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ABSTRACT 

 Barriers against the external environment are crucial for sustaining life in 

multicellular organisms.  In mammals, epithelial barriers form following convergent 

growth and development of cell-cell junctions.  The characteristics of these junctions 

greatly influence the attributes of the tissues they compose, and vary considerably 

based on the location and function of the tissue.  At least four types of epithelial cell-cell 

junctions exist, the most apical of which is known as the tight junction (TJ).  Barrier 

forming tissues are often semi-permeable in nature owing to TJ architecture and the 

organization of the over 40 involved proteins.  These can be transmembrane or 

cytosolic, and are involved in cell signaling in addition to their barrier functions.  A 

specific transmembrane protein known as occludin is highly phosphorylated on its C-

terminal coiled-coil, and certain sites have been found to regulate specific aspects of TJ 

function, including the response to certain cytokines.   

 Previously, our lab discovered a novel phosphosite at serine 471 that is located 

at a contact site with an important scaffolding protein and central organizer of the TJ, 

zonula occludens-1.  Phosphoinhibitory, serine to alanine (S471A) occludin point mutant 

MDCK cell lines demonstrate that S471A monolayers are poorly organized with 

mislocalized TJ proteins, increased small solute flux, and decreased electrical 

resistance compared to WT occludin (WT Occ) or phosphomimetic, serine to aspartic 

acid (S471D) lines.  Additionally, S471A monolayers are composed of fewer, larger cells 

than controls, and exhibit proliferative arrest almost immediately following confluency, in 

contrast to control lines, which go through at least one additional round of proliferation.   

This phenotype including larger, less numerous cells and a low resistance barrier can 
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be recapitulated with a cell cycle inhibitor, demonstrating that confluent proliferation or 

cell packing is necessary for barrier maturation.  G-protein coupled receptor kinase 

(GRK) was confirmed to be an S471 kinase by inhibitor experiments from a 

bioinformatically compiled candidate kinase list, and GRK inhibitors were able to 

recapitulate the disrupted monolayer and low resistance barrier of S471A lines. 

 Finally, S471A expression perturbed purified coiled-coil stability as determined by 

NMR.  Modeling of inter-coil interactions identified several possible hydrogen bonds in 

addition to the negative charge of the phosphate that differ between the phosphorylated 

and non-phosphorylated forms.  Expression of S471N (asparagine) transgenic occludin 

in vitro demonstrated highly organized border organization similar to WT Occ and in 

stark contrast to S471A, despite the lack of a negative charge at the S471 position.  

This result suggests that the border organization of p-S471 is not due to the negative 

charge at S471, and may be the result of differential intra-coil hydrogen bonding.   

In conclusion, cell packing is necessary for barrier maturation, and is regulated by the 

novel phosphosite, occludin S471.  S471 is an important contributor to confluent 

proliferation, monolayer maturation, and barrier resistance, and plays a role in the 

barrier regulatory function of occludin. 
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CHAPTER I 

Introduction 

 

 Multicellular organisms are by definition composed of multiple cells working 

together to accomplish processes necessary for survival of the organism.  Multicellular 

organismal composition can be advantageous in that it allows for division of labor 

among cells or groups of cells, which in turn can lead to morphological specialization 

that assists in completion of a specific task.  Groups of morphologically and 

occupationally similar cells can be composed into tissues, which can accomplish a 

dizzying array of functions throughout the organism.  In the case of epithelial cells, 

examples include regulating solute and water balance in the tubules of the kidney, 

facilitating absorption of water, nutrients, and electrolytes in the intestine, or activating 

site specific dermal proliferation in response to injury to close a wound in the skin. 

 For individual cells to able to coordinate their actions as part of a tissue, it is 

imperative that cell-cell signaling mechanisms for communication be present, and in the 

case of barrier forming tissues, a physical connection between adjacent cells must exist.  

Barrier forming tissues bestow obvious advantages on an organism by excluding 

potentially pathogenic material from the internal environment.  In many cases however, 

it is crucial that these barriers be semi-permeable, allowing passage of certain 

substances while blocking others.  This is true in the kidney tubule, in which various 

segments are more permeable either to solutes or to water, allowing the establishment 

and maintenance of an interstitial concentration gradient by which urine can be 

concentrated, allowing for reabsorption of valuable solutes and regulating water loss 
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(Vize et al., 2003).  Others occur in immune-privileged environments such as the 

mammalian testis, where adjacent sertoli cells form a barrier that excludes immune and 

macromolecules while allowing small molecule diffusion, or in the eye, in which the cells 

of the retinal-pigmented epithelium allow passage of oxygen and nutrients from 

choroidal blood vessels to the metabolically active outer retina while preventing 

passage of potentially deleterious solutes (Frey and Antonetti, 2011; Mruk and Cheng, 

2015).  While multiple types of cell-cell junctions exist and are important for cell and 

tissue functionality, the current project focuses primarily on tight junctions (TJs), which 

are classically known to regulate paracellular flux, and are increasingly implicated in 

additional roles such as cell signaling.  The current dissertation introduces the structure 

and relevant background of the four main cell-cell junctions, followed by two chapters of 

experimental data, and ending with discussion of the implications of the work and 

identification of limitations and future directions. 

. 

1.1 Aim and Scope 

 TJs are composed of many different proteins, some of which are cytosolic while 

others are transmembrane.  A specific transmembrane protein known as occludin plays 

an integral role in TJ regulation, and modification of its activity is associated with 

disease (further discussed in chapter II).  The current project is based on previous work 

demonstrating the existence of specific phosphorylation sites that contribute to occludin-

mediated regulation of the TJ (Murakami et al., 2009; Raleigh et al., 2011; Sundstrom et 

al., 2009), (further discussed in chapter III).  Proteomic experiments performed in the 

Antonetti Laboratory identified a number of novel phosphorylation sites (Sundstrom et 
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al., 2009).  The current study aims to investigate the role of a specific site, serine 471 

(S471).  S471 is a unique and particularly interesting site in that it sits at the center of an 

interaction domain between occludin and a known organizer and regulator of the TJ, the 

scaffolding protein zonula occudens-1 (ZO-1).  As a result, we postulated that S471 

may contribute to TJ integrity (such as permeability to ions, small molecules, or larger 

molecules), and might influence TJ morphology.  Furthermore, I examined kinases that 

might phosphorylate S471 and probed what interactions at the molecular level might 

provide mechanistic understanding of any effects.  Given the nature of the questions 

under investigation, a simple, in vitro system was needed and was used in the 

described experiments, supplemented by structural work using peptides and protein 

fragments. 

 

1.2 Study Overview 

 The current dissertation opens with a review of relevant literature broken into two 

parts: the first includes topics such as the overview, structure and function of the main 

cell-cell junction types and important proteins present at these junctions.  The second 

introduces the concepts of confluent proliferation, cell transitions, the role of biophysical 

forces, and other factors important in epithelial monolayer formation and maturation.  

This material is presented in chapter 2: Literature Review. 

 Original data presentation centers on characterizing the effects of occludin S471 

phosphorylation and determining the mechanisms at the cellular and molecular levels 

by which these effects occur.  Characterization of S471 phosphorylation was 

accomplished by expressing phosphoinhibitory (S471A) or phosphomimetic (S471D) 
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occludin in an immortalized epithelial cell line and observing the effects on TJ protein 

organization and barrier function.  This approach is informative in that serine and 

alanine are structurally identical except that serine has an ethanol side chain that can 

be phosphorylated, while alanine’s side chain terminates in a methyl group that cannot.  

Aspartic acid (D) has a carboxylic acid side chain that carries a permanent negative 

charge similar to a phosphate group, and mimics constitutive phosphorylation.  In the 

course of these experiments, it was unexpectedly discovered that inhibition of S471 

phosphorylation has dramatic effects on high confluency cell proliferation and 

monolayer maturation, leading to numerous studies measuring cell proliferation rate in 

the various mutants to further explore this effect.  These experiments led to 

identification of the necessity of cell packing for monolayer maturation and identification 

of a novel regulatory role for occludin in this process.  Since S471 is a recently identified 

site about which very little was known, substantial effort was devoted to identifying the 

kinase or kinases that phosphorylate this site.  This was done initially through a screen 

of bioinformatically identified putative kinases, and later confirmed with multiple 

inhibitors to kinases of interest.  These studies form the bulk of the dissertation, and are 

reported in chapter 3: Occludin S471 Phosphorylation Contributes to Tight Junction 

Formation and Cell Packing at Confluence. 

 As a result of the findings of chapter 3, structural experiments were performed in 

collaboration with colleagues at Pennsylvania State University School of Medicine, John 

Flanagan and Maria Bewley, to investigate specific interactions at the molecular level 

that might underlie the in vitro effects.  Nuclear magnetic resonance (NMR) experiments 

were carried out by our collaborators, which suggest that peptides expressing occludin 
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S471A or S471D mutations shift the structure of the occludin coiled-coil.  

Phosphorylation of serine changes the charge of the residue from neutral to negative, 

and adds a side chain phosphate group that is sterically larger, potentially leading to 

additional hydrogen bonding and other interactions with neighbors.  To examine the role 

of the negative charge apart from size and other factors, WT Occ, S471A, or S471N 

occludin was transiently transfected into MDCK cells followed by immunofluorescence 

(IF) to evaluate organization of TJ proteins at the border.  S471N mutant occludin 

retains the ability to hydrogen bond with nearby amino acids and is structurally very 

similar to S471D, but lacks the negative charge of the S471D or phosphorylated S471.  

These studies indicate that negative charge at S471 is not necessary for organized TJ 

protein localization at the border, suggesting that the effect of phosphorylation is 

through hydrogen bonding, or some other factor.  These results are reported in chapter 

4: Negative Charge at Occludin S471 is Not Necessary for Proper Localization and 

Organization of Tight Junction Proteins at the Border. 

 Following presentation of the results of chapter 4, the dissertation closes with a 

discussion of important findings and overall conclusions.  Methodological limitations are 

discussed, and areas for future investigations and broader application of the presented 

findings are identified.  These discussions make up chapter 5: Conclusions, Limitations, 

and Future Directions.   
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CHAPTER II 

Literature Review 

   

2.1 Epithelial Cell-Cell Interactions 

 Tissues in multicellular organisms are composed of many cells that act in a 

coordinated manner to adapt tissue characteristics in ways that are vital for survival.  

This requires individual cells to be connected to facilitate communication and 

coordinated action as a single tissue sheet or organ rather than a conglomeration of 

many individual cells.  These connections can be specialized for specific and diverse 

functions ranging from propagating electric signals in cardiomyocytes to regulating 

water and solute permeability in kidney tubule cells, or restricting movement of blood-

borne solutes across the outer blood retinal barrier into the predominantly 

immunoprivileged eye.  In epithelial cells, four basic cell-cell junctions exist. 

 

 2.1.1 Gap Junctions 

 Gap junctions (GJs) are basolaterally located and specialize in enabling cell-cell 

signaling (Fig. 2.1).  GJs are channels that span both membranes of adjacent cells and 

facilitate the flow of ions or other signaling molecules, allowing for rapid signal 

transduction between cells (Harris, 2001).  Classically, they are composed of members 

of a tetraspan transmembrane protein family known as connexins, which are arranged 

in a cylindrical pattern to form a hemichannel with an aqueous pore at the center (Herve 

and Derangeon, 2013).  Six connexins form a hemichannel on each side of the 

membrane that connects to a hemichannel on an adjacent cell to form a mature, 
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junction-spanning channel.  GJs are ubiquitously expressed, and play an especially 

pivotal role in cardiomyocytes, where they assist in action potentials transmission 

between cells, leading to coordinated contractile activity (Stroemlund et al., 2015).   

Alterations in connexin expression or organization are associated with cardiac 

arrhythmias and decreased contractile function (Severs et al., 2008).  Other electrically 

active cell types, including neural cells, can also be affected.  Mutation of the GJ 

protein, connexin 32, in Schwann cells of the peripheral nervous system leads to X-

linked Charcot-Marie-Tooth Disease and distal limb weakness (Nualart-Marti et al., 

2013).  Additionally, murine KO models of various connexins suffer from a range of 

symptoms ranging from arrhythmias (connexin 40) to cardiac related embryonic lethality 

(connexins 43 and 45), stressing the importance of GJs in highly conductive tissues 

(London, 2004).   

 

 

 2.1.2 Desmosomes 

 Just apical to GJs are desmosomes, cell-cell contacts involved in cell adhesion 

and traditionally described as “spot welds” (Getsios et al., 2004).  Desmosomes develop 

soon after cell-cell contact, and are composed of several proteins including 

transmembrane members of the cadherin superfamily, desmoglein and desmocollin, 

along with cytosolic desmoplakin, plakoglobin (also known as γ-catenin), and 

plakophillin (Nekrasova and Green, 2013).  Desmosome formation is associated with 

the adherens junction (AJ), specifically expression of E-cadherin (Lewis et al., 1997).  

Desmosomes are unable to form in E-cadherin KD cell lines, but are rescued by re-
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expression of E-cadherin along with plakoglobin.  Plakoglobin hepatic KO in mice 

compromises desmosome composition, rendering the animals more susceptible to 

tissue injury following insult compared to controls (Zhou et al., 2015).  Similarly, humans 

with the autoimmune disease pemphigus vulgaris express anti-desmoglein antibodies in 

keratinocytes, which disrupts desmosomes (Sajda et al., 2016).  This leads to 

decreased cell-cell adhesion and dermatological disruption, including chronic blistering.  

The association of desmosomal dysfunction with additional diseases including 

cardiomyopathy and cancer further indicates the importance of desmosomes in 

maintaining overall tissue integrity (Notari et al., 2015; Otsubo et al., 2015). 
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 2.1.3 Adherens Junctions 

 The apical junctional complex (AJC) is located apical to GJs and desmosomes, 

and is composed of AJs, and TJs (discussed in a later section) (Anderson et al., 2004; 

Farquhar and Palade, 1963; Tsukita et al., 1992).  As the name would suggest, AJs 

(also known as zonula adherens) contribute to cell-cell adhesion, but also establish a 

paracellular barrier to large solutes.  AJs are present in both vertebrates and 

invertebrates (Oda and Takeichi, 2011), and are thought to be the first junction to form 

Fig. 2.1: Epithelial cell-cell interactions.  (A) Schematic of the four main epithelial 
junctions: Gap junctions, desmosomes, adherens junctions, and tight junctions.  
Adherens junctions and tight junctions make up the apical junctional complex (AJC). 
(Image modified from Rossier et al., 2015). 
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following cell-cell contact (Sajda et al., 2016).  Recent studies have identified an 

increasingly broad AJ role that includes maintaining differentiation and discouraging 

tumorigenesis (Berx and van Roy, 2009; Stockinger et al., 2001).  

 AJs are composed of multiple proteins including a transmembrane protein known 

as E-cadherin, which has an intracellular, transmembrane, and extracellular domain 

(Shapiro and Weis, 2009).  E-cadherin serves as a major AJ cell adhesion molecule 

(CAM), and forms homophilic dimers in cis and trans in a Ca2+ dependent manner 

(Pertz et al., 1999). Cadherin-cadherin trans dimers are an important form of initial 

contact between converging cells that facilitates monolayer formation, and trans binding 

is sufficient to decrease proliferative rate, even in subconfluent cells (Kim et al., 2011; 

Perrais et al., 2007). The importance of E-cadherin in vivo is further illustrated by the 

embryonic lethality of E-cadherin KO mutant mice (Larue et al., 1994).  Finally, E-

cadherin expression is inversely correlated with many types of cancer (Giroldi et al., 

1994), and is a known tumor suppressor (Jeanes et al., 2008).  E-cadherin loss is 

associated with dedifferentiation and epithelial to mesenchymal transition (EMT), and is 

correlated with increased tumorigenesis and metastasis (Berx and van Roy, 2009, See 

section 2.2). 

 Intracellularly, E-cadherin interacts with β-catenin, which in turn binds to α-

catenin, which binds to F-actin, functionally connecting the AJ to the cytoskeleton 

(Gottardi and Gumbiner, 2001; Huber and Weis, 2001).  α-catenin deficient cells exhibit 

decreased aggregation (Watabe et al., 1994), and α-catenin KO has a similar effect in 

vivo (Vasioukhin et al., 2001). The role of α-catenin as a linker between β-catenin and 

the cytoskeleton has become controversial however, leaving the possibility that 
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additional proteins may be involved (Watabe-Uchida et al., 1998; Yamada et al., 2005).   

A potential contributor is p120-catenin (also known as CTNND1), which interacts with E-

cadherin and stabilizes it in the cell membrane. Expression of mutant p120 leads to 

increased E-cadherin internalization, but this effect is rescued by WT p120 (Liu et al., 

2007).  E-cadherin-catenin complex-based AJs contribute to AJ formation and 

development (Halbleib and Nelson, 2006), and together with the nectin-afadin complex 

plays a prominent role in cell adhesion (For discussion of nectin-afadin, see last 

paragraph of this section).   

 In addition to connecting E-cadherin to the cytoskeleton via α-catenin, β-catenin 

is necessary for the regulation of proliferation by cadherin-cadherin trans interactions 

(Perrais et al., 2007).  Free β-catenin can also translocate to the nucleus and serve as a 

transcriptional co-activator (MacDonald et al., 2009).  In this way, β-catenin serves as 

an important component of the Wnt signaling pathway (MacDonald et al., 2009).  In the 

absence of Wnt signaling, β-catenin is bound by a complex that includes glycogen 

synthase kinase (GSK), ubiquitinated, and marked for proteasomal degradation, while 

Wnt binding to its receptor inhibits GSK and allows β-catenin to translocate to the 

nucleus and transcribe genes involved in proliferation (Fig. 2.2, Baron and Kneissel, 

2013).  While progress has been made, additional work is needed to identify the 

subtleties of β-catenin’s diverse cellular functions (Gottardi and Gumbiner, 2001; 

Shapiro, 2001). 
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Fig. 2.2: Wnt signaling pathway.  The Wnt signaling pathway mediates proliferation 
through regulating the cellular localization of β-catenin.  When Wnt is inactive, β-
catenin is sequestered in the cytosol, bound by the β-catenin destruction complex, 
and degraded.  When Wnt is active, binding of Wnt to its receptor releases β-catenin 
from the complex and allows it to translocate to the nucleus, where it drives 
transcription of pro-proliferative genes as a transcriptional co-activator.  (Image from 
Staal and Clevers, 2005) 
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Nectin is a second transmembrane protein CAM that forms trans homodimers, 

and plays a role in cell adhesion similar to E-cadherin, but acts independent of Ca2+ 

(Fig. 2.3, Takahashi et al., 1999).  Nectin is connected to the cytoskeleton by binding to 

the PDZ domain of the linker protein, afadin, which connects to the cytoskeleton through 

its F-actin binding domain (Mandai et al., 1997).  The nectin-afadin complex seems to 

be associated with the E-cadherin-α, β-catenin complex, as nectin and afadin colocalize 

with E-cadherin in cells that do not express tight junctions (TJs), and nectin helps 

localize E-cadherin at the junction (Mandai et al., 1997; Tachibana et al., 2000).  

Furthermore, microbead-bound E-cadherin extracellular domain binds the catenins, but 

also localizes the nectin-afadin complex to cell-bead junctions (Honda et al., 2003).   

Inhibition of the nectin complex also inhibits E-cadherin AJs (Honda et al., 2003); 

however, studies presented in this dissertation demonstrate that E-cadherin and β-

catenin can be localized at the border even when afadin is mislocalized (see chapter 3).  

Murine afadin KO impairs both ectoderm organization and mesoderm migration (Ikeda 

et al., 1999).  Paracellular permeability is also increased, as is susceptibility to tissue 

injury induced by dextran sulfate sodium (Tanaka-Okamoto et al., 2011).  Furthermore, 

there is evidence that the nectin-afadin complex is involved in AJ and TJ formation.  TJ 

proteins such as claudin, occludin, and zonula occludens-1 (ZO-1) localize to the 

junction in nectin-expressing MDCK cells, and ZO-1 initially binds near the nectin-afadin 

complex, then migrates apically (Fukuhara et al., 2002a; Fukuhara et al., 2002b).  

Microbeads bound to the nectin extracellular domain also localize with ZO-1 (Fukuhara 

et al., 2002a).  More recent studies indicate that following its temporary interaction with 

afadin, ZO-1 moves on and interacts with the TJ protein, junctional adhesion molecule 
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(JAM, see next section) (Ooshio et al., 2010).  Afadin KD in MDCK cells prevents both 

AJ and TJ formation, while KD of the TJ protein ZO-1 only affects TJs (Ooshio et al., 

2010).  Finally, inhibition of nectin dimerization prevents localization of occludin or 

claudin at the junction (Fukuhara et al., 2002b), but nectin-afadin complexes and TJs 

are formed in the absence of the cadherin complex (Yamada et al., 2006).  While the 

exact protein-protein interactions and mechanistic sequence of events remains elusive, 

these findings strongly suggest that the nectin-afadin complex makes important 

contributions to AJ and TJ formation.  
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Fig. 2.3: Structure of the apical junctional complex (adherens and tight 
junctions).  Adherens junction (AJ) and tight junction (TJ) between two adjacent 
epithelial cells, depicting relevant proteins.  These include the transmembrane 
proteins occludin, claudin, JAM, nectin, and E-cadherin, and the cytoskeletal proteins 
ZO-1, 2, 3, afadin (AF6), and p120, α and β catenin.  (Image from Kooistra et al., 
2007). 
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 2.1.4 Tight Junctions 

Adherence of adjacent cells by establishment of AJs is followed by the formation 

of other specialized cell-cell contacts known as tight junctions (TJs).  TJs are a feature 

of many different types of epithelial and endothelial cells in many species of vertebrates, 

and are homologous to the septate junctions found in Drosophila melanogaster (Willott 

et al., 1993).  First described in 1963 (Farquhar and Palade, 1963), TJs traditionally 

have the roles of maintaining apical-basolateral polarity by restricting the movement of 

specific membrane proteins to the opposite side of the cell (the fence function, which 

has become controversial in recent years, (Umeda et al., 2006), and establishing 

selectively permeable paracellular barriers between adjacent cells (the gate function, 

D'Atri and Citi, 2002; Diamond, 1977).  In the latter case, this barrier is vital for selective 

absorption of electrolytes and solutes in tissues such as the kidney and intestine, and 

also allows for establishment of blood barriers in immunoprivileged tissues including the 

brain, eye, and testes.  Freeze fracture electron microscopy images show that TJs take 

the form of many strands laterally encircling the apical cell, interacting with each other 

and with TJ proteins on membrane leaflets of the adjacent cell (Fig. 2.4, Staehelin, 

1973; Staehelin, 1974). 
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Transmembrane TJ Proteins 

Over 40 TJ proteins have been identified to date including transmembrane 

proteins, which facilitate restriction of paracellular flux, and cytosolic proteins which 

serve as organizers of transmembrane proteins and connect them to the cytoskeleton 

(Schneeberger and Lynch, 2004).  The result is a continuous junction that stretches 

from the cytoskeleton across the membrane to TJ proteins on adjacent cells (Fanning et 

al., 1998).  The tetraspan transmembrane protein, occludin (also called MARVELD1, 

Furuse et al., 1993) is located in the membrane of mature epithelial monolayers, 

Fig. 2.4: Tight Junction Strands Visible Via Freeze-Fracture Microscopy.  
Electron microcopy image of epithelial cell apical aspect.  Adjacent cell membrane 
has been removed to expose the Intertwining TJ strands in the YZ plane (arrow, 
image modified from Furuse, 2010). 
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forming homodimers in cis through its coiled-coil domain (Nusrat et al., 2000; Raleigh et 

al., 2011), and interacting homophilically in trans (Bellmann et al., 2014).  Peptides 

encoding a central region of the second extracellular occludin loop (AA 210-228) bind 

occludin and other transmembrane TJ proteins, and interact with the TJ in vitro to the 

exclusion of endogenous TJ proteins (Nusrat et al., 2005).  Occludin is an important 

contributor to the TJ as overexpression increases trans-epithelial electrical resistance 

(TER) in MDCK cells (Balda et al., 1996; Van Itallie et al., 2010), and partial deletion of 

either extracellular loop attenuates the overexpression-mediated TER increase (Balda 

et al., 2000).  However, occludin KD/KO yields complex results.  As the first 

transmembrane TJ protein discovered, occludin was originally assumed to physically 

“occlude” paracellular flux and was named accordingly.  This notion was subsequently 

dismissed however when occludin KO mice were found to have TJs that were 

anatomically normal and did not exhibit increased permeability or decreased TER 

(Saitou et al., 2000; Schulzke et al., 2005).  Similarly, occludin KD via siRNA in MDCK 

cells did not affect TER in the steady state or following a Ca2+ switch assay (Yu et al., 

2005).  Closer analysis revealed however that occludin KO animals exhibit a 

constellation of phenotypes consistent with barrier dysregulation including brain 

calcification, male sterility, maternal inability to nurse, and gastric epithelial hyperplasia 

(Saitou et al., 2000; Schulzke et al., 2005).  These mice also undergo hair cell apoptosis 

in the inner ear, resulting in deafness several weeks after birth (Kitajiri et al., 2014).  A 

possible explanation for the absence of increased TJ permeability in these animals is 

compensation by a related protein with structural similarities, known as tricellulin or 

MARVELD2 (discussed later in this chapter), which is normally present at tricellular tight 
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junctions (tTJs) but is found at bicellular tight junctions (bTJs) in these animals and after 

occludin KD in vitro (Ikenouchi et al., 2008; Kitajiri et al., 2014).  These findings have 

contributed to the prevailing view that occludin acts as an important regulator of the TJ.  

Occludin is a multi-phosphorylated protein, particularly on its C-terminal coiled coil 

region (Sundstrom et al., 2009).  Early studies found that truncation of the coiled-coil 

region leads to increased permeability and decreased TJ organization, and changes in 

TER are correlated with changes in phosphorylation (Balda et al., 1996; Clarke et al., 

2000).  Increasingly, accumulating evidence suggests that specific amino acids mediate 

the TJ response to specific factors or cytokines and represent a mechanism of occludin-

mediated TJ regulation (see chapter 3 for further discussion). 

Additional studies have identified an inverse relationship between permeability 

and occludin content across many tissues (Antonetti et al., 1998; Hirase et al., 1997; 

Wong and Gumbiner, 1997), and identified a role for occludin in diverse diseases.  

Occludin is downregulated in many inflammatory diseases, including Crohn’s and 

ulcerative colitis (Bertiaux-Vandaele et al., 2011; Coeffier et al., 2010; Vivinus-Nebot et 

al., 2014).  TJs present a physical obstacle for pathogen entry into cells, and occludin is 

frequently targeted by viruses including: Norovirus (Troeger et al., 2009), HIV (Nazli et 

al., 2010), and Dengue virus (Talavera et al., 2004), and bacterial (including 

Campylobacter jejuni (Elmi et al., 2015), Porphyromonas gingivalis  (Nakajima et al., 

2015), and Pseudomonas aeruginosa elastase (Nomura et al., 2014) pathogens.  

Hepatitis C viral infection is normally restricted to cells of primate origin, but infection of 

murine cells is possible by overexpressing occludin.  Additionally, KD of occludin in 

normally permissive human cells attenuates infection, suggesting that occludin is 
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necessary for hepatitis C infection.  (Ploss et al., 2009).  Furthermore, certain viruses, 

including Coxsackie B and Adenoviruses, bind to a specific transmembrane protein 

known as the Coxsackie Adenoviral Receptor (CAR) to facilitate cellular entry (Coyne 

and Bergelson, 2006).  Occludin is endocytosed along with Coxsackie B virus and is 

necessary for infection, demonstrating utilization of the TJ and occludin by pathogenic 

microorganisms (Coyne et al., 2007).   

A new role for TJ proteins as regulators of proliferation and the cell cycle has 

recently been discovered, specifically for occludin loss as an emerging factor in the 

development of several types of cancer (Tobioka et al., 2004; Nemeth et al., 2009). 

Downregulation or loss of TJ proteins including occludin is associated with decreased 

epithelial character and epithelial to mesenchymal transition (EMT), associated with 

increased cancer risk (see chapter 3 for discussion.)  These findings confirm the 

physiological importance of occludin for exclusion of inflammatory factors and 

pathological agents as well as for proliferative control, and demonstrate increased 

disease susceptibility when altered.  

Occludin is a member of the myelin and lymphocyte (MAL) and related proteins 

for vesicle trafficking and membrane link (MARVEL) protein family, which specialize in 

membrane coherence and are especially prevalent in cholesterol rich regions (Sanchez-

Pulido et al., 2002).  In addition, occludin is one of three known members of the tight 

junction-associated MARVEL protein (TAMP) subfamily, which form selective barriers 

based on size (Raleigh et al., 2010).  All three TAMPs have a similar tetraspan 

transmembrane structure and cellular roles that are at least partially unique (Raleigh et 
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al., 2010).  The remaining two members of the TAMP family are tricellulin (also known 

as marvelD2), and the recently discovered marvelD3 (Steed et al., 2009). 

As suggested by its name, tricellulin is typically found at tTJs, and is recruited 

there by the novel tTJ protein, LSR (Masuda et al., 2011).  The convergence of three 

cells requires a specific junctional connection. The cells are assembled with a central 

tube at its center, a space approximately 10 nm in diameter and 1 µm in length 

(Staehelin, 1973).  Flux at this tube is regulated by tricellulin, and while the tTJ is a 

minor route for small ion flux, it is thought to play a significant role in the flux of 

macromolecules (Krug et al., 2009).  Despite its tricellular localization, both tTJ and bTJ 

are poorly organized after tricellulin KD, indicating a tricellulin effect on bTJs as well 

(Ikenouchi et al., 2005).  Tricellulin is found at bTJs in cases of occludin loss or tricellulin 

overexpression in animal and cell models, and may compensate for occludin (Ikenouchi 

et al., 2008; Krug et al., 2009).  Tricellulin mutant or KO mice are viable, but exhibit 

deafness due to loss of K+ gradient in endolymph and subsequent apoptosis of hair 

cells in the organ of Corti of the inner ear (Kamitani et al., 2015; Nayak et al., 2013).  

Additionally, post-natal deafness observed in occludin KO animals is proposed to be 

due to tricellulin compensation via tricellulin reallocation from tTJs to bTJs, and the 

resulting lack of tricellulin at tTJs (Kitajiri et al., 2014). 

MarvelD3 is a recently identified TAMP which localizes to bTJs, and colocalizes 

with occludin and the scaffolding protein ZO-1 (Raleigh et al., 2010).  MarvelD3 does 

not interact homophilically in trans (on adjacent cells, and opposite sides of the 

paracellular space), but interacts with itself, occludin, and tricellulin in cis (on the same 

side of the paracellular space, Cording et al., 2013).  TJ assembly as assessed by 
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maximum TER is delayed but not inhibited by marvelD3 silencing, and marvelD3 

expression is unable to rescue this delay in the absence of tricellulin or occludin, 

suggesting at least partially non-redundant function (Raleigh et al., 2010).  Instead, 

marvelD3 is involved in proliferative control, as KD increases proliferation in Caco-2 

intestinal cells while re-expression in tumor cells decreases proliferation (Steed et al., 

2014).  MarvelD3 expression decreases phosphorylation of the MAPK family member, 

JNK, which is involved in the response to environmental stresses, and activates nuclear 

transcription factors controlling proliferation and apoptosis (Davis, 2000; Steed et al., 

2014).  This results in decreased JNK activity leading to decreased proliferation.  

Additionally, marvelD3 is downregulated during EMT in cancer cells (Kojima et al., 

2011).  This suggests that marvelD3 contributes to proliferative regulation, possibly by 

acting as a connector between JNK and the TJ. 

In addition to the TAMPs, a second tetraspan transmembrane protein family, 

known as the claudins, is also found at TJs.  Claudins regulate paracellular flux and are 

found at regions where adjacent cell membranes are so close that the paracellular 

space is undetectable by electron microscopy, known as kissing points (Tsukita et al., 

2001).  Claudin subtypes form homo and heterodimers in cis and interact with each 

other homophilically in trans (Cording et al., 2013; Piontek et al., 2011).  There are 

currently 27 known members of the claudin family in mammals (Soini, 2011), some of 

which seal the barrier (1,3,5) while others, known as conductive claudins, form selective 

pores (Krug et al., 2014).  Selectivity can be for anions (17), cations (15), or for water 

(2) (Gunzel and Fromm, 2012; Krug et al., 2014).  Furthermore, the claudins can be 

classified as either classic (ex. 1-10) or non-classic (ex. 11-13) based on sequence 
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homology (Krause et al., 2008).  In vitro/in vivo KD/KO of various members of the 

claudin family results in increased permeability (claudins 4 and 18, (Kage et al., 2014; Li 

et al., 2014), aberrant permeability regulation (claudins 2 and 10 (Breiderhoff et al., 

2012; Muto et al., 2010) or lethality (claudin 1, (Furuse et al., 2002).  Additionally, 

claudin perturbation is associated with many clinical pathologies including inflammatory 

bowel disease (Weber et al., 2008), Crohn’s disease (Zeissig et al., 2007), ulcerative 

colitis (Oshima et al., 2008), breast and colon cancer (Kinugasa et al., 2010; Kulka et 

al., 2009), and the dermatological disease, ichthyosis (Hadj-Rabia et al., 2004), Taken 

together, these findings strongly suggest an important role for claudins in TJ 

functionality. 

Finally, members of the third TJ transmembrane protein family are known as 

junction adhesion molecules (JAMs).  The JAM family consists mainly of three 

members, JAMs A-C, which differ in amino acid sequence but share an intracellular 

sequence approximately 50 amino acids in length (Ebnet et al., 2004).  A larger 

subfamily of proteins, including JAM4, are related but exhibit prominent differences, 

including length of intracellular tail.  Epithelial cells express JAM-A, which forms 

homodimers in cis and interact with adjacent homodimers in trans (Kostrewa et al., 

2001; Prota et al., 2003).  Prevention of homodimerization disrupts localization and 

decreases TER following Ca2+ switch, suggesting a role for JAM-A in barrier assembly 

(Mandell et al., 2004).  JAM-A KD decreases TER and increases solute flux, indicating a 

leaky barrier (Laukoetter et al., 2007).  Additionally, genetic deletion of JAM-A increases 

intestinal permeability, and renders mice more susceptible to dextran sulfate sodium-

induced tissue damage (Laukoetter et al., 2007).  This is in agreement with studies 
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reporting that JAM-A is reduced in human inflammatory bowel disease (Vetrano et al., 

2008), and is decreasingly localized at TJs by the inflammatory cytokine, interferon 

gamma (Bruewer et al., 2005).  JAMs also interact with Par3 of the Par3/Par6/aPKC 

polarity complex and assist in localizing the complex to the TJ (Ebnet et al., 2001).  

While JAMs can be found very near TJ strands in MDCK cells, JAM expression in TJ 

null cells is not sufficient to form TJ strands (Itoh et al., 2001).  This is in contrast to 

claudins and suggests that JAMs do not share the paracellular flux restricting role of 

claudins (Furuse et al., 1998).  Occludin, the claudins, and the JAMs therefore have 

differing roles in the restriction, facilitation, and regulation of paracellular flux.  

Scaffolding TJ Proteins 

The cytosolic domains of occludin, the claudins, and the JAMs interact with a 

family of scaffolding proteins located in the cytosolic plaque near the cell membrane, 

known as the zonula occludens (ZO-1, 2, and 3) (Itoh et al., 1999; Li et al., 2005; Lye et 

al., 2010).  Originally identified in 1986, ZO-1 is a central organizer of the TJ that has 

many binding partners including transmembrane, cytosolic, and cytoskeletal proteins, 

making it a linker between the cytoskeleton and the barrier (Fanning et al., 1998; 

Stevenson et al., 1986).  All three ZO proteins contain 3 PSD/DlgA/ZO-1 (PDZ) regions 

with which they interact with transmembrane proteins like claudins and JAMs, and with 

each other (Lye et al., 2010).  They are also members of the membrane associated 

guanylate kinase (MAGUK) protein family, and have the characteristic guanylate kinase-

like (GuK) domain, which serves as a specialized Ser/Thr binding pocket and facilitates 

interaction with occludin (Tash et al., 2012; Zhu et al., 2011).  In addition, ZO-1/2 have 
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an N-terminal actin binding region (ABR) with which they interact with the cytoskeleton 

(Fig. 2.5). 

 

 

Fig. 2.5: Structure and domains of zonula occludens (ZO) proteins.  ZO-1, 2, 
and 3 are scaffolding proteins that interact with many binding partners via their 
multiple binding domains.  All three have three PDZ domains and one SH3, U5, 
GUK, and U6 domain.  ZO-1/2 also have an N-terminal actin binding region (ABR) 
while ZO-3 does not.  Proteins that interact with ZO at specific sites are noted above 
each domain.  (Image from Lye et al., 2010). 
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Truncation and deletion experiments have determined that the first two PDZ 

domains, the SH3, and both the U5 and U6 domains are all necessary for ZO-1, 

claudin-2, and occludin localization at junctions (Rodgers et al., 2013).  The interaction 

between ZO-1 and F-actin is not necessary for junctional localization of these proteins, 

but deletion of the ZO-1 ABR changes cell border morphology from wavy and tortuous 

to very straight, suggesting changes to cytoskeletal organization.  While a TJ protein, 

ZO-1 also associates with proteins of other cell-cell contacts including AJs (α-catenin) 

and GJs (connexin) (Itoh et al., 1997; Kausalya et al., 2001).  ZO-1/2 have at least 

partially overlapping roles leading to compensation in single KD experiments (Umeda et 

al., 2006).  As a result, ZO-1/2 double KD cells are badly disorganized, fail to assemble 

the TJ, and exhibit reduced TER, but ZO-1 or ZO-2 single KD cells do not (Rodgers et 

al., 2013; Umeda et al., 2006).  This compensation appears to be insufficient in vivo 

however, as both ZO-1 and ZO-2 single KO mutations are embryonic lethal (Katsuno et 

al., 2008; Xu et al., 2008).  ZO-3 exogenously expressed in ZO-1/2 double KD, ZO-3 

null cells fails to locate at the border, and ZO-3 KO mice are viable, suggesting distinct 

roles for ZO-1/2 and ZO-3 (Umeda et al., 2006; Xu et al., 2008).  

Proliferation and AJC Proteins 

Recent studies have demonstrated novel roles for the AJC in cell signaling and 

growth control in addition to canonical regulation of paracellular permeability/cell 

adhesion.  In contrast to the seemingly static nature of AJC proteins in fixed images, 

high trafficking of some TJ proteins (Shen et al., 2008) and distinct protein localization, 

creates separate protein pools. Proteins such as p120 catenin, ZO-2 and β-catenin 

locate to the nucleus where they can influence transcriptional activity (Spadaro et al., 
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2012; Zhang et al., 2011).  In the case of β-catenin, the target is the Wnt pathway 

transcription factor, TCF/LEF, which transcribes pro-proliferative genes in response to 

β-catenin (MacDonald et al., 2009).  β-catenin KO is sufficient to reduce proliferation-

induced hepatic tumors (Singh et al., 2014), suggesting that the role of E-cadherin in 

proliferative control may simply be to sequester β-catenin at the membrane, preventing 

nuclear translocation (see section 2.2).  In addition to stabilizing E-cadherin at the 

membrane, p120-catenin can also localize to the nucleus and influence transcriptional 

activity.  Increased nuclear p120 catenin localization is implicated in breast cancer 

progression via antagonizing the transcriptional repressor, Kaiso (van de Ven et al., 

2015), and p120 phosphorylation at specific sites is associated with increased lung 

cancer invasiveness (Zhang et al., 2011).  Conditional KO mouse studies have 

demonstrated that p120-catenin also has tumor suppressive activity (Schackmann et 

al., 2013). 

Occludin is present at multiple cellular locations, and plays a particularly 

important role in growth control.  Occludin is located at centrosomes in cells and 

increases Ser490 phosphorylation upon proliferation (Runkle et al., 2009).  

Phosphorylation of occludin S471 is associated with confluent proliferation, and 

phosphorylation inhibition at this site results in proliferative arrest (see chapter 3).  Loss 

of occludin is also associated with increased proliferation in cells and intestinal 

hyperplasia in occludin KO animals (Saitou et al., 2000; Wang et al., 2005).  Crucially, 

occludin re-expression in Raf-1 transformed cells is sufficient to reverse the proliferative 

phenotype of these cells both in vitro, and upon implantation in mice (Wang et al., 

2005).  These findings indicate a role for occludin in proliferative regulation. 
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Addionally, involvement in proliferation has been observed in several other AJC 

proteins.  JAM-A KO/KD increases cell proliferation, but this effect can be rescued 

through re-expression (Nava et al., 2011).  This is suggested to be due to JAM-A 

antagonism of Akt, and the prevention of β-catenin activation and nuclear translocation, 

demonstrating TJ regulation of specific proliferation-associated signaling pathways 

(Nava et al., 2011).  In addition, ZO-1/2 are both present at the nucleus in subconfluent 

cells and after wounding, but locate to the TJ upon confluence (Gottardi et al., 1996; 

Islas et al., 2002).  ZO-2 is clearly involved in proliferative control, though reports 

conflict as to whether it increases or decreases proliferation.  ZO-2 is reportedly 

associated with decreased cell proliferation (Gonzalez-Mariscal et al., 2009; Huerta et 

al., 2007) and increased apoptosis (Walsh et al., 2010), and with cancer when mRNA 

levels are decreased (Paschoud et al., 2007).  However, ZO-2 KO mice exhibit 

decreased proliferation and increased apoptosis (Xu et al., 2008).  This suggests that 

ZO-2 may act in a context specific manner.  Finally, the ZO proteins interact with ZO-1-

associated nucleic acid binding domain (ZONAB), a TJ-associated transcription factor 

that interacts with ZO-1 at its SH3 domain and regulates promotor activity (Balda and 

Matter, 2000).  Cell proliferation and density are increased by ZONAB overexpression 

and decreased by depletion (Balda et al., 2003).  Cytosolic  sequestration of ZONAB 

decreases cell proliferation and nuclear localization of both ZONAB and cell division 

kinase 4, suggesting that ZONAB may contribute to proliferative control at least in part 

through nuclear trafficking of other proteins (Balda et al., 2003).  These findings dispute 

the archaic model of the AJC as a static, monofunctional structure, and instead indicate 

that AJC proteins actively participate in cell signaling and growth control. 
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2.2 Cell Monolayer Formation 

2.2.1 Cellular Transitions 

Mammalian bodily tissues develop from one of the three germ layers that emerge 

following gastrulation: ectoderm (skin, hair), mesoderm (bones, blood vessels), and 

endoderm (liver, pancreas) (Gilbert, 2000; Solnica-Krezel and Sepich, 2012).  The 

phenotype of differentiated cells is influenced by lineage.  This is particularly evident in 

comparing mesoderm-derived mesenchymal cells, which are characterized by motility, 

invasiveness, and migratory ability, with epithelial cells which are stationary and express 

adhesion proteins that connect them to their neighbors (Kalluri and Weinberg, 2009; 

Thiery, 2002).  Phenotypic plasticity is such that in certain situations during 

development or in pathology, cells of epithelial or mesenchymal origin will take on 

characteristics of and transition into the other type of cell (Nakaya and Sheng, 2013; 

Sheng, 2015; Yao et al., 2011; Yilmaz-Ozcan et al., 2014).  This occurs in a process 

known as epithelial to mesenchymal transition (EMT), which is a natural part of 

embryogenesis and development, but is also implicated in cancer development and has 

been the focus of intensive studies (Kalluri, 2009; Kalluri and Weinberg, 2009). 

The inverse and less studied process is known as mesenchymal to epithelial 

transition (MET).  While MET has recently been implicated in re-differentiation of 

secondary tumors, it also plays a role in specific developmental events, most notably in 

the kidney (Rothenpieler and Dressler, 1993; Yao et al., 2011).  During early kidney 

development, a mass of epithelium known as the ureteric bud is exposed to growth 

factors by surrounding mesenchyme that induces branching of the epithelium, forming 
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primitive structures that will eventually become nephrons (Herzlinger et al., 1992; 

Saxén, 1987).  In most tissues, the surrounding mesenchyme contributes growth factors 

and influences development of the encircled epithelium, but does not itself become part 

of the mature organ.  However, through MET, some of these nephrotic mesenchymal 

cells differentiate into epithelium and are incorporated into the mature kidney.  The 

transition from densely packed mesenchyme to epithelium begins roughly 24 hours after 

induction, and is completed within the next 12 hours (Davies and Garrod, 1995).  During 

this period, previously mesenchymal cells stop expressing mesenchymal proteins such 

as fibronectin and instead express AJ and desmosomal proteins such as E-cadherin 

and the desmoplakins in conjunction with polarization (Garrod and Fleming, 1990; 

Thiery, 2002; Vestweber et al., 1985; Yilmaz-Ozcan et al., 2014).  Transitioning cells 

also lose mesenchymal characteristics such as high motility, linear proliferative rate, 

and inability to form cell-cell junctions, and take on epithelial characteristics including 

decreased motility, decreased proliferative rate, and mature cell-cell junctions that form 

a mature monolayer.  This process of MET may be modeled in cell culture as cells 

reach confluency and differentiate into a mature epithelium (Puliafito et al., 2012).  

2.2.2 Contact Inhibition 

Contact inhibition of proliferation (CIP) is a characteristic of epithelia in which 

previously proliferative cells come into physical contact with each other, and greatly 

decrease or cease proliferative growth despite the continued presence of nutrients 

(McClatchey and Yap, 2012; Puliafito et al., 2012).  Motility is also affected in highly 

confluent cells in a related process known as contact inhibition of locomotion (CIL, also 

called contact mediated inhibition of cell migration), defined as cessation of cell motility 
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in a specific direction following cell-cell contact (Abercrombie, 1979; Batson et al., 2013; 

Mayor and Carmona-Fontaine, 2010; Puliafito et al., 2012).  Both processes have the 

obvious advantages of facilitating mature monolayer formation while discouraging 

tumorigenesis.  CIL at low confluency often leads to motility in a different direction 

following a collision and thus cell scattering, but effectively prevents single cell motility in 

high confluency conditions Aston et al., 2010; Puliafito et al., 2012).  This is evident in 

developing epithelial monolayers and during wound healing, and loss of CIL is thought 

to be a contributor to metastatic potential (Astin et al., 2010; Middleton, 1972; Puliafito 

et al., 2012; Vermeulen et al., 1995).  In MDCK, subconfluent cells exhibit certain 

mesenchyme-like characteristics such as linear proliferative growth, cell motility about 

the substrate, development of cellular protrusions, and lack of clear TJ border staining 

(Mishima et al., 2002; Puliafito et al., 2012).  These characteristics are lost however in 

favor of differentiated epithelial characteristics following cell-cell contact, CIP, and CIL, 

leading to sweeping morphological changes, most prominently the loss of protrusions 

and acquisition of the familiar cobble-stone appearance.  While CIP and CIL are both 

important processes for the MET-like changes that occur during monolayer formation, 

the mechanisms behind CIL remain largely elusive (reviewed in Mayor and Carmona-

Fontaine, 2010).  Accordingly, the following sections will primarily just consider the 

contributions of CIP. 

  2.2.3 Hippo/MST Pathway 

An important contributor to CIP is the Hippo/MST Pathway, a cell membrane to 

nucleus signaling pathway originally discovered in Drosophila melanogaster that is 

involved in proliferation and cell survival, and alters transcription based on the 
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extracellular environment.  Epithelial cells express the AJ protein E-cadherin, which has 

an extracellular domain that interacts homophilically when adjacent cells that come 

within close physical proximity.  E-cadherin binding initiates a kinase cascade in the 

canonical hippo/MST pathway in which the central serine/threonine kinase, Mammalian 

Sterile 20-like 1 and 2 (MST1/2, known as Hippo in Drosophila), is bound to a 

scaffolding protein known as Salvador (SAV1), and phosphorylates the downstream 

kinases Large Tumor Suppressor 1 and 2 (LATS1/2, Warts in Drosophila) (Gumbiner 

and Kim, 2014; Johnson and Halder, 2014; Kim et al., 2011).  LATS1/2 interacts with a 

scaffolding protein and co-factor known as MOB1 and phosphorylates Yes-Associated 

Protein 1 (YAP) and Transcriptional-Co-Activator with PDZ Binding Motif (TAZ, also 

known as WWTR1).  YAP and TAZ are both transcriptional co-activators, and must 

associate with other transcription factors such as TEAD or SMAD to drive transcription.  

When the Hippo/MST Pathway is off, YAP and TAZ are dephosphorylated and free to 

locate to the nucleus where they interact with TEAD and SMAD and transcribe genes 

involved in cell proliferation and survival.  When the Hippo/MST Pathway is activated, 

YAP and TAZ are phosphorylated by LATS1/2, excluded from the nucleus, and marked 

for ubiquitination and eventual degradation, preventing proliferative transcription (Fig. 

2.6, Johnson and Halder, 2014). 
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 2.2.4 E-cadherin, β-catenin, and CIP 

E-cadherin plays an important role in CIP and proliferative control, primarily by 

binding β-catenin of the Wnt signaling pathway (discussed in an earlier section) and 

initiating Hippo/MST signaling.  Microbeads expressing E-cadherin extracellular domain 

are able to suppress MDCK proliferation in a manner dependent on β-catenin and 

Hippo/MST (Kim et al., 2011; Perrais et al., 2007).  Expression of extracellular domain-

deleted E-cadherin decreases proliferation, while intracellular domain-deleted E-

Fig. 2.6: Vertebrate Hippo/MST signaling.  Schematics of (A) inactive and (B) active 
Hippo/MST signaling.  When Hippo/MST is inactive, YAP/TAZ are not phosphorylated 
and free the transcriptional co-activators, YAP/TAZ, allowing their translocation to the 
nucleus where they are responsible for transcription of pro-proliferative genes.  When 
Hippo/MST is activated through homophilic E-cadherin interaction as a result of high 
cell density, the kinase initiates a series of phosphorylation events that ultimately 
phosphorylates YAP/TAZ, excluding them from the nucleus and decreasing 
proliferation.  (Image from Knippschild et al., 2014). 
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cadherin does not, suggesting that β-catenin/E-cadherin binding is necessary for this 

effect while E-cadherin homophilic binding is not (Sasaki et al., 2000).  Consistent with 

this, exogenous E-cadherin expression rescues proliferative control in epithelial cells 

that have undergone EMT, but the intracellular β-catenin binding domain is necessary 

for this effect (Stockinger et al., 2001).  β-catenin localization is a key determinant in 

carcinoma tumor cell characteristics, as nuclear β-catenin is associated with 

dedifferentiated, mesenchymal cells, while cytoplasmic and membranous β-catenin is 

typical of a more epithelial phenotype (Brabletz et al., 2001).  These findings indicate 

that the E-cadherin/β-catenin interaction is important in proliferative control, potentially 

by excluding β-catenin from the nucleus and preventing transcription of specific genes.  

Reports conflict however as to whether E-cadherin/β-catenin binding decreases β-

catenin transcriptional activity (Perrais et al., 2007; Stockinger et al., 2001).  Finally, 

both Hippo/MST and Wnt contribute to proliferative control, and there is interaction 

between these pathways through their member proteins, YAP/TAZ of Hippo/MST 

pathway and β-catenin of Wnt pathway.  When Hippo/MST is inactive and YAP/TAZ are 

cytosolic, YAP/TAZ interact with the upstream Wnt protein, disheveled (DVL), 

preventing its phosphorylation and subsequent Wnt signaling, or bind to the β-catenin 

destruction complex directly, excluding β-catenin from the nucleus (Imajo et al., 2012; 

Varelas et al., 2010).  Conversely, activation of Wnt releases YAP/TAZ from this 

complex, and facilitates nuclear translocation and transcription of target genes (Azzolin 

et al., 2014).  Thus, Hippo/MST activation discourages proliferation directly through 

nuclear exclusion of YAP/TAZ, and through inhibition of Wnt.  Wnt encourages 

proliferation directly by preventing degradation of and allowing for nuclear translocation 
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of β-catenin, and indirectly by releasing YAP/TAZ from the β-catenin destruction 

complex, thus encouraging nuclear translocation (see Fig. 2.7). 

 

 

 

 

 

Fig. 2.7: Crosstalk between the Hippo/MST and Wnt signaling pathways.  
Hippo/MST discourages proliferation directly through YAP/TAZ phosphorylation and 
nuclear exclusion (nucleus in gray), and indirectly through cytosolic YAP/TAZ 
inhibition of Wnt and β-catenin nuclear translocation.  Wnt encourages proliferation 
directly and indirectly by enabling nuclear translocation of β-catenin and YAP/TAZ, 
respectively. 
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2.2.5 Biophysical Forces and Confluent Proliferation 

Recent studies have demonstrated a new, canonical Hippo/MST independent 

contributor to proliferative control: biophysical force.  When cells proliferate in 

subconfluent conditions, mother cells divide, leaving two daughter cells with 

approximately half the area of the mother.  These daughter cells then undergo 

hypertrophic growth until they are approximately the same size as the mother cell and 

can divide again (Puliafito et al., 2012).  This process continues until contact with other 

cells is made, and is driven at least in part by biophysical forces experienced by cells 

due to hypertrophic and proliferative growth, extrusion, and locomotion.  Cells that are 

not surrounded by neighbors on all sides such as those in low confluency culture or at 

the periphery of a proliferating colony experience tensile force as they migrate away 

from the colony and are simultaneously pulled towards it by adhesion to neighbors 

(Puliafito et al., 2012).  Tensile force is known to promote nuclear localization of YAP 

and proliferation, and subconfluent cells subjected to stretching of the ECM proliferate 

at an increased rate and exhibit increased nuclear YAP percentage compared with 

controls (Aragona et al., 2013).  Conversely, cells within a confluent environment such 

as those in confluent monolayers or at the center of a proliferating colony experience 

inward constraining forces from neighbors and relief of tensile force, resulting in 

decreased nuclear YAP and proliferation rate.  LATS1/2 of the Hippo/MST pathway 

excludes YAP from the nucleus through phosphorylation at specific sites (Pan, 2010).  

Tensile relief from plating on a soft substrate decreases YAP/TAZ dependent 

transcription and nuclear localization, even in subconfluent conditions, in the absence of 

LATS1/2, or upon expression of LATS1/2 insensitive YAP, suggesting a Hippo/MST 
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independent mechanism (Aragona et al., 2013; Dupont et al., 2011).  Similarly, 

proliferation and nuclear YAP/TAZ percentage progressively decrease as cells are 

plated on patterned substrates of decreasing area, and both ROCK (Rho-associated 

protein kinase) and YAP/TAZ are necessary for this effect (Dupont et al., 2011).  Tensile 

relief via treatment with the Rho inhibitor, C3, ROCK inhibitor, Y27632, non-muscle 

myosin inhibitor, blebbistatin, or cytoskeletal inhibitor, latrunculin A, increase YAP/TAZ 

nuclear exclusion and decrease YAP/TAZ dependent transcription.  Tensile restoration 

by siRNA KD of F-actin capping and severing proteins is sufficient to restore 

proliferative capacity and nuclear YAP localization, even on soft substrate or under 

dense plating conditions (Aragona et al., 2013).  Taken together, these studies indicate 

that biophysical forces are sufficient for YAP/TAZ regulation and act in a Hippo/MST 

pathway, MST1/2 and LATS 1/2 independent manner.  

Finally, cells do not become proliferatively quiescent immediately following cell-

cell contact, but instead progress through additional rounds of confluent proliferation, 

which is size reductive in nature (Fig. 2.8, Aragona et al., 2013; Puliafito et al., 2012).  

Analysis of cell area following proliferation shows that newly divided cells in confluent 

environments do not decrease the area of existing cells, suggesting that they are not 

compressible.  However, the constraint exerted by neighboring cells restricts normal 

post-proliferative hypertrophic growth on newly divided cells, resulting in size reductive 

proliferation.  As cell area decreases due to successive divisions, a critical cell area is 

eventually reached below which proliferation is dramatically reduced.  This is known as 

the transition point, and is marked by a sudden, dramatic decrease in proliferative rate 

leading to CIP (Puliafito et al., 2012).  As previously noted, evidence suggests that the 
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gradual reduction in tension and increase in constraining force as confluency increases 

excludes YAP from the nucleus independent of Hippo/MST, and is a major contributor 

to CIP. These findings affirm the existence of confluent, size reductive division, and 

suggest that CIP is a complex behavior that is mediated in part by cell density through 

evolving biophysical forces.  As reviewed in the previous sections, AJC proteins play an 

important role in cell-cell interactions, junctional assembly, and proliferation control, and 

despite recent milestone advances in determining the mechanism of cell packing, it 

remains unknown what, if any, influence AJC proteins have in this process.  The current 

dissertation examines cell packing and monolayer maturation, and describes for the first 

time a specific role for occludin phosphorylation in facilitating these processes.  Results 

presented in the following chapters add to our understanding of monolayer maturation, 

and to the increasingly diverse cellular role of the AJC.   
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Fig. 2.8: Schematic of size reductive proliferation in MDCK cells.  MDCK cells go 
through a process known as cell packing at high confluency, which is characterized 
by size reductive proliferation and regulated at least in part by biophysical force.  (A) 
Subconfluent mother cells divide, yielding two daughter cells of approximately 50% 
size compared to the mother.  The daughter cells then attain the size of the original 
mother through hypertrophic growth.  (B) Following many rounds of subconfluent 
proliferation, increasing confluency leads to constraining force from adjacent cells.  
This inhibits hypertrophic growth following proliferation, leading to a 50% reduction in 
cell area at each division.  This is termed size reductive proliferation.  Ultimately, a 
critical cell area known as the transition point is reached, after which proliferation 
dramatically decreases, leading to quiescence.  (C) Tension on an individual cell 
(asterisk) from simultaneous migration away from neighboring cells and adherence to 
them induces proliferation (Aragona et al., 2013).  Constraint from neighboring cells 
at high confluency relieves this tension, and decreases proliferation.  (D) As cells 
proliferate and become increasingly confluent, cell area and tension decrease, while 
constraint increases, leading to size reductive proliferation, cell packing, and 
ultimately, to proliferative quiescence. 
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CHAPTER III 

 

Occludin S471 phosphorylation contributes to tight junction formation and cell 

packing at confluence1 

 

3.1 Abstract 

Multiple organ systems require epithelial barriers for normal function, and barrier 

loss is a hallmark of diseases ranging from inflammation to epithelial cancers.  

However, the molecular processes regulating epithelial barrier maturation are not fully 

elucidated. After contact, epithelial cells undergo cell packing and tight junction 

maturation creating a dense, highly ordered monolayer with high resistance barriers.  

We provide evidence that the tight junction protein, occludin, contributes to regulation of 

epithelial packing upon phosphorylation of S471 in its coiled-coil domain.  

Overexpression of an occludin S471A mutant that cannot be phosphorylated prevents 

cell packing, proper tight junction protein localization, and electrical resistance in a 

dominant manner.  Inhibition of cell proliferation in confluent but immature monolayers 

recapitulated this phenotype.  A kinase screen identified G-protein coupled receptor 

kinases (GRK) as S471 kinases, and GRK inhibitors delayed epithelial packing and 

junction maturation.  We conclude that cell packing is necessary for barrier maturation, 

and that occludin contributes to these processes in a phosphosite specific manner. 

 

3.2 Introduction 

                                                           
1
 Portions of this chapter are published in Bolinger et al., 2016.  Molecular and Cellular Biology. 
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Cells characteristically form epithelial monolayers through logarithmic growth 

when subconfluent followed by cell to cell contact, and concluding with contact inhibition 

of proliferation (CIP), proliferative quiescence, and epithelial monolayer maturation 

including tight junction (TJ) formation (Li et al., 2004; Puliafito et al., 2012).  CIP is an 

important step in monolayer maturation that is mediated in part by activation of the 

Hippo/MST pathway.  Hippo/MST involves a signaling cascade with multiple 

mechanisms of regulation that may be initiated by homophilic interactions between extra 

cellular domains of the adherens junction (AJ) protein E-cadherin on adjacent cells, 

ultimately leading to exclusion of the transcriptional co-activator, Yes–associated protein 

(YAP), from the nucleus (Kim et al., 2011; Levine et al., 1965). 

Puliafito et al. demonstrated however that cell-cell contact is not sufficient for CIP 

in Madin Darby canine kidney (MDCK) epithelial cells.  In fact, proliferation continues at 

a near subconfluent rate even in confluent cells until a critical cell density, or transition 

point, is reached, after which proliferation diminishes until cells reach quiescence (Adam 

et al., 1982; Puliafito et al., 2012).  Proliferation in confluent cells is accompanied by 

little or no hypertrophic growth. While subconfluent daughter cells ultimately attain 

nearly 100% of mother cell area, confluent cells remain at around 50%, indicating a 

nearly complete lack of hypertrophic growth in the densely confluent monolayer, 

consistent with the previously identified inverse relationship between individual cell size 

and density (Erlinger and Saier, 1982; Puliafito et al., 2012).  This reduction in cell size 

acts as the major activator of YAP nuclear exclusion through reduction of cytoskeletal 

stress (Aragona et al., 2013; Rauskolb et al., 2014, see section 2.2.5).  Indeed, forced 

reduction in cell size by growth on micropatterned fibronectin islands of defined area or 
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growth in a soft agar, to reduce cytoskeletal tension, leads to YAP nuclear exclusion in 

a manner dependent on F-actin capping/severing proteins but independent of cell 

contact (Aragona et al., 2013).  Thus, subconfluent cells are subject to tensile forces on 

the cytoskeleton that, combined with lack of cell contact, promote YAP nuclear 

localization and proliferation (Aragona et al., 2013; Rauskolb et al., 2014; Trepat et al., 

2009).  Confluent, pre-transition point epithelial cells, while contacted, also maintain 

YAP nuclear localization due to continued cytoskeletal tension, promoting proliferation. 

However, the cells are exposed to constraining forces that discourage post-mitotic 

hypertrophic growth causing a period of size reductive proliferation ultimately reducing 

cytoskeletal stress and transitioning the cells to proliferative quiescence and finally 

monolayer maturation (Puliafito et al., 2012). This process sharply decreases cell area 

and increases cell density, resulting in increased uniformity of cell area and shape, and 

establishes a mature, packed, epithelial monolayer.  

A mature epithelial monolayer possesses well-developed TJs, which are 

necessary to control fluid and solute flux.  TJs form between adjacent cells apical to the 

AJ and create and maintain semi-permeable barriers to paracellular flux, and may 

contribute to maintaining cell polarity.  Over 40 proteins have been identified at TJs 

(Anderson and Van Itallie, 2009) including occludin, the first transmembrane TJ protein 

to be discovered (Furuse et al., 1993).  While occludin knockout mice failed to exhibit 

any increase in intestinal permeability, these animals presented with a constellation of 

complex phenotypes consistent with barrier dysregulation including male sterility, 

inability to nurse, and brain calcification (Saitou et al., 2000; Schulzke et al., 2005).  

Human patients expressing a recessive mutation in the occludin gene exhibit similar 
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brain calcification, as well as gross cranial malformation (O'Driscoll et al., 2010).  Taken 

together, these studies support the prevailing view of occludin as a regulator of the TJ. 

Recently, occludin has been increasingly implicated in non-barrier roles including 

regulation of cell proliferation.  Occludin is present at centrosomes and regulates mitotic 

entry and cell proliferation in a phosphorylation dependent manner (Runkle et al., 2011).  

Occludin knockout mice exhibit intestinal cell hyperplasia (Saitou et al., 2000), and 

occludin down-regulation or loss has been implicated in cancers of the skin (Rachow et 

al., 2013), uterus (Tobioka et al., 2004) and breast (Martin et al., 2010), and is 

correlated with increased metastatic potential (Osanai et al., 2006).  Furthermore, 

occludin re-expression rescues murine tumorigenesis after implantation of oncogenic, 

Raf1-transformed cells (Wang et al., 2005).  The emerging importance of occludin in 

regulating cell proliferation suggests a role for occludin in cell packing. 

Mass spectrometric analysis has identified several novel occludin 

phosphorylation sites, including the S471 site within the C-terminal coiled-coil domain 

(Sundstrom et al., 2009).  Notably, this residue is located at the first turn of the coiled-

coil, which has been established as an interaction point with the scaffolding protein, 

zonula occludens-1 (ZO-1, (Tash et al., 2012).  ZO-1 interacts with and organizes many 

TJ proteins, and links the junction to the actin cytoskeleton (Lye et al., 2010), and 

members of the ZO family are necessary for assembly of TJs (Rodgers et al., 2013; 

Umeda et al., 2006).  ZO-1 is a membrane associated guanylate kinase (MAGUK) 

protein and contains the typical catalytically inactive guanylate kinase (GuK) like 

domain. The GuK domain acts as a specialized P-serine/P-threonine binding pocket 

(Zhu et al., 2011), and the ZO-1 GuK domain interacts with the acidic head of the 
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occludin coiled-coil, including the S471 site, making it an intriguing site for potential 

functional regulation and further analysis (Tash et al., 2012).  

In the current study, we present evidence that expression of occludin 

phosphoinhibitory mutant S471A prevents size-reductive proliferation and cell packing 

in MDCK cells.  Expression of S471A has no effect on sub-confluent proliferation, but 

inhibits size reductive proliferation after contact and prevents bicellular and tricellular TJ 

maturation, creating a highly permeable monolayer that appears morphologically 

indistinguishable from an immature monolayer before cell packing.  Furthermore, 

inhibition of cell cycle progression after cell contact yields a similar, immature 

monolayer, suggesting that cell packing is necessary for monolayer maturation and TJ 

formation.  The S471 site is a target of members of the G-protein coupled receptor 

kinase (GRK) family, and inhibition of GRK 4-6 also inhibits size reductive proliferation 

and delays epithelial cell maturation. Further, the effect of the GRK inhibitors on 

monolayer maturation can be overcome by expression of the phosphomimetic S471D 

occludin.  The data suggest that occludin phosphorylation at S471 contributes to control 

of size reductive proliferation after contact, and to epithelial maturation.  

 

3.3 Methods 

Cells 

All reagents were purchased from Sigma Chemical (St. Louis, MO) unless 

otherwise noted.  Madin Darby canine kidney (MDCK) cells were obtained from 

American Type Culture Collection (Manassas, VA) and cultured in minimum essential 
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media as previously reported (Runkle et al., 2011).  All cells were kept at 37°C with 5% 

CO2. 

MDCK stable lines were generated via transfection with lipofectamine 2000 

(Invitrogen, Carlsbad, CA) of empty vector, wild type human occludin, S471A mutant 

occludin, or S471D mutant occludin in a pmaxFP expression vector (Amaxa, Cologne, 

Germany) following manufacturer instructions and as previously described (Shen and 

Turner, 2005).  Briefly, fluorescence-activated cell sorting was carried out following 2 

weeks of culture in normal MEM with 2.5 mg/ml geneticin (Gibco, Carlsbad, CA).  Single 

cells were plated in a 96-well plate with 2.5 µl/ml geneticin, grown out, and screened for 

GFP expression by western blot.  W2, A3, and D2 lines were used unless otherwise 

indicated (Fig. 3.1).  All reported experiments were repeated on separate days except 

for Fig. 3.4, which represents multiple platings.  Cells were plated at a density of 

162,500 cells/cm2 unless otherwise noted. 

 Immunofluorescence (IF) 

 Cells were plated on chambered glass slides and fixed at 4 days post confluent 

unless otherwise noted with either 3.5% paraformaldehyde (PFA) for 10 minutes or 50% 

methanol/50% acetone for 20 minutes at -20°C (Thermo Scientific, Waltham, MA).  PFA 

fixation was followed by 15 minutes permeabilization in TBS plus 0.25% triton-x 100 

while methanol/acetone fixation did not require permeabilization.  Cells were blocked in 

10% goat serum (Life Technologies, Carlsbad, CA) with 0.25% triton-x 100 for 1 hour, 

then stained with indicated primary antibodies overnight at 4°C and 1:200 dilution in 

blocking solution, except for anti-turbo GFP (1:400, Evrogen, Moscow, Russia) and anti-
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YAP (1:100, Santa Cruz, Dallas, TX).  Secondary antibody (Alexa Fluor 488, 555, and 

647, Life Technologies, Carlsbad, CA) exposure was 1 hour at room temperature in 

blocking buffer at a 1:1,000 dilution.  Fluorescence was determined from Z-stacks of 0.5 

µm slices taken on a Leica TCS SP5 confocal microscope (63x, 1.4 N.A oil objective, 

Wetzlar, Germany) with photomultiplier tube detectors, and using Leica Advanced 

Fluorescence software.  Images were analyzed using Metamorph software (Molecular 

Devices, Sunnyvale, CA). In some cases, occludin and ZO-1 border staining was 

quantified by a semi-quantitative ranking score system based on a scale of 1 to 5: 1 for 

near complete loss of border staining (0-25%), 2 for 25-50% continuous border staining, 

3 for 50-75% continuous border staining, 4 for 75-100% continuous border staining, and 

5 for completely continuous border staining. Scoring was completed in a masked 

fashion by 3 impartial observers provided scoring standard images for comparison. 

Adherens junction/cell height 

Fixation was performed using 1:1 methanol/acetone or 3.5% PFA as previously 

described (AJ area), or 3.5% PFA in the absence of permeabilization (cell height).  Area 

within E-cadherin border staining was determined from multiple 63x - 1x zoom confocal 

images using Metamorph software (Molecular Devices, Sunnyvale, CA).  Cell height 

was determined from 63x - 1x zoom XZ confocal images of plasma membrane staining 

and Leica Advanced Fluorescence software (Wetzlar, Germany). 

Cell counts 

Nuclei were counted from monolayers stained with either Hoechst or PicoGreen 

nuclear stain (Life Technologies, Carlsbad, CA) using the ImageJ cell counter plugin 
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(NIH, Bethesda, MD).  At least four microscopy fields were averaged for each cell line or 

treatment (63x objective, 5x zoom).  1,400 cells/cm2 were also plated on 12 well plates, 

then trypsinized and counted at 1, 2, 3, and 4 days post-plating using a Mo-FLO cell 

sorter (Beckman Coulter, Brea, CA).  Forward scatter data was collected to determine 

suspended cell size, and exhausted cell media from each time point was saved for 

quantification of floating cells. 

DNA synthesis/cell proliferation assays 

7,857, 100,000, or 185,714 cells/cm2 were plated on eight chambered glass 

slides (Thermo Scientific, Waltham, MA) and allowed to grow overnight (7,857 and 

100,000 cells/cm2) or for 4 hours (185,714 cells/cm2).  Cells were incubated with 10 µM 

EdU (Click-It EdU kit, Life Technologies, Carlsbad, CA) for 4 (7,857 and 100,000 

cells/cm2) or 24 (185,714 cells/cm2) hours according to manufacturer instructions.  Cells 

were fixed with 3.5% PFA and stained with Hoechst or PicoGreen nuclear stain 

(Invitrogen, Carlsbad, CA).  At least 500 cells per condition were examined using the 

ImageJ cell counter plugin (NIH, Bethesda, MD), and percentage of total cells 

expressing EdU was calculated. 

Trans-epithelial resistance (TER) 

TER was determined using the electric cell-substrate impedance sensing (ECIS, 

Applied Biophysics, Troy, NY) system at 500 Hz.  Cells were plated on 8W10E+ ECIS 

plates and allowed to become confluent overnight.  All treatments were added at the 

time of plating and replenished along with fresh media every 24 hours unless otherwise 
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noted.  Electrical resistance was determined on the fourth day post-confluence unless 

otherwise noted. 

Solute flux assay 

Cells were plated on 12-well plates with polyester transwell inserts (0.4 µM pore, 

Corning, Corning, NY) and allowed to become confluent overnight.  Solute flux was 

determined on the fourth day post-confluence as previously described (Phillips et al., 

2008).  Briefly, 480 nM TAMRA (467 Da) was added to the apical chamber followed by 

sampling of 50 µL from the basolateral chamber every 30 minutes for 3 hours.  10 µL 

was also removed from the apical chamber at the last time point for apical concentration 

determination.  Fluorescence was measured (ex. 560, em. 590) in a flat bottom black 

wall 96-well plate (Greiner, Monroe, NC) using a FLUOstar microplate reader (BMG 

Labtech, Ortenburg, Germany).   

Cell cycle inhibitor assays 

Cells were treated with 10 µM roscovitine (Calbiochem, San Diego, CA) 24 hours 

after plating, and drug was replenished along with fresh media every 24 hours.  TER 

measurements proceeded for two additional days (from 24-72 hours post plating using 

ECIS system), or cells were fixed for imaging at 60h post plating. 

Determination of protein expression and immunoprecipitation experiments  

Protein expression was determined via western blot as previously described 

(Phillips et al., 2008).  Briefly, MDCK cells were harvested in Stuart’s Buffer composed 

of 100 mM NaCl, 1% triton-x 100, 0.5% sodium deoxycholate, 0.2% SDS, 2 mM EDTA, 
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10 mM HEPES (pH 7.5), 1 mM NaVO4, 10 mM NaF, 10 mM sodium pyrophosphate, 1 

mM benzamidine, 10 μM microcystin (Cayman Chemical, Ann Arbor, MI), and complete 

mini protease inhibitor tablet (EDTA free, Roche, Indianapolis, IN).  Following gel 

electrophoresis and blocking in 2% ECL prime (GE Healthcare, Little Chalfont, 

Buckinghamshire, UK), proteins were probed with indicated antibodies including 

occludin, claudin-1, and tricellulin (Invitrogen, Carlsbad, CA), β-catenin and afadin 

(Sigma, St. Louis, MO), turboGFP (Evrogen, Moscow, Russia), ZO-1 and GRK 

(Millipore, Billerica, MA), and E-cadherin (BD Biosciences, Franklin Lakes, NJ).  

Alternatively, MDCK cells were harvested for immunoprecipitation as previously 

described (Titchenell et al., 2012) in buffer containing 50 mM Tris (pH 7.5), 150 mM 

NaCl, 1% NP-40 (USB, Cleveland, OH), 1 mM NaVO4, 10 mM NaF, 10 mM sodium 

pyrophosphate, 1 mM benzamidine, complete mini protease inhibitor tablet (EDTA free, 

Roche, Indianapolis, IN), 1 μM microcystin (Cayman Chemical, Ann Arbor, MI), 10% 

glycerol (Fisher, Waltham, MA) and 2 mM EDTA (Lonza, Walkersville, MD).  Following 

harvest, cells were rocked for 15 minutes and spun at 12,000 g for 10 minutes.  Lysate 

containing 1 mg of protein was pre-cleared with 30 µl packed volume protein G 

sepharose beads (GE Healthcare, Little Chalfont, Buckinghamshire, UK), then 

incubated overnight with 10 μg turboGFP antibody (Evrogen, Moscow, Russia).  Protein 

G beads were added to the antibody and lysate mix for one hour, then washed with 

buffer and prepared for western blotting as previously described. 

Co-culture experiments 

Subconfluent parental MDCK cells were transduced with Cell-Light mitochondria 

BacMam baculovirus (Invitrogen, Carlsbad, CA).  The next day, transduced parental 
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MDCK were plated with untransduced S471 Occ cells at a ratio of 10%/90%, 

respectively.  Cells were fixed in PFA and prepared for IF as previously described. 

Cell cycle stage measurements 

Four day- post confluent cells were stained in suspension with Hoechst, which 

was then quantified using an LSR II flow cytometer (Becton Dickinson, Franklin Lakes, 

NJ).  Cell cycle stage was determined by amount of nuclear material present.  

Ion permeability 

97,500 cells were plated on Biopore cell culture inserts (0.4 µm pore, Millipore, 

Billerica, MA) with fresh MDCK media provided daily.  On the fourth day post 

confluence, inserts were loaded into an Ussing chamber (Harvard Apparatus, Holliston, 

MA), and both sides were gently filled with HEPES ringer solution composed of 135 mM 

NaCl, 5 mM KCl, 10 mM HEPES, 10 mM glucose, 1.8 mM CaCl2, and 1 mM MgCl2.  

Permeability to specific ions was determined by voltage or current clamp (EC-800 

amplifier, Warner Instruments, Hamden, CT) recordings collected in the presence of 

ringers with the NaCl or KCl concentration in the apical chamber reduced by 75% 

(33.75 mM NaCl, 1.25 mM KCl), and original osmolarity restored by mannitol addition.  

Ion permeability ratio was calculated using the Goldman-Hodgkin-Katz equation: 

η = – (ε – ev) / (1 – ε ev). 

 where η is the ratio of permeability of the monolayer to Na+ over the permeability to Cl– 

(η = PNa/PCl ), ε is the dilution factor (ε = Cbasal/Capical), and v = eV/kT (V is the dilution 

potential, k is the Boltzmann constant, e is the elementary charge and T is the 
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temperature in Kelvins).  Absolute permeability of sodium and chloride was calculated 

using the simplified Kimizuka-Koketsu equation: 

PNa = (G / C) * (RT / F2) * (η / (1 + η)) 

PCl = (G / C) * (RT / F2) * (1 / (1 + η)), 

where G is the total membrane conductance calculated using Ohm’s law (V = I*R or G = 

I/V), C is the concentration of ion in solution, R is the gas constant, F is Faraday’s 

constant, and η is the ratio of permeability of the monolayer to Na+ over the permeability 

of Na+ to Cl–.  All experiments were conducted at room temperature.   

Cell viability 

Cell viability was determined using a WST-1 assay (Roche, Indianapolis, IN). 

31,250 cells/cm2 were plated in a 96 well plate, allowed to grow overnight, then 

incubated with 5 µl WST-1 reagent for 1 hour.  Absorbance was measured (770/410 

nm) using a FLUOstar microplate reader (BMG Labtech, Ortenburg, Germany). 

Statistical analysis 

Data were analyzed using two-tailed student’s t-test (2 groups), or one-way 

ANOVA with Bonferroni post hoc (3 or more groups) using Prism 5.0 (GraphPad 

Software, La Jolla, CA).  Line graphs were analyzed using a two-way ANOVA (simple 

effect within rows) with Bonferroni post hoc.  Data are expressed as mean ± SD unless 

otherwise indicated. 
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3.4 Results 

S471A Occ expression compromises TJ protein organization. 

MDCK lines overexpressing human occludin with a phosphoinhibitory serine to 

alanine (S471A) or phosphomimetic serine to aspartic acid (S471D) mutation were 

generated along with wild type occludin (WT Occ) control lines to investigate the effect 

of S471 phosphorylation on TJ protein organization (Fig. 3.1 A and B).  Both exogenous 

GFP tagged occludin (80 kD) and endogenous (55kD) occludin were detectable by 

western blot, and no appreciable changes were observed in expression of any tested TJ 

or AJ proteins in lines utilized for the current study (Fig. 3.1 C).  
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Fig. 3.1: Stable MDCK lines have similar tight junction expression.  (A) Schematic 
of occludin with S471 site (yellow dot) and (B) fusion protein construct with mutations 
used for stable expression in MDCK cell lines.  (C) Western blots for indicated TJ and AJ 
proteins. P=Parental, EV=Empty vector, W1-2=WT Occ clones 1 and 2, A1-3=S471A 
Occ clones 1-3, D1-2=S471D Occ clones 1 and 2.  Arrows indicate exogenous GFP-
occludin (black), exogenous occludin (red), and GFP (green). All molecular markers are 
given in kD. W2, A3, and D2 lines were used unless otherwise indicated. 

CMV 
Promoter 

GFP Human 
Occludin 
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Cells expressing WT Occ had well-organized localization at the border for the TJ 

proteins occludin (GFP-occludin and total occludin), ZO-1, and claudin-1 based on 

immunofluorescence (IF) labeling (Fig. 3.2 A).  Additionally, tricellulin appeared at tTJs.  

Phalloidin staining for F-actin revealed stress fibers basolaterally and crisp cortical actin 

staining apically, while afadin was present at the border (Fig. 3.2 B).  Finally, the AJ 

proteins E-cadherin and β-catenin demonstrated strong cell border organization (Fig. 

3.2 C).  All results were consistent with known localization of these proteins in cells with 

high electrical resistance and low solute permeability.  S471D Occ expressing cells 

were similar in their staining pattern to control lines, and in many cases were 

qualitatively better organized with increased uniformity in cell shape, and brighter, more 

focused border staining, particularly in regards to cortical F-actin (Fig. 3.2 A-C).  In 

contrast, TJs were disorganized in S471A Occ lines with mislocalized or missing border 

staining in all examined TJ proteins. These studies were performed on day 4 after 

plating, and the TJ disorganization was maintained for at least 10 days after plating 

(data not shown).  The TJ proteins occludin, ZO-1 and claudin-1 appeared as non-

continuous aggregates, often co-localizing with each other, while tricellulin staining was 

largely absent (Fig. 3.2 A).  Expression of S471A Occ did not, however, decrease the 

occludin-ZO-1 interaction as judged by co-immunoprecipitation experiments (Fig. 3.3 A) 

or alter endocytosis as assessed by colocalization with early endosome antigen 1 

(endosome marker, Fig. 3.3 B), nor was there evidence that S471A mutant cells 

corrupted neighboring parental cell TJ organization (Fig. 3.3 C), suggesting a cell 

autonomous effect.  The cell cycle stage of proliferatively quiescent WT, S471A, and 

S471D Occ lines were also similar, indicating that the mutations do not cause arrest in a 
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non G1/G0 cell cycle stage (Fig. 3.3 D-E).  By contrast, F-actin staining was altered with 

fewer visible stress fibers and dim, broad, cortical actin organization.  Afadin was also 

disorganized or lost at bicellular junctions (Fig. 3.2 B), but importantly, the AJ proteins 

E-cadherin and β-catenin appeared unaffected (Fig. 3.2 C).  To quantify the extent of 

ZO-1 protein mislocalization, co-localization between ZO-1, a marker of TJ organization, 

and E-cadherin, an AJ protein unaffected by S471A Occ expression, was 

measured.  The percent of E-cadherin colocalized with ZO-1 (indicating ZO-1 border 

staining) was significantly decreased in S471A Occ lines and increased in S471D Occ 

lines compared with WT Occ (Fig. 3.2 D and E).  Together, these observations 

demonstrate that expression of S471A Occ compromises TJ organization in a dominant 

manner. 
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Fig. 3.2: Tight junction and cytoskeletal proteins are mislocalized in occludin 
S471A mutant cell lines. (A-C) Immunofluorescent maximum projected stacks (3 
μm thick) or slices (phalloidin images, 0.5 μm thick) of indicated (A) TJ, (B) 
cytoskeletal staining and afadin, and (C) AJ proteins (scale bar = 10 μm). (D) 
Maximum projected colocalization of E-cadherin, used as a marker of junctional 
complex, with ZO-1 demonstrating loss of ZO-1 at junctions (scale bar = 50 μm). (E) 
Quantification of D (average of 4 images per cell line). Data are expressed as Mean 
± SD. *P<0.05 compared to WT Occ or S471D Occ. 
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TJ formation occurs during size reductive proliferation. 

As detailed in the introduction, size reductive proliferation is required for 

monolayer maturation. Here, the formation of TJs was examined across size reductive 

proliferation and epithelial maturation.  MDCK cells were plated on 8 chambered slides 

at 162,500 cells/cm2 (yielding confluency on the first day of plating).  The cells 

underwent dramatic morphologic changes associated with size reductive proliferation in 

the first three days following confluency.  Cell density increased by over 2-fold as 

indicated by nuclei counts (Fig. 3.4 A and B).  Meanwhile, the AJs were partially 

completed by day 1 and largely formed by day 2, and area within the AJ decreased by 

half by day 3 (Fig. 3.4 C and D). Finally, TJ assembly assessed by ZO-1 staining was 

largely incomplete on day 1, but increased dramatically over days 2 and 3 such that 

colocalization with E-cadherin increased, indicating increased ZO-1 border localization 

(Fig. 3.4 E and F).  Packing was complete by three days post confluency for each of the 

measured parameters, and no statistically significant changes occurred between days 3 

and 4. The TJ organization observed in the S471A expressing lines appeared highly 

Fig. 3.3: S471 lines co-immunoprecipitation, colocalization and co-cultures. (A) 
Protein ratio of co-immunoprecipitated GFP-occludin and ZO-1 proteins, normalized to 
WT Occ protein ratio (n=5-6). (B) Colocalization of GFP-occludin and endosomal marker 
EEA1 including Pearson’s, Mander’s A (percent of EEA1 colocalizes with GFP), and 
Mander’s B (percent of GFP that colocalizes with EEA1), average of 3-5 images per 
condition). (C) Parental cells labeled with Cell Light mitochondria BacMam baculovirus 
(red), co-cultured with GFP-tagged S471A Occ lines (green), and stained for ZO-1(faux 
colored in white). Left, merged image, right ZO-1 alone, arrows indicating intact parental-
parental (white) and disrupted S471A-S471A (yellow) borders.  (D) Schematic of DAPI 
fluorescence intensity as an indicator of cell cycle (adapted from Henderson et al., 
2013). (E) Fluorescence intensity of WT Occ (green), S471A (orange), S471D (blue), 
and unstained parental MDCK (red) cells stained with DAPI. Data are expressed as 
Mean ± SD, *P<0.05 compared to WT Occ. 
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similar to the early time point in epithelial maturation; therefore, cell size and 

proliferation were examined in the mutant lines.    

 

 

 

 

Fig. 3.4: MDCK cells exhibit size reductive proliferation and TJ organization. High 
density plating followed by measurements of cell number, size, and junctional 
organization, 1-4 days post confluent of (A, B) nuclei (DAPI), (C, D) E-cadherin IF and 
area within AJ, and (E,F) ZO-1 IF and maximum projected E-cadherin colocalization as 
a measure of ZO-1 border continuity and TJ assembly (scale bar: 10 μm). Data are 
expressed as Mean ± SD (average of 4 images per condition). *P<0.05 compared to 1 
day post confluent. 
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Size reductive proliferation is attenuated by S471A Occ expression. 

Cell monolayers expressing S471A Occ were composed of fewer and larger cells 

than WT Occ or S471D Occ monolayers (Fig. 3.5 A-C).  Nuclei number was 

approximately half compared to cells expressing WT Occ or S471D, and the area within 

the AJ (E-cadherin staining) was increased in S471A Occ confluent monolayers by 2 to 

4-fold compared to WT Occ or S471D Occ lines (Fig. 3.5 A and B).  Cell height was not 

different however, suggesting an increase in cell volume in S471A Occ lines compared 

to WT Occ and S471D (Fig. 3.5 D).  To determine if S471A mutants altered cell 

proliferation or size in suspension, cells were plated at low density (1,400 cells/cm2) and 

counted following trypsinization on days 2-4.  S471A cell size in suspension was not 

different from WT Occ, indicating a strictly adherent cell effect (Fig. 3.5 E).  Adherent 

cell number, as determined by flow analysis, was reduced in S471A Occ monolayers at 

higher confluences on days 3 and 4, but not on days 1 or 2 when confluency was low 

and there was little cell contact, suggesting loss of proliferation in a density dependent 

manner (Fig. 3.5 F). Non-adherent cells were counted to eliminate the possibility of 

increased cell extrusion in S471A Occ lines, and no difference was observed between 

any of the lines (Fig. 3.5 G).  Finally, the nearby Y474 site participates in PI3K activation 

(Du et al., 2010), and its proximity to S471 represents a possible mechanism for 

proliferative differences amongst the mutants.  Tyrosine phosphorylation of GFP-Occ 

from various S471 mutant lines was similar however, indicating that the use a Y474 

phospho-specific antibody or other phosphorylation detection method that is Y474 

specific may be necessary to evaluate this possibility (Fig. 3.5 H).   



61 
 

 

 



62 
 

 

To examine the possibility of a density dependent decrease in S471A Occ 

proliferation, we measured the proliferative rate of WT Occ, S471A Occ, and S471D 

Occ lines at various confluences by DNA synthesis measurements (Click-IT EdU).  At 

7,857 (~10% confluent) and 100,000 (~55% confluent) cells/cm2, the number of cells 

with active DNA synthesis was measured over a 4h period whereas when plating 

185,714 (~100% confluent) cells/cm2, the number of synthetically active cells was 

measured over 24h since the rate of overall synthesis dramatically slows as cells 

become more confluent.  No difference in proliferation was observed at low confluence 

(Fig. 3.6 A), but became increasingly evident with increasing confluence (Fig. 3.6 B-C).  

When plated at ~ 100% confluence, fewer than 10% as many S471A Occ cells 

proliferated over the 24 hours (4-28 hours post plating) compared with WT Occ, while 

there was no difference between WT Occ and S471D Occ (Fig. 3.6 C).  The proliferative 

rate was near zero in all cell lines from 28-52 hours post plating (Fig. 3.6 D), suggesting 

that when plated at high confluency, proliferation is restricted in MDCK to a size 

reductive or packing phase lasting no longer than 24 hours, followed by relative 

quiescence.  However, expression of S471A Occ inhibits this packing phase.  The 

transcriptional co-activator, YAP, promotes cell proliferation in the nucleus, and its 

Fig. 3.5: Phosphoinhibitory (S471A) monolayers are composed of fewer, larger 
cells than controls. (A) Quantification of nuclei/mm2 in various lines. (B) 
Quantification of area within AJ (E-cadherin staining) and (C) representative images 
(scale bar: 10 μm). (D) Average cell height.  (E) Average suspended cell size at 2-4 
days post confluent and (F) cell counts by flow cytometry 2, 3, or 4 days post plating.  
(G) Floating (extruded) cell counts 2-4 days post confluent.  Floating cells were 
allowed to accumulate for 24 hours prior to counting.  (H) Tyrosine phosphorylation 
of various lines following GFP-Occludin IP and pY20 IB.  Data are expressed as 
mean ± SD, A-B and D represent the average of 4 images per condition, E-F, G-H 
represent average of 3 experiments). *P<0.05 compared to WT Occ or S471D Occ. 
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nuclear exclusion marks the end of the Hippo/MST signaling pathway and contributes to 

CIP (Gumbiner and Kim, 2014).  Despite proliferative quiescence, YAP localization 

remained nuclear in S471A Occ lines compared to WT Occ at quiescence, consistent 

with the S471A mutant stalling size reductive proliferation, and preventing YAP nuclear 

exclusion (Fig. 3.6 E-F).  Taken all together, these results indicate that size reductive 

proliferation is deficient in S471A Occ lines, and raises the possibility of a connection 

between defective packing and poor TJ assembly (Fig 3.2 A). 
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Cell packing is necessary for barrier assembly. 

To evaluate the necessity of cell packing alone for barrier assembly, we treated 

parental MDCK with the Cdk inhibitor, roscovitine, starting at 24 hours post plating to 

halt the cell cycle and size reductive proliferation.  Nuclei number was decreased (Fig. 

3.7 A) and area within the AJ was increased (Fig. 3.7 B) compared to controls, 

confirming that packing was significantly attenuated.  Trans-epithelial electrical 

resistance (TER) was decreased on day 3 (Fig. 3.7 C), and there was a significant loss 

of ZO-1 border staining compared with continuous E-cadherin staining (Fig. 3.7 D-E), 

indicating disorganization of TJ proteins at the border.  These studies demonstrate that 

inhibition of cell packing alone reduces TJ assembly and prevents high resistance 

barrier formation. 

Fig. 3.6: Proliferation after contact was inhibited in S471A Occ lines. (A-D) 
EdU labeling was measured at the indicated confluences as described in Methods, 
and percent of cells demonstrating DNA synthesis was quantified (at least 500 cells 
examined per cell line, per condition). (E) IF images of YAP localization in 
subconfluent and confluent WT Occ, and confluent S471A Occ lines (scale bar: 50 
μm, 10 μm for inset). (F) Quantification of percent nuclear YAP (average of 4 
images per condition). Data are expressed as Mean ± SD normalized to WT Occ. 
*P<0.05 compared to WT Occ. 
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Fig. 3.7: Inhibition of size reductive proliferation delays peak TER and 
mislocalizes TJ proteins. (A) Nuclei counts and (B) AJ area in day 3 post 
confluent MDCK monolayers demonstrating inhibition of size reductive 
proliferation following treatment with the cell cycle inhibitor, roscovitine, added at 
24h after plating. (C) TER of day 3 post confluent MDCK cells (n=10-11). (D) 
Representative images of ZO-1 (TJ marker) and E-cadherin (AJ marker) 
following treatment with roscovitine or DMSO control (scale bar: 50 μm). Yellow 
arrows highlight gaps in ZO-1. (E) Quantification of maximum projected 
colocalization of E-cadherin and ZO-1 as a measure of TJ organization. Data are 
expressed as Mean ± SD (average of 4 images per condition). *P<0.05 
compared to 0.5% DMSO. 
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S471A Occ compromises barrier function. 

A hallmark of epithelial sheets with well-formed TJ barriers is high TER.  To 

determine whether S471A Occ expression affected TER, measurements were 

conducted in multiple cell lines.  Loss of high resistance barriers was observed in 

S471A Occ expressing lines that had also shown stalled size reductive proliferation.  

WT Occ overexpression increased TER in mature (day 3, Fig. 3.8 A  and day 4, Fig. 3.8 

B) monolayers, as well as after 12 hours of reassembly following a Ca2+ switch 

experiment (Fig. 3.8 C) as previously reported (Balda et al., 1996; McCarthy et al., 

1996; Van Itallie et al., 2010).  No differences were evident between WT Occ and 

S471D Occ lines at any of the time points.  In contrast, S471A Occ expression reduced 

TER at all time points in all lines tested, and permeability to Ca2+, K+, and Cl- ions was 

uniformly increased in S471A Occ mutants (Fig. 3.8 D-F).  Permeability to the small 

fluorescent molecule tetramethylrhodamine (TAMRA, 467 Da) was also increased in 

S471A lines, and there was no difference between WT Occ, S471D, and parental lines 

(Fig. 3.8 G).  These results indicate an increase in permeability to both ion and small 

molecule flux in S471A Occ lines. 
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S471 is phosphorylated in vitro by G-protein coupled receptor kinase (GRK), and 

GRK inhibitors attenuate epithelial maturation. 

Fig. 3.8: Barrier permeability is increased in phosphoinhibitory S471A Occ 
lines compared to WT Occ or S471D. (A-C) Trans-epithelial electrical resistance 
(TER) 3 days (A) or 4 days (B) post confluence, or following 12 hours of recovery 
from a day 4 calcium switch experiment (C). (D-F) Ion permeability for (D) sodium, 
(E) potassium, and (F) chloride in parental and various S471 mutant MDCK lines. (G) 
Solute flux of TAMRA tracer (467 Da) 4 days post confluence. Data are expressed as 
Mean ± SD (n = 9-16 A-C, n= 9 D-F, n = 13-21 G). *P<0.05 compared to WT Occ (D-
F courtesy of Aniket Ramshekar). 
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Our previous studies suggest that S471 phosphorylation is important for cell 

packing and barrier formation.  To screen potential cellular kinases for this residue, 

putative kinases were identified using three kinase prediction software programs, and 

kinases predicted by at least two were screened against a 21 AA peptide with S471 at 

the center (Fig. 3.9, see methods).  This peptide was phosphorylated in vitro by 

members of the polo like kinase (PLK), calcium/calmodulin dependent kinase (CaMKII), 

and G protein coupled receptor kinase (GRK) families.  

Kinase screen 

A list of potential kinases was compiled by entering the sequence around S471 

(KELDDYREESEEYMAAADE) into three online kinase prediction programs: GPS (Xue 

et al., 2008), KinasePhos (Huang et al., 2005), and NetPhos (Blom et al., 

1999).  Kinases predicted to phosphorylate S471 by at least two of the three programs 

were included in an in vitro P32 kinase assay (Millipore, Dundee, Scotland, UK) of the 

same peptide with two added lysines at the amino terminus to promote peptide capture 

on nitrocellulose filters (KKKELDDYREESEEYMAAADE, NeoBioSci, Cambridge, MA).  

GRK identified in this screen was inhibited in MDCK cells using the kinase-specific 

inhibitors CCG215022 (GRK Inhib 22, Homan et al., 2015), 4-amino-5-(bromomethyl)-2-

methylpyrimidine hydrobromide (ABMH, Santa Cruz), and paroxetine (Toronto 

Research Chemicals, Toronto, ON, Canada).  Kinase assays with all three inhibitors 

were performed as previously reported (Homan et al., 2015).  

Kinase assays 
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GRK kinetic assays were conducted in a buffer containing 20 mM HEPES (pH 

7.0), 2 mM MgCl2, and 0.025% n-dodecyl–D-maltoside with 50 nM GRK and 500 nM 

tubulin in 5-minute reactions. Reactions were quenched with SDS loading buffer, 

separated via SDS-PAGE, dried, and exposed with a phosphoimaging screen prior to 

quantification via a Typhoon imager, as previously reported (Homan et al., 2015). Data 

were quantified using Image Quant and inhibition curves were then fit via GraphPad 

Prism with a three variable dose-inhibitor response curve with a fixed hill slope of 1. 
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Since GRK has previously been implicated in cell size control (Chakraborty et al., 

2014) and GRK isoforms were present in the MDCK cells, this kinase was targeted for 

cell packing and junction formation studies.  siRNAs to GRK were unsuccessful in 

knocking down protein levels despite multiple attempts (data not shown).  However, 

three chemically distinct pharmacological GRK inhibitors prevented epithelial 

maturation. GRK Inhib 22 (CCG215022), a potent GRK inhibitor (Homan et al., 2015), 

demonstrated inhibition of GRK6 with an IC50 of 0.95 ± 0.12 µM, while 4-amino-5-

(bromomethyl)-2-methylpyrimidine hydrobromide (ABMH) and paroxetine (Thal et al., 

2012) inhibited GRK6 with IC50s of 499 ± 144 µM and 78.80 ± 12.30 µM, respectively 

(Fig. 3.10 A).  

Fig. 3.9: S471 in vitro kinase screen. Phosphorylation of an S471-containing 21 
amino acid peptide by various kinases quantified via P32 incorporation. Peptide 
sequence is given with location of S471 (arrow). 
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Fig. 3.10: GRK inhibitor activities and effects on TER. (A) in vitro IC50s for GRK 
inhibitors. (B-D) Day 3 TER composite traces from ECIS measurements of various 
GRK inhibitors including (B) GRK inhibitor 22, (C) ABMH, and (D) paroxetine. Data 
are expressed as mean ± SD (n=6 A, n=4-8 B-D). *P<0.05 compared to DMSO 
(0.5%) or no treatment. 
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MDCK cells were plated at confluence and treated with GRK inhibitor upon cell 

feeding every 24h. Occludin and ZO-1 localization at the border was reduced on day 3 

following treatment of parental MDCK cells with GRK Inhib 22 (Fig. 3.11 A and B) or 

ABMH (Fig. 3.11 A and C) compared with DMSO control.  Cell packing was attenuated 

by both inhibitors, as demonstrated by a decrease in nuclei number (Fig. 3.11 D) and an 

increase in area within the AJ (Fig. 3.11 E).  Cell viability was not decreased with any of 

the inhibitors (Fig. 3.12). 
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Fig. 3.11: GRK inhibitors decrease TJ border staining and cell number, and 
increase cell size. (A) IF maximum projected images of total occludin and ZO-1 in 
DMSO control, GRK Inhib 22, and ABMH-treated parental MDCK (scale bar: 50 
μm). (B-C) Scoring of occludin and ZO-1 treated with (B) GRK Inhib 22 or (C) 
ABMH. (D) Nuclei counts for DMSO control vs. GRK Inhib 22 and ABMH. (E) 
Quantification of area within the AJ for DMSO control vs. GRK Inhib 22 and ABMH. 
Drug was present from beginning of each run and replenished every 24 hours along 
with fresh media (average of 14 (B-C) or 4 (D-E) images per condition). *P<0.05 
compared to WT Occ or DMSO control. 
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Fig. 3.12: Cell Viability is not decreased by occludin overexpression or tested 
pharmacological agents. Quantification of WST-1 reduction as a measure of 
viability for (A) parental and occludin overexpression cell lines and parental cells 
treated with (B) GRK Inhib 22 and ABMH GRK inhibitors, (C) paroxetine GRK 
inhibitor, or (D) roscovitine cell cycle inhibitor. Data are expressed as Mean ± SD (n = 
8). *P<0.05 compared to WT Occ, 0.5% DMSO, or no treatment. 
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TER was measured in parental cells treated with GRK inhibitors.  Treatment with 

all three GRK inhibitors delayed barrier development in a dose-dependent manner 

yielding lower TER on day 3 (Fig. 3.10 B-D and 3.13 B-E). In contrast to the pan specific 

GRK Inhib 22, inhibitors specific to the GRK 2-3 subfamily (GRK Inhib 63 and 64) did 

not reduce TER (Fig. 3.13 B). Importantly, overexpression of S471D Occ was sufficient 

to attenuate the GRK Inhib 22-mediated TER decrease in MDCK cells while WT Occ 

expression tended to normalize TER but was not statistically significant (Fig. 3.13 F).  

These results strongly implicate GRK isoforms in phosphorylation of occludin S471, and 

that inhibition of GRK isoforms significantly decreases cell packing, TJ assembly, and 

peak TER, which may be attenuated by expression of the S471D Occ phosphomimetic.  
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Fig. 3.13: GRK inhibitors reduce TER in a dose-dependent manner. (A) 
Western blot of all lines showing GRK subfamily 4-6 expression. (B-E) TER 
3 days post confluence of MDCK treated from the beginning of each 
experiment with various GRK inhibitors including (B) GRK Inhibitors 64, 63, 
and 22 (15 μM), (C) GRK Inhibitor 22 (50 μM), (D) ABMH, and (E) 
paroxetine. Data are expressed as mean ± SD (n=4-8), *P<0.05 compared 
to control. (F) Comparison of TER from beginning to end of Day 3 post 
plating, showing ratio of DMSO control to GRK Inhib 22 treatment for each 
cell line. Data are expressed as mean ± SE (n=6-8) and compared using 2-
way ANOVA with Bonferroni post-hoc test. *P<0.05 for parental vs. S471D 
at indicated times. 
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3.5 Discussion 

Despite the importance of barrier formation and dysfunction in a variety of 

diseases, (Morgan et al., 2014; Murakami et al., 2012; Schmitz et al., 1999), the series 

of events leading to barrier maturation remain incompletely characterized.  The present 

study demonstrates the necessity of size reductive proliferation or cell packing, for 

normal barrier maturation and identifies a role for the TJ protein occludin in this process.  

Previous studies have demonstrated that occludin contributes to proliferative control 

and cell cycle progression (Runkle et al., 2011; Wang et al., 2005), is altered in 

epithelial cancers (Gonzalez-Mariscal et al., 2007; Runkle and Mu, 2013), and may act 

as a tumor suppressor (Wang et al., 2005).  Evidence is presented here demonstrating 

that phosphorylation of S471 of occludin regulates entry into size reductive proliferation 

after cell contact.  Expression of an occludin S471 phosphoinhibitory mutant, Occ 

S471A, acts in a dominant manner to attenuate cell packing and subsequent TJ 

maturation, and formation of high resistance barriers. These effects can be 

recapitulated by treating confluent monolayers with a cell cycle inhibitor, demonstrating 

the necessity of cell packing for complete TJ assembly and monolayer maturation.  

Finally, Occ S471 was found to be a substrate for GRK, and three separate GRK 

inhibitors attenuated epithelial cell maturation. The data suggest that GRK 

phosphorylation of Occ S471 signals to allow size reductive proliferation.  The reduced 

cell size then relieves cytoskeletal strain promoting Hippo/MST signaling for YAP 

nuclear exclusion (Aragona et al., 2013) and cellular quiescence with completed TJ 

formation. Inhibition of S471 phosphorylation or preventing cell cycle progression post-
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confluency prevents size reductive proliferation leading to fewer larger cells with 

incomplete TJ formation (Fig. 3.14). 
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Fig. 3.14: Model of occludin S471 contribution to monolayer maturation. (A) 
Increasing confluency leads to contact by E-cadherin extracellular domains of 
adjacent cells (light blue bars). Cell confluency increases and occludin S471 is 
phosphorylated by GRK, allowing size reductive proliferation, decreasing cell area 
and increasing cell number. (B) As cell size decreases, YAP becomes excluded from 
the nucleus and junctional maturation proceeds, yielding a mature monolayer with 
high barrier resistance and proliferative quiescence. (C) Monolayer maturation may 
be perturbed by: (1) Ser to Ala mutation of occludin at S471, (2) cell cycle inhibition 
of newly confluent monolayers, or (3) inhibition of the S471 kinase GRK. (D) In all 
cases, size reductive proliferation is inhibited leaving an immature monolayer with 
complete AJ formation but poor TJ organization and low TER. Cells become 
quiescent despite nuclear localization of YAP and fail to undergo size reductive 
proliferation. 
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TJ barrier regulation by occludin is dependent on phosphosites which are 

particularly abundant in the C-terminal coiled coil (Cummins, 2012).  Occludin 

dephosphorylation is associated with decreased electrical resistance and localization of 

occludin at the membrane, and C-terminal deletion increases solute flux and attenuates 

TJ organization (Andreeva et al., 2001; Balda et al., 1996).  Specific phosphosites 

regulate the occludin-mediated response to various growth factors and cytokines. For 

example, phosphorylation at S490 by PKCβII in response to vascular endothelial growth 

factor treatment increases occludin ubiquitination leading to endocytosis and increased 

permeability (Murakami et al., 2009; Murakami et al., 2012).  S490 phosphorylation also 

facilitates mitotic entry and increases proliferation (Runkle et al., 2011).  

Phosphorylation at S408 mediates interleukin-13-induced barrier loss, and inhibition of 

the S408 kinase, CK2, increases TER through altered inter-molecular complex 

formation within the TJ (Raleigh et al., 2011).  Specific occludin phosphosites also 

regulate occludin’s interaction with other TJ proteins, suggesting additional points of 

regulation (Dorfel et al., 2013; Elias et al., 2009; Suzuki et al., 2009).  These studies 

support a role for specific occludin phosphosites in barrier regulation and suggest that 

novel sites may have important regulatory roles. 

Overexpression of non-phosphorylatable S471A Occ disrupted cell packing and 

maturation of TJs but not AJs.  AJs are formed prior to TJs following cell-cell contact, 

and while TJ and cytoskeletal organization were decreased in a dominant fashion in 

S471A Occ lines, AJ assembly was unaffected, revealing that AJ formation does not 

require cell packing as TJ formation does. Further, GRK inhibition did not alter AJ 

formation.  Additionally, S471A Occ monolayers were composed of fewer cells with 
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increased area suggesting premature proliferative cessation. The Hippo/MST signaling 

pathway is an important determinant of cell and organ size, and nuclear exclusion of the 

co-activator, YAP, accompanies proliferative quiescence.  While YAP is just one of 

several nuclear Hippo/MST proteins, proliferative cessation in S471A Occ cell lines 

despite continued nuclear YAP localization indicates a dominant effect of the mutant, 

leading to premature arrest of packing prior to completion of the Hippo/MST signaling 

pathway.  

S471A Occ expression reduced TER despite similar TJ protein expression and 

Ca2+, K+, and Cl- ion permeability in all lines (Fig. 3.8 D-F), suggesting non-specific flux 

from gaps in the TJ rather than altered expression of claudins, or claudin pore formation 

to induce changes in permeability of a specific ion.   Importantly, packing deficiencies 

evident in S471A Occ lines including mislocalized TJ proteins and reduced TER were 

recapitulated by pharmacological inhibition of packing alone, indicating that packing is 

necessary for establishing anatomically and functionally normal barriers. It is noteworthy 

that many TJ proteins appear at the cell border upon contact and before packing but 

that a continuous apical TJ is not completed until after size reductive proliferation and 

quiescence. How these downstream events are regulated remains an area for future 

investigation. 

Structural analysis of occludin and ZO-1 binding suggests that occludin S471 is 

located within the acidic head of the coiled-coil that specifically binds the GuK domain of 

ZO-1 (Tash et al., 2012), raising the possibility that occludin S471 phosphorylation could 

affect the conformation of ZO-1 and thus epithelial maturation. The ZO family acts to 

organize cell junctions and links the junction to the actin cytoskeleton (Gonzalez-
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Mariscal et al., 2000). Changes in localization of all the TJ proteins analyzed in the 

S471A Occ mutants as well as altered actin organization, particularly at the cortical ring, 

are consistent with an alteration in proper ZO-1 function at the cell membrane. Occludin 

expression is not necessary for TJ formation in the intestinal epithelia of mice or in 

MDCK cells (Schulzke et al., 2005; Yu et al., 2005), suggesting that the regulatory effect 

of occludin may eventually be compensated for in its absence.  However, the effect of 

the S471A mutation was not transient, indicating that the presence of non-

phosphorylatable S471 occludin inhibits packing and TJ formation in a dominant 

manner and revealing this site as a regulator of size reductive proliferation and epithelial 

maturation.   

GRKs can phosphorylate S471 Occ, and inhibition of GRKs recapitulates results 

obtained with S471 Occ lines and cell cycle inhibition.  GRKs contribute to signal 

transduction desensitization by phosphorylating G-protein coupled receptors and 

preventing coupling with cytoplasmic G-proteins.  The sequence surrounding Occ S471 

was tested in multiple kinase prediction software programs, and 41 kinases were 

selected for screening.  GRK family members were able to phosphorylate the Occ 

S471-containing peptide consistent with recent studies demonstrating that non G-

protein coupled receptor proteins including cytoskeletal (Chakraborty et al., 2014), 

nuclear (Martini et al., 2008), and membrane proteins (Dinudom et al., 2004), as well as 

transcription factors (Patial et al., 2010), can be GRK substrates.  Seven GRK isoforms 

have been identified and are divided into three subfamilies based on sequence 

homology: isoforms 1 and 7 are tissue specific to the eye while 2 and 3 are ubiquitously 

expressed, as are isoforms 5 and 6 while isoform 4 has limited expression (Gurevich et 
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al., 2012).  Importantly, three structurally distinct GRK inhibitors were able to 

recapitulate deficiencies in packing and TJ protein localization evident in S471A Occ 

lines in a dose dependent manner.  In contrast to the pan-specific GRK Inhib 22, two 

inhibitors with greater specificity to the 2-3 subfamily did not decrease TER.  This result 

along with a lack of GRK 1 and 7 expression in kidney and confirmed expression of the 

GRK 4-6 subfamily in MDCK cells by Western blot suggests that at least one member of 

the GRK 4-6 subfamily is an S471 kinase in MDCK cells.  Silencing of GRK5 increases 

cell area, decreases tumor size (Chakraborty et al., 2014), and attenuates proliferation 

in various cancer lines (Kaur et al., 2013; Kim et al., 2012), demonstrating a regulatory 

role for the 4-6 subfamily in cell size and proliferation.  While off target effects of GRK 

inhibitors used in the current experiment likely exist, the ability of three structurally 

distinct inhibitors to induce the same effect preventing epithelial maturation strongly 

suggests GRK as the target.  Critically, the GRK inhibitor-mediated TER decrease 

observed in parental MDCK was significantly attenuated in the phosphomimetic S471D 

Occ overexpressing cells, implicating Occ S471 as a critical GRK target in epithelial 

maturation. 

Taken together, these observations support a model in which Occ S471 

phosphorylation contributes to the regulation of entry into size reductive proliferation 

after contact, followed by epithelial quiescence and assembly of TJs at the cell border 

leading to a high resistance barrier and a mature monolayer.  These findings extend the 

current understanding of the role of occludin, and establish the importance of cell 

packing in barrier formation. 
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CHAPTER IV 

 

Negative Charge at Occludin S471 is Not Necessary in vitro For Proper 

Localization and Organization of Tight Junction Proteins at the Border2 

 

4.1 Abstract 

 Serine phosphorylation is a ubiquitous post-translational modification that acts as 

a molecular switch by which cells can turn various signaling pathways off and on to 

respond to internal or external conditions.  Signaling can result from changes in protein-

protein interactions mediated by phosphorylation status, as the addition or subtraction of 

a phosphorylation group can alter interactions within or between proteins.  Previous 

experiments indicate that expression of a mutation at the S471 residue perturbs 

epithelial maturation and TJ formation.  The current study examines the structural 

consequence of these mutations, and investigates the role of the negative charge 

carried by phosphorylation groups on the coiled-coil structure.  WT Occ, S471A, and 

S471N occludin are transiently expressed in MDCK cells and compared with previous 

findings in WT Occ, S471A, and S471D lines.  TJ proteins are well organized at the 

border in WT Occ but not in S471A lines, consistent with previous findings.  S471N cells 

phenocopy WT Occ and previous S471D organization, despite asparagine (N) lacking a 

negative charge on its side chain.  These results indicate that the negative charge is not 

necessary for TJ organization, and suggest that other molecular interactions provided 

by the phosphorylated serine are responsible. Modeling of S471 in phosphorylated and 

                                                           
2
 Portions of this chapter are included in a manuscript in preparation for a yet to be determined journal 
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non-phosphorylated forms suggest hydrogen bonding to Arg468 may stabilize the 

coiled-coil domain of occludin. 

 

 4.2 Introduction 

Protein-protein interactions are important determinants of cell function and 

behavior, and contribute to cell-cell signaling, signaling cascades, and transcriptional 

control.  Interactions between associated proteins occur at the molecular level and are 

influenced by factors such as polarity, charge, 3 dimensional structure (sterics), and 

proximity between specific protein residues.  This is exemplified by the TJ protein, 

occludin, which binds to the scaffolding protein ZO-1.  ZO-1 is a member of the MAGUK 

protein family, which is characterized by a catalytically inactive GuK domain that acts as 

a p-Ser/p-Thr binding domain (Lye et al., 2010; Zhu et al., 2011, See chapter 2).  

Characterization of other MAGUK and phosphorylated target binding interactions 

indicate important and separable binding domains for the interaction of both the p-Ser 

site, regulating the binding interaction and the nearby residues, yielding target specificity 

(Zhu et al., 2011). In these interactions, the MAGUK binding was dependent on 

phosphorylation while occludin and ZO-1 interaction do not require S471 

phosphorylation; however, peptide binding studies reveal higher peptide binding with 

phosphorylation of S471 in an occludin peptide to the ZO-1 MAGUK (Tash et al., 2012). 

MAGUK contact sites include specificity binding region and phosphosite binding region. 

The specificity binding region restricts binding to specific substrate proteins while 

phosphosite binding region interacts with p-Ser/p-Thr (Zhu et al., 2011). In the case of 

the occludin-ZO-1 interaction, there is an electrostatic attraction between the relevant 
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protein domains conferring specificity.  Specifically, the glutamic acid-rich and thus 

negatively charged C-terminal coiled coil head region of occludin interacts with ZO-1 at 

the face of its lysine rich, positively charged guanylate kinase (GuK) domain (Li et al., 

2005; Tash et al., 2012), see chapter 3 for discussion).  Previous studies suggest that 

glutamic acid residues flanking S471 on the coiled-coil interact with ZO-1 specificity 

sites, as negative to positive charge-reversal mutations at these residues decrease ZO-

1 binding (Tash et al., 2012).  In contrast, though S471 is a phosphorylatable residue, a 

charge-reversing S to K mutation at S471 at the center of the coiled-coil and interaction 

site minimally affects ZO-1 binding, indicating that S471 negative charge does not 

improve binding.  Taken together, these findings suggest that occludin acts as a ZO-1 

binding substrate, that residues E469-470 and E472-473 of occludin interact with ZO-1 

GuK specificity sites, and that S471 interacts with an as yet unidentified phosphosite 

binding domain of the ZO-1 MAGUK and may be an important residue for mediating the 

effects of the occludin-ZO-1 interaction. 

Occludin S471 is important for overall protein and TJ function, and 

overexpression of a phosphoinhibitory S471A form disrupts TJ assembly and function 

(see chapter 3 results and discussion).  S471A expression does not, however, decrease 

the occludin-ZO-1 interaction as observed by Co-IP experiments, consistent with S471 

interacting with a phosphosite binding domain that is not required for protein-protein 

interaction (Tash et al., 2012, Fig. 3.3).  However, abolition of the occludin-ZO-1 

interaction is not the only alteration that could alter function of either protein.  The 

possibility remains that S471A could perturb the conformation/stability of the occludin 
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coiled-coil, leading to other, currently uncharacterized changes in ZO-1 interaction and 

function or interactions with other proteins. 

The current study was part of a larger effort to investigate the effects of occludin 

S471 phosphorylation at the molecular level.  Our collaborators John Flanagan and 

Maria Bewley at Pennsylvania State University found that expression of either S471A or 

S471D results in structural changes throughout the occludin coiled coil compared to 

non-phosphorylated WT.  The changes observed upon S471D expression were 

surprising and in contrast to the hypothesized stabilizing effect of S471 phosphorylation.  

Serine phosphorylation changes the charge of the residue from polar uncharged to 

negative, but also changes the 3 dimensional structure by adding a phosphate group 

that is sterically larger and bulkier than unphosphorylated serine.  Crystal structure and 

modeling data suggest that non-phosphorylated S471 interacts via hydrogen bond with 

Y474, and that phosphorylation enables hydrogen bonding with nitrogen both at the 

carboxyl backbone and near the side chain distal imine of R468.  It remains unclear 

whether the contribution of S471 phosphorylation is due to the permanent negative 

charge carried by the phospho group or to other factors such as hydrogen bonding with 

nearby residues.  The objective of the current study was to re-evaluate the in vitro 

effects of S471 phosphoinhibitory and phosphomimetic mutant occludin in TJ border 

localization, and to determine if the effects of S471 phosphorylation were due to charge 

or some other factor.  Evidence is presented indicating that negative charge at S471 is 

not necessary for bTJ localization, implicating other, charge-independent factors.   

 

4.3 Methods 
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TROSY NMR and molecular modeling 

WT, S471A, and S471D mutant occludin coiled-coil domain was raised in E. coli 

vector and analyzed for structural differences using transverse relaxation-optimized 

spectroscopy nuclear magnetic resonance (TROSY NMR).  Coiled-coil confirmation and 

hydrogen bonding was then modelled for WT, p-WT, S471D, and S471N coiled-coil 

using Chimera software (Biocomputing, Visualization, and Informatics, University of 

California San Francisco). 

Cell culture 

All reagents were purchased from Sigma Chemical (St. Louis, MO) unless 

otherwise noted.  Madin Darby canine kidney (MDCK) cells were obtained from 

American Type Culture Collection (Manassas, VA) and cultured in minimum essential 

media as previously reported (Runkle et al., 2011).  All cells were kept at 37°C with 5% 

CO2. 

Fusion protein constructs 

Fusion protein constructs were generated by inserting cDNAs encoding WT 

human occludin or S471A mutant occludin into a pmaxFP expression vector (Amaxa, 

Cologne, Germany) following manufacturer instructions.  An S471N construct was then 

generated using the WT Occ protein construct and Quik Change Site-Directed 

Mutagenesis Kit, following manufacturer instructions (Agilent Technologies, Santa 

Clara, CA).  Mutagenesis primers were 

GGATGACTATAGAGAAGAAAATGAAGAGTACATGGCTGC (forward) and 

GCAGCCATGTACTCTTCATTTTCTTCTCTATAGTCATCC (reverse).  Resulting 
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plasmids were sequenced to confirm serine to asparagine mutation.  Images of amino 

acid structures were created in ChemDraw (PerkinElmer, Waltham, MA). 

   Transient transfections 

WT Occ, S471A, and S471N were transiently transfected in to MDCK cells using 

lipofectamine 3000 and following manufacturer instructions.  Cells were approximately 

90% confluent at transfection.  

Immunofluorescence 

Cells were plated on chambered glass slides and fixed on the fourth day post 

transfection (three days post-confluent), with 3.5% paraformaldehyde (PFA) for 10 

minutes (Thermo Scientific, Waltham, MA).  Fixation was followed by 15 minutes 

permeabilization in TBS plus 0.25% triton-x 100.  Cells were blocked in 10% goat serum 

(Life Technologies, Carlsbad, CA) with 0.25% triton-x 100 for 1 hour, then stained with 

GFP-occludin (Evrogen, Moscow, Russia), total occludin (Invitrogen, Carlsbad, CA), or 

ZO-1 (Millipore, Billerica, MA) primary antibodies overnight at 4°C and 1:200 (total 

occludin and ZO-1) or 1:400 (GFP) dilution in blocking solution.  Secondary antibody 

(Alexa Fluor 488, 555, and 647, Life Technologies, Carlsbad, CA) exposure was 1 hour 

at room temperature in blocking buffer at a 1:1,000 dilution.  Fluorescence was 

determined from Z-stacks of 0.5 µm slices taken on a Leica TCS SP5 confocal 

microscope (63x, 1.4 N.A oil objective, Wetzlar, Germany) with photomultiplier tube 

detectors, and using Leica Advanced Fluorescence software.   

Tight junction width quantification and 3 dimensional projections 
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TJ width was quantified from confocal IF images using Metamorph software 

(Molecular Devices, Sunnyvale, CA).  Border width was quantified by measuring GFP 

intensity along the border of adjacent cells both expressing GFP-occludin compared to 

borders of GFP-occludin expressing cells adjacent to non-GFP occludin expressing 

cells.  IF staining was modeled by converted confocal IF files to 3 dimensional 

projections using the Imaris Software surface function (Bitplane, Belfast, UK). 

Statistical analysis 

Border width was normalized to WT Occ lines and compared in GFP-occludin-

GFP-occludin borders as well as GFP-occludin non-GFP expressing borders via 

ANOVA followed by Bonferroni Post-hoc test (Prism 5.0 GraphPad Software, La Jolla, 

CA).  Data are expressed as mean ± SD, and P<0.05 was considered statistically 

significant. 

 

4.4 Results 

S471 mutant occludin perturbs the occludin coiled-coil. To evaluate the effect of 

S471 phosphorylation status on the structure of the occludin coiled-coil, our 

collaborators performed transverse relaxation-optimized spectroscopy (TROSY) NMR 

experiments on WT, S471A, or S471D occludin coiled-coil.  Both S471 mutations 

induced allosteric conformation changes within the coiled-coil (Fig. 4.1). 
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Phosphorylated S471 hydrogen bonds with neighboring residues. 

This surprising result led us to investigate the effects of specific molecular 

interactions such as electrostatic attraction and hydrogen bonding in phosphorylated 

and non-phosphorylated S471.  Our collaborators relied on known crystal structures and 

modeling to identify molecular interactions with nearby residues within the coiled-coil.  

Fig. 4.1: S471 mutant occludin perturbs the occludin coiled-coil.  Individual 
residues were resolved in WT (blue), S471A (red), and S471D (green) mutant occludin 
coiled-coil by TROSY NMR.  Non-overlap of colors indicates a structural perturbation 
(Courtesy of Flanagan/Bewley Laboratory, Pennsylvania State University). 
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Phosphorylated and non-phosphorylated WT Occ as well as S471D and S471N mutant 

occludin are predicted to hydrogen bond from a side chain oxygen to a nitrogen on 

Y474 (Fig. 4.2), while S471A occludin is not (data not shown).  Additionally, 

phosphorylated WT Occ, S471D, and S471N occludin are predicted to make two (p-WT 

Occ) or one (S471D and S471N) hydrogen bonds to R468 (Fig. 4.2). Thus, the 

phosphorylated S471 is predicted to form the most stabilized interaction with additional 

residues of the coiled-coil. The stabilized hydrogen bonding of S471N equivalent to 

S471D but without the negative charge addition allowed a direct assessment of the 

contribution of charge at Ser471 on organization of occludin into tight junctions. 
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S471 side chain negative charge is not necessary for in vitro TJ organization. 

To evaluate the role of phosphorylation related negative charge on the occludin 

S471 sidechain in cells, MDCK cells were transiently transfected to overexpress GFP-

tagged WT, S471A, or S471N mutant occludin.  The alanine sidechain is uncharged 

Fig. 4.2: Phosphorylated serine and phosphomimetic mutants hydrogen bond 
to R468.  Crystal structure of WT Occ coiled-coil and models of p-S471, S471D, and 
S471N showing carbon (gray), oxygen (red), nitrogen (blue), and phosphorus 
(yellow).  Confirmed and predicted hydrogen bonds are indicated by dotted lines with 
proximity given in angstroms (Courtesy of Flanagan/Bewley Laboratory, 
Pennsylvania State University). 
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and lacks the necessary groups to hydrogen bond while asparagine is also uncharged, 

but is able to hydrogen bond and is structurally very similar to the phosphomimetic, 

aspartic acid (Fig. 4.3).  WT Occ lines carry the native serine, which is presumably 

phosphorylated during monolayer maturation. 

 

 

 

 

Analysis of borders between adjacent cells expressing WT exogenous GFP-

occludin revealed crisp, well organized occludin and ZO-1 staining at the border, 

consistent with previous stable cell line experiments (Fig. 4.4 A-B, and see Fig. 3.2).  In 

contrast, S471A staining for GFP and total occludin between two GFP-occludin 

expressing cells was broad and poorly organized at the border, again consistent with 

previous results (Fig 4.4 A-B, and see Fig. 3.2), while ZO-1 staining was conspicuously 

absent.  S471N cell borders were well organized and very similar to WT in appearance 

for both occludin and ZO-1 (Fig. 4.4 A-B).  Quantification of GFP-occludin border 

staining width for each occludin mutant confirmed disrupted protein localization in 

Fig. 4.3: Amino Acid Structures.  Schematic of relevant amino acids.  P-serine and 
aspartic acid carry negative charges on their side chains, while serine, alanine, and 
asparagine do not. 
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S471A expressing cells as evidenced by broader GFP-occludin staining compared to 

WT Occ and S471N (Fig. 4.4 C).  This effect was evident only in borders between two 

cells expressing the mutation, and no difference was observed between the various 

mutations in borders between a cell expressing exogenous occludin and one that did 

not (Fig. 4.4 D).   
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Fig. 4.4: WT Occ and S471N cell have well organized bicellular borders while 
S471A cells do not.  MDCK cells transiently expressing exogenous GFP human 
occludin with no mutation (WT), S to A, or S to N point mutation at S471.  (A) 
Immunofluorescence and (B) 3-dimensional modelling of indicated protein with white 
stars indicating cells expressing GFP-occludin and white arrows indicating poorly 
organized bicellular borders.  Quantification of distance across the border of (C) two 
cells expressing GFP-Occludin as a measure of border organization, or (D) a control 
border between a GFP-Occludin expressing cell and a non-expressing cell.  Data are 
expressed as mean ± SD (n = 7-14).  *P<0.05 compared to WT Occ. 
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4.5 Discussion 

Amino acid phosphorylation is a post-translation modification that is crucial for 

signal transduction (Burnett and Kennedy, 1954; Thorner et al., 2014), and changes the 

amino acid side chain in at least two fundamental ways: it adds a negative charge, and 

a phosphate group that is sterically large.  The phosphomimetic serine to aspartic acid 

point mutation effectively mimics phosphorylation electrically, but not sterically as the 

carboxylic acid side chain of aspartic acid carries a negative charge, but is not as bulky 

as a phosphate group.  Phosphorylated serine hydrogen bonds with R468, and 

modelling of S471D indicates that a bond is still made with R468 despite the lack of 

bulk. 

Previous studies with MDCK cells show that (presumably phosphorylated) WT 

Occ and S471D lines have well organized TJs at the borders, and transiently 

transfected WT Occ recapitulated this finding.  TJ borders were also well organized in 

transiently transfected S471N cells.  Since the asparagine side chain is uncharged, this 

result indicates that the negative charge found on aspartic acid or phosphorylated 

serine is not necessary for TJ organization, and the effect of phosphorylation is 

mediated by some other type of interaction.  The identity of this factor remains elusive, 

but one possibility is hydrogen bonding.  Importantly, non-phosphorylated WT Occ is not 

equivalent to S471A due to the lack of S471-Y474 hydrogen bonding in the later.  This 

interaction is present in both phosphorylated and non-phosphorylated WT Occ however, 

as well as in S471D and S471N.  Therefore, loss of Y474 hydrogen bonding would not 

account for the observed coiled-coil perturbation between non-phosphorylated WT Occ 

and S471D.   A model is proposed in which occludin is phosphorylated at S471 at high 
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confluency, allowing for hydrogen bonding between S471 and R468 and stabilizing the 

coiled-coil in a confirmation favorable for initiation of TJ assembly.  Given the 

dependence of TJ organization on packing through size reductive proliferation (chapter 

3), this stabilized confirmation would presumably contribute to size reductive, confluent 

proliferation in some way, allowing for packing and TJ formation.  S471 could then be 

dephosphorylated once a critical cell area (the transition point, see chapter 3) was 

reached, leading to loss of R468 hydrogen bonding, perturbation of the coiled-coil, and 

proliferative quiescence, or quiescence may be achieved through alternative signaling 

and S471 phosphorylation may be maintained.  Additional studies will be necessary to 

evaluate the validity of this and alternative models. 
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CHAPTER V 

Conclusions, Limitations, and Future Directions 

5.1 Overall summary and conclusions 

Recent findings concerning the participation of AJC proteins in non-canonical 

roles have changed the view of these junctions from static structures mediating only 

permeability/adhesion, to dynamic protein reservoirs that can participate through cell 

signaling in response to extracellular stimuli.  The characterization of the novel occludin 

S471 site presented in this dissertation is consistent with this expanding role of AJC 

proteins, and with the already complex role of occludin.  Previous publications in 

prestigious journals have already described in part the dynamics of epithelial cells at low 

and high confluency, the existence and size reductive nature of confluent proliferation, 

and the role of biophysical forces in this process (Aragona et al., 2013; Dupont et al., 

2011; Puliafito et al., 2012).  However, what was not appreciated, and is presented in 

the current dissertation, is the necessity of this monolayer maturation for barrier 

formation and the contribution of the occludin S471 site in this process.  This 

dissertation links S471 phosphorylation to confluent proliferation, possibly as a 

checkpoint for its induction, as phosphoinhibitory (S471A) lines proliferate normally 

when subconfluent, but fail to initiate confluent proliferation.  In this way, occludin 

influences the morphological characteristics of the monolayer and its constituent cells, 

but also affects TJ protein localization and the ultimate resistance of the barrier.  The 

failure of S471A lines to undergo confluent proliferation and cell packing leaves 

monolayers with larger and less numerous cells at confluence, and as a result, poorly 

organized TJs and low resistance barriers.  S471 phosphorylation may act as a 
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molecular switch that when phosphorylated, allows induction of confluent proliferation 

while preventing it when phosphorylation is prevented.  Studies investigating the 

molecular consequences of phosphorylation within the occludin coiled-coil are 

presented and indicate that negative charge at S471 is unnecessary for TJ organization 

in cells.  This suggests that some other consequence of S471 phosphorylation within 

the coiled-coil is responsible, potentially specific hydrogen bonding with R468, which is 

predicted to be present only when S471 is phosphorylated.  S471 may also interact with 

the nearby occludin Tyr474 phosphosite, which has been identified as required for 

localization at the leading age of migrating MDCK cells, and binds to PI3-kinase 

regulating cytoskeletal rearrangement (Du et al., 2010).  In summary, the studies 

presented in this dissertation demonstrate roles for occludin S471 in proliferation, TJ 

organization, barrier resistance, and monolayer maturation.  Additionally, an 

S471kinase is identified (GRK) and preliminary results of intra coiled-coil molecular 

interactions are reported.  S471 is added to the list of confirmed, characterized occludin 

phosphosites including S408, S490, Y474 and S508, that mediate responses to specific 

stimuli, and facilitate the versatile and complex functions of the TJ protein, occludin. 

 

5.2 Limitations 

The approaches in this dissertation were sufficient to elucidate the importance of 

cell packing for monolayer maturation, the role of occludin in this process, and some of 

the atomic interactions within the occludin coiled-coil that may contribute to these 

effects.  The studies were not, however, without limitations.  The first is that the work 

was done in vitro and in cell lines.  The nature of the questions under investigation 
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dictated that a simple model be used that would not have the complexity of animals or 

the time required for breeding.  As with any in vitro study however, there may be 

limitations as to the external validity of our findings to other types of cells and to 

organisms.  Additionally, the difficulty of transfecting or transducing MDCK cells led to 

the use of selected clonal cell lines.  This carries with it the risk that a phenotype may 

be due to some unrelated mutation in a specific line rather than the mutation of interest, 

although multiple lines were used to mitigate this risk.  Additionally, a key early finding 

was that S471A did not decrease the occludin-ZO-1 interaction.  This conclusion was 

made based on Co-IP experimental results, but ZO-1 has contacts with many other TJ 

proteins, and is likely part of a large protein complex. Limitations of the Co-IP technique 

leave the possibility that S471A does decrease the occludin-ZO-1 interaction, but that 

they are both pulled down anyway due to a mutual binding partner or additional contact 

sites on the two proteins. 

Finally, phosphoinhibitory and phosphomimetic mutations are mimics of 

phosphorylated or non-phosphorylated serine.  Alanine and aspartic acid are good 

approximations of non-phosphorylated and phosphorylated serine, respectively on the 

basis of side chain charge, but both have key deviations in terms of 3D structure.  Non-

phosphorylated serine hydrogen bonds to the nearby Y474 backbone with its side chain 

hydroxyl group, a bond that cannot be made by the methyl side chain of alanine.  How 

loss of this specific bond might affect coiled-coil stability is unknown.  Aspartic acid 

differs from phosphorylated serine in that its side chain is a simple carboxylic acid, and 

therefore far less bulky than a phosphorylated serine.  This difference has the potential 

to disrupt interactions that would be present with a phosphate group, particularly 
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hydrogen bonds, due to lack of proximity.  In this case, our data suggests the S471D 

only makes one hydrogen bond with the nearby R468 rather than two like 

phosphorylated serine.  No results were obtained at any point in these studies 

suggesting that S471D is anything less than a capable mimic of phosphorylated serine, 

but the effects of this reduction in bond number are unknown.   

 

5.3 Future Directions 

This dissertation describes many of the upstream events associated with S471 

phosphorylation and its effects on monolayer maturation.  These results provide some 

answers, but also raise many questions, and provide opportunities for further 

investigation.  These include further studies of occludin S471 and broader questions of 

epithelial cell biology. 

A logical addition to the findings in this dissertation would be the extension of 

applicability by testing GRK inhibitors or expressing S471A in other cell lines.  This 

could include epithelial cells (Caco-2, HeLa), endothelial cells (BREC, HUVEC), or 

transgenic animals.  Animal studies could include WT or mutant occludin knockin mice 

generated using emerging Crispr/cas9 technology.  This dissertation also includes initial 

results from additional in vitro studies, which should be completed.  Preliminary data 

indicates that the area of S471D cells is decreased compared to controls, even when 

subconfluent.  This is a provocative result, and suggests that S471 phosphorylation is 

sufficient for size reductive proliferation.  Additional experiments of cell area and 
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proliferative rates in subconfluent cells should be conducted to evaluate these initial 

findings. 

A significant hurdle in explaining the downstream effects of S471A expression is 

the finding that S471A lines become proliferatively quiescent despite largely nuclear 

YAP (chapter 3).   This is contrary to the prevailing view that YAP is nuclear only during 

proliferation, and indicates that this proliferative arrest is YAP independent.  

Furthermore, the normal subconfluent proliferation evident in these cells suggests that 

subconfluent and confluent (size-reductive) proliferation are separable processes, with 

subconfluent proliferation mediated by Hippo/MST, Wnt, biophysical forces, etc., and 

confluent proliferation mediated by an undescribed mechanism.  If true, this dissertation 

describes a disruption in a pathway that is not yet known to exist.  This adds significant 

complexity to understanding the S471 downstream mechanism, and dictates that further 

insights into the process of confluent proliferation may be necessary before the S471 

mechanism can be fully appreciated.  Conclusions can be made on the basis of this 

work that inhibition of S471 phosphorylation does not abolish the occludin ZO-1 

interaction, does not result in endocytosis of occludin, and does not release any factor 

which disorganizes WT cell TJs (Fig. 3.3).  Initial efforts at elucidating the true 

mechanism should focus on narrowing down potential areas of long term inquiry. 

A good starting point would be to characterize subconfluent and confluent 

proliferation and cell area in occludin KD, or occludin/tricellulin/marvelD3 (TAMP) KD 

cells.  Occludin KD cells have been generated with no reports of proliferative or packing 

abnormalities, but cell packing has not been specifically studied in these cells, and 

these experiments would answer questions about the necessity of occludin in confluent 



107 
 

proliferation.  The documented compensation for occludin by TAMP family members 

may require that tricellulin and marvelD3 be silenced as well.  Another worthwhile study 

would be to look for changes in overall or fractionated (nuclear, cytosolic, etc.) protein 

pools by Co-IP and mass spectroscopy, or of transcription-related changes by 

chromatin immunoprecipitation or electrophoretic mobility shift assays in control vs. 

S471A lines for both subconfluent and confluent conditions.  A number of commercially 

available protein microarrays could also be used to probe for differences in protein 

expression or phosphorylation status.  The goal of any of these experiments would be to 

identify proteins, phosphorylation events, or transcription factors/co-activators that differ 

between S471A and controls, and could help identify possible mechanisms. 

Finally, the effects of S471A on proliferation suggest the involvement of a 

proliferative signaling pathway, and the contribution of marvelD3 to JNK signaling 

provides precedence for such an association in the TAMP family (Steed et al., 2014).  

The occludin Y474 site is a candidate for this type of association, as it is known to 

interact with and activate the p85 subunit of PI3K, allowing for organization of polarity 

proteins and the actin cytoskeleton (Du et al., 2010).  Combined with known hydrogen 

bonding between Y474 and S471 (see chapter 4), this raises the tantalizing possibility 

that some connection such as facilitated phosphorylation may exist between Y474 and 

S471 in regulating PI3K, which could explain in part the effects of S471A mutants on 

proliferation.  Preliminary studies examining tyrosine phosphorylation following GFP-

occludin IP of WT or S471A Occ lines failed to demonstrate any differences in 

phosphorylation, but a general PY20 antibody was used (Fig. 3.5).  Simple blots for 
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PI3K/Akt signaling could be performed followed by further trials with a PY474 specific 

antibody, which would better evaluate this possibility. 

In terms of broader research directions, a conceptually simple yet promising 

research direction would be to determine the true role of TAMP family transmembrane 

proteins through multiple KD/KOs.  Perhaps the largest confounder in the study of 

occludin over the last 15 years has been skepticism over its importance due to the 

perceived lack of phenotype of the occludin KO mouse (see chapter 3, (Saitou et al., 

2000; Schulzke et al., 2005).  Evidence has now emerged however showing that the 

TAMP family member, tricellulin, compensates at least in part for occludin (Ikenouchi et 

al., 2008; Krug et al., 2009), and it seems likely based on homology that the recently 

discovered family member, MARVELD3, may compensate as well.  Knocking out all 

three proteins would prevent this compensation, and could show the true role of 

TAMPs. 

Studies presented in this dissertation demonstrate the impact of monolayer 

maturation upon barrier functionality, providing justification for further investigation of 

maturation-associated mechanisms such as confluent proliferation.  If an 

uncharacterized pathway for confluent proliferation exists, other components besides 

occludin are certainly involved.  An approach for beginning to identify these components 

while further characterizing proliferation and monolayer maturation would be to employ 

a forward genetic screen in a model organism like Drosophila melanogaster or Danio 

rerio (zebrafish).  A population could be screened following exposure to a mutagen, and 

individuals expressing proliferative or morphological abnormalities in cell monolayers 

could be further studied with the objective of identifying additional components of the 
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pathway.  Any individual expressing monolayers that phenotypically resemble S471A 

cells would provide solid footing on which to start further investigations. 

  Finally, the ultimate goal of all biomedical research is to produce knowledge or 

treatments to improve human health, and questions of TJ and barrier biology are very 

relevant to the study of cancer.  As previously described (chapter 2), AJC proteins play 

a significant role in proliferation and cancer development, especially in the context of 

cellular phenotypic transitions.  Within this area, extensive study has been dedicated to 

the role of EMT in cancer including the loss of AJC proteins, the acquisition of a 

mesenchymal phenotype, and the resulting increase in metastatic potential.  Very 

recently though, MET has been implicated in the development of secondary tumors 

following the arrival of metastasizing cells at their destination.  Comparatively little study 

has been dedicated to MET, and opportunities exist in characterizing the phenotypic 

plasticity, AJC protein expression, and CIP/CIL expression of post-MET cells.  This 

exciting area could apply knowledge of barrier biology and monolayer maturation to a 

significant and common pathology, and lead to future therapies to reduce or prevent 

metastasis. 

 

 

 

 

 

 



110 
 

REFERENCES 

Abercrombie, M. 1979. Contact inhibition and malignancy. Nature. 281:259-262. 
Adam, G., U. Steiner, H. Maier, and S. Ullrich. 1982. Analysis of cellular interactions in 

density-dependent inhibition of 3T3 cell proliferation. Biophysics of structure and 
mechanism. 9:75-82. 

Anderson, J.M., and C.M. Van Itallie. 2009. Physiology and function of the tight junction. 
Cold Spring Harbor perspectives in biology. 1:a002584. 

Anderson, J.M., C.M. Van Itallie, and A.S. Fanning. 2004. Setting up a selective barrier 
at the apical junction complex. Current opinion in cell biology. 16:140-145. 

Andreeva, A.Y., E. Krause, E.C. Muller, I.E. Blasig, and D.I. Utepbergenov. 2001. 
Protein kinase C regulates the phosphorylation and cellular localization of 
occludin. J Biol Chem. 276:38480-38486. 

Antonetti, D.A., A.J. Barber, S. Khin, E. Lieth, J.M. Tarbell, and T.W. Gardner. 1998. 
Vascular permeability in experimental diabetes is associated with reduced 
endothelial occludin content: vascular endothelial growth factor decreases 
occludin in retinal endothelial cells. Penn State Retina Research Group. 
Diabetes. 47:1953-1959. 

Aragona, M., T. Panciera, A. Manfrin, S. Giulitti, F. Michielin, N. Elvassore, S. Dupont, 
and S. Piccolo. 2013. A mechanical checkpoint controls multicellular growth 
through YAP/TAZ regulation by actin-processing factors. Cell. 154:1047-1059. 

Astin, J.W., J. Batson, S. Kadir, J. Charlet, R.A. Persad, D. Gillatt, J.D. Oxley, and C.D. 
Nobes. 2010. Competition amongst Eph receptors regulates contact inhibition of 
locomotion and invasiveness in prostate cancer cells. Nature cell biology. 
12:1194-1204. 

Azzolin, L., T. Panciera, S. Soligo, E. Enzo, S. Bicciato, S. Dupont, S. Bresolin, C. 
Frasson, G. Basso, V. Guzzardo, A. Fassina, M. Cordenonsi, and S. Piccolo. 
2014. YAP/TAZ incorporation in the beta-catenin destruction complex 
orchestrates the Wnt response. Cell. 158:157-170. 

Balda, M.S., C. Flores-Maldonado, M. Cereijido, and K. Matter. 2000. Multiple domains 
of occludin are involved in the regulation of paracellular permeability. Journal of 
cellular biochemistry. 78:85-96. 

Balda, M.S., M.D. Garrett, and K. Matter. 2003. The ZO-1-associated Y-box factor 
ZONAB regulates epithelial cell proliferation and cell density. The Journal of cell 
biology. 160:423-432. 

Balda, M.S., and K. Matter. 2000. The tight junction protein ZO-1 and an interacting 
transcription factor regulate ErbB-2 expression. The EMBO journal. 19:2024-
2033. 

Balda, M.S., J.A. Whitney, C. Flores, S. Gonzalez, M. Cereijido, and K. Matter. 1996. 
Functional dissociation of paracellular permeability and transepithelial electrical 
resistance and disruption of the apical-basolateral intramembrane diffusion 
barrier by expression of a mutant tight junction membrane protein. The Journal of 
cell biology. 134:1031-1049. 

Baron, R., and M. Kneissel. 2013. WNT signaling in bone homeostasis and disease: 
from human mutations to treatments. Nature medicine. 19:179-192. 



111 
 

Batson, J., J.W. Astin, and C.D. Nobes. 2013. Regulation of contact inhibition of 
locomotion by Eph-ephrin signalling. Journal of microscopy. 251:232-241. 

Bellmann, C., S. Schreivogel, R. Gunther, S. Dabrowski, M. Schumann, H. Wolburg, 
and I.E. Blasig. 2014. Highly conserved cysteines are involved in the 
oligomerization of occludin-redox dependency of the second extracellular loop. 
Antioxidants & redox signaling. 20:855-867. 

Bertiaux-Vandaele, N., S.B. Youmba, L. Belmonte, S. Lecleire, M. Antonietti, G. 
Gourcerol, A.M. Leroi, P. Dechelotte, J.F. Menard, P. Ducrotte, and M. Coeffier. 
2011. The expression and the cellular distribution of the tight junction proteins 
are altered in irritable bowel syndrome patients with differences according to the 
disease subtype. The American journal of gastroenterology. 106:2165-2173. 

Berx, G., and F. van Roy. 2009. Involvement of members of the cadherin superfamily in 
cancer. Cold Spring Harbor perspectives in biology. 1:a003129. 

Blom, N., S. Gammeltoft, and S. Brunak. 1999. Sequence and structure-based 
prediction of eukaryotic protein phosphorylation sites. Journal of molecular 
biology. 294:1351-1362. 

Brabletz, T., A. Jung, S. Reu, M. Porzner, F. Hlubek, L.A. Kunz-Schughart, R. 
Knuechel, and T. Kirchner. 2001. Variable beta-catenin expression in colorectal 
cancers indicates tumor progression driven by the tumor environment. 
Proceedings of the National Academy of Sciences of the United States of 
America. 98:10356-10361. 

Breiderhoff, T., N. Himmerkus, M. Stuiver, K. Mutig, C. Will, I.C. Meij, S. Bachmann, M. 
Bleich, T.E. Willnow, and D. Muller. 2012. Deletion of claudin-10 (Cldn10) in the 
thick ascending limb impairs paracellular sodium permeability and leads to 
hypermagnesemia and nephrocalcinosis. Proceedings of the National Academy 
of Sciences of the United States of America. 109:14241-14246. 

Bruewer, M., M. Utech, A.I. Ivanov, A.M. Hopkins, C.A. Parkos, and A. Nusrat. 2005. 
Interferon-gamma induces internalization of epithelial tight junction proteins via a 
macropinocytosis-like process. Faseb J. 19:923-933. 

Burnett, G., and E.P. Kennedy. 1954. The enzymatic phosphorylation of proteins. J Biol 
Chem. 211:969-980. 

Chakraborty, P.K., Y. Zhang, A.S. Coomes, W.J. Kim, R. Stupay, L.D. Lynch, T. 
Atkinson, J.I. Kim, Z. Nie, and Y. Daaka. 2014. G protein-coupled receptor kinase 
GRK5 phosphorylates moesin and regulates metastasis in prostate cancer. 
Cancer research. 74:3489-3500. 

Clarke, H., A.P. Soler, and J.M. Mullin. 2000. Protein kinase C activation leads to 
dephosphorylation of occludin and tight junction permeability increase in LLC-
PK1 epithelial cell sheets. Journal of cell science. 113 ( Pt 18):3187-3196. 

Coeffier, M., R. Gloro, N. Boukhettala, M. Aziz, S. Lecleire, N. Vandaele, M. Antonietti, 
G. Savoye, C. Bole-Feysot, P. Dechelotte, J.M. Reimund, and P. Ducrotte. 2010. 
Increased proteasome-mediated degradation of occludin in irritable bowel 
syndrome. The American journal of gastroenterology. 105:1181-1188. 

Cording, J., J. Berg, N. Kading, C. Bellmann, C. Tscheik, J.K. Westphal, S. Milatz, D. 
Gunzel, H. Wolburg, J. Piontek, O. Huber, and I.E. Blasig. 2013. In tight 
junctions, claudins regulate the interactions between occludin, tricellulin and 



112 
 

marvelD3, which, inversely, modulate claudin oligomerization. Journal of cell 
science. 126:554-564. 

Coyne, C.B., and J.M. Bergelson. 2006. Virus-induced Abl and Fyn kinase signals 
permit coxsackievirus entry through epithelial tight junctions. Cell. 124:119-131. 

Coyne, C.B., L. Shen, J.R. Turner, and J.M. Bergelson. 2007. Coxsackievirus entry 
across epithelial tight junctions requires occludin and the small GTPases Rab34 
and Rab5. Cell host & microbe. 2:181-192. 

Cummins, P.M. 2012. Occludin: one protein, many forms. Molecular and cellular 
biology. 32:242-250. 

D'Atri, F., and S. Citi. 2002. Molecular complexity of vertebrate tight junctions (Review). 
Molecular membrane biology. 19:103-112. 

Davies, J.A., and D.R. Garrod. 1995. Induction of early stages of kidney tubule 
differentiation by lithium ions. Developmental biology. 167:50-60. 

Davis, R.J. 2000. Signal transduction by the JNK group of MAP kinases. Cell. 103:239-
252. 

Diamond, J.M. 1977. Twenty-first Bowditch lecture. The epithelial junction: bridge, gate, 
and fence. The Physiologist. 20:10-18. 

Dinudom, A., A.B. Fotia, R.J. Lefkowitz, J.A. Young, S. Kumar, and D.I. Cook. 2004. 
The kinase Grk2 regulates Nedd4/Nedd4-2-dependent control of epithelial Na+ 
channels. Proceedings of the National Academy of Sciences of the United States 
of America. 101:11886-11890. 

Dorfel, M.J., J.K. Westphal, C. Bellmann, S.M. Krug, J. Cording, S. Mittag, R. Tauber, 
M. Fromm, I.E. Blasig, and O. Huber. 2013. CK2-dependent phosphorylation of 
occludin regulates the interaction with ZO-proteins and tight junction integrity. 
Cell communication and signaling : CCS. 11:40. 

Du, D., F. Xu, L. Yu, C. Zhang, X. Lu, H. Yuan, Q. Huang, F. Zhang, H. Bao, L. Jia, X. 
Wu, X. Zhu, X. Zhang, Z. Zhang, and Z. Chen. 2010. The tight junction protein, 
occludin, regulates the directional migration of epithelial cells. Developmental 
cell. 18:52-63. 

Dupont, S., L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. 
Le Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo. 2011. Role of 
YAP/TAZ in mechanotransduction. Nature. 474:179-183. 

Ebnet, K., A. Suzuki, Y. Horikoshi, T. Hirose, M.K. Meyer Zu Brickwedde, S. Ohno, and 
D. Vestweber. 2001. The cell polarity protein ASIP/PAR-3 directly associates with 
junctional adhesion molecule (JAM). The EMBO journal. 20:3738-3748. 

Ebnet, K., A. Suzuki, S. Ohno, and D. Vestweber. 2004. Junctional adhesion molecules 
(JAMs): more molecules with dual functions? Journal of cell science. 117:19-29. 

Elias, B.C., T. Suzuki, A. Seth, F. Giorgianni, G. Kale, L. Shen, J.R. Turner, A. Naren, 
D.M. Desiderio, and R. Rao. 2009. Phosphorylation of Tyr-398 and Tyr-402 in 
occludin prevents its interaction with ZO-1 and destabilizes its assembly at the 
tight junctions. J Biol Chem. 284:1559-1569. 

Elmi, A., F. Nasher, H. Jagatia, O. Gundogdu, M. Bajaj-Elliott, B.W. Wren, and N. 
Dorrell. 2015. Campylobacter jejuni outer membrane vesicle-associated 
proteolytic activity promotes bacterial invasion by mediating cleavage of intestinal 
epithelial cell E-cadherin and occludin. Cellular microbiology. 



113 
 

Erlinger, S.U., and M.H. Saier, Jr. 1982. Decrease in protein content and cell volume of 
cultured dog kidney epithelial cells during growth. In vitro. 18:196-202. 

Fanning, A.S., B.J. Jameson, L.A. Jesaitis, and J.M. Anderson. 1998. The tight junction 
protein ZO-1 establishes a link between the transmembrane protein occludin and 
the actin cytoskeleton. J Biol Chem. 273:29745-29753. 

Farquhar, M.G., and G.E. Palade. 1963. Junctional complexes in various epithelia. The 
Journal of cell biology. 17:375-412. 

Frey, T., and D.A. Antonetti. 2011. Alterations to the blood-retinal barrier in diabetes: 
cytokines and reactive oxygen species. Antioxidants & redox signaling. 15:1271-
1284. 

Fukuhara, A., K. Irie, H. Nakanishi, K. Takekuni, T. Kawakatsu, W. Ikeda, A. Yamada, 
T. Katata, T. Honda, T. Sato, K. Shimizu, H. Ozaki, H. Horiuchi, T. Kita, and Y. 
Takai. 2002a. Involvement of nectin in the localization of junctional adhesion 
molecule at tight junctions. Oncogene. 21:7642-7655. 

Fukuhara, A., K. Irie, A. Yamada, T. Katata, T. Honda, K. Shimizu, H. Nakanishi, and Y. 
Takai. 2002b. Role of nectin in organization of tight junctions in epithelial cells. 
Genes to cells : devoted to molecular & cellular mechanisms. 7:1059-1072. 

Furuse, M. 2010. Molecular basis of the core structure of tight junctions. Cold Spring 
Harbor perspectives in biology. 2:a002907. 

Furuse, M., M. Hata, K. Furuse, Y. Yoshida, A. Haratake, Y. Sugitani, T. Noda, A. Kubo, 
and S. Tsukita. 2002. Claudin-based tight junctions are crucial for the 
mammalian epidermal barrier: a lesson from claudin-1-deficient mice. The 
Journal of cell biology. 156:1099-1111. 

Furuse, M., T. Hirase, M. Itoh, A. Nagafuchi, S. Yonemura, S. Tsukita, and S. Tsukita. 
1993. Occludin: a novel integral membrane protein localizing at tight junctions. 
The Journal of cell biology. 123:1777-1788. 

Furuse, M., H. Sasaki, K. Fujimoto, and S. Tsukita. 1998. A single gene product, 
claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in 
fibroblasts. The Journal of cell biology. 143:391-401. 

Garrod, D.R., and S. Fleming. 1990. Early expression of desmosomal components 
during kidney tubule morphogenesis in human and murine embryos. 
Development. 108:313-321. 

Getsios, S., A.C. Huen, and K.J. Green. 2004. Working out the strength and flexibility of 
desmosomes. Nature reviews. Molecular cell biology. 5:271-281. 

Gilbert, S.F. 2000. Developmental biology. Sinauer Associates, Sunderland, Mass. xviii, 
749 p. pp. 

Giroldi, L.A., P.P. Bringuier, and J.A. Schalken. 1994. Defective E-cadherin function in 
urological cancers: clinical implications and molecular mechanisms. Invasion & 
metastasis. 14:71-81. 

Gonzalez-Mariscal, L., A. Betanzos, and A. Avila-Flores. 2000. MAGUK proteins: 
structure and role in the tight junction. Seminars in cell & developmental biology. 
11:315-324. 

Gonzalez-Mariscal, L., S. Lechuga, and E. Garay. 2007. Role of tight junctions in cell 
proliferation and cancer. Progress in histochemistry and cytochemistry. 42:1-57. 



114 
 

Gonzalez-Mariscal, L., R. Tapia, M. Huerta, and E. Lopez-Bayghen. 2009. The tight 
junction protein ZO-2 blocks cell cycle progression and inhibits cyclin D1 
expression. Annals of the New York Academy of Sciences. 1165:121-125. 

Gottardi, C.J., M. Arpin, A.S. Fanning, and D. Louvard. 1996. The junction-associated 
protein, zonula occludens-1, localizes to the nucleus before the maturation and 
during the remodeling of cell-cell contacts. Proceedings of the National Academy 
of Sciences of the United States of America. 93:10779-10784. 

Gottardi, C.J., and B.M. Gumbiner. 2001. Adhesion signaling: how beta-catenin 
interacts with its partners. Current biology : CB. 11:R792-794. 

Gumbiner, B.M., and N.G. Kim. 2014. The Hippo-YAP signaling pathway and contact 
inhibition of growth. Journal of cell science. 127:709-717. 

Gunzel, D., and M. Fromm. 2012. Claudins and other tight junction proteins. 
Comprehensive Physiology. 2:1819-1852. 

Gurevich, E.V., J.J. Tesmer, A. Mushegian, and V.V. Gurevich. 2012. G protein-coupled 
receptor kinases: more than just kinases and not only for GPCRs. Pharmacology 
& therapeutics. 133:40-69. 

Hadj-Rabia, S., L. Baala, P. Vabres, D. Hamel-Teillac, E. Jacquemin, M. Fabre, S. 
Lyonnet, Y. De Prost, A. Munnich, M. Hadchouel, and A. Smahi. 2004. Claudin-1 
gene mutations in neonatal sclerosing cholangitis associated with ichthyosis: a 
tight junction disease. Gastroenterology. 127:1386-1390. 

Halbleib, J.M., and W.J. Nelson. 2006. Cadherins in development: cell adhesion, 
sorting, and tissue morphogenesis. Genes & development. 20:3199-3214. 

Harris, A.L. 2001. Emerging issues of connexin channels: biophysics fills the gap. 
Quarterly reviews of biophysics. 34:325-472. 

Henderson, L., D.S. Bortone, C. Lim, and A.C. Zambon. 2013. Classic "broken cell" 
techniques and newer live cell methods for cell cycle assessment. American 
journal of physiology. Cell physiology. 304:C927-938. 

Herve, J.C., and M. Derangeon. 2013. Gap-junction-mediated cell-to-cell 
communication. Cell and tissue research. 352:21-31. 

Herzlinger, D., C. Koseki, T. Mikawa, and Q. al-Awqati. 1992. Metanephric 
mesenchyme contains multipotent stem cells whose fate is restricted after 
induction. Development. 114:565-572. 

Hirase, T., J.M. Staddon, M. Saitou, Y. Ando-Akatsuka, M. Itoh, M. Furuse, K. Fujimoto, 
S. Tsukita, and L.L. Rubin. 1997. Occludin as a possible determinant of tight 
junction permeability in endothelial cells. Journal of cell science. 110 ( Pt 
14):1603-1613. 

Homan, K.T., H.V. Waldschmidt, A. Glukhova, A. Cannavo, J. Song, J.Y. Cheung, W.J. 
Koch, S.D. Larsen, and J.J. Tesmer. 2015. Crystal Structure of G Protein-
coupled Receptor Kinase 5 in Complex with a Rationally Designed Inhibitor. J 
Biol Chem. 290:20649-20659. 

Honda, T., K. Shimizu, T. Kawakatsu, M. Yasumi, T. Shingai, A. Fukuhara, K. Ozaki-
Kuroda, K. Irie, H. Nakanishi, and Y. Takai. 2003. Antagonistic and agonistic 
effects of an extracellular fragment of nectin on formation of E-cadherin-based 
cell-cell adhesion. Genes to cells : devoted to molecular & cellular mechanisms. 
8:51-63. 



115 
 

Huang, H.D., T.Y. Lee, S.W. Tzeng, and J.T. Horng. 2005. KinasePhos: a web tool for 
identifying protein kinase-specific phosphorylation sites. Nucleic acids research. 
33:W226-229. 

Huber, A.H., and W.I. Weis. 2001. The structure of the beta-catenin/E-cadherin complex 
and the molecular basis of diverse ligand recognition by beta-catenin. Cell. 
105:391-402. 

Huerta, M., R. Munoz, R. Tapia, E. Soto-Reyes, L. Ramirez, F. Recillas-Targa, L. 
Gonzalez-Mariscal, and E. Lopez-Bayghen. 2007. Cyclin D1 is transcriptionally 
down-regulated by ZO-2 via an E box and the transcription factor c-Myc. 
Molecular biology of the cell. 18:4826-4836. 

Ikeda, W., H. Nakanishi, J. Miyoshi, K. Mandai, H. Ishizaki, M. Tanaka, A. Togawa, K. 
Takahashi, H. Nishioka, H. Yoshida, A. Mizoguchi, S. Nishikawa, and Y. Takai. 
1999. Afadin: A key molecule essential for structural organization of cell-cell 
junctions of polarized epithelia during embryogenesis. The Journal of cell biology. 
146:1117-1132. 

Ikenouchi, J., M. Furuse, K. Furuse, H. Sasaki, S. Tsukita, and S. Tsukita. 2005. 
Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. The 
Journal of cell biology. 171:939-945. 

Ikenouchi, J., H. Sasaki, S. Tsukita, M. Furuse, and S. Tsukita. 2008. Loss of occludin 
affects tricellular localization of tricellulin. Molecular biology of the cell. 19:4687-
4693. 

Imajo, M., K. Miyatake, A. Iimura, A. Miyamoto, and E. Nishida. 2012. A molecular 
mechanism that links Hippo signalling to the inhibition of Wnt/beta-catenin 
signalling. The EMBO journal. 31:1109-1122. 

Islas, S., J. Vega, L. Ponce, and L. Gonzalez-Mariscal. 2002. Nuclear localization of the 
tight junction protein ZO-2 in epithelial cells. Experimental cell research. 274:138-
148. 

Itoh, M., M. Furuse, K. Morita, K. Kubota, M. Saitou, and S. Tsukita. 1999. Direct 
binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with 
the COOH termini of claudins. The Journal of cell biology. 147:1351-1363. 

Itoh, M., A. Nagafuchi, S. Moroi, and S. Tsukita. 1997. Involvement of ZO-1 in cadherin-
based cell adhesion through its direct binding to alpha catenin and actin 
filaments. The Journal of cell biology. 138:181-192. 

Itoh, M., H. Sasaki, M. Furuse, H. Ozaki, T. Kita, and S. Tsukita. 2001. Junctional 
adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the 
recruitment of PAR-3 to tight junctions. The Journal of cell biology. 154:491-497. 

Jeanes, A., C.J. Gottardi, and A.S. Yap. 2008. Cadherins and cancer: how does 
cadherin dysfunction promote tumor progression? Oncogene. 27:6920-6929. 

Johnson, R., and G. Halder. 2014. The two faces of Hippo: targeting the Hippo pathway 
for regenerative medicine and cancer treatment. Nature reviews. Drug discovery. 
13:63-79. 

Kage, H., P. Flodby, D. Gao, Y.H. Kim, C.N. Marconett, L. DeMaio, K.J. Kim, E.D. 
Crandall, and Z. Borok. 2014. Claudin 4 knockout mice: normal physiological 
phenotype with increased susceptibility to lung injury. American journal of 
physiology. Lung cellular and molecular physiology. 307:L524-536. 



116 
 

Kalluri, R. 2009. EMT: when epithelial cells decide to become mesenchymal-like cells. 
The Journal of clinical investigation. 119:1417-1419. 

Kalluri, R., and R.A. Weinberg. 2009. The basics of epithelial-mesenchymal transition. 
The Journal of clinical investigation. 119:1420-1428. 

Kamitani, T., H. Sakaguchi, A. Tamura, T. Miyashita, Y. Yamazaki, R. Tokumasu, R. 
Inamoto, A. Matsubara, N. Mori, Y. Hisa, and S. Tsukita. 2015. Deletion of 
Tricellulin Causes Progressive Hearing Loss Associated with Degeneration of 
Cochlear Hair Cells. Scientific reports. 5:18402. 

Katsuno, T., K. Umeda, T. Matsui, M. Hata, A. Tamura, M. Itoh, K. Takeuchi, T. 
Fujimori, Y. Nabeshima, T. Noda, S. Tsukita, and S. Tsukita. 2008. Deficiency of 
zonula occludens-1 causes embryonic lethal phenotype associated with defected 
yolk sac angiogenesis and apoptosis of embryonic cells. Molecular biology of the 
cell. 19:2465-2475. 

Kaur, G., J. Kim, R. Kaur, I. Tan, O. Bloch, M.Z. Sun, M. Safaee, M.C. Oh, M. Sughrue, 
J. Phillips, and A.T. Parsa. 2013. G-protein coupled receptor kinase (GRK)-5 
regulates proliferation of glioblastoma-derived stem cells. Journal of clinical 
neuroscience : official journal of the Neurosurgical Society of Australasia. 
20:1014-1018. 

Kausalya, P.J., M. Reichert, and W. Hunziker. 2001. Connexin45 directly binds to ZO-1 
and localizes to the tight junction region in epithelial MDCK cells. FEBS letters. 
505:92-96. 

Kim, J.I., P. Chakraborty, Z. Wang, and Y. Daaka. 2012. G-protein coupled receptor 
kinase 5 regulates prostate tumor growth. The Journal of urology. 187:322-329. 

Kim, N.G., E. Koh, X. Chen, and B.M. Gumbiner. 2011. E-cadherin mediates contact 
inhibition of proliferation through Hippo signaling-pathway components. 
Proceedings of the National Academy of Sciences of the United States of 
America. 108:11930-11935. 

Kinugasa, T., Y. Akagi, T. Yoshida, Y. Ryu, I. Shiratuchi, N. Ishibashi, and K. Shirouzu. 
2010. Increased claudin-1 protein expression contributes to tumorigenesis in 
ulcerative colitis-associated colorectal cancer. Anticancer research. 30:3181-
3186. 

Kitajiri, S., T. Katsuno, H. Sasaki, J. Ito, M. Furuse, and S. Tsukita. 2014. Deafness in 
occludin-deficient mice with dislocation of tricellulin and progressive apoptosis of 
the hair cells. Biology open. 3:759-766. 

Knippschild, U., M. Kruger, J. Richter, P. Xu, B. Garcia-Reyes, C. Peifer, J. Halekotte, 
V. Bakulev, and J. Bischof. 2014. The CK1 Family: Contribution to Cellular Stress 
Response and Its Role in Carcinogenesis. Frontiers in oncology. 4:96. 

Kojima, T., A. Takasawa, D. Kyuno, T. Ito, H. Yamaguchi, K. Hirata, M. Tsujiwaki, M. 
Murata, S. Tanaka, and N. Sawada. 2011. Downregulation of tight junction-
associated MARVEL protein marvelD3 during epithelial-mesenchymal transition 
in human pancreatic cancer cells. Experimental cell research. 317:2288-2298. 

Kooistra, M.R., N. Dube, and J.L. Bos. 2007. Rap1: a key regulator in cell-cell junction 
formation. Journal of cell science. 120:17-22. 

Kostrewa, D., M. Brockhaus, A. D'Arcy, G.E. Dale, P. Nelboeck, G. Schmid, F. Mueller, 
G. Bazzoni, E. Dejana, T. Bartfai, F.K. Winkler, and M. Hennig. 2001. X-ray 



117 
 

structure of junctional adhesion molecule: structural basis for homophilic 
adhesion via a novel dimerization motif. The EMBO journal. 20:4391-4398. 

Krause, G., L. Winkler, S.L. Mueller, R.F. Haseloff, J. Piontek, and I.E. Blasig. 2008. 
Structure and function of claudins. Biochimica et biophysica acta. 1778:631-645. 

Krug, S.M., S. Amasheh, J.F. Richter, S. Milatz, D. Gunzel, J.K. Westphal, O. Huber, 
J.D. Schulzke, and M. Fromm. 2009. Tricellulin forms a barrier to 
macromolecules in tricellular tight junctions without affecting ion permeability. 
Molecular biology of the cell. 20:3713-3724. 

Krug, S.M., J.D. Schulzke, and M. Fromm. 2014. Tight junction, selective permeability, 
and related diseases. Seminars in cell & developmental biology. 36:166-176. 

Kulka, J., A.M. Szasz, Z. Nemeth, L. Madaras, Z. Schaff, I.A. Molnar, and A.M. Tokes. 
2009. Expression of tight junction protein claudin-4 in basal-like breast 
carcinomas. Pathology oncology research : POR. 15:59-64. 

Larue, L., M. Ohsugi, J. Hirchenhain, and R. Kemler. 1994. E-cadherin null mutant 
embryos fail to form a trophectoderm epithelium. Proceedings of the National 
Academy of Sciences of the United States of America. 91:8263-8267. 

Laukoetter, M.G., P. Nava, W.Y. Lee, E.A. Severson, C.T. Capaldo, B.A. Babbin, I.R. 
Williams, M. Koval, E. Peatman, J.A. Campbell, T.S. Dermody, A. Nusrat, and 
C.A. Parkos. 2007. JAM-A regulates permeability and inflammation in the 
intestine in vivo. The Journal of experimental medicine. 204:3067-3076. 

Levine, E.M., Y. Becker, C.W. Boone, and H. Eagle. 1965. Contact Inhibition, 
Macromolecular Synthesis, and Polyribosomes in Cultured Human Diploid 
Fibroblasts. Proceedings of the National Academy of Sciences of the United 
States of America. 53:350-356. 

Lewis, J.E., J.K. Wahl, 3rd, K.M. Sass, P.J. Jensen, K.R. Johnson, and M.J. Wheelock. 
1997. Cross-talk between adherens junctions and desmosomes depends on 
plakoglobin. The Journal of cell biology. 136:919-934. 

Li, G., P. Flodby, J. Luo, H. Kage, A. Sipos, D. Gao, Y. Ji, L.L. Beard, C.N. Marconett, L. 
DeMaio, Y.H. Kim, K.J. Kim, I.A. Laird-Offringa, P. Minoo, J.M. Liebler, B. Zhou, 
E.D. Crandall, and Z. Borok. 2014. Knockout mice reveal key roles for claudin 18 
in alveolar barrier properties and fluid homeostasis. American journal of 
respiratory cell and molecular biology. 51:210-222. 

Li, S., E.R. Gerrard, Jr., and D.F. Balkovetz. 2004. Evidence for ERK1/2 
phosphorylation controlling contact inhibition of proliferation in Madin-Darby 
canine kidney epithelial cells. American journal of physiology. Cell physiology. 
287:C432-439. 

Li, Y., A.S. Fanning, J.M. Anderson, and A. Lavie. 2005. Structure of the conserved 
cytoplasmic C-terminal domain of occludin: identification of the ZO-1 binding 
surface. Journal of molecular biology. 352:151-164. 

Liu, H., S. Komiya, M. Shimizu, Y. Fukunaga, and A. Nagafuchi. 2007. Involvement of 
p120 carboxy-terminal domain in cadherin trafficking. Cell structure and function. 
32:127-137. 

London, B. 2004. Staying connected without connexin43: can you hear me now? 
Circulation research. 95:120-121. 



118 
 

Lye, M.F., A.S. Fanning, Y. Su, J.M. Anderson, and A. Lavie. 2010. Insights into 
regulated ligand binding sites from the structure of ZO-1 Src homology 3-
guanylate kinase module. J Biol Chem. 285:13907-13917. 

MacDonald, B.T., K. Tamai, and X. He. 2009. Wnt/beta-catenin signaling: components, 
mechanisms, and diseases. Developmental cell. 17:9-26. 

Mandai, K., H. Nakanishi, A. Satoh, H. Obaishi, M. Wada, H. Nishioka, M. Itoh, A. 
Mizoguchi, T. Aoki, T. Fujimoto, Y. Matsuda, S. Tsukita, and Y. Takai. 1997. 
Afadin: A novel actin filament-binding protein with one PDZ domain localized at 
cadherin-based cell-to-cell adherens junction. The Journal of cell biology. 
139:517-528. 

Mandell, K.J., I.C. McCall, and C.A. Parkos. 2004. Involvement of the junctional 
adhesion molecule-1 (JAM1) homodimer interface in regulation of epithelial 
barrier function. J Biol Chem. 279:16254-16262. 

Martin, T.A., R.E. Mansel, and W.G. Jiang. 2010. Loss of occludin leads to the 
progression of human breast cancer. International journal of molecular medicine. 
26:723-734. 

Martini, J.S., P. Raake, L.E. Vinge, B.R. DeGeorge, Jr., J.K. Chuprun, D.M. Harris, E. 
Gao, A.D. Eckhart, J.A. Pitcher, and W.J. Koch. 2008. Uncovering G protein-
coupled receptor kinase-5 as a histone deacetylase kinase in the nucleus of 
cardiomyocytes. Proceedings of the National Academy of Sciences of the United 
States of America. 105:12457-12462. 

Masuda, S., Y. Oda, H. Sasaki, J. Ikenouchi, T. Higashi, M. Akashi, E. Nishi, and M. 
Furuse. 2011. LSR defines cell corners for tricellular tight junction formation in 
epithelial cells. Journal of cell science. 124:548-555. 

Mayor, R., and C. Carmona-Fontaine. 2010. Keeping in touch with contact inhibition of 
locomotion. Trends in cell biology. 20:319-328. 

McCarthy, K.M., I.B. Skare, M.C. Stankewich, M. Furuse, S. Tsukita, R.A. Rogers, R.D. 
Lynch, and E.E. Schneeberger. 1996. Occludin is a functional component of the 
tight junction. Journal of cell science. 109 ( Pt 9):2287-2298. 

McClatchey, A.I., and A.S. Yap. 2012. Contact inhibition (of proliferation) redux. Current 
opinion in cell biology. 24:685-694. 

Middleton, C.A. 1972. Contact inhibition of locomotion in cultures of pigmented retina 
epithelium. Experimental cell research. 70:91-96. 

Mishima, A., A. Suzuki, M. Enaka, T. Hirose, K. Mizuno, T. Ohnishi, H. Mohri, Y. 
Ishigatsubo, and S. Ohno. 2002. Over-expression of PAR-3 suppresses contact-
mediated inhibition of cell migration in MDCK cells. Genes to cells : devoted to 
molecular & cellular mechanisms. 7:581-596. 

Morgan, D.H., O. Ghribi, L. Hui, J.D. Geiger, and X. Chen. 2014. Cholesterol-enriched 
diet disrupts the blood-testis barrier in rabbits. American journal of physiology. 
Endocrinology and metabolism. 307:E1125-1130. 

Mruk, D.D., and C.Y. Cheng. 2015. The Mammalian Blood-Testis Barrier: Its Biology 
and Regulation. Endocrine reviews. 36:564-591. 

Murakami, T., E.A. Felinski, and D.A. Antonetti. 2009. Occludin Phosphorylation and 
Ubiquitination Regulate Tight Junction Trafficking and Vascular Endothelial 
Growth Factor-induced Permeability. J Biol Chem. 284:21036-21046. 



119 
 

Murakami, T., T. Frey, C. Lin, and D.A. Antonetti. 2012. Protein kinase cbeta 
phosphorylates occludin regulating tight junction trafficking in vascular 
endothelial growth factor-induced permeability in vivo. Diabetes. 61:1573-1583. 

Muto, S., M. Hata, J. Taniguchi, S. Tsuruoka, K. Moriwaki, M. Saitou, K. Furuse, H. 
Sasaki, A. Fujimura, M. Imai, E. Kusano, S. Tsukita, and M. Furuse. 2010. 
Claudin-2-deficient mice are defective in the leaky and cation-selective 
paracellular permeability properties of renal proximal tubules. Proceedings of the 
National Academy of Sciences of the United States of America. 107:8011-8016. 

Nakajima, M., K. Arimatsu, T. Kato, Y. Matsuda, T. Minagawa, N. Takahashi, H. Ohno, 
and K. Yamazaki. 2015. Oral Administration of P. gingivalis Induces Dysbiosis of 
Gut Microbiota and Impaired Barrier Function Leading to Dissemination of 
Enterobacteria to the Liver. PloS one. 10:e0134234. 

Nakaya, Y., and G. Sheng. 2013. EMT in developmental morphogenesis. Cancer 
letters. 341:9-15. 

Nava, P., C.T. Capaldo, S. Koch, K. Kolegraff, C.R. Rankin, A.E. Farkas, M.E. Feasel, 
L. Li, C. Addis, C.A. Parkos, and A. Nusrat. 2011. JAM-A regulates epithelial 
proliferation through Akt/beta-catenin signalling. EMBO reports. 12:314-320. 

Nayak, G., S.I. Lee, R. Yousaf, S.E. Edelmann, C. Trincot, C.M. Van Itallie, G.P. Sinha, 
M. Rafeeq, S.M. Jones, I.A. Belyantseva, J.M. Anderson, A. Forge, G.I. 
Frolenkov, and S. Riazuddin. 2013. Tricellulin deficiency affects tight junction 
architecture and cochlear hair cells. The Journal of clinical investigation. 
123:4036-4049. 

Nazli, A., O. Chan, W.N. Dobson-Belaire, M. Ouellet, M.J. Tremblay, S.D. Gray-Owen, 
A.L. Arsenault, and C. Kaushic. 2010. Exposure to HIV-1 directly impairs 
mucosal epithelial barrier integrity allowing microbial translocation. PLoS 
pathogens. 6:e1000852. 

Nekrasova, O., and K.J. Green. 2013. Desmosome assembly and dynamics. Trends in 
cell biology. 23:537-546. 

Nemeth, Z., A.M. Szasz, A. Somoracz, P. Tatrai, J. Nemeth, H. Gyorffy, A. Szijarto, P. 
Kupcsulik, A. Kiss, and Z. Schaff. 2009. Zonula occludens-1, occludin, and E-
cadherin protein expression in biliary tract cancers. Pathology oncology research 
: POR. 15:533-539. 

Nomura, K., K. Obata, T. Keira, R. Miyata, S. Hirakawa, K. Takano, T. Kohno, N. 
Sawada, T. Himi, and T. Kojima. 2014. Pseudomonas aeruginosa elastase 
causes transient disruption of tight junctions and downregulation of PAR-2 in 
human nasal epithelial cells. Respiratory research. 15:21. 

Notari, M., Y. Hu, G. Sutendra, Z. Dedeic, M. Lu, L. Dupays, A. Yavari, C.A. Carr, S. 
Zhong, A. Opel, A. Tinker, K. Clarke, H. Watkins, D.J. Ferguson, D.P. Kelsell, S. 
de Noronha, M.N. Sheppard, M. Hollinshead, T.J. Mohun, and X. Lu. 2015. 
iASPP, a previously unidentified regulator of desmosomes, prevents 
arrhythmogenic right ventricular cardiomyopathy (ARVC)-induced sudden death. 
Proceedings of the National Academy of Sciences of the United States of 
America. 112:E973-981. 

Nualart-Marti, A., C. Solsona, and R.D. Fields. 2013. Gap junction communication in 
myelinating glia. Biochimica et biophysica acta. 1828:69-78. 



120 
 

Nusrat, A., G.T. Brown, J. Tom, A. Drake, T.T. Bui, C. Quan, and R.J. Mrsny. 2005. 
Multiple protein interactions involving proposed extracellular loop domains of the 
tight junction protein occludin. Molecular biology of the cell. 16:1725-1734. 

Nusrat, A., J.A. Chen, C.S. Foley, T.W. Liang, J. Tom, M. Cromwell, C. Quan, and R.J. 
Mrsny. 2000. The coiled-coil domain of occludin can act to organize structural 
and functional elements of the epithelial tight junction. J Biol Chem. 275:29816-
29822. 

O'Driscoll, M.C., S.B. Daly, J.E. Urquhart, G.C. Black, D.T. Pilz, K. Brockmann, M. 
McEntagart, G. Abdel-Salam, M. Zaki, N.I. Wolf, R.L. Ladda, S. Sell, S. D'Arrigo, 
W. Squier, W.B. Dobyns, J.H. Livingston, and Y.J. Crow. 2010. Recessive 
mutations in the gene encoding the tight junction protein occludin cause band-
like calcification with simplified gyration and polymicrogyria. American journal of 
human genetics. 87:354-364. 

Oda, H., and M. Takeichi. 2011. Evolution: structural and functional diversity of cadherin 
at the adherens junction. The Journal of cell biology. 193:1137-1146. 

Ooshio, T., R. Kobayashi, W. Ikeda, M. Miyata, Y. Fukumoto, N. Matsuzawa, H. Ogita, 
and Y. Takai. 2010. Involvement of the interaction of afadin with ZO-1 in the 
formation of tight junctions in Madin-Darby canine kidney cells. J Biol Chem. 
285:5003-5012. 

Osanai, M., M. Murata, N. Nishikiori, H. Chiba, T. Kojima, and N. Sawada. 2006. 
Epigenetic silencing of occludin promotes tumorigenic and metastatic properties 
of cancer cells via modulations of unique sets of apoptosis-associated genes. 
Cancer research. 66:9125-9133. 

Oshima, T., H. Miwa, and T. Joh. 2008. Changes in the expression of claudins in active 
ulcerative colitis. Journal of gastroenterology and hepatology. 23 Suppl 2:S146-
150. 

Otsubo, T., T. Hagiwara, M. Tamura-Nakano, T. Sezaki, O. Miyake, C. Hinohara, T. 
Shimizu, K. Yamada, T. Dohi, and Y.I. Kawamura. 2015. Aberrant DNA 
hypermethylation reduces the expression of the desmosome-related molecule 
periplakin in esophageal squamous cell carcinoma. Cancer medicine. 4:415-425. 

Pan, D. 2010. The hippo signaling pathway in development and cancer. Developmental 
cell. 19:491-505. 

Paschoud, S., M. Bongiovanni, J.C. Pache, and S. Citi. 2007. Claudin-1 and claudin-5 
expression patterns differentiate lung squamous cell carcinomas from 
adenocarcinomas. Modern pathology : an official journal of the United States and 
Canadian Academy of Pathology, Inc. 20:947-954. 

Patial, S., J. Luo, K.J. Porter, J.L. Benovic, and N. Parameswaran. 2010. G-protein-
coupled-receptor kinases mediate TNFalpha-induced NFkappaB signalling via 
direct interaction with and phosphorylation of IkappaBalpha. The Biochemical 
journal. 425:169-178. 

Perrais, M., X. Chen, M. Perez-Moreno, and B.M. Gumbiner. 2007. E-cadherin 
homophilic ligation inhibits cell growth and epidermal growth factor receptor 
signaling independently of other cell interactions. Molecular biology of the cell. 
18:2013-2025. 



121 
 

Pertz, O., D. Bozic, A.W. Koch, C. Fauser, A. Brancaccio, and J. Engel. 1999. A new 
crystal structure, Ca2+ dependence and mutational analysis reveal molecular 
details of E-cadherin homoassociation. The EMBO journal. 18:1738-1747. 

Phillips, B.E., L. Cancel, J.M. Tarbell, and D.A. Antonetti. 2008. Occludin independently 
regulates permeability under hydrostatic pressure and cell division in retinal 
pigment epithelial cells. Investigative ophthalmology & visual science. 49:2568-
2576. 

Piontek, J., S. Fritzsche, J. Cording, S. Richter, J. Hartwig, M. Walter, D. Yu, J.R. 
Turner, C. Gehring, H.P. Rahn, H. Wolburg, and I.E. Blasig. 2011. Elucidating the 
principles of the molecular organization of heteropolymeric tight junction strands. 
Cellular and molecular life sciences : CMLS. 68:3903-3918. 

Ploss, A., M.J. Evans, V.A. Gaysinskaya, M. Panis, H. You, Y.P. de Jong, and C.M. 
Rice. 2009. Human occludin is a hepatitis C virus entry factor required for 
infection of mouse cells. Nature. 457:882-886. 

Prota, A.E., J.A. Campbell, P. Schelling, J.C. Forrest, M.J. Watson, T.R. Peters, M. 
Aurrand-Lions, B.A. Imhof, T.S. Dermody, and T. Stehle. 2003. Crystal structure 
of human junctional adhesion molecule 1: implications for reovirus binding. 
Proceedings of the National Academy of Sciences of the United States of 
America. 100:5366-5371. 

Puliafito, A., L. Hufnagel, P. Neveu, S. Streichan, A. Sigal, D.K. Fygenson, and B.I. 
Shraiman. 2012. Collective and single cell behavior in epithelial contact inhibition. 
Proceedings of the National Academy of Sciences of the United States of 
America. 109:739-744. 

Rachow, S., M. Zorn-Kruppa, U. Ohnemus, N. Kirschner, S. Vidal-y-Sy, P. von den 
Driesch, C. Bornchen, J. Eberle, M. Mildner, E. Vettorazzi, R. Rosenthal, I. Moll, 
and J.M. Brandner. 2013. Occludin is involved in adhesion, apoptosis, 
differentiation and Ca2+-homeostasis of human keratinocytes: implications for 
tumorigenesis. PloS one. 8:e55116. 

Raleigh, D.R., D.M. Boe, D. Yu, C.R. Weber, A.M. Marchiando, E.M. Bradford, Y. 
Wang, L. Wu, E.E. Schneeberger, L. Shen, and J.R. Turner. 2011. Occludin 
S408 phosphorylation regulates tight junction protein interactions and barrier 
function. The Journal of cell biology. 193:565-582. 

Raleigh, D.R., A.M. Marchiando, Y. Zhang, L. Shen, H. Sasaki, Y. Wang, M. Long, and 
J.R. Turner. 2010. Tight junction-associated MARVEL proteins marveld3, 
tricellulin, and occludin have distinct but overlapping functions. Molecular biology 
of the cell. 21:1200-1213. 

Rauskolb, C., S. Sun, G. Sun, Y. Pan, and K.D. Irvine. 2014. Cytoskeletal tension 
inhibits Hippo signaling through an Ajuba-Warts complex. Cell. 158:143-156. 

Rodgers, L.S., M.T. Beam, J.M. Anderson, and A.S. Fanning. 2013. Epithelial barrier 
assembly requires coordinated activity of multiple domains of the tight junction 
protein ZO-1. Journal of cell science. 126:1565-1575. 

Rossier, B.C., M.E. Baker, and R.A. Studer. 2015. Epithelial sodium transport and its 
control by aldosterone: the story of our internal environment revisited. 
Physiological reviews. 95:297-340. 

Rothenpieler, U.W., and G.R. Dressler. 1993. Pax-2 is required for mesenchyme-to-
epithelium conversion during kidney development. Development. 119:711-720. 



122 
 

Runkle, E.A., and D. Mu. 2013. Tight junction proteins: from barrier to tumorigenesis. 
Cancer letters. 337:41-48. 

Runkle, E.A., J.M. Sundstrom, K.B. Gonsar, and D.A. Antonetti. 2009. Phosphorylation 
of the Tight Junction Protein Occludin on Ser490 Regulates Barrier Function and 
Contributes to Growth Control. Faseb J. 23. 

Runkle, E.A., J.M. Sundstrom, K.B. Runkle, X. Liu, and D.A. Antonetti. 2011. Occludin 
localizes to centrosomes and modifies mitotic entry. J Biol Chem. 286:30847-
30858. 

Saitou, M., M. Furuse, H. Sasaki, J.D. Schulzke, M. Fromm, H. Takano, T. Noda, and S. 
Tsukita. 2000. Complex phenotype of mice lacking occludin, a component of tight 
junction strands. Molecular biology of the cell. 11:4131-4142. 

Sajda, T., J. Hazelton, M. Patel, K. Seiffert-Sinha, L. Steinman, W. Robinson, B.B. 
Haab, and A.A. Sinha. 2016. Multiplexed autoantigen microarrays identify HLA 
as a key driver of anti-desmoglein and -non-desmoglein reactivities in 
pemphigus. Proceedings of the National Academy of Sciences of the United 
States of America. 

Sanchez-Pulido, L., F. Martin-Belmonte, A. Valencia, and M.A. Alonso. 2002. MARVEL: 
a conserved domain involved in membrane apposition events. Trends in 
biochemical sciences. 27:599-601. 

Sasaki, C.Y., H. Lin, P.J. Morin, and D.L. Longo. 2000. Truncation of the extracellular 
region abrogrates cell contact but retains the growth-suppressive activity of E-
cadherin. Cancer research. 60:7057-7065. 

Saxén, L. 1987. Organogenesis of the kidney. Cambridge University Press, Cambridge 
Cambridgeshire ; New York. viii, 173 p. pp. 

Schackmann, R.C., M. Tenhagen, R.A. van de Ven, and P.W. Derksen. 2013. p120-
catenin in cancer - mechanisms, models and opportunities for intervention. 
Journal of cell science. 126:3515-3525. 

Schmitz, H., C. Barmeyer, M. Fromm, N. Runkel, H.D. Foss, C.J. Bentzel, E.O. 
Riecken, and J.D. Schulzke. 1999. Altered tight junction structure contributes to 
the impaired epithelial barrier function in ulcerative colitis. Gastroenterology. 
116:301-309. 

Schneeberger, E.E., and R.D. Lynch. 2004. The tight junction: a multifunctional 
complex. American journal of physiology. Cell physiology. 286:C1213-1228. 

Schulzke, J.D., A.H. Gitter, J. Mankertz, S. Spiegel, U. Seidler, S. Amasheh, M. Saitou, 
S. Tsukita, and M. Fromm. 2005. Epithelial transport and barrier function in 
occludin-deficient mice. Biochimica et biophysica acta. 1669:34-42. 

Severs, N.J., A.F. Bruce, E. Dupont, and S. Rothery. 2008. Remodelling of gap 
junctions and connexin expression in diseased myocardium. Cardiovascular 
research. 80:9-19. 

Shapiro, L. 2001. beta-catenin and its multiple partners: promiscuity explained. Nature 
structural biology. 8:484-487. 

Shapiro, L., and W.I. Weis. 2009. Structure and biochemistry of cadherins and catenins. 
Cold Spring Harbor perspectives in biology. 1:a003053. 

Shen, L., C.R. Weber, and J.R. Turner. 2008. The tight junction protein complex 
undergoes rapid and continuous molecular remodeling at steady state. The 
Journal of cell biology. 181:683-695. 



123 
 

Sheng, G. 2015. Epiblast morphogenesis before gastrulation. Developmental biology. 
401:17-24. 

Singh, Y., J. Port, M. Schwarz, and A. Braeuning. 2014. Genetic ablation of beta-
catenin inhibits the proliferative phenotype of mouse liver adenomas. British 
journal of cancer. 111:132-138. 

Soini, Y. 2011. Claudins in lung diseases. Respiratory research. 12:70. 
Solnica-Krezel, L., and D.S. Sepich. 2012. Gastrulation: making and shaping germ 

layers. Annual review of cell and developmental biology. 28:687-717. 
Spadaro, D., R. Tapia, P. Pulimeno, and S. Citi. 2012. The control of gene expression 

and cell proliferation by the epithelial apical junctional complex. Essays in 
biochemistry. 53:83-93. 

Staal, F.J., and H.C. Clevers. 2005. WNT signalling and haematopoiesis: a WNT-WNT 
situation. Nature reviews. Immunology. 5:21-30. 

Staehelin, L.A. 1973. Further observations on the fine structure of freeze-cleaved tight 
junctions. Journal of cell science. 13:763-786. 

Staehelin, L.A. 1974. Structure and function of intercellular junctions. International 
review of cytology. 39:191-283. 

Steed, E., A. Elbediwy, B. Vacca, S. Dupasquier, S.A. Hemkemeyer, T. Suddason, A.C. 
Costa, J.B. Beaudry, C. Zihni, E. Gallagher, C.E. Pierreux, M.S. Balda, and K. 
Matter. 2014. MarvelD3 couples tight junctions to the MEKK1-JNK pathway to 
regulate cell behavior and survival. The Journal of cell biology. 204:821-838. 

Steed, E., N.T. Rodrigues, M.S. Balda, and K. Matter. 2009. Identification of MarvelD3 
as a tight junction-associated transmembrane protein of the occludin family. BMC 
cell biology. 10:95. 

Stevenson, B.R., J.D. Siliciano, M.S. Mooseker, and D.A. Goodenough. 1986. 
Identification of ZO-1: a high molecular weight polypeptide associated with the 
tight junction (zonula occludens) in a variety of epithelia. The Journal of cell 
biology. 103:755-766. 

Stockinger, A., A. Eger, J. Wolf, H. Beug, and R. Foisner. 2001. E-cadherin regulates 
cell growth by modulating proliferation-dependent beta-catenin transcriptional 
activity. The Journal of cell biology. 154:1185-1196. 

Stroemlund, L.W., C.F. Jensen, K. Qvortrup, M. Delmar, and M.S. Nielsen. 2015. Gap 
junctions - guards of excitability. Biochemical Society transactions. 43:508-512. 

Sundstrom, J.M., B.R. Tash, T. Murakami, J.M. Flanagan, M.C. Bewley, B.A. Stanley, 
K.B. Gonsar, and D.A. Antonetti. 2009. Identification and analysis of occludin 
phosphosites: a combined mass spectrometry and bioinformatics approach. 
Journal of proteome research. 8:808-817. 

Suzuki, T., B.C. Elias, A. Seth, L. Shen, J.R. Turner, F. Giorgianni, D. Desiderio, R. 
Guntaka, and R. Rao. 2009. PKC eta regulates occludin phosphorylation and 
epithelial tight junction integrity. Proceedings of the National Academy of 
Sciences of the United States of America. 106:61-66. 

Tachibana, K., H. Nakanishi, K. Mandai, K. Ozaki, W. Ikeda, Y. Yamamoto, A. 
Nagafuchi, S. Tsukita, and Y. Takai. 2000. Two cell adhesion molecules, nectin 
and cadherin, interact through their cytoplasmic domain-associated proteins. The 
Journal of cell biology. 150:1161-1176. 



124 
 

Takahashi, K., H. Nakanishi, M. Miyahara, K. Mandai, K. Satoh, A. Satoh, H. Nishioka, 
J. Aoki, A. Nomoto, A. Mizoguchi, and Y. Takai. 1999. Nectin/PRR: an 
immunoglobulin-like cell adhesion molecule recruited to cadherin-based 
adherens junctions through interaction with Afadin, a PDZ domain-containing 
protein. The Journal of cell biology. 145:539-549. 

Talavera, D., A.M. Castillo, M.C. Dominguez, A.E. Gutierrez, and I. Meza. 2004. IL8 
release, tight junction and cytoskeleton dynamic reorganization conducive to 
permeability increase are induced by dengue virus infection of microvascular 
endothelial monolayers. The Journal of general virology. 85:1801-1813. 

Tanaka-Okamoto, M., K. Hori, H. Ishizaki, Y. Itoh, S. Onishi, S. Yonemura, Y. Takai, 
and J. Miyoshi. 2011. Involvement of afadin in barrier function and homeostasis 
of mouse intestinal epithelia. Journal of cell science. 124:2231-2240. 

Tash, B.R., M.C. Bewley, M. Russo, J.M. Keil, K.A. Griffin, J.M. Sundstrom, D.A. 
Antonetti, F. Tian, and J.M. Flanagan. 2012. The occludin and ZO-1 complex, 
defined by small angle X-ray scattering and NMR, has implications for 
modulating tight junction permeability. Proceedings of the National Academy of 
Sciences of the United States of America. 109:10855-10860. 

Thal, D.M., K.T. Homan, J. Chen, E.K. Wu, P.M. Hinkle, Z.M. Huang, J.K. Chuprun, J. 
Song, E. Gao, J.Y. Cheung, L.A. Sklar, W.J. Koch, and J.J. Tesmer. 2012. 
Paroxetine is a direct inhibitor of g protein-coupled receptor kinase 2 and 
increases myocardial contractility. ACS chemical biology. 7:1830-1839. 

Thiery, J.P. 2002. Epithelial-mesenchymal transitions in tumour progression. Nature 
reviews. Cancer. 2:442-454. 

Thorner, J., T. Hunter, L.C. Cantley, and R. Sever. 2014. Signal transduction: From the 
atomic age to the post-genomic era. Cold Spring Harbor perspectives in biology. 
6:a022913. 

Titchenell, P.M., C.M. Lin, J.M. Keil, J.M. Sundstrom, C.D. Smith, and D.A. Antonetti. 
2012. Novel atypical PKC inhibitors prevent vascular endothelial growth factor-
induced blood-retinal barrier dysfunction. The Biochemical journal. 446:455-467. 

Tobioka, H., H. Isomura, Y. Kokai, Y. Tokunaga, J. Yamaguchi, and N. Sawada. 2004. 
Occludin expression decreases with the progression of human endometrial 
carcinoma. Human pathology. 35:159-164. 

Trepat, X., M.R. Wasserman, T.E. Angelini, E. Millet, D.A. Weitz, J.P. Butler, and J.J. 
Fredberg. 2009. Physical forces during collective cell migration. Nature Physics 
Letters. 5:426-430. 

Troeger, H., C. Loddenkemper, T. Schneider, E. Schreier, H.J. Epple, M. Zeitz, M. 
Fromm, and J.D. Schulzke. 2009. Structural and functional changes of the 
duodenum in human norovirus infection. Gut. 58:1070-1077. 

Tsukita, S., M. Furuse, and M. Itoh. 2001. Multifunctional strands in tight junctions. 
Nature reviews. Molecular cell biology. 2:285-293. 

Tsukita, S., S. Tsukita, A. Nagafuchi, and S. Yonemura. 1992. Molecular linkage 
between cadherins and actin filaments in cell-cell adherens junctions. Current 
opinion in cell biology. 4:834-839. 

Umeda, K., J. Ikenouchi, S. Katahira-Tayama, K. Furuse, H. Sasaki, M. Nakayama, T. 
Matsui, S. Tsukita, M. Furuse, and S. Tsukita. 2006. ZO-1 and ZO-2 



125 
 

independently determine where claudins are polymerized in tight-junction strand 
formation. Cell. 126:741-754. 

van de Ven, R.A., M. Tenhagen, W. Meuleman, J.J. van Riel, R.C. Schackmann, and 
P.W. Derksen. 2015. Nuclear p120-catenin regulates the anoikis resistance of 
mouse lobular breast cancer cells through Kaiso-dependent Wnt11 expression. 
Disease models & mechanisms. 8:373-384. 

Van Itallie, C.M., A.S. Fanning, J. Holmes, and J.M. Anderson. 2010. Occludin is 
required for cytokine-induced regulation of tight junction barriers. Journal of cell 
science. 123:2844-2852. 

Varelas, X., B.W. Miller, R. Sopko, S. Song, A. Gregorieff, F.A. Fellouse, R. Sakuma, T. 
Pawson, W. Hunziker, H. McNeill, J.L. Wrana, and L. Attisano. 2010. The Hippo 
pathway regulates Wnt/beta-catenin signaling. Developmental cell. 18:579-591. 

Vasioukhin, V., C. Bauer, L. Degenstein, B. Wise, and E. Fuchs. 2001. 
Hyperproliferation and defects in epithelial polarity upon conditional ablation of 
alpha-catenin in skin. Cell. 104:605-617. 

Vermeulen, S.J., E.A. Bruyneel, M.E. Bracke, G.K. De Bruyne, K.M. Vennekens, K.L. 
Vleminckx, G.J. Berx, F.M. van Roy, and M.M. Mareel. 1995. Transition from the 
noninvasive to the invasive phenotype and loss of alpha-catenin in human colon 
cancer cells. Cancer research. 55:4722-4728. 

Vestweber, D., R. Kemler, and P. Ekblom. 1985. Cell-adhesion molecule uvomorulin 
during kidney development. Developmental biology. 112:213-221. 

Vetrano, S., M. Rescigno, M.R. Cera, C. Correale, C. Rumio, A. Doni, M. Fantini, A. 
Sturm, E. Borroni, A. Repici, M. Locati, A. Malesci, E. Dejana, and S. Danese. 
2008. Unique role of junctional adhesion molecule-a in maintaining mucosal 
homeostasis in inflammatory bowel disease. Gastroenterology. 135:173-184. 

Vivinus-Nebot, M., G. Frin-Mathy, H. Bzioueche, R. Dainese, G. Bernard, R. Anty, J. 
Filippi, M.C. Saint-Paul, M.K. Tulic, V. Verhasselt, X. Hebuterne, and T. Piche. 
2014. Functional bowel symptoms in quiescent inflammatory bowel diseases: 
role of epithelial barrier disruption and low-grade inflammation. Gut. 63:744-752. 

Vize, P.D., A.S. Woolf, and J.B.L. Bard. 2003. The kidney : from normal development to 
congenital diseases. Academic Press, Amsterdam ; Boston. xiii, 519 p. pp. 

Walsh, T., S.B. Pierce, D.R. Lenz, Z. Brownstein, O. Dagan-Rosenfeld, H. Shahin, W. 
Roeb, S. McCarthy, A.S. Nord, C.R. Gordon, Z. Ben-Neriah, J. Sebat, M. 
Kanaan, M.K. Lee, M. Frydman, M.C. King, and K.B. Avraham. 2010. Genomic 
duplication and overexpression of TJP2/ZO-2 leads to altered expression of 
apoptosis genes in progressive nonsyndromic hearing loss DFNA51. American 
journal of human genetics. 87:101-109. 

Wang, Z., K.J. Mandell, C.A. Parkos, R.J. Mrsny, and A. Nusrat. 2005. The second loop 
of occludin is required for suppression of Raf1-induced tumor growth. Oncogene. 
24:4412-4420. 

Watabe-Uchida, M., N. Uchida, Y. Imamura, A. Nagafuchi, K. Fujimoto, T. Uemura, S. 
Vermeulen, F. van Roy, E.D. Adamson, and M. Takeichi. 1998. alpha-Catenin-
vinculin interaction functions to organize the apical junctional complex in 
epithelial cells. The Journal of cell biology. 142:847-857. 

Watabe, M., A. Nagafuchi, S. Tsukita, and M. Takeichi. 1994. Induction of polarized cell-
cell association and retardation of growth by activation of the E-cadherin-catenin 



126 
 

adhesion system in a dispersed carcinoma line. The Journal of cell biology. 
127:247-256. 

Weber, C.R., S.C. Nalle, M. Tretiakova, D.T. Rubin, and J.R. Turner. 2008. Claudin-1 
and claudin-2 expression is elevated in inflammatory bowel disease and may 
contribute to early neoplastic transformation. Laboratory investigation; a journal 
of technical methods and pathology. 88:1110-1120. 

Willott, E., M.S. Balda, A.S. Fanning, B. Jameson, C. Van Itallie, and J.M. Anderson. 
1993. The tight junction protein ZO-1 is homologous to the Drosophila discs-large 
tumor suppressor protein of septate junctions. Proceedings of the National 
Academy of Sciences of the United States of America. 90:7834-7838. 

Wong, V., and B.M. Gumbiner. 1997. A synthetic peptide corresponding to the 
extracellular domain of occludin perturbs the tight junction permeability barrier. 
The Journal of cell biology. 136:399-409. 

Xu, J., P.J. Kausalya, D.C. Phua, S.M. Ali, Z. Hossain, and W. Hunziker. 2008. Early 
embryonic lethality of mice lacking ZO-2, but Not ZO-3, reveals critical and 
nonredundant roles for individual zonula occludens proteins in mammalian 
development. Molecular and cellular biology. 28:1669-1678. 

Xue, Y., J. Ren, X. Gao, C. Jin, L. Wen, and X. Yao. 2008. GPS 2.0, a tool to predict 
kinase-specific phosphorylation sites in hierarchy. Molecular & cellular 
proteomics : MCP. 7:1598-1608. 

Yamada, A., N. Fujita, T. Sato, R. Okamoto, T. Ooshio, T. Hirota, K. Morimoto, K. Irie, 
and Y. Takai. 2006. Requirement of nectin, but not cadherin, for formation of 
claudin-based tight junctions in annexin II-knockdown MDCK cells. Oncogene. 
25:5085-5102. 

Yamada, S., S. Pokutta, F. Drees, W.I. Weis, and W.J. Nelson. 2005. Deconstructing 
the cadherin-catenin-actin complex. Cell. 123:889-901. 

Yao, D., C. Dai, and S. Peng. 2011. Mechanism of the mesenchymal-epithelial 
transition and its relationship with metastatic tumor formation. Molecular cancer 
research : MCR. 9:1608-1620. 

Yilmaz-Ozcan, S., A. Sade, B. Kucukkaraduman, Y. Kaygusuz, K.M. Senses, S. 
Banerjee, and A.O. Gure. 2014. Epigenetic mechanisms underlying the dynamic 
expression of cancer-testis genes, PAGE2, -2B and SPANX-B, during 
mesenchymal-to-epithelial transition. PloS one. 9:e107905. 

Yu, A.S., K.M. McCarthy, S.A. Francis, J.M. McCormack, J. Lai, R.A. Rogers, R.D. 
Lynch, and E.E. Schneeberger. 2005. Knockdown of occludin expression leads 
to diverse phenotypic alterations in epithelial cells. American journal of 
physiology. Cell physiology. 288:C1231-1241. 

Zeissig, S., N. Burgel, D. Gunzel, J. Richter, J. Mankertz, U. Wahnschaffe, A.J. 
Kroesen, M. Zeitz, M. Fromm, and J.D. Schulzke. 2007. Changes in expression 
and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and 
barrier dysfunction in active Crohn's disease. Gut. 56:61-72. 

Zhang, P.X., Y. Wang, Y. Liu, G.Y. Jiang, Q.C. Li, and E.H. Wang. 2011. p120-catenin 
isoform 3 regulates subcellular localization of Kaiso and promotes invasion in 
lung cancer cells via a phosphorylation-dependent mechanism. International 
journal of oncology. 38:1625-1635. 



127 
 

Zhou, L., T. Pradhan-Sundd, M. Poddar, S. Singh, A. Kikuchi, D.B. Stolz, W. Shou, Z. 
Li, K.N. Nejak-Bowen, and S.P. Monga. 2015. Mice with Hepatic Loss of the 
Desmosomal Protein gamma-Catenin Are Prone to Cholestatic Injury and 
Chemical Carcinogenesis. The American journal of pathology. 185:3274-3289. 

Zhu, J., Y. Shang, C. Xia, W. Wang, W. Wen, and M. Zhang. 2011. Guanylate kinase 
domains of the MAGUK family scaffold proteins as specific phospho-protein-
binding modules. The EMBO journal. 30:4986-4997. 


