromosome territories 

occupying a mean percentage of 9.43±3.02% (p = 3.89E-8). This change in chromatin 

volumes was X-specific, with chromosome I occupying a mean percent of 14.65±2.42% 

and 14.11±2.57%, in her-1(e1520); sdc-2(y74) mutants and her-1(e1520); sdc-2(y74) 

mutants depleted of MYS-1 respectively (Figure 4.11). We demonstrate that her-

1(e1520); sdc-2(y74) hermaphrodites (hereinafter referred to as XO hermaphrodites) 

have the same X chromosome phenotypes as males. It is the male karyotype, not male 

physiology, that drives X decondensation. Since it is not possible to grow a large pure 

population of males, insead we used XO hermaphrodites in many subsequent 

experiments, because we are able to grow large pure populations of XO 

hermaphrodites. 
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X compaction and decondensation is initiated at the same time in development 

 We next wanted to determine the developmental timing of DCC-mediated X 

compaction in hermaphrodites and MYS-1-mediated X decondensation in males. We 

examined the X chromosomes in hermaphrodite and male embryos at different 

developmental stages. We found that in both hermaphrodite and male early stage 

embryos, the X chromosome volume was similar to what is expected based on DNA 

content. X chromosome compaction in hermaphrodites occurs gradually between the 

20-75-cell embryo stage (Figure 4.3A and B). Nuclei in a 9-cell embryo have 

decondensed X chromosomes occupying 16.95±3.22% whereas nuclei in a 30-cell 

embryo have more condensed X chromosomes occupying 13.45±3.16%. At the 76-cell 

stage nuclei have compact X chromosomes occupying 11.42±2.34% consistent with X 

chromosome volume in adult wild type hermaphrodite intestinal nuclei or tail tip 

hypodermal cells [16]. In males we found the onset of X decondensation occurs more 

abruptly, but close to the time when X condensation begins in hermaphrodites, between 

the 25-40-cell stage (Figure 4.3A and C). Nuclei in a 25-cell male embryo have a 

compact X chromosome occupying 10.10±1.17%, while nuclei in a 40-cell or 56-cell 

embryo have a decondensed X chromosome occupying 13.74±2.69% and 14.49±2.52% 

respectively. These results indicate that X compaction in hermaphrodites and X 

decondensation in males occur around the same time in development. The fact that 

young male embryos have condensed X chromosomes may explain why X 

decondensation was not seen in males in a previous study [23]. Interestingly, the onset 

of X decondensation is in the same time window when zygotic transcription of a 
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significant number of X-linked genes is initiated [41]. The timing also coincides with 

DCC localization to the X in hermaphrodites, which begins at the 30-50-cell stage 

[42,43], and the stage when DCC-mediated repression becomes measurable by RNA-

seq analysis [44]. These results suggests that changes in chromatin compaction may be 

related to changes in gene expression. 

Transcription is not required for the initiation or maintenance of X 

decondensation 

 The observation that the timing of X decondensation coincides with the onset of 

X-linked gene transcription [41] (Figure 4.3) which suggests that transcription drives 

decondensation. Indeed, in mammals, inhibition of transcription did lead to increased 

compaction chromosome-wide, both for an autosome [45], or for the active X 

chromosome [46]. To test this hypothesis, we examined worms depleted of AMA-1, the 

large subunit in RNA polymerase II. Lack of zygotic transcription due to AMA-1 

depletion causes embryonic lethality by 100-cell stage [47]. To test whether transcription 

is required for the initiation of X chromosome decondensation, we examined X 

chromosome territories in XO hermaphrodite embryos of different developmental 

stages, treated with control vector or ama-1 RNAi. AMA-1 depletion was effective, as 

high embryonic lethality was evident. However, H4K16ac levels did not decrease 

(Figure 4.4A). The onset of X chromosome decondensation occurs between the 25-40-

cell stage in XO hermaphrodites (Figure 4.4B), similar to that was observed in males 

(Figure 4.3). However, when transcription is severely reduced in XO hermaphrodites 

depleted of AMA-1, X decondensation still occurs between the 25- to 40-cell stage 
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(Figure 4.4B). These results suggest that the normal levels of transcription are not 

required for H4K16ac and for the initiation of X decondensation; therefore 

decondensation is not simply a consequence of high levels of transcriptional activity. 

 To test if continued transcription is needed to maintain decondensed X 

chromosome territories in adult worms, we fed L1 stage males AMA-1 RNAi and empty 

vector, and compared these worms once they reached young adulthood. AMA-1 

depletion was effective, as the fed hermaphrodites lay dead embryos. The X 

chromosome territories in adult males depleted of AMA-1 showed no significant 

difference compared to the X chromosome territories in control males (Figure 4.4C). The 

X chromosome territory occupied a mean percent nuclear volume of 15.45±2.20% in 

control males and 15.05±3.11% in ama-1(RNAi) males. This finding suggests that the 

continued high levels of transcription are not required for the maintenance of male X 

chromosome decondensation. 

H4K16ac is uniformly distributed in the nucleus 

 To examine whether the greater sensitivity of the male X to the loss of H4K16ac 

is reflected in higher levels of H4K16ac on the chromosome, we investigated the 

distribution of this mark genome-wide. We have previously shown by 

immunofluorescence that H4K16ac levels are depleted on the X chromosome in wild 

type XX animals due to dosage compensation, but not in XO males [18]. To further 

study H4K16ac binding at higher resolution, we performed ChIP-seq analysis of 

H4K16ac in wild type XX hermaphrodites and XO hermaphrodites. Using single-end 

sequencing we could uniquely align 78-92% of the 18-28 million reads to the genome, 
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for three replicates in each background. After normalization, the ratio of the fraction of 

reads that mapped to the X chromosome divided by the X chromosome genome fraction 

was 0.33 in XX hermaphrodites and 1.01 in XO hermaphrodites, mirroring previous 

immunofluorescence data [18]. To examine the peak distribution of H4K16ac, we plotted 

the chromosomal distributions of H4K16ac ChIP regions (Figure 4.5A). Consistent with 

what was previously seen by immunofluorescence, there were fewer H4K16ac peaks on 

the X compared to the autosomes, and the fraction of H4K16ac peaks on the X are 

significantly less than the fraction of the genome found on the X chromosome in XX 

hermaphrodites. In XO hermaphrodites, the distribution of H4K16ac on the X 

chromosome is almost equivalent to the genome fraction, consistent with lack of DCC-

mediated reduction of H4K16ac in this background. However, H4K16ac does not 

appear to be more highly distributed on the X chromosome compared to the autosomes 

in XO hermaphrodites. Representative genome browser views of ChIP-seq scores for 

H4K16ac were used to visualize signal intensities of H4K16ac peaks (Figure 4.5B). 

H4K16ac binding across the X chromosome is underrepresented compared to 

autosomes in XX animals, whereas X and autosomal signal intensities are similar in XO 

hermaphrodites. Additionally, H4K16ac binding sites and intensities are similar across 

the autosomes in both XX and XO hermaphrodites. On the X chromosome, H4K16ac is 

enriched in XO hermaphrodites compared to XX hermaphrodites. These results 

suggests, that despite greater sensitivity to MYS-1 activity in terms of chromosome 

condensation, the X chromosome of XO animals overall does not have higher levels of 

H4K16ac.  
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Next, we examined H4K16ac levels around the annotated genes to determine 

whether differences can instead be seen in transcribed regions. It has been previously 

reported in mouse embryonic stem (ES) cells and human CD4+T cells that H4K16ac 

peaks are seen around the transcription start site (TSS) [48-50]. In flies, H4K16ac is 

found at the TSS and accumulates towards the 3’ end of coding regions on the single 

male X, whereas on autosomes and in females H4K16ac is detected only at the 

promoters [51-54]. To examine the global profile of H4K16ac on transcribed regions, we 

created normalized z-scores for regions across gene bodies and extending 1 kb 

upstream of the TSS and 1 kb downstream of the transcription termination site (TTS). 

Metagene profiles derived from an average of all genes in the genome showed that 

H4K16ac levels on X and autosomal-linked genes peak near the TSS in both XX and 

XO hermaphrodites. In XX animals H4K16ac levels around transcribed regions are 

depleted on the X-linked genes compared to autosomal genes. Whereas in XO 

hermaphrodites H4K16ac levels on the X chromosome are almost equivalent to the 

average autosomal levels around transcribed regions (Figure 4.5C). When examining 

chromosomes separately, X-linked genes on average have lower levels of H4K16ac 

compared to all autosomes in XX animals (Figure 4.5D). In XO hermaphrodites, 

H4K16ac levels are enriched on the X compared to chromosome V however in 

comparison to the other autosomes, the levels of H4K16ac on the X are nearly 

equivalent (Figure 4.5E). These results suggest that H4K16ac is not enriched on X-

linked genes compared to the autosomal genes in XO hermaphrodites, and differences 
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in H4K16ac levels in genic regions is not the cause of the observed X-specific 

decondensation.  

To get an overview of the fraction of X and autosomal binding across the 

genomic regions, we characterized H4K16ac binding regions into four categories: 

promoter, exon, intron and intergenic. Relative to autosomes, the X chromosome has a 

higher fraction of H4K16ac peaks located in the intergenic regions in both XX animals 

and XO hermaphrodites (Figure 4.5F). In XX hermaphrodites the DCC initially binds to 

both X chromosomes via sequence-specific recruitment on X (rex) sites. These sites are 

often found in intergenic regions and many coincide with boundaries between 

topologically associating domain (TAD) boundaries. Long-range interactions between 

rex sites are proposed to reshape X chromatin structure [55]. This led us to investigate 

H4K16ac binding surrounding rex sites in XX and XO hermaphrodites. We examined 

rex sites at TAD boundaries that have the strongest rex-rex interactions as categorized 

by [55]. Genome browser views of ChIP-seq scores for H4K16ac revealed that in XX 

hermaphrodites, H4K16ac is absent in the region surrounding rex sites, while in XO 

hermaphrodites H4K16ac is often, but not present near rex sites (Figure 4.12). Although 

highly speculative, these observations suggest that the differences in H4K16ac binding 

patterns between the X and autosomes, perhaps at rex sites and at other intergenic 

sites, may contribute to the X specific decondensation.  

MYS-1 activity is biased toward upregulation of X-linked genes 

To analyze how gene expression levels are regulated on the X chromosome, we 

first performed mRNA-seq analysis and compared average gene expression levels of all 
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X and autosomal-linked genes in XX and XO hermaphrodites. In C. elegans, it is difficult 

to compare X and autosomal expression levels in whole adult worms due to X 

chromosome silencing in germ cells by a process unrelated to dosage compensation 

[56]. Our data comes from L3 animals, which have approximately 100 germ cells and 

700 somatic cells [57]. Therefore RNA levels should be dominated by somatic gene 

expression. Consistent with previous data, we observed a median X:A expression ratio 

of 0.88 in wild type XX animals and 0.86 in XO hermaphrodites (Figure 4.6A) [5,20]. 

These values are significantly higher than 0.5, which would be expected if the X 

chromosomes are expressed at the same level as autosomes in XO hermaphrodites, 

and are subjected to DCC-mediated repression in XX hermaphrodites. To exclude the 

small contribution of germline-expressed genes, we followed previous methods of 

limiting analysis to only highly expressed genes [21]. Overall gene expression levels of 

highly expressed genes are similar between X and autosomes with the median X:A ratio 

of 1.01 and 1.00 for XX and XO hermaphrodites respectively (Figure 4.6A). This data is 

consistent with previous observations [5,6,21] that X-linked genes, on average, are 

more highly expressed than autosomal genes in XO animals. 

In order to study effects of MYS-1 on X chromosome expression, we analyzed 

gene expression changes in L3 stage MYS-1 depleted XO hermaphrodites by RNA-seq 

analysis. X-linked genes that are upregulated in XO animals should be the same genes 

that are repressed by the DCC in XX animals. Therefore, to be able to compare the 

genes affected by MYS-1 in XO worms to the genes affected by DCC-mediated 

repression in XX animals, we also analyzed dpy-21(e428) mutant XX hermaphrodites. 



 

 190 

DPY-21 is a non-condensin protein member of the DCC. These null mutants (e428) are 

viable, however dosage compensation function is disrupted [58]. At the L3 stage, dpy-

21(e428) mutation caused X chromosome derepression, and we observed an increase 

in average X-linked gene expression compared to gene expression changes on 

autosomes. The median log2 ratio of expression between dpy-21(e428) worms and wild 

type XX hermaphrodites was significantly higher on the X (0.447) compared to 

autosomes (-0.080) and compared to each chromosome (Figure 4.7B, one-sided 

Wilcoxon rank-sum test p < .001). These results are similar to previously reported data 

of dosage compensation mediated gene expression changes [44,55,59]. To test how 

MYS-1 effects gene expression in XO hermaphrodites, we depleted MYS-1 by RNAi 

(Figure 4.13). Contrary to the X chromosome derepression found in dpy-21(e428) 

hermaphrodites, but consistent with role for MYS-1 in X upregulation, depleting MYS-1 

in XO hermaphrodites caused a small decrease in the average expression levels of X-

linked genes. We detected a very small decrease in average X-linked gene expression 

relative to gene expression changes on autosomes. The median log2 ratio of expression 

between mys-1(RNAi) XO hermaphrodites and control XO hermaphrodites was 

significantly lower on the X (-0.021) compared to autosomes (-0.008) and compared to 

each chromosome (Figure 4.6B, one-sided Wilcoxon rank-sum test p < .05). Thus, 

MYS-1 contributes to the observed higher level of gene expression on the X 

chromosome in XO hermaphrodites, but the effects are minor. To determine whether 

MYS-1 contributes to upregulation of the same set of genes as are repressed by the 

DCC, we plotted the log2 ratio of expression of mys-1(RNAi) XO hermaphrodites and 
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control XO hermaphrodites against the log2 ratio of expression of dpy-21(e428) mutants 

and wild type XX hermaphrodites. A larger subset of X-linked genes (24% verses 2-12% 

for genes in other quadrants) were both derepressed in dpy-21(e428) mutants and had 

reduced expression in mys-1(RNAi) XO hermaphrodites, whereas autosomal genes did 

not show such an effect (Figure 4.6C). Additionally, the X-linked genes that are most 

affected by the DCC in hermaphrodites are also more highly upregulated in XO 

hermaphrodites by MYS-1. The top 5%, top 10%, and top 15% of highly differentially 

expressed X-linked genes identified in dpy-21(e428) mutants are also more highly 

differentially expressed in mys-1(RNAi) XO hermaphrodites (Figure 4.6D). We conclude 

that MYS-1 activity causes a mild upregulation of X-linked genes and that the genes 

most affected by lose of dosage compensation in dpy-21(e428) mutants are also the 

genes whose expression is most upregulated by MYS-1 in XO hermaphrodites. 

However, MYS-1 activity alone does not explain the significantly higher level of gene 

expression on the X chromosome of XO animals. These findings also indicate the 

effects of MYS-1 on chromosome condensation and on gene expression regulation can 

largely be decoupled. 

Similar correlations of H4K16ac and gene expression on the X and autosomes 

 We next wanted to compare the relationship between H4K16ac binding and gene 

expression on the X to the relationship on autosomes. We generated H4K16ac profiles 

for gene bodies for X and autosomal-linked genes subdivided by quartiles of expression. 

In both XX and XO hermaphrodites, regardless of whether they were X-linked genes or 

autosomal genes, H4K16ac positively correlated with gene expression (Figure 4.7A), 
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consistent with the patterns of H4K16ac previously reported in mouse ES cells and 

human CD4+T cells, and with the involvement of H4K16ac in transcriptional activation 

[48-50]. We note, however, that the top two quartiles had essentially identical levels of 

H4K16ac on the X chromosome, suggesting that the most highly expressed genes on 

the X do not have exceptionally high levels of H4K16ac. We then plotted the average 

ChIP score within 500 bp upstream of the TSS against the RNA levels of X and 

autosomal genes for pairwise comparisons between H4K16ac binding and gene 

expression (Figure 4.7B and C). We found slight dependencies between H4K16ac and 

gene expression, consistent with an overall correlation between the two. However, 

overall X and autosomal genes have similar relationships between H4K16ac and 

transcription.  

 Lastly, to determine whether the genes whose expression is most affected by 

loss of MYS-1 activity have higher levels of H4K16ac, we examined the top 15% 

downregulated X-linked genes in mys-1(RNAi) XO hermaphrodites and X-linked genes 

that were not differentially expressed. We found that the levels of H4K16ac were similar 

in these two groups, suggesting there is no correlation between regulation by MYS-1 

and H4K16ac levels (Figure 4.7D). This observation is consistent with the interpretation 

that MYS-1 has large effects on chromosome condensation levels, but only small effects 

on gene expression.  

DISCUSSION 

In this study, we sought to investigate the relationship between X chromosome 

specific higher order structural changes and gene expression levels on the highly 
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expressed male X chromosome in C. elegans. According to Ohno's hypothesis, dosage 

compensation in C. elegans is achieved in two steps, X-upregulation in both sexes 

followed by the DCC-mediated repression of the X in hermaphrodites. While many 

studies have focused on X chromosome downregulation, it is currently unknown how 

high levels of gene expression on the male X chromosome are achieved. We 

established that male X chromosomes are significantly decondensed, relative to what 

would be predicted based on DNA content. This observation, and the generally held 

belief that chromatin decondensation and transcriptional activation correlate [60], raised 

the possibility that MYS-1 mediated X decondensation may be a key event in the X 

upregulation process. X chromosome decondensation requires the activity of members 

of a Tip60-like complex, including the histone acetyltransferase, MYS-1, the major 

H4K16 HAT in nematodes (Figure 4.8). Interestingly, H4K16ac levels are nearly 

equivalent on the X and autosomes in XO hermaphrodites; however they are more 

highly distributed in intergenic regions on the X, potentially contributing to the 

decondensation phenotype. When MYS-1 is depleted in XO hermaphrodites, gene 

expression on the X chromosome is repressed to a slightly greater degree than on 

autosomes. Together, our results suggest that MYS-1 mediated H4K16ac is a key factor 

in X decondensation and plays a modest role in X-upregulation in male C. elegans. 

Additionally, our data decouples H4K16 HAT-mediated decondensation from gene 

expression regulation in vivo on an endogenous chromosome. 
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MYS-1 is a MYST family histone acetyltransferase with specificity for H4K16 

In most species, the major H4K16 histone acetyltransferase is MOF/KAT8/Sas2 

[27-30]. However we find that MYS-1, homolog of histone acetyltransferase Tip60, is 

responsible for acetylating H4K16 in C. elegans. Both MOF and Tip60 are MYST family 

histone acetyltransferases. MYST proteins are defined by their catalytic MYST domain, 

which contains an acetyl-coenzyme A binding domain and a C2HC-type zinc finger. 

Additionally, MOF and Tip60 fall under the same subfamily of MYST proteins, sharing a 

similar chromodomain in addition to the MYST domain [33,35,61]. Although structurally 

similar, MOF and Tip60 have different biological functions. In yeast, mice and flies, the 

acetylation of H4K16ac mediated by MOF homologs is required for maintaining open 

chromatin structure [27,29,62,63]. Mammalian MOF mutant embryos have cells with 

abnormal chromatin morphology prior to undergoing death by apoptosis [62]. In flies, 

MOF can reduce negative supercoiling and weaken nucleosome packing, which causes 

chromatin decondensation [63-65]. In conjunction with regulating chromatin structure 

and morphology, MOF plays a role in gene regulation. The yeast MOF homolog Sas2 

mediates H4K16ac and regulates the boundary between transcriptionally active and 

silent telomeric chromatin [17,66]. In Drosophila, MOF appears to be a global 

transcriptional regulator when acting in the NSL complex, which can acetylate H4K5, 

H4K8 and H4K16ac [67]. The MOF-NSL complex binds to a subset of active promoters 

and regulates housekeeping genes genome wide [68-70]. In addition to global 

transcription, MOF plays a specialized role in dosage compensation in flies and 

mammals. MOF hyperacetylates H4K16ac on the male X in flies [24] and MOF may 
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play a role in X uprgulation in mammals as well [5,7,8,19]. We show that in C. elegans 

H4K16ac plays a similar role in X chromosome decondensation, and gene regulation, 

although effects on gene regulation are minor. However, the H4K16ac HAT appears to 

be Tip60, rather than MOF. C. elegans homologs of the MOF-MSL complex members 

(other than RHA-1, distantly related to MLE) are lacking or have not been uncovered. 

MRG-1, the chromodomain protein related to MSL subunit MSL3, is more closely related 

to MRG15 (Tip60 complex subunit) than to MSL3 [71]. Therefore, C. elegans may not 

have a MOF-MSL-like complex, and instead uses a Tip60-like complex to acetylate 

H4K16. 

In vitro, Tip60 can acetylate H2A (K5), H3 (K14), H4 (K5, K8, K12 and K16), as 

well as histone variants and non-histone proteins [38,72]. We found that MYS-1 is 

responsible for H4K16ac in vivo. Tip60 activity can also play a role in gene regulation; 

however, it contributes to both transcriptional activation and transcriptional repression 

[35]. Tip60, like MOF, binds to promoters of many genes in mammals, often with other 

HATs [49,73-75], consistent with a role in regulating transcription. However, Tip60 is 

better known for its global role in different cellular activities. It is a key regulator in cell 

cycle progression and DNA damage response, and has the ability to acetylate key 

transcription factors involved in cell growth, DNA damage and apoptosis, such as c-Myc 

and p53 [76,77]. In addition to acetylating these transcription factors, Tip60 can be 

recruited by these transcription factors to acetylate histones [78,79]. MYS-1, the C. 

elegans homolog of Tip60 has also been implicated in cell cycle regulation [80] and cell 

fate maintenance [81]. Overall, Tip60 is a protein that plays a role in several biological 
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processes by affecting the functions of different targets using its acetyltransferase 

activity as well as its protein-protein interactions. We find that the C. elegans homolog of 

Tip60, MYS-1, also functions in similar roles as the MYST HAT MOF. We postulate that 

in C. elegans, the MYS-1 complex may perform the function of both the Tip60 complex 

and the MOF complex, as has been suggested previously in fission yeast [82]. 

Chromosome decondensation, histone acetylation and gene expression 

 Chromatin decondensation and acetylation are thought to correlate with 

transcriptional activation [60]. An early study found that inhibiting transcription of the 

Balbani ring genes in polytene chromosome of dipteran insects caused the chromatin 

fibers to thicken and form condensed chromatin, illustrating a direct correlation between 

chromosome decondensation and transcription and suggests transcription precedes 

chromosome conformation [83]. In mouse ES cells, the induction of HoxB gene cluster 

expression was accompanied by an increase in active histone modifications and visible 

decondensation of the chromatin [84]. Studies of the β-globin loci have also provided 

evidence for the correlations between transcription and nucleosome modifications. In 

mice, humans and chickens, active β-globin loci are enriched in hyperacetylated H3 and 

H4, and H3K4me2, while the silent domain neighboring the chicken β-globin locus has 

hypoacetylated histones and H3K9me2 [85-87]. Additionally, in vitro studies have 

provided extensive evidence showing H4K16ac inhibits chromatin fiber compaction by 

weakening nucleosome-nucleosome interactions, which is thought to create a more 

permissive state for transcription [32,66,88,89]. A more global example of chromosome 

decondensation and gene expression regulation is evident in fly dosage compensation. 
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MOF-mediated acetylation decondenses the X chromosome which hyperactivates the 

single male X [24,25]. 

To further understand the relationships between histone acetylation and 

chromosome decondensation, we analyzed how H4K16ac affects X chromosome 

structure and X-linked gene expression. We observed that in mutant or MYS-1-depleted 

XO worms, the absence of MYS-1 activity compacts the single X chromosome and 

leads to decreased levels of X-linked gene expression. Although H4K16ac is uniformly 

distributed on the X and autosomes in XO animals, the loss of H4K16ac results in no 

detectable change in autosomal compaction. Therefore, H4K16ac and chromosome 

decondensation correlate on the X chromosome but not on the autosomes. Similar to 

what we see in autosomes, a recent study in mouse ES cells found that broad domains 

of histone acetylation are lost during ES cell differentiation, but result in no change in 

compaction [48]. We find increased levels of H3K14ac and H3K56ac in MYS-1 mutants 

compared to wild type worms. It is possible that the lack of condensation defects on the 

autosomes is due to these marks compensating for the loss of H4K16ac. This suggests 

that H4K16ac and chromatin compaction are not always correlated. 

Interestingly, the X chromosome is more sensitive to MYS-1-mediated 

decondensation than autosomes (Figure 4.1), despite near equal levels of H4K16ac 

levels (Figure 4.5). We do find that H4K16ac is more concentrated on intergenic regions 

on the X compared to autosomes. Some intergenic regions, including rex sites at TAD 

boundaries, are known to influence X chromosome structure and their acetylation may 

contribute to decondensation of the X chromosome. Alternatively, the X chromosome 
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may be more sensitive to histone acetylation mediated changes in compaction due to its 

unique properties. For example, MNase-seq analysis in C. elegans has found that on 

average X-linked gene promoters have higher nucleosome occupancy compared to 

autosomal promoters [90]. In addition, the autosomes have two large heterochromatic 

regions associated with the nuclear lamina at their ends, while the X chromosome only 

has one such region [91]. Due to these and other differences, the X may respond 

differently to changes in acetylation levels than the autosomes.  

In addition, our results largely decouple chromatin decondensation from changes 

in transcription. We find a greater degree of X chromosome compaction compared to 

change in X-linked gene expression in MYS-1 depleted XO worms, suggesting that 

chromatin compaction and gene expression do not necessarily correlate. Other studies 

have also shown that chromatin decondensation, histone acetylation and transcriptional 

activation are not always perfectly correlated. In the absence of transcriptional 

activation, chromatin decondensation is sufficient to alter nuclear organization in mouse 

ES cells [92], indicating that transcriptional activation and chromatin decondensation 

can act separately in mouse ES cells. Additionally, some mutant versions of acidic 

activator domains can induce chromatin decondensation without activating transcription, 

and they are thought to do so by recruiting HATs and chromatin modifying proteins [93]. 

Suggesting again that gene expression and decondensation can be decoupled. The 

increase in other acetylation marks may also be enough to compensate for the loss of 

H4K6ac to minimize gene expression changes. 
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Whether histone acetylation and chromatin decompaction are the cause or 

consequence of transcriptional activity is also debated. We find the male X chromosome 

decondenses at the same time as the onset of X-linked gene transcription, signifying 

that transcription may drive chromatin decondensation. However, when we deplete 

AMA-1, the large subunit of RNA Pol II, histone acetylation levels did not change, and 

decondensation was not disrupted. Therefore, MYS-1 is able to mediate male X 

chromosome decondensation even when transcription is severely reduced. These 

results are different from prior studies in which inhibition of transcription led to 

condensation of chromosome territories [45,46]. Overall, our results suggest that 

increased transcription and chromatin decondensation may create a permissive 

chromatin state, but they are not sufficient to cause transcriptional activation. 

Furthermore, high levels of transcription are not necessary for large-scale changes in 

chromatin compaction. 

X-upregulation 

 Ohno hypothesized that X chromosome gene expression between the sexes 

must be balanced, as well as X to autosomal expression within a sex [1]. X upregulation 

is the mechanism that balances the X to autosomal gene expression in males. In 

Drosophila, X upregulation occurs in only males, whereas in mammals and C. elegans 

X upregulation is hypothesized to occur in both sexes. Whether this is accomplished by 

a chromosome-wide upregulatory mechanisms or instead by a gene-by-gene basis, 

remains unclear. Our study adds to the body of evidence concerning the regulation of 

the X chromosome, and uncovers both similarities and differences between nematodes 
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and other organisms. Our data shows that the C. elegans H4K16 HAT, MYS-1, is 

decondensing the male X chromosome (Figure 4.1), similar to what is observed on the 

fly male X [63]. Mof mutant mice [62] and ES cells [94] also exhibit abnormal chromatin 

condensation, although more globally, and not just limited to the X chromosome. It 

should be noted however; that in all cases, including our data, it is unclear whether the 

condensation defects are due to the lack of H4K16ac, or some other activity attributable 

to the HAT. Therefore, the H4K16 HAT appears to have major effects on chromatin 

condensation in many organisms. However, the H4K16 HAT in C. elegans appears to 

act in a Tip60-like complex, rather than a MOF-MSL-like complex.  

 In nematodes, MYS-1 contributes only slightly to the observed high levels of 

gene expression on the X chromosome in XO hermaphrodites. The effects of gene 

expression in mys-1 depleted worms are minor, although they appear to be biased 

toward the X chromosomes (Figure 4.6). This result is very different from flies, where a 

mutation in mof causes a two-fold effect on gene expression on the X chromosome [24], 

but is comparable to the magnitude of the effect of mof depletion in mouse ES cells [4]. 

Again, compensation by other acetylation marks may contribute to the minimal effects 

on gene expression.  

Because H4K16ac binding patterns and levels are similar on the X and the 

autosomes, we believe the MYS-1 activity affecting X-linked gene expression is also 

acting genome wide in C. elegans. When examining the relationship between H4K16ac 

and gene expression, we observe correlations similar to those found in CD4+T cells, 

undifferentiated ES cells, and early C. elegans embryos [48,50,95], with higher levels of 
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H4K16ac at the promoter and transcribed regions of highly transcribed genes. The 

correlations are similar on the X and autosomes, although the levels of H4K16ac are 

almost the same in the top two quartiles of expressed X-linked genes. Dependencies 

between H4K16ac and gene expression levels appear to be similar on the X and 

autosomes, but genes with similar expression levels can have widely different levels of 

H4K16ac.  

Overall, although MYS-1 appears to be a key factor in C. elegans X chromosome 

regulation (at least at the level of chromosome condensation), there must be additional 

X-specific factors that affect gene regulation. In flies, it is believed that the active regions 

in the Drosophila genome associates with nuclear pore factors and are targeted to a 

special compartment [96]. A recent study in C. elegans males proposed that X 

upregulation is achieved through the interaction between the male X and nuclear pore 

proteins [23]. These, and other, X-specific factors may act along with MYS-1 activity to 

result in high levels of gene expression on the single male X.  

Conclusions 

Although the hypothesis of X upregulation has been around for several decades, 

it is not until recently that evidence emerged showing that the X chromosomes are in 

fact highly expressed in mice and worms. Our gene expression analysis is consistent 

with the highly debated hypothesis that X upregulation occurs in C. elegans males, as 

we see an X:A expression ratio much higher than 0.5. We show that a TIP60-like 

complex acetylates H4K16 and decondenses the X in C. elegans males, and we 

suggest that this decondensation contributes in part to the upregulation of gene 
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expression on the chromosome. H4K16ac is a key factor in male-specific X upregulation 

in Drosophila [24,25] and has been implicated in the same process in mammals [4], 

suggesting conservation of mechanisms. While the high degree of X compaction in 

MYS-1 mutants does not always lead to low gene expression, we do observe a 

decrease in X-linked expression. Thus, we also present the first endogenous 

chromosome-wide data decoupling the degree of decondensation from the level of gene 

expression change. Future studies will examine the additional factors that directly 

contribute to regulation of X-linked gene expression in males.  

MATERIALS AND METHODS 

Strains 

All strains were maintained on NGM agar plates with E. coli (OP50) as a food 

source, using standard methods [97]. Strain include: N2 Bristol strain (wild type); 

TY4403 him-8(e1489) IV; MT13172 mys-1(n4075) V/nT1 [qIs51]; MT12963 ssl-

1(n4077) III/eT1; VC1931 mys-2(ok2429)/hln1 [unc-101(sy241)] I; TY1072 her-1(e1520) 

V; sdc-2(y74) X; and EKM71 dpy-21(e428). 

RNA Interference 

E. coli HT115 bacteria expressing double stranded RNA for mys-1, mys-1, mys-

4, cbp-1, mrg-1, ssl-1, pbrm-1, rha-1, wdr-5.1, c16A11.4, ama-1 or vector control 

(polylinker), were used for feeding RNAi using the Ahringer laboratory RNAi feeding 

library [98]. To obtain AMA-1 depleted adults, one generation feeding RNAi was 

performed as follows: L1-stage him-8(e1489) larvae were placed on plates seeded with 

ama-1 or control RNAi bacteria and were grown to adulthood and examined. To obtain 
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AMA-1-depleted embryos, her-1(e1520) V; sdc-2(y74) X L3 stage larvae were placed on 

plates seeded with ama-1 or control RNAi bacteria and grown to adulthood. The 

progeny (F1 generation) embryos were examined. Two generation feeding RNAi (all 

other analysis) was performed as follows; P0 adults from one generation feeding RNAi 

were transferred to new RNAi plates to produce progeny for 24 hours. These progeny 

(F1 generation) were grown to adulthood and examined. 

Fluorescence in situ hybridization (FISH) 

 To generate FISH probe templates, purified yeast artificial chromosome (YAC) 

DNA were amplified by degenerate oligonucleotide primed PCR [99,100]. The labeled 

chromosome-paint probes were prepared and FISH was preformed as previously 

described [16,100].  

Microscopy and Image Analysis 

 Detailed description of image analysis was previously described [16]. To 

summarize: masks (intensity threshold value) were applied over an image to distinguish 

real signal from background for all nuclei for each channel. DAPI mask was used as the 

total volume of the nucleus. The percent nuclear volume was obtained by dividing the 

volume of the specific chromosome over the volume of the whole nucleus. The 

percentages were averaged over all nuclei within an experimental set to calculate the 

final mean percentages. Descriptive statistics (standard deviation and sample size) 

were also calculated. Sample sizes are listed in each figure. Error bars shown are 

means +/- 1 standard deviation of the mean. Percent volume differences were evaluated 

by unpaired (two sample) Student’s T-test. 
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 Distance measurements between two probes were described previously [16]. In 

brief the distance between the two probes (containing DNA amplified from YACs: either 

Y44D2 or Y108G6) was the distance between two separate spots closest to one 

another. The final median and interquartile range of the data is shown in boxplots. 

Sample sizes are listed in each figure. Whiskers shown indicate distribution from 

minimum to maximum. Probe distance differences were evaluated by unpaired (two 

sample) Student’s T-test. 

Immunofluorescence 

Immunofluorescence experiments were performed as described [101]. Young 

adult worms were dissected in 1X sperm salts (50 mM Pipes pH 7, 25 mM KCl, 1 mM 

MgSO4, 45 mM NaCl and 2 mM CaCl2, supplemented with 1 mM levamisole), fixed in 

4% paraformaldehyde in 1X sperm salts for 5 minutes and frozen on dry-ice for 10 

minutes. Slides washed three times in PBST before incubation with diluted primary 

antibodies in a humid chamber, overnight at room temperature. Slides were then 

washed three times for 10 minutes with PBST, incubated for 1 hour with diluted 

secondary antibody at 37°C, washed twice for 10 minutes with PBST, and once for 10 

minutes with PBST plus DAPI. Slides were mounted with Vectashield (Vector Labs). 

Antibodies were used at the following concentrations: H4K16ac (Millipore 07-329) 

at1:500 and H2A5ac (Abcam ab1764) at 1:100. 

Western blot analysis 

 Adult mutant or RNAi-treated worms were collected. Equal volume of sample 

buffer (0.1 M Tris pH 6.8, 7.5 M urea, 2% SDS, 100mM β-ME, 0.05% bromophenol 
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blue) was added to worms. Lysates were prepared by heating worms to 65°C for 10 

minutes, sonicating for two 30 second bursts, heating to 65°C for 5 minutes, heating to 

95°C for 5 minutes, then kept at 37°C until loading onto SDS-PAGE gel. Proteins were 

transferred to nitrocellulose and blotted with the following antibodies: H4K16ac (Millipore 

07-329) at 1:250, H3K9ac (Abcam ab4441) at 1:1000, H3K14ac (Abcam ab5946) at 

1:500, H3K56ac (Millipore 07-677) at 1:4000, H4K5ac (Upstate 07-327) at 1:500, 

H4K8ac (Abcam ab5823) at 1:2000, β tubulin (Novus NB600-936) at 1:1000 and Anti-

MYS-1 antibodies were raised in rabbit against the N-terminal 28 amino acids 

(TEPKKEIIEDENHGISKKIPTDPRQYEK) at 1:500. 

Worm growth and collection 

Strains were maintained at 20°C on NGM agar plates. Worm populations were 

synchronized by bleaching gravid adults and allowing the embryos to hatch overnight. 

Larval (L1s) worms were plated and grown for 24 hours at 20°C on NGM plates for L3 

collection. For MYS-1 RNAi, synchronized L1s were placed on seeded RNAi plates and 

grown to gravid adults. Embryos were collected by bleaching and hatched overnight. 

Larval (L1s) worms were plated and grown for 24 hours at 20°C on RNAi plates for L3 

collection. 

Chromatin Immunoprecipitation (ChIP) 

 ChIP preparation is a variation of two previous described methods [102,103]. 

Frozen synchronized L3 worm pellets were crushed (pulverized by grinding in liquid 

nitrogen with a mortar and pestle) and crosslinked in ten volumes of 1.1% formaldehyde 

in PBS plus protease and phosphatase inhibitors. The lysate was rotated at room 
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temperature for 20 minutes. 2.5 M glycine was added to a final concentration of 125 mM 

and rocked gently for 5 minutes at room temperature to quench formaldehyde. Lysate 

was centrifuged at 4000 x g for 3 minutes and the supernatant was removed. The pellet 

was resuspended in 10 ml of cold PBS plus protease and phosphatase inhibitors and 

pelleted by spinning at 4000 x g for 3 minutes. The pellet was resuspended in one 

volume of FA buffer (50 mM HEPES/KOH pH 7.5, 1 mM EDTA, 1% Triton X-100, 0.1% 

sodium deoxycholate; 150 mM NaCl) plus protease and phosphatase inhibitors. To 

obtain chromatin fragments lysate was sonicated on high, for 30 seconds on 30 

seconds off, two times for 10 minutes and one time for 15 minutes. 50 ul of the lystate 

was used to make ChIP input library. 3 ug of anti-H4K16ac (Millipore 07-329) was 

added to 400 ul of lysate (containing approximately 50 ug DNA). The ChIP mix was 

rotated overnight at 4°C. 50 ul of protein G Dynabeads (Invitrogen) was added and 

rotated for 2 hours. The beads were washed two times in FA buffer for 5 minutes. Then 

washed for 5 minutes in FA-1 M NaCl buffer (50 mM HEPES/KOH pH 7.5, 1 mM EDTA, 

1% Triton X-100, 0.1% sodium deoxycholate; 1 M NaCl) and 10 minutes in FA-500 mM 

NaCl buffer (50 mM HEPES/KOH pH 7.5, 1 mM EDTA, 1% Triton X-100, 0.1% sodium 

deoxycholate; 500 mM NaCl). The beads were then washed for 10 minutes in TEL 

buffer (0.25 M LiCL, 1% NP-40, 1% sodium deoxycholate, 1 mM EDTA, 10 mM Tris-

HCL pH 8.0) and then two times in TE (10 mM Tris-HCL pH 8.0, 1 mM EDTA) for 5 

minutes. To elute the immunoprecipitation product and reverse crosslink, beads were 

incubated with 400 ul of ChIP Elution Buffer (1% SDS, 250 mM NaCl, 10 mM Tris pH 

8.0, 1 mM EDTA) at 65°C for 2 hours with agitation ever 30 minutes (IP input lysate was 
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treated similarly to reverse crosslink). DNA was purified using Qiagen PCR purification 

kit. 

ChIP-seq 

Raw data files, wiggle tracks of ChIP enrichment per base pair, and peak bed 

files are provided at Gene Expression Omnibus database 

(http://www.ncbi.nlm.nih.gov/geo/) under accession number [GSE84307]. ChIP DNA 

were ligated to Illumina adaptors and amplified by PCR. Library DNA was between 200-

550 bp in size. Single-end 50 bp sequencing was performed using Illumina HiSeq-2500 

High-Output. Reads were trimmed for quality using the Trim Galore! v0.3.7 program 

from Babraham Bioinformatics 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and aligned to the C. 

elegans genome version WS235 with Bowtie 1.1.1 [104]. We allowed up to two 

mismatches, returned only the best alignment, and restricted a read to map to at most 

four locations in the genome. MACS2 version 2.1.0 [105] was first used to filter 

duplicates reads and to correct for bias downsampling was performed in either the input 

or the ChIP. Multiple replicates (input and ChIP) were input into MACS2 callpeak with 

options --broad and p-value (-p 1E-5) for peak calling and genome-wide coverage. 

MACS2 coverage reads were normalized to the genome-wide median coverage, 

excluding the mitochondrial chromosome, and final ChIP enrichment scores per base 

were obtained by subtracting the input coverage. For XO hermaphrodites, X and 

autosomes were normalized separately, due to having half the amount of X reads 

compared to autosomes. MACS2 coverage reads on the autosomes were normalized to 
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the genome-wide median coverage, whereas MACS2 coverage reads on X 

chromosome were normalized to half the genome-wide median coverage and final ChIP 

enrichment scores were combined after normalization. Lastly, datasets were 

standardized by z-score transformation of the ChIP enrichment values based on the 

presumed background. Annotation of ChIP binding sites was done using the cis-

regulatory element annotation system (CEAS) [106] with default settings. The ChIP-seq 

data was visualized by IGV browser [107]. 

mRNA-seq 

Raw data files, RNA-seq RPKM values, and differential expression analysis 

values are provided at Gene Expression Omnibus database 

(http://www.ncbi.nlm.nih.gov/geo/) under accession number [GSE84307]. For RNA 

preparation, ten volumes of Trizol was added. Samples were vortexed 30’’/ice 30’’ for 5 

minutes total. RNA was extracted and precipitated using the manufacturer’s instructions. 

The Qiagen RNeasy kit was used to clean total RNA. The TruSeq RNA Library 

Preparation Kit was used to prepare non-stranded mRNA-seq libraries. Single-end 50-

bp sequencing was performed using Illumina HiSeq-2000. Reads were trimmed for 

quality using Trim Galore! and aligned to the C. elegans genome version WS235 with 

Tophat v2.0.13 [108] using default parameters, allowing up to 20 hits for each read. 

Gene expression was quantified using Cufflinks v2.2.1 [109] with use of “rescue 

method” for multi-reads and supplying gene annotation for WS235. Gene count 

estimation was performed using HTSeq-count tool v0.6.0 in the default “union” mode 

[110]. Differential expression analysis was performed using DESeq2 v1.6.3 [111] in R 
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version 3.2.3. All analyses were performed with genes that had average expression 

level above 1 RPKM (reads per kilobase per million, as calculated by Cufflinks).  

ACKNOWLEDGEMENTS 

We thank members of the Csankovszki lab for helpful project discussions and 

Jianhao Jiang for critical reading of the manuscript. We also thank the Caenorhabditis 

Genetics Center, which is funded by the NIH National Center for Research Resources, 

for some nematode strains used in this work. The work was supported by NIH grant R01 

GM079533 to G.C. 

 
 
 



 

 210 

 

m
ys
-1
(n
40
75
)

MergeX Chromosome

my
s-1
(R
NA
i)

0%

5%

10%

15%

20%

25%

co
ntr

ol

my
s-4
(R
NA
i)

%
 o

f n
uc

le
ar

 v
ol

um
e 

oc
cu

pi
ed

 b
y 

X

cb
p-1
(R
NA
i)

my
s-2
(R
NA
i)

***

ss
l-1
(R
NA
i)

mr
g-1
(R
NA
i)

*** ***

htz
-1(
RN
Ai)

wd
r-5
.1(
RN
Ai)

rha
-1(
RN
Ai)

c1
6A
11
.4(
RN
Ai)

TIP60/NuA4HATs MOF-MSL MOF-NSL

my
s-1
(R
NA
i)

0%

5%

10%

15%

20%

25%

co
ntr

ol

my
s-4
(R
NA
i)

cb
p-1
(R
NA
i)

my
s-2
(R
NA
i)

%
 o

f n
uc

le
ar

 v
ol

um
e 

oc
cu

pi
ed

 b
y

ch
ro

m
os

om
e 

I

ss
l-1
(R
NA
i)

mr
g-1
(R
NA
i)

htz
-1(
RN
Ai)

wd
r-5
.1(
RN
Ai)

rha
-1(
RN
Ai)

c1
6A
11
.4(
RN
Ai)

HATs MOF-MSL MOF-NSLTIP60/NuA4

A

D E

F

B

C

my
s-1
(n4
07
5)

0%

5%

10%

15%

20%

25%

%
 o

f n
uc

le
ar

 v
ol

um
e 

oc
cu

pi
ed

 b
y 

X

******
***

ss
l-1
(n4
07
7)

my
s-1
(n4
07
5)

0%

5%

10%

15%

20%

25%

ss
l-1
(n4
07
7)

%
 o

f n
uc

le
ar

 v
ol

um
e 

oc
cu

pi
ed

 b
y

ch
ro

m
os

om
e 

I

m
ys
-1
(n
40
75
)

Chromosome I Merge



 

 211 

Figure 4.1 MYS-1 and putative worm Tip60/NuA4-like complex members mediate X 
chromosome decondensation. (A-C) Adult mutant and RNAi treated male intestinal nuclei 
stained with X-paint FISH (red) to label X chromosome territories and DAPI (blue) to label DNA. 
(A) Representative stained nuclei of wild type hermaphrodite, wild type males, and mys-
1(n4075) males. Scale bars equal 5 µm. (B) Quantification of the percentage of nuclear volume 
occupied by X in wild type hermaphrodites (n = 27), wild type males (n = 27), mys-1(n4075) 
males (n = 20), and ssl-1(n4077) males (n = 20). Error bars indicate standard deviation. 
Asterisks indicate level of statistical significance by t-test analysis (***, P < .001). (C) 
Quantification of the percentage of nuclear volume occupied by X in vector RNAi (n = 77), 
histone acetyltransferases (HATs), and histone acetyltransferases complex member 
(Tip60/NuA4, MOF-MSL, MOF-NSL) RNAi treated males. mys-1(RNAi) (n = 30), mys-2(RNAi) (n 
= 24), mys-4(RNAi) (n = 27), cbp-1(RNAi) (n = 26), mrg-1(RNAi) (n = 40), ssl-1(RNAi) (n = 40), 
pbrm-1(RNAi) (n = 40), rha-1(RNAi) (n = 40), wrd-5.1(RNAi) (n=40), and c16A11.4(RNAi) (n = 
40). Error bars indicate standard deviation. Asterisks indicate level of statistical significance by t-
test analysis (***, P < .001). (D-F) Adult mutant and RNAi treated male intestinal nuclei stained 
with chromosome I paint FISH (red) to label chromosome I territories and DAPI (blue) to label 
DNA. (D) Representative stained nuclei of wild type hermaphrodite, wild type males, and mys-
1(n4075) males. Scale bars equal 5 µm. (E) Quantification of the percentage of nuclear volume 
occupied by chromosome I in wild type hermaphrodites (n = 20), wild type males (n = 17), mys-
1(n4075) males (n = 18), and ssl-1(n4077) males (n = 16). Error bars indicate standard 
deviation. (F) Quantification of the percentage of nuclear volume occupied by chromosome I in 
vector RNAi (n = 43), histone acetyltransferases (HATs), and histone acetyltransferases 
complex member (Tip60/NuA4, MOF-MSL, MOF-NSL) RNAi treated males. mys-1(RNAi) (n = 
21), mys-2(RNAi) (n = 23), mys-4(RNAi) (n = 17), cbp-1(RNAi) (n = 28), mrg-1(RNAi) (n = 17), 
ssl-1(RNAi) (n = 17), pbrm-1(RNAi) (n = 20), rha-1(RNAi) (n = 20), wrd-5.1(RNAi) (n=17), and 
c16A11.4(RNAi) (n = 20). Error bars indicate standard deviation. 
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Figure 4.2 Male X chromatin decondensation is evident at the genomic scale of 1.2 Mb.  
(A) FISH probe pairs across the X chromosome. The position of YAC probes (red and white 
boxes) used in FISH is indicated. (B) 2D projections of 3D stacked images. Representative 
stained tetraploid nuclei of adult males fed vector RNAi and mys-1(RNAi). Nuclei stained with 
probes pairs across the X chromosome (red and white) and counterstained with DAPI (blue) to 
label DNA. Scale bars equal 1 µm. (C) Boxplots indicating the distribution of 3D loci distances of 
male vector RNAi and mys-1(RNAi) diploid nuclei. Boxes show the median and interquartile 
range of the data. Asterisks indicate level of statistical significance by t-test analysis (***, P < 
.001). 
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Figure 4.3 Hermaphrodite X chromosome compaction and male X chromosome 
decondensation occur simultaneously in development. Hermaphrodite and male embryos 
stained X-paint FISH (red) to label X chromosome territories and DAPI (blue) to label DNA. (A) 
Plot of quantified percentages of nuclear volume occupied by X in wild type hermaphrodite 
embryos (black) and male embryos (gray). Each point represents one embryo (n = 10 nuclei per 
embryo). Error bars indicate standard deviation. (B) Representative stained nuclei of wild type 
hermaphrodites at various developmental stages (9-cell, 30-cell, 76-cell). Scale bars equal 5 
µm. (C) Representative stained nuclei of male him-8(e1489) animals at various developmental 
stages (25-cell, 40-cell, 56-cell). Scale bars equal 1 µm. 
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Figure 4.4 Transcription is not required for the initiation or maintenance of X 
decondensation. (A) H4K16ac immunofluorescence stained nuclei of XO embryos and XO 
embryos fed ama-1(RNAi). H4K16ac levels did not decrease in XO embryos fed ama-1(RNAi). 
(B) Plot of quantified percentages of nuclear volume occupied by X in XO embryos fed vector 
RNAi (black) and XO embryos fed ama-1(RNAi) (gray). Each point represents one embryo (n = 
10 nuclei per embryo). Error bars indicate standard deviation. (C) Quantification of the 
percentage of nuclear volume occupied by adult males fed vector RNAi (n = 20) and ama-
1(RNAi) (large subunit of RNA polymerase II) (n = 20). Error bars indicate standard deviation. 
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Figure 4.5 Profile of H4K16ac in XX and XO animals. H4K16ac ChIP-seq in XX and XO 
hermaphrodites. (A) Chromosomal distributions of H4K16ac ChIP regions compared to the 
fraction of the genome found on each chromosome. (B) Representative IGV genome browser 
views of ChIP-seq scores for H4K16ac. (C) Average normalized H4K16ac ChIP-seq enrichment 
scores plotted for X and autosomes across the gene body. (D-E) Average normalized H4K16ac 
ChIP-seq enrichment scores plotted for each chromosome across the gene body in (D) XX 
hermaphrodites and (E) XO hermaphrodites. (F) Percentage of H4K16ac peak found across 
each category of genomic sequence on the X and autosomes in XX and XO hermaphrodites 
compared to the fraction the genome found in each genomic category. 
each category of genomic sequence on the X and autosomes in XX and XO hermaphrodites 
compared to the fraction the genome found in each genomic category. 
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Figure 4.6 RNA-seq analysis of gene expression changes in MYS-1 depleted XO worms. 
(A) X and autosome expression levels of genes with RPKM>1 and genes whose expression is 
in the upper quartile in XX and XO hermaphrodites. (***, P < .001 by two-sided Wilcoxon rank-
sum test). (B) Boxplot shows the distribution of log2 expression ratios on the X, autosomes and 
on all separate chromosomes between dpy-21(e428) mutant XX hermaphrodites and wild type 
XX hermaphrodites. X chromosome was significantly derepressed compared to the autosomal 
average and all other chromosomes. Increased expression from the X was tested between X 
and autosome by one-sided Wilcoxon rank-sum test (***, P < .001). (C) Boxplot shows the 
distribution of log2 expression ratios on the X, autosomes and on all separate chromosomes 
between XO hermaphrodites fed mys-1(RNAi) and XO hermaphrodites fed vector RNAi. X 
chromosome was statistically significantly repressed compared to the autosomal average and 
all other chromosomes, although the degree of repression was minor. Decreased expression 
from the X was tested between X and autosomes by one-sided Wilcoxon rank-sum test (*, P < 
.05; **, P < .01; ***, P < .001). (D) The magnitude of log2 expression ratios of X-linked (green) 
and autosomal genes (gray) between XO hermaphrodites fed mys-1(RNAi) and control XO 
plotted against dpy-21(e428) mutants and wild type animals. The percentages of X-linked and 
autosomal genes with >10% change in expression (±0.1 in log2) in both knockdown and mutant 
compared to control worms are indicated in each quadrant. (E) Boxplots show the distribution of 
log2 ratios on the X between dpy-21(e428) mutants and wild type animals, and mys-1(RNAi) XO 
hermaphrodites and control XO hermaphrodites. The first 3 sets of boxplots show the 
distribution of log2 ratios of the top 5%, top 10%, and top 15% of highly differentially expressed 
X-linked genes in dpy-21(e428) mutants. The last set shows the distribution of all X-linked 
genes. 
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Figure 4.7 Relationships between levels of H4K16ac and gene expression. (A) Average 
normalized H4K16ac ChIP-seq enrichment scores separated into quartiles according to 
expression plotted for X and autosomes in XX and XO hermaphrodites. (B-C) Average H4K16ac 
ChIP score within 500 bp upstream of the TSS plotted against the RNA level of each gene for 
(B) XX and (C) XO hermaphrodites. Expressed autosomal genes (RPKM>1) are represented as 
gray points, with point density shown by black line contour. Expressed X-linked (RPKM>1) are 
represented by green dots, and green line contour. (D) Average normalized H4K16ac ChIP-seq 
enrichment scores in XO hermaphrodites separated by the top 15% downregulated X-linked 
genes in mys-1(RNAi) XO hermaphrodites and X-linked genes that were not differentially 
expressed. 
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Figure 4.8 X chromosome decondensation in males is dependent on the activity of a 
putative Tip60/NuA4-like complex. A graphical cartoon illustrates MYS-1 and H4K16ac 
effects on male X chromosome structure. The HAT MYS-1, which is a member of a putative 
worm Tip60/NuA4-like complex, mediates the binding of H4K16ac on X and autosomes, 
however more highly distributed in intergenic regions of the X. This activity decondenses the X 
chromosome territories and makes small contribution to X-linked gene upregulation in males. 
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Figure 4.9 Tip60/NuA4-like complex members mediate X chromosome decondensation. 
(A) Representative images of X-paint FISH stained nuclei of wild type males, and ssl-1(n4077) 
males, and (B) in males depleted of HATs and Tip60/NuA4, MOF-MSL, MOF-NSL complex 
members. (C) Representative images of chromosome I-paint FISH of wild type and ssl-1(n4077) 
males and (D) males depleted of HATs and Tip60/NuA4, MOF-MSL, MOF-NSL complex 
members Scale bars equal 5 µm. 
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Figure 4.10 MYS-1 acetylates H4K16. (A) H4K16ac immunofluorescence and western blot 
analysis of adult MYS-1 mutant and RNAi treated worms. H4K16ac levels are depleted in mys-
1(RNAi) and mys-1(n4075) mutant males compared to control males, both by 
immunofluorescence and western blot analysis. Scale bars equal 5 µm. Tubulin is shown as a 
loading control. (B) Immunofluorescence and western blot analysis of adult MYS-1 mutant and 
RNAi treated worms probed for additional histone acetylation marks. H2AK5ac, H3K9ac, 
H3K14ac, H3K56ac, H4K5ac, and H4K8ac are not depleted in mys-1(n4075) mutants or in mys-
1(RNAi) worms. Scale bars equal 5 µm. Tubulin is shown as a loading control. (C) H4K16ac 
immunofluorescence of adult MYS-2 mutants. H4K16ac levels are not depleted in mys-
2(ok2429) mutants compared to wild type. 
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Figure 4.11 MYS-1 mediated X chromosome decondensation is evident in XO 
hermaphrodites. (A) Quantification of the percentage of nuclear volume occupied by X in adult 
XO hermaphrodites; her-1(e1520) V; sdc-2(y74) X (n = 20) and her-1(e1520) V; sdc-2(y74) X 
fed mys-1(RNAi) (n = 20). Error bars indicate standard deviation. Asterisks indicate level of 
statistical significance by t-test analysis (***, P < .001). (B) Quantification of the percentage of 
nuclear volume occupied by chromosome I in XO hermaphrodites; her-1(e1520) V; sdc-2(y74) X 
(n = 20), her-1(e1520) V and sdc-2(y74) X fed mys-1(RNAi) (n = 16). Error bars indicate 
standard deviation. 
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Figure 4.12 Profile of H4K16ac at rex sites in XX and XO animals. Representative IGV 
genome browser views of ChIP-seq scores for H4K16ac at rex sites (red line) at TAD 
boundaries that have the strongest rex-rex interactions in XX and XO hermaphrodites. 
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Figure 4.13 MYS-1 is depleted for RNA-seq. Western blot analysis of the depletion in L3 
worms after MYS-1 RNAi feeding for RNA-seq samples. MYS-1 was successfully depleted. 
Tubulin is shown as a loading control. 
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CHAPTER 5 

A role for histone acetyltransferase activity in targeting the C. elegans dosage 

compensation complex to the X chromosomes 

 

ABSTRACT 

Dosage compensation is the gene regulatory mechanism that equalizes X-linked 

gene expression between the sexes. Worm dosage compensation is achieved by the 

activity of the dosage compensation complex (DCC). The DCC binds specifically to the 

X chromosome in hermaphrodites to downregulate transcription by two fold. How the 

DCC is able to distinguish the X from the autosomes is also not fully understood, 

although an X-enriched sequence motif is known to be involved. In this study we 

demonstrated that chromatin structure modulation by histone acetyltransferases (HATs) 

plays a role in DCC targeting. HATs are responsible for acetylating the histones within 

the nucleosome. Using FISH microscopy we noticed that hermaphrodite worms 

depleted of the HATs MYS-1, MYS-4 or CBP-1 exhibit a dispersed X chromosome 

structure when normally the X chromosome territory is compact. By contrast 

chromosome I remains unchanged. This contradicts the belief that histone acetylation 

influences a less compact chromatin configuration. In addition, using 

immunofluorescence and FISH microscopy, we find that DCC localization is disrupted in 

HAT depletions. We see mislocalization of the DCC away from the X chromosomes and
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onto autosomes, suggesting that HATs play a role in targeting the DCC to the X 

chromosomes, which in turn is responsible for maintaining a compact X chromosome 

structure. Therefore, chromatin organization likely plays an important, and as yet 

incompletely understood, role in C. elegans dosage compensation.  

INTRODUCTION 

 Dosage compensation is a mechanism that equalizes X linked gene expression 

between the sexes and balances X to autosomes within the sexes. Although dosage 

compensation mechanisms vary among species [1-4], all require chromosome-specific-

targeting of molecular complexes, which in turn regulates transcription over large 

domains [5,6]. The study of dosage compensation allows for a better understanding of 

the mechanisms by which domain-specific regulatory complexes are recruited to 

specific regions and function over large distances. Ultimately, this will further our 

knowledge of how gene regulation is achieved. 

 Chromatin changes play a large role in dosage compensation. Fly dosage 

compensation involves the two-fold upregulation of the single male X chromosome, 

which is achieved by the MSL complex-mediated H6K16ac hyperacetylation [7-9]. In 

mammals the non-coding RNA Xist [10,11] along with the recruitment of the repressive 

complexes PRC1 and PRC2 transcriptionally inactivates one of the two X chromosomes 

in females [12-14]. In worms, both hermaphrodite X chromosomes are downregulated 

by the action of the dosage compensation complex (DCC) [3,4,15]. DCC activity leads to 

the enrichment of H4K20me1 [16,17] and the depletion of H4K16ac on the X [17], which 

is required for X chromosome compaction [18]. These DCC-mediated chromatin 
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changes then lead to decreased levels of RNA Polymerase II (Poll II) [19]. However the 

main question of how DCC-mediated changes in X chromosome structure lead to 

changes in RNA Polymerase recruitment remains unresolved. 

 Unlike mammals and flies in which the assembly and establishment of X 

inactivation and the MSL complex have been well characterized [10,11,20-31], how the 

DCC is targeted to the X chromosome as opposed to the autosome is not fully 

understood. In worms, the DCC is thought to be recruited and bind to the X at a number 

of randomly located recruitment loci, known as rex (recruitment element on X) sites, 

then spread in cis to neighboring sites, dox (dependent of X) sites, that are unable to 

recruit the DCC on their own [19,32]. It is believed that the targeting of the DCC involves 

a sequence element known as the MEX (motif enrichment on X) motif, which is slightly 

enriched on the X and at rex sites [19,32]. Additionally RNA Pol II transcription is 

important for the spreading of the complex across the X chromosome. The DCC is 

correlated with transcriptional activity, and is found to disengage from repressed genes 

and recruit to active genes during development. [33]. However, not all rex sites contain 

the MEX motif and there are copies of the MEX motifs on the autosomes and MEX sites 

of the X that do not bind the DCC [32,34]. Therefore it is believed that the	MEX motif is 

not the only factor involved in DCC recruitment and it is hypothesized that chromatin 

may also play a role in DCC localization. For instance, it is known that the histone 

variant HTZ-1 (H2A.Z) restricts DCC binding to the X chromosome and acts as a barrier 

element to DCC binding on autosomes [35]. However, no additional chromatin changes 

have been implicated to play a role in DCC targeting.  
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 We already know that chromatin plays a role in DCC recruitment [35]. Therefore, 

we investigated novel chromatin regulators function in the process. We examined the 

function HATs have on X chromosome structure and DCC recruitments, by studying 

three different C. elegans HATs: MYS-1, MYS-4 and CBP-1. These HATs fall under two 

of the three major HAT families, the MYST family and the CBP/p300 family, and are 

often correlated with active transcription [36]. MYS-1 is the C. elegans ortholog of 

mammalian protein Tip60 or yeast Esa1, a MYST family HAT [37]. Tip60 has been 

shown to function in several cellular processes, such as cell cycle progression, DNA 

repair, cell signaling and apoptosis [38]. The direct homolog of MYS-4 has not been 

resolved but it is believed to be a member of the MOZ/MORF subfamily of MYSTs [39]. 

Lastly CBP-1 encodes a homolog of the mammalian global transcriptional coactivator 

proteins CBP and p300 [36,40]. We find that the depletion of these HATs leads the 

decondensation of the X chromosome, which contradicts the belief that histone 

acetylation is correlated with decondensed chromatin configuration. HAT depletions do 

not lead to a decrease in DCC protein levels however they disrupt DCC localization to 

the X chromosome. Our data suggests that the DCC requires the action of HAT proteins 

for proper X chromosome localization. In addition, the proper targeting of the DCC may 

be responsible for maintaining a compact X chromosome structure.  

RESULTS 

HAT depletions have disrupted X chromosome structure 

 To determine if histone acetyltransferases affects X chromosome structure we 

performed X chromosome paint fluorescence in situ hybridization (FISH) in the various 
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HAT knockdowns. We deleted different HATs by feeding worms bacteria expressing 

double stranded RNA corresponding to the HAT of interest. Additionally, worms were 

fed bacteria carrying an empty vector as a control. In wild type worms the X 

chromosome is compact due to the DCC [18], however in the absence of certain HATs 

X chromosome compaction is lost (Figure 5.1A and B). When depleting MYS-1, MYS-4 

or CBP-1, the X chromosome territories look decondensed compared to wild type, 

whereas MYS-2 has no effect in X chromosome compaction (Figure 5.1A). We then 

quantified chromosome territories, as in [18]. X chromosome volume quantifications 

showed that in MYS-1, MYS-4 and CBP-1 depletions the X chromosome territory where 

decondensed, occupying 17.11±2.66%, 16.39±2.45%, and 18.64±3.39% respectively. 

This was significantly larger than the 9.41±2.21%, occupied by wild type X chromosome 

territories (p<0.001, Student’s t-test, for MYS-1, MYS-4 and CBP-1 compared to wild 

type). The degree of decondensaton in these HAT depleted worms is equivalent to what 

is observed in DCC mutants and depletions, with DCC mutant X chromosome territories 

occupying an average of 17% [18]. The depletion of MYS-2 showed no significant 

change in X chromosome territories occupying 10.20±2.25% (Figure 5.1B). We also 

examined the histone variant HTZ-1 (H2A.Z) which activity restricts DCC binding to the 

X chromosome [35]. We observed that X chromosome territory was significantly 

decondensed when HTZ-1 is depleted and DCC localization is perturbed, with the X 

occupying 17.57±3.08% (p<0.001) (Figure 5.1A and B). We conclude that the X 

chromosome is decondensed to a significant degree in MYS-1, MYS-4 and CBP-1 

depletions. 
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 We next examined chromosome I territories to determine whether the 

decondensation phenotype is X specific in MYS-1, MYS-4 and CBP-1 depletions. 

Chromosome I was unaffected in HAT and HTZ.1 depletions with an average 

chromosome I occupancy of about 14%, which was comparable to the 14.14±2.70% 

observed in wild type worms (Figures 5.1C and D). These data demostrate that MYS-1, 

MYS-4 and CBP-1 are required for compaction of the X and suggests they may have an 

affect on dosage compensation.  

MYS-1 acetylates H4K16, while CBP-1 acetylates H3K56 

 MYS-1 is homologous to human Tip60, which is known to acetylate H2AK5 and 

H4K5, K8, K12, and K16 in vitro [41-43]. CBP-1 is homologous to CBP/p300, which can 

acetylate all four core histones [44] but has also been shown to specifically acetylate 

H3K56ac in mammals and Drosophila [45]. To determine which histone marks MYS-1, 

MYS-4, and CBP-1 were acetylating we performed western blot analysis with antibodies 

specific to H4K16ac, H3K56ac, and H3K9ac in control vector worms and mys(RNAi), 

mys-4(RNAi), and cbp-1(RNAi) worms. In Chapter 4, we had found that MYS-1 is the 

major H4K16ac HAT in worms; similarly we see that H4K16ac is lost in MYS-1 depleted 

animals while the other acetylated marks show no reduction (Figure 5.2). H4K56ac 

appears to by mediated by CBP-1, as we see depleted levels of H4K56ac in cbp-

1(RNAi) worms (Figure 5.2B and D). Additionally depleting CBP-1 also causes a slight 

decrease in of H4K16ac and H3K9ac levels which is consistent with data reporting that 

CBP can acetylate all four core histones (Figure 5.2A and Figure 5.2C-D) [44]. Lastly 

MYS-4 depletion did not appear to reduce any histone acetylation levels, however it did 
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lead to increased levels of H3K56ac (Figure 5.2). These results suggest that MYS-1 is 

the major H4K16ac HAT in worms, while CBP-1 is capable of acetylating many histone 

marks and has greater affects on H3K56ac. MYS-4 homology is unknown, therefore 

more histone marks need to be examined to determine MYS-4 acetylation capabilities. 

HAT depletions do not lead to a decrease in DCC protein levels 

 The disruption of X chromosome structure in HAT depleted worms suggest that 

dosage compensation may also be affected. To explore whether MYS-1, MYS-4 or 

CBP-1 impact DCC protein levels we performed a western blot analysis of MYS-1, MYS-

4 and CBP-1 depleted animals and examined DCC components DPY-27 [14] and 

CAPG-1 [46]. In HAT depleted animals we do not observe a large change in DCC 

protein levels compared to vector control worms (Figure 5.3). This indicates these HATs 

do not affect DCC expression. Our results suggest that, MYS-1, MYS-4 or CBP-1 

depletion does not lead to defects in overall DCC protein levels and therefore may have 

a more direct role in dosage compensation by affecting DCC localization or function. 

DCC localization is disrupted in HAT depleted animals 

To test whether the HATs MYS-1, MYS-4, and CBP-1 affect DCC localization we 

used DPY-27 immunofluorescence (to mark the localization of the DCC) and FISH (to 

mark the X) to observe DCC localization in HAT depleted worms. We find the DCC is 

present at normal levels in HAT depleted worms, confirming that depleting MYS-1, 

MYS-4 or CBP-1 does not lead to a reduction in DCC protein levels. However, the DCC 

is dispersed and mislocalized from the X chromosome, and exhibits aberrant binding to 

the X and autosomes (Figure 5.4). This suggests that these HATs play a critical role in 
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proper DCC localization. To investigate whether HATs are required for the DCC to 

stably bind chromatin, we performed a detergent extraction prior to fixing the tissue to 

remove nucleoplasmic content. We found that in HAT depleted worms the mislocalized 

DCC signal was not sensitive to detergent extraction. This is in contrast to what we 

observe in the DCC mutant, DPY-30, where DCC signal is lost after detergent 

extraction, because DPY-30 is required for the complex to stably bind chromatin (Figure 

5.5) [47]. This indicates that in HAT depleted animals, the DCC is stably bound to 

chromatin and mislocalized. 

H4K20me1 enrichment is maintained and colocalizes with the DCC 

 We next asked whether DCC function is disrupted when it is mislocalized upon 

HAT depletion. Currently known molecular functions for the DCC include altering X 

chromosome topology [48], condensation of the X chromosome [18,49], and differential 

distribution of the histone modifications H4K20me1 and H4K16ac on the X [16,17]. The 

misloclization of the DCC clearly disrupts X chromosome structure (Figure 5.1), 

therefore we next examined whether depleting HATs alters the distribution of 

H4K20me1. To test this, we co-stained HAT depleted worms with antibodies to CAPG-1 

(to mark the DCC) and H4K20me. H4K20me1 remained colocalized with the DCC, 

implying that the mislocalized DCC also leads to mislocalized H4K20me1 (Figure 5.6). 

Altogether our data demonstrates that ectopic DCC binding on autosomes alters X 

specific chromatin marks and titrates the complex away from the X chromosome 

thereby compromising X chromosome compaction. 
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DISCUSSION 

 The DCC is believed to be targeted by the MEX motif however several MEX 

motifs are on autosome or lack binding of the DCC on the X. Additionally not all of DCC 

rex binding sites contain the MEX motif [32,34]. Therefore it is believed that chromatin 

modifications also play a role in DCC targeting. In this study we sought to explore the 

role of histone acetyltransferases in DCC targeting and recruitment. We have previously 

provided some evidence in that the histone variant HTZ-1 is required for the specific 

binding of the DCC to the X chromosome [35,50]. Here we establish that depleting 

MYS-1, MYS-4 or CBP-1 also disrupts the compact X chromosome structure. In 

addition, these HATs are required for the proper localization of the DCC on the X. 

Possible mechanism of HAT activity in dosage compensation 

  We suggest that HAT depletions leads to ectopic DCC binding to autosomes 

which reduces the amount of DCC binding to the X chromosomes. As a result the DCC 

is unable to properly compact the X chromosome and dosage compensation is 

impaired. MYS-1/Tip60 and CBP/p300 are often described as transcriptional 

coactivators. One possible mechanism for MYS-1, MYS-4, and CBP-1 activity is 

promoting expression of DCC components or other genes that positively regulate 

dosage compensation, however we find that MYS-1, MYS-4, and CBP-1 are not acting 

by regulating DCC protein levels. Another possibility is that HATs activity is acting in 

transcription repression. Although histone acetylation is often associated with gene 

activation, there are instances of acetylation activity in transcriptional repression. In 

yeast the MYST family HATs Sas2 and Sas3 function in the silencing of mating type loci 
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and telomeres [51]. Additionally Tip60 transcriptionally represses genes in mouse ES 

cells. The depletion of Tip60 results in the upregulation of genes involved in 

differentiation and embryonic development and the downregulation of cell cycle 

regulators. However more genes are upregulated than downregulated, suggesting a role 

in transcriptional repression [52]. Another yeast HAT, Rtt109, similar to that of p300, is 

responsible for acetylating H3K56, which has been found to be important for correct 

three-dimensional organization of chromosomes within the nucleus. Deletion of Rtt109 

and lack of H3K56ac results in loss of telomere localization to the nuclear periphery, 

and the correct peripheral localization of the “chromosome-organizing clamp” locus [53]. 

Therefore, it is possible that, instead of activating genes, these HATs could act in 

dosage compensation by transcriptionally repressing X-linked dosage compensated 

genes. 

Chromatin modifications and dosage compensation 

 In mammals and flies, chromatin modifications, such as histone modifications or 

histone variants, are key factors in dosage compensation and regulating the X 

chromosome. For example in flies, the two fold X upregulation in males is regulated by 

MOF-mediated H4K16ac [7-9], where as in mammals the formation of heterochromatin 

along the inactive X is key to reducing X expression in females [12-14]. Additionally 

DNA methylation and the replacement of canonical histones with histone variants play 

important roles in mammalian X inactivation [54-57]. C. elegans X chromosomes also 

retain a repressive chromatin confirmation to achieve two-fold repression. The 

repressive mark H4K20me1 is enriched on the X, while H4K16ac is depleted [16,17]. 
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Additionally the histone variant HTZ-1 is required for specific X chromosome binding of 

the DCC [35]. We have found that histone modifying enzymes may also be involved in 

the recruitment, binding or function of the DCC. There is precedent for chromatin 

environment to influence the recruitment and spreading of dosage compensation 

components in mammals and flies. In mammals, Xist is able to spread across the 

inactive X chromosome by taking advantage of the three-dimensional structure of the 

chromosome [58]. In flies, the low occupancy of histone H3 at MSL complex binding 

sites (chromatin entry sites, CES) is believed to by a key defining characteristic of 

functional binding sites [59]. Overall, chromatin organization likely plays an important, 

and as yet incompletely understood, role in C. elegans dosage compensation. 

MATERIALS AND METHODS 

Strains 

 All strains were maintained on NG agar plates with E. coli (OP50) as a food 

source, using standard methods [76]. Strains include: N2 Bristol strain (wild type) and 

TY1936 dpy-30(y228) V/nT1 (unc-? (n754) let-?). 

RNA interference 

E. coli HT115 bacteria expressing double stranded RNA for mys-1, mys-2, mys-

4, cbp-1, htz-1, or vector control (polylinker), were used for feeding RNAi using the 

Ahringer laboratory RNAi feeding library [60]. Two generation feeding RNAi was 

performed as follows; L1s were placed on RNAi plate and grown to adulthood. P0 adults 

from one generation feeding RNAi were transferred to new RNAi plates to produce 

progeny for 24 hours. These progeny (F1 generation) were grown to adulthood and 
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examined. 

Fluorescence in situ hybridization (FISH) 

 To generate FISH probe templates, purified yeast artificial chromosome (YAC) 

DNA were amplified by degenerate oligonucleotide primed PCR [61,62]. The labeled 

chromosome-paint probes were prepared and FISH was preformed as previously 

described [18,62].  

Microscopy and Image Analysis 

Detailed description of image analysis was previously described [18]. To 

summarize masks were applied over an image for all nuclei for each channel. DAPI 

mask was used as the total volume of the nucleus. The percent nuclear volume was 

obtained by dividing the volume of the specific chromosome over the volume of the 

whole nucleus, taking the average over all nuclei for final mean percent.  

Western blot analysis 

 Equal numbers of adult RNAi-treated worms were collected in M9 solution. Equal 

volume of sample buffer (0.1 M Tris pH 6.8, 7.5 M urea, 2% SDS, 100mM β-ME, 0.05% 

bromophenol blue) was added to worms. Lysates were prepared by 10 minute heating 

at 65°C, two 30 second bursts of sonication, 5 minute heating to 65°C, 5 minute heating 

to 95°C, then kept at 37°C until loading onto SDS-PAGE gel. Proteins were transferred 

to nitrocellulose and blotted with the following antibodies: rabbit anti-DPY-27 [46], goat 

anti-CAPG-1, and rabbit anti-beta tubulin (Novus NB600-936). Band intensities were 

quantified using ImageJ and protein levels for histone marks and DCC proteins were 

normalized to tubulin.  
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Immunofluorescence 

Immunofluorescence experiments were performed as described [46]. Young 

adult worms were dissected in 1X sperm salts, fixed in 2% paraformaldehyde in 1X 

sperm salts for 5 minutes and frozen on dry-ice for 10 minutes. Then slides were 

washed three times in PBS before overnight incubation with diluted primary antibodies 

in a humid chamber, at room temperature. Slides were then washed three times for 10 

minutes with PBST, incubated for 1 hour with diluted secondary antibody at 37°C, 

washed twice for 10 minutes with PBST, and once for 10 minutes with PBST plus DAPI. 

Slides were mounted with Vectashield (Vector Labs). Antibodies were used at the 

following concentrations: CAPG-1, 1:100; DPY-27, 1:100; H4K20me1, 1:500. 

Detergent extraction 

Detergent extraction of nucleoplasmic protein from dissected nuclei was 

performed by dissecting animals in 1X sperm salts plus 1% Triton detergent. Dissected 

animals were processed for FISH followed by IF. 
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Figure 5.1 MYS-1, MYS-4, CBP-1 and HTZ-1 depletions have decondensed X 
chromosomes compared to wild type. (A-B) Adult hermaphrodite and HAT depleted intestinal 
nuclei stained with X-paint FISH (red) to label X chromosome territories and DAPI (blue) to label 
DNA. (A) Representative stained nuclei of wild type hermaphrodite and HAT depleted animals. 
(B) Quantification of the percentage of nuclear volume occupied by X in wild type (n = 40), mys-
1(RNAi) (n = 36), mys-2(RNAi) (n = 45), mys-4(RNAi) (n = 40), cbp-1(RNAi) (n = 40), and htz-
1(RNAi) (n = 37) hermaphrodites. Error bars indicate standard deviation. Asterisks indicate level 
of statistical significance by t-test analysis (***, P < .001). (C-D) Adult hermaphrodite and HAT 
depleted nuclei stained with chromosome I paint FISH (red) to label chromosome I territories 
and DAPI (blue) to label DNA. (C) Representative stained nuclei of wild type hermaphrodites 
and HAT depleted animals. (D) Quantification of the percentage of nuclear volume occupied by 
chromosome I in wild type (n = 20) mys-2(RNAi) (n = 21), mys-4(RNAi) (n = 40), cbp-1(RNAi) (n 
= 20), and htz-1(RNAi) (n = 20) hermaphrodites. Error bars indicate standard deviation. 
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Figure 5.2 MYS-1 acetylates H4K16ac, while CBP-1 acetylates H3K56ac.  
HAT levels were reduced be feeding RNAi in wild type worms. (A) H4K16ac, (B) H3K56ac, and 
(C) H3K9ac western blot analysis of adult RNAi treated worms. Tubulin is shown as a loading 
control. (D) Quantified band intensities normalized to tubulin. 
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Figure 5.3 HAT depletions does not decrease DCC levels. HAT levels were reduced be 
feeding RNAi in wild type worms. An equal number of control vector, mys-1(RNAi), mys-
4(RNAi), and cbp-1(RNAi) adult worms were collected for western blot analysis of observe 
levels of (A) DPY-21 and (B) CAPG-1 after RNAi depletion. Tubulin is shown as a loading 
control. (C) Quantified band intensities normalized to tubulin. 
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Figure 5.4 HATs depletion disrupts DCC restriction to the X chromosomes. Adult 
hermaphrodite and HAT depleted intestinal nuclei stained with DPY-27 (green) to label the 
DCC, X-paint FISH (red) to label X chromosome territories, and DAPI (blue) to label DNA. DCC 
localization to the X chromosome is disrupted in mys-1(RNAi), mys-4(RNAi), and cbp-1(RNAi) 
animals. White dashed lines outline the X chromosome. White arrowheads point out ectopic 
DPY-27 binding. 
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Figure 5.5 HATs are not required for the DCC to stably bind chromatin. DPY-27 (DCC) IF 
(green) and X-paint FISH (red) with detergent extraction in vector RNAi, mys-1(RNAi), mys-
4(RNAi), cbp-1(RNAi), and dpy-30(y228) hermaphrodite intestinal nuclei shows that DCC 
binding in HAT depletions are not sensitive to detergent treatment while dpy-30 is sensitive. 
White dashed lines outline the X chromosome. White arrowheads point out ectopic DPY-27 
binding. 
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Figure 5.6 H4K20me1 enrichment is maintained and colocalizes with the DCC. 
H4K20me1 IF (green) and CAPG-1 (DCC) IF (red) in vector RNAi, mys-1(RNAi), mys-4(RNAi), 
cbp-1(RNAi), and hermaphrodite intestinal nuclei shows that H4K20me1 and DCC binding 
remains colocalized. 
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CHAPTER 6 

Conclusions and Future Directions 

 

CONCLUSIONS 

 Changes in gene dosage and chromosome copy number can lead to diseases, 

developmental abnormalities and are largely detrimental to all organisms. Most 

differences in chromosome copy number are not tolerated and are lethal. There are 

incidences of aneuploidies that are viable, however these changes have a dramatic 

impact on the development, fitness ad reproductive abilities of the organism [1]. 

Interestingly, in many species sex is determined by a chromosome-based method, 

resulting in a difference in X chromosome copy number between heterogametic males 

(XY or XO) and homogametic females (XX), as well as a natural aneuploidy within the 

heterogametic sex [2]. Specific mechanisms, known as dosage compensation 

mechanisms, have evolved to restore the balance within the genome and between 

males and females. 

 Dosage compensation mechanisms vary among species. In flies, the single X in 

males is upregulated two-fold [3]. In mammals and the worm C. elegans, X upregulation 

is hypothesized to occur in both sexes [4-6]. Although hypothesized about 50 years ago 

[7], only recently has evidence begun to emerge. This upregulation process corrects the 

natural aneuploidy within males, but hyperactivates the X chromosome in females/
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hermaphrodites. Therefore in mammals, one X chromosome in females is inactivated 

[8], and in C. elegans both X chromosomes in hermaphrodites are downregulated two-

fold by the dosage compensation complex (DCC) [9]. The DCC contains a condensin-

like complex (condensin IDC) similar to the canonical condensins that regulate 

chromosome compaction, organization, and segregation in mitosis and meiosis [10], 

suggesting that worm dosage compensation may involve changes of the X chromosome 

architecture.  

 The overall goal of my thesis work has been to further explore the connection 

between dosage compensation and chromatin organization. We sought to expand on 

the current understanding of condensin function in gene regulation as well as the role 

chromatin in X upregulation. Studying C. elegans condensin IDC’s function in dosage 

compensation will shed further light on how condensin affects interphase chromosome 

organization and how the activities involved differ from condensin’s function in mitosis. 

Additionally I have focused my work on understanding how X chromatin architecture 

and histone acetylation is involved in dosage compensation and changes in X-linked 

gene expression. 

 This work has contributed to the wider field of condensin biology. Condensin 

complexes have emerged as important regulators of chromatin organization throughout 

the cell cycle. Recent studies have revealed that in addition to their role in mitotic 

chromosome condensation and segregation, condensin complexes function in diverse 

interphase activities [11]. Emerging evidence has begun to connect mitotic condensin-

mediated condensation with epigenetic control of gene expression. Although there is 
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increasing understanding of the biological functions of condensins in mitosis, meiosis, 

and in interphase, the molecular mechanism of condensin activity is still poorly 

understood. Since most of our current knowledge of the molecular mechanisms of 

condensin comes from analysis of condensin I in mitosis, it will be important to examine 

the mechanistic similarities and differences between the activities of condensins I and II, 

both in mitosis and interphase. Our study of C. elegans condensin IDC’s function in 

mediating interphase X chromatin compaction in dosage compensation has led to a new 

understanding of how condensin affects interphase chromosome organization and how 

the activities involved differ from condensin’s function in mitosis. 

 I first centered my experiments around 3D florescence in situ hybridization (FISH) 

examining the chromosome structure of the X and the autosome, chromosome I, in 

hermaphrodite interphase nuclei, in search of differences in levels of compaction that 

might be an indication that condensin IDC regulates interphase X chromatin structure. I 

found that in hermaphrodites the X chromosome is much more compact relative to the 

autosomes. This led us to examine worms mutant for or depleted of DCC protein 

members. I in fact saw that without the DCC the X chromosome was decondensed and 

no longer compact to the level of wild type hermaphrodite X chromosomes. This X 

chromosome compaction was both sex-specific and DCC-specific. I also identified that 

the compaction of the X chromosome is not only dependent on the presence of the DCC 

but also the DCC regulated histone modifiers SET-1, SET-4, and SIR-2.1. This work is 

consistent with the long standing hypothesis that dosage compensated X chromosomes 

maintain some characteristics associated with condensed mitotic chromosome. 
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In addition to DCC regulated compaction, we found that X chromosome 

compaction is also disrupted when the mechanisms that anchor heterochromatin to the 

nuclear lamina are disrupted. This led us to analyze subnuclear localization of the X, 

and found that the chromosome relocates centrally both in the absence of the DCC and 

in tethering mutants. We also analyzed how anchoring proteins’ activity of tethering 

heterochromatic regions to the nuclear lamina can affect gene expression during 

dosage compensation. Upon further study, we found that the changes in X chromosome 

structure and subnuclear localization are accompanied by a slight derepression of X-

linked gene expression. This led us to the hypothesis that the tethering of the left arm of 

the X chromosome to the nuclear lamina forms a compact X structure, in which the DCC 

then uses the heteochromatin anchors to compact the entire X chromosome and bring it 

to the nuclear periphery, overall contributing to lower X-linked gene expression levels. 

However, we find there is a slight disconnect between condensation and subnuclear 

localization compared to gene expression. The DCC and tethering mutants have 

comparable effects on compaction and subnuclear localization, but very different effects 

on gene expression. Together this data gives us a better understanding how X 

chromosome architecture plays a role in gene regulation in dosage compensation. 

While studying X chromosome architecture, in addition to finding that the X 

chromosome is compact in hermaphrodites due to DCC activities, we found the male X 

is decondensed relative to genome content. This study led me to explore X-lined gene 

regulation in males. I wanted to better understand the role of X chromosome 

decondensation in X-linked gene regulation and further explore the long hypothesized 
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mechanism of X-upregulation. To do this, I performed a 3D FISH screen depleting 

different histone acetyltransferases (HATs) to test for a change in X chromosome 

structure compared to wild type. I found that depleting MYS-1, led to a loss of X 

chromosome decondensation in males, while other HAT depletions did not alter X 

chromosome structure. MYS-1 is homologous to Tip60, however also distantly related to 

MOF, a key regulator in fly male X upregulation and decondensation. This similarity 

raised the possibility that MYS-1 could also have a key role in upregulation X-linked 

genes. Upon further characterizing MYS-1’s role in X chromosome decondensation we 

found that MYS-1 acts in the context of a Tip60/NuA4-like complex, rather than in the 

content of MOF-MSL-like complex or MOF-NSL-like complex. I found that depleting the 

putative worm Tip60/NuA4 complex members, MRG-1 or SSL-1, in males lead to a 

compact X chromosome phenotype, similar to males depleted or mutant for MYS-1. We 

discovered that MYS-1 acetylates H4K16ac, therefore we established that the 

acetylation of the same mark in flies contributes to X chromosome decondensation in 

worms, despite being regulated by a different HAT.  

Although, the H4K16ac HAT is a key component of X-linked gene upregulation in 

flies, we find that in worms the role of the H4K16ac HAT is much more limited. 

Interestingly when examining correlations between acetylation, compaction, and gene 

regulation we find that on the X chromosome H4K16ac and chromosome 

decondensation seem to correlate, but not on the autosomes. This suggests that 

H4K16ac and chromatin compaction are not always correlated. Additionally chromatin 

compaction and gene expression also do not necessarily correlate, as we found a 
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greater degree of X chromosome compaction compared to change in X-linked gene 

expression in MYS-1 depleted XO worms. Overall we find a factor, MYS-1, plays a role 

in the highly debated hypothesis suggesting that X upregulation occurs in C. elegans 

males. Although the high degree of compaction in a MYS-1 mutant does not perfectly 

correlate with the low level of change in gene expression, I showed that MYS-1 along 

with other Tip60-like complex members decondenses the X chromosome in C. elegans 

males and I believe that this decondensation contributes to upregulation of gene 

expression on the male X. I also present the first endogenous chromosome-wide data 

separating chromosome decondensation from gene regulation. 

This work has contributed greatly to our current understanding of X upregulation. 

Although X upregulation is highly studied in flies, little is known about this mechanism in 

mammals and worms. Only recently has evidence emerged supporting this mechanism 

[4-6]. My work shows that H4K16ac and chromosome decondensation influence 

regulation of the male X chromosome, however other mechanisms must also play a 

role. This leads to the exploration on many other possible mechanisms for X regulation. 

It is possibility that in addition to MYS-1 activity, X upregulation could be achieved 

through the interactions between the male X and nuclear pore proteins, or through 

nucleosome occupancy, as X-linked gene promoters have higher nucleosome 

occupancy compared to autosomes [12]. Additionally I present work that contradicts the 

belief that acetylation, decondensation and gene regulation are correlated, leading us to 

think differently about how these three processes can be related. 
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 From here, we speculated that if MYS-1 is upregulating, while the DCC is 

downregulating, then a hermaphrodite defective of both processes should essentially by 

fine. However, when I sought to see how MYS-1 was functioning in hermaphrodites, this 

is not what I found, partly because MYS-1 only plays a partial role in upregulation, and 

partly because HATs also affect DCC localization. I found that the depletion of MYS-1, 

MYS-4 or CBP-1 disrupted the compact X chromosome structure. In addition these 

HATs do not affect DCC expression. I found that MYS-1, MYS-4 and CBP-1 are 

required for proper DCC localization to the X chromosome. In all, these results suggest 

that HAT proteins play a critical role in targeting the DCC to the X chromosome, by 

preventing the DCC from spreading to the autosomes. However, when the HATs are 

depleted the DCC ectopically binds to the autosomes, which reduces the amount of 

DCC binding to the X chromosomes. 

 In total, my thesis work illustrates the role of both condensin and chromatin in 

regulating X chromosome architecture and represents a greater understanding in our 

knowledge of C. elegans dosage compensation. My work utilizes a variety of genome-

wide methods, both at a high resolution (ChIP-seq and RNA-seq) and at a low 

resolution (FISH and immunofluorescence), to explore DCC function and regulation. In 

full, I have provided evidence that changes in higher order organization of the X 

chromosome plays a role both condensin IDC mediated repression and X upregulation. 

PROPOSED FUTURE DIRECTION 

 My work has provided the first evidence linking condensin-mediated chromosome 

compaction to chromosome-wide repression of gene expression as well as presented 
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novel work that supports the long debated hypothesis of X-upregulation; however there 

is still a lot more to learn about chromatin’s role in gene regulation and the mechanism 

driving X upregulation. In the following section I will briefly describe future experimental 

aims that can address some of the new questions my work on condensin and chromatin 

mediated X chromosome architecture has raised. Experiments done in the future will 

identify the machinery responsible for X decondensation in males. In Chapter 4, I have 

shown that MYS-1, MRG-1 and SSL-1 are all involved in decondensing the male X, 

however it will be important to determine whether these three proteins are acting in the 

same complex in males and if there are other proteins within this complex. In addition to 

the genetic evidence that MYS-1, MRG-1 and SSL-1 are involved in regulating the 

volume of the X chromosome in males, I have found that depleting MRG-1 leads to 

reduced levels of MYS-1, while depleting MYS-1 leads to reduced levels of MRG-1 

(Figure 6.1). This provided more evidence that MYS-1 and MRG-1 may be acting in the 

same complex. I expect there would be positive interactions between the three proteins, 

as MYS-1, SSL-1 and MRG-1 homologs are present in a Tip60-like complex in other 

organisms. Overall this will give us more insight into the machinery responsible for 

decondensing the single male X chromosome. Additionally we know that MYS-1/Tip60 

activity is not the only factor involved in X upregulation it would be interesting to see 

what other factors could also contribute to this process. 

 To further characterize the role HATs may have in DCC localization it will be 

important to examine DCC mislocalization by HAT knockdown, assayed at high-

resolution genome wide. Results detailed in Chapter 5 suggest that HATs and histone 
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acetylation play an important role in DCC localization. Future experiments will reveal 

unique DCC binding sites in hermaphrodite worms depleted of MYS-1, MYS-4 or CBP-1 

compared to wild type hermaphrodites. I suspect that in HAT knockdowns DCC binding 

will decrease at known binding sites on the X chromosome and increase at other sites 

specifically on the autosomes. In addition to DCC localization it would be important to 

analyze gene expression changes to determine whether there is a direct correlation 

between the X chromosome regions that lose DCC binding and expression changes on 

nearby genes. It would also be interesting to see whether the mislocalized ectopic DCC 

in the autosomes leads to lower levels of gene expression. Overall this study will give us 

a better understanding of whether DCC mislocalization in HAT knockdowns also leads 

to greater changes in gene expression.  

In conclusion, my work has provided the first evidence for two separate 

predominant, in C. elegans dosage compensation. I have linked condensin-mediated 

chromosome compaction to chromosome-wide repression of gene expression and 

uncovered that changes in higher order organization of the X chromosome plays a role 

in both X upregulation and condensin IDC mediated repression. I have also presented 

the first endogenous chromosome-wide data separating the degree of decondensation 

from the level of gene expression, challenging the paradigm that acetylation, 

chromosome architecture, and gene regulation are perfectly correlated.  
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Figure 6.1 Depletion of MRG-1 leads to reduced levels of MYS-1 and vise versa. 
Hermaphrodite worms depleted of MRG-1 or MYS-1 stained by immunofluorescence with either 
MYS-1 or MRG-1 show reduced level of protein compared to control. 
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